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Editorial on the Research Topic

High-tech personalized healthcare in movement disorders

The clinical management of patients affected by movement disorders is rapidly

evolving, driven by innovative health technologies and advanced computational

techniques, such as wearable sensors, augmented reality tools, telemedicine systems, and

artificial intelligence (AI) (1, 2). Technological advances offer new methods for early

diagnosis, remote monitoring, tailored treatments, and enhanced rehabilitative strategies,

all aimed at addressing individual needs through personalized approaches and increasing

patients’ quality of life. The opportunity to use these instruments directly at patients’ homes

allows for further improving therapeutic strategies by gathering ecological data recorded

in free-living situations (3). In this context, new health technologies and computational

techniques are promising tools possibly helpful for the overall clinical management of

patients with movement disorders.

The present Research Topic entitled “High-Tech Personalized Healthcare in

Movement Disorders” explores advances and perspectives of new technologies and AI-

based analytical methods to support the clinical assessment as well as the therapeutic

and rehabilitative management of patients suffering from movement disorders through

objective methods. The ten manuscripts included in this Research Topic deal with the

practical clinical application of various technologies and computational tools for the

evaluation and treatment of a wide range of motor symptoms, such as gait disturbances

and falls, upper limb impairment, tremor, and dysarthria, in patients affected bymovement

disorders. Accordingly, the articles in this Research Topic offer a comprehensive overview

of healthcare technologies and computational solutions for clinical decision support in

movement disorders.

Some studies within this Research Topic have focused on validating the employed tools

to establish recording and analytical frameworks essential for managing the substantial

volume of data generated by health technologies. For instance, Romijnders et al.,

from the Mobilise-D Consortium, conducted tests to validate an ad hoc developed

deep learning algorithm for gait event detection in ecological environments. This

involved utilizing pressure insoles and inertial measurement units (IMUs) in a broad

sample of subjects with various neurological mobility-limiting diseases. Similarly, Russell

et al. integrated measurements from IMUs with those from a microphone to explore

the feasibility of measuring and predicting specific motor tasks using multimodal
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intent-sensing technology and innovative algorithms in patients

with Parkinson’s disease (PD).

Other researchers have explored the potential to improve

the sensitivity of subjective patient assessment by integrating

technological tools with conventional clinical instruments during

real-time routine activities. In this context, Sena et al. examined the

real-time mobility of patients hospitalized in intensive care units

using wrist-worn accelerometers and deep-learning algorithms.

Their findings highlighted the superior predictive accuracy of

inertial measures combined with clinical data compared to

traditional clinical scoring systems for assessing acuity in critical

care settings.

Various authors have explored how technology and advanced

analytical methods can be used to enhance telemonitoring and

therapeutic approaches in movement disorders. van den Bergh

et al. conducted remote monitoring of PD patients directly in

their homes for a duration of 6 weeks, employing a sensor

necklace and a smartphone app. They assessed the usability

and effectiveness of the remote monitoring system in supporting

physiotherapy interventions aimed at enhancing physical activity

and preventing falls. Similarly, Sigcha et al. introduced a

novel telemonitoring system named “Monipar,” designed for

remote assessment of PD patients over extended periods. This

system utilized accelerometers from off-the-shelf smartwatches

and smartphone interfaces to quantitatively evaluate tremor and

bradykinesia by guiding patients through standardized motor

tasks. In another study, Suppa et al. showcased the feasibility

of objectively assessing the impact of different therapeutic

interventions, such as pharmacological treatment with L-Dopa

and surgical therapy with sub-thalamic deep brain stimulation

(DBS), on voice characteristics in PD patients. They employed

advanced AI algorithms to also establish significant clinical-

behavioral correlations between objective measures and qualitative

clinical assessments of voice impairment. Hoogendoorn et al.

investigated the effects of various wearable and flexible cueing

techniques, including real-world or augmented reality cues, on

gait performance in PD patients. Their findings demonstrated the

efficacy of these systems in improving patients’ walking abilities by

directly influencing spatiotemporal gait parameters.

Finally, the potential of health technologies to enhance

current remote rehabilitation strategies and teleneurology was

also investigated in some studies included in this Research

Topic. Vismara et al. applied exergames in a virtual environment

to promote upper limb mobility in patients with movement

impairment following a stroke. In the same way, Hardeman

et al. employed home-based exergaming to improve gait, and

balance, and reduce the risk of falls in PD patients, introducing an

innovative approach using augmented reality glasses. Additionally,

in a brief research report, Wan et al. explored a significant

opportunity presented by new telemedicine approaches, which

involves the remote programming of implantable pulse generators

via the Internet for PD patients treated with DBS. The authors

demonstrated that this approach is not only as effective as

traditional in-person methods but also more cost-effective, offering

several managerial advantages.

In conclusion, the achievements presented in this Research

Topic underscore the pivotal role of technological advancements

in reshaping clinical practice and improving outcomes for patients

with movement disorders. These findings enable us to confidently

affirm that, in the near future, new health technologies and

advanced computational techniques will significantly contribute to

the clinical management of these patients, underpinning a new

“high-tech neurology” paradigm.
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Background: Physiotherapy for persons with Parkinson’s disease (PwPD) could

benefit from objective and continuous tracking of physical activity and falls in daily

life.

Objectives: We designed a remote monitoring system for this purpose and

describe the experiences of PwPD and physiotherapists who used the system in

daily clinical practice.

Methods: Twenty-one PwPD (15 men) wore a sensor necklace to passively

record physical activity and falls for 6 weeks. They also used a smartphone app

to self-report daily activities, (near-)falls and medication intake. They discussed

those data with their PD-specialized physiotherapist (n = 9) during three regular

treatment sessions. User experiences and aspects to be improved were gathered

through interviews with PwPD and physiotherapists, resulting in system updates.

The system was evaluated in a second pilot with 25 new PwPD (17 men) and eight

physiotherapists.

Results: We applied thematic analysis to the interview data resulting in two main

themes: usability and utility. First, the usability of the system was rated positively,

with the necklace being easy to use. However, some PwPD with limited digital

literacy or cognitive impairments found the app unclear. Second, the perceived

utility of the system varied among PwPD. While many PwPD were motivated to

increase their activity level, others were not additionally motivated because they

perceived their activity level as high. Physiotherapists appreciated the objective

recording of physical activity at home and used the monitoring of falls to enlarge

awareness of the importance of falls for PwPD. Based on the interview data of

all participants, we drafted three user profiles for PwPD regarding the benefits of

remote monitoring for physiotherapy: for profile 1, a monitoring system could act

as a flagging dashboard to signal the need for renewed treatment; for profile 2, a

monitoring system could be a motivational tool to maintain physical activity; for

profile 3, a monitoring system could passively track physical activity and falls at

home. Finally, for a subgroup of PwPD the burdens of monitoring will outweigh

the benefits.

Conclusions: Overall, both PwPD and physiotherapists underline the potential

of a remote monitoring system to support physiotherapy by targeting physical

activity and (near-)falls. Our findings emphasize the importance of personalization

in remote monitoring technology, as illustrated by our user profiles.

KEYWORDS

Parkinson’s disease, physiotherapy, remote monitoring, physical activity, falls,

telemedicine, wearable electronic devices, personalized care
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Introduction

Parkinson’s disease (PD) is the fastest-growing neurological

movement disorder affecting ∼6.1 million people worldwide (1,

2). The disease can cause a wide range of motor and non-

motor symptoms, such as slowness of movement, tremors, falls,

rigidity, cognitive dysfunction, and anxiety. Medical treatment can

ameliorate various symptoms, but the complex nature of the disease

necessitates multidisciplinary caremanagement (3). One important

professional discipline is physiotherapy. Within physiotherapy,

persons with PD (PwPDs) learn how to safely maintain activities of

daily life, maintain their physical capacity, and train their balance

and gait (4, 5).

Important management targets for the physiotherapist are

physical activity and fall incidents (4). Physical activity is important

to preserve physical capacity and functioning, which are both

necessary to continue activities of daily life (6, 7). Performing

high-intensity physical activities may even slow down disease

progression by stimulating neuroplasticity (8, 9). However, many

PwPDs remain or become physically inactive due to problems with

gait, balance, and physical functioning (10, 11). Fall incidents are

also important because they can negatively impact a person’s quality

of life (12), for example, by instilling a fear of renewed falls or by

causing a (hip) fracture (13–15). A vicious cycle between physical

activity and fall incidents can occur when a fear of falling leads to

reduced physical activity (16), and reduced physical activity leads

to increased fall risk because of general weakness (12). Conversely,

promoting physical activity through a therapeutic exercise regime

may paradoxically increase falls, which, by definition, occur more

often in those who are physically more active.

Accurate assessment of physical activity and falls during

common daily activities would be a tremendous help for the

physiotherapist to create individually tailored treatment plans. For

example, a fall caused by festination requires a different treatment

plan than a fall caused by muscle weakness. Usually, physical

activity and falls are assessed with short questionnaires, in-clinic

motor tasks, or self-reports (4, 12). However, in-clinic physical

assessments often give a false impression as PwPDs typically behave

differently in the clinic than in their own homes (17, 18). Self-

reports or questionnaires can also be burdensome and are subject

to recall bias, even more so among those with coexistent memory

or other cognitive problems (19, 20).

By contrast, wearable sensor data can provide accurate,

continuous, and objective information to support physiotherapy.

Wearable sensors are often present in accelerometers and

gyroscopes which are unobtrusively packed in, e.g., smartwatches

and smartphones (21). Their size and shape make them a feasible

option to be worn in daily life (22). Even for prolonged periods,

ranging from 6 weeks up to 2 years, excellent compliance can

be achieved by monitoring PD using a smartwatch or sensor

(23–25). Additionally, wearable sensors can be used to quantify

both physical activity and falls in daily life (26–28). Despite

their feasibility and accuracy, only a few studies have tested

the application of wearable sensors in physiotherapy practice.

Preliminary findings show that it is feasible to capture sensor

data during in-clinic training sessions and that the data can

support balance training through sensor-based biofeedback (29,

30). Furthermore, physical activity training could be remotely

supervised by streaming vital sign data to a tele-coach (9, 31).

However, to advance implementation in clinical practice, more

studies are needed in which both physical activity and fall data

are combined into a single system that is rigorously tested in

everyday life.

In this study, we designed a remote monitoring system for

physical activity and falls. The system consisted of a necklace

tracking movement, an app for PwPDs to review recorded activities

and manually add undetected ones, and a physiotherapist app to

review any incoming data. We evaluated the usability and utility of

the system to support physiotherapy for PwPDs. We employed an

iterative design process in which we closely collaborated with both

physiotherapists and PwPDs and tested the system twice in practice

for 6 weeks.

Materials and methods

Study design and participants

In an iterative process, we developed and evaluated a remote

monitoring system consisting of a wearable sensor and mobile

app, further described under the “Materials” section. The study

consisted of two pilots which were 1 year apart (2017 and 2018)

and which spanned 6 weeks each. In both pilots, PwPDs used the

remote monitoring system and discussed the collected data during

three regular treatment sessions with their physiotherapists. Before

pilot 2, the system was updated according to user feedback from

pilot 1.

Pilot 1 included nine physiotherapists and pilot 2 included

eight physiotherapists, one of whom also participated in pilot 1.

We recruited the physiotherapists via ParkinsonNEXT, an online

platform that facilitates research participation for healthcare

professionals and PwPDs in the Netherlands. Physiotherapists were

eligible if they were members of ParkinsonNet, a network of

healthcare professionals specialized in PD (32).

Subsequently, the included physiotherapists recruited PwPDs

from their own practice. The inclusion criteria for PwPDs in pilots

1 and 2 were largely similar. For both pilots, participants needed

to be diagnosed with PD by a neurologist or movement disorder

specialist, be at least 30 years of age, and receive physiotherapy

for PD for at least four weekly sessions within 6 weeks after study

enrollment. In pilot 1, we aimed to include 20 PwPDs who were

required to own and (cognitively) be able to use a smartphone

with an Android operating system ≥ 5.0. In pilot 2, we aimed to

include 25 PwPDs of whom 20 were required to own or use a

smartphone and five were not. These five PwPDs could test the

wearable sensor without the smartphone app. Among these 25

PwPDs, we aimed to include at least 10 PwPDs who had fall or

balance problems, as judged by the physiotherapist. The study was

conducted in compliance with the Ethical Principles for Medical

Research Involving Human Subjects, as defined in the Declaration

of Helsinki, and was approved by the local ethics committee (CMO

regio Arnhem-Nijmegen; file 2017-3382). All participants gave

written informed consent before enrollment.
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We adhered to the Consolidated Criteria for Reporting

Qualitative Research checklist for reporting the qualitative part of

our study.

Materials

The remote monitoring system, i.e., the Vital@Home system,

consisted of a wearable sensor in the form of a necklace (the

“GoSafe”), a Wi-Fi hub, a custom-developed Android smartphone

app for PwPDs, and a custom-developed Android tablet app for

physiotherapists. We created the prototype of this system based on

recommendations for physiotherapy in PD (4), prior experiences

with wearables and physiotherapy within the research team, and

technical feasibility. For technical feasibility, four PwPDs used this

prototype at home for 2 weeks to pilot test the interaction with the

patient app. Consequently, we made minor adjustments to the user

interface to improve its usability. Then, the system was evaluated in

the two pilots reported here. In the next section, we have described

the system as it was used in pilot 1. Table 1 describes the changes

made to the system after pilot 1 and the desired changes to the

system mentioned in pilot 2.

The GoSafe necklace
The GoSafe necklace (Figure 1; Philips Lifeline, Framingham,

MA, USA) is a wearable sensor that is commercially available in

the United States as part of a medical alert service. The necklace

contains multiple sensor types, including an accelerometer, a

barometer, and a GPS sensor. We derived the person’s physical

activity and fall incidents from the sensor data using proprietary

algorithms developed by Philips Research (33, 34). The algorithm

is based on continuously collected accelerometer data and walking

bouts of at least 10min. Fall incidents were detected based on

continuously collected accelerometer and barometer data. Data

collected with the GoSafe were streamed via the Wi-Fi hub to a

secured Amazon server located in Germany, managed by Philips.

The GoSafe necklace has received FDA approval. A European

Declaration of Conformity was provided for use in this study.

Vital@Home patient and physiotherapist apps
The Vital@Home apps were developed as part of a European

Institute of Innovation & Technology (EIT)-funded collaboration

between TU Berlin, Curamatik, Radboudumc, Philips Research,

and University College London. The display language of both apps

was Dutch for the current study, although an English version was

also available.

The app for PwPDs ran on an Android smartphone and

contained three sections: physical activities, falls, and medication

intake (Figure 2). For physical activities, the app provided an

overview of all gait bouts detected by the GoSafe necklace. In

addition, users were encouraged to manually enter sports activities

that were not automatically detected, such as cycling or swimming.

For all manually entered activities, users were asked to report the

type, duration, and level of exertion using the BORG Rating of

Perceived Exertion scale (35). The app gave feedback on how close

users were to reaching their daily and weekly activity goals. These

FIGURE 1

The Philips lifeline GoSafe necklace.

activity goals were determined by the PwPD and physiotherapist

together based on clinical judgment and personal preferences. The

app automatically prompted the participant with a questionnaire

at the end of the day (18:00 h) asking for verification of any

detected falls and followed up with questions about the context

of the fall incident. These questions were based on the falls diary

included in the European Physiotherapy Guideline for Parkinson’s

Disease (4) and included questions about the self-perceived cause

of the fall incident, environment, and motor state (off/on/on

with dyskinesias). In addition, users could manually start this

questionnaire at any time of the day to register near-falls or falls.

Users could also manually register their medication intake during

the day. All the gathered information was accessible to the PwPDs

in the app.

The app for physiotherapists ran on an Android tablet and

could display the information from their client during a treatment

session (Supplementary Figures 1–7). The physiotherapist app

contained an overview of all recorded physical activities and the

progression toward the weekly goals. It also showed the number of

(near-)falls and the answers to the fall-context questionnaire. The

app displayed patterns over time, but could also show individual

registrations of physical activities and falls. The physiotherapist

could only access the sensor data during the treatment session by

using the physiotherapist app to scan a QR code displayed on the

app of the PwPDs. For pilot 2, some participants did not use the

app and their physiotherapist could always see the data.

Procedures

The procedures for each pilot were largely similar. In both

pilots, physiotherapists were recruited and trained on study

procedures, study assessments, and usage of the Vital@Home

system. Then, each physiotherapist recruited two or three PwPDs

within their own practice. These PwPDs were scheduled to have

at least four weekly physiotherapy sessions after study enrollment.

Frontiers inNeurology 03 frontiersin.org9

https://doi.org/10.3389/fneur.2023.1251395
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


van den Bergh et al. 10.3389/fneur.2023.1251395

FIGURE 2

The Vital@Home application for persons with PD in pilot 1 (A-D) and pilot 2 (E, F), including the homepage of the app displaying progress toward

physical activity goals (A), the manual entry of activities (B), a part of the fall questionnaire (C), the medication registration (D), and the reworked

activity (E) and step count (F) homepage for pilot 2. *Translation of 2d: Add medications (top); Which medication? How many did you take? At what

time? (questions in the middle); Confirm medication intake (bottom).

Participants were prospectively followed for at least 4 weeks with a

maximum of 6 weeks. During the first study visit, physiotherapists

conducted a clinical assessment (see “Outcomes and analyses”

section) and instructed PwPDs on the usage of the Vital@Home

system. After the first study visit, the PwPD wore the necklace at

home during the day and charged it during the night. Preferably,
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TABLE 1 The features of the Vital@Home system across both pilots as well as desired future features.

Pilot 1 Added in pilot 2 Future wishes

Physical activity • Walking detected

• Self-report others

• Progress toward physical activity

goals displayed

• Feedback on wearing compliance

• Number of steps displayed

• Detect more diverse activities (biking,

household, swimming) and fewer self-report

• Detect activities shorter than 10min

• Assign intensity level to all activities

• Personalized activity goals

• Real-time data transmission to the app

Falls • Daily questionnaire at 18:00

• Manual report during the day

through the app

• Falls detected by the necklace

• Daily questionnaire only when fall detected

• Feedback on step time and step time

regularity to assess fall risk

• Freezing of gait diary

• Automatic alarm when the wearer does not

respond

• Balance measurement

• Elaborate fall risk assessment based on

algorithms

• Automatic FOG detection

• Daily life gait and transfer analysis extended

(e.g., stride length and walking speed)

Medication • Daily manual medication registration • Option to enter daily medication scheme

and set reminders

• Option to report individual medication

intakes by responding to

medication reminders

• Personally adjustable medication dose

• All manual registrations can be corrected

Additional features • Personal exercise program • More in-person guidance and support on

operating the system

• Option to comment on data, e.g.,moved less

because of bad weather

Technical

components

• Necklace

• Wi-Fi hub

• V@H patient app

• V@H physio app

• Necklace

• Wi-Fi hub

• V@H patient app (optional)

• V@H physio app

• Necklace or smartwatch (choice)

• NoWi-Fi hub

• V@H app (optional)

a minimum of 8 h of sensor data were collected per day to provide

enough information. The PwPD and physiotherapist discussed the

collected information during three consecutive treatment visits. A

member of the research team was available for technical support

throughout the study duration.

After the fourth visit, a researcher interviewed each

physiotherapist face-to-face and each PwPD via telephone

for 20–40min to capture their experiences using the Vital@Home

system. LE (man) and AS (woman; both PhD students) conducted

all interviews after receiving qualitative interviewing training.

There was no relationship between the interviewer and the

participants before the interview, except for any contact necessary

for enrolment and participation in the study. The interviews were

semi-structured, meaning that the interviewer used a guide to

conduct the interview but was free to diverge from the guide and

go more in-depth when the interviewee expressed an interesting

or elaborate opinion on a topic. The guide covered five topics:

general experiences of using the system including future wishes,

usability of specific features, utility of specific features, technical

functioning, and reliability of the registrations. The interviews were

audio recorded and transcribed verbatim. PwPDs also completed

an online version of the System Usability Scale (36).

Based on the results of pilot 1, improvements and new features

were implemented in the Vital@Home apps (Table 1). The updated

version of the app was tested in pilot 2 with another group of

physiotherapists and PwPDs. One physiotherapist and two PwPDs

participated in both pilots. All participants in pilot 2 adhered to

the same procedure as in pilot 1 to test the system in practice. The

only three differences were: the updated system version, PwPDs

wearing the necklace also at night, and the GoSafe only option for

participants without a smartphone. In pilot 2, participants charged

the necklace whenever needed instead of specifically during the

night. Figure 3 gives an overview of the study procedures and

collected data.

Outcomes and analyses

In both pilots, we collected demographic and clinical

assessment data of PwPDs to characterize our sample. The

assessments were performed by physiotherapists during the first

study visit and included a history of falls, the Mini-BESTest

including the Timed Up and Go test with and without dual task

(37), the presence of freezing according to the New Freezing Of

Gait Questionnaire (38), the Five Times Sit To Stand test to assess

balance and fall risk (39), and the Six Meter Walk test to measure

comfortable walking speed, which, for pragmatic reasons, is a

shortened version of the 10 Meter Walk test (4).

As the primary outcome measure, we report the qualitative

experiences of PwPDs and physiotherapists who used the system.

We applied thematic analysis to the anonymized transcripts

of the interviews with PwPDs and physiotherapists (40). First,

two researchers read all transcripts and independently coded

meaningful sections of the first 20 interviews. Any discrepancies

between the coded segments were discussed and resolved.

Subsequently, each researcher independently coded half of the

remaining interviews which were checked by the other. We coded

deductively based on five themes derived from the interview
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FIGURE 3

Overview of study procedures and measured outcomes. The procedures were completed twice. PT, physiotherapist. PwPD, persons with Parkinson’s

disease. NFOG-Q, New Freezing of Gait Questionnaire, self-reported amount of FOG moments in the past month. FTSTS, Five Times Sit To Stand,

measures balance during transfers. Mini-BESTest, Mini Balance Evaluation Systems Test, measures static and dynamic balance. TUG, Timed Up & Go,

measures functional mobility. SMW, Six Meter Walk, measures comfortable walking speed, for pragmatic reasons shortened version of 10 Meter Walk.

SUS, System Usability Scale, measures perceived usability of the system.

guide: usability, utility, technical functioning, reliability of the

registrations, and suggestions for improvement. However, we also

allowed for new themes to be inductively identified in the data.

We generated non-overlapping themes and subthemes based on

our deductive and inductive coding process aiming for internally

consistent themes that each captured a unique aspect of the dataset.

We constantly compared new codes and themes against codes

and themes we already had and periodically went back to our

already created codes and themes. We discussed the phrasing

and content of themes as well as the thematic structure within

the research group to ensure the high quality of the work. We

kept track of the analytical process and researcher decisions with

memos. The research team agreed upon the final version of the

thematic structure. ATLAS.ti version 8 was used for the qualitative

analysis (41).

As secondary outcome measures, we collected data on

compliance in two forms: the number of days with at least 8 h

of sensor data collected across the minimal study duration of 28

days and the number of self-reports entered in the app. We also

computed the score on the System Usability Scale (SUS, range: 0–

100) (36). We report descriptive statistics of sample characteristics,

compliance, and SUS as calculated with R Statistical Software v4.1.3

(42, 43).

Finally, we drafted user profiles based on the interviews to

understand when, why, and for whom the monitoring system

can add value. User profiles represent typical user characteristics

such as skills, motivations, behaviors, needs, and goals of the

users (44). They capture common patterns or similarities in

these characteristics to create a better understanding of system

users. During the interviews, physiotherapists were asked to which

patient population they thought the system would add value. We

corroborated their answers with the interview data from PwPDs,

which contained information on the user profile domains. The

first author drafted a first outline of the user profiles by grouping

participants based on the interview data regarding digital literacy,

behaviors, needs of the person, and the perceived utility of the

system. Thereby, the user profiles were grounded in recurrent

statements across interviews with participants. The profiles were

then discussed with other members of the research team (LE, NdV,

MM, and RvdM) until a consensus was reached.

Results

We included nine physiotherapists and 21 PwPDs in pilot 1

and eight physiotherapists and 25 PwPDs in pilot 2. Eleven out

of the 25 PwPDs in pilot 2 used the GoSafe only, either because

they did not possess a smartphone (n = 6) or their smartphone

version was not compatible with the app (n = 5). In pilot 1, three

PwPDs dropped out during the study because the system was too

complicated for them. They were included in the interview data. No

PwPD dropped out during pilot 2. Table 2 shows the demographic

and clinical characteristics of all PwPDs.

Compliance with wearing the sensor varied considerably in

pilot 1, with 9 participants having 15 or fewer compliant days out

of 28, while 10 participants had more than 21 compliant days (2

missing, Figure 4). In pilot 2, compliance was higher with 22 out

of 25 participants having 21 or more compliant days (1 missing,

Figure 4). In pilot 1, PwPDs created 1,893 medication reports and

reported 30 (near-)falls in 6 weeks (at the time of writing, these

data were unavailable for pilot 2). The SUS score among PwPDs

was higher in pilot 1 (M = 63, SD = 16) compared to pilot 2 (M =

54, SD= 25).

User experiences with the system

Initially, we started the qualitative analysis with five themes.

However, throughout the analytical process, we identified two
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TABLE 2 Demographic and clinical characteristics of the persons with Parkinson’s disease participating in the two consecutive pilot studies.

Variable Unit of
measurement

Pilot 1
N = 21

Missings Pilot 2
N = 25

Missings

Gender No. of men 15 (71%) 0 17 (68%) 0

Age Years 65.5± 8.0 0 68.7± 9.4 0

Hoehn and Yahr stage ≤2 5 (50%) 11 15 (83%) 7

3 5 (50%) 2 (11%)

≥4 0 (0%) 1 (6%)

Time since diagnosis Years 3.5 (1-17) 11 ∗ 25

Medication usage Levodopa 20 (95%) 0 23 (92%) 0

Dopamine agonist 8 (38%) 2 (8%)

Other 5 (24%) 2 (8%)

Experienced ≥1 near-fall(s) in past 12

months

Yes 1 (5%) 2 13 (59%) 3

Experienced≥1 fall(s) in past 12 months Yes 4 (20%) 1 16 (64%) 0

Experienced freezing of gait (NFOG-Q) Yes 6 (29%) 0 6 (24%) 0

FTSTS Time (seconds) 12.5± 4.6 0 13.7± 4.9 1

Mini-BESTest Average score 24.1± 3.6 3 22.8± 4.2 3

Score ≤22 5 (28%) 9 (41%)

TUG with dual-task Time (seconds) 12.5± 5.7 0 13.2± 12.2 0

SMW Walking speed m/s 1.30± 0.33 0 1.21± 0.24 0

Data are presented as mean± SD or n (%), except for time since diagnosis (median and range). Calculations are based on valid data. NFOG-Q: New Freezing of Gait Questionnaire, self-reported

amount of FOG moments in the past month. FTSTS: Five Times Sit To Stand, measures balance during transfers. Mini-BESTest: Mini Balance Evaluation Systems Test, measures static and

dynamic balance; scores ≤22 indicate significant balance problems. TUG, Timed Up & Go, measures functional mobility. SMW, Six Meter Walk, measures comfortable walking speed. SD,

Standard Deviation.
∗Not assessed during pilot 2.

themes that best characterize the users’ experiences with the

system: the usability of the system and the utility of monitoring

information. Statements regarding the technical functioning and

reliability of the registrations gave context to the usability and

utility but were not clearly demarcated themes on their own. The

future wishes are separately listed within the overview of system

features (Table 1). Some are also highlighted under subthemes

when applicable. Quotes illustrating the subthemes are given in-text

and in Table 3. The results of pilots 1 and 2 are jointly discussed as

feedback was highly comparable.

Usability of the system

The usability of the system, i.e., its ease of use, was overall

rated positively. We identified three subthemes that characterize

this theme. First, participants described how they operated the

system in daily life. Most PwPDs mentioned that wearing the

necklace was not burdensome. Some found the cord annoying,

especially during the night, but most PwPDs were positive about

its ease of use. While most PwPDs were not bothered by the

necklace being visible to others, some left the necklace at home

when they left the house so as to not raise any questions. In

the future, the necklace’s battery life of this prototype should be

increased and fluctuate less, as these fluctuations made participants

uncertain about how long the battery would last that day. A clear

indicator of the remaining battery life could take away much of

this uncertainty.

Pilot 1 PwPD 1: You get up in the morning and after

showering you put it around your neck and forget about it.

Pilot 1 PwPD 2: Look, but if you go among people then,

well, I leave it [the necklace] at home pretty quick. Then I say

it has worked enough for today [. . . ] you also don’t want to make

yourself look more disabled than you already are.

Pilot 1 PwPD 3: So if it was charged then it was a constant

green light, but then you don’t know if it’s really already properly

charged and with a smartphone you can just see how full it is.

The Wi-Fi hub, necessary for data transfer, puts little strain

on the PwPDs and their caregivers as it was often permanently

placed in the charger and required little further attention.

Participants were instructed to carry the hub with them when

leaving the house for 3+ h, which was no problem for most

of them.

The user interface of the app was regarded as very clear,

intuitive, and user-friendly by both PwPDs and physiotherapists.

Only a few PwPDs had issues with understanding the

different screens.

Pilot 1 physiotherapist (PT) 1: That’s a clear screen. Yes,

clear. At a glance, you could see that.
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TABLE 3 Quotes reflecting the user experiences with the Vital@Home remote monitoring system.

Pilot 2 PwPD 3: But apart from that, the necklace, so to speak, around the neck did not bother me at all. I just kept it on day

and night and it didn’t bother me at all

Operating the system in daily

life

Pilot 1 PwPD 10: Yes, the size of the device and the cord were not pleasant

Pilot 1 PwPD 11 about Wi-Fi hub: That was annoying at times, because I forgot about it. And when you’re at home it’s all

fine, but when you leave it’s a bit more complicated. Then you have to think about it

Pilot 2 PwPD 1 about the app: Yes, that was clear. That is not a problem

Pilot 1 PT 2: In the beginning, I found it quite a hassle, especially for the patient. You have to explain, they don’t quite

understand, and I don’t quite know myself either. So, it took a while... but after two weeks you get used to it

Usability Pilot 1 PwPD 4: Yes, that, perhaps, it [digital support] is not so easy from a distance [...] That perhaps you should discuss

together in a kind of circle conversation, what the questions exactly mean and what you can do. It is so distant

Digital literacy and support Pilot 2 PT 3: I think I would go for that [GoSafe only] more because then patients just have to carry it and not add any

additional actions and then when they come to me, we can look at their app together and then retrace or analyze or discuss

things, rather than them having to do all that themselves

Pilot 1 partner of PwPD 3 managing the app for him: So we did sit on the sofa together in the evening and then we entered

everything, because I wanted my husband to know what I was doing. And then I would say: shall I [enter] so many minutes

step or so many minutes... so that it all comes from him, so to speak

Technical prerequisites

Pilot 1 PwPD 12: Yes, that [walking detection] is pretty good, because when we went for a walk, my wife came along every

time, we would check beforehand, I’ll call it we’re leaving five to nine-thirty, and I’ll be home at a quarter past ten, that’s how

long we’ve walked. And, there might be a minute or two or three in it altogether, but otherwise, he’s goo

Pilot 1 PwPD 4: And... yes, the annoying thing is that then you type in the data and you see that you have made a mistake, but

you cannot correct it

Physical activity monitoring

Pilot 1 PwPD 13: For example, when I’m doing my household, I go upstairs, I go downstairs again, it doesn’t register that.

And if I for example vacuum my whole house, yes, I find that quite an effort, because then I have to rest now and then. But it

doesn’t register that at all

Pilot 1 PT 2: So, I notice that it works in this way for the patients to be more active, to realize more that exercise is important.

And yes, also for themselves, because I didn’t encourage them to move more, I didn’t say anything about that, because I

always say you’re doing well, but they just started setting some kind of goals. Like oh, but then [I] want to... because they

know that they can see it [sensor data] back with me. So, it does work that way

Pilot 1 PwPD 1: And then with three days I had closed the circle and I could finish the week with 200min extra, so to speak.

And that gave me a good feeling. So, I was constantly challenging myself

Utility

Falls monitoring

Pilot 1 PT 4: And you can see, also with the falling, when it goes wrong and if that has to do with the medication or with other

activities. Whether they have become very active and then fall [. . . ] So, I really do see potential in that

Pilot 1 PwPD 9: Was that last question... Have you fallen today? I have not fallen during that whole period, I have never fallen

Role of the system in consult

Pilot 1 PT 2: I actually already knew [...] how much someone moves and how often they exercise. You want to have insight

into that. And yes, that was actually just a confirmation. But that’s not to say that it doesn’t work, it just hasn’t added

anything to my treatment

Pilot 2 PT 2: I don’t know if that could be that you, speed indeed, but also a certain rhythm, or that people change speed, so

whether people start festering or people start freezing, if indeed you could see that

PT, physiotherapist; PwPD, person with Parkinson’s disease.

However, many PwPDs from pilot 1 mentioned that

registering their medication intake in the app was not user-

friendly. For example, medications had to be entered manually

each day and mistakes were not correctable. In pilot 2, the

medication function was thoroughly revised so that a medication

schedule was repeated throughout the weeks, which could

be confirmed with a single button, only requiring deviant

medication intakes to be manually entered. In addition,

automatic reminders of medications were sent. As many

PwPDs have stable medication schemes, this was experienced as

very helpful.

Pilot 2 PwPD 1: But, the drugs, on the other hand, that was

great. (What was good about that?) Well, pre-programming, of

course, with time. It’s just confirming and that’s it. Last year, I

think you had to fill everything in again.

The second subtheme regarding the usability of the system

was the importance of the digital literacy of the participants and

the support offered by the environment. In pilot 1, all participants

had to manage the necklace, hub, and app, which was no problem

for technically adept participants. However, some PwPDs and

physiotherapists struggled with the technology. For example, they

did not understand when the devices were connected and how

they could see them. The technical support offered throughout the

study was appreciated and used by participants. The assistance of

the partner also helped to retain less digitally skilled PwPDs in

the study.

Pilot 1 PwPD 4: I was stuck with the fact that those things

made a lot of mistakes in the beginning; it was all uncomfortable.

And I didn’t understand yet how it all fits together logically. That

just takes a few days to get used to.
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FIGURE 4

Frequency distribution of the number of compliant days for all

persons with Parkinson’s disease (PwPDs) wearing the GoSafe

necklace in pilot 1 (A) and pilot 2 (B).

Pilot 1 PwPD 5: It is more difficult for older people. They

already have problems with a computer, so sometimes you don’t

understand it, or something. But yes, you can call you, you can

call the physiotherapist. So you do have enough backing if you

want to know something.

Despite the offered support, the system proved too difficult

for some PwPDs due to suspected cognitive impairments and

insufficient experience with digital technology. For example, an

older caregiver mentioned that monitoring the connection of the

Wi-Fi hub as well as the battery of the necklace and smartphone

was too much to manage at the same time.

Pilot 2 partner of PwPD 2: I once looked in the beginning

[in the app], but you know? Our age is pretty high. We’re 79 and

80, so we didn’t grow up with all that stuff [...] also with keeping

an eye on the fact that it has to be charged. Then, there are three

different things - your phone and the device and the Wi-Fi - that

you have to keep an eye on [Partner] can’t do that anyway, but

anyway, you’re often busy with all sorts of things and then you

forget about it.

Finally, participants mentioned technical prerequisites as

being important for the usability of the system, such as

data being accurate, automatically recorded, and correctable.

The participants stated that the system accurately detected

walking activities. However, the system required other activities

such as housekeeping and cycling on a home trainer to be

manually entered. The possibility to manually register non-

detected activities was valued by some participants but was

typically experienced as burdensome as participants continuously

had to remember the duration and intensity of their activities.

Furthermore, PwPDs could make mistakes when manually

entering activities and medication intakes. For example, sometimes

the data transfer from the sensor to the app spanned more

than a day, making PwPDs believe that the activity had not

been recorded. They would manually enter the activity which

resulted in double registration of activities once the sensor

data became visible. PwPDs could not correct these mistakes

that caused some frustration. In the future, PwPDs desired

the automatic detection of more diverse activities and real-time

data transfer.

Pilot 1 PwPD 6: Initially, in the first week, I entered my own

walks, because it didn’t indicate that. But after a week, then all of

a sudden it was all in there, with the result that it was all in there

twice of course

Pilot 1 PwPD 3 and partner: We still do as much or as little

[...] because, then, that app says if I fill it in wrong then that round

was closed again and then it said: completed. And then I think:

yes, that is nonsense actually because that is not correct at all.

Utility of monitoring information

The utility, i.e., added value, of the monitoring information

can be described by three subthemes. First, the monitoring

of physical activity elicited mixed reactions by PwPDs and

physiotherapists. Some PwPDs stated that tracking physical activity

was not adding value to them because they were already aware of

how active they were. Also, several PwPDs and physiotherapists

stated that the data lacked detail to draw strong conclusions.

For example, some PwPDs mentioned that walking up and

down the stairs was quite challenging for them. They wondered

why such short bouts of activities were not displayed in

the app.

Pilot 1 PwPD 7: No, because, in that situation [daily life], I

think I know what I’m moving and what I’m doing, I still work

fulltime, so I know exactly what I’m doing and what not.

Pilot 2 PT 1: And, certainly in this target group, I think,

because I think that, for some people, for example, walking for

eight minutes can be quite a lot, and if that doesn’t actually

count, then that’s a shame. Then it actually works against them,

so to speak.

In contrast, numerous PwPDs stated that the system motivated

them to move more. Seeing their data made them aware of their

activity levels and motivated them to reach their weekly goals

by becoming more active. Some participants even became so

enthusiastic about tracking their physical activity that they, after the

study had ended, bought commercially available smartwatches to

continue self-monitoring. For some physiotherapists, the objective

data formed a pleasant confirmation of the assumed physical
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activity level of the PwPDs at home. In pilot 2, a video-based

exercise section was added to the patient app (Table 1) so that

PwPDs could have video examples of how to exercise at home. The

exercises were purely informative and not specifically monitored

as our study was not concerned with the remote delivery of

physiotherapy sessions. The exercise examples in the app were

appreciated by some PwPDs, and a couple of physiotherapists

found it useful to see which at-home exercises were being

completed. However, this feature held limited utility as many

PwPDs already knew how to complete the exercises or were using a

different app provided by the physiotherapist.

Pilot 1 PwPD 8: Yes, it certainly works; it certainly works for

me. Yes, really, because then you are forced to face the facts, you

think: yes, I must exercise more. Because you sometimes postpone

it because you often have difficulty with it, because walking is

sometimes more difficult for me. Also, because your balance is

not so good anymore, and then you think: yes, it is best for me

actually, that I do it, to move.

Pilot 2 PwPD 3: Well, I bought myself a wristband now

[...]. Because if I haven’t moved enough, it means I have to walk

around the block in the evening, because I plan to take so many

steps a day.

Pilot 1 PT 2: It does add that you get confirmation if someone

is indeed exercising, if someone is moving or not.

Second, the monitoring of falls was mentioned as being

important by both physiotherapists and PwPDs. One advantage

was that PwPDs were made more aware of the importance of (near-

)falls. In addition, physiotherapists liked the insight into the context

and timing of a fall, e.g., knowing how physically active people were

or linking the fall to medication intake. However, the fall-related

section of the system was not relevant for many PwPDs, as they

did not experience any (near-)falls during the 6 weeks of use of

the system.

Pilot 1 PT 3: But, with that fall agenda, I found that, just to

make people already aware of those near-fall incidents... because

you do mention that, but... much more often consciously, like,

“oh, if I fall backwards or if I want to grab a.. and find support

against the wall.” So, I thought it made sense anyway to make

patients more aware.

Pilot 2 PT 2: Then, it would be nice to have a combination

of: gosh, what did they do that day? Look, if someone feels like

they haven’t been doing all that much, but we think, hey, they’re

overexerting themselves and that’s why they’re falling; yeah, I

think you can get some nice feedback on that. And you just have,

when people wear it for a longer time and people actually fall

more often; yes, then you just get an overview of hey, then and

there and then and there.

Third, both physiotherapists and PwPDs mentioned the role of

the system in the consultation. As a benefit, physiotherapists stated

that the objective sensor-based information and the subjective

self-reports provided them a view and insight into the at-home

activities and daily life functioning of the PwPDs. Discussing

the information provided them with more structure during the

consultation to systematically address the topic of physical activity

and falls. However, the added value of the system was limited for

several physiotherapists and PwPDs because the therapy goals were

already clear and manageable, meaning there was limited room for

improvement of therapy based on the additional information.

Pilot 1 PT 3: But, usually you just ask about it [physical

activity], but to really have it come back so systematically, and

that it is also even more important what they do at home, to

make them even more aware of it, I thought it was very nice to

do it this way.

Pilot 1 PwPD 9: We didn’t go all that deep into it, but then

again, if there were no problems then you don’t have anything to

talk about, do you?

Importantly, many PwPDs highly value the relationship and

interaction with the physiotherapist. Many PwPDs, therefore,

enjoyed discussing the data with their physiotherapist. Several

PwPDs felt extra motivated to move more to show the

physiotherapist how active they had become.

Pilot 1 PwPD 8: Yes, that [discussing the data] is always

positive, of course. But that happens anyway, because we had

a conversation about it every time. Because it also stimulates to

undertake more activities, doesn’t it?

Pilot 2 PT 1: And every week I took the tablet and looked at

it. They liked that, because they are participating, so then it’s kind

of... Yes, they liked that.

The physiotherapists noted that the system could become

more relevant within the consultation (Table 1). For example, they

desired more advanced analyses of gait and balance parameters to

adjust therapy. In pilot 2, we added a gait pattern analysis section

to the app. This section provided physiotherapists with a −3 to+3

score reflecting the quality of gait of the PwPDs. The interpretation

of this score was yet unclear to physiotherapists, but the potential

use of such analyses was apparent to them.

Pilot 2 PT 3: Yes, because the step length, step frequency are

things that I would like to get though, if there is a change in that.

User profiles

We drafted three user profiles that describe how a remote

monitoring system can add value to physiotherapy (Table 4).

Profile 1 represents people who are typically in an early

phase of their PD, with good technical skills. They visit the

physiotherapist a couple of times per year to proactively tackle

small issues and stay physically active. For them, a monitoring

system could act as a flagging dashboard. The objective sensor

data could provide in-depth analyses of, e.g., gait parameters in

daily life. In such parameters worsen, both the physiotherapist

and PwPD could be notified and an appointment could be

scheduled. In that way, the PwPD does not need to be in

constant treatment so that overtreatment can be prevented

while maintaining a reassuring view of the PwPD’s status

at home.

Frontiers inNeurology 10 frontiersin.org16

https://doi.org/10.3389/fneur.2023.1251395
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


van den Bergh et al. 10.3389/fneur.2023.1251395

TABLE 4 User profiles of persons with PD receiving physiotherapy drafted from interviews.

Profile 1 Profile 2 Profile 3

Stage of PD Early-Mid Mid Mid-Late

Digital literacy +++ ++ +

Cognition +++ +++ +

Physical activity

level

+++ ++/+ +

Fall incidents Absent Rarely, or near-fall experiences More frequent

Physiotherapy goals

• Early identification and

treatment of issues, e.g.,

inactivity or fear to move

• Potential to slow

disease progression

• Desires to move more

• Challenge to keep

motivation high

• Treat issues with balance to

prevent falls

• Treat issues with balance to

prevent falls

• Keep functional mobility to

perform day-to-day tasks

Persons without

physiotherapy-

related

problems

Utility of the system

• Keep motivated to stay

physically active

• Prevent major issues by

proactively screening for

beginning problems (flags),

e.g., through an in-depth

analysis of gait parameters

• Track disease progression

to know when to initiate

treatment, thereby

preventing overtreatment

• Increase and maintain

higher levels of physical

activity

• Discuss data with the

physiotherapist to raise

awareness of the

importance of physical

activity and falls, and to

support understanding of

own PD

• Track disease progression

to set treatment goals, and

easily share information

among

healthcare professionals

• Collect objective and

accurate data about

mobility and balance at

home for physiotherapist

• Context questionnaires can

provide insight into

falling circumstances

Persons for which

monitoring is too

burdensome or

technically too

complicated

Usability of the

system

• Operates sensor and app to

(self-) monitor at home

independently

• Analyses data alone and

together

with physiotherapist

• Operates sensor and app to

monitor at home with

support

• Interested in seeing data

but analysis depends on

the physiotherapist

• Wears sensor 4x/year for a

week

• App only when the partner

can manage

• The physiotherapist views

and analyzes the data and

provides insights to PwPD

during the consult

Persons not interested in monitoring their disease

Profile 2 represents PwPDs who are typically in the mid-phase

of their PD. They find it challenging to stay physically active

and might experience near-fall incidents. For them, a monitoring

system could add value as a motivational tool. For example, the

PwPD and physiotherapist could set physical activity goals per

week and use the sensor data to see if these goals were reached.

