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Several internal and external factors have been identified to estimate and control 
the psycho-biological stress of training in order to optimize training responses and 
to avoid fatigue, overtraining and other undesirable health effects of an athlete.

An increasing number of lightweight sensor-based wearable technologies 
(“wearables”) have entered the sports technology market. Non-invasive sensor-based 
wearable technologies could transmit physical, physiological and biological data to 
computing platform and may provide through human-machine interaction (smart 
watch, smartphone, tablet) bio-feedback of various parameters for training load 
management and health.

However, in theory, several wearable technologies may assist to control training load 
but the assessment of accuracy, reliability, validity, usability and practical relevance 
of new upcoming technologies for the management of training load is paramount 
for optimal adaptation and health.
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Editorial on the Research Topic

Wearable Sensor Technology for Monitoring Training Load and Health in the

Athletic Population

Various measures of the internal and external loads on athletes, as well as parameters related to
their health are now being provided to a greater and greater extent by wearable sensors (wearables)
(Düking et al., 2018a,b,c). These devices, including sensors and software embedded in e.g., textiles,
watches and patches located on or in proximity to the body, collect, transmit, and analyse a range
of physiological and biomechanical data designed to improve performance, recovery, and/or other
aspects of health (Düking et al., 2018a). However, it is still unclear to what extent wearables are
actually useful for monitoring load in connection with different sports and settings.

In 2017, we launched a special coverage of the Research Topic “Wearable Sensor Technology for
Monitoring Training Load and Health in the Athletic Population” in Frontiers in Physiology with
the following aims:

(i) to identify and critically evaluate promising wearable technology designed to monitor training
load and health in athletic populations;

(ii) to develop novel approaches to data analysis based on advanced modeling, time series,
machine learning, data mining, etc.;

(iii) to encourage the use of (best-practice) models for monitoring training load and health in
athletes; and

(iv) to indicate directions for future development in this area.

One hundred thirteen authors have now published 28 articles in Frontiers in Physiology on this
Research Topic, including 18 original articles based on field and laboratory data, four (mini)
reviews, three opinion papers, one perspective and one technology report. Table 1 summarizes the
main features of all of these studies. With more than 148,000 views (as of November 2019), this
Research Topic is among those published in the Physiology section of Frontiers in Physiology that
have received most interest. To achieve the aims described above, we have grouped these articles
in the table on the basis of the specific sport involved or evaluation of new technologies without
consideration of any specific population, describing only those articles we consider to be of primary
importance in the field.
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TABLE 1 | Summary of all studies within the Research Topic including type of article, athletes involved, sensors employed and main outcome.

References Type of article Athletes

involved

Sensor(s) employed Research aim(s) Main outcome(s)

Evaluation of the

Quality of New

Sensor

Technology

Peake et al. Review Physically active

individuals

Consumer-grade

wearables

A critical review of consumer

wearables, mobile applications, and

equipment for providing biofeedback,

monitoring stress, and sleep.

So far, only 5% of the technologies have been

validated formally.

Companies producing health and performance

technologies should consult with consumers to identify

real-world needs and invest in research designed to

confirm the effectiveness of their products.

Koehler and

Drenowatz

Mini-review n.i. SenseWear armband Providing an overview of the

applicability of this sensor.

Estimates energy expenditure by individuals in the

general population reliably.

Application to athletic populations indicates a tendency

to underestimate energy expenditure.

Wahl et al. Original research Healthy students 11 Wrist-worn

wearables (Bodymedia

Sensewear, Beurer AS

80, Polar Loop,

Garmin Vivofit,

Garmin Vivosmart,

Garmin Vivoactive,

Garmin Forerunner

920XT, Fitbit Charge,

Fitbit Charge HR,

Xiaomi Mi Band,

Withings Pulse Ox)

Validation of the reliability of 11

wearables for monitoring step count,

distance covered and energy

expenditure (EE) under laboratory

conditions at constant and different

velocities.

The accuracy of most of these wearables is acceptable

for counting steps at constant and intermittent running

velocities that reflect athletic activities.

With respect to distance covered, all of these

wearables exhibited a very low ICC (<0.1) and high

MAPE (up to 50%), indicating poor validity.

Measurement of EE by the Garmin, Fitbit and Withings

wearables was acceptable (small to moderate MAPE),

whereas Bodymedia Sensewear, Polar Loop, and

Beurer AS80 showed a high MAPE (as much as 56%)

under all test conditions.

Sorbie et al. Original research n.i. Myon 320 Surface

Electromyography

(sEMG) System

To determine the intra-session and

inter-day reliability of this system.

Intra- and inter-day measurement of the normalized

root-mean-squared surface EMG is reliable during

dynamic sub-MVC, when exercise is performed at low

velocities.

Wearables in

Connection with

Team Sports

Mascarin et al. Original research Soccer players n.i. To analyse hormonal, biochemical,

and autonomic parameters during a

game with few players, as well as

recovery dynamics (for up to 72 h).

Such games involved significant cardiovascular stress

that returned to baseline within the first 24 h of

recovery.

Parasympathetic parameters continued to increase

while sympathetic parameters declined significantly

during the 72 h of recovery.

Neither biochemical nor hormonal responses were

altered during these 72 h.

Pettersen et al. Brief research

report

Soccer players A wearable,

radio-based system for

determining position

To highlight some of the challenges

encountered when using positional

data in research, as well as for team

development, and to propose other

promising sources of data.

Measurement of the locomotion of a player with

existing positional technologies is not always accurate.

(Continued)
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TABLE 1 | Continued

References Type of article Athletes

involved

Sensor(s) employed Research aim(s) Main outcome(s)

Fuss et al. Original research Soccer players Smart Soccer Boot

Sensor

Application of this technology for

exploring the accuracy of curved

kicks.

Evaluation of the relationship between

the probability of scoring a goal, and

dynamic parameters provided by the

smart boot.

Determination of whether kicking the

ball at a particular spot on the shoe

(“sweet spot”) maximizes the chances

of success.

With a stationary curved kick, kicking the ball with the

“sweet spot” of the shoe maximized the probability of

scoring a goal (58–86%).

Roell et al. Original research Members of

Indoor sports

teams

Inertial Measurement

Unit

To validate this technology regarding

determination of average and peak

acceleration during sport-specific

movements.

MEMS-based sensors exhibit great potential for valid

determination of acceleration and deceleration during

specific movements associated with indoor sports,

including walking, running, jumping, and change of

direction.

Weaving et al. Opinion Members of

sports teams

n.i. n.i. This multivariate approach warrants further

investigation, at least initially for research purposes, in

light of the importance of assessing training load in

attempt to optimize preparation by team-sport players.

Schneider et al. Technology report Members of

sports teams

Heart rate monitors Describe current limitations of heart

rate monitoring.

Discuss methodological

considerations associated with

univariate and multivariate

approaches.

Illustrate the influence of different

analytical concepts on the

assessment of meaningful alterations

in heart rate.

Provide examples of the

contextualization of heart rate

measures based on simple heuristics.

The conceptual framework developed contextualizes

measures of heart rate, focusing on the time-course of

training responses, as well as the training context.

In addition, heuristic application of this framework to

multivariate interpretation and decision-making is

illustrated.

Luteberget et al. Original research Members of

sports teams

Local positioning

systems (LPS)

Validate the measurement of the

position, distance traveled and

instantaneous speed of players

during indoor team sports by a

commercially available LPS

Investigate how the position of the

field of play relative to the anchor

nodes and walls of the building

influence the validity of this system.

The mean difference between the estimate of all

positions by the LPS and reference system was 0.21 ±

0.13m (n = 30,166) with the optimal setup and 1.79 ±

7.61m (n = 22,799) with the sub-optimal setup.

The average difference in distance during all tasks was

<2% with the optimal setup and <30% with the

sub-optimal setup.

Among all of the variables assessed, the difference in

instantaneous speed as indicated by the LPS and

reference system was largest, both in the optimal

(≥35%) and sub-optimal condition (≥74%). Moreover,

this difference increased with increasing speed.

(Continued)
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TABLE 1 | Continued

References Type of article Athletes

involved

Sensor(s) employed Research aim(s) Main outcome(s)

Sweeting et al. Review article Members of

sports teams

GPS LPS Based

on vision

Identify the various thresholds used to

classify high-velocity or -intensity

running and acceleration.

Examine the impact of individualized

thresholds on the reported profile of

team-sport activity.

Evaluate the usefulness of

It is difficult to compare research findings on

field-based sports due to the use of different velocity

and acceleration thresholds, even in the case of one

and the same sport.

Research on female team-sport athletes, including how

to classify their velocity and acceleration, is limited.

thresholds for court-based

team sports.

Discuss potential areas for fruitful

future research.

Data mining can provide further insights concerning

athletic activities.

Nikolaidis et al. Original research Track-and-field

athletes

and female

soccer players

10-Hz Global

Positioning System

Examine the validity and reliability of

this system for assessing in-line

movement and change of direction.

The 10-Hz Johan GPS system provides valid and

reliable monitoring of team-sport players and

endurance runners during training with respect to linear

movement and change-of-direction.

Corbett et al. Original research Australian

soccer players

n.i. Identify how an athlete’s skills change

as a football match proceeds.

Determine the extent to which these

changes are due to individual factors.

Reveal the relationship between

various combinations of physical and

skill parameters and performance.

Two methods for identifying relationships between

physical, skill and temporal parameters of both the

individual players and team as a whole were

developed.

Wearables in

Connection with

Winter Sports

Fasel et al. Original research Alpine ski racers Inertial sensors Gain a more in-depth understanding

of the relationship between external

training load and health.

The system determines the athlete’s relative joint center

and center of mass (CoM) with sufficient accuracy and

precision to allow detection of meaningful differences.

Accuracy and precision regarding the most distal joints

(e.g., the ankle) are just within the acceptable range.

For example, the ankle positions obtained allow

acceptable computation of the vertical distance, but

not of the fore-aft position.

Spörri et al. Original research Alpine ski racers Inertial Measurement

Units

Describe the power spectral density

(i.e., the power of the signal in

relationship to frequency) of the

vibrations acting on different body

segments during giant slalom and

slalom competitions.

Quantify and compare

root-mean-square acceleration of the

lower back during the turns involved

in these disciplines.

In addition to combined frontal and lateral bending,

along with torsion in the trunk when highly loaded,

vibrations acting on the lower back may contribute to

overuse injuries of the back.

Supej et al. Original research Alpine skiers Accelerometer

Global Navigation

Satellite

System (GNSS)

Examine the whole-body vibrations

associated with different types of

skiing and the potential risk these

pose for developing lower-back pain.

All forms of skiing tested produced whole-body

vibrations, with highest power spectrum densities of

1.5–8Hz.

Whole-body vibrations, particularly in combination with

high ground reaction forces, elevate the risk for lower-

back pain among active alpine skiers.

(Continued)
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TABLE 1 | Continued

References Type of article Athletes

involved

Sensor(s) employed Research aim(s) Main outcome(s)

Gilgien et al. Original research Alpine ski racers Differential GNSS Characterize the external forces

acting on competitors in World Cup

Super-G and downhill ski races and

compare these to those connected

with giant slalom racing.

These systems are sufficiently reliable to allow

meaningful characterization of physical demands, as

well as the effectiveness of safety measures in

connection with highly dynamic sports.

The physical demands associated with giant slalom,

super-G and downhill ski races differed significantly.

Reduction of skiing speed during giant slalom and

super-G races for purposes of safety might be

achieved most effectively by increasing

ski–snow friction.

Karlsson et al. Original research Cross-country

skiers

GNSS Investigate patterns of pacing by

characterizing exercise intensity on

flat and uphill terrain during a

simulated cross-country ski race.

Cross-country skiers perform repeatedly at exercise

intensities that exceed their maximal aerobic power.

O2 deficits were higher when skiing uphill than on

flat terrain.

Wearables in

Connection with

Running and

Cycling

Belbasis and

Fuss

Original research Cyclists Smart compression

garment containing a

pressure sensor

Explore the potential of a prototype

garment containing pressure sensors

for analysis of performance,

specifically of muscle activation and

fatigue.

Compare the data provided by this

prototype to electromyography (EMG)

Assessment of muscle activity and fatigue by the smart

compression garment was similar to that provided by

surface EMG.

Wouda et al. Original research Runners Inertial sensors Examine the validity of estimating

sagittal knee joint angles and vertical

ground reaction forces while running

a minimal setup involving sensors

worn on the body.

Sagittal knee kinematics and vertical ground reaction

forces can be estimated reliably using as few as 3

inertial sensors located on the lower legs and pelvis. In

particular, the peak vertical ground reaction force,

maximal knee flexion/extension angles while standing,

and profiles of knee flexion/extension angles and

vertical ground reaction forces estimated in this

manner do not differ significantly from reference values.

Falbriard et al. Original research Healthy adults Inertial sensors worn

on the foot

Assess the ability of various kinematic

measures provided by foot-worn

inertial sensors to detect temporal

events during running (e.g., initial and

terminal contact) and thereby allow

estimation of the duration of different

phases (e.g., contact, flight, swing,

step).

Ground contact, flight, step and swing times can all be

estimated with a median inter-trial IQR bias of <12 ±

10ms and an error <4 ± 3ms.

Running speed significantly affects the bias of these

estimations, indicating that a speed-dependent

correction can improve accuracy.

Other Reed et al. Original research Nurses working

with

cardio-vascular

patients

Tractivity® activity

monitor

Examine the impact of providing

feedback from an activity monitor, in

combination with a web-based

individual, friend or team challenge,

on physical activity and

cardiovascular health.

This intervention had an initial impact on physical

activity, percentage body fat and resting systolic BP,

although the increase in physical activity was

short-lived.

The nature of the challenge had no influence on

the outcome.

(Continued)
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TABLE 1 | Continued

References Type of article Athletes

involved

Sensor(s) employed Research aim(s) Main outcome(s)

Düking et al. Opinion n.i. n.i. n.i. Biofeedback may help optimize training and health.

Nicolò et al. Perspective n.i. n.i. Provide scientific evidence for the

relevance of monitoring respiratory

frequency in connection with training.

Critically assess potential approaches

to measuring respiratory frequency,

as well as the accuracy of respiratory

wearables currently available.

Provide preliminary indications

concerning how best to analyse

respiratory frequency.

Scientific evidence supports the usefulness of

monitoring respiratory frequency during training.

Potential approaches involving wearable sensors

currently available are proposed.

Indications concerning how best to analyse and

interpret respiratory frequency data are provided.

Ludwig et al. Review n.i. Heart rate sensors Provide an overview of the

measurement, prediction, and control

of individual changes in heart rate.

Analyse heart rate sensors presently

available regarding their responses

and feasibility.

Wearables that monitor individual load on the basis of

heart rate are of potential value in connection with

physical training.

Gløersen et al. Original research Endurance

racers

GNSS Assess the accuracy of three different

classes of GNSS receivers for

measuring position, speed, and

segment time during endurance

races.

There are substantial differences in the accuracy of

different GNSS receivers.

The split-time error was strongly dependent on (and

inversely related to) the athlete’s speed.

The segment-time error was greater for

longer segments.

n.i., not indicated.
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EVALUATION OF THE QUALITY OF NEW
TECHNOLOGY

Peake et al. critically reviewed consumer-grade wearables, mobile
applications, and equipment designed to provide biofeedback to
physically active individuals. While acknowledging that wearable
technology has much to offer, these investigators concluded that
only 5% of the technologies they reviewed have been formally
validated and that manufacturers should invest in studies on the
effectiveness of their products.

Wahl et al. showed that under different sporting conditions,
the majority of 11 wrist-worn wearables demonstrated acceptable
validity with respect to counting steps, whereas the distance
covered and energy expenditure could not be assessed validly.

Reviewing the relevant literature, Koehler and Drenowatz
concluded that while the SenseWear armband can estimate
energy expenditure validly in the general population, it tends
to underestimate this parameter during high-intensity exercise
(>10 METs).

WEARABLES IN CONNECTION WITH
WINTER SPORTS

Wearables are often utilized to assess parameters associated
with different skiing disciplines. Employing a global navigation
satellite system, Karlsson et al. found that cross-country skiers
repeatedly perform at intensities that exceed their maximal
aerobic power, with more pronounced oxygen deficits during
uphill skiing than on flat terrain.

Gilgien et al. applied a differential global navigation satellite
system (dGNSS) to evaluate the physical demands and safety
associated with different skiing disciplines. The physical demands
made by giant slalom, super-G and downhill skiing differ
substantially. Furthermore, these researchers concluded that to
increase safety, skiing speed can best be reduced by enhancing
the friction between the skis and snow and in the case of giant
slalom and super-G, whereas for downhill skiing an elevation in
air drag force might be equally effective.

Using five accelerometers and a global navigation satellite
system, Supej et al. found that low-frequency whole-body
vibrations during alpine skiing enhance the risk for pain in
the lower back, particularly in combination with large ground
reaction forces. They concluded that the number of runs
involving such vibrations (e.g., during side-skidding) should be
reduced, especially in the case of younger skiers.

Spörri et al. evaluated vibrations acting on different body
segments during giant slalom and slalom skiing with 6 wearable
inertial measurement units. Power distribution over frequency
(PSD) was largest with frequencies of <30Hz in the case of the
shank, with vibrations being attenuated by the knee and hip
joints. PSD values were pronounced at frequencies between 4 and
10Hz, increasing the risk of overuse back injuries in alpine skiers.

Applying 11 inertial measurement units, Fasel et al. could
assess the kinematics of the relative center of mass and positions
of joint centers of alpine skiers with sufficient accuracy and

precision, while the ankle joints were only just within the
acceptable range of accuracy and precision.

WEARABLES IN CONNECTION WITH
TEAM SPORTS

In their original article, Fuss et al. employed a pressure-sensitive
sensor matrix incorporated into a soccer shoe to identify a “sweet
spot” on the foot that maximizes the chances of hitting the goal
with a direct curved free kick of 58–86◦. This sensor may allow
soccer players to analyse their foot-to-ball impact and improve
their technique.

In connection with team sports, tracking technologies, such
as global positioning (GPS), local positioning (LPS), and vision-
based (VBS) systems, allow activity profiles to be monitored.
Analysis of these profiles may be influenced by the relative
amount of time spent in different velocity or acceleration zones
and Sweeting et al. emphasize in their review article that
there is presently no generally accepted definition of a sprint
or acceleration, not even within a given team sport, which
complicates comparison of different studies.

With respect to training load, Weaving et al. argue that
no single parameter is likely to capture the complexity of this
parameter and, moreover, practitioners can be overwhelmed
by the amount of data they receive. A multivariate approach
employing selected orthogonal composite variables may be
helpful in providing sufficient data without “flooding.”

For quantifying aspects of external loading in connection
with indoor team sports, Roell et al. found a wearable inertial
unit designed to measure average and peak acceleration to be
acceptably valid in all three orthogonal axes.

In their case study, Pettersen et al. demonstrate that wearable
radio-based positioning systems can provide insights into the
performance of individual soccer players and their teams.

WEARABLES IN CONNECTION WITH
RUNNING AND CYCLING

Belbasis and Fuss found that a pressure-sensitive sensor located
inside compression garments provided data on the activity on
five thigh muscles during cycling comparable to that obtained
by electromyography (EMG). Arguably, this smart compression
garment monitors mechanical muscle activity (i.e., the pressure
exerted by the contracting muscle on the sensor), whereas EMG
measures neural activity and may therefore be more suitable for
biomechanical modeling.

In the case of runners, Falbriard et al. showed that temporal
parameters, involving ground contact, flight, step, and swing
times can be estimated accurately, but that the results obtained
are dependent on the speed.

Wouda et al. found that estimation of the peak vertical ground
reaction force, as well as maximal knee flexion-extension angles
during stance in runners by three inertial measurement systems
in combination with artificial neural networks did not differ
significantly from the reference values.
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CONCLUDING REMARKS

The 28 articles on this Research Topic have clearly improved
our knowledge concerning the use of wearables for monitoring
training load and health in athletes involved in a different sports.
Novel technologies have been introduced and technologies
already existing evaluated. New approaches to monitoring
and analyzing (training) load in connection with different
sports have been described. Nonetheless, much remains
to be determined concerning the usage of wearables by
athletic populations.

While some findings involve physiological parameters,
e.g., those of Nicolò et al., most of the wearable technology
investigated provides biomechanical data. Therefore, we
encourage future studies on physiological parameters in this area
of research. Since future monitoring frameworks (Düking et al.,
2018a) may provide instant feedback concerning internal load
to coaches and athletes, such research is certainly warranted.
Appropriate combination of physiological and psychological
data with biomechanical data will be a future challenge in
connection with providing relevant and seamless feedback to
the athlete.

Currently, on the basis of the articles included here, it
remains unclear whether monitoring with wearables is actually
beneficial for controlling the load and improving the health
of athletes. To date, no publication has addressed these
questions directly.

Future advancements in smart technology will involve devices
designed to share and interact with their users, as well as with
other smart devices. Wearables should, however, be convenient
and usable without hindering the athlete with cumbersome
sensors. Optimal integration of sensors into equipment (e.g., ski
boots, garments) will require the involvement of manufacturers
of sporting equipment.

Today, 3 years after we launched “Wearable Sensor
Technology for Monitoring Training Load and Health in
Athletes” as a Research Topic, interest remains quite high,
as indicated, among other things, by global fitness trends
(Thompson, 2019). We look forward to the novel insights
arising from future research in this growing field.
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With great interest, we have been following the developing variety and popularity of commercially
available wearable sensor technologies, as well as the discussion concerning their usefulness for
improving fitness and health (Duking et al., 2016; Halson et al., 2016; Sperlich and Holmberg,
2016). Although many of these devices may not necessarily fulfill scientific criteria for quality
(Sperlich and Holmberg, 2016) or may pose a threat to the security of personal data (Austen,
2015), we would like to emphasize here that many individuals who seek to improve their health
or physical performance do so on their own, without the guidance of professionals to design
their fitness training. Although professional guidance is, of course, important, such individuals
and, especially beginners, would find instantaneous (bio)feedback beneficial for optimal adaptation
and prevention of overuse or injury. We believe wearable sensor technologies, in conjunction
with appropriate (mobile) applications, data mining and machine learning algorithms, can provide
biofeedback that is useful in many ways.

In this context, biofeedback is considered to be individual data related to the body (e.g., heart rate
andmotion, including acceleration of body segments andmuchmore). Such biofeedback, provided
either haptically, audibly and/or visually, can augment or even replace a sensory organ, allowing
the individual to react appropriately (Fuss, 2014). For example, visual biofeedback provided by
wearable sensors can help modulate gait in a manner that reduces loading of the legs while running,
thereby lowering the risk for stress fracture of the tibia (Crowell and Davis, 2011).

Current and ongoing improvements in wearable sensor technologies and their applications
provide vibrotactical biofeedback (Afzal et al., 2016) and/or auditory signals through so-called
“(h)earables” or other types of receivers. Visual biofeedbackmay be given by smartwatches and/or –
phones and in the near future by smart glasses or contact lenses (Hosseini et al., 2014). We believe
that such easily accessible biofeedback from wearable sensors that are (i) unobtrusive and do no
harm, (ii) reliable and valid, and (iii) provide relevant information can help individuals make their
training more effective.

Clearly, objective biofeedback provided by wearable sensors can reveal aspects of an individual’s
health and training, which simply cannot be otherwise accessed. Examples include neuromuscular
fatigue and forces acting upon the cruciate ligaments (Belbasis et al., 2015), certain aspects of a
soccer player’s kicking technique (Weizman and Fuss, 2015), metabolites and electrolytes in sweat
(Anastasova et al., 2017), and hydration status and shifts of fluid in the body (Villa et al., 2016). In
addition, many other types of monitoring are presently under development.
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To summarize, we believe that the provision of haptic, audible
and/or visual biofeedback by high-quality wearable sensors in
connection with data mining and machine learning algorithms
will assist athletes, especially beginners, in optimizing their
training and health by helping to prevent overuse and injury.
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The external load of a team-sport athlete can be measured by tracking technologies,

including global positioning systems (GPS), local positioning systems (LPS), and

vision-based systems. These technologies allow for the calculation of displacement,

velocity and acceleration during a match or training session. The accurate quantification

of these variables is critical so that meaningful changes in team-sport athlete external

load can be detected. High-velocity running, including sprinting, may be important

for specific team-sport match activities, including evading an opponent or creating a

shot on goal. Maximal accelerations are energetically demanding and frequently occur

from a low velocity during team-sport matches. Despite extensive research, conjecture

exists regarding the thresholds by which to classify the high velocity and acceleration

activity of a team-sport athlete. There is currently no consensus on the definition of

a sprint or acceleration effort, even within a single sport. The aim of this narrative

review was to examine the varying velocity and acceleration thresholds reported in

athlete activity profiling. The purposes of this review were therefore to (1) identify the

various thresholds used to classify high-velocity or -intensity running plus accelerations;

(2) examine the impact of individualized thresholds on reported team-sport activity

profile; (3) evaluate the use of thresholds for court-based team-sports and; (4) discuss

potential areas for future research. The presentation of velocity thresholds as a single

value, with equivocal qualitative descriptors, is confusing when data lies between two

thresholds. In Australian football, sprint efforts have been defined as activity >4.00 or

>4.17 m·s−1. Acceleration thresholds differ across the literature, with >1.11, 2.78, 3.00,

and 4.00 m·s−2 utilized across a number of sports. It is difficult to compare literature

on field-based sports due to inconsistencies in velocity and acceleration thresholds,

even within a single sport. Velocity and acceleration thresholds have been determined

from physical capacity tests. Limited research exists on the classification of velocity and

acceleration data by female team-sport athletes. Alternatively, data mining techniques

may be used to report team-sport athlete external load, without the requirement of

arbitrary or physiologically defined thresholds.

Keywords: velocity thresholds, acceleration, data mining, player tracking, match analysis
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INTRODUCTION

The quantification of athlete external load is of interest to
scientists and practitioners, for the planning and monitoring of
training or competition. Team-sport athlete external load can
be quantified using accelerometers, global positioning systems
(GPS), local positioning systems (LPS), and optical tracking
systems. Except for accelerometers, these systems calculate
displacement, velocity and acceleration over time. The analysis
of external load over a match or training session is termed
activity profile (Aughey, 2011a). Information from the activity
profile is used to monitor change across a competitive season or
tournament (Bradley et al., 2009; Jennings, D. et al., 2012) and
allow for the design of specific training drills (Boyd et al., 2013).

The activity profile of field-based team-sport athletes is well-
documented (Aughey, 2011a; Mooney et al., 2011; Jennings,
D. H. et al., 2012; Bradley et al., 2013). Activity profile
analysis typically includes time spent in velocity or acceleration
zones. These zones are defined according to threshold values
and determined arbitarily, by the proprietary software of
tracking systems or expressed relative to a physiological test.
Currently, there is no consensus on how to determine a
velocity or acceleration threshold. Large discrepancies exist in the
classification of a sprint effort. The comparison of activity profiles
across and within team-sports is consequently difficult.

The aim of this narrative review is to examine the varying
velocity and acceleration thresholds used to analyze team-sport
athlete external load. Applying a global velocity or acceleration
threshold does not account for individual differences. Whilst
thresholds can be individualized, physiological tests comprising
continuous or linear movement do not reflect changes of
direction and acceleration. The current techniques used to
analyze external load are therefore inappropriate. Alternate
methods, including unsupervised data mining techniques, are
considered. These techniques find trends within external data
and may be useful in informing thresholds.

ATHLETE TRACKING TECHNOLOGIES

Team-sport athlete external load is collected by tracking
technologies. Manual video analysis is an inexpensive method
to estimate external load. Athletes are filmed by cameras
positioned around a playing area, with footage subjectively coded
into locomotor categories (Spencer et al., 2004). Manual video
analysis requires substantial time demand to examine activity.
Validity also has not been established, due to the subjective
estimation of athlete movement. A tracking system must be valid
so meaningful changes in athlete activity profile can be detected.
The capacity of a human to consistently reproduce results is also
a major limitation of manual video analysis. Semi-automated
tracking systems were designed to remove the laborious and
subjective classification of athlete activity. Commercial systems,
including ProZone (Di Salvo et al., 2006) and Amisco (Castellano
et al., 2014), can detect the position of multiple team-sport
athletes. However, the required equipment is expensive and non-
portable. Activity profiles therefore cannot be collected without
the elaborate infrastructure. Athletemovement is also collected in

a two-dimensional plane, with changes in position due to vertical
movement going undetected (Barris and Button, 2008).

Accelerometers are wearable sensors that directly quantify
athlete load in three-dimensional planes. Accelerometers have
been utilized in field-based (Mooney et al., 2013) and court-based
(Cormack et al., 2014) team-sports however, accelerometers
cannot calculate an athlete’s position relative to a playing area.
Consequently, the time and distance covered by an athlete at
varying velocities are unable to be quantified. The use of GPS
to collect the distance and velocities of field-based team-sport
athletes is well-documented (Buchheit et al., 2010b; Jennings, D.
H. et al., 2012; Varley et al., 2013b). A recent review has examined
factors influencing the setup, analysis and reporting of GPS data,
for use in team-sports (Malone et al., 2016).

Large variations exist in GPS estimates of changes in velocity,
betweenmodels and units from the samemanufacturer (Buchheit
et al., 2014). During simultaneous capture of a sled dragging
exercise, small to very large between-model and unit differences
were observed in 15Hz GPS units (Buchheit et al., 2014). These
units were manufactured with a 10Hz GPS but upsampled
to 15Hz (Aughey, 2011a). In 10Hz GPS, acceleration and
deceleration movements have a large between-unit coefficient
of variation (CV) of 31–56% (Varley et al., 2012). A variety of
factors may influence GPS measures of acceleration and velocity.
The accuracy of GPS to measure instantaneous velocity is limited
by unit processing speed, location, antenna volume, and chipset
capacity. Quantification of instantaneous velocity is up to three
timesmore accurate in 10HzGPS units compared to 5Hz (Varley
et al., 2012). When measuring acceleration and deceleration,
10Hz units still differ by ∼10% when compared to a laser device
(Varley et al., 2012).

Whilst GPS quantifies the position and velocities of field-
based team-sport athletes (Aughey, 2011a), GPS cannot be
used with court-based sports held indoors, due to no satellite
reception. The development of radio-frequency (RF) based LPS,
including the Wireless ad hoc System for Positioning (WASP),
allows athlete movement to be captured indoors (Hedley et al.,
2010). Local position systems (LPS) sample at up to 1000Hz
with generally superior accuracy compared to GPS (Stevens et al.,
2014). During varying speed and change of direction movement,
the average acceleration and deceleration derived from LPS was
within 2% of Vicon (Stevens et al., 2014). Although, accuracy for
peak acceleration and deceleration is limited, LPS can measure
average change in velocity or time spent in various acceleration
thresholds.

DISTANCE COVERED

A common athlete activity profile measure is the total distance
covered. English Premier League athletes cover an average
of 10,714m during matches (Bradley et al., 2009), less than
One Day International (ODI) cricketers at 15,903m per match
(Petersen et al., 2009). Elite Australian footballers may record
total distances of up to 12,939m (Coutts et al., 2010). The
total distance covered during matches varies across athlete age
(Buchheit et al., 2010a), position and competition level (Jennings,
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D. H. et al., 2012). When total distance covered is expressed per
minute of match duration, soccer athletes cover 104 m·min−1

(Varley et al., 2013b). Australian footballers may average 157
m·min−1 (Aughey, 2011b) whilst elite rugby league players
cover up to 97 m·min−1 (Varley et al., 2013b). Sport-specific
constraints, including positional or tactical roles, may contribute
to these differences. The higher total distance in Australian
football may be attributed to the unlimited interchange policy
(removed in 2015), and the smaller field size available to soccer
and rugby league athletes (Varley et al., 2013b). The total distance
covered should be presented per minute of match duration or
time spent on field/ in a training drill (Aughey, 2011a).

Court-based athletes have a smaller playing area compared
to their field-based counterparts, yet cover similar meters per
minute. There is limited activity profile research on court-based
athletes. State-level female basket ballers cover 127–136m·min−1

during matches (Scanlan et al., 2012), higher than junior males
(115 m·min−1) and similar to state- (126–132 m·min−1) and
national (130–133m·min−1) male basketballers (Scanlan et al.,
2011). In semi-elite netball, center (C) athletes cover up to
133m·min−1 compared to goal keepers (GK) and goal shooters
(GS), who average 71 and 70m·min−1, respectively (Davidson
and Trewartha, 2008). These differences could be due to the
spatial restrictions imposed by each playing position although
manually estimating distance covered from video may also
provide unreliable estimates (Barris and Button, 2008).

In court-based sports, the ball may frequently and chaotically
change direction. Court-based athletes must be responsive to
movement of the ball, their team-mates and opposition in a
small area. Athletes may change direction and complete short,
high-intensity movements to cover or create space. Although,
there are more spatial limitations compared to field-based sports,
the high frequency of these actions performed by court-based
athletes may result in a comparable meters per minute profile.
Whilst reporting meters per minute gives an understanding of
intensity, granular periods of activity at different velocities are
lost by aggregating to the total distance covered. Quantifying
the time spent and distance covered at varying velocities may be
useful in programming training and monitoring load.

VELOCITY THRESHOLDS

During matches or training, the instantaneous velocity of an
athlete is binned into different zones via threshold values.
Velocity thresholds are defined by proprietary software providers
(Cunniffe et al., 2009), modified from published research
(Jennings, D. H. et al., 2012) or determined arbitrarily (Mohr
et al., 2003). There is no consensus on how to determine a velocity
threshold and large discrepancies exist, even within a single team-
sport (Table 1). The comparison of activity profile research is
consequently difficult.

The inconsistency between velocity thresholds extends
to qualitative descriptors. For example, activity may be
labeled as low-velocity or low-intensity movement. Low-velocity
movement, including walking and jogging, could be activity
between 0 and up to 5.40m·s−1 (Varley et al., 2013b). Yet in

the same sport, activity >4.00m·s−1 was classed as high-speed
running (Sullivan et al., 2013). The classification of high-velocity
or high-intensity movement is also without consistent definition.
The varying definitions make for a difficult comparison between
studies. In Australian football, sprint efforts have been defined
as activity >4.00m·s−1 (Sullivan et al., 2013) while a threshold
of >4.17m·s−1 has also been utilized (Aughey, 2010; Mooney
et al., 2011). The presentation of thresholds as a single > or <

value, with ambiguous descriptors, is confusing when velocity
data falls between two thresholds. For example, running by
professional soccer athletes is described as velocities between
4.00 and 5.47m·s−1 whilst activity >5.50m·s−1 was considered
high-intensity movement (Carling et al., 2012). It is unclear if
velocities within the 0.03m·s−1 upper and lower ranges of the
two classifications were removed from analysis. Deletion of these
values may influence the frequencies and durations reported.
Research describing thresholds in this manner should detail
how instantaneous velocities are binned into different zones. If
researchers use discrete values, it is recommended that thresholds
be presented as ≥ or ≤ values.

The confusion in velocity thresholds also extends to the
duration of a sprint. In elite female rugby union (Clarke et al.,
2014), hockey (Vescovi, 2014), and professional male soccer
(Carling et al., 2012) matches, sprinting must occur for a
minimum of 1 s. However, in other studies (Buchheit et al.,
2010a; Jennings, D. H. et al., 2012; Varley et al., 2013b; Kempton
et al., 2015b), the minimum duration is not stated. It is unclear
what effect these inconsistent minimum threshold durations have
on the activity profile. Researchers should state the minimum
duration required to record a sprint effort. The inconsistency of
sprint thresholds in the literature is likely due to values being
arbitrarily determined or taken from proprietary software.

ACCELERATION THRESHOLDS

Acceleration is a metabolically demanding activity, requiring
more energy than constant running (Osgnach et al., 2010).
During team-sport matches, a large number of high intensity
efforts are short in duration and commence from a low velocity.
In elite soccer matches, more than 85% of maximal accelerations
did not exceed the high-speed (4.17m·s−1) threshold (Varley and
Aughey, 2013). Maximal accelerations (>2.78m·s−2) occurred
eight times more than sprinting, classified as >6.94m·s−1 but
<10.00m·s−1 (Varley and Aughey, 2013). The starting velocity is
critical when measuring accelerations or decelerations, although
quantification of these variables is dependent upon the validity
and reliability of athlete tracking systems.

There are large inconsistencies between acceleration
thresholds used throughout the literature. In field-based
team-sports, accelerations have been classified as >1.11m·s−2

(Wisbey et al., 2010), 2.78m·s−2 (Varley et al., 2013a), 3.00m·s−2

(Hodgson et al., 2014), and 4.00m·s−2 (Farrow et al., 2008).
Accelerations have also been categorized into moderate (2.00–
4.00m·s−2) or high (>4.00m·s−2) zones, with a minimum
duration of 0.40 s (Higham et al., 2012). The rationale used to
select these zones is unknown. The 2.78m·s−2 threshold used
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in soccer (Varley and Aughey, 2013) and Australian Football
(Aughey, 2010) originated from a standing start maximal
acceleration of between 2.50 and 2.70m·s−2, performed by
non-athletes (Varley et al., 2012). Since elite Australian Football
athletes often maximally accelerate from a moving start during
matches (Aughey and Falloon, 2008), a 4.00m·s−2 threshold
was considered too high and 1.11m·s−2 too low (Aughey,
2010). It appears the threshold of 2.78m·s−2 was determined
arbitrarily (Aughey, 2010). Acceleration thresholds of 1.50, 3.00,
and 4.00m·s−2 have been used in a single study (Buchheit et al.,
2014). Specifying thresholds in this manner has implications
for quantifying activity profile and monitoring change over
time, particularly when large variations in the measurement of
acceleration are common between GPS models from the same
manufacturer (Buchheit et al., 2014).

The velocity distribution of elite field-based team-sport
athletes was used to create sport-specific threshold values (Dwyer
and Gabbett, 2012). Match data from five elite female and
male soccer, hockey and professional male Australian Football
athletes were collected from GPS sampling at 1 Hz (Dwyer and
Gabbett, 2012). A frequency distribution of speed (0–7m·s−1) in
0.1m·s−1 increments was computed from the 25 data sets and
an average distribution calculated (Dwyer and Gabbett, 2012).
Four normally distributed Gaussian curves were then fitted to the
averaged velocity distribution curves and the intersecting points
used to determine thresholds for each sport (Dwyer and Gabbett,
2012). A frequency distribution of acceleration from each data
set was calculated and a threshold was based on the highest
5% of accelerations performed (Dwyer and Gabbett, 2012). This
threshold was then calculated for each pre-determined velocity
range and used to identify sprints (Dwyer and Gabbett, 2012).
The average velocity distribution for all field-based team-sports
was similar. Differences between sexes from the same sport
were larger than differences across sports (Dwyer and Gabbett,
2012). Six additional sprints, of a short duration, would not
have been recorded using the traditional threshold (Dwyer and
Gabbett, 2012). While the decision to include five movement
categories comprising standing, walking, jogging, running, and
sprinting, appear to have been arbitrarily determined, this is a
novel idea compared to the traditional analysis of athlete velocity.
This approach was utilized to profile the activity of national
level lacrosse (Polley et al., 2015) and youth female field hockey
(Vescovi, 2014) athletes. However, the 1 Hz GPS units used have
a very large (77.2%) CV when measuring short sprint efforts
(Jennings et al., 2010). Consequently, data obtained from 1Hz
GPS during these movements, and the results presented, should
be interpreted with extreme caution. The small sample size is
also limited in detecting meaningful change across and between
sports. Decelerations or negative changes in velocity were also
removed from the analysis, likely due to the poor capacity of GPS
to accurately quantify these movements (Buchheit et al., 2014).

The ability to reduce velocity is termed deceleration. An
athlete’s capacity to efficiently decelerate is important for
changing direction (Kovacs et al., 2008). The major components
of deceleration include dynamic balance, power, reactive, and
eccentric strength (Kovacs et al., 2008). In elite team-sport
athletes, the substantial eccentric loading during repeated

decelerations is likely to have a detrimental effect on subsequent
40m sprint test performance (Lakomy and Haydon, 2004). In
collegiate team-sport athletes, muscle damage was induced post
15× 30m repeated sprints with a rapid deceleration, interspersed
with 60 s of passive recovery (Howatson and Milak, 2009).
Increased muscle soreness, swelling, creatine kinase efflux and
decreased maximum isometric contract was also observed 48–72
h post exercise (Howatson and Milak, 2009). Collectively, these
results demonstrate the magnitude of muscle and performance
damage when team-sport athletes perform repeated deceleration
efforts.

Investigation into the decelerations of team-sport athletes
during matches is limited. In elite male rugby seven matches,
decelerations were classified as moderate (−4.00 to−2.00m·s−2)
or high (> 4.00m·s−2) and occurred for a minimum of 0.40 s
(Higham et al., 2012). It is unclear why these zones were chosen.
A 35 and 25% difference in moderate and high decelerations,
respectively, existed between standards of play (Higham et al.,
2012). The large error of 5Hz GPS to accurately quantify these
movements may account for the difference between playing
levels. The deceleration of professional rugby league athletes
were investigated during two competitive seasons (Delaney et al.,
2015). Differences in the maximum value recorded over a rolling
average, from 1 to 10min in duration, was compared across
playing positions (Delaney et al., 2015). Compared with a 10min
rolling average, a large effect was observed for acceleration
and decelerations of 1–2min. A moderate to small effect for
3–7min duration was also recorded (Delaney et al., 2015). While
this approach presents the maximum load of an athlete over
varying durations, all acceleration and deceleration measures
were modified to estimate the total number of accelerations
performed (Delaney et al., 2015). This approach could be
misleading as energetically, the ability to accelerate and decelerate
is different. Using this approach, the specific training prescription
of deceleration is consequently limited.

The deceleration output of court-based team-sport athletes
remains largely unknown. Decelerations account for up to 18%
of total distance covered during professional football match play
(Akenhead et al., 2013). Decelerations, and their distribution
over varying epochs, should therefore be included in the activity
profiles of court-based team-sport athletes, to ensure appropriate
training design for competition. The inconsistency previously
described in defining velocity thresholds is also evident in
research on decelerations. There is currently no consensus on
how to define acceleration or deceleration thresholds. While
presenting the acceleration frequency of team-sport athletes
provides a global representation of high-intensity movements,
limited research exists on the individualization of acceleration
thresholds. The classification of accelerations is also dependent
upon the sampling epoch utilized, whichmay alter themagnitude
of frequencies reported.

FILTERING OF DATA

Athlete tracking data may be filtered during the post-processing
phase. Filtering involves the smoothing of position and reduction
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of noise using various mathematical algorithms (Carling et al.,
2008). Noise can be removed by numerous techniques, each with
different results. Curve fitting involves a low-order polynomial
curve fitted to raw trajectory data. Although, this technique is
best for repetitive movements including jumping, error may be
introduced through poor selection of specific points that the
curve is fitted to (Winter, 2009). These points are determined
from the raw data and consequently, are influenced by the very
noise the filter is trying to eliminate (Winter, 2009). Bandpass
filtering converts raw data from the spatial to the time domain,
typically using a Fast Fourier Transform (FFT). High-frequency
signal, uncharacterize of normal humanmovement, is eliminated
before data is converted back into the spatial domain through an
inverse FFT (Wundersitz, D. et al., 2015). However, the threshold
used as the optimal cut-off frequency is arbitary and typically
chosen via visual inspection (Wundersitz, D. et al., 2015). Digital
filtering analyzes the frequency spectrum of both signal and
noise. The signal typically occupies the lower end of a frequency
spectrum and overlaps with the noise, which is typically observed
at a higher frequency (Winter, 2009). A low-pass filter permits the
lower frequency signals while consequently reducing the higher
frequency noise. Low-pass filtering can be used when analyzing
trajectory data (Winter, 2009).

The filtering of athlete external load data is dependent
upon the tracking system utilized. Filtering may occur on
raw positional data at the instruction of the tracking system
manufacturer (Stevens et al., 2014). Derived measures, including
metabolic power from GPS (Di Prampero et al., 2005; Osgnach
et al., 2010) are also filtered at unspecified frequencies during
the post-processing stage. Butterworth (Stevens et al., 2014) and
Kalman (Sathyan et al., 2012) filters are typically used for LPS
data. There is limited information on how filters are used in
optical player tracking systems and GPS. Filtering may account
for the 24% difference in sprint distance between real-time and
post-match Australian football GPS data (Aughey and Falloon,
2010) although no detail was presented on how the manufacturer
explains these discrepancies. It is important to know how the
manufacturer of an athlete tracking system filters raw data,
particularly when inferences from external load are used to make
decisions on programming training (Borresen and Lambert,
2009; Rogalski et al., 2013). The filtering of accelerometer data
has recently been examined (Boyd et al., 2011). Only one of the 13
filters was strongly related (mean bias;−0.01± 0.27 g; CV 5.5%)
to the criterion measure, Vicon (Wundersitz, D. et al., 2015).
Information on filtering is rarely presented from GPS or LPS
data when time spent or distance covered in velocity bands are
reported. The filtering of raw data from an athlete tracking system
has a substantial impact on the frequencies and distances covered
in velocity or acceleration zones (Wundersitz, D. et al., 2015).
Prior to reporting team-sport athlete activity profiles, researchers
should detail the type of filtering applied to raw data.

INDIVIDUALIZED THRESHOLDS

Activity profile data reported as an average across a team
(Aughey, 2011b) or position (Mooney et al., 2011; Varley and

Aughey, 2013) does not account for differences in individual
physical capacity. The use of a single sprinting or high-velocity
threshold, for all athletes within a team, also does not consider
the differences between individual athletes. Although, team-sport
matches are contested at an absolute level, the same external
load calculated by a high-velocity or sprinting threshold, for
two athletes could represent a different internal load based
on individual characteristics (Impellizzeri et al., 2004). Athlete
movement may be expressed relative to a physiologically defined
variable. High-intensity activity can be classified as greater
than the second ventilatory threshold (VT2), obtained during a
maximal aerobic capacity (VO2max) test. The VT2 is the point
where CO2 production exceeds O2 consumption during exercise
(Davis, 1985). It is assumed that activity beyond this point cannot
be sustained for prolonged periods due to the athlete no longer
being in a steady state (Davis, 1985). During team-sport matches,
activity below the VT2 can likely be continued for a prolonged
duration. In male soccer athletes, distance covered at or greater
than vVT2 was 167% higher or a very large effect when compared
to a threshold of 5.50m·s−1 (Abt and Lovell, 2009). A 44%
variation in athlete rank, calculated by distance covered at high-
speed, was observed between the two thresholds (Abt and Lovell,
2009). Individual VT2 has also been measured in professional
soccer athletes (Lovell and Abt, 2012). The resulting vVT2 was
compared to an arbitrary velocity (4.00m·s−1) threshold (Lovell
and Abt, 2012). High-speed running distance was overestimated
by 9% when arbitrary thresholds were used (Lovell and Abt,
2012). For individual athletes, this range could be between
22% lower and 33% higher (Lovell and Abt, 2012). In elite
female rugby sevens athletes, a physiologically-defined threshold
corresponding to treadmill speed at VT2 was compared to a
cohort average (3.50m·s−1) value (Clarke et al., 2014). When
individualized thresholds were used, high-intensity running was
up to 14% over or under-estimated compared to the cohort mean
VT2 derived threshold (Clarke et al., 2014). Distance covered
at high-speed may therefore be underestimated by traditional
thresholds.

While the individualization of velocity thresholds is a well-
reasoned approach to assess external load, conjecture exists
on the implementation of an incremental treadmill protocol,
conducted within a laboratory, and its application to team-
sports. The individualization of velocity thresholds, derived from
a continuous running protocol, does not consider the change
of direction and acceleration movements, frequent in team-
sports (Lovell and Abt, 2012). Whilst speed thresholds have been
individualized in field-based team-sports (Abt and Lovell, 2009;
Lovell and Abt, 2012; Clarke et al., 2014), limited research exists
on court-based team-sports.

Athlete thresholds for external load can be expressed relative
to maximum speed attained during sprint testing. The external
load of junior-elite male soccer athletes was compared using
absolute (>5.27m·s−1) or individual thresholds by obtaining the
peak running velocity during the fastest 10m split of a 40m sprint
(Buchheit et al., 2010b). Athletes in the highest playing standard
(U18 years of age) performed more repeated-sprint efforts
when activity was assessed using absolute thresholds (Buchheit
et al., 2010b). Younger players (U13 and U14 years of age)
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recorded more sprinting activity with individualized thresholds
(Buchheit et al., 2010b). In junior male rugby league athletes,
when an individualized threshold of peak velocity obtained
during the final 20m of a 40m sprint test was compared with
absolute speed (>5.00 m·s−1) thresholds, younger athletes (U13)
performed likely (effect size = 0.43–0.58) greater high-speed
running compared to their older (U14 and U15 years of age)
counterparts (Gabbett, 2015). The total high-intensity running
performed by junior athletes may be altered when expressed
relative to a movement threshold obtained during maximal
sprinting (Buchheit et al., 2010b; Gabbett, 2015). Inconsistencies
therefore exist in the recorded sprinting distance according to the
velocity threshold used.

Expressing a team-sport athlete’s data relative to a
physiologically defined threshold is an individualized approach
that may benefit the training prescription for players. Although,
an advancement on the use of arbitrarily derived velocity
thresholds, limited research exists on how to individualize
accelerations. Accelerations require more energy than constant
velocity (Osgnach et al., 2010). Without information on how
to classify accelerations, individualized thresholds are therefore
limited in their use for team-sport athletes, including those who
participate in court-based sports.

