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The present eBook presents one review, five mini-reviews, and an opinion article 
on the achievements and perspectives of studies on important aspects of cancer 
cell metabolic reprogramming whose mechanisms and regulation are still largely 
elusive. It also sheds light on certain novel functional components, which rewires 
cell metabolism in tumor transformation.
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Editorial on the Research Topic

Cell Stress, Metabolic Reprogramming, and Cancer

The hallmarks of cancer comprise six biological capabilities acquired during the multistep 
development of human tumors: sustaining proliferative signaling, evading growth suppressors, 
resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion 
and metastasis (1). Mitochondria, beyond being the site of aerobic respiration, are at the crossroads 
of a variety of metabolic and signaling pathways resulting key regulatory organelles in cell life 
and death decision. Thus, it is no surprise that genomic, functional, and structural mitochondrial 
alterations have been associated with cancer and that mitochondria have become a pharmacological 
target in cancer therapy (2). Proliferating tumor cells show increased glycolysis and convert the 
majority of glucose to l-lactate, even in normoxic conditions. This is known as the Warburg effect. 
Actually, in many tumors, mitochondria are not defective in oxidative phosphorylation, and in the 
last decade, the molecular basis of Warburg effect has been reconsidered in the context of a set of 
concerted changes in energy metabolism and mitochondrial function that support tumorigenesis. 
This process, referred to as reprogramming of energy metabolism, is an emerging hallmark of cancer 
development (3, 4). This Research Topic presents one review, five mini-reviews, and an opinion 
article on the achievements and perspectives of studies on important aspects of cancer cell metabolic 
reprogramming whose mechanisms and regulation are still largely elusive. It also sheds light on 
certain novel functional components, which rewires cell metabolism in tumor transformation.

Metabolic reprogramming is driven by oncogenic changes of specific cell-signaling pathways  
and tumor microenvironment (5). The Mini-Reviews by Iommarini et  al. (6) and Dahl and 
Aird (7) highlight what is currently known about the non-canonical function and regulation of 
hypoxia-inducible factor 1 alpha (HIF-1α) and ataxia-telangiectasia mutated (ATM) protein 
kinase, respectively. Iommarini et al. (6) review and discuss the non-canonical regulation of HIF-
1α expression and stabilization in cancer cells, focusing on factors, which cause pseudohypoxia 
(HIF-1α stabilization in normoxic conditions) or fail to stabilize HIF-1α in low oxygen atmosphere 
(pseudonormoxia). The ATM protein kinase has been extensively studied for its role in the DNA 
damage response and its association with the disease ataxia telangiectasia. Dahl and Aird’s review (7) 
highlights our current knowledge about ATM’s regulation of carbon metabolism, the implication of 
these pathways in cancer, and the development of ATM inhibitors as therapeutic strategies for cancer.

It is well established that glucose is uniquely capable of supporting Warburg metabolism (or 
aerobic glycolysis), in which pyruvate is converted to lactate through a process that is coupled to ATP 
production in the cytoplasm. Such metabolic reprogramming and nutrient sensing is an elaborate 
way by which cancer cells respond to high bioenergetic and anabolic demands during tumorigenesis. 
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Ždralević et al. (8) in their Mini-Review discuss the benefits and 
limitations of disrupting fermentative glycolysis at different 
levels of the pathway in order to find the most effective mode 
to overcome cancer cell metabolic plasticity that seriously limits 
the use of glycolysis inhibition for impeding tumor growth. With 
this respect, in view of the existence of a mitochondrial l-lactate 
dehydrogenase (m-l-LDH), Passarella and Shurr (9) propose 
in their Opinion a revision of the Cori cycle in all types of cells 
where mitochondrial metabolism of l-lactate is active.

Beyond the shift of glucose metabolism to aerobic glycolysis, 
some cancer cells are considered “glutamine addicted” because 
their growth and proliferation rates depend on the availability 
of this amino acid. This, together with the role of amino acid 
metabolism in tumorigenesis, is one of the key aspects of cancer 
cell metabolism, which is still matter of intense investigations. The 
Review by Vučetić et al. (10) provides the first unified review on 
the amino acid dependency of cancer antioxidant defense, a topic 
that has received more attention recently. Furthermore, the Mini-
Review by Scalise et al. (11) provides a deep insight into glutamine 
transport and mitochondrial metabolism in cancer cell growth, 
highlighting glutamine transporters of plasma membrane, the 
key enzyme glutaminase, and other proteins involved glutamine 
metabolism as novel targets for anti-cancer drug development.

Beyond the metabolic shift toward glycolysis, typical of 
cancer cells, several evidences have shown that mitochondrial 
dysfunction provides survival advantage to cancer cells, 
suggesting that mitochondria have a tumor suppressor function 
(5). Mitochondrial dysfunction has been implicated in cancer 
chemoresistance (12). The association between mitochondrial 
dysfunction and progression to a metastatic phenotype is gradually 
emerging. Epithelial-to-mesenchymal transition (EMT) allows 
epithelial cancer cells to assume mesenchymal features, endowing 

them with enhanced motility and invasiveness, thus enabling 
cancer dissemination and metastatic spread. The Mini-Review by 
Guerra et al. (13) in this Research Topic gives an overview on the 
mechanistic link between EMT and mitochondrial dysfunction 
fostering the identification of the molecular determinants of 
the mitochondria-nucleus communication network linking 
mitochondrial dysfunction with EMT activation, which may 
provide useful therapeutic targets for treatment and prevention 
of metastatic cancer.

The contributions to this Research Topic deal with investigations 
at the leading edge of cancer research and provide an overview 
on key cellular processes and components, which are the basis 
of metabolic reprogramming of cancer cells. Inflammation has 
also been recognized as a hallmark of cancer and is known to 
play an essential role in the development and progression of most 
cancers, even those without obvious signs of inflammation and 
infection (14). Warburg metabolism is a hallmark of immune cells 
that have the potential to cause inflammation. Recently, Kornberg 
et al. gave proof of concept that aerobic glycolysis is a therapeutic 
target for regulating inflammation (15), further confirming the 
possibility that targeting key enzymes within metabolic pathways 
will provide new therapeutic options for cancer.

This Research Topic brings witness that research on metabolic 
reprogramming of cancer cells is coming of age and will still bring 
with it exciting results to lay the bases for the development of 
new therapies and the implementation of nutritional regimen for 
a healthy life as well as the improvement of anti-cancer therapies.
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Hypoxia-inducible factor 1 alpha (HIF-1α) orchestrates cellular adaptation to low oxygen 
and nutrient-deprived environment and drives progression to malignancy in human solid 
cancers. Its canonical regulation involves prolyl hydroxylases (PHDs), which in normoxia 
induce degradation, whereas in hypoxia allow stabilization of HIF-1α. However, in certain 
circumstances, HIF-1α regulation goes beyond the actual external oxygen levels and 
involves PHD-independent mechanisms. Here, we gather and discuss the evidence 
on the non-canonical HIF-1α regulation, focusing in particular on the consequences of 
mitochondrial respiratory complexes damage on stabilization of this pleiotropic tran-
scription factor.

Keywords: hypoxia-inducible factor 1 alpha, cancer, mitochondria, oxidative phosphorylation, electron transport 
chain, prolyl hydroxylases, pseudohypoxia, pseudonormoxia

Hypoxia-inducible factor 1 (HIF-1) is the major orchestrator of cellular adaptation to low oxygen 
environment (1). In normoxia, prolyl hydroxylases (PHDs) hydroxylate HIF-1α on two proline 
residues within the oxygen-dependent degradation domain, triggering von Hippel–Lindau 
(pVHL)-mediated ubiquitination and proteasomal degradation (Figure  1) (2). In parallel, the 
Factor Inhibiting HIF (FIH), an asparaginyl hydroxylase regulated similarly to PHDs, in an 
oxygen-dependent manner, suppresses HIF-1 transcriptional activity in normoxia by preventing 
co-activator recruitment (3, 4). Conversely, hypoxia inhibits PHDs and stabilizes HIF-1α, which 
then translocates into the nucleus and dimerizes with constitutively expressed HIF-1β, creating 
active HIF-1 complex and triggering the transcription of genes promoting glycolytic metabolism, 
angiogenesis, and survival (Figure 1) (5). Activation of HIF-1α is physiological during embryo-
genesis and in wound-healing processes, whereas in cancer, HIF-1α is associated with malignancy 
and poor prognosis (6, 7). Abnormal stabilization of HIF-1α and upregulation of its downstream 
targets have been described in a broad spectrum of solid tumors as they progress to malignancy (8).

Since the discovery of HIF-1α and the ingenious oxygen-dependent PHD-mediated regulation, 
a great number of additional modalities of HIF-1α control has been identified, independently from 
external oxygen concentrations and acting at the level of its transcription, translation, oxygen-
independent stabilization/degradation, translocation from cytoplasm to the nucleus, and even 
affecting HIF-1 transcriptional activity. Here, we review and discuss the non-canonical regulation of 
HIF-1α expression and stabilization in cancer cells, focusing on factors which cause pseudohypoxia 
(HIF-1α stabilization in normoxic conditions) or fail to stabilize HIF-1α in low oxygen atmosphere 
(pseudonormoxia). Particular attention is given to the discussion of data showing that oxidative 
phosphorylation (OXPHOS) damage may block HIF-1α stabilization, since this controversial issue 
has seldom been reviewed elsewhere.
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FiGURe 1 | Canonical regulation of HIF-1α stability. In normoxia, prolyl hydroxylases (PHDs) hydroxylate hypoxia-inducible factor 1 alpha (HIF-1α) on two proline 
residues, triggering pVHL-mediated ubiquitination and proteasomal degradation of hydroxylated HIF-1α. The hydroxylation reaction is coupled to conversion of αKG 
to succinate and requires co-factors ascorbate and ferrous iron. In hypoxia, hydroxylation is inhibited and HIF-1α dimerizes with constitutively expressed HIF-1β, 
creating an active HIF-1 complex, which transcribes genes promoting angiogenesis, glycolytic metabolism, mitophagy, and survival.
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OXYGen-inDePenDenT HiF-1α 
STABiLiZATiOn BY OnCOMeTABOLiTe-
MeDiATeD ReGULATiOn OF PHDs 
ACTiviTY

The first evidence of an oxygen-independent regulation of HIF-1α 
stability in vivo was found in tumors harboring succinate dehy-
drogenase (SDH) and fumarate hydratase mutations (9). Soon 
after, it was demonstrated that SDH inhibition stabilizes HIF-1α 
in normoxia due to increased concentrations of succinate, a by-
product and allosteric inhibitor of the PHD reaction (10). This 
finding gave birth to the concept of “oncometabolites,” which 
initially regarded the accumulation of certain Krebs cycle inter-
mediates, such as succinate and fumarate (11, 12), but may now 
be extended to any metabolite capable of triggering oncogenic or 
tumor suppressor signals. In the context of HIF-1α regulation, 
pyruvate and lactate were suggested to promote pseudohypoxia 
(13–15), whereas the PHD substrate alpha-ketoglutarate (αKG), 
as well as PHD co-factors ascorbate and Fe2+, were all shown to 
confer a dose-dependent HIF-1α destabilization in hypoxia (16) 
(Figure 2A). For example, αKG increases the PHD affinity for 
oxygen and thus promotes HIF-1α hydroxylation and degrada-
tion even at low oxygen concentrations (17, 18). Accordingly, 
pseudonormoxia is observed in cells suffering nicotinamide 
nucleotide transhydrogenase deficiency or severe complex I 
damage, both conditions leading to NADH accumulation and 
consequent increase in αKG, due to the slowdown of the Krebs 
cycle rate (19–22). Conversely, the mitochondrial isocitrate 
dehydrogenase 3 alpha overexpression decreases αKG concentra-
tions and promotes HIF-1α stability (23). Although mechanisms 
balancing oncometabolite concentrations represent intriguing 
therapeutic targets, their successful manipulation to fight cancer 

is still to be optimized, most likely due to the complexity of 
oncometabolite-mediated HIF-1α regulation. For instance, 
hypoxia-induced miR-210 expression was shown to contribute 
to the succinate accumulation by causing respiratory complex 
II defects (24, 25). Moreover, whereas (L)-2 hydroxyglutarate 
promotes HIF-1α stabilization (26), genetic lesions leading to the 
accumulation of the (R)-2 hydroxyglutarate enantiomer instead 
activate PHDs (27).

nOn-CAnOniCAL OXYGen-DePenDenT 
ReGULATiOn OF PHDs BY 
ReDiSTRiBUTiOn OF inTRACeLLULAR 
OXYGen FOLLOwinG OXPHOS DAMAGe

As a solid cancer progresses, transformed cells usually activate 
HIF-1-mediated adaptations to hypoxic stress, which include 
downregulation of mitochondrial respiration to decrease the cells’ 
requirement for oxygen (24, 28, 29). However, several xenograft 
studies, and a few examples from human tumors, demonstrate 
that severe OXPHOS damage induces a series of metabolic and 
molecular anti-tumorigenic events which, among other, include 
destabilization of HIF-1α (20, 21, 30–34). The anti-tumorigenic 
consequences of OXPHOS damage leading to HIF-1α destabiliza-
tion come as a paradox to the known role of HIF-1 in promoting 
mitophagy and downregulation of OXPHOS genes (24, 28, 29) 
and are, therefore, discussed here in more detail. Hagen and 
colleagues pioneered in demonstrating that decreased oxygen 
consumption, due to OXPHOS inhibition in cancer cell lines, 
may result in redistribution of intracellular oxygen from respira-
tory enzymes to the PHDs, so that the latter become unable to 
sense external hypoxia (35, 36). As a result, HIF-1α is destabilized 
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in cells with severe mitochondrial respiration damage, despite the 
outer hypoxic environment (Figure 2B). The association between 
mitochondrial respiration damage and HIF-1α inactivation 
despite hypoxia has also been observed in Rho zero cells and 
diverse cancer cell types, in which OXPHOS complexes I, III, IV, 
or V were pharmacologically inhibited (37–39). In accordance, 
by using a phosphorescent probe quenched by oxygen, a recent 
study showed that increasing concentrations of complex I inhibi-
tor rotenone decrease intracellular hypoxia in a dose-dependent 
manner in a prostate cancer cell line (40). The conditions applied 

in these studies usually consisted of 3–6 h culture in the presence 
of 1–3% oxygen. On the other hand, studies applying 0.1–1% 
oxygen concentrations, reported that HIF-1α stabilizes in Rho 
zero cancer cells or upon rotenone treatment (41, 42), and Gong 
and Agani demonstrated that, in near-anoxic conditions, HIF-1α 
is stabilized despite OXPHOS damage (43). Therefore, OXPHOS 
damage does not seem to irreversibly prevent, but may rather 
attenuate HIF-1α stabilization, suggesting that the increased 
intracellular oxygen concentrations, caused by the lower oxygen 
consumption, may rapidly equilibrate with the extracellular 
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tensions. Such equilibration probably depends on the cellular 
membrane permeability to molecular oxygen, which among 
other is influenced by cholesterol levels and, therefore, lipid 
metabolism, which is conditioned by the OXPHOS status (44).

Notably, because of the short HIF-1α half-life (<5  min) 
in well oxygenated atmosphere, changes in ambient oxygen 
concentrations and variations of oxygen diffusion in the culture 
medium have a strong impact on HIF-1α stabilization when 
working in vitro. Therefore, precautions must be applied during 
cellular extraction and during cell washing, to avoid making 
biased conclusions regarding HIF-1α regulation. Moreover, for 
the time being, experimental limits prevent precise dissection 
of oxygen distribution in a growing tumor. Indeed, it must be 
noted that, to the best of our knowledge, the formal demon-
stration of the mechanism linking OXPHOS deficiency and 
HIF-1α destabilization in  vivo, where selective pressures and 
microenvironment are radically different from in vitro condi-
tions, has yet to be reported. Based on our data from complex 
I-deficient models, we hypothesize that more than one factor 
is involved in HIF-1α destabilization in OXPHOS-deficient 
tumors, since, if compared to counterpart controls, they dis-
play not only increased intracellular oxygen concentrations 
(unpublished data) but also higher αKG levels (20–22) and iron 
accumulation (unpublished data), all factors known to promote 
PHD-mediated HIF-1α hydroxylation.

To add complexity, OXPHOS damage is a known source of 
reactive oxygen species (ROS), which were suggested to pro-
mote HIF-1α stability in hypoxia and normoxia, although their 
role in HIF-1α regulation is still controversial (45, 46). Brunell 
and colleagues suggested that oxygen sensing in OXPHOS does 
not depend on oxygen consumption in human fibroblasts, but 
rather on ROS production deriving from decreased activity of 
complexes III and IV (47). On the other hand, by working on 
cancer cells, Chua and colleagues report that HIF-1α stabiliza-
tion in hypoxia is not dependent on ROS and that re-establishing 
oxygen consumption in complex III-repressed cells is sufficient 
to induce HIF-1α stabilization, most likely due to a decrease of 
intracellular oxygen (48). The role of ROS in oxygen sensing has 
extensively been reviewed elsewhere (46, 49–51), and we discuss 
the role of ROS in promoting HIF1A transcription in the next 
paragraph. Still, it is interesting to note that OXPHOS damage 
leading to elevated ROS was suggested to promote HIF-1α stabi-
lization (45), whereas severe respiratory deficiency associated to 
a decreased consumption of NADH results in pseudonormoxia. 
These apparently opposite effects may be explained by the fact 
that particularly severe damage, at least in the context of certain 
complex I mutations (20, 21), could destroy ROS-generating 
sites of respiratory multi-enzymes, resulting in unchanged or 
even decreased ROS concentrations. In this context, it is not 
surprising that mitochondrial DNA (mtDNA) mutations, not 
infrequent modifiers of tumorigenesis, may have opposing 
consequences on cancer progression, depending on the type 
of damage they induce (20). For example, mtDNA mutations 
increasing ROS production have been suggested to promote 
tumorigenesis and metastases, whereas those causing severe 
damage, such as complex I disassembly, compromise tumor 
progression (20, 21).

Taken together, the effects of OXPHOS deficiency on 
HIF-1α will depend on the type of damage inflicted, probably 
through different mechanisms depending on the mitochondrial 
respiratory complex involved. Nevertheless, while the down-
regulation of mitochondrial respiration by HIF-1 is certainly 
a valid mechanism for adaptation of cancer cells to low oxygen 
tension, the block of OXPHOS may not be severe, since this 
would lead to HIF-1α destabilization. The latter is supported 
by studies such as the recent Hamanaka’s work in epidermal 
keratinocytes, where the knock-out of mtDNA replication and 
transcription factor TFAM caused reduction of HIF-1α protein 
levels (52), indicating that HIF-1α destabilization in cells suf-
fering mitochondrial respiratory damage seems to be a rather 
general phenomenon.

Interestingly, since severe OXPHOS damage seems to 
prevent cancer cells from experiencing hypoxia, they should 
be exempted from the need to adapt to low oxygen environ-
ment. Nevertheless, the growth of OXPHOS-deficient tumors 
is still challenged, as seen in complex I-deficient xenograft 
models (20, 21, 30, 31, 34) and in oncocytoma patients, who 
develop slowly proliferating masses, which rarely progress to 
malignancy (33). On one hand, this may be explained by the 
metabolic insufficiency, such as the recently described deficit 
in nucleotide biosynthesis, caused by aspartate shortage upon 
complex I inhibition (53). However, the consequences of the 
lack of HIF-1α in such tumors is not to be neglected, especially 
in the light of studies demonstrating that inhibition of HIF-1α 
is sufficient to block tumor growth (54, 55). In this context, it is 
intriguing to hypothesize that, in certain cancers, hypoxia may 
be advantageous, rather than a drawback for growing tumors, 
since the survival signals promoted by HIF-1 may actually be a 
requirement for malignant progression.

PHD-inDePenDenT PATHwAYS 
ReGULATinG HiF-1α STABiLiZATiOn

While PHDs control the oxygen-dependent HIF-1α stability, 
many other proteins are emerging as additional mediators 
of HIF-1α regulation, which act in an oxygen-independent 
manner and, therefore, regardless of the HIF-1α hydroxylation 
status. For example, several factors modulate pVHL activity 
(Figure  2A), such as WD repeat and SOCS box-containing 
protein 1 (WSB1), which was found to promote HIF-1α sta-
bilization and metastases via ubiquitination and degradation 
of pVHL in renal carcinoma, breast cancer, and melanoma 
models (56). Similarly, ubiquitin C-terminal hydrolase-L1 was 
described to abrogate the pVHL-mediated ubiquitination of 
HIF-1α in mouse models of pulmonary metastasis (57), and 
c-Myc has been shown to weaken HIF-1α binding to pVHL 
complex, eventually leading to normoxic HIF-1α stabilization 
in breast cancer cells (58). Besides pVHL, E3 ubiquitin-protein 
ligase MDM2 was also found to ubiquitinate HIF-1α, but in a 
hydroxylation-independent manner, promoting its destabiliza-
tion despite hypoxic atmosphere (Figure 2C). MDM2-mediated 
oxygen-independent HIF-1α degradation seems to occur upon 
binding with tumor suppressor proteins, such as TAp73 (59) 
or p53 (60). On a similar note, it has recently been shown that 
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PTEN and PI3K inhibitors promote HIF-1α destabilization by 
preventing MDM2 phosphorylation and subsequent transloca-
tion in the nucleus, suggesting that cytoplasmic MDM2 is then 
able to ubiquitinate HIF-1α and promote its degradation in 
hypoxia (61). Therefore, in cancers carrying mutations in tumor 
suppressor proteins such as TP53, MDM2-mediated HIF-1α 
degradation would be suspended, leading to synergic promotion 
of cancer progression, through blockage of the p53 pro-apoptotic 
stimuli and activation of the survival pathways upregulated by 
HIF-1α. Conversely, p53-independent binding of MDM2 to 
HIF-1α was associated with the increase in HIF-1α protein 
content (62), warning that the role of MDM2 in HIF-1α regula-
tion might be more ambiguous than initially described. Further 
examples of oxygen-independent HIF-1α regulation involve 
factors, which may act either as promoters of HIF-1α degrada-
tion (Figure 2A), such as receptor of activated protein C kinase 
(RACK1), or as protectors from pVHL-mediated ubiquitination, 
such as heat shock protein (Hsp90) or Sentrin/SUMO-specific 
protease 1 (SENP1) (63–65). Inhibition of Hsp90 promotes the 
proteasome-mediated degradation of HIF-1α even in hypoxia 
or when functional pVHL is lacking (66). Moreover, it has been 
reported that gamma rays stimulate the mTOR-dependent syn-
thesis of Hsp90 leading to HIF-1α stabilization and radiotherapy 
resistance of lung cancer cells (64). The mechanism of RACK1/
Hsp90 competition in enhancing/decreasing HIF-1α-pVHL 
binding has already been reviewed (67), but it is interesting to 
note that, among other, calcium may influence RACK1 activ-
ity. For instance, calcium-activated phosphatase calcineurin 
prevented RACK1 dimerization and subsequent HIF-1α degra-
dation in Hek293 and renal carcinoma RCC4 cells (68). Other 
studies also report a role for calcium in HIF-1α regulation (69, 
70), suggesting that HIF-1α is not only an oxygen and nutrient 
sensor but may also promote adaptive responses to changes in 
cellular calcium homeostasis. It is probably due to its pleiotropic 
function that we find such intricate and multilayered control of 
HIF-1α, as testified by its numerous posttranslational modifica-
tions (1, 71, 72). Recently, SET7/9-mediated methylation of the 
HIF-1α lysine 32 residue was identified to destabilize HIF-1α, 
and promote its proteasomal degradation even in hypoxia (73). 
This reaction is contrasted by LSD1-mediated demethylation, 
which stabilizes HIF-1α, protecting it from ubiquitination (73). 
Furthermore, deacetylation of HIF-1α at lysine residue 709 by 
SIRT2 enhances PHD recognition of hydroxylating residues, 
promoting pseudonormoxia (74). It is interesting that, apart 
from proteasomal degradation, the mechanism of lysosomal 
digestion of HIF-1α has been described (Figure  2D). In par-
ticular, HIF-1α was first found to interact and co-localize with 
lysosome-associated membrane protein type 2A in HK2 human 
kidney and RCC4 renal cancer cells (75). The authors showed that 
the lysosomal digestion of HIF-1α is slower and less pronounced 
than its proteasomal degradation, but suggested it may become 
more important in circumstances where pVHL pathway is not 
working. Later, it was demonstrated that lysosomal degradation 
of HIF-1α is mediated by heat shock cognate 70-kDa protein 
(HSC70) via chaperone-mediated autophagy, which specifically 
targets individual proteins (76).

ReGULATiOn OF HiF-1α On 
TRAnSCRiPTiOnAL AnD 
TRAnSLATiOnAL LeveL

Besides the regulation of its protein stability and half-life, HIF-
1α may also be regulated in a more conventional manner, via 
mRNA transcription and protein synthesis, in response not only 
to hypoxia itself but also to the stimulation by growth factors, 
cytokines and hormones, heat shock, irradiation, and nutrient 
availability. In this context, three major pro-survival pathways, 
namely ERK/MAPK, JAK/STAT, and PI3K/Akt/mTOR, concur 
to increase transcription and translation of HIF1A, especially 
in cancer (77). MAPK signaling via ERK1/2 was mainly 
associated with regulation of HIF-1 transactivation through 
phosphorylation of p300/CPB cofactors. On the other hand, 
JAK/STAT pathway triggers Akt-mediated HIF1A transcription 
via STAT3 (78, 79). The PI3K/Akt/mTOR signaling cascade 
directly increases HIF1A transcription and translation (80–82). 
Therefore, any aberrant stimulation of this pathway, which 
in cancer often occurs through growth factors, hormones, or 
oncogenes/tumor suppressor mutations, leads to the activation 
of HIF-1α, even in normoxic conditions (83–85). Concordantly, 
elevated ROS production caused by OXPHOS deficiency (86), 
and several other conditions leading to elevated ROS and 
reactive nitrogen species, including mtDNA mutations (87), 
chemical toxicants (88), intermittent hypoxia (89), and treat-
ment with pro-inflammatory factors (90), have been associated 
with PI3K/Akt/mTOR-mediated increase of HIF1A transcrip-
tion and translation (Figure 2E). Moreover, Akt pathway boosts 
HIF-1α-mediated response by stabilization and transactivation 
regardless of oxygen levels (91). For example, the ERK-PI3K/
Akt mediate HIF-1α levels by stimulating protein synthesis of 
the molecular chaperone Hsp90, which in turn is able to stabilize 
HIF-1α in an oxygen-independent fashion (66, 92).

The PI3K/Akt-mediated activation of mTOR is antagonized 
by the 5′-adenosine monophosphate kinase (AMPK), the major 
sensor of cellular energy charge (93). In the context of a pro-
gressing cancer cell, PI3K/Akt/mTOR promotes survival and 
proliferation when conditions are fertile for cell proliferation, 
whereas AMPK serves as a sensor of nutrient starvation and 
ensures optimization of energetic sources when a cancer cell 
requires saving energy. Thus, it is intuitive to hypothesize that 
AMPK would counteract the effects of Akt-mediated increase 
of HIF-1α signaling. Indeed, an anticorrelation between active 
AMPK and HIF-1α has been confirmed by a recent system biol-
ogy analysis (94) and, concordantly, by in vitro studies showing 
HIF-1α destabilization in hypoxia under glucose deprivation, 
suggesting that starvation dampens HIF-1α translation (95–97). 
However, the relationship between AMPK and HIF-1α is still 
unclear. On one hand, the lack of AMPK in MEFs stimulates 
HIF-1α expression in normoxia (98, 99), and mTORC1 activa-
tion and increased ROS production have been appointed for 
the normoxic stabilization of HIF-1α in AMPK-defective MEFs 
(99, 100). On the other hand, it has been reported that oxida-
tive stress may induce AMPK activation leading to a reduction 
in HIF-1α degradation (101) and active AMPK was shown to 
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stimulate ROS-mediated increase of HIF-1α (102). It seems that 
the AMPK control of HIF-1α may be dependent on the contexts 
and phases of tumor progression, concordantly to the recently 
reviewed double-edged role of this energy sensor (103).