Additionally, repeatedly collecting and discussing sensor data could

increase awareness and understanding of important topics such

as (near-)falls.

Profile 3 represents PwPDs who are typically in a mid-

to-late phase of their PD. Their physiotherapy goals focus on

managing (further) fall incidents and maintaining mobility

to safely perform daily activities. For them, a monitoring

system could serve as a supportive tool. These PwPDs

start to experience cognitive impairments, which makes

it difficult to remember, e.g., when, where, and why a fall

occurred. A sensor could collect such objective information

about falls and physical activity in the home situation. This

information could be provided to the physiotherapist to

optimize treatment.

Throughout the interviews, it became clear that monitoring

systems are not adding value for all PwPDs. Some of the PwPDs

said that they already know their PD well enough and do not

need support in that. They were typically very early in their

disease course and currently had limited physiotherapy-related

issues. Other PwPDs had no interest in monitoring their disease

in general. They did not wish to be constantly reminded of the

disease through monitoring, as they often already struggled with

accepting the disease in the first place. Finally, some PwPDs

said that managing daily tasks was burdensome for them and

they had no energy or time to deal with an additional system

as well.

Discussion

We designed and evaluated a remote monitoring system to

support physiotherapy for PwPDs. Overall, both PwPDs and

physiotherapists were positive about the usability and utility of

the monitoring system for physiotherapy practice. Evaluating the

Frontiers inNeurology 11 frontiersin.org17

https://doi.org/10.3389/fneur.2023.1251395
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


van den Bergh et al. 10.3389/fneur.2023.1251395

usability and utility of any remote monitoring system is essential

before implementation in real-life clinical practice is pursued.

Specifically, for our system, physiotherapists see potential in

objectively capturing physical activity and (near-)falls in daily life.

The system motivated several PwPDs to move more because of the

continuous and objective tracking of their physical activity. PwPDs

and physiotherapists also enjoyed discussing the collected data.

However, the system has clear improvement items before long-

term implementation can be considered. For example, PwPDs and

physiotherapists preferred automatic detection of a more diverse

repertoire of activities, thereby minimizing the burden on the user.

Most PwPDs were capable of independently using the necklace

and app at home without major issues. This is in line with another

study suggesting that a majority of PwPDs can use technologies

such as computers and smartphones in daily life (45). At the

same time, we noticed that some participants got frustrated with

the system. The system was too difficult for them, for example,

because the system contained too many features or the PwPDs had

few technical skills or slight cognitive impairments. We ensured

that these PwPDs could also use and evaluate the system by

offering a sensor-only option (i.e., merely passive recording) and we

provided them with extensive remote technical support. Pursuing

equal access to telehealth innovations requires constant attention

as specific subgroups of PwPDs might be underrepresented in

our research (46, 47). One possibility to increase equal access to

innovations is to personalize the required user interactions with the

tools. A modular system, for example, based around a smartphone

can be designed to which different sensors can connect. Each

person can then connect the sensors that best fit their needs and

technical skills. Future studies are required to identify potential

disparities in access to telemedicine and create specific solutions to

mitigate these (48).

Several PwPDs emphasized the importance of the relationship

with their physiotherapist. They looked forward to discussing the

data with the physiotherapist, to seeing how they were doing, and

to demonstrating the effort they had put into being more active.

In turn, the physiotherapist encouraged the PwPDs to remain

physically active and continue the use of the system. This finding

is comparable to other literature that showed the importance of

personal contact in adopting remote monitoring technology (49).

Typically, when the amount of physical and social interaction

with the physiotherapist or other group members decreased, the

satisfaction with the therapy also decreased for the participants

(31, 50). Other large-scale studies on the long-term adoption of

sensor-based telemedicine have shown that compliance drops over

time (24). This can be prevented or minimized when participants

have a personal point of contact (25) and are motivated by relatives

(9). The successful implementation of a teletreatment, therefore,

strongly depends on a thorough understanding of the social context

in which it is embedded.

Our study confirms that monitoring physical activity and falls

is generally regarded as important (51, 52) but also confirms

earlier impressions that a person-specific balance exists between

the benefits and burdens of monitoring (53). All participants in

our study used the same system which elicited highly divergent

opinions. Some participants were not bothered by the necklace

at all and were enthusiastic about the new insights they gained

from the system. Others disliked wearing the necklace and felt

the data were not accurate enough to be useful or did not

want to be continuously reminded of their PD. Although the

benefits of monitoring might never outweigh the burdens for some

PwPDs, we strive to design inclusive monitoring systems useful

for all PwPDs. Our user profiles describe this benefits–burdens

balance for several groups of PwPDs but should be regarded as

a starting point from which to explore even more personalized

monitoring needs and wishes. For example, the profiles could be

combined with other known benefits and burdens of monitoring,

(53, 54) physiotherapy treatment mechanisms (4), and personality

traits such as coping (55, 56) and information-seeking styles (57).

Drafting user profiles of physiotherapists could help to create

systems that also accommodate their needs and preferences.

The strength of this study is the unique insight gained from

daily practice about how a sensor-based monitoring system can

support physiotherapy. We had an extensive study period duration

of 6 weeks, allowing for substantive wear and use periods leading to

grounded conclusions by the participants. By deploying an iterative

design process, we could intermediately incorporate the feedback

from PwPDs and physiotherapists to improve the system.

However, this study was not without limitations. First, the SUS

was lower in pilot 2 despite seeming improvements in the system

and increased compliance. An explanation could be that the added

features of the system also made the systemmore complex. As these

features were not readily used, this could decrease the usability

of the system. Another explanation could be that we recruited

more affected persons with PD in pilot 2 who experienced more

difficulties with operating the system. To be able to elaborately

test the fall section of the system, we specifically recruited more

persons with PD who experienced (near) falls in pilot 2 (Table 2).

Most likely as a consequence of our recruitment strategy, the pilot

2 participants have worse scores on all clinical outcomes compared

to pilot 1 participants, except for the Hoehn and Yahr stage, which

is difficult to accurately classify. Furthermore, the SUS could be

lower because we encountered some technical problems in pilot 2

such as data not showing in the app. Based on the user feedback in

pilot 1, we increased the available technical support for pilot 2. This

support was appreciated and ensured that people were retained in

the study. In total, only three participants dropped out during both

pilots because the app was too difficult for them or because they

were frustrated by the lack of correctable data.

Second, the user profiles were only indirectly assessed within

the interviews since the interviews were specifically aimed at

evaluating the system. However, we grounded the user profiles

as much as possible in the available data through a rigorous

analysis, including discussions with the research team. Future

research should focus on further developing these profiles, for

example, by refining their content and applicability through co-

creation sessions with PwPDs and physiotherapists. Furthermore,

we drafted these profiles to understand howmonitoring tools could

add value for specific subgroups of PwPDs by generalizing people’s

similarities. We are aware that each PwPD is unique and has

their own contexts and wishes, so PwPDs may or may not find

resemblances in our profiles.

Third, our sampling method poses limitations on the

generalizability of our findings regarding both physiotherapists
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and PwPDs. The physiotherapists taking part in our study were

all part of ParkinsonNet in the Netherlands and, as such, were

thoroughly trained in treating PwPDs (32). Being part of the Dutch

ParkinsonNet also means that the participating physiotherapist will

attract a much higher caseload, which will presumably also help

as an encouragement to start using a new technological system for

that specific population, unlike more generically trained therapists

who only sporadically encounter PwPDs in their practice. In other

countries, the role of the physiotherapist in the treatment of

PwPDs might be different, instigating different usability and utility

evaluations. However, the high quality of specialized Parkinson-

specific physiotherapy does make the Netherlands a suitable

test climate for the development and evaluation of such tools.

Regarding the PwPDs, a selection bias might have occurred because

they were selected from the database of the physiotherapist.

Physiotherapists might have invited participants who, for example,

have an above-average affinity with technology.We partlymitigated

this problem in pilot 2 by allowing participants to only use the

sensor if using the app was too complicated. Still, our sample most

likely contains PwPDs who are interested inmonitoring technology

or healthcare innovations in general. Testing the system in these

PwPDs leads to relevant conclusions as they are also most likely

to adopt monitoring systems. However, this also means that our

findings might not generalize to a broader PD population for whom

monitoring tools will also become accessible in the future.

Our study has shown that physiotherapists and PwPDs

are interested in sensor-based data, but our system requires

further development and testing before it is ready for actual

implementation in clinical practice. The development of the system

should focus on improving its technical maturity as well as

expanding its functionalities, which should be driven by specific

use cases for remote monitoring and individual characteristics of

the users. We organized our findings related to this in different

user profiles, which can guide future development. Specifically

for PwPDs, future tools should become more adjustable for each

person. For example, PwPDs should be able to choose whether

they see the same detailed data as the physiotherapist or only

receive high-level summaries. Also, automatically detecting more

diverse physical activities is important to reduce the burden of

the tool. Yet, adding more subjective measures such as feelings

and motivations should be possible as they give context to

the objective data (Table 2). Specifically, for physiotherapists, the

treatment of falls could be supported by providing them with more

sensor-based indicators of fall risk, e.g., a more in-depth analysis

of the free-living gait pattern and transfers. Finally, rigorous

testing is needed to establish the added value of this sensor-

based information for clinical practice (58). After developing such

matured systems, future research should examine the long-term

effect of monitoring systems on therapy decision-making, their

affect on quality of life, and their cost-effectiveness, all within

well-defined target populations.
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Introduction: The clinical assessment of mobility, and walking specifically, is still

mainly based on functional tests that lack ecological validity. Thanks to inertial
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measurement units (IMUs), gait analysis is shifting to unsupervised monitoring

in naturalistic and unconstrained settings. However, the extraction of clinically

relevant gait parameters from IMU data often depends on heuristics-based

algorithms that rely on empirically determined thresholds. These were mainly

validated on small cohorts in supervised settings.

Methods: Here, a deep learning (DL) algorithm was developed and validated

for gait event detection in a heterogeneous population of di�erent mobility-

limiting disease cohorts and a cohort of healthy adults. Participants wore pressure

insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw

accelerometer and gyroscope data from both feet were used as input to a deep

convolutional neural network, while reference timings for gait events were based

on the combined IMU and pressure insoles data.

Results and discussion: The results showed a high-detection performance

for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs)

(recall: 99%, precision: 94%) and a maximum median time error of −0.02 s

for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters

were in good agreement with a pressure insoles-based reference with a

maximum mean di�erence of 0.07, −0.07, and <0.01 s for stance, swing,

and stride time, respectively. Thus, the DL algorithm is considered successful

in detecting gait events in ecologically valid environments across di�erent

mobility-limiting diseases.

KEYWORDS

deep learning (artificial intelligence), free-living, gait analysis, gait events detection,

inertial measurement unit (IMU), mobility

1. Introduction

Mobility is the ability to move about in the home and

community (1). Mobility can be affected by chronic health

conditions, including but not limited to neurological, respiratory,

cardiac, andmusculoskeletal disorders (2). Deficits inmobility have

been linked with a reduced quality of life, an increased fall risk, and

mortality (2, 3), therefore, mobility is regarded as an essential aspect

of health (4). The most common and functionally relevant aspect of

mobility that is affected by aging and chronic health conditions is

walking (1, 5).

To date, the clinical assessment of mobility is based on

functional tests that include short walking tasks (6–9). A common

shortcoming of these functional tests is the lack of ecological

validity: Walking, as measured in clinical settings, does not reflect

daily life walking (3, 10–12). The transition to unsupervised

monitoring of human motion in naturalistic and unconstrained

daily life activities is driven mainly using wearable inertial

measurement units (IMUs) (4, 13). It is noteworthy that meanwhile

both European and American notified bodies for the certification

of medical devices (Medical Device Regulation and Food and

Drug Administration, respectively) have put focus on wearable

sensors by updating their regulations for the design, pre-clinical

validation, and clinical validation of devices that include wearable

IMUs (13, 14). Similarly, both the European Medicines Agency and

the United States Food and Drug Administration encourage the

inclusion of parameters from unsupervised patient monitoring as

exploratory endpoints in clinical trials (11, 15).

A critical step for the objective analysis of gait is the

segmentation of gait sequences into gait cycles (16–18), i.e., the

basic repetitive unit that gait is comprised of (19, 20). The

beginning and end of each gait cycle, also referred to as stride,

are often determined from two successive initial contacts (ICs) of

the same foot (19, 20). Together with the instant at which the foot

leaves the ground (i.e., final contact, FC), each stride can be divided

into a stance and swing phase (18–21). ICs and FCs are commonly

referred to as gait events (19, 20, 22) and are a prerequisite for

any further clinical gait analysis (18). The detection of ICs and

FCs from IMUs is typically done using heuristics-based algorithms

(23–30). Many of these algorithms use local maxima or minima of

the acceleration and/or angular velocity signals along one axis (31),

which requires knowledge of the sensor-to-segment alignment (32,

33). However, in unsupervised human gait monitoring, the sensor-

to-segment alignment cannot be controlled as study participants

often attach the sensor themselves, for example, after showering

(34). Therefore, the technical validity of these algorithms for the

case of unsupervised human gait monitoring is still an ongoing

challenge also due to the scarcity of labeled free-living gait data (35–

37). Additionally, IMU-based gait signals are affected by disease

characteristics, participant activity levels, and the exact context in

which walking takes please, and therefore, any heuristics-based

algorithm that was developed based on lab-based gait data might

not translate directly to free-living gait (3, 11, 15, 30, 38).

In contrast to the aforementioned heuristics-based algorithms,

machine learning-based algorithms do not depend on user-defined

sets of rules but rather learn to recognize gait signals directly

from annotated data (39–41). Hidden Markov models (HMMs),

for example, were successfully applied for gait segmentation in

healthy (42, 43) and pathological gait (42, 44), but only in-lab

recorded gait data were used to check for validity. A recent study
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used HMMs to segment gait cycles from free-living gait data and

reached 96% recall and 89% precision for free-living data, however,

data were only from participants with Parkinson’s disease (PD)

(45). Although HMMs thus seem a good fit for modeling the

sequential nature of the gait cycle, one still needs to define the

number of discrete states beforehand, and it would be needed to

have a separate model per activity if more than just gait was to be

detected (46, 47). Deep learning (DL)-based algorithms provide an

alternative approach that does not require any heuristic rules but

rather learns relevant data representations automatically from a set

of input features and reference annotations (40, 41, 48, 49). DL

algorithms have been successfully applied for gait event detection

from stereophotogrammetric data (50–54) and from inertial

measurement unit data (34, 55), however, only for in-lab gait data.

Therefore, the specific aim of the current study was to

determine whether a previously in-lab validated DL-based

algorithm (34) for the detection of ICs and FCs can be used for

the detection of gait events in pre-extracted real-life walking bouts

in a heterogeneous cohort of different mobility-limiting diseases.

For the current study, walking bouts were defined according to

the recently published consensus framework for digital mobility

monitoring (2).

2. Materials and methods

2.1. Data collection

2.1.1. Study participants
As part of the Mobilise-D technical validation study (56),

a convenience sample of 108 participants was recruited at

five independent study sites (Newcastle upon Tyne Hospitals

NHS Foundation Trust, UK, Sheffield Teaching Hospitals NHS

Foundation Trust, UK, Tel Aviv Sourasky Medical Center,

Israel, Robert Bosch Foundation for Medical Research, Germany,

University of Kiel, Germany). The sample represented five

mobility-limiting disease cohorts [congestive heart failure (CHF),

chronic obstructive pulmonary disease (COPD), multiple sclerosis

(MS), Parkinson’s disease (PD), and proximal femoral fracture

(PFF)] and a cohort of healthy older adults (HA) (56). These

cohorts cover a range of walking speed, mobility challenges, and

potential events that are of clinical interest, such as improving

vs. worsening of function, falls, hospitalization, nursing home

admission, and death. Furthermore, as the participants were

recruited at five different sites across Europe, they ensured a

geographical representation and covered a diverse representation

of healthcare organization, such as in- vs. outpatient care, as well

as public vs. private health services (1, 56). Participants needed

to be able to walk 4m independently, to give informed consent,

and have a Montreal Cognitive Assessment score > 15 (57). A

detailed description of inclusion and exclusion criteria is provided

elsewhere (56), and ranges of values for cohort-specific clinical

scales are detailed in Table 1.

2.1.2. Study protocol
Study participants were equipped with the INertial module with

Distance sensors and Pressure insoles (INDIP) system that included

both pressure insoles (PIs) and IMUs to record movement signals

from both feet and the lower back (27, 58, 59). Participants wore

the INDIP system for 2.5 h in their habitual environment, e.g.,

home, work, community, and/or outdoor environment, which was

chosen by the participant, with no specific restrictions (56). To

capture the largest possible range of activities, participants were

provided with a list of activities that could be included if relevant

to their chosen environment (e.g., rising from a chair, walking to

another room, and walking outdoors). No supervision or structure

as to how these tasks were completed was given to the participants.

The duration of the observation has been established as a trade-off

between experimental, clinical, and technical requirements (56).

2.2. Data processing

2.2.1. Data preparation
Data from the INDIP system were synchronized by setting the

clock to have the same timestamp for all the sensors between the left

and right foot, and values were recorded at a sampling frequency, fs,

of 100Hz. As input to the DL algorithm, only the raw accelerometer

and gyroscope data from both feet were used. Data were split into

three different datasets: a training set, a validation set, and a testing

set (40, 41). For this purpose, for each of the six cohorts, data from

approximately 20% of the participants were assigned to the testing

set, data from another 20% of the participants were assigned to the

validation set, and data from the remaining participants were used

as the training set.

The validation set was used to find an optimal network

architecture using grid search (60), and the training set was used

to optimize the corresponding model parameters (40, 41). The

testing set was only used for the final evaluation, and notably, the

numbers presented in the Section Results only corresponded to the

performance of the testing set.

2.2.2. Reference system
For all data, the gait events, that is both ICs and FCs, were

detected separately from the PIs and IMUs from the INDIP

system that is described in detail elsewhere (61) to meet the

emerging demands associated with reproducibility and replicability

in biomedical research and regulatory qualification (62). Then,

the results were combined, and priority was given to the PIs in

case both modalities detected an event (63). For the PIs, foot-

ground contact was defined when at least three sensing elements

from the PI belonging to the same spatial neighborhood were

consecutively activated and deactivated (64). For the IMUs, an

existing algorithm, originally designed for shank-worn IMUs, was

adapted for use with foot-worn IMUs. Previously, it was validated

for the detection of supervised gait events in older, hemiparetic,

parkinsonian, and choreic gait (27, 65) and across multiple research

centers for parkinsonian and mildly cognitive impaired gait (66).

From these gait events, walking bouts (WBs) were formed by

merging information from left and right strides (27, 28). Each WB

represented a gait sequence with a minimum of two left and two

right strides (2, 63). Here, strides were only considered valid if

(i) the stride duration was between 0.2 and 3 s and (ii) the stride
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TABLE 1 Dataset details for training, validation, and testing sets, including the total number of bouts and strides.

Set Cohort Number of
participants

Age
(years)

Height
(cm)

Weight
(kg)

Clinical scale
(mean [min,
max])

Number
of bouts

Number
of

strides

Training CHF 8 69 (13) 177 (8) 86 (20) KCCQ: 81.8 [37.0, 96.3] 189 11326

COPD 11 70 (9) 169 (6) 73 (14) CAT: 21.1 [6.0, 33.0]

FEV1 : 1.7 [0.9, 2.7]

187

6562

MS 12 47 (8) 171 (14) 80 (23) EDSS: 3.5 [1.0, 6.5] 139 6216

PD 12 70 (7) 175 (6) 79 (16) HandY: 2.0 [1.0, 3.0]

UPDRS: 31.8 [6.0, 54.0]

165 7574

PFF 10 83 (6) 172 (9) 71 (16) SPPB: 7.3 [0.0, 12.0] 151 5838

HA 12 71 (7) 168 (10) 76 (11) 245 13597

Validation CHF 2 74 (13) 172 (21) 87 (3) KCCQ: 94.8 [89.6, 100.0] 41 1210

COPD 3 69 (14) 171 (10) 69 (12) CAT: 15.3 [6.0, 26.0]

FEV1 : 1.4 [1.3, 1.6]

68 1890

MS 3 42 (15) 172 (13) 97 (24) EDSS: 2.5 [1.5, 4.0] 24 863

PD 3 70 (7) 174 (6) 79 (21) HandY: 2.3 [2.0, 3.0]

UPDRS: 28.0 [24.0, 33.0]

61 3466

PFF 2 71 (1) 164 (8) 60 (9) SPPB: 5.0 [1.0, 9.0] 31 1087

HA 4 72 (4) 163 (10) 77 (18) 126 4952

Testing CHF 2 65 (13) 168 (1) 77 (16) KCCQ: 66.7 [47.9, 85.4] 10 407

COPD 3 69 (8) 166 (3) 80 (18) CAT: 18.7 [13.0, 24.0]

FEV1 : 1.4 [0.8, 2.3]

79 2346

MS 3 58 (12) 172 (16) 87 (25) EDSS: 4.7 [3.0, 6.0] 53 2576

PD 3 70 (11) 166 (11) 73 (8) HandY: 2.3 [2.0, 3.0]

UPDRS: 24.3 [7.0, 41.0]

38 2448

PFF 2 76 (6) 168 (8) 75 (28) SPPB: 6.5 [3.0, 10.0] 21 1649

HA 4 73 (3) 164 (11) 72 (10) 94 3674

CAT, COPD assessment test; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; EDSS, Expanded disability status scale; FEV1 , Forced expiratory volume in 1 s;

HA, healthy adults; HandY, Hoehn and Yahr scale; KCCQ, Kansas City cardiomyopathy questionnaire; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture; SPPB,

short physical performance battery; UPDRS, Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale, part III. Age, height, and weight are presented as mean (standard

deviation), and the clinical scales are presented as mean [minimum, maximum].

length was minimally 0.15m. A resting period of 3 s determined

consecutive WBs, thus, each WB could contain a resting period of

≤3 s.

For the current study, we analyzed only those WBs that lasted

≥10 s (67–70) and for which both the INDIP’s PIs and IMUs

were used for determining the gait events. These gait events were

considered as reference annotations for training and evaluating the

DL algorithm.

2.2.3. Deep learning algorithm
The DL algorithm was based on the neural network (NN) that

was previously validated on in-lab gait data from shank-worn IMUs

worn by participants with different neurological diseases (34, 71).

At the core of the NNwas a temporal convolutional network (TCN)

(72, 73). The TCN was built from stacking residual blocks (74) with

an exponentially increasing dilation factor for the convolutional

layers (Figure 1).

Specifically, each residual block comprised two sequences of

a dilated convolution (Conv) layer (75), a batch normalization

(BatchNorm) layer (76), a rectified linear unit (ReLU) activation

layer, and a dropout layer (77). A residual connection was used

to perform convolution with a kernel size of 1 in case the

number of feature maps did not match the number of input

channels (72, 73). The outputs of the second dropout layer and

the residual connection were summed elementwise and inputted

to a ReLU activation layer. The convolution layers consisted of 64

filters with a kernel size of 3 and a dilation factor of 2m−1 with

m = 1, · · · ,Ndil for the m-th residual block (with Ndil = 6, the

number of residual blocks, and thus, the maximum dilation factor

was 25 = 32).

The outputs of the last residual block were passed through

a fully connected (also referred to as dense) layer followed by

a softmax activation layer (78, 79). The final outputs were then

regarded as probability that a certain gait event took place at the

given time step, tn.
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FIGURE 1

Schematic depiction of the deep learning model architecture with a

residual block (ResBlock) that is repeated (in this case, six times)

before a dense and softmax layer are applied. Inputs to the network

are the raw accelerometer and gyroscope data of both left and right

inertial measurement units. The outputs are estimated probabilities

for each of the gait events for each time step. BatchNorm, batch

normalization; Conv, convolution; DropOut, dropout; ReLU,

recitified linear unit.

2.3. Evaluation

As in our previous studies (34), the performance was evaluated

with the testing set only. The trained model was used to predict

the probability that any gait event occurred from the IMU data.

Peak probabilities, with a minimum probability, 1Pr = 0.5, and

a minimum interpeak distance, 1t = 0.5 s, were considered

detected events.

Performance was evaluated for the overall detection

performance, time agreement between predicted and annotated

gait event timings, and time agreement between subsequently

derived stride-specific gait parameters.

2.3.1. Overall detection performance
The overall detection performance quantified how many of the

annotated gait events were detected (true positives), how many

of the annotated gait events were not detected (false negatives),

and how many of the detected events were not annotated (false

positives). From these numbers, the recall (also referred to as

sensitivity) and precision (also referred to as positive predictive

value) were calculated as follows:

recall =
# true positives

# true positives+ # false negatives
, (1)

precision =
# true positives

# true positives+ # false positives
. (2)

Thus, the recall represented the fraction of annotated events

that were detected, and the precision represented the fraction of

events that were truly gait events.

Here, in case the absolute time difference between an annotated

and predicted event was ≤250ms, it was considered a true positive

event (30, 34, 80, 81) (in other words, a tolerance window of 500ms

centered around the reference timing was used).

2.3.2. Time agreement
For all correctly detected gait events (true positives), the time

agreement between the detected and annotated event timings was

quantified by

ǫ = tref − tpred, (3)

where tpred is the timing corresponding to the peak probability

and tref is the timing of the INDIP-derived annotations.

As a robust measure for the time agreement and its spread,

the median time error and the inter-quartile range (IQR) were

computed (82), and time agreements were visualized using

box plots.

2.3.3. Stride-specific gait parameters
For those strides where both ICs and the FC in between were

detected, the stance, swing, and stride times were computed (19,

20, 83). Stance time was the time between an FC and the preceding

IC of the same foot, swing time was the time between an IC and the

preceding FC of the same foot, and stride timewas the time between

two consecutive ICs of the same foot (34, 83).

For each of these temporal gait parameters, the mean time

difference and the limits of agreement (LoA) based on a 95%

confidence interval (CI) were computed (82). Differences were

visualized using Bland–Altman plots (84, 85).

3. Results

3.1. Demographics

Data were collected from 108 different participants, and

eventually data from 99 participants were used for the current study

(Table 1). Data from the other participants were excluded due to

incomplete or missing data from the INDIP system or because no

WBs ≥ 10 s were recorded. Eventually, the DL-based algorithm

was evaluated for its performance in detecting gait events of 13,100

strides divided over 295 bouts recorded from 17 participants in the

testing set.

3.2. Overall detection performance

The overall detection performance was quantified by the

number of true positives, number of false negatives, and number

of false positives. From these numbers, the recall and precision

were calculated (Table 2). In total, from 13,134 ICs, the algorithm

detected 12,985 events (i.e., 99%) and missed 169 events (i.e., 1%),

and similarly, from 12,838 FCs, the algorithm detected 12,747

events (i.e., 99%) and missed 91 events (i.e., 1%). When evaluated

per cohort, the recall for the IC detection was ≥98%, and the

precision was ≥96%. Similarly, the recall was ≥99%, and the

precision was ≥94% for FC detection for all cohorts.
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FIGURE 2

Time di�erence between the predicted and reference events

timings for initial and final contacts evaluated per cohort. A positive

time di�erence corresponded to an advanced detection. CHF,

congestive heart failure; COPD, chronic obstructive pulmonary

disease; MS, multiple sclerosis; HA, healthy adults; PD, Parkinson’s

disease; PFF, proximal femoral fracture.

3.3. Time agreement

For all the correctly detected events, i.e., true positives, the

difference between the detected event timing and the annotated

event timings was calculated according to Equation (6). Themedian

time error was close to 0 s with the IQR enclosing a zero difference

for both ICs and FCs for all cohorts, except for the PFF cohort

(Figure 2). The PFF cohort showed a median time error of −0.02 s

and an IQR of 0.03 s for IC detection, and a median time error of

0.03 s and IQR of 0.05 s for FC detection (Table 3).

3.4. Stride-specific gait parameters

For those strides that had two correctly detected ICs and a

correctly detected FC in between, stride-specific temporal gait

parameters (i.e., stance time, swing time, and stride time) were

calculated. For all cohorts, the mean differences between the stance,

swing, and stride times derived from the detected events and those

derived from the annotations were close to zero with the LoA

encapsulating a zero-mean difference (Figure 3). Notably, for the

PFF cohort, the mean time difference for the stance time was

+0.07 s, and the mean time difference for the swing time was

−0.07 s, which resulted in a zero-mean difference for the stride

time (Table 4). Similarly, for all gait phases, the absolute errors were

0.04 s or less for all cohorts, except the PFF cohort (Table 5). This

resulted in a relative time error for the stride times of ≤2% across

all cohorts, but for the swing times, the relative time error for the

PFF cohort was 27%, and for the COPD cohort, it was 12%.

4. Discussion

The specific aim of the current study was to determine

whether a previously in-lab validated DL-based gait event detection

algorithm (34) could be used for the detection of gait events

from real-life walking bouts in a heterogeneous cohort of different
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TABLE 3 Time di�erences between the predicted event timings and the annotated event timings evaluated per cohort.

Cohort Initial contacts Final contacts

Median (ms) IQR (ms) Median (ms) IQR (ms)

CHF 0 20 0 20

COPD 10 40 10 40

MS 0 10 20 30

PD 10 10 20 30

PFF −20 30 30 50

HA 10 20 10 20

CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; MS, multiple sclerosis; HA, healthy adults; IQR, inter-quartile range; PD, Parkinson’s disease; PFF, proximal

femoral fracture.

FIGURE 3

Bland–Altman plots for the stance, swing, and stride times evaluated per cohort. The gray solid line corresponds to the overall mean di�erence, and

the dashed lines correspond to the mean di�erence ± 1 standard deviation. CHF, congestive heart failure; COPD, chronic obstructive pulmonary

disease; DL, deep learning; HA, healthy adults; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture.

TABLE 4 Mean di�erences (bias) and limits of agreement for a 95% confidence interval for the stance, swing, and strides evaluated for each cohort.

Cohort Stance time Swing time Stride time

Mean
di�erence (s)

LoA (s, s) Mean
di�erence (s)

LoA (s, s) Mean
di�erence (s)

LoA (s, s)

CHF −0.00 (−0.08, 0.07) 0.00 (−0.07, 0.07) −0.00 (−0.07, 0.07)

COPD 0.01 (−0.11, 0.13) −0.01 (−0.13, 0.11) 0.00 (−0.08, 0.08)

MS 0.02 (−0.05, 0.10) −0.02 (−0.10, 0.05) −0.00 (−0.06, 0.06)

PD −0.01 (−0.06, 0.04) 0.01 (−0.04, 0.06) 0.00 (−0.05, 0.05)

PFF 0.07 (−0.06, 0.19) −0.07 (−0.20, 0.07) 0.00 (−0.07, 0.07)

HA 0.00 (−0.07, 0.08) −0.00 (−0.09, 0.08) 0.00 (−0.07, 0.07)

CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; HA, healthy adults; LoA, limits of agreement; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal

femoral fracture.

mobility-limiting diseases. For that purpose, participants from

different disease cohorts (CHF, COPD, MS, PD, and PFF) and a

cohort of healthy adults were equipped with the INDIP system

that consisted of PIs and IMUs for both feet. Participants wore the

INDIP system for 2.5 h in the habitual environment, as chosen by

the participants, and a wide range of activities were recorded in

these ecologically valid environments. Data from the PIs and IMUs

were used to generate reference timings for ICs and FCs, whereas

raw data from the accelerometer and gyroscope were used as the

input to the DL algorithm to identify ICs and FCs.

The recall and precision of gait events were used as a general

measure for the detection performance and were considered high

(i.e., recall ≥ 98% and precision ≥ 96%). For comparison, in

Trojaniello et al. (27), no missed or extra gait events were observed

in a heterogeneous sample of elderly, hemiparetic, parkinsonian,

and choreic gait, but data were only collected from walking back
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TABLE 5 Stance, swing, and stride times obtained from the reference and the DL algorithm, and the absolute and relative time errors for comparison.

Gait
phase

Cohort Reference system DL algorithm Absolute error Relative error

s (s, s) s (s, s) S (s, s) % (%, %)

Stance CHF 0.93 (0.90, 0.97) 0.94 (0.91, 0.97) 0.03 (0.02, 0.03) 3 (2, 3)

COPD 0.93 (0.91, 0.94) 0.92 (0.90, 0.93) 0.04 (0.04, 0.05) 5 (5, 5)

MS 0.98 (0.97, 0.99) 0.96 (0.94, 0.97) 0.03 (0.03, 0.03) 3 (3, 3)

PD 0.80 (0.79, 0.80) 0.81 (0.80, 0.81) 0.02 (0.02, 0.02) 2 (2, 2)

PFF 0.90 (0.88, 0.91) 0.83 (0.82, 0.84) 0.08 (0.08, 0.08) 9 (9, 9)

HA 0.84 (0.83, 0.85) 0.84 (0.83, 0.85) 0.03 (0.02, 0.03) 3 (3, 3)

Swing CHF 0.41 (0.40, 0.42) 0.41 (0.39, 0.42) 0.02 (0.02, 0.03) 6 (5, 7)

COPD 0.43 (0.42, 0.43) 0.43 (0.43, 0.44) 0.04 (0.04, 0.05) 12 (11, 13)

MS 0.41 (0.41, 0.42) 0.44 (0.43, 0.44) 0.03 (0.03, 0.03) 9 (8, 9)

PD 0.41 (0.40, 0.41) 0.40 (0.39, 0.40) 0.02 (0.02, 0.02) 4 (4, 4)

PFF 0.34 (0.34, 0.35) 0.41 (0.40, 0.41) 0.08 (0.08, 0.08) 27 (26, 28)

HA 0.36 (0.36, 0.36) 0.36 (0.36, 0.37) 0.03 (0.03, 0.03) 8 (8, 9)

Stance CHF 1.34 (1.31, 1.38) 1.34 (1.31, 1.38) 0.02 (0.02, 0.02) 1 (1, 2)

COPD 1.35 (1.33, 1.37) 1.35 (1.33, 1.37) 0.02 (0.02, 0.02) 2 (2, 2)

MS 1.39 (1.38, 1.40) 1.39 (1.38, 1.40) 0.02 (0.02, 0.02) 1 (1, 1)

PD 1.20 (1.19, 1.21) 1.20 (1.19, 1.21) 0.01 (0.01, 0.01) 1 (1, 1)

PFF 1.24 (1.22, 1.25) 1.24 (1.22, 1.25) 0.02 (0.02, 0.02) 2 (2, 2)

HA 1.20 (1.19, 1.21) 1.20 (1.19, 1.21) 0.02 (0.02, 0.02) 2 (1, 2)

Values represent the mean and 95% confidence interval of all stances, swings, and strides of the test subjects for the given cohort. CHF, congestive heart failure; COPD, chronic obstructive

pulmonary disease; DL, deep learning; HA, healthy adults; MS, multiple sclerosis; PD, Parkinson’s disease; PFF, proximal femoral fracture.

and forth for 1min in a 12m walkway. Similarly, high recall

and precision (≥98%) were reported for a continuous wavelet

transform (CWT)-based algorithm, but it was evaluated only for

13 healthy participants and 3 hemiplegic participants who walked

continuously along a 10m walkway (86). A recent study (45)

found a recall of 96% and precision of 89% in a cohort of 28

PD participants, who wore two IMUs on the feet for 2 weeks,

which are slightly lower than the recall and precision from the

current study. Overall, the data of the studies presented here,

including the present study, indicate that very high recall and

precision values can be achieved with the deep learning approach

for the detection of gait events. This, together with the higher

flexibility of the DL-based algorithms compared to conventional

algorithms, speaks for the future use of such algorithms for

the detection of gait in mobility-limiting diseases also in the

habitual environment.

For the correctly detected gait events, the time differences

between the predicted event timing and the annotated event

timings were quantified as a measure of temporal agreement

between the reference system and the DL-based algorithm. The

time differences were still in the same range as those previously

reported for CWT-based (23, 27, 30, 86, 87) and DL-based

algorithms (34) validated on in-lab gait data. To put this into

perspective, studies that evaluated the time differences of detected

gait events from PIs when compared to force plates or instrumented

walkways also reported time differences in the range from 0.02 s

to 0.04 s (17, 64, 87). For the INDIP pressure insole method, a

negligible delay (<10ms) was observed for FCs, and a consistent

IC anticipation (20ms) was found when compared to force plates

(64). It suggests that a certain margin of uncertainty should be

considered when interpreting gait event timing differences in the

DL-based algorithm.

Finally, stride-specific gait parameters were derived for the

correctly detected events. These may be of greatest clinical

relevance since changes in spatiotemporal gait parameters were

associated with a shorter time to PD diagnosis (88) and from

mild cognitive impairment to Alzheimer’s disease (89), and values

of temporal gait parameters were different in disease cohorts

compared to healthy cohorts (90–92). Here, a zero-mean time

difference was found for the stride times for all cohorts. Similarly,

the time differences for stance and swing times were centered

around a zero-mean difference for all cohorts, with only the mean

differences for the stance and swing time of the PFF cohort being

a bit larger (0.07 s and −0.07 s for the stance and swing time,

respectively). The mean differences for stance and swing times in

the PFF cohort may in part be explained by the altered gait pattern

that is observed in this cohort (93, 94). Nonetheless, the time

agreement for the stride-specific temporal gait parameters derived

from the DL algorithm and the reference system was in a similar

range as those communicated before for a comparable DL-based

approach that evaluated results only from straight-line walking in a

supervised laboratory setting (55).
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The very good results that were obtained in the current study

for two-feet-worn IMUs (56) combined with the results for a single

shank-worn IMU from our previous study (34) provided evidence

that the algorithm performance generalizes to other sensor wear

locations and to free-living gait data. The current algorithm has

the additional benefit that it does not require the knowledge of

exact sensor location and orientation relative to the feet contrary to

many previously validated algorithms (23, 24, 31, 34, 95). This has

the practical consequence that there are less stringent requirements

for study participants or future patients on how to attach the

sensors to their feet. Since for the previous validation the input data

consisted of the raw accelerometer and gyroscope signals from a

single sensor that was located either laterally above the ankle joint

or medially below the knee joint (34), the algorithm for the current

validation was again trained, validated, and tested. Both studies

show a high recall and sensitivity, highlighting that the algorithm

is capable of detecting gait events from different sensor locations

without the loss of accuracy provided that sufficient training data

are available for any new sensor location (34). Furthermore, the

algorithm performance was evaluated across a broad spectrum of

five different mobility-limiting disease cohorts, and although the

number of participants in the testing set for each cohort was low, it

showed that the algorithm was able to accurately detect gait events

in heterogeneous pathological gait patterns. This will ultimately

allow future users of the algorithm to perform not only sensitivity

analyses for individual cohorts but also specificity analyses across

different cohorts.

The limitation of the current study included that only data

from detectedWBs were used. This means that gait event detection

relied on the accurate detection of gait sequences as a preceding

step (45). However, several algorithms have been reported for

accurate IMU-based gait sequence detection in both healthy and

disease cohorts (24, 25, 28, 29, 46, 96–100). Furthermore, data

from some participants had to be excluded from analysis due to

missing or incomplete data which was mainly due to issues with

the PIs. As reference timings for gait events are still obtained

mainly from force or pressure measuring device (23), it showed

the difficulty of obtaining a dataset with annotated gait events

on completely unsupervised free-living gait data (35–37, 45). To

get a better picture of the algorithm’s generalizability to other

datasets, it needs to be tested on newly unseen datasets, for example,

with a slightly different sensor setup, such as in Martindale

et al. (46).

In addition, the study did not evaluate clinical aspects in detail,

such as medication and symptom fluctuations. This is, in part, due

to the heterogeneous sample of participants with differentmobility-

limiting diseases. Consequently, the current study did not focus on

identifying, for example, digital biomarkers of disease progression,

for which a greater sample size of a specific disease would be

required. However, as this is a study comparing, in the same person,

systems at one point in time on amotility aspect, we believe that this

does not influence the results reported here. Furthermore, it should

be stressed that the heterogeneous sample is an asset of the current

study as the results show that the algorithm achieves excellent

performance for different pathological gait patterns. Given the

time span of 2.5 h, we did not specifically investigate whether

disease-associated gait abnormalities, such as freezing of gait in PD

(101), were captured by the recording. However, the duration of

the assessment was chosen as a trade-off between experimental,

clinical, and technical requirements (56) and is five times longer

than the recommendations for validation procedures of assessing

physical activity in older adults (102). Lastly, the current analysis

also relied on a peak detection algorithm to identify the most

probable timings of gait events (34, 46, 55). However, from a

clinical perspective, this may be regarded as a benefit since it would

allow a clinician to decide whether to consider certain strides

based on how confidently it can be assumed that it was indeed

a stride.

5. Conclusion

This study aimed to validate a DL algorithm for the detection

of gait events in an ecologically valid environment across different

mobility-limiting disease cohorts. The performance evaluation

showed an excellent detection rate and low time errors for both

event timings and subsequently derived temporal gait parameters

for all cohorts. The DL reached a performance that was in a

similar range or slightly better than approaches that were to

date only validated on in-lab recorded gait data or for a specific

disease cohort.

As the DL algorithm does not rely on expert-defined decision

rules or hand-crafted features nor on exact sensor-to-segment

alignment, it poses fewer requirements on the data collection.

Our next steps include extending the current analysis

for data from multiple days and evaluating to which extent

the DL network can be trained using participant-specific

data to improve gait event detection on an individual level.

Future studies may also consider the development of novel

gold-standard systems that allow validation approaches

beyond lower limb movement, for example, to include upper

limb movement.
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Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) can

exert relevant e�ects on the voice of patients with Parkinson’s disease (PD). In this

study, we used artificial intelligence to objectively analyze the voices of PD patients

with STN-DBS.

Materials and methods: In a cross-sectional study, we enrolled 108 controls and

101 patients with PD. The cohort of PD was divided into two groups: the first

group included 50 patients with STN-DBS, and the second group included 51

patients receiving the best medical treatment. The voices were clinically evaluated

using the Unified Parkinson’s Disease Rating Scale part-III subitem for voice

(UPDRS-III-v). We recorded and then analyzed voices using specific machine-

learning algorithms. The likelihood ratio (LR) was also calculated as an objective

measure for clinical-instrumental correlations.

Results: Clinically, voice impairment was greater in STN-DBS patients than in

those who received oral treatment. Using machine learning, we objectively and

accurately distinguished between the voices of STN-DBS patients and those under

oral treatments. We also found significant clinical-instrumental correlations since

the greater the LRs, the higher the UPDRS-III-v scores.

Discussion: STN-DBS deteriorates speech in patients with PD, as objectively

demonstrated by machine-learning voice analysis.
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Parkinson’s disease, voice analysis,machine-learning, deepbrain stimulation, subthalamic

nucleus
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1. Introduction

Patients with Parkinson’s disease (PD) manifest variable

degrees of voice abnormalities characterized by hypophonia,

mono-pitch, and mono-loudness speech, and hypophonic and

hypokinetic articulation. These specific voice impairments have

been collectively identified as hypokinetic dysarthria (1, 2). PD

patients may experience voice disorders from the prodromal phase

of the disease, with speech deteriorating as the disease progresses

(2–6). Accordingly, it is important to investigate voice changes in

PD under pharmacological as well as advanced treatments such as

deep brain stimulation of the subthalamic nucleus (STN-DBS).