RELATIONSHIP OF HIGH-INTENSITY
ACTIVITY TO MATCH PERFORMANCE

The capacity to accelerate and sprint is important for team-
sport match performance. In junior-elite Australian Football,
athletes faster over a 5 and 20m split acquired the most kicks
and disposals during matches, compared with their slower
counterparts (Young and Pryor, 2007). During elite matches,
a relationship exists between athlete physical capacity and the
number of disposals. This relationship is mediated by the
amount of high intensity-running (HIR) m·min−1 or distance
traveled at >4.17m·s−1 (Mooney et al., 2011). Sophisticated
modeling techniques may therefore be able examine the effect
of contextual and match-related factors on team-sport athlete
running intensity.

The relationship between physical capacity and match
performance in professional soccer was examined across three
top English leagues (Bradley et al., 2013). Total distance covered
and HIR >5.50m·s−1 was captured via semi-automatic tracking
(Bradley et al., 2013). Less total and HIR distance occurred
at a higher than a lower playing standard. Physical capacity,
defined as score on the Yo-Yo intermittent recovery two
(IR2) test, was correlated with HIR distance (Bradley et al.,
2013). In junior-elite male soccer athletes, the relationship
between external load, defined as movement >4.47m·s−1 and
physical capacity, quantified as score on the Yo-Yo IR1, was
position dependent. Poor correlations were observed between
match running performance and athlete physical capacity in
all positions except strikers. However, the 1Hz GPS units
used have poor validity (CV% of 11–30%) for assessing HIR
(Coutts and Duffield, 2010). To truly quantify the relationship
between athlete match external load and physical capacity,

tracking technologies that are accurate at detecting movement
within a range of intensities should also be used. Although,
the relationship between match outcomes, athlete performance,
and external load have been examined, research has applied a
mean velocity threshold to all athletes within a team (Mooney
et al., 2011; Bradley et al., 2013). The justification for these
thresholds is typically based on other literature or arbitarily
determined. Individualizing velocity thresholds may allow for a
detailed analysis of the relationship between athlete external load
and match outcome, although physiologically defined thresholds
are limited in their application for defining accelerations (Varley
and Aughey, 2013). The majority of research on the relationship
between athlete performance and external load has focused on
males competing in team-sports, with limited information on
female athletes (Costello et al., 2014).

THRESHOLDS FOR MALE AND FEMALE
TEAM-SPORT ATHLETES

Men and women compete in team-sports at an elite level.
Tracking technologies, including GPS, are used to collect the
activity profiles of male and female team-sport athletes (Gabbett
and Mulvey, 2008; Dwyer and Gabbett, 2012; Vescovi, 2014).
There are differences in physiological capacities between sexes,
including aerobic fitness and absolute sprinting ability (Mujika
et al., 2009). Consequently, the physiological cost of high-speed
running may be substantially different for male and female team-
sport athletes. Although, lower speed thresholds are suggested for
female team-sport athletes (Dwyer and Gabbett, 2012), limited
research exists on the application of these thresholds. An under-
or over-estimation of external load may occur if female athletes
use thresholds initially developed for male athletes.

Thresholds developed for male team-sport athletes have
been applied to female external load data. During international
female hockey matches, the average number (17) of sprints
completed was lower than the mean number (30) performed by
male athletes (Macutkiewicz and Sunderland, 2011). However a
sprinting threshold of 5.2m·s−1, adapted from research on male
soccer athletes (Bangsbo, 1992), was applied to female match
data. Since there are sex differences in sprinting speed (Mujika
et al., 2009), the reduction in mean sprints observed during
international female hockey could be due to the inappropriate
use of a velocity threshold designed for males. In soccer, male
velocity thresholds have also been applied to female external
load data (Krustrup et al., 2005; Mohr et al., 2008). However,
the sprinting speed of female soccer athletes varies across age
(Vescovi et al., 2011) and differs compared to males (Mujika
et al., 2009). To develop female specific values, varying velocity
thresholds have been used in soccer (Vescovi, 2012). During
competitive matches, sprinting by professional female soccer
athletes accounts for 5.3% of total distance covered when
categorized as activity >5.0m·s−1 (Vescovi, 2012). However, if
the threshold is increased to >6.9m·s−1, similar to thresholds
used for male team-sport athletes (Varley et al., 2013b), little to
no sprinting is recorded (Vescovi, 2012). A ceiling effect may
therefore be present when using thresholds originally developed
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for male team-sport athletes. Although, the use of varying
velocity thresholds is a guide in the development of sprinting
values for female soccer, this approach does not consider the
individual physiological differences between athletes.

The individualization of velocity thresholds for female athletes
has recently been examined. In elite female rugby sevens athletes,
a male velocity threshold (5.0m·s−1), individual and cohort
mean vVT2 speed, was used to determine distance covered
at high-intensity (Clarke et al., 2014). The absolute amount
of match high-intensity running was underestimated by up
to 30% when using a velocity threshold designed for male
athletes (Clarke et al., 2014). The individualized threshold under-
or over-estimated high-intensity running by up to 14% when
compared to the cohort mean vVT2 speed threshold of 3.5 m·s−1

(Clarke et al., 2014). Individualizing the high-intensity running
threshold, assessed via a linear physiological test, of female team-
sport athletes may allow for customized training prescription.
However, individualization requires a time-consuming and
expensive laboratory-based VO2max test, which can be difficult
to implement with a large number of athletes in a team-sport
setting. Alternatively, the maximal aerobic speed (MAS) of an
athlete is highly-correlated with maximal oxygen uptake (Léger
and Boucher, 1980) and reflects running economy (Di Prampero
et al., 1986). Assessment of MAS can occur on a large number of
athletes during an incremental field running test (Buchheit et al.,
2013). The relationship betweenMAS and high-intensity running
has been assessed in youth male soccer athletes (Buchheit et al.,
2013) although, to date, no research exists on individualizing
the velocity thresholds of female team-sport athletes using
MAS testing results. For female team-sport athletes who cannot
complete individualized physiological or field testing, a threshold
of 3.5m·s−1 could be used as guide for high-intensity running,
although differences between playing position and standard are
not accounted for with this fixed threshold.

The development and implementation of female-specific
thresholds, according to playing standard and position, should
be investigated. Although, thresholds have been developed for
female athletes competing in field-based sports (Dwyer and
Gabbett, 2012; Clarke et al., 2014), there are no thresholds
specifically for court-based sports. Netball, for example, is a
court-based team-sport played indoors by elite female athletes.
Due to the lack of research on female court-based sports, there is
limited information on how to quantify velocity and acceleration
thresholds for netball athletes.

ALTERNATE APPROACHES TO CLASSIFY
ATHLETE ACTIVITY

Data mining is a research area that aims to discover regularity
from within large datasets and yield insights that are not possible
using conventional statistics (Chen et al., 1996). Large databases,
such as the external load obtained from tracking technologies,
can therefore be investigated. Knowledge may be extracted
through data mining techniques including classification, where
data are sorted into predefined classes based on some common
features (Chen et al., 1996). These methods are alternative

approaches to the individualization of team-sport athlete external
load. For example, the latent properties of external load from
a single athlete can be found using data mining approaches.
Velocity or acceleration thresholds are therefore derived directly
from the sampled data and can be examined across age, sex,
playing standard, or position.

Relationships between latent properties in data that may
impact athletic performance can be uncovered using data mining
(Ofoghi et al., 2013). Machine learning, a data mining technique,
has been used to discover the physiological capacities required
to medal in sprint cycling (Ofoghi et al., 2010). A recent review
(Ofoghi et al., 2013) highlighted the lack of a contemporary
framework for analyzing the match performance data of elite
athletes. For example, a traditional statistical analysis on the
performance of a team-sport athlete during passing chains
may consider a direct relationship with a dependent variable.
However, this type of analysis ignores the context of data
collection (Ofoghi et al., 2013). Using data mining techniques,
the hidden features that may impact upon passing quality could
be examined, going beyond a superficial analysis (Ofoghi et al.,
2013).

An alternative approach is mediation analysis, a statistical
technique that examines the relationship between the dependent
variable and independent variables to identify plus explain
process. Mediation analysis has been applied in elite Australian
Football to examine inter-relationships between athlete capacity,
match intensity and performance (Mooney et al., 2011). Playing
position and experience influence the relationship between an
athlete’s capacity, match activity profile and possession output
(Mooney et al., 2011). Linear techniques including discriminant
analysis (Castellano et al., 2012) and generalized linear modeling
have also been used to examine team-sport performance.
However, linear techniques may not be an optimum method to
analyze the match performance of dynamic and chaotic team-
sports.

In contrast, non-linear data mining techniques are not
constrained to a single linear variable. Decision trees, a non-
linear technique, have been used to explain match outcome
in Australian football (Robertson et al., 2016), classify team-
sport activities from a wearable sensor (Wundersitz, D.W. et al.,
2015) and explore the attacker and defender interaction during
invasion sports (Morgan et al., 2013). Decision trees involve
the repeated partitioning of data, based on input fields that
create branches which can be further split to differentiate the
dependent variable. Decision trees can handle missing data and
provide an intuitive analysis of a dataset (Morgan et al., 2013).
Unlike clustering, decision tree induction is not dependent on the
selection of a prior distribution.

Clustering is a data mining technique that could be used
to find unknown patterns in large datasets by classification,
whereby data is grouped based on similarity (Chen et al.,
1996). A large dataset can be meaningfully divided into smaller
components or categories using clustering (Punj and Stewart,
1983). These categories may be mutually exclusive (Fayyad
et al., 1996). Categories can also be sorted in a hierarchical or
overlapping manner. Gaussian mixture models, a cluster method
that contains a prior belief about group assignment, have been
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used to classify shot making in tennis (Wei et al., 2013). These
clustering methods represent sub-populations within a dataset
and express the uncertainty about cluster assignment. The k-
means clustering algorithm divides a dataset into a user-specified
number of k clusters (Wu et al., 2008). The k-means algorithm
starts with k centroids, selected at random. Each data point within
the wider dataset is assigned to its nearest centroid, based on
similarity. The centroids are updated each time a data point is
assigned (Wu et al., 2008). The centroid mean is then calculated
from the data points allocated to that cluster (Wu et al., 2008).
The size of the dataset determines the number of repetitions
required for the k-means algorithm to reach completion (Wu
et al., 2008). Clustering, via the k-means algorithm, could be used
in a variety of sport settings, including grouping the external load
of an athlete.

Complex statistical or data mining techniques, including
clustering, may uncover unknown patterns or counter prior
beliefs. These approaches could be used to guide the development
of athlete velocity and acceleration thresholds. Self-organizing
maps (SOM) and clustering have been utilized in elite rugby
union to uncover playing styles related to team success (Croft
et al., 2015). The coordination patterns during three different
basketball shots from varying distances have also been classified
using SOM (Lamb et al., 2010). The lowest variability was
recorded in the three-point and hook shots. The SOM displayed
a movement output that differed unexpectedly from traditional
analysis, including visual inspection and time series data (Lamb
et al., 2010). A movement analyst with experience and prior
knowledge or bias may have been distracted by other information
compared to a SOM, that has a more objective methodology
(Lamb et al., 2010). These approaches could also be used to
group athlete velocity data, without the requirement of a human
input threshold based on a physiologically defined or arbitary
value. These groups could be formed irrespective of an athlete’s
age, sex, position, or playing standard. Patterns within athlete
movement, including velocities and accelerations performed,
could be derived by applying clustering techniques to external
load data.

The accelerometer derived PlayerLoadTM data of elite female
netball athletes was grouped by k-means clustering (Young et al.,
2016). Optimal clustering was the greatest Euclidean distance
obtained from two to five clusters (Young et al., 2016). The
seven netball playing positions were divided into two groups
according to playing intensity and relative time spent in a low-
intensity zone (Young et al., 2016). The PlayerLoadTM for the goal
based positions was lower than the attacking and wing positions,
likely due to the time spent performing low intensity activity
(Young et al., 2016). This study was the first to use data mining
techniques, including k-means clustering, to examine athlete load
data. However, only accelerometer data was investigated and
not the position of an athlete, from GPS or LPS. Capturing the
position of an athlete allows for the calculation of displacement,
velocity and acceleration. With the large volume of data obtained
from athlete tracking systems, datamining represents a technique
to gain further insight into athlete activity profiles. Consequently,
athlete external load could be analyzed without the requirement
of an arbitrary or software-implemented threshold.

RECOMMENDATIONS

A range of velocity thresholds are utilized to classify the
sprint effort of a team-sport athlete. Although, thresholds may
be individualized (Abt and Lovell, 2009; Clarke et al., 2014),
applying a global velocity or acceleration threshold may allow
for examination of positional and individual differences over
time. A practical issue for those monitoring activity profiles is
determining velocity and acceleration thresholds for a cohort
of athletes. Selection of these global thresholds is often arbitary
and dependent upon the cohort profiled. We recommend
that practitioners choose thresholds of an equal bandwidth,
for example, 0–5, 15–10, 15–20, 20–25, and ≥25 km·h. The
minimum duration required for a sprint effort to be recorded
should also be stated.

For elite female team-sport athletes competing in field-
based sports, a fixed threshold of 3.5m·s−1 may be used to
detect high-speed activity across a cohort of players (Clarke
et al., 2014). Since a consensus is yet to be reached on
the physiological tests to determine velocity or acceleration
thresholds, we recommend that practitioners chose a test
deemed most appropriate for their sport. Alternatively, data
mining approaches could be used to examine the velocity
and acceleration output of team-sport athletes. Recently, the
velocity, acceleration and angular velocity output of court-based
team-sport athletes was examined without arbitary thresholds
(Sweeting et al., 2017). Rather than comparing the velocity,
acceleration and angular velocities performed by individuals as
a function of time, the similarities between playing positions
according to the movement sequences performed. This approach
may have application for coaching and conditioning. Knowledge
of the movements performed, angle of attack and accelerations
may assist with planning sport-specific training. Practitioners
and scientists can subsequently focus on training the specific
movement sequences frequently performed by athletes in each
playing position. These sequences can also be examined across
different playing standards, such as elite and junior-elite levels.
Profiling the activity profile across the athlete pathway may assist
in preparing team-sport athletes during transition from lower to
higher levels.

CONCLUSION

Athlete position, velocity, and acceleration can be measured
duringmatches or training via optical tracking, GPS and LPS. The
analysis of distance, velocity, and acceleration over a specified
time epoch is termed athlete activity profile. It is difficult to
compare literature on field-based sports due to inconsistencies
in velocity and acceleration thresholds, even within a single
sport. Velocity and acceleration thresholds have been determined
from physiological and physical capacity tests. Limited research
also exists on female team-sport athletes and how to classify
their velocity plus acceleration. Alternatively, data mining can
derive patterns from large datasets. With the large volume of
data obtained from athlete tracking systems and advancements
in classifying movement patterns during skill or endurance
performance, data mining is a technique to gain further insight
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into athlete activity profiles. Consequently, athlete external load
could be analyzed without velocity or acceleration thresholds.
Future work should focus on using data mining techniques
to analyze the movement performed by team-sport athletes,
particularly elite females and those participating in court-based
sports.
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This study explored the use of body worn sensors to evaluate the vibrations that act

on the human body in alpine ski racing from a general and a back overuse injury

prevention perspective. In the course of a biomechanical field experiment, six male

European Cup-level athletes each performed two runs on a typical giant slalom (GS)

and slalom (SL) course, resulting in a total of 192 analyzed turns. Three-dimensional

accelerations were measured by six inertial measurement units placed on the right and

left shanks, right and left thighs, sacrum, and sternum. Based on these data, power

spectral density (PSD; i.e., the signal’s power distribution over frequency) was determined

for all segments analyzed. Additionally, as a measure expressing the severity of vibration

exposure, root-mean-square (RMS) acceleration acting on the lower back was calculated

based on the inertial acceleration along the sacrum’s longitudinal axis. In both GS and

SL skiing, the PSD values of the vibrations acting at the shank were found to be largest

for frequencies below 30 Hz. While being transmitted through the body, these vibrations

were successively attenuated by the knee and hip joint. At the lower back (i.e., sacrum

sensor), PSD values were especially pronounced for frequencies between 4 and 10 Hz,

whereas a corresponding comparison between GS and SL revealed higher PSD values

and larger RMS values for GS. Because vibrations in this particular range (i.e., 4 to 10 Hz)

include the spine’s resonant frequency and are known to increase the risk of structural

deteriorations/abnormalities of the spine, they may be considered potential components

of mechanisms leading to overuse injuries of the back in alpine ski racing. Accordingly,

any measure to control and/or reduce such skiing-related vibrations to a minimum should

be recognized and applied. In this connection, wearable sensor technologies might help

to better monitor and manage the overall back overuse-relevant vibration exposure of

athletes in regular training and or competition settings in the near future.

Keywords: injury prevention, overuse injuries, wearable sensors, spine, back pain, athletes, alpine skiing, training

load management

INTRODUCTION

On the topic of the relationship between training load and sports injuries, there is emerging
evidence that poor load management (i.e., an insufficient balance between loading and recovery)
is a major injury risk factor (Drew and Finch, 2016). Accordingly, monitoring the external loads
that act on the human body is key to better understanding the occurrence of (and potentially to
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avoid) injuries in competitive sports (Soligard et al., 2016). In
this context, body worn inertial measurement units (IMU) may
offer a pervasive way to measure both load-related body postures,
as well as vibrations acting on the human body during outdoor
sports activities (Kim et al., 1993; Chardonnens et al., 2013;
Seel et al., 2014; Fasel et al., 2017). Moreover, they may provide
important information regarding training or competition time,
movement repetitions and/or the accelerations acting on the
different segments of the human body (Chardonnens et al., 2012,
2014; Rawashdeh et al., 2016; Yu et al., 2016; Whiteside et al.,
2017). Thus, particularly for investigating the link between load
and injury, as well as for monitoring and/or managing training
and competition load, sensor-based wearable technologies might
serve as an essential tool in the near future. In the current study,
their practical usefulness will be demonstrated through the sport
of alpine ski racing.

In alpine ski racing, the relatively high risk of injury is
well documented and recognized (Pujol et al., 2007; Flørenes
et al., 2009; Westin et al., 2012; Bere et al., 2013). In recent
years, substantial research efforts concerning injury causes and
prevention measures have been undertaken (Spörri et al., 2016b).
However, most alpine ski racing-related research has focused
on traumatic injuries, while overuse injuries have received little
attention (Supej et al., 2017). Accordingly, exploring the potential
causes of overuse injuries in order to provide evidence-based
recommendations for their prevention has been suggested to be
an important task for the future alpine ski racing-related research
agenda (Supej et al., 2017).

Similar to other competitive sports, in alpine ski racing the
athlete’s back has been reported to be one of those body parts
that is particularly prone to overuse injuries (Bergstrom et al.,
2004; Hildebrandt and Raschner, 2013; Spörri et al., 2015a). As
early as adolescence, competitive alpine skiers were discovered
to have significantly more prevalent radiographic abnormalities
as non-athletic age-matched controls (Rachbauer et al., 2001;
Todd et al., 2015). Furthermore, several studies have documented
such abnormalities as being associated with a higher risk of
developing low-back pain later, either during or after the sports
career (Luoma et al., 2000; Lundin et al., 2001; Ogon et al., 2001;
Iwamoto et al., 2004). From a biomechanical perspective, several
factors may contribute to the development of overuse injuries of
the back in alpine ski racing.

First, similar to other competitive sports, an accumulation
of heavy mechanical loads exceeding the athletes’ capacities,
particularly if the recovery time between the loadings is
insufficient, may lead to tissue damage and overuse injuries
(Soligard et al., 2016). This appears quite plausible, as an
association between cumulative low back loads and low back pain
has already been demonstrated for different athletic (i.e., other
than alpine skiing) and occupational cohorts (Kujala et al., 1996;
Heneweer et al., 2011; Coenen et al., 2013).

Second, with the use of body worn sensors, recent studies
of alpine ski racing explored that typical loading patterns of
the back include a combined occurrence of frontal bending,
lateral bending and torsion in the trunk, as well as high peak
loads (Spörri et al., 2015a,b, 2016a). Since a combination of
these factors is known to be related to high spinal disc loading

(Nachemson, 1981; Wilke et al., 1999; Haid and Fischler, 2013),
and has been suggested to be attributable to different types
of spine deteriorations (Rachbauer et al., 2001; Hangai et al.,
2009), they may be considered important mechanisms leading
to overuse injuries of the back in alpine ski racing (Spörri et al.,
2015a,b, 2016a).

Third, there is strong scientific evidence that excessive
exposure to whole-body vibrations, particularly at frequencies
close to the resonant frequency of the spine [∼4–10 Hz
according to Izambert et al. (2003), Guo et al. (2009), Guo et al.
(2011), and Baig et al. (2014)], increases the risk of structural
deteriorations/abnormalities of the spine and of developing low
back pain (Hill et al., 2009; Burström et al., 2015). For that and
other reasons, there are international standards such as, ISO
2631 (ISO, 1997) orDirective 2002/44/EC of the European Union
(EU, 2002) that define minimum health and safety requirements
for the exposure of workers arising from whole-body vibrations
(Griffin, 2004).

Regarding the vibrations that occur while skiing, earlier
studies primarily focused on recreational skiing (Kugovnik et al.,
2000; Federolf et al., 2009; Supej, 2013; Tarabini et al., 2015)
and/or the ski-plate-binding-boot unit level (Kugovnik et al.,
2000; Federolf et al., 2009; Tarabini et al., 2015). However, it
is reasonable that vibrations in alpine ski racing are markedly
different than those occurring in recreational skiing. Based on
the preliminary findings of two pilot studies, it is known that
vibrations are damped when being transmitted through the
skier’s body (Supej, 2013; Fasel et al., 2016a). Thus, in the context
of alpine ski racing, it is not a priori clear which frequencies and
signal powers the occurring vibrations possess, and how much
of them are actually transmitted to the lower back. Moreover,
in alpine ski racing it is so far largely unexplored whether the
vibrations acting on the lower back should be considered to be
harmless, or whether they might act as potential contributors for
developing overuse injuries.

Therefore, the aims of the current study were: (1) to describe
power spectral density (i.e., the signal’s power distribution
over frequency) of the vibrations acting on the different body
segments in the competition disciplines giant slalom (GS) and
slalom (SL); and (2) to quantify and compare the root-mean-
square (RMS) accelerations acting on the lower back (i.e., the
severity of vibration exposure) while skiing GS and SL turns.

MATERIALS AND METHODS

Measurement Protocol and Experimental
Setup
Six male European Cup-level athletes (85.3± 4.9 kg) participated
in the study. Within the framework of a biomechanical field
experiment, for each athlete the data of two GS runs and two
SL runs were collected. For each run performed, an eight-turn
section in the middle of a 16 gate-course was considered for
further data analysis, resulting in a total 192 included turns
(Figure 1). The GS course was set with linear gate distances of
25m and gate offsets of 6.5 m. The SL course had linear gate
distances of 10m and gate offsets of 3 m. Both courses were set
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FIGURE 1 | Schematic overview of the experimental on-hill setup.

on a constantly inclined slope (19◦) with very compact artificial
snow conditions, as are typically encountered in the sport of
alpine ski racing. Accordingly, on both courses only minor ruts
and grooves resulted from the 12 runs performed. The protocol
was approved by the ethics committee of the Department of
Sport Science and Kinesiology at the University of Salzburg and
all subjects gave written informed consent.

Data Collection and Instruments
The three-dimensional (3D) accelerations acting on the skier’s
body segments while skiing were measured at a sampling rate
of 500 Hz with six inertial measurement units (Physilog IV;
Gait Up; CH) placed on the right and left shanks, right and left
thighs, the sacrum and the sternum. The sensors’ dimensions
were 50 × 39 × 9.2 mm with a 19-gram weight. They were
electronically synchronized by radio frequency pulses. In order
to minimize the occurrence of any self-resonance and/or soft
tissue artifacts, the sensors were fixed to the corresponding body
segments on predefined anatomical locations using a skintight
custom made underwear suits. For the shank, this was on the
medial surface of the tibia bone above the ski boot top and for
the thigh, at the mid-distance between the knee and hip joint
center (slightly on the lateral side). The sacrum and sternum
sensors were fixed directly on the corresponding anatomical
landmarks. Additional fixation of the sensors was provided by
the athletes wearing their own very close-fitting racing suit. The
accelerometers included in the inertial measurement units were
set to capture a range of ±16 g and were calibrated following the
procedure of Ferraris et al. (1995). To align the sensor frames
with the anatomical frames of the body segments, before each

analyzed run, a functional calibration procedure consisting of
upright still standing, slow squats, vertical trunk rotation and
hip abduction and adduction movements was performed. The
anatomical frames were defined in accordance to the guidelines
of the International Society of Biomechanics (Wu and Cavanagh,
1995). All data processing, parameter computation and statistical
analysis steps were performed using the software MATLAB
R2012b and/or IBM SPSS Statistics 22.

Data Processing and Parameter
Computation
During analog-to-digital conversion, all acceleration and angular
velocity raw data was low-pass filtered at IMU manufacturer-
predefined cut-off frequencies of 94 and 98 Hz, respectively.
In order to automatically segment each run and to extract
the relevant eight-turn section, 3D segment orientations and
a 3D body segment model were calculated as described in
detail in previous studies (Fasel et al., 2016b, 2017). For each
time instance, the distances between the athlete’s center of
mass and the left and right ankle joint centers were computed.
Turn switches were defined as the crossing points of these
two distances, as suggested and validated by Fasel et al.
(2016c). Inertial acceleration was computed by transforming the
measured acceleration in the global frame, removing the gravity
component, and transforming the resulting acceleration back
into the anatomical frame.

Power spectral density (PSD) was estimated with the single-
sided amplitude spectrum (SSAS) of the inertial acceleration.
First, the amplitude spectrum (AS) was computed as the square
of the norm of the Fast Fourier Transform (FFT) coefficients
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of the inertial acceleration along the segment’s longitudinal
axis. Second, to obtain the SSAS, AS was normalized by the
sampling frequency and total number of FFT coefficients and was
multiplied by two. For illustration purposes, the final PSD was
obtained by smoothing SSAS with a moving average of length 5
and interpolating it between 0.5 and 75 Hz in 0.1 Hz steps.

Root-mean-square acceleration (RMS) acting on the lower
back (i.e., sacrum sensor) during the analyzed eight-turn section
was determined based on the inertial acceleration data along the
sacrum’s longitudinal axis. In accordance with the international
standard ISO 2631 (ISO, 1997), the inertial acceleration data was
filtered in the frequency domain prior to computing the RMS
according to the ISO filter specifications [frequency weighting
Wk (vertical direction) with k = 1]. This filter amplifies
accelerations at frequencies close to the resonant frequency of the
spine [∼4–10 Hz according to Izambert et al. (2003), Guo et al.
(2009), Guo et al. (2011), and Baig et al. (2014); (Figure 2)]. RMS
was then equal to the RMS value of this filtered acceleration.

Following this procedure, for each run and athlete, one PSD
curve and one RMS value were obtained. For providing more
representative subject/competition discipline curves and values,
finally, the PSD curves and RMS values of two eight-turn sections
performed by the same athlete and in the same competition
discipline were averaged.

Statistical Analysis
The statistical analysis consisted of the following steps: (1) for
each body segment and competition discipline, group average
PSD curves were computed based on the aforementioned six
representative subject average PSD curves; (2) these group
average PSD curves were visualized as the areas of uncertainty
around the estimate of the mean (i.e., ± the standard error (SE)
boundaries); (3) for each competition discipline, group average

RMS accelerations acting on the lower back (i.e., sacrum sensor)
were calculated based on the aforementioned six representative
subject average RMS values and, subsequently, were reported as
mean ± standard deviation (SD); and (4) potential differences
in the lower back (i.e., sacrum sensor) RMS values between
GS and SL were tested using a paired sample t-test (level
of significance: p < 0.05), and effect sizes (Cohen d) were
calculated.

RESULTS

The group average PSD curves of all segments representing GS
and SL skiing are depicted in Figures 3, 4. Generally, in both GS
and SL, the PSD values of the vibrations acting on the shank were
largest for frequencies below 30 Hz. While being transmitted
through the body, vibrations were found to be attenuated by each
joint (i.e., vibrations at the shank sensor> thigh sensor> sacrum
sensor > sternum sensor). Moreover, while at the shank sensor
and thigh sensor, PSD values were especially pronounced for
frequencies between 10 and 20 Hz; at the lower back (i.e., sacrum
sensor), between 4 and 10 Hz PSD values were particularly high.
Comparatively, small PSD values were observed at the sternum
sensor. At frequencies of below 4 Hz, in the PSD curves of all
segments another peak was observed.

The PSD curves that explicitly illustrated the vibrations that

acted on the lower back (i.e., sacrum sensor) in GS and SL are
presented in Figure 5. At frequencies between 4 and 10 Hz, PSD

values and, therefore, signal powers of the vibrations acting on

the lower back were larger in GS than in SL. Lower back (i.e.,
sacrum sensor) RMS values were found to be 11.10± 1.20m/s2 in

GS and 9.35± 0.77 m/s2 in SL, whereas these values significantly
differed at p < 0.001 (Table 1).

FIGURE 2 | Specifications of the frequency weighted ISO filter used for the calculation of root-mean-square acceleration in accordance with the international standard

ISO 2631 ISO (1997).
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DISCUSSION

PSD of the Vibrations Acting on Different
Body Segments in GS and SL
As observed previously for recreational skiing (Federolf et al.,
2009; Supej, 2013), in both GS and SL skiing the PSD values of
the vibrations acting at the level of the shank sensor were found
to be largest for the frequency range below 30 Hz (Figures 3,
4). In this context, it is worth discussing that PSD peaks within
this particular range might have different origins. PSD peaks
below 4 Hz can most likely be ascribed to the frequency of turns
and/or the skier’s basic movement patterns. For GS, previous
studies revealed turn frequencies of 0.7 Hz and basic movement
frequencies of 1.4 Hz, while for SL, turn frequencies of 1.1 Hz
and basic movement frequencies of 2.2 Hz were observed (Reid,
2010; Spörri et al., 2012, 2016a). PSD peaks above 4 Hz are most
likely a direct consequence of uneven or bumpy snow surfaces
and the chattering of the skis when interacting with the snow
surface while turning. In this context, it is already known that
ski chattering and, therefore, vibrations around 15 Hz to 25 Hz
are strongly dependent on the skier’s turn technique (skidding
vs. carving), the ski’s sidecut, and the occurring snow conditions
(Kugovnik et al., 2000; Federolf et al., 2009; Supej, 2013).

Starting from the aforementioned vibrations acting on the

shank, in both GS and SL vibrations were found to be successively

attenuated while being transmitted through the body (Figures 3,

4). While the knee joint mainly attenuated the signal power of

all occurring vibrations, the hip joint damped the vibrations,

particularly at frequencies >10 Hz, which is in line with previous

findings of a pilot study in GS skiing (Fasel et al., 2016a)

and fundamental studies under laboratory conditions (Rubin

et al., 2003; Kiiski et al., 2008). A distinctive attenuation of ski

racing-specific vibrations at frequencies between 4 to 10 Hz,

was performed by the spinal structures between the sacrum

FIGURE 3 | Group average power spectral density (PSD) curves of all

segments in GS skiing visualized as the area of uncertainty around the

estimate of the mean (±SE). Red, right shank sensor; blue, right thigh sensor;

gray, sacrum sensor; green, sternum sensor.

and sternum sensors. Thus, knowing that vibrations of those
frequencies (i.e., close to the resonant frequency of the spine) are
the most damaging vibrations for spinal structures and increase
the risks of developing low back pain (Hill et al., 2009; Burström
et al., 2015), they may be considered potential components of
mechanisms leading to overuse injuries of the back in alpine
ski racing. Accordingly, special emphasis should be placed on
controlling and/or reducing them to a minimum (Griffin, 2004),
and protecting athletes by adequate prevention measures. This
consideration especially applies to youth athletes whose bodies
are still in growth stages.

Vibration Exposure of the Lower Back
While Skiing GS and SL Turns
Comparing the competition disciplines GS and SL, distinct
differences regarding the vibrations acting on the lower back (i.e.,
sacrum sensor) were identified: for the back overuse-relevant
frequencies of 4 to 10 Hz, PSD values were apparently larger
in GS than in SL (Figure 5). Moreover, lower back (i.e., sacrum
sensor) RMS values, for which calculation accelerations in the
range of 4 to 10 Hz are particularly more weighted, were found
to be significantly larger for GS than SL (Table 1). This might
be explained by the larger average angle between the ski axis
and the instant direction of motion (i.e., higher amount of
skidding) in GS than in SL (Reid, 2010; Spörri et al., 2012) and,
therefore, the more intense vibrations that result when the skis
slide more transversally (and less longitudinally) over damaged
and/or bumpy snow surfaces. A skidding-induced increase of
“usual” chattering of the skis when interacting with undamaged
and/or smooth snow surfaces might not serve as an explanation,
because this phenomenon is known to be typically related to
frequencies around 15 to 25 Hz (Supej, 2013). However, whether
the observed competition-discipline specific differences are of

FIGURE 4 | Group average power spectral density (PSD) curves of all

segments in SL skiing visualized as the area of uncertainty around the estimate

of the mean (±SE). Red, right shank sensor; blue, right thigh sensor; gray,

sacrum sensor; green, sternum sensor.
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FIGURE 5 | Areas of uncertainty around the estimate of the mean (±SE) of the

lower back (i.e., sacrum sensor) group average power spectral density (PSD)

curves for frequencies below 30 Hz in GS and SL. Light gray, GS; dark gray,

SL.

TABLE 1 | Descriptive and inferential statistics of the root-mean-square

accelerations (RMS) that act on the lower back (i.e., sacrum sensor) in the

competition disciplines giant slalom (GS) and slalom (SL).

Parameter Mean ± SD t-test

Giant slalom (GS) Slalom (SL) p-value Cohen d

RMS [m/s2] 11.10 ± 1.20 9.35 ± 0.77 0.001*** 2.822

Level of significance: ***p < 0.001.

clinical relevance needs to be verified by future studies combining
both health and load monitoring.

Methodological Considerations
The current study provided valuable insights on the vibrations
acting on the human body in GS and SL skiing from a general
and a back overuse injury prevention perspective, though there
is a potential limitation that needs to be considered when
interpreting the study findings. Since the IMU sensors were
fixed on the skin and not directly on the bones, particularly
for the thigh segment, relative movements between the IMU
sensors and the underlying bones might have occurred. These
relative movements mainly can be ascribed to soft tissue artifacts,
relative displacements of the fixation suit and the resonance
of the attached sensors. As a consequence, peak accelerations
may be overestimated by ∼12%, as it was estimated in a
previous study comparing the accelerations measured by skin-
fixed and bone-fixed sensors (Kim et al., 1993). However, in
view of the major challenges when collecting kinematic data
under field conditions and on an alpine ski racing course,
a bone fixation was not a feasible option for the current
study.

PERSPECTIVES

Load Monitoring in Alpine Ski Racing with
Body Worn Sensor Technology
One approach for keeping the occurrence of lower back vibration
exposure of athletes, and in particular that of youth athletes,
within a minimal or healthy dose might be found in the
systematic management of training load and recovery time. For
that purpose, both continuous load monitoring and a profound
injury monitoring are fundamental, implying an evident need
for precise assessment tools (Soligard et al., 2016). In the near
future, sensor-based wearable technologies might serve as an
essential tool, especially for monitoring the cumulative exposure
to external loads. In the context of overuse injuries of the
back and alpine ski racing, the IMU sensor-based methodology
used in this study objectively illustrates the great potential such
technologies can have.

On the one hand, with the use of only one IMU sensor,
it might be possible to quantify the overall severities of lower
back vibration exposures during entire training sessions and/or
to specifically monitor vibrations at dangerous frequencies. On
the other hand, with the use of two IMU sensors and pressure
insoles, it might be feasible to assess the overall trunk movement
components and peak loads (enabling a rough estimate of the
patterns of spinal disc loading) by long-term measurements
during regular training. In the context of alpine ski racing, such
an approach has already been applied to short experimental trials
under field conditions (Spörri et al., 2015b, 2016a); indicating the
small remaining gap toward a direct real-time biofeedback during
regular training sessions and or competitions.

Where to Go from Here?
Nevertheless, for finding broad application in sport practical
settings, there are several preceding steps that need to be
taken: from an engineering perspective, body worn sensor
technologies still need to be optimized regarding their size,
fixation and usability, as well as their real-time and embedded
data-processing. In addition, custom-made and application-
specific algorithms that take advantage of the characteristics of
the specific movement analyzed need to be developed. Finally,
prior to the wearable devices/algorithms being launched on
the market, rigorous and independent validation and reliability
studies are indispensable (Halson et al., 2016; Sperlich and
Holmberg, 2016). From a scientific perspective, future research
should primarily focus on investigating the relationship between
sport-specific external loads and injury risks in order to be able to
identify the most relevant parameters for monitoring purposes,
and to verify their predictive validity.

In a working-related context, the evaluation of exposures
to whole-body vibration is based on the calculation of daily
exposure expressed as either: (i) an equivalent continuous RMS
acceleration over an 8 h period, or (ii) the vibration dose value
(VDV) (Griffin, 2004). Such single measures with corresponding
action/limit criteria might serve a more intuitive and perhaps
“more coach friendly” approach than the PSD analyses presented
in this study. Thus, also in a sports-related context such measures
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might work. The only missing steps are the definition of sport-
related testing protocols and the exploration of appropriate
action/limit criteria, which indispensably need to be associated
with exposure time. However, as it was nicely illustrated in
Griffin (2004), there is a large internal inconsistency within
the Directive 2002/44/EC of the European Union for short
duration exposures to whole-body vibration, for instance. In this
case, the aforementioned two alternative methods (RMS and
VDV) may give very different action/limit values. Accordingly,
it might appear more prudent to base actions on the qualitative
guidance (i.e., reducing risk to a minimum) rather than only
refer to the contradicting quantitative guidance values (Griffin,
2004). Catching up this line of argumentation, also in sports-
related context, it might be a reasonable alternative approach
to just monitor the vibrations acting on the lower back and try
(regardless of exposure time) to reduce them to a minimum.

CONCLUSION

The findings of this study lead to the conclusion that in
addition to the previously suggested combined occurrence of
frontal bending, lateral bending and torsion in the highly loaded
trunk, the vibrations acting on the lower back also may be
considered potential components of mechanisms leading to
overuse injuries of the back in alpine ski racing. Accordingly,
prevention measures should also aim to control and/or reduce
to a minimum the vibrations acting on the lower back while
skiing. A particular focus should concentrate on vibrations
occurring with a frequency around 4 to 10 Hz because these
are known to be the most damaging to the spine. In addition,

the current study clearly illustrated the great potential of
wearable sensor technologies tomonitor andmanage the external
loads that act on alpine skiers during regular training and/or
competitions.
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Background: In the past years, there was an increasing development of physical activity

tracker (Wearables). For recreational people, testing of these devices under walking

or light jogging conditions might be sufficient. For (elite) athletes, however, scientific

trustworthiness needs to be given for a broad spectrum of velocities or even fast

changes in velocities reflecting the demands of the sport. Therefore, the aim was to

evaluate the validity of elevenWearables for monitoring step count, covered distance and

energy expenditure (EE) under laboratory conditions with different constant and varying

velocities.

Methods: Twenty healthy sport students (10 men, 10 women) performed a running

protocol consisting of four 5 min stages of different constant velocities (4.3; 7.2; 10.1;

13.0 km·h−1), a 5 min period of intermittent velocity, and a 2.4 km outdoor run (10.1

km·h−1) while wearing eleven different Wearables (Bodymedia Sensewear, Beurer AS

80, Polar Loop, Garmin Vivofit, Garmin Vivosmart, Garmin Vivoactive, Garmin Forerunner

920XT, Fitbit Charge, Fitbit Charge HR, Xaomi MiBand, Withings Pulse Ox). Step count,

covered distance, and EE were evaluated by comparing each Wearable with a criterion

method (Optogait system and manual counting for step count, treadmill for covered

distance and indirect calorimetry for EE).

Results: All Wearables, except Bodymedia Sensewear, Polar Loop, and Beurer AS80,

revealed good validity (small MAPE, good ICC) for all constant and varying velocities

for monitoring step count. For covered distance, all Wearables showed a very low ICC

(<0.1) and high MAPE (up to 50%), revealing no good validity. The measurement of EE

was acceptable for the Garmin, Fitbit andWithingsWearables (small to moderate MAPE),

while Bodymedia Sensewear, Polar Loop, and Beurer AS80 showed a high MAPE up to

56% for all test conditions.

Conclusion: In our study, most Wearables provide an acceptable level of validity

for step counts at different constant and intermittent running velocities reflecting
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sports conditions. However, the covered distance, as well as the EE could not be

assessed validly with the investigated Wearables. Consequently, covered distance

and EE should not be monitored with the presented Wearables, in sport specific

conditions.

Keywords: wearables, validity, monitoring, biofeedback, athletes

INTRODUCTION

In the past years, there was an increasing development of physical
activity trackers (Wearables) which earned them the first place in
the ACSMWorldwide Survey of Fitness Trends in 2016 and 2017,
leaving popular topics like “High-intensity interval training” and
“strength training” behind (Thompson, 2015, 2016).

Besides having applications for physical fitness and health
in the general population by monitoring a plethora of
different variables like step count, covered distance and energy
expenditure (EE), Wearables may be useful for (elite) athletes as
well. In these populations, Wearables might be used to monitor
aspects of training load (Düking et al., 2016) as well as physical
activity during leisure time and provide biofeedback to optimize
exercises (Düking et al., 2017).

However, before Wearables can be used beneficially, the
parameters they provide need to be scientifically trustworthy
which implies that Wearables have sufficient validity which
unfortunately is often an issue especially with commercially
available Wearables (Sperlich and Holmberg, 2016). Several
studies, recently summarized by Evenson et al. (2015) and
Düking et al. (2016), tackled this issue and investigated the
scientific trustworthiness of different Wearables under a variety
of different conditions like walking, jogging, cycling, or resistance
exercise under laboratory as well as under free-living conditions.
Yet, scientific evaluations are strictly speaking only meaningful
for the specific conditions the device was tested in and transfer
of the results of these studies should be done carefully (Bassett
et al., 2012). For recreational people, testing under walking or
light jogging conditions might be sufficient. For (elite) athletes,
however, scientific trustworthiness needs to be given for a broad
spectrum of velocities or even fast changes in velocities reflecting
the demands of the sport. There is scarce literature stating
the validity of consumer level Wearables under sport specific
conditions, even though some of the herein analyzed wearables
are validated in the general population (El-Amrawy andNounou,
2015; Alsubheen et al., 2016; An et al., 2017; Price et al., 2017).

Therefore the aim of the present study was to investigate
the (concurrent) criterion-validity of eleven consumerWearables
concerning the amount of step count, covered distance and EE
during running at four different velocities, an intermittent profile
reflecting conditions in a soccermatch and a 15-min outdoor trial
at a constant velocity.

MATERIALS AND METHODS

For the determination of the validity of step count, covered
distance and EE, the criterion measures are described below. In
order to test the validity of the elevenWearables in a standardized

situation under laboratory conditions, participants performed a
running protocol of a total duration of 25 min, which consisted
of four stages of different constant velocities lasting 5 min each,
as well as a 5 min period of intermittent velocity. Validity for
outdoor conditions was subsequently tested during a 15-min run
at a constant velocity. The validity of the Wearables for step
count, covered distance and EE was assessed during a single
session of treadmill walking and running, using methods similar
to previous validation studies (Takacs et al., 2014).

Subjects and Ethics Statement
A total of 20 healthy and active sport students (10 male and
10 female) volunteered to participate in this study. All subjects
gave written informed consent to the participation in the study.
The study was performed in accordance with the declaration of
Helsinki and approved by the Ethic Committee of the German
Sport University Cologne.

Instruments
Criterion Measures

The Optogait system (OPTOGait, Microgate Srl, Bolzano, Italy)
was used as the criterion measure for monitoring step count on
the treadmill. The system is integrated within the sidebars of
the treadmill (Pulsar, h/p/ cosmos sports and medical GmbH,
Traunstein, Germany) and uses a photoelectric cell system to
precisely measure the number of step count, which is a reliable
(ICC = 0.962) and valid (ICC = 0.997) method for measuring
step counts during treadmill trials (Lee et al., 2014). Step count
was additionally assessed by a manual counter, which was also
used in the outdoor condition.

The covered distance measured by the treadmill was used as a
criterion measure and was determined based on the calibrated
treadmill output (displayed on the electronic output of the
treadmill in meters, based on the speed of the treadmill belt and
time for each revolution of the belt) according to Takacs et al.
(2014). The slope of the treadmill was automatically set at 1%.

The Metamax 3B (Metamax 3B, CORTEX Biophysik
GmbH, Leipzig, Germany) is a portable gas analyzer allowing
measurements of oxygen uptake under laboratory and free-
living conditions, which was used in this study to calculate
EE via indirect calorimetry as the criterion measure for EE.
For the calculation of EE, oxygen uptake (VO2) was measured
continuously breath by breath during the whole exercise
and calculated according to previous reports (Scott et al., 2006).
Before each session, theMetamax 3B flowmeter and gas analyzers
were calibrated using a 3-liter syringe and a known gas mixture
(15% O2 and 5% CO2). During calibration of the gas analyzer
(O2 and CO2 sensors), the Metamax3B alternates sampling of the
known gas mixture and ambient air. The Metamax 3B is a valid
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and reliable system for measuring oxygen uptake (Vogler et al.,
2010). Methods of indirect calorimetry are the most commonly
used to quantify human EE in both laboratory and field settings,
typically by measuring oxygen uptake (Hills et al., 2014).

Wearables

Eleven Wearables were tested, including: Bodymedia Sensewear
MF (300e, BodyMedia Inc, Pittsburgh, PA), Polar Loop (50e;
Polar Electro, Kempele, Finnland), Beurer AS80 (30e; Beurer
GmbH, Ulm, Germany), Fitbit Charge and Fitbit Charge HR
(80e, 100e; Fitbit Inc, San Francisco, CA), Garmin Vivofit
(90e), Garmin Vivosmart (100e), Garmin Vivoactive (250e),
Garmin Forerunner 920XT (470e) (Garmin, Olathe, Kansas),
Withings Pulse Ox (100e) (Withings SA, Issy-les-Moulineaux,
France), Xiaomi MiBand (15e; Xiaomi Inc, Beijing, China).
All devices use a triaxial accelerometer; Garmin Vivoactive and
Garmin Forerunner 920XT also include a GPS sensor. The
Fitbit Charge HR and all Garmin devices also use heart rate to
calculate EE using photoplethysmography or chest belt sensors,
respectively.

Exercise Study Protocol
After arriving in the laboratory, anthropometric (weight, height,
body fat) and personal data (date of birth, sex, handedness) of
the participants were collected and transferred to all devices.
Afterward, eleven Wearables were fixed at the wrist in a
randomized order. The Bodymedia Sensewear armband and one
Withings Pulse Ox device were placed on the backside of the
upper arm and the hip, respectively. For the measurement of
heart rate of the Garmin Wearables, the participants were fitted
with a heart rate chestbelt.

First, the participants were asked to lay down for 20min. After
the first 10 min, the measurement of resting EE was started using
indirect calorimetry technique. Second, the running protocol was
started, consisting of four 5 min stages of different constant
velocities (walking: 4.3; 7.0; running: 10.1; 13.0 km·h−1) each
separated by 5 min of passive rest. After these constant velocities
stages, a 5 min period of intermittent velocity followed. This
protocol was extracted from a smoothed running trial during
a real soccer match (Amisco Data from a soccer match of
the 1. German soccer league). The mean running velocity was
9.1 km·h−1, including twelve sprints with a maximal velocity
of 22.4 km·h−1. Maximal acceleration and deceleration were
5.47 km·h−2 (1.52 m·s−2) and −4.88 km·h−2 (−1.36 m·s−2),
respectively. Remaining time was covered with walking, defined
by velocities smaller than 7.33 km·h−1, which is considered
as preferred transition speed between walking and running
(Rotstein et al., 2005). Besides the tests under laboratory
conditions, ten participants (5 men, 5 women) performed a run
of 2.4 km at a constant velocity of 10.1 km·h−1 under free-living
conditions (Figure 1).

Statistical Analysis
Descriptive statistics (mean± SD) summarize the characteristics
of the participants, including age, weight, height and percent
of body fat. All data were tested for normality with no further
transformation needed. The validity of the Wearables was

determined, as previously performed by other validation studies
(Kooiman et al., 2015; Bai et al., 2016; An et al., 2017), by several
statistical tests:

1) Systematic differences between the Wearables and the
criterion measurement: mean absolute percentage error
(MAPE) compared to the criterion measurement (mean
difference Wearables–criterion measurement ·100· mean
criterion measurement−1).

2) Correlation between the Wearables and the criterion
measurement: Intraclass Correlation Coefficient (ICC) (two-
way random, absolute agreement, single measure, 95%
confidence interval) (Shrout and Fleiss, 1979), common cut-
off points for validity assessment: >0.90 (excellent), 0.75–0.90
(good), 0.60–0.75 (moderate), and <0.60 (low).

3) Measure of precision: typical error (TE): TE= SD ·
√
1-ICC.

4) Level of agreement between the Wearables and the criterion
measurement: upper and lower limits of agreement (LoA) as
described by Bland-Altman.