COnCLUDinG ReMARKS

Taken together, studies we discuss here show that, even though 
PHD-mediated hydroxylation of HIF-1α seems an impeccable 
mechanism to control its stability, many novel regulators of 
HIF-1α are emerging, especially in the context of cancer, where 
the selective pressures to activate this protumorigenic protein 
are particularly strong. Unraveling the complexity of HIF-1α 
regulation might lead to development of more precise antican-
cer treatments. In particular, considering the heterogeneous 
OXPHOS activity in different cancers, a better understanding of 
the mechanisms by which HIF-1α and mitochondrial respiratory 
chain complexes control oxygen sensing, may identify means for 

optimization of targeting HIF-1α, possibly based on the OXPHOS 
status of tumors. For example, therapies targeting HIF-1α could 
be avoided in tumors suffering OXPHOS deficiency, whereas 
targeting complex I could be adopted as a strategy to block 
HIF-1α in tumors which rely on the activity of this pleiotropic 
transcription factor.

AUTHOR COnTRiBUTiOnS

IK designed the work. LI and IK wrote the manuscript. GG and 
AMP critically revised the manuscript.

FUnDinG

This work was supported by Associazione Italiana Ricerca sul 
Cancro (AIRC) grant TOUch ME—IG 17387 to AMP and by 
Italian Ministry of Health grant DISCO TRIP GR-2013-02356666 
to GG.

ReFeRenCeS

1. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by 
hypoxia inducible factors. Crit Rev Biochem Mol Biol (2014) 49:1–15.  
doi:10.3109/10409238.2013.838205 

2. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. 
Physiology (Bethesda) (2004) 19:176–82. doi:10.1152/physiol.00001.2004 

3. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with 
HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. 
Genes Dev (2001) 15:2675–86. doi:10.1101/gad.924501 

4. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine 
hydroxylation of the HIF transactivation domain a hypoxic switch. Science 
(2002) 295:858–61. doi:10.1126/science.1068592 

5. Ruas JL, Poellinger L. Hypoxia-dependent activation of HIF into a tran-
scriptional regulator. Semin Cell Dev Biol (2005) 16:514–22. doi:10.1016/j.
semcdb.2005.04.001 

6. Minet E, Michel G, Remacle J, Michiels C. Role of HIF-1 as a transcription 
factor involved in embryonic development, cancer progression and apoptosis 
(review). Int J Mol Med (2000) 5:253–9. doi:10.3892/ijmm.5.3.253

7. Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and 
hypoxia-inducible factors. Curr Top Dev Biol (2006) 76:217–57. doi:10.1016/
S0070-2153(06)76007-0 

8. Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of can-
cer progression. Trends Cancer (2016) 2:758–70. doi:10.1016/j.trecan.2016. 
10.016 

9. Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H, et  al. 
Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour 
suppressor genes in renal cell carcinoma. J Clin Pathol (2004) 57:706–11. 
doi:10.1136/jcp.2003.011767 

10. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG,  
Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis 
by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell (2005) 7:77–85. 
doi:10.1016/j.ccr.2004.11.022 

11. Frezza C, Pollard PJ, Gottlieb E. Inborn and acquired metabolic defects in 
cancer. J Mol Med (Berl) (2011) 89:213–20. doi:10.1007/s00109-011-0728-4 

12. Adam J, Yang M, Soga T, Pollard PJ. Rare insights into cancer biology. 
Oncogene (2014) 33:2547–56. doi:10.1038/onc.2013.222 

13. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM, 
et  al. Targeting the lactate transporter MCT1 in endothelial cells inhibits 
lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One (2012) 
7:e33418. doi:10.1371/journal.pone.0033418 

14. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic 
glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem (2002) 
277:23111–5. doi:10.1074/jbc.M202487200 

15. Jung SY, Song HS, Park SY, Chung SH, Kim YJ. Pyruvate promotes tumor 
angiogenesis through HIF-1-dependent PAI-1 expression. Int J Oncol (2011) 
38:571–6. doi:10.3892/ijo.2010.859 

16. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. 
Multiple factors affecting cellular redox status and energy metabolism mod-
ulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. 
Mol Cell Biol (2007) 27:912–25. doi:10.1128/MCB.01223-06 

17. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA, 
et al. Reactivating HIF prolyl hydroxylases under hypoxia results in meta-
bolic catastrophe and cell death. Oncogene (2009) 28:4009–21. doi:10.1038/
onc.2009.250 

18. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen 
CM, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudo-
hypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol (2007) 
27:3282–9. doi:10.1128/MCB.01927-06 

19. Ho HY, Lin YT, Lin G, Wu PR, Cheng ML. Nicotinamide nucleotide transhy-
drogenase (NNT) deficiency dysregulates mitochondrial retrograde signal-
ing and impedes proliferation. Redox Biol (2017) 12:916–28. doi:10.1016/j.
redox.2017.04.035 

20. Iommarini L, Kurelac I, Capristo M, Calvaruso MA, Giorgio V, Bergamini C, 
et al. Different mtDNA mutations modify tumor progression in dependence 
of the degree of respiratory complex I impairment. Hum Mol Genet (2014) 
23:1453–66. doi:10.1093/hmg/ddt533 

21. Gasparre G, Kurelac I, Capristo M, Iommarini L, Ghelli A, Ceccarelli C, 
et al. A mutation threshold distinguishes the antitumorigenic effects of the 
mitochondrial gene MTND1, an oncojanus function. Cancer Res (2011) 
71:6220–9. doi:10.1158/0008-5472.CAN-11-1042 

22. Calabrese C, Iommarini L, Kurelac I, Calvaruso MA, Capristo M, 
Lollini PL, et  al. Respiratory complex I is essential to induce a Warburg 
profile in mitochondria-defective tumor cells. Cancer Metab (2013) 1:11. 
doi:10.1186/2049-3002-1-11 

23. Zeng L, Morinibu A, Kobayashi M, Zhu Y, Wang X, Goto Y, et al. Aberrant 
IDH3alpha expression promotes malignant tumor growth by inducing HIF-
1-mediated metabolic reprogramming and angiogenesis. Oncogene (2015) 
34:4758–66. doi:10.1038/onc.2014.411 

24. Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe- 
Sermesant K, et  al. miR-210 is overexpressed in late stages of lung cancer 
and mediates mitochondrial alterations associated with modulation of HIF-1 
activity. Cell Death Differ (2011) 18:465–78. doi:10.1038/cdd.2010.119 

25. Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, et al. MiR-210 
promotes a hypoxic phenotype and increases radioresistance in human lung 
cancer cell lines. Cell Death Dis (2013) 4:e544. doi:10.1038/cddis.2013.71 

26. Burr SP, Costa AS, Grice GL, Timms RT, Lobb IT, Freisinger P, et  al. 
Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.3109/10409238.2013.838205
https://doi.org/10.1152/physiol.00001.2004
https://doi.org/10.1101/gad.924501
https://doi.org/10.1126/science.1068592
https://doi.org/10.1016/j.semcdb.2005.04.001
https://doi.org/10.1016/j.semcdb.2005.04.001
https://doi.org/10.3892/ijmm.5.3.253
https://doi.org/10.1016/S0070-2153(06)76007-0
https://doi.org/10.1016/S0070-2153(06)76007-0
https://doi.org/10.1016/j.trecan.2016.
10.016
https://doi.org/10.1016/j.trecan.2016.
10.016
https://doi.org/10.1136/jcp.2003.011767
https://doi.org/10.1016/j.ccr.2004.11.022
https://doi.org/10.1007/s00109-011-0728-4
https://doi.org/10.1038/onc.2013.222
https://doi.org/10.1371/journal.pone.0033418
https://doi.org/10.1074/jbc.M202487200
https://doi.org/10.3892/ijo.2010.859
https://doi.org/10.1128/MCB.01223-06
https://doi.org/10.1038/onc.2009.250
https://doi.org/10.1038/onc.2009.250
https://doi.org/10.1128/MCB.01927-06
https://doi.org/10.1016/j.redox.2017.04.035
https://doi.org/10.1016/j.redox.2017.04.035
https://doi.org/10.1093/hmg/ddt533
https://doi.org/10.1158/0008-5472.CAN-11-1042
https://doi.org/10.1186/2049-3002-1-11
https://doi.org/10.1038/onc.2014.411
https://doi.org/10.1038/cdd.2010.119
https://doi.org/10.1038/cddis.2013.71


12

Iommarini et al. Pseudohypoxia and Pseudonormoxia in Cancer

Frontiers in Oncology | www.frontiersin.org November 2017 | Volume 7 | Article 286

complex controls HIF1alpha stability in aerobic conditions. Cell Metab 
(2016) 24:740–52. doi:10.1016/j.cmet.2016.09.015 

27. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et  al. 
Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to 
EGLN activation. Nature (2012) 483:484–8. doi:10.1038/nature10898 

28. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, 
et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic 
response to hypoxia. J Biol Chem (2008) 283:10892–903. doi:10.1074/jbc.
M800102200 

29. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates 
adaptation to hypoxia by actively downregulating mitochondrial oxygen 
consumption. Cell Metab (2006) 3:187–97. doi:10.1016/j.cmet.2006.01.012 

30. Zhou X, Chen J, Yi G, Deng M, Liu H, Liang M, et al. Metformin suppresses 
hypoxia-induced stabilization of HIF-1alpha through reprogramming 
of oxygen metabolism in hepatocellular carcinoma. Oncotarget (2016) 
7:873–84. doi:10.18632/oncotarget.6418 

31. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB,  
Anso E, et al. Metformin inhibits mitochondrial complex I of cancer cells to 
reduce tumorigenesis. Elife (2014) 3:e02242. doi:10.7554/eLife.02242 

32. Porcelli AM, Ghelli A, Ceccarelli C, Lang M, Cenacchi G, Capristo M, et al. 
The genetic and metabolic signature of oncocytic transformation implicates 
HIF1alpha destabilization. Hum Mol Genet (2010) 19:1019–32. doi:10.1093/
hmg/ddp566 

33. Gasparre G, Romeo G, Rugolo M, Porcelli AM. Learning from oncocytic 
tumors: why choose inefficient mitochondria? Biochim Biophys Acta (2011) 
1807:633–42. doi:10.1016/j.bbabio.2010.08.006 

34. Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, 
et al. BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced 
gene activation has antitumor activities by inhibition of mitochondrial com-
plex I. Cancer Med (2013) 2:611–24. doi:10.1002/cam4.112 

35. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen 
in hypoxia by nitric oxide: effect on HIF1alpha. Science (2003) 302:1975–8. 
doi:10.1126/science.1088805 

36. Hagen T, D’Amico G, Quintero M, Palacios-Callender M, Hollis V,  
Lam F, et al. Inhibition of mitochondrial respiration by the anticancer agent 
2-methoxyestradiol. Biochem Biophys Res Commun (2004) 322:923–9. 
doi:10.1016/j.bbrc.2004.07.204 

37. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT.  
Mitochondrial reactive oxygen species trigger hypoxia-induced transcrip-
tion. Proc Natl Acad Sci U S A (1998) 95:11715–20. doi:10.1073/pnas.95.20. 
11715 

38. Doege K, Heine S, Jensen I, Jelkmann W, Metzen E. Inhibition of mito-
chondrial respiration elevates oxygen concentration but leaves regulation of 
hypoxia-inducible factor (HIF) intact. Blood (2005) 106:2311–7. doi:10.1182/
blood-2005-03-1138 

39. Agani FH, Pichiule P, Chavez JC, LaManna JC. The role of mitochondria in 
the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol 
Chem (2000) 275:35863–7. doi:10.1074/jbc.M005643200 

40. Prior S, Kim A, Yoshihara T, Tobita S, Takeuchi T, Higuchi M. Mitochondrial 
respiratory function induces endogenous hypoxia. PLoS One (2014) 9:e88911. 
doi:10.1371/journal.pone.0088911 

41. Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ. Regulation of hypoxia-inducible 
factor is preserved in the absence of a functioning mitochondrial respiratory 
chain. Blood (2001) 98:296–302. doi:10.1182/blood.V98.2.296 

42. Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J. Oxygen 
sensing and HIF-1 activation does not require an active mitochondrial 
respiratory chain electron-transfer pathway. J Biol Chem (2001) 276:21995–8. 
doi:10.1074/jbc.C100177200 

43. Gong Y, Agani FH. Oligomycin inhibits HIF-1alpha expression in hypoxic 
tumor cells. Am J Physiol Cell Physiol (2005) 288:C1023–9. doi:10.1152/
ajpcell.00443.2004 

44. Dotson RJ, Smith CR, Bueche K, Angles G, Pias SC. Influence of cholesterol 
on the oxygen permeability of membranes: insight from atomistic simula-
tions. Biophys J (2017) 112:2336–47. doi:10.1016/j.bpj.2017.04.046 

45. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, 
Rodriguez AM, et  al. Reactive oxygen species generated at mitochondrial 
complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a 
mechanism of O2 sensing. J Biol Chem (2000) 275:25130–8. doi:10.1074/jbc.
M001914200 

46. Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by 
reactive oxygen species: new developments in an old debate. J Cell Biochem 
(2015) 116:696–703. doi:10.1002/jcb.25074 

47. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, et al. 
Oxygen sensing requires mitochondrial ROS but not oxidative phosphoryla-
tion. Cell Metab (2005) 1:409–14. doi:10.1016/j.cmet.2005.05.002 

48. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, et  al. 
Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs 
independently of mitochondrial reactive oxygen species production. J Biol 
Chem (2010) 285:31277–84. doi:10.1074/jbc.M110.158485 

49. Pouyssegur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible 
factor. Biol Chem (2006) 387:1337–46. doi:10.1515/BC.2006.167 

50. Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R. 
Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett (2008) 
266:12–20. doi:10.1016/j.canlet.2008.02.028 

51. Bell EL, Chandel NS. Mitochondrial oxygen sensing: regulation of hypox-
ia-inducible factor by mitochondrial generated reactive oxygen species. 
Essays Biochem (2007) 43:17–27. doi:10.1042/bse0430017 

52. Hamanaka RB, Weinberg SE, Reczek CR, Chandel NS. The mitochondrial 
respiratory chain is required for organismal adaptation to hypoxia. Cell Rep 
(2016) 15:451–9. doi:10.1016/j.celrep.2016.03.044 

53. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 
An essential role of the mitochondrial electron transport chain in cell prolif-
eration is to enable aspartate synthesis. Cell (2015) 162:540–51. doi:10.1016/j.
cell.2015.07.016 

54. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, et al. 
Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. 
Cancer Res (2000) 60:4010–5. 

55. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1alpha 
is a key regulator of metastasis in a transgenic model of cancer initiation 
and progression. Cancer Res (2007) 67:563–72. doi:10.1158/0008-5472.
CAN-06-2701 

56. Kim JJ, Lee SB, Jang J, Yi SY, Kim SH, Han SA, et al. WSB1 promotes tumor 
metastasis by inducing pVHL degradation. Genes Dev (2015) 29:2244–57. 
doi:10.1101/gad.268128.115 

57. Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, et al. UCHL1 
provides diagnostic and antimetastatic strategies due to its deubiquitinating 
effect on HIF-1alpha. Nat Commun (2015) 6:6153. doi:10.1038/ncomms7153 

58. Doe MR, Ascano JM, Kaur M, Cole MD. Myc posttranscriptionally induces 
HIF1 protein and target gene expression in normal and cancer cells. Cancer 
Res (2012) 72:949–57. doi:10.1158/0008-5472.CAN-11-2371 

59. Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW, et al. TAp73 
opposes tumor angiogenesis by promoting hypoxia-inducible factor 1alpha 
degradation. Proc Natl Acad Sci U S A (2015) 112:226–31. doi:10.1073/
pnas.1410609111 

60. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, et al. 
Regulation of tumor angiogenesis by p53-induced degradation of hypox-
ia-inducible factor 1alpha. Genes Dev (2000) 14:34–44. 

61. Joshi S, Singh AR, Durden DL. MDM2 regulates hypoxic hypoxia-in-
ducible factor 1alpha stability in an E3 ligase, proteasome, and PTEN-
phosphatidylinositol 3-kinase-AKT-dependent manner. J Biol Chem (2014) 
289:22785–97. doi:10.1074/jbc.M114.587493 

62. Nieminen AL, Qanungo S, Schneider EA, Jiang BH, Agani FH. Mdm2 and 
HIF-1alpha interaction in tumor cells during hypoxia. J Cell Physiol (2005) 
204:364–9. doi:10.1002/jcp.20406 

63. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes 
with HSP90 for binding to HIF-1alpha and is required for O(2)-independent 
and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell (2007) 
25:207–17. doi:10.1016/j.molcel.2007.01.001 

64. Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential 
for stabilization of HIF1alpha during hypoxia. Cell (2007) 131:584–95. 
doi:10.1016/j.cell.2007.08.045 

65. Baek JH, Liu YV, McDonald KR, Wesley JB, Zhang H, Semenza GL. 
Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible 
factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and 
degradation of HIF-1alpha. J Biol Chem (2007) 282:33358–66. doi:10.1074/
jbc.M705627200 

66. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 
regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.1016/j.cmet.2016.09.015
https://doi.org/10.1038/nature10898
https://doi.org/10.1074/jbc.M800102200
https://doi.org/10.1074/jbc.M800102200
https://doi.org/10.1016/j.cmet.2006.01.012
https://doi.org/10.18632/oncotarget.6418
https://doi.org/10.7554/eLife.02242
https://doi.org/10.1093/hmg/ddp566
https://doi.org/10.1093/hmg/ddp566
https://doi.org/10.1016/j.bbabio.2010.08.006
https://doi.org/10.1002/cam4.112
https://doi.org/10.1126/science.1088805
https://doi.org/10.1016/j.bbrc.2004.07.204
https://doi.org/10.1073/pnas.95.20.
11715
https://doi.org/10.1073/pnas.95.20.
11715
https://doi.org/10.1182/blood-2005-03-1138
https://doi.org/10.1182/blood-2005-03-1138
https://doi.org/10.1074/jbc.M005643200
https://doi.org/10.1371/journal.pone.0088911
https://doi.org/10.1182/blood.V98.2.296
https://doi.org/10.1074/jbc.C100177200
https://doi.org/10.1152/ajpcell.00443.2004
https://doi.org/10.1152/ajpcell.00443.2004
https://doi.org/10.1016/j.bpj.2017.04.046
https://doi.org/10.1074/jbc.M001914200
https://doi.org/10.1074/jbc.M001914200
https://doi.org/10.1002/jcb.25074
https://doi.org/10.1016/j.cmet.2005.05.002
https://doi.org/10.1074/jbc.M110.158485
https://doi.org/10.1515/BC.2006.167
https://doi.org/10.1016/j.canlet.2008.02.028
https://doi.org/10.1042/bse0430017
https://doi.org/10.1016/j.celrep.2016.03.044
https://doi.org/10.1016/j.cell.2015.07.016
https://doi.org/10.1016/j.cell.2015.07.016
https://doi.org/10.1158/0008-5472.CAN-06-2701
https://doi.org/10.1158/0008-5472.CAN-06-2701
https://doi.org/10.1101/gad.268128.115
https://doi.org/10.1038/ncomms7153
https://doi.org/10.1158/0008-5472.CAN-11-2371
https://doi.org/10.1073/pnas.1410609111
https://doi.org/10.1073/pnas.1410609111
https://doi.org/10.1074/jbc.M114.587493
https://doi.org/10.1002/jcp.20406
https://doi.org/10.1016/j.molcel.2007.01.001
https://doi.org/10.1016/j.cell.2007.08.045
https://doi.org/10.1074/jbc.M705627200
https://doi.org/10.1074/jbc.M705627200


13

Iommarini et al. Pseudohypoxia and Pseudonormoxia in Cancer

Frontiers in Oncology | www.frontiersin.org November 2017 | Volume 7 | Article 286

alpha-degradative pathway. J Biol Chem (2002) 277:29936–44. doi:10.1074/
jbc.M204733200 

67. Liu YV, Semenza GL. RACK1 vs. HSP90: competition for HIF-1 alpha deg-
radation vs. stabilization. Cell Cycle (2007) 6:656–9. doi:10.4161/cc.6.6.3981 

68. Liu YV, Hubbi ME, Pan F, McDonald KR, Mansharamani M, Cole RN, 
et al. Calcineurin promotes hypoxia-inducible factor 1alpha expression by 
dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem 
(2007) 282:37064–73. doi:10.1074/jbc.M705015200 

69. Kim KH, Kim D, Park JY, Jung HJ, Cho YH, Kim HK, et al. NNC 55-0396, 
a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of 
hypoxia-inducible factor-1alpha signal transduction. J Mol Med (Berl) (2015) 
93:499–509. doi:10.1007/s00109-014-1235-1 

70. Chen SJ, Hoffman NE, Shanmughapriya S, Bao L, Keefer K, Conrad K, et al. 
A splice variant of the human ion channel TRPM2 modulates neuroblastoma 
tumor growth through hypoxia-inducible factor (HIF)-1/2alpha. J Biol Chem 
(2014) 289:36284–302. doi:10.1074/jbc.M114.620922 

71. Yee Koh M, Spivak-Kroizman TR, Powis G. HIF-1 regulation: not so 
easy come, easy go. Trends Biochem Sci (2008) 33:526–34. doi:10.1016/j.
tibs.2008.08.002 

72. Lendahl U, Lee KL, Yang H, Poellinger L. Generating specificity and diversity 
in the transcriptional response to hypoxia. Nat Rev Genet (2009) 10:821–32. 
doi:10.1038/nrg2665 

73. Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, et al. Methylation-dependent 
regulation of HIF-1alpha stability restricts retinal and tumour angiogenesis. 
Nat Commun (2016) 7:10347. doi:10.1038/ncomms10347 

74. Seo KS, Park JH, Heo JY, Jing K, Han J, Min KN, et al. SIRT2 regulates tumour 
hypoxia response by promoting HIF-1alpha hydroxylation. Oncogene (2015) 
34:1354–62. doi:10.1038/onc.2014.76 

75. Olmos G, Arenas MI, Bienes R, Calzada MJ, Aragones J, Garcia-Bermejo 
ML, et  al. 15-deoxy-delta(12,14)-prostaglandin-J(2) reveals a new pVHL- 
independent, lysosomal-dependent mechanism of HIF-1alpha degradation. 
Cell Mol Life Sci (2009) 66:2167–80. doi:10.1007/s00018-009-0039-x 

76. Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-
mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) 
for lysosomal degradation. J Biol Chem (2013) 288:10703–14. doi:10.1074/
jbc.M112.414771 

77. Kietzmann T, Mennerich D, Dimova EY. Hypoxia-inducible factors (HIFs) 
and phosphorylation: impact on stability, localization, and transactivity. 
Front Cell Dev Biol (2016) 4:11. doi:10.3389/fcell.2016.00011 

78. Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al. Targeting Stat3 
blocks both HIF-1 and VEGF expression induced by multiple oncogenic 
growth signaling pathways. Oncogene (2005) 24:5552–60. doi:10.1038/
sj.onc.1208719 

79. Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, et al. Signal transducer 
and activator of transcription 3 is required for hypoxia-inducible factor-1al-
pha RNA expression in both tumor cells and tumor-associated myeloid cells. 
Mol Cancer Res (2008) 6:1099–105. doi:10.1158/1541-7786.MCR-07-2177 

80. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia 
and oncogenic mutations. J Clin Invest (2013) 123:3664–71. doi:10.1172/
JCI67230 

81. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science (2016) 
352:175–80. doi:10.1126/science.aaf4405 

82. Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regula-
tion by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol (2005) 
37:535–40. doi:10.1016/j.biocel.2004.08.012 

83. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et  al. 
Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev (2000) 
14:391–6. 

84. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, 
et  al. Modulation of hypoxia-inducible factor 1alpha expression by the 
epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP 
pathway in human prostate cancer cells: implications for tumor angiogenesis 
and therapeutics. Cancer Res (2000) 60:1541–5. 

85. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) 
signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) 
synthesis: novel mechanism for HIF-1-mediated vascular endothelial 
growth factor expression. Mol Cell Biol (2001) 21:3995–4004. doi:10.1128/
MCB.21.12.3995-4004.2001 

86. Page EL, Robitaille GA, Pouyssegur J, Richard DE. Induction of hypoxia-in-
ducible factor-1alpha by transcriptional and translational mechanisms. J Biol 
Chem (2002) 277:48403–9. doi:10.1074/jbc.M209114200 

87. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K. Reactive oxygen 
species-generating mitochondrial DNA mutation up-regulates hypoxia-in-
ducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-
Akt/protein kinase C/histone deacetylase pathway. J Biol Chem (2009) 
284:33185–94. doi:10.1074/jbc.M109.054221 

88. Gao N, Ding M, Zheng JZ, Zhang Z, Leonard SS, Liu KJ, et al. Vanadate-
induced expression of hypoxia-inducible factor 1 alpha and vascular endo-
thelial growth factor through phosphatidylinositol 3-kinase/Akt pathway 
and reactive oxygen species. J Biol Chem (2002) 277:31963–71. doi:10.1074/
jbc.M200082200 

89. Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-
1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, 
Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol (2008) 
217:674–85. doi:10.1002/jcp.21537 

90. Haddad JJ, Saade NE, Safieh-Garabedian B. Redox regulation of TNF-alpha 
biosynthesis: augmentation by irreversible inhibition of gamma-glutamyl-
cysteine synthetase and the involvement of an IkappaB-alpha/NF-kappaB-
independent pathway in alveolar epithelial cells. Cell Signal (2002) 14:211–8. 
doi:10.1016/S0898-6568(01)00233-9 

91. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. 
Regulation of hypoxia-inducible factor 1alpha expression and function 
by the mammalian target of rapamycin. Mol Cell Biol (2002) 22:7004–14. 
doi:10.1128/MCB.22.20.7004-7014.2002 

92. Kim WY, Oh SH, Woo JK, Hong WK, Lee HY. Targeting heat shock protein 
90 overrides the resistance of lung cancer cells by blocking radiation-in-
duced stabilization of hypoxia-inducible factor-1alpha. Cancer Res (2009) 
69:1624–32. doi:10.1158/0008-5472.CAN-08-0505 

93. Hardie DG. AMP-activated protein kinase: a cellular energy sensor with a key 
role in metabolic disorders and in cancer. Biochem Soc Trans (2011) 39:1–13. 
doi:10.1042/BST0390001 

94. Yu L, Lu M, Jia D, Ma J, Ben-Jacob E, Levine H, et al. Modeling the genetic 
regulation of cancer metabolism: interplay between glycolysis and oxidative 
phosphorylation. Cancer Res (2017) 77:1564–74. doi:10.1158/0008-5472.
CAN-16-2074 

95. Vordermark D, Kraft P, Katzer A, Bolling T, Willner J, Flentje M. 
Glucose requirement for hypoxic accumulation of hypoxia-inducible 
factor-1alpha (HIF-1alpha). Cancer Lett (2005) 230:122–33. doi:10.1016/j.
canlet.2004.12.040 

96. Osada-Oka M, Hashiba Y, Akiba S, Imaoka S, Sato T. Glucose is necessary for 
stabilization of hypoxia-inducible factor-1alpha under hypoxia: contribution 
of the pentose phosphate pathway to this stabilization. FEBS Lett (2010) 
584:3073–9. doi:10.1016/j.febslet.2010.05.046 

97. Karuppagounder SS, Basso M, Sleiman SF, Ma TC, Speer RE, Smirnova NA, 
et al. In vitro ischemia suppresses hypoxic induction of hypoxia-inducible 
factor-1alpha by inhibition of synthesis and not enhanced degradation. 
J Neurosci Res (2013) 91:1066–75. doi:10.1002/jnr.23204 

98. Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL, et al. mTOR 
and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of 
Peutz-Jeghers syndrome. Proc Natl Acad Sci U S A (2009) 106:11137–42. 
doi:10.1073/pnas.0900465106 

99. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et  al. AMPK 
is a negative regulator of the Warburg effect and suppresses tumor growth 
in vivo. Cell Metab (2013) 17:113–24. doi:10.1016/j.cmet.2012.12.001 

100. Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, 
et al. AMPK maintains cellular metabolic homeostasis through regulation of 
mitochondrial reactive oxygen species. Cell Rep (2017) 21:1–9. doi:10.1016/j.
celrep.2017.09.026 

101. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, et al. Reactive oxygen 
species stabilize hypoxia-inducible factor-1 alpha protein and stimulate 
transcriptional activity via AMP-activated protein kinase in DU145 human 
prostate cancer cells. Carcinogenesis (2008) 29:713–21. doi:10.1093/carcin/
bgn032 

102. Yan M, Gingras MC, Dunlop EA, Nouet Y, Dupuy F, Jalali Z, et al. The tumor 
suppressor folliculin regulates AMPK-dependent metabolic transformation. 
J Clin Invest (2014) 124:2640–50. doi:10.1172/JCI71749 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.1074/jbc.M204733200
https://doi.org/10.1074/jbc.M204733200
https://doi.org/10.4161/cc.6.6.3981
https://doi.org/10.1074/jbc.M705015200
https://doi.org/10.1007/s00109-014-1235-1
https://doi.org/10.1074/jbc.M114.620922
https://doi.org/10.1016/j.tibs.2008.08.002
https://doi.org/10.1016/j.tibs.2008.08.002
https://doi.org/10.1038/nrg2665
https://doi.org/10.1038/ncomms10347
https://doi.org/10.1038/onc.2014.76
https://doi.org/10.1007/s00018-009-0039-x
https://doi.org/10.1074/jbc.M112.414771
https://doi.org/10.1074/jbc.M112.414771
https://doi.org/10.3389/fcell.2016.00011
https://doi.org/10.1038/sj.onc.1208719
https://doi.org/10.1038/sj.onc.1208719
https://doi.org/10.1158/1541-7786.MCR-07-2177
https://doi.org/10.1172/JCI67230
https://doi.org/10.1172/JCI67230
https://doi.org/10.1126/science.aaf4405
https://doi.org/10.1016/j.biocel.2004.08.012
https://doi.org/10.1128/MCB.21.12.3995-4004.2001
https://doi.org/10.1128/MCB.21.12.3995-4004.2001
https://doi.org/10.1074/jbc.M209114200
https://doi.org/10.1074/jbc.M109.054221
https://doi.org/10.1074/jbc.M200082200
https://doi.org/10.1074/jbc.M200082200
https://doi.org/10.1002/jcp.21537
https://doi.org/10.1016/S0898-6568(01)00233-9
https://doi.org/10.1128/MCB.22.20.7004-7014.2002
https://doi.org/10.1158/0008-5472.CAN-08-0505
https://doi.org/10.1042/BST0390001
https://doi.org/10.1158/0008-5472.CAN-16-2074
https://doi.org/10.1158/0008-5472.CAN-16-2074
https://doi.org/10.1016/j.canlet.2004.12.040
https://doi.org/10.1016/j.canlet.2004.12.040
https://doi.org/10.1016/j.febslet.2010.05.046
https://doi.org/10.1002/jnr.23204
https://doi.org/10.1073/pnas.0900465106
https://doi.org/10.1016/j.cmet.2012.12.001
https://doi.org/10.1016/j.celrep.2017.09.026
https://doi.org/10.1016/j.celrep.2017.09.026
https://doi.org/10.1093/carcin/bgn032
https://doi.org/10.1093/carcin/bgn032
https://doi.org/10.1172/JCI71749


14

Iommarini et al. Pseudohypoxia and Pseudonormoxia in Cancer

Frontiers in Oncology | www.frontiersin.org November 2017 | Volume 7 | Article 286

103. Iommarini L, Ghelli A, Gasparre G, Porcelli AM. Mitochondrial metabolism 
and energy sensing in tumor progression. Biochim Biophys Acta (2017) 
1858:582–90. doi:10.1016/j.bbabio.2017.02.006 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Iommarini, Porcelli, Gasparre and Kurelac. This is an open- 
access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.1016/j.bbabio.2017.02.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


November 2017 | Volume 7 | Article 29115

Mini Review
published: 29 November 2017
doi: 10.3389/fonc.2017.00291

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Sergio Giannattasio,  

Istituto di Biomembrane, 
Bioenergetica e Biotecnologie 

Molecolari (IBIOM), Italy

Reviewed by: 
Ferdinando Chiaradonna,  

Università degli studi di Milano 
Bicocca, Italy  

Apollonia Tullo,  
Istituto di Biomembrane, 

Bioenergetica e Biotecnologie 
Molecolari (IBIOM), Italy

*Correspondence:
Katherine M. Aird  

kaird@psu.edu

Specialty section: 
This article was submitted to 

Molecular and Cellular Oncology,  
a section of the journal  

Frontiers in Oncology

Received: 11 October 2017
Accepted: 14 November 2017
Published: 29 November 2017

Citation: 
Dahl ES and Aird KM (2017) 

Ataxia-Telangiectasia Mutated 
Modulation of Carbon  
Metabolism in Cancer.  

Front. Oncol. 7:291.  
doi: 10.3389/fonc.2017.00291

Ataxia-Telangiectasia Mutated 
Modulation of Carbon Metabolism  
in Cancer
Erika S. Dahl and Katherine M. Aird*

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, United States

The ataxia-telangiectasia mutated (ATM) protein kinase has been extensively studied 
for its role in the DNA damage response and its association with the disease ataxia 
telangiectasia. There is increasing evidence that ATM also plays an important role in 
other cellular processes, including carbon metabolism. Carbon metabolism is highly 
dysregulated in cancer due to the increased need for cellular biomass. A number of 
recent studies report a non-canonical role for ATM in the regulation of carbon meta-
bolism. This review highlights what is currently known about ATM’s regulation of carbon 
metabolism, the implication of these pathways in cancer, and the development of ATM 
inhibitors as therapeutic strategies for cancer.

Keywords: ataxia-telangiectasia mutated, cellular metabolism, cancer, reactive oxygen species, senescence, p53, 
AKT, c-myc

inTRODUCTiOn

Ataxia-Telangiectasia Mutated (ATM)
Ataxia-telangiectasia mutated is a serine/threonine kinase that is recruited to sites of DNA double-
strand breaks and signals to various downstream targets to initiate cell cycle arrest and DNA repair 
(1). Although mainly nuclear, ATM is also found in the cytoplasm and mitochondria (2, 3). In the 
phosphatidylinositol kinase-related family, ATM consists of many conserved domains and is a 
tumor suppressor (4). Its kinase domain is flanked by a FAT (FRAT, ATM, and TRRAP) and FATC 
(C-terminus) domain (5, 6). The function of the FAT domain has yet to be elucidated; however, 
the FATC domain is essential for kinase activity (7, 8). In addition, ATM has a leucine zipper 
domain, which is important for its kinase function but not required for dimerization (9). Finally, 
the N-terminus of ATM encompasses HEAT (huntingtin, elongation factor 3, A subunit of protein 
phosphatase 2A, and TOR1) repeats, which form helices that interact with various macromolecules 
and play a role in ATM’s kinase function (10, 11).

The activity of ATM in response to DNA damage has been extensively studied as ATM is known as 
the central regulator of the DNA damage response (DDR). During induction of DNA double-strand 
breaks, the MRN complex, containing Mre11, Rad50, and Nbs1, binds to the damage site (1). ATM 
is then activated and autophosphorylates its inactive dimer at serine 1981 (12). Monomeric, active 
ATM is then recruited to the damage site, where it phosphorylates downstream targets including 
SMC1, Nbs1, Chk2, BRCA1, and histone H2AX (13, 14). In addition, ATM phosphorylates p53 
at serine 15 (15, 16). Activation and repression of ATM’s downstream targets ultimately leads to 
senescence, genome repair, or apoptosis (17).

ATM is the primary gene mutation in ataxia telangiectasia (A-T) (18, 19). A-T is primarily docu-
mented as an immunodeficiency and neuronal degeneration disorder affecting 1:40,000–1:100,000 
people worldwide (18, 20). Inherited in an autosomal recessive manner, patients typically produce 
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symptoms of delayed development due to neurodegeneration, 
deficient immune response, and predisposition to cancer. 
Approximately 10–15% of ATM null A-T patients develop child-
hood leukemia and lymphoma, specifically T-cell prolympho-
cytic leukemia (21, 22). In addition, patients are predisposed to 
breast cancer, pancreatic cancer, and melanoma (23). Renwick 
et  al. conducted an unbiased screen in familial breast cancer 
patients and identified a number of premature truncations and 
missense variants in ATM that predispose patients to cancer (24). 
Furthermore, immunohistochemical staining of ATM and p53 in 
pancreatic tumor samples reveal that tumoral loss of ATM with 
wild-type p53 correlates with a decrease in patient survival, espe-
cially in families with a history of pancreatic cancer (25). Finally, 
somatic ATM mutations are implicated in increased melanoma 
risk (26). Moreover, ATM repairs mitochondrial genome defects, 
and loss of ATM leads to mitochondrial dysregulation (27). A-T 
patients have alterations in metabolism, including fluctuations 
in glucose metabolism (28). In addition, low NAD+ and SIRT1 
levels are observed in rat models of A-T (29). These observations 
lead to the investigation of the role of ATM in metabolism.

Carbon Metabolism in Cancer
Carbon metabolism is defined as the breakdown of carbon 
sources, such as glucose and amino acids, to be utilized for 
cellular energy. Alteration in carbon metabolism is a hallmark 
of cancer (30). Highly proliferative cancer cells predominantly 
proceed through aerobic glycolysis rather than the TCA cycle, 
termed the Warburg effect, requiring high intake of glucose and 
glutamine (31). This allows cancer cells to compete in a nutrient 
depleted environment to reduce reactive oxygen species (ROS), 
generate ATP, and produce dNTPs for proliferation (32, 33). This 
emphasizes the importance in studying carbon metabolism in 
cancer and using this knowledge to discover novel, metabolic-
based therapeutics.

MeTABOLiC ROLeS OF ATM

ATM and ROS
Apart from its role in the DDR, ATM has more recently been 
implicated in sensing ROS. The role of ATM in ROS sensing has 
been extensively reviewed (34, 35). Here, we will focus on the 
coupling of ATM-mediated ROS sensing in cellular metabolism.

In 2011, Cosentino et  al. published a pivotal paper linking 
ROS and the pentose phosphate pathway (PPP) (36). The PPP 
acts as the de novo pathway for deoxyribonucleotide (dNTP) 
synthesis, important for proliferation and DDR of cancer cells. 
ATM activates glucose-6-phosphate dehydrogenase (G6PD) 
through phosphorylation of heat shock protein 27 (Hsp27), 
which promotes shunting of glycolytic intermediates into the PPP 
to increase nucleotide synthesis. Furthermore, stimulation of the 
PPP increases NADPH production, which acts as a cofactor for 
antioxidants. Together, these data suggest the important role of 
ATM in the production of dNTPs and NADPH in the prolifera-
tion of cancer cells and protection against ROS.

Loss of ATM increases mitochondrial dysregulation, mito-
chondrial number, and ROS (3). A fraction of ATM localizes to 

the mitochondria, suggesting that A-T should be further classified 
as a mitochondrial disorder. Interestingly, this study suggested 
that the tumor predisposition of A-T patients may be in part due 
to the mitochondrial dysfunction observed.

Overall, ATM plays a key role in ROS prevention and sens-
ing. The ability of cancer cells to sense ROS through ATM and 
reprogram metabolism by increasing PPP activity allows for 
cancer cell survival and resistance to therapy. Cells lacking wild-
type ATM are prone to ROS accumulation and oxidative stress. 
However, the full mechanistic pathway for ATM activation after 
ROS accumulation is currently unclear.

ATM and insulin Signaling
Although beyond the scope of this review, it is important to rec-
ognize the evident role of ATM in insulin signaling. The purpose 
of insulin is to reduce the amount of glucose circulating in the 
blood and promote cellular uptake of glucose (37). Insulin binds 
to its respective receptor and recruits GLUT4, a central regulator 
in glucose homeostasis, to the membrane. GLUT4 transports 
glucose into the cell where it is used for various processes includ-
ing glycolysis. A-T patients have an increased risk of developing 
insulin resistance and type 2 diabetes. Early studies found that 
A-T patient monocytes have a decreased binding affinity for 
insulin when compared to unaffected controls (38). Furthermore, 
ATM signaling through p53 is vital to glucose homeostasis and 
insulin resistance. Together, these data suggest that ATM regulates 
glucose homeostasis in part through insulin signaling. Additional 
information on ATM and insulin signaling can be obtained in 
several excellent reviews (39–42).

ATM and Glycolysis
Glycolysis is the main carbon metabolism pathway occurring in 
the cytosol in which glucose is catabolized into pyruvate through 
a series of biochemical reactions. Importantly, glycolysis does 
not require oxygen to proceed and produces a net gain of two 
ATP molecules and two NADH molecules. Subsequently, in the 
presence of oxygen, pyruvate enters the mitochondria in the 
form of acetyl CoA and proceeds through the TCA cycle and 
oxidative phosphorylation. Conversely, pyruvate is converted 
to lactic acid in the absence of oxygen or in highly prolifera-
tive cancer cells as described above as the Warburg effect (31). 
ATM phosphorylates and activates the tumor suppressor p53 to 
regulate cell cycle arrest, apoptosis, senescence, and metabolism 
(43). p53 suppresses glycolysis through a number of pathways. 
Interestingly, p53 transcriptionally regulates metabolic genes, 
including glucose transporters SLC2A and SLC2A4 (encoding for 
GLUT1 and GLUT4, respectively) (44). p53 also inhibits kinase 
IKK and targets NFκB, effectively suppressing glycolysis (45). In 
addition, p53 targets TIGAR, which reduces glycolysis by acting 
as a fructose-2,6-bisphosphotase (46). It is tempting to speculate 
that ATM activates p53 to modulate glycolysis through these 
pathways. Indeed, various DDR proteins are connected to mito-
chondrial signaling, as discussed in a recent excellent review (47).

ATM and the PPP
Metabolism is altered in cancer mainly due to the need for 
nutrients and essential macromolecules in a competing and 
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proliferative environment (32). The PPP is a key pathway in the 
breakdown of glucose and diverges from glycolysis at glucose-
6-phosphate (G6P) (48). Indeed, the increase in proliferation of 
cancer cells requires the biosynthesis of dNTPs in order to faith-
fully replicate the genome and repair DNA damage (49, 50). The 
PPP is essential for de novo dNTP synthesis. The PPP produces 
ribose-5-phosphate, the sugar backbone precursor for purine and 
pyrimidine synthesis (51). The PPP is divided into the oxidative 
and non-oxidative pathways. The first irreversible step of the PPP 
converts NAD+ to NADPH during the conversion of G6P to 
6-phosphate-gluconolactone (6PG). The production of NADPH 
acts as an antioxidant cofactor, protecting the cell from ROS and 
oxidative stress (52). Together these data suggest an important 
role of the PPP in the proliferation and reduction of ROS for 
cancer cell survival.

In response to DNA double-strand breaks, ATM activates 
Hsp27 and G6PD (36). This interaction increases the flux of 
G6P to enter the PPP, which increases dNTPs and NADPH to 
aid DNA repair and reduce ROS, respectively. Conversely, other 
groups found that ATM negatively regulates the PPP through p53  
(52, 53). It is interesting to speculate that there is a balance 
between positive and negative regulation of the PPP downstream 
of ATM. It is possible that the amount of DNA damage dif-
ferentially modulates PPP activity. Under low amounts of DNA 
damage, Hsp27 is activated to increase dNTP synthesis for DNA 
repair; however, significant DNA damage accumulation may 
hyperactivate p53 to inhibit the PPP to fully shut down biosyn-
thetic pathways. Nevertheless, these data support the notion that 
ATM regulates the PPP to affect dNTP synthesis and NADPH 
production in cancer cells.

ATM AnD CAnCeR

Tumor Suppressive Role of ATM in 
Senescence
Cellular senescence is defined as a stable cell cycle arrest (54) and 
is, therefore, a potent inhibitor of transformation (55). Senescence 
also plays a role in aging and is increased in age-related patholo-
gies (56, 57). Senescence occurs due to multiple cellular insults, 
including telomere shortening, oncogene activation, termed 
oncogene-induced senescence (OIS), oxidative stress, and DNA 
damage (54). Senescence is characterized in part by alterations 
in metabolism (58). Senescence is now considered a reversible 
process (49, 53, 59–62). Therefore, dissecting how cells escape 
senescence is critical for understanding the earliest events in 
tumorigenesis.

One of the underlying mechanisms of OIS is increased replica-
tion stress, leading to DNA damage accumulation and cell cycle 
arrest (63, 64). Replication stress is due to a decrease in dNTP 
production via suppression of ribonucleotide reductase subunit 
2 (RRM2), the rate-limiting enzyme in de novo dNTP synthesis 
(49). Replication stress due to decreased dNTPs activates ATM, 
correlating with senescence induction (53). Loss of ATM rescues 
senescence through restoration of dNTP levels. This is mediated 
by a p53-dependent modulation of PPP activity and increased 
c-myc stability to increase glucose and glutamine consumption. 

Consistently, a recent study found that pharmacological inhibi-
tion of ATM suppresses senescence (65). In this study, pharma-
cological ATM inhibition also modulated glucose consumption. 
Together, these data suggest that ATM functions in metabolic 
regulation and reprogramming in senescent cells.

Oxidative stress induced by ROS can also cause premature 
senescence in part through DNA damage accumulation. As 
discussed above, ATM senses and is activated by DNA damage 
(66). ATM signals through the AKT/p53/p21 pathway to induce 
senescence in human umbilical vein endothelial cells after 
oxidative stress (67). In addition, ATM activation is necessary 
for senescence due to nitric oxide (68). Finally, recent evidence 
suggests that loss of ATM in A-T mice increases NADPH oxidase 
4 (NOX4) expression, leading to increased ROS and senescence 
(69). Together, these data demonstrate the importance of ATM 
signaling to induce senescence and suggest that ATM’s role in 
modulating senescence status offers the possibility of a future 
therapeutic target in the fields of both aging and cancer.

ATM Suppresses c-myc
Many cancers upregulate oncogenes that modulate metabolism, 
including the well-known transcription factor c-myc (70, 71). 
Specifically, c-myc transcriptionally regulates various enzymes 
related to metabolic pathways (70, 71). In relation to cancer, 
c-myc increases the Warburg Effect through upregulation of 
lactate dehydrogenase, glucose transporters, and pyruvate dehy-
drogenase kinase. The regulation of c-myc by ATM has just begun 
to be elucidated. Loss of ATM increases c-myc protein stability, 
which in turn increases glucose and glutamine consumption (53). 
Consistently, ATM partially suppresses c-myc-induced lympho-
magenesis in mouse models (72, 73). It is interesting to speculate 
whether this is due to suppression of pro-tumorigenic metabo-
lism. Loss of ATM and c-myc amplification/overexpression are 
often mutually exclusive in multiple cancer types, suggesting a 
redundancy in the pathway. Altogether, this suggests an interplay 
between ATM and c-myc in cancer metabolism.

ATM Activates AKT
AKT is a well-known serine/threonine kinase that is activated by 
phosphatidylinositol-3-kinase (PI3K) and regulates many cellular 
processes related to cancer, including survival, cellular metabo-
lism, and DNA repair (74, 75). ATM activates AKT in response 
to DNA damage (76–78). Activated AKT then promotes DNA 
repair (79) and inhibition of AKT decreases DNA repair (80, 81). 
Consistently, pharmacological inhibition of ATM inhibits AKT 
phosphorylation and survival in multiple cancer types (82–84). 
These findings suggest a vital role for AKT in the maintenance of 
genome integrity, and inhibition of this DNA repair function may 
result in accumulation of DNA damage and cell death.

AKT also modulates cancer metabolism (85–89). Active AKT 
increases glucose uptake by recruiting GLUT4 to the plasma 
membrane (90). In addition, pharmacological inhibition of AKT 
in primary effusion lymphoma decreases the rate of aerobic gly-
colysis (91). This suggests that ATM-mediated regulation of AKT 
activity in cancer reprograms metabolism by increasing glucose 
uptake and potentially shifting metabolism from aerobic glyco-
lysis to oxidative phosphorylation. It is particularly interesting 
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that ATM-mediated AKT activation may be a double-edged 
sword, both increasing DNA repair to promote genomic integrity 
while at the same time increasing pro-tumorigenic metabolism. 
These data suggest that ATM inhibitors may both alleviate the 
metabolic changes induced by activated AKT and lead to DNA 
damage-induced death of cancer cells.

ATM Regulates p53
p53 is defined as the “guardian of the genome” as it serves to 
regulate genome stability as a tumor suppressor (92). TP53 is one 
of the most mutated genes among all cancers. p53 is a transcription 
factor that can be activated by ATM (10). Activation of p53 by 
ATM was originally shown to be important for the regulation of 
genes essential in apoptosis and DNA repair (93). Further inves-
tigation into the interplay between ATM and p53 has revealed its 
importance in cancer metabolism. p53 regulates many pathways in 
cellular metabolism, including GLUT recruitment, glycolysis, and 
oxidative phosphorylation (94). Mutations in p53 lead to metabolic 

reprogramming in a cancer cells, allowing increased glucose intake 
through GLUT recruitment to the cell membrane, increased aero-
bic glycolysis, and decreased oxidative phosphorylation (94, 95). 
In addition, ATM directly impacts p53-mediated PPP metabolism 
as discussed above (53). Moreover, ATM loss and p53 mutation are 
often mutually exclusive in cancer, suggesting that these proteins 
act in the same pathway to promote cancer cell survival.

ATM inhibitors for Cancer Therapy
A variety of ATM inhibitors are currently in pre-clinical and 
clinical trials for multiple cancer types. ATM inhibitors sensitize 
various cancer cell lines and tumors in vitro and in vivo to radia-
tion treatment (83, 96–98). In addition, a phase I clinical trial is 
currently ongoing with an ATM inhibitor in combination with a 
PARP inhibitor in advanced cancer patients who are resistant to 
the standard-of-care (99). Together, these studies have found that 
cancer cells may be sensitized to DNA damage through inhibition 
of ATM.

FiGURe 1 | Ataxia-telangiectasia mutated (ATM) modulates cellular metabolism. DNA damage activates ATM to phosphorylate multiple downstream proteins 
regulate cell cycle arrest, DNA repair, and apoptosis pathways. A non-canonical function of ATM is the regulation of cellular metabolism. Mitochondrial ATM acts  
to regulate mitochondrial homeostasis by repairing mitochondrial genome defects. ATM activates the tumor suppressor p53, which inhibits GLUT recruitment, 
glycolysis, and dNTP production. Consistently, p53 targets the oncogene c-myc, inhibiting the TCA cycle and increasing the Warburg effect. In addition, ATM 
activates AKT to increase GLUT recruitment to the membrane.
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Metabolic Plasiticy in Cancers—
Distinct Role of Glycolytic enzymes 
GPi, LDHs or Membrane 
Transporters MCTs
Maša Ždralević1*, Ibtissam Marchiq1†, Monique M. Cunha de Padua1†, Scott K. Parks2  
and Jacques Pouysségur1,2*

1 Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, University Côte d’Azur, Nice, 
France, 2 Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco

Research on cancer metabolism has recently re-surfaced as a major focal point in 
cancer field with a reprogrammed metabolism no longer being considered as a mere 
consequence of oncogenic transformation, but as a hallmark of cancer. Reprogramming 
metabolic pathways and nutrient sensing is an elaborate way by which cancer cells 
respond to high bioenergetic and anabolic demands during tumorigenesis. Thus, 
inhibiting specific metabolic pathways at defined steps should provide potent ways of 
arresting tumor growth. However, both animal models and clinical observations have 
revealed that this approach is seriously limited by an extraordinary cellular metabolic 
plasticity. The classical example of cancer metabolic reprogramming is the preference 
for aerobic glycolysis, or Warburg effect, where cancers increase their glycolytic flux 
and produce lactate regardless of the presence of the oxygen. This allows cancer cells 
to meet the metabolic requirements for high rates of proliferation. Here, we discuss 
the benefits and limitations of disrupting fermentative glycolysis for impeding tumor 
growth at three levels of the pathway: (i) an upstream block at the level of the glucose-6- 
phosphate isomerase (GPI), (ii) a downstream block at the level of lactate dehydroge-
nases (LDH, isoforms A and B), and (iii) the endpoint block preventing lactic acid export 
(MCT1/4). Using these examples of genetic disruption targeting glycolysis studied in 
our lab, we will discuss the responses of different cancer cell lines in terms of metabolic 
rewiring, growth arrest, and tumor escape and compare it with the broader literature.

Keywords: cancer, CRiSPR-Cas9, glycolysis, immune response, lactic acid, metabolism, oxidative phosphorylation, 
pentose phosphate pathway

inTRODUCTiOn

As opposed to normal, differentiated cells, which under aerobic conditions metabolize glucose 
mainly via oxidative phosphorylation (OXPHOS), cancer cells largely favor glycolytic pathway 
and subsequent lactate1 formation for their energy production, regardless of oxygen availability. 
Warburg first observed this metabolic peculiarity of cancer cells (1) and postulated not only that 
cancer cells have damaged respiration and excessive glycolysis but also that the shift of energy 

1 The authors refer to l-lactate metabolism in this mini-review.
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metabolism from aerobic to anaerobic is actually the cause of 
cancer (1). According to Warburg, the tumor is initiated by irre-
versible damage to respiration and persists because of increased 
anaerobic metabolism, which compensates energetically for the 
failure of respiration (1). However, today we know that many 
cancer cells have healthy mitochondria (2) and rely partly on oxi-
dative metabolism (3), whereas fermentative glycolysis remains 
the “preferred” pathway by most hypoxic and rapidly growing 
tumors (4–6).

Following these pioneering studies, the field of cancer meta-
bolism has been in a shadow of cancer genetics, which prevailed 
for decades, after the discovery of the role of oncogenes and 
tumor-suppressor genes in cancer. However, in the late 1990s, 
it was shown that lactate dehydrogenase A (LDHA) is a direct 
c-Myc-responsive gene (7), followed later on by the discovery 
that c-Myc and HIF-1 complementary induce all glycolytic 
enzymes with a concomitant inhibition of the pyruvate oxida-
tion (8), reviving interest in connecting oncogenes and altered 
metabolism (4). At this time, altered metabolism was seen only 
as a consequence of oncogenic activation, since serum growth 
factors known to rapidly activate metabolism in the early 1970s 
(9) were shown to induce c-Myc. Interestingly, it was shown only 
later that loss-of-function mutations of the TCA cycle enzymes 
succinate dehydrogenase (10) and fumarate hydratase (11) were 
implicated in pathogenesis of several hereditary forms of cancer. 
These mutations in tumor-suppressor genes encoding for impor-
tant metabolic enzymes raised the possibility that under certain 
conditions, altered metabolism could be the cause, not the effect, 
of cancer transformation (12).