DBS is a well-established therapeutic option for advanced-

stage patients with PD (7), as demonstrated by short- and long-

term follow-up studies (7–10). Besides the well-known beneficial

effects of STN-DBS on the cardinal motor symptoms in PD

(i.e., bradykinesia, rigidity, and tremor), the effect of this surgical

procedure on specific axial functions such as voice remains

elusive (7, 11–14). Following STN-DBS procedures, the estimated

prevalence of speech disorders, as a post-surgical side-effect, has

been reported in PD to vary between 1% after 6 months and 70%

at 3 years of follow-up (12, 15–17). Hence, STN-DBS may lead

to a significant worsening of parkinsonian hypokinetic dysarthria,

resulting in a rather different voice abnormality characterized by

a hypophonic voice with a strained and spastic speech mainly

associated with stuttering, as suggested by previous studies in the

field (18). Therefore, DBS-related voice impairments in PD patients

have been identified as DBS-related dysarthria (19).

The complexity of voice as a biological phenomenon, the

heterogeneity of dysarthria in PD, and, finally, the variable

effect of STN-DBS on the voice would therefore require more

advanced techniques, including artificial intelligence that allows the

analysis and dynamic combination of high-dimensional datasets

of voice features (20–22). Machine learning offers a potentially

useful methodology to investigate voice abnormalities, especially

in complex and multifactorial neurologic disorders, including PD

(2, 20, 21, 23, 24).

To date, no study has assessed voice abnormalities in a large

cohort of STN-DBS patients with PD compared to chronically

treated L-Dopa patients with PD through objective procedures

based on machine-learning analysis. Moreover, no study has

correlated the clinical and instrumental assessments of voice in

patients with PD by using machine-learning output measures.

Filling these knowledge gaps would be relevant for the objective

recognition of voice abnormalities in STN-DBS patients with PD.

In the present cross-sectional study, we examined voice

performances in a large cohort of STN-DBS and chronically

treated L-Dopa patients with PD using machine-learning analysis

for automatic classification purposes. Therefore, we compared

voice samples recorded from STN-DBS and chronically treated

L-Dopa patients as well as from healthy subjects (HS), using

standardized perceptual analysis as well as advanced analysis

based on machine-learning procedures. We assessed the sensitivity,

specificity, positive and negative predictive values, and accuracy

of all diagnostic tests and calculated the area under the receiver

operating characteristic (ROC) curves. Finally, by providing an

objective instrumental measure of voice impairment, the likelihood

ratio (LR), for each patient based on machine-learning analysis, we

also assessed possible clinical-instrumental correlations.

2. Materials and methods

2.1. Subjects

This cross-sectional study enrolled 101 patients with PD (61.9

± 7.5 years, range 41–81 years) and 108 patients with HS (60.3

± 10.3 years, range 42–76 years). Participants were progressively

recruited during regular follow-up clinical evaluations in the

outpatient clinic for movement disorders at IRCCS Neuromed

and University Departments and Public Hospitals on behalf of

the “Lazio DBS Study Group.” All participants were native Italian

speakers and non-smokers. None of the participants reported

bilateral/unilateral hearing loss, respiratory disorders, or other non-

neurologic disorders affecting the vocal cords. The participants

provided written informed consent, which was approved by the

institutional ethics committee of the IRCCS Neuromed Institute

(NCT04846413), according to the Declaration of Helsinki.

The clinical diagnosis of PD was made according to the current

standardized clinical criteria of the International Parkinson and

Movement Disorder Society (25). Symptoms and signs of PD

were scored using the Hoehn and Yahr (H&Y) scale and the

Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) (26).

The clinical (i.e., perceptual) evaluation of speech abnormalities

in PD was achieved by an independent rater using the specific

item (item 3.1) for speech evaluation included in the UPDRS-

III scale (UPDRS-III-v) during the overall motor assessment (26).

In all participants, we excluded cognitive and mood impairments

potentially affecting speech production through the Mini-Mental

State Examination (MMSE) (27) corrected for years of education,

the Beck’s Depression Inventory (BDI) (28), and the Frontal

Assessment Battery (FAB) (29).

The cohort of PD included patients in the mid-to-advanced

phase (H&Y scores > 2) (30) and those who were chronically

treated with L-Dopa. The PD cohort included two separate

subgroups of patients: the first subgroup included 50 STN-DBS

patients (61.6 ± 6.6 years, range 45–75 years), whereas the second

subgroup included 51 patients (62.1 ± 8.3 years, range 41–81

years) chronically treated with the best medical treatment (i.e.,

L-Dopa). To specifically recognize the effect of STN-DBS on

voice in PD, patients were enrolled and assigned to each of the

two subgroups according to the inclusion criteria, attempting to

statistically match the age, gender, H&Y, UPDRS, disease duration,

and the L-Dopa equivalent daily doses (LEDDs) (all measures were

calculated for each patient before the enrollment in the study). All

patients were evaluated clinically and instrumentally 1–2 h after the

administration of their chronic dopaminergic therapy (i.e., in the

ON state). All implanted patients received chronic bilateral non-

directional and non-interleaving STN-DBS with stable treatment

and stimulation parameters for longer than 3 months. Most of

the STN-DBS received bilateral monopolar stimulation (n = 43),

the remaining being treated with bilateral bipolar stimulation

(n = 7). Moreover, most of the patients received DBS at a

frequency higher than 100Hz (n = 35), whereas the remaining
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patients received DBS at a frequency lower than 100Hz (n =

15). Stimulation parameters were set to optimize motor symptoms

and fluctuations (31, 32). DBS pulse width was set at 60 µs

for all STN-DBS patients. All STN-DBS patients were evaluated,

clinically and instrumentally, on stimulation (i.e., when ON DBS)

and on medication. Participant demographic and clinical features

(including the STN-DBS parameters) are reported in Table 1.

2.2. Voice recordings

Voice recordings were performed by asking healthy subjects

and patients to produce a specific vocal task that consisted of the

sustained emission of a close-mid front unrounded vowel/e/for at

least 5 s (2). All audio signals were collected in a quiet and echo-

free room. Voice recordings were recorded by expert neurologists.

All voice samples collected in this study from controls and patients

were recorded using a specific smartphone available on the market,

equipped with a high-definition microphone and a dedicated

application allowing for recording in linear pulse-code modulation

(PCM) format (.wav) at a sampling rate of 44.1 kHz, 16-bit depth,

without compressions or filtering. Participants were asked to hold

the smartphone in front of their face, at ∼30 cm from the mouth,

and then to speak with their usual voice intensity, pitch, and quality

(33) (Figure 1).

2.3. Machine-learning analysis

Specific spectral subtraction techniques, such as multi-band

spectral subtraction, were initially used to remove background

noise and other artifacts from each audio track of the voice sample.

Spectral subtraction is a powerful noise reduction method based

on a “learned” noise profile estimated during speech pauses and

subtracted from the noisy spectrum to enhance speech. Specifically,

we detected the frequency spectrum of the background noise by

selecting specific sections of the audio tracks, including noise

and other artifacts without biological signals (i.e., voice). The

toolbox specifically employed in our analysis was the Izotope RX7

(iZotope, n.d.), which offers fine-tuning capabilities, enabling the

algorithm to prioritize gating-like effects over the “musical noise”

that exacerbates distortion. This procedure allowed us to reduce file

corruption, possibly affecting the following analysis (34, 35).

Then, voice features underwent feature extraction and pre-

processing through the Data Analytics Research and Technology

in Healthcare group’s Voice Analysis Toolbox (DARTH-VAT)

(36). The DARTH-VAT Toolbox is open-source software provided

by MATLAB (MathWorks, USA) that allows the extraction of a

grand total of 345 acoustic features specific to the analysis of

pathological voices. The main domains of extracted features are

jitter, shimmer, HNR, glottal model-based features, empirical mode

decomposition (EMD), entropy, Teager-Kaiser energy operator

(TKEO), pitch period entropy (PPE), recurrence period density

entropy (RPDE), and detrended fluctuation analysis (DFA) (36).

Each domain entails several single-value descriptors, such as

mean or standard deviation, computed as the result of a

moving average on the original signal evolving in time. In T
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FIGURE 1

Experimental design. (A) Recording of voice samples through the high-definition audio recorder embedded in the smartphone; (B) narrow-band

spectrogram of the acoustic voice signal; (C) feature extraction; (D) feature selection; (E) feature classification; (F) the receiver operating

characteristic (ROC) curve analysis; (G) twenty-layer artificial neural network (ANN) for calculating the Likelihood Ratios (LRs).

addition, the DARTH Toolbox also provides additional algorithms,

including SWIPE, that can extract vectors of values relative to

the variation of fundamental frequency (f0) over time, such as

mean, median, standard deviation, minimum, maximum, and

70% trim mean, which is the mean computed, excluding the

15% top and bottom values. Moreover, jitter, shimmer, HNR,

and F0 are selected since they are common feature domains in

the analysis of voice abnormalities in PD patients. Therefore,

DARTH-VAT has been specifically implemented for detecting

voice abnormalities in PD patients, as shown by previous

research (37–39).

Moreover, extracted features underwent feature selection pre-

processing using the correlation-based feature selector (CFS) (40,

41) available as an open-source toolkit in Weka (42, 43). The

optimal subset was chosen with the help of a (non-greedy) Best

First Search method, which involves the selection of the optimal

subset and path via progressive enlargement of the cardinality while

evaluating the factor of merit. The most relevant features selected
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by the CSF were ranked by relevance using the Information Gain

Attribute Evaluation (IGAE) algorithm (44) available as an open-

source toolkit in Weka (40, 41). The IGAE algorithm measures the

information gained concerning the class.

After the pre-processing, the audio features underwent

classification procedures. The classification focused on the 20 most

relevant features, as ranked by the IGAE (23), and streamlined

the data needed for machine-learning purposes (2, 20) (see

Table 2). Given the relatively small dataset considered here, an

SVM with a linear kernel and soft margins was used as a

classifier. The SVM classifier is suitable for small datasets and noisy

data since it allows for reducing the likelihood of “overfitting”.

Then, we applied Platt’s Sequential Minimal Optimization method

to perform the supervised training of voice features (45, 46).

Platt’s method is an algorithm used to train SVMs and solve

their quadratic programming problem. Platt’s method is a fast

methodology based on iteratively solving analytically small sub-

problems of minimization, which only involve two Lagrange

multipliers (22). The SVM was also calibrated using a logistic

regressor to convert its score-like output into probabilistic values

suitable for producing ROC curves. Calibration essentially works

by fitting a probabilistic model to various sub-versions of the

main classifier to cast the observed likelihood of their outputs into

probabilities (47). However, a hyperparameter optimization was

also performed to find the best-performing setup for the SVM.

The main hyperparameters of the SVM are complexity (or C),

which quantifies the amount of penalization for a classification

error within the training set, allowing for softer or harder

margins, and the ridge of the calibrator. The optimization was

performed automatically owing to a look-up table of discrete

values for each parameter, effectively training various versions

of SVM and then posteriorly choosing the best combination

of hyperparameters.

Finally, in order to improve the biological interpretation of our

results by providing automatic binary discriminations among the

three classes of participants (i.e., HS, STN-DBS, and L-Dopa), we

identified the smallest subset of features, which were then included

in further analysis. As reported in the next section of results,

among the most relevant and representative extracted features, we

identified Jitter.F0_TKEO_mean, Shimmer.F0_TKEO_mean, and

HNR_mean. The jitter and shimmer indicate the frequency and

amplitude of micro-instability in vocal fold vibrations, respectively,

and both contribute to rough speech. Conversely, HNR represents

the amount of noise in voice signals. In the case of our analysis,

the Jitter.F0_TKEO_mean and the Shimmer.F0_TKEO_mean were

both calculated as the average of the jitter and the shimmer,

respectively, as computed with the aid of a Teager-Kaiser energy

operator, whereas the HNR_mean was calculated as the average of

the HNR.

Finally, we performed a further machine-learning analysis for

clinical-instrumental correlation purposes after achieving feature

extraction and selection in parallel with the SVM classification

procedures. We used a feed-forward artificial neural network

(ANN) consisting of a 20-neuron input layer, a 10-neuron hidden

layer, and a 1-neuron output layer. Input for ANN consisted of the

first 20 most relevant selected features, which thus matched the

20-neuron input layer. Then, the ANN was trained to calculate a

continuous numerical value (the likelihood ratio, or LR), ranging

from 0 to 1 and reflecting the degree of voice impairment in each

patient with PD (i.e., the closer the LRs are to 1, the higher the

degree of voice impairment). ANN was trained by using the same

selected features used to train the SVM. The experimental paradigm

is also summarized in Figure 1 (22).

2.4. Statistical analysis

The normality of all parameters was assessed using the

Kolmogorov-Smirnov test. The Mann-Whitney U-test was used

to compare demographic and anthropometric parameters in HS,

STN-DBS, and L-Dopa patients. The Mann-Whitney U-test was

also used to compare the UPDRS-III and UPDRS-III-v scores

between STN-DBS and L-Dopa patients. Finally, the Mann–

Whitney U-test was used to compare UPDRS-III, UPDRS-III-v,

and LRs values in STN-DBS patients who received monopolar

or bipolar stimulation as well as in patients who received low

(<100Hz) and high STN-DBS frequencies (>100 Hz).

ROC analyses were performed to identify the optimal

diagnostic cutoff values to discriminate between HS vs. L-Dopa

patients, HS vs. STN-DBS patients, and STN-DBS vs. L-Dopa

patients. We provided detailed values for sensibility, specificity,

positive predictive value (PPV), negative predictive value (NPV),

accuracy, and area under the curve (AUC). Moreover, we showed

the output of the ROC analysis by calculating the Youden index

and its optimal criterion value, the associated criterion.

Spearman’s rank correlation coefficient was used to assess

correlations between clinical scores (including the STN-DBS

parameters) and LR values. A p-value of <0.05 was considered

statistically significant.

3. Results

Demographic and anthropometric parameters were normally

distributed and comparable in HS, STN-DBS, and L-Dopa patients

(all p > 0.05). MMSE scores were comparable among groups (all p

> 0.05). BDI was higher, and FAB was lower in PD patients than

in controls (all p < 0.05). Disease duration, LEDDs, MMSE, BDI,

FAB, H&Y, and UPDRS-III were all similar between STN-DBS and

L-Dopa patients (all p > 0.05) (Table 1).

3.1. Voice impairment in STN-DBS and
L-Dopa patients

According to our results, all PD patients included in our cohort

manifested a variable degree of clinically overt voice impairment

(UPDRS-III subitem voice, UPDRS-III-v ≥ 1). STN-DBS patients

scored higher at UPDRS-III-v than L-Dopa patients (p < 0.01),

suggesting greater voice impairment in the first study group. When

considering only STN-DBS patients, UPDRS-III and UPDRS-III-v

scores were comparable in the patients who received monopolar

or bipolar stimulation (p > 0.05). UPDRS-III was also similar

in the patients who received low (<100Hz) and high STN-DBS
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TABLE 2 Most relevant voice features selected by correlation-based feature selector (CFS) algorithm during the recording of the sustained emission of

vowel/e/in healthy subjects (HS) vs. L-Dopa patients; HS vs. STN-DBS patients; and STN-DBS vs. L-Dopa patients.

Ranking position HS vs. L-Dopa HS vs. STN-DBS STN-DBS vs. L-Dopa

1 DFA (Detrended Fluctuation Analysis) F0s_median HNR_mean

2 Jitter->F0_FM Jitter->F0_FM Jitter->F0_abs0th_perturb

3 mean_0th delta Jitter->F0_TKEO_mean Jitter->F0_TKEO_prc5

4 mean_10th delta mean_MFCC_10th coef Jitter->F0range_5_95_perc

5 mean_11th delta-delta mean_MFCC_11th coef mean_1st delta delta

6 mean_12th delta mean_MFCC_1st coef mean_delta delta 0th

7 mean_12th delta-delta mean_MFCC_4th coef mean_MFCC_4th coef

8 mean_1st delta delta mean_MFCC_6th coef NHR_mean

9 mean_2nd delta-delta mean_MFCC_7th coef Shimmer->F0_abs_dif

10 mean_4th delta-delta PPE (Pitch Period Entropy) Shimmer->F0_abs0th_perturb

11 mean_5th delta-delta Shimmer->F0_abs0th_perturb Shimmer->F0_FM

12 mean_MFCC_3rd coef Shimmer->F0_FM Shimmer->F0_PQ11_classical_Baken

13 mean_MFCC_6th coef Shimmer->F0_TKEO_mean Shimmer->F0_TKEO_mean

14 mean_MFCC_7th coef Shimmer->F0_TKEO_prc75 Shimmer->F0_TKEO_prc5

15 NHR_mean Shimmer->F0_TKEO_prc95 Shimmer->F0_TKEO_std

16 NHR_std std_MFCC_10th coef std_MFCC_10th coef

17 Shimmer->F0_FM std_MFCC_11th coef std_MFCC_12th coef

18 Shimmer->F0_PQ11_classical_Baken std_MFCC_12th coef std_MFCC_4th coef

19 Shimmer->F0_PQ5_classical_Baken – std_MFCC_5th coef

20 Shimmer->F0_TKEO_prc25 – std_MFCC_6th coef

frequencies (>100Hz) (p = 0.53). Conversely, the patients who

received STN-DBS at a frequency of >100Hz manifested higher

UPDRS-III-v scores than patients treated with a frequency of

<100Hz (p < 0.05).

Concerning machine-learning analysis, voice samples collected

from eight patients with PD (3 STN-DBS and 5 L-Dopa patients)

were excluded from further analysis due to unexpected file

corruption.When discriminating betweenHS and L-Dopa patients,

the artificial classifier based on SVM allowed us to achieve a

significant performance on our test. Specifically, when comparing

the 20 most relevant selected features extracted from the sustained

emission of the vowel, the ROC curve analyses identified an optimal

diagnostic threshold value of 0.39 (associated criterion) when

applying discretization and 10-fold cross-validation (Youden index

= 0.63). Using this cutoff value, the performance of our diagnostic

test was as follows: sensitivity = 80.0%, specificity = 78.9%, PPV

= 78.4%, NPV = 80.4%, accuracy = 79.4%, and AUC = 0.852

(Figure 2A; Table 3).

When comparing HS and STN-DBS patients using the

SVM, we achieved a significant diagnostic performance of our

test, identifying an optimal diagnostic threshold value of 0.82

(associated criterion) when applying discretization and 10-fold

cross-validation (Youden index = 0.83) to the 20 most relevant

voice features. Using this cutoff value, we obtained the following:

sensitivity = 88.6%, specificity = 95.8%, PPV = 95.1%, NPV =

90.2%, accuracy= 92.4%, and AUC= 0.874 (Figure 2B; Table 3).

When classifying STN-DBS and L-Dopa patients, the SVM

applied to the 20 most relevant selected features extracted from the

sustained emission of the vowel identified an optimal diagnostic

threshold value of 0.51 (associated criterion) when applying

discretization and 10-fold cross-validation (Youden index = 0.74).

Using this cutoff value, the performance of our diagnostic test was

consistent, as suggested by the following values: sensitivity= 85.4%,

specificity = 88.2%, PPV = 85.4%, NPV = 88.2%, accuracy =

87.0%, and AUC= 0.874 (Figure 2C; Table 3).

Concerning the analysis of binary discriminations between

the three groups of classes (i.e., HS, STN-DBS, and L-Dopa),

we identified Jitter.F0_TKEO_mean, Shimmer.F0_TKEO_mean,

and HNR_mean, among the most relevant and representative

extracted features.We achieved the following results for the L-Dopa

vs. HS classification: sensitivity = 67.3%, specificity = 57.1%,

PPV = 81.5%, NPV = 38.5%, and accuracy = 64.7%. Moreover,

concerning the DBS vs. L-Dopa classification, we obtained the

following results: sensitivity = 78%, specificity = 72.9%, PPV

= 66.7%, NPV = 82.7%, and accuracy = 75%. Finally, for the

DBS vs. HS classification, we reported the following significant

statistic output: sensitivity = 78.3%, specificity = 75.7%, PPV

= 88.9%, NPV = 58.3%, and accuracy = 77.5%. The output

of this further analysis is visually displayed in a 3D scatter

plot (Figure 3).

The Mann-Whitney U-test showed comparable LR scores

in STN-DBS patients receiving bilateral monopolar or bipolar
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FIGURE 2

The receiver operating characteristic (ROC) curves were calculated through the support vector machine (SVM) classifier in healthy subjects (HS) and

STN-DBS or L-Dopa patients with Parkinson’s disease (PD). (A) HS vs. L-Dopa patients; (B) HS vs. STN-DBS patients; (C) STN-DBS vs. L-Dopa patients.

AUC: area under the curve.

stimulation (p > 0.05), as well as in the patients who received

low (<100Hz) and high (>100Hz) frequencies of STN-DBS

(p > 0.05).

3.2. Correlation analysis

In L-Dopa patients, we found a positive correlation between

UPDRS-III and UPDRS-III-v scores (r = 0.40, p < 0.01). A similar

positive correlation between UPDRS-III and UPDRS-III-v (r =

0.48, p < 0.01) was also found when considering the cohort of

STN-DBS patients. These findings demonstrate that the greater

the disease severity, the higher the impairment of voice in L-Dopa

patients as well as in STN-DBS. We also found that UPDRS-III and

UPDRS-III-v scores did not correlate with years from the STN-DBS

implant (r = 0.09, p = 0.58; r = 0.08, p = 0.54, respectively), the

frequency (r = 0.02, p = 0.92; r = 0.14, p = 0.37, respectively),

and the intensity of STN-DBS (mean value between the right and

left STN-DBS electrodes) (r = 0.12, p = 0.45; r = −0.18, p =

0.25, respectively).

Concerningmachine-learning analysis, we found that LR scores

collected in L-Dopa patients positively correlated with UPDRS-

III (r = 0.31, p < 0.05) and UPDRS-III-v (r = 0.41, p < 0.01)

values. Moreover, when considering STN-DBS patients, we found a

correlation between LR scores and UPDRS-III (r = 0.51, p < 0.01)

as well as UPDRS-III-v values (r= 0.33, p< 0.05). Accordingly, our

analysis showed that the higher the LR values calculated bymachine

learning, the greater the severity of motor (UPDRS-III) as well

as voice (UPDRS-III-v) symptoms in both groups of PD patients

(i.e., L-Dopa and STN-DBS). Finally, LR scores also correlated with

the intensity (mean value between the right and left STN-DBS

electrodes) (r= 0.33, p< 0.05) but not with the years from the STN-

DBS implant (r = 0.06, p > 0.05) or the frequency of STN-DBS

(r = 0.08, p > 0.05) (Figure 4).
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TABLE 3 Performance of the machine learning algorithm.

Comparisons Instances Cross
validation

Associated
criterion

Youden
index

Se
(%)

Sp
(%)

PPV
(%)

NPV
(%)

Acc
(%)

AUC

HS vs. L-Dopa 154 10 folds 0.39 0.63 80.0 78.9 78.4 80.4 79.4 0.852

HS vs. STN-DBS 155 10 folds 0.82 0.83 88.6 95.8 95.1 90.2 92.4 0.931

STN-DBS vs.

L-Dopa

93 10 folds 0.51 0.74 85.4 88.2 85.4 88.2 87.0 0.874

Performance of Support Vector Machine (SVM) linear classifier elaborating the 20 most relevant selected features during the sustained emission of the vowel/e/for three independent conditions:

(1) Healthy subjects (HS) vs. L-Dopa patients; (2) HS vs. STN-DBS patients; (3) STN-DBS patients vs. L-Dopa patients. Selected features refer to the number of features able to obtain the best

results; instances refer to the number of subjects considered in each comparison; cross validation refers to standardized validation procedures (see Methods for details). Se, sensitivity; Sp,

specificity; PPV, positive predictive value; NPV, negative predictive value; Acc, accuracy; AUC, area under the curve.

FIGURE 3

Three-D scatter plot relative to the discrimination between healthy

subjects (HS), L-Dopa, and STN-DBS patients, achieved by using the

three most relevant features (i.e., jitter, shimmer, harmonic to noise

ratio—HNR) from those selected by machine-learning analysis. Note

that the combined measurement of jitter, shimmer, and HNR

allowed the discrimination of STN-DBS patients from HS and

L-Dopa patients.

4. Discussion

The present study provided convergent data from perceptive

(i.e., clinical) as well as instrumental analysis (i.e., machine-

learning), showing the effect of STN-DBS on voice in PD patients.

Indeed, STN-DBS significantly worsened dysarthria in patients

with PD, leading to DBS-related dysarthria. Supporting this

conclusion, we found significant clinical-instrumental correlations

between machine-learning output measures (LRs) and the clinical

assessment of voice impairment (UPDRS-III-v). Our study,

therefore, indicates that machine-learning analysis is a reliable

tool to assess voice abnormalities objectively in STN-DBS patients

with PD.

The strengths of the study include the large sample of patients

and their rigorous selection based on comparable demographic,

anthropometric, and clinical parameters among groups. All

patients were assessed clinically and instrumentally when ON

L-Dopa. STN-DBS patients were clinically and instrumentally

assessed when ON DBS and ON L-Dopa, with their chronic

stimulation parameters (i.e., polarity, frequency, and intensity)

based on efficacy and safety on motor and non-motor symptoms,

according to the best clinical practice (48, 49). The comparable

LEDDs in STN-DBS and L-Dopa patients allowed us to exclude

confounding factors due to dopaminergic stimulation when

comparing implanted and not-implanted PD patients. The

specific vocal task (i.e., sustained emission of the vowel/e/)

was selected since it represents a language- and culture-free

vocal task, according to previous reports (20, 21, 33, 50). All

corrupted vocal samples were excluded from the analysis to avoid

confounding factors due to non-biologic audio signals. Finally,

our machine-learning analysis included the RASTA filtering

technique, which allowed us to reduce the irrelevant and potentially

misleading information added to the signal by the background

noise or electromagnetic interference of the implantable pulse

generator (33).

4.1. Clinical assessment of voice

The clinical observation that all patients manifested a certain

degree of voice impairment (UPDRS-III-v ≥ 1) is consistent

with the estimated prevalence of hypokinetic dysarthria, reaching

90% of the global PD population in the advanced stages of

the disease (1, 4). Since our patients manifested higher BDI

and lower FAB scores than controls, it might be argued that

hypokinetic dysarthria also reflected a mild decline in mood and/or

frontal functions. However, STN-DBS and L-Dopa patients were

characterized by comparable overall disability (H&Y scores) and

disease severity (UPDRS-III values), as well as BDI and FAB

scores. The clinical observation that STN-DBS patients showed a

higher degree of voice impairment (i.e., UPDRS-III-v) than L-Dopa

patients indicates a more severe dysarthria in STN-DBS patients,

in line with previous reports (7, 15–17, 51–54). Previous studies

indeed reported prominent voice impairments characterized by a

harsh, breathy, strained voice, hypernasality, imprecise consonant

emission, speech rhythm disturbances, stammering, and stuttering

in STN-DBS patients (13, 14, 53, 55). We also found a significant

correlation between voice impairment (UPDRS-III-v scores) and

overall disease severity (UPDRS-III scores), both in patients

treated with STN-DBS and in those under L-Dopa, in line with

previous observations (2, 13). Finally, concerning the specific STN-

DBS parameters, we found that voice prominently deteriorated

in patients receiving a higher (>100Hz) rather than a lower

frequency (<100Hz) of STN-DBS. This finding t fully agrees
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FIGURE 4

Clinical and instrumental analysis. LR scores recorded in STN-DBS

patients significantly correlate with the UPDRS-III (A) and

UPDRS-III-v (B). Also, the LR scores analyzed in STN-DBS patients

significantly correlate with the STN-DBS intensity (mean value

between the right and left STN-DBS electrodes) (C).

with previous observations (13, 14, 31, 56), which outlined the

well-known detrimental effect of high-frequency (>100Hz) STN-

DBS on phonatory and articulatory aspects of speech production.

It is posited that high-frequency (>100Hz) STN-DBS severely

affects laryngeal coordination due to the current spreading to

contiguous brain structures (57). Overall, our clinical assessment

showed that STN-DBS patients manifest a significant worsening

of dysarthria compared with those who received only L-Dopa

therapy (17, 58).

4.2. Machine-learning analysis of voice

The accuracy achieved in discriminating L-Dopa patients

from HS confirmed and expanded a recent observation from

our group (2), showing that voice is altered in advanced-

stage patients with PD under chronic L-Dopa treatment. This

observation receives further support from the significant

correlation we found between the instrumental scores

(i.e., LRs) and the clinical impairment of voice (UPDRS-

III-v scores) as well as motor symptoms (UPDRS-III

scores) (2).

Machine learning achieved robust accuracy (92.4%) in the

comparison between STN-DBS patients and controls, and the

performance of the algorithm was significantly higher than that

observed in the discrimination between controls and L-Dopa

patients (79.4%). Moreover, machine learning achieved consistent

accuracy in the comparison between STN-DBS and L-Dopa

patients (87%). Again, the severity of motor (UPDRS-III) and

voice (UPDRS-III-v) impairment significantly correlated with

the instrumental scores (i.e., LRs) provided by the algorithm.

Overall, these findings objectively demonstrate a significant

worsening of voice in STN-DBS patients. Concerning the specific

output of our machine-learning analysis in PD, it is worth

noting that, when discriminating between STN-DBS and L-Dopa

patients and, finally, healthy controls, the 20 most relevant

features selected by our classifier included those reported in

previous reports on spectral analysis, such as jitter, shimmer,

HNR, and fundamental frequency (F0) (16, 53, 58). Further

relevant biological information came from our final machine

learning analysis concerning the most relevant voice features

allowing discrimination among STN-DBS and L-Dopa patients

and healthy controls. We demonstrated that the combination of

only three independent voice features (Jitter.F0_TKEO_mean,

Shimmer.F0_TKEO_mean, and the HNR_mean) allowed

discrimination among the three groups of participants. Indeed,

we found that jitter (i.e., the Jitter.F0_TKEO_mean) and

shimmer (i.e., the Shimmer.F0_TKEO_mean) were both lower

in HS than in L-Dopa and STN-DBS patients, whereas HNR

(i.e., the HNR_mean) was higher in HS than in L-Dopa and

STN-DBS patients. Jitter and shimmer indicate the frequency

and amplitude of micro-instability in vocal fold vibrations,

respectively, and both contribute to rough speech. Conversely,

HNR represents the amount of noise in voice signals. Hence,

we conclude that L-Dopa and STN-DBS patients are mostly

characterized by abnormally rough and noisy speech compared

with healthy controls. Overall, we confirm that jitter, shimmer,

and HNR are very common domains in voice analysis in PD,

allowing us to objectively recognize dysarthria in STN-DBS and

L-Dopa patients.
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4.3. E�ect of STN-DBS on voice in PD:
putative mechanisms

The prominent voice abnormalities observed in STN-DBS

patients may reflect several mechanisms.We have recently reported

that L-Dopa may improve, even though it does not restore

dysarthria in PD (2). Following STN-DBS procedures, patients

experience a significant reduction of LEDDs by ∼50% (59),

as a result of relevant improvements in motor and non-motor

symptoms (60, 61). If not given the STN-DBS procedure, patients

would have probably required at least twice the dose of L-

dopa. Accordingly, following STN-DBS, our patients would be

characterized by prominent voice changes simply because of

decreased LEDDs. However, we did not examine voice in STN-

DBS patients after a further increase of LEDDs; both implanted and

non-implanted subgroups received the best medical treatment and

had comparable disease stages, severity, and duration, thus making

the hypothesis of suboptimal LEDDs rather unlikely. Alternatively,

a mechanism for explaining the STN-DBS-related worsening of

dysarthria in PD would imply a specific pathophysiological effect

of electric stimulation on target neuronal populations. The DBS

implanted in the STN may activate antidromically axons of the

hyperdirect pathway (i.e., cortico-subthalamic fibers), which in

turn may lead to abnormal activation of cortical areas involved

in voice production, thus leading to stuttering and spastic speech

(16, 19, 53, 62–64). Another reasonable mechanism would imply

the spread of current from STN to contiguous brain structures

owing to horizontal propagation of the electric field and the

related volume of tissue activation (VTA) (65). Accordingly,

STN-DBS would deteriorate voice in PD owing to the spread

of the VTA to the descending corticobulbar and corticospinal

tracts (53, 54, 58, 66). Moreover, an additional mechanism would

imply the propagation of VTA to ascending fibers traveling in

the cerebellothalamic and pallid-thalamic radiation, including

those in the adjacent medial Zona Incerta, Hassler’s pre-lemniscal

radiation, and Forel’s prerubral field or H-field (16, 17). Finally,

an alternative hypothesis of DBS-related dysarthria would imply

the lead location of DBS within the STN in our PD patients, as

suggested by previous reports showing differential motor outcomes

following the stimulation of the posterolateral/dorsomedial portion

of the STN (67). Although our study lacks the neuroimaging

reconstruction of electrode position and VTA for each patient, the

correlation we found between the intensity used for STN-DBS and

LRs values (i.e., the higher the STN-DBS intensity, the greater the

voice impairment) provides support to the hypothesis of STN-DBS

deleterious effect on voice in PD as a result of VTA propagation to

contiguous brain structures (12, 15, 17). Accordingly, we speculate

that STN-DBS deteriorates voice in PD through an abnormal

engagement of specific brain structures included in the human

phonological loop (68). The phonological loop is a complex cortico-

subcortical network that mediates speech planning, programming,

and articulation and includes regions such as the inferior frontal

gyrus, supplementary motor area, primary somatosensory cortex,

superior temporal gyrus, and inferior parietal lobule (69, 70). The

phonological loop also includes subcortical regions, such as the

striatum (i.e., the putamen) and interconnected basal ganglia nuclei

(69). The cortical output of the phonological loop is the laryngeal

primary motor cortex and its descending projections directed

to alpha-motoneurons in the brainstem structure responsible for

speech articulation, such as the nucleus ambiguous (69). In patients

with PD and hypokinetic dysarthria, previous neuroimaging studies

indeed reported abnormal activation of cortical and subcortical

areas included in the phonological loop, such as the supplementary

motor area, inferior lateral premotor cortex, and putamen. We,

therefore, conjecture that STN-DBS may deteriorate dysarthria in

patients with PD by degrading the activity of the phonological loop,

a hypothesis that requires further investigation in future studies.

4.4. Limitations

When interpreting our results, several limitations should be

considered. We did not record vocal samples before and after

surgery or examine patients in a pharmacological OFF state or

with the stimulator turned off (OFF DBS). Hence, our results

do not fully explain the specific interaction of STN-DBS with

dopaminergic stimulation and their combined effect on the voice

in PD. This will be the topic of a future study. Moreover, the

variable timing of observation after surgery (2.9 ± 5.2 years)

would not affect the overall interpretation of our findings since

we found no correlation between UPDRS-III-v scores as well

as LRs and years from the STN-DBS implant. Our artificial

intelligence could not discriminate between various components

of DBS-related dysarthria (i.e., spastic and hypokinetic) in patients

with PD during the analysis. Thus, this will be the topic of a

future study. Furthermore, in the absence of neuroimaging data

allowing the reconstruction of electrode position within the STN

and the resulting VTA for each patient, our new pathophysiological

interpretation based on STN-DBS interference on the human

phonological loop remains rather speculative. Also, we recognize

that a speech task based on the sustained emission of a vowel

would be judged as not sufficient for analyzing speech production

thoroughly and that short language-specific sentences based on

various phonological features would provide additional results.

However, as demonstrated in our previous studies, vowel emission

can provide diagnostic accuracies similar to those achieved bymore

detailed speech tasks, including the reading of sentences (2, 71, 72).

Moreover, the vowel emission gives the advantage of a language-

and culture-free speech task that is useful for cohorts of advanced-

stage PD patients (20, 33). Hence, we believe that sustained vowel

emission represents a useful task for interpreting speech-related

abnormalities in STN-DBS patients.

5. Conclusions

We here report the first machine learning study of voice

in a homogeneous and clinically well-characterized cohort of

PD patients and provide instrumental evidence of significant

worsening of dysarthria in STN-DBS patients, thus leading

to DBS-related dysarthria. Owing to an accurate methodology

based on a cross-sectional design, our findings demonstrate that

STN-DBS exerts a relevant impact on dysarthria, particularly

when given at high frequency and intensity of stimulation.
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Our observations in PD can pave the way for new approaches

based on machine-learning analysis of voice associated with

current steering technology or adaptive stimulation to optimize

the overall management of motor symptoms and fluctuations

without worsening dysarthria in STN-DBS patients (65, 73, 74).

Future studies based on a comparative analysis between vowel

emission and short language-specific sentences would also be

of help in clarifying the pathophysiologic underpinnings of

DBS-related dysarthria.
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A modular, deep learning-based 
holistic intent sensing system 
tested with Parkinson’s disease 
patients and controls
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1 Natural Interaction Lab, Department of Engineering Science, Institute of Biomedical Engineering, 
University of Oxford, Oxford, United Kingdom, 2 University Hospitals Plymouth NHS Trust, Plymouth, 
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People living with mobility-limiting conditions such as Parkinson’s disease can 
struggle to physically complete intended tasks. Intent-sensing technology can 
measure and even predict these intended tasks, such that assistive technology 
could help a user to safely complete them. In prior research, algorithmic systems 
have been proposed, developed and tested for measuring user intent through 
a Probabilistic Sensor Network, allowing multiple sensors to be  dynamically 
combined in a modular fashion. A time-segmented deep-learning system has 
also been presented to predict intent continuously. This study combines these 
principles, and so proposes, develops and tests a novel algorithm for multi-modal 
intent sensing, combining measurements from IMU sensors with those from a 
microphone and interpreting the outputs using time-segmented deep learning. It 
is tested on a new data set consisting of a mix of non-disabled control volunteers 
and participants with Parkinson’s disease, and used to classify three activities of 
daily living as quickly and accurately as possible. Results showed intent could 
be determined with an accuracy of 97.4% within 0.5  s of inception of the idea 
to act, which subsequently improved monotonically to a maximum of 99.9918% 
over the course of the activity. This evidence supports the conclusion that intent 
sensing is viable as a potential input for assistive medical devices.

KEYWORDS

Parkinson’s disease, wearable sensors, intent sensing, deep learning, assistive medical 
devices

1. Introduction

Parkinson’s disease is a neurodegenerative disease resulting in, among other symptoms, a 
gradual impairment of the patient’s mobility and quality of life (1). However, it often does not 
initially severely impair patients’ cognitive functions (2), meaning people living with it can 
report that they find themselves no longer physically able to complete tasks they might still 
mentally intend to do (3). Assistive technologies, such as tremor-suppressing wearables (4) or 
motion supporting exoskeletons (5), can help people complete tasks that they previously were 
unable to.
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The loss of physical control caused by the disease, while still 
maintaining cognitive functions and therefore action intent, makes 
Parkinson’s disease patients an ideal target group for intent sensing – 
the prediction and measurement of what it is that a user wants to do 
(6). This paper proposes that intent sensing could be a useful input for 
control of assistive devices to help those living with Parkinson’s disease 
maintain their quality of life. It has been shown in previous studies to 
be an effective tool for the control of upper limb orthoses which assist 
motion (7), and provide intelligent attitude-adjustment for smart 
wheelchairs (8). These technologies can be applied for the support of 
patients with Parkinson’s disease, highlighting the potential developing 
intent technology for helping those with this condition.

It has been established in prior work (9) that intent sensing must 
be  performed continuously over time, predicting an upcoming 
activity, detecting the activity’s onset, and monitoring the activity as it 
takes place and inferring its task goal. It was shown that the accuracy 
of intent prediction increases monotonically over time – predicting an 
activity before it starts is intuitively far more difficult than classifying 
it after it has been completed. An effective intent-sensing system 
should predict possible upcoming activities in advance, and then 
refine these predictions as the activity begins and progresses.

To minimise risk and maximise compliance (10), intent prediction 
should be performed non-invasively (unless the patient already has an 
implanted device). Information that can be used for prediction can 
be obtained from a range of sensors. Measurements from wearable 
and non-wearable sensors can be individually classified using deep 
learning (9), before being combined as a probabilistic sensor network 
to accurately determine user intent.

To ensure robustness and independence between sensors, multiple 
sensing modalities should be  used (11). Many possible sensing 
modalities have been explored for intent, including electromyography 
(EMG), electroencephalography (EEG) and gaze-tracking (6). This 
study, however, will focus on motion data from Inertial Measurement 
Units (IMUs) and audio data from a microphone, as these modalities 
are representative of what might be found in typical consumer devices 
such as smart-watches and smart-phones (12), and are included in 
currently available wearable Parkinson’s disease-monitoring devices 
such as the Kinesia 360 (13).

Prior work has shown that there are many benefits to constructing 
an intent-sensing Probabilistic Sensor Network (14) using a modular 
method. They allow sensors to be freely added and removed from the 
network as they become available, without any retraining being 
required. This enables the possibility of a system where a user can 
move around a smart environment and take advantage of any wearable 
and non-wearable sensors they may encounter at any given time to 
always produce the most accurate prediction of intent.

Modular methods have also been shown to be far more robust to 
sensor unavailability, due to causes such as failure or, in the case of 
wearable sensors such as Surface EMG, sensor lift-off (11).

The benefit of modularity that this study will focus on, however, 
is the ability to add sensors to a network without increasing the 
complexity of the learned models, and therefore without requiring an 
exponentially increasing amount of data to properly train them.

To elaborate – if each sensor provides 18 features, and there are 
six sensors, as in this study, then combining all the features from all 
the sensors to train a single classifier requires learning of a model in 
108 dimensions. Attempting to do this with only a small amount of 
training data will lead to overfitting, as separating data in that many 

dimensions is very easy for a classifier to do “by chance,” without 
learning any actual pattern that will reoccur for data that is not part of 
the training set.

This study, however, proposes to instead train one deep-learning 
classifier for each of the six sensors. With this approach, each classifier 
learned is only 18-dimensional, requiring much less training data to 
avoid overfitting. However, the same number of training data points 
are available as there were for the 108-dimensional classifier; it is 
simply the number of features that are reduced. As such, six much 
more effective classifiers are able to be learned, without discarding any 
of the features which may contain relevant information. The 
predictions from each of these classifiers can then be combined as part 
of a Probabilistic Sensor Network.

A similar benefit is also gained by time-segmenting the data used 
for the deep learning classifier, reducing the complexity of the learned 
classifiers and increasing the number of available data points for 
training, and therefore increasing the overall accuracy of the classifiers. 
In this study, the system will be modular in both sensors and time.

The objective of this study is to utilise deep-learning-driven, time-
segmented classification algorithms to develop a system to determine 
user intent through six sensors across two sensing environments, and 
to quantify its performance. The work also aims to show the potential 
of an intent sensing system that is agnostic to the kind of user (abled 
or disabled). The study will determine the accuracy of the intent 
prediction for both patients and controls at the early stages of 
the activity.

2. Methods

2.1. Data collection

This study uses a novel Parkinson’s disease-based data set (15). 
Data in this study came from a set of 34 volunteers, 15 of whom had 
Parkinson’s disease and 19 of whom did not. Demographic 
information on both the control and patient groups is shown in 
Table 1, and disease progression information for the patient group is 
shown in Table 2, including the original 1987 Unified Parkinson’s 
Disease Rating Scale (UPDRS) (16) and the Hohen and Yahr 
Stage (17).

All volunteers signed an informed consent form and ethical 
approval for the study was obtained from the NRES Committee South 
West (REC reference 13/SW/0287). The data collection was performed 
by research nurses, who supervised the participants throughout 
the process.

Initially, the participants stood in a calibration pose, with their 
arms by their sides, with this data recorded for standardization. The 

TABLE 1 Number of participants, age (mean and standard deviation) and 
sex for the patient and control groups.

Patients Control Total

Number of 

participants

15 19 34

Age 67 ± 9 64 ± 10 65 ± 9

Sex 10 Male, 5 Female 11 Male, 8 Female 21 Male, 13 

Female
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participants then performed three standard activities of daily living 
(ADLs) based on those utilised in the Motor Activity Log, as tested in 
previous studies (18, 19) – unlocking and opening a door, buttoning 
and unbuttoning a cardigan, and making toast. Each activity was 
repeated three times, without a break.