All statistical analyses of the data were performed by using
a statistics software package SPSS (version 23.0, IBM SPSS
Statistics).

RESULTS

For the laboratory study, 20 participants were included (10males,
mean± SD age: 26.1± 2.8 years; height: 182.3± 7.4 cm; weight:
81.1 ± 11.2 kg; body fat 11.5 ± 2.6%, and 10 females mean ±

SD age: 24.2 ± 1.9 years; height: 168.2 ± 6.7 cm; weight: 60.2
± 5.5 kg; body fat 17.9 ± 4.9%). The outdoor condition and the
Withings Pulse Ox (Hip) were tested with a fewer number of
participants (5 males and 5 females). Due to the high amount
of lacking data, we excluded the Xaomi Miband from any data
analysis.

The mean differences (criterion–wearable), 95% CI for
step count, distance, and EE for all velocities are shown in
Figures 2–4. MAPE, ICC, TE, and LoA are shown in Table 1

(step count), Table 2 (distance), Table 3 (EE).

Step Count
The mean step count (± SD) measured by the criterion
measure was: 538 ± 29 (4.3 km·h−1); 785 ± 38 (7.2 km·h−1);
822 ± 51 (10.1 km·h−1); 863 ± 56 (13.0 km·h−1); 1,231 ±

127 (intermittent); 2,456 ± 145 (outdoor) steps. Bodymedia
Sensewear, Polar Loop, and Beurer AS80 showed a substantial
MAPE up to 16%, a low to moderate ICC, a large TE (up to
100 steps), and the broadest LoA. The other Wearables showed
a small MAPE (<2%) for all test conditions as well as a good
to excellent ICC. Garmin Vivosmart, Garmin Vivoactive, Fitbit
Charge HR, Withings Pulse Ox Hip showed a small TE, and the
narrowest LoA.

Covered Distance
The mean covered distance (± SD) by the criterion measure was:
358 ± 4 (4.3 km·h−1); 601 ± 6 (7.2 km·h−1); 845 ± 12 (10.1
km·h−1); 1,088 ± 21 (13.0 km·h−1); 1,139 ± 45 (intermittent);
2,400 ± 0 (outdoor) m. Beurer AS80 showed a high MAPE (17.6
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FIGURE 1 | Exercise study protocol.

up to 51.9%) for all test conditions. Garmin Vivofit, Vivosmart,
Vivoactive, Forerunner, Fibit Charge, Charge HR and Withings
showed a moderate MAPE (1.3–29.9%) for all test conditions
expect 7.2 km·h−1. The ICC for all Wearables was very low
(< 0.1). Garmin Vivosmart, Garmin Vivoactive, Fitbit Charge,
and Fitbit Charge HR showed a small TE, and the narrowest LoA.

Energy Expenditure
The mean EE (± SD) by the criterion measure were: 24 ± 6 (4.3
km·h−1); 47 ± 10 (7.2 km·h−1); 61 ± 13 (10.1 km·h−1); 74 ± 17
(13.0 km·h−1); 96± 18 (intermittent); 210± 49 (outdoor) kcal.

Bodymedia Sensewear, Polar Loop, Beurer AS80 showed a
high MAPE up to 56% for all test conditions. The Garmin,
Fitbit and Withings Wearables showed a small to moderate
MAPE (1.3–21.2 %) for 10.1 km·h−1, 13.0 km·h−1, and the
Outdoor condition. Garmin Vivofit, Vivosmart, Vivoactive,
Fitbit Charge and Charge HR showed a moderate to good
ICC, whereas Bodymedia Sensewear, Polar Loop, Beurer
AS80, Garmin Forerunner 920XT and Withings Pulse Ox
showed a low ICC. Bodymedia Sensewear, Garmin Vivofit,
Garmin Vivoactive, Fitbit Charge showed a small TE, and the
narrowest LoA.

DISCUSSION

The aim of the present study was to investigate the criterion-
validity of eleven Wearables for step count, covered distance
and EE over a large spectrum of constant and intermittent
velocities reflecting sports conditions. The results indicate that
most Wearables, except Beurer AS80, Polar Loop, Bodymedia
Sensewear provide an acceptable level of validity concerning
step count for all constant velocities, the intermittent protocol
as well as for the outdoor condition. The parameters covered
distance and EE, however, exhibited a low validity for any of the
conditions for most of the Wearables. The Xaomi Miband did
lack a high amount of data and we, therefore, want to discourage
using this Wearable to monitor step count, distance, and EE in
sports conditions.

Step Count
In line with the present study, other laboratory-based studies
also showed generally high correlations for step count between
the criterion measure and Wearables (Takacs et al., 2014; Diaz
et al., 2015; Evenson et al., 2015). Tudor-Locke et al. (2006)
stated that Wearables generally should not exceed a MAPE of 1%

compared to the criterion measure during walking on a treadmill
at a speed of 4.8 km·h−1 in order to be considered accurate.
Garmin Vivosmart, Garmin Vivoactive, Garmin Forerunner 920
XT, Fitbit Charge HR, and Withings Pulse Ox (Hip) had a
MAPE <1% over all test conditions. Fitbit Charge and Garmin
Vivofit had a slightly higher MAPE of <3%, still representing
good results. Bodymedia Sensewear, Polar Loop, and Beurer
AS80 had MAPE between 3.7 and 15.5%, whereby all devices
underestimated the number of steps taken. When errors were
higher, the direction tended to be an under-estimation of step
count by the tracker compared to the criterion. This may be
particularly problematic at slow walking speeds (Evenson et al.,
2015). Garmin Vivosmart, Garmin Vivoactive, Fitbit Charge HR,
and Withings Pulse Ox indicated the narrowest LoA (less than
50 steps for the constant velocities). This can be considered as a
relatively small range. The range between the upper and lower
LoA of Bodymedia Sensewear, Polar Loop, and Beurer AS80
(up to 200 steps) are considered to be too large to be used
interchangeably with the criterion measure. In a sport specific
condition like a marathon run with an average velocity of 10.1
km·h−1 an average step count of 60.000 steps represents an error
of+60 steps for Fitbit Charge HR or−7.500 steps for Bodymedia
Sensewear.

For the intermittent velocities, which are typical for most
sport disciplines, the discrepancy was high, revealing an
underestimation for all Wearables between −14 ± 40 steps
(Garmin Vivosmart) up to−198± 91 (Withings Pulse Ox Wrist).
For intermittent sports, like a 90 min competitive soccer game,
players will cover on average about 13.000 steps, which represents
a small error of −143 steps for Fitbit Charge HR/Garmin
Vivosmart up to a high underestimation of 2.106 steps for Beurer
AS80.

The outdoor condition, which resembled the same velocity as
the third speed on the treadmill (10.1 km·h−1), showed similar
results as the laboratory testing using constant velocities.

In summary, the step count for most of the Wearables, except
Bodymedia Sensewear, Polar Loop, and Beurer AS80 showed to
be valid. However, generally, there is a tendency to underestimate
the number of steps. One might speculate, that a reduced arm
movement while walking/running leads to an underestimation
of the step count. Furthermore, it might be a problem of the
adjustment of the sensitivity of the accelerometers and different
algorithms. The manufacturers have the problem, that wearables
should not count every single arm movement during daily life
as a step. Therefore, the acceleration needs to exceed a certain
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FIGURE 2 | Difference in step count (n) between criterion measure and the eleven activity trackers at different running velocities (A–F), data are shown as mean ±

95% CI. Mean number of steps (± SD) measured by the criterion measure: 4.3 km·h−1 = 538 ± 29; 7.2 km·h−1 = 785 ± 38; 10.1 km·h−1 = 822 ± 51; 13.0

km·h−1 = 863 ± 56; intermittent = 1,231 ± 127; outdoor = 2,456 ±145 steps. SW, Bodymedia Sensewear; PL, Polar Loop; B80, Beurer AS80; GVF, Garmin Vivofit;

GVS, Garmin Vivosmart; GVA, Garmin Vivoactive; GFR, Garmin Forerunner 920XT; FC, Fitbit Charge; FHR, Fitbit Charge HR; WPO H, Withings Pulse Ox Hip; WPO W,

Withings Pulse Ox Wrist.

threshold to be processed by the algorithm and to be counted as
a step.

Covered Distance
The measurement of covered distance showed no consistent
discrepancy over the different velocities between the Wearables
and the criterion measure. The Wearables mainly showed an
overestimation of distance for constant slower velocities (4.3
and 7.2 km·h−1) and an underestimation of distance for higher

velocities (13.0 km·h−1). This is in line with the study of
Takacs et al. (2014), showing an overestimation for slower
speeds (3.2–4.7 km·h−1) and an underestimation for faster speeds
(6.4 km·h−1). In elite sport fast running velocities often occur,
and consequently, the covered distance will be underestimated
in these instances with the presented Wearables. The highest
MAPE (−18.1 to 58.3%) of all Wearables was reached at the
velocity of 7.2 km·h−1, whereas the lower velocity of walking
(4.3 km·h−1) showed a better MAPE (1.3 to 19%). The ICC
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FIGURE 3 | Difference in covered distance (m) between the criterion measure and the nine activity trackers at different running velocities (A–F), data are shown as

mean ± 95% CI. Mean covered distance (± SD) by the criterion measure were: 4.3 km·h−1 = 358 ± 4; 7.2 km·h−1 = 601 ± 6; 10.1 km·h−1 = 845 ± 12; 13.0

km·h−1 = 1,088 ± 21; intermittent = 1,139 ± 45; outdoor = 2,400 ± 0 meter. B80, Beurer AS80; GVF, Garmin Vivofit; GVS, Garmin Vivosmart; GVA, Garmin

Vivoactive; GFR, Garmin Forerunner 920XT; FC, Fitbit Charge; FHR, Fitbit Charge HR; WPO H, Withings Pulse Ox Hip; WPO W, Withings Pulse Ox Wrist.

ranged from 0.0 to 0.2 for all tested conditions, indicating poor
agreement with the criterion measure. This is line with the study
of Takacs et al. (2014), showing small ICC between 0.0 and 0.05.
Although Garmin Vivosmart, Garmin Vivoactive, Fitbit Charge,
and Fitbit Charge HR showed the narrowest LoA, the range is still
insufficiently high. In sport specific situations, like a marathon
run at 10.1 km·h−1, covered distance will be overestimated by
∼2.94 km with Garmin Forerunner 920XT, or underestimated by
∼16.9 km with Beurer AS80.

In the intermittent protocol, the covered distance derived
from Wearables show a high discrepancy compared to the
criterion measure, with some Wearables overestimating
(Withings Pulse Ox Hip, Garmin Forerunner 920XT, Garmin
Vivoactive, Garmin Vivosmart), others underestimating
this parameter (Fitbit Charge HR, Fitbit Charge, Garmin
Vivofit, Beurer AS80). For intermittent sports, like a 90 min
soccer game (mean distance 12 km), the covered distance
will be underestimated by ∼1.080m using Withings Pulse
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FIGURE 4 | Differences in EE (kcal) between the criterion measure and the eleven activity trackers at different running verlocities (A–F), data are shown as mean ±

95% CI. Mean EE (± SD) by the criterion method were: 4.3 km·h−1 = 24 ± 6; 7.2 km·h−1 = 47 ± 10; 10.1 km·h−1 = 61 ± 13; 13.0 km·h−1 = 74 ± 17; intermittent

= 96 ± 18; outdoor = 210 ± 49 kcal. SW, Bodymedia Sensewear, PL, Polar Loop; B80, Beurer AS80; GVF, Garmin Vivofit; GVS, Garmin Vivosmart; GVA, Garmin

Vivoactive; GFR, Garmin Forerunner 920XT; FC, Fitbit Charge; FHR, Fitbit Charge HR; WPO H, Withings Pulse Ox Hip; WPO W, Withings Pulse Ox Wrist.

Ox hip up to ∼5.076m using Beurer AS80 based on our
findings.

The outdoor condition (10.1 km·h−1) showed similar high
MAPE compared to the laboratory condition with the same
Wearables overestimating (Withings Pulse Ox Wrist and
Hip, Garmin Forerunner 920XT, Garmin Vivoactive, Garmin
Vivosmart) or underestimating (Fitbit Charge HR, Fitbit Charge,
Garmin Vivofit, Beurer AS80) the covered distance.

In summary, for monitoring the covered distance, no
Wearable could achieve good validity for all laboratory-
based constant and intermittent velocities as well as in
the outdoor condition. We acknowledge that the covered
distance can be assessed by other Wearables employing
for example receivers for Global Navigation Satellite
Systems such as Global Positioning Systems (Cummins
et al., 2013) and it seems that this technology is superior
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to accelerometry to derive the covered distance in sports
conditions.

Energy Expenditure
The measurement of EE showed no consistent discrepancy over
the different velocities between the Wearables and the criterion
measure. The Wearables mainly showed an overestimation of
EE for constant slower velocities (4.3; 7.2; 10.1 km·h−1) and
an underestimation of EE for higher velocities (13.0 km·h−1).
Overall, Bodymedia Sensewear, Polar Loop, Beurer AS80 showed
a low validity for all test conditions. The Garmin, Fitbit and
Withings Wearables showed a better validity with small to
moderate MAPE (1.3–21.2%) for the faster velocities (10.1
km·h−1, 13.0 km·h−1). The results are in line with a review
of Evenson et al. (2015) showing a low validity for EE in 10
adult studies. Although Bodymedia Sensewear, Garmin Vivofit,
Garmin Vivoactive, and Fitbit Charge showed the narrowest
LoA, the range is still insufficiently high. The ICC ranged from
moderate to substantial agreement, while larger bias show the
tendency to underestimate EE. Extrapolated to a marathon run
(∼3,000 kcal), this equates to an error of∼86 kcal overestimation
for Withings Pulse Ox Wrist up to ∼820 kcal for Polar Loop for
a runner of 70 kg with a finishing time of 4:13 h (McArdle et al.,
2000).

Fitbit Charge, Garmin Vivoactive, Garmin Vivosmart,
and Polar Loop showed relative small MAPE (<5.6%) for
the intermittent protocol, whereas the other devices mainly
underestimate the EE (Withings Pulse Ox (Wrist or Hip),
Garmin Forerunner 920XT, Garmin Vivofit, Beurer AS80,
Bodymedia Sensewear). For intermittent sports, like a 90 min
soccer game (mean EE ∼1300 kcal), EE will be underestimated
by ∼17 kcal using Garmin Vivoactive up to ∼630 kcal using
Withings Pulse Ox hip.

The outdoor condition showed a completely contrary pattern
compared to the laboratory condition (10.1 km·h−1). While all
devices underestimate the EE in the outdoor condition, most
of the devices overestimate EE in the comparable laboratory
condition. This is surprising, but may be an issue of reliability,
an aspect we intentionally did not target in our study. To clarify
this, we want to encourage researchers in conducting reliability
studies on the presented Wearables. In summary, the presented
Wearables should be used very cautiously to assess EE.

LIMITATIONS

Generally, we have to acknowledge some limitations of the
present study. First, there might be some limitations arising
from calculating EE via indirect calorimetry using the device

Metamax 3B (Lighton, 2008). Even though the experiments
were conducted within 2 weeks of time, which might limit the
degradation of the oxygen sensor, previous studies showed, that
the Metamax 3B produces acceptably stable and reliable results,
but is not adequately valid duringmoderate and vigorous exercise
without some further correction of VO2 and VCO2 (Macfarlane
and Wong, 2012). As in every validation study, we cannot be
entirely sure if some error arises from the criterion-measure
and encourage to see the results of this study in light of these
limitations.

Second, the velocities on the treadmill were not randomized,
as we expected that higher velocities would influence slower
velocities more than the other way round. Therefore, we decided
not to randomize the velocities, but to gradually increase the
velocity. Additionally, during the 5 min rest periods, spirometric
and heart rate values decreased to resting levels. Anyhow, we
cannot completely discard a cardiovascular drift.

Third, in comparison to several previous validation studies
(Kooiman et al., 2015; Bai et al., 2016; An et al., 2017),
we investigated a similar number of subjects. However, the
relatively small sample size might limit the statistical power of
the present results. There are several statistical approaches for
validation studies. However, possibly no statistical approach will
remain uncriticised and every approach has its advantages and
drawbacks. According to previously published validation studies
(Kooiman et al., 2015; Bai et al., 2016; An et al., 2017), we used
the statistical approach from this studies.

CONCLUSION

In our study, most Wearables provide an acceptable level of
validity for step counts at different constant and intermittent
running velocities reflecting sports conditions. The most valid
Wearables, represented by the smallest MAPE, to monitor step
count were Garmin Vivosmart, Garmin Vivoactive, Garmin
Forerunner 920XT, Fitbit Charge, Fitbit Charge HR andWithings
Pulse Ox (Hip). Yet, the covered distance, as well as the EE,
could not be assessed validly with the investigated Wearables.
Especially in sport specific conditions, like a marathon run
or a 90 min soccer game, covered distance and EE showed
high errors for nearly all Wearables. Consequently, covered
distance and EE should not be monitored with the presented
Wearables.
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Australian Rules football comprises physical and skilled performance for more than

90min of play. The cognitive and physiological fatigue experienced by participants during

a match may reduce performance. Consequently, the length of time an athlete is on the

field before being interchanged (known as a stint), is a key tactic which could maximize

the skill and physical output of the Australian Rules athlete. This study developed two

methods to quantify the relationship between athlete time on field, skilled and physical

output. Professional male athletes (n = 39) from a single elite Australian Rules football

club participated, with physical output quantified via player tracking systems across

22 competitive matches. Skilled output was calculated as the sum of involvements

performed by each athlete, collected from a commercial statistics company. A random

intercept and slope model was built to identify how a team and individuals respond to

physical outputs and stint lengths. Stint duration (mins), high intensity running (speeds

>14.4 km · hr−1) per minute, meterage per minute and very high intensity running (speeds

>25 km·hr−1) per minute had some relationship with skilled involvements. However, none

of these relationships were strong, and the direction of influence for each player was

varied. Three conditional inference trees were computed to identify the extent to which

combinations of physical parameters altered the anticipated skilled output of players.

Meterage per minute, player, round number and duration were all related to player

involvement. All methods had an average error of 10 to 11 involvements, per player per

match. Therefore, other factors aside from physical parameters extracted from wearable

technologies may be needed to explain skilled output within Australian Rules football

matches.

Keywords: performance analysis, sport statistics, classification tree, team sport, GPS

INTRODUCTION

Australian Football (AF) involves a high physical and skilled output for more than 90min of play to
maximize team performance (Gray and Jenkins, 2010). Physical and skill output may decline, as a
function of time, during AFmatches (Coutts et al., 2010). Consequently, a key tactical consideration
during AF matches relates to the length of an on-field stint (i.e., the consecutive amount of time
spent on ground by a player) for a player, before their physical and/or skilled output is adversely
affected (Montgomery and Wisbey, 2016). In elite AF, there is a limitation on the number of player
substitutions a team can make within a match. In the 2017 Australian Football League season, this
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limit was 90 rotations per match. Consequently, it is crucial in
AF that stints are not ended (or started) unnecessarily early, or
are too short or long in duration.

During an AF match, various athlete performance data is
collected. Physical output can bemeasured via Global Positioning
System (GPS) or Radio Frequency Identification (RFID) (Wyld,
2008; Coutts and Duffield, 2010). These devices typically sample
at 10 or 15Hz, allowing for the calculation of total distance
(m), distance within velocity bands (i.e., distance covered
>14.4 km·h−1), and peak velocity (km·h−1). Match statistics
are provided by commercial performance analysis companies
(Sullivan et al., 2014b). However, there is less standardization
in the measurement of skilled output comparative to physical.
Skilled output can be measured by quantifying the number of
involvements or actions completed by each player. Involvements
may include kicks, handballs and other actions considered
important to match success by AF coaching staff. The amount
of time each player spends on the field and on the bench is
available as a measure of temporal output (Bradley and Noakes,
2013). Potentially due to a combination of cognitive (Tenenbaum
and Bar-Eli, 1993) and physiological fatigue (Aughey, 2010), it is
unlikely that players can maintain an optimal level of physical
and skilled output for an entire match (Thelen and Smith, 1994;
Aughey, 2010). In AF, a decrement in physical output has been
observed for each quarter completed (Coutts et al., 2010), with
a 3% reduction in meterage per minute for every 2min spent
on field during rotations longer than 5min (Montgomery and
Wisbey, 2016). Similarly, the level of skilled involvements for
players also likely declines as the duration of a match increases.
Recent research has examined how work rate, time on field and
situational factors, including the number of stoppages, interact
to affect skilled involvement (Sullivan et al., 2014a,b). Although
factors influencing the skilled output of players have been
identified to date (Sullivan et al., 2014a,b), research assessing how
these factors may aid match-day stint/rotation strategies remains
to be examined. Measures of skilled, physical and temporal
output could be modeled to identify how the skilled output of a
team and individual responds to change in temporal and physical
output.

For this purpose, generalized linear mixed models present a
suitable analysis option, in that they allow for the quantification
of independent and dependent variables with repeated measures
(Gałecki and Burzykowski, 2013). Random intercept models
allow for the quantification of pooled data, whereas random
slope modeling outputs differing coefficients and equations for
each individual entered into the model (Eyduran et al., 2016).
Consequently, the relationship between time, physical and skilled
outputs at a team and individual level can be quantified.

Decision trees present an alternative, non-linear option to
quantify the relationship between physical, skilled and temporal
outputs. Conditional inference trees, for example, incorporate a
series of significance tests to create thresholds for each dependent
variable (Sardá-Espinosa et al., 2017). These thresholds create
branches in the tree, each consisting of differing combinations
of dependent variables, which then leads to a prediction of the
independent variable. It is possible to nest participants within
these trees, thus accounting for how individuals respond to

differing combinations of dependent variables. This could allow
examination of how physical and temporal parameters interact to
influence skilled output.

Utilizing a mixed analysis approach comprised of generalized
linear mixed models and conditional inference trees, this study
will; (i) identify how athlete skilled output changes as a function
of time in an AF match, (ii) determine the extent to which
these changes occur at the individual level, and (iii) reveal how
different permutations of physical and skilled parameters might
correspond to differences in skilled output.

METHODS

Participants
Professional male athletes (n = 39) from an elite Australian
Football League (AFL) club provided written informed consent
to participate in this study (age: 23 ± 4 years, height: 187 ± 8
cm, mass: 86 ± 9 kg). All participants completed at least one full
match and at least one stint lasting >3min in the 2016 AF home
and away season. Ethical approval was granted by the Victoria
University Human Research Ethics Committee.

Data Collection
Skilled output, defined as the sum of events completed by
each player, are likely to contribute to team success as an
“involvement.” This was calculated as the total of involvements
completed by each player, aggregated from a timeline supplied
by a commercial provider of sports statistics (Champion Data,
Melbourne, Australia). Champion Data provide a timeline of
key actions time stamped to each player, which can broadly
be categories as; (i) disposals, (ii) other offensive actions, and
(iii) defensive actions. An Excel spreadsheet was designed to
aggregate the number of key involvements completed by each
player within each stint. To develop the most meaningful
measure of skilled output for the team included in this study,
key involvements were chosen in consultation with the coaching
group (Appendix 1). The sum of involvements for each player’s
stint was databased alongside physical data, and saved as a.csv
file for analysis.

Data was collected from 14 indoor matches and 7 outdoor
matches (n = 21) during the 2016 AFL home and away Season.
For all indoor matches, athlete physical output was collected via a
Catapult T5 Local Positioning System (LPS) tag (Catapult Sports,
Melbourne, Australia). During outdoor matches, all participants
wore a Catapult S5 GPS (Jennings et al., 2010) device (Catapult
Sports, Melbourne, Australia). Both devices were worn within
each player’s jumpers in a custom-sewn pouch. All matches were
monitored live using proprietary software Openfield (Catapult
Openfield v 1.11.2-1.13.1) to ensure an adequate signal quality
of >8 packets/second, and that stints were correctly recorded.
At the conclusion of each match, files were synchronized to the
Catapult Cloud storage system. Data for each stint was then
exported into a.csv file for further analysis.

Data Cleaning
This study aimed to provide methods that were generalizable to
future data. As a result, several filters were applied to the data
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to remove outliers (Ofoghi et al., 2013). Only stint maximum
velocities in the bottom 98% of the data set (<32.2 km·h−1),
durations in the top 95% (>3min) and involvements in the
bottom 98% (<2.2 Involvements/minute) were included in the
analysis. These cut-offs were heuristically selected based on
perceived practical application of the findings. All parameters
were then expressed relative to stint time. Each player was
assigned a random ID (1–45), whilst each stint was labeled in the
format “Quarter. Stint” (i.e., the first stint of quarter 1 was labeled
as 1.1). Round number was labeled from 1 to 23.

Feature Selection
Parameters included in the analyses were selected based on
validity, reliability and multicollinearity features. This process
was informed via a literature review on common locational
parameters (Cummins et al., 2013), a correlation matrix and
variance inflation matrix between all parameters. Consequently,
meterage per minute (m·min-1), high intensity running (distance
>14.4 km·h−1) per minute (m·min−1), very high intensity
running (distance >25 km·h−1) per minute (VHIR·min−1), stint
time (mins) and involvements per minute (IPM−1) were all
selected for inclusion in the study.

Generalized Linear Mixed Models
Generalized linear mixed models were computed in R, using the
package lme4 (R Foundation for Statistical Computing, Vienna,
Austria). For all models, player ID, stint and round number
were specified as random effects, with the restricted maximal
likelihood approach adopted (Gałecki and Burzykowski, 2013).
A random intercept model was built to identify how skilled
output changes, as a function of the other parameters,
across the team. Involvements per and duration were the
dependent and independent variables, respectively. Bench time,
meterage per minute, high intensity running per minute and
very high intensity running per minute were added to the
model sequentially, with the Akaike information criteria (AIC)
computed after each model to assess variable importance
(Akaike, 1981). Preliminary modeling revealed that bench time
(the time an athlete spent off the field between stints) had
minimal impact upon model performance and it therefore
was not included in the final model. Finally, a random
slope model was built for each player using the remaining
parameters.

Conditional Inference Trees
Three conditional inference trees were constructed using the
party package in R. This algorithm operates based on a pre-
determined level of statistical significance (p < 0.05), and
conducts recursive partitioning based on factors most strongly
linked with the response variable (Sardá-Espinosa et al., 2017).
For the present study, the data were split into an 80% training
set and a 20% testing set. Each tree was computed with a 95%
confidence interval (CI) under a Bonferroni correction and a
minimum terminal node size of 100 instances. The first tree in
this study utilized the same parameters as the final generalized
linear mixed model. Round and stint number was removed from
the second tree, whilst player ID was removed from the final tree.

Each tree was cross-validated on the test data set, with model
performance represented by the rootmean squared error (RMSE)
of involvements.

RESULTS

Generalized Linear Mixed Models
Descriptive statistics of each parameter for stints (n = 2493) and
matches (n = 21) are shown in Table 1. The coefficients for the
random intercept model are presented in Table 2 with a 95% CI.
This model had an R2-value of 0.01, and a conditional R2 of 0.14
(Figure 1).

The coefficients for the random slope model are presented in
Figure 2. This model had an R2 of 0.013, and a conditional R2

of 0.23 (Figure 1). The relationship between both duration (for
25/39 players) and high intensity running (for 39/39 players),
and involvements per minute was negative. Conversely, MPM
experienced a positive relationship with involvements per minute
for most players (36/39 players). The relationship between
very high intensity running per minute differed considerably
depending on the player. Each of these parameters had only
a minor relationship with involvements, with the final model
having an R2 of 0.012, and a conditional R2 of 0.23.

TABLE 1 | Descriptive statistics (mean ± SD) for; Involvements (n), duration

(mins), bench time (mins), distance (m), high intensity running (HIR, distance

>14.4 km·h−1, m), very high intensity running (VHIR, distance >25 km·h−1, m).

Stint Match

Distance (m) 1,816 ± 903 11,608 ± 3, 573

HIR (m) 500 ± 263 3,198 ± 1, 165

VHIR (m) 24 ± 29 154 ± 105

Duration (mins) 13.7 ± 7.0 87.8 ± 27.2

Involvements (n) 3.6 ± 2.6 23.2 ± 9.3

Bench time (mins) 11.6 ± 9.9 74.2 ± 17.2

TABLE 2 | Model 1 and 2: coefficients of fixed effects (95% confidence interval)

for Intercept/Involvements per minute (IPM−1), Duration (mins), High intensity

running per minute (HIRMPM, m·min−1 ), meterage per minute (MPM−1,

m·min−1 ) and very high intensity running per minute (VHIRM, m·min−1 ).

Estimate (95% CI) t-Value

MODEL 1

Intercept (IPM−1) 0.108 (0.187, 0.03) 2.695

Duration (mins) −0.001 (0, −0. 002) −2.802

HIRMPM (m·min−1 ) −0.002 (−0.001, −0.003) −3.746

MPM (m·min−1 ) 0.002 (0.002, 0.001) 4.785

VHIRM (m·min−1 ) 0.003 (0.006, 0) 1.692

MODEL 2

Intercept (IPM−1) 0.142 (0.037, 0.247) 2.648

Stint duration (mins) −0.002 (−0. 003,0) −2.572

HIRMPM (m·min−1 ) 0.002 (0.001, 0.003) 3.813

MPM (m·min−1 ) −0.002 (−0.003, −0.001) −4.490

VHIRM (m·min−1 ) 0.001 (−0.003, 0.006) 0.684
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FIGURE 1 | Individual coefficients for Duration (mins), meterage per minute (MPM, m·min−1 ), high intensity running per minute (HIRMPM, m·min−1 ), and very high

intensity running per minute (VHIRM, m·min−1 ) in the random slope model.

FIGURE 2 | Predicted vs actual involvements per minute (IPM−1) in random intercept and random slope models, with gray reference line at 0 involvements of error.

Conditional Inference Trees
Results from the first conditional inference classification tree
revealed Player ID, stint number, duration and round number as
the strongest indicators of involvements per minute (Figure 3).
An RMSE of 0.12 involvements per minute (approximately 10.1
involvements per match) was reported on both the test and
training sets. This tree’s first partition included player ID, with

rotation, duration and Round number forming the second to
fourth partitions respectively. The second tree included player,
stint duration and stint meterage per minute (Figure 4) as the
strongest predictors. As per the first conditional inference tree,
an RMSE of 0.12 for involvements for minute (10.1 involvements
per match) was observed on both the test and train sets. This
tree had an initial partition based on Player ID, with subsequent
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FIGURE 3 | Conditional inference tree with Player ID, Round and Duration (mins) as independent variables, and involvements per minute (IPM) as the dependent

variable where n = the number of cases in each group and y = predicted IPM.

Group A = Player ID (1, 3, 5, 6, 7, 8, 9, 11, 13, 14, 16, 17, 19, 23, 24, 26, 29, 31, 32, 39).

Group B = Player ID (2, 4, 10, 12, 15, 18, 20, 21, 22, 25, 27, 28, 30, 33, 34, 35, 36, 37, 38).

Group C = Rotation (1.1, 1.2, 1.3, 2.2, 2.3, 3.1, 3.2, 3.3, 4.1).

Group D = Rotation (2.1, 4.2, 4.3).

Group E = Round (19).

Group F: Round (1, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23).

Group G = Round (1, 2, 6, 8, 15, 17, 20, 22, 23).

Group H = Round (3, 4, 7, 9, 12, 13, 16, 18, 19, 21).

partitions based on; duration (2nd), an additional division of
Player ID (3rd) and finally duration or MPM (4th).The final tree,
with ID removed as an input, used only meterage per minute
and stint duration to predict involvements per minute (Figure 5).
An increased RMSE (0.12–0.13 involvements per minute; 11.05
involvements per match) was observed on both sets of data. In
this tree, both the first and second partitions were determined
using MPM, with duration only forming a partition in instances
where MPM exceeded 125.

DISCUSSION

This study developed two methods to quantify the impact of
physical outputs, on a team and individual level, on skilled
output by elite AF players during matches. The first method
comprised two generalized linear mixed models, resulting in
broad equations for the team and individual players. Bothmodels
had low R2 and conditional R2-values, resulting in limited
explanatory ability.

The second method, a series of conditional inference trees,
identified how different circumstances and combinations of
physical parameters may change an athletes’ expected skilled
output. Whilst partitions in the first tree were dominated by
uncontrollable factors, such as round and stint number, the
second tree achieved a similar classification accuracy using
meterage per minute, player ID and duration. The final tree
removed player ID as a parameter to identify a broad set of team
rules, which only slightly reduced accuracy (0.13 compared to
0.12 involvements per minute).

The random intercept model broadly showed the strength
and direction of influence for each parameter. In the observed
team, meterage per minute had a negative relationship with
involvements per minute. The only variable to have any positive
relationship was high intensity running per minute. Practitioners
could use this information as a general “rule of thumb” in
match day decisionmaking, whereby, a player who is consistently
running at a high meterage per minute for an extended duration,
without completing high intensity running, is less likely to reach a
maximal skilled output. A limitation of this modeling technique
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FIGURE 4 | Conditional inference with Player ID, Duration (mins) and meterage per minute (MPM) as independent variables, and involvements per minute (IPM) as the

dependent variable where n = the number of cases in each group and y = predicted IPM.

Group A = Player ID (1, 3, 5-9, 11-17, 19, 23, 24, 26, 29, 31, 32, 39).

Group B = Player ID (2, 4, 10, 12, 15, 18, 20, 21, 22, 25, 27, 28, 30, 33, 34, 35, 36, 37, 38).

Group C = Duration (<5 mins).

Group D = Duration (>5 mins).

Group E = Player ID (3, 5, 6, 7, 8, 13, 29, 32, 39).

Group F = Player ID (1, 9, 11, 14, 16, 17, 19, 23, 24, 26, 31).

is that it does not necessarily apply to all players, and does not
identify how players individually respond to different parameters.

The random slope model addresses the above issue by
allowing for different coefficients of the physical parameters for
each player. This allows for better profiling of each athlete and for
the importance of each parameter to better reflect an individual’s
strengths and weaknesses. In the observed team, for example,
each of the parameters had positive and negative relationships
with skilled output, depending on the player. However, despite
the strengths of this modeling approach there are still limitations.
The linear decline of involvements per minute declines in
response to the temporal and physical inputs is assumed, when
it is unlikely the decline in skilled output would be so gradual.
Rather, players likely need time and physical intensity on field
before their skilled output reaches an optimal level. Finally,
these models suggest some level of independence between the
physical and temporal parameters. As a result, they are unable to
determine how parameters may interact to affect skilled output.

The first tree in this study used the same parameters entered
into the random slope model, to identify how parameters interact
to influence skilled output (Figure 3). However, the significance

testing procedure selected uncontrollable factors, such as round
and rotation numbers as the key explainers of skilled output.
The first tree provided a schematic of factors that may influence
skilled output in AF. However, because none of the factors
from this tree are controllable within a match, this tree would
likely have limited uptake in an applied setting. The second tree
removed round and rotation number and partitioned based on
player, stint time and meterage per minute (Figure 4). In an
applied setting, the schematic created by this tree could be used to
identify the conditions that are likely to lead to maximal skilled
output for each player. Additionally, it could be used in a real-
time monitoring setting, to identify if the current circumstances
imposed upon a player are conducive to maximal skilled
output.

The final conditional inference tree in this study removed
player, in an attempt to generate a broad set of team rules. This
could provide a cleaner schematic of influences upon skilled
output across a team. Using only meterage per minute and stint
time, this model set six major partitions for skilled involvement.
This ranged from high physical output, but a mixed skilled
output, to a low physical and low skilled output. In this playing
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FIGURE 5 | Conditional inference tree including Duration (mins) and meterage per minute (MPM) as independent variables, and involvements per minute (IPM) as the

dependent variable where n = the number of cases in each group and y = predicted IPM.

group, a high intensity (>172 m·min−1), or, a moderate intensity
(125–172 m·min−1) and moderate duration (<19.75min) leads
to a higher skilled output. Consequently, match day prescription
strategies for the observed team could use this information to
limit the stint time of players.

None of the models developed in this study had particularly
strong accuracy. The average match duration for a player
included in this study was 86min, resulting in an average error of
0.12 IPM and equating to an average error of approximately 10.1
involvements per match. This is in agreement with other research
examining the impact of contextual factors on both physical
and skilled output in AF matches. In itself, physical output is
influenced by factors, such as the opposition and the location
of a match (Ryan et al., 2017). Furthermore, trivial relationships
between common locational parameters and Champion Data
player ratings as a measure of skilled performance have been
noted elsewhere (Dillon et al., 2017). These findings, collectively,
highlight the importance of using skilled and technical data
alongside locational parameters to inform match day decision-
making, as opposed to the latter alone.

There are several factors which may explain the limited
relationship between GPS parameters and skilled output in AF
matches. Firstly, AF is a dynamic sport, and many circumstantial
details are difficult to model. In particular, opposition playing
styles and changes in positions (Robertson and Joyce, 2014),
may have an impact on both the physical and skilled output
of player (Sullivan et al., 2014a). Secondly, the aggregate data
utilized in this study is limited in its’ ability to identify thresholds
for reductions in both physical and skilled output. Other research
has examined these outputs across quarters (Bradley and Noakes,

2013), andmore recently within stints (Montgomery andWisbey,
2016). Further work is needed to examine physical and skilled
behavior as a time-series, to better describe the outputs competed
by players. Finally, this was a methodological study, which
aimed to identify trends across a single playing group. For
this methodology to be applied to other teams and sports,
the modeling approaches would need to be independently run.
Therefore, the thresholds created here may not necessarily stand
true outside of this playing group.

The models utilized in this study may still aid decision making
in elite team sports. They use information that is controllable
and readily available during matches, and therefore may assist in
situations where objective information is desired to make quick,
time-sensitive decisions.

CONCLUSION

This study developed two methods to identify the relationship
between physical, skilled and temporal outputs, on an individual
and team level. The first method utilized random slope and
intercept models to identify factors that may correlate with a
decline in skilled output, and what direction their relationship
is with skilled output. This could be used to develop a broad
equation for the team and individuals, to identify how they
would react to differing stint times and physical workloads. The
second set of methods utilized conditional inference trees to
identify how physical and temporal parameters may interact to
influence skilled output. Together, these three models describe;
i) the impact of uncontrollable factors, such as round and
rotation number, ii) how different individuals react to different
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outputs and iii) a general set of thresholds for the data
entered into the modeling process. These trees can provide a
schematic to assist match day prescription in team sports. None
of these models held an optimal predictive ability, suggesting
that wearable technology data and notational analysis feeds
could be analyzed differently to improve their use in team
sports.
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For the purpose of gaining a deeper understanding of the relationship between external

training load and health in competitive alpine skiing, an accurate and precise estimation of

the athlete’s kinematics is an essential methodological prerequisite. This study proposes

an inertial sensor-based method to estimate the athlete’s relative joint center positions

and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed

to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee,

hip, shoulder, elbow, and wrist joint centers, as well as the athlete’s CoM kinematics

were validated against a marker-based optoelectronic motion capture system during

indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was

below 110mm and precision (error standard deviation) was below 30mm. CoM position

accuracy and precision were 25.7 and 6.7mm, respectively. Both the accuracy and

precision of the system to estimate the distance between the ankle of the outside leg

and CoM (measure quantifying the skier’s overall vertical motion) were found to be below

11mm. Some poorer accuracy and precision values (below 77mm) were observed for

the athlete’s fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the

line corresponding to the projection of ski’s longitudinal axis on the snow surface). In

addition, the system was found to be sensitive enough to distinguish between different

types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a

useful, pervasive way to monitor and control adverse external loading patterns that occur

during regular on-snow training. Moreover, as demonstrated earlier, such an approach

might have a certain potential to quantify competition time, movement repetitions and/or

the accelerations acting on the different segments of the human body. However, prior

to getting feasible for applications in daily training, future studies should primarily focus

on a simplification of the sensor setup, as well as a fusion with global navigation satellite

systems (i.e., the estimation of the absolute joint and CoM positions).

Keywords: inertial sensors, center of mass, alpine skiing, movement analysis, body model, posture estimation,

validation
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INTRODUCTION

For the purpose of gaining a deeper understanding of the
relationship between training load and health in competitive
sports, an accurate and precise estimation of the athlete’s
kinematics is an essential methodological prerequisite (Soligard
et al., 2016). External load such as competition time, movement
repetition counts, speed, acceleration, etc. (Soligard et al.,
2016) could thus be quantified based on the estimated athlete’s
kinematics. In the context of alpine skiing, a major aim of
coaching is to optimize the skier’s posture and, thus, the
relationship between his center of mass (CoM) and his left
and right feet (Tjørhom et al., 2007; Kipp et al., 2008; Spörri
et al., 2012b). In order to formalize this concept, a previous
study focused on the parameter “vertical distance,” the distance
between the left or right foot and the skier’s CoM, and the
parameter “fore-aft position,” the projection of the vector relying
the CoM with the left or right foot onto the snow surface
(Spörri et al., 2012b). Earlier studies in alpine skiing primarily
used video-based stereophotogrammetric systems to determine
an athlete’s kinematics on a ski track (Supej et al., 2003;
Federolf, 2012; Spörri et al., 2012a,b, 2016b; Hébert-Losier
et al., 2014). Under such in-field conditions, photogrammetric
errors of <1.5 cm were reported (Klous et al., 2010; Spörri
et al., 2016c). However, despite major advantages regarding
accuracy, corresponding measurement setups are complex,
capture volumes are limited to a few turns only, and post-
processing is time consuming.

Accelerated by these limitations and recent advances in
wearable measurement technology, in the last few years,
differential global navigation satellite systems (GNSS) have
gained substantial attention as being a valuable alternative for
estimating absolute CoM kinematics in-field (Brodie et al., 2008;
Lachapelle et al., 2009; Waegli and Skaloud, 2009; Supej, 2010;
Gilgien et al., 2013, 2014a,b, 2015a,b, 2016; Supej et al., 2013;
Fasel et al., 2016a; Kröll et al., 2016). A major challenge of
this alternative approach is that the GNSS antenna cannot be
placed on the CoM directly and, therefore, the relative position
of the GNSS antenna with respect to the CoM needs to be
estimated. Parallel to these developments, CoM kinematics were
also approximated based on a single inertial sensor for both
human (e.g., Esser et al., 2009; Peyrot et al., 2009; Myklebust
et al., 2015) and animal (e.g., Pfau et al., 2005; Warner et al.,
2010) motion analysis. The hypothesis of these studies was that
the chosen sensor location would match the CoM location.While
this hypothesis may be true for gait, it may be violated in certain
sports where upper and lower limbmovement may alter the CoM
position relative to the chosen sensor location. For example, for
cross-country skiing, Myklebust et al. (2015) reported average
RMS differences between the true CoM position and a sensor
located at the sacrum on S1 of up to 32± 4mm.

In alpine ski racing, one approach to resolve the issue of the
CoM moving relative to the sensor location is the use of a simple
pendulummodel as suggested by Gilgien et al. (2015b) and Supej
et al. (2013). However, while providing reasonable estimates of
the athlete’s overall CoM kinematics, such a model could not
estimate the athlete’s posture, which is key for the understanding

of the relationship between specific loading patterns and health
in competitive sports. Another option might be the fusion or
combination of GNSS with body worn inertial sensor systems
(Brodie et al., 2008; Fasel et al., 2016a). In recent years, several
experimental field studies considered these systems to estimate
athlete’s relative joint center positions and CoM kinematics
(Brodie et al., 2008; Supej, 2010; Fasel et al., 2016a). Currently,
there exists no validated commercial product estimating the CoM
kinematics based on inertial sensors. However, in the context of
alpine skiing only the study Fasel et al. (2016a) critically validated
such a fusion under in-field conditions, implying a certain need
for additional scientific evidence and further improvements of
the underlying body model. Specifically, they were using segment
lengths obtained from the optical reference system, the upper
trunk was divided in two segments not following literature
recommendations (e.g., Dumas et al., 2007), and arm movement
was not considered.

Thus, based on the aforementioned current stage of
knowledge, the first objective of this study was to expand the
body model suggested by Fasel et al. (2016a) for the estimation
of the CoM to a more comprehensive and scalable model and
including the upper limbs. The second objective was to validate
the relative positions for the upper and lower limb joint centers
and the athlete’s CoM obtained from the inertial sensors against a
video-based stereophotogrammetric reference system. The third
objective was to evaluate the benefits of adding the upper limbs
to the CoM estimation. The fourth objective was to assess
the sensitivity of the wearable system to detect changes in the
equipment used and turn types performed.

METHODS

Measurement Protocol
The measurements were conducted on an indoor skiing carpet
(Maxxtracks Indoor Skislopes, The Netherlands) with belt
dimensions 6 × 11m and 12◦ inclination (Figure 1). Eleven
male competitive alpine skiers (20.9 ± 5.2 years, 176.1 ± 6.7 cm,
74.0 ± 10.9 kg) participated in the study. Written informed
consent was obtained from all athletes prior to the measurements
and the study was approved by the ethics committee of École
Polytechnique Fédérale de Lausanne (StudyNumber: HREC 006-
2016). Each athlete skied two trials with 140 cm long skis and two
trials with 110 cm long skis at maximum belt speed of 21 km/h.
Two types of skis were used to cover a broad range of different
turn dynamics. Each trial lasted approximately 120 s and during
the first half the athlete skied wide turns taking up the entire
carpet width, while for the second half the athlete skied narrow
turns taking up half the carpet width. Cones placed in the front of
the treadmill were used to indicate the turn width. To ensure that
the athletes stayed in the measurement volume, a spring system
attached to a custom made belt pulled the athlete backwards
(Figure 1).

Reference System
Ten infrared cameras (T160, Vicon Peak, UK) sampling at 100Hz
surrounded the carpet and covered the entire volume spanned
by the carpet. The IfB marker set with 71 markers (List et al.,
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2013) (Figure 2) was used to obtain functionally determined
ankle, knee, and hip joint centers and the 3D orientation of the
shanks, thighs, pelvis, and lumbar, thoracic, and cervical trunk
segments. Basic motion tasks as described in List et al. (2013)
were performed to define the functional joint centers barefoot.
The foot markers were then moved from the feet to the ski boots
and a static posture was used to register the ski boot markers
with the previously determined foot anatomical frame. Trunk
markers were used to determine the trunk segments, as described
in List et al. (2013). Since the IfB marker set could not directly

measure upper limb joint centers, additional markers have been
placed on the lateral humeral epicondyle, ulnar styloid, and radial
styloid of both the left and right upper limbs. The shoulder joint
center was defined to lie 3 cm below the acromion marker in
the direction of the marker placed on the scapula inferior angle.
The wrist joint center was defined to lie in the middle between
the markers placed on the ulnar and radial styloids. The elbow
joint center was defined to lie 3 cm to the medial direction with
respect to the marker placed on the lateral humeral epicondyle.
The medial direction has been defined to be normal to the plane

FIGURE 1 | Illustration of the treadmill skiing setup. (A) Left turn, (B) right turn. To ensure that the athlete stayed in the capture volume, a rope connected a spring

system with the athlete. The small white boxes are the inertial sensors and the gray dots the reflective markers.

FIGURE 2 | Sensor and marker setup from the front (A), back (B) and side view (C). The four markers fixed to the helmet are not shown here. The inertial sensors

placed in the middle and upper back were not used for this study.
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spanned by the shoulder, wrist and lateral humeral epicondyle. In
order to allow a comparison with the wearable model, the cervical
joint center (CJC) and lumbar joint center (LJC) were estimated
based on the anatomical tables fromDumas et al. (2007) scaled to
the athlete height. CJC was estimated with respect to the marker
placed on C7. LJC was estimated based on the average estimated
LJC position with respect to the left and right hip joint centers.
Four markers were placed on the athlete’s helmet. Their mean
position was used to approximate the position of the head vertex.
Two markers were placed on each ski’s tip and tail and allowed
defining the skis’ longitudinal axis. For the entire measurement in
total 81 markers were attached to the participants. The segments’
CoM were computed according to Dumas et al. (2007). The
upper limb CoM was assumed to lie on the respective segment’s
longitudinal axes where the hand’s longitudinal axis was the same
as the forearm’s longitudinal axis. The head’s CoM was assumed
to lie in the mid-point between the marker placed on C7 and
the average position of the two markers fixed at the front of the
helmet.

In order to allow a comparison to the inertial system, the
joint and CoM positions were expressed relative to the LJC. The
reference (global) coordinate system was defined as follows: the
Y-axis was vertical, pointing upwards (e.g., vertical direction); Z-
axis was horizontal and parallel to the treadmill-plane pointing to
the right (e.g., lateral direction); the X-axis was the cross-product
of the Z- and Y-axis and was pointing forwards (e.g., forwards
slope direction in the horizontal plane).

The coaching-relevant parameters vertical distance and fore-
aft position were computed according to Spörri et al. (2012b).
For each leg (left and right) the vector vCoM, ankle(t) connecting
the CoM with the ankle joint center was computed. The
vertical distance was the norm of vCoM, ankle(t). The fore-aft
position was obtained by the projection of vCoM, ankle(t) onto
the line corresponding to the projection of ski’s longitudinal
axis on the snow surface. The snow surface was mathematically
defined as the X-Z plane inclined by 12◦ around the
Z-axis.