Even if seemingly counterintuitive, given the much lower 
ATP yield from glycolysis with respect to the OXPHOS, this 
reprogramming of energy metabolism is thought to support 
large-scale macromolecule biosynthesis, necessary for rapid 
proliferation and growth (5, 6, 13) (Figure 1). Metabolic rear-
rangements are a feature of almost all cancer cells, which enables 
them to adapt to constantly changing conditions in nutrient 
microenvironment thereby promoting their aberrant prolifera-
tion. Aerobic glycolysis (Warburg effect) is just one component 
of the metabolic transformation, together with the reverse 
Warburg effect (14), metabolic symbiosis (15) and addiction to 
glutamine metabolism (16).

In this mini-review, we report the tumor growth consequences 
of re-routing fermentative glycolysis by genetic disruption at 
three key levels studied in our lab: glucose-6-phosphate isomer-
ase (GPI), lactate dehydrogenase (LDHA and B isoforms), and 
at the level of export of lactic acid [monocarboxylate transporter 
(MCT) isoforms]. We discuss their responses in terms of meta-
bolic rewiring, growth arrest, or tumor escape and compare it 
with a broader literature.

AeROBiC GLYCOLYSiS AnD THe 
COnTROL OF THe MeTABOLiC SwiTCH

Despite the remarkable genetic and phenotypic tumor hetero-
geneity, a specific set of signaling pathways appear to support 
the altered metabolic processing of glucose. Indeed, there is a 

dual set of universal mitogenic pathways: Ras-Raf-ERK and 
PI3K-AKT activated by growth factors/hormone receptor tyros-
ine kinases and G protein-coupled receptors. ERKs and AKTs 
protein kinases synergize in controlling growth and metabolism 
through activation of the master protein kinase (mTORC1).  
In cancer, oncogenes and tumors suppressors constitutively 
activate these mitogenic pathways to modify metabolism, nutri-
ent, and oxygen sensing through c-Myc and HIF-1 (17–19). 
Regulation of cancer cells’ metabolic rearrangements by onco-
genes and tumor suppressors is complex and beyond the scope of 
this short review, but the fact that numerous pathways converge 
on glucose and glutamine reflects their central importance for 
energy metabolism.

The avidity of cancer cells for glucose is reflected by the 
upregulation of glucose transporters and clinical exploitation of 
the accumulation of radioactive 18F-deoxyglucose is identified 
by positron emission tomography. Once inside the cell, glucose 
is metabolized by glycolysis, a pathway embedded in a complex 
metabolic network, directly providing precursors for nonessential 
amino acids (20) and through branching to the oxidative arm of 
pentose phosphate pathway (PPP), nucleotides (20) (Figure 1).  
Furthermore, NADPH is regenerated in the PPP and by the 
serine, glycine/C1-carbon synthesis glycolytic bypass thus con-
tributing to reductive biosynthesis and redox homeostasis (21). 
As such, branching of the glycolytic pathway is strictly regulated 
at several different steps (22).

Recognition that the oncogenic activation leads to increased 
glycolysis (23), together with clinical evidence that correlated 
cell metabolism with cancer outcome, prompted many studies 
toward strategies to inhibit glucose metabolism in cancer (24, 25). 
In fact, some of the first metabolic anticancer therapies developed 
remain effective agents in clinic today, such as antifolate drugs 
and l-asparaginase (25). 2-deoxy-glucose (2-DG) has been 
recognized as a glycolysis inhibitor since the 1950s (26, 27), pri-
marily by competitively inhibiting GPI (26, 28). However, 2-DG 
also inhibits glucose transport (29), hexokinase (HK) activity  
(30, 31) and the multiple points of action and its high toxicity 
have prevented its use in the clinic (32, 33).

GLUCOSe-6-PHOSPHATe  
iSOMeRASe (GPi)

Glucose-6-phosphate isomerase (d-glucose-6-phosphate aldose- 
ketose-isomerase; EC 5.3.1.9) is a housekeeping cytosolic 
enzyme that plays a key role in glycolytic and gluconeogenic 
pathways, catalyzing the interconversion between G6P and 
fructose-6-phosphate (Figure  1). Its expression is induced by 
c-Myc (34) and HIF-1 (35, 36) and is increased in many cancers 
(37). GPI has also been described as a secreted multifunctional 
complex protein that could act as a cytokine under the name 
autocrine motility factor (38). However, this notion requires 
further confirmation.

In our lab a complete genetic ablation of GPI expression was 
accomplished by using CRISPR/Cas9 in two aggressive cancer 
cell lines, human colon adenocarcinoma (LS174T) and mouse 
melanoma (B16-F10) (39). Both GPI-mutant cell lines had no 
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FiGURe 1 | Glucose and glutamine catabolism provide tumor cells with biosynthetic precursors. Glucose transport and glycolytic flux are accelerated in cancer 
cells, when compared to normal cells, due to increased expression of appropriate transporters and enzyme isoforms. Glucose-6-phosphate dehydrogenase 
(G6PDH) shunts G6P from the glycolysis into the oxidative branch of pentose phosphate pathway (PPP). Intermediates from glycolysis and TCA cycle replenish 
biosynthetic pathways to produce macromolecules (nucleic acids, lipids, and proteins) necessary for cell proliferation. Only those transporters and enzymes relevant 
to the text are shown: GLUT1, glucose-6-phosphate isomerase, lactate dehydrogenase A (LDHA)/-B, MCT1/4. HIF- targets are in red and CRISPR-Cas9 targets 
studied in our lab are identified with red arrows.
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detectable GPI enzymatic activity, suppressed completely lactic 
acid secretion and grew by reprogramming their bioenergetic 
metabolism to OXPHOS (39). Surprisingly, in contrast to 
previous pharmacological inhibition studies (29, 37), GPI-KO 
cells growth was only reduced by twofold in normoxia with 
ATP produced by OXPHOS being sufficient to maintain their 
growth and viability. However, the growth rate of GPI-KO cells 
was severely reduced in hypoxia (1% O2) while cells remained 
viable. Interruption of the glycolytic flow by GPI-KO increases 
the intracellular G6P pool, which in turn was proposed to elicit 
a short-term inhibition of HK and a long-term inhibition of 
glucose transport (40, 41). Indeed, we found that both GPI-KO 
cell lines had decreased GLUT1 expression, as well as induction 

of thioredoxin-interacting protein expression, a strong negative 
regulator of glucose uptake (42). We showed that increased 
OXPHOS dependence of GPI-KO cells made them extremely 
sensitive to inhibitors of the respiratory chain complexes, such 
as phenformin and oligomycin (39), in line with the findings of 
Pusapati et al. (37). Therefore, we speculate that pharmacologi-
cal inhibition of tumor growth at the level of GPI was effective 
mainly because of the multiple targets of 2-DG.

In conclusion, we showed that complete suppression of 
glycolysis in two aggressive cancer cell lines slowed, but did 
not prevent in  vivo tumor growth, in line with the findings of 
Pouysségur et al. (40) and Pusapati et al. (37). Particularly strik-
ing is the LS174T  cell line that is highly glycolytic and almost 
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FiGURe 2 | Metabolic reprogramming in glucose-6-phosphate isomerase (GPI)-KO cells. A switch from glycolytic metabolism to oxidative phosphorylation 
(OXPHOS) caused by the complete GPI disruption is shown. LS174T WT cells are highly glycolytic and do not use mitochondria for ATP production (A). 
Contrarily, cells survive GPI disruption by re-activating pentose phosphate pathway (PPP) and OXPHOS (B). Oxygen consumption rate (OCR) of LS174T WT  
and GPI-KO cells was evaluated with Seahorse XF24 bioanalyzer (C). The mean ± SEM is representative of four independent experiments performed in 
quadruplicate. The figure is adapted from Ref. (39). Glc, glucose, oligo, oligomycin, FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone, rot, rotenone, 
antA, antimycin A.
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does not respire under normal conditions and is capable to 
achieve strong re-activation of OXPHOS when challenged by 
GPI ablation (Figure 2). Consequently, as shown with inducible 
shRNAs against GPI, the growth was significantly reduced only 
in combination with mTORC1 or OXPHOS inhibition (37). This 
remarkable metabolic plasticity of cancer cells revealed as well on 
several other cell lines (37) poses a big challenge for anticancer 
therapies targeting metabolism.

LACTATe DeHYDROGenASe (LDH) 
iSOFORMS

Lactate dehydrogenase [(S)-lactate:NAD+ oxidoreductase; EC 
1.1.1.27] is a family of NAD+-dependent enzymes that catalyze the 
interconversion between pyruvate and lactate, with concomitant 
oxidation/reduction of the cofactor (NADH/NAD+). LDH is a 
homo- or hetero-tetramer assembled from two different subunits: 
M and H, encoded by two separate genes, LDHA (M) and LDHB 

(H), respectively. A third subunit, LDHC, encoded by a separate 
LDHC gene, is expressed only in testes and sperm and is prob-
ably a duplication of the LDHA gene (43). LDH tetramers form 
at least six isoenzymes that differ in electrophoretic mobility, Km 
for pyruvate and lactate, immunological characteristics, thermal 
stability and inhibition by coenzyme analogs or excess pyruvate 
(44). The existence of mitochondrial LDH was shown in prostate 
cancer cells (45), and human hepatocellular carcinoma cells (46). 
Mitochondrial metabolism of lactate results in export of oxaloac-
etate, malate, and citrate outside mitochondria, therefore having 
an anaplerotic role (Figure 1) (46). In this mini-review, we will 
focus on the cytosolic LDH and refer readers to excellent reviews 
on this topic (47, 48).

LDHA
Lactate dehydrogenase A (LDH-5, or LDHA4) is composed of 
four LDHA subunits and has the lowest Km for pyruvate of the 
LDH isoforms and catalyzes pyruvate reduction to lactate, the  
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final step of the glycolysis, with concomitant regeneration of NAD+ 
molecules, required for glycolysis to proceed. LDHA is located 
mainly in the cytoplasm, but it has also been found to bind single-
stranded DNA in the nucleus (49). LDHA has been recognized 
as a valuable predictive/prognostic marker; its overexpression is 
associated with cancer invasiveness, and elevated serum lactate 
levels correlate with poor prognosis and resistance to chemo- and 
radiotherapy (50). LDHA expression is regulated by c-Myc (7), 
HIF-1 (51, 52), and micro-RNA miR-34a (53). The key role of 
LDHA in maintaining the Warburg phenotype in cancer cells  
was confirmed by several reports of LDHA inhibition or knock-
down severely diminishing tumorigenicity in breast, lung, liver, 
lymphoma, and pancreas cancers (54–58). Decreased LDHA 
activity resulted in stimulation of OXPHOS and mitochondrial 
oxygen consumption and decrease of mitochondrial membrane 
potential (54) and increased apoptosis via ROS production 
(56–58). These data, together with the fact that LDHA deficiency 
has no serious consequences under normal conditions made 
LDHA a very attractive target for the anticancer therapy. Many 
LDHA inhibitors shown to suppress tumor growth in vitro and 
in vivo were developed by major pharmaceutical groups, but with 
moderate selectivity, particularly of those targeting the dinucleo-
tide binding site common to many enzymes (50). These inhibi-
tors were more powerful in combination with other therapies, 
but none have reached the stage of clinical trials (50). Recently, 
Genentech group described a novel LDHA inhibitor, GNE-140, 
capable of inhibiting both isoforms with nanomolar potency (59). 
Their work showed that predominantly glycolytic cell lines were 
more sensitive to LDHA inhibition, while cell lines relying more 
on OXPHOS were inherently resistant (59), and in these cells the 
combination of LDHA inhibition with OXPHOS inhibitors was 
synthetically lethal (59). However, GNE-140 was unable to inhibit 
tumor growth in vivo, alone or in combination with phenformin, 
due to its rapid clearance.

Conversely, our work with LDHA-KO cells in LS174T and 
B16 cell lines shows that LDHA is dispensable for in vitro tumor 
growth, both in normoxia and in hypoxia. These cells were 
still able to catalyze pyruvate conversion to lactate. Although 
reduced, this activity was sufficient to drive glycolysis and lactate 
production, which was only moderately decreased with respect 
to WT  cells (60, 61). LDHA-KO cells moderately stimulated 
OXPHOS and, therefore, were more sensitive to respiratory 
chain inhibitors. However, residual LDH activity present in these 
cells, which we argue is due to the activity of the LDHB isoform, 
was sufficient to sustain cell growth and viability. Thus, we argue 
that most of the alterations due to LDHA inhibitors shown so 
far were due to off-target effects and not a specific decrease in 
LDHA activity. Similar results were observed in a study of LDHA 
silencing in breast cancer cell line, where stable LDHA knock 
down did not affect cell viability, lactic acid production, glucose 
consumption, or ATP (62). These cells contained twice as much 
LDHB isoform, again supporting the possibility of the LDHB 
isoform catalyzing the reverse reaction.

LDHB
LDHB is composed of four B subunits and catalyzes lactate 
oxidation to pyruvate, coupled with NADH formation. An 

increasing number of studies investigated the role of LDHB in 
several subtypes of cancer, but its role remains elusive and poorly 
characterized. LDHB was found to be positively regulated by the 
RTK–PI3K–AKT–mTOR pathway both in immortalized mouse 
cell lines and human cancer cells (63). Its expression was stimu-
lated by signal transducer and activator of transcription STAT3, 
a key tumorigenic driver in many cancers (63). Furthermore, 
LDHB was found to be upregulated in triple-negative breast 
cancer, KRAS-dependent lung adenocarcinoma, maxillary sinus 
squamous cell cancer as well as in osteosarcoma and correlated 
with poor patient outcome (64–67). LDHB knock down inhibited 
cell growth, proliferation, and invasion and the loss of LDHB was 
shown to arrest tumor growth in  vitro an in  vivo (64, 66, 67). 
This is in line with the “reverse Warburg effect,” proposing that 
stromal or cancer cells undergo aerobic glycolysis and produce 
lactate, which is then taken up by MCT1 to fuel oxidative cells 
via LDHB-catalyzed conversion to pyruvate (14, 68, 69). Indeed, 
MCT1 expression was found to correlate with high LDHB expres-
sion in TNBC (64).

Conversely, other studies found LDHB overexpression to 
be correlated with better prognosis (70), and accordingly, loss 
of LDHB expression was associated with metastatic progres-
sion (71). The underlying mechanism seems to involve LDHB 
promoter hypermethylation and consequent gene silencing 
at the transcriptional level (71), but exactly how loss of LDHB 
contributes to tumor progression is not clearly understood.

In our lab, LDHB gene knockout by CRISPR/Cas9 in LS174T 
and B16 cells did not significantly alter their growth and 
viability in normoxia or hypoxia (61). As expected, LDHA/B-
DKO cells retained the ability to convert lactate into pyruvate 
by LDHA isoenzyme. Because our LDHA-KO cells were still 
capable to produce and secrete measurable levels of lactic acid 
we genetically disrupted the two LDH isoforms (LDHA/B-
DKO) in LS174T and B16 cell lines. LDH enzymatic activity 
in both directions was completely abolished in these cells. As 
a consequence, they showed a distinctive phenotype—growth 
reduction, absence of glycolysis, and no lactic acid secretion, 
neither in normoxia nor in hypoxia (1% O2). Furthermore, in 
order to overcome the imposed glycolytic blockade, these dou-
ble LDHA/B-DKO cells re-directed their metabolism toward 
OXPHOS and relied on it for viability and growth. In contrast 
to wild-type or single LDH-KO cells, the double LDHA/B-DKO 
cells died rapidly in response to mitochondrial respiratory chain 
inhibitors, such as phenformin and oligomycin (in submission).

These findings, based on a genetic approach, demonstrate that 
both LDHA and B contribute to fermentative glycolysis (Warburg 
effect) and because of the bioenergetics metabolism re-routing 
these two enzymes are dispensable for tumor growth. In contrast, 
these results point that most of the LDHA inhibitors used so far, 
with the exception of GNE-140 from Genentech, inhibited tumor 
growth due to off-target effects.

MCT1 AnD MCT4

Lactic acid, the end product of fermentative glycolysis abun-
dantly released by cancer cells, has a strong impact in tumor 
microenvironment (72, 73). It can function as an oxidizable fuel, 
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gluconeogenetic precursor and a source of TCA cycle interme-
diates (46, 74, 75). In addition, it is an antioxidant promoting 
angiogenesis, migration (76), and its contribution to tumor 
acidosis was reported to blunt tumor-immune response by T 
and NK cells (60). Lactic acid is exported/imported in cells by a  
family of four reversible MCTs [for review, see Ref. (77)]. MCTs 
as H+/Lactate− symporters facilitate net lactic acid exchange 
across the plasma membrane, whose direction depends on the 
concentration gradients of protons and monocarboxylate (77). 
Increasing experimental evidences support the cell–cell and 
intracellular lactate shuttles hypothesis proposed by Brooks (48), 
thus lactate is continuously formed and consumed in different 
cells under fully aerobic physiological conditions (48). MCT1 
facilitates lactate and pyruvate transport, it is induced by c-Myc 
and expressed virtually in all cells. In contrast, MCT4 is an efficient 
lactate exporter induced by hypoxia and expressed in glycolytic 
tissues and cancer cells (77). Both MCT1 and 4 need assistance 
from the chaperone CD147 or basigine (BSG) to express active 
transporters at the plasma membrane.

Several reports from Baltazar’s group (78–80) have shown 
that increased expression of MCT1 and MCT4 are associated 
with a poor prognosis in several types of human cancer, such as 
neuroblastoma, colorectal carcinoma, gastrointestinal stromal 
tumors, and prostate cancer. In parallel, our group, exploring 
pHi-regulating systems as putative anticancer targets in hypoxic 
tumors (81, 82), developed an interest in blocking lactic acid 
export. Pharmacological blockage with the specific AstraZeneca 
MCT1/2 inhibitor (AZD3965) was very efficient in arresting 
growth of tumors expressing only MCT1, like in transformed 
fibroblasts (83) or neoplastic B cells (84). However, it became clear 
that most aggressive cancers express both isoforms, like in colon 
adenocarcinoma, glioblastoma or non-small cell lung cancer.  
In these cancer types, genetic disruption of the chaperone (BSG), 
with zinc finger nucleases, reduced lactic acid export by 70–80%, 
an action sufficient to re-activate OXPHOS and maintain tumor 
growth (85). These tumor cells behaved like GPI-KO or LDHA/B-
DKO with growth arrest and loss of cell viability induced by 
inhibitors of mitochondrial respiration (85, 86). However, phar-
macological inhibition of MCT1 combined with a MCT4-KO 
was able to slow considerably in vitro growth and in vivo tumor 
xenografts (85, 86). We also confirmed that dual pharmacological  

inhibition of MCT1 and MCT4 considerably reduced cell  
growth. Removal of the inhibitors after a week allowed cells to 
form colonies, indicating a cytostatic, not cytotoxic effect induced 
by lactic acid sequestration in response to MCTs blockade.

COnCLUSiOn

Comparing the three independent approaches of interrupting the 
glycolytic flux, we reach a common consensus and a strong diver-
gence. Genetic disruption of GPI, LDHA/B, or MCT1/4 leads to 
re-activation of OXPHOS with tumor growth maintenance but 
increased sensitivity to mitochondrial inhibitors. The case of 
MCT1/MCT4 is interesting because the phenotype depends on 
the value of MCT suppression. Partial MCT suppression reached 
in BSG-KO cells, growth is maintained; total block with dual 
inhibition by AZD compounds, growth is compromised due to 
intracellular acidification.

Finally, targeting tumor metabolism via anti-glycolytic thera-  
pies remains an attractive therapeutic approach (82, 87), especially  
in combination with the inhibition of mitochondrial pathways, 
but it will have to be precisely administered in order to spare 
normal cells and limit toxicity (82).
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In addition to being a glucose precursor in liver and kidney, l-lactate is now also being recognized as 
an energy substrate in most cells via its oxidation to pyruvate. This oxidation, assumed to occur in the 
cytosol, is catalyzed by l-lactate dehydrogenase with pyruvate subsequently catabolized in the mito-
chondria. However, recently mitochondria were recognized to play a role in l-lactate metabolism: 
the existence of a mitochondrial l-lactate dehydrogenase (m-l-LDH) was suggested by Dianzani 
(1), and later demonstrated by Baba and Sharma (2) to be located in the mitochondrial matrix (3). 
Indeed, l-lactate transport and metabolism was shown in various mitochondria, including skeletal 
muscle (4) rat heart (5), liver (6), brain (7–9), cerebellar granule cells (10), rabbit gastrocnemius (11), 
sperm cells (12), pig liver (13), and even plant (14). Thus, the existence of m-l-LDH, as reviewed by 
Passarella et al. (3), Brooks (15), and Schurr (16), was recognized with its inclusion in the MitoCarta 
(http://www.broadinstitute.org/pubs/MitoCarta/index.htrnl). As expected, in light of the presence of 
the l-LDH in the matrix, the occurrence of carriers for l-lactate has been shown in functional studies 
with purified, coupled mitochondria. These include the l-lactate/H+ symporter and the l-lactate/
pyruvate and l-lactate/oxaloacetate antiporters (3). Surprisingly, the overwhelming evidence for an 
m-l-LDH located inside mitochondria is not universally accepted, with some scientists still being 
skeptic about the existence of m-l-LDH, while others localizing m-l-LDH in the intermembrane 
space (17). It is our opinion that the skepticism could originate due to difficulties in isolating coupled 
mitochondria, not an easy task, in particular with skeletal muscle samples, or not being careful 
enough in selecting reaction media and in using inhibitors at the correct concentration (11). That 
m-l-LDH is localized inside mitochondria will be shown below.

iS l-LACTATE BEinG TRAnSpORTED AnD METABOLiZED  
in CAnCER CELL MiTOCHOnDRiA?

Yes, it is. Although in the 1920s, Warburg found that cancer cells prefer to produce ATP by gly-
colysis with l-lactate production, to the best of our knowledge, the mitochondrial metabolism of 
l-lactate had not been investigated in cancer cells until 2010, when the first evidence for l-lactate 
mitochondrial metabolism in these cells (already reported in 2008 by Gabriella Chieppa in her PhD 
thesis at the University of Molise) was published (18). In this case, to study l-lactate transport and 
metabolism in mitochondria isolated from both normal and cancer prostate cells, spectroscopic and 
polarographic techniques were used, in which either m-l-LDH reaction or oxygen consumption by 
mitochondria, supplied with externally added l-lactate were monitored, respectively (19), rather 
than employing more involved procedures, available in molecular biology, genetics, and chemistry 
laboratories. The former two techniques were chosen since they afford the continuous monitor-
ing of the kinetics of the investigated processes in experiments that last for several minutes where 
mitochondria remain coupled. By contrast, measurements using the latter methods are usually made 
once the processes have already been completed. Accordingly, an increase in the redox state of the 
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intramitochondrial pyridine nucleotides, as shown by fluorimet-
ric measurements, upon the addition of l-lactate to mitochondria 
indicates that l-lactate metabolism occurs inside the organelles 
via an NAD+-dependent m-l-LDH; unfortunately, the occurrence 
of the mitochondrial l-lactate metabolism in cancer cells was not 
quoted in Ferguson et al. (17) possibly because the authors of the 
review consider the spectroscopic and polarographic techniques 
to be “problematic,” despite its widespread use by numerous 
scientists. That theirs is a minority opinion might be exempli-
fied by quoting from a review by Mayevsky and Rogatsky (20), 
which states that “The large numbers of publications by different 
groups testify to the valuable information gathered in various 
experimental conditions. The monitoring of NADH levels in the 
tissue provides the most important information on the metabolic 
state of the mitochondria.” The existence of m-l-LDH can be also 
immunologically confirmed in mitochondria that are proven to 
be free of cytosolic contamination.

Notice that in the case where m-l-LDH is proposed to 
be localized in the intermembrane space, the increase in the 
intramitochondrial pyridine nucleotide fluorescence is explained 
as follows: l-lactate enters the mitochondrial intermembrane 
space where it is oxidized to pyruvate, which in turn crosses the 
mitochondrial inner membrane to be oxidized inside the mito-
chondria via the pyruvate dehydrogenase complex [for review, 
see Ferguson et al. (17)]. Such a mechanism is not supported by 
various experimental findings. For instance, in de Bari et al. (18), it 
was shown that NAD+ reduction proceeds despite the presence of 
arsenite, an inhibitor of pyruvate dehydrogenase, but is inhibited 
by oxamate, an inhibitor of l-LDH. Additional evidence against 
the presence of m-l-LDH in the intermembrane space emerges 
from experimental results showing that l-lactate enters mito-
chondria under conditions where pyruvate is a non-penetrant 
compound (21) or where the pyruvate/H+ symporter is blocked 
by an inhibitor (6). These experimental approaches can be also 
applied to measurements of oxygen consumption (in the presence 
or absence of ADP), proton efflux and membrane potential gen-
eration in the future. By applying the control strength criterion 
with various non-penetrant inhibitors (19) it can be established 
whether or not the rate of the above processes mirrors that of 
l-lactate transport across the mitochondrial membrane. Thus, 
l-lactate transport can be investigated quantitatively, including 
the occurrence of hyperbolic kinetics, pH profile, etc. Moreover, 
comparison made between the inhibition profiles of pyruvate and 
l-lactate-dependent mitochondrial processes through the use of 
compounds that are unable to enter mitochondria allows for a 
distinction between l-lactate and pyruvate carriers.

Briefly, it has also been shown that externally added l-lactate 
can enter both normal and cancer prostate cells and in particular, 
in a carrier-mediated manner, enters their mitochondria, where 
an l-LDH exists and is located in the inner compartment. The 
m-l-LDHs have been demonstrated to differ from the cytosolic 
enzymes that themselves differ from one another. Normal and 
cancer cells show differences with respect to m-l-LDH protein 
level and activity, where both the enzyme expression and activity 
are higher in cancer cells.

In 2011, the existence of monocarboxylate transporter (MCT) 
and LDH proteins in mitochondrial reticula of breast cancer cell 

lines was demonstrated (22). In that case, the expression of both 
MCTs and l-LDH was measured, and their mitochondrial locali-
zation was determined via immunofluorescence, a technique 
that does not allow for the identification of the submitochondrial 
localization.

A broader investigation of l-lactate transport and metabolism 
in cancer cell mitochondria was carried out in human hepatocel-
lular carcinoma (Hep G2) cells (21) in which gluconeogenesis 
takes place (23). Hep G2 cell mitochondria (Hep G2-M) possess 
an m-l-LDH restricted to the inner mitochondrial compartment. 
Cytosolic and mitochondrial l-LDHs were also found to differ 
from one another in their saturation kinetics. The occurrence of 
a carrier-mediated l-lactate transport in these mitochondria has 
also been shown. Importantly, the efflux of various metabolites, 
including pyruvate, oxaloacetate, malate, and citrate, resulting 
from l-lactate addition to mitochondria was first shown, this 
giving a first insight into the role of mitochondrial metabolism 
of l-lactate; accordingly, the occurrence of an l-lactate/pyruvate 
shuttle devoted to the oxidation of the cytosolic NADH was 
also shown. Ultimately, the removal of the oxidation product 
by carrier-mediated transport and mitochondrial metabolism 
overcomes any theoretical thermodynamic difficulty which was 
considered to rule out any l-lactate oxidation in the mitochondria.