The participants each wore five Xsens IMU three-axis nine-
channel IMUs (MTx, Xsens Technologies B. V., Enschede, 
Netherlands). These were secured to the participants’ lower and upper 
arms (both left and right), and to their head (Figure 1). A 44.1 khz 
microphone on a nearby laptop (Lenovo Thinkpad X1, Dynamic 
Range 95 dB, Signal-to-Noise Ratio 19 dB) was also used to record 
audio throughout the activity.

During the activities, the participant was engaged in conversation 
by the supervising research nurses, but were asked not to talk about 
the activity they were performing. This engagement was aimed at 
making the motor behaviour more natural and to better represent 
activities of daily living in which cognitive loading is increased due to 
the application of multitasking.

Each IMU provided X, Y, and Z axis data for the magnetometer, 
gyroscope and accelerometer, along with a 3×3 rotation matrix 
provided by the XSens software, all at 50 Hz. The microphone 
positioned in front of the participant provided a 44.1 kHz .wav 
audio signal.

2.2. Processing

The raw 3-axis data from each IMU sensing modality was rotated 
by the inverse of the mean rotation matrix collected during calibration, 

to correct for any misalignments in the axes of each sensor. The sensor 
data was then multiplied by a random rotation for each trial, to 
prevent the system from being able to use the participant’s starting 
direction to determine their intent. All data analysis was done using 
Matlab (MathWorks, Inc., Natick, Massachussetts, United States).

The audio data from the microphone was segmented into groups 
of 882 samples – 1 group of samples for every single sample from the 
IMU sensors. This was then processed using a Hamming Window 
(20) of length 882, followed by Matlab’s AudioFeatureExtractor 
function to determine the first 18 Mel-Frequency Cepstral Coefficients 
(MFCCs), which are representations of the power spectrum of the 
sound (21), for each group. Standard numbers of MFCCs used in 
similar studies vary between 13 and 25 (22). The number 18 was 
chosen here in order to match the number of features contributed 
from each IMU sensor, to ensure the system does not initially weight 
any one sensor more heavily than the others (weights will 
be determined and refined during training).

No speech analysis processing was performed, so the system did 
not attempt to determine the words said during conversation with the 
supervising nurse, as speech would not be a reliable feature in a real-
world scenario where the subject is on their own. Instead, only 
information about the general nature of the sound, such as power and 
frequencies, is used – it was anticipated that this would allow detection 
of events such as the sound of the key turning in the lock, or the buzz 
of the toaster operating, to more accurately determine the activity.

2.3. Deep learning

Time-segmented deep learning was employed to classify the 
intent as quickly and as accurately as possible. Each trial was divided 
into time windows of width 500 ms, each with an overlap of 250 ms, 
enabling a maximum learned pattern length of 250 ms (approximately 
equal to typical human reaction time (23)). Each time-window was 
taken as a separate, 108-feature sample for training. Long-Short Term 
Memory (LSTM) neural networks (24) were trained for each 
individual sensor, and for all six sensors together. These were trained 
over 50 epochs (selected experimentally to minimise overfitting and 
training time), with 15 hidden units, a learn rate of 0.001 and a mini-
batch size of 512. Layers consisted of a 108-feature Sequence Input 
Layer, a single Bidirectional LSTM Layer, a Fully Connected Layer, a 
Softmax Layer and a Classification Layer. In total, 298.758 min of data 
were included in the dataset.

Leave-one-out cross-validation was used, such that all the trials 
for one subject at a time were withheld as a testing set, with the other 
thirty-three subjects used for training. This was repeated 34 times so 
that each subject was withheld once, with the results averaged across 
the set of repeats. To prepare for use in the weighted methods, 
elaborated on in Section 2.4, this training set was randomly subdivided 
into a Classifier Learning Set and a Confusion Matrix Learning Set, 
with half the subjects being included in the former and half in the 
latter. This was necessary in order to train the LSTM networks for each 
sensor and then assess their performance both for each sensor and at 
each time-step, with the results being used to weight the sensor 
contributions in testing.

A majority voting method was also used which assumed that all 
sensors and time steps had equal weight – this meant that the full 
training set could be used to learn the classifier, effectively doubling 

TABLE 2 Disease progression information for the patient group, including 
duration in years since diagnosis, Unified Parkinson’s Disease Rating 
Scale (UPDRS) and Hohen and Yahr stage.

Disease duration (years) 5 ± 3

UPDRS 44 ± 19

Hohen and Yahr stage 2 ± 0.5

All metrics include mean and standard deviation.

FIGURE 1

An anonymised participant wearing all five IMU sensors – on the 
upper left (UL) and right (UR) arm, the lower left (LL) and right (LR) 
arm, and the head (He).
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the size of the training set, at the cost of not being able to have weights 
specific for each of the sensors.

2.4. Modular method

At every time step, each sensor made a prediction using the time-
segmented deep-learning method. All the predictions from each 
sensor at all preceding time steps were then combined. The two 
weighted methods used Bayes’ Rule, with their contributions 
effectively being weighted according to the confusion matrices 
obtained during training. This produced a probability for each of the 
three possible intents – the intent with the maximum probability was 
then selected.
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P V E P E P V E P E

|
|

| |
( ) = ( ) ( )

( ) ( ) + ( ) ( )′ ′
⋅
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(1)

P(E) is the prior probability of a particular intent being true, and 
P(E′) is the prior probability of that intent not being true – in this 
study, the prior was assumed to be uniform, making P(E) 1/3 and 
P(E′) 2/3. P(E│V) is the probability of that intent being true given the 
set of sensor values currently being measured. P(V│E) is the 
probability of measuring the current sensor values given that the 
intent being considered is true. Assuming probabilistic independence 
between the individual sensors, this can be  approximated as the 
product of the probabilities of each individual sensor. P(V│E′) is the 
probability of measuring the current sensor values given that the 
intent being considered is not true.

A majority voting method was also tested, effectively giving all 
sensors and time-steps equal weight. While the loss of the 
weightings obviously inhibits the ability of the network to 
incorporate any sensor, no subsets are required within the training 
set, as there are no confusion matrices to be learned – therefore, a 
majority voting system will be trained on twice as much data as the 
weighted methods.

In order to determine how much of the change in accuracy (when 
using a majority method) comes simply from the access to the larger 
training set, a majority voting method where half of the training set is 
discarded is also tested, in order to make it comparable to the 
weighted methods.

2.5. Non-modular method

To provide a comparison, a non-modular method was also used, 
where the features from all six sensors were included in one single 
LSTM network. This was also time-segmented.

2.6. Comparison

To determine how well the system compares to the theoretically 
possible accuracies, the naïve model from Russell and Bergmann (14) 
was used with the confusion matrices obtained during training in 
order to predict an upper bound for the accuracy of the resultant 
classifier during testing. The measured accuracy was compared to this 

upper bound to determine how close performance is to the 
theoretical maximum.

In this case, the equation for the naïve model is simply:

 P B P S S S P S S S( ) = ∪ ∪…∪( ) = − ∩ ∩…∩( )1 2 6 1 2 61  (2)

2.7. Monotonic test

As an approximately monotonic increase in accuracy over time is 
required for an effective intent-sensing system, a Spearman’s Rank test 
was again applied, quantifying to what extent this requirement was 
fulfilled by each method.

Where R Pi( ) and R Ti( )  are the ranks of each (i-th) sample in 
accuracy and time, respectively, and n is the number of samples, this 
was calculated using:
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(3)

This value is always between −1 and 1, where 1 describes a 
completely monotonically increasing pattern and − 1 describes a 
perfectly monotonically decreasing pattern. A value of 0 would 
indicate no monotonic relationship was present (25).

3. Results

Measuring sensor network accuracy using the four time 
segmentation methods for a system with modular sensors, and for a 
system with combined sensors, produced Figure 2. Both sets contain 
data from both the patient and control groups.

The method with the highest accuracy for both of these, at all time 
steps, was majority voting, where the classifiers were trained on the 
full data set, but no weightings were used, in both sensors and time. 
This reached a maximum of 0.999918 for the modular method, and 
0.957516 for the combined method.

To investigate the extent of the benefit that majority voting gains 
by training on twice as much data, a comparison of the majority 
voting method trained on the full data set vs. trained on half the data 
set is shown in Figure  3. Both sets contain patient, as well as 
non-patient data.

Both methods showed a higher mean performance with the full 
data set than with the half data, with a larger difference in the 
combined method than the modular method.

As the majority voting method resulted in the highest accuracy 
for both methods, it was then used to compare the modular method 
(sensors) to the non-modular method (sensors), with results shown 
in Figure 4.

The modular method showed both higher accuracy and lower 
variance than the combined method. The Spearman’s Rank Coefficient 
of the modular method was 0.89, and for the non-modular, combined 
method, 0.62.

Comparing the accuracy of the modular and non-modular 
methods across the patient and control groups produced the results 
shown in Figure 5.
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The accuracy of the modular method was consistently high 
in both groups, rapidly approaching 1. The combined method 
had a larger variance, and lower maximum accuracy in 
both groups.

The performance of the majority voting (time), modular method 
(sensors) network was then compared to the performance of each 
individual sensor. This is shown in Figure 6.

The highest accuracy sensor was IMU 3 in the first 9.5 s, overtaken 
by IMU 1 for the remaining time. The lowest accuracy sensor was the 
audio at all time steps.

The theoretical maximum accuracy predicted by the Naïve Model 
was initially 0.999996 at 0.5 s, which is almost 1. The performance of 
the modular network method began close to this, at ~0.974. and 
reached a maximum of 0.999918 within the first 16 s.

FIGURE 2

Accuracy vs. time for the modular sensor method and the combined sensor method, using the four different time-segmentation techniques applied 
across multiple sensing modalities.

FIGURE 3

Accuracy vs. time for the modular sensor method and the combined sensor method, combined over time using the majority voting methods with the 
full and half data sets.
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4. Discussion

4.1. Analysis of results

Using the majority voting time-segmented method, trained on the 
full data set, the modular system was able to classify user intent to an 
accuracy of 97.4% within only 0.5 s of the inception of the idea to act. This 
is exceptionally high accuracy, out-performing all previous intent-sensing 
studies and strongly supporting a modular-sensor, time-segmented deep 
learning approach for intent classification. While intent is a different goal 
to activity recognition, these accuracy levels are comparable to those from 
similar studies, but are achieved in a much faster time (26, 27). This 

accuracy increased approximately monotonically, with a Spearman’s Rank 
Coefficient of 0.89, and 16 s after activity inception reached an accuracy 
of 99.9918%, meaning the system was able to correctly classify almost 
every trial for every subject by this point.

By comparison, the non-modular, combined method achieved a 
mean accuracy of only 87.0% in the first 0.5 s, increasing to a maximum 
of 95.8% after 20.5 s – far lower than the mean accuracy of the modular 
method. In addition, the Spearman’s Rank Coefficient for this was a 
lower value of 0.62, suggesting that not only was the accuracy of the 
non-modular method lower, but it also did not nearly as effectively 
satisfy the requirement of accuracy increasing monotonically over time.

Figure  6 showed the individual performance of the sensors 
compared to the overall performance of the modular network. The 
IMU sensors each showed higher accuracy than the audio. However, 
the inclusion of the audio modality had the major benefit of it being 
totally probabilistically independent from the IMU measurements. 
While the IMUs were located at different sites, they were all 
constrained by the probability of the sensing environment. A lower 
bound for this is P A1 0 987( ) = . , the highest accuracy recorded by any 
of the individual IMU sensors. The highest recorded accuracy for the 
audio sensor, and therefore the lower bound for the environment 
probability of audio was P A2 0 866( ) = . . However, as they are both 
entirely different sensing environments, the overall network is 
constrained by neither of these limits, and thus outperforms all the 
individual sensors, and is able to approach 1.

The majority voting method trained on the full data set was once again 
shown to be  the best-performing of the time-segmentation methods 
trialled. Figures 2, 3 show that this contrast is due to the difference in size 
of training set, as artificially withholding half of the training set for the 
majority voting method, in order to make it comparable to the weighted 
methods, results in very similar recorded accuracies.

The exceptionally high performance of the modular method was 
observed in both the patient group and the control group, though a 
100.00% (to two decimal places) classification accuracy was achieved 

FIGURE 4

Accuracy vs. time for the modular and non-modular methods, with 
error shown.

FIGURE 5

A comparison of accuracy between the modular and combined methods for the patient and control groups, with the central 95% confidence interval 
plotted for both.
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8 s later in the patient group than in the control group. This aligned 
with expectations, as large variations have been observed in the 
physical activity of patients with Parkinson’s disease (28), suggesting 
that this would make classifying the patient group harder than 
classifying the control group.

Even with this difference, the accuracy of classification in the 
patient group was still very high, strongly supporting intent sensing 
as a viable method for interpreting user activity. This opens up 
possibilities for a number of possible clinical applications to support 
those with Parkinson’s disease, such as assistive exoskeleton 
technology, which could predict users’ intentions and provide motor 
support in achieving their task goals that they might not otherwise 
be able to complete themselves. Alternatively, intent sensing systems 
could predict activities which might be considered high risk, and 
rapidly alert carers of the increased possibility of danger to the 
patient. Intent could also be used as an input for human-computer 
interfaces, providing more intuitive control to patients over devices 
which could allow them to communicate and maintain their quality 
of life as the disease progresses.

The high accuracy in both groups shows the modular intent 
sensing method as a case example for inclusive design, with ability to 
apply such a system for both disabled and non-disabled users. 
Responding to user diversity with appropriate performance across the 
full range of potential users will bring benefits, such as scalability of 
technology. An inclusive design approach also provides additional 
advantages related to desirability and user satisfaction even if their 
own physical and/or cognitive ability is changing (29).

4.2. Limitations of the study

Caution should be taken in the interpretation of these results, as 
only 3 ADL classes were considered (unlocking and opening a door, 
buttoning and unbuttoning a cardigan, and making toast). The class 
prediction is likely to change as more activities are considered – a 
larger number of classes will lead to a reduced classification 
accuracy (30).

Additionally, the size of the data set is limited. A future study 
could be performed with hundreds of participants, increasing the 
training and testing accuracies and potentially reducing the advantage 
gained by the majority voting system by using the full data set.

Furthermore, while the wearable IMU system should be applicable 
in many real-world scenarios, there may be implementation issues 
with the microphone, the accuracy of which may vary dramatically 
when used outdoors, or in noisy environments. However, previous 
studies have shown the proposed sensor fusion algorithm to be robust 
to sensor dropout (9, 11), meaning that if large amounts of noise are 
identified, it should be possible to dynamically remove the microphone 
input from the system. This may also be of benefit if there is any issue 
with the IMU sensors, such as interfering vibrations from heavy 
machinery, or a technical fault.

It should also be  noted that the activities themselves, while 
performed without constraints, were using the exact same objects for 
all volunteers. It has been shown that small changes in objects could 
lead to different motor patterns (31). Further work is needed to 
determine the accuracy of this approach in truly free living conditions. 
Nonetheless, the high accuracy found in this study is promising.

5. Conclusion

This study introduces a novel holistic multi-modal intent sensing 
system. A continuously-updating system was able to predict a user’s 
intent almost immediately after activity inception, and to continue 
refining that prediction as time passed. This was done using a modular 
network of sensors, including two entirely unrelated sensing 
environments, that might realistically be available to a patient. The 
system was shown to be highly effective in both the patient and control 
group, demonstrating it as an effective example of inclusive design.

The results shown in the study highlight intent-sensing as an 
achievable, highly accurate method of classifying what a user is trying 
to do, with potential applications in the assessment and support of 
those with Parkinson’s disease, and throughout many other fields of 
inclusive design within science and technology.
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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder 
commonly characterized by motor impairments. The development of mobile 
health (m-health) technologies, such as wearable and smart devices, presents an 
opportunity for the implementation of clinical tools that can support tasks such 
as early diagnosis and objective quantification of symptoms.

Objective: This study evaluates a framework to monitor motor symptoms of 
PD patients based on the performance of standardized exercises such as those 
performed during clinic evaluation. To implement this framework, an m-health 
tool named Monipar was developed that uses off-the-shelf smart devices.

Methods: An experimental protocol was conducted with the participation of 21 
early-stage PD patients and 7 healthy controls who used Monipar installed in 
off-the-shelf smartwatches and smartphones. Movement data collected using 
the built-in acceleration sensors were used to extract relevant digital indicators 
(features). These indicators were then compared with clinical evaluations 
performed using the MDS-UPDRS scale.

Results: The results showed moderate to strong (significant) correlations 
between the clinical evaluations (MDS-UPDRS scale) and features extracted from 
the movement data used to assess resting tremor (i.e., the standard deviation of 
the time series: r  =  0.772, p  <  0.001) and data from the pronation and supination 
movements (i.e., power in the band of 1–4  Hz: r  =  −0.662, p  <  0.001).

Conclusion: These results suggest that the proposed framework could be used 
as a complementary tool for the evaluation of motor symptoms in early-stage 
PD patients, providing a feasible and cost-effective solution for remote and 
ambulatory monitoring of specific motor symptoms such as resting tremor or 
bradykinesia.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder caused 
by the deterioration of the nerve centers in the brain responsible for 
movement control (1). PD affects more than 1% of people over 
60 years (2). However, due to the aging population, the global 
prevalence of PD is projected to increase significantly from 6.9 million 
people in 2015 to approximately 12 million in 2040 (3). PD manifests 
with a variety of movement-related symptoms, known as motor 
symptoms, and mental health-related symptoms, known as non-motor 
symptoms (4, 5).

Currently, there is no cure for PD, and drugs such as levodopa and 
dopamine agonists remain the most effective treatments to control 
symptoms (5, 6). The most widely used scale to measure the 
progression of PD is the Movement Disorder Society-Sponsored 
Revision of the Unified Parkinson’s Disease Rating Scale 
(MDS-UPDRS) (7). This scale assesses activities of daily living and 
psychiatric health using questionnaires and a set of physical tests 
scored by observation. Although scales such as MDS-UPDRS are 
commonly used in clinical practice, it is difficult for neuroscientists to 
assess short-term changes in patients’ symptoms, because PD 
assessments are usually performed scarcely a year in prescheduled 
medical appointments. For this reason, clinical visits provide only a 
brief overview of the patient’s condition, and the subjective nature of 
clinical tests can lead to biased evaluations (8).

The need for objective evaluation mechanisms in PD has led to 
the use of technological tools to facilitate management and optimize 
long-term monitoring (9–12). These tools can improve access to 
medical care by reducing costs and minimizing physical barriers 
between patients and medical facilities (13, 14). In specific, mobile 
health (m-health) technologies, such as wearable and smart devices, 
present an opportunity to develop clinical tools to support tasks such 
as early diagnosis, remote monitoring, and objective quantification of 
symptoms over time (14–17). These technologies can reduce the 
burden on the patient and provide organized information on the 
evolution of symptoms (18). Furthermore, data collected by m-health 
technologies can allow the development of digital biomarkers for the 
objective quantification of the progression of symptoms and the effects 
of treatment or therapeutic interventions (19).

The most promising trends in monitoring motor symptoms 
involve the use of wearable devices (wearables) to capture data from 
different sensors (i.e., inertial, bioelectrical) (14, 16, 17, 20). 
Furthermore, recent trends in PD monitoring include the use of 
research-grade wrist devices (21–23), and smart technologies such as 
smartphones (SP) (15), and commodity smartwatches (SW) (24, 25) 
to present promising cost-effective solutions for data collection 
and monitoring.

Several studies have introduced platforms to detect and monitor 
motor symptoms. For example, PD_manager (26), utilizes a 
smartphone (SP) in combination with watch-like sensors and insoles 
to collect data. Similarly, mPower (27) employs a smartphone for 
extensive remote data collection, focusing on a range of motor, 
memory, and voice activities. Another initiative, CloudUPDRS (28), 
uses a smartphone application to evaluate motor function through gait 
analysis and physical exercises. Furthermore, i-PROGNOSIS (29) 
implements several tests for PD early detection through the daily 
interaction of the patient with his or her SP, collecting data on mood, 
motor competence, and speech.

Despite the potential of wearables in the monitoring of PD, the 
implementation of these technologies in clinical practice faces several 
challenges, such as the lack of standardization on technological 
platforms, the type of data acquired, and how they are managed (30). 
Furthermore, there is no clear consensus on the number of sensors or 
the best place to place them on the body, as it is convenient to use the 
minimum number of units to facilitate usability, portability, and 
comfort, without affecting the quality of the information collected (31, 
32). Additionally, few studies have reported evidence on the capability 
of off-the-shelf SW to collect accelerometer data remotely to assess 
specific motor symptoms.

In this context, this study evaluates the potential of a monitoring 
framework to derive useful data to monitor motor symptoms. The 
proposed framework uses an ad-hoc m-health tool named Monipar to 
acquire movement data in combination with a monitoring protocol 
based on the performance of a set of standardized exercises. In 
specific, Monipar uses off-the-shelf smart devices (i.e., SW and SP) to 
collect accelerometer data during the execution of guided movement 
tasks. Furthermore, to identify the potential of the framework, a 
database was collected, curated, and used to extract relevant indicators 
to assess some motor symptoms. Finally, these indicators were 
compared with clinical evaluation.

2 Materials and methods

2.1 Overview

The proposed framework is described in Figure 1. This framework 
employs the Monipar m-health tool to collect data using the built-in 
accelerometer of an SW during the execution of a set of eight exercises, 
most of them selected from MDS-UPDRS part III. Data from each SW 
are stored in a local database and then transferred to a central database 
for offline analysis. This analysis consists of three stages, namely: data 
curation, feature extraction, and correlation analysis. The last stage 
compares the extracted features with the severity rating performed by 
the MDS-UPDRS scale.

Monipar was developed collaboratively with neurologists and 
therapists of PD associations and tested in a 4-month study involving 
21 early-stage PD patients and 7 healthy control (HC) subjects within 
the TECAPARK project (33). Participants completed weekly remote 
motor assessments using Monipar over a 16-week period, starting on 
different dates. The data collected were then analyzed to assess its 
potential in monitoring symptoms such as tremors and bradykinesia.

2.2 Monipar tool

The Monipar tool was developed to facilitate the implementation 
of the proposed protocol. The application consists of a handheld 
module (HM) and a wearable module (WM), as shown in Figure 1, 
which were developed in Android Studio® and installed in the SP and 
SW, respectively. The HM provides a user interface to guide the patient 
or caregiver in how and when to perform the proposed exercises using 
animated images and audio instructions, as shown in Figure 2.

The wearable module (WM) acquires the signals from the built-in 
accelerometers during the execution of each exercise and then transfers 
all data to the HM once all exercises have been completed for 
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subsequent analysis. This module was implemented using simple 
interfaces as shown in Figure 3. Figure 3A indicates that communication 
with the smartwatch module was established, while Figure 3B indicates 
that the data recording is activated. Data were first stored in a local 
database on each smartphone, which was periodically synchronized 
with a central database using an Internet connection for later processing.

During Monipar execution, the HM sends activation and status 
indicators to the WM module to automatically label the captured 

signals with exercise and rest periods tags. In this study, the 
accelerometer was selected because it is a type of sensor widely used 
in different smart devices (31). The suitability and accuracy of this 
sensor for the evaluation of motor symptoms were analyzed in a 
previous study (34), identifying that the frequency and amplitude 
configuration allows the collection of voluntary human movement 
data (<10 Hz) (35), and can analyze the typical frequency range 
attributed to PD tremors (3.5–7.5 Hz) (36).

FIGURE 1

Diagram of the proposed monitoring framework.

FIGURE 2

Dynamics (A) of the handheld module which guides the user in performing each of the eight exercises proposed (B).
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For data collection, the accelerometer sampling rate was set at 
50 Hz, allowing the analysis of signals with a frequency content of up 
to 25 Hz according to Nyquist’s Theorem (37). To ensure data 
consistency, a single-consumer SW model (Tickwatch S2, Mobvoi) 
and SP (Honor 9 Lite, Huawei) were used in the experimental data 
collection stage. More in detail, the application was co-designed with 
5 therapists from Asociación Parkinson Madrid and a neurologist 
specialized in PD mainly through discussion meetings and focus 
groups where we used mock-ups and working prototypes to define the 
desired functionalities and usability requirements. The interaction 
with the therapists’ led to improvements in the interface (i.e., the size 
and shape of the buttons, icons, and legends), the implementation of 
guidance methods through animated images and voice messages, and 
the adjustment of the time assigned to the execution of the exercises. 
The neurologist’s contributions focused mainly on the selection, 
timing, and sequencing of exercises, the adjustment of resting time 
intervals, and the setting of the environmental requirements to 
perform the exercises appropriately. The final working prototype was 

validated at MIT’s AGELAB with 9 PD subjects to assess its usability 
and improve its functionality.

2.3 Movement exercises

A set of seven exercises was selected from part III of the 
MDS-UPDRS scale (7), which refers to the “Examination of motor 
aspects.” An exercise corresponding to repetitive movement 
performed by stretching the arms and bringing the hands to the chest 
was included, conforming a set of 8 exercises. Although MDS-UPDRS 
Part III considers the evaluation of motor competence on each side of 
the body, in this study, the SW was placed on the patient’s wrist where 
the greatest presence of motor symptoms was identified according to 
the clinical indication of the physician who accompanied the 
participant. For HC subjects, the device was placed on their dominant 
hand. Also, a rest period was included between each exercise to allow 
users to relax before the execution of the next task.

The set of exercises was performed weekly and movement data 
were continuously recorded during each exercise and rest periods. 
Table  1 shows a summary of the exercises proposed in the 
experimental protocol and their corresponding section on the 
MDS-UPDRS scale.

For the execution of the set of exercises, patients were asked to sit in 
a comfortable chair and performed the set of exercises assisted by a 
specialist. For one of the experimental groups named supervised group, 
the execution of the exercises was recorded with a video camera with the 
permission of the patients for subsequent labeling of the recorded data.

2.4 Recruitment

The study was approved by the Ethics Committee of the 
Universidad Politécnica de Madrid. All participants gave their 

FIGURE 3

Smartwatch module interfaces: (A) Main window; (B) Data collection 
window.

TABLE 1 Selected exercises for the experimental protocol.

Exercise
MDS-UPDRS 
correspondence

Description

(1) Resting tremor in the 

upper limbs.

3.17 Rest tremor amplitude. The patient, while sitting, rests his hands on the arms of the chair and must maintain the posture for 30 s.

(2) Postural tremor of the 

hands.

3.15 Postural tremor of the 

hands.

The patient, while sitting, extends his arms in front of him at chest level and holds the posture for 30 s.

(3) Movement of the hands 

to the chest.

Does not apply (proposed 

exercise).

The patient, while sitting, stretches his arms and then touches his chest; this exercise is repeated 10 times.

(4) Tapping of the thumb 

and index fingers.

3.4 Finger-tapping. The patient, while sitting, should tap the index finger with the thumb 10 times, as fast and wide as possible. 

The duration of the exercise is 10 s.

(5) Rapid movements of the 

hands.

3.5 Hand movements. The patient closes his fist tightly with his arm bent at the elbow so that the palm is shown to the evaluator. 

The patient should open and close the hand 10 times, as fast and as wide as possible. The maximum 

duration of the exercise is 10 s.

(6) Pronation and 

supination movements of 

the upper limbs.

3.6 Pronation-supination 

movements of hands.

The patient extends the arm to the front with the palm downward. Then, rotate the palm upward and 

downward alternately 10 times, as quickly and completely as possible. The maximum duration of the 

exercise is 5 s.

(7) Arising from a chair. 3.9 Arising from a chair. The patient, seated in the chair, should cross his arms over his chest and touch his shoulders with his 

hands; in this position, he proceeds to stand up without separating his arms.

(8) Gait evaluation. 3.10 Gait The patient must walk at least 7 meters, then turn around and return to the evaluator.
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written consent before participating in the experiment and 
provided sociodemographic and clinical data related to 
their condition.

Initially, 25 participants with PD and 8 HC were recruited. 
However, at the beginning of the data collection, 5 participants (4 PD 
and 1 HC) withdrew from the study, citing personal reasons. The 
experimental protocol was carried out with the participation of 21 PD 
subjects recruited from PD associations in the cities of Burgos, 
Valladolid, Oviedo (Spain), and Guimarães (Portugal). The inclusion 
criteria aimed at patients clinically diagnosed with PD in early stages 
of the diseases (1 to 2.5; average 1.5) according to the Hoehn & Yahr 
scale (H&Y) (38). Exclusion criteria focused on those with mental 
illnesses, including dementia, or who had health problems other than 
PD, which prevented physical activity.

The HC group consists of 7 healthy individuals with similar 
demographics and gender distribution was recruited in the city of 
Madrid (Spain). Although the implementation of the experimental 
protocol for the collection of movement data was similar for all 
participants, in practical terms, three experimental subgroups were 
established based on the human and technical capabilities of each 
association. A detailed overview of the experimental subgroups 
created for this study is presented below.

 (1) Remote group: patients diagnosed with PD who completed the 
experimental protocol in the PD association they regularly 
attended. The protocol was carried out under the supervision 
of a specialist from their PD association who was previously 
trained by the members of the research team.

 (2) Supervised group: patients diagnosed with PD who completed 
the experimental protocol under the same circumstances as 
the remote group, but who also allowed video recording of 
exercise performance for subsequent clinical scoring and 
data labeling.

 (3) Healthy control group: healthy participants who performed 
exercises supervised by team members of the research project. 
The protocol for this group was carried out at the facilities of 
the Universidad Politécnica de Madrid.

Table 2 shows a summary of the demographic characteristics of 
the study population of the three experimental groups.

2.5 Data collection and labeling

The data set collected during the experimental campaign consists 
of the raw data from the acceleration sensor for each exercise and 

resting period for each of the 21 patients with PD and 7 HC subjects. 
During the experimentation, each participant performed the 
complete set of exercises once a week, preferable on the same day and 
at a similar time. This will be referred to as a single trial. PD subjects 
were evaluated in their best ON state, when the medication effectively 
controls motor symptoms, based on clinical assessments and patient 
history. Furthermore, throughout the duration of the study, all 
patients maintained their usual medication regimen.

The data collected was labeled using the annotations generated by 
the Monipar application for the eight exercises and the resting 
intervals. To ensure accuracy, a meticulous review of these labels was 
conducted using MATLAB software (version 2021b), aimed at 
rectifying any discrepancies or offsets present in the automated 
labeling of the proposed exercises and the corresponding rest periods.

Furthermore, the clinical scoring of the Supervised group’s data 
was performed for a trained specialist who meticulously reviewed 
video recordings from weekly single trial to label the corresponding 
exercises. For tremor, bradykinesia, and gait scoring, the specialist 
assessed the severity of six specific tasks following the MDS-UPDRS 
guidelines. Specifically, the specialist assigned scores ranging from 0 
(no impairment) and 4 (severe impairment) to Monipar exercises 1,2, 
4, 5, 6, and 8 (see Table 1) corresponding to the MDS-UPDRS tasks 
3.17 (Rest tremor amplitude), 3.15 (Postural tremor of the hands), 3.4 
(Finger tapping), 3.5 (Hand movements), 3.6 (Pronation and 
supination movements), and 3.10 (Gait), respectively.

In addition, a continuous labeling strategy was implemented in 
the resting tremor data. In specific, these data were initially labeled 
using a method that relied on the analysis of the magnitude within the 
tremor band (3.5–7.5 Hz). During this analysis, empirical thresholds 
were set to detect the presence of tremors. Subsequently, the specialist 
reviewed and corrected these labels by comparing them with the 
reference video recording for each single trial.

2.6 Signal pre-processing and feature 
extraction

Accelerometer signals collected during the study were pre-processed 
using a third-order Butterworth high-pass filter with a cutoff frequency 
of 0.5 Hz to reduce the effect of gravity. From these signals, two sets of 
features were extracted from the time and frequency domains. Although 
the time domain features provide high discrimination capabilities 
without introducing significant increases in computation processing 
(39), the frequency domain features can describe body movements and 
represent important characteristics of repetitive movements (40).

The two sets of features extracted from these signals are 
outlined below.

(1) A set of eight features extracted from the time domain and 
seven representing the power of specific frequency bands commonly 
used for the analysis of PD symptoms. These features were extracted 
from the Euclidean norm (Equation 1) obtained from the triaxial 
signals of the accelerometer. To compute these features, the entire signal 
segment that corresponds to each of the proposed exercises was used.

 a i a i a i a ix y z( ) = ( ) + ( ) + ( )2 2 2
 (1)

Where a a ax y z, ,  are the acceleration values corresponding to the 
x, y, and z axes, respectively.

TABLE 2 Demographic characteristics of the study population.

Remote 
group 
(n  =  15)

Supervised 
group 
(n  =  6)

Healthy 
control 

group (n  =  7)

Males/Females 8/7 3/3 3/4

Mean age (SD), years 63.6 (±7.5) 64.2 (±8.2) 64.0 (±5.4)

Hoehn y Yahr 

(stage = n)

1-stage = 5;

1.5-stage = 1;

2-stage = 8;

2.5-stage = 1

1-stage = 6 –

SD, standard deviation.
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Table 3 shows a summary of the 15 extracted features, including 
8 time- and 7 frequency-domain features to evaluate freezing of 
gait (41), tremors (42, 43), bradykinesia (43), gait (44), dyskinesia 
(45) and the band associated with human movements (41). This set 
of features was extracted only from the supervised group data (6 
PD subjects, 46 single trials) that have the MDS-UPDRS evaluation 
of specific motor task. Furthermore, this feature set was used to 
perform a correlation analysis with the MDS-UPDRS assessment.

(2) A set of 290 features commonly used for automatic human 
activity recognition (39). These features are frequently used to identify 
activities of daily living (i.e., sitting, standing, walking), however, in this 
study, they were used to perform an exploratory visual analysis. This set 
of features includes time and frequency domain features that were 
extracted from the raw triaxial signals, the Euclidean norm of the triaxial 
signals, and the jerk of all previous signals. The reader can refer to (39) 
for more details on the extracted features. Furthermore, to extract these 
features, a sliding window of 2.56 s (128 samples) with 50% overlap was 
used. In specific, this set of features was extracted from the supervised 
group data (6 PD subjects, 46 single trials with MDS-UPDRS evaluation) 
and the HC group data (7 subjects, 56 single trials). The resulting feature 
vectors were labeled with their respective exercise identification and the 
corresponding MDS-UPDRS score for subsequent selection and analysis. 
For HC, the data was labeled with the value 0, indicating that there was 
no impairment in the MDS-UPDRS score. Finally, this set of features was 
used to perform an exploratory analysis using data visualizations.

2.7 Data visualizations

After feature extraction, the set of 290 features was reduced to two 
features (dimensions) using the t-distributed stochastic neighbour 
embedding technique (t-SNE) (46). The t-SNE technique is an 
unsupervised dimensionality reduction tool used to visualize high-
dimensional data that have non-linear relationships. In this study, the 
t-SNE technique was used to perform a visual data analysis to identify 

any underlying pattern in the data. In specific, two visualizations were 
generated by applying the brushing technique to highlight the 
corresponding clinical score performed with the MDS-UPDRS. These 
visualizations enabled to identify some kind of relationship or trend in 
the feature set that could be further exploited for the implementation 
of algorithmic approaches for the detection of specific motor symptoms.

2.8 Statistical analysis

A Pearson correlation analysis was performed using the first 
group of features extracted from the weekly assessment data from the 
supervised group. The Pearson correlation was chosen in this analysis 
due to its effectiveness in detecting linear relationships between 
variables and considers both the magnitude and direction of 
relationships. These features were compared with the score obtained 
using the corresponding sections of the MDS-UPDRS. This analysis 
was performed to identify the features that show the best correlations 
with the assessment of specific motor symptoms such as tremor and 
bradykinesia. For this analysis, only data from the supervised group 
were used, since these data have clinical evaluations carried out 
through video recordings acquired during the data collection process.

3 Results

3.1 Data set collected in the experimental 
stage

Table 4 shows a summary of the number of trials carried out 
during the experimental stage, as well as how many were collected and 
lost. The number of individual trials collected for each participant 
ranges from 2 to 9 weeks (average trials = 6.2). The database collected 
for this study is publicly available in a Zenodo repository and the data 
structure can be consulted in (47).

TABLE 3 Features extracted from time and frequency domains.

Domain Features Description

Time

Standard deviation Standard deviation of the raw time series

Mean Mean value of the raw time series

Median Median of the raw time series

Percentile 25 25th percentile of the raw time series

Percentile 75 75th percentile of the raw time series

Skewness Skewness of the raw time series

Maximum value Maximum value of the raw time series

Minimum value Minimum value of the raw time series

Frequency

Freezing of gait band Freezing of gait band (3–8 Hz) (41)

Tremor band (4–6) Tremors band (4–6 Hz) (42)

Tremor band (3–8) Extended tremors band (3–8 Hz) (43)

Bradykinesia and dyskinesia Bradykinesia and dyskinesia band (0–3 Hz) (43)

Gait band Gait detection band (1–3 Hz) (44)

Dyskinesia (1–4) Dyskinesia band (1–4 Hz) (45)

Band power (0–20) Full band power (0–20 Hz) (41)
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As shown in Table 4 the experimental campaign carried out remotely 
in the associations of Burgos, Valladolid, and Asturias presented the 
highest amount of data lost (from 15 to 30%). These data were lost due 
to storage and communication errors in the prototype of the Monipar 
application. However, the results of the experiment conducted in 
Guimarães and the control group show no missing data. This is because 
the experiment in Guimarães was carried out with an updated version of 
Monipar, which included redundant data saving to reduce data loss.

3.2 Quantitative analysis of the database

The data collected during the experimental stage presents a total 
of 22 h. These data are divided according to experimental groups, as 
summarized in Table 5.

Figure 4 illustrates the distribution of data for various activities 
and postural transitions. 50% of these data correspond to resting 
intervals, used to evaluate resting tremors (label 1); while 30% 
correspond to the execution of the exercises (labels 2–8). Furthermore, 
20% of the data were identified as postural transitions (label 0) 
performed between exercises. The exercise with the least amount of 
data was the exercise to get up from the chair (1%) (label 7).

3.3 Correlation analysis between 
movement data and the assessment using 
the MDS-UPDRS scale

A Pearson correlation analysis was performed using the set of 
features indicated in Table  2 and the clinical evaluation that was 
performed with the corresponding sections of the MDS-UPDRS part 
III. In this analysis, the data from Exercise 3 (arm movement) were 
discarded because it does not have a standardized clinical assessment 
and data from Exercise 7 were also discarded due to the limited 
amount of data (e.g., 2 s accelerometer signal for each single trial). The 

selected exercises and their average MDS-UPDRS scores are shown in 
Table 6. The results of the absolute Pearson correlations are shown in 
Figure 5 using a correlation matrix.

According to Figure  5, the highest absolute correlations were 
achieved with data from exercise 1 (resting tremor) and with most of 
the time and frequency features. Furthermore, data from exercise 6 
(pronation and supination) showed high correlations with the power 
of specific frequency bands such as bradykinesia, dyskinesia, and gait 
bands. Furthermore, the gait and postural tremor data showed 
moderate correlations with specific frequency bands (e.g., Gait band, 
freeze band, Bradykinesia and dyskinesia, and tremors bands); these 
results are expected because gait patterns are commonly used in the 
evaluation of bradykinesia (48), while the increase in the power of 
tremors bands have been recognized as clear indicators of the presence 
of resting, postural, and action tremor (42, 43). The remaining 
exercises included in the Monipar framework presented a weak 
correlation with clinical evaluation, probably due to the location of the 
sensors on the body, which might not be suitable for detecting certain 
movement patterns, for example, finger tapping.

This correlation analysis shows the potential of data collected 
using Monipar for the analysis of specific symptoms, including resting 
tremors and bradykinesia of the upper extremities. For further 
analysis of data from exercises 1 and 6, Table 7 shows the correlations 
obtained between the extracted features described in Table 3 and the 
corresponding clinical scoring (i.e., MDS-UPDRS 3.17 resting tremor; 
MDS-UPDRS 3.6 pronation and supination movements).

The results in Table 7 indicate significant and strong correlations 
between the clinical score of resting tremor and features extracted 
from the time domain, including features such as the standard 
deviation (r = 0.772, p < 0.001), percentile 25 (r = −0.792, p < 0.001) 
and the percentile 75 (r = 0.804, p < 0.001). Furthermore, significant 
and moderate correlations (r  > 0.5) with several frequency bands 
described in the related literature were also found. Although no 
clinical explanation can be  reported for the high and moderate 
correlation between the extracted time domain features (standard 
deviation, percentile 25, and percentile 75) and the clinical evaluation 
of resting tremors, the authors hypothesize that for this behavior is the 
result of the absence of movement captured by the sensors during rest 
periods in the resting tremor data. This absence contrasts with the 
presence of tremors, leading to signal variations that elevate the values 
of these time domain features.

For pronation and supination data, significant negative moderate 
correlations were found between the clinical scoring and time 
features including standard deviation (r  = −0.515, p  < 0.001), 
percentile 75 (r = −0.512, p < 0.001), and low-frequency bands such 
as bradykinesia and dyskinesia (r = −0.622, p < 0.001), dyskinesia 

TABLE 4 Summary of the number of trials conducted and data collected.

Group
PD association or 
location

Performed trials Collected trials Lost trials
Percentage of 

trials lost

Remote

Burgos 20 17 3 15%

Valladolid 23 16 7 30%

Asturias 46 39 7 15%

Supervised Guimarães 46 46 0 0%

Healthy controls Universidad Politécnica de Madrid 56 56 0 0%

TOTAL 191 174 17 8.9%

TABLE 5 Amount of movement data collected according to the 
experimental groups.

Experimental 
group

Number 
of trials

Hours
Percentage 

of data

Remote 72 9.1 41.4%

Supervised 46 5.8 26.4%

Control 56 7.1 32.2%

Total 174 22 100%
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TABLE 6 Average MDS-UPDRS scores of the selected exercises in the supervised group.

Monipar exercise MDS-UPDRS item Average MDS-UPDRS (standard deviation)

1 3.17 Rest tremor amplitude 0.2 (0.49)

2 3.15 Postural tremor of the hands 0.9 (0.68)

4 3.4 Finger tapping 2.4 (0.71)

5 3.5 Hand movements 2.1 (1.04)

6 3.6 Pronation-supination movements of hands 2.5 (0.88)

8 3.10 Gait 1.5 (0.75)

FIGURE 5

Heat map of the Pearson correlation coefficient of the inter-feature analysis and the UPDRS part III assessment. The values in square grids represent 
the absolute magnitude of the r value of the correlation analysis.

FIGURE 4

Percentage of data corresponding to the proposed exercises and the postural transition times.
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(r = −0.655, p < 0.001), gait band (r = −0.620, p < 0.001) and the 
power band of 0–20 Hz (r = −0.507, p < 0.001). Furthermore, the 
moderate correlation between the time domain features (standard 
deviation and percentile 75) can be attributed to the relationship 
between the variations in the amplitude and pattern of the 
movements observed between individuals with motor impairment 
and those without motor impairment. Although there is no explicit 
clinical rationale for these time domain features, the findings imply 
that these features could serve as complementary indicators for 
implementing multivariate analysis or as a basis for the development 
of automatic classifiers based on machine learning techniques.

3.4 Visualizations generated with the 
movement data

Visualizations were generated for the resting tremor data (exercise 1) 
and the pronation and supination movements data (exercise 6). These 
data were chosen because they presented the highest Pearson correlations 
with the clinical evaluation in the previous subsection. Figure 6 shows 
scatter plots of the two components obtained from the data of resting 
tremor, and pronation and supination movements. In Figure 6A, the 
tremor rating performed according to Section 3.17 of the MDS-UPDRS 
scale was used as the mapping variable. In Figure 6A only data from the 
Supervised group were used corresponding to 46 single trials from 6 
subjects with PD. Moreover, in Figure  6B, the bradykinesia rating 
performed according to Section 3.6 of the MDS-UPDRS scale was used 
as the mapping variable. In this visualization data from the Supervised 
and HC groups were used that correspond to 102 single trials from 13 
subjects (6 PD and 7 HC).

Figure 6A shows three clusters corresponding to the MDS-UPDRS 
scoring with a slight degree of overlap. These overlaps are expected, as 
the severity of symptoms is continuous, rather than the discrete 
scoring system proposed on the MDS-UPDRS scale (49). Figure 6B 
shows two clusters of data belonging to healthy control patients 
(bradykinesia: 0) and patients with PD (bradykinesia: 1–4). However, 
a high overlap between MDS-UPDRS scores is identified.