Wearable System
Eleven inertial sensors (Physilog 4, GaitUp, Switzerland) were
attached with adhesive tape to the shanks, thighs, sacrum,
sternum, head, arms and wrists (Figure 2). Acceleration and
angular velocity were measured at 500Hz. Offset and sensitivity
of the accelerometers were corrected according to Ferraris et al.
(1995). To this end, each accelerometer was held static for a few
seconds in the six positions where each sensing axis was either
parallel, anti-parallel or orthogonal to the Earth’s gravity field.
Then a least-square fit was used to determine the sensors’ offset
and sensitivity such that the measured values would be 1, −1,
0, respectively. Offset of the gyroscopes was estimated during
the standing still posture before each trial. The wearable system
was synchronized with the reference system by an electronic
trigger. The sensors’ local frames were aligned with the segments’
anatomical frames based on the functional calibration (squats,
trunk rotation, hip abduction, and upright standing) described
in Fasel et al. (2017b). In addition, the functional calibration of
the arm sensors consisted of two movements, as illustrated on
protocols.io (doi: 10.17504/protocols.io.jzncp5e): (1) slow arm

movement in the sagittal plane where the hands hold a pole
horizontally with both thumbs pointing medially. The hands
were spaced approximately equal to the shoulder width and
elbows were kept straight during the entire movement. Three
movement cycles of up/down arm movement in the sagittal
plane were performed. (2) Upright posture where the arms
and wrists were kept vertically with straight elbows. The hands
were oriented such that the palms were barely touching the
thighs on their lateral side. For the functional calibration the
following constraints were assumed: (i) the main rotation during
the arm swing was supposed to occur along the medio-lateral
axis of the arm and along the anterior-posterior axis of the wrist
(e.g., forearm); (ii) the longitudinal axes of the arms and wrists
were presumed to pass parallel to gravity during the upright
posture.

Estimating Segment Orientation
Segment orientation was obtained based on the strap-down
and joint drift correction as described in Fasel et al. (2017a,b).
For initializing segment orientation, the athletes were standing
straight, looking into the slope direction for 5 s before the
treadmill was switched on. The wearable system’s global frame
was identical to the reference system’s global frame and defined
as follows: the Y-axis (e.g., vertical axis) was aligned with gravity,
pointing upwards. X-axis (e.g., forwards axis) was perpendicular
to gravity (i.e., horizontal) and pointing in the direction of the
slope, facing downwards. The Z-axis (e.g., lateral axis) was the
cross-product between the X- and Y-axis, pointing to the right.
It was observed that, despite a standardized posture, the upper
limbs’ azimuths (i.e., direction of the segments’ anterior-posterior
axes) were not aligned. In order to find the segment’s azimuths
the same principle as for the joint drift correction presented in
Fasel et al. (2017a,b) was used: after initial strap-down integration
the segments’ azimuths were assumed to be equal to the average
joint acceleration orientation difference over the entire trial.
Based on this principle, first the initial orientations of the arms
were found with respect to the sternum. Second, the initial
orientations of the wrists were found with respect to the arms.
After this procedure orientation drift was corrected normally as
in Fasel et al. (2017a,b). Example data and the matlab source
code for the functional calibration, initial segment orientation
estimation, and joint drift correction is available on Code Ocean
(doi: 10.24433/CO.23792aee-07c5-4cdc-bfe9-9e85fa1bf5d5).

As no inertial sensors were placed on the skis, for computing
the fore-aft position the ski orientations were estimated based
on the shank orientations. To this end, it was assumed that
the ankle was held in a constant position by the ski boot with
a flexion of 17◦ without ankle abduction or internal rotation.
In other words, the rotation between the ski’s longitudinal axis
and the shank’s anterior-posterior axis was 17◦ around the
shank’s medio-lateral axis. The fore-aft parameters were then
computed identically as for the reference system and described
above.

Body Model
The body model was estimated based on a kinematic chain
similarly to Fasel et al. (2016a). However, since the main aim
of the body model was estimating the athlete’s CoM, the origin
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of the kinematic chain was chosen as the LJC (Figure 3A). All
segment dimensions were then defined according to Dumas et al.
(2007), scaled for athlete height. It was assumed that the segment
orientations obtained by the inertial sensors were identical to
the anatomical frames of the corresponding segments. The trunk
was modeled as two independent segments: pelvis and trunk. It
was assumed that the pelvis orientation was equal to the sacrum
orientation, and that the trunk orientation was equal to the
sternum orientation. Thus, for example, the left hip joint position
pleft hip(t) was determined based on Equation (1) and the left
knee position pleft knee(t) based on Equation (2). All other joint
positions were obtained with the same iterative way. Once the
joint positions were known, the segment CoMs were estimated
according to Dumas et al. (2007). In order to estimate the CoM
of the hand, the hand was assumed to have the same orientation
as the wrist. To estimate the foot CoM, it was assumed that the
foot had the same orientation as the ski (i.e., 17◦ ankle flexion).
A weight of 2 kg was added to each foot to take into account the
weight of the ski boot. The skis were ignored for computing the
CoM. The athlete’s CoM was the weighted average of all segment
CoMs. In a simplified model, without the arm and wrist sensors,
the upper limbs’ combined CoMwas approximated at the relative
position of (0.15, 0.10, 0.00m) with respect to LJC expressed
in the trunk’s (i.e., sternum) anatomical frame (Figure 3B). The
upper limb’s relative CoM position was determined from average
values of the full model and was scaled for athlete height with the
same scaling factor as for the other segments.

pleft hip (t) = sacrumR(t) ∗ vleft hip (1)

pleft knee (t) = pleft hip (t) + left thighR(t) ∗ vleft knee (2)

Where t is the time, sacrumR(t) the orientation matrix of the
sacrum, left thighR(t) the orientationmatrix of the left thigh, vleft hip
the vector connecting the LJC to the left hip in the sacrum’s

anatomical frame, and vleft knee the vector connecting the left hip
to the left knee in the left thigh’s anatomical frame.

Validation
A total of 44 trials (11 athletes, 4 trials per athlete) were analyzed.
Error curves were computed by subtracting for each time sample
the 3D position of the joint centers and CoM expressed relative
to the LJC obtained with the reference system from the wearable
system. For each trial, each individual axis and the total distance
(i.e., the error norm), mean and standard deviation of the error
were computed. Accuracy was defined as the group average of all
trial mean errors and precision was defined as the group average
of all trial standard deviations of the error.

The same error analysis was performed for the fore-aft
parameters, whereas in addition Pearson’s correlation coefficient
was computed. For each trial 14 wide and 14 narrow turns were
automatically segmented based on the crossing points of left
and right vertical distance (i.e., norm of vCoM, ankle(t)) (Fasel
et al., 2016b). For each turn the range of motion (RoM) of
the vertical distance and the fore-aft position was computed
and compared to the reference system with a Bland-Altman
plot (Bland and Altman, 2007). Since the data points for the
same trial were correlated, the limits of agreements (LoA) were
computed as described in Fasel et al. (2017b). To assess whether
the wearable system was sensitive to changes, Cohen’s d was
computed separately for the RoMobtainedwith the reference and
the wearable system between trials (140 vs. 110 cm skis) and turn
types (wide vs. narrow).

RESULTS

Errors for the left and right side were similar, thus, for the sake
of clarity, in the following only the results for the left side are

FIGURE 3 | (A) Body model including the upper limbs. Each red circle represents a segment’s CoM. The athlete’s CoM is highlighted by the blue star. The LJC is

indicated by an arrow and lies on the dotted line. (B) Simplified body model without the upper limbs. The approximated location of the upper limb’s combined CoM is

illustrated by the purple circle.
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presented. Please refer to the appendix for the results of the right
side.

Both accuracy and precision worsen for the more distal joint
centers, and were worst for the ankles (total distance accuracy
and precision of 109 and 30mm) and wrists (total distance
accuracy and precision of 97 and 16mm) (Table 1). Standard
deviation of the joint center accuracy was found to be between 6.3
and 57.6mm. CoM accuracy and precision for the total distance
were 25.7 and 6.7mm, respectively.

Especially the knee and ankle joint position errors were
dependent on the turn phase, i.e., were different for the inside
than the outside leg. Figure 4 shows time-normalized errors
for the knee and ankle joints for a typical athlete and nine
wide left/right turns of the trial with 140 cm skis. While the
hip’s vertical position error (Y-axis) remained below 10mm
throughout the turn cycle, the knee joint position had large errors
during left turns (i.e., for inside leg).

Accuracy and precision for the CoM computed with the full
model was found to be <8.6mm and <11.2mm for each axis.
Simplifying the model did not impact the CoM precision, but

added a bias in the forwards and vertical direction, in which the
CoM was estimated 8.5mm too low and 13.5mm too posterior
(Table 2).

For both the full and simplified models, correlation was
>0.98 for the vertical distance and approximately 0.90 for fore-
aft position (Table 3). For the full model, fore-aft position was
underestimated by 74mm on average and its average precision
was 34mm. For the full model, vertical distance was on average
overestimated by 3mm with a precision of 11mm (Table 3).
Errors were only slightly different for the simplified model.
Figure 5 shows the average ± standard deviation curves for 14
wide double turns of two representative athletes. The full model
was used to obtain the wearable curves.

LoA for the RoM of the vertical distance and fore-aft position
were considerately lower for the outside leg than the inside
leg (Table 4, Figure 6). The reference average value (standard
deviation) of the vertical distance RoM was 53.8mm (23.5mm)
for the outside leg and 168.9mm (45.0mm) for the inside leg.
The reference average value (standard deviation) of the fore-
aft position RoM was 92.7mm (40.1mm) for the outside leg

TABLE 1 | Average (standard deviation) accuracy and precision of the relative joint center positions along the X-axis (forwards slope direction), Y-axis (vertical direction),

Z-axis (lateral direction), and total distance (norm of 3D difference).

Joint center position X-axis Y-axis Z-axis Total distance

Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision

Ankle 56.7 (57.6) 35.5 (14.5) −16.3 (24.5) 20.8 (11.7) 23.1 (46.7) 48.4 (14.6) 109.1 (43.2) 29.7 (12.9)

Knee 26.2 (32.9) 25.3 (6.4) 21.8 (21.2) 20.8 (7.8) 40.0 (33.3) 34.6 (10.4) 79.7 (33.0) 18.9 (6.4)

Hip −10.0 (10.1) 5.9 (1.6) −3.8 (6.5) 4.7 (2.4) 21.4 (6.7) 5.1 (2.0) 28.1 (6.3) 4.7 (1.9)

CJC −22.9 (28.1) 11.9 (3.4) −5.9 (28.0) 9.1 (3.0) −1.7 (35.9) 18.5 (5.1) 56.5 (24.7) 12.7 (4.7)

Head Vertex −58.7 (39.2) 17.2 (6.1) 92.8 (56.6) 10.3 (3.4) −3.3 (44.8) 25.5 (8.0) 127.3 (57.8) 16.9 (7.3)

Shoulder −7.7 (31.9) 17.9 (4.8) −69.0 (26.5) 14.0 (3.3) −49.5 (28.8) 18.4 (5.7) 99.4 (24.3) 14.3 (4.6)

Elbow 14.0 (28.4) 17.3 (4.9) −6.1 (30.5) 15.3 (4.6) −9.4 (27.4) 17.5 (5.3) 55.1 (20.3) 14.7 (3.4)

Wrist −50.8 (39.3) 20.4 (6.9) −49.7 (35.7) 21.4 (7.2) −14.4 (32.37) 21.4 (7.2) 97.0 (29.4) 16.3 (4.8)

All units are mm.

FIGURE 4 | Average (solid lines) ± 1 standard deviation (dashed lines) of time-normalized hip (blue) and knee (orange) joint position errors along the vertical Y-axis for

9 left and right turns of a representative trial. The first 100% of the turn cycle is a left turn where the left leg is the inside leg and the second 100% is a right turn where

the left leg is the outside leg.
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TABLE 2 | Average (standard deviation) accuracy and precision of the relative CoM positions for the full model with arms and the simplified model without arms.

CoM position X-axis Y-axis Z-axis Total distance

Accuracy Precision Accuracy Precision Accuracy Precision Accuracy Precision

Body model with arms −8.6 (13.8) 6.4 (1.7) 0.6 (14.2) 4.5 (1.7) −0.5 (13.1) 11.2 (3.3) 25.7 (10.9) 6.7 (2.2)

Body model without arms −13.5 (12.2) 6.6 (1.6) −8.5 (14.4) 4.5 (1.7) −0.1 (12.5) 11.5 (3.5) 28.6 (9.6) 7.2 (2.6)

All units are mm.

TABLE 3 | Average (standard deviation) accuracy and precision of the fore-aft

parameters and their correlation to the reference system for the full model with

arms and the simplified model without arms.

Parameter Body Model Accuracy Precision Correlation

Vertical distance With arms 3.3 (19.8) 10.6 (5.4) 0.990 (0.010)

Without arms −5.5 (19.7) 10.9 (5.7) 0.989 (0.010)

Fore-aft position With arms −73.9 (47.0) 34.0 (11.0) 0.896 (0.087)

Without arms −76.7 (49.1) 33.8 (10.9) 0.897 (0.087)

Units for accuracy and precision are mm.

and 136.7mm (47.2mm) for the inside leg. Cohen’s d for the
RoM computed with the reference system and the full model
were similar: between wide and narrow turns >1 for the fore-
aft position and >2 for the vertical distance. Simplifying the
model by removing the arms did only slightly change the fore-
aft parameters’ accuracy and precision. As for the full model,
Cohen’s d were similar to the reference system.

DISCUSSION

In the current paper, an inertial sensor-based method to estimate
the athlete’s relative joint center positions and center of mass
(CoM) kinematics during alpine skiing has been proposed.
In addition to these estimates, the joint center- and CoM-
related measures “vertical distance” and “fore-aft position” were
computed. The new method’s validity was assessed by comparing
it to an optoelectronic stereophotogrammetric reference system
(gold standard). Accuracy (precision) for the CoM, vertical
distance and fore-aft position were 25.7mm (6.7mm), 3.3mm
(10.6mm), and−73.9mm (34.0mm), respectively. Excluding the
upper limbs from the body model decreased the accuracy and
precision of all curves by less than 3mm, except for the vertical
distance where the accuracy changed from 3.3 to −5.5mm.
The proposed procedure for estimating relative segment azimuth
during posture initialization seemed sufficiently accurate and
precise. Interestingly, the elbow joint position was estimated
with better accuracy than the shoulder and wrist joint positions.
However, prior to analyzing specific movements for which arm
motion is key, the proposed orientation initialization should be
validated more specifically.

Joint Center Positions
As expected, errors of the relative joint positions increased along
the kinematic chain. Two factors might have contributed to these
errors: incorrect segment dimensions and inaccurate segment
orientation estimations. Segment dimensions were taken from

Dumas et al. (2007) and were scaled for athlete height only.
Therefore, athlete-individual deviations from the model were not
considered and led to a potential bias in the estimation of the
segment length. As an example, our athletes had on average a
40mm wider pelvis and 69mm shorter trunk. Subject-specific
anthropometric measurements could reduce this error; however,
at the costs of a more complicated measurement procedure.
Furthermore, segment orientation estimation errors might have
directly affected joint estimation errors. For example, knee joint
position errors were by a factor of 3–4 higher than for the hip
joint. The large precision decrease observed could be attributed to
soft tissue artifacts of the thigh. Actually, high muscle activation
levels during the turns could have temporarily changed the
sensor’s alignment with respect to the underlying bone. In this
context, it is known that during a turn the inside leg has higher
hip and knee flexion angles but has to support less force (Klous
et al., 2012; Kröll et al., 2015). Thus, it is reasonable that the
muscle activation at the inside leg is different compared to the
outside leg (Kröll et al., 2011), what, while turning, might have
led to a different amount of soft tissue artifact and, therefore,
different errors in the estimation of the thigh segment orientation
(Figure 4). To overcome these limitations, soft tissue artifacts
could be modeled for example with a double static calibration
as proposed by Cappello et al. (1997), as well as by measuring
different static postures with and without muscle pre-activation
(e.g., upright standing or sitting on a chair).

CoM Position
Despite the limited performance of joint position estimation,
CoM position was estimated with very good accuracy and
precision. One explanation could be that errors from individual
joint positions were averaged out when computing the athlete’s
CoM. Surprisingly, and in contrast to the findings from Eames
et al. (1999) and Whittle (1997) for walking, removing the
upper limbs from the model did not decrease CoM accuracy
and precision significantly. One potential explanation for this
observation might be the fact that during alpine skiing arm
movements are mostly symmetrical and that (at least for the
current indoor carpet skiing setup) the arms were almost held in a
constant position. Another explanation might be the fact that the
upper limbs contribute on average only 10% to total body mass
(Dumas et al., 2007). Thus, even if arm movements may not have
been estimated correctly, corresponding effects on CoM position
are rather marginal.

Vertical Distance and Fore-Aft Position
Both vertical distance and fore-aft position were estimated
with higher precision than reported previously in
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FIGURE 5 | Average (solid lines) ± 1 standard deviation (dotted lines) of vertical distance (top) and fore-aft position (bottom) of the left leg for the same condition for

two athletes A and B (left vs. right) and 14 wide double turns. The wearable system is shown in blue and the reference system in black. The first 100% of the turn were

a left turn, thus the left leg was the inside leg. The second 100% of the turn were a right turn, thus the left leg was the outside leg.

TABLE 4 | Limits of agreements (LoA) for the range of motion (RoM) of the vertical distance and fore-aft positions.

Parameter Body model Errors outside leg Errors inside leg

Lower LOA Mean Upper LoA Lower LoA Mean Upper LoA

RoM Vertical distance With arms −18.6 8.4 32.4 −49.1 −5.2 40.1

Without arms −17.8 8.4 30.9 −50.0 −5.8 37.8

RoM Fore-aft position With arms −26.8 48.9 117.6 −30.5 29.0 91.9

Without arms −29.4 47.9 117.3 −25.5 37.0 92.5

All units are in mm.

Fasel et al. (2015), underlining the better suitability of the
revised body model used in the current study. Particularly, for
the measure “vertical distance,” accuracy was slightly improved,
while for the fore-aft position accuracy was slightly reduced.
Moreover, compared to vertical distance fore-aft position was
found to be more sensitive to ankle position errors (Figure 7).
Under the hypothesis that the largest error source could
be attributed to incorrectly estimated thigh orientation due
to soft tissue artifacts, a change in thigh orientation would
essentially affect the direction of the vector relying the ankle to
the CoM, but not its length. Accordingly, soft tissue artifacts
may only marginally alter the vertical distance, however, may
substantially influence fore-aft position (Figure 7), why in
the context of inertial-based measurements this parameter
should be used with caution. However, future improvements
regarding a reduction of the soft tissue artifacts might help to
overcome these fore-aft position-related limitations. In this

study, the snow surface was defined mathematically for both the
reference and wearable system. For on-snow measurements this
surface has to be estimated first, for example by constructing
a 3D terrain model with drones (e.g., Pix4Dmapper, Pix4D,
Switzerland).

Methodological Limitations
Despite the carefully chosen reference system and setup, the
study has some limitations that are worth to be discussed:
first, the model was specifically designed for lower limb and
trunk motion capture. Accordingly, upper limb joints (shoulders,
elbows, wrists) and head vertex were only approximately tracked.
Especially for the shoulder joint and head vertex reference
positions might have been estimated with errors of up to a
few centimeters. This inaccuracy was judged to be acceptable,
since a validation of the upper limb position and orientation
was not the main aim of this study. Second, for the estimation
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FIGURE 6 | Bland-Altman plots for the range of motion of the vertical distance (left) and fore-aft position (right). The model without arms was used to generate the

figures and compute the LoA (dashed lines). Mean error is shown with the solid lines. Blue marks the outside leg and yellow the inside leg. LoA for both models and

outside and inside legs are reported in Table 4.

FIGURE 7 | Influence of thigh orientation estimation error on ankle position.

Black shows the original leg position and gray the leg position with a thigh and

shank orientation error. The blue lines show the ankle – CoM vectors. The

fore-aft position (projection of ankle – CoM vector onto the fore-aft axis) is

more affected by this orientation error (difference shown in red) than the

vertical distance (length of ankle – CoM vector).

of CoM, segment inertial parameters were taken from Dumas
et al. (2007) and were only scaled to athlete height. However,
the body model could be further individualized by taking into
account the athlete’s segment lengths and an estimation of their
muscle masses. Third, as inertial sensors cannot provide absolute
positionmeasurements, only the relative joint and CoMpositions
were validated. For reasons of convenience, the lumbar joint
center (LJC) has been defined as the origin for both systems,
even though it could not be measured directly by the reference
system. However, by averaging the LJC estimated from the left
and right hip joint center, measurement errors were aimed to
be minimized. Fourth, the ecological validity of the study might
be limited. Despite the fact that the movement patterns on the
treadmill are known to correspond well to the real on-snow
skiing situation (Spörri et al., 2016a), the reduced speed might
have led to less dynamic movements and less arm motion.
Moreover, vibration from skidding on the snow did not exist

either. Therefore, it is expected that errors for on-snow skiing
might be slightly larger than presented here.

Perspective
Overall, based on the system’s accuracy and precision and,
specifically, based on Cohen’s d, the proposed method was found
to be sensitive enough to distinguish between different types
of turns (wide/narrow). Thus, the current method may also
provide a useful information for monitoring and controlling
adverse external loading patterns that occur during regular on-
snow training. Moreover, as demonstrated earlier and in other
settings (Chardonnens et al., 2012, 2014; Rawashdeh et al., 2016;
Yu et al., 2016; Whiteside et al., 2017), such an approach is also
suitable for quantifying competition time, movement repetitions
and/or the accelerations acting on the different segments of the
human body. However, prior to getting feasible for applications
in settings of daily training, future studies should primarily focus
on a simplification of the sensor setup, as well as a fusion with
global navigation satellite systems (i.e., the estimation of the
absolute joint and CoM positions). It has to be pointed out that,
in order to fully quantify the total load, not only the external but
also the internal load should be quantified (Soligard et al., 2016).

CONCLUSION

The system allowed computing the athlete’s relative joint center
and CoM position with sufficient accuracy and precision for
detecting meaningful difference in alpine skiing. Only the
accuracy and precision of the most distal joints (e.g., ankle) are
on the limit of an acceptable range. The accuracy and precision of
the ankle positions can be considered acceptable for computing
the vertical distance, but not for calculating the fore-aft position.
Future developments should aim at reducing soft tissue artifacts
such that knee and ankle positions could be estimated with better
precision. To compute the absolute CoM position with respect to
a fixed global reference frame, the obtained relative CoM position
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and body model could be combined with an absolute position of
a body part (e.g., head), for example measured with differential
GNSS. A future study should also address how to simplify
the system so that it could be used for everyday external load
monitoring, with fully automated calibration and data analysis.
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In order to monitor their energy requirements, athletes may desire to assess energy

expenditure (EE) during training and competition. Recent technological advances and

increased customer interest have created a market for wearable devices that measure

physiological variables and bodily movement over prolonged time periods and convert

this information into EE data. This mini-review provides an overview of the applicability of

the SenseWear armband (SWA), which combines accelerometry with measurements of

heat production and skin conductivity, to measure total daily energy expenditure (TDEE)

and its components such as exercise energy expenditure (ExEE) in athletic populations.

While the SWA has been shown to provide valid estimates of EE in the general population,

validation studies in athletic populations indicate a tendency toward underestimation

of ExEE particularly during high-intensity exercise (>10 METs) with an increasing

underestimation as exercise intensity increases. Although limited information is available

on the accuracy of the SWA during resistance exercise, high-intensity interval exercise,

or mixed exercise forms, there seems to be a similar trend of underestimating high levels

of ExEE. The SWA, however, is capable of detecting movement patterns and metabolic

measurements even at high exercise intensities, suggesting that underestimation may

result from limitations in the proprietary algorithms. In addition, the SWA has been

used in the assessment of sleep quantity and quality as well as non-exercise activity

thermogenesis. Overall, the SWA provides viable information and remains to be used in

various clinical and athletic settings, despite the termination of its commercial sale.

Keywords: accelerometry, energy balance, high-intensity exercise, resistance exercise, measurement error

INTRODUCTION: TRACKING ENERGY EXPENDITURE IN
ATHLETES

One of the unique characteristics of athletes is that energy requirements of training and
competition increase their total daily energy expenditure (TDEE) beyond those of the
general population (Westerterp, 2013). Energy requirements can vary considerably depending
on exercise type, intensity, and duration, but sustained levels of energy expenditure (EE)
can be in the range of 5,000–8,000 kcal/day (Westerterp et al., 1986; Westerterp, 2001).
This high energy turnover has implications not only for weight gain and weight loss
practices, which are prominent in sports with weight classes, anti-gravitational sports,
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or aesthetic sports; it also necessitates a sufficient dietary
energy intake, as sustained energy deficiency can result in long-
term detriments including impaired bone health and infertility
(Loucks et al., 2011). In addition, recent data suggest that athletic
performance may also be impaired in energy-deprived athletes
(Vanheest et al., 2013).

Because of the high energy demands and the consequences of
energy deficiency, tracking EE is paramount for many athletes
and their support staff. Considering that athletes expend up
to 75% of their TDEE during exercise (Westerterp, 2013),
quantifying energy needs during training and competition
requires particular attention. The current gold-standard method
for the assessment of TDEE in free-living situations is the
doubly labeled water (DLW) method, which has been used
in numerous athletic settings (Westerterp et al., 1986; Sjödin
et al., 1994; Trappe et al., 1997; Hill and Davies, 2001, 2002;
Ebine et al., 2002; Ekelund et al., 2002; Koehler et al., 2010).
However, the time resolution is limited and the method does not
differentiate between various components contributing to TDEE,
such as exercise energy expenditure (ExEE) (Westerterp et al.,
1986). Improved resolution is provided by indirect calorimetry
(IC), the reference method for EE quantification in controlled
laboratory settings (Haugen et al., 2007). However, despite recent
methodological advances, the method remains mostly limited to
research and exercise testing. Further, the requirement of a face
mask hinders natural training behaviors such as fluid or food
intake. Therefore, other approaches that do not interfere with
training and competition practices are needed to reliably quantify
EE, and particularly ExEE, in athletes.

Available methods include accelerometry, pedometry, heart-
rate monitors, and self-report methods (Ndahimana and Kim,
2017). With the exception of self-report methods, which only
provide subjective information and show low accuracy and
reliability (Ndahimana and Kim, 2017), all of these approaches
have been incorporated in activity monitors. These devices are
less cost-prohibitive than DLW or IC, can be used during a
wide range of activities and numerous settings, and allow for
data collection over prolonged time intervals in large cohorts
(Düking et al., 2016). Several such wearable devices, including
the ActiGraph, Actical, RT3, ActivePAL, or GeneActiv, have been
developed for research purposes, and various companies have
introduced commercial physical activity trackers (e.g., Fitbit,
Garmin, Jawbone, Nike). However, as these devices typically rely
only on accelerometry, they provide mixed accuracy with regard
to its ability to predict EE or time spent in different activities
(Welk et al., 2007) and the ability to detect when devices are worn
may be limited (Jaeschke et al., 2017).

TECHNOLOGY OF THE SENSEWEAR
ARMBAND: FEATURES, FUNCTIONS, AND
MODIFICATIONS

The SenseWear armband (SWA) developed by BodyMedia Inc.
(Pittsburgh, PA, USA) combines accelerometry with additional
biological variables, such as heat flux, skin temperature, near-
body ambient temperature, and galvanic skin response. The

device only collects data when it is in direct contact with
the skin and its pattern-recognition algorithm has been shown
to provide more accurate results for estimating EE and time
spent in various activities when compared to the ActiGraph
(Welk et al., 2007). Given these benefits, the SWA became a
promising tool to objectively monitor EE in various exercise
and non-exercise settings (Fruin and Rankin, 2004). Most basic
principles and functions have remained the same since the
initial introduction of the first prototypes in the late 1990s, but
there have been several upgrades, the most notable modification
being the addition of a third dimension accelerometer axis
(Riou et al., 2015) along with increased data transfer and
storage capacity. Per manufacturer instructions, the SWA is
worn on the upper left arm, and can be used to record data
continuously for up to 3–4 weeks (Koehler et al., 2013). Data
can be downloaded, viewed, and exported for subsequent data
processing usingmanufacturer software (InnerView, BodyMedia,
Pittsburgh, PA). A proprietary algorithm converts raw data
into estimates of EE, which are expressed both in kcal/min
and metabolic equivalents (METs). In efforts to improve the
validity of the SWA, this algorithm has been modified several
times (Jakicic et al., 2004; Van Hoye et al., 2015). Although the
technology was purchased by a competitor in 2013 and has since
been discontinued (Welk et al., 2017), the SWA continues to
be used extensively in research and clinical settings (Figure 1).
Considering the continued popularity and the current lack of
alternatives on the market, it was our goal to provide a critical
review of the applicability of the SWA to measure EE specifically
in athletes. As such, we provide a general overview of the
strength and limitations of the SWA in the general population
(section Validity of the SenseWear Armband in the General
Population: Energy Expenditure, Physical Activity, and Exercise),
followed by a review of the validity of the SWA in athletes
and during various types of high-intensity exercise (section
Validity of the SenseWear Armband during High-Intensity
Exercise). We further discuss possible reasons for limitations
(section Limitations of the SenseWear Armband: Algorithm vs.
Methodology) and non-traditional applications of the SWA in
athletic settings (section Application of the SenseWear Armband
in Athletic Populations). To identify appropriate literature, a
quasi-systematic PUBMED search (https://www.ncbi.nlm.nih.
gov/pubmed/) was conducted in June 2017 independently by
both authors, using “SenseWear” in combination with “exercise,”
“activity,” or “athletes” as search terms. In addition, we included
literature cited. Final inclusion was decided on by a joint decision
from both authors based on each paper’s relevance to the review’s
target group.

VALIDITY OF THE SENSEWEAR ARMBAND
IN THE GENERAL POPULATION: ENERGY
EXPENDITURE, PHYSICAL ACTIVITY, AND
EXERCISE

In the general population, the SWA has been validated
extensively and has been shown to provide accurate estimates
of TDEE as well as EE at rest and during activities of light
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FIGURE 1 | Distribution of publications including the search term

“SenseWear” for the period from 2004 (first publication) to 2016 (last complete

year); data source: https://www.ncbi.nlm.nih.gov/pubmed/ (Aug 14, 2017).

to moderate intensities when compared to DLW or IC (Cole
et al., 2004; Fruin and Rankin, 2004; Jakicic et al., 2004; King
et al., 2004; Mignault et al., 2005; Papazoglou et al., 2006;
Malavolti et al., 2007; Patel et al., 2007; St-Onge et al., 2007;
Johannsen et al., 2010; Casiraghi et al., 2013; Brazeau et al.,
2016). When specific time periods of varying activity intensities
were examined, however, the SWA generally overestimated EE
at lower intensities, while EE was underestimated at higher
intensities (Cole et al., 2004; Fruin and Rankin, 2004; Jakicic
et al., 2004; Patel et al., 2007; Dwyer et al., 2009; Berntsen et al.,
2010; Benito et al., 2012; Gastin et al., 2017). Accordingly, TDEE
was overestimated in participants with low levels of TDEE and
underestimated in participants with high TDEE (St-Onge et al.,
2007; Johannsen et al., 2010).

It should further be considered that the accuracy of the
SWA is impacted by external factors such as treadmill incline,
exercise mode (e.g., running vs. bicycling), or the use of the
upper vs. lower body exercise (Fruin and Rankin, 2004; Jakicic
et al., 2004; Berntsen et al., 2010; Vernillo et al., 2015; Brazeau
et al., 2016; Gastin et al., 2017). Specifically, underestimation
of EE during uphill walking has been reported in several
studies, with increasing measurement errors at steeper inclines
(Fruin and Rankin, 2004; Jakicic et al., 2004; Vernillo et al.,
2015). Downhill walking, on the other hand, was associated
with an overestimation of EE, and—although less pronounced—
measurement errors increased as declines became steeper
(Vernillo et al., 2015). During stationary cycling, total EE did
not differ between the SWA and IC, but individual time point
data were poorly correlated: At the beginning of the cycling
trial, EE was underestimated, but EE estimates by the SWA
increased gradually over time even though IC values remained
stable (Fruin and Rankin, 2004; Brazeau et al., 2016). Further,
Gastin et al. (2017) reported an underestimation of EE during
resistance type circuit exercise, most likely due to inaccuracies
at higher intensities. In addition to problems related to activity

type and intensity, body weight has been shown to affect
measurement accuracy. Even though no particular bias toward
over- or underestimation of EE was observed, measurement error
increased with increasing BMI (Dwyer et al., 2009; Malavolti
et al., 2012). Considering that athletes typically are on the extreme
ends of the body composition spectrum (Meyer et al., 2013), it is
unclear to which degree body weight or composition contribute
to measurement errors in athletes.

Differences in body weight or composition may also
contribute to the considerable variability of measurement
accuracy at the individual level (Fruin and Rankin, 2004; Brazeau
et al., 2016). Nevertheless, a recent study reported accurate
measurements of TDEE with a mean difference of 2.8 kcal/day
and narrow 95% confidence intervals (−34.8 to 40.3 kcal/day)
and a correlation coefficient of r = 0.88 when comparing SWA
values to DLW in 191 generally healthy adults with diverse
body weight and physical activity levels (Drenowatz et al., 2017).
Overall, the SWA provides valid estimates of TDEE and ExEE
with a measurement error of typically <10% in a recreationally
active population.

VALIDITY OF THE SENSEWEAR ARMBAND
DURING HIGH-INTENSITY EXERCISE

To our knowledge, only one study has assessed the validity
of SWA-measured TDEE specifically in athletes. Koehler et al.
(2011) reported an average difference of 65 kcal/day (<2% of
TDEE) between TDEE measured by SWA and DLW in 14
endurance trained athletes and a moderate to strong correlation
(r = 0.73) However, higher levels of TDEE tended to be
underestimated by the SWA, and the level of underestimation
was related to the participant’s exercise capacity, whereby EE
was underestimated to a greater degree in better trained athletes
(Koehler et al., 2011).

Validity during High-Intensity Aerobic
Exercise
Several studies have tested the validity of the SWA during
high-intensity, continuous aerobic exercise. In two independent
studies in trained male athletes, the SWA underestimated
ExEE during treadmill running at speeds of ∼10.1 km/h (6.3
miles/h) and greater (Koehler et al., 2011, 2013). These findings
were replicated by Drenowatz and Eisenmann (2011), who
demonstrated that ExEE was consistently underestimated in
endurance-trained athletes running at 65, 75, and 85% of
their aerobic capacity, corresponding to a similar speed range
(9.9–14.6 km/h; 6.2–9.1 miles/h). In another study, the SWA
underestimated ExEE even at speeds from 6.0 to 7.2 km/h (3.7–
4.5 miles/h) (van Hoye et al., 2014). Similar findings were
also reported during stationary bicycling, whereby the SWA
underestimated ExEE at workloads between 140 and 380W
(Koehler et al., 2011). In all cases, the level of underestimation
increased with increasing exercise intensity (Drenowatz and
Eisenmann, 2011; Koehler et al., 2011, 2013; van Hoye et al.,
2014). However, visual inspection of the combined data from
all five studies (Figure 2) suggests that differences between SWA
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FIGURE 2 | Previously published data reporting the discrepancy between

energy expenditure measured with the SenseWear armband (black symbols) in

comparison to the reference method (indirect calorimetry; open symbols) and

the difference between SenseWear and indirect calorimetry (gray symbols).

The dotted line depicts an exercise intensity of 35 mL/kg/min (10 METs). Data

published by Drenowatz and Eisenmann (2011) stem from 20 male and female

runners (VO2peak: 57 mL/kg/min); Data published by Koehler et al. (2011)

stem from 14 triathletes (VO2peak: 58 mL/kg/min) who were assessed while

running and biking; Data published by Koehler et al. (2013) stem from 19

endurance and strength trained men (VO2peak: 55mL/kg/min) who were

assessed while running; Data from van Hoye et al. (2014) stem from 23 male

kinesiology students (VO2peak: 69 mL/kg/min) and 20 female kinesiology

students (VO2peak: 53 mL/kg/min) who were assessed while walking and

running; Data published by Van Hoye et al. (2015) stem from 39 male and

female kinesiology students (VO2peak: 58 mL/kg/min) who were assessed

while walking and running.

and IC are rather modest at low-to-moderate exercise intensities.
At exercise intensities above 35 mL/kg/min (10 METs) SWA-
measured ExEE, however, tends to plateau whereas IC-measured
ExEE increases continuously, resulting in a stark increase in
the level of underestimation. It is noteworthy that all studies
employed an incremental exercise test to assess the validity of
the SWA at multiple exercise intensities. To our knowledge, only
one study separately used a 30min exercise bout at a self-selected
intensity, resulting in a similar level of underestimation of 27%
(Drenowatz and Eisenmann, 2011).

Validity during Resistance Exercise
Only few studies have examined the accuracy of the SWA
during resistance-type exercise. Benito et al. (2012) reported an
underestimation of ExEE during circuit-type resistance training
at 30, 50, and 70% of the 15RMmax in a mixed sample of
29 recreationally active participants. Compared to IC, SWA-
estimated ExEE was 32% lower in men, corresponding to
a difference of 2.3 METs, and 21% lower in women (1.1

METs). Furthermore, the degree of underestimation increased
with increasing exercise intensity, although this effect was only
significant in men (Benito et al., 2012). On the other hand, the
SWA slightly overestimated exercise EE by an average 35 kcal per
session during self-selected resistance exercise in a mixed sample
of 52 participants of varying age and fitness level (Bai et al., 2016).
The measurement error at the individual level was reported at
15%. However, the average exercise intensity was rather low
during these sessions (3.2 METs) and may not resemble a typical
resistance exercise session in athletic populations. Using a more
traditional resistance training protocol of 9 exercises covering
all major muscle groups with 3 sets of 10 repetitions at 70% of
the 1-reptition maximum, the SWA provided accurate estimates
of ExEE with an error of less than 5% and a strong correlation
for ExEE (r = 0.77) and TDEE (r = 0.97) (Reeve et al., 2014).
Measurement errors also remained constant across the ExEE
spectrum with an almost perfect reliability of the SWA (test-
retest r = 0.96). It should, however, be considered that ExEE was
integrated over the course of the exercise bout; no information
was provided on the measurement accuracy for specific exercise
types (Reeve et al., 2014).

Validity during Mixed Exercise Forms
Similar to studies addressing resistance-type exercise, there has
been only limited research examining the accuracy of the SWA
during mixed exercise forms, particularly in athletic populations.
Zanetti et al. (2014) assessed the accuracy of the SWA during
a 42-min sport-specific intermittent exercise trial in 14 male
rugby players. While there was no clear trend toward over- or
underestimation of ExEE with a mean bias of −0.2 kcal/min
(−1.9%), results revealed only a moderate correlation between
the SWA and IC (r = 0.55). During a 30-min basketball-specific
skill session, the SWA, however, was shown to underestimate
ExEE by 1.1 kcal/min (15%) (Taylor, 2012). EE during recovery
period following intermittent exercise training, on the other
hand, was overestimated by 17% by the SWA when compared to
IC (Zanetti et al., 2014).

LIMITATIONS OF THE SENSEWEAR
ARMBAND: ALGORITHM VS.
METHODOLOGY

Despite the tendency to underestimate ExEE during high-
intensity exercise, available data suggest that the SWA can
reliably detect activity patterns, rest periods, and varying levels
of exercise intensity within individuals. For example, significant
intra-individual correlations between IC and SWA was reported
in 90% of endurance athletes who ran at exercise intensities
between 65 and 85% VO2max (Drenowatz and Eisenmann,
2011). In another study involving incremental treadmill running
at speeds between 10.8 and 17.3 km/h, raw data including
acceleration counts, and particularly counts in the longitudinal
plane, increased continuously as workload increased (Koehler
et al., 2013), demonstrating that the technology is suited to
detect movement patterns even at higher exercise intensities.
Consequently, limitations to the proprietary algorithm are a
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candidate source for the underestimation of ExEE during
high-intensity exercise. Several studies have tested whether
algorithm adjustments could improve the validity of the SWA
during exercise. In one of the first published validation studies,
Jakicic et al. (2004) reported that the accuracy of the SWA
improved after algorithm revisions. After the initial algorithm
underestimated ExEE during walking, stepping, and cycling
by 7–29% and overestimated ExEE during arm ergometry by
29%, the researchers provided a subset of their data to develop
exercise-specific proprietary equations, which reduced errors in
ExEE measured by the SWA to a non-significant level. However,
ExEE values, which peaked during stair stepping at 5.3–9.2
kcal/min, did not exceed the 10 MET-threshold. More recently,
Van Hoye et al. (2015) compared two different algorithms during
low- and moderate-intensity treadmill running in well-trained
students, reasoning that a newer algorithm would provide more
accurate estimates of EE as the manufacturer updates proprietary
algorithms on a regular basis. When compared to the initially
used algorithm (version 2.2.), data processed using a newer
algorithm (version 5.2) reduced the measurement error from
18–24 to 5–17%, although ExEE remained underestimated.

APPLICATION OF THE SENSEWEAR
ARMBAND IN ATHLETIC POPULATIONS

Despite the previously mentioned limitations, several groups
have used the SWA to track EE in athletes. In adolescent sprinters
undergoing high-intensity exercise training, Aerenhouts et al.
(2011) measured TDEE, ExEE, and activity patterns using the
SWA. When compared to self-report, the SWA registered less
time spent in high-intensity activity, although this difference did
not result in differences in TDEE, which was within 6% of the
TDEE derived from activity diaries. The authors also highlighted
the need for additional information when athletes fail to wear the
SWA for 24 h. The SWAwas also used to record ExEE during the
competitive season in volleyball players (Woodruff and Meloche,
2013). SWA-recorded ExEE was found to be higher during games
when compared to practice and warm-up sessions. Combining
SWA data with diet logs and body composition assessment,
the authors further concluded that the majority of the athletes
were in an energy-balanced state. Using the SWA to quantify
non-exercise activity thermogenesis (NEAT) among endurance
athletes undergoing periods of high and low training volume,
Drenowatz et al. (2013) demonstrated that the high training
volume did not result in a compensatory reduction in NEAT;

instead, athletes reduced their sedentary activities to allow for
more training time. In professional Australian Football players,
the SWA was used to document the contribution of NEAT to
TDEE, which was greater on training days (85%) when compared
to match days (69%) (Walker et al., 2016).

Because the SWA can be worn continuously for several
days, it has also been used for the assessment of sleep quantity
and quality. In male elite rugby union players, SWA-derived
sleep duration was shown to be lower during game nights
when compared to non-game nights, although sleep efficiency
was not different (Eagles and Lovell, 2016). In another trial

comparing high-intensity interval training to strength training,
SWA-derived sleep efficiency was lower in the high-intensity
interval condition (Kölling et al., 2016). These applications
demonstrate that the SWA is well-suited to capture other
biological factors, such as characteristics of sleep and NEAT, that
may have important implications for athletic performance.

CONCLUSION AND SUMMARY

Considering that the SWA has been designed for a broad market,
it is not surprising that the device tends to underestimate
ExEE for periods of high-intensity exercise. Although most
data has been established for aerobic exercise, the SWA seems
to equally underestimate ExEE during other exercise forms.
When energy expenditure is integrated over longer time periods,
including rest and recovery, the measurement error becomes less
pronounced and estimations of TDEE tend to be more accurate,
even in athletic populations. Adjustments to the proprietary
algorithm that is used to derive EE may further help to improve
the validity of the SWA. Unfortunately the sale of the SWA
has been terminated. Recently, a new disposable device with
similar functionality has been introduced but is not available for
commercial application at this time (Welk et al., 2017). Another
viable option is the combination of GPS data with accelerometry
and heart rate to assess EE in outdoor sports (Costa et al., 2015),
although the accuracy of such devices remains to be explored.
Given the current lack of alternatives, the SWA continues to
be used in research and practice, emphasizing the need for the
continued development of wearable devices that reliably measure
EE and related variables in athletic settings.
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The use of wearable sensor technology for athlete training monitoring is growing

exponentially, but some important measures and related wearable devices have received

little attention so far. Respiratory frequency (fR), for example, is emerging as a valuable

measurement for training monitoring. Despite the availability of unobtrusive wearable

devices measuring fR with relatively good accuracy, fR is not commonly monitored during

training. Yet fR is currently measured as a vital sign by multiparameter wearable devices in

the military field, clinical settings, and occupational activities. When these devices have

been used during exercise, fR was used for limited applications like the estimation of

the ventilatory threshold. However, more information can be gained from fR. Unlike heart

rate, V̇O2, and blood lactate, fR is strongly associated with perceived exertion during

a variety of exercise paradigms, and under several experimental interventions affecting

performance like muscle fatigue, glycogen depletion, heat exposure and hypoxia.

This suggests that fR is a strong marker of physical effort. Furthermore, unlike other

physiological variables, fR responds rapidly to variations in workload during high-intensity

interval training (HIIT), with potential important implications for many sporting activities.

This Perspective article aims to (i) present scientific evidence supporting the relevance of

fR for trainingmonitoring; (ii) critically revise possible methodologies to measure fR and the

accuracy of currently available respiratory wearables; (iii) provide preliminary indication

on how to analyze fR data. This viewpoint is expected to advance the field of training

monitoring and stimulate directions for future development of sports wearables.

Keywords: breathing, effort, wearable sensors, training monitoring, athletes

INTRODUCTION

The large diffusion of wearable devices has stimulated interest in athlete training monitoring, with
the aim of maximizing performance, and minimizing the risk of injury and illness (Düking et al.,
2016). The development of sport-related technologies is occurring rapidly and is often guided by
market forces rather than athlete or scientific needs. In this process, it is not uncommon that
technological solutions and measures are available before the sport scientist or practitioner can
appreciate their importance, and this can reduce the use of new technologies. Emblematic here,
is the example of respiratory frequency (fR), which may provide a better marker of physical effort
compared to traditionally monitored physiological variables. However, despite the availability of
unobtrusive wearable devices measuring fR with relatively good accuracy, the practice of measuring
fR during training is not common yet.
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CURRENT APPLICATIONS OF
RESPIRATORY WEARABLES

For a long time, fR has received little consideration also in the
clinical field, despite being recognized as a vital sign capable
of predicting serious adverse events. A series of papers entitled
“Respiratory rate: the neglected vital sign” (Cheng et al., 2008;
Cretikos et al., 2008; Gandevia and McKenzie, 2008; Steichen
et al., 2008) and “Rate of respiration: the forgotten vital sign”
(Parkes, 2011) contributed to redirect attention to fR in the
clinical field. These contributions also inspired the present
manuscript, which aims to draw attention to the potential of fR
for monitoring training in sport. Due to its importance as a vital
sign, fR is currently measured by unobtrusive multi-parameter
wearable devices mainly in the military field, clinical setting, and
during occupational activities. When these devices have been
used during exercise, fR is typically used for limited applications
such as the estimation of the ventilatory threshold during
incremental exercise (Hailstone and Kilding, 2011). Whilst, the
disproportionate and progressive increase in fR, which begins
with attainment of the first ventilatory threshold, may be used
as a practical non-invasive method for estimating the ventilatory
thresholds (Cross et al., 2012), there are other important reasons
why athletes should consider monitoring fR during training.

RESPIRATORY FREQUENCY AS A
MARKER OF PHYSICAL EFFORT

fR is often measured in exercise physiology as one of the two
components (together with tidal volume) of minute ventilation.
However, minute ventilation has typically received much more
attention than its components, being the best single indicator
of the ventilatory output. Nevertheless, recent evidence suggests
that fR and tidal volume are regulated by different inputs during
exercise, and that their differential responses contain valuable
information (Nicolò et al., 2017a,b). fR plays an important role
during exercise as a strong marker of physical effort, more so
than other traditionally monitored physiological variables. The
non-linear increase of fR during incremental exercise parallels
the well-known time course of blood lactate (La−), resembling
the change in physical effort and task difficulty experienced at
exercise intensities above the first ventilatory threshold. In fact, fR
better reflects physical effort than La− when an incremental test
is performed after exercise-induced muscle damage (Davies et al.,
2011) or glycogen depletion (Busse et al., 1991), and in patients
with McArdle’s disease (Voduc et al., 2004). This suggests that
physical effort is more causally linked with fR than La−.

Unlike V̇O2, heart rate (HR) and La−, fR shows an effort-
like response during a variety of exercise paradigms. During
both time-to-exhaustion and self-paced time trial protocols,
fR increases approximately linearly over time and approaches
maximal values at the end of exercise. This response is observed
during both continuous (Nicolò et al., 2016a) and intermittent
(Nicolò et al., 2014a,b, 2017b) exercise of different duration,
and with a variety of experimental interventions that affect
performance. Moreover, unlike other physiological variables,

the time course of fR is closely associated with that of Rating
of Perceived Exertion (RPE) (Nicolò et al., 2014a, 2016a,
2017b). This association is found even after locomotor muscle
fatigue (Marcora et al., 2008) and damage (Davies et al., 2009),
inspiratory (Mador and Acevedo, 1991) and expiratory (Taylor
and Romer, 2008) muscle fatigue, muscle glycogen depletion
(Busse et al., 1991), increases in body temperature (Hayashi
et al., 2006), hypoxia (Koglin and Kayser, 2013), ingestion of
sodium bicarbonate (Robertson et al., 1986), prior endurance
exercise (Spengler et al., 2000), and after expiratory muscle
training (Suzuki et al., 1995). Conversely, HR, V̇O2, and La− are
partially dissociated from RPE under some of these experimental
interventions. Therefore, fR appears to be sensitive to different
fatigue states, and thus may present potentially important
implications for training and recovery monitoring. Furthermore,
fR may be a good predictor of time to exhaustion during constant-
workload trials (Pires et al., 2011a,b) and can help understand
how effort is distributed during self-paced time trials (Nicolò
et al., 2014a, 2016a). The observation that fR is a stronger
correlate of RPE than other physiological variables is not novel
(Noble et al., 1973; Robertson et al., 1986), and it has previously
been proposed as a variable to monitor during training (James
et al., 1989; Neary et al., 1995). However, the importance of fR as a
marker of physical effort has emerged from recent investigations
(Nicolò et al., 2014a, 2016a, 2017b).