These findings strongly suggest that a revision of the dogmatic 
view of glucose metabolism is needed with a special focus on the 
role of l-lactate and m-l-LDH in gluconeogenesis. Hence, the 
Cori cycle (formulated in 1929 as an energy-requiring metabolic 
pathway in animals, where carbon atoms of glucose pass along 
the circular route: muscle glycogen  →  blood lactate  →  liver 
(where gluconeogenesis occurs)  →  blood glucose  →  muscle 
glucose  →  muscle glycogen) demands revision, too. In this 
regard, cellular l-lactate oxidation, which is necessary for the 
production of glucose in the Cori cycle, has been traditionally 
postulated to take place in the cytosol, but is it? The cytosolic-
l-LDH (c-l-LDH) is a reducing enzyme, the final step of the 
glycolytic pathway, which converts pyruvate to l-lactate, and 
thus provides the regeneration of NAD+. This reaction should 
proceed unabated, independently of the presence or absence of 
oxygen, as the standard free-energy ∆G ′( )0  change of pyruvate 
conversion to l-lactate is about −6  kcal/mol. In addition, the 
high affinity of pyruvate to c-l-LDH would explain the fact that 
the normal [l-lactate]/[pyruvate] ratio in blood and other tis-
sues is >10, a value that cannot correspond with the proposal 
of pyruvate as the end product of glycolysis under normal 
conditions. Therefore, the dogmatic portrayal of this reaction as 
bidirectional is misleading and has been accepted to date due to 
the absence of a possible alternative. We contend that l-lactate 
oxidation back to pyruvate does not take place in the cytosol, but 
rather, it occurs in the mitochondria. Indeed, there are only two 
options to prevent l-lactate accumulation in the cytosol, either 
l-lactate is transported out of the cell (under anaerobic condi-
tions) and/or is oxidized via m-l-LDH upon its transport into 
the mitochondrion (under aerobic conditions). Therefore, even 
if we agree with Lu et al. (24) that “the majority of glycolysis-
derived pyruvate is diverted to lactate fermentation,” we cannot 
accept that l-lactate is “kept away from mitochondrial oxidative 
metabolism.”
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Of special interest is the fact that pyruvate cannot enter Hep 
G2-M. In fact, contrary to malate  +  glutamate and l-lactate, 
externally added pyruvate fails to cause either oxygen consump-
tion or membrane potential generation [see Pizzuto et  al. (21) 
for details]. Notice that an impairment of pyruvate transport in 
cancer cells has been reported by Paradies et al. (25). Therefore, 
independently of the theoretical unfeasibility of l-lactate oxida-
tion in the cytosol, as was explained above, the classic Cori cycle 
cannot occur in Hep G2cells. Therefore, we offer a revised Cori 
cycle (Figure 1), which involves both the mitochondrial carriers 
that mediate the l-lactate-dependent traffic and the m-l-LDH, 
which provides pyruvate inside mitochondria. Accordingly, the 
appearance outside mitochondria of oxaloacetate and malate 
derived from l-lactate uptake and metabolism via m-l-LDH, 
pyruvate dehydrogenase, pyruvate carboxylase, and malate 
dehydrogenase and by exchanges, likely due to the l-lactate/
oxaloacetate and l-lactate/malate antiporters, confirms an 
anaplerotic role for l-lactate in gluconeogenesis in which 
mitochondria play a unique role. Importantly, the addition of 
l-lactate to Hep G2-M results in the appearance outside mito-
chondria of citrate, the fatty acid precursor. Accordingly, by 
using high-resolution mass spectrometry, l-lactate uptake into 
mitochondria of HeLa and H460 cells was found and proved 
to result in lipid synthesis; additionally, transmission electron 

microscopy confirmed that LDH is localized to the mitochondria 
(26). Surprisingly, the anaplerotic role of l-lactate mitochondrial 
metabolism has not been considered when cancer metabolism was  
“reexamined” (27).

We believe that the proposed revision of the Cori cycle, neces-
sary for Hep G2 cells, should also be considered in all other types 
of cells where mitochondrial metabolism of l-lactate is active. For 
instance, partial reconstruction of in vitro gluconeogenesis aris-
ing from mitochondrial l-lactate uptake/metabolism was shown 
in the absence of LDH outside mitochondria (6).

The role of the mitochondrial l-lactate metabolism merits 
further focus: given that hydrogen peroxide production in the 
tumor microenvironment fuels the anabolic growth of cancer 
cells (28), a possible role of the putative mitochondrial l-lactate 
oxidase (LOX) which generates hydrogen peroxide in rat liver 
mitochondria (29) should be investigated; the LOX existence 
in Hep G2-M appears to be consistent with the evidence that 
rotenone, which blocks oxygen consumption induced by the 
addition of malate + glutamate fails to inhibit oxygen consump-
tion induced by the addition of l-lactate.
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FiGURE 1 | Cori cycle revisited in Hep G2 cells. Given that pyruvate cannot enter Hep G2-M, as shown in Pizzuto et al. (21), l-lactate produced in the muscles 
reaches the liver via the blood stream and from the cytosol enters mitochondria; in the matrix l-lactate metabolism gives rise to pyruvate (PYR) via m-L-LDH  and 
then to oxaloacetate (OAA) and malate (MAL) that are exported from the mitochondria to the cytosol via three putative carriers to be used for the l-lactate pyruvate 
shuttle and for gluconeogenesis to occur via a mechanism similar to that already shown by de Bari et al. (6).

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


33

Passarella and Schurr Cori Cycle in Cancer Cells

Frontiers in Oncology | www.frontiersin.org April 2018 | Volume 8 | Article 120

REFEREnCES

1. Dianzani MU. Distribution of lactic acid oxidase in liver and kidney cells of 
normal rats and rats with fatty degeneration of the liver. Arch Fisiol (1951) 
50:181–6.

2. Baba N, Sharma HM. Histochemistry of lactic dehydrogenase in heart and 
pectoralis muscles of rat J Cell Biol (1971) 51:621–35.

3. Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A. Mitochondria 
and L-lactate metabolism. FEBS Lett (2008) 582:3569–76. doi:10.1016/j.
febslet.2008.09.042 

4. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA. 
Endurance training, expression, and physiology of LDH, MCT1, and MCT4 
in human skeletal muscle. Am J Physiol Endocrinol Metab (2000) 278:E571–9. 
doi:10.1152/ajpendo.2000.278.4.E571 

5. Valenti D, de Bari L, Atlante A, Passarella S. L-lactate transport into rat heart 
mitochondria and reconstruction of the L-lactate/pyruvate shuttle. Biochem J 
(2002) 15:101–4. doi:10.1042/bj3640101 

6. de Bari L, Atlante A, Valenti D, Passarella S. Partial reconstruction of in vitro 
gluconeogenesis arising from mitochondrial L-lactate uptake/metabolism 
and oxaloacetate export via novel L-lactate translocators. Biochem J (2004) 
380:231–42. doi:10.1042/bj20031981 

7. Schurr A. Lactate: the ultimate cerebral oxidative energy substrate? J Cereb 
Blood Flow Metab (2006) 26:142–52. doi:10.1038/sj.jcbfm.9600174 

8. Schurr A, Payne RS. Lactate, not pyruvate, is neuronal aerobic glycolysis end 
product: an in vitro electrophysiological study. Neuroscience (2007) 147:613–9. 
doi:10.1016/j.neuroscience.2007.05.002 

9. Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA. Evidence for a 
mitochondrial lactate oxidation complex in rat neurons: a crucial component 
for a brain lactate shuttle. PLoS One (2008) 3:e2915. doi:10.1371/journal.
pone.0002915 

10. Atlante A, de Bari L, Bobba A, Marra E, Passarella S. Transport and metabo-
lism of L-lactate occur in mitochondria from cerebellar granule cells and are 
modified in cells undergoing low potassium dependent apoptosis. Biochim 
Biophys Acta (2007) 1767:1285–99. doi:10.1016/i.bbabio.2007.08.003

11. Passarella S, Paventi G, Pizzuto R. The mitochondrial L-lactate dehydrogenase 
affair. Front Neurosci (2014) 8:407. doi:10.3389/fnins.2014.00407 

12. Paventi G, Lessard C, Bailey JL, Passarella S. In boar sperm capacitation 
L-lactate and succinate, but not pyruvate and citrate, contribute to the 
mitochondrial membrane potential increase as monitored via safranine O 
fluorescence. Biochem Biophys Res Commun (2015) 462:257–62. doi:10.1016/j.
bbrc.2015.04.128 

13. Paventi G, Pizzuto R, Passarella S. The occurrence of L-lactate dehydrogenase 
in the inner mitochondrial compartment of pig liver. Biochem Biophys Res 
Commun (2017) 489:255–61. doi:10.1016/j.bbrc.2017.05.154 

14. Paventi G, Pizzuto R, Chieppa G, Passarella S. L-lactate metabolism in 
potato tuber mitochondria. FEBS J (2007) 274:1459–69. doi:10.1111/j. 
1742-4658.2007.05687.x 

15. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol (2009) 
587:5591–600. doi:10.1113/jphysiol.2009.178350 

16. Schurr A. Cerebral glycolysis: a century of persistent misunderstanding 
and misconception. Front Neurosci (2014) 8:360. doi:10.3389/fnins.2014. 
00360 

17. Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z,  
Gladden LB. Lactate metabolism: historical context, prior misinterpreta-
tions, and current understanding. Eur J Appl Physiol (2018) 118:691–728. 
doi:10.1007/s00421-017-3795-6 

18. de Bari L, Chieppa G, Marra E, Passarella S. L-lactate metabolism can occur 
in normal and cancer prostate cells via the novel mitochondrial L-lactate 
dehydrogenase. Int J Oncol (2010) 37:1607–20. doi:10.3892/ijo-00000815

19. Passarella S, Atlante A, Valenti D, de Bari L. The role of mitochondrial trans-
port in energy metabolism. Mitochondrion (2003) 2:319–43. doi:10.1016/
S1567-7249(03)00008-4 

20. Mayevsky A, Rogatsky GG. Mitochondrial function in  vivo evaluated by 
NADH fluorescence: from animal models to human studies. Am J Physiol Cell 
Physiol (2007) 292:C615–40. doi:10.1152/ajpcell.00249.2006 

21. Pizzuto R, Paventi G, Porcile C, Sarnataro D, Daniele A, Passarella S. L-lactate 
metabolism in HEP G2 cell mitochondria due to the L-lactate dehydrogenase 
determines the occurrence of the lactate/pyruvate shuttle and the appearance 
of oxaloacetate, malate and citrate outside mitochondria. Biochim Biophys 
Acta (2012) 1817:1679–90. doi:10.1016/j.bbabio.2012.05.010 

22. Hussien R, Brooks GA. Mitochondrial and plasma membrane lactate 
transporter and lactate dehydrogenase isoform expression in breast cancer 
cell lines. Physiol Genomics (2011) 43:255–64. doi:10.1152/physiolgenomics. 
00177.2010 

23. Okamoto T, Kanemoto N, Ban T, Sudo T, Nagano K, Niki I. Establishment 
and characterization of a novel method for evaluating gluconeogenesis using 
hepatic cell lines, H4IIE and HepG2. Arch Biochem Biophys (2009) 491:46–52. 
doi:10.1016/j.abb.2009.09.015 

24. Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial 
oxidative metabolism as an anti-metastasis mechanism. Cancer Lett (2015) 
356:156–64. doi:10.1016/j.canlet.2014.04.001 

25. Paradies G, Capuano F, Palombini G, Galeotti T, Papa S. Transport of pyruvate 
in mitochondria from different tumor cells. Cancer Res (1983) 43:5068–71. 

26. Chen YJ, Mahieu NG, Huang X, Singh M, Crawford PA, Johnson SL, et al. 
Lactate metabolism is associated with mammalian mitochondria. Nat Chem 
Biol (2016) 12:937–43. doi:10.1038/nchembio.2172 

27. San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production 
for carcinogenesis could be the purpose and explanation of the Warburg effect. 
Carcinogenesis (2017) 38:119–33. doi:10.1093/carcin/bgw127 

28. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, 
Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor microenvi-
ronment with hydrogen peroxide, driving the Warburg effect: implications 
for PET imaging of human tumors. Cell Cycle (2011) 10:2504–20. doi:10.4161/
cc.10.15.16585 

29. de Bari L, Valenti D, Atlante A, Passarella S. L-lactate generates hydrogen 
peroxide in purified rat liver mitochondria due to the putative L-lactate 
oxidase localized in the intermembrane space. FEBS Lett (2010) 584:2285–90. 
doi:10.1016/j.febslet.2010.03.038 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer [GP] declared a shared affiliation, with no collaboration, with one of 
the authors [SP] to the handling Editor.

Copyright © 2018 Passarella and Schurr. This is an open-access article distrib-
uted under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner are credited and that the original 
publication in this journal is cited, in accordance with accepted academic prac-
tice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive
https://doi.org/10.1016/j.febslet.2008.09.042
https://doi.org/10.1016/j.febslet.2008.09.042
https://doi.org/10.1152/ajpendo.2000.278.4.E571
https://doi.org/10.1042/bj3640101
https://doi.org/10.1042/bj20031981
https://doi.org/10.1038/sj.jcbfm.9600174
https://doi.org/10.1016/j.neuroscience.2007.05.002
https://doi.org/10.1371/journal.pone.0002915
https://doi.org/10.1371/journal.pone.0002915
https://doi.org/10.1016/i.bbabio.2007.08.003
https://doi.org/10.3389/fnins.2014.00407
https://doi.org/10.1016/j.bbrc.2015.04.128
https://doi.org/10.1016/j.bbrc.2015.04.128
https://doi.org/10.1016/j.bbrc.2017.05.154
https://doi.org/10.1111/j.
1742-4658.2007.05687.x
https://doi.org/10.1111/j.
1742-4658.2007.05687.x
https://doi.org/10.1113/jphysiol.2009.178350
https://doi.org/10.3389/fnins.2014.
00360
https://doi.org/10.3389/fnins.2014.
00360
https://doi.org/10.1007/s00421-017-3795-6
https://doi.org/10.3892/ijo-00000815
https://doi.org/10.1016/S1567-7249(03)00008-4
https://doi.org/10.1016/S1567-7249(03)00008-4
https://doi.org/10.1152/ajpcell.00249.2006
https://doi.org/10.1016/j.bbabio.2012.05.010
https://doi.org/10.1152/physiolgenomics.
00177.2010
https://doi.org/10.1152/physiolgenomics.
00177.2010
https://doi.org/10.1016/j.abb.2009.09.015
https://doi.org/10.1016/j.canlet.2014.04.001
https://doi.org/10.1038/nchembio.2172
https://doi.org/10.1093/carcin/bgw127
https://doi.org/10.4161/cc.10.15.16585
https://doi.org/10.4161/cc.10.15.16585
https://doi.org/10.1016/j.febslet.2010.03.038
https://creativecommons.org/licenses/by/4.0/


December 2017 | Volume 7 | Article 319

Review
published: 21 December 2017
doi: 10.3389/fonc.2017.00319

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Sergio Giannattasio,  

Istituto di Biomembrane, 
Bioenergetica e Biotecnologie 

Molecolari (IBIOM), Italy

Reviewed by: 
Cesare Indiveri,  

University of Calabria, Italy  
Paula Ludovico,  

University of Minho, Portugal

*Correspondence:
Milica Vučetic′  
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A fine balance in reactive oxygen species (ROS) production and removal is of utmost 
importance for homeostasis of all cells and especially in highly proliferating cells that
encounter increased ROS production due to enhanced metabolism. Consequently,
increased production of these highly reactive molecules requires coupling with increased 
antioxidant defense production within cells. This coupling is observed in cancer cells that 
allocate significant energy reserves to maintain their intracellular redox balance. Glutathione 
(GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant 
component together with the NADPH/NADP+ couple, which ensures the maintenance 
of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the 
maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, gluta-
mate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, 
and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance 
of AA transporters known to be upregulated in cancers (such as system xc-light chain 
and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and 
thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often 
described as a “two-edged sword”) during the processes of carcinogenesis, metasta-
sis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the 
initiation, progression, and dissemination of cancer, as well as in the redox-dependent 
sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.

 
 

Keywords: cancer, amino acids, redox homeostasis, glutathione, NADPH/NADP+

Abbreviations: AA(s), amino acid(s); ALDH1L2, 10-formyl-THF dehydrogenase; AOD, antioxidant defense; ARE, antioxidant 
response element; ASCT2, alanine-serine-cysteine transporter 2; ATM, ataxia telangiectasia mutated gene; eIF2α, eukaryotic 
initiation factor 2α; ER, endoplasmic reticulum; ETC, electron transport chain; FOXO, forkhead box O; GCL, glutamate–
cysteine ligase; GCN2, general control non-derepressable 2; GLS1/2, cytoplasmic/mitochondrial glutaminase; GLUD1, 
glutamate dehydrogenase; GOT1/2, aspartate transaminase 1/2; GR, glutathione reductase; GS, glutathione synthetase; GSH, 
glutathione; GSH-Px, glutathione peroxidase; GSTs, glutathione S-transferases; GSSG, glutathione oxidized; [H2O2], hydrogen 
peroxide; [HO⋅], peroxyl radical; [HO−], hydroxyl anion; KEAP1, Kelch-like ECH-associated protein 1; LAT1, L-type amino 
acid transporter 1; ME1/2, malic enzyme 1/2; MTHFD, methylene tetrahydrofolate dehydrogenase; mTORC1, mechanistic 
target of rapamycin complex 1; NAD(P)H, nicotinamide adenine dinucleotide (phosphate); NNT, energy-linked transhydro-
genase; [NO⋅], nitric oxide; NOX, NADPH oxidase; NRF2, nuclear factor (erythroid-derived-2)-like 2; [1O2], singlet oxygen; 
[ ]O2
⋅− , superoxide anion radical; PDAC, pancreatic ductal adenocarcinoma; PERK, protein kinase RNA-like endoplasmic 

reticulum kinase; PHGDH, phosphoglycerate dehydrogenase; PPP, pentose phosphate pathway; PRXs, peroxiredoxins; Rb, 
retinoblastoma; [ROO⋅], peroxyl radicals; [ROOH], organic hydroperoxides; ROS, reactive oxygen species; SHMT2, serine 
hydroxymethyl transferase 2; SNAT1-2, system A amino acid transporter 1–2; SOD, superoxide dismutase; SSP, serine synthesis 
pathway; TCA, tricarboxylic acid; THF, tetrahydrofolate; TRXs, thioredoxins; TSC, tuberous sclerosis complex; TSP, trans-
sulfuration pathways; CySSCy, cystine (oxidized cysteine); xCT, system xc-light chain.
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AAs in Cancer Redox Homeostasis

iNTRODUCTiON

The potential of targeting redox homeostasis for both cancer 
prevention and development of novel anticancer treatments has 
been recognized during past decades. However, despite intensive 
efforts, development of an effective redox-based therapy remains 
challenging. A main reason for this is cancer cell plasticity but 
also our inability to adequately perceive the complexity of redox 
homeostasis. Namely, antioxidant prophylaxis led to the “antioxi-
dant paradox” (1, 2), while use of chemotherapeutics that com-
promise the oxidative status of cancer cells encountered resistance 
(3) and the ability of some cancer cells to upregulate antioxidant 
protective mechanisms (4). Currently, most attention on targeting 
redox homeostasis focuses on the attack and downregulation of 
endogenous antioxidant tumor cell defense mechanisms (5). In 
this review, we approach cancer redox balance from a different 
perspective with the main players involving amino acids (AAs).

Although the idea of AA dependency of cancer antioxidant 
defense (AOD) has received more attention recently, a unified 
review on this subject is lacking. In 2015, Jones and Sies (6) labeled 
the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/
dysulfide [glutathione (GSH)/glutathione oxidized (GSSG) in 
the first place] systems together with thiol redox proteome as 
carriers of the cellular “Redox Code.” According to this principle, 
spatiotemporal organization of these systems is fundamental for 
physiology, while its disruption inevitably leads to pathology. 
Interestingly, accumulating literature indicates that AA availabil-
ity and metabolism are upstream and superior to these systems, 
especially in cancer cells. Our review will address this particular 
aspect of redox regulation in tumors. However, before consider-
ing the involvement of AA homeostasis in cancer redox balance, 
it is necessary to point out some important findings, as well as 
delusions, that exist in the complex cancer redox field.

PARTiALLY ReDUCeD OXYGeN—
“ACTivATeD” OXYGeN

The first steps in understanding oxygen toxicity occurred in the 
mid-twentieth century when Gerschman et  al. (7–9) proposed 
that the damaging effects of oxygen could be attributed to the 
formation of oxygen radicals. At approximately the same time, 
research with [18O2] and mass spectrometry showed that oxygen 
atoms from molecular oxygen [O2] could be introduced into bio-
molecules (10, 11). The susceptibility of biomolecules to oxidation 
gave a biological frame to oxygen toxicity, and together with the 
discovery of superoxide dismutase [SOD; (12)] fueled research 
in the field of oxidative damage in biological systems. The term 
“oxidative stress” was introduced into scientific literature for the 
first time in 1985 (13).

Now it is clear that the oxidative capacity of molecular oxygen 
in vivo is minimal, but that is not the case for its partially reduced 
counterparts known as “reactive oxygen species—ROS.” ROS is 
a term widely used to describe a number of reactive molecules 
and free radicals derived from molecular oxygen. However, we 
feel obliged to emphasize the generic nature of this term. ROS 
includes both radical (superoxide anion radical, [ ]O2

⋅− ; hydroxyl 

radical, [HO⋅]; peroxyl radicals, [ROO⋅]; nitric oxide, [NO⋅]) and 
non-radical (hydrogen peroxide, [H2O2]; hydroxyl anion, [HO−]; 
singlet oxygen, [1O2]; organic hydroperoxides, [ROOH]) species, 
which differ significantly in terms of half-life, water/lipid solubil-
ity and reactivity. For example, the cellular half-life of lipophobic 
[HO⋅] is only ~10−9 s because of its reactivity, compared to ~1 ms 
for [H2O2], which also can diffuse through lipid cellular compart-
ments (14). However, use of the common term ROS is sometimes 
unavoidable (15) due to the complex nature of biological systems, 
an inability to exactly measure the species generated in a spati-
otemporal manner in addition to the so-called theory of “kindling 
radicals” by which a few primary ROS “inflame” a cascade of ROS 
amplification by stimulating the sources of secondary ROS (16).

ROS iN CANCeR

The terms “ROS” and “cancer” cover a wide range of molecules 
and diseases, which makes broad generalizations almost impos-
sible. Is it possible, however, to conceptualize some common 
denominators of the cancer redox state? Widespread opinion 
is that virtually all malignant cells are in a pro-oxidative state, 
mostly due to oncogene-driven altered and/or intensified cell 
metabolism [reviewed in Ref. (17–21)]. However, Halliwell 
(20) raised important questions regarding ROS measurement 
in malignant (and other) cells in classical culture conditions 
that include 21% oxygen and media that is usually deficient in 
antioxidants/antioxidant precursors and contains free iron ions. 
These conditions, per se, favor ROS generation, and thus special 
attention should be paid in extrapolating results obtained in vitro 
to the in vivo state. Considering this point in combination with 
current advances in the cancer redox field, a major conclusion 
that can be drawn is that cancer cells indeed experience mild oxi-
dative pressure in comparison to normal cells (Figure 1) that can 
help them to exhibit characteristic cancer hallmarks [for detailed 
review refer to Hornsveld and Dansen (22)].

According to the previous paragraph, it seems that a pro-oxidative 
state could facilitate initiation and progression of tumorigenesis. 
However, when reactive and very short living species such as ROS 
are considered, the situation is not so clear. Accordingly, studies on 
the effects of antioxidant supplements for cancer prevention and 
treatment showed opposed and mainly unpromising results, giving 
rise to confusion and the “antioxidant paradox” (1). Another redox 
consideration for cancer treatment includes increased ROS levels 
in cancer cells that already “walk on the edge of oxidative abyss” 
(23–25). This stand point arises from the very well know concept 
of hormesis that has been recognized since the XVI century by 
Paracelsus’s—“Die Dosis macht das Gift” or “the dose makes the 
poison” (26). The concept of hormesis, which revolutionized mod-
ern toxicology, claims that the dose–response curve is U-shaped, 
generally meaning that a drug/stimulus can have opposite effects 
in small and large doses [for more details refer to Calabrese and 
Baldwin (27) and papers stemming from it]. Indeed, it has been 
shown that a mild oxidative state promotes all hallmarks of cancer 
cells; however, if the threshold is exceeded (reaching the top of the 
arm of the U-shaped curve), influence of the oxidative environ-
ment can easily become anti-carcinogenous, promoting cell-cycle 
arrest, senescence, programmed cell death, or necrosis (Figure 1). 
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FiGURe 1 | Reactive oxygen species (ROS) can (i) promote cancer, (ii) cause growth arrest, and (iii) be cytotoxic. In normal cells, increased (endogenous or 
exogenous) oxidative pressure leads to adequate upregulation of cellular antioxidant defense (AOD), which prevent mutagenic events and initiation of cancer 
formation. However, AOD is not 100% efficient, and thus, these “challenging states” also represent well-known risk factors for cancer development. Once formed, 
cancer progression seems to be further stimulated by a mild pro-oxidative state due to intensified metabolism, ROS-producing foci, etc. Importantly, this state is still 
maintained within “redox homeostatic range” thanks to strongly upregulated AOD of cancer cells. However, due to maximized AOD, cancer cells do not support 
further increase in ROS levels and thus cross the threshold into the state of “oxidative stress.” If ROS level increase further (e.g., due to chemotherapy), the only way 
for cancer cells to prevent further damage is by decreasing ROS production via cell-cycle arrest to repair damage and prevent cell death (cytostatic effects of ROS). 
However, if ROS burst induces irreversible damage and/or there is not enough components required for repair systems (e.g., glutathione), cancer cells experience 
programmed cell death or necrosis (cytotoxic effects of ROS).
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Thus, it has been shown that increased oxidative pressure in the 
blood, if not adequately balanced by internal AOD, may limit the 
efficiency of melanoma cells to form distant tumors (28). These 
results are a textbook example of the antioxidant paradox suggest-
ing how dietary supplementation of antioxidants may promote the 
metastatic potential of the cancer cells.

The anticancer effects of many conventional therapies, includ-
ing irradiation and DNA-damaging chemotherapeutics (cispl-
atin, doxorubicin, gemcitabine, and 5-fluorouracil), rely mostly 
or partially on increased ROS production, due to mitochondria 
damage and dysfunction, as well as activation of NADPH oxidase 
(NOX) enzymes (29–33). However, these treatments encounter 
resistance with initial response being followed by the develop-
ment of protective mechanisms against these oxidative/genotoxic 
insults. The mechanisms of resistance are complex involving drug 
modification, inhibition, degradation, and/or efflux [for further 
readings refer to Housman et al. (3)]. In spite of this complexity, 
the central role that AOD plays in these processes provided the 
rational for developing anticancer therapies targeting this aspect 
of cancer redox balance.

AOD iN CANCeR

As mentioned previously, oncogenic mutations lead to a pro-
oxidative state of cancer cells. However, these cells are still 
required to maintain ROS levels below the threshold that would 

become detrimental (Figure  1). Indeed, antioxidant pathways 
known to respond to increased oxidative pressure in normal cells 
are constitutively activated in some cancers. The best example is 
the nuclear factor (erythroid-derived-2)-like 2 (NRF2)-signaling 
pathway [reviewed elsewhere in great detail (34, 35)]. NRF2 is the 
main transcription factor regulating expression of AOD enzymes. 
Under normal conditions, NRF2 is constantly ubiquitinated by 
Kelch-like ECH-associated protein 1 (KEAP1) and degraded by 
the proteasome. Oxidants/electrophiles inactivate Keap1 and 
stabilize NRF2, which then translocates into the nucleus, binds to 
the antioxidant response element, and activates the transcription 
of many cytoprotective genes that encode detoxifying enzymes 
and antioxidant proteins. Constitutive activation of NRF2, due 
to gain-of-function mutations in NRF2 (36), or loss-of-function 
mutation in its negative regulator KEAP1, was observed in 
different types of cancers (37–41). In addition, several tumor-
suppressor genes act to repress tumor cell proliferation or cause 
cells to enter permanent cell-cycle arrest in response to ROS 
overproduction. These include retinoblastoma, p16INK4A, JNK, 
p38, p53, and forkhead box O. Most of these tumor-suppressor 
proteins sense changes in the cellular oxidative status and respond 
accordingly by inhibiting the cell cycle, and thus allowing cells 
time to recover after oxidative stress, and/or to induce expression 
of AOD enzymes (22).