Overall results of the visualizations generated using data from 
resting tremor and supination movements suggest the feasibility of 
implementing automatic classifiers. Moreover, the visualization shown 
in Figure 6B suggests that it is viable to implement automatic classifiers 
for discrimination between healthy subjects and PD patients. However, 
more data should be needed to determine whether it is feasible to 
detect different degrees of bradykinesia using the proposed framework.

4 Discussion

4.1 Main results

The results indicate that the proposed framework based on the 
execution of standardized exercises monitored using off-the-shelf devices 
can provide useful data to derive digital indicators to monitor motor 

TABLE 7 Results of correlations for the evaluation of bradykinesia and 
resting tremors.

Feature

Resting tremor 
(Evaluated 

using MDS-
UPDRS 3.17)

Pronation and 
supination 

(Evaluated using 
MDS-UPDRS 3.6)

r (p value) r (p value)

Standard deviation (Time) 0.772 (p < 0.001) −0.515 (p < 0.001)

Mean (Time) 0.201 (p = 0.18) −0.005 (p = 0.97)

Median (Time) −0.372 (p = 0.01) −0.197 (p = 0.19)

Percentile 25 (Time) −0.792 (p < 0.001) 0.461 (p = 0.001)

Percentile 75 (Time) 0.804 (p < 0.001) −0.512 (p < 0.001)

Skewness (Time) 0.197 (p = 0.19) −0.002 (p = 0.99)

Min (Time) 0.644 (p < 0.001) −0.374 (p = 0.01)

Max (Time) −0.424 (p = 0.003) 0.450 (p = 0.002)

Freeze band 0.653 (p < 0.001) −0.388 (p = 0.008)

Tremor band 4–6 0.616 (p < 0.001) −0.315 (p = 0.03)

Tremor band 3–8 0.653 (p < 0.001) −0.388 (p = 0.008)

Bradykinesia and dyskinesia 0.205 (p = 0.17) −0.622 (p < 0.001)

Gait band 0.230 (p = 0.12) −0.620 (p < 0.001)

Dyskinesia band 1–4 0.655 (p < 0.001) −0.662 (p < 0.001)

Power band 0–20 0.648 (p < 0.001) −0.507 (p < 0.001)

FIGURE 6

Scatter plots with the data obtained with Monipar: (A) Scatter plot of resting tremor data using the MDS-UPDRS 3.17 rating as mapping variable; 
(B) Scatter plot using data of pronation and supination movements using the MDS-UPDRS 3.6 rating as mapping variable.
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symptoms in the upper extremities. In particular, data collected from 
exercises used to assess tremors and bradykinesia allowed the extraction 
of indicators that show high correlations with clinical evaluation. 
Although indicators extracted from exercises such as gait, finger tapping, 
and hand movements (i.e., open and close hands), presented weak and 
moderate correlations, which may be attributed to the location of the 
sensors on the wrist that difficult the acquisition of specific movement 
patterns, for example, those mainly produced for the fingers or those 
produced when opening and closing the palms of the hands.

Along with these results, the data collected during the 
experimental stage presented different percentages of data loss 
depending on the experimental group. In specific, the remote group 
presents the higher data loss rate, ranging from 15 to 30%, while the 
supervised group and the HC (both performed in a completely 
supervised setting) do not show any data lost. Despite this behavior, 
the null lost rate in the Supervised and HC group was also influenced 
by the implementation of security actions, such as redundant data 
saving in both devices (i.e., SP and SW). Furthermore, guidance in the 
performance of standardized exercises, through images and voice 
prompts, seems to be a feasible method to ease the implementation of 
movement data collection protocols performed remotely.

The overall results suggest that consumer SW in conjunction with 
SPs can be used as an economic and ergonomic solution to acquire useful 
data to monitor bradykinesia and resting tremors using two specific tasks 
proposed in the MDS-UPDRS scale. Despite these results, the remaining 
proposed exercises exhibit moderate (e.g., postural tremor and gait) and 
weak (e.g., finger tapping and hand movements) correlations with the 
clinical assessment. This situation highlights the need to develop novel 
data collection methodologies and data processing strategies to enable 
remote monitoring of relevant symptoms such as gait, stiffness, and 
postural stability. Specifically, to improve gait and sit-to-stand assessment, 
the results suggest the importance of incorporating complementary 
sensors strategically positioned on the body parts such as the waist or 
legs. In addition, specific activities, such as finger tapping, may require 
the use of specific sensors to provide a more accurate representation of 
specific movements that are considered in the clinical evaluation.

4.2 Comparison with previous work

This study provides evidence of the feasibility of off-the-shelf SW 
and SP to provide a cost-effective, convenient, and unobtrusive solution 
for data collection aimed at monitoring cardinal motor symptoms such 
as tremors and bradykinesia. These findings complement the results 
reported in the related literature in which the use of commodity SW (24, 
25), research-grade wrist devices (21, 22), and SP as part of multimodal 
systems (26, 29) have reported feasible solutions for collecting data to 
monitor motor aspects in laboratory, in-clinic and unsupervised settings.

Furthermore, the correlation analysis based on data collected by 
Monipar and the clinical assessment reveals moderate to strong 
correlation; in specific, higher correlations were identified using data 
from resting times and pronation and supination movements. These 
findings suggest that an accurate selection of specific and representative 
tasks can be the basis for the development of abbreviated and robust 
motor monitoring protocols aimed at improving patient adherence, 
such as the one proposed in (22, 24), where wrist rotation movements 
and arms resting captured with SW were used to detect short-term 
motor fluctuations and long-term responses to therapies. In specific, 

the results reported in (22) using a commercial SW (Verily Study 
Watch) present a similar correlation with the MDS-UPDRS Part III 
ratings to those obtained in this study (i.e., Spearman rank correlation 
for rest tremor ρ = 0.70; bradykinesia ρ = −0.62).

Additionally, this study shows the potential of off-the-shelf SW for 
the acquisition of movement data in patients in the early stages of PD 
(H&Y ≤ 2.5), where the presence of motor manifestations is generally 
mild and, therefore, an accurate monitoring of digital variables such 
as the frequency and amplitude of tremors can require a high sensor 
sensitivity (50, 51).

Finally, the visualizations generated using the data collected by 
Monipar show the potential of these data for the development of 
different algorithms that can be  used to monitor tremors or 
bradykinesia. Examples of these applications were described in 
previous studies using the same database (34, 52).

4.3 Limitations

This study has some limitations that provide directions for future 
research. These limitations include the small sample size of healthy 
controls compared to participants with PD (21 PD and 7 HC). Also, 
the fact that this study considers only PD subjects in the early stages 
of the disease, therefore conducting a larger-scale longitudinal data 
collection may provide a better representation of the broad spectrum 
of motor symptoms and manifestations. Moreover, conducting 
larger-scale experiments can allow the evaluation of the cost-
effectiveness and scalability of these technologies to support their 
adoption in clinical management (14).

Additionally, other relevant cardinal motor symptoms such as 
rigidity and postural instability were not assessed in this study due to 
the inherent difficulty in monitoring this symptom using a single 
accelerometer. However, the inclusion of specific task and 
complementary sensors can support the development of monitoring 
solutions to assess multiple motor manifestations.

Finally, this study focused only on evaluating the ability of the 
Monipar tool to acquire data intended for the assessment of motor 
competence. Including other modules to assess non-motor symptoms 
can contribute to providing a broader overview of the health state of 
a PD subject.

5 Conclusion

The implementation of the proposed framework to monitor 
motor symptoms has generated a database that presents a high 
capability for the detection of specific motor symptoms such as resting 
tremors and bradykinesia. This framework was implemented through 
the development of an ad-hoc tool named Monipar that uses 
commodity SW for the acquisition of motion signals during the 
execution of standardized exercises.

During the data collection stage, the use of Monipar simplified data 
collection tasks and the implementation of experimental protocols such 
as the one proposed in this study, which was based on the performance 
of selected MDS-UPDRS exercises. The use of guides to perform the 
set of exercises supported by a graphical interface with animated 
images and voice instructions has shown a feasible method to facilitate 
the understanding of the assigned motor tasks and improve usability.
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The correlation analysis performed using the data collected 
by Monipar shows moderate to strong correlations between 
several indicators and two specific MDS-UPDRS exercises 
designed to evaluate resting tremors and bradykinesia in the 
upper extremities. These correlations revealed the most 
representative features for the analysis of specific symptoms such 
as tremor and bradykinesia. Additionally, visualizations created 
using the t-SNE method and tremor and bradykinesia show the 
generation of clusters with a small (yet expected) amount of 
overlap between the MDS-UPDRS scores.

Overall results of this study suggest that Monipar can be used as 
a complementary tool for data collection and follow-up of specific 
motor disorders in PD, at least in early-stage patients, providing a 
feasible and cost-effective solution for remote and continuous 
monitoring of the evolution of cardinal motor symptoms. In future 
applications, the information generated by this kind of monitoring 
system can be  used to improve disease management, support 
decision-making, and become part of integrated telemedicine and 
digital health systems. Future work should address the development 
of novel algorithms and feature extraction strategies to develop 
robust methods to monitor specific motor manifestations. 
Furthermore, standardization of data collection methodologies is 
important to facilitate the comparability and integration of digital 
outcomes to provide a comprehensive overview of the disease to 
allow better clinical care, assessment, and monitoring of PD 
according to the roadmaps proposed in (14, 30).
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Exergames as a rehabilitation
tool to enhance the upper limbs
functionality and performance in
chronic stroke survivors: a
preliminary study

Luca Vismara1†, Claudia Ferraris2*†, Gianluca Amprimo2,3,

Giuseppe Pettiti2, Francesca Bu�one4,5,

Andrea Gianmaria Tarantino4, Alessandro Mauro1,6 and

Lorenzo Priano1,6

1Division of Neurology and Neurorehabilitation, Istituto Auxologico Italiano IRCCS, S. Giuseppe

Hospital, Piancavallo, Italy, 2Institute of Electronics, Information Engineering and Telecommunication,

National Research Council, Turin, Italy, 3Department of Control and Computer Engineering,

Politecnico di Torino, Turin, Italy, 4Division of Paediatric, Manima Non-Profit Organization Social

Assistance and Healthcare, Milan, Italy, 5Principles and Practice of Clinical Research, Harvard T.H. Chan

School of Public Health–ECPE, Boston, MA, United States, 6Department of Neurosciences “Rita Levi

Montalcini”, University of Turin, Turin, Italy

Introduction: Post-stroke hemiplegia commonly occurs in stroke survivors,

negatively impacting the quality of life. Despite the benefits of initial specific post-

acute treatments at the hospitals, motor functions, and physical mobility need to

be constantly stimulated to avoid regression and subsequent hospitalizations for

further rehabilitation treatments.

Method: This preliminary study proposes using gamified tasks in a virtual

environment to stimulate and maintain upper limb mobility through a single

RGB-D camera-based vision system (using Microsoft Azure Kinect DK). This

solution is suitable for easy deployment and use in home environments. A cohort

of 10 post-stroke subjects attended a 2-week gaming protocol consisting of

Lateral Weightlifting (LWL) and Frontal Weightlifting (FWL) gamified tasks and gait

as the instrumental evaluation task.

Results and discussion: Despite its short duration, there were statistically

significant results (p < 0.05) between the baseline (T0) and the end of the

protocol (TF) for Berg Balance Scale and Time Up-and-Go (9.8 and −12.3%,

respectively). LWL and FWL showed significant results for unilateral executions:

rate in FWL had an overall improvement of 38.5% (p < 0.001) and 34.9% (p <

0.01) for the paretic and non-paretic arm, respectively; similarly, rate in LWL

improved by 19.9% (p < 0.05) for the paretic arm and 29.9% (p < 0.01) for

non-paretic arm. Instead, bilateral executions had significant results for rate

and speed: considering FWL, there was an improvement in rate with p <

0.01 (31.7% for paretic arm and 37.4% for non-paretic arm), whereas speed

improved by 31.2% (p < 0.05) and 41.7% (p < 0.001) for the paretic and non-

paretic arm, respectively; likewise, LWL showed improvement in rate with p

< 0.001 (29.0% for paretic arm and 27.8% for non-paretic arm) and in speed

with 23.6% (p < 0.05) and 23.5% (p < 0.01) for the paretic and non-paretic

arms, respectively. No significant results were recorded for gait task, although

an overall good improvement was detected for arm swing asymmetry (−22.6%).
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Hence, this study suggests the potential benefits of continuous stimulation of

upper limb function through gamified exercises and performance monitoring

over medium-long periods in the home environment, thus facilitating the

patient’s general mobility in daily activities.

KEYWORDS

stroke, rehabilitation, exergames, RGB-D camera, upper limbmobility, gait analysis, arm

swing asymmetry

1 Introduction

Stroke is a clinical syndrome characterized by acute loss of

focal brain function, with symptoms lasting longer than 24 h or

bearing to death, caused by reduced or interrupted blood supply to

a brain area (ischemic stroke) or bleeding inside brain parenchyma

(hemorrhagic stroke). Despite advances in wellness, prevention,

and treatment, there is an increasing incidence of stroke events

in the global population, as reported by several global reports

(1, 2). In addition to well-known risk factors, aging is one of

the more relevant non-modifiable conditions: reports indicate that

incidence doubles with age (3). The consequences of the acute

event are the leading causes of various functional deficits, both

in the physical and cognitive domains, resulting in a significant

long-term burden on healthcare systems (4) and poor quality

of life for stroke survivors (5). Indeed, stroke survivors exhibit

typical motor disabilities that limit their overall mobility, directly

impacting activities of daily living and active social participation

(6). Specifically, hemiparesis of the contralateral upper limb is

one of the most disabling manifestations: this impairment affects

more than 80% of stroke survivors, causing an acute or chronic

limitation of mobility, control, and coordination in the upper limbs

that hinders common daily actions (e.g., reaching and picking up

objects) (7). Moreover, it has been shown that the upper limbs

influence gait due to the altered coordination and limited stability,

being an important aspect that prevents the achievement of a

normal walking speed (8).

After the acute event, specific rehabilitation protocols are

promptly activated to restore lost functions, activate compensatory

strategies, and improve patients’ independence in daily life. Some

rehabilitative therapies focus on gait, posture, and balance to

reduce the risk of falls and improve patient safety (9–11). Focusing

on the upper limbs, several studies pointed out how therapies

based on physical exercises play a crucial role after stroke: ad-

hoc strategies are commonly established by varying the duration,

workload, and frequency according to the patient’s condition and

implementing dedicated training sessions based on goal-, task-, or

repetition-oriented approaches (6). For example, bilateral training

(i.e., exercises that stress both sides concurrently) is a recent

strategy to improve motor coordination that is based on well-

established knowledge. Indeed, with this approach, the non-paretic

arm can stimulate the motor function of the paretic arm when

simultaneous movements are performed (12).

Recently, training and rehabilitation of the upper limb through

technological approaches have gained increasing interest, and

various solutions have been proposed to address the severity of

motor impairment in post-stroke conditions. The most widely

adopted technological solutions mainly involve assistive devices

(13) and robots (14, 15) exploit for the most severe conditions.

Several innovative methodologies for less severe conditions include

virtual reality (16, 17); serious games, exergames, and gamification

techniques (14, 18); and motion tracking using vision-based

systems (19–23).

In this context, we present a solution for proposing and

monitoring physical activities based on gamified tasks and exercises

suitable for domestic use. The primary goal is to solicit upper limb

mobility through gamified tasks promoting the improvement or

maintenance of upper limb motor functions, including range of

motion, motor control, and coordination. The gamified tasks are

offered in two modes, unilateral and bilateral execution, and can be

appropriately configured for game difficulty according to subjects’

motor conditions. One of the platforms implemented during the

REHOME project (24) was used for the study, specifically the

Motor Rehabilitation and Exergames platform (MREP) (25).MREP

leverages a single RGB-Depth camera (specifically, Microsoft Azure

Kinect DK) and its innovative body tracking algorithm that

captures body movements in real-time through a deep learning

approach. Several works have recently analyzed the performance

of the device compared with gold-standard motion capture

systems (MOCAP), verifying its higher accuracy compared with

predecessors and other optical sensors (26–28). Other studies have

also analyzed the performance of the new body-tracking algorithm,

verifying its accuracy, robustness, and reliability in capturing 3D

movements and poses (29–31), including the analysis of the upper

limb mobility (32–34). The good agreement with MOCAPs has

led to using Azure Kinect in preliminary clinical studies and

rehabilitation protocols (35–38). MREP offers various exercises

(grouped into assessment tasks, gamified tasks, and rehabilitative

exergames) to automatically assess upper and lower limb motor

impairment related to neurological disorders. However, for the

purposes of this preliminary study, we included only two of the

available gamified tasks and one of the assessment tasks (i.e.,

walking) in the experimental protocol since we intended to focus

only on upper limb stimulation using gamified tasks to evaluate the

potential benefits on arm swing during walking on stroke survivors,

as previously done on subjects with Parkinson’s disease (39). The

results obtained on the cohort of stroke survivors highlight the

overall improvement in upper limb mobility for both the paretic

and non-paretic arms. In particular, substantial improvement in

speed, number of movements per minute, coordination metrics,
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and reduction of asymmetry in arm swing during walking was

observed, thus confirming the initial hypothesis of the potential

benefits of physical activities using gamified tasks. In addition, an

implicit adaptation of the performance of the non-paretic arm to

the paretic armwas also observed, as in (6). It is relevant to note that

these findings agree with the overall clinical improvement (scales

and tests) assessed at the end of the experimental protocol, despite

the specific treatment response shown by each participant. Hence,

this preliminary study aimed to evaluate whether a limited number

of training sessions (precisely six) with exergames could, however,

contribute to improving the functionality and performance of the

upper limbs in post-stroke patients over a relatively short period

(2 weeks): the positive and promising results obtained from the

experimental study seem to confirm this trend.

2 Materials and methods

2.1 The experimental protocol

The experimental protocol was organized in assessment and

training sessions. An initial clinical assessment session (T0) was

fixed to allow clinicians to assess the general motor conditions

of each participant before starting the experimental protocol.

Traditional scales and tests commonly used in clinical practice were

selected to evaluate several motor functions: the Berg Balance Scale

(BBS) (40), Trunk Impairment Test scale (TIS) (41), Time Up-and-

Go test (TUG) (42), and shoulder joint mobility assessment (43).

All clinical tests were administered by qualified and experienced

physical therapists, following the same standardized procedure and

under the same environmental conditions for all the participants

to avoid bias due to the subjectivity of the assessment as much

as possible. The instrumental gait motor task (G) through MREP

was included in the same session to collect gait patterns and

information from each participant before starting the sessions of

gamified training. A final clinical and instrumental assessment

session (TF) was also planned at the end of the 2-week experimental

protocol (after all the gamified sessions) to compare the final motor

condition to the initial one. Between T0 and TF, the training

sessions using the gamified tasks offered by MREP were organized

over 2 weeks. In particular, three sessions per week were planned,

collecting six training sessions with gamified tasks using MREP.

A group of 11 chronic stroke subjects was recruited from

the Division of Neurology and Neurorehabilitation (San Giuseppe

Hospital, Istituto Auxologico Italiano, Piancavallo, Verbania,

Italy), after neurological examination, according to the following

inclusion criteria: mild or moderate hemiparesis with disability

on the upper and lower limbs (National Institutes of Health

Stroke Scale—NIHSS ≤ 10, modified Rankin Scale—mRS ≤ 3).

Functional status of upper and lower limbs was also assessed

considering balance status (BBS and TIS), functional ambulation

(TUG), and range of mobility of the paretic shoulder (standard

articular goniometer). All participants were able to walk, with or

without aids, at least for short periods. There were no exclusion

criteria for age, sex, side, dominance, or therapy: only cognitive

impairment assessed by Mini-Mental State Examination (MMSE<

26) was considered for exclusion. The study protocol was approved

by the Ethics Committee of the Istituto Auxologico Italiano IRCCS

(Authorization n. 2020_02_18_01): each subject was informed

about the instrumentation and experimental protocol and then

provided written informed consent to participate in the study.

All participants performed the experimental protocol (clinical,

instrumental, and training sessions) in a supervised scenario, under

the same environmental conditions, and under the supervision

of the clinical staff. For this period, the activities included in

the experimental protocol were performed in place of traditional

rehabilitation exercises to avoid confounding variables.

2.2 The vision-based systems: features and
tasks

As mentioned above, the MREP (25) subsystem offers

numerous tasks and exergames suitable for people with

neurological disorders: among them, only a specific subgroup was

considered based on the primary purposes of the study, namely,

to investigate the effects of gamified tasks on upper limb mobility

in post-stroke subjects. The MREP consists of a vision-based

system that uses a single RGB-D camera (i.e., Azure Kinect) as a

non-contact sensor to collect 3D body movements in real-time.1

The system includes a body tracking algorithm that exploits deep

learning approaches to reconstruct a 3D body skeletal model

with segments and joints (44). To make interaction with the

system simple and autonomous, a dedicated user interface (UI)

was designed to support the user during task execution through

text and audio messages. However, if necessary, the UI allows

a supervisor to intervene by starting, stopping, and skipping

the proposed exercises (45). A ZOTAC© ZBOX EN52060-V (16

GB RAM, NVIDIA GeForce RTX 2060 6GB, 9th generation 2.4

GHz quad-core processor) was used to run the MREP software

component and manage the camera data streams. The Azure

Kinect sensor was set to run at 30 fps (color and depth streams),

at 1,080 p resolution (depth stream), and in Narrow Field of View

(NFV) mode to detect movements from a greater distance and with

a wider frontal viewing angle to prioritize tracking accuracy (27).

Regarding the experimental protocol, one instrumental

evaluation task (gait) and two gamified tasks in a virtual

environment were considered. In particular, the gait task was

included to evaluate the potential effect of gamified tasks on

arm swing ability. The gait task (G) was included to estimate

subjects’ ability in rhythmic arm swing and its alteration

(including asymmetry) during walking, as well as some traditional

spatiotemporal features of the walking pattern and trunk stability

under dynamic conditions. Specifically, subjects had to complete a

6-meter-long path in front of the Azure Kinect sensor according to

their best ability. Despite the short length, this path still allows the

estimation of relevant gait parameters, as shown in (46).

Concerning the gamified tasks, Lateral Weightlifting (LWL)

and Frontal Weightlifting (FWL) games have been included

(45). These tasks propose a gamified version (i.e., in a virtual

environment) of exercises commonly proposed in traditional

physical rehabilitation sessions to assess, train, and improve

1 Azure Kinect DK. Available from: https://azure.microsoft.com/it-it/

products/kinect-dk/ (accessed November 10, 2023).
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FIGURE 1

User interface for gamified tasks.

FIGURE 2

Examples of bilateral execution with skeletal model joints involved in the analysis of FWL (A) and LWL (B): pelvis (magenta), neck (cyan), clavicles

(orange), elbows (blue), wrists (green).

upper limb mobility, motor control, and coordination. A virtual

gymnasium scenario was designed to increase subjects’ engagement

during exercise execution, with an avatar in the scene (i.e., arm

lifting a gym weight) that reproduces the actual arm movements.

Subjects had to perform, at 2.5–3 meters from the Azure

Kinect sensor, a predefined number of lateral arm adduction-

abduction movements (LWL) or frontal up-down movements

(FWL), stressing range of motion and speed, from which some

relevant mobility parameters were estimated. To stress motor

control and coordination, the game exercises include unilateral

(i.e., single-arm movements) and bilateral (i.e., movements of both

arms simultaneously) executions. In addition, exercises can be

performed in a standing or sitting position to address subjects’

instability, ensure safety, and avoid the risk of falls. Finally, the

exercises can be customized by setting the number of movements

or the minimum arm angle threshold according to the subject’s

condition. Figure 1 shows a screenshot of the MREP user interface,

including the description of the principal scene subareas.

The choice to include both frontal and lateral movements

is because stroke survivors commonly manifest more difficulty
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in lateral movements (47, 48): we, therefore, expected to

detect differences in the execution, control, and coordination of

movements in the two proposed directions. In addition, several

studies have shown that simultaneous movements stimulate the

reactivation of areas in the partially damaged hemisphere, leading

to improved paretic limb functions (49).

2.3 Estimated parameters for upper limb
mobility and walking ability

Starting from the collected 3D trajectories of segments and

joints of the skeletal model, task-specific functional parameters

were estimated for G, LWL, and FWL using MATLAB R© functions

and custom-written scripts.

Whole-body model acquisition from MREP allows the G task

to be analyzed from three subdomains simultaneously: traditional

spatiotemporal features, parameters related to lateral trunk sway

(i.e., dynamic instability), and arm swing features (including

asymmetry). The same approach to data analysis and feature

extraction as in Ferraris et al. and Cimolin et al. (39, 46) was

taken: forward and backward arm trajectories were considered

to focus on the properties of arm swing, in addition to gait

parameters and body stability. As noted above, instrumental gait

was proposed before (T0) and after the experimental protocol

(TF) to compare performance and detect differences in the three

subdomains, possibly confirmed by clinical evaluation (T0 vs. TF).

To analyze LWL and FWL, some joints of the skeletal model

(mainly related to the upper body) were considered to estimate

angular trajectories. The joints are intended to be connected in

pairs to form relevant body segments for performance analysis.

The body segments involved in the analysis are as follows: upper

limb segment (wrist to clavicle joints); trunk segment (neck to

pelvis joints); arm segment (clavicle to elbow joints); forearm

segment (elbow to wrist joints). These segments defined two

angular trajectories: the UPPER-LIMB-ANGLE (between upper

limb and trunk segments) and the ELBOW-ANGLE (between

arm and forearm segments). Since gamified tasks (LWL and

FWL) required movements in different planes, the UPPER-LIMB-

ANGLE was estimated with respect to the sagittal axis for the

LWL (adduction-abduction movement) and to the transversal axis

for the FWL (up-down movement). Figure 2 shows the joints

involved in the analysis during the bilateral execution of the

gamified tasks.

From the UPPER-LIMB-ANGLE trajectory, other secondary

parameters such as speed and rate (i.e., number of movements

per minute) were estimated, in addition to angle measurements. It

should be noted that the parameters were estimated for both the

paretic and non-paretic sides and for both unilateral and bilateral

execution. Table 1 shows the list of the functional parameters of

this study.

In addition to the more traditional measurements

(angles, speeds, and related measures), three metrics were

considered for a more in-depth view of arm mobility,

especially during simultaneous movements: ARMSYMG

for the gait task, SYNC and SIMIL for the LWL and FWL

tasks. ARMSYMG is an index calculated as in (39) to assess

TABLE 1 List of parameters and metrics estimated for the study.

Exercise Parameter
name

Meaning Unitb

Gait (G) SPEEDG Walking speed m/s

STEPLaG Step length m

STANCEaG Duration of stance phase % of gait

cycle

TSWAYG Medio-lateral sway of trunk mm

ARMSWa
G Maximum arm swing angle deg

ARMSYMG Arm swing symmetry –

Lateral

movements

(LWL)

UPANGa
LWL Mean of maximum

abduction-adduction

movements angle

deg

ELANGa
LWL Mean elbow angle deg

SPEEDa
LWL Mean speed of lateral

movements

deg/s

RATEaLWL Lateral movements per minute mov/min

SYNCLWL Synchronicity index (bilateral

execution only)

–

SIMILLWL Similarity index (bilateral

execution only)

–

Frontal

movements

(FWL)

UPANGa
FWL Mean of maximum up-down

movements angle

deg

ELANGa
FWL Mean elbow extension angle deg

SPEEDa
FWL Mean speed of frontal

movements

deg/s

RATEaFWL Frontal movements per

minute

mov/min

SYNCFWL Synchronicity index (bilateral

execution only)

–

SIMILFWL Similarity index (bilateral

execution only)

–

aParameters estimated separately for the paretic and the non-paretic side.
bSymbol—indicates numerical parameter without unit.

arm swing asymmetry during gait: more severe asymmetry

(considering maximum forward and backward arm angles)

corresponds to more negative ARMSYMG values. Therefore, a

lower negative index value indicates an improvement in arm

swing asymmetry.

In order to emphasize differences between upper

limb trajectories during simultaneous movements (i.e.,

bilateral execution), SYNC and SIMIL metrics were

included to provide a summary measure devoted explicitly

to the temporal and spatial symmetry of bilateral

movements, thus gaining insights into motor control

and coordination.

In particular, the SYNC metric (45) refers to the

temporal synchronization of simultaneous arm movements

by quantifying the time lag that occurs between the upper

limb trajectories above and below the preset minimum

angular threshold and the consequent correspondence

in bilateral movement cycles: values closer to zero are
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FIGURE 3

Examples of shape similarity during gamified tasks: good shape similarity in FWL (A), poor shape similarity in FWL (B), good shape similarity in LWL (C),

and poor shape similarity in LWL (D).

associated with good temporal synchronization during

bilateral movements; values farther from zero indicate

unsynchronized movements. Therefore, an improvement in

temporal coordination is indicated by decreasing values of

this metric.

The SIMIL metric evaluates the similarity between the 2D

shapes drawn by the WRIST joint trajectories with respect to a

common reference point (i.e., the NECK joint) in the two main

directions of motion (according to lateral and frontal movements).

To estimate the SIMIL metric, the MATLAB procrustes function

(with scaling parameter disabled) was used to obtain information

about the different characteristics of the paretic and non-paretic

arm trajectories during bilateral movements. The procrustes

function returns values close to zero for shapes with good

similarity and increasing values for shapes with poor similarity.

Examples of shapes drawn during bilateral execution are shown in

Figure 3.

As mentioned above, LWL and FWL tasks were proposed

during the six training sessions (R1-R6) of the 2-week experimental

protocol: parameters and metrics were estimated for each session.

In addition, to detect performance improvements and trends,

they were averaged and then compared for the first and the

second week.

2.4 Statistical analysis

Statistical analysis was performed using Jamovi (version 2.2.5),

an open-source modular platform for statistical computing (50),

considering a 95% significance level (p < 0.05) for statistical

tests. Considering the relatively small number of subjects and

sessions, we tested the normality distribution of the estimated

parameters through the Shapiro-Wilk test. Then, the distribution

of estimated features was compared using parametric or non-

parametric tests for paired samples to support our results with

statistical evidence. Since all the considered parameters and clinical

data showed normal distribution, data were provided as mean and

standard deviation, while parametric tests (t-test) were used for

statistical analysis.

3 Results

3.1 Clinical outcomes

A total of 11 post-stroke volunteers were deemed

eligible and included in this single cohort study; however,

one subject withdrew after the second gamified session
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TABLE 2 Participants’ characteristics: demographic and clinical data (T0).

Participants’ characteristics Value

Number (#) 10

Average age (years) 72.0± 10.5

Gender (#) 8 males/2 females

Years from acute event (years) 6.3± 5.1

Paretic side (#) 3 left/7 right

TABLE 3 Average and percentage improvement of clinical assessment (TF

vs. T0) over all participants.

Clinical
assessment

T0 TF TF vs. T0 (%)

Berg scale score (points) 36.6± 15.7 40.2± 15.9 +9.8%∗

TIS scale score (points) 11.0± 3.8 13.3± 4.3 +20.9%

TUG test (seconds) 28.4± 15.8 24.9± 15.4 −12.3%∗

Paretic shoulder mobility

(degree)

131.0± 31.8 146.0± 28.4 +11.5%

∗p < 0.05.

due to personal reasons not related to difficulties with

the experimental protocol, and thus was excluded from

the subsequent analysis. Table 2 shows the demographic

characteristics of the 10 participants who correctly completed

the experimental protocol.

All the participants were able to walk (during task G)

without assistive devices (such as tripods or canes), although

five of the 10 participants routinely used them. Hence, a

sitting position was preferred for the same subjects to ensure

safety during the gamified tasks. The instrumental and

training sessions were correctly completed by all subjects,

except one subject who was unable to perform bilateral

execution in most of the scheduled training sessions and one

subject who needed to be supported by the supervisor during

ambulation without assistive devices: the corresponding data

were then discarded, resulting in 54 trials included for the

analysis of LWL and FWL, and 18 trials included for the

gait analysis.

Data analysis revealed an overall improvement in motor

performance at the end of the experimental protocol (TF)

for all clinical metrics considered. Specifically, TIS and BERG

scores increased, as did paretic shoulder mobility angles, while

TUG time decreased: all these changes denote an average

improvement in patients’ performance in clinical assessment

of specific domains. However, only TUG and BERG show

a statistically significant difference (p < 0.05), while TIS

and paretic shoulder mobility are near significance (p <

0.06). The average improvement in clinical data and the

percentage change at the end of the experimental protocol are

shown in Table 3. These results suggest a trend of general

improvement in motor condition, although each participant

showed a different response to the protocol, as indicated by

Table 4.

TABLE 4 Percentage change in clinical assessment (TF vs. T0) of each

participant.

#IDa TIS
(%)b

TUG (%)b BERG (%)b Shoulder
mobility (%)b

#PT1 +38.5% −27.8% +10.0% –

#PT3 – – – –

#PT4 +77.8% −1.5% −16.7% +6.3%

#PT5 – −5.6% +16.7% +8.3%

#PT6 +26.7% +12.5% +1.9% –

#PT7 +33.3% −11.1% – +14.3%

#PT8 +66.7% −27.4% +52.0% +66.7%

#PT9 – −29.1% +3.6% –

#PT10 – −18.1% +21.6% +33.3%

#PT11 – −10.5% – +9.1%

a#PT2 was excluded from the analysis (withdrew after the second gamified session).
bSymbol—indicates no percentage change in clinical assessment.

TABLE 5 Mean values (with standard deviation) and percentage changes

of gait parameters (TF vs. T0) over all participants.

Parameter T0 TF TF vs. T0 (%)

STEPLG (m)a 0.36± 0.15 0.35± 0.13 −2.9%

SPEEDG (m/s) 0.50± 0.25 0.45± 0.23 −8.5%

STANCEG (% of

gait cycle)a
77.00± 12.10 76.62± 8.36 −0.4%

TSWAYG (mm) 108.00± 20.00 111.07± 36.54 +2.9%

ARMSWG (deg)a 40.63± 19.35 33.73± 20.93 −16.5%

ARMSYMG (-) −16.31± 13.70 −12.54± 9.76 −22.6%

aParameters estimated as mean value of the paretic and the non-paretic side.

3.2 Gait task: main results

This subsection is devoted to showing differences in the

intergroup walking ability at the end of the experimental protocol.

The average estimated gait parameters for T0 and TF (Table 1) and

their percentage changes are shown in Table 5.

As reported in Table 5, almost all parameters show a relatively

stable trend. Walking speed and step length show negligible

intergroup deterioration, as does dynamic stability (approximately

−0.05 m/s, −0.01m, and +4mm, respectively). In contrast, the

stance phase duration slightly decreased (i.e., improved) in the

gait cycle (−0.3%). Focusing on the arm swing, the maximum

angle (averaged over both arms) slightly deteriorated (about

−7.0 degrees). However, the most interesting result concerns the

asymmetry index: ARMSYMG shows a substantial reduction in its

negative value at TF, suggesting an improvement in arm swing

ability and motor coordination despite lower absolute arm angles.

However, the statistical analysis found no significant difference (p>

0.05) for all estimated gait parameters, including ARMSYMG: this

could be due to each subject’s different response to the protocol (as

occurs for clinical assessment) or the need for a longer protocol

duration to obtain statistical evidence of overall improvement in

fine-grained gait parameters.
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TABLE 6 Unilateral execution: trends of parameters for LWL and FWL (paretic arm and non-paretic arm) over all participants.

Exercise Parameter Week 1 Week 2 Week 2 vs. week 1 (%)

Frontal movements (FWL) Paretic arm

UPANGFWL (deg) 103.03± 22.47 103.00± 20.38 −0.1%

ELANGFWL (deg) 123.18± 17.42 122.57± 17.78 −0.5%

SPEEDFWL (deg/s) 62.04± 24.61 79.16± 36.20 +27.6%

RATEFWL (mov/min) 16.14± 5.77 22.35± 6.12 +38.5% (∗∗∗)

Non-paretic arm

UPANGFWL (deg) 124.60± 24.60 125.84± 26.86 +1.0%

ELANGFWL (deg) 138.50± 10.95 138.14± 11.82 −0.3%

SPEEDFWL (deg/s) 78.90± 31.33 89.41± 37.67 +13.4%

RATEFWL (mov/min) 15.97± 4.33 21.54± 4.83 +34.9% (∗∗)

Lateral movements (LWL) Paretic arm

UPANGLWL (deg) 91.45± 20.21 93.04± 23.85 +1.7%

ELANGLWL (deg) 125.87± 18.73 128.61± 15.33 +2.2%

SPEEDLWL (deg/s) 61.71± 25.24 72.88± 40.93 +18.1%

RATELWL (mov/min) 18.88± 6.38 22.64± 6.89 +19.9% (∗)

Non-paretic arm

UPANGLWL (deg) 117.41± 21.62 119.60± 28.53 +1.9%

ELANGLWL (deg) 145.81± 6.34 142.39± 9.88 −2.4%

SPEEDLWL (deg/s) 79.82± 20.12 90.08± 45.98 +12.8%

RATELWL (mov/min) 19.38± 4.40 25.18± 5.47 +29.9% (∗∗)

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

3.3 LWL and FWL tasks: main results of
unilateral execution

This subsection is devoted to showing intergroup differences

and trends for the LWL and FWL tasks by comparing the average

parameters (Table 1) estimated for the first and second weeks of the

experimental protocol. The estimated parameters for the 2 weeks

and the percentage changes for the paretic and non-paretic sides

are shown in Table 6.

First, the gamified tasks highlight a significant difference

between paretic and non-paretic arm performance, as expected

(lower performance for the paretic arm). More specifically, while

the angular parameters (i.e., UPPER-LIMB-ANGLE and ELBOW-

ANGLE) show irrelevant changes in the second week (p >

0.05), an improvement in speed and rate is substantial for both

tasks as confirmed by the statistical analysis for rate (p < 0.05).

Other insights emerge from the analysis. Frontal movements

(UPANGFWL) seem to promote higher upper limb angles than

lateral movements (UPANGLWL), confirming the greater difficulty

of post-stroke subjects in controlling lateral movements. In

contrast, lateral movements seem to favor the proper extension of

the upper limbs during the exercises, as indicated by elbow angles

(ELANGLWL > ELANGFWL). As concluding remark, the frontal

movements seem to promote more noticeable improvements

on the paretic limb compared to lateral movements, although

significant changes in speed and rate have still been observed

in both.

3.4 LWL and FWL tasks: main results of
bilateral execution

This subsection aims to show intergroup differences and

trends for the bilateral execution of LWL and FWL tasks

by comparing the average parameters (Table 1) estimated for

the first and second weeks of the experimental protocol. The

estimated parameters for the 2 weeks and the percentage

changes for the paretic and non-paretic sides are shown in

Table 7.

As with the unilateral execution, the bilateral performance

in LWL and FWL confirms the previous results, with negligible

differences for angular measures (p > 0.05) but substantial

improvement in speed and rate (p < 0.05). The detected

improvement is a very relevant result, as it was obtained during

a more complex exercise requiring more motor control and

coordination. Other insights emerge from the analysis of the

SYNC and SIMIL metrics (Table 8). Regarding the FWL, the time

synchronization (SYNCFWL) of both arms improves significantly

in the second week (p < 0.05), while the shape similarity shows

no relevant changes. In contrast, LWL shows a minimal but

not significant deterioration in both metrics. It is important to

note that the SYNC metric is relatively low (<0.4) for both

tasks, denoting good movement synchronization in time for the

group of participants. The value is also low for the SIMIL metric

in the FWL task. At the same time, it is slightly higher for

the LWL task, confirming that post-stroke subjects have more

Frontiers inNeurology 08 frontiersin.org76

https://doi.org/10.3389/fneur.2024.1347755
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Vismara et al. 10.3389/fneur.2024.1347755

TABLE 7 Bilateral execution: trends of parameters for LWL and FWL (paretic arm and non-paretic arm) over all participants.

Exercise Parameter Week 1 Week 2 Week 2 vs. week 1 (%)

Frontal movements (FWL) Paretic arm

UPANGFWL (deg) 105.08± 21.25 110.22± 23.84 +4.9%

ELANGFWL (deg) 128.57± 17.03 128.31± 16.37 −0.3%

SPEEDFWL (deg/s) 62.64± 29.11 82.19± 35.69 +31.2% (∗)

RATEFWL (mov/min) 15.50± 5.48 21.34± 6.56 +37.7% (∗∗)

Non-paretic arm

UPANGFWL (deg) 118.16± 23.78 119.36± 26.23 +1.0%

ELANGFWL (deg) 137.95± 14.51 135.23± 17.71 −2.0%

SPEEDFWL (deg/s) 61.46± 24.84 87.07± 28.15 +41.7% (∗∗)

RATEFWL (mov/min) 15.67± 5.48 21.53± 6.34 +37.4% (∗∗)

Lateral movements (LWL) Paretic arm

UPANGLWL (deg) 85.45± 22.66 82.06± 22.47 −4.0%

ELANGLWL (deg) 125.04± 18.54 129.13± 12.46 +3.3%

SPEEDLWL (deg/s) 50.83± 23.59 62.83± 28.58 +23.6% (∗)

RATELWL (mov/min) 17.53± 7.73 22.62± 6.68 +29.0% (∗∗∗)

Non-paretic arm

UPANGLWL (deg) 109.14± 15.69 106.56± 19.15 −2.4%

ELANGLWL (deg) 139.79± 6.05 140.92± 5.59 +0.8%

SPEEDLWL (deg/s) 68.86± 26.50 85.02± 29.98 +23.5% (∗∗)

RATELWL (mov/min) 17.90± 7.47 22.87± 6.83 +27.8% (∗∗∗)

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

TABLE 8 Bilateral execution: trends of mean metrics (with min-max range) for LWL and FWL over all participants.

Exercise Metric Week 1 Week 2 Week 2 vs. week 1 (%)

Frontal movements (FWL) SYNCFWL 0.27 (0.03–0.91) 0.14 (0.01–0.63) −49.2% (∗)

SIMILFWL 0.21 (0.01–0.96) 0.21 (0.01–1.05) −0.2%

Lateral movements (LWL) SYNCLWL 0.28 (0.03–1.13) 0.31 (0.02–0.96) +7.5%

SIMILLWL 0.98 (0.01–6.82) 1.03 (0.01–6.22) +4.6%

∗p < 0.05.

difficulty in spatial coordination of lateral movements (SIMILLWL

> SIMILFWL).

The last result comes from comparing upper limb performance

during unilateral and bilateral execution (Table 9). The analysis

shows that the maximum UPPER-LIMB-ANGLE (UPANGFWL

and UPANGLWL parameters) is lower during bilateral than

unilateral execution, except for frontal movements of the

paretic arm. The same is valid for rate parameters (RATEFWL

and RATELWL), where performance in bilateral execution is

always lower. This outcome suggests an implicit adaptation

of the non-paretic arm to the limited capability of the paretic

one in terms of movement amplitude and velocity. However,

the most significant differences are found during lateral

movements regarding maximum lift angle and frequency

of movements.

4 Discussion

This preliminary study assessed the exergames as an easy-to-

use and engaging tool to enhance upper limb mobility in post-

stroke subjects in a 2-week experimental protocol that included

six training sessions. The results showed an overall improvement

for several motor functions measured with scales and tests, such

as shoulder joint mobility, posture (TIS scale), balance (BERG

scale), and walking (TUG test). The results of the functional

parameters support these achievements; in fact, we had significant

improvements for both the frontal and lateral execution performed

unilaterally and bilaterally with an increase of speed and rate

(i.e., number of movements per minute) for both the paretic and

non-paretic side, suggesting that an extended treatment could

improve the upper limb mobility with positive influence also on
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TABLE 9 Comparison between unilateral (UNI) and bilateral (BI) execution for the upper limb angle and rate (number of movements per minute)

parameters over all participants.