An important feature differentiating fR from other
physiological variables is the very fast response at exercise
onset and offset. During sustained all-out exercise, fR increases
rapidly at the beginning of exercise and quickly reaches maximal
values that are maintained throughout the trial, even where
an exponential decrease in power-output occurs (Nicolò et al.,
2015). A rapid response of fR is also observed during the
alternation of work and recovery phases characterizing high-
intensity interval training (HIIT) (Nicolò et al., 2014b, 2017b).
Furthermore, fR changes in proportion to workload variations
in work and recovery across different HIIT sessions (Nicolò
et al., 2017b). This makes fR a useful variable to describe the
fast changes in effort that characterize HIIT (Figures 1A–C). In
contrast, V̇O2 and HR do not respond abruptly to such changes
in workload (Nicolò et al., 2014b, 2017b).

The experimental evidence for fR as a marker of effort
is substantiated by our understanding of the mechanisms
underlying its regulation. One of the major regulators of
ventilation during exercise is central command (Forster et al.,
2012), i.e., the central neural drive associated with voluntary
motor effort. Moreover, it has been suggested that central
command regulates preferentially fR rather than tidal volume
(Nicolò et al., 2017b). Central command is also the sensory
signal for perceived exertion (Marcora, 2009), and this provides
a neurophysiological explanation for the association observed
between perceived exertion and fR. This is why in the present
manuscript we refer to “physical effort” as a theoretical construct
which is distinct from, but linked to, perceived effort. Physical
effort can be defined as the degree of motor effort, (i.e., the
magnitude of central command) (Nicolò et al., 2016b). For the
applied sport scientists and practitioners, physical effort (and
thereby fR) reflects how hard, heavy and strenuous a physical task
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FIGURE 1 | Typical subject performing a 20-s work 40-s rest self-paced intermittent cycling time trial lasting 30min (i.e., 30 repetitions). Data are from Nicolò et al.

(2014a). The time course of power output is depicted in (A). Of note, fR responds very fast to the alternation of the work and recovery phases, and increases

progressively over time (B). The rapid change in fR according to variations in workload can be better observed by showing the time course of fR within the 60-s

work-recovery cycle (C). The solid thick line represents the average of the entire trial, the dashed lines represent each repetition and the solid vertical line separates the

20-s work from the 40-s recovery. For details on this analysis see Nicolò et al. (2014b). This is also a convenient representation to show fR data real time during HIIT. In

order to synthesize the effort of the training session, the fR distribution (D) and concentration (E) profiles have also been constructed. The distribution profile describes

the time spent above each fR-value, while the concentration profile describes the time spent at each fR-value. Both analyses can also be used to describe several

training sessions. See Kosmidis and Passfield (2015) for more details on the two analyses.

Frontiers in Physiology | www.frontiersin.org 3 December 2017 | Volume 8 | Article 92277

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Nicolò et al. Respiratory Frequency and Training Monitoring

is, whilst perception of effort is the conscious sensation of this
physical task (Marcora, 2010).

Sports scientists and practitioners are therefore encouraged
to consider fR among the variables to monitor in training. Note,
most of the evidence suggesting fR to be a valid marker of effort
comes from studies that used cycling as exercise modality, while
less data are available on other exercise modalities. A similar fR
response was observed during incremental exercise performed
either with legs or arms separately as well as with legs and arms
combined, despite considerable differences in absolute V̇O2,
workload and HR (Robertson et al., 1986). This suggests that fR
reflects the effort exerted during exercise irrespective of absolute
workload, metabolic demand, and muscle masses involved. On
the other hand, different ventilatory responses have been found
when comparing running with cycling (Elliott and Grace, 2010).
A different degree of entrainment (coupling between locomotion
and breathing rhythms) between cycling and running is often
proposed as an explanation for between-modality differences in
fR, but experimental evidence is conflicting. The entrainment
phenomenon is well-documented in some sports like rowing,
where high inter-individual variability in entrainment pattern
is observed (Siegmund et al., 1999). Thus, for rowing a degree
of caution is suggested in the interpretation of fR until more
research is conducted.

HOW TO MEASURE RESPIRATORY
FREQUENCY IN THE FIELD

The limited consideration given to fR in sport should not be
ascribed to technical limitations. It is the easiest ventilatory
variable to measure during exercise and several respiratory
wearables have been developed. Directly, fR can be measured
with portable devices registering flow-rate at the mouth (e.g.,
flow sensors), but require the use of a facemask. These devices
(e.g., K5, Cosmed, Rome, Italy) are accurate but relatively
obtrusive and not well-suited to training monitoring. However,
they are widely used as criterion devices for validating less
obtrusive respiratory wearables. Indirectly, fR can be measured
using the strain and movements of the chest and abdomen
induced by ventilation, the sound of breathing, or the effect that
ventilation has on biosignals such as electrocardiogram (ECG)
and photoplethysmogram (PPG). fR can also be measured with
sensors monitoring exhaled carbon dioxide, air temperature or
humidity, but these sensors are not commonly considered for
wearable solutions used in sport.

The majority of commercially-available respiratory wearables
register ventilation-induced thoracic and/or abdominal strain
through sensors embedded into straps or clothes. Commonly
used sensors are inductive (Hexoskin R©, Carré Technologies
Inc., Montreal, Que., Canada; LifeShirt R©, Vivometrics, Inc.,
Ventura, CA, U.S.A.; EquivitalTM EQ02 LifeMonitorTM, Hidalgo
Cambridge, U.K.), piezo-electric (Pneumotrace IITM, UFI, Morro
Bay, CA, USA), capacitive (ZephyrTM BioHarnessTM, Zephyr
Technology, Auckland, New Zealand), and piezo-resistive
(WearableWellness SystemTM, Smartex S.r.l., Italy). The accuracy
of most of these respiratory wearables is good as assessed by

comparison with a flow sensor criterion device. For instance, a
mean average difference (bias) ± limits of agreement (LoA) of
∼0.3± 2 and 0.2± 2.4 breaths·min−1 was found for Hexoskin R©

during submaximal incremental walking (Villar et al., 2015) and
for EquivitalTM EQ02 LifeMonitor during moderate-intensity
walking and running (Liu et al., 2013), respectively. A bias± LoA
of −0.1 ± 5.7 breaths·min−1 was found for LifeShirt R© during a
maximal incremental running test (Witt et al., 2006). A bias ±
LoA of −0.6 ± 5 and 0.2 ± 8.3 breaths·min−1 was found for
ZephyrTM BioHarnessTM during a maximal incremental running
test and a prolonged moderate-intensity running trial in the heat,
respectively (Kim et al., 2013). However, direct comparison of
the accuracy of different strain sensors in estimating fR during
exercise is lacking, and requires further investigation.

Respiratory wearables positioned on the torso can be
affected by non-respiratory chest and abdomen movements
during locomotion. This problem is commonly addressed when
respiratory wearables based on movement sensors are used like
accelerometer-based devices registering chest and/or abdomen
movements (i.e., inclination changes), and algorithms resilient
to motion artifacts have been developed (Liu et al., 2011).
Compared to the use of a single accelerometer, the estimation
of fR improved with a sensor fusion method combining
accelerometer and gyro-sensor outputs (Yoon et al., 2014). An
improvement of 4.6 and 9.54% was observed during treadmill
interval training and resistance exercise, respectively, and this
method was found suitable for real-time fR monitoring (Yoon
et al., 2014). Respiratory wearables based on magnetometers have
also shown good agreement, with a bias ± LoA of ∼0.2 ± 3
bpm breaths·min−1 during moderate walking (McCool et al.,
2002). The combination of strain sensors with movement sensors
capable of detecting motion artifacts might be an attractive
solution for future development of respiratory wearables.

The sound of breathing is used in the clinical field for
estimating fR, but it has received little attention in sport (Peterson
et al., 2014). Recording breathing sound during exercise may
have some advantages in view of the relatively loud sounds
produced, especially during high-intensity. Anecdotally, athletes
report monitoring the breathing sounds of their opponents as
a gauge of their physical effort during endurance competitions.
However, environmental noise can interfere with the quality of
the acoustic registration and may explain why little attention has
been devoted to breathing sound so far.

It is well-established that ventilation affects the morphology
of the ECG signal, and that fR can be extracted from the
ECG with different techniques (Helfenbein et al., 2014). A few
encouraging attempts have also been made to derive fR from
ECG during cycling exercise (Bailón et al., 2006; Schumann
et al., 2016). It is also documented that ventilation affects the
PPG signal (Meredith et al., 2012), from which fR can be
extracted with appropriate computational processing (Charlton
et al., 2016). The PPG signal is receiving growing attention in
the sports wearable sector because of its simplicity of recording;
for instance, it can be obtained from different body sites like the
finger, the wrist and the earlobe. Nevertheless, data on the validity
of fR extracted from the PPG signal during exercise is sparse.
In an early attempt made during cycling incremental exercise,
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motion artifacts prevented a good estimation of fR and the error
of estimation increased with the increase in exercise intensity
(Nakajima et al., 1996). Some of these problemsmay be overcome
with the application of robust filters and appropriate computing
techniques (Lee et al., 2011). However, more research is needed to
evaluate whether fR can be satisfactorily estimated from the ECG
or the PPG signal during exercise.

Work on the development of respiratory wearables is likely
to increase from a technological point of view (including the
computing sector), because a range of sensors and methods can
be used to measure fR. Therefore, we expect growing interest
in the development of fR-based wearables specifically designed
for sporting activities, triggered by the understanding of the
importance of fR for training monitoring. Among the wearables
currently available, those measuring chest strain are the most
numerous, and their accuracy is generally good. However, the
wearability of some of these devices needs to improve before
use in monitoring training. Further validation studies are needed
to guide sport scientists and practitioners on the choice of the
suitable device. Validation studies have generally targeted few
exercise modalities (mainly walking and running), and some
devices have only been tested during moderate-intensity exercise.

HOW SHOULD RESPIRATORY
FREQUENCY DATA BE ANALYZED?

Since we are at an early stage of training monitoring by means of
fR, this section aims to provide some initial guidelines on how to

deal with fR data. It is important to point out that the variability
of fR is relatively high if compared to that of other physiological
variables like HR (Faude et al., 2017). This is not necessarily a
limitation because fR is also sensitive to variations in performance
induced by a variety of experimental interventions, indicating
its relatively high signal-to-noise ratio. However, the variability
issue should be considered when analyzing and interpreting fR
data. A breath-by-breath fR dataset should be filtered for errant
breaths (i.e., values resulting after coughs, sighs, swallows, etc.), as
commonly performed for gas exchange analysis (Lamarra et al.,
1987). Subsequently, data can be interpolated to 1-s intervals
and bin averaged according to experimental or practical needs.
Due to the inherent variability of fR, the maximal value of fR
(fRmax) should not be taken from breath-by-breath values but
from an average of no <10 s. For the same reason, average values
should be displayed real time during training activities rather
than breath-by-breath values.

The f Rmax reached during maximal effort exercise is similar
across different exercise paradigms and durations (Kift and
Williams, 2007; Nicolò et al., 2014a,b, 2016a, 2017b), with few
extreme exceptions (Nicolò et al., 2015). Therefore, different
maximal exercise protocols appear to be suitable for measuring
f Rmax. It is convenient to normalize fR to f Rmax to develop
prescription and monitoring strategies that can be generalized,
since there is relatively high variability in f Rmax across different
individuals, and the factors determining this variability are not
well-understood. The first attempt to interpret fR data normalized
to f Rmax was made by Nicolò et al. (2014a). They found a strong
correlation between fR and RPE with similar values across a

FIGURE 2 | Correlation between RPE and fR normalized to fRmax during a continuous (CON) and three different HIIT trials (40:20 s, 40 s work 20 s rest; 30:30 s, 30 s

work 30 s rest; 20:40 s, 20 s work 40 s rest) matched for effort and exercise duration (30min). The linear regression results from pooling together data from the four

trials. The regression equation of the correlation obtained was used to associate fR normalized to fRmax with the 6–20 RPE scale (upper left corner of the chart). This

was done in order to favor the interpretation of fR-values obtained during exercise. Reproduced from Nicolò et al. (2014a).
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continuous and three different HIIT trials matched for effort
and exercise duration. Therefore, values from the four trials
were considered together, and the regression equation of the
correlation obtained was used to associate fR normalized to f Rmax

with the well-known 6–20 RPE scale (Figure 2). For instance,
a value of 80% f Rmax approximately corresponded to an effort
perceived as hard, and a value of 88% f Rmax to an effort perceived
as very hard, with clear implications for training prescription
and monitoring. Indeed, fR is an objective variable that can be
measured continuously during exercise, while RPE is a subjective
variable which can only be collected at discrete points in time.
This approach could be improved further by normalizing fR to
the range of possible fR-values available (from fR measured at rest
to fRmax), in a similar manner to the formula used to obtain the
HR reserve (Karvonen and Vuorimaa, 1988). This normalization
procedure could be used to provide objective real-time feedback
on physical effort, with values conveniently ranging from 0
to 100. A real-time feedback could also allow athletes to
voluntary alter their breathing pattern as allegedly advised by
some coaches, although the potential benefit of this practice is
uncertain.

Different approaches may be used to synthesize fR data
from one or more training sessions. Unlike for HR, average
fR is similar across maximal-effort training sessions differing in
the HIIT format of exercise or duration (Nicolò et al., 2014a,
2016a, 2017b). Therefore, average fR may provide a simple
preliminary description of the overall physical effort of a training
session. However, more comprehensive analyses are required to
fully examine the potential of fR data. Two promising analyses
conceived to analyze large datasets are the training distribution
and the training concentration profiles described by Passfield and
Hopker (2017). The training distribution profile shows the total
session time spent above the reference fR-value (which can be

interpreted as the reference level of effort), which assumes every
possible value (Figure 1D). The training concentration profile
is a concentration curve (i.e., the derivative of the distribution
curve), which shows the cumulative time spent training at
each fR-value (effort level) (Figure 1E). fR distribution and fR
concentration profiles would therefore provide a breakthrough
in understanding training effort, which is currently summarized
by a single session value of RPE.

CONCLUSION

In this perspective article, we aimed to present scientific
evidence indicating the importance of monitoring fR during
training, and to propose possible methodologies and wearable
sensors currently available to measure fR in the field. We also
provided indications on how to analyze and interpret fR data.
This is expected to benefit athlete training monitoring and
the advancement of applied research in this area of sports
science, and to stimulate the development and use of respiratory
wearables specifically designed for sporting activities. That of fR
represents a good example of how wearable sensor development
should follow athlete’s needs and be informed by scientific
findings.
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Professional sports teams are investing substantial resources inmonitoring the training load (TL) in
their players in an attempt to achieve favorable training outcomes such as increases in performance
and a reduction in negative outcomes such as injury. This investment is likely to increase as
organizations explore the most recent developments in wearable technology that allow a wide
variety of objective physiological and other measures to be collected concurrently and over long
periods of time. The question of how all of this data can be used is one that many in our field are
now asking (Foster et al., 2017). To answer this, we have to start with a definition of TL. Soligard
et al. (2016) recently defined TL as:

“the sport and non-sport burden (single or multiple physiological, psychological, or mechanical

stressors) as a stimulus that is applied to a human biological system (including subcellular elements,

a single cell, tissues, one or multiple organ systems, or the individual)”

To quantify this construct, a common approach is to determine the ratio of a single measure across
two moving-average time periods (e.g., acute- and chronic-training-load-ratio [A:C]). Suboptimal
(either too high or low) TL is associated with an increased risk of injury (Hulin et al., 2016).
However, while many TL methods (e.g., total distance, high-speed distance, session rating of
perceived exertion [sRPE]) are collected, they are used individually as “predictor” variables in these
analyses. Therefore, the initial consideration should be to determine the variable(s) that provide the
most valid representation of the actual load imposed on each athlete.

Establishing the validity of a TL measure is typically examined through its agreement with a
criterion which represents the true value. For example, the speed derived from a global positioning
system (GPS) device is compared to that derived from a radar gun (Roe et al., 2016). In this instance,
the confidence that the criterion measure represents the true value is high. In contrast, determining
the validity of internal TL methods is problematic due to the limited physiological markers that
are available in the field, and that there is no criterion method of measuring the internal TL. In
addition, the definition highlighted previously (Soligard et al., 2016) demonstrates the complexity
of the internal TL construct. Therefore, despite sRPE having been reported to correlate highly with
Banister’s training impulse (TRIMP) (r = 0.75) (Lovell et al., 2013) and Edward’s TRIMP (r = 0.70)
(Kelly et al., 2016) models, in these examples the shared variance is only 56 and 49%, respectively.
This means that about half of the variance is unexplained. Are we therefore adopting a reductionist
approach by assuming that by association, a single measure can capture the whole (true) internal
TL imposed?

Physiological systems are complex, with many disparate factors affecting the outcomes of
training. In essence, every bout of exercise/training imposes specific physiological, biomechanical,
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and psychological demands which vary not only with the
prescribed “dose” (i.e., sets, repetitions, duration etc) but also
with the mode (e.g., strength training vs. sport-specific training)
of exercise (Soligard et al., 2016; Cardinale and Varley, 2017).
Therefore, it is unlikely that a single independent variable
will be able to capture this complexity and provide a valid
measure of TL (either internal or external) and consequently,
a holistic representation of TL has been suggested (Cardinale
and Varley, 2017). By taking a univariate approach, we are in
danger of omitting valuable information that could contribute
to explaining the relationships between the imposed TL,
and changes in fitness/performance/injury. For example, it is
common practice to collect multiple TL variables concurrently.
Recent investigations have shown that a single TL variable is
unable to capture a meaningful proportion of the variance
provided by multiple internal and external TL variables, which
is exacerbated by the mode of training (e.g., technical-tactical,
high-intensity-interval-training, sprint-training) (Weaving et al.,
2014, 2017). Therefore, as the internal TL is governed largely by
the external TL, external TL measures are likely to contribute
“surrogate” information about the internal TL imposed and
provide information that can also relate to training outcomes
(Oxendale et al., 2016). In data science terms, the information
contained collectively in, and between, these variables, has great
potential to inform and optimize our understanding of training
dose-response relationships. However, appropriately unlocking
this information (without statistical/mathematical violation) can
be difficult. As the variables associated with TL are often
strongly correlated, multicollinearity (i.e., the degree to which
variables are similar to one another) is frequently a problem.
In addition, because player cohorts are small, it is often the
case that the number of measured variables can exceed the
number of players. As such, TL datasets can pose a considerable
challenge when using traditional techniques such as logistic and
multiple linear regression, thereby limiting their applicability
when adopting multivariate (rather than univariate) TL analyses.
However, through the use of dimension reduction techniques
such as principal component analysis (PCA) (Weaving et al.,
2014, 2017) and single value decomposition (SVD) (Till et al.,
2016), which are immune to multicollinearity issues, it is
possible to capture the complexity of a system in just a
few orthogonal composite variables (i.e., variables that provide

unique information). Because most of the variance in the system
is captured in these orthogonal composite variables, it means
that complex higher-dimensional systems can be represented
on 2D and 3D scatter plots with minimal loss of information
(Till et al., 2016). Furthermore, because the new variables are
orthogonal it means that they are not correlated in any way, thus
ensuring that they capture different attributes of the TL “system.”
Single value decomposition and eigen-decomposition are at the
heart of other useful data science techniques, such as partial
least squares correlation analysis (PLSCA) (Beggs et al., 2016),
which have great potential with respect to TL quantification.
Rather than taking a conventional statistical approach, PLSCA
utilizes the concept of shared information to gain new insights
into the relationships between groups of variables (i.e., both
predictor and response variables) in complex datasets. For
example, using PLSCA, the relationship between multiple TL
variables (e.g., total-distance, high-speed-distance, and s-RPE)
and multiple “fatigue” variables can be investigated in a single
analysis, allowing stronger inferences to made of the “dose-
response” nature of these broad theoretical constructs that we
wish to represent.

Despite the perceived increases in computational demands
placed on practitioners, the authors feel that this multivariate
approach warrants further investigation, at least initially in
research, given the importance of TL measures in optimizing
the preparation of team-sport players. It is then envisaged
that this approach could be integrated into athlete monitoring
software platforms to “combine” unique aspects of information
provided by multiple TL variables. Although developing our
understanding of what individual TL measures represent is
important (i.e., validity), it is hoped that multivariate approaches
will further develop our knowledge of the dose-response nature
of TL monitoring with important training outcomes such as the
changes in fitness, performance, and injury risk.
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This paper provides the evidence of a sweet spot on the boot/foot as well as the method

for detecting it with a wearable pressure sensitive device. This study confirmed the

hypothesized existence of sweet and dead spots on a soccer boot or foot when kicking

a ball. For a stationary curved kick, kicking the ball at the sweet spot maximized the

probability of scoring a goal (58–86%), whereas having the impact point at the dead zone

minimized the probability (11–22%). The sweet spot was found based on hypothesized

favorable parameter ranges (center of pressure in x/y-directions and/or peak impact

force) and the dead zone based on hypothesized unfavorable parameter ranges. The

sweet spot was rather concentrated, independent of which parameter combination was

used (two- or three-parameter combination), whereas the dead zone, located 21mm

from the sweet spot, was more widespread.

Keywords: smart soccer boot, pressure sensor, sweet spot, dead spot, probability of scoring a goal, center of

pressure, impact force, wearable technology

INTRODUCTION

It was recently proposed that wearable sensor technology (“wearables”) aid optimizing athletes
performance by providing feedback about monitored context-specific parameters (Düking et al.,
2017). This approach was successfully implemented in different settings (Crowell and Davis, 2011;
Windt et al., 2017). Yet, a field which received little attention is the kicking action and more
precisely the foot-to-ball impact phase in soccer. This is surprising, since soccer is the most popular
sport in the world, and improving kicking actions is often part of soccer training (Kellis and Katis,
2007). The lack of research on wearables analyzing the foot-to-ball impact phase surely is limited
by the lack of available sensor technologies to access relevant parameters.

In soccer, the direct free kick is one possibility of scoring a goal, and up to 6.31% of all goals
are scored in elite (female) soccer (Alcock, 2010). Another, more challenging technique is the
curved kick, where a stationary ball follows a curved trajectory around a human wall formed by
defensive players in order to hit the goal. However, before this technique can be improved optimally
in individual soccer players, characteristics of an ideal curved direct free kick must be analyzed
and established. From a biomechanical point of view, soccer kicks can be analyzed from several
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kinematic and kinetic aspects, i.e., the approach, the supporting
leg, the kicking leg, joint velocities, and the foot-to-ball impact
(Kellis and Katis, 2007; Lees et al., 2010). However, it can be
argued that the foot-to-ball impact phase is the paramount aspect
of the kick since it is the only time players can influence the speed,
spin and direction of the ball. In general, very little research
has been conducted on curved direct free kicks and there is no
single study available that addresses the differences of successful
and non-successful curved direct free kicks in the foot-to-ball
impact phase. This issue partly arises from methodological
limitations related to evaluating the foot-to-ball impact
phase.

The kicking action and particularly the foot-to-ball contact is
usually investigated kinematically, by using high-speed cameras
or motion analysis systems with body segment markers (Barfield
et al., 2002; Dichiera et al., 2006; Nunome et al., 2006; Ishii and
Maruyama, 2007; Shinkai et al., 2008; Scurr and Hall, 2009; Ball,
2011). The data sampling frequency or frame rate ranges from
50Hz (Dichiera et al., 2006) to 5 kHz (Shinkai et al., 2008). Force
plates are only useful to capture the action of the support leg (Ball,
2011). EMG (electromyography) was employed for analysing
the muscle activity during kicking (Bauer, 1983; Dorge et al.,
1999; Orchard et al., 2001). The kick impact force was estimated
or derived in two different ways. Ishii and Maruyama (2007)
assessed the deformation of the ball with high-speed cameras
(2.5 kHz), as the force is a power function of the deformation
based on Hertzian contact mechanics. The force calculated was
∼1,200N. Shinkai et al. (2008) also used high-speed cameras
(5,000Hz) for estimating the velocity of the center of mass
of the ball, the slope of which at time of peak deformation
(±1ms) corresponds to the peak acceleration of the ball. The
product of the latter and the mass of the ball yields the peak
impact force. The average peak force reported by Shinkai et al.
(2008) amounted to 2,847 ± 538N. In summary, the problem of
kinematics is that impact force can only be estimated, if calculated
from other parameters obtained from kinematic analysis, rather
than measured directly. The center of pressure (COP) of the
foot-to-ball impact phase, however, cannot be determined from
close-up ultra-high-speed camera data accurately.

To the best of our knowledge, the only research using wearable
sensor technology specifically aiming to analyse the foot-to-
ball impact phase was performed by Hennig et al. (2009) who
equipped two shoes (best and the worst shoes in terms of
instep kicking accuracy out of five commercially available soccer
shoes) with a Pedar (Novel GmbH, Munich, Germany) pressure
distribution measuring insole located outside of the shoe upper
(Hennig et al., 2009). The pressure was measured on every other
sensor at a frequency of 571Hz. From the pressure data, the
summation center of pressure (COP) was calculated (Hennig,
2011), which was located more medially and more proximally
in the shoe that delivered more accurate kicks. While providing
meaningful results, from our perspective, transferability of these
to practice is restricted by the high costs of the used wearable
sensor technology whereby this technology cannot be made
available for amateur athletes. However, these are likely the ones
benefiting themost from biofeedback by wearables (Düking et al.,
2017).

A pressure-sensitive wearable technology was recently
developed with the purpose of analyzing players’ kicking
technique at the foot to-ball impact phase was developed
(Weizman and Fuss, 2015a,b). This technology has several
advantages over commercially available pressure sensor array
systems: it is cheap (cheaper than the Pedar insole by a factor of
∼100); highly accurate in terms of impact COP measurement
(far more accurate than a Kistler force plate); samples the
data at 2–2.5 kHz per sensor. The pressure-sensitive wearable
technology can be incorporated into athletes’ footwear (which
we will call from now on the “Smart Soccer Boot”) to precisely
measure the position of the COP and the magnitude of the
impact force at each instance in time at the contact area between
a player’s kicking foot and the ball. The Smart Soccer Boot
was originally developed for training purposes, specifically to
monitor the training load of kicking.

The aim of this study is to use the Smart Soccer Boot for
exploring the accuracy of curved kicks, evaluating the probability
of scoring a goal, linking the chances of success to dynamic
parameters obtained from the smart boot (such as impact force
and location of the center of pressure), and analyzing whether
there is a spot on the shoe (sweet spot) that maximizes the
chances of success when kicking the ball. This leads to four
hypotheses:

Hypothesis 1: there is no significant difference between the

measured dynamic parameters (COPx, COPy, impact force) of all

hits (scoring a goal) and those of all misses. The reason being that

there is no single “sweet spot” on the shoe or foot that guarantees

a success rate of 100% for scoring a goal. There might be ball-shoe

or -foot contact spots or zones that offer more or fewer chances

of scoring a goal with areas of average chances in between these

specific spots. As the probabilities are distributed across these

spots and the areas in between and as the chances at the specific

spots are not exactly 100 or 0% either, the dynamic parameters

associated with hits and misses might considerably overlap and

therefore not exhibit a significant difference.

Hypothesis 2: There is a favorable parameter range that maximizes

the probability of success as well as an unfavorable parameter

range that minimizes this probability. A method for identifying

such parameter ranges has to be developed, which this research

is based on. Furthermore, parameters of all hits and all misses

cannot be directly compared, but rather extreme cases such as

successful kicks and parameters within the favorable range vs.

unsuccessful kicks and parameters within the unfavorable range.

This approach separates the data and is expected to result in

significant differences between COP locations that provide more

or fewer chances of scoring a goal. The COP locations, however,

are seen as a continuum across increasing/decreasing probabilities

of success, and their extremes locations are spots with maximum

chances and minimum chances of scoring a goal.

Hypothesis 3: If there is a favorable/unfavorable parameter range,

then the extreme COP location related to the favorable range

constitutes a well-defined sweet spot. If there really is a spot that

maximizes chances then this will be a “sweet spot,” the definition

of which is the location of COP that maximizes chances of scoring

a goal.
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Hypothesis 4: If there is a sweet spot on the boot/foot, then there is

also a dead spot or zone. The dead spot is a spot located differently

from a sweet spot, whereas a dead zone is e.g., a ring around the

dead spot if there are feasible contact points around the sweet

spot. Otherwise, a sector of a ring could be found that minimizes

the chances of scoring a goal if the ball-boot/foot contact is located

within this dead zone.

The use of an accurate measurement device is indispensable for
this task, which, naturally, must be in the form of a wearable
device located at the medial and dorsal part of the foot. Although
the Pedar insole (Novel GmbH, Munich, Germany) is wearable
inside a shoe, wrapping it around a soccer boot (as done by
Hennig et al., 2009; Hennig, 2011, for finding the average COP
of two shoes with different kick accuracies) is difficult as it
was designed to be worn inside a shoe for plantar pressure
measurement. As such, a smart wearable device specifically
designed for measuring the ball-to-boot or -foot impact force and
COP with high accuracy (Weizman and Fuss, 2015a,b; Weizman,
2016) was used in this study.

The term “sweet spot” used in this paper is adapted from
sports implements. In racquets, bats and clubs, hitting a ball with
the sweet spot either maximizes the performance (increase in
ball speed; e.g., power spot of tennis racquets), or minimizes the
risk of overstrain injuries (node point that minimizes racquet
vibrations, and center of percussion that minimizes the shock
force at the hand; Fuss, 2011; Fuss et al., 2014). These features
are not applicable to the “sweet spot” on a shoe, boot or foot;
nevertheless, kicking a ball at the sweet spot hypothetically
maximizes the player’s performance by increasing the chances of
scoring a goal.

METHODOLOGY

Smart Soccer Boot
The sensor array system for the Smart Soccer Boot (Weizman
and Fuss, 2015a) consists of 16 sensor cells (Figure 1), a
programmable microcontroller and a compact electronics circuit
board. All sensor cells are arranged in a 4 × 4 matrix, whereby
each cell is 20 × 20mm separated by a 1mm gap. The
piezoresistive material used for the sensors consisted of an off-
the-shelf piezoresistive vinyl, and exhibited a linear calibration
curve when the pressure was plotted against conductance data
derived from force impact tests (Weizman, 2016). Each sensor
was calibrated individually and validated against a Kistler force
plate (type 9260AA6, Kistler, Winterthur, Switzerland) with
impact forces ranging from 368 to 2,146N (Weizman and Fuss,
2015b). The R2 values when correlating measured sensor impact
forces against measured impact force on the Kistler force plate
ranged from 0.9333 to 0.9882 (0.9647± 0.0189; Weizman, 2016).
The validation of the COP obtained from the force sensor against
the one returned from the Kistler force plate failed, as the Kistler
force plate was not able to measure the COP of impact forces
accurately (Figure 1). In most cases, the COP obtained from the
Kistler force plate was even outside the impacted sensors (impact
on 4 adjacent sensor cells only, 2 × 2 matrix), even if the impact
was confined to 4 sensors with a 10mm thick wooden spacer,

thereby preventing loading of adjacent areas (Weizman, 2016).
The COP returned from the sensor was always very close to
the center of the 4 sensor cells [“very close” because the impact
force was applied manually and could not be centered precisely;
(Weizman, 2016); Figure 1]. High precision in determining the
center of pressure is paramount for the present study and its
results.

Participants
Ten right-footed and experienced male soccer players (n = 10;
age = 26 ± 1.71 years; body height: 177.1 ± 5.43 cm; body
mass: 75.2 ± 8.36 kg; shoe size [EU]: 43 ± 1.4) volunteered to
participate in the study after having been extensively informed
about all testing procedures. The recruited players were trained
midfielders or strikers with at least 6 years of soccer training at a
non-professional level.

The study was granted Ethics approval by the RMIT
University Human Ethics Committee (approval no. ASEHAPP
28-14). All testings were carried out in accordance with the
Declaration of Helsinki. No player suffered from injury, illness,
and/or disease and all players were instructed to have eaten a light
meal 1 h prior to testing, and to stay well hydrated. However, this
was not specifically tested for by the investigators of this study.

Sensor Placement
For the purpose of this study and for reasons of consistency and
comparability, the sensor system had to be placed on specific
anatomical landmarks to cover the contact area between the foot
and the ball for the curved kicks. The sensor placement on the
anatomical landmarks of the foot is visualized in Figure 2a. The
sensor system is not implemented in a soccer boot yet and a
design is warranted in which the sensor can be placed securely
on the aforementioned anatomical landmarks.

To solve this issue, a placement of the sensor system inside
a boot under the soccer shoes upper was tested. However, this
approach was not satisfying since proper placement of the sensor
cells could not be guaranteed and was rejected consequently.

Secondly, a pocket made of artificial leather was produced in
which the sensor cells fit securely. This leather pocket could be
fitted to the outer upper part of a soccer boot by Velcro tape.
Even though being promising, this approach was rejected as well
due to the same reasons as the first approach. The method of
placing a pressure sensor on the shoe upper was actually used
by Henning (Hennig et al., 2009; “The pressure measuring pads
were adjusted on top of the shoes to the foot anatomy, guaranteeing
that all sensors were matched to identical anatomical locations
of the individual feet,” Hennig, 2011). However, we experienced
problems of identifying the anatomical landmarks by palpation
through the shoe upper, and therefore abandoned this method.

In a third approach, an off-the-shelf sock (EU-size 42–44)
with a hand-stitched thin layer of artificial leather on top was
used to build a pocket in which the sensor cells fit properly
(Figures 2b,c). Artificial leather was chosen to mimic the upper
material of commercially available soccer shoes as close as
possible.

A snap fastener on one corner of the leather pocket allowed to
insert and remove the sensor cells easily to allow maintenance if
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FIGURE 1 | Pressure sensor matrix and its validation against a Kistler force plate; COPx, COPy: position of the center of pressure in x- and y-direction of the

coordinate system of the sensor matrix; (A) 4 × 4 sensor matrix and the positions (d1–d4, c1–c5) of the spacers for impact loading of nine 2 × 2 quarters for

validating the position of the center of pressure (COP); (B) COPs obtained from the force plate with respect to the sensor matrix (dashed black square; note that COPs

cannot be outside the sensor matrix; yet, the force plate returned impossible COP positions); (C) COPs obtained from the pressure sensor matrix (black dots: COP

position; red dots: average position; green ellipse: area of one standard deviation of COPx and COPy with respect to the average, black elliptic contour: cluster of all

COP positions per quarter; note that the average COPs are not exactly at the center of each quarter as it was impossible to impart the impact force exactly at the

center of each spacer); (D) Comparison of average COPs obtained from the force plate (red) and the pressure sensor matrix (green). ©Yehuda Weizman, reproduced

from Weizman (2016) with kind permission.

necessary. With this set up it is possible to equip different players
easily with the sensor system, while simultaneously keeping the
comfort of players high amidst kicking. Additionally, the design
of the sock allowed a precise placement of the sensor system

on the same anatomical landmarks for each participant, which
is crucial for the purposes of this study. For these reasons, this
approach was selected to analyses the characteristics of curved
kicks with participants.

Frontiers in Physiology | www.frontiersin.org 4 February 2018 | Volume 9 | Article 6389

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Fuss et al. Sweet Spot on Soccer Boot

Sensor cell 1 was placed on the medial side of the
metatarsophalangeal joint I. The medial edge of the sensor
was aligned to the medial side of the metatarsal I in proximal
direction to the medial cuneiform. The anterolateral corner of
the sensor was located on the metatarsophalangeal joint IV. The
lateral side of the sensor matrix was aligned to metatarsal IV.

Experiments
To test the hypotheses, each player conducted 8–18 curved
direct free kicks in windless conditions on artificial grass with
a standard size 5 ball with an internal pressure of 0.8 bar
(∼11.6 psi). Players performed a standardized warm-up and were
allowed to take several test kicks to familiarize themselves with

the task prior to the actual testing. For all kicks, players were told
to kick the ball as they would normally do in competition and not
to alter their kicking technique in any way.

Slightly modified from a previously used set-up (Alcock et al.,
2012), the ball was positioned at 20m distance in a straight line
from the right goal post (Figure 3). An artificial wall made out of
polymer material with a height of 1.83m was placed at a distance
of 9.15m away from the ball and was placed sideways by an
experienced goalkeeper as he/she would do in competition, i.e.,
1½ players are placed outside of an imaginary line between the
ball and the goal post closer to the ball. The aim for each player
was to curve the ball around the artificial wall on the right side,
and to hit a target with the dimensions of 2.44 × 2.44m (1/3 of

FIGURE 2 | Sock with artificial leather stitched on top to secure the sensor matrix in place; (a) Placement of the sensor matrix (black contour; note that this black

contour is not square as the sensor matrix is wrapped around the medial side of the foot, as seen in subfigure c), on anatomical landmarks and its coordinate system;

(b) Instrumented sock and foot-to-ball contact; (c) Leather on top of the sensor matrix wrapped around the medial side of the foot, including snap fastener for

securing the sensor matrix in place.

FIGURE 3 | Schematic experimental set-up for the curved kick; players had to kick a left-curved kick around an artificial wall (red) inside the target (green); the dashed

line represents the trajectory of the ball; the dotted line highlights that a straight shot will not deliver a successful kick.
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a full-sized goal) which was placed on the right side of the goal.
Consequently, the ball had to follow a left-curved trajectory in
order to hit the target. The kick was recorded as unsuccessful
(miss) if the ball did not hit the target or was not curved around
the artificial wall properly. Missed kicks were found to be on the
right side of the target area, but never on the left side.

Data Analysis
The raw data of all 16 pressure sensor cells were collected at
2–2.5 kHz in ASCII format (10-bit analog to digital converter).
The time series of the ASCII data was converted to voltage
(drop voltage measured across the reference resistor of each
of the 16 voltage dividers). From the voltage, the following
parameters were calculated in sequence as a time series: the
resistance of each pressure sensor (calculated from the voltage
and the reference resistor); the conductance of each sensor
(reciprocal of resistance); the pressure of each sensor (from
the pressure-conductance-calibration curves); and the force on
each sensor (from the sensor area and pressure). The overall
impact force was determined from the sum of forces from the
16 individual cells. The center of pressure (COP) was calculated
from individual forces and the position of the geometrical center
of each sensor cell relative to the coordinate system of the sensor
array (Figure 1) in x- and y-directions (COPx, COPy). The
time derivatives of the distance between two consecutive COP
positions delivered the instantaneous velocity of the COP.

We used the following continuous data as time series for
further calculations: COPx, COPy, and impact force (F). The
parameters used for statistical purposes were:

• COPx at maximal force;
• COPy at maximal force;
• Maximal impact force (Fmax).

All three parameters (quantitative data) were combined with the
success data (qualitative binary data: hit = 1, miss = 0), the
number of the participant and the number of kick. The latter
two numbers served only for identification purposes, used for
attributing parameter data to the participant and the type of
kick. The success data served for calculation of the probability
of success P, of scoring a goal.

Hits against Misses Analysis
The data of the parameters (listed above) of all hits were
compared to the parameters of all misses with the Mann–
Whitney U-test (as some of the data sets were not normally
distributed, verified with the Shapiro–Wilk test if p < 0.05) and
the p-values were determined. This procedure revealed whether
there is a significant difference between parameter data obtained
from kicking a successful or unsuccessful curve shot. The effect
size was calculated in terms of the Rank-Biserial Correlation
(Cureton, 1956), r, from the U-value: r = 1 – 2U/(n1 n2), where
n1 and n2 denote the number of data compared by the Mann–
Whitney test, and U ≤ 0.5 n1 n2. Note that the effect size r ranges
from zero to unity.

Regression Analysis
The probability of success P, of scoring a goal, equals the average
of hits h (1) and missesm (0) across a specified parameter range.

P =

∑
(

h,m
)

n
(1)

where n is the total number of data.
The method used in this paper is an analogy to, and

optimization of, the Median–Median Line method by Wald
(1940). However, instead of dividing the data into two equal
size subsamples, separated by the median of the independent
parameter, the separation line divided the data sample into two
unequal size subsamples, which was optimized based on the
conditions explained subsequently.

The entire dataset of an independent parameter including the
associated hit and miss data (dependent parameter), was divided
into two subsamples (data ranges), separated by a threshold value
s. The subsample on one side of s delivers a greater probability
of success P, compared to the subsample on the other side of s.
The preferred range, for maximizing the chances of success, is
identified by the higher P. The absolute P-differential D of the
two subsamples should be as high as possible.

D = P1 − P2 =

is
∑

i=1

(

h,m
)

is
−

n
∑

i=is

(

h,m
)

n− is
(2)

where is denotes the number of the datum just before or after the
threshold value s; P1 denotes P before s, and P2 denotes P after
s; by definition, the average P1 is greater than the average P2, in
order to fulfill the condition of a maximum or near-maximumD.

Yet, the probability data P, on either side of s, should be
significantly different. This was determined with an independent
t-test, by comparing the two samples of hit and miss data (h, m)
of both sides of s. An F-test for testing the significance of the
difference between the variances of the two samples determined
whether a homoscedastic (F-test p > 0.05) or heteroscedastic
(F-test p < 0.05) t-test had to be performed. These homo-
and hetero-scedastic p-values as well as the F-test p-value were
computed with a moving average (smaller and greater s) across
the entire dataset, i.e., for all possible s-values running across
the entire range of a parameter (such as COPy, Fmax, etc.). The
optimal threshold value s was determined from those D-data
that are

1) close to, or at, the maximum D,
2) exhibit a t-test p < 0.05, and
3) have at least 20% of the data on either side of s.

The last requirement ensures that there is a sufficient number
of data left for the Kruskal–Wallis rank sum test, detailed in the
next section. The optimal threshold value s divides the parameter
range into two subsamples (data ranges), a favorable one (for
maximizing the chances of success) and an unfavorable one (that
minimizes the chances of success Figure 4). When comparing
the data of the two subsamples, the effect size is always at the
maximum, as they are separated by s. Figure 5 is an extension of
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FIGURE 4 | Principle of probability of success (P) against the range of

parameter data; the black vertical line s divides the parameter range into two

subsamples (smaller and greater than s); P1 = average of hit and miss data for

the parameter range smaller than the threshold value s (s = 6.5); P2 = average

of hit and miss data for the parameter range larger than the threshold value s;
D = probability differential (P1 – P2); P1 and P2 are significantly different (p =

p-value); the parameter range associated with P1, the larger of the two P, is
the favorable range of the parameter tested; the parameter range associated

with P2, the smaller of the two Ps, is the unfavorable range of the parameter

tested.

Figure 4, showing a realistic dataset and a feasible (ideal) and an
unfeasible separation line s. The feasibility is determined by the
p-value and the magnitude of D.

Two-Parameter Analysis
In contrast to the previous section that treats each parameter
individually, this section deals with the effect of two parameters
have on each other, i.e., addresses the question whether
the favorable ranges of two parameters influence each other
positively (by improving the probability of scoring a goal) or
negatively (by diminishing the probability of scoring a goal).
When selecting two parameters, then, based on their individual
threshold values, four combinations (quarters of a point cloud),
and associated datasets of hit and miss data, are obtained:

• parameter A, unfavorable data range, and parameter B,
unfavorable data range;

• parameter A, favorable data range, and parameter B,
unfavorable data range;

• parameter A, unfavorable data range, and parameter B,
favorable data range;

• parameter A, favorable data range, and parameter B, favorable
data range.

The four associated datasets of hit and miss data, resulting in
four average probability (P) data, were tested for their significant
differences. It was expected that the probability of success (P) of
two parameters combined, both in their favorable ranges,

• was greater than P of either of these parameters individually in
their favorable ranges; and

FIGURE 5 | Example of probability of success (P) against the range of parameter data with two threshold value s (s = 2.03 and s = 4.63); P1 = average of hit and miss

data for the parameter range smaller than the threshold value s (s = 6.5); P2 = average of hit and miss data for the parameter range larger than the threshold value s;
D = probability differential (P1 – P2; D is greater for s = 2.03); P1 and P2 are significantly different (p = p-value) for s = 2.03 and insignificantly different for s = 4.63.
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• was significantly greater than P of two parameters combined,
both in their unfavorable ranges.

The significance of the latter expectation was tested with
Kruskal–Wallis rank sum test, and the significance of the
individual differences in the four average probability (P) data
was assessed with two post-hoc tests: Conover and Dunn, both
of them adjusted by the Holm FWER (familywise error rates)
and Benjamini-Hochberg FDR (false discovery rate) methods.
The effect size was calculated in terms of the Rank-Biserial
Correlation r, by comparing the data sets of the two parameters
in their favorable and unfavorable ranges. It is evident that the
effect size results in 1 for parameter A and B (when comparing
data of the favorable and unfavorable ranges); however, the
third parameter (C) is not optimized (in terms of favorable and
unfavorable ranges), the effect size of which is therefore smaller
than unity.

Three-Parameter Analysis
When selecting three parameters, then, based on
their individual threshold values, eight combinations
and associated datasets of hit and miss data are
obtained:

• parameter A, unfavorable data range; parameter B,
unfavorable data range; and parameter C, unfavorable
data range;

• parameter A, unfavorable data range; parameter B,
unfavorable data range; and parameter C, favorable data
range;

• parameter A, favorable data range; parameter B, unfavorable
data range; and parameter C, unfavorable data range;

• parameter A, favorable data range; parameter B, unfavorable
data range; and parameter C, favorable data range;

• parameter A, unfavorable data range; parameter B, favorable
data range; and parameter C, unfavorable data range;

• parameter A, unfavorable data range; parameter B, favorable
data range; and parameter C, favorable data range;

• parameter A, favorable data range; parameter B, favorable data
range; and parameter C, unfavorable data range;

• parameter A, favorable data range; parameter B, favorable data
range; and parameter C, favorable data range;

The eight associated datasets of hit and miss data, resulting in
eight average probability (P) data, were tested for their significant
differences. It was expected that the probability of success (P) of
three parameters combined, both in their favorable ranges, was
significantly greater than P of two parameters combined, both in
their unfavorable ranges.

The significance of the latter expectation was tested with
Kruskal–Wallis rank sum test, and the significance of the
individual differences in the average probability (P) data was
assessed with the post-hoc tests specified above.

In the three-parameter analysis, the conditions for finding the
optimal threshold value s were re-defined such that:

1) The associated D-data exhibit a t-test p < 0.05;
2) The new threshold value s have at least 20% of the data on

either side of s;

3) The chance of success of scoring a goal, for all three parameters
in their favorable ranges, is at the maximum; and

4) The chances of success of scoring a goal, for parameter
combinations with at least one of the parameters in its
unfavorable range, are significantly different from the chance
of success for all three parameters in their favorable ranges, to
be verified by the post-hoc tests applied as specified above.

Note that one of the previous conditions of the regression analysis
(single parameter), namely s close to, or at, the maximum D, was
sacrificed for obtaining the highest chance of success of scoring
a goal with all three parameters in their favorable ranges. The
effect size (Rank-Biserial Correlation r) is always unity when
comparing the data sets of the three parameters in their favorable
and unfavorable ranges.

COP Analysis
In order to establish a difference in the COP path of successful
and unsuccessful kicks, the average paths of COPx and COPy,
and the average impact forces at each COP position, were
calculated from the two-parameter analyses, by taking the
successful kicks of the two parameters in the favorable range, and
the unsuccessful kicks of the two parameters in the unfavorable
range. By taking several combinations of two parameters, the
COP paths of the successful kicks as well as the ones of the
unsuccessful ones should be close to each other and thereby
mutually validate the sweet spot on the boot. The COP path was
visualized as a bubble plot, where the bubble size corresponded
to the magnitude of the impact force.

The COPs (and also Fmax) of similar kicks (successful or
unsuccessful) were averaged in the following way:

- COPx at Fmax, COPy at Fmax, and Fmax were aligned such
that they shared the same data sequence number (or time
stamp);

- as the number of data before and after the “peak datum
number” was unequal across the kick datasets, the peak data
(COPx at Fmax; COPy at Fmax; Fmax) were averaged first
across all successful kicks and then across all unsuccessful
kicks;

- subsequently, the datasets were adjusted such that they shared
the same average peak data; this was required for averaging
the data tails before and after the “peak datum number”;
for example, when comparing two kicks, a kick with a more
proximal COPy and a shorter tail, and a kick with amore distal
COPy and a longer tail will certainly result in an average COPy
located halfway between the overlapping segments of the two
tails; in contrast, the excess data of the longer tail outside the
overlapping segment would remain on the distal side without
representing any average; thus, the adjustment is needed to
avoid this issue;

- finally, the datasets were averaged across all data sequence
numbers; for small and high data sequence numbers (i.e., at the
tails of the individual datasets), the number of data that were
averaged was smaller than for the data averaged at the peak
datum number; averages that were based on less than a third of
the number of data averaged at the peak datum number were
discarded, as they did no longer represent the group average;
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- the average data were plotted against the data sequence
numbers, and a polynomial function of a higher order was
fitted to the data (COPx, COPy, F). The optimal polynomial
order was determined with a convergence test at which the
R2-value (coefficient of determination) of the fit started to
asymptote;

- the fit function was used to produce a smooth COP and force
data sequence, displayed as a bubble plot. The varying bubble
size corresponded to the simultaneous impact force at the
individual bubble.