Antioxidant defense is divided into enzymatic and non- 
enzymatic parts. Enzymatic AOD includes enzymes such as SODs, 
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catalases, gluthatione peroxidases (GSH-Px), and glutathione 
S-transferases, as well as redox proteins such as thioredoxins (TRXs),  
peroxiredoxins, and glutaredoxins. Non-enzymatic AOD com-
ponents are low-molecular weight compounds such as the key 
AOD tripeptide glutathione (GSH), vitamins (vitamins C and 
E), β-carotene, and uric acid. Complementary to these AOD 
components is the reducing equivalent NADPH that maintains 
catalases in active forms, serves as a cofactor for TRX and glu-
tathione reductase [which converts oxidized glutathione (GSSG) 
into its reduced state (GSH)], and acts as a reducing agent for 
regeneration of glutaredoxins.

The concept of the Redox Code proposed recently by Jones and 
Sies (6) secludes GSH and NADH/NADPH as main determinants 
of the dynamic nature of redox signaling and control in multi-
dimensional biological systems. This is even more pronounced 
in cancer cells due to increased and imbalanced metabolism, 
mutation accumulation during tumor progression and activated 
ROS-producing foci (such as defected mitochondria or NOX 
enzymes). The main reason why GSH and nicotinamide adenine 
dinucleotide (phosphate) are in the spotlight is the fact that these 
are the ultimate reducing factors of the cell.

Glutathione
Glutathione, a tripeptide γ-glutamyl-cysteinyl-serine, appears in 
two forms: the predominant reduced form (GSH), which reaches 
millimolar concentrations in the cell, and the minor oxidized 
form (GSSG), which is estimated to be less than 1% of the total 
GSH (42). The bulk of GSH is found in the cytosol (~90%), while 
the rest is localized mainly in mitochondria and the endoplasmic 
reticulum (ER) (43). GSH functions to detoxify electrophilic 
compounds including xenobiotics, which makes it central to 
cellular anticancer drug resistance (44). Owing to the sulfhydryl 
(−SH) group of cysteine, GSH can serve as an electron donor 
for reduction of peroxides (reactions catalyzed by GSH-Px) or 
disulfides. GSH can also directly react with various oxidants in 
a non-enzymatic manner, although these reaction kinetics are 
generally very slow (45). In addition, GSH is important in its 
cysteine-storage function (γ-glutamyl cycle).

Similar to ROS, GSH effects can be pro- or antitumorigenic 
(46). Although it is important in carcinogen detoxification, 
increased GSH levels and GSH-dependent biotransformation 
in many tumors may increase resistance to chemotherapy and 
radiotherapy (47–50). In addition, high GSH levels are associated 
with cancer hallmarks such as genomic instability, suppression of 
apoptosis, invasion, and metastatic activity [for further reading 
refer to Balendiran et al. (46)].

NADPH/NADP+ Couple
Antioxidant defense is completely ineffective without the 
NADPH/NADP+ cofactor, which serves as a main electron donor 
for both antioxidant enzymes and catabolic reactions. NADPH 
supplies reducing equivalents to maintain vital AOD components 
including the maintenance of active catalase and the regenera-
tion of glutathione, TRX, and glutaredoxin. The NADH/NAD+ 
system is also involved in reversible 2-electron transfer catalysis 
and is connected with the NADPH/NADP+ system by activity 
of mitochondrial energy-linked transhydrogenase (NNT) (51). 

However, these two nicotinamide nucleotide systems have some-
what different roles in metabolism. Namely, while NADH/NAD+ 
is involved in catabolism and energy supply, NADPH/NADP+ is 
central for anabolism, defense, and redox homeostasis [reviewed 
in Ref. (6)]. The redox potential of these two systems also dif-
fers significantly in cells. Namely, the cytosolic redox potential 
of NADH/NAD+ is more oxidized (−241  mV) (52, 53) while 
in mitochondria, it operates at a more negative redox potential 
(−318  mV) (54), providing reductive force for ATP synthesis. 
Meanwhile, NADPH/NADP+ operates at more negative redox 
potential than the NAD system both in cytosol (−393 mV) and 
mitochondria (−415 mV) (53).

The energy-linked mitochondrial enzyme NNT that transfers 
electrons from NADH to NADPH thus connecting the two 
systems is of utmost importance in cancers containing mutations 
in the tricarboxylic acid (TCA) cycle (fumarate hydratase or 
succinate dehydrogenase) or the electron transport chain (ETC, 
complex I or III), which have been shown to promote utiliza-
tion of glutamine by reductive carboxylation (55, 56). Namely, 
adequate citrate production in these conditions requires high 
NADPH/NADP+ ratios (57), which are achieved by the activity 
of the NNT (58).

NADPH production occurs via the pentose phosphate path-
way (PPP), folate metabolism, and malic enzymes (MEs). The 
importance of AAs for NADPH-producing pathways, especially 
in cancer cells, is discussed below.

AAs SeNSiNG FROM A ReDOX 
PeRSPeCTive

Glucose, AAs, and fatty acids are the crucial building blocks of 
cellular biomolecules. Tight regulatory mechanisms have evolved 
to maintain the level of each within homeostatic range. The two 
main protein kinases involved in sensing and regulation of AA 
homeostasis are the mechanistic target of rapamycin complex 1 
(mTORC1) and general control non-derepressable 2 (GCN2) [for 
an extensive reviews refer to Bar-Peled and Sabatini (59), Efeyan 
et al. (60), and Broer and Broer (61)]. Briefly, mTORC1 is a major 
sensor of specific AAs (Leu, Arg, and Lys), which also receives 
integrated, growth factors, hormonal, environmental and stress 
signals regulating growth, and proliferation. Although mecha-
nisms of mTORC1 activation have progressed considerably in the 
past 20 years, the precise effects of individual AAs on mTORC1 
activation have remained elusive. Sabatini’s group has illuminated 
AA sensing by demonstrating that mTORC1 translocation to 
lysosomes, is critical for its activation (59). Interestingly, recent 
studies revealed that this lysosomal localization allows mTORC1 
sensing of AA levels (Arg and Gln), not only in cytoplasm but 
also in lysosomal compartement via the lysosomal membrane-
resident transport protein SLC38A9 that constitutes a physical 
and functional part of the AA-sensing machinery (62, 63). 
Conversely, GCN2-kinase senses AA-uncharged tRNA, result-
ing in a general suppression of protein translation, paralleled by 
induction of the mechanisms to increase the cellular AA pool. 
Data regarding redox dependency of these pathways are still 
scarce and mechanically unclear.
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Earlier studies showed that UV radiation activates mTORC1 
signaling through MAP kinase activation by promoting phospho-
rylation of its downstream target p70S6k in an [H2O2] concentra-
tion and time-dependent manner (64, 65). mTORC1 activation 
was also observed when cells were treated with oxidizing agents, 
and surprisingly, even in AA-depleted conditions (66, 67). By 
contrast, subcellular localization of the mTORC1-interacting 
protein complex tuberous sclerosis complex at the peroxisome 
is responsible for mTORC1 repression and autophagy induction 
in response to ROS (68). Also, the tumor-suppressor ataxia tel-
angiectasia mutated gene, appears to regulate autophagy through 
repression of mTORC1 in response to oxidative stress (69, 70). 
Thus, it seems that net effects of ROS on mTORC1 activity 
are context, time, and dose dependent. However, it should be 
emphasized that although the AAs leucine, arginine, and lysine 
are identified as key stimuli for mTORC1 activation, recent work 
on hepatoma HepG2 cells revealed significant sensitivity of both 
mTORC1 and GCN2 kinases to cysteine depletion (71). Prompt 
(within 60 min) inhibition of mTORC1 upon cysteine removal 
was observed. Considering that the Cys proteome coevolved with 
advanced [O2] sensing and [H2O2] signaling systems (72–74), this 
effect of cysteine on mTORC1 from a redox perspective may be of 
higher importance than the effects of ROS, per se.

The main downstream target of activated GCN2 is the 
eukaryotic initiation factor 2α (eIF2α), whose phosphorylation 
results in a general reduction of translation initiation, while 
specific mRNAs containing upstream open-reading frames (e.g., 
ATF4) are actively translated. However, it has been recognized 
that GCN2 can be activated by a number of different stresses 
[osmotic, UV, oxidative (such as [H2O2]), and ER] independently 
of AA depletion/imbalance (75–77). Interestingly, although the 
mechanisms are not yet known, it is recognized that the response 
of GCN2 to stressors such as [H2O2] or UV radiation are very fast 
in comparison to the gradual accumulation of uncharged tRNAs.

In turn, the AA-sensing pathways also influence cellular 
redox balance. Namely, ATF4, an effector molecule of the 
GCN2-pathway, also serves as a dimerization partner of the cap 
“n” collar transcription factor NRF2 (78, 79) promoting resist-
ance to oxidative stress (79, 80). Consistently, it has been shown 
that mouse fibroblasts lacking Atf4 depend on supplemental 
reducing substances, such as glutathione, N-acetyl cysteine, or 
β-mercaptoethanol in their growth media (81). Recent work on 
HT1080 and A549 tumor cells showed the phosphorylation of 
eIF2 by protein kinase RNA-like endoplasmic reticulum kinase 
increases the ability of these cells to cope with increased oxida-
tive pressure in an ATF4-independent manner by activating Akt 
(82). The importance of the GCN2 kinase in maintaining redox 
balance was also proved in vivo. Mice lacking GCN2 exhibited 
an increase in protein carbonylation in response to a leucine-
imbalanced diet (83).

As for the effect of mTOR on redox homeostasis, a recent study 
showed that mTORC1 controls ATF4 activity by regulating the 
translation and stability of its mRNA (84). These results indicate 
that mTORC1, besides promoting anabolism and consequently 
increased ROS production, may also contribute to maintenance 
of the cellular redox equilibrium through “antioxidant proper-
ties” of ATF4.

The results listed earlier favor the hypothesis that redox and 
AA balance are tightly intertwined. How AAs specifically influ-
ence the cellular “Redox Code” (GSH and NADPH levels) will be 
discussed below with special attention placed on the pathways 
that might represent “vulnerability points” for design of novel 
anticancer therapeutics.

CYSTeiNe LeveLS DeTeRMiNeS GSH 
LeveLS

Two cytosolic ATP-dependent enzymes are involved in GSH 
synthesis: glutamate–cysteine ligase (GCL), which catalyzes 
formation of a particular gamma-peptidic bond between Glu 
and Cys, and glutathione synthetase. The rate-limiting step in 
GSH synthesis is the reaction catalyzed by GCL (85). Genetic 
deletion of the GCL catalytic subunit was lethal in the mouse 
embryo, while knockout mice for the modifier subunit of the 
enzyme, although viable and fertile, show a significant decrease 
of tissue GSH levels (9–16% of wt) (86). The Km of mouse GCL 
for cysteine is estimated at ~0.2 mM (87), which is near the upper 
limit of typical cellular cysteine concentrations, while the Km for 
glutamate is at or below the cellular glutamate concentration for 
Drosophila, mouse, or human GCLholo enzymes (88–90). Hence, 
it is not surprising that cysteine is the main regulator of GCL 
activity, and thus GSH synthesis (Figure 2).

In physiological conditions, cysteine is not an essential AA as 
it can be synthetized through trans-sulfuration pathways (TSP) 
from methionine, mainly in the liver. Approximately 50% of the 
cysteine in hepatic GSH is derived from methionine via TSP 
(91). However, high demand for cysteine in cancer cells, make 
TSP insufficient (Figure  2). Furthermore, some tumors have 
shown significantly lower expression of TSP enzymes mostly 
due to transcriptional silencing (92, 93). Consequently, Cramer 
and coworkers (94) showed that depletion of cyst(e)ine with 
pharmacologically optimized cyst(e)inase enzymes induced cell-
cycle arrest and cancer cell death due to GSH depletion and ROS 
accumulation, both in vitro and in vivo.

xc-Transport System
Multiple tissue-specific transporters are responsible for the 
import of cystine (CySSCy), the oxidized and predominant form 
of the AA in circulation (40–50  µM), and/or cysteine, which 
is present at substantially lower concentrations (8–10  µM) 
(95–97). However, increasing data in the literature points 
toward the xc-system as being crucial for CySSCy import in can-
cer cells (Figure 2). The system xc- acts as a Na+-independent 
and Cl−-dependent antiporter of the anionic forms of cystine 
and glutamate and is composed of the transporter light-chain 
(xCT, encoded by SLC7A11 gene) and a chaperone heavy-chain 
(CD98hc aka 4F2hc, encoded by SLC3A2 gene) subunit [for a 
comprehensive review, see Lewerenz et al. (98)]. Interestingly, 
although the system xc- seems to be a ubiquitous marker of 
almost all cells cultured in  vitro, its in  vivo distribution in 
humans appears restricted mainly to the CNS, pancreas, fibro-
blasts, and immune cells (99–105). According to Bannai et al. 
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FiGURe 2 | Cystine import is the rate-limiting step in glutathione biosynthesis. Cysteine can be synthesized within the cell through the trans-sulfuration pathway. 
However, this pathway is often insufficient in cancer cells and therefore cysteine must be imported. Different transporters are involved in the import of the reduced, 
cysteine (CySH), and oxidized, cystine (CySSCy) form of this semi-essential AA. The heavy-chain transporter subunit of system xc-light chain (xCT) seems to play a 
pivotal role in the import of CySSCy, the predominant form of cysteine in circulation. After import, CySSCy is reduced by cystine reductase and used for different 
purposes including GSH biosynthesis. Import of cysteine can occur via ASCT (alanine/serine/cysteine transporter) and other transporters (x).
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(106), this induction of the system xc- in culture conditions is 
caused by the high partial pressure of oxygen. Consistent with 
this hypothesis, prolonged cultivation of fibroblasts in reduced 
oxygen partial pressure caused a significant decrease in the 
system xc-activity (106).

Considering that AA transporters are necessary for tumor 
cell proliferation, it is not surprising that xCT is upregulated in 
many patient samples and tumor cell lines including hepatoma, 
lymphoma, glioma, colon, breast, prostate, and pancreatic  
(95, 101, 107–113). Expression of the xCT subunit seems to be 
under direct control of oncogenes including NRF2 and Ets-1 
(114–116). In addition, the promoter region of the SLC7A11 gene 
contains an AA response element, which allows the transcription 
factor ATF4 to enhance expression of xCT in response to AA 
depletion and/or oxidative stress (115, 117).

System xc-light chain mediates import of cystine into cells thus 
regulating GSH levels (118, 119). Since GSH is the most abundant 
non-enzymatic antioxidant within the cell, upregulation of xCT 
satisfies the highly proliferative phenotype of cancer cells. This 
is supported by complete growth inhibition of lymphoma cells 
and certain glioma, breast, prostate, lung, and pancreatic cancer 
cells upon pharmacological inhibition of xCT by sulfasalazine 
or by the cyclic glutamate analog (109, 111). Besides its role in 
tumor growth, knockdown or pharmacological inhibition of xCT 
increased adhesion and inhibited tumor cell invasion in vitro and 
decreased metastases in vivo (120). In addition, xCT was shown to 
associate with CD44v, a major adhesion molecule for the extracel-
lular matrix, which is involved in tumor invasion and metastasis 
in lethal gastrointestinal tumors (121) along with the metabolic 
interplay between tumors and host tissue (122). Furthermore, 
xCT plays a pivotal role in the chemoresistance of tumor cells 
(123–125), particularly to anticancer drugs that produce high 
amounts of ROS, such as geldanamycin and celastrol (126, 127).

The importance of the cystine/glutamate antiporter in redox 
regulation was further implicated in the newly described type 
of cell death—ferroptosis (128, 129). Ferroptosis is described as 
an iron-dependent, programmed form of cell death driven by 
loss of activity of the lipid repair enzyme glutathione peroxidase 
4 and subsequent accumulation of membrane lipid peroxides 
(130). The first described inducer of ferroptosis in Ras-mutated 
human foreskin fibroblasts was the xCT inhibitor erastin (131). 
Depletion of intracellular GSH levels due to inhibition of xCT 
and subsequent increase of ROS levels seems to be sufficient 
to trigger erastin-dependent cell death. The same results were 
observed with sulfasalazine, which is another inhibitor of xCT 
(109, 132). Interestingly, it has been shown that a loss of cysteinyl-
tRNA synthetase might prevent erastin-induced cell death by 
inducing the TSP (133), suggesting that trans-sulfuration can 
contribute to resistance to inhibition of xCT and ferroptosis 
induction.

SeRiNe/FOLATe PATHwAY AND NADPH 
PRODUCTiON

Textbooks have stated for years that the main cellular NADPH-
producing system is the PPP. Surprisingly, a recent comprehensive 
study (134) showed that serine-driven one-carbon metabolism 
(folate cycle) gives almost the same contribution in the NADPH 
production as the PPP and MEs in proliferating cells. It is also 
interesting to note that enzymes of both PPP and the serine 
synthesis pathway (SSP, from which the folate cycle streams out) 
are induced by NRF2 (135, 136). The function of the folate cycle 
is ascribed to the collection of one-carbon units from AAs, and 
subsequent incorporation of these moieties into biomolecules 
in biosynthetic or methylation reactions. One of the major 
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FiGURe 3 | The folate cycle is fueled by the serine synthesis pathway (SSP) and extracellular serine. SSP diverges from glycolysis at the level of 
3-phosphoglycerate, which is converted into 3-phospho-hydroxipyruvate by the action of the enzyme phosphoglycerate dehydrogenase (PHDGH) and ultimately to 
serine following further enzymatic steps. This pathway is of great importance in cancers with mutated or overexpressed PHDGH, while serine import plays a pivotal 
role in maintenance of the serine cellular balance in cells with unaltered PHDGH activity. The folate cycle in the vast majority of the cells starts in mitochondria by the 
action of serine hydroxymethyl transferase 2 (SHMT2) which generates glycine and 5,10-methylene-tetrahydrofolate (5,10-methylene-THF). The next reaction can 
produce NADH or NADPH depending if methenyltetrahydrofolate dehydrogenase 2 (MTHD2) or MTHD2-like (MTHD2L) is used to convert 5,10-methylene-THF into 
5,10-methenyl-THF. The same enzyme than generate one-carbon unit—10-formyl-THF, which can be used for ATP production by the enzyme (MTHD1L) or NADPH 
generation in the reaction catalyzed by 10-formyTHF dehydrogenase (ALDH1L2). If ATP is generated, 10-formylTHF is converted into a format that is transported 
into the cytosol and used by trifunctional MTHFD1 enzyme to regenerate 10-formylTHF for purine synthesis, 5,10-methylene-THF for thymidylate synthesis and 
homocysteine remethylation in the methionine cycle. The unidirectionality of the folate cycle seems to be provided by more oxidative mitochondrial redox state that 
favors use of NAD(P)+ by mitochondrial MTHD2(L).
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branching points of the folate cycle is 10-formyl-tetrahydrofolate 
(10-formyl-THF), which in mitochondria may be used for 
ATP regeneration [methylene tetrahydrofolate dehydrogenase 
(MTHFD) reaction], formylation of the mitochondrial initiator 
N-formylmethionine-tRNA or metabolized to [CO2], generat-
ing NADPH (10-formyl-THF dehydrogenase reaction). On the 
other side, in cytosol, 10-formyl-THF can be used for purine or 
NADPH synthesis, while its counterpart 5,10-methylene-THF is 
used for thymidylate synthesis and homocysteine remethylation 
in the methionine cycle. In cancer, mitochondrial 10-formyl-THF 
is mainly used for NADPH production due to overexpression of 
corresponding enzyme, while in citosol, this reaction is prevented 
so one-carbon unit, required for purine synthesis, would not be 
wasted (137, 138). Default mitochondria-to-cytosol directional-
ity of the folate cycle is achived by different expression of enzymes 

in these compartments, as well as more reductive, i.e., oxidative 
environment in cytosol and mitochondria respectively (139).

Two mitochondrial reactions of the folate cycle contribute to 
NADPH production; one is catalyzed by MTHFD, and the other 
is catalyzed by 10-formyl-THF dehydrogenase (ALDH1L2) 
(Figure  3). Fan et  al. showed that depletion of either of these 
enzymes decreased NADPH/NADP+ and consequently GSH/
GSSG ratios and impaired cellular resistance to imposed oxida-
tive stress (134). Similarly, Piskounova et al. showed that redox 
balancing effects of these enzymes is fundamental for metastatic 
potential of melanoma cells in  vivo (28). Namely, this study 
showed that knockdown of either MTHFD or ALDH1L2 pre-
vents distant metastasis of melanoma cells that encounter high-
oxidative pressure in the blood and visceral organs. Besides, it was 
reported that the first mitochondrial enzyme of the folate cycle, 
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FiGURe 4 | Crossroads of NADPH-producing pathways (marked dark blue) and the pathways from which they diverge or to which they converge (marked light 
blue). Amino acids involved in these pathways are marked in red.
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termed serine hydroxymethyl transferase 2 (SHMT2) is essential 
for maintaining mitochondrial NADPH and GSH level during 
hypoxia in neuroblastoma cell lines. This study detected a cor-
relation between high expression of SHMT2 and poor prognosis 
in neuroblastoma patients (140). Expression of SHMT2 in neuro-
blastoma cells seems to be controlled by the collaborative action 
of c-Myc and HIF1α. However, numerous oncogenes are reported 
to affect enzymes of the folate cycle. For example, it is shown that 
common KRAS mutation associates with increased expression of 
MTHFD2 in non-small cell lung cancer cell lines (141), while 
mTORC1-dependent induction of MTHFD2 is reported in both 
normal and cancer cells (142).

Besides production of NADPH, the folate cycle contributes 
to production of GSH by intersecting with the methionine cycle 
(Figure 4). Considering the role of methionine and homocyst-
eine in the TSP (cysteine synthesis), as well as that glycine is 
product of serine metabolism (folate cycle), it is not surprising 
that serine depletion results in reduced level of glutathione 
(143), while activation of serine synthesis is now well identified 
as a bypass of glycolysis flux contributing to GSH synthesis 
(136, 144).

Serine, just like cysteine, can be transported into the cell 
by different transporters [such as the sodium-dependent 
transport system ASC that will be mentioned later in the text, 
and transporter system A, as well as sodium-independent 
system asc (145, 146)], or synthesized de novo from glycolytic 
intermediate 3-phosphoglycerate through the SSP. Highly 
proliferating cancer cells both in culture conditions and in vivo 
consume significant amount of exogenous serine (143, 147).  

Consequently, serine depletion both in  vitro and in  vivo 
decreases proliferation and induces metabolic remodeling, 
commencing with SSP induction, to replenish cellular serine 
pool (143).

Serine Synthesis Pathway
The importance of serine for cancer physiology came from 
earlier studies that showed increased flux through the SSP in 
cancer cells (148). However, this was somewhere neglected 
until the recent discovery that the first enzyme of SSP, phos-
phoglycerate dehydrogenase (PHGDH), is genetically amplified 
in breast cancer and melanoma (149, 150), and overexpression 
of the SSP components are correlated with poorer prognosis 
in breast cancer patients (151). Consistently, suppression of 
PHGDH in cell lines characterized with elevated expression of 
this enzyme decreases cell proliferation and serine synthesis. 
What is even more interesting is that in non-tumorigenic breast 
cancer cells, overexpression of PHGDH alone lead to disrup-
tion of the acinar cellular morphology and predisposed them 
to neoplastic transformation (149, 152), making the PHGDH a 
bona fide oncogene (153).

Amplification of PHGDH de-sensitizes tumors to exogenous 
serine levels but also represents a vulnerability point for poten-
tial cancer treatment. Namely, PHGDH knockdown strongly 
decreased proliferation and some of the SSP outputs [such as 
α-ketoglutarate (α-KG)] only in cells with amplified PHGDH 
expression (150). Interestingly, PHGDH also prevents conver-
sion of glycine to serine suggesting that the folate cycle relies 
exclusively on serine synthesis in PHGDH overexpressing 
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FiGURe 5 | Glutamine/glutamate fates in cancer cells. Different transporters are proposed to fuel the “Glutamine addiction” of cancer cells including alanine-serine-
cysteine transporter 2 (ASCT2), SNAT1/2, and L-type amino acid transporter 1 (LAT1). Once inside the cell, Gln can be use for uptake of essential AAs by LAT1. 
However, the vast majority of Gln is promtly deaminated to glutamate by the action of cytoplasmic or mitochondrial glutaminase (GLS1 and GLS2, respectively). If 
deaminated in cytosol, Glu is transferred into mitochondria, and there it is further converted into α-ketoglutarate (α-KG) to replenish the tricarboxylic acid (TCA). 
However, the fate of α-KG can be dual. It can follow normal TCA flow until oxaloacetate (OAA), which is then converted into asparate by aspartate dehydrogenase 
(GOT2) and translocated into cytoplasm or used for synthesis of asparagine and arginine (protein synthesis). However, if the α-KG is carboxylated to isocitrate and 
then converted into citrate, citrate is exported into the cytosol where it is used for lipid synthesis in the form of acetyl-CoA. Glutamate-derived aspartate can also be 
converted into OAA by cytoplasmic GOT1, commonly induced in KRAS-mutated tumors. OAA is then converted first into malate by malate dehydrogenase 1 
(MDH1) and then into pyruvate by malic enzyme (ME), generating reducing power in the form of NADPH. Besides involvement in anaplerosis and NADPH 
production, Glu has an important role as a component of GSH, as well as a substrate for system xc-light chain (xCT) in allowing entrance of cystine into the cell.
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tumors (154). This was demonstrated by PHGDH knockdown 
decreasing cell proliferation even when exogenous serine was 
present (154).

Several other oncogenes also induce expression of the SSP 
enzymes, such as c-Myc and HER2 (155, 156). Also, in line with 
its involvement in maintaining redox balance, the SSP enzyme 
expression is induced by NRF2 in an ATF4-dependent manner in 
NSCLC cells (136). Interestingly, Maddocks and coworkers (143) 
showed that serine can be a vulnerable point of cancer metabolism 
even in tumors that do not have multiplication of the PHGDH 
gene, but lack p53. Namely, they showed that the p53–p21 axis is 
fundamental for metabolic adaptation upon serine deprivation, 
while loss of p53 in the conditions of serine depletion leads to 
impaired glycolysis and elevated ROS levels.

Interestingly, pharmacological inhibition of the SSP could 
also influence flux through the PPP. Namely, inhibition of the 
SSP would increase intracellular levels of 3-phosphoglycer-
ate, which has been shown to inhibit 6-phosphogluconate 
dehydrogenase that catalyzes the second step in the oxidative 
PPP (157).

GLUTAMATe AND NADPH PRODUCTiON

In addition to the PPP and folate cycle, MEs are known to regu-
late NADPH/NADP+ balance, which is seemingly dependent of 
glutamine metabolism in cancer. One of the main metabolic 
characteristics of many cancers, besides the Warburg effect 
(158, 159), is increased consumption of glutamine to the extent 
where exogenous level of this AA limit tumor cell survival. 
This “glutamine addiction” has been recognized for more than 
50 years (160, 161); however, diverse contributions of glutamine 
to intermediary metabolism, cell signaling, and gene expression 
are still not fully understood (162).