Exercise Week UNI BI Di� (%) UNI BI Di� (%)

Frontal movements (FWL) UPANG (paretic) RATE (paretic)

1 103.03 105.08 +2.0% 16.14 15.50 −4.0%

2 103.00 110.22 +7.0% 22.35 21.34 −4.5%

UPANG (non paretic) RATE (non paretic)

1 124.60 118.16 −5.2% 15.97 15.67 −1.9%

2 125.84 119.36 −5.2% 21.54 21.53 −0.1%

UPANG (paretic) RATE (paretic)

Lateral movements (LWL) 1 91.45 85.45 −6.6%∗ 18.88 17.53 −7.2%∗

2 93.04 82.06 −11.8%∗ 22.64 22.62 −0.1%

UPANG (non paretic) RATE (non paretic)

1 117.41 109.14 −7.0%∗ 19.38 17.90 −7.6%

2 119.6 106.56 −10.9%∗ 25.18 22.87 −9.2%∗

∗p < 0.05.

trunk control and balance (51). Additionally, during the second

week, there was an improvement in the synchronization metric for

FWL, probably due to the neural plasticity process (52). However,

it did not occur for LWL, probably due to the more difficult

motor coordination during lateral execution. Then, the comparison

of unilateral and bilateral executions showed that the bilateral

execution had a smaller maximum angle for all the examined

conditions apart from the paretic arm in FWL, highlighting the

significant complexity characterizing the execution and control of

the simultaneous movements. Finally, gait remained substantially

stable, showing interesting changes only for the arm swing during

walking: the reduction of both the maximum swing angle and

the arm swing asymmetry suggests greater coordination in arm

swing movements despite the lower amplitude. Instead, the lack

of tangible improvement of the other gait parameters is justifiable

by their nature: they are all related to the lower limbs, while the

gamified tasks of this experimental protocol stimulate only the

upper limb mobility. Hence, ad-hoc gamified tasks for the trunk,

lower limbs, and balance should be created and tested as well.

Our preliminary results seem to confirm a positive trend for

all participants in upper limb motor performance, even in bilateral

execution, suggesting that prolonged treatment could produce

many benefits for upper limb control and coordination, with

consequent positive effects on overall motor condition and quality

of life: by stimulating the strength, neuromuscular aspects and both

paretic and non-paretic arms, the exergames improve the patients’

autonomy, allowing them to maintain the functionality of those

movements that confer independence, such as the personal hygiene.

The gamified tasks included frontal and lateral lifting

movements, joined with unilateral and bilateral execution, to

stimulate the upper limb motor function and mobility differently.

This choice additionally allowed the solicitation of both motor

control and coordination. Moreover, these gamified tasks also

solicit the cognitive aspect: as shown in this study, exergames do

not have a static difficulty. Instead, they allow the game level to

be changed according to the patient’s needs and characteristics:

this means game (i.e., task) difficulty can be reconfigured based

on the actual motor condition. If motor function improves,

the game task can be configured to a superior difficulty. In

contrast, difficulty can be reduced if the task is perceived

as too complicated for the patient’s status. Consequently, the

patients become the “players” of this individualized and constantly

stimulating rehabilitation therapy whose virtual environment and

playful real-world scenario make Exergames suitable and ideal

for the home setting: people with motor and cognitive deficits

related to neurological disorders could continue the rehabilitation

program at home, repeating the exercises not to forget the

previously re-learned tasks. From an economic point of view, this

home rehabilitation option would reduce healthcare costs and

provide a helpful rehabilitation strategy that is also suitable for

poor areas.

Specifically, post-stroke is one of the neurological impairments

that could benefit from this type of solution. Stroke survivors

promptly undergo in-hospital rehabilitation after the acute phase

to begin recovery of motor functions impaired by the event as

soon as possible. Despite this, most patients would need continuous

and frequent maintenance activities to avoid losing the functional

recovery achieved. However, this is not feasible in a hospital setting

and is cost-demanding in an outpatient setting. Telemonitoring

and telerehabilitation solutions could fill this gap, and exergames

could prove to be efficient in ensuring continuity of treatment,

facilitating the execution of specific physical exercises, stimulating

the achievement of new rehabilitation goals, and ensuring greater

adherence to treatment through a fun and engaging approach

between maintenance rehabilitation sessions. Furthermore, the 3D

body tracking system provides an easy-to-use and non-invasive way

to collect patientmobility and performance data, allowing extensive

monitoring, even during the off-period of annual rehabilitation

cycles, which is also suitable for home settings. Hence, with a

constant monitoring process, the scheduling of rehabilitation cycles

may be improved, thus becoming more cost-effective and tailored

to patients’ needs.
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This preliminary study is not without limitations. First, we

have a limited number of subjects and sessions performed to

draw generalized conclusions. It will be necessary to involve

more subjects and to consider a longer observation period

compatible with the duration of traditional rehabilitation protocols

to generalize and consolidate current results. Then, a comparison

with healthy subjects undergoing the same protocol based on

gamified tasks is currently lacking: a future study will be

organized to evaluate differences with a control group. In

addition, to evaluate the effectiveness of the proposed gaming

protocol, it will also be necessary to organize a dedicated and

more extensive clinical study comparing post-stroke subjects

undergoing only the gaming protocol and others undergoing

concurrent upper limb rehabilitation treatments, although this

study will necessarily require longer times to be completed.

However, it will be necessary to consider a more prolonged

double-blinded or cross-over study with larger sample for

comparing clinical efficacy of the game-based protocol. Finally,

as mentioned above, some instrumental measures showed an

improvement trend in line with the clinical evaluation at the

end of the gamified protocol (TF). Although clinical scales

potentially vulnerable to rater subjectivity were used, the clinical

evaluation was performed by qualified and experienced personnel,

following standardized procedures and under the same conditions

for all participants that should have mitigated the potential

bias in the results due to this factor. Nevertheless, further

studies will be necessary to consolidate what was observed in

this study.

In conclusion, the encouraging data obtained in this study

promotes the implementation of this technology, especially for

monitoring and training/maintenance of motor functions in the

domestic environment. Despite 2 weeks of training sessions

are few in terms of rehabilitation, the problem-solving and

visuospatial transformations typical of the gamified exercises

have demonstrated fascinating potential. By combining the

neurophysiological basis of rehabilitation in stroke patients with

the potential of technological solutions, the system we studied

may maintain, and perhaps improve, the gesture functionality

acquired with intensive rehabilitation. Moreover, the patient’s

remote monitoring, the activities of daily living maintenance,

and cognitive engagement may contribute to reducing the

costs of the National Health Service and promoting new

rehabilitation solutions in low-income countries. Notwithstanding

this, it will be necessary to extend the analysis to a larger

group of subjects, not necessarily post-stroke, with a more

extended study time to investigate the effectiveness of the

proposed solution.

As future developments, we will evaluate the possibility

of automatically configuring gamified tasks through artificial

intelligence (AI) models that weigh the subjects’ functional

capabilities and motor performance to adjust game levels

appropriately: on the one hand, AI models could contribute

to avoiding emotional stress (anxiety, distrust, demoralization),

but on the other, they could set a proper and optimized

challenging level for stimulating patients’ constant improvement.

In addition, we are also planning the integration of new

gamified tasks dedicated to hand dexterity to comprehensively

enhance and stimulate the motor functions related to the

upper limbs.
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Gait-modifying effects of 
augmented-reality cueing in 
people with Parkinson’s disease
Eva M. Hoogendoorn *, Daphne J. Geerse , Annejet T. van Dam , 
John F. Stins  and Melvyn Roerdink 

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije 
Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands

Introduction: External cueing can improve gait in people with Parkinson’s 
disease (PD), but there is a need for wearable, personalized and flexible cueing 
techniques that can exploit the power of action-relevant visual cues. Augmented 
Reality (AR) involving headsets or glasses represents a promising technology in 
those regards. This study examines the gait-modifying effects of real-world and 
AR cueing in people with PD.

Methods: 21 people with PD performed walking tasks augmented with either 
real-world or AR cues, imposing changes in gait speed, step length, crossing 
step length, and step height. Two different AR headsets, differing in AR field of 
view (AR-FOV) size, were used to evaluate potential AR-FOV-size effects on the 
gait-modifying effects of AR cues as well as on the head orientation required for 
interacting with them.

Results: Participants modified their gait speed, step length, and crossing step 
length significantly to changes in both real-world and AR cues, with step lengths 
also being statistically equivalent to those imposed. Due to technical issues, 
step-height modulation could not be analyzed. AR-FOV size had no significant 
effect on gait modifications, although small differences in head orientation were 
observed when interacting with nearby objects between AR headsets.

Conclusion: People with PD can modify their gait to AR cues as effectively as 
to real-world cues with state-of-the-art AR headsets, for which AR-FOV size is 
no longer a limiting factor. Future studies are warranted to explore the merit of 
a library of cue modalities and individually-tailored AR cueing for facilitating gait 
in real-world environments.

KEYWORDS

Parkinson’s disease, Augmented Reality, Mixed Reality, gait parameters, visual cueing, 
HoloLens 2, Magic Leap 2

Introduction

External cueing is a well-established compensation strategy (1, 2) for improving gait (e.g., 
step length and gait speed) and ameliorating freezing of gait (FoG) in people with Parkinson’s 
disease (PD) (3–5). Although the precise underlying neural mechanisms of cueing remain 
unclear, there is consensus on the notion that locomotor control is shifted from automatized 
(without cues) toward goal-directed (with cues) control (2, 4). External cues, defined as spatial 
or temporal stimuli (3), are typically classified as either visual, auditory, or somatosensory. 
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Visual cues that have been employed include spatial, transversal lines 
taped on the ground as a target for foot placement, but can also 
be implemented with a body-worn laser light projecting on the floor 
(6–8). Auditory (e.g., metronome) (9, 10) or somatosensory (e.g., 
vibrating wearable devices) (11–13) cues provide a temporal rhythm 
for step synchronization.

Even though positive findings have been consistently reported, 
existing cueing modalities all face practical challenges; physical, visual 
cues are location-bound while body-worn laser lights are less visible 
in bright environments. Also, auditory cues can interfere with relevant 
environmental sounds, and somatosensory devices may not be suitable 
for people with sensory impairments (12), to name a few. Also, the 
coupling strength between steps and cues varies with cueing 
modalities: the stronger gait is tied to the cue, the greater the gait-
modifying effects of the cues, yielding superior effects for visual cues 
(14, 15), followed by auditory and somatosensory cues. As the 
response of people with PD to cueing is highly variable [e.g., a person 
with PD showing responsiveness to 3D cues, but not to 2D cues (16)], 
flexibility is required for tailoring cues to this heterogeneity, as well as 
to individual-specific gait characteristics (1, 17), which may 
be  challenging for some existing one-size-fits-all types or forms 
of cueing.

There is thus a clear need to enhance cueing in terms of its 
modality (focus on visual cues for its superior coupling, perhaps even 
multimodal to benefit from combined spatiotemporal cues), delivery 
(wearable to make cues available anywhere, anytime), flexibility (select 
type of cue that works best for a given person or situation), and 
personalization (adjusted to individuals’ gait characteristics and 
needs). One emerging technology to accommodate these requirements 
may be  Augmented Reality (AR) (18, 19), involving software 
applications for wearable headsets or glasses through which the user’s 
environment can be  augmented with visual holographic, digital 
objects. Recent studies have shown potential for providing AR cueing 
and training programs for people with PD to improve gait and balance 
(20–23), which raised interest for implementing cues in AR. AR 
breaks the boundaries of physical visual cues with the possibility of 
projecting holographic visual cues anywhere, anytime. Moreover, the 
digital nature of the cues implies that they can be easily adapted in 
various respects (e.g., length, height, depth, color, motion), allowing 
for cue flexibility and personalization. Even though early AR cueing 
research in people with PD with the first-generation AR headsets did 
not find any significant improvements on FoG, the results were still 
encouraging as subjective benefits of AR cueing are often reported 
(23–25). The lack of positive findings may be related to the limited AR 
field of view (AR-FOV) of the AR headsets (18, 23, 26, 27), an 
insufficient familiarization period to AR headsets (23), the fact that 
only one specific visual cue was implemented (1, 17), or the emphasis 
on FoG as an outcome measure instead of other valuable gait 
characteristics like gait speed and step length, susceptible to 
improvement with AR cueing (20, 25, 28, 29). In the present study 
we address these issues.

The aim of this study is to evaluate the gait-modifying effects of AR 
cueing in people with PD. We implemented several types of cues like 
speed lines, stepping stones, and 3D hurdles, varied their speeds, inter-cue 
distances, and heights, and quantified whether this led to adjustments in 
gait speeds, step lengths, and step heights. The primary objective of this 
study was twofold: (i) to examine if people with PD were able to modify 
their gait to AR and real-world cue variations and (ii) whether the 

adjustments were equivalent to what was imposed with the cues. We also 
explored additional benefits offered by AR, like sound augmentation of 
visually cued steps to improve their action relevance (30) and applying 
visual cues in the air at eye height to prevent a downward head orientation, 
thereby promoting an upright posture. A secondary objective was to 
examine the effect of the different AR-FOV sizes of two state-of-the-art 
AR headsets [i.e., Microsoft HoloLens 2 (HL2) has a smaller vertical 
AR-FOV than Magic Leap 2 (ML2)] on the gait-modifying effects of AR 
cues and the required head orientation to interact with them.

Materials and methods

Participants

This study was approved by the accredited Medical research 
Ethics Committees United (MEC-U), the Netherlands (R22.076, 
NL82441.100.22). Individuals with PD who participated in a 
clinical feasibility study on home-based gait-and-balance 
exergaming with AR headsets (21, 31) were invited to participate in 
the current study. The benefit of recruiting participants from this 
clinical feasibility study was that participants were already familiar 
with AR headsets for at least 3 weeks. Exclusion criteria were 
additional neurological diseases and/or orthopedic problems 
seriously interfering with gait-and-balance function, insufficient 
physical capacity or cognitive and/or communicative inability to 
understand instructions and participate in the tests, visual or 
hearing impairments (after corrective aids), severe visual 
hallucinations or illusions, inability to walk independently for 
30 min, and no stable dosages of dopaminergic medication (21). All 
participants signed written informed consent before participation. 
Two AR headsets, HL2 and ML2, were block-randomized 
over participants.

Experimental set-up and procedure

The experiment was performed on the Interactive Walkway, a 
10-meter walkway instrumented with an integrated multi-Kinect v2 
set-up for markerless registration of 3D full-body kinematics 
during walking. The Interactive Walkway has been validated for 
deriving gait parameters of people with PD (32) and was recently 
also used for validating the HoloLens 1 for quantifying 
spatiotemporal gait parameters (33). External real-world visual cues 
can be  projected onto the 10-meter walkway, such as projected 
speed-line cues and 2D stepping targets (34). The holographic AR 
cues were presented in state-of-the-art optical see-through AR 
headsets, HL2 and ML2, of which ML2 has a substantially larger 
vertical AR-FOV [horizontal × vertical: 45° × 55° (35)] than HL2 
[43° × 29° (36)], using a purpose-specific software application 
developed by Strolll Limited. Both AR headsets recorded headset 
positions and orientations in 3D, with higher orientation values 
representing more downward headset orientations.

First, participants walked twice on the Interactive Walkway 
without the AR headset at self-selected comfortable walking 
speed to determine their preferred gait characteristics (i.e., gait 
speed and step length). Next, participants walked the Interactive 
Walkway again while wearing the AR headset (without AR cues) 
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to determine if wearing it influenced participants’ gait 
parameters, which was not the case: gait speed and step length 
were both statistically equivalent for walking with and without 
the AR headset, allowing for a fair comparison between AR and 
real-world cueing conditions while using the AR headset to 
register 3D head positions and orientations.

Subsequently, a static task (quiet standing) and several 
walking tasks (Figure 1) were all performed once. Conditions of 
the walking tasks were randomized over participants: (1) content 
(real-world or AR) and (2) modulation (slow/short/small/low or 
preferred/medium or fast/long/large/high). Tasks were performed 
in a fixed order, resulting in two static trials and 30 
walking  trials  for each participant to modulate (see 
Supplementary Video):

 1 Head orientation: Participants were looking from a stand-still 
position for 5 s at several projected lines located on the ground 
at specific distances (10, 30, 60, 100, 150, 210, and 280 cm; 
Figure  2A) to determine the head orientation required for 
looking at either real-world cues or AR cues.

 2 Gait speed: Participants were instructed to walk behind a real-
world and AR red speed line visible on the ground along the 
walkway (i.e., speed cue), moving at different speeds relative to 
the participant’s baseline speed [i.e., baseline-20 cm/s (slow), 
baseline (preferred), and baseline + 20 cm/s (fast); Figure 1A]. 
Consecutively, an AR flying bird at eye height was implemented 
as an alternative for commonly used floor-based visual speed 
cues (Figure 1B).

 3 Step length: Participants stepped onto real-world 2D stepping 
targets (Figure 1C) or AR dinosaur footprints (Figure 1D), 
both at varying inter-cue distances [baseline-15 cm (short), 
baseline (preferred), and baseline+15 cm (long)]. 
Consecutively, mud sounds were played to AR dinosaur 

footprints when stepping onto them (step augmentation; 
Figure 1E).

 4 Crossing step length: Participants were instructed to step 
over real-world and AR 2D obstacles, located at the start 
and halfway of the walkway, which varied in depth [15 cm 
(small), 30 cm (medium), and 45 cm (large) deep; 
Figure 1F].

 5 Crossing height: Participants were instructed to cross real-world 
and AR 3D hurdles, located at the start and halfway of the 
walkway, that varied in height [5 cm (low), 10 cm (medium), 
and 15 cm (high); Figures 1G,H].

Data and statistical analysis

For the walking trials, pre-processing of Interactive Walkway full-
body kinematic data followed established procedures (37, 38) using 
Matlab R2023a (39). The stepping-height trials were not analyzed 
since we were not able to accurately record vertical position data due 
to set-up restrictions. 10 out of the remaining 525 walking trials 
showed missing data due to communication issues with the Kinect 
sensors. In 4 of these trials, gait parameters could still be determined 
over a smaller portion of the walkway, the other 6 trials were excluded. 
Missing data was excluded analysis-by-analysis. Two participants were 
excluded from the step-length task because of experiment failure (i.e., 
inconsistent imposed step lengths across real-world and 
AR conditions).

For the primary objective, outcome measures that were calculated 
were gait speed [i.e., distance traveled between 3 and 9 meters on the 
walkway, to allow for adaptation to the speed cue, divided by the time 
elapsed using the data of the spine shoulder (37)], step length [i.e., 
median of the differences in the anterior–posterior direction of 

FIGURE 1

Visualization of the experimental set-up and tasks to modify gait speed [real-world and AR speed line (A) and AR speed bird (B)], step length [real-world 
stepping targets (C) and AR dinosaur footprints serving as stepping targets (D) with acoustic step augmentation through mud sounds (E)], crossing step 
length [real-world and AR 2D obstacles (F)] and step height [physical 3D hurdles (G) and AR 3D hurdles (H)].
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consecutive step locations between 1 and 9 m on the walkway (37)], 
crossing step length at gait initiation (i.e., difference between the first 
step location in the anterior–posterior direction and the median 
location of the leading limb before the start of the trial) and crossing 
step length halfway along the walkway (i.e., difference in the anterior–
posterior direction of the first step location after 5 meters and the last 
step location before 5 meters). To determine whether participants 
adjusted their gait to the cues, gait speed and step length were both 
subjected to a 2 × 3 × 3 [Headset × Content (real-world, AR, AR speed 
bird/AR with sound) × Modulation (slow/short, preferred, fast/long)] 
mixed ANOVA. To determine whether participants’ performed gait 
speeds and step lengths were not different to what was imposed, two 
one-sided t-tests (TOST) were conducted in Jamovi [Jamovi 2.3.28, 
utilizing the TOSTER module which allows us to establish equivalence 
(40)]. This allows researchers to provide support for the null 
hypothesis (i.e., no meaningful effect), within a frequentist framework 
(40). Limits of the TOST were set at 25% of the imposed modulations 
(i.e., 5 cm/s for speed and 3.75 cm for step-length modulations) 

acknowledging some natural gait variability (41). Observations within 
these limits are considered equivalent (i.e., no meaningful difference), 
but may still be statistically different (40). Crossing step length was 
subjected to a 2 × 2 × 2 × 3 [Headset × Content (real-world, AR) × 
Location (gait initiation, halfway along the walkway) × Modulation 
(small, medium, large)].

For the secondary objective, the headset orientation during the 
static trial was determined as the median headset orientation for the 
duration participants were looking at a specific line, corrected for 
baseline orientation (defined as the headset orientation when looking 
straight ahead at the start and end of the trial). The headset orientation 
was subjected to a 2 × 2 × 7 mixed ANOVA [Headset × Content (real-
world or AR) × Distance (line 1 to 7)]. Two participants did not 
execute the static task because of the inability to maintain a static 
posture and difficulties with following the instructions. For the 
walking trials to modulate gait speed and step length, the median 
headset orientation was calculated between 3 and 7 meters, again after 
subtraction of the baseline headset orientation. Median headset 

FIGURE 2

Visual representation of the head orientation during the static task (A–C) and during gait-speed (D) and step-length (E) modulations. * denotes a 
significant main effect between conditions (p  <  0.05).
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orientations were subjected to a 2 × 2 × 3 [Headset × Content (real-
world or AR) × Modulation].

Except for the TOST, all statistical analyses were performed in 
JASP (42). For the mixed ANOVAs, the assumption of sphericity 
was verified according to Girden (43). The Huynh-Feldt correction 
was applied if Greenhouse–Geisser’s epsilon exceeded 0.750, 
otherwise the Greenhouse–Geisser correction was used. Effect sizes 
were quantified with ƞp

2. The main effects and relevant significant 
interactions for our objectives were further explored with post-hoc 
t-tests using a Bonferroni correction. Possible significant three-way 
or four-way interactions, that were deemed relevant for the 
objectives, were further examined with two-way ANOVAs for each 
factor. All data underlying the statistical analyses are available in 
Supplementary Table 2.

Results

Participants

Twenty-one people with PD were included in the study. There 
were no significant between-group differences in any of the participant 
characteristics, including age (mean [range]: 63 ± 8.6 [51–74] and 
69 ± 8.3 [53–82] years of age) and Modified Hoehn and Yahr stage 
(stages 2/2.5: 7/4 and 6/4). See Supplementary Table 1 for an elaborate 
overview of participant characteristics.

Can we modify gait with AR cues?

People with PD modified their gait to the cues with different 
executed gait speeds or (crossing) step lengths for different modulation 
levels. Participants increased their gait speed, step length and crossing 
step length when faster or larger steps were imposed by the cues. This 
was evidenced by significant main effects of Modulation for gait speed 
[F(1.55,27.86) = 115.509, p < 0.001, ƞp

2 = 0.865], step length 
[F(2.00,31.26) = 14285.076, p < 0.001, ƞp

2 = 0.999] and crossing step 
length [F(1.29,24.53) = 63.860, p < 0.001, ƞp

2 = 0.771], with significant 
post-hoc differences between all three modulation levels (pbonf < 0.05; 
Figure 3).

For crossing step length, larger crossing steps were taken 
halfway on the walkway (85.35 ± 12.82 cm) than at initiation 
(69.36 ± 14.14 cm; pbonf < 0.001), following from a significant 
interaction with the factor Modulation [i.e., Modulation × 
Location interaction, F(1.41,26.79) = 8.293, p = 0.004, ƞp

2 = 0.304], 
with significant post-hoc differences between the locations of the 
cue for all three modulation levels (pbonf < 0.001), accompanied by 
a main effect of Location [start vs. halfway; F(1,19)=143.048, 
p < 0.001, ƞp

2 = 0.883].
For all gait parameters, the modifications did not differ between 

real-world and AR cues as effects with the factor Content were 
generally absent, suggesting that gait speed, step length, and crossing 
step length can be  modified with both real-world and AR cues. 
Exceptions were a significant Content × Headset interaction for the 
step-length task [F(1.85,25.84) = 8.135, p = 0.002, ƞp

2 = 0.368] and a 
significant Content × Location interaction for crossing step-length 
task [F(1,19)=7.773, p = 0.012, ƞp

2 = 0.290], although without relevant 
significant post-hoc comparisons.

Are gait adjustments equivalent to what 
was imposed?

The TOST was performed to determine if the observed gait 
modifications were equivalent to what was imposed by the cues. The 
performed gait speeds were generally not equivalent to the imposed 
gait speeds, for both real-world and AR cues alike, except for the 
condition with the slower-than-preferred AR speed cue (Table 1). 
Participants seemed to walk slightly faster than imposed with slower 
imposed speeds. In contrast, step length was statistically equivalent to 
what was imposed for all conditions.

What is the effect of AR-FOV size on the 
gait-modifying effect of AR cues?

Differences in AR-FOV size did not influence the gait-modifying 
effects of cues as there were no main or interaction effects involving 
the factor Headset on the performed gait adjustments in all cueing 
tasks [except for the significant Content × Headset interaction for step 
length, F(1.85,25.84) = 8.135, p = 0.002, ƞp

2 = 0.368, without any 
significant post-hoc comparisons].

What is the effect of AR-FOV size on the 
head orientation required to interact with 
AR cues?

In the static trial, the downward head orientation differed 
between all lines, with larger downward head orientations observed 
when viewing lines nearby (Figures 2A–C). This was supported by 
an effect of Distance on head orientation [F(2.20,37.40) = 648.662, 
p < 0.001, ƞp

2 = 0.974], with significant differences in head 
orientation between all lines (pbonf < 0.001). Post-hoc analyses of the 
significant Headset × Content × Distance interaction 
[F(6,102) = 2.614, p = 0.021, ƞp

2 = 0.133] revealed a trend toward a 
greater downward head orientation with HL2 compared to ML2 for 
the first AR line only [F(1,17) = 4.248, p = 0.055, ƞp

2 = 0.200; 
Figure 2C], a finding in line with AR-FOV-size differences between 
headsets. Besides that, there was a main effect of Headset on the 
required head orientation to interact with step-length cues 
[F(1,17) = 5.285, p = 0.034, ƞp

2 = 0.237; Figure  2E], again with a 
larger downward head orientation for HL2 (41.98 ± 11.34°) than 
ML2 (32.02 ± 7.45°; pbonf = 0.034), a finding consistent with the 
AR-FOV-size differences between headsets.

Finally, the head orientation varied with cueing conditions. For 
step-length cues, larger downward head orientations with smaller 
imposed step lengths were observed, as indicated by a main effect of 
Modulation [F(1.92,32.68) = 67.625, p < 0.001, ƞp

2 = 0.799], with 
significant differences in head orientation between levels (all 
pbonf < 0.001; Figure 2E). For the speed cues, a larger downward head 
orientation was found for the slower-than-preferred speed condition 
only (pbonf < 0.001), following from a significant main effect of 
Modulation [F(1.72,57.79) = 19.720, p < 0.001, ƞp

2 = 0.509]. As 
expected, there was a profound difference in head orientation 
between the AR speed-bird condition (−0.36 ± 8.24°) and the AR 
and real-world speed-cue conditions (34.04 ± 12.37° and 
30.17 ± 10.66°, pbonf < 0.001; Figure  2D). This was supported by a 
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main effect of Content for speed cues [F(1.45,27.57) = 132.114, 
p < 0.001, ƞp

2 = 0.874]. The significant Content × Modulation 
interaction for speed cues [F(2.85,54.21) = 10.003, p < 0.001, 

ƞp
2 = 0.345] implied that the factor Modulation only affected head 

orientation for the two speed-line conditions and not for the AR 
speed-bird condition (Figure 2D).

FIGURE 3

Data visualization of the modulation effects; gait speed (A–C), step length (D–F), and crossing step length at gait initiation (G,H) and halfway along the 
walkway (I,J) all differed significantly between all modulation levels.
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Discussion

The primary objective of this study was to examine if people 
with PD were able to modify their gait to AR and real-world cue 
variations and whether such adjustments were equivalent to what 
was imposed with the cues. Results showed that people with PD can 
modify their gait speed, step length, and crossing step length to cue 
variations, for AR and real-world cueing alike. Furthermore, people 
with PD modulated their step length equivalent to what was 
imposed by both AR and real-world step-length cues, whereas the 
performed gait speeds were often slightly different from what was 
imposed (i.e., participants seemed to walk slightly faster than 
imposed with slower imposed speeds). This discrepancy in 
equivalence between step length and gait speed may be caused by 
less dictating or salient cue information for the speed cues (where 
participants could vary their distance to the speed line or bird 
during the trial) compared to the step-length cues that mandated 
precision stepping throughout the trial and thus constrained 
variability in task execution. Note, however, that these results 
applied to both real-world and AR cues. We therefore conclude that 
people with PD can adjust various aspects of their gait to variations 
in AR cues, and that they do this as effectively as to real-world cues. 
These findings, corroborating related work in healthy adults (29, 
44), are relevant for recent studies that have already implemented 
AR cues in training interventions like dual-task training for people 
with PD, which showed promising results (20, 45).

We further explored the utility of two additional benefits AR 
cueing may offer, that is (i) by using an AR speed bird in the air to 
modulate speeds while promoting an upright head orientation and 
posture and (ii) to augment steps acoustically using action-relevant 
mud sounds to the AR dinosaur footprints. Regarding the former 
benefit, we found that participants adjusted their gait speed to the AR 
speed bird, which did not differ from real-world and AR speed lines. 
This introduces a new possibility of visual cueing without requiring 
the individual to look down, which could promote or aggravate a 
stooped posture in people with PD. A recent study by Retzinger et al. 
(46) also examined visual AR cues in the air with healthy young 
adults, in this case for modulating step length through transparent 
footprints at participant’s chest level accompanied by footprints on the 
ground. It is, however, unknown whether participants processed 
spatial information of the footprints in the air, on the ground, or both. 
The action-relevance, an important factor for effective cueing (47), of 
such step-length cues in the air is probably much lower [i.e., as the 
spatial information conveyed by the cues is not directly specifying the 
actual foot-placement locations (48)] than when participants can 
directly step onto stepping targets on the ground, for which existing 
visuolocomotor control mechanisms can be  utilized (49–52). The 
second additional benefit that we explored was adding mud sounds to 
dinosaur footprints to augment steps. This was anticipated to improve 
their action relevance. However, this did not further improve their 
gait-modifying effect compared to dinosaur footprints without 
acoustic step augmentation. The absence of an additional benefit of 

TABLE 1 TOST statistics of gait-speed and step-length modulations.

Imposed Executed t-test TOST lower TOST upper Equivalence*

Mean  ±  SD Mean  ±  SD t df p t df p t df p Yes/No

Gait speed

Real-

world 

speed line

Slow 107 ± 16.40 112 ± 16.30 3.85 19 0.001 7.87 19 <0.001 −0.16 19 0.436 No

Preferred 127 ± 16.00 132 ± 17.50 2.81 20 0.011 5.90 20 <0.001 −0.28 20 0.390 No

Fast 147 ± 16.00 146 ± 20.00 −0.36 20 0.719 1.49 20 0.077 −2.21 20 0.019 No

AR speed 

line

Slow 107 ± 16.00 109 ± 18.60 0.95 20 0.354 3.93 20 <0.001 −2.03 20 0.028 Yes

Preferred 127 ± 16.00 131 ± 19.10 2.56 20 0.019 5.67 20 <0.001 −0.54 20 0.297 No

Fast 147 ± 16.00 142 ± 22.10 −1.85 20 0.079 −0.19 20 0.576 −3.51 20 0.001 No

AR speed 

bird

Slow 107 ± 16.00 111 ± 18.40 3.66 20 0.002 7.82 20 <0.001 −0.50 20 0.311 No

Preferred 127 ± 16.00 132 ± 17.70 2.76 20 0.012 5.45 20 <0.001 0.06 20 0.524 No

Fast 147 ± 16.00 147 ± 22.70 −0.06 20 0.950 −1.51 20 0.091 −1.51 20 0.073 No

Step length

Real-

world 

stepping 

targets

Short 52.8 ± 10.24 52.5 ± 9.95 −2.22 17 0.040 28.02 17 <0.001 −32.46 17 <0.001 Yes

Preferred 68.0 ± 9.99 67.8 ± 10.09 −1.97 18 0.064 27.91 18 <0.001 −31.85 18 <0.001 Yes

Long 83.4 ± 10.10 83.3 ± 10.10 −1.75 17 0.099 20.69 17 <0.001 −24.18 17 <0.001 Yes

AR 

dinosaur 

footprints

Short 52.8 ± 10.20 52.6 ± 10.10 −0.93 17 0.368 16.37 17 <0.001 −18.22 17 <0.001 Yes

Preferred 68.0 ± 9.99 67.8 ± 10.18 −1.16 18 0.262 16.44 18 <0.001 −18.76 18 <0.001 Yes

Long 82.8 ± 10.20 82.5 ± 10.30 −1.03 17 0.317 10.90 17 <0.001 −12.96 17 <0.001 Yes

AR 

dinosaur 

footprints 

+ sound

Short 53.0 ± 9.99 52.9 ± 9.66 −0.34 18 0.736 19.42 18 <0.001 −20.11 18 <0.001 Yes

Preferred 68.0 ± 9.99 67.5 ± 10.28 −2.30 18 0.034 14.15 18 <0.001 −18.75 18 <0.001 Yes

Long 82.9 ± 10.30 82.7 ± 10.60 −1.04 17 0.313 12.84 17 <0.001 −14.92 17 <0.001 Yes

*TOST interpretation of equivalence by Lakens (40).
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the mud sounds may be attributed to an already excellent ability of our 
participants to position their feet to visual step-length cues, as 
evidenced by the resulting equivalence between performed and 
imposed step lengths for all levels of modulation (Figures  3D–F; 
Table 1).

The secondary objective of this study was to examine differences 
between the two AR headsets with different AR-FOV sizes in terms of 
gait-modifying effects and head orientations required to interact with 
the cues. The modulated gait speeds and step lengths did not differ 
between the headsets, indicating that the AR-FOV size of state-of-
the-art HL2 and ML2 headsets was sufficient for modifying gait with 
AR cues, thereby overcoming limitations seen in previous studies 
using first-generation AR headsets with much smaller (vertical) 
AR-FOV sizes (23, 53). AR-FOV size also had only a small effect on 
the measured head orientations: a tendency toward a significant 
difference between headsets was observed for the static task, and only 
for the nearest AR line (Figures 2B,C), with a larger downward head 
orientation required for HL2 (with a smaller vertical AR-FOV size of 
29°) than for ML2 (55°). Likewise, also a slightly greater downward 
head orientation was required for HL2 than for ML2 when interacting 
with step-length cues (Figure 2E). These findings are in line with our 
previous research on the effect of AR-FOV size (54), contrasting 
HoloLens 1 (vertical AR-FOV 17.5°) and 2 (29°), where head 
orientations required for interacting with AR content varied with 
differences in AR-FOV size, particularly so for content nearby. It is 
noteworthy, however, that in the current study with state-of-the-art 
AR headsets with larger vertical AR-FOV sizes, observed head-
orientation differences between headsets were much smaller in 
magnitude and even completely absent between real-world and AR 
gait-modulating content (except of course for the AR speed-bird 
condition). Thus, state-of-the-art AR headsets have reached a level 
where AR-FOV size is no longer a limiting factor for modifying gait 
with AR cues, nor require greater downward head orientations to get 
the AR cues into view compared to interacting with similar real-
world cues.

We identify some study limitations and implications for future 
research. First, we were not able to analyze step-height modulation 
due to task-specific technical issues with the motion-registration 
system. However, in line with previous research (44), we did observe 
that people with PD modulated their step height to the different 
heights of AR and real-world 3D hurdles in the experiment (see also 
Supplementary Video for a representative participant). Previous 
research stated that, for some individuals with PD, 3D cues could 
be more effective than 2D cues for modifying gait and overcoming 
FoG (16). Even though we could in that regard not provide formal 
statistical evidence here, we recommend further explorations of the 
utility of 3D cues for modifying gait and to accommodate 
heterogeneity in effect of different forms of cueing. Second, our study 
clearly showed that gait parameters like gait speed and step length 
could be  modulated with AR cues relative to one’s baseline gait 
pattern. This is encouraging considering earlier research with AR cues 
showing limited effects on various gait parameters (19, 23–25, 28, 48). 
AR cues, when delivered through state-of-the-art AR headsets which 
have a sufficiently large vertical AR-FOV size, may thus be used to 
improve Parkinsonian gait. For example, step-length-modulating AR 
cues may assist in (i) increasing the typically short step lengths seen 
in people with PD (55) and (ii) alleviating FoG, considered to be one 
of the most disabling symptoms in people with PD, elevating fall risk 

and reducing quality of life (56). In doing so, one could ultimately take 
advantage of the flexibility (selecting the most effective type of cue) 
and personalization (tailoring the cues to individual’s gait 
characteristics) potential of AR cueing, as cueing is not a one-size-
fits-all principle (1, 17). Additional benefits that AR-cueing 
applications may offer besides flexibility and personalization are (i) 
multimodality (e.g., visual cues, auditory cues, or both), (ii) cue 
activation [e.g., making use of headset-data features (20), on-demand 
activation with voice commands (23) or intelligent open-loop vs. 
closed-loop cueing (57)] and (iii) spatial awareness (e.g., merging 
visual cues to features in mapped environments). The latter seems 
particularly useful when transitioning from the lab (as in the current 
study) toward implementation in the home environment of people 
with PD, as was already explored by Geerse et al. (23). These future 
studies should also consider user experience and feedback (e.g., 
usability, comfort, adverse events) of a diverse range of individuals 
with PD for the long-term use of AR cueing applications in real-
world environments.

To conclude, this study revealed that people with PD can adjust 
various aspects of their gait to variations in AR cues as effectively as 
to real-world cues and that the AR-FOV size of state-of-the-art AR 
headsets is sufficiently large for modifying gait without affecting the 
head orientations required to interact with AR cues.
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Acuity assessments are vital for timely interventions and fair resource allocation 
in critical care settings. Conventional acuity scoring systems heavily depend on 
subjective patient assessments, leaving room for implicit bias and errors. These 
assessments are often manual, time-consuming, intermittent, and challenging to 
interpret accurately, especially for healthcare providers. This risk of bias and error 
is likely most pronounced in time-constrained and high-stakes environments, 
such as critical care settings. Furthermore, such scores do not incorporate 
other information, such as patients’ mobility level, which can indicate recovery 
or deterioration in the intensive care unit (ICU), especially at a granular level. 
We  hypothesized that wearable sensor data could assist in assessing patient 
acuity granularly, especially in conjunction with clinical data from electronic 
health records (EHR). In this prospective study, we  evaluated the impact of 
integrating mobility data collected from wrist-worn accelerometers with clinical 
data obtained from EHR for estimating acuity. Accelerometry data were collected 
from 87 patients wearing accelerometers on their wrists in an academic hospital 
setting. The data was evaluated using five deep neural network models: VGG, 
ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These 
models outperformed a rule-based clinical score (Sequential Organ Failure 
Assessment, SOFA) used as a baseline when predicting acuity state (for ground 
truth we labeled as unstable patients if they needed life-supporting therapies, 
and as stable otherwise), particularly regarding the precision, sensitivity, and 
F1 score. The results demonstrate that integrating accelerometer data with 
demographics and clinical variables improves predictive performance compared 
to traditional scoring systems in healthcare. Deep learning models consistently 
outperformed the SOFA score baseline across various scenarios, showing 
notable enhancements in metrics such as the area under the receiver operating 
characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. 
The most comprehensive scenario, leveraging accelerometer, demographics, 
and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when 
using SOFA score as the baseline, with significant improvements in precision 
(0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study 
demonstrates a novel approach beyond the simplistic differentiation between 
stable and unstable conditions. By incorporating mobility and comprehensive 
patient information, we distinguish between these states in critically ill patients 
and capture essential nuances in physiology and functional status. Unlike 
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rudimentary definitions, such as equating low blood pressure with instability, 
our methodology delves deeper, offering a more holistic understanding and 
potentially valuable insights for acuity assessment.

KEYWORDS

intensive care unit, ICU, accelerometer, acuity assessment, electronic health record, 
deep learning, artificial intelligence

1 Introduction

Acuity refers to the severity of a patient’s condition, concomitant 
with the priority assigned to patient care in a critical care setting. 
Patients in the intensive care unit (ICU) exhibit volatile physiological 
patterns and the potential for developing life-threatening conditions 
in a short period. Therefore, the timely recognition of evolving illness 
severity is of immense value in the ICU. Swift and precise assessments 
of illness severity can identify patients requiring the administration of 
immediate life-saving interventions (1). Furthermore, these 
assessments can guide collaborative decision-making involving 
patients, healthcare providers, and families in determining care goals 
and optimizing resource allocation (2). Patient acuity is a foundational 
concept in critical care that ensures patient needs are met with 
precision, safety, and efficiency. Accurate acuity assessments are 
crucial for guiding clinical interventions, optimizing staffing ratios, 
and ensuring the presence of adequately trained personnel to address 
the needs of high-acuity patients (3, 4). From management and fiscal 
perspectives, an accurate understanding of in-patient acuity levels 
permits effective budgeting and resource allocation (5).

Traditional, manual, threshold-based scoring systems such as the 
Acute Physiology and Chronic Health Evaluation (APACHE) (6), the 
Simplified Acute Physiology Score (SAPS) (7), Sequential Organ 
Failure Assessment (SOFA) (8), Modified Early Warning Score 
(MEWS) (9) and others, have been developed to predict the risk of 
mortality in ICU patients and, by extension, gauge the complexity of 
their care needs (6). These tools evaluate physiological parameters, 
laboratory results, and other pertinent clinical information. However, 
static variable thresholds and additive scores have lesser predictive 
accuracy for outcomes of interest, and they tend to use a few 
rudimentary biomarkers to represent complex disease states.

Recent studies in clinical informatics have highlighted the efficacy 
of automated machine learning methods in leveraging comprehensive 
data from electronic health record (EHR) systems. EHR encompasses 
a variety of patient-level data categories, including demographic 
information, diagnoses, procedures, vital signs, medications, and 
laboratory measurements. The studies have emphasized the potential 
of machine learning in transforming healthcare by enhancing clinical 
decision-making processes and patient care. For example, Clifton et al. 
(10) have discussed the use of health informatics systems based on 
machine learning in clinical patient management, demonstrating the 
relevance of these technologies in healthcare settings. Additionally, 
Wang et  al. (11) have supported this idea by showcasing the 
widespread adoption of machine learning in mining EHRs to advance 
clinical research and practice.

Furthermore, Hu et al. (12) and Miotto et al. (13) have investigated 
the application of automated machine learning in distinguishing 

between types of cancers and predicting patient outcomes based on 
EHR data. These studies have underscored the potential of machine 
learning to accelerate workflow, enhance performance, and improve 
the accessibility of artificial intelligence in clinical research. Moreover, 
the work by Wang et al. (14) has highlighted the opportunity presented 
by EHR data for patient similarity assessment and personalized 
medicine through machine learning. Advanced algorithms using deep 
learning techniques have proven superior to conventional bedside 
severity evaluations in predicting in-hospital deaths, an indirect 
measure of immediate patient acuity. However, these systems are 
limited to physiological data captured within the EHR and neglect 
other significant aspects impacting the patient, such as mobility and 
functional status (1).

To overcome these limitations, Davoudi et al. (15) explored the 
benefits of augmenting traditional ICU EHR-based data with 
continuous and pervasive sensing technology. The study gathered 
detailed information on ICU patients’ activity levels, environmental 
factors, and behaviors by combining data from wearable sensors, light 
and sound sensors, and a camera. This multi-sensor approach 
provided a holistic perspective on patient care and monitoring, 
facilitating thorough analysis of delirium classification in critical 
conditions. Wearable device data significantly contributed to the 
study’s results by offering valuable insights into patients’ activity levels, 
movement patterns, and functional status. The study shows that 
integrating wearable sensor data with other modalities enables a 
comprehensive assessment of patients’ behaviors and conditions in the 
ICU, potentially leading to advancements in patient care and 
monitoring. Inspired by the positive impact of these novel clinical data 
streams, Shickel et  al. (1) proposed to augment EHR data with 
continuous activity measurements via wrist-worn accelerometer 
sensors to predict hospital discharge status as a proxy for acuity. The 
study employs deep learning techniques, specifically single-layer 
recurrent neural networks (RNN) with gated recurrent units (GRU), 
to process sequential data and make predictions about patient illness 
severity. The findings suggest that integrating pervasive sensing data 
with conventional EHR data can enhance real-time acuity estimation 
for critically ill patients. Furthermore, they propose that additional 
investigation and integration of even more innovative data streams 
could offer further benefits in this regard. Our previous work also 
highlighted the efficiency of accelerometer data in predicting pain 
levels (16).