RESULTS

The Results section is organized around the four main findings in
consecutive order whereby one finding leads to the next one:

1) the data comparison of all hits and all misses proved
unsuccessful for establishing sweet and dead spots;

2) the trend analysis confirmed favorable and unfavorable
parameter ranges for COPx, COPy, and Fmax;

3) the chances of scoring a goal were significantly higher if two
or all three parameters are in their favorable ranges (i.e., at the
sweet spot with chances of 58–86%) compared to two or all
three parameters in their unfavorable ranges (i.e., at the dead
spot with chances of 11–22%);

4) the sweet spot locations obtained from two- to three-
parameter analyses were identical, but clearly separated from,
and located more medial and proximal than, the more
scattered dead spots.

Participant Statistics
The participants kicked the ball 8–18 times (12.9 ± 3.1). Their
chances of success of scoring a goal ranged from 22.2 to 72.7%
(30.3 ± 20.3%). Only two of the 10 players scored in more than
50% of the attempts.

Comparison of Parameter Data of All Hits
against All Misses
The peak force (Fmax) data of all misses and all hits were 1,682±
519N (678–3,161), and 1,843 ± 628N (769–3,365), respectively.
The COPx data (at Fmax) were −7.9 ± 8.0mm (−24.3
to +20.1mm) and −10.2 ± 7.4mm (−22.9 to +12.4mm),
respectively; and COPy data (at Fmax) were 3.7± 4.4mm (−10.4
to+15.1mm) and 3.0± 5.4mm (−4.4 to+17.2mm).

The p-values of the three parameters were>0.05 and therefore
the parameter data of all hits were not different from the
parameter data of all misses. Specifically, the p-value of COPx
of all hits compared to COPx of all misses was 0.187; the
corresponding p-value of COPy was 0.105; and the one of Fmax
was 0.119. As there was no difference between parameters of hits
and misses, only a very small (if 0.01 < r < 0.2; Sawilowsky,
2009) effect was observed: COPx effect size r= 0.149; COPy effect
size r = 0.183; and Fmax effect size r = 0.176. Hypothesis 1 was
therefore confirmed and the method of comparing the parameter
data of all hits against all misses is considered unsuccessful.

Trend Analysis
For the three parameters defined in the Methodology section,
the threshold values s, P1 before and P2 after the threshold, the
probability differential D at the threshold, the p-value of D, the
number of significant data, and the overall trend are listed in
Table 1.

COPx exhibited three possible threshold values (Figure 6A),
the highest one with the best D, p-value, and P2; and the
smallest one with the best P1. In the two remaining parameters
(Figures 6B,C), there was only one threshold value that satisfied
the conditions of

1) having the maximum D,
2) exhibiting a t-test p < 0.05, and
3) having at least 20% of the data on either side of Dmax.

P1 ranged from 33 to 47% (the higher, the better); P2 from 14 to
22% (the smaller, the better); and D from 16 to 28% (the higher,
the better).

As favorable and unfavorable parameter ranges could be
found, Hypothesis 2 was confirmed.

Two-Parameter Analysis
The hit/miss data were divided into 4 groups for pairwise
comparison (Table 2), and the chances of success of the groups
were compared with the Kruskal–Wallis rank sum test.

COPx at Fmax vs. COPy at Fmax
The chances of success of the groups I, II, III, and IV (Table 2)
were:

COPx threshold value s at −0.0086 m: 10.81, 33.33, 25, and
58.33%, respectively (quarter analysis from Figure 7);

COPx threshold value s at −0.0070 m: 12.12, 30, 22.92, and
57.14%, respectively;

COPx threshold value s at −0.0036 m: 10.53, 20, 20.97, and
52.63%, respectively.

The difference between these group percentages of success
was statistically highly significant as determined by the
Kruskal–Wallis rank sum test (p < 0.0013 for the three COPx
threshold values). The post-hoc tests revealed the individual
differences, namely that the percentage of a parameter of group
IV (>50%) was significantly different from the percentages
of groups I and III; whereas the remaining pairs were not
significantly different, among which is II vs. IV, for all the three
COPx threshold values.

The individual percentages of the success probability of COPx
and COPy positions (both in their favorable ranges) were 33–
36.8 and 45.80%, respectively; their combined success probability
exceeded the individual ones and was 52.6–58.3%.

COPx vs. Fmax
The chances of success of the groups I, II, III, and IV were:

COPx threshold value s at−0.0086 m: 21.74, 13.33, 23.08, and
81.25%, respectively (quarter analysis from Figure 8);

COPx threshold value s at −0.007 m: 21.05, 13.33, 23.33, and
81.25%, respectively;

COPx threshold value s at −0.0036 m: 20, 0, 23.08, and
68.18%, respectively.
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TABLE 1 | Summary of trend analyses; s = parameter value at the separation line, separating the favorable parameter range from the unfavorable one; D = differential of

P1 (probability of scoring a goal if the parameter is in the favorable range) and P2 (probability of scoring a goal if the parameter is in the unfavorable range); COPx, center

of pressure in x-direction; COPy, center of pressure in y-direction; Fmax, maximum impact force.

COPx1 COPx2 COPx3 COPy Fmax

s −0.0086m −0.007m −0.0036m 0.0021m 2105N

D at s 0.1676 0.1630 0.1871 0.2833 0.2422

p-value of D 0.032 0.040 0.020 0.002 0.005

no. of significant D-data
(having at least 20% of the

data on either side of s)

2 1 2 29 15

P1 0.3676 0.3553 0.3300 0.4583 0.4667

P2 0.2000 0.1923 0.1429 0.1750 0.2245

Trend The smaller (= more on

the medial side), the
better

The smaller (= more on

the medial side), the
better

The smaller (= more on

the medial side), the
better

The smaller (= more on

the proximal side), the
better

The higher,

the better

FIGURE 6 | Probability P of success of scoring a goal against the parameter range; P1 = probability of scoring a goal if the parameter is in the favorable range;

P2 = probability of scoring a goal if the parameter is in the unfavorable range; D = differential of P1 and P2; (A): P against COPx (location of the COP in x-direction);

(B): P against COPy (location of the COP in y-direction); (C): P against Fmax (peak impact force); note that D can be negative, if P2 > P1.

TABLE 2 | Combinations of two parameters and their group code used in Figures 7–9, as well as in Figure 10 (combination of three parameters); COPx, center of

pressure in x-direction; COPy, center of pressure in y-direction; Fmax, maximum impact force.

Group

code

COPx at Fmax vs. COPy at Fmax COPx vs. Fmax COPy vs. Fmax

I Position of COPx within the unfavorable range,

and position of COPy within the unfavorable
range

Position of COPx within the unfavorable range,

and magnitude of Fmax within the unfavorable
range

Position of COPy within the unfavorable range,

and magnitude of Fmax within the unfavorable
range

II Position of COPx within the unfavorable range,

and position of COPy within the favorable range

Position of COPx within the unfavorable range,

and magnitude of Fmax within the favorable

range

Position of COPy within the unfavorable range,

and magnitude of Fmax within the favorable

range

III Position of COPx within the favorable range, and

position of COPy within the unfavorable range

Position of COPx within the favorable range, and

magnitude of Fmax within the unfavorable range

Position of COPy within the favorable range, and

magnitude of Fmax within the unfavorable range

IV Position of COPx within the favorable range, and

position of COPy within the favorable range

Position of COPx within the favorable range, and

magnitude of Fmax within the favorable range

Position of COPy within the favorable range, and

magnitude of Fmax within the favorable range

The difference between these group percentages of
success was statistically highly significant as determined
by the Kruskal–Wallis rank sum test (p ≤ 0.00006 for the
three COPx threshold values). The post-hoc tests revealed
the individual differences, namely that the percentage of
group IV (>68%) was significantly different from the

three other percentages; whereas the other three were not
significantly different.

The individual percentages of the success probability of the
COPx position and Fmax magnitude (both in their favorable
ranges) were 33–36.8 and 46.67%, respectively; their combined
success probability exceeded the individual ones and was >68%.
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FIGURE 7 | Two-parameter analysis: COPx vs. COPy; 0 = miss, 1 = hit;

dashed lines = threshold values (cf. Table 1); I, II, III, IV = group codes from

Table 2.

FIGURE 8 | Two-parameter analysis: COPx vs. Fmax (peak impact force); 0 =

miss, 1 = hit; dashed lines = threshold values (cf. Table 1); I, II, III, IV = group

codes from Table 2.

COPy vs. Fmax
The chances of success of the groups A, B, C, and D were 15.87,
34.29, 27.78, and 76.92%, respectively (quarter analysis from
Figure 9). The difference between these group percentages of
success was statistically highly significant as determined by the
Kruskal–Wallis rank sum test (p = 0.000152). The post-hoc tests
revealed the individual differences, namely that the percentage of
parameter D (77%) was significantly different (p < 0.015) from

FIGURE 9 | Two-parameter analysis: COPy vs. Fmax (peak impact force);

0 = miss, 1 = hit; dashed lines = threshold values (cf. Table 1); I, II, III, IV =

group codes from Table 2.

FIGURE 10 | Three-parameter analysis: positions of COPy against COPx; 1 =

hit, 0 = miss; the dashed lines separate the favorable from the unfavorable

ranges of COPx and COPy; I, II, III, IV = group codes from Table 2, i.e.,

combinations of COPx and COPy; suffixes a and b denote Fmax in the

unfavorable (Fmax < 2 kN) and favorable ranges (Fmax > 2 kN), respectively;

Ia = parameter combination with COPx, COPy, and Fmax in their unfavorable

ranges; IVb = all three parameters in their favorable range.

the three other percentages; whereas the other three were not
significantly different (p > 0.06).

The individual percentages of the success probability of
the COPy position and Fmax magnitude (both in their
favorable ranges) were 45.83 and 46.67%, respectively; their
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combined success probability exceeded the individual ones and
was 77%.

Three-Parameter Analysis
The hit/miss data were divided into eight groups initially for
pairwise comparison:

Ia: position of COPx within the unfavorable range, position
of COPy within the unfavorable range, and magnitude of
Fmax within the unfavorable range

Ib: position of COPx within the unfavorable range, position
of COPy within the unfavorable range, and magnitude of
Fmax within the favorable range

IIa: position of COPx within the unfavorable range, position of
COPy within the favorable range, and magnitude of Fmax
within the unfavorable range

IIb: position of COPx within the unfavorable range, position of
COPy within the favorable range, and magnitude of Fmax
within the favorable range

IIIa: position of COPx within the favorable range, position of
COPy within the unfavorable range, and magnitude of
Fmax within the unfavorable range

IIIb: position of COPx within the favorable range, position of
COPy within the unfavorable range, and magnitude of
Fmax within the favorable range

IVa: position of COPx within the favorable range, position of
COPy within the favorable range, and magnitude of Fmax
within the unfavorable range

IVb: position of COPx within the favorable range, position of
COPy within the favorable range, and magnitude of Fmax
within the favorable range

Note that the suffixes “a” and “b” refer to Fmax within the
unfavorable and favorable ranges, respectively. Group IIb was
excluded as it consisted only of 2 data (both were misses; cube
analysis from Figure 10, red zeros in quadrant II). The chances
of success of the groups were compared with the Kruskal–Wallis
rank sum test.

The threshold values for separating favorable and unfavorable
ranges were re-defined in order to obtain the highest chance
of success (percentage) of group IVb. The separation values for
max percentage of success (85.71%) were found for COPx at
−0.0036m, COPy at 0.0027m, and for Fmax at 2,000N; thereby
satisfying the conditions stated in the Methodology section of
the three-parameter analysis. At these separation values, the
chances of success for scoring a goal with two parameters in
their favorable ranges out of these three parameters were: COPx
vs. COPy, 51.16%; COPx vs. Fmax, 55.17%; COPy vs. Fmax:
75%. These two-parameter percentages were smaller than the
optimal ones found in the two-parameter analysis, namely COPx
vs. COPy: 52.63–58.33% (three different s for COPx), COPx
vs. Fmax: 68.18–81.25% (three different s for COPx), COPy vs.
Fmax: 76.92%.

The chances of success of the groups Ia, Ib, IIa, IIIa, IIIb,
IVa, and IVb were 20, 0, 20, 16.67, 20.67, 34.48, and 85.71%,
respectively (cube analysis from Figure 10). The difference
between these group percentages of success was statistically
highly significant as determined by the Kruskal–Wallis rank sum

test (p = 0.000067). The post-hoc tests revealed the individual
differences, namely that the percentage of group IVb (85.71%,
all three parameters in their favorable ranges) was significantly
different from all the other groups (p < 0.01). In contrast to
this, the percentage of the other groups (excluding IVb) were not
significantly different.

The individual percentages of the success probability of
COPx and COPy positions and Fmax magnitude (both in
their favorable ranges) were 33–36.8, 45.83, and 46.67%; their
combined success probability in the two-parameter analysis was
51.16–75% (see above); and their combined success probability in
the three-parameter analysis arrived at 85.71%, which exceeded
the individual and two-parameter combination ones.

Path of the COP
Figure 11 shows eight datasets, numbered from 1 to 8 from
medial (left) to lateral (right):

- dataset 1: average COP of successful kicks; COPy and Fmax
within the favorable range

- dataset 2: average COP of successful kicks; COPx and COPy
within the favorable range

FIGURE 11 | Centre of pressure in y-direction (COPy) against Centre of

pressure in x-direction (COPx); the bubble size of the 8 bubble plots

corresponds to the impact force; the graphs are aligned to the coordinate

system of the sensor matrix: positive COPy data = distal; negative COPy data

= proximal; negative COPx data = medial; positive COPx data = lateral; the

COP moves from distal to proximal (= downward on the graph) during impact;

1: average COP of successful kicks, COPy and Fmax within the favorable

range; 2: average COP of successful kicks, COPx and COPy within the

favorable range; 3: average COP of successful kicks, COPx and Fmax within

the favorable range; 4: average COP of all successful kicks; 5: average COP of

all unsuccessful kicks; 6: average COP of unsuccessful kicks, COPy and Fmax

within the unfavorable range; 7: average COP of unsuccessful kicks, COPx
and COPy within the unfavorable range; 8: average COP of unsuccessful
kicks, COPx and Fmax within the unfavorable range.
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- dataset 3: average COP of successful kicks; COPx and Fmax
within the favorable range

- dataset 4: average COP of all successful kicks
- dataset 5: average COP of all unsuccessful kicks
- dataset 6: average COP of unsuccessful kicks; COPy and Fmax
within the unfavorable range

- dataset 7: average COP of unsuccessful kicks; COPx and COPy
within the unfavorable range

- dataset 8: average COP of unsuccessful kicks; COPx and Fmax
within the unfavorable range

COP of all Successful Kicks Compared to COP of All

Unsuccessful Kicks
The COP moves form distal to proximal, with a slight movement
to the medial side (Figure 11, datasets 4 and 5). The COP of all
successful kicks appears to be locatedmoremedially (at least after
the force peak) compared to the COP of all unsuccessful kicks;
this apparent difference, however, is statistically not significant
and therefore due to chance. From the Results section 2, COPx
at Fmax, COPy at Fmax, and Fmax of all successful and
unsuccessful kicks are similar.

COP of Successful Kicks with COPx and COPy in

Their Favorable Ranges Compared to COP of

Unsuccessful Kicks with COPx and COPy in Their

Unfavorable Ranges
The average COP paths of successful (dataset 2, Figure 11)
and unsuccessful (dataset 7, Figure 11) kicks were clearly
separated; the COPx data at Fmax (medio-laterally) by ∼13mm
(Figure 11); and the COPy data at Fmax (proximo-distally) by
∼6mm. The peak forces of both datasets (2, 7) were identical
(Mann–Whitney U-test p = 0.984; negligible effect size of
r = 0.005).

COP of Successful Kicks with COPx and Fmax in

Their Favorable Ranges Compared to COP of

Unsuccessful Kicks with COPx and Fmax in Their

Unfavorable Ranges
The average COP paths of successful (dataset 3, Figure 11) and
unsuccessful (dataset 8, Figure 11) kicks were clearly separated
in the x-direction; however, there was no significant difference
between the COPy at Fmax data of both datasets (Mann–
Whitney U-test p= 0.2113; small effect size of r = 0.212).

COP of Successful Kicks with COPy and Fmax in

Their Favorable Ranges Compared to COP of

Unsuccessful Kicks with COPy and Fmax in Their

Unfavorable Ranges
The average COP paths of successful (dataset 1, Figure 11) and
unsuccessful (dataset 6, Figure 11) kicks were clearly separated;
surprisingly, there was a significant difference between the COPx
at Fmax data of both datasets (Mann–WhitneyU-test p= 0.0033;
medium effect size of r = 0.521), even if the COPx data were not
optimized in this analysis (only COPy and Fmax were).

COP of Successful Kicks with COPx, COPy, and

Fmax in Their Favorable Ranges Compared to COP

of Unsuccessful Kicks with COPx, COPy, and Fmax in

Their Unfavorable Ranges
Figure 12 shows two further datasets:

- dataset 9: average COP of successful kicks; COPx, COPy, and
Fmax within the favorable ranges

- dataset 10: average COP of unsuccessful kicks; COPx, COPy,
and Fmax within the unfavorable ranges.

The average COP paths of successful (dataset 9, Figure 12)
and unsuccessful (dataset 10, Figure 12) kicks were clearly
separated; the COPx data at Fmax (medio-laterally) by ∼19mm
(Figure 11); and the COPy data at Fmax (proximo-distally) by
∼9mm.

Comparison of Plots of COP Paths
The four COP locations (green in Figure 13) of optimized
parameters (favorable range) and successful kicks, i.e.,
datasets 1–3 and 9, are identical (p > 0.05) and perfectly
superimposed.

The COPx values of the three 2-parameter combinations
and one 3-parameter combination showed a p-value of 0.8411
(Kruskal–Wallis rank sum test), and were therefore not
significantly different from each other.

The COPy values of the three 2-parameter combinations
and one 3-parameter combination showed a p-value of 0.5896

FIGURE 12 | Centre of pressure in y-direction (COPy) against Centre of

pressure in x-direction (COPx); the bubble size of the 10 bubble plots

corresponds to the impact force; the graphs are aligned to the coordinate

system of the sensor matrix: positive COPy data = distal; negative COPy data

= proximal; negative COPx data = medial; positive COPx data = lateral; 1–8:

cf. legend of Figure 11; 9: average COP of successful kicks, COPx, COPy,

and Fmax within the favorable ranges; 10: average COP of successful kicks,

COPx, COPy, and Fmax within the unfavorable ranges.
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FIGURE 13 | Sweet spot and dead spot; ellipses [one standard deviation

about the average (black dots in the center of ellipses of sets 9 and 10)] refer

to COP location at Fmax.

(Kruskal–Wallis rank sum test), and were therefore not
significantly different from each other.

Fmax values of the three 2-parameter combinations and one
3-parameter combination showed a p-value of 0.1933 (Kruskal–
Wallis rank sum test), and were therefore not significantly
different from each other.

The four COP locations (red in Figure 13) of un-optimized
parameters (unfavorable range) and unsuccessful kicks, i.e.,
datasets 6–8 and 10, however, are, in 2 cases, not identical and
clearly separated.

Fmax values of the three 2-parameter combinations and
one 3-parameter combination showed a p-value of 1.7306e-11
(Kruskal–Wallis rank sum test). The reason for this result was
that Fmax was optimized in dataset 7, and therefore exhibited a
higher average (post-hoc tests p < 0.001 for dataset 7 compared
to datasets 6, 8, 9).

The COPx values of the three 2-parameter combinations
and one 3-parameter combination showed a p-value of 0.0022
(Kruskal–Wallis rank sum test). The post-hoc p-value of dataset
6 vs. dataset 10 was p < 0.005, which are the two datasets that are
furthest apart in the x-direction in Figure 12.

The COPy values of the three 2-parameter combinations
and one 3-parameter combination showed a p-value of 0.0001
(Kruskal–Wallis rank sum test). The post-hoc p-value of dataset 6
vs. dataset 8 was p= 0.001, which are the datasets that are furthest
apart in the y-direction in Figure 12 (this result does not include
dataset 10 which had a slightly higher standard deviation than set
6, and therefore was insignificantly different from set 8).

Definition and Position of the Sweet- and Dead Spots
We define the sweet spot as the impact zone between ball and
boot/foot that maximizes the chance of scoring a goal (with a
curve ball in this case).

Equally, we define the dead spot as the impact zone between
ball and boot/foot that minimizes the chance of scoring a goal
(with a curve ball in this case).

Figure 13 shows the COP of datasets 1, 2, 3, 9 and 6, 7, 8,
10 superimposed on 6 ellipses, the center of which is located
at the average COPx at Fmax and average COPy at Fmax, and
the semi-major and semi-minor axes correspond to one standard
deviation of COPx and COPy data, respectively. The location of
the 4 ellipses of datasets 1, 2, 3, 9 illustrates the finding detailed in
the previous section, namely that there is no significant difference
between the COPx data of the 4 sets nor COPy data of the 4 sets.

The 4 ellipses of sets 1, 2, 3, 9 define the location of a
sweet zone, specifically as all 4 ellipses are superimposed rather
than separated. This sweet zone can be reproduced with any of
the three 2-parameter datasets (1–3). The ellipse of the three-
parameter analysis constitutes the actual sweet spot, the location
of which is almost identical to the ellipse of set 2 (COPx and
COPy in their favorable ranges). The sweet spot is located more
medially and proximally than the dead spot.

The three ellipses of sets 6–8 are more separated and define
the dead zone, on the lateral and distal side of the sweet spot. The
ellipse of the three-parameter analysis (dataset 10) constitutes
the location of the actual dead spot, which is further lateral and
distal of the ellipse of set 7 (COPx and COPy in their unfavorable
ranges).

Note that the distance between the centers of the two ellipses
is merely 21.3mm (Figure 13), a distance that decides between
high and low chances of scoring a goal with a curved kick. These
chances are, according to the three-parameter analysis, 86% in
the sweet spot and 20% in the dead spot, the percentages of
which are significantly different. However, the 20% value was
not significantly different from all three-parameter combinations
other than the one with all three parameters in their favorable
ranges (85.71%; Figure 10). Hypotheses 3 and 4 were confirmed
in terms of the existence of clearly defined sweet and dead spots.

DISCUSSION

To the authors’ best knowledge, the present study was the
first one ever on sweet and dead spots on the foot or boot
that maximize and minimize the chances of scoring a goal,
respectively. This paper hypothesized that a spot exists on the
shoe upper or dorsum of the foot that, when kicking a ball at
this very spot, would maximize the chances of scoring a goal.
The main result of this study was that a sweet spot was found
on the medio-proximal aspect of the foot kicking a soccer ball.
In contrast, the location of the dead spot was seen to be more
latero-distal.

The term “sweet spot” was used in soccer shoes for the first
time, to the best of our knowledge, when the Air Zoom Total
90 III was introduced with a side lacing system. This design
was supposed to enlarge the sweet spot, defined as “the area
of the boot that makes contact with the ball when shooting”
(Wilson, 2006). However, as detailed in the Results section, there
are regions within the contact area that provide higher or lower
kicking accuracy. The term “sweet spot” should therefore be
confined to the position of the COP that is associated with the

Frontiers in Physiology | www.frontiersin.org 14 February 2018 | Volume 9 | Article 6399

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Fuss et al. Sweet Spot on Soccer Boot

highest chance of scoring. It is obvious that there is no single spot
on a boot or foot that guarantees a 100% success rate. The “sweet
spot,” enabling players to maximize their chances of scoring a
goal, should depend on at least two parameters: COPx and COPy.
A third parameter, e.g., the kick force, can be considered if it
correlates with the chance of success statistically and if it has a
mechanically explicable influence on kicking accuracy. In curved
shots, the higher the kick force (normal force), the higher is
the friction force. The latter improves the spin rate of the ball,
resulting in the Magnus Effect and the aerodynamic sideward
force. The greater the latter, the more pronounced is the curve
of the ball.

Even if a “dead spot” was found in this research, with all
three parameters in their unfavorable range, the low success
chances when hitting this spot were not significantly different
from the success chances if at least one of the three parameters
is in its unfavorable range. This fact explains the sweet spot as
a multiparameter-dependent location, which is, therefore, more
specialized than the dead spot, but also more difficult to achieve
when kicking a ball. The dead spot would be better defined by
the entire area outside the sweet spot, or confined to the part of
the area outside the sweet spot, where any possible ball contact
actually occurs. This corresponds to that area that is actually
used by the players for kicking. The fact that the dead zone
was more widespread than the concentrated sweet spot supports
hypothesis 4.

The problem that arises in this paper is whether the sweet
spot is success- or player-controlled. In essence, the data could
be skewed toward the better players, and therefore represent the
kicking style of only the successful players. In the worst case, the
sweet spot could be dominated by only one specific player. There
are two counterarguments that stand on this assumption:

1) The sweet and dead spots discovered in this study are two
extremes. They depend on the pre-separation of successful
kicks with parameters (COP, force) in the favorable range (that
maximizes success) and unsuccessful kicks with parameters
in the unfavorable range (that minimizes success). All other
combinations (e.g., unsuccessful kicks with [some] parameters
in the unfavorable range) are located in between these
extremes and therefore result in inseparable (i.e., statistically
insignificant) COP locations of kicks with hits and misses
(Results section “Comparison of parameter data of all hits
against all misses”; and Figures 11, 12). This pre-separation
pulls good and bad COP locations apart so that they become
sweet and dead spots. This pre-separation does not separate
participants in the first place such that the sweet and dead
spots are independent of participants, but dependent on the
success of a kick. Any pre-separation of participants would
require taking only successful kicks of participants that score
in e.g., more than 75% of kicks, and compare them to
unsuccessful kicks of participants that score in e.g., <25%.

2) For example a participant cohort consists of six participants
(A–F), the sweet spot is defined by the average COP position
of participants A–C (successful kicks, favorable range of
parameters) and dead spot is defined by the average COP
position of participants D–F (unsuccessful kicks, unfavorable

range of parameters). The question that arises now is: why do
participants A–C share the same COP? This could either be
a coincidence or be based on what participants A–C have in
common. This common parameter would then be a higher
success rate. The reason for this would be that the ball-to-
foot contact in the sweet spot guarantees a higher success rate
in the first place. The same principle becomes evident from
Hennig’s (2011) study, describing the results of 20 participants
kicking with two different shoes, shoe C with better kick
accuracy and contact points more medially and proximally,
shoe B with worse kick accuracy and contact points more
laterally and distally. The two different ball-shoe contact
points, determined with a pressure sensor, reflect different
levels of kick accuracy.

The participants in our study contributing to the sweet spot (from
most to least contribution) were: 5, 3, 10, 6+7, 1+4+8; and to
dead spot were: 1, 2, 9, 4, 8, 7, 10, 6, 3. It is evident that the
contribution to the sweet spot was made more by participants
with better kick accuracy than by participants with less kick
accuracy contributing to the dead spot. However, participants
with a better kick accuracy, contributing to the sweet spot, share
the same average COP, as shown in Figure 13 (black dots in the
center of ellipses of sets 9 and 10).

Interestingly, our study revealed the same contact point
distribution with respect to kicking accuracy as Hennig’s studies
(Hennig et al., 2009; Hennig, 2011), namely that the contact point
providing better kick accuracy (our sweet spot) is located more
medially and proximally with respect to the one providing less
accuracy (our dead spot).

The frontal plane curvature in the dorso-medial part of the
forefoot is more horizontal at the forefoot center (aligned to
the transverse axis of the body), and more vertical on the
medial side of the forefoot (aligned to the longitudinal axis of
the body). Thus, the tangent to this curvature becomes more
inclined from the center (top) of the forefoot to its medial edge.
Consequently, kicking a ball with a contact point located more
on the medial side generates a more vertical spin axis of the
ball. The more vertical the spin axis, the stronger is the Magnus
effect and the more pronounced is the curved flight path of the
ball. This is consistent with the observed outcome of all missed
kicks in our study, with the ball ending up on the right side of
the goal.

The data obtained from this study are true only for the
cohort examined and cannot necessarily be extrapolated to
professional soccer players. It could very well be that in
professional players, the gap between sweet and dead spots
is more pronounced. Equally, the chances of scoring a goal
when kicking the ball at the sweet spot are expected to be
higher in professional players. It is nevertheless remarkable that
a significant difference between sweet and dead spot could be
found (thereby establishing sweet and dead spots as such) in
an amateur soccer cohort, consisting of players of different kick
accuracy.

A limitation of the present study is that we cannot be fully
certain that the sensor did not move while kicking. Yet, we
controlled the sensor location by visual inspection and palpation
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after every kick. Further evidence that the sensor remained
immobile was that the four ellipses of the sweet spot (Figure 13)
were superimposed with insignificantly different COP locations
at Fmax.

This study revealed that the wearable device used in this
study (smart soccer boot) is not only suitable to measure the
training load of kicking, but also to assess the consistency of
kicking in terms of how close the impact points are located
relative to sweet and dead spots. In the future, we envisage that a
smart soccer boot with fully integrated pressure matrix displays,
on its digital twin representation method, the distribution of
impact points, their impact force, and success (hits/misses) in
real time, while calculating the position of sweet and dead spots.
This will add another angle to measurement and management
of training loads. Furthermore, an instantaneous biofeedback
informing athletes of relevant parameters (i.e., distribution of
impact points, impact force and probability of success) can be
used to improve players’ kicking performance beyond the abilities
of an experienced coach.

PRACTICAL APPLICATIONS AND
CONCLUSIONS

The hypothesized existence of sweet and dead spots on a boot
or foot when kicking a soccer ball was confirmed; however, the
data comparison of all hits and all misses proved unsuccessful for
establishing sweet and dead spots. As a consequence of this result,
the data of COPx, COPy, and Fmax were investigated whether or
not they can be separated in favorable and unfavorable ranges by
means of a new method. Accordingly, the sweet and dead spots
were found based on the hypothesized favorable/unfavorable
parameter ranges (center of pressure in x/y-directions and/or
peak impact force). These ranges maximized/minimized the
chances of scoring a goal. Kicking the ball with the sweet spot
maximized the probability of scoring a goal (58–86%), whereas

having the impact points at the dead spot/zone minimized the

probability (11–22%). The sweet spot was rather concentrated,
independent of which parameter combination was used (two-
or three-parameter combination), whereas the dead spot, located
21mm from the sweet spot, wasmore widespread. The sweet spot
was located more medial and proximal than the more scattered
dead spots.

Based on the parameters analyzed and the discovery of
the sweet and dead spots, we believe that in the future, the
Smart Soccer Boot will be able to improve players’ kicking
performance by real-time biofeedback. Future studies should
examine the application of the smart soccer boot in other
types of kicks and investigate the existence of sweet/dead spots
similar to the present study. Additionally, the sensor needs to be
implemented in a boot and real-time biofeedback methods have
to be developed.

From a practical point of view, we believe that this would
allow players to directly analyze and alter their kicking technique
based on the biofeedback signals (Düking et al., 2017) in order
to hit the ball with the herein established sweet spot to increase
the probability of a successful kick. Consecutively, players likely
could train without the necessity of a coach being present to
improve their kicking technique.
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The increasing interest in assessing physical demands in team sports has led to the

development of multiple sports related monitoring systems. Due to technical limitations,

these systems primarily could be applied to outdoor sports, whereas an equivalent

indoor locomotion analysis is not established yet. Technological development of inertial

measurement units (IMU) broadens the possibilities for player monitoring and enables the

quantification of locomotor movements in indoor environments. The aim of the current

study was to validate an IMU measuring by determining average and peak human

acceleration under indoor conditions in team sport specific movements. Data of a single

wearable tracking device including an IMU (Optimeye S5, Catapult Sports, Melbourne,

Australia) were compared to the results of a 3D motion analysis (MA) system (Vicon

Motion Systems, Oxford, UK) during selected standardized movement simulations in

an indoor laboratory (n = 56). A low-pass filtering method for gravity correction (LF)

and two sensor fusion algorithms for orientation estimation [Complementary Filter (CF),

Kalman-Filter (KF)] were implemented and compared with MA system data. Significant

differences (p < 0.05) were found between LF and MA data but not between sensor

fusion algorithms and MA. Higher precision and lower relative errors were found for CF

(RMSE = 0.05; CV = 2.6%) and KF (RMSE = 0.15; CV = 3.8%) both compared to

the LF method (RMSE = 1.14; CV = 47.6%) regarding the magnitude of the resulting

vector and strongly emphasize the implementation of orientation estimation to accurately

describe human acceleration. Comparing both sensor fusion algorithms, CF revealed

slightly lower errors than KF and additionally provided valuable information about positive

and negative acceleration values in all three movement planes with moderate to good

validity (CV = 3.9 – 17.8%). Compared to x- and y-axis superior results were found for

the z-axis. These findings demonstrate that IMU-based wearable tracking devices can
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successfully be applied for athlete monitoring in indoor team sports and provide potential

to accurately quantify accelerations and decelerations in all three orthogonal axes with

acceptable validity. An increase in accuracy taking magnetometers in account should be

specifically pursued by future research.

Keywords: locomotion analysis, orientation estimation, inertial measurement unit, complementary filter, physical

demands, indoor team sports

INTRODUCTION

Knowledge about physical demands in team sports has become
increasingly important to optimize training programs, to
enhance physical performance and to prevent injuries (Fox
et al., 2017; Vanrenterghem et al., 2017). Several monitoring
systems have been developed to simultaneously quantify multiple
players’ position, velocity and acceleration during sport specific
locomotion (Chambers et al., 2015; Li et al., 2016). In order
to rely on a monitoring system’s output for player monitoring,
data should be both valid and reliable. It is important to note
that high consistency in measurements of a system indicates
its ability to determine evident and meaningful changes in an
athlete’s performance. The amount of error caused by high
variability within or between monitoring tools as well as the
agreement between measured and true values should therefore
always be taken into account when performance is assessed
and evaluated. Especially, GPS-based systems have recently been
evaluated as applicable monitoring tools and are commonly
applied in outdoor sports (Cummins et al., 2013; Johnston
et al., 2014). Reduced signal quality, however, disables their
usage in indoor environments. Alternatively, indoor monitoring
systems have been developed and can be subdivided into
vision-based or microtechnological systems. Although vision-
based motion analysis is widely applied for player monitoring,
findings about validity and reliability are inconsistent due to the
multitude of existing systems and their dependency uponmanual
intervention, quality of video footage or camera positioning
(Duthie et al., 2005; Barris and Button, 2008). Permanently
installed microtechnological local positioning systems are able to
overcome these problems showing high values of reliability (CV
< 2%) and validity with reported typical errors of 1.2-9.3% for
distance, speed and acceleration (Leser et al., 2014; Rhodes et al.,
2014; Serpiello et al., 2017). However, mentionable errors were
found for mean and peak deceleration (TEmean = 84%, TEpeak =
20%) as well as a decrease of accuracy for actions at the side of the
court (Serpiello et al., 2017). Furthermore, high costs and local
restrictions due to their fixed installation limit the application
of local positioning systems (Hedley et al., 2010; Stevens et al.,
2014). Lately, the technological development of inexpensive and
portable Micro Electro Mechanical Systems (MEMS) enabled
possibilities of quantifying physical loads with a robust method
even during games or training sessions in different sports
facilities. Most sport specific tracking devices nowadays include
a 9 degree of freedom triaxial inertial measurement unit (IMU)
containing an accelerometer, gyroscope and magnetometer
within a GPS tracking device. Applied in indoor environments
these devices enable sampling of acceleration-based data in

high resolution during sporting activities without the support
from GPS-signals. Extracting sports relevant data from the
sensor’s signals indoors without the aid of external references
is complicated due to multiple sources of noise, mainly by
earth’s gravity acceleration. Several approaches were proposed
therefore to estimate the tracking device’s orientation with
respect to the earth’s coordinate system, e.g., sensor fusion
algorithms without GPS (Madgwick et al., 2011; Sabatini, 2011a;
Valenti et al., 2015). Such algorithms commonly combine
accelerometer and gyroscope signals to compute the device’s
attitude (pitch and roll angles) relative to the direction of
gravity. Including magnetometer readings into the algorithm
enables the computation of the sensor’s heading, meaning
its deviation from magnetic north. Highly dynamic changes
of the device’s orientation as they frequently occur during
sporting activities challenge an algorithm’s accuracy. As accepted
standard, stochastic Kalman-Filter-based techniques (KF) are
commonly applied as effective tool in human motion analysis
(Sabatini et al., 2006; Sabatini, 2011a), giving a probabilistic
determination of modeled state estimations with the goal of
minimizing errors from the true value. Due to multiple tuning
parameters their main advantage lies in a high accuracy and a
broad field of applications exceeding the purpose of orientation
estimation. Complementary Filters (CF) serve as frequency-
based equal alternative because of their algorithmic simplicity,
effective performance and less difficult implementation process.
Due to the dependency upon the single sensors’ frequency
characteristics the potential applications of CF are restricted,
but provide equal and accurate results for orientation estimation
(Madgwick et al., 2011; Tian et al., 2013; Valenti et al., 2015).
Quantitatively, the time required for necessary linear regression
iterations in KFs results in a slower convergence compared
to CFs (Ricci et al., 2016). Considering the high frequency
of movement changes observed in court-based team sports
(Abdelkrim et al., 2007; Luteberget and Spencer, 2017) leading
to consequently frequent changes of the device’s orientation,
the immediate convergence that was found for CFs might
serve as appropriate foundation to provide accurate orientation
estimation in indoor team sports. Although, CFs have not
been evaluated thoroughly especially if compared to KF-based
techniques for sport specific purposes, their effectiveness has
already been proven for the analysis of human movements
(Bachmann et al., 2001; Tian and Tan, 2012; Tian et al., 2013).
Validity of a commercially available IMU-based monitoring
system that relies on KF-techniques have been proven regarding
the magnitude of the resulting acceleration vector or the
instantaneous rate of change of acceleration (Wundersitz et al.,
2013, 2015a,b). Based on those parameters activity profiles and
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quantification of loads during games and training have been
proposed for indoor team sports (Montgomery et al., 2010;
Schelling and Torres, 2016; Luteberget and Spencer, 2017). More
elaborated discriminant analysis, however, is lacking because
continuous information about gravity-corrected accelerations in
the global anterior-posterior, lateral and vertical directions are
typically not provided by manufacturers. Exact coordinates of
the resulting vector with respect to the earth’s coordinate system,
however, would be desirable for profound game analyses, as
they are already standard in outdoor team sports, leading to a
deeper understanding of physical and underlying physiological
demands. Recently a new approach has been proposed describing
the relation between power output and time duration of
movement as a general function for GPS-based analyses of soccer
games (Roecker et al., 2017). The function is independent of
arbitrary or experience-based intensity thresholds which offers
apparently the transfer to acceleration-dominant indoor-sport
analyses with the use of IMUs and appropriate sensor fusioning.
Added value could be provided through additional information
regarding the amount and intensity of acceleration components
in the global x-, y- and z-direction as well as distinction between
positive and negative acceleration. On this basis, interpretation of
individual locomotion might be beneficial for individualization
of training programs, supervision of rehabilitation processes or
control of each player’s injury risk.

The aim of the current study was to compare the concurrent
validity of a recently published CF algorithm with a KF, provided
by the sensor’s manufacturer and a low-pass filtering method
applied to IMU signals to obtain average and peak acceleration
values in all movement planes. Data recorded from an IMU-
based tracking device during simulated team sport specific
movements is set against a 3D motion capture system.

MATERIALS AND METHODS

Preliminary Investigation
In order to use IMUs for the purpose of orientation estimation,
data output should be not only valid but also reliable. A number
of studies already evaluated the tracking device that has been
used in this study (Optimeye S5, Catapult Sports, Melbourne,
Australia) regarding the accelerometer’s intra- and inter-device
variability under laboratory but also field conditions in handball,
ice hockey and Australian football (Boyd et al., 2011; Luteberget
et al., 2017; van Iterson et al., 2017). Coefficient of variation (CV)
values well below the according smallest worthwhile difference
were found during dynamic, mechanical motion (CVinter <

1.04%; CVintra < 1.05%) and sporting activities performed by
subjects in the laboratory (CVinter < 6.7%) or field (CVinter

< 2.1%; CVintra <26.6%). While these results indicate a good
within- as well as between-device reliability of accelerometers,
evidence regarding the gyroscope’s reliability is missing. As
the gyroscope’s data output is critical for accurate orientation
estimation, we evaluated within- and between-device reliability
using a platform rotating at constant angular velocity of 199◦/s
and 270◦/s respectively. A device mounted on the platform was
rotated around either its x-, y-, or z-axis. 10 consecutive trials of
30 s rotation were recorded in each axis for overall 8 devices at

both 199◦/s and 270◦/s. Between trials the turntable was standing
still for 30 s. In both conditions a CV<1% was found for mean
and peak angular velocity within as well as between devices,
indicating an excellent reliability of the gyroscope. Overall,
both accelerometer and gyroscope contained within the tracking
device show low intra- and inter-device variability, indicating
sufficient reliability of the underlying technology. As the output
of the single inertial sensors can be equated with the sensor fusion
algorithms’ input, the applied tracking device can be stated to be
reliable enough for further validation research.

Procedure
Data of a single wearable tracking device including an IMU
with a sampling frequency of 100Hz (Optimeye S5, Catapult
Sports,Melbourne, Australia) was compared to the results of a 3D
motion analysis (MA) system operating at 200Hz (ViconMotion
Systems, Oxford, UK) during several standardized movement
simulations in an indoor laboratory.

To eliminate unintentional artifacts, the device was clamped
into a stiff wooden frame that was adapted to the dimensions of
the device. The investigator manually moved the frame according
to predefinedmovement simulations inside the capturing volume
of the MA system. The simulations were chosen to imitate
orientations and changes of orientation as they would equally
occur during team sport specific movements. Constant mono-
or multi-planar motion of the investigator was combined with
different orientations of the device including rotations around
x-, y-, and z-axis between or during each trial (Table 1). Prior
and after each trial, the frame was stroked against the ground
to evoke a trigger signal for synchronization of the IMU and the
MA system. Each of the 28movement simulations was performed
and recorded two times within one recording session. The device
has not been turned on and off between trials to simulate long-
term usage as it would also appear during training sessions or
games. Calibration has been performed by the manufacturer and
was therefore not repeated manually prior to recording.

Three retro-reflective markers (Ø 14mm) were attached to
the edges of the rectangular wooden frame to capture the
device’s local coordinate system (LCS) optically and to calculate
a single virtual marker at the estimated position of the IMU’s
sensor position within the dimensions of the tracking device.
Calculation of the virtual marker was done with a custom written
script (Bodybuilder, Vicon Motion Systems, Oxford, UK). These
virtual marker’s trajectories were used for further analysis.

For the purpose of our study, ethical approval and written
informed consent were not mandatory since it neither contained
human subject research nor recruitment of human subjects,
physical or psychological interventions or clinical research
practices. Movements of the IMU in the laboratory were
performed by the investigator, being well aware of the executed
simulation movements. At no point of data collection any risks
concerning the investigators physical or psychological health
were apparent.

Data Processing
Raw data for both the MA system and the IMU were
exported to Microsoft Excel (Microsoft Excel 2013, Version 15.0,
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Redmond, USA) through the according manufacturer-supplied
software (Nexus 2, Vicon Motion Systems, Oxford, UK; Sprint
5.1.7, Catapult Sports, Melbourne, Australia).

After frequency-reduction of the MA system data to 100Hz
(Biomechanics Toolbar Version 1.02, Liverpool John Moores
University, UK) a fourth order, zero-lag, low-pass digital
Butterworth-Filter was applied to reduce noise from the x, y
and z positional data. According to a residual analysis (Winter,
2009) an optimal cut-off frequency of 5Hz was chosen. Due to
a standard deviation (SD) <1.0Hz between all trials the same
cut-off frequency was applied to all trials. To exclude phase-shift
dual pass filtering and a correction of the cut-off frequency to
6.23Hz was applied (Winter, 2009). Acceleration values (m∗s−2)
in all three orthogonal planes were calculated through double
numerical differentiation of the smoothed data. Data of the
accelerometer (g) were converted to m∗s−2 and data of the x
and y-axes inverted once due to the tracking device’s orientation
within the wooden frame.

Low-Pass Filter (LF)
As first option to separate gravity from the sensor’s readings a
traditional method for gravity correction was applied. Relying
on the assumption that gravitational signals only contain
low-frequency components body-induced and gravity-induced
accelerations can be separated (Bartlett, 2013; Mönks, 2017).
Through low-pass filtering (LF) the acceleration data in each
axis with a cut-off frequency of 0.3Hz (Butterworth 4th order),
the constant earth’s gravity vector was extracted and afterwards
subtracted from original acceleration values. The resulting signal
was smoothed (Butterworth 4th order) using a cut-off frequency
of 5Hz (6.23Hz corrected) for all trials (SD < 1.0Hz) after
visual inspection of residual analysis outputs (Winter, 2009) and
smallest mean bias to MA reference data.

Complementary Filter (CF)
As second option a sensor fusion algorithm (CF) that was
originally developed to navigate unmanned aerial vehicles
(Valenti et al., 2015) was implemented and adapted to human
motion. These algorithms determine the orientation of the
tracking device’s LCS with respect to the global coordinate system
(GCS) using a quaternion based approach. The applied CF has
been developed to estimate the device’s absolute orientation
in two consecutive steps. In the first step, accelerometer and
gyroscope data are used to correct the LCS for tilt. Through low-
pass filtering the accelerometer signal and high-pass filtering the
integrated gyroscope readings with the same cut-off frequency
the complementary filter creates “complement” signals that are
fused together to estimate the sensor’s orientation. The resulting
intermediate coordinate system with x- and y- axes being planar
to the GCS represents the computed attitude estimation as
relative orientation. The algorithm enables the estimation of
an absolute orientation in a second step by correcting the
intermediate coordinate system’s yaw angle. This second step is
only performed if magnetometer data are included in calculations
and results in a GCS with the positive x-axis always pointing
toward magnetic north (Figure 1).

To compare inertial data with the MA system, only the
first step of the proposed CF was implemented to calculate the

device’s relative orientation as the MA system’s x-axis has not
been aligned to magnetic north during calibration. The cut-off
frequency for the accelerometer data is constantly characterized
using an adaptive gain algorithm within the CF. An initial
filtering gain of 0.0072 was chosen, which is based on another
CF that has been applied in human motion analysis (Tian et al.,
2013). Accelerometer readings were converted to m∗s−2 and
multiplied with the quaternion of attitude estimation to rotate
x-, y-, and z-vectors into the intermediate coordinate system.
Constant gravitational acceleration was removed by subtracting
9.81 m∗s−2 of the intermediate z-vector. All calculations were
performed using routines written in C++ (compiled and edited
with Microsoft Visual C++ 2017, Redmond, USA). Resulting
acceleration vectors were then low-pass filtered (4th order
Butterworth) with a cut-off frequency of 5Hz (6.23Hz corrected;
SD < 1.0Hz). The cut-off frequency has been determined
due to the lowest mean bias between CF data filtered at cut-
off frequencies from 4 to 10Hz and the MA system. Due to
the tracking device’s orientation within the wooden frame the
resulting acceleration values in x- and y-axes had to be inverted
once.

Kalman-Filter (KF)
As current standard for sensor fusion, a Kalman-Filter (KF)
has not been implemented explicitly since it is provided by
the manufacturer’s software (Sprint 5.1.7, Catapult Sports,
Melbourne, Australia). The manufacturer’s results were chosen
since they have previously been validated and are known to be
designed specifically for sport specific environments (Wundersitz
et al., 2013, 2015b). The manufacturer’s software provides one
continuous Kalman-filtered parameter, which is the magnitude
of the resultant vector representing the combined effects of x-,
y- and z-vectors corrected for gravity. This variable has been
exported to Microsoft Excel for further analysis and was low-pass
filtered for reducing unwanted noise (4th order Butterworth).
8Hz (9.97Hz corrected) has been chosen as cut-off frequency for
all trials after residual analysis (SD < 1.0Hz) and lowest mean
bias compared to the MA system criterion. The same parameter
has been calculated for MA system data as well as for LF and CF
data.

Data Analyses
After data processing CF, KF, LF, and MA system data of
each trial were synchronized by overlaying peaks of the
triggering signals. Trigger signals were then excluded for further
analysis so that only movement sequences were included. For
each trial the average magnitude of the overall acceleration
(totalx/y/z), positive acceleration (accelerationx/y/z), and negative
acceleration (decelerationx/y/z) as well as the peak magnitude
of positive and negative acceleration values were calculated for
CF, LF, and MA system data in x-, y-, and z-axes. Average
magnitude as well as peak magnitude of the resultant vector
(resultantx/y/z) were calculated for CF, KF, LF, and MA system
data. To assess the agreement between IMU-based variables
and MA system variables mean bias, root mean square error
(RMSE; Barnston, 1992), 95% limits of agreement (Atkinson
and Nevill, 1998), Spearman’s correlation coefficient and the
percentage difference in the mean between criterion (MA)
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FIGURE 1 | Rotations performed by the CF algorithm with respect to the reference system. The coordinate system in gray represents the GCS with the x-axis pointing

toward magnetic north. (1) Represents the orientation of the IMU within the GCS. (2) Result of sensor fusing accelerometer and gyroscope data. The horizontal axes

are parallel to the earth’s surface but rotation about the z-axis is missing. Including magnetometer data to the calculations results in (3) with the x-axis of the previous

LCS being aligned with the GCS. For the aim of this study the LCS (1) has only been rotated into the intermediate coordinate system (2).

and measurement (CF, KF, LF) expressed as coefficient of
variation (CV; Hopkins, 2000) were calculated for mean and
peak acceleration values in x, y and z-axes (CF, LF, MA) as well
as average and peak magnitude of the resulting vector (CF, KF,
MA). According to previous research evaluating the relative error
of IMU-based acceleration variables a CV ≤5% was considered
as small, CV ≥5% and <20% as moderate and CV ≥20% as
large (Wundersitz et al., 2015b; Alexander et al., 2016). To
approve the acceptable use of MEMS-based sensors in the field
a CV <20% was intended (Tran et al., 2010; Wundersitz et al.,
2015a).