The vast majority of glutamine in the cell is converted into 
glutamate either by cytoplasmic glutaminase (GLS1) or by the 
mitochondrial isoform of this enzyme (GLS2). Glutamate is then 
converted to α-KG by the enzyme glutamate dehydrogenase. α-
KG can then have one of two fates (Figure 5). (1) Canonically, 
produced α-KG enters the TCA and replenishes it, or (2) it is 
carboxylated to isocitrate, pushing the TCA in the opposite direc-
tion (163).
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When glutamine-derived α-KG follows the canonical path-
way, the TCA works normally (clockwise) until oxaloacetate 
(OAA), which is usually converted into aspartate by aspartate 
transaminase (GOT2) and exported into the cytosol, or alterna-
tively, it can be converted into asparagine and arginine and fuel 
protein synthesis. Interestingly, a recent study on KRAS-mutated 
pancreatic ductal adenocarcinoma (PDAC) showed that GOT2 
regulates glutamine flux by producing α-KG and aspartate from 
glutamate and OAA (164). Aspartate is then shuttled into the 
cytosol where it is converted back into OAA by cytoplasmic 
GOT1. The OAA produced is converted first to malate and then 
to pyruvate and NADPH by the action of cytoplasmic malic 
enzyme 1 (ME1). Considering that KRAS-mutated PDACs 
have decreased flux through the PPP (165), glutamine-fueled 
ME1 in these cells may be seen as a major contributor to the 
NADPH homeostasis. Indeed, ME1 suppression increased ROS 
accumulation and decreased tumor cell growth both in vitro and 
in vivo, while suppressing glutamine utilization and sensitizing 
cells to oxidative damage (164). Conversely, it remains to be 
determined if inhibitors of glutamine import or its conversion 
to glutamate would have the same effects on oxidative status 
and cell growth.

Oppositely to KRAS, p53 has a negative impact on this 
NADPH-producing pathway. This was demonstrated by a strong 
upregulation of MEs (ME1/2) in the absence of functional p53 
(166), which were crucial for maintenance of adequate NADPH 
levels. Here is important to recall the importance of the p53–p21 
axis to serine starvation (143) and to anticipate potential resist-
ance mechanisms for serine starvation, in the absence of p53, via 
upregulation of the ME1/2.

Alanine-Serine-Cysteine Transporter 2 
(ASCT2)
Alanine-serine-cysteine transporter 2 (SLC1A5) is a Na+-depen-
dent transporter carrying small neutral AAs such as alanine, serine, 
cysteine, glutamine, and asparagine (Km ~20 μM) in addition to 
long-chain AAs such as threonine, valine, and methionine with 
lower affinity (Km ~300–500 μM). ASCT2 is proposed to play a 
central role in sustaining cancer cell glutamine homeostasis based 
on work from Myc-driven cancers, which are particularly addicted 
to glutamine, and fuel their “glutamine addiction” by promoting 
high ASCT2 expression (167–169). Also, ASCT2 together with 
xCT and L-type amino acid transporter 1 (LAT1), comprise the 
“minimal set” of transporters required for cancer AA homeostasis 
and the group known to be highly upregulated in cancer (170, 171).  
Consequently the glutamine import activity of ASCT2 has 
been proposed to be fundamental for the activity of other AA 
transporters upregulated in cancer, such as xCT and LAT1 
(leucine-for-glutamine exchanger) (171–173). However, recent 
findings demonstrated that ASCT2 inhibition can be overcame in 
certain cancer cell types partly by expressing the Na+-dependent 
glutamine transporters system A amino acid transporter 1–2, 
questioning the functional redundancy for certain AA transport-
ers in tumor growth (174). Regardless, glutamine import (via 
ASCT2 or other transporters) is indeed of great importance for 
normal functioning of LAT1 and xCT. Recent studies showed that 

cancer cell glutamine addiction might be a direct consequence 
of xCT activity, which consumes large amounts of glutamate 
derived from extracellular glutamine thereby restricting nutrient 
flexibility of the cell (175, 176).

The importance of glutamine in cancer cells often dominates 
ASCT2 experimental interpretations. However, it is important to 
remember ASCT2’s ability to transport other AAs such as serine. 
As mentioned, some cancer cells remain highly dependent on the 
uptake of exogenous serine (143). Since ASCT2 display a strong 
affinity for serine, it would be interesting to investigate the role 
of this transporter in serine metabolism and redox homeostasis 
in general. Furthermore, the name of ASCT2: alanine–serine–
cysteine transporter may be misleading. Namely, ASCT2 is 
structurally related to the glutamate transporter and neutral AA 
transporter ASCT1 and when expressed in Xenopus laevis oocyte 
ASCT2 indeed exhibits Na+-dependent uptake of AA similar to 
ASCT1 (177). However, the same study of Utsunomiya-Tate and 
collaborators revealed that ASCT2 exhibits different tissue distri-
bution, as well as substrate selectivity and functional properties 
when compared to ASCT1. Thus, for example, glutamate uptake 
by ASCT1 is electrogenic, while in the case of ASCT2 lowering pH 
enhances uptake, which suggests electroneutral uptake. Also, it 
seems that cysteine is not a substrate for ASCT2, but an allosteric 
inhibitor of its activity. In accordance to this are recent findings 
that mark cysteine as a potent competitive inhibitor of ASCT2 
that binds to the site different from the one for substrate and 
induces efflux of glutamine both in the case of proteoliposomes 
and in intact cells (178).

Considering that the “minimal set” of transporters required 
for cancer AA homeostasis comprises ASCT2, while its activity/
specificity is still rather debatable, it is of utmost importance 
to continue research on the biology of this very intriguing AA 
transporter.

CONCLUDiNG ReMARKS

For a long time, the mild pro-oxidative redox state of cancer 
cells has been recognized as a vulnerable point of these highly 
metabolically active cells. However, in the context of chemo-
therapy, we are still struggling to find the adequate approach to 
the vast majority of ROS-producing therapeutics that encounter 
cellular resistance and frequent disease relapse. During the past 
decade, an approach involving suppression of the internal AOD 
of cancer has attracted more attention. Within highly complex 
and intertwined AOD system, GSH and NADPH play the most 
universal and important role in determining the characteristic 
redox cellular profile. Considering that AA import and metabo-
lism seems to be upstream of these AOD systems, we have 
emphasized here the specific molecules and pathways that show 
great, but still insufficiently examined, potential for anticancer 
therapy from a redox standpoint. In conclusion, the transport 
and internal synthesis pathways for cysteine, serine, glutamine, 
and to some extent glycine appear to be the most interesting 
targets for the development of novel redox-based therapeutics. 
Targeting AA transport systems (xCT, ASCT2, and SNAT) 
is promising considering that import of these semi-essential 
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AAs are not required in normal cells, while they are absolutely 
required for cancer cell survival.
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The concept that cancer is a metabolic disease is now well acknowledged: many 
cancer cell types rely mostly on glucose and some amino acids, especially glutamine 
for energy supply. These findings were corroborated by overexpression of plasma 
membrane nutrient transporters, such as the glucose transporters (GLUTs) and some 
amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising 
targets for pharmacological intervention. On the basis of their sodium-dependent 
transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of 
cancer cells; while LAT1, which is sodium independent will have the role of providing 
cancer cells with some amino acids with plausible signaling roles. According to the 
metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized 
by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochon-
drial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine 
rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to 
α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed 
pathway leads to the production of ATP mainly at substrate level and regeneration of 
reducing equivalents needed for cells growth, redox balance, and metabolic energy. 
Few studies on hypothetical mitochondrial transporter for Glutamine are reported and 
indirect evidences suggested its presence. Pharmacological compounds able to inhibit 
Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, 
well acknowledged targets for drugs are the Glutamine transporters of plasma mem-
brane and the key enzyme Glutaminase.

Keywords: tumors, mitochondria, metabolism, proteoliposome, plasma membrane, drug design

inTRODUCTiOn

A conspicuous number of scientific reports clearly show that cancer is a metabolic disease (1–3). 
Metabolic reprogramming is driven by changes in expression of specific genes that allow cancer 
cells escaping control mechanisms active in healthy cells. The knowledge of these variations 
is relevant for designing novel and more specific pharmacological strategies. Therefore, many 
unknown or controversial aspects of cancer cell metabolism are object of active investigation. 
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In this respect, mitochondria are crucial for cell survival and 
their features in cancer vary profoundly in terms of DNA con-
tent, electron chain functionality, and ATP production (4, 5). 
In this complex scenario, Glutamine is a key player since it is 
a versatile amino acid whose carbon skeleton is employed in 
different cell compartments for several purposes. Noteworthy, 
in physiological conditions as well, Glutamine is the most 
abundant amino acid in plasma, reaching a concentration 
of 0.8 mM and it can rise up to 40% of the total amino acids 
intracellular content (6). Glutamine is endogenously synthe-
sized from α-Ketoglutarate, via Glutamate dehydrogenase 
and Glutamine synthetase. However, when cells are highly 
proliferative, the request of Glutamine increases and it has 
to be absorbed from external sources (7), making Glutamine 
a “conditionally essential” nutrient. Hence, some cancer cells 
are considered “glutamine addicted” because their growth 
and proliferation rates depended on availability of this amino 
acid (8, 9). Glutamine is engaged in different pathways, both 
cytosolic and mitochondrial, responsible for synthesis of many 
molecules (Figure 1A). Glutamine is also involved in other cell 
processes such as, Glutamine/Glutamate cycle in nervous tissue 
(Figure 1A) (10, 11). Glutamine ends its fate in mitochondria 
to be oxidized, producing ATP. Some aspects of the Glutamine 
transport and mitochondrial metabolism, which characterize 
cancer cells, will be dealt with. Noteworthy, Glutamine has 
been proposed to activate cell growth also independently from 
energy metabolism, by acting on signaling processes (11, 12).

GLUTAMine SUPPLY TO CAnCeR CeLLS

The higher demand of glutamine by some cancer cells requires 
the action of membrane transporters with two essential features: 
(i) specificity for Glutamine and (ii) high transport capacity. 
Membrane transporters for amino acids are characterized by a 
broad specificity. In other words, the same transporter is able to 
recognize different amino acids with a redundancy that is typical 
of this class of proteins (13). In particular, Glutamine is recog-
nized as substrate by some of the members of four different SLC 
families, which are clustered on the basis of phylogenetic analy-
ses: SLC1, SLC6, SLC7, and SLC38 (14). Each transporter can be 
indicated by either the SLC or the old nomenclature (Figure 1). 
Even though the genetic and biochemical characterization of 
Glutamine transporters began several years ago, many unclear 
aspects are still existing especially in the frame of concerted 
action and regulation of the transporters and to their importance 
in Glutamine homeostasis under physiological (Figure 1A) and 
pathological conditions (13, 14). A remark is, however, very clear: 
some of the transporters sharing specificity for Glutamine are 
overexpressed in many tumors, i.e., ASCT2, ATB0+, and LAT1 
(Table 1) (15–17); notwithstanding, not all of them are suitable for 
providing cells with high amount of this amino acid since they do 
not fulfill both the features above mentioned. A concise summary 
of the major players of Glutamine homeostasis is reported below 
together with an update on the most likely transport mechanisms 
underlying their role in cancer.

SLC1A5 is referred to as ASCT2, acronym standing for 
Alanine, Serine, Cysteine Transporter according to preliminary 

observations on substrate specificity (13). Recently, we showed 
that the actual preferred substrate is Glutamine and that Cysteine 
is not a substrate but, probably, a modulator of transport activ-
ity, in agreement with the previous reports describing a very low 
transport of Cysteine, if any (49, 50). The specificity of ASCT2 
toward Glutamine correlates well with its overexpression in 
several human cancers (16, 51); to better explain its role in 
Glutamine addiction, many authors depicted ASCT2 as a Na+-
dependent symporter of Glutamine, thus apparently fulfilling the 
two constraints above listed, i.e., specificity and high transport 
capacity (52–55). However, the proposed mechanistic model 
does not correlate with the actual transport mode of ASCT2 
that is a Na+-dependent antiporter, according to both initial 
and more recent studies, including ours, which well clarify this 
aspect (16, 49, 56, 57) (Figure 1A). Therefore, at variance with 
the common view, the uptake of Glutamine, required by cancer 
cells, must be coupled to an opposite and quantitatively equal 
efflux of another neutral amino acid. Under a metabolic point 
of view, it is reasonable that the most probable exchanged amino 
acids are Asparagine, Threonine, or Serine; these, indeed, are 
high affinity substrates of ASCT2 (56) and the antiport with 
Glutamine will allow the net entry of 1–2 carbon atoms into 
the cell, which can be oxidized in the TCA to produce ATP 
(Figure 1B). This reaction is energetically favored by extracel-
lular sodium gradient and membrane potential; the transporter 
is electrogenic due to net positive charge accumulation, as we 
recently highlighted (56). This “amino acid exchange” mechanism 
correlates well with the increased plasma concentration of Serine 
and Threonine, widely described in different cancers (58). Over 
the years, overexpression of ASCT2 has been associated also to 
another transporter of neutral amino acids, SLC7A5 referred to 
as LAT1 (59), as originally proposed by Fuchs and Bode (16). 
This protein is a Na+-independent obligatory antiporter and it 
has an heterodimeric structure, being associated to an ancillary 
protein named CD98 (SLC3A2) which, however, does not play 
any role in the intrinsic transport function (Figure  1A) (60). 
LAT1/CD98 heterodimer is broadly expressed and provides 
cells with essential amino acids, such as Leucine, in those body 
districts where these are required for cell growth. Indeed, strong 
genetic alterations of LAT1 in embryo are not compatible with 
life and very few are found in families characterized by some 
cases of Autism Spectrum Disorders, in which the metabolic 
damage is ascribed to altered supply/excessive loss of essential 
amino acids, in particular Histidine, to/from brain (61). LAT1 
is greatly overexpressed in tumors where it has a role in signal-
ing function (Table  1) (16, 51). Leucine, indeed, modulates 
the activity of one of the master cell growth regulators: mTOR 
(62). This protein kinase senses amino acid availability and it 
is particularly responsive to Leucine, Glutamine, and Arginine 
levels across lysosomes (62). In this respect, it is worth to note 
that LAT1, besides in plasma membranes, has also been found 
in lysosomes together with the “transceptor” SLC38A9 (63–65). 
Moreover, Leucine is a positive allosteric regulator of Glutamate 
dehydrogenase, which is responsible of Glutamine fate in mito-
chondria (17). For all the stated reasons, both LAT1 and ASCT2 
can be considered eminent targets for drugs (51). However, the 
commonly proposed model in which Glutamine is taken up via 
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TABLe 1 | ATB0,+, ASCT2, and LAT1-associated cancers.

SLC6A14 (ATB0,+) SLC1A5 (ASCT2) SLC7A5 (LAT1) Reference

Prostate cancer Prostate cancer Prostate cancer (14, 18–22)

Colorectal cancer Colorectal cancer Colorectal cancer (14, 23)
Hepato cell carcinoma Hepato cell carcinoma (14)
Lung cancer Lung cancer (14, 24)

Breast cancer Breast cancer Breast cancer (14, 18, 25–28)
Neuroblastoma and glioma Neuroblastoma and glioma (14, 29)
Endometrioid carcinoma Endometrioid carcinoma (14, 30, 31)
Ovarian cancer Ovarian cancer (14, 32)
Renal cell carcinoma Renal cell carcinoma (14, 33, 34)

Pancreatic and biliary tract cancer Pancreatic and biliary tract cancer (14, 35, 36)
Gastric cancer Gastric cancer (14, 37–40)

Pleural mesothelioma (14)

Cervical cancer Cervical cancer (41, 42)
Oral squamous cell carcinoma Oral squamous cell carcinoma (43–45)

Thymic cancer (46)
Melanoma (47)
Leukemia (48)

List of cancer tissues in which ATB0,+, ASCT2, and/or LAT1 have been found overexpressed with related references.

FiGURe 1 | Continued  
(A) Membrane transporters of glutamine and mechanisms of transport. The shape of the transporters reflects their asymmetry in membrane. Transporters are 
indicated by both conventional and SLC names. Different colors highlight different transport modes: in green symporters, in blue antiporters. Arrows represent 
direction of transported amino acids (blue) and ion (grey) fluxes; red arrow indicates possible Glutamine exit via LAT1 (SLC7A5). In the orange box, the list of cell 
pathways in which Glutamine is involved; in the light green box, the list of molecules synthesized from Glutamine. (B) Mitochondrial and cytosolic pathways 
responsible for energy production from Glutamine. In the scheme, Glutamine (Gln, blue) uptake occurs via membrane transporters ATB0,+ and ASCT2 through a 
sodium coupled process. The pathways are indicated as solid or dotted (in the case of multistep pathways) arrows (in blue those related to Glutamine, in black 
those involved in other pathways). Carbon atoms of Gln are depicted in blue–red filled circles; Gln enters mitochondria via an inner membrane transporter whose 
existence is still questionable (?): it could be a Glutamine or a Glutamate transporter depending on the actual sub-localization of Glutaminase enzyme (GLS). Carbon 
atom derived from Gln and released as CO2 is indicated in red, carbon skeleton of Malate and Asparagine (Asn) in blue, carbon skeletons of Serine (Ser) in orange 
circled in red and of Threonine (Thr) in orange circled in black. The truncated form of TCA is highlighted by a yellow hemicycle. ATP and reducing equivalent 
molecules produced by Glutamine metabolism are indicated in red. Leucine enters through LAT1 and allosterically regulates GDH in the orange box. Some 
metabolic pathways are indicated by names: GSH synthesis, fatty acid synthesis, Glycolysis, OX-phos. Membrane transporters of lactate and glucose in grey, xCT in 
light blue. Enzymes highlighted: GLS, Glutaminase; GDH, Glutamate dehydrogenase; AT, aminotransferases; SS, succinylCoA synthetase; ME, malic enzyme; IDH1, 
isocitrate dehydrogenase. Amino acids and other molecules involved in glutamine pathways (azure): Glu, Glutamate; α-KG, α-ketoglutarate; ICit, isocitrate; SCoA, 
succinyl coenzyme A; Succ, succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; Cit, citrate; Pyr, pyruvate; Lac, lactate.
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ASCT2 to boost the transport cycle of LAT1, for massive entry 
of Leucine, is questionable. Indeed, as above described, ASCT2 is 
not a symporter, but an antiporter, and Glutamine is a poor sub-
strate of LAT1 (60) (Figure 1). Thus, it is necessary to reconsider 
an integrated view of metabolism, which takes into account other 
membrane transporters. In particular, two members of SLC6 
family are characterized by both specificity for Glutamine and 
high transport capacity and are involved in supplying it to cells in 
physiological and pathological conditions (Figure 1): SLC6A14 
and SLC6A19 known as ATB0,+ and B0AT1, respectively (66). 
In the case of ATB0,+, Glutamine uptake has been proposed to 
be coupled with 2Na+ and 1Cl− while, in the case of B0AT1, it 
is coupled to Na+ (Figure 1A). The transport cycle of the two 
proteins is electrogenic making ATB0,+ and B0AT1 high capacity 
transporters. Despite this, no involvement in cancer is reported 
for B0AT1, so far. Altered expression of this protein is described 
only in an inherited disease referred to as Hartnup disorder 
(67). On the contrary, a number of studies shows overexpression 
of ATB0,+ in human cancers (25, 51) (Table 1). Therefore, this 

protein can be considered one of the players in accomplishing 
metabolic needs of cancer cells and, hence, a druggable target 
(Figure 1B). However, at this stage, a plausible unified model, 
including ASCT2, LAT1, and ATB0,+ cannot be predicted because 
the study on biology of the last one is still in embryonic form. 
The only available information concerns its broad specificity and 
localization (66). Another family characterized by a sizable num-
ber of Glutamine transporters is the SLC38, which accounts for 
11 members, the best known of which are described as Glutamine 
transporters coupled to Na+ or Na+/H+ fluxes (68) (Figure 1A). 
Wide proteomic/genomic data indicate that some of the SLC38 
members are overexpressed in human cancers (69). Further 
studies are required to establish a direct role of these transporters 
in Glutamine supply and, hence, their possible consideration as 
drug targets. Noteworthy, an important advancement has been 
recently provided in the field of cell signaling linked to amino 
acid sensing with the discovery that SLC38A9 is a lysosomal 
transporter responsible for Glutamine and Arginine flux across 
lysosome with consequent activation of mTOR cascade (64, 65).

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


53

Scalise et al. Glutamine in Cancer

Frontiers in Oncology | www.frontiersin.org December 2017 | Volume 7 | Article 306

GLUTAMine MeTABOLiSM in 
MiTOCHOnDRiA AnD THe STiLL 
UnSOLveD TRAnSPORT iSSUe

The relevance of Glutamine for energy production underlies 
a truncated form of TCA characterizing the mitochondrial 
metabolism of several type of cancers. In this pathway, the cycle 
is not completed and the carbon skeleton of Glutamine, entering 
the TCA as α-Ketoglutarate, escapes as Malate with production 
of ATP at substrate level in the reaction catalyzed by the Succinyl-
CoA Synthetase. According to this pathway, one out of the five 
carbon atoms of Glutamine, is released as CO2 (Figure 1B). The 
four remaining carbon atoms of Glutamine are exported in cyto-
sol as Malate that can give rise to different metabolic pathways. 
It can be converted into Pyruvate leading to NADPH production 
that can be used by fatty acid synthesis or other biosynthetic 
pathways (70). Pyruvate can, in turn, be transformed to Lactate, 
restoring NAD+ needed for anaerobic glycolysis and production 
of ATP (Figure 1B). This typical anaerobic pathway occurs even 
in the presence of adequate oxygen supply, according to the well-
acknowledged Warburg hypothesis (16, 71, 72). Alternatively, 
Malate can enter four carbon atom molecules among which 
Asparagine, i.e., one of the substrates necessary for ASCT2 
transport cycle (Figure 1B). In this case, Malate is converted into 
oxaloacetate via malate dehydrogenase and then, to aspartate 
via aspartate aminotransferase (resumed by the dotted arrow 
of Figure 1B). The alternative efflux substrate of ASCT2, Serine 
can derive from glucose via a three enzymes pathway, i.e., phos-
phoglycerate dehydrogenase, phosphoserine aminotransferase, 
and phosphoserine phosphatase (resumed by the dotted arrow 
of Figure 1B). Noteworthy, the reaction catalyzed by the second 
enzyme (aminotransferase) requires Glutamate, which in turn 
derives from Glutamine. On the other hand, Threonine, which 
could be an efflux substrate of ASCT2 as well, is an essential 
amino acid; thus, it should derive from import through other 
transporters or, hypothetically, from protein degradation. 
Moreover, Glutamine skeleton can also fuel fatty acid synthesis in 
cytosol by reductive carboxylation of α-Ketoglutarate, exported 
from mitochondria, to isocitrate through the action of a cytosolic 
isoform of IDH (Figure 1B). This is a non-conventional reaction 
for producing citrate, occurring in cells that undergo metabolic 
switch (70, 73, 74). Glutamine is involved also in ROS metabo-
lism, which is another crucial point for cancer development and 
progression (75). Cancer cells, indeed, need to keep the produc-
tion of ROS under strict control via mechanisms involving both 
enhanced glutathione (Glutamate-Glycine-Cysteine—GSH) 
synthesis and decreased respiratory chain activity. Glutamate 
needed for GSH synthesis derives, under these conditions, from 
Glutamine (Figure 1B) (76). Cysteine is taken up by cells via the 
Glutamate/Cystine transporter xCT (SLC7A11), which has been 
found overexpressed in several cancers and is responsible for a 
novel way of cell death called ferroptosis (77). Thus, Glutamine 
withdrawal can have dramatic effects on cancer cell metabolism 
(75, 78). Despite the described importance of Glutamine in mito-
chondrial metabolism, the network of proteins involved in its flux 
to mitochondrial matrix is still underneath. Several efforts have 
been made to shed light on two mitochondrial molecular entities, 

which are still mysterious: the enzyme Glutaminase and the mito-
chondrial transporter for Glutamine (Figure 1B). Glutaminase is 
produced by two different genes: GLS1 and GLS2. The first one is 
known as kidney-type Glutaminase and is ubiquitously expressed. 
The GLS2 gene is known as liver-type glutaminase (LGA) and is 
mainly expressed in liver. The GLS1 type is subjected to alterna-
tive splicing producing a full isoform and a truncated one, which 
differs for its C-ter region and is known as Glutaminase C (79). 
These two isoforms have been found overexpressed in different 
cancers, in line with the increased metabolic demand of mito-
chondrial Glutamine (80). The importance of this enzyme in the 
fate of Glutamine is testified by a number of different pathways 
involved in its regulation among which, c-Myc, whose action 
is exerted through inhibition of a microRNA, miRNA-23a that 
results in increased GLS1 expression and, then, activity (81). 
Under a pharmacological point of view, Glutaminase represents 
an important target for anticancer therapy (82). However, the 
sub-localization of mitochondrial Glutaminase is not yet defined 
and, as a consequence, the need of a mitochondrial Glutamine 
transporter. In fact, if Glutaminase faces the intermembrane 
space, here, releases Glutamate then, a Glutamate transporter, 
not a Glutamine one, is required to allow entry of Glutamate in 
the TCA. On the contrary, if Glutaminase faces the intra-mito-
chondrial matrix, then a Glutamine transporter is necessary to 
allow Glutamine reaching the substrate active site of Glutaminase 
(Figure  1B). Biochemical data, even though indirect, agree 
with the second hypothesis and, hence, with the existence of a 
Glutamine transporter (Figure 1B) whose molecular identity is 
not yet revealed (82–86). We have conducted in  silico analyses 
aligning a putative Glutamine binding motif with members of 
the mitochondrial transporter SLC25 family: the best score was 
obtained for three orphan SLC25 members resulting as possible 
mitochondrial Glutamine transporters (11).

GLUTAMine MeTABOLiSM AS TARGeT 
FOR DRUGS

The complex network of enzymes/transporters involved in 
Glutamine metabolism explains the plethora of drug interven-
tions to specifically target cancer cells. A big challenge is the 
metabolic adaptation of cancer cells that can survive also under 
stress conditions, such as Glutamine withdrawal (87, 88). Last, but 
not less important, is the great diversity of cancers; thus, it is not 
surprising that therapeutic interventions needs to be specifically 
designed. Being Glutamine a key player in multiple pathways, the 
most important makers of its fate represent potential crossroad 
for cancer therapy. In particular, inhibitors of the key enzyme 
Glutaminase have been designed over the years (7, 82) and their 
studies are at a more advanced stage, being Glutaminase a soluble 
protein, i.e., easier to handle also in vitro. Interestingly, murine 
Glutaminase 3D structure has been obtained (pdb 4JKT) and, 
very recently, the human one has been deposited in the database 
(pdb 5UQE), as well. Some inhibitors showed very good results 
in in  vitro models of human cancers and few of them were 
promising in preclinical studies. In particular, one synthetic 
compound, i.e., CD-839 reached clinical trials due to its ability 
to block tumor growth in  vitro, in  vivo, and in mouse models 
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(89). The main challenges with respect to Glutaminase inhibitors 
are the presence of more than one isoform of GLS and the still 
unsolved issue of subcellular localization that can hamper the 
drug availability. The scenario around membrane transporters 
is even more complex. In fact, their relevance in pharmacology 
is obvious and relies on two main aspects: membrane proteins 
can be (i) target of designed drugs and/or (ii) responsible for 
drug traffic across membranes and, thus, for drug disposition. 
This second aspect is still not fully considered by the scientific 
community that did not include any transporter for amino 
acids in the list of the International Transporter Consortium for 
drug–transporter interactions (90). The frontiers of drug design 
are based on in silico models that, on the one hand, reduce the 
number of experimental analysis to be conducted; on the other 
hand, if the 3D model of the protein is obtained by homology, 
predictions may be uncertain. This circumstance, in the case of 
membrane transporter, occurs quite often because few 3D struc-
tures are available so far. The well-documented overexpression of 
some membrane transporters, above described (see Glutamine 
Supply to Cancer Cells; Table 1), boosted the research of potent 
and specific inhibitors; in particular, several reports dealt with 
the identification of inhibitors for ASCT2 (91) and LAT1 (92) via 
bioinformatics. The initial approach, attempted over the years, 
has been that of designing substrate analogs-based drugs to block 
either ASCT2 or LAT1 transport activities (93, 94). However, all 
the discovered molecules exhibited relatively low affinities and, 
hence, low effects on reducing cancer cell viability. The pitfalls of 
this strategy are explained by the frame schematically depicted 
in Figure 1A; in fact, membrane transporters of amino acids are 
poly-specific meaning that natural substrates can displace a hypo-
thetical substrate-based drug. These compounds, in fact, interact 

only transiently with the target protein leading to scarce effects. 
In the recent years, we have exploited a combined approach of 
bioinformatics, in silico screening and biochemical assays using 
the in vitro experimental model of proteoliposomes in order to 
identify covalent inhibitors for both ASCT2 and LAT1. Being irre-
versible, covalent inhibitors should be in principle, more efficient 
in chemically knocking-out the transporters. This strategy has the 
advantage of facilitating the compound screening studying the 
effects on the sole target protein, without interferences deriving 
from other systems present in the whole cells (95). Then, we iden-
tified potent covalent inhibitors of the rat ASCT2 (96). Soon after, 
we obtained also a set of covalent inhibitors of human LAT1 with 
the highest affinity so far described (97). LAT1, as mentioned 
above, even if is probably not directly linked to Glutamine uptake 
in cancer cells, is responsible for providing essential amino acids, 
among which Leucine (see Glutamine Supply to Cancer Cells). 
Test in intact cells showed that the compounds were also able to 
impair viability of cancer cells.
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Epithelial-to-mesenchymal transition (EMT) allows epithelial cancer cells to assume 
mesenchymal features, endowing them with enhanced motility and invasiveness, thus 
enabling cancer dissemination and metastatic spread. The induction of EMT is orches-
trated by EMT-inducing transcription factors that switch on the expression of “mesenchy-
mal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction 
is a hallmark of cancer and has been associated with progression to a metastatic and 
drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial 
dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing 
to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA) 
or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate 
hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided 
evidence that mitochondrial dysfunction and EMT are interconnected. In this review, 
we provide an overview of the current knowledge on the role of different types of mito-
chondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent 
advances in the identification of signaling components in the mito-nuclear communi-
cation network initiated by dysfunctional mitochondria that promote cellular remodeling 
and EMT activation in cancer cells.