In this work, we differ from the current literature by proposing 
to evaluate the viability of using accelerometer and EHR data to 
assess patients’ acuity directly instead of using patient discharge 
status as a proxy. Following the same acuity phenotyping approach 
proposed by Ren et al. (17), the goal is to discern the patient’s state 
as stable or unstable. To achieve this, we  have developed an 
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end-to-end deep learning pipeline based on accelerometer and EHR 
data (Figure 1).

We evaluated five different neural network architectures, namely, 
VGG (18), ResNet (19), MobileNet (20), SqueezeNet (SENet) (21), 
and a custom Transformer-based network (22) since both 
convolutional neural networks (CNNs) and Transformers 
architectures are well-accepted in the sensor-based human activity 
recognition field (23–27). The CNN architecture can detect patterns 
regardless of their position in the sequence and extract both simple 
and complex movement patterns due to its hierarchical structure. On 
the other hand, Transformers are advantageous for processing 
accelerometer data because their self-attention mechanism can 
capture long-term dependencies and weigh the importance of 
different elements in a temporal sequence (28). Consequently, each 
patient’s movement can be contextualized in relation to the other 
movements within a time window, directing the network’s attention 
to the key movement patterns for assessing the patient’s condition.

2 Materials and methods

2.1 Study cohort

The data used in this research were sourced from adult patients 
admitted to one of nine specialized ICUs at the University of Florida 
(UF) Health Shands Hospital main campus in Gainesville, Florida, in 
compliance with all relevant federal, state, and university laws and 
regulations. Approval for the study was granted by the University of 
Florida Institutional Review Board under IRB201900354 and 
IRB202101013. Before enrolling patients in the study, written 
informed consent was obtained from all participants. In cases where 
patients could not provide informed consent, consent was obtained 
from a legally authorized representative (LAR) acting on their behalf. 
Eligible participants were individuals aged 18 and older who were 
admitted to an ICU and expected to remain there for at least 24 h. 
Patients were enrolled independent of their disease, and their 

diagnoses were unknown to the study team at the time of recruitment, 
which took place in person by trained clinical research coordinators. 
Those who could not provide LAR or self-consent, were expected to 
be transferred or discharged from the ICU within 24 h, were receiving 
comfort measures only, were unable to provide informed consent at 
baseline, and those necessitating contact or isolation precautions, were 
excluded. Also excluded from this study were patients who expired 
within 24 h of recruitment or from whom we  could not collect 
accelerometer data due to the presence of intravenous lines, wounds, 
other hospital equipment, or the patient’s choice to opt out of 
accelerometer placement. Accelerometers were still applied to 
intubated and sedated patients.

Datasets were acquired from 87 critically ill patients between June 
2021 and February 2023. Figure 1 depicts the data sources: EHR and 
accelerometer readings. Patients wore Shimmer3 (28) or ActiGraph 
wGT3X-BT (29) accelerometers on one of their wrists. The 
accelerometers used in this study capture direction and magnitude of 
acceleration along 3 axes. The accelerometers convey information on 
the patient’s arm’s direction and intensity of movement as well as 
rotational position through continuous measurement of linear 
acceleration and angular velocity of the device. These types of devices 
capture various aspects of movement and activity, offering insights 
into physical dynamics such as speed, direction, and intensity of 
motion. These measurements enable the quantification of movement 
patterns and activity levels with a high degree of precision and detail. 
In this work we did not include clinical information reflected at the 
motor level such as assessments of muscle strength, coordination, 
balance, and overall mobility. Accelerometer readings were taken for 
a maximum of 7 days or until the patient’s discharge from the ICU, 
whichever came first. During this time, the study team performed 
daily visits to ensure that the device was correctly positioned on the 
patient’s wrist and requested that the nursing staff document any times 
when the device was removed. All known removal and reapplication 
times were documented as device downtimes to be excluded from 
analysis. Conservative estimations were used if the exact removal time 
was unknown. We gathered 9,286 h of accelerometer data, with an 

FIGURE 1

The proposed approach is an end-to-end neural network system that leverages accelerometer and EHR data to assess patient acuity, discerning 
between stable and unstable states.
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average of approximately 107 h per patient. Data from ActiGraph 
devices were retrieved using the ActiLife toolbox.1 Data from the 
Shimmer device was uploaded and exported to a secure server via the 
Consensys software.2

Using a daily pipeline, UF’s Integrated Data Repository service 
extracted clinical data relevant to the patient’s acuity state from the 
EHR. This information included demographics such as age, sex, race, 
height, weight, length of stay, medications, and physiological signals 
like blood pressure, heart rate, oxygen saturation (SpO2), respiratory 
device, continuous renal replacement therapy, blood transfusion, pain 
score, Braden score (30), and acute brain dysfunction status (whether 
the patient was in a coma, experiencing delirium, or had normal 
cognitive status) (31).

2.2 Data processing

In this work, we  employed supervised machine learning 
algorithms. This family of algorithms learns the relationship between 
data and a target. In our case, the target is a patient’s acuity state in a 
certain time range. In order to train these algorithms, each sample 
(time window) needs to be labeled with the correct acuity state so the 
algorithm can learn the patterns and correlations between data and 
the target. To phenotype the patient acuity state as stable or unstable, 
we applied the method devised by Ren et al. (17), which determines 
transitions in acuity status within the ICU. To capture the relevant data 
(accelerometer and clinical data) leading up to each assessment, 
we established a consecutive and non-overlapping 4-h segmentation 
window that concluded immediately before the acuity evaluation, to 
reflect patients’ status. For every 4 h leading up to the assessment, 
patients—excluding those who had passed away or were already 
discharged alive—were identified as unstable or stable. A patient was 
labeled as unstable if they required any of the following life-supportive 
therapies: vasopressors (epinephrine, vasopressin, phenylephrine, 
norepinephrine, droxidopa, or ephedrine), mechanical ventilation, 
continuous renal replacement therapy, or a massive blood transfusion 
(defined as at least ten units in the previous 24 h), as previously 
described. If none of these conditions were met, the patient was 
considered stable.

To address the varying sampling frequencies of the accelerometer 
data, we downsampled all accelerometer segmented windows to a 
consistent 10 Hz sampling frequency. This downsampling not only 
ensures uniformity in the input data rate, facilitating more accurate 
analysis but also limits the maximum length of the accelerometer 
sequence to 144,000 (14,400 s x 10 Hz) to avoid extremely long 
sequences. Additionally, accelerometer values were normalized to a 
range of [0, 1] in a sample-wise fashion (min and max values were 
calculated per sample) to accommodate the requirements of the deep 
learning methods evaluated in our study. Similarly, numerical 
demographic data, such as age, was normalized to the [0, 1] range, 
while categorical demographic information like sex and race was 
one-hot encoded. All clinical data consisted of time series captured 
within 4-h windows, each varying in length.

1 https://theactigraph.com/academic-research#actilife

2 https://www.consensys.net

2.3 Deep learning models

The prediction models evaluated in this work were VGG (18), 
ResNet (19), MobileNet (20), SqueezeNet (SENet) (21), and a custom 
Transformer-based network (22). The selection was grounded in their 
capabilities: VGG and ResNet for their depth, MobileNet, and SENet 
for their small number of parameters compared to ResNet and VGG, 
thus making them a suitable choice for edge deployment and for 
reducing the decision-making latency, which is crucial if deployed in 
the ICU setting. The transformer was selected for its unique attention 
mechanism, which enables modeling long-range dependencies in 
input signals. VGG, ResNet, MobileNet, and SENet were initially 
designed for image classification and required an architecture 
adaptation to suit accelerometer data. We tailored the original models 
to process 1D time series while preserving the fundamental layer-wise 
structure and defining characteristics. It entailed replacing 2D 
convolution, average pooling, and max pooling layers with their 1D 
counterparts and adjusting input channel configurations to match our 
data dimensions. For ResNet, SqueezeNet, and MobileNet, we retained 
essential components such as residual blocks (in ResNet), Squeeze-
and-Excitation blocks (in SqueezeNet), and Depthwise Separable 
Convolution blocks (in MobileNet), with modifications primarily 
consisting of substituting 2D convolution and pooling filters with their 
1D counterparts and updating channel parameters. The fully 
connected layers were kept unchanged. To further aggregate clinical 
and demographic features into the classification pipeline, 
we concatenated them with the dense features extracted from the fully 
connected layer.

In contrast, Transformer architectures are innately suited for 
sequence data processing due to their self-attention mechanism and 
parallel processing capabilities. In our methodology, we extracted 
sequential feature embeddings from raw accelerometer sensor data 
using a feature embedding convolution layer with a kernel size of 5 
and 64 channels. We then provided the extracted features, followed by 
adding positional encodings to capture the temporal order of the data 
into a Transformer encoding layer. We further processed the extracted 
contextual features through another set of convolution and fully 
connected layers to enable our downstream classification tasks. 
We concatenated clinical and demographic features with the dense 
features extracted from the fully connected layer, like the approach 
adopted in earlier models. The model architecture is demonstrated in 
Figure 2.

2.4 Experiments

In assessing the deep learning models, we  implemented a 
thorough evaluation protocol aimed at ensuring reliability and 
transparency, with a particular emphasis on subject independence. 
This protocol combined two established methods: 5-fold cross-
validation and the holdout approach.

Initially, the holdout method divided the dataset into a 
development set (70%) and a separate holdout test set (30%), adhering 
to subject independence principles. The 5-fold cross-validation was 
then applied within the development set to facilitate robust 
hyperparameter optimization and guard against potential overfitting. 
This step was crucial for obtaining a reliable performance estimate, 
especially given our dataset’s limited size. Within each fold, distinct 
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training and validation datasets were created, ensuring that each 
patient’s data were exclusively assigned to either the training or 
validation set used in that fold. This approach maintained the integrity 
of the evaluation process and upheld the principle of subject 
independence throughout.

The models underwent training and validation using the 
development dataset to determine the most effective hyperparameters. 
Following the completion of this step, they were assessed using the 
holdout test set to gauge their ability to generalize to unseen data.

Figure 3 shows the patient and sample distribution for our dataset.
During the 5-fold cross-validation process, we utilized Optuna 

(32) to search over the hyperparameters rather than a traditional grid 
search. Optuna reduces the runtime by pruning fewer promising trials 
during runtime. For every set of hyperparameters, we maximized the 
area under the ROC curve (AUC) for each fold. After deriving the 
AUC for every fold, we calculated the mean and standard deviation of 
these values over all folds of the 5-fold cross-validation. The 
hyperparameters yielding the highest mean validation AUC across all 
folds were deemed optimal and were used to train the final model.

In addition to using deep neural networks, we also incorporated 
the SOFA score as a rule-based scoring system into our evaluation 
process as a baseline. The SOFA score, well-established in assessing 
patients in ICUs, provides an objective and standardized means of 
tracking a patient’s condition over time. These properties make the 
SOFA score an indicator of the acuity state assessment task. To 
measure the acuity states, we scaled the SOFA scores within the range 
of [0, 1] using min-max normalization. We treated these normalized 
scores as probability values and utilized the Youden index (33) to 
determine the optimal threshold for classifying the normalized scores 
and generating predictions.

Once the models were trained using optimized hyperparameters 
over the entire training cohort, we  assessed its performance on a 
holdout test set using bootstrapping with replacement. We created 100 
synthetic bootstrapped versions of the holdout test set samples. These 
bootstrapped test sets were of the same length as the original test set. 
The model’s performance was then calculated on all bootstraps. 
We reported the median and 95% confidence interval (CI) of several 
performance metrics: AUC, precision, sensitivity, specificity, and F1 
score. The p-value was calculated to assess the statistical significance 
of the observed performance metrics values against a null hypothesis 
that was no better than the previous setups (34).

Finally, we performed SHAP (SHapley Additive exPlanations) 
(35) analysis on the best-performing models to interpret relative 
feature importance, providing insights into how various features 
contribute to model predictions. This analysis aids in understanding 
the model’s decision-making process and can guide further refinement 
or feature engineering efforts.

3 Results

3.1 Participants

We involved 87 patients based on our inclusion and exclusion 
criteria. The demographic and clinical variables of the patients 
analyzed were detailed in Table  1, while Table  2 provided a 
breakdown of demographics categorized by stable and unstable 
conditions. The distribution of patients by race and gender are 
approximately the same in both development and test sets. The 
average age was slightly higher in the development cohort, though 

FIGURE 2

The transformer architecture is used for the acuity state classification task. Accel: Accelerometer Sensor, Conv1D: 1D Convolution, Flatten: 2D-to-1D 
flattening layer, Fully Connected: fully connected layer.
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not significantly so. Heights were similar between cohorts, but the 
mean weight was notably greater in the development cohort. Length 
of stay did not significantly differ between cohorts. Notable 
differences in disease prevalence included a higher occurrence of 
cancer and diabetes in the test cohort, while liver-related diseases 
were more frequent in the development cohort.

3.2 Experiment results

We evaluated the performance of five deep learning models on 
different combinations of feature sets: accelerometer data only (Accel), 
accelerometer data with demographics (Accel + Demo), accelerometer 
data with clinical information (Accel + Clinical), and a combination 
of accelerometer data, demographics, and clinical information (Accel 
+ Demo + Clinical). We refer to demographics as the features of age, 
sex, race, height, and weight and as clinical data, the length of stay, 
blood pressure, heart rate, SpO2, pain score, Braden score, and 
cognitive status. In addition, we used the SOFA score as a baseline to 
compare performances across the rule-based and deep learning-based 
methods. We also evaluate the combination of demographics and 
clinical data (Demo + Clinical) to evaluate the accelerometer’s 
contribution to the acuity status assessment. The results are 
summarized in Table 3.

The performance of our baseline SOFA score-based predictor is 
notably limited, with suboptimal AUC (0.53), precision (0.23), 

sensitivity (0.30), and F1 score (0.66). However, the model 
demonstrates a relatively high specificity of 0.76.

Incorporating accelerometer data (Accel) alone or combined with 
demographic and clinical variables (Accel + Demo, Accel + Clinical, 
Accel + Demo + Clinical) significantly improved the model’s 
performance across all metrics. Notably, adding accelerometer data 
improves AUC, precision, sensitivity, specificity, and F1-score 
compared to the SOFA score baseline.

Combining accelerometer data with demographic and clinical 
variables (Accel + Demo + Clinical) yields the best overall 
performance among the scenarios involving accelerometer data. This 
model achieves the highest AUC of 0.73, indicating superior 
discriminative ability compared to other scenarios. Moreover, it 
exhibits the highest precision (0.80), sensitivity (0.60), specificity 
(0.79), and F1 score (0.77). Our best setup demonstrated a relatively 
lower p-value.

Optuna provided us with detailed information and 
hyperparameter selection suggestions. Table  4 outlines the best 
hyperparameters found by the search for each combination of feature 
sets. Table A1 comprehensively overviews the hyperparameters and 
their corresponding values. For the scenario where only accelerometer 
data was utilized (Accel), SqueezeNet architecture with a batch size of 
16, learning rate of 2.11 × 10−4, and weight decay of 9.23 × 10−6 yielded 
the best results. The accelerometer downsampling factor was set to 1. 
Incorporating demographic data along with accelerometer data (Accel 
+ Demo) led to the selection of Resnet architecture with similar 

FIGURE 3

Distribution of patients and samples distribution in the test set and the three-folded development set. (A) Sample distribution. (B) Patient distribution.
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hyperparameters, except for a slightly lower learning rate of 1.16 × 
10−4 and weight decay of 2.77 × 10−6. The downsampling factor was 
adjusted to 2  in this scenario. When clinical data was added to 
accelerometer data (Accel + Clinical Data), SqueezeNet architecture 
was again favored, with hyperparameters akin to the Accel scenario, 
except for a higher weight decay of 9.88 × 10−4 Finally, combining 
accelerometer, demographic, and clinical data (Accel + Demo + 
Clinical Data) led to the choice of Resnet architecture with a batch size 
of 16, a learning rate of 9.37 × 10−5, and weight decay of 2.13 × 10−4. 
The downsampling factor remained consistent with the Accel + Demo 
scenario at 2. We achieved the best Accel + Demo + Clinical scenario 
performance AUC of 0.73 (0.63–0.78).

Figure  4 illustrates the application of SHAP interpretability 
analysis in detecting relative feature importance for three specific 
feature combinations: accelerometer and demographic features, 
accelerometer and clinical features, and accelerometer clinical and 
demographic features. This analysis is conducted on the best models 
obtained for each feature combination scenario. The significance of 
these features can aid in potential feature selection or assessing their 
impact on patient diagnosis.

3.3 Discussion

This study explored the potential of accelerometry and EHR data 
in directly determining patients’ acuity state as an alternative to 
depending exclusively on rule-based scoring systems like the SOFA 
score. Our analysis revealed that the SOFA score-based predictor 
exhibited notable limitations, with suboptimal precision, sensitivity, 
and F1 score, reflecting its inadequacy in effectively evaluating patient 
conditions. Although the model demonstrated relatively high 
specificity, its AUC did not significantly surpass random chance, 
indicating the need for more sophisticated predictive models in 
clinical practice.

In contrast, incorporating accelerometer data alone or combined 
with demographic and clinical variables significantly enhanced model 
performance across all metrics. Notably, adding accelerometer data 
improved AUC, precision, sensitivity, specificity, and F1 score 
compared to the SOFA score baseline. These findings underscored the 
importance of integrating additional features beyond traditional 
clinical variables for accurate predictive modeling in medical settings. 
We believe that the additional features encompass aspects of patient 
physiology and functional status that are not effectively captured by 
SOFA inputs (or inputs for other traditional models such as APACHE 
and MEWS). The ability of accelerometer data to capture patient 
mobility and range of motion continuously can augment the current 
practice of hourly assessments that are subject to individual bias and 
is limited to observations of the bedside nurse. Therefore, we are not 
only enhancing predictive performance but also adding nuance to 
patient assessment, enriching the overall assessment process. Among 
the scenarios involving accelerometer data, the model incorporating 
accelerometer data with demographics and clinical information (Accel 
+ Demo + Clinical) demonstrated the best overall performance. This 
comprehensive approach yielded the highest AUC, precision, 
sensitivity, specificity, and F1 score, emphasizing the synergistic 
benefits of integrating multiple data types for predictive modeling. The 
robust performance of this model, with highly significant p-values, 
validated its effectiveness in predicting patient outcomes.

TABLE 1 Patients characteristics.

Variables
Development 

Cohort 
(N =  60)

Test 
cohort 
(N =  27)

p-
value

Female sex, N (%) 22 (36.7%) 9 (33.3%) 0.76

Hispanic ethnicity, N (%) 8 (13.3%) 2 (7.4%) 0.42

Age in years, mean (SD) 58.4 (15.9) 52.2 (18.3) 0.12

Height in cm, mean (SD) 173.6 (9.1) 172.4 (8.5) 0.56

Weight in kgs, mean (SD) 87.2 (23.6) 77.8 (15.0) 0.06

Length of stay in days, 

median (25th, 75th 

percentile)

11.0 (6.0, 29.0) 13.0 (8.0, 

23.0)

0.60

Race: N (%)

White 49 (81.7%) 18 (66.7%) 0.12

African American 9 (15.0%) 3 (11.0%) 0.63

Other 2 (3.3%) 6 (22.2%) <0.05

Comorbidities: N (%)

Cancer 0 (0.0%) 6 (22.2%) <0.05

Cerebrovascular disease 8 (13.3%) 4 (14.8%) 0.85

Dementia 1 (1.7%) 2 (7.4%) 0.18

Paraplegia hemiplegia 6 (10.0%) 2 (7.4%) 0.70

Congestive heart failure 7 (11.7%) 2 (7.4%) 0.55

Chronic obstructive 

pulmonary disease

4 (6.7%) 3 (11.1%) 0.48

Diabetes 7 (11.7%) 6 (22.2%) 0.20

Liver disease 15 (25.0%) 5 (18.5%) 0.51

Peptic ulcer 2 (3.3%) 0 (0.0%) 0.34

Renal disease 9 (15.0%) 4 (14.8%) 0.98

SD, standard deviation; N, number. In our analysis, we employed two distinct statistical tests 
to examine the differences between the development cohort and the test cohort. For the 
continuous variables, we used Welch’s t-test, while for the categorical variables, we used the 
two-proportion z-test, appropriately.

TABLE 2 Distribution of demographic variables of encounters (recorded 
every four hours) stratified by class labels (stable, unstable).

Variables Stable 
encounters 

(N =  434)

Unstable 
encounters 

(N =  101)

p-
value

Female sex, N (%) 187 (43.0%) 16 (15.8%) <0.05

Hispanic ethnicity, N (%) 64 (14.8%) 4 (4.0%) <0.05

Age in years, mean (SD) 59.2 (16.7) 57.5 (13.4) 0.34

Height in cm, mean (SD) 171.2 (9.1) 178.6 (7.2) <0.05

Weight in kg, mean (SD) 83.6 (21.50) 97.5 (20.2) <0.05

Length of stay in days, 

median (25th, 75th 

percentile)

16.0 (8.0, 31.0) 29.0 (12.0, 33.0)

<0.05

Race, N (%)

White, N (%) 336 (77.4%) 85 (84.2%) 0.97

African American, N (%) 42 (9.7%) 16 (15.8%) 0.07

Other, N (%) 56 (100.0%) 0 (0.0%) <0.05

SD, standard deviation; N, number.
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TABLE 4 Best hyperparameters for each scenario.

Model
Number of 
parameters 

(million)
Batch size Learning rate

Weight 
decay

Accelerometer 
downsampling 

factor

Accel Squeezenet 4.33 16 2.11 × 10−4 9.23 × 10−6 1

Accel + Demo Resnet 3.90 16 1.16 × 10−4 2.77 × 10−6 2

Accel + Clinical Data Squeezenet 5.61 16 2.14 × 10−4 9.88 × 10−4 1

Accel + Demo + Clinical Data Resnet 4.21 16 9.37 × 10−5 2.13 × 10−4 2

All models performed best with maintaining the original 
frequency of the accelerometer (downsampling scale of 1) which 
indicated that the long sequence was not a problem for the employed 
architectures. Notably, a bigger batch size was necessary for the models 
when clinical data was included in the model. It could indicate that 
the added complexity introduced by the clinical data required more 
samples to be processed simultaneously for the model to effectively 
identify patterns, optimize the gradients, and achieve better 
convergence during training.

While our study offers valuable insights, it is crucial to 
acknowledge limitations. Firstly, the generalizability of our findings 
may be constrained by the size and patient population of mainly white 
people studied at a single center, warranting validation on diverse 
datasets to enhance applicability. Despite the clinical research team’s 
daily checks to ensure proper placement of accelerometer devices and 
requests to the nursing staff to document the times of device removal 
and application, it is probable that a small amount of data included in 
this study’s analyses were recorded while the device was not placed on 
the patient. The exclusion of patients who died within 24 h of 
recruitment, coupled with the inability to place study devices on the 
arms of patients with numerous intravenous and/or intraarterial lines 
or other equipment (i.e., wrist restraints), may have introduced bias 
through the exclusion of these high acuity patients from our cohort. 
Furthermore, the collection of accelerometry data and use of a 
motion-monitoring system may be unsuited for the acuity assessments 
of intubated and sedated patients, since the active mobility in these 
patients is extremely limited.

Finally, it is essential to note that SHAP feature importance is 
correlated with model performance and may be  vulnerable to 
misclassification due to overfitting, potentially leading to erroneous 
feature interpretations.

Accelerometer data emerges as an area of high potential for future 
research endeavors. Its utility extends to evaluating patient mobility, 

i.e., measuring the ability to change and control body position. 
Expanding this research to include the integration of additional 
clinical features, such as medication history, laboratory test results, 
and admission information, holds potential for further advancements. 
Moreover, utilizing multimodal models incorporating various 
pervasive sensing data like depth images, color RGB images, 
electromyography, sound pressure, and light levels offers opportunities 
to enhance model performance.

In Figures  4A–C, it is evident that in the combinations of 
accelerometer with demographic features, accelerometer with clinical 
features, and all of them together, the accelerometer features exhibit 
higher importance compared to other features. The accelerometer 
features demonstrate a broad range of values in positive and negative 
directions, suggesting its strong indicative nature for acuity analysis, 
which aligns with our best model results.

Across scenarios utilizing only accelerometer data, accelerometer 
with demographic data, and accelerometer with clinical data, similar 
performance was observed on our test data, with an AUC of 0.62 for 
each combination. It suggests that clinical or demographic features 
alone, when combined with accelerometer data, do not significantly 
enhance the models’ ability to classify our dataset. It underscores the 
critical role of accelerometer data in acuity assessment tasks.

Furthermore, combining accelerometer data with clinical and 
demographic data improved the AUC from 0.62 to 0.73, indicating an 
inter-feature dependency among these variables, which benefits 
our model.

4 Conclusion

Critical care environments necessitate the timely assessment of 
patient acuity to determine the severity of illness and prioritize care 
accordingly. Our analysis revealed limitations in the SOFA-based 

TABLE 3 The best results reported as average and 95% confidence interval in each scenario.

Model
AUC (95% CI, 

p-value)
Precision (95% 

CI, p-value)
Sensitivity (95% 

CI, p-value)

Specificity 
(95% CI, p-

value)

F1-score (95% 
CI, p-value)

SOFA score – 0.53 (0.48–0.58) 0.23 (0.19–0.28) 0.30 (0.22–0.38) 0.76 (0.69–0.82) 0.66 (0.61–0.72)

Demo + Clinical* XGBoost 0.51 (0.45–0.57, 0.63) 0.65 (0.59–0.70, <0.05) 0.14 (0.06–0.21, <0.05) 0.74 (0.69–0.79, 0.65) 0.64 (0.59–0.68, 0.59)

Accel* Squeezenet 0.62 (0.53–0.70, 0.07) 0.75 (0.71–0.79, <0.05) 0.47 (0.35–0.57, <0.01) 0.76 (0.71–0.81, 1.00) 0.72 (0.68–0.76, 0.08)

Accel + Demo** Resnet 0.62 (0.52–0.69, 1.00) 0.76 (0.71–0.80, 0.76) 0.52 (0.40–0.63, 0.55) 0.74 (0.70–0.78, 0.55) 0.72 (0.68–0.76, 1.00)

Accel + Clinical** Squeezenet 0.62 (0.52–0.69, 1.00) 0.75 (0.70–0.79, 1.00) 0.49 (0.37–0.57, 0.80) 0.74 (0.70–0.78, 0.55) 0.72 (0.68–0.75, 1.00)

Accel + Demo + Clinical*** Resnet 0.73 (0.63–0.78, 0.06) 0.80 (0.75–0.84, 0.12) 0.60 (0.48–0.70, 0.33) 0.79 (0.74–0.82, 0.08) 0.77 (0.73–0.80, <0.05)

Accel – accelerometer data, demo – demographics (age, sex, race, height, weight, and length of stay), clinical – the clinical set of features (blood pressure, heart rate, spo2, pain score, Braden 
score, and acute brain dysfunction status). *Indicates that the p-values for the setups were calculated by comparison with the SOFA score baseline, **Indicates that the p-values for the setups 
were calculated by comparison with the Accel-only setup, ***Indicates that the p-values for the setups were calculated by comparison with the Accel + Clinical setup.
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predictor, highlighting the need for more sophisticated models in 
clinical practice. Integrating accelerometer data, either alone or with 
demographic and clinical variables, significantly enhanced model 
performance, underscoring the importance of diverse data sources in 
predictive modeling. The model combining accelerometer data with 
demographics and clinical information exhibited the highest 
performance, validating its efficacy in predicting patient acuity. This 
underscores the importance of a comprehensive approach to patient 
acuity assessment in critical care settings. While initial findings are 
promising, further research is imperative to optimize the accuracy and 
efficiency of these assessments, ensuring advancements in patient care 
and safety.

It is important to acknowledge that the observational studies for 
which this data was collected were conducted with the intent of being 
unobtrusive to patient care, and patients or their proxies were always 
given the opportunity to opt out of, or discontinue, accelerometer data 
collection. Additional research is required to ascertain the reliability of 
mobility data for evaluating intubated and sedated patients. Moreover, 
further investigation is warranted to evaluate their seamless integration 
into clinical workflows, ensuring they do not add to nursing workload 

or physician information overload. Additionally, thoughtful 
consideration needs to be given to how the outputs and assessments of 
these models can be communicated effectively, ensuring they offer 
actionable insights for healthcare providers.
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FIGURE 4

SHAP bee swarm plot illustrating feature importance for different types of feature combinations. (A) Accelerometer and demo (Accel + Demo) features. 
(B) Accelerometer and clinical (Accel + Clinical) features. (C) Accelerometer, demo and clinical (Accel + Demo + Clinical) features.
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Appendix

Tables A1, A2.

TABLE A2 Number of parameters and flop counts for each of our models 
for the accel + demo + clinical data combination with downsampling 
factor of 1.

Model name
Number of 

parameters (million)
Flops (G)

VGG 34.6 193.29

ResNet 4.21 158.45

MobileNet 1.06 79.87

SqueezeNet 4.65 173.91

Transformer 0.75 23.01

TABLE A1 Overview of the hyperparameters and their respective values 
explored in the hyperparameter optimization.

Hyperparameter Values

Model VGG, ResNet, MobileNet, SqueezeNet, 

and Transformers

Batch size 8, 16, 24 and 32

Learning rate Ranging from 10−5 to 10−1

Weight decay Ranging from 10−10 to 10−3

Accelerometer downsampling factor 1, 2, and 4
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Remotely prescribed, monitored, 
and tailored home-based 
gait-and-balance exergaming 
using augmented reality glasses: a 
clinical feasibility study in people 
with Parkinson’s disease
Lotte E. S. Hardeman 1*, Daphne J. Geerse 1, 
Eva M. Hoogendoorn 1, Jorik Nonnekes 2,3 and Melvyn Roerdink 1

1 Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije 
Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands, 2 Radboud 
University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of 
Rehabilitation, Centre of Expertise for Parkinson and Movement Disorders, Nijmegen, Netherlands, 
3 Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, Netherlands

Background: Exergaming has the potential to increase adherence to exercise 
through play, individually tailored training, and (online) remote monitoring. 
Reality Digital Therapeutics (Reality DTx®) is a digital therapeutic software 
platform for augmented reality (AR) glasses that enables a home-based gait-
and-balance exergaming intervention specifically designed for people with 
Parkinson’s disease (pwPD).

Objective: The primary objective was to evaluate the feasibility and potential 
efficacy of Reality DTx® AR exergaming intervention for improving gait, balance, 
and walking-adaptability fall-risk indicators. The secondary objective was to 
evaluate the potential superiority of AR glasses [Magic Leap 2 (ML2) vs. HoloLens 
2 (HL2)].

Methods: This waitlist-controlled clinical feasibility study comprised three 
laboratory visits (baseline; pre-intervention; and post-intervention), a home 
visit, and a 6-week AR exergaming intervention. Five complementary gait-
and-balance exergames were remotely prescribed (default five sessions/
week of 30 active minutes/session), monitored, and tailored. Feasibility 
was assessed in terms of safety, adherence, and user experience. During 
laboratory visits, gait-and-balance capacity was assessed using standard 
clinical gait-and-balance tests and advanced walking-adaptability fall-risk 
assessments.

Results: In total, 24 pwPD participated. No falls and four near falls were reported. 
Session adherence was 104%. The User Experience Questionnaire scores for 
Reality DTx® ranged from above average to excellent, with superior scores 
for HL2 over ML2 for Perspicuity and Dependability. Intervention effects were 
observed for the Timed Up and Go test (albeit small), the Five Times Sit to Stand 
test, and walking speed. Walking-adaptability fall-risk indicators all improved 
post-intervention.

Conclusion: Reality DTx® is a safe, adherable, usable, well-accepted, and 
potentially effective intervention in pwPD. These promising results warrant 
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future randomized controlled trials on the (cost-)effectiveness of home-
based AR exergaming interventions for improving gait, balance, and fall 
risk.

Clinical trial registration: ClinicalTrials.gov, identifier NCT05605249.

KEYWORDS

Parkinson’s disease, augmented reality, gait, balance, walking adaptability, 
exergaming, digital therapeutics

1 Introduction

People with Parkinson’s disease (pwPD) experience a wide range 
of gait-and-balance impairments, significantly affecting functional 
mobility and quality of life (1–7). Clinical (physiotherapy) guidelines 
stress the central role of exercise in the disease management of motor 
and non-motor symptoms (8–12). Exercise is defined as a planned, 
structured, repetitive, and purposeful physical activity to maintain one 
or more components of physical fitness (7). Despite increasing 
recognition of the importance of exercise in disease management, 
adherence to exercise remains challenging (13).

In this clinical feasibility study, we evaluated a 6-week remotely 
prescribed, monitored, and tailored home-based augmented reality 
(AR) exergaming (i.e., “exercise” and “gaming”) intervention (Reality 
DTx®) designed for state-of-the-art AR glasses [Magic Leap 2 (ML2); 
Microsoft HoloLens 2 (HL2)]. Our main therapeutic goal with this 
digital therapeutics program Reality DTx® was to improve gait and 
balance, including walking adaptability, in pwPD through gamified 
rehabilitation exercises. Moreover, Reality DTx® aims to increase the 
dose and adherence to exercise by making exercise more accessible (at 
home, at any time) and enjoyable, thereby potentially increasing the 
number of (unsupervised) rehabilitation exercise hours.

Reality DTx® is designed to accommodate individually tailored 
exercise [following FITT principles; frequency, intensity, type, and 
time (7)], to monitor exercise remotely (in terms of adherence and 
performance), and to motivate the user through gamification and 
feedback, all important aspects for delivering a progressive-but-
achievable intervention. To date, research on home-based exergaming 
interventions for pwPD primarily focused on non-immersive devices 
(e.g., Xbox Kinect or Nintendo Wii), showing promise in providing a 
safe and effective intervention for improving balance, mobility, and 
gait (14–18). The effectiveness of the in-clinic use of such 
non-immersive exergaming interventions is considered at least 
equivalent to traditional physiotherapy and strengthens the effects of 
traditional physiotherapy when combined (19–22). Recognition for 
the use of AR head-mounted displays for in-home rehabilitation, like 
the ones used in the present study, is increasing (23, 24).

The primary objective of this pre-registered waitlist-controlled 
clinical feasibility trial was to evaluate feasibility (in terms of safety, 
adherence, and user experience) and potential efficacy for improving 

clinical gait-and-balance test scores and laboratory-based targeted 
walking-adaptability fall-risk indicators. The secondary objective was 
to evaluate the potential superiority of state-of-the-art AR glasses (i.e., 
ML2 vs. HL2) for delivering Reality DTx®.

2 Methods

Here, we summarize the methods used in this study. A detailed study 
protocol was pre-registered (25), while (minor) changes thereto are 
specified below.

2.1 Participants

Participants were eligible to participate if diagnosed with PD 
according to the UK PD Brain Bank criteria [Hoehn and Yahr Scale (HY) 
stage 2–4] and experienced bothersome gait and/or balance impairments 
based on self-report. Participants were excluded if there was a sign of 
inability to comply with protocol, additional neurological diseases and/
or orthopedic problems seriously interfering with gait-and-balance 
function, insufficient physical capacity or cognitive and/or 
communicative inability to understand instructions and participate in 
the tests (as observed by the researchers), visual or hearing impairments 
(after corrective aids), severe visual hallucinations or illusions, inability 
to walk independently for 30 min, and no stable dosages of dopaminergic 
medication. There were no restrictions to usual care. Eligibility criteria 
were checked through telephone screening before enrollment and again 
during the baseline laboratory assessment.

Ethical approval was obtained from the accredited Medical 
Research Ethics Committees United, The Netherlands (R22.076, 
NL82441.100.22, under the title “CueX: a gamified gait-and-balance 
exercise intervention for augmented reality glasses to improve 
Parkinsonian gait”), and the research was carried out in accordance 
with the principles laid down by the Declaration of Helsinki. 
Participants provided written informed consent obtained by 
researchers LH, DG, or EH before participating in this study.

2.2 Trial design, intervention, and 
procedure

This waitlist-controlled feasibility trial (Figure 1) comprised:

 i. three laboratory assessments (baseline [t0], pre-intervention 
[t1], and post-intervention [t2]), see 26.

Abbreviations: pwPD, People with Parkinson’s disease; Reality DTx®, Reality Digital 

Therapeutics; AR, Augmented reality; HL2, Microsoft Hololens 2 (AR glasses); ML2, 

Magic Leap 2 (AR glasses); FITT, Frequency, Intensity, of the right Type and Time 

(i.e., duration) of an exercise schedule.
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 ii. a 6-week waitlist period (between t0 and t1) to evaluate effects, 
if any, of usual care,

 iii. a home visit to set up Reality DTx® for independent but 
remotely monitored use,

 iv. a 6-week home-based Reality DTx® intervention period with 
weekly telephone calls in addition to usual care. Reality 
DTx® is an AR software application (registered as a UKCA, 

FDA, and CE-marked medical device) for delivering a 
home-based gait-and-balance exergaming rehabilitation 
program. Reality DTx® is remotely prescribed and 
monitored through a web portal (Figure 2) and delivered 
through state-of-the-art ML2 or HL2 AR glasses, 
randomized over participants to evaluate the potential 
superiority of AR glasses (Figure 1),

FIGURE 1

(A) Overview of the study design and procedure, with (B) images of the five exergames of Reality DTx®.

FIGURE 2

Snapshots of the web portal to remotely prescribe (A) and monitor (B,C) gait-and-balance exergames. Please see Supplementary Table S1 for a 
description of all adjustable Reality DTx® gait-and-balance exergaming elements per game.
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 v. The Reality DTx® intervention comprises five complementary 
gait-and-balance exergames, developed in collaboration with 
Strolll Limited (Figure  1; see Supplementary material for a  
Video and Supplementary Table S1 for a detailed game 
description). Participants were initially instructed to use Reality 
DTx® for 30 active minutes/day (in one session or divided over 
the day in ‘exercise snacks’) for 5 days/week but were allowed to 
train more. Reality DTx® was intended to be a progressive-but-
achievable intervention. Hence, it was personalized (i.e., in 
terms of frequency, type, difficulty, duration, or mode of the 
exergames) and updated on a weekly basis, with shared decision-
making among participants and trial managers using feedback 
from weekly telephone calls and remotely monitored adherence 
and performance data from the web portal (Figure 2) as input.

2.3 Outcomes

Various complementary outcomes of potential efficacy for 
improving gait and balance were evaluated in the laboratory (t0, t1, 
and t2), using clinical gait-and-balance tests and adaptive-walking 
tasks like obstacle avoidance with the Interactive Walkway (Figure 3), 
which allowed for more in-depth targeted fall-risk assessment. 
Complementary feasibility outcomes were derived from the web 
portal (adherence and performance scores), telephone calls (safety 
and technical issues), and online questionnaires (acceptability and 

user experience) during (t1-t2) or after (>t2) the intervention as 
specified in Supplementary material S2 and detailed in the 
pre-registration (25).

2.4 Statistical analyses

2.4.1 Planned analyses
Independent-samples t-tests (or their non-parametric equivalents) 

were used to evaluate safety and user experience between groups (ML2 
vs. HL2). Adherence was analyzed with a 2 (between-subjects factor 
Group: ML2, HL2) × 6 (within-subject factor Week: 1 to 6) mixed 
ANOVAs, with a polynomial contrast analysis to evaluate a trend in 
adherence between weeks. Potential efficacy outcomes were subjected to 
2 × 3 mixed ANOVAs with the between-subjects factor Group and the 
within-subject factor Time (three levels: t0, t1, and t2). For the main 
effects of Time, the first and second reverse Helmert contrasts were used 
to evaluate waitlist and intervention effects, respectively. Data analysis 
was performed in JASP (27), with significance set at 0.05 and effect size 
reported as partial-eta squared. Missing data, due to, for example, 
technical issues and missed medication dose, were excluded from the 
analysis. Conditions for parametric testing were checked for all analyses. 
If violated, appropriate non-parametric tests were used. Bayesian 
hypothesis testing was performed to quantify the likelihood of support 
for the alternative hypothesis over the null [BF10-values between 1 and 3, 
between 3 and 10, and above 10 reflect, respectively, anecdotal, moderate, 
and strong evidence for the alternative hypothesis (28)].

FIGURE 3

Visual representation of the interactive walkway (A) used for a targeted fall-risk assessment, including gait (instrumented 10-m walk test) and adaptive 
gait [augmented obstacle-avoidance (B), goal-directed stepping (C), tandem walking (D), and half-turn (E) tasks] assessments.
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2.4.2 Exploratory analyses (not specified in the 
pre-registration)

Reality DTx® was intended as a progressive-but-achievable 
rehabilitation intervention, where exergame-level settings can 
be tailored to the varying abilities and progression rates of participants. 
To evaluate this progressive-but-achievable nature, we compared each 
game on: (i) Reality DTx® exergame-level settings (5 levels, specified 
in Supplementary Table S1) over the 6-week intervention using a 
chi-square test for independence (an increase in game-play levels was 
expected over weeks) and (ii) the game-play performance scores over 
the 6-week intervention using a mixed ANOVA (high-but-
submaximal scores were expected, without differences over weeks).

3 Results

3.1 Participant inclusion, characteristics, 
and dropouts

In total, 24 of the 31 participants scheduled for a baseline assessment 
(t0) started the Reality DTx® intervention (Figure 4). There were three 
no-shows. Two persons were excluded for ‘insufficient physical capacity 
as observed by the researchers’ (i.e., their fall risk during unsupervised 
home-based exergaming was deemed too high, both were classified as 
HY3, were freezers [New Freezing of Gait Questionnaire (NFOGQ) 
scores of 13/28 and 24/28], and reported considerably higher fall rates 
[1–2 falls/week] than the other participants [max 10 falls/year; Table 1]). 
Two persons were excluded for ‘comorbidities influencing gait’ [i.e., 
cerebral vascular accident and weakness in L5 musculature (dorsiflexors 
and hip abductors)]. Baseline characteristics did not differ for the 24 
participants randomized to the ML2 (n = 11) and the HL2 (n = 13) AR 
glasses groups (Table 1, please see section 3.2.4 for a clarification on the 
difference in number of participants per group). Four of these 24 
participants dropped out of the study after t1, yielding a dropout rate of 
16.7% (Figure 4). Dropouts who trained for at least 3 weeks (i.e., three of 
four) were included in the feasibility analyses of safety and were 
administered the user experience questionnaires because we did not 
want to limit these analyses to only those participants who finished the 
intervention. That is, to minimize bias and learn from dropouts to 
optimize the intervention, we included a total of 23 participants in the 
feasibility analyses.

3.2 Feasibility

3.2.1 Safety
There were no serious adverse events during the Reality DTx® 

intervention. Table 2 shows the number of reported adverse events per 
week. There were no falls and four near falls reported by three unique 
participants; nine participants experienced 15 dizziness events, one 
participant experienced a headache twice, none reported eyestrain, 
and 11 participants reported 27 experiences of other adverse events, 
such as re-occurring prior injuries (e.g., low back or shoulder pain, the 
latter due to fatigue, and pinched-nerve complaints), aggravated 
existing PD-related (e.g., dystonia and dyskinesia), or comorbid (e.g., 
COPD and fibromyalgia) symptoms, often reported by the same 
participant over multiple training weeks. There were no group effects 
(ML2 vs. HL2).