Statistical Analyses
All statistical analyses were performed using JMP Version 13.1.0
(SAS Instituts Inc., Cary, NC, USA). Data are presented as mean
± SD with statistical significance set at p ≤ 0.05 except otherwise
stated. Shapiro-Wilk-Tests revealed heteroscedastic data sets for
mean and peak accelerations andmagnitude variables. Therefore,
a nonparametric one-wayANOVAon ranks (Kruskal-Wallis test)
was applied to determine differences in mean and peak variables
between CF, KF, LF, and MA system data. Mann-Whitney-
U tests were additionally performed post-hoc to determine if
differences in the means of measurement systems were evident
for each variable. The α-level was adjusted to α = 0.017 after
Bonferroni-correction to compare mean and peak magnitude
acceleration values in all three axes between CF, LF and MA
data. To identify differences in mean and peak magnitude values
of the resulting vector between CF, KF, LF and MA system α-
level was set at α = 0.013 after Bonferroni-correction. Effect
sizes (r) for all performed statistical tests were calculated and
interpreted according to Cohen (1992). Bland-Altman plots for
all CF mean and peak variables against the MA system were used
to visually evaluate the CF data in all axes (Bland and Altman,
1999).

RESULTS

Regarding average acceleration, significant differences were
found between CF, LF and MA system data for totaly,
accelerationx, accelerationy and decelerationy (p < 0.05; r =

0.12 – 0.87; Table 2). Peak values showed significant differences
in accelerationx, accelerationy and decelerationy (p < 0.05, r
= 0.10 – 0.26). Post-hoc Mann-Whitney-U tests revealed, that
without orientation estimation the gravity component could not
accurately be eliminated in all three axes leading to significant
differences for totaly, mean/peak accelerationy, mean/peak
decelerationy, peak decelerationx and peak decelerationz between
LF data and MA system (p < 0.017, r = 0.39 – 0.50), whereas
no significant differences were found between CF data and MA
system. The LF and CF method significantly differed regarding
totaly, mean/peak accelerationx, mean/peak accelerationy as
well as mean/peak decelerationy (p < 0.017, r = 0.34 –
0.55).

Analysis of agreement support these findings with a high
relative error regarding mean/peak acceleration values of the
LF technique in x-, y- and z-axis (CV = 27.4 – 80.7%, RMSE
= 0.37 – 0.72 m∗s−2). LF method showed poor results also
regarding accuracy, precision, correlation coefficient and limits of
agreement (Table 2). Implementation of the proposed CF clearly
improved measurement indices when compared to the LF data
with a relative error of 8.0–15.9% for average magnitude values
and 3.9–17.9% for peak magnitude values respectively. A low
RMSE was found for mean acceleration values (RMSE = 0.04
– 0.22 m∗s−2) whereas a higher error could be determined for
peak values (RMSE = 0.23 – 0.59 m∗s−2). Bland-Altman plots
for mean acceleration values in all axes are shown in Figure 2

and indicate improved agreement of positive acceleration values
compared to deceleration. No systemic bias could be observed for
mean acceleration values as well as for peak acceleration values
(Figures 2, 3). Limits of agreement exceed when regarding peak
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TABLE 2 | Analysis of agreement between CF data respective LF data and MA system data.

Variable CF data LF data

Mean bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV (%) Mean bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV

(%)

MEAN

Totalx −0.02 ± 0.05 −0.13 to 0.09 0.98 0.06 8.0 0.09 ± 0.96 −1.80 to 1.97 0.52 0.96 75.0

Total*y −0.01 ± 0.04 −0.08 to 0.07 0.97 0.04 7.7 0.28 ± 0.74 −1.18 to 1.74 0.37 0.79 58.5

Totalz −0.02 ± 0.15 −0.32 to 0.27 0.98 0.15 9.3 −0.11 ± 0.71 −1.50 to 1.27 0.70 0.71 48.4

accx* 0.08 ± 0.15 −0.21 to 0.38 0.96 0.17 15.9 −0.18 ± 1.03 −2.20 to 1.83 0.53 1.03 77.6

accy* −0.01 ± 0.08 −0.17 to 0.15 0.96 0.08 9.7 −0.27 ± 0.78 −1.79 to 1.25 0.72 0.82 60.3

accz* −0.02 ± 0.22 −0.46 to 0.41 0.97 0.22 11.9 0.25 ± 0.81 −1.33 to 1.84 0.72 0.84 49.6

decx* −0.02 ± 0.11 −0.24 to 0.19 0.97 0.11 11.4 −0.02 ± 0.97 −1.92 to 1.89 0.45 0.96 76.8

decy* 0.04 ± 0.06 −0.07 to 0.15 0.97 0.07 9.3 −0.30 ± 0.71 −1.70 to 1.11 0.69 0.77 57.6

decz* −0.03 ± 0.14 −0.24 to 0.31 0.97 0.14 8.7 −0.03 ± 0.69 −1.39 to 1.33 0.66 0.69 47.6

PEAK

accx* 0.26 ± 0.54 −0.80 to 1.32 0.97 0.59 17.8 −1.07 ± 3.45 −7.84 to 5.71 0.66 3.59 64.8

accy* −0.08 ± 0.38 −0.83 to 0.68 0.95 0.39 15.0 −1.10 ± 2.04 −5.09 to 2.90 0.66 2.30 55.0

accz* 0.12 ± 0.36 −0.60 to 0.83 0.98 0.38 6.7 0.34 ± 1.76 −3.10 to 3.78 0.87 1.77 27.4

decx* 0.04 ± 0.45 −0.85 to 0.93 0.96 0.45 13.2 −0.50 ± 3.99 −8.32 to 7.31 0.50 3.98 80.7

decy* 0.21 ± 0.36 −0.51 to 0.92 0.95 0.42 15.6 −1.12 ± 2.03 −5.09 to 2.86 0.72 2.30 54.0

decz* −0.09 ± 0.22 −0.51 to 0.33 0.99 0.23 3.9 0.37 ± 1.24 −2.06 to 2.81 0.76 1.29 30.4

Mean and peak acceleration values are presented for overall acceleration (total), positive acceleration (acceleration), and negative acceleration (deceleration) in x-, y- and z-axis.

*Significant differences in the mean between LF and MA (p < 0.017) SD, standard deviation; 95% LoA, 95% limits of agreement; rs, Spearman’s correlation coefficient; RMSE, root

mean square error; CV, coefficient of variation.

FIGURE 2 | Bland-Altman plots showing the relationship between MA system data and CF data for average total, positive, and negative acceleration in x-, y-, and

z-axis each. Dashed lines: 95% LoA, solid line: mean bias.
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FIGURE 3 | Bland-Altman plots showing the relationship between MA system data and CF data for peak total, positive, and negative acceleration in x-, y-, and z-axis

each. Dashed lines: 95% LoA, solid line: mean bias.

acceleration values in all axes (Figure 3) but still are within an
acceptable range.

Comparison of the resulting vector’s magnitude between CF,
KF, LF, andMA system data revealed no significant differences for
average as well as peak resulting magnitude values (p < 0.013).
Although no significant differences could be found agreement
analysis indicate poor accuracy, precision, limits of agreement
and relative error of the LF method for mean and peak variables.
Analysis of agreement for the results of both orientation filters
(CF, KF) however indicate high accuracy in quantifyingmean and
peak resulting magnitude values. In contrast to the LF method
low RMSE and CV values were found for CF and KF, indicating
a high accuracy of both methods (Table 3). Thereby, slightly
smaller errors of the CF data compared to the manufacturer’s KF
in all reported parameters could be noted.

DISCUSSION

Main Findings
Aim of this study was to evaluate the concurrent validity
of two standard sensor fusion algorithms to accurately
quantify and normalize team sport specific accelerations

TABLE 3 | Analysis of agreement between KF data, LF data, CF data, and MA

system data.

Variable Mean Bias

± SD (m*s−2)

95% LoA

(m*s−2)

rs RMSE

(m*s−2)

CV (%)

MEAN

ResultantKF 0.11 ± 0.10 −0.08 to 0.30 0.99 0.15 3.8

ResultantLF 0.12 ±1.14 −2.12 to 2.35 0.61 1.14 47.6

ResultantCF 0.02 ± 0.05 −0.12 to 0.07 0.99 0.05 2.6

PEAK

ResultantKF 0.52 ± 0.66 −0.78 to 1.81 0.98 0.83 7.1

ResultantLF 0.69 ± 2.08 −3.40 to 4.77 0.77 2.18 34.0

ResultantCF 0.01 ± 0.39 −0.78 to 0.76 0.99 0.39 4.9

Mean and peak acceleration values are presented for the magnitude of the resulting

acceleration vector. *significant differences in the mean between data processing method

and criterion (MA) (p< 0.013) SD, standard deviation; 95% LoA, 95% limits of agreement;

rs, Spearman’s correlation coefficient; RMSE, root mean square error; CV, coefficient of

variation.

as well as decelerations under indoor conditions.
Furthermore, it was intended to receive information
alongside the resulting acceleration vector about positive
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and negative acceleration values in all three movement
planes.

Our findings show that after implementation of a sensor
fusion algorithm, the IMU-derived data do not substantially
differ from the motion capture system data. Analysis of
agreement indicate that the CF algorithm seems to be capable of
quantifying average acceleration magnitude (CV = 8.0 – 15.9%,
RMSE = 0.04 – 0.22 m∗s−2) and peak acceleration magnitude
(CV = 3.9 – 17.8%, RMSE = 0.23 – 0.59 m∗s−2) in x-, y-, and
z-axes within a good to moderate range. Validity could be shown
for both sensor fusion algorithms regarding the magnitude of the
resultant acceleration vector (Table 3). Although no differences
were evident between CF and KF, slight advantages of CF
were found according to analysis of agreement. Overall, MEMS-
based tracking devices seem to provide promising information
to continuously calculate human acceleration and deceleration
through the application of adequate orientation filters and
smoothing techniques evenwithout the aid of external references.

Comparison of LF, CF, and KF
Previous studies with relevance for team sports activities
have reported that raw accelerometer data show insufficient
accuracy as a measure of impacts during jumping movements
or average acceleration during high-speed running (Tran et al.,
2010; Alexander et al., 2016). The authors assumed these
discrepancies to result from a lack of gravity-compensation. As
IMU-based sensors are sensitive to all kinematic phenomena
occurring within a time and space fixed inertial frame, earth’s
constant gravity and rotation is apparent in the sensor’s reading.
While earth’s rotation with 15 degree/h compared to sensor
noise is negligible for the current issue of interest (Sabatini,
2011b; Groves, 2013), a precise separation of human-induced
accelerations and external bias, including earth’s gravity is
essential to accurately describe an athlete’s locomotion. Our
results indicate that the simple low-pass filtering to extract
gravity-induced high-frequency components does not provide
acceptable results (CVmean > 20%, RMSEmean = 0.69 – 1.03
m∗s−2; CVpeak > 20%, RMSEpeak = 1.29 – 3.98 m∗s−2).
In contrast to sensor fusion techniques the exact direction
of gravitational acceleration acting on the tracking device
stays unknown, which seems to hinder accurate distinction
between gravity and body acceleration. While the standard
low-pass filtering method might be sufficient in primarily
static environments, our results reveal serious errors when it
comes to quantifying human acceleration during sport specific
simulations including frequent orientation and movement
changes. Contrastingly, both sensor fusion algorithms resulted
in obvious improvements of accuracy and precision of the
tracking data. Regardless of the filtering technique (stochastic
vs. complementary) a high concurrent validity in measuring
the resultant’s vector magnitude was observed for mean and
peak values. These observations strongly emphasize that future
analysis must consider the orientation of the athlete in regard to
the global coordinate system via sensor fusion. The KF-parameter
provided by the manufacturer’s software has previously been
validated (Wundersitz et al., 2015a,b) during linear movements
(CV= 6.5 – 9.5%) and a team sport specific circuit that included

jumping, change of direction tasks and tackling (CV = 5.5%).
Our findings support these results, indicating good to acceptable
validity of the KF not only for quantifying peak (CV = 7.1%,
RMSE = 0.83 m∗s−2) but especially average values (CV =

3.8%, RMSE = 0.15 m∗s−2) during a variety of team sports
related movement simulations. Although both orientation filters
show good results the applied CF slightly outperformed the KF
regarding mean bias, limits of agreement, RMSE, correlation
coefficient and relative error (Table 3). Bergamini et al. (2014)
found errors in orientation estimation during locomotor trials
depending on the task and type of orientation but independent
of the type of sensor fusion. More detailed analyses under highly
controlled conditions revealed slight differences occurring from
the sensor fusion algorithm itself although the main dependency
still resulted from the performed movement (Ricci et al., 2016).
During dynamic trials with a robotic arm imitating human
movements the implemented KF indeed showed an overall better
performance but also a remarkably slower rate of convergence
during static trials. While the CF immediately adapted to stops
after a motion the KF technique required about 10 s to reach
a stable signal. As in court-based sports movement changes
occur about every 3 s (Abdelkrim et al., 2007; Luteberget and
Spencer, 2017) and likely induce pauses of short duration, a
faster rate of convergence might be beneficial in particular
to follow these intermittent changes between highly dynamic
motion and momentary stops. Since most of our trials were
short of duration (<30 s) and included temporary pauses, e.g.,
during change of direction movements, the observed advantages
of the CF could be explained by its faster adaption. However,
we did not examine the algorithm’s convergence rate directly.
Furthermore, the properties of the manufacturer’s algorithm are
unknown while the choice of tuning parameters is critical for
an algorithm’s accuracy (Ricci et al., 2016). The exact reason
for the discrepancies between the stochastic and complementary
approach can therefore not be explained completely by our work.

Analysis in Movement Planes
The proposed CF enables to overcome the restriction of
analyzing primarily the magnitude of the resulting acceleration.
Continuous discrimination in average acceleration and
deceleration can be provided with moderate to good accuracy
in all axes. For peak values, RMSE indicates a high accuracy in
vertical direction, but an increase in the magnitude of the error
for x- and y-values compared to average accelerations. Still, these
values allow a good approximation of peak values within an error
range of 0.39 – 0.59 m∗s−2 and are lower than RMSE values
found for resultant peak impacts in team sport movements
(Wundersitz et al., 2015b). However, in addition with relatively
high CV values practitioners should be aware of limited accuracy
when analyzing single maximum values in both horizontal axes.
Previous research examining the validity of MEMS-based sensors
during sporting activities applied a maximum CV of 20% as limit
for acceptable validity (Tran et al., 2010; Wundersitz et al., 2013,
2015a). Therefore, relative errors of 6.7% (accz) and 3.9% (decz)
found in this study for peak acceleration values in the z-axis
indicate good validity of the CF data. In the horizontal plane,
RMSE values generally speak for the CF’s validity and according
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relative errors could objectively be described as acceptable (CV
< 20%). However, the measures in x- and y-axes cannot be
stated to be accurate enough when quantifying especially high
peak acceleration values. Relative errors up to 17.8% (accx) could
in fact equal errors >1 m∗s−2 for high intense acceleration
efforts (>6 m∗s−2) and lead to large misinterpretations of a
player’s true performance. An internal non-orthogonality of the
tracking device’s axes could explain these findings, but is usually
prevented with the use of calibration routines (Groves, 2013).
For the purpose of this study, no calibration was performed
prior to the recording as the manufacturer recommends to
rely on the built-in calibration of the devices. More likely the
described error results from a misalignment between the x- and
y-axes of the computed intermediate frame with the reference
axes of the MA coordinate system. Since no correction of the
yaw-angle was performed deviations in the horizontal plane
of the intermediate coordinate system with respect to the MA
coordinate system could account for higher relative errors. This
hypothesis is supported by the lowest CVs and RMSEs found
for peak vertical parameters (RMSEmean = 0.23 – 0.38 m∗s−2,
CVpeak =3.9 – 6.7%) indicating a good correction of pitch and
roll angles. It is assumed to reach similar values also for x- and
y-axes if a perfect alignment of the calculated and the reference
coordinate system is accomplished. However, our results show
that the implementation of a complementary filtering technique
results in a good level of validity when determining average and
peak acceleration values in vertical direction as well as promising
precision for the horizontal plane.

Practical Applications
Although accuracy should further be improved for horizontal
and lateral direction our results suggest a successful application
for developing discriminant acceleration-based activity profiles
in indoor sports. Recent studies emphasize the importance
of accelerations during team sports for the imposed external
load on the athlete. Accelerations and decelerations are known
for higher metabolic loads (Osgnach et al., 2010) and greater
processes of muscular damage due to their eccentric loading
(Nosaka and Newton, 2002; Lakomy and Haydon, 2004). Both
could account for the decrease in acceleration efforts over time,
observed in football matches which is assumed to indicate an
increase in fatigue (Akenhead et al., 2013; Mara et al., 2017).
A greater amount of physical loads including acceleration and
deceleration based movements can be assumed for indoor court-
based sports as an increase in physical demands and acceleration
patterns has been observed with the reduction of pitch sizes
during soccer games (Hodgson et al., 2014). Although the
importance of this topic is widely accepted, only a limited
number of studies examined the proportions of accelerations
and decelerations in indoor sports (Manchado et al., 2013;
Luteberget and Spencer, 2017; Puente et al., 2017). According
information about required acceleration-based locomotion for
each sport can easily be provided to sport scientists and coaches
with the use of a complementary filtering technique, helping
them to execute well-directed player replacements, adapt training
programs, individualize recovery protocols and optimize athletic
conditioning. In contrast to assessing the resulting vectors

magnitude alone, this could lead to a deeper understanding of
players’ movements during training and competition indoors.
A promising potential of IMU’s is assumed in their ability to
quantify locomotion but also to distinguish between distinct
movement patterns. A number of studies in this relatively
new field of interest has previously evaluated the validity of
IMU-based variables, mainly PlayerLoad R© and the resultant
acceleration vector with respect to different movement patterns
(Wundersitz et al., 2015a,b). Comparing peak acceleration
values during walking, jogging and running a slight increase
of the relative error was found for running (CV = 9.3%)
compared to walking (CV = 6.5%) and jogging (CV = 7.5%)
(Wundersitz et al., 2015b). In contrast no clear differences
were observed when subjects performed 7 different team sport
movements within a circuit, where CVs ranged from 3.7 to
6.9% only (Wundersitz et al., 2015b). When comparing validity
of IMU-based accelerations during 3 different tackling tasks
no differences in accuracy were apparent between two of the
three movements (Wundersitz et al., 2015a). Overall, indications
from literature do currently not suggest any obvious differences
in validity of IMU’s based on the performed movement itself.
However, our results indicate that more detailed analysis in single
movement planes seem to be possible and thereby might lead
to according discrimination and quantification of movement
patterns using IMU’s in future by overcoming the restriction of
the resulting acceleration vector only. Still, this study focused on
the more general concurrent validity of sensor fusion algorithms
under sport specific conditions and showed the potential of the
applied complementary filtering technique to correctly estimate
sports-related orientations in principle rather than for distinct
movement patterns. Our findings therefore seem not sufficient
enough to answer this question properly but should be taken
into account for future research regarding the discrimination of
movement patterns based on IMUs’ output.

Limitations
As a limitation of the study, the previously described
misalignments between the tilt-corrected coordinate system
and the reference axes of the MA system probably have an
impact on accuracy in anterior-posterior and lateral direction,
mainly affecting the relative error. Including only accelerometer
and gyroscope data results in an orientation estimation relative
to the direction of earth’s gravity vector. Calculating absolute
orientation with respect to the court’s coordinates might be
possible with the aid of magnetometer data and calibration trials,
but further has to be validated. Ferromagnetic disturbances as
they might occur during game days due to electronic sound
systems around the court have to be considered for calculations.
A certain amount of error has to be mentioned regarding the
derivatives of MA system data, as the MA system directly
measures displacement data not acceleration itself. Numerical
differentiation of positional data can increase high-frequency
noise of the MA data. Despite the attempt to partially dampen
according inaccuracies, a potential influence on the criterion
data has to be considered (Cole et al., 2014). However, MA
system data are accepted as standard validation criterion for
multiple player monitoring systems including acceleration
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estimates (Stevens et al., 2014; Vickery et al., 2014; Wundersitz
et al., 2015a). Due to the short duration of recorded movement
simulations we could not be aware of drifting phenomena as
they might appear during longer trials. Drifting errors were not
apparent during two recorded long-duration trials of 1.5min,
however this should be proved for a larger number of samples.
When monitoring players during training or games another
source of error might arise from enhanced vibrations of the
device. For our experiments, the sensor has been fixed within a
wooden frame to reduce unintentional whippings, which could
occur when placing the sensor in a looser harness. This could
presuppose different tuning parameters of the complementary
filter as well as adaptions of the smoothing cut-off frequencies.
Other microtechnological monitoring systems like GPS-devices
showed a decrease in accuracy during short-distance or high-
acceleration movements (Akenhead et al., 2014; Johnston et al.,
2014). With a view to these findings it has to be mentioned that
validity of IMUs in quantifying acceleration and deceleration
efforts might also vary between specific movement patterns or
intensities. This has not been part of this study, since we focused
on the simulation of orientations as they might also occur
during team sport activities rather than on actual movement
performances. Therefore, our results are missing a conclusion
about the advantages or disadvantages of IMU regarding the
quantification of acceleration efforts during distinct movements.

CONCLUSION

The findings of this study show that wearable tracking devices
containing a MEMS-based sensor have a great potential to be
applied also indoors as valid tool to determine accelerations
and decelerations during of team sport specific movement
including walking, running, jumping and change of direction
simulations. The possibility to continuously analyze acceleration-
values in horizontal and vertical planes broadens the field of
player monitoring and comprehension of physical demands
in indoor court-based sports. Coaches and sports scientists
should be aware of the applied sensor fusion algorithm, its
tuning parameters, correct smoothing technique and avoid
analyzing raw accelerometer data to accurately determine

the athlete’s acceleration. Future research should aim to

increase accuracy of accelerometer-derived data with the aid
of magnetometers especially in x- and y-axes. Based on this,
emphasis should be given to develop appropriate tools to detect
an athlete’s exact orientation on the court and the direction
of performed movements in relation to the court’s coordinate
system. Discrimination between single movement patterns like
backwards and forward movements, but also lateral motions and
their proportion to each other should be investigated in future
research and help to develop distinct activity profiles. Therefore,
it would be critical to assess the validity and reliability of sensor
fusion algorithms during actual performed different movement
patterns and intensity zones. Further, numerical integration of
acceleration values enables the calculation of according velocity
which would lead to a deeper understanding of external loads
in indoor team sports. For this purpose drift, which occurs
due to the additive integration of noise within the IMU signal,
has to be eliminated by appropriate algorithms. By providing
comprehensive information about locomotion that exceed the
restriction to resulting acceleration vectors, IMUs could become
a meaningful tool for player monitoring in indoor team sports in
future.
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Virtual reality (VR) systems (Neumann et al., 2017), which are currently receiving considerable
attention from athletes, create a two- or three-dimensional environment in the form of emulated
pictures and/or video-recordings where in addition to being mentally present, the athlete even
often feels like he/she is there physically as well. As she/he interacts with and/or reacts to this
environment, movement is captured by sensors, allowing the system to provide feedback.

As with every newly evolving technology related to human movement and behavior, it is
important to be aware of the strengths, weaknesses, opportunities and threats (SWOT) associated
with the use of this particular type of technology. SWOT analyses are widely utilized for strategic
planning of developmental processes (Pickton and Wright, 1998; Tao and Shi, 2016) and it is of
great interest to consider whether VR systems should be adopted by athletes or not. Aspects more
inherent to the employed technologies of VR systems, and aspects more related to the application
of VR systems with athletes are considered as strength/weaknesses and opportunities/threats,
respectively. Analogously, SWOT analysis concerning another emerging technology involving
sensors of individual parameters (i.e., “implantables”) has been performed (Sperlich et al., 2017).

STRENGTHS

VR systems allow individualization of training (Kim et al., 2013) and can be applied even in
everyday settings, such as when traveling, lying in bed or working. Moreover, (bio-)feedback
(Düking et al., 2017) can be provided by continuous learning algorithms to athletes directly in
real time (Kim et al., 2013) and/or even remotely to coaches (Neumann et al., 2017).

Inherent to the nature of VR is the potential to design and manipulate freely an almost infinite
number of procedures for training athletes individually (Hoffmann et al., 2014). For example,
manipulation of the visual environment (e.g., fog, light reflections, darkness, dust, rain, snow)
allows many different conditions to be experienced. In addition, a large number of repetitions per
training session can be achieved, which is likely to be beneficial in connection with sports where
this is not possible in real life (e.g., ski jumping, downhill skiing, sky-jumps, and many more). In
VR, an individual may compete against or train with any other athlete around the world (Capin
et al., 1997; Neumann et al., 2017), regardless of their relative levels of performance, gender, ages
and even if the other athlete is injured.

WEAKNESSES

Realistic environments, which enhance the sense of immersion, are key to optimizing training and
learning (Vignais et al., 2015).

The level of immersion depends on the feeling of “being present” in VR (place
illusion) and the illusion of what is happening is real (plausibility illusion) (Slater, 2009).
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Consequently, the haptic, tactile, visual, and/or audio
(bio-)feedback provided must be as realistic as possible and
movements in the real world need to be synchronized with those
in the virtual world (Vignais et al., 2015; otherwise, “seasickness”
can be induced, Faisal, 2017). However, current VR systems
cannot always achieve these goals (Katz et al., 2006).

Moreover, certain VR applications designed to capture the
motion of athletes in real time require massive computational
power, as well as a broad bandwidth for the transfer of data. Real
video footage requires a relatively extensive database, whereas
animated video footage may result in the “uncanny valley” effect,
i.e., realistic graphical representations of characters that evoke
unpleasant feelings (Vignais et al., 2015).

For a more realistic experience, the technology should be
non-obtrusive, as small and light-weight as possible, allowing
the athlete to execute movements without restriction or harming
him/herself or others.

Finally, the costliness of setting up VR systems can limit their
usage.

OPPORTUNITIES

VR systems enable athletes to learn remotely from any coach and
at a time and place of their own choosing, improving a wide
variety of skills such as decision-making and pacing strategies
that optimize utilization of energy (Hoffmann et al., 2014;Murray
et al., 2015; Romeas et al., 2015; Gokeler et al., 2016). Creative
behavior, involving a wide variety of patterns of movement and
tasks (Santos et al., 2016), can be stimulated by providing a
plethora of appropriate exercises. Exercising in VR can lower
the level of perceived exertion while simultaneously enhancing
enjoyment (Mestre et al., 2011), which could increase the
willingness to exercise, as well as performance while exercising.

Prior to competitions, VR systems can probably be employed
to optimize warm-up procedures (Calatayud et al., 2010), for
example, by enhancing motor imagery (Louis et al., 2008). Stress
and certain dimensions of (competitive) anxiety could potentially
be managed more efficiently with such systems (Parsons and
Rizzo, 2008; Stinson and Bowman, 2014). With VR, athletes
can train for competitions under the conditions predicted for
the actual event, thereby achieving more realistic preparation
(Swaren et al., 2012).

VR might also help injured athletes in two ways: First,
it could aid the diagnosis of certain aspects of sport-related
injuries (Teel and Slobounov, 2015). And secondly, recovery
could be promoted by providing exercises designed to maintain
mental alertness and readiness through simulation of real-life
scenarios from a first-person perspective (Craig, 2014) and/or
by helping athletes to maintain appropriate movements during
rehabilitation (Fitzgerald et al., 2007; Gokeler et al., 2016).

From an employment perspective, specialized coaches will
most likely have to be hired to implement and handle the more
complicated VR systems of the future.

For researchers, VR provides exceptional opportunities for
highly reliable field-testing of athletes (Gokeler et al., 2016), e.g.,
their perception-action-loops (Bideau et al., 2010; Craig, 2014).

In the future, such diagnostic tests could also be applied routinely
to young athletes, e.g., for earlier identification of talent.

THREATS

The transferability of skills, tactics, creative behavior and
diagnostic procedures from the virtual to the real world remains
to be established scientifically, although there is already evidence
for the transferability of skills (Tirp et al., 2015). Some VR
sensations (e.g., of g-forces, 3-D orientation) are currently not
realistic, which could lead to unnatural patterns of movement,
as well as under-/overuse and/or injury.

As with every novel technology, VR must first prove its value
in order to convince rehabilitation specialists, athletes, coaches
and others to adopt it (Katz et al., 2006; Akenhead and Nassis,
2015).

From an economic perspective, certain coaching jobs could be
jeopardized by VR systems and, moreover, the cost of certain of
these systems is still quite high.

Furthermore, VR systems may pose a threat to certain aspects
of health, e.g., mental or visual (Spiegel, 2017). Proper hygiene
must be given high priority, especially with respect to avoiding
the spread of bacteria and/or viruses among team members
(Davies et al., 2017). When exercising in VR, an athlete may
be more prone to falling or collision with nearby objects, a
risk which appears to be particularly great in connection with
visual restriction due to a head-mounted display (Neumann et al.,
2017). Another real risk associated with extensive use of VR
systems in general is social isolation (Spiegel, 2017).

Finally, the personal data collected by VR systems must be
protected from outside access and misuse (Spiegel, 2017).

SUMMARY

To summarize, VR systems show considerable promise for
improving certain aspects of athletic performance, such as
tactics or creative behavior, as well as in connection with
rehabilitation, and research. Current technological limitations
restrict sophisticated application of VR by athletes and
transferability from the virtual to the real world and certain
related health concerns require detailed further investigation.

Although SWOT analyses have potential limitations (e.g., by
being too subjective; Pickton and Wright, 1998), we believe that
this opinion article offers a valuable starting point for those who
want to know more about the use of VR systems by athletes.

We have pointed out only the most prominent strengths,
weaknesses, opportunities and threats associated with the use
of VR systems in connection with sports (Table 1) and there
are surely many more. It is noteworthy that most current
research in this area focuses on aerobic sports and more
emphasis on skill-based sports is needed (Neumann et al.,
2017). Moreover, VR systems are still in their infancy and the
substantial improvements and other alterations certain to come
in the near future, as well as the applicability of VR systems
to the athletic population must be monitored continuously and
carefully.
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TABLE 1 | Strengths, weaknesses, opportunities, and threats associated with the use of VR systems by athletes.
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A disconcerting proportion of Canadian nurses are physically inactive and report

poor cardiovascular health. Web-based interventions incorporating feedback and

group features may represent opportune, convenient, and cost-effective methods for

encouraging physical activity (PA) in order to improve the levels of PA and cardiovascular

health of nurses. The purpose of this parallel-group randomized trial was to examine the

impact of an intervention providing participants with feedback from an activity monitor

coupled with a web-based individual, friend or team PA challenge, on the PA and

cardiovascular health of nurses working in a cardiovascular setting.

Methods: Nurses were randomly assigned in a 1:1:1 ratio to one of the following

intervention “challenge” groups: (1) individual, (2) friend or (3) team. Nurses wore a

Tractivity® activity monitor throughout a baseline week and 6-week intervention. Height,

body mass, body fat percentage, waist circumference, resting blood pressure (BP) and

heart rate were assessed, and body mass index (BMI) was calculated, during baseline

and within 1 week post-intervention. Data were analyzed using descriptive statistics and

general linear model procedures for repeated measures.

Results: 76 nurses (97% female; age: 46 ± 11 years) participated. Weekly

moderate-to-vigorous intensity PA (MVPA) changed over time (F = 4.022, df = 4.827,

p = 0.002, η
2 = 0.055), and was greater during intervention week 2 when compared to

intervention week 6 (p = 0.011). Daily steps changed over time (F = 7.668, df = 3.910,

p < 0.001, η2 = 0.100), and were greater during baseline and intervention weeks 1, 2, 3,

and 5 when compared to intervention week 6 (p < 0.05). No differences in weekly MVPA

or daily steps were observed between groups (p> 0.05). No changes in body mass, BMI

or waist circumference were observed within or between groups (p > 0.05). Decreases

in body fat percentage (−0.8 ± 4.8%, p = 0.015) and resting systolic BP (−2.6 ± 8.8

mmHg, p = 0.019) were observed within groups, but not between groups (p > 0.05).

Conclusions: A web-based intervention providing feedback and a PA challenge initially

impacted the PA, body fat percentage and resting systolic BP of nurses working in
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a cardiovascular setting, though increases in PA were short-lived. The nature of the

PA challenge did not differentially impact outcomes. Alternative innovative strategies

to improve and sustain nurses’ PA should be developed and their effectiveness

evaluated.

Keywords: nurses, physical activity, cardiovascular, web-application, activity monitor, challenges

INTRODUCTION

Nurses are the largest professional group within the health
care workforce. Several investigators in varied settings have
assessed the self-reported and objective physical activity (PA)
levels of nurses and shown low levels of PA (Kaewthummanukul
et al., 2006; Sveinsdottir and Gunnarsdottir, 2008; Ratner and
Sawatzky, 2009; James et al., 2013; Babiolakis et al., 2015; Perry
et al., 2015; Reed et al., 2018). The National Survey of the Work
and Health of Nurses in Canada showed that a disconcerting
proportion of nurses are overweight or obese (45%) and smokers
(16%); have high blood pressure (13%), high cholesterol (10%)
and diabetes (3%); and, experience fair/poor mental health
(6%) (Shields and Wilkins, 2006). The irrefutable evidence
demonstrating the effectiveness of regular PA in the prevention
and management of cardiovascular disease and associated risk
factors (Warburton et al., 2006, 2010; Haskell et al., 2007; Reed
and Pipe, 2016) highlights the opportunity afforded by targeted
PA interventions to promote positive behavior change within this
unique and large professional population.

As adults worldwide embrace modern technologies, web-
based innovations may represent opportune, convenient, and
cost-effective methods to target suboptimal PA levels and poor
cardiovascular health of nurses. Web-based interventions that
can be delivered anytime and anywhere warrant particular
attention because they are accessible 24 h a day, 7 days a week
which may be ideal for nurses working long (i.e., 12 h) and
rotating (i.e., days, evenings, nights, weekdays, weekends) shifts.
Several reviews have shown that web-based interventions can
increase PA levels and reduce body mass, waist circumference
and blood pressure in adults (van den Berg et al., 2007; Liu et al.,
2013; Joseph et al., 2014; Seo and Niu, 2015; Direito et al., 2017;
Sorgente et al., 2017).

The primary purpose of this parallel-group randomized trial
was to examine the impact of a web-based intervention providing
specific feedback derived from an activity monitor on the
PA levels and cardiovascular health of nurses working in a
Canadian cardiovascular setting. We hypothesized that nurses’
PA levels and cardiovascular health would improve in response
to the receipt of personalized feedback regarding their PA levels
derived from an activity monitor. Further, as modern informatics
capabilities enable us to harness strategies designed to initiate
and support positive behavior change, the secondary purpose of
this trial was to assess whether nurses’ PA levels are enhanced
when they work together to meet their PA goals (i.e., friend
or team PA challenge) compared to when they work alone to
meet their goals (i.e., individual PA challenge). We hypothesized
that nurses’ assigned to a friend or team PA challenge (and thus
have their weekly PA levels displayed to others) would become

more physically active when compared to nurses assigned to
an individual PA challenge. This hypothesis is based on work
suggesting that people perform better when they are in front of
others than when they perform alone (Hausenblas et al., 2014).
One explanation for this is based on the self-presentation theory
(Leary, 1992) which suggests that the desire to enhance oneself
and make positive impressions in front of others is an important
motivator of human behavior. From this perspective, one might
expect that nurses will increase their PA levels more if they know
that others will see their levels than if no one else will see their PA
levels.

MATERIALS AND METHODS

Study Design
This parallel-group randomized trial was conducted at the
University of Ottawa Heart Institute (UOHI), a tertiary care
cardiovascular institute. This study was carried out in accordance
with the consolidated standards of reporting trials (CONSORT)
and intervention description and replication (TIDieR) checklists
(Hoffmann et al., 2014; Boutron et al., 2017). All participants
provided written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the UOHI
Human Ethics Board (Protocol No. 20130429).

Protocol
Recruitment
A convenience sample of participants was recruited between
September and November 2013. Research staff informed nurses,
administrative staff and nursing-leaders of the study by attending
nursing meetings and morning rounds, and by distributing
recruitment posters throughout the hospital (e.g., nursing
lounges and stations, information boards, cafeterias). The
posters contained a brief description of the study and contact
information for the research staff. Hospital administrative
staff and nursing-leaders assisted in distributing recruitment
materials. Nurses interested in participating in the study
contacted the research staff; screening was performed on-site.

Eligible participants were: (1) registered nurses; (2) able to
walk unassisted; (3) willing to wear a stretchable ankle band
which contained a PAmonitoring device (i.e., accelerometer) and
had access to the internet; and, (4) able and willing to provide
written informed consent. Participants who: (1) were pregnant
or lactating; (2) were unable to read and understand English;
(3) had medical contraindications to exercise; and/or, (4) were
already using an activity monitor to track their PA levels were not
eligible.
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Randomization and Intervention Groups
Motivation is a principal factor prompting changes in health
behaviors (Teixeira et al., 2012). Framing behavior change
interventions as games or competitive endeavors may be an
effective strategy to motivate change (Baranowski et al., 2008).
Given previous studies have shown that employing game design
features in non-game contexts is effective in improving health
and well-being (Johnson et al., 2016) and that the presence of
others can increase performance, participants were randomly
assigned in a 1:1:1 ratio to one of the following intervention
groups: (1) individual, (2) friend or (3) team challenge, which
allowed us to examine if the groups facilitated or inhibited
behavior change. Research staff randomly allocated participants
to intervention groups using the “RAND” function of a software
spreadsheet program (Excel, Microsoft, Washington, USA), and
notified them of their group assignment via email. Participants
were provided with a: (1) unique username and password to
access the online Tractivity R© program which contained their
individual, friend or team challenge; and, (2) Bluetooth USB key
which enabled them to upload their activity monitor data into the
online Tractivity R© program.

Participants could monitor their distance (km), steps
(number), active time (minutes) and calories (kcal) expended
on an hourly, daily, weekly, and monthly basis in a
graphical format in the online Tractivity R© program (see
Supplementary Figure 1). In the friend and team challenge
groups, group features were added such that participants’ PA
levels were displayed to others in their group as a means to
enhance motivation to perform well. Specifically, participants
randomized to the friend challenge could also monitor the
total distance (km) and steps (number) of another participant
randomized to the friend challenge in a graphical format in
the online Tractivity R© program (see Supplementary Figure 2).
Participants randomized to the team challenge could also
monitor the total distance (km) and steps (number) of their
team and other teams in a graphical format in the online
Tractivity R© program (see Supplementary Figure 3). For the
team challenge, five groups of five participants were created,
totaling 25 participants. Participants were blinded such that
no-one knew the identity of the other person or persons in their
group (to comply with ethical codes of conduct).

Study Assessments

Physical activity
Participants wore a Tractivity R© activity monitor (Tractivity R©,
Vancouver, BC) held in a stretchable ankle band during waking
hours throughout a baseline week and 6-week intervention,
excluding periods when they engaged in water-related activities
(e.g., bathing, swimming). The Tractivity R© activity monitor is a
lightweight, compact accelerometer that uses a proprietary signal
processing algorithm to determine step counts in 1-min intervals.
The activity monitor provides no visible feedback on the device
and stores up to 30 days of data (i.e., distance, steps, active time,
calories).

Research staff uploaded the participants’ activity data into
the online Tractivity R© program at the end of the baseline week
and 6-week intervention. Participants uploaded their activity
data at times and frequencies of their choosing throughout the

6-week intervention. The Tractivity R© activity monitor has been
shown to be a valid measure of step counts in comparison to
direct observation with less than a 0.5% error across a range
of walking speeds (2.4, 3.1, 3.5, and 4.1 mph) (Warburton
et al., 2013). Activity monitors were calibrated for stride length
prior to the baseline week by having nurses walk 10 steps (at
their usual walking speed) in a straight line on a large indoor
track. These measures were performed in triplicate, and the
average was entered into the online Tractivity R© program to assist
the proprietary signal processing algorithm in calculating step
counts.

Tractivity R© provided us with consecutively ordered minute-
by-minute activity monitor data [i.e., steps, distance (km), active
time (minutes), calories (kcal)] for each day of the baseline and
intervention phases for all participants. We used a Hypertext
Preprocessor (PHP, version 7.0) script to process the data. All
activity monitor data were screened to identify valid and non-
valid days. Only days with at least 10 h of wear-time were retained
for analyses, as a minimum accelerometer wear-time of 10 h
has been used to provide a valid measure of daily PA (Troiano
et al., 2008). Activity monitor determined step counts were used
to calculate steps, minutes of MVPA and number of days PA
guidelines of ≥150 min/week of MVPA in bouts of ≥10min
weremet (Canadian Society for Exercise Physiology, 2011;World
Health Organization, 2011). Using published guidelines (Tudor-
Locke et al., 2005), a threshold value of at least 100 steps/minute
was used to define MVPA. Weekly MVPA minutes in bouts of
≥10min and daily steps were calculated.

Cardiovascular health indicators
Cardiovascular health measures were taken between 0630 and
1000 hours. Height was measured to the nearest 0.1 cm, body
mass was measured to the nearest 0.1 kg, and body mass
index (BMI) was calculated (kg/m2). Waist circumference was
measured to the nearest 0.5 cm (Seca 201) at the narrowest
point of the torso while participants stood with arms at their
sides, feet together and abdomen relaxed (American College
of Sports Medicine, 2017). Body fat percentage was measured
using bioelectrical impedance (BIA) (UM-041, Tanita, Roxton
Industries Inc., Kitchener, Ontario). Participants were asked
to adhere to the following prior to their anthropometric
measurements: (1) no eating or drinking for 4 h; (2) no MVPA
for 12 h; (3) no alcohol consumption for 48 h; (4) to void their
bladder (within 30min); (5) to refrain from consuming caffeine
and diuretic use unless prescribed by a physician; and, (6) to
postpone measurement if retaining water due to changes in
menstrual cyclicity. Resting blood pressure (BP) and heart rate
were assessed in a seated position after a 5-min rest period using
an automated, non-invasive BP monitor (Bp-TRU, Coquitlam,
BC, Canada). All measures were performed in triplicate at
baseline and within 1 week post-intervention, and the average
was reported for descriptive purposes. Research staff collecting
cardiovascular health measures were blinded to participants’
group assignment.

Statistical Analyses
Analyses were performed using SPSS for Windows (version 24;
IBM Corp, Armonk, NY, USA). A complete case analysis was
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performed; only 4% (n =3/75) of the randomized participants
did not complete the intervention. All outcome variables were
tested for normality using Shapiro-Wilk tests of normality;
number of days activity monitors were worn, MVPA levels, steps,
and cardiovascular health indicators [body mass, BMI, waist
circumference, resting BP (baseline phase)] were not normally
distributed.

Friedman’s two-way analysis of variance (ANOVA) by ranks
summary was performed to examine changes in the number of
days the activity monitors were worn throughout the baseline
and intervention phases. A two-step approach for transforming
continuous non-normalized variables to normal was applied
to the MVPA levels and steps variables (Templeton, 2011).
A one-way ANOVA was performed to examine differences in
the normalized weekly MVPA levels and daily steps between
intervention groups at baseline. A two-way repeated measures
ANOVA was performed to examine changes in the normalized
MVPA levels and steps variables throughout the baseline and
intervention phases both within and between groups (i.e.,
individual, friend and team); significant values were adjusted
using Bonferroni correction for multiple tests. Wilcoxon signed
rank tests were performed to compare cardiovascular health
indicators between time points (i.e., baseline and within 1 week
post-intervention), and Kruskal Wallis tests were performed
to compare changes (i.e., post-intervention values—baseline
values) in cardiovascular health indicators between groups. Non-
normalized values are presented in the results for descriptive
purposes. Data are reported as means ± standard deviations,
unless otherwise noted, and p < 0.05 was considered statistically
significant. Our post-hoc power analysis revealed that an eta-
squared value of 0.022 (i.e., small effect size) and alpha
of 0.05, a sample size of 76 participants provides adequate
power (1–β = 0.92) to detect significant differences in PA
within (i.e., baseline and intervention weeks 1–6) and between
groups.

RESULTS

Participants
All 76 screened participants met study eligibility criteria and
consented to participate; 75 were randomized to the individual,
friend and team PA challenges (see Figure 1).

Nurses’ demographics, anthropometrics, types of work shifts,
and nursing roles are presented in Table 1. On average, nurses
were categorized as being overweight, normotensive, with a low-
risk waist circumference according to the American College
of Sports Medicine (ACSM) guidelines (American College of
Sports Medicine, 2017). Most were female (97%), working
days (53%), and performing clinical duties (72%). They spent
an average of 27.4±49.1 min/week in MVPA in bouts of
≥10min; only three (4%) nurses met current PA guidelines at
baseline.

Dropouts
One participant dropped out after baseline due to a damaged
device, and three (4%) participants dropped out during the
intervention due to pregnancy (n = 1), loss of interest (n = 1),

or time constraints (n = 1). Overall, 72 (96%) of the randomized
participants completed all study assessments, including 23 (92%)
assigned to the individual challenge, 25 (100%) assigned to
the friend challenge, and 24 (96%) assigned to the team
challenge.

Adherence to Intervention
Nurses wore the activity monitor for at least 10 h/day for
an average of 31 of the total 42 intervention days (overall
compliance rate of 74%). The number of days the nurses wore the
activity monitor decreased significantly throughout the baseline
and intervention phases (p < 0.05). Nurses wore the activity
monitor for ≥10 h/day for an average of 6.0 ± 1.9 (baseline),
6.0 ± 2.0 (intervention week 1), 5.8 ± 1.8 (intervention week 2),
5.9 ± 1.9 (intervention week 3), 4.6 ± 2.0 (intervention week 4),
4.8 ± 2.4 (intervention week 5), and 3.5 ± 3.0 (intervention
week 6) days. No significant differences in the number of days
the nurses wore the activity monitor were observed between
intervention groups (p > 0.05).

Effects of Intervention on Physical Activity
No significant differences in nurses’ weekly MVPA levels (F =

0.407, p = 0.667, η
2 = 0.01) or daily steps (F = 1.696, p =

0.191, η
2 = 0.046) were observed between intervention groups

at baseline. Nurses’ weekly MVPA levels changed significantly
over time (F = 4.022, df = 4.827, p = 0.002, η

2 = 0.055),
and were greater during intervention week 2 when compared
to intervention week 6 (p < 0.05; see Figure 2). No significant
differences in MVPA levels were observed between intervention
groups (F = 1.199, df = 9.654, p = 0.292, η

2 = 0.034; see
Figure 3). Nurses’ daily steps changed significantly over time
(F = 7.668, df = 3.910, p < 0.001, η

2 = 0.100), and were
greater during baseline and intervention weeks 1, 2, 3, and 5
when compared to intervention week 6 (p < 0.05) (see Figure 4).
No significant differences in daily steps were observed between
intervention groups (F= 1.146, df= 7.819, p= 0.333, η2 = 0.032;
see Figure 5). Two nurses (3%) nurses met current PA guidelines
post-intervention.

Effects of Intervention on Cardiovascular
Health Indicators
Nurses’ cardiovascular health parameters are presented in
Table 2. No significant changes in body mass, BMI or
waist circumference were observed between baseline and
within 1 week post-intervention (p > 0.05). Significant
decreases in body fat percentage and resting systolic BP were
observed within 1 week post-intervention when compared to
baseline (p < 0.05). No significant differences in changes in
cardiovascular health indicators were observed between groups
(p > 0.05).

DISCUSSION

This is the first randomized trial, to our knowledge, to examine
the impact of a web-based intervention incorporating feedback
and group features on the PA levels and cardiovascular health
of nurses working in a cardiovascular setting. We observed
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FIGURE 1 | CONSORT flow diagram of nurses recruited and reasons for withdrawals. CONSORT, Consolidated Standards of Reporting Trials; PA, physical activity.

initial increases in nurses’ PA levels (i.e., weekly MVPA levels
and daily steps), though these were not sustained over the
6-week intervention and few met the current PA guidelines
(≥150 min/week in bouts of ≥10min). We also observed

improvements in nurses’ body fat percentage and resting systolic
BP. Introducing web-based group features (i.e., friend and team
PA targets) for motivation did not differentially impact PA or
cardiovascular outcomes.
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TABLE 1 | Participant characteristics.