Keywords: epithelial-to-mesenchymal transition, mitochondrial dysfunction, mitochondrial DnA, mitochondrial 
retrograde signaling, metastasis

inTRODUCTiOn

Mitochondria are the cell powerhouse, on which amino acid, nucleic acid, lipid, and iron–sulfur 
cluster metabolic pathways converge. During the last decade, mitochondria have been recognized as 
key players in several aspects of cancer biology, including cancer development, metastasis, and drug 
resistance (1, 2), due to their central role as receivers, integrators, and transmitters of intracellular 
signals regulating various processes (3). Mitochondria are highly dynamic organelles whose biogen-
esis and functions, depending on cellular needs, is under tight nuclear control, through the so-called 
anterograde regulation, which allows mitochondria adaptation to the ever-changing cellular milieu 
(4). Only 1% of mitochondrial proteins are encoded by mitochondrial DNA (mtDNA), with all 
the others encoded by the nuclear genome, including proteins involved in mtDNA replication and 
transcription, such as mitochondrial single-stranded DNA-binding protein (mtSSB or SSBP1), 
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FiGURe 1 | The mechanism of epithelial-to-mesenchymal transition (EMT). (A) Cellular changes associated with EMT. Epithelial tumor cells are shown in light brown, 
and stromal cells are shown in cyan. EMT begins with alterations in gene expression of epithelial cancer cells (step 2) that determine loss of the epithelial phenotype 
accompanied by alterations in nearby stromal cells (shown as a shift of stromal cell color from blue to red) (step 3). Loss of cell-to-cell attachment receptors and 
integrins occurs and continues to step 4 and beyond. EMT allows the cells to increase their invasiveness determining degradation of extracellular matrix (ECM) 
proteins, cytoskeleton reconstruction, extravasation, angiogenesis, as well as anoikis and drug resistance (step 5). (B) The regulatory network of EMT. Some 
important extracellular molecules in the tumor microenvironment, such as TGF-β, HGF, FGF, EGF, and Wnt bind to their respective receptors to induce activation  
of intracellular pathway, such as MAPK, PI3K, and Wnt/β-catenin. In turn, they regulate induction of EMT-inducing transcription factors (EMT-TFs), including SNAIL, 
SLUG, ZEB, TWIST, and FOXC2, which are responsible for molecular and physical changes occurring during EMT. Also hypoxia contributes to trigger EMT and 
participates in the EMT regulatory network through activation of HIFs.
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transcription factor A of mitochondria (TFAM), and mito-
chondrial DNA polymerase γ (POLG) (5). When cells require 
enhanced mitochondrial function, anterograde transcriptional 
regulation of mitochondrial biogenesis is mediated by a set of 
transcription factors whose activity is regulated by the PPARγ 
co-activator 1 family members (4).

Epithelial-to-mesenchymal transition (EMT) is a complex 
transdifferentiation process that allows epithelial cancer cells to 
transiently acquire a predominantly mesenchymal phenotype 
(6, 7). EMT is characterized by loss of epithelial cell polarity 
and cell–cell/cell–extracellular matrix contacts, supported by 
concomitant changes in stromal cells, that enable some tumor 
cells to migrate out of the primary tumor, cross the basement 
membrane barriers, and intravasate into the blood stream (8, 9)  
(Figure  1A). These circulating tumor cells (CTCs) become 
sources of metastasis at distant sites as the “seeds” in Paget’s 
“seed and soil” theory (10). EMT requires a complex cellular 
reprogramming that may render the cells resistant to therapies 
designed against the primary tumor (11, 12) and has been con-
nected with cancer cell stemness properties (6, 13, 14).

The mutual interplay between EMT and mitochondrial 
metabolism in cancer has been recently highlighted (15–17). 
In this relationship, mitochondrial metabolic alterations can 
drive EMT or, else, EMT activation can fine-tune cancer cell 
metabolism by affecting the expression of metabolic genes. 

Mitochondrial dysfunction has been widely implicated in 
cancer development and progression [for a recent review, 
see Ref. (2)]. The precise mechanisms underlying mitochon-
drial dysfunction are multiple and may involve deregulated 
autophagic processes, unbalance in reactive oxygen species 
(ROS) homeostasis, mutations in oxidative phosphorylation 
(OXPHOS) complexes, electron transport chain (ETC), or 
Krebs’ cycle (TCA) enzymes. Despite the heterogeneity of the 
mechanisms, EMT induction has been described as one of the 
endpoint phenotypes in many epithelial tumor cells affected 
by mitochondrial dysfunction. In this review, we describe how 
dysregulation of the mitochondrial metabolism and genetics 
may promote EMT in cancer cells.

eMT in CAnCeR

Epithelial-to-mesenchymal transition has been initially described 
as a physiological process occurring at different stages of the 
embryonic development (type I EMT) (18). Type II EMT occurs 
in wound healing and fibrosis (18). Type III EMT is associated 
with cancer progression (18) and is the focus of this review.

Epithelial-to-mesenchymal transition is a multistep process 
that involves several molecular changes, including down-
regulation of the epithelial markers E-cadherin, claudins, 
desmosomes, and occludins (key components of intercellular 
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junctions) as well as upregulation of the mesenchymal mark-
ers N-cadherin, vimentin, and fibronectin, thus fostering 
motility and invasion (19) (Figure  1B). These changes are 
orchestrated by transcription factors known as EMT-inducing 
transcription factors (EMT-TFs), which include TWIST1 and 
TWIST2, SNAIL 1, SNAIL 2 (SLUG), ZEB1, and ZEB2 as well 
as non-canonical EMT-TFs such as KLF8, FOXC2, and GSC. 
EMT-TFs regulate directly or indirectly the expression of 
adhesive factors and can also induce the expression of matrix 
metalloproteinases (MMPs), which degrade the basement 
membrane facilitating invasion and intravasation. Some extra-
cellular factors, such as Wnt, TGF-β, EGF, FGF, and HGF can 
drive EMT by activating different signaling pathways (MAPK, 
Wnt/β-catenin, and PI3K) thus promoting the expression of 
EMT-TFs (20). In addition, tumor hypoxia is considered one 
of the possible triggers of EMT by inducing hypoxia-inducible 
transcription factors, e.g., HIF-1α and HIF-2α, which regulate 
the hypoxic response by modulating the expression of EMT-
TFs (21, 22) (Figure 1B).

The pro-metastatic role of EMT-TFs has been extensively 
demonstrated [for a review, see Ref. (23)]. For example, using 
genetic mouse models of breast cancer, Tran et al. (24) demon-
strated that transient expression of SNAIL 1 in breast tumors was 
sufficient to increase metastasis. Ectopic expression of TWIST1 
in Twist1-negative breast cancer cells also induces EMT and can-
cer stem cell-like features, including expression of the stem-cell 
marker CD44 (13, 25–27), suggesting that EMT and acquisition 
of stemness capacity may be part of the same pathway. Besides 
promoting migration, invasion and cancer stem-cell properties, 
EMT would also facilitate survival of CTCs in the peripheral 
system by inhibiting anoikis as well as apoptosis triggered by 
chemotherapy or radiotherapy (28, 29). Of note, EMT induction 
is also regulated by changes in the expression of splicing factors 
(30): suppression of epithelial-specific splicing proteins (ESPR) is 
an indicator of the EMT process (31). In addition, identification 
of epigenetic changes and microRNAs as potent EMT regulators 
adds further complexity to the regulatory network governing 
EMT (32, 33).

MiTOCHOnDRiAL DYSFUnCTiOn  
AnD eMT

Mitochondrial dysfunction has been associated with increased 
invasiveness, metastatic potential, and drug resistance of cancer 
cells (2, 34–37). The mechanisms contributing to mitochondrial 
dysfunction may be multiple and may occur at the level of 
mtDNA- or nuclear-encoded mitochondrial proteins. In the next 
paragraphs, we will summarize current knowledge on factors 
promoting mitochondrial dysfunction that has been implicated 
in EMT induction in cancer cells.

Mutations/Changes in expression of 
nuclear-encoded Mitochondrial Metabolic 
enzymes
Mutations in the TCA cycle enzymes fumarate hydratase (FH), 
isocitrate dehydrogenase (IDH), and succinate dehydrogenase 

(SDH) have long been recognized as oncogenic but only recently, 
they have been associated with EMT activation.

Fumarate hydratase mutations suppress conversion of 
fumarate to malate and cause hereditary leiomyomatosis and 
highly aggressive renal cell cancer able to metastasize at an 
early stage even when the primary tumor is still very small (38). 
Accumulation of fumarate in FH-deficient cells would promote 
EMT through an epigenetic mechanism: fumarate suppresses 
the antimetastatic miRNA cluster mir-200ba429 by inhibiting 
demethylation of a regulatory region, thus resulting in expression 
of EMT-TFs (39). This novel mechanism provides a rationale to 
explain the aggressive nature of FH-mutated tumors.

Isocitrate dehydrogenase promotes oxidative decarboxylation 
of isocitrate to α-ketoglutarate. Mutations in IDH1/2 isoforms 
are common in oligodendrogliomas and astrocytomas and have 
been also found in leukemia, melanomas, prostate, colon, and 
lung cancers (40). Mutant IDHs are neomorphic and catalyze 
the transformation of α-ketoglutarate to 2-hydroxyglutarate, an 
oncometabolite that has been shown to induce EMT and to be 
associated with the presence of distant metastasis in colorectal 
cancer (41). The oncometabolite 2-hydroxyglutarate, an inhibitor 
of Jumonji-family histone demethylase, would induce EMT by 
increasing the trimethylation of H3K4 in the promoter of the 
ZEB1 gene, thus increasing the expression of ZEB1, a master 
regulator of EMT (41).

Succinate dehydrogenase is another TCA cycle enzyme 
involved in EMT. It catalyzes the conversion of succinate to 
fumarate and loss-of-function SDH mutations predispose to 
hereditary pheochromocytoma, paraganglioma, gastrointestinal 
stromal tumor, and renal cell carcinoma (42). In metastatic pheo-
chromocytomas and paragangliomas, mutations in the SDHB 
subunit are associated with activation of SNAIL and SLUG as a 
result of epigenetic remodeling due to hypermethylation of pro-
moter CpG islands (43, 44). Focal deletions of SDHB have been 
also identified in serous ovarian (45) and colorectal (46) cancer 
and have been shown to promote EMT through an epigenetic 
mechanism.

Finally, a combined RNAseq and metabolomics profiling of 
different solid cancers has shown that downregulation of mito-
chondrial proteins, particularly those involved in OXPHOS, 
correlates with poor clinical prognosis across different cancer 
types and is associated with an EMT gene signature (47). 
Consistently, loss of OXPHOS genes was observed in metastatic 
cancer cell lines and in metastatic melanoma and renal cancer 
specimens. OXPHOS was downregulated in about 60% of low-
survival patients, with subunits of Complex I and IV of the ETC 
being the most affected. In cancers exhibiting OXPHOS down-
regulation, EMT was the most upregulated cellular program, 
suggesting a causal role of mitochondrial dysfunction in EMT 
induction, and, consequently, in cancer aggressiveness and poor 
outcome.

mtDnA Modifications
Mutations in mtDNA-encoded proteins also contribute to 
mitochondrial dysfunction by directly affecting the ETC/
OXPHOS system. Until a few years ago, mtDNA was believed 
to be very susceptible to damage because of absence of DNA 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


61

Guerra et al. Mitochondrial Dysfunction and EMT

Frontiers in Oncology | www.frontiersin.org December 2017 | Volume 7 | Article 295

repair systems. Nowadays, it is widely accepted that both yeast 
and mammalian mitochondria are equipped with almost all 
known nuclear DNA repair pathways, including base excision 
repair, mismatch repair, single-strand break repair, and possibly 
non-homologous end joining and homologous recombination  
[for details, see Ref. (48, 49)]. Despite the presence of DNA 
repair systems, the mtDNA mutation rate is considerably 
higher than nuclear DNA, due also to the close proximity of 
mtDNA to ROS-generating sites. Accumulation of mtDNA 
mutations has been detected in several cancer types and has 
been associated with metastatic progression and/or chemore-
sistance (2, 50–52). In 2008, Ishikawa et al. (53) demonstrated 
that the mtDNA mutation G13997A in the NADH dehydro-
genase (ND) subunit 6 gene promotes metastasis through an 
ROS-dependent mechanism. Other mtDNA mutations, such as 
C12084T and A13966G affecting ND4 and ND5, respectively, 
confer a metastatic phenotype to breast cancer cells but in an 
ROS-independent manner (54). Another mtDNA mutation 
affecting ND3 (A10398G) has been detected selectively in bone 
metastasis of 7/10 prostate cancer patients, suggesting that the 
A10398G mtDNA mutation may confer a selective advantage 
to prostate cancer cells to colonize the bone metastatic sites 
(55). Frequent mtDNA mutations in Complex I genes have 
been detected in both benign and malignant oncocytic thyroid 
tumors (56, 57). Intriguingly, oncocytic thyroid carcinomas, 
also known as Hurthle cell carcinomas, are more aggressive 
than non-oncocytic thyroid cancers (58, 59), suggesting a 
potential role of mtDNA mutations in acquisition of the aggres-
sive phenotype. However, despite several evidences showing a 
link between certain mtDNA point mutations and metastasis, 
it remains to be investigated whether the mechanism involves 
EMT activation.

Besides single mtDNA mutations, reduction in mtDNA 
copy number has been reported in several cancer types and 
has been associated with metabolic reprogramming, increased 
metastatic potential, chemoresistance, and EMT activation. 
Different mechanisms have been proposed to explain reduc-
tion of mtDNA in cancer cells. Guo et al. (60) reported frequent 
truncating mutations in the mitochondrial transcription factor 
TFAM in colorectal cancer cells, which induced mtDNA deple-
tion and apoptosis resistance. A recent study has shown that 
methylation of the mitochondrial polymerase POLG may also 
regulate the mtDNA copy number in cancer cells (61). Besides 
methylation, POLG mutations have been associated with 
mtDNA depletion in breast cancer tissues (62). Expression 
changes in other nuclear genes have been reported to affect 
mtDNA content and induce EMT: for instance, reduced 
β-catenin levels in basal ErbB2-positive breast cancer cells 
promote an EMT program through reduction of the mtDNA 
content, correlated with downregulation of mitochondrial 
biogenesis transcription factors TFAM and PGC-1α (63). 
A recent study performed on 207 primary breast tumor 
specimens shows a direct correlation between low mtDNA 
content and presence of distant metastasis: patients with ≤350 
mtDNA molecules per cell showed a poorer 10-year distant 
metastasis-free survival compared with patients with> 350 
mtDNA molecules per cell (64), suggesting that low mtDNA 

content might be a prognostic marker for distant metastasis 
in breast cancer. Reduced mtDNA content has been associated 
with aggressive features also in other cancer types, including 
prostate (35, 65, 66) and colorectal (60) cancers, and it has been 
directly correlated with induction of EMT through activation 
of mitochondria-to-nucleus signaling (retrograde signaling; 
Figure 2).

Mitophagy
Autophagy is the master mechanism of cell homeostasis 
through which destruction of unnecessary or dysfunctional 
molecules and organelles occur (67, 68). Withdrawal of 
nutrients and various stress conditions, such as alterations 
in glucose metabolism (69, 70), mitochondrial dysfunction, 
and oxidative stress (71, 72), induce autophagy with the aim 
of removing damaged macromolecules and organelles and/or 
to digest cell components to help the cell’s own maintenance 
(73–76). Being a homeostatic process, autophagy may have a 
double and opposite role in cancer, behaving as both tumor-
promoter and tumor-suppressor depending on cancer cell type 
and tumorigenic context (77, 78). Cancer cells may indeed 
activate autophagy to overcome microenvironmental (nutri-
ent deprivation, cell detachment, and hypoxia) or therapeutic 
(radiotherapy and chemotherapy) stress, thus promoting 
cancer progression (79, 80).

Mitophagy is a selective form of autophagy that specifically 
removes dysfunctional mitochondria from the cells. Besides 
traditional autophagy-related (ATG) proteins, such as LC3 
(ATG8) and Beclin1 (ATG6), mitophagy relies upon specific 
proteins, including the E3 ubiquitin ligase Parkin (PARK2) and 
mitochondrially targeted PTEN-induced kinase-1 (81, 82). In 
yeast cells, Atg32, an outer mitochondrial membrane protein, 
is essential for mitophagy (83–86). Recently, Bcl2-L-13 has 
been identified as the mammalian homolog of Atg32: it induces 
mitophagy in Parkin-deficient cells (87), but its role in cancer 
remains to be investigated. Impaired Parkin activity in mam-
mals has been correlated with cancer progression, suggesting 
that mitophagy may represent a tumor suppression mechanism 
(82). On the other hand, Whelan et  al. (88) have recently 
reported that mitophagy supports EMT-mediated conversion 
of low CD44- to high CD44-expressing keratinocytes through 
modulation of oxidative stress and Parkin-dependent mito-
chondrial clearance. In this model, mitophagy was associated 
with mtDNA depletion, an event known to induce EMT and 
high-CD44 cell generation in mammary epithelial cells (89).  
It remains to be established if mitophagy drives EMT-mediated 
high-CD44 cell generation or is a permissive factor during this 
process. An independent recent study confirmed a positive 
role of mitophagy during EMT: Marín-Hernández et  al. (90) 
reported that simultaneous exposure of cancer cells to hypoxia 
and hypoglycemia results in EMT activation and increased inva-
siveness, accompanied by activation of mitophagy and impaired 
mitochondrial functionality.

Taken together, these studies indicate a possible dichotomous 
nature of the relationship between EMT and mitophagy, which 
may be ascribed to cell type- and context-dependent factors, but 
much remains to be investigated.
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FiGURe 2 | Mitochondrial retrograde signaling and epithelial-to-mesenchymal transition (EMT). Mitochondrial dysfunction, such as mitochondrial  
DNA (mtDNA) depletion or oxidative phosphorylation (OXPHOS) inhibition, triggers mitochondrial retrograde signaling, which is evolutionary conserved from yeast  
to mammals. In yeast, Rtg2 regulates the Rtg1,3 translocation into the nucleus eliciting a metabolic reprogramming through the upregulation of specific genes 
involved in anaplerotic reactions (cyan arrows). In mammals, deregulation in calcium homeostasis due to mitochondrial stress [mtDNA depletion, OXPHOS/
electron transport chain (ETC) inhibition] can activate a Ca++-dependent retrograde signaling that converges on two possible branches: one mediated by 
calcineurin for the nuclear translocation of NF-κB or NFAT, and the other directly dependent on activation of Ca++-dependent protein kinases, such as PKC, JNK, 
MAPK, and CAMKIV. These pathways culminate with the activation of different transcription factors that lead to metabolic reprogramming, EMT induction, 
acquired stemness capacity, apoptosis resistance, and drug resistance (red arrows). Alternative RTG signaling pathways in yeast, Caenorhabditis elegans, and 
mammals are discussed in the text.
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MiTOCHOnDRiAL ReTROGRADe 
SiGnALinG AnD eMT

Dysfunctional mitochondria can generate a wide range of 
retrograde responses, i.e., intracellular signals relayed from 
mitochondria to the nucleus, leading to changes in the expres-
sion of nuclear genes for metabolic adjustments and cytoprotec-
tion (91–93). The first mitochondrial retrograde signaling was 
discovered by Butow (94) in yeast Saccharomyces cerevisiae. The 
main positive regulators of mitochondria-to-nucleus in yeast 
are three retrograde response (RTG)  genes: RTG1 and RTG3, 
encoding for a heterodimeric transcription factor activating 
RTG target gene expression (95). RTG2, coding for a cytoplas-
mic protein with an N-terminal ATP-binding domain, acts as a 
sensor of the mitochondrial dysfunction and regulates Rtg1/3p 
localization (96). RTG genes dynamically interact with other 
regulators and signaling pathways to elicit a metabolic repro-
gramming through activation of anaplerotic reactions, supplying 
intermediates in response to respiratory defects initiated by 
mtDNA depletion/mutations or disruption of ETC/OXPHOS 

(97) (Figure  2). Interestingly, AUP1 encoding for a conserved 
mitochondrial protein phosphatase required for mitophagy in 
yeast has been shown to induce the RTG3-dependent retrograde 
signaling pathway (98), suggesting a possible interplay between 
mitophagy and mitochondrial retrograde signaling.

Another mitochondrial retrograde pathway, induced by 
mitochondrial proteotoxic stress, was discovered in mammalian 
cells by the pioneering work of Hoogenraad (99), but its detailed 
regulation has recently been elucidated in Caenorhabditis elegans 
(100). Disturbance of mitochondrial protein homeostasis and/or 
an increase in unassembled components initiates an retrograde 
response named mitochondrial unfolded-protein response 
(UPRmt). The current paradigm suggests that peptides resulting 
from proteolytic degradation of improperly folded mitochondrial 
proteins are released from mitochondria. However, mitochondrial 
import efficiency is reduced during mitochondrial dysfunction, 
causing ATFS-1, a pivotal transcription factor of the UPRmt, to 
accumulate in the cytosol and subsequently be imported into 
the nucleus. ATFS-1 in the nucleus regulates a transcriptional 
response to recover mitochondrial function including induction 
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of mitochondrial proteases and chaperones, ROS detoxifying 
genes, and metabolic regulators leading to metabolic reprogram-
ming (93, 100). The transcription factor ATF5 was recently 
identified as the mammalian ortholog of ATFS-1 (101). While a 
body of literature is already present on the function of ATF5 in 
cancer biology, notably in the regulation of survival and apoptosis 
(102, 103), it will be interesting to explore the role of ATF5 in the 
context of UPRmt and cancer, particularly in EMT regulation and 
metastasis.

The mitochondrial retrograde signaling is conserved in 
mammals both in response to energy metabolism impairment 
and to proteotoxic stress (93, 104). Of the multiple retrograde 
signaling pathways activated in mammals by mitochondrial 
dysfunction (91, 105), Ca++/calcineurin-mediated retrograde 
signaling has been involved in EMT activation (105) (Figure 2). 
Ca++ homeostasis strictly depends on mitochondria and its 
deregulation due to different mitochondrial stresses, such as 
mtDNA depletion or ETC/OXPHOS inhibition, can elicit an 
increase in cytosolic Ca++ that activates a Ca++-dependent 
retrograde signaling. Depending on cell type and conditions, 
there are essentially two branches in this pathway: (i) a Ca++-
calcineurin-mediated retrograde signaling, through the nuclear 
translocations of transcription factors, NF-κB, NFAT, CREB, 
and HnRNPA2; (ii) a direct activation of Ca++-dependent 
protein kinases, such as PKC, JNK, MAPK, and CAMKIV (94, 
104). Activation of these signaling pathways in epithelial cells 
converge on the upregulation of genes affecting several cellular 
functions, including apoptosis resistance, multidrug resistance, 
invasion, and EMT (66, 89, 106). Mitochondrial dysfunction 
induced by mtDNA depletion promotes EMT in breast epi-
thelial cells through a calcineurin A-mediated mitochondrial 
retrograde signaling that triggers transcriptional activation 
of SLUG, SNAIL, and TWIST, the MMP-9 metalloproteinase, 
and the mesenchymal markers fibronectin, vimentin, and 
N-cadherin, with a corresponding decrease in the epithelial 
marker E-cadherin. In addition, mtDNA-depleted breast cells 
exhibited loss of the ESPR such as ESPR1, indicative of their 
mesenchymal phenotype, and expressed stem-cell markers, 
suggesting generation of cancer stem cells (13) (Figure  2).  
Of note, mtDNA-depleted cells exhibit also unorganized trajec-
tory and higher mitochondrial fission, characteristic of cells 
with high metastatic ability (105). The potential link between 
mitochondrial dysfunction and EMT was also reported in pros-
tate and breast adenocarcinoma cell lines depleted of mtDNA, 
which acquired a mesenchymal phenotype and showed TGF-β 
overexpression (107). More recently, mtDNA depletion was 
shown to induce EMT in hepatocellular carcinoma cells through 

TGF-β/SMAD/SNAIL signaling (108). In addition, suppression 
of SSBP1 promoted triple-negative breast cancer cell metas-
tasis through mtDNA depletion, which triggered calcineurin 
A-mediated mitochondrial retrograde signaling resulting in 
c-Rel/p50 translocation to the nucleus, increased levels of TGF-β  
and TGF-β-driven EMT (109).

COnCLUDinG ReMARKS

Epithelial-to-mesenchymal transition endows cancer cells with 
the ability to detach from the primary tumor bulk and survive 
during invasion, dissemination, and metastasis. The observation 
that mitochondrial dysfunction can drive EMT is important as 
it unfolds novel therapeutic scenarios: EMT could be potentially 
blocked by targeting mitochondrial stress-specific EMT marker 
genes, effectors of the mitochondrial retrograde signaling, specific 
metabolic enzymes, or metabolism-dependent epigenetic repro-
gramming, with the aim to limit or prevent cancer metastasis. 
Several questions, however, remain to be answered. For instance, 
how and why different types of mitochondrial dysfunction 
converge on EMT remains a puzzle. It is possible that transient 
transition to a mesenchymal phenotype may confer a survival 
advantage to epithelial cancer cells under nutrient or oxygen 
stress, or in the presence of genetic defects in metabolic enzymes. 
In this context, EMT would represent a strategy to equip cancer 
cells with the necessary “armor” (increased survival) and “skills” 
(increased motility, invasion) to strive while exploring more 
advantageous metabolic microenvironments. Further studies 
aimed at understanding the interplay between mitochondrial 
retrograde signaling pathways and changing microenvironments 
as well as identifying the molecular determinants of the mito-
nuclear network linking mitochondrial dysfunction with EMT 
activation may provide useful therapeutic targets for treatment 
and prevention of metastatic cancer.
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