3.2.2 Adherence
For the 20 participants completing the Reality DTx® intervention, 

a total of 606 Reality DTx® sessions were performed, while 583 
sessions were prescribed, amounting to an overall 104% session 
adherence. Session adherence varied significantly over weeks 
(F(5,90) = 3.438, p = 0.007, ηp

2 = 0.160, BF10 = 6.789, with a significant 
quadratic contrast t(19) = 3.441, p = 0.003; Figure 5A), without main 
or interaction effects involving groups. One-sample t-tests against 
100% only revealed a significant difference for week 1 (Z = 102.500, 
p = 0.014), wherein participants performed more sessions than 
prescribed (Figure  5A). Participants, on average, walked 
9,989 ± 3,889meters, performed 1,633 ± 834 sit-to-stand/squat 
movements, performed 14,218 ± 5,400 functional reaches, and 
completed 790 ± 246 active exercise minutes, amounting to 88% active 
minutes/session adherence, which did not vary significantly over 
weeks (F(3.45,62.04) = 0.765, p = 0.535, ηp

2  = 0.041, BF10 = 0.076). 
One-sample t-tests against 100% revealed that participants performed 
fewer than prescribed active minutes/session in weeks 1, 2, 3, and 4 
(t(19) = −4.332, p < 0.001, t(19) = −4.808, p < 0.001, t(19) = −2.888, 
p = 0.009 and Z = 28.000, p = 0.007, respectively; Figure 5B).

3.2.3 Progressive-but-achievable intervention
Participants performed Reality DTx® with exergame-play levels 

tailored to their ability. There was a considerable variation in 
exergame-play level (Figure  6A, illustrated for Mole Patrolll), 
suggesting a successful personalization of the varying abilities and 
progression profiles of our participants. For the 20 participants 
completing the Reality DTx® intervention, Reality DTx® was a 
progressive-but-achievable intervention (Figures  6B–F), with 
exergame-play levels varying significantly over weeks for all exergames 
(χ2(5) > 32.321, p < 0.001), with significant linear contrasts indicating 
that for all exergames the levels increased proportionally over weeks 
(all t(df) > 5.840, p < 0.001). This progression in exergame levels did 
not differ significantly between groups. Exergame-performance scores 
were overall high-but-submaximal and did not vary systematically 
over weeks, except for basketball (F(2.29,39.00) = 10.417, p < 0.001), 
showing a proportional improvement in performance over weeks 
(t(85) = 7.128, p < 0.001, Figure 6D). Exergame performance did not 
differ significantly between groups.

3.2.4 User experience

3.2.4.1 Prescription lenses
All but one participant randomized to the ML2 group did not 

require prescription lenses to train with Reality DTx®, even though all 
ML2 participants used prescription (reading) spectacles or lenses in 
daily life. For pragmatic reasons, this participant with a prescription of 
+2.25 was moved to the HL2 group so that his spectacles could be worn 
during the intervention (i.e., to prevent delays and costs associated with 
ordering special lenses not part of the standard lens kit).

3.2.4.2 Technical issues
The HL2 group participants reported predominantly issues related 

to shifts in or loss of the spatial map of the safe training area (with one 
dropout due to frustration with technical issues) and limited AR field 
of view. The ML2 group participants reported predominantly issues 
related to hand tracking (affecting interaction with menus Smash!, and 
Hot Buttons) and Wi-Fi connection. Such technical issues experienced 
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during the intervention were categorized into issues that did or did 
not prevent participants from adhering to the prescribed intervention 
(Supplementary material S3). In only 10 of the 131 prescribed training 
weeks, more than 2 days per week were lost due to technical issues. 
These issues were solvable by participants themselves, by researchers 
visiting participants, or remotely through a telephone call.

3.2.4.3 User Experience Questionnaire (UEQ)
Reality DTx® reached above-average scores for UEQ (29) 

subscales Efficiency and Dependability, good scores for Perspicuity 
and Novelty, and excellent scores for Attractiveness and Stimulation 
(Figure 7A). User experience seemed overall somewhat better for the 
HL2 group (Figure 7A), with significantly lower scores for the ML2 
group on Perspicuity (U = 64, p < 0.05, rrb = 0.580, BF10 = 1.365) and 
Dependability (t(16) = 2.473, p < 0.05, d = 1.166, BF10 = 2.735) and 
borderline-significant lower scores for Attractiveness (U = 63, 
p = 0.051, rrb = 0.556, BF10 = 1.615).

3.2.4.4 Acceptability questions
Figure  7B depicts the score distribution on the acceptability 

evaluation Likert-scale questions, indicating that overall Reality DTx® 
was a well-accepted intervention. Participants scored the training as 
useful (8.4/10), motivating (8.2/10), challenging (8.1/10), fun (8.7/10), 
user-friendly (7.5/10), and suitable for improving gait and balance 
(7.5/10). On the question of how participants would feel if we stopped 
developing Reality DTx®, 17 of 22 participants indicated that they 
would be  very disappointed, 5 of 22 indicated that they would 
be somewhat disappointed, and 0 of 22 indicated not to feel disappointed.

3.3 Potential efficacy

We conducted a 2 (Group) × 3 (Time) mixed ANOVA on 
outcomes of gait, balance, and walking-adaptability fall-risk indicators. 
We focussed on the main effects of Time, as effects with Group were 

FIGURE 4

Flow diagram of the 24 study participants. Note: *One participant changed medication dose (700 to 800 mg levodopa/carbidopa) in the waitlist-
control period (three weeks before pre-intervention measures, t1) and was not excluded because we consider this small change in medication 
acceptable as part of this feasibility study.
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generally not significant, except when explicitly mentioned (full 
statistics in Supplementary material S4).

3.3.1 Clinical gait-and-balance tests
For Timed Up & Go test (TUG), 10 Meter Walk Test (10MWT), 

and Five Times Sit to Stand Test (FTSTS), a significant main effect of 
Time was observed (Table  3). For TUG, both inverse Helmert 
contrasts were significant, revealing that test completion times 
decreased from t0 to t1 and then decreased further at t2. For 10MWT, 
only the first and for FTSTS, only the second inverse Helmert contrast 

was significant, indicating improvements in completion times during 
the waitlist and after the intervention, respectively. Mini Balance 
Evaluation Systems Test (Mini-BESTest), MDS-UPDRS III, and 
Lindop Parkinson’s Physiotherapy Assessment Scale (LPAS) did not 
vary significantly with Time.

3.3.2 Gait parameters
We quantified key gait characteristics during the instrumented 

10MWT. For walking speed and step length, significant main effects 
of Time were observed (Table 3). Speed and step lengths increased 
from t0 to t1, and walking speed improved further at t2 after the 
Reality DTx® intervention. Step width and cadence did not vary 
with Time.

3.3.3 Walking adaptability
Participants’ walking adaptability, a targeted marker for fall risk 

(26), improved after the Reality DTx® intervention, that is, at t2, 
participants completed the obstacle-avoidance, goal-directed stepping, 
tandem walking, and time-pressured half-turn tasks significantly 
faster than before, as reflected by significantly faster (normalized) 
walking speeds and turning times after the Reality DTx® intervention 
(Table  3), without negatively affecting walking-adaptability 
performance indicators such as obstacle-avoidance success rates and 
stepping accuracy (i.e., no effects of Time on walking-adaptability 
performance indicators; Table 3).

3.3.4 Patient-reported outcome measures
For the questionnaires only a significant main effect of Time 

(F(2,36) = 3.309, p = 0.048, ηp
2 = 0.155) was observed for FES-I, with a 

slightly but significantly 2.53 ± 1.22 higher FES-I score at t1 than at t0 
(t(36) = 2.076, p = 0.045). Furthermore, a significant main effect of 
Group (F(1,18) = 5.224, p  = 0.035, ηp

2  = 0.225) was observed for 
NFOGQ, with a 6.88 ± 3.01 higher score for the ML2 (with 7/9 
freezers) group compared to the HL2 (4/11 freezers) group.

4 Discussion

In this waitlist-controlled clinical feasibility study, we evaluated a 
home-based gait-and-balance exergaming intervention (Reality 
DTx®), a digital therapeutics program that was specifically designed 

TABLE 1 Baseline participant characteristics did not differ between the 
HL2 and ML2 groups.

ML2 
(n  =  11)

HL2 
(n  =  13)

Statistic

Age (years) 69.8 [53–82] 64 [51–74] t(22) = −1.639, 

p = 0.116, BF10 = 0.966

Sex 8M, 3F 9M, 4F X2(1) = 0.035, 

p = 0.851, BF10 = 0.509

Disease 

duration (years)

9 [1–15] 7 [1–20] t(22) = −0.949, 

p = 0.353, BF10 = 0.519

Modified HY 2 (45.5%), 2.5 

(54.5%)

2 (69.2%), 2.5 

(30.8%)

X2(1) = 1.386, 

p = 0.239, BF10 = 0.900

MoCA score 27 [19–30] 26 [18–29] U = 41.000, p = 0.078, 

BF10 = 1.109

LEDD (max. 

mg/day)

814 [150–1738] 866 [125–2,400] t(22) = 0.429, 

p = 0.672, BF10 = 0.411

History of falls 

(per year)

2.5 [0–10] 2.6 [0–10] U = 70.500, p = 0.976, 

BF10 = 0.372

Number of 

freezers

7 5 X2(1) = 1.510, 

p = 0.219, BF10 = 0.942

MDS-UPDRS 

(total score)

69 [50–79] 58 [34–78] t(22) = −1.904, 

p = 0.070, BF10 = 2.092

PASE 117.7 [45.0–

180.0]

128.0 [40.0–

246.4]

t(22) = 0.404, 

p = 0.690, BF10 = 0.397

Data are mean [range]. Disease duration (years) = time since diagnosis. LEDD, levodopa 
equivalent daily dose; Modified HY, the Modified Hoehn and Yahr Scale; MoCA, the 
Montreal Cognitive Assessment; MDS-UPDRS, the MDS-Unified Parkinson’s Disease Rating 
Scale; PASE, the Physical Activity Scale for the Elderly.

TABLE 2 Adverse events.

Number of experienced adverse events per week Total number of 
reported adverse 

events/total 
number of training 

weeks

Total number 
of unique 

participants 
reporting an 

adverse event/
total number of 

participants

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 HL2 ML2 HL2 ML2

Falls 0/23 0/23 0/23 0/21 0/21 0/20 0/74 0/57 0/23 0/23

Near falls 1/23 0/23 1/23 0/21 2/21 0/20 3/74 1/57 2/23 1/23

Dizziness 5/23 4/23 2/23 1/21 2/21 1/20 11/74 4/57 6/23 3/23

Headache 1/23 0/23 1/23 0/21 0/21 0/20 2/74 0/57 1/23 0/23

Eyestrain 0/23 0/23 0/23 0/21 0/21 0/20 0/74 0/57 0/23 0/23

Other 3/23 1/23 7/23 5/21 7/21 4/20 23/74 4/57 8/23 3/23
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for pwPD and uniquely administered through state-of-the-art AR 
glasses. Next, we  discuss the findings in terms of their feasibility 
(safety, adherence, and user experience) and potential efficacy for 
improving gait, balance, and walking-adaptability fall-risk indicators.

4.1 Feasibility: Reality DTx® is a safe, 
adherable, well-accepted, and usable 
intervention

A key feasibility aspect of new therapy interventions is safety, 
which seems especially relevant for Reality DTx® given its 

unsupervised remote delivery in an intrinsically high fall-risk 
population. We found that Reality DTx® was safe (no falls, only four 
near falls in >15,000 active minutes of gait-and-balance exergaming) 
with limited adverse events in relevant prespecified (30, 31) domains 
(e.g., some reports of dizziness, no eyestrain, and two headaches). 
We  learned that exergame settings could be  adjusted to prevent 
adverse events like dizziness, thereby further improving safety. For 
example, lower Smash! exergame levels yielded high turning rates, 
which may cause dizziness (i.e., 8/15 dizziness reports were attributed 
to turning), which can be remedied by lowering induced turning rates 
(e.g., demanding more punches and increasing inter-plinth distances). 
Exergame settings were also adjusted to tailor the physical load of the 

FIGURE 5

Reality DTx® adherence over weeks in terms of session adherence (A) and active minutes/session adherence (B). Error bars represent the standard error 
of the mean. *p <  0.01, **p <  0.001.

FIGURE 6

Reality DTx® exergame-play levels were personalized to participants’ abilities and progression rates over the 6-week intervention (A) and prescribed in a 
progressive (i.e., significant increase in game-play levels over weeks; black lines) but achievable (high and non-varying game-play performance for all 
exergames but Basketball; gray bars) manner (B–F).
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Reality DTx® intervention (according to FITT principles) to the 
participant’s physical capacity; still, some adverse events in the ‘other’ 
class were reported (such as re-occurring injuries).

A second important feasibility aspect is adherence. Our 
participants were able to exercise independently at home with 
Reality DTx®, with 104% session adherence, which is high 
compared to known adherence rates for home-based exercise 
interventions [e.g., 84% in (32)]. This is an encouraging finding 
considering the high-dose default prescription of 30 active minutes/
session for five sessions/week for 6 weeks (i.e., note that total session 
duration was always longer than the prescribed active minutes due 
to, e.g., switching or rests between exergames). Participants 
performed slightly fewer active minutes than prescribed (88% 
active-minute/session adherence). Still, this led to a high number 
of repetitions and a high dose of sit-to-stands/squats, functional 
reaches, and meters walked compared to other home-based 
interventions (33). For some participants, the default 30 active 
minutes/session was adjusted over weeks to tailor it, for example, to 
their physical capacity or time constraints. This again emphasizes 
how important remote monitoring and shared decision-making are 
for prescribing a progressive-but-achievable intervention as will 
be discussed next.

Reality DTx® was not only remotely monitored for adherence, but 
also for exergame performance. Reality DTx® was intended as a 
progressive-but-achievable intervention, balancing task demands and 
capacity (not too easy to prevent boredom and not too difficult to 
prevent demotivation). We  found that exergame levels indeed 
progressed significantly over weeks, with participant-specific exergame 
levels and progression rates (i.e., tailored treatment), whereas the 

consistently high-but-submaximal exergame-performance scores over 
the weeks indicated that the intervention was achievable. Reality DTx® 
thus seemed to comply with the intended progressive-but-achievable 
principle, which is a prerequisite for reaching an intrinsically rewarding 
and highly engaged ‘flow state,’ associated with exceptional performance 
and potentially increased long-term adherence (34, 35).

The third key feasibility aspect is the acceptance and usability of 
interventions. Overall, Reality DTx® was a well-accepted intervention. 
User experience scores for Reality DTx® were excellent on UEQ 
domains Stimulation and Attractiveness, good on Novelty and 
Perspicuity, and above average on Dependability and Efficiency 
compared to other established products [i.e., UEQ benchmark scores 
(29)]. Note that we found superior Dependability (‘Does the user feel 
in control of the interaction? Is it secure and predictable?’) and 
Perspicuity (‘Is it easy to get familiar with the product and learn how to 
use it?’) scores for HL2 than for ML2 AR glasses, most likely due to the 
at-that-time poorer hand tracking of ML2, as was also more often 
reported as a technical issue by the ML2 group participants. We cannot 
conclude on a clear winner in terms of AR glasses superiority (our 
secondary objective) as both AR glasses had their distinct advantages 
and disadvantages for different feasibility aspects (e.g., use with own 
glasses better for HL2, AR field of view better for ML2, hand tracking 
superior for HL2, and spatial mapping better for ML2). Furthermore, 
rapid progress in software developments for AR glasses continues to 
improve usability and performance with each update (e.g., ML2 hand 
tracking has been improved considerably with a recent update), so 
future studies will likely not be hindered by the technical issues and 
limitations we experienced with specific AR glasses. The same holds 
for issues related to the Reality DTx® digital therapeutics platform 

FIGURE 7

Reality DTx® user experience and acceptance. (A) HL2 and ML2 group mean scores on the six domains of the User Experience Questionnaire (UEQ) 
relative to the benchmark scores of the questionnaire [*p  <  0.05; analyses were based on n  =  18 as four cases were excluded for inconsistencies 
following UEQ analysis guidelines (29)] and (B) distribution of the acceptability evaluation questionnaire score.
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TABLE 3 Main effects of time and, when significant, their contrasts.

t0 t1 t2 Main effect of time First inverse Helmert contrast (t1-t0) Second inverse Helmert contrast 
(t2-t1, t0)

M  ±  SD M  ±  SD M  ±  SD F(df)* p ηp
2 BF10 t p Δt1-t0 t p Δt2-t1, t0

Clinical gait-and-balance test

TUG (s) 11.65 ± 4.26 10.91 ± 3.98 10.39 ± 3.86 F(1.496,25.434)=6.084 0.012 0.264 8.339 t(34) = −2.206 0.034 −0.80 ± 0.36 t(34) = −2.703 0.011 −0.85 ± 0.31

FTSTS (s) 16.85 ± 7.37 16.18 ± 6.11 13.46 ± 5.75 F(2,34) = 3.349 0.047 0.165 1.896 t(34) = −0.347 0.731 −0.46 ± 1.34 t(34) = −2.565 0.015 −2.97 ± 1.16

10MWT (s) 9.13 ± 1.97 8.51 ± 1.20 8.40 ± 1.33 F(2,34) = 5.216 0.011 0.235 6.788 t(34) = −2.612 0.013 −0.62 ± 0.24 t(34) = −1.900 0.066 −0.39 ± 0.21

Mini-BESTest 22.00 ± 3.71 22.16 ± 2.97 22.58 ± 3.95 F(2,34) =0.362 0.699 0.021 0.221 NA NA

MDS-UPDRS 
III

31.05 ± 11.31 31.63 ± 11.63 32.90 ± 10.77 F(2,34) =0.95 7 0.394 0.053 0.302 NA NA

LPAS 17.21 ± 1.55 17.42 ± 1.12 17.53 ± 1.22 F(2,34) =0.993 0.381 0.055 0.260 NA NA

Gait characteristics instrumented 10MWT

Walking speed 
(cm/s)

113.86 ± 20.48 119.61 ± 16.50 121.71 ± 16.95 F(2,34) = 5.425 0.009 0.242 8.467 t(34) = 2.400 0.022 5.64 ± 2.35 t(34) = 2.256 0.031 4.59 ± 2.03

Step length 
(cm)

65.74 ± 11.21 68.21 ± 10.41 68.70 ± 10.72 F(2,34) = 4.889 0.014 0.223 5.950 t(34) = 2.473 0.019 2.43 ± 0.98 t(34) = 1.914 0.064 1.63 ± 0.85

Step width (cm) 11.13 ± 3.89 10.83 ± 3.43 10.76 ± 3.88 F(2,34) =0.269 0.766 0.016 0.191 NA NA

Cadence (steps/
min)

108.28 ± 10.37 110.08 ± 8.63 110.36 ± 8.80 F(2,34) =1.479 0.242 0.080 0.521 NA NA

Walking adaptability: obstacle avoidance

Walking speed 
(cm/s)

104.44 ± 23.63 107.67 ± 17.72 113.28 ± 19.57 F(2,32) = 3.347 0.048 0.173 1.800 t(32) = 0.985 0.332 3.13 ± 3.18 t(32) = 2.392 0.023 6.58 ± 2.75

Success rate (%) 69.17 ± 31.59 66.11 ± 36.64 62.78 ± 37.39 F(2,32) = 0.560 0.577 0.034 1.154 NA NA

Margins (cm) 11.61 ± 6.10 12.07 ± 6.10 13.78 ± 5.18 F(2,32) = 2.410 0.106 0.131 0.957 NA NA

Walking adaptability: goal-directed stepping

Normalized 
walking speed 
(%)

77.22 ± 21.13 81.83 ± 20.22 85.09 ± 18.57 F(2,32) = 3.671 0.037 0.187 2.321 t(32) = 1.609 0.117 4.48 ± 2.78 t(32) = 2.180 0.037 5.25 ± 2.41

Stepping 
accuracy (cm)

4.48 ± 1.39 4.13 ± 0.99 4.61 ± 1.37 F(2,32) = 2.024 0.149 0.112 0.570 NA NA

Walking adaptability: tandem walking

Walking speed 
(cm/s)

82.89 ± 29.00 90.02 ± 22.53 98.22 ± 22.64 F(2,30) = 3.367 0.048 0.183 2.430 t(30) = 1.257 0.219 6.72 ± 5.35 t(30) = 2.270 0.031 10.51 ± 4.63

Sway (cm) 4.24 ± 1.47 3.83 ± 1.19 3.63 ± 1.36 F(2,30) = 2.244 0.124 0.130 0.883 NA NA

Walking adaptability: half-turns

Turning time 
(s)

1.95 ± 0.82 1.78 ± 0.82 1.51 ± 0.47 F(1.321,21.144)
= 4.133

0.045 0.205 1.553 t(32) = −1.276 0.211 −0.21 ± 0.16 t(32) = −2.577 0.015 −0.36 ± 0.14

Success rate (%) 27.78 ± 30.79 27.78 ± 35.24 27.78 ± 30.79 F(2,32) = 0.023 0.977 0.001 0.143 NA NA

*The assumption of sphericity was checked according to Girden (36). If Greenhouse–Geisser’s epsilon exceeded 0.75, the Huynh–Feldt degrees of freedom (df) correction was applied; otherwise, the Greenhouse–Geisser correction was used.
Bold values are significant analyses.
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(e.g., connectivity, mapping, and bugs), which were reported to Strolll 
Limited for further development and improvement.

All in all, Reality DTx® is a safe, adherable, well-accepted, and 
usable intervention, and its feasibility is likely to improve even further 
based on the learnings of this study.

4.2 Potential efficacy: Reality DTx® is 
promising for improving targeted fall-risk 
indicators

The potential efficacy of Reality DTx® for improving gait, 
balance, and fall risk was evaluated comprehensively, using 
outcomes covering standard clinical tests, gait characteristics, and 
advanced walking-adaptability assessments as targeted fall-
risk indicators.

Concerning standard clinical tests, significant intervention 
effects were observed for TUG and FTSTS, suggesting improvements 
in functional mobility, lower limb strength, and dynamic balance 
(7, 37–40) in a relatively high-functioning (i.e., HY2-2.5) group of 
pwPD recruited from the general public. The significant post-
intervention TUG improvement of 0.85 ± 0.31 s against a ~ 11 s 
baseline group TUG-time was smaller than the 1.63 s minimal 
detectable change (MDC) (41), whereas the significant post-
intervention FTSTS improvement of 2.97 ± 1.16 s against a ~ 16 s 
baseline group FTSTS-time was substantially greater than the 1.66 s 
MDC [i.e., derived from the standard error of measurement score 
of 0.6 s in (42) and greater than the 2.5 s minimal clinically 
importance difference in Spagnuolo et al. (43)]. TUG and 10MWT 
were prone to small waitlist effects (i.e., significant improvements 
during the waitlist period), reminiscent of a Hawthorne effect (44, 
45) as observed before [e.g., (46)] or due to learning/familiarization 
with the tests or test setting. Other standard clinical tests did not 
vary systematically (Mini-BESTest and LPAS), probably hindered 
by ceiling effects [i.e., ≥20% of the sample received the maximum 
score on all Mini-BESTest subscales, except for reactive postural 
control, and on the LPAS subscale scores (47)]. For the 
MDS-UPDRS III, an absence of effect may be  explained by the 
minor emphasis on gait and balance and the shorter-than-
recommended 12-week training period for achieving clinically 
meaningful improvements in the severity of motor systems [as 
measured with MDS-UPDRS III (48)].

Concerning the assessments with the Interactive Walkway 
(Figure 3), we found an improved post-intervention walking speed for 
gait characteristics and profound intervention effects for adaptive 
walking, with faster test completion times without negatively affecting 
performance. These findings were robust (i.e., without any waitlist-
period effects that hampered some of the standard clinical tests and 
gait-characteristic outcomes), suggesting targeted effects of Reality 
DTx® for improving walking-adaptability fall-risk indicators (26). 
This is encouraging as Reality DTx® exergames were designed to 
explicitly target this construct. Note that walking adaptability is not 
well captured with standard clinical tests (26). The observed targeted 
improvements in walking adaptability are promising as they tentatively 
lower one’s fall risk (26) as may be evaluated in future Reality DTx® 
effect studies.

All in all, Reality DTx® seems promising for improving aspects of 
gait and balance, in particular on lower limb strength, dynamic 

balance (i.e., FTSTS), and walking-adaptability as fall-risk indicators 
(26, 37).

4.3 Recommendation for future research

Above-discussed results on the feasibility and potential efficacy of 
Reality DTx® warrant future controlled effect studies, for which 
we recommend:

 i. Changing inclusion criteria: We learned that Reality DTx® 
was a feasible unsupervised at-home intervention for 
participants with HY2 and HY2.5. Our inclusion criteria were 
HY2-4, but we excluded two participants with HY3 at t0 as 
their fall risk was deemed too high for unsupervised 
exergame, while HY4 did not enter the study at all. 
We recommend broadening inclusion to HY1. This is relevant 
as gait-and-balance impairments and fall risk are already 
present from an early stage (1) and people in this stage may 
benefit from targeted gait-and-balance interventions. People 
with PwPD with higher HY stages with increased fall risk 
could use Reality DTx® first under supervision in the clinic 
(see ii) and/or tailored to their ability (e.g., see iii). These 
recommendations are implemented in the indications by 
Strolll Limited.

 ii. Combining clinical and at-home exergaming settings: With 
this study, we were quite ambitious by starting home-based 
exergaming after limited familiarization and instruction time. 
By delivering Reality DTx® in a hybrid form, starting in the 
clinical pathway for some sessions before taking it home, more 
time for instructions, familiarization, and evaluation of safety 
is available. This tentatively improves the confidence of 
inclusion/exclusion of people with HY3 and enables 
supervised in-clinic exergaming scenarios for people with 
HY4 (see iii);

 iii. Extending the number of exergames: To target other aspects 
of motor and/or cognitive impairments [e.g., dual-tasking (14, 
23, 24, 49)], to include those at higher HY stages with tailored 
game-play settings (e.g., playing when seated), and to increase 
long-term adherence (e.g., playing the same five exergames 
may become less engaging or motivating over a longer period);

 iv. Considering changing outcome measures: The observed 
intervention effects of Reality DTx® were convincing for 
improving targeted fall-risk indicators associated with 
walking adaptability, fitting the nature of the exergames. 
Hence, future studies may consider designing effect studies 
targeting fall risk or prospective falls as outcome measures, 
which seems relevant given the high fall incidence in this 
population. Future studies may also add health-economic 
outcomes as Reality DTx® may contribute to extending the 
number of (unsupervised) rehabilitation exercise hours 
while lowering the burden on healthcare professionals and 
increasing accessibility and adherence to treatment, in the 
convenience of users’ own homes and time, instead of 
supervised in the clinic;

 v. Extending intervention interval: We used a 6-week intervention 
period, which may be  on the lower end of the guideline 
recommendations (10, 12, 50). Participants were positive about 
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continuing with Reality DTx® after the 6-week intervention 
(Figure 7).

5 Conclusion

We found that the remotely prescribed, monitored, and tailored 
Reality DTx® intervention was feasible: It is safe for use at home, 
adherable, progressive-but-achievable, well-accepted, and usable. 
Reality DTx® was potentially effective for improving gait and balance, 
in particular for lower limb strength, dynamic balance, and walking 
adaptability as indicators of reduced falls fall risk. Future controlled 
effect studies with this feasible and potentially effective Reality DTx® 
digital therapeutics platform are thus warranted.
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Background: Remote programming (RP) is an emerging technology that enables

the adjustment of implantable pulse generators (IPGs) via the Internet for people

with Parkinson’s disease (PwPD) who have undergone deep brain stimulation

(DBS). Previous studies have not comprehensively explored the e�ectiveness

of RP in managing motor symptoms, often omitting assessments such as the

rigidity and retropulsion tests during the follow-up. This study evaluates the

comprehensive improvements in motor performance and the potential cost

benefits of RP for PwPD with DBS.

Methods: A retrospective analysis was conducted on two groups of patients—

those who received RP and those who received standard programming (SP).

Clinical outcomes including motor improvement, quality of life, and daily

levodopa dosage were compared between the groups during a 12 (± 3)-month

in-clinic follow-up.

Results: A total of 44 patients were included in the study, with 18 in the RP group

and 26 in the SP group. No significant di�erenceswere observed in the frequency

of programming sessions or clinical outcomes between the groups (p > 0.05).

However, the RP group experienced significantly lower costs per programming

session than the SP group (p < 0.05), despite patients in the former group living

further from our center (p < 0.05).

Conclusions: Our findings suggest that RP could significantly reduce the costs

of programming for PwPD with DBS, especially without compromising the

e�ectiveness of treatment across all motor symptoms in the short term.

KEYWORDS

Parkinson’s disease, deep brain stimulation, remote programming, telemedicine, motor

symptoms

Introduction

Deep brain stimulation (DBS) is a proven surgical treatment modality for people

with Parkinson’s disease (PwPD) who do not respond adequately to oral medications,

achieving its best results through precise programming of stimulation parameters tailored

to symptom fluctuations (1–3). However, the need for patients and their caregivers to

Frontiers inNeurology 01 frontiersin.org117

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1398929
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1398929&domain=pdf&date_stamp=2024-06-19
mailto:i@cczhang.org
mailto:ldy11483@rjh.com.cn
https://doi.org/10.3389/fneur.2024.1398929
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2024.1398929/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wan et al. 10.3389/fneur.2024.1398929

travel to specialized centers for standard programming (SP) places

significant economic burdens on them (4). Remote programming

(RP) enables clinicians to adjust stimulation parameters via the

Internet, which is recognized as both safe and effective (5, 6),

thereby enhancing postoperative management of PwPD with

DBS implants.

Rigidity, a typically used clinical response in SP (7), could not

be directly assessed through videoconferencing in RP. It remains

uncertain if the omission of rigidity tests in RP could be offset by the

assessment of other symptoms such as bradykinesia and tremors.

This uncertainty is particularly notable owing to the fact that most

previous studies on RP have excluded the rigidity and pullback tests

from their motor evaluations (8, 9). Additionally, studies by Chen

et al. (10) andNie et al. (6) compared patients who received RP with

those who received SP, but the actual motor assessments were not

conducted on the RP group.

This retrospective cohort study aims to evaluate the superior

effect of RP in comprehensive motor symptoms by using the

complete Movement Disorder Society (MDS)-Unified Parkinson’s

Disease Rating Scale part III (UPDRS III) scores and to assess

the associated costs of programming sessions. Our findings are

expected to support the adoption of RP as a potential method for

PwPD who face significant travel cost burdens related to post-

DBS programming.

Methods

Participants

We recruited PwPD who underwent DBS at our center from

January 2018 to December 2022. Patients who met the following

inclusion criteria were enrolled: (1) those who received bilateral

subthalamic nucleus (STN) DBS and subsequent programming

at our center; (2) those who could be followed up within 12

± 3 months after DBS implantation; and (3) those who had

a programming history where at least 65% of sessions were

conducted via RP, or all sessions were completed via SP, leading

to being them assigned into the RP or SP group, respectively

(Supplementary material S1).

The IPGs used in this study were from three manufacturers:

PINS (11), SceneRay (12), and Medtronic. Notably, the Medtronic

IPGs were only included in the SP group as they lack

RP capabilities.

Cost model and caregiver burden
questionnaire

A comprehensive cost model was developed to analyze patient

expenses, including transportation costs, lost working time, and

fees per programming session. All SPs were carried out in an

impatient clinic. Caregiver burden was assessed using a specialized

questionnaire during the follow-up for the caregivers, which

evaluated the number of required caregivers and lost working

time per programming session. Additional details are provided

in Supplementary materials S2, S3. The cost was converted to US

dollars (USD), based on the exchange rate of 1 USD≈ 7.2445 RMB.

Data collection

The UPDRS III scores were recorded at baseline (during

a levodopa challenge test) and at an in-clinic follow-up (with

active DBS stimulation and medications washed out) (13, 14).

Assessments were conducted and scored by two independent,

blinded raters at our center. Additional data collected included the

levodopa equivalent daily dose (LEDD) and the 8-item Parkinson’s

disease questionnaire (PDQ-8) scores, where higher scores indicate

poorer quality of life (15). Detailed data on programming sessions

and patient demographics were extracted from the RP systems

(PINS, APP, “JiayiYoupin” and SceneRay, APP, and “Jingyun

Internet Hospital”) and our Electronic Medical Record System.

Cybersecurity details have been documented elsewhere (16).

Programming schedule

Postoperative CT scans were conducted within 48 h following

the DBS surgery to confirm the placement of electrodes (17), and

IPGs were programmed to deliver narrow bipolar stimulation at

∼1.0V (130Hz; 60 µs) as a temporary stimulation before patient

discharge. The initial programming was scheduled 1 month post-

surgery after local edema subsided. Subsequently, patients were

recommended to undergo four to five additional programming

sessions within the following 6 months (2). However, the interval

and method of each programming session varied among patients,

which was usually scheduled based on their own feelings and

individual preferences. All RP and SP sessions were conducted by

an experienced and trained physician, Dr. D.L., thus minimizing

potential variability in programming quality.

Remote programming procedure

The basic procedures of the RP have been outlined in our recent

study on obsessive compulsive disorder (18). The process begins

once a patient successfully schedules an appointment. RP service

staff then assess the hardware environment, ensuring the network’s

stability, the clarity of sound and video, and the availability of

sufficient space to perform various actions, including standing from

a seated position and walking.

During each RP session, the physician checks the electrode

impedance of DBS and confirms the placement of electrodes using

fused images from postoperative CT and preoperative MRI scans.

PwPD are instructed to sit in a straight-backed chair with arms

resting on the armrest and feet flat on the floor and perform specific

actions as directed by the physician to evaluate the stimulation

effects. Adjustments to the parameters are made based on motor

performance and electrode positioning. Although rigidity cannot

be assessed through RP, visually assessable symptoms such as

tremors and bradykinesia are monitored to titrate the amplitude.

The assessment includes specific items fromUPDRS-III (items 3.4–

3.8 and 3.14–3.18), which are consistently used in both RP and

SP sessions. Furthermore, stimulation-induced side effects such

as speech impairment, dyskinesia, and facial pulling were either

observed directly or reported by patients, aiding in determining
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the therapeutic window. Each amplitude increment is monitored

for up to 5min, varying with individual responses. When a new

parameter is set, the previous setting is preserved to ensure that it

can be restored if the new adjustment proves to be intolerable.

Statistical analysis

Data are expressed as counts (percentages) or medians

(interquartile range, IQR). A p-value of> 0.05 was used as the non-

inferiority margin. Categorical data were analyzed using Fisher’s

exact test, and continuous variables were assessed using either the t-

test or Wilcoxon rank-sum test, depending on the distribution. All

tests were two-sided, with significance set at a p < 0.05. Data were

managed and analyzed using Excel (Microsoft, San Jose, CA, USA)

and SAS 9.4 (SAS Institute Inc, Cary, NC, USA).

Ethical consideration

Written informed consent for the research was obtained from

all participants prior to their follow-up. The study protocol was

approved by the Ethics Committee of the Ruijin Hospital [Clinical

Ethics Review (2023) No. 231] and adhered to the principles of the

Declaration of Helsinki.

Results

Population characteristics

This study included 44 patients, categorized into 18 patients

in the remote programming (RP) group and 26 controls in the

standard programming (SP) group. The programming history of

the RP group, as shown in Figure 1, included 128 programming

sessions, 80% (103/128) of which were conducted via RP. The two

groups were comparable in most baseline characteristics, except for

living distance from our center (p < 0.05, Table 1). The UPDRS

III scores and LEDD data were collected from all patients, while

PDQ-8 scores were available for 27 patients.

Clinical outcomes and programming
burden

Significant improvements were observed in UPDRS III scores,

PDQ-8 scores, and LEDD from baseline to follow-up in all patients

(p < 0.05). However, the rates of change in these clinical outcomes

did not significantly differ between the two groups (Table 2). There

were no reports of severe adverse events or complications.

The frequency of programming sessions did not differ

significantly between the groups, with the RP group averaging four

sessions (IQR: 4–7) and the SP group averaging six sessions (IQR:

3–8) (Table 2). The average cost per programming session was

lower in the RP group [with USD$46 (IQR: 28–65)] than in the SP

group [with USD$79 (IQR: 41–123)] (p < 0.05, Table 2). In the RP

group, the burden on caregivers showed no significant differences

in the number of caregivers needed between the two methods, but

the lost working time for each RP session was significantly reduced

(p < 0.05, Figure 2).

Discussion

This study compared two groups of PwPD who received either

RP or SP to evaluate the clinical effectiveness of RP. Key findings

include the following: (1) RP achieved motor improvements

comparable to those of SP during the 1-year postoperative period,

demonstrating the feasibility of using visually assessable symptoms

as a primary clinical response in RP and (2) RP alleviated the

economic burden for PwPD with DBS, making it a recommended

option for those challenged by frequent in-clinic visits.

Although rigidity is a common clinical response in SP,

evaluating the effects of stimulation requires a systematic review

of multiple factors, not just a single clinical sign (7). In cases

where rigidity is not pronounced, symptoms such as tremors and

bradykinesia are evaluated, though responses to these may be

slower and may vary among patients (19–21). In our study, we

observed each increase in amplitude for up to 5min to thoroughly

assess the full response to stimulation (21). The duration of RP

also varied based on response times in PwPD. Although rigidity

could not be evaluated in RP, our findings indicate that motor

improvement in RP was not inferior to that observed in SP.

During the COVID-19 lockdown, many patients attempted

remote programming (RP) for the first time, leading to a

significant increase in demand (22). This study, conducted without

imposing any of the quarantine restrictions, observed that eight

patients in the RP group chose to continue using RP after

their initial experience, demonstrating a growing familiarity with

and a preference for this method. There was no significant

difference in the number of programming sessions between the two

groups. However, three patients in the RP group had experienced

significantly more programming sessions (outliers: Patients 3,

5, and 7; see Supplementary material S4). Patient 3 developed

stimulation-induced dyskinesias, which required smaller increases

in stimulation and a longer interval between assessments; Patient

5 and Patient 7 sought additional programming due to perceived

inadequate symptom control, primarily related to gait impairments.

Despite these challenges, theirmotor improvement was comparable

to the average (rate of change: 37%, 62%, and 41%, respectively).

Six patients successfully completed the initial programming

using the RP. According to the expert consensus, initial

programming required more detailed contact screening and

parameter titration than the following programming (3, 17). A

previous study reported 23 patients who completed all initial

and follow-up programming sessions by RP (10). However,

considering the omitted rigidity test and physician variants, the

safety and feasibility of initial programming via RP require

further exploration.

This finding is consistent with those of previous research, which

has documented significant improvements in motor symptoms

and quality of life through RP (9, 10). Additionally, although

not statistically significant, we noted an increased reduction in

conservative management in the RP group compared to the

SP group, similar to the findings reported by Chen et al.
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FIGURE 1

Distribution of programming records among patients in the RP group. Each bar represents a programming record, categorized into sessions of RP

(remote programming, shown in blue) and SP (standard programming, shown in red). The percentages above each bar indicate the proportion of RP

sessions in relation to the total number of programming sessions for each patient.

TABLE 1 Characteristics of the included patients in the baseline.

Item RP SP

N Median (IQR) N Median (IQR) p

Age 18 64 (52–67) 26 64 (60–69) 0.282

Gender (woman) 7 - 11 - 1.000

Disease duration (years) 18 9 (6–13) 26 10 (6–13) 0.948

Follow-up (months) 18 14 (11–14) 26 13 (12–16) 0.380

Distance (km) 18 423 (161–511) 26 31 (14–151) 0.002∗

Total UPDRS- IIIa 18 53 (45–66) 26 59 (47–64) 0.871

- Rigidity 14 (10–16) 13 (11–15) 0.822

- Tremor 8 (3–16) 10 (3–15) 1.000

- Bradykinesia 23 (22–28) 22 (21–28) 0.957

- Axial symptoms 9 (6–13) 10 (7–13) 0.581

LR (%) 18 52 (44–58) 26 46 (35–54) 0.084

LEDD 18 726 (525–900) 26 600 (450–850) 0.665

PDQ-8 13 13 (8–16) 14 12 (7–15) 0.559

IQR, interquartile range; UPDRS-III, The Movement Disorder Society Unified Parkinson’s Disease Rating Scale—part III; LR, levodopa responsiveness in the levodopa challenge test; LEDD,

levodopa equivalent daily dose; PDQ-8, The 8-item Parkinson’s Disease Questionnaire. a Motor performance was recorded for patients when medication was washed out before the surgery. ∗A

p < 0.05 was considered statistically significant.

(10). This variation may reflect differing treatment approaches

among physicians.

RP offers significant advantages in terms of flexibility and cost-

effectiveness, especially for patients who live far from specialized

centers. According to our data, the RP group incurred lower

costs over 1 year, despite living farther from our center. This

cost efficiency also benefited caregivers, who reported reduced

lost working time compared to the SP group. However, in

the RP group, the same number of caregivers was required as

the SP group, which could likely be attributed to the elderly

patient demographics, who required assistance setting up the

videoconferencing equipment.
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TABLE 2 Changes of clinical outcomes and travel cost between the two groups in the follow-up.

Item RP SP

N Median (IQR) N Median (IQR) p

Changes (%)a Total UPDRS- IIIb 18 45 (32–52) 26 43 (26–53) 0.858

- Rigidity 49 (19–88) 44 (23–71) 0.908

- Tremor 64 (50–95) 90 (63–100) 0.139

- Bradykinesia 37 (15–55) 33 (6–50) 0.642

- Axial symptoms 19 (0–44) 25 (7–36) 0.774

LEDD 18 43 (24–58) 26 47 (33–64) 0.281

PDQ-8 13 39 (13–50) 14 31 (0–71) 0.828

Travel cost (USD)c 18 46 (28–65) 26 79 (41–123) 0.010∗

Total sessions 18 4 (4–7) 26 6 (3–8) 0.809

IQR, interquartile range; UPDRS-III, TheMovement Disorder Society Unified Parkinson’s Disease Rating Scale—part III; LEDD, levodopa equivalent daily dose; PDQ-8, The 8-item Parkinson’s

Disease Questionnaire; USD, US dollar. aRate of changes was calculated using the formula {100% ∗ (Outcomebaseline – Outcomefollow-up)/Outcomebaseline}.
bMotor performance was recorded

during medication washout periods at both baseline and follow-up assessments. cAverage travel cost per programming session was calculated using the formula (Total travel cost / total times of

programming sessions). ∗A p < 0.05 is considered statistically significant.

FIGURE 2

Caregiver burdens associated with two programming methods in the RP group: (A) the number of caregivers required for each programming

session; (B) the lost working time for patients or their caregivers incurred per programming session. *A p < 0.05 is considered statistically significant.

As DBS has been increasingly used across various diseases,

the labor-intensive postoperative management is increasingly

burdensome for both medical staff and patients. Feedback

from patients was indispensable in the programming session.

For physicians, auxiliary technologies such as closed-loop

stimulation (23) and visualization stimulation (24) are

being developed to optimize the workflow. For PwPD,

various wearable devices are available to monitor clinical

features such as tremors, dyskinesia, and freezing of gait

(25–27). Continuous feedback from these devices could help

physicians adjust stimulation more suitably to individual

daily variations in symptoms and activities. Moreover,

conducting assessments via RP at home is increasingly

favored by PwPD due to the comfort and convenience of the

familiar environment (28). The integration of RP with newer

technologies presents a significant potential for advancing

treatment methods.

This study is subject to several limitations. (1) The inclusion

criterion for the RP group was based on “over 65% of programming

sessions completed through RP.” A more stringent criterion might

have provided a clearer validation of the impact of RP. (2) As a

single-center study, the findings may be affected by the small and

uneven sample sizes. Incomplete records for some patients may

also compromise the reliability of the QoL improvement outcomes.

These results should be interpreted with caution, particularly

regarding their applicability to other settings. Additionally, the

experience of the programming physicians could impact the

outcomes. Future studies across multiple centers with larger and

more balanced groups would enhance the statistical robustness. (3)

The follow-up duration for the participants was relatively short.
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Over the long term, complex symptoms such as gait disturbances

and swallowing difficulties may emerge (29). These issues require

thorough assessments, for which SP might be more appropriate.

Conclusion

This study demonstrates that RP could provide better motor

improvements compared to SP among PwPD undergoing STN

DBS while also reducing the logistical burdens associated with

travel to programming sessions. The efficacy and convenience of

RP are crucial for enhancing DBS management, particularly for

those challenged by repeated in-clinic visits. While the findings

advocate for the increased integration of RP into standard

postoperative care, further research is necessary to explore the

long-term benefits and the feasibility of initial programming

via RP.
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