Demographics and

anthropometrics

All participants

(N = 76)

Mean ± SD

Females

(n = 74)

Mean ± SD

Males

(n = 2)

Mean ± SD

Age (years) 46.3 ± 10.9 46.6 ± 10.8 36.0 ± 15.6

Sex (% female) 97% 100% 0%

Height (cm) 165.4 ± 6.8 165.0 ± 6.1 179.3 ± 19.4

Body mass (kg) 75.4 ± 16.4 75.4 ± 16.4 73.0 ± 25.5

BMI (kg/m2) 27.5 ± 5.6 27.7 ± 5.6 22.2 ± 3.1

Waist circumference (cm) 84.1 ± 12.6 84.2 ± 12.6 83.7 ± 17.5

Resting systolic blood

pressure (mmHg)

115 ± 12 115 ± 13 116 ± 6

Resting diastolic blood

pressure (mmHg)

75 ± 8 75 ± 8 82 ± 4

Resting heart rate (bpm) 68 ± 9 68 ± 9 69 ± 9

Weekly hours 36.3 ± 8.3 36.2 ± 8.4 42.8 ± 7.4

Types of shifts* n (%)

Working days only 40 (52.6) 40 (54.1) –

Working days and nights 29 (38.2) 27 (36.5) 2 (100.0)

Working nights only 5 (6.6) 5 (6.8) –

Nursing roles* n (%)

Clinical only 53 (71.6) 51 (70.8) 2 (100.0)

Clinical and managerial 6 (8.1) 3 (4.2) –

Clinical and research 3 (4.1) 3 (4.2) –

Managerial only 9 (12.2) 9 (12.5) –

Research only 3 (4.1) 6 (8.3) –

BMI, body mass index; SD, standard deviation. *, missing n = 2 for females for types of

shifts and nursing roles.

Nurses reach a large proportion of the population making
them a critically important element of the health-care workforce.
Nursing practice is physically and psychologically demanding
(Chin et al., 2016). Physical inactivity and cardiovascular
disease have been shown to be related to lower ability to
work and a greater incidence of absenteeism (Burton et al.,
2014; van den Berg et al., 2017). Improving the lifestyle
and overall well-being of nurses is important in order to
permit optimal patient care. E-health broadly refers to the
use of emerging information and communication technology
to improve or enable health and health care (Government of
Canada, 2010). E-health encompasses a wide range of services
or systems, including electronic health records, e-prescribing,
telemedicine (e.g., online and telephone coaching), consumer
health informatics (e.g., on demand educational content),
wearable devices (e.g., TractivityTM, FitbitTM) and real-time
monitoring of user health and behavioral data. Evidence has
suggested that e-health interventions may improve the PA levels
and health outcomes of adults (Beratarrechea et al., 2014; Joseph
et al., 2014; Direito et al., 2017). Providing web-based feedback

FIGURE 2 | Minutes/week in moderate-to-vigorous intensity physical activity in

bouts of at least 10min across the baseline and intervention phases. *p < 0.05

vs. intervention week 6. MVPA, moderate-to-vigorous intensity physical activity.

FIGURE 3 | Minutes/week in moderate-to-vigorous intensity physical activity

in bouts of at least 10min across the baseline and intervention phases for

participants in the individual, friend and team challenges. Solid blue line

represents the individual challenge. Short dotted green line represents the

friend challenge. Long dotted red line represents the team challenge.

from wearable devices is acceptable and can increase the PA
levels of inactive overweight and obese women (Cadmus-Bertram
et al., 2015a,b). Our work extends these findings to nurses
and provides support for the use of e-health interventions to
target PA and cardiovascular outcomes in nurses working in
a cardiovascular setting as revealed by the good compliance
with the intervention and initial effects on behavior and health
outcomes.
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FIGURE 4 | Average steps/day across the baseline and intervention phases.

*p < 0.05 vs. intervention week 6.

FIGURE 5 | Average steps/day across the baseline and intervention phases

for participants in the individual, friend and team challenges. Solid blue line

represents the individual challenge. Short dotted green line represents the

friend challenge. Long dotted red line represents the team challenge.

We found that web-based feedback from an activity monitor
resulted in immediate increases in nurses’ PA levels (i.e., weekly
MVPA levels and daily steps). Yet, consistent with other web-
based PA interventions demonstrating short-lived increases in PA
levels (Vandelanotte et al., 2007; Kernot et al., 2014; Fjeldsoe et al.,
2015; Joseph et al., 2015), nurses’ PA levels decreased mid-way
through the current intervention. Our 6-week intervention was
relatively short in duration and incorporated a limited range of
motivational strategies, namely group features. It could be argued
that a longer intervention that combines feedback with additional
strategies (e.g., social support, autonomy support, offering value-
based rationales for PA) within the web platform is needed to

achieve and sustain improvements in PA levels, particularly for
those who are not meeting current PA guidelines. Whether web-
based interventions that encompass more strategies that can
intrinsically motivate PA are more effective in sustaining nurses’
PA levels requires further investigation.

We attempted to assist nurses in achieving PA targets by
having participants share data with other nurses to motivate
the initiation and maintenance of PA; this appeared to lack
sustained appeal. We chose friend and team PA challenges based
on research showing that: (1) the act of self-monitoring can
improve PA levels (Michie et al., 2009); (2) social factors (e.g.,
social learning, comparison, normative influence, facilitation,
cooperation, recognition) can be a powerful tool for increasing
the effectiveness of web-based interventions (Matthews et al.,
2016); (3) social competition via the web can motivate
participants to become more physically active when compared
to self-monitoring only (Prestwich et al., 2017); (4) gamification
can have a positive impact on behavioral and health outcomes
(Johnson et al., 2016); and, (5) the desire to enhance oneself
and make positive impressions is an important motivator of
human behavior (Leary, 1992). The integration of technological-
mediated group features did not, however, impact nurses’ PA
levels or cardiovascular health when compared to those who
did not have access to these features. One explanation for the
null finding is that the anonymity of nurses within the groups
prevented social support and relatedness between participants.
It is possible that nurses would have accumulated greater PA
levels if the friend and team challenge conditions allowed them
to feel connected and accountable to their friend or team
members. It is also possible that this type of group feature
is insufficient to change PA unless cash or prize incentives
are provided. Finally, feedback may have undermined nurses’
intrinsic motivation to perform PA because providing social
pressures and rewards can give rise to extrinsic motivation
(Deci and Ryan, 2012; DeSmet et al., 2014). Strategies which
foster intrinsic motivation (e.g., when the behavior is done
for enjoyment and personal satisfaction) may better promote
behavior change and maintenance (Teixeira et al., 2012; Hancox
et al., 2017; Quested et al., 2017). Future research developing and
testing strategies to motivate nurses and engage them in PA is
warranted.

We observed statistically significant improvements in body fat
percentage (−0.8%), yet no changes in body mass, BMI or waist
circumference. These latter findings were not surprising given
that increases in nurses’ PA levels were short-lived over the 6-
week intervention and likely produced minimal, if any, deficits
in energy expenditure (Reed et al., 2013). We also observed a
significant improvement in resting systolic BP (−2.6 mmHg).
Strong evidence from a meta-analysis of randomized controlled
trials of exercise training in healthy adults (5,223 participants:
3,401 exercise training participants and 1,822 sedentary controls)
suggests that resting systolic BP is reduced (−3.5 mmHg) after
endurance exercise (Cornelissen and Smart, 2013). The decrease
(−2.6 mmHg) we observed may not be clinically significant, yet
the direction of change is nevertheless favorable and associated
with reduced cardiovascular morbidity and mortality (Hansson,
1996; Padwal et al., 2016). Our findings contrast those of a
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TABLE 2 | Participants’ cardiometabolic health at baseline and post-intervention.

Variables Baseline mean ± SD Post-intervention mean ± SD Change mean ± SD Effect size (r) p-values

Body mass (kg) 75.9 ± 16.6 75.2 ± 15.9 −0.6 ± 3.4 −0.16 0.570

BMI (kg/m2) 27.6 ± 5.7 27.3 ± 5.3 −0.3 ± 1.2 −0.21 0.460

Body fat (%) 36.7 ± 8.7 35.9 ± 8.4 −0.8 ± 4.8 −0.70 0.015

Waist circumference (cm) 84.0 ± 12.7 83.6 ± 12.5 −0.4 ± 1.7 −0.54 0.063

Resting SBP (mmHg) 114.6 ± 12.4 111.9 ± 11.3 −2.6 ± 8.8 −0.68 0.019

BMI, body mass index; SBP, systolic blood pressure; SD, standard deviation.

pedometer-based PA program for nurses in a Canadianmulti-site
health care center which reported no changes in resting systolic
BP (Lavoie-Tremblay et al., 2014). This study, however, used self-
reported BP measures which have been shown to have moderate
agreement with measured BP (Taylor et al., 2010) and did not
observe significant increases in PA levels.

Our study has several strengths. It is the first to examine the
impact of web-based feedback from an activity monitor on the
PA levels and cardiovascular health of nurses working long and
rotating shifts in a cardiovascularhealth center.This is particularly
important as innovative interventions are needed to address at-
risk nursing populations (Reed et al., 2018). Second, we integrated
technologically-mediated social participation into the web-based
interventionto increaseparticipants’motivation,althoughthisdid
not impact PA levels or cardiovascular health indicators. Third,
nurses’ PA levels were objectively measured in 1-min increments
throughout a baseline week and 6-week intervention using a valid
activity monitor. Fourth, we observed a low dropout rate of 5% (n
= 4/76). A review of internet- and web-based PA interventions in
which themajority of participantswerewomen revealed adropout
rate of 21% for interventions<6months in duration (Joseph et al.,
2014). Further, a pedometer-based PA program for nurses in a
Canadian multi-site health care center reported a response rate
of only 55% (Lavoie-Tremblay et al., 2014).

Several limitations warrant discussion. First, the
generalizability of our findings to male nurses is limited as
97% of our sample were female—characteristic of the Canadian
nursing population (Shields and Wilkins, 2006). Second, the
generalizability of our findings to older nurses and those working
nights only is limited given most of our nurses were middle age
and working days only. Third, this was a single-center study.
Replication of this study across several hospitals is needed to
confirm our findings. Fourth, we recruited 19% of nurses from
the hospital (total nursing population = approximately 400
nurses); it is possible that nurses interested in participating
in a PA and health study may be “healthier” and more active
than average, thus limiting the impact of a PA intervention to
improve PA and cardiovascular health. Finally, we cannot affirm
that participants did not disclose their group assignment to one
another, and consequently contaminate the group effects. No
differences in PA or cardiovascular outcomes were, however,
observed between groups.

CONCLUSIONS

Web-based PA interventions may be effective in initiating,
but not sustaining optimal PA levels among Canadian nurses
working in a cardiovascular setting. Improvements in nurses’
body fat percentage and resting systolic BP were observed
following the intervention. Embedding technologically-mediated
social participation did not appear to impact nurses’ PA levels
or cardiovascular health. Nurses working in a cardiovascular
setting do not appear to be meeting PA guidelines. Future larger
multi-site randomized controlled trials are needed to confirm
our findings. If our findings are replicated, alternative novel
and multi-faceted interventions are needed to address the low
PA levels and poor cardiometabolic health of at-risk Canadian
nurses.

The growth in e-health interventions is occurring rapidly.
It is foreseeable that new technologies (e.g., global positioning
systems, smart watches, video games) will provide additional
means of improving and or maintaining PA which is a known
modifiable risk factor of cardiometabolic health. Consumers will
be able to monitor their time spent in MVPA, daily steps and
bouts of sedentary time. The cost of such technologies will, in all
likelihood, continue to decrease as companies strive to provide
competitive, accessible and affordable products for consumers.
Future work is needed to synthesize all available data regarding
the effectiveness of e-health interventions in improving PA levels
and cardiometabolic health in adults, particularly in women as
over half of women lack knowledge of cardiovascular disease
risk factors and the majority are uninformed when it comes
to their own level of risk (McDonnell et al., 2014; Reed et al.,
2015).
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Supplementary Figure 1 | Online Tractivity® program which displayed

participants distance, steps, active time and calories expended on an hourly, daily,

weekly, and monthly basis.

Supplementary Figure 2 | Friend challenge in online Tractivity® program which

displayed the total distance and steps of another participant randomized to the

friend challenge.

Supplementary Figure 3 | Team challenge in online Tractivity® program which

displayed the total distance and steps of others teams randomized to the team

challenge.
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External forces, such as ground reaction force or air drag acting on athletes’ bodies

in sports, determine the sport-specific demands on athletes’ physical fitness. In

order to establish appropriate physical conditioning regimes, which adequately prepare

athletes for the loads and physical demands occurring in their sports and help reduce

the risk of injury, sport-and/or discipline-specific knowledge of the external forces is

needed. However, due to methodological shortcomings in biomechanical research, data

comprehensively describing the external forces that occur in alpine super-G (SG) and

downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable

sensor-based technology to determine the external forces acting on skiers during World

Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare

these with those occurring in giant slalom (GS), for which previous research knowledge

exists. External forces were determined usingWC forerunners carrying a differential global

navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain

model of the snow surface and an air drag model, the magnitudes of ground reaction

forces were computed. It was found that the applied methodology may not only be used

to track physical demands and loads on athletes, but also to simultaneously investigate

safety aspects, such as the effectiveness of speed control through increased air drag

and ski–snow friction forces in the respective disciplines. Therefore, the component of

the ground reaction force in the direction of travel (ski–snow friction) and air drag force

were computed. This study showed that (1) the validity of high-end dGNSS systems

allows meaningful investigations such as characterization of physical demands and

effectiveness of safety measures in highly dynamic sports; (2) physical demands were

substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing

speed might be most effectively achieved by increasing the ski–snow friction force in GS

and SG. For DH an increase in the ski–snow friction force might be equally as effective

as an increase in air drag force.

Keywords: physical fitness, strength training, physical conditioning, external forces, air drag, ground reaction

force, global navigation satellite systems, GPS
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INTRODUCTION

The physical demands on athletes in sport are primarily driven by
the external forces acting in the interface between the athlete and
the athlete’s physical surroundings. In sport, the surroundings
typically include the field of play where interaction forces occur
between the athlete and the ground, sports apparatus (for
example, high bars in gymnastics), sports gear (such as rackets in
tennis) or fluids, such as air and water (water sports) (Knudson
and White, 1989; Kolmogorov and Duplishcheva, 1992; Gastin
et al., 2013). Hence, to quantify physical demands in sports,
we first need to quantify the external forces acting on athletes.
The validity of physical demand is therefore strongly related
to the validity of the quantification of force. Validity of force
measurement has two aspects; internal and external validity
(Atkinson and Nevill, 2001). To maximize external validity
the forces need to be captured in the natural sporting setting,
preferably during competition, using measurement devices that
provide minimal obstruction to athletes in the execution of their
sport. Internal validity is achieved if precision and repeatability
of force measurement is maximized. Alpine ski racing is an
example of a sport that challenges both types of validity to a
significant degree. The sport is executed in rough surroundings,
athletes move at high speed over large distances (Kraemer et al.,
2002; Kröll et al., 2016c), and safety and external validity aspects
limit the force measurement equipment that can be mounted
on athletes. Hence, the measurement of force is a difficult
but important challenge in alpine skiing research and practice.
Ground reaction forces are most commonly measured using
pressure insoles or force plates (Mote, 1987; Lüthi et al., 2004;
Federolf et al., 2008; Stricker et al., 2010; Nakazato et al., 2011;
Kröll et al., 2016b; Falda-Buscaiot et al., 2017). Air drag force
has been analyzed using wind tunnel testing (Luethi and Denoth,
1987; Savolainen, 1989; Thompson et al., 2001; Barelle et al., 2004;
Meyer et al., 2011). However, to gain a holistic understanding of
the external forces acting in skiing, these external forces need
to be determined simultaneously and under field conditions.
Since the measurement of ground reaction forces alone does
not describe the entire physical demand, air drag force needs
to be determined at the same time. Therefore, modeling has
been applied to kinematic data to simultaneously derive air
drag force and ground reaction forces in on-snow skiing for
SL and GS (Brodie et al., 2008; Reid, 2010; Meyer et al., 2011;
Supej et al., 2012; Gilgien et al., 2013). Such analysis has not
so far been conducted for SG and DH, since methodologic
limitations have not allowed for the measurement of skier
kinematics over large capture volumes; hence, such knowledge
is very limited in the speed disciplines (Gerritsen et al., 1996;
Schiestl et al., 2006; Gilgien, 2014; Gilgien et al., 2014a, 2015a,b,
2016; Heinrich et al., 2014; Schindelwig et al., 2014; Yamazaki
et al., 2015).

Recent advances in wearable measurement technology have
allowed the reconstruction of skier kinematics across large
capture volumes. These new methods combine differential global
navigation satellite system technology (dGNSS) (Lachapelle
et al., 2009; Andersson et al., 2010; Supej and Holmberg, 2011;
Gilgien et al., 2014b) with digital terrain models (DTM) (Supej

et al., 2012; Gilgien et al., 2013, 2015c; Nemec et al., 2014) or
with inertial measurement technology (Brodie et al., 2008; Supej,
2010; Zorko et al., 2015; Fasel et al., 2016). Applying kinetic
models to the captured kinematic data, both air drag force and
ground reaction force and its components can be calculated
simultaneously (Supej et al., 2012; Gilgien et al., 2013) without
obstructing the athletes and thus ensuring high external validity
(Atkinson andNevill, 2001; Thomas et al., 2005), since skiers only
wear a dGNSS unit on the body. This type of wearable technology
allows the determination of skier kinematics and kinetics in
skiing competitions across large capture volumes, such as entire
SG and DH races, over several kilometers. The application
of this new methodology is illustrated in computation of the
physical demands with respect to adequate conditioning
and an example taken from injury prevention for GS
SG and DH.

Physical Demands and Appropriate
Physical Preparation
To prepare athletes for a certain sport the athlete’s physical
training needs to meet the coordinative affinity of the sport in
competition (Muller et al., 2000). Specifically, the extent and
magnitude athletes engage in static and dynamic muscular work
and the nature of this muscular work need to correspond between
training and competition. To ensure coordinative affinity
between training and competition the prevalence, magnitude
and the time–force pattern of the external forces need to be
quantified and compared for the specific sport in training and
competition. The physiological responses to alpine skiing in
training and competition was assessed quite broad (Andersen
and Montgomery, 1988; Neumayr et al., 2003; Turnbull et al.,
2009; Ferguson, 2010). The scientific knowledge of the physical
demands in alpine ski racing is limited to the technical disciplines
slalom (SL) and giant slalom (GS) (Reid, 2010; Spörri et al.,
2012b; Kröll et al., 2014, 2016c; Supej et al., 2014). Hence, to allow
coaches and athletes to target their physical training specifically
to the speed disciplines, the prevalence, magnitude and time–
force patterns of the external forces need to be quantified for the
speed disciplines SG and DH.

External Forces and Injury Prevention
The ability to withstand external forces in alpine ski racing is
not only beneficial from a performance perspective (Raschner
et al., 2012); if external forces exceed those an athlete’s body can
withstand, they lead to injuries. Therefore, the external forces
acting in alpine skiing were not primarily examined with respect
to physical demands on the athletes, but as a cause of injury
(Mote, 1987; Bally et al., 1989; Quinn and Mote, 1992; Read and
Herzog, 1992; Herzog and Read, 1993; Gerritsen et al., 1996;
Yee and Mote, 1997; Hame et al., 2002; Raschner et al., 2012;
Spörri et al., 2015). To prevent injuries, a good understanding
is first needed of the contribution of external forces, and second
of the consequences of changes in external factors, such as
course setting and equipment, on external forces and injuries.
Investigations were therefore conducted into how external forces
are related to injury rates in the ski racing disciplines GS, super-
G (SG) and downhill (DH) (Gilgien et al., 2014a), and how
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changes in ski geometry (Zorko et al., 2015; Gilgien et al., 2016;
Kröll et al., 2016a,b; Spörri et al., 2016), course setting (Reid,
2010; Spörri et al., 2012c; Gilgien et al., 2014a, 2015a,b) and
terrain (Supej et al., 2014; Gilgien et al., 2015a,b; Falda-Buscaiot
et al., 2017) alter speed and external forces in these alpine
skiing disciplines. However, one possibility for reducing speed
and external forces, which was suggested by expert stakeholders
in the ski racing community (Spörri et al., 2012a), was not
investigated scientifically: increasing air drag by raising the air
drag coefficient through changes in the materials used in athletes’
clothing. An increase in air drag may increase the air drag force
and the share of mechanical energy that is dissipated to the
skier’s surroundings, which in turn has the potential to lead to
a reduction in skier speed (Bardal and Reid, 2014). Reduced skier
speed might reduce the risk of injuries, especially in the case of
high-impact accidents (Gilgien et al., 2014a, 2016). Therefore,
we need to understand to what extent the braking forces in
skiing, which are the air drag force and the ski–snow friction
force, contribute to energy dissipation to the surroundings and
subsequent speed reduction. Knowing the relative contributions
of air drag and ski–snow friction forces to energy dissipation
will allow us to understand whether an increase in air drag
force or in ski–snow friction force is more effective in
reducing speed and impact forces in accidents in each skiing
discipline.

In the current study a new, validated and wearable dGNSS
measurement-based method (Gilgien et al., 2013, 2015c) was
applied to capture the external forces acting on forerunners
skiing World Cup (WC) races in GS, SG and DH. The collected
data were applied to illustrate the potential of such technology
to enhance knowledge for scientists and practitioners on the
physical demands of alpine skiing and injury prevention. For the
first time, (i) the physical demands on the athletes in alpine skiing
were assessed for GS, SG, and DH; and (ii) the effectiveness of
energy dissipation and hence the ability to reduce skier speed was
assessed for both air drag and ski–snow friction forces for GS, SG,
and DH.

METHODS

Measurement Protocol
During the WC seasons 2010/11 and 2011/12, one male
forerunner was equipped with a wearable dGNSS in various
races. The forerunner was part of the official forerunner group
and started directly prior to the respective WC races. Seven
male WC giant slalom (GS) races—in total 14 runs—(Sölden
(twice), Beaver Creek, Adelboden (twice), Hinterstoder, Crans
Montana), 5 super-G (SG) races—in total 5 runs—[Kitzbühel,
Åre, Hinterstoder, Crans Montana (twice)] and 5 downhill (DH)
races—in total 16 runs including training runs—(Lake Louise,
Beaver Creek, Wengen, Kitzbühel, Åre) were included in the
analysis. In GS, each single competition run, and in DH, all
training and competition runs were measured and analyzed. The
forerunners were former male WC or current European Cup
racers (age: 25.1 ± 3.6 years, mass: 86.1 ± 10.0 kg). This study
was approved by the Ethics Committee of the Department of
Sport Science and Kinesiology at the University of Salzburg and

the athletes were informed of the investigation’s purpose and
procedures and signed written informed consent.

Data Collection Methodology
The forerunner’s head trajectory was captured using kinematic
dGNSS with the antenna (G5Ant-2AT1, Antcom, Canada)
mounted on the helmet, and a GPS/GLONASS dual frequency
(L1/L2) receiver (Alpha-G3T, Javad, USA) was carried in a
small cushioned backpack (Figure 1). The total weight of the
measurement equipment carried by the skier was 940 g (receiver
430 g, backpack 350 g, antenna 160 g). Differential kinematic
carrier phase position solutions of the skier’s trajectory were
computed at 50Hz using the data from two base stations
consisting of antennas (GrAnt-G3T, Javad, USA) and receivers
(Alpha-G3T, Javad, USA)mounted on tripods. The geodetic post-
processing software GrafNav (NovAtel Inc., Canada) was used to
compute differential kinematic carrier phase position solutions
(Gilgien et al., 2014b).

The entire course width of the snow surface geomorphology
was captured from start to finish using static dGNSS (Alpha-
G3T receivers with GrAnt-G3T antenna, Javad, USA) and a Leica
TPS 1230+ (Leica Geosystems AG, Switzerland). The number
of points captured to describe the snow surface was dependent
on the uniformity of the terrain. The less uniform the terrain,
the more points were captured per area (in average on the
entire course 0.3 points per m2). Based on the surveyed snow
surface points a DTM was computed by applying Delaunay
triangulation (de Berg et al., 2008) and smoothing using bi-cubic
spline functions (Gilgien, 2014; Gilgien et al., 2015a,b).

Parameter Computation
Computation of the External Forces
The antenna trajectory of the skier and the DTM were used
as input parameters in a mechanical model (Gilgien et al.,
2013) from which the ground reaction force (FSKI) and its
component in the tangential direction to the skiers’ trajectory
(FSKI-FRICTION) were computed. The model also derived the air
drag force (FAIR-DRAG). For a detailed description of the force
computations (see Gilgien et al., 2013). FAIR-DRAG was derived
using body extension derived from the GNSS antenna position,
a pendulum model attache to the antenna and the DTM, from
skier speed which was derived from position data and a air drag
cefficient model. The derivation of FSKI and FSKI-FRICTION was
based on 1) the reconstruction of the center of mass position
from the antenna position, the pendulum model attached to the
antenna, and the DTM, 2) from the center of mass position the
resultant force was calculated using time derivatives and mass
of the athlete 3) FSKI and FSKI-FRICTION were calculated as the
difference from the resultant force, FAIR-DRAG and gravity.

Characterization of the Physical Demands
For characterization of the physical demands, FSKI was
considered. The maximum FSKI (FSKIMAX) was calculated for
each turn as the average of the highest 10% of FSKI for GS and SG,
according to themethod of Gilgien et al. (2014a). To approximate
the fraction of time skiers were doing work in extended or
crouched positions, the time in which skiers were skiing in a
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FIGURE 1 | A forerunner equipped with a differential global navigation satellite

system antenna on the helmet and a receiver in the cushioned backpack that

was carried below a number bib during racing.

tucked position was approximated using the following criteria:
(1) the CoM turn radius was larger than 125m, and (2) the
shortest distance from the GNSS antenna (which was mounted

on the skier’s helmet) position to the local terrain surface was less
than the distance: 0.6 • body length+ 6 cm. The time skiers were
turning was defined as the periods when the CoM turn radius
was smaller than 125m. The time skiers were skiing straight but
in an upright body posture (non-turning and non-tucked) was
calculated as the difference between the sum of the time in tucked
position and the time skiers were turning, as a percentage. CoM
turn radius and distance to local DTM were computed according
to the methods of Gilgien et al. (2015a,b,c).

To characterize the timing of FSKI through a turn cycle in
GS and SG for each turn and averaged across all turns, the
time for the following sections (phases) were calculated: from
turn transition at the beginning of the turn (switch1) to gate
passage; from switch1 to the time of FSKIMAX; from gate passage
to turn transition at the end of the turn (switch2); and the overall
turn cycle time (from switch1 to switch2). Turn transition was
calculated as the deflection point of the CoM trajectory between
turns (Gilgien et al., 2015a,b). Run time is a rough estimation
of total workload, while impulse (the integration of air drag and
ground reaction force over the run time), is a measure of the total
workload. Impulse and run time were calculated according to the
methods of Gilgien et al. (2014a).

Contribution of External Forces to Energy
Dissipation
The instantaneous energy dissipation due to ski–snow friction,
EDISSSKI and energy dissipation due to air drag, EDISSAIR
were computed according to Equations (1) and (2). The
relative contributions of EDISSSKI and EDISSAIR to the
total instantaneous energy dissipation (sum of EDISSSKI and
EDISSAIR) were expressed as percentages of total instantaneous
energy dissipation.

EDISSSKI = ∫ FSKI−FRICTION(t)v(t)dt (1)

EDISSAIR = ∫ FAIR−DRAG(t)v(t)dt (2)

Statistical Analysis
Normality of instantaneous data from all races in each discipline
was tested using a Lilliefors test (α = 0.05). No parameter was
found to be normally distributed, so non-parametric statistics
were applied to compare all parameters between disciplines.
Median and inter-quartile range (IQR) were computed for all
parameters and disciplines. The relative sizes of parameters
for GS and SG compared to DH were computed from the
medians of each discipline and were expressed as percentages
of DH medians. In addition, mean and standard deviation
were calculated for the time skiers were in tucked position,
the time skiers were turning, the time spent skiing in non-
turning and non-tucked position, impulse, and run time for all
disciplines. The medians of the disciplines were tested using
an ANOVA, Kruskal–Wallis test (p = 0.01), followed by a
Friedman’s test (p= 0.01) if significant differences were found in
the ANOVA.

For GS and SG mean and standard deviations were also
computed for turn cycle time characteristics, number of direction
changes and FSKIMAX. For FSKI, turn cyclemeans were computed
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for each 10% increment of the time-normalized turn cycles for SG
and GS.

RESULTS

Overview of External Forces
The median, IQR and the percentage values for GS and SG
in relation to DH are given in Table 1. The medians were
significantly different (p= 0.01) between disciplines for all forces.
Figure 2 illustrates the differences in forces [expressed in body
weight ([BW)] between disciplines in histograms. The median
FSKI was 22% larger for GS and 15% larger for SG compared
to DH. The IQRs were largest for GS, followed by SG and DH.
In GS and SG skiers skied for about 40% of the time with FSKI
values larger than 1.5 BW, while in DH values above 1.5BW were
achieved for less than 20% of the time. FSKI-FRICTION median
was doubled for GS compared to DH and 52% larger for SG
compared to DH. The IQR was largest for GS, followed by SG
and DH. The median FAIR-DRAG was largest for DH, followed
by SG and GS, and was approximately twice as large for DH
as for GS. IQR was largest for DH, followed by SG and GS.
In DH, FAIR-DRAG was larger than 0.2 BW for ∼25% of the
time, while this magnitude occurred for less than 2% of the time
in GS.

Characterization of the Physical Demands
Themeasures for total load on athletes, run time and impulse had
showed the highest values for all measures in DH, followed by
SG and GS (Table 2). The percentage of total run time in which
athletes were turning was longest in GS, followed by SG and DH.
The total time athletes were in tucked position was longest in DH,
followed by SG and GS. The time when skiers were not turning
andwere in an upright position did not differ between disciplines.
For results see Table 2.

An SG run consisted of 41 turns, while GS consisted of
51 turns, which indicates that SG consists of a highly cyclic
turn pattern where skiers turn for 79.4% of the run time while
in GS they turn for 92.8% of the run time (Table 2). Force-
time characteristics are illustrated in Figure 3 and Tables 3, 4.
Figure 3 shows the FSKI and COM turn radius as a function
of mean turn time for GS and SG with the mean drawn in
solid lines and standard deviations in dashed lines for FSKI. To

TABLE 1 | Median and interquartile range (IQR) of the absolute values for all

disciplines and the relative values for Giant slalom and Super-G compared to

Downhill.

Absolute values median ± IQR % of DH*

GS SG DH GS SG

FSKI [BW] 1.46 ± 1.04 1.42 ± 0.86 1.21 ± 0.53 122 115

FSKI−FRICTION [BW] 0.20 ± 0.27 0.15 ± 0.19 0.10 ± 0.15 202 152

FAIR−DRAG [BW] 0.07 ± 0.05 0.09 ± 0.06 0.13 ± 0.12 57 71

*The value of DH is equal to 100%.

FSKI (ground reaction force), FAIR−DRAG (air drag force), FSKI−FRICTION (ski – snow friction).

allow quantitative reconstruction of the FSKI—turn cycle time
relationships in GS and SG these are provided as 10% turn
cycle time increments in Table 3. Turn timing characteristics,
along with the number of direction changes and FSKIMAX

characteristics, are provided in Table 4.

Contribution of External Forces to Energy
Dissipation
For the dissipative forces FAIR-DRAG and FSKI-FRICTION,median
energy dissipation to the surroundings was not significantly
different between GS and SG for EDISSSKI. All other skiing
discipline median values were significantly different between
disciplines for both energy dissipation types (Table 5). The
median EDISSSKI was 41% (GS) and 42% (SG) larger than for
DH. The median for EDISSAIR was found to be 41% (GS)
and 71% (SG) of the median for DH. DH had also the largest
IQR. The relative contributions of energy dissipation (median)
due to air drag and ski–snow friction were found to be 23%
(EDISSAIR) and 77% (EDISSSKI) in GS, 35% (EDISSAIR) and
65% (EDISSSKI) in SG and 51% (EDISSAIR) and 49% (EDISSSKI)
in DH.

Figure 4 illustrates the relative contribution of FAIR-DRAG
and FSKI-FRICTION to the total energy dissipation (EDISS) as a
percentage contribution of EDISSAIR to total energy dissipation
for GS, SG and DH. The horizontal axis shows the contribution
of EDISSAIR as a percentage of total energy dissipation, while
the vertical axis shows the frequency of occurrence of these
contribution patterns. The percentage contribution of EDISSSKI
to total energy dissipation was complementary to the percentage
contribution of EDISSAIR to total EDISS, since FSKI-FRICTION

and FAIR-DRAG are the only sources for EDISS. For more than
80% of the time EDISSSKI had a larger contribution to total EDISS
than EDISSAIR in GS, while in DH the contribution of EDISSSKI
was larger than the contribution of EDISSAIR to total EDISS for
less than 40% of the run time.

DISCUSSION

The study revealed that: (1) the method was effectively applied
to capture external force data from WC races; (2) the physical
demands in alpine ski racing were mainly characterized by
fluctuations in the ground reaction force, which followed a cyclic
pattern and was most pronounced for GS, followed by SG and
DH; and (3) injury prevention measures using an increase in
air drag would be about equally effective as measures that cause
an increase in ski–snow friction for DH, while for GS and SG
measures that cause an increase in ski–snow friction would be
most effective.

The Application of dGNSS Technology to
Capture External Force Data From WC
Races in Alpine Skiing
It has been shown that if high-end dGNSS devices are carefully
applied, antenna position accuracy to less than 5 cm can be
reached even in highly dynamic sports such as alpine skiing
(Gilgien et al., 2014b, 2015c). It has also been shown that the
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FIGURE 2 | Histograms of the force distributions within and between disciplines for ground reaction force (FSKI), air drag force (FAIR-DRAG), and ski–snow friction

force (FSKI-FRICTION). Giant slalom is plotted in black, Super-G in gray and Downhill in white.

TABLE 2 | Mean and standard deviation for run time, impulse per run; percentage of time skiers are turning per run; percentage of time skiers are not turning but are not

in tucked position per run; percentage of time skiers are in tucked position per run for all disciplines.

Run time [s] Impulse [kBWs] Time turning [%] Time non—turning and non—tucked [%] Time in tucked position [%]

Giant slalom Mean 77.4 124.3 92.80 5.40 1.80

SD 5.20 12.5 2.1 2.1 2.1

Super-G Mean 92.90 153.0 79.37 4.43 16.20

SD 9.70 13.3 6.5 6.5 6.5

Downhill Mean 121.4 173.4 54.84 8.36 36.80

SD 17.7 25.3 8.1 8.1 8.1

position accuracy of a dGNSS allows valid derivation of velocity
and of the external forces acting on skiers simultaneously (Gilgien
et al., 2013, 2015c). The present study showed that the high
validity of the wearable technology allowed detailed investigation
of aspects of physical fitness and injury prevention that are
relevant for practitioners of a sport where athletes move at high
speed through rough surroundings and over large distances. Also,

the method proved to be valid and practicable to be applied in a
large number of WC races.

Characterization of the Physical Demands
To get a rough idea of the physical demands of a sport or a
discipline the total physical load may serve as a good indication.
Run time provides limited information, since the intensity
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FIGURE 3 | Turn cycle characteristics for ground reaction force (FSKI) for Giant slalom in black and Super-G in gray as a function of mean turn cycle time.

Instantaneous mean in solid line, Standard deviations in thin line.

TABLE 3 | Mean and standard deviation for ground reaction force in BW for 10%-wise increments of the turn cycle for Giant slalom and Super-G.

% of turn cycle 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

GS Mean 0.79 0.86 1.21 1.62 1.86 2.00 2.01 1.86 1.60 1.15

SD 0.33 0.54 0.51 0.51 0.48 0.52 0.58 0.62 0.62 0.38

SG Mean 0.85 1.13 1.49 1.65 1.68 1.70 1.64 1.55 1.42 1.09

SD 0.39 0.51 0.53 0.46 0.49 0.56 0.56 0.64 0.60 0.42

TABLE 4 | Ground reaction force and turn cycle characteristics for Giant slalom and Super-G.

Time switch1 to

Gate [s]

Time gate to switch2 [s] Turn cycle time [s] Time point of FSKIMAX [s] FSKIMAX [BW] Number of

direction changes

GS Mean 0.87 0.60 1.47 0.86 3.16 51.2

SD 0.30 0.25 0.41 0.06 0.72 3.5

SG Mean 1.20 1.07 2.28 1.23 2.79 40.8

SD 0.44 0.51 0.73 0.15 0.57 4

TABLE 5 | Median and interquartile range (IQR) of the absolute values for all

disciplines and the relative values for Giant slalom and Super-G compared to

Downhill.

Absolute values Median ± IQR % of DH*

GS SG DH GS SG

EDISSSKI [BW·m] −0.07 ± 0.09 −0.07 ± 0.09 −0.05 ± 0.08 141 142

EDISSAIR [BW·m] −0.02 ± 0.02 −0.04 ± 0.03 −0.06 ± 0.07 41 71

*The value of DH is equal to 100%.

EDISSSKI (energy dissipation due to ski–snow friction), EDISSAIR (energy dissipation due

to air drag force).

of the work done is not measured. Measuring impulse—the
integration of the external forces FAIR-DRAG and FSKI over
the run time—might describe the total load better. Comparing

the three disciplines, impulse was highest in DH, followed by
SG and GS if only one run was considered in GS (Gilgien et al.,
2014a). In GS, athletes actually ski two runs, if they qualify for
the second run. Hence, the impulse for the first run, the 3 h
break between the two runs and the warm-up to the second run
define the demands for physical recovery between runs for that
discipline.

To understand the total physical load on athletes in more
detail, we need to compare the factors contributing to the
impulse. These are run time, FAIR-DRAG and FSKI. Run time was
longest in DH followed by SG and GS, while the sum of median
FAIR-DRAG and FSKI was highest for GS (1.53 BW), followed by
SG (1.51 BW) and DH (1.34 BW). Hence, despite the higher
external forces in GS and SG compared to DH, run time seems
to have a major impact and lead to higher impulses and total
physical loads per run for the speed disciplines compared to GS.
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FIGURE 4 | Histogram illustrating the percentage contribution of air drag to total energy dissipation for Giant slalom, Super-G and Downhill. Giant slalom is plotted in

black, Super-G in gray and Downhill in white. The horizontal axis shows the contribution of energy dissipation due to air drag as a percentage of total energy

dissipation, while the vertical axis shows how often these contributions were present (frequency).

Comparing the type of work between the disciplines there
is an obvious difference between GS and SG compared to
DH. Inspecting the histogram for FSKI in Figure 2, FSKI is
overrepresented in the small and high force ranges for GS and
SG compared to DH. This might be a consequence of more
pronounced repeated loading-unloading patterns and higher
peak forces in GS and SG compared to DH. DH consists of longer
sections of straight skiing, while SG and GS consist of more or
less continuous turning. In GS, skiers turned for 92.8% of the run
time, in SG for 79.4% of the run time, and in DH skiers turned
for only 54.8% of the run time (Table 2). These differences in the
amount of direction alteration in skier trajectory are reflected in
the higher median FSKI for GS and SG compared to DH, and
also indicate substantial differences in the type of physical work
athletes conduct in the different disciplines. GS consists of 51
direction changes (Table 4), meaning that GS involves 51 body
extension-contraction cycles, while SG consists of 41 direction
changes and extension-contraction cycles. Therefore, GS and SG
consist of more or less continuous turning and dynamicmuscular
work, while in DH skiers ski straight for about 45% of the run
time and spend 36.8% of the run time in a tucked position
(Table 2). The amount of skiing in the tucked position might
be a consequence of both the extent of sections in which skiers
can ski straight, and also the higher speed compared to the other
disciplines, which increases the significance of air drag force as a
dissipative force (Table 5 and Figure 4). Therefore, skiers try to
reduce the time skiing in upright body posture, since this is likely
to increase the drag area exposed to wind and increase air drag
(Barelle et al., 2004; Supej et al., 2012). Hence, in DH skiers try
to reduce speed loss through energy dissipation by air drag force.
Because of the lower number of direction changes, skiers spend
more of the total run time in the tucked position undertaking

work of a more static nature with less pronounced and less
frequent unloading phases, over a longer period compared to
GS for instance. An earlier comparative study on SG, GS and SL
revealed that a more static nature of movement in SG results in
deeper knee angle and is accompanied with significantly higher
EMG activity (Berg and Eiken, 1999) compared to GS and SL.
While the EMG activity during SG depicted for the quadriceps
muscle values of 120%muscular voluntary contraction in GS and
SL only values in the order of 70% MVC were observed. Hence,
tucked body position is associated with more static muscular
work and increased muscular activity.

Comparing GS and SG, which consist of more or less
consecutive turning (Gilgien et al., 2014a, 2015a,b), with 51 turns,
or 51 loading-unloading cycles in GS compared to 41 in SG, the
duration of an average turn cycle in SG (2.28 s) is about 55%
longer than in GS (1.47 s). However, mean FSKI and FSKIMAX are
lower in SG compared to GS. Therefore, in SG athletes need to
withstand a lower FSKI but over a longer period of time. Figure 3
shows that the mean FSKI is larger than 1.5 BW for 1.18 s (from
0.50 to 1. 68 s after switch1) in SG, while in GS mean FSKI is
larger than 1.5 BW for 0.81s (from 0.47 to 1. 31 s after switch1).
In short, in SG athletes need to withstand a force larger than 1.5
BW for 0.37 s longer than in GS. In both disciplines, FSKIMAX

occurs at gate passage and the time from turn initiation (switch1)
to gate and time to the occurrence of FSKIMAX is longer than from
gate to turn completion (switch2). This means that building up
the maximal force occurs over a longer period of time than turn
completion for both disciplines. The time to build up FSKIMAX is
substantially shorter in GS compared to SG. Therefore, athletes
face a substantially more pronounced loading–unloading pattern
than in SG, with a higher FSKI but a shorter time to the next
unloading phase. The loading–unloading pattern is even more

Frontiers in Physiology | www.frontiersin.org 8 March 2018 | Volume 9 | Article 145137

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gilgien et al. Forces in Alpine Ski Racing

pronounced in slalom, where the loading–unloading time is
shortest and highest FSKI compared to the other disciplines
(Reid, 2010; Kröll et al., 2016a). These substantial differences
in FSKI characteristics between probably need different physical
preparation to maximize performance and minimize injury risk.
The FSKI and turn cycle timing information might be useful
for coaches and athletes in adapting dryland training to the
discipline-specific FSKI–time pattern, since dryland training that
simulates the physical demands of competitive skiing might lead
to an adequate physiological adaptation (Kraemer et al., 2002;
Kröll et al., 2016c). In order to imitate the physical demands
of alpine skiing in dryland training, skiing simulators (Nourrit
et al., 2003; Deschamps et al., 2004; Hong and Newell, 2006;
Teulier et al., 2006; Panizzolo et al., 2013; Moon et al., 2015;
Lee et al., 2016) and skiing carpets (Fasel et al., 2017) are used
to a certain extent. The data provided in this study might help
to adapt these devices to the physical demands of competitive
on-snow skiing with respect to the discipline-specific force–time
pattern.

Contribution of External Forces to Energy
Dissipation
The analysis of the dissipative forces contributing to total EDISS
(Figure 4) confirmed the finding from another study (Supej et al.,
2012) that EDISS in GS is mainly determined by FSKI-FRICTION.
In SG, FSKI−FRICTION was still clearly the major contributor to
EDISS, while the contributions of FSKI-FRICTION and FAIR-DRAG
were approximately balanced in DH. Hence, for slalom (Reid,
2010), GS and SG, a certain percentage increase of FSKI-FRICTION

would have a larger effect on performance than a corresponding
increase of FAIR-DRAG, while in DH the effect of an increase in the
dissipative forces, FSKI-FRICTION and FAIR−DRAG by an increase
in air drag coefficient through clothing would be about equal.
Comparing DHwith speed skiing, the contribution of FAIR-DRAG
to total EDISS seems clearly smaller in DH than in the discipline
speed skiing, where skiers do not turn, but ski straight along the
fall line to reach maximal speed, FAIR-DRAG contributes up to
80% of total EDISS when maximal speed is reached (Thompson
et al., 2001). Hence, for the alpine ski racing disciplines, an
increase in FAIR−DRAG might only be an option for DH.

LIMITATIONS

One potential drawback of the applied method is that ground
reaction forces cannot be determined for single legs, but only
for the sum of both legs. In addition, high frequency force
components cannot be determined with the method used in
this study. However, the method was chosen since it allows
the measurement of all external forces and their components at
the same time, allowing unique insight in their relationship as
shown in this study. The applied method does not measure, but
rather models the external forces based on kinematic data and
was validated against the gold standard for GS (Gilgien et al.,
2013, 2015c). Therefore, comparison of the findings from this
study with previous findings reported in the literature, where
forces were obtained with other methods, are of interest with
respect to validity. An experimental GS study using a video-based

photogrammetric method to compute skier kinematics, from
which forces were derived in steep terrain (26◦), found mean
turn FSKI s values of between 1.52 and 1.56 BW (Spörri et al.,
2016). The maximal FSKI values found in that study ranged
from 2.01 to 2.11 BW (Spörri et al., 2016), while a comparable
study in 23◦ inclined terrain found a range of 2.32–2.44 BW
for the maximal FSKI using pressure insoles to measure FSKI
(Kröll et al., 2016a). Comparing these FSKI values with the FSKI
values obtained in the current study for GS, we conclude that the
FSKI values are comparable to those found for competitive skiing
in previous studies and obtained with different methods. This
finding increases confidence in the kinetic method applied in this
study for SG and DH, where no FSKI data are available in the
literature with which to compare our results for SG and DH. The
applied method does not allow to analyze the distribution of FSKI
between legs. This might be interesting for the speed disciplines,
since previous studies found that the distribution changes from
SL to GS (Kröll et al., 2016c).

CONCLUSION

This study (1) illustrated that the validity of high-end
dGNSS systems allows meaningful investigations such as
characterization of physical demands and safety measures in
highly dynamic sports; and (2) showed that the physical demands
were substantially different between GS, SG and DH (specifically,
the ground reaction force fluctuations followed a cyclic pattern,
which was most pronounced for GS, followed by SG and
DH, while median and peak ground reaction forces were
highest for GS, followed by SG and DH); and (3) revealed
that safety-related reduction of skiing speed might be most
effectively achieved by increasing the ski–snow friction force
in GS and SG. For DH an increase in the ski–snow friction
force might be equally as effective as an increase in air drag
force.
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Alpine skiing, both recreational and competitive, is associated with high rates of injury.

Numerous studies have shown that occupational exposure to whole-body vibrations is

strongly related to lower back pain and some suggest that, in particular, vibrations of

lower frequencies could lead to overuse injuries of the back in connection with alpine

ski racing. However, it is not yet known which forms of skiing involve stronger vibrations

and whether these exceed safety thresholds set by existing standards and directives.

Therefore, this study was designed to examine whole-body vibrations connected with

different types of skiing and the associated potential risk of developing low back pain.

Eight highly skilled ski instructors, all former competitive ski racers and equipped with

five accelerometers and a Global Satellite Navigation System to measure vibrations and

speed, respectively, performed six different forms of skiing: straight running, plowing,

snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate

exposure to periodic, random and transient vibrations the power spectrum density

(PSD) and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square

acceleration (RMS), crest factor, maximum transient vibration value and the fourth-power

vibration dose value (VDV)] were calculated. Ground reaction forces were estimated from

data provided by accelerometers attached to the pelvis. The major novel findings were

that all of the forms of skiing tested produced whole-body vibrations, with highest PSD

values of 1.5–8Hz. Intensified PSD between 8.5 and 35Hz was observed only when

skidding was involved. The RMS values for 10min of short swinging or carved turns, as

well as all 10-min equivalent VDV values exceeded the limits set by European Directive

2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection

with high ground reaction forces, contribute to a high risk for low back pain among active

alpine skiers.

Keywords: biomechanics, injury prevention, kinematics, kinetics, recreational skiing, shock, ski racing

INTRODUCTION

Although physical activity is beneficial to human health, for example by reducing
the risk of chronic disease, among the most common injuries in modern Western
societies are those related to sports (Parkkari et al., 2001). For instance, alpine skiing
is associated with high rates of injury for both recreational and competitive athletes
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(Hunter, 1999; McBeth et al., 2009; Hebert-Losier and Holmberg,
2013; Soligard et al., 2015; Stenroos and Handolin, 2015; Weber
et al., 2015; Haaland et al., 2016; Müller et al., 2016; Supej
et al., 2016). In addition, problems caused by overuse are also
recurrent in alpine skiing, with low back pain (LBP) being the
most common (Hildebrandt and Raschner, 2013; Spörri et al.,
2015; Supej et al., 2016).

It has been proposed that such overuse injuries to the lower
back might be reduced by controlling and/or reducing frontal
and lateral bending, as well as torsion of the trunk and peak
load while skiing (Spörri et al., 2015, 2016). Moreover, these
studies found no differences in low-back kinematics when skis
with different side-cut radii were utilized. Most of the underlying
deteriorations of the spine develop early in the career of the
alpine skier (Rachbauer et al., 2001), when on-snow training
is not usually performed on courses resembling those used
in competitions. Nevertheless, little is presently known about
the nature and frequency of overuse injuries in alpine skiing,
including when and why they occur (Supej et al., 2016).

On the other hand, exposure to whole-body vibrations (WBV)
in connection with various occupations is strongly related to
low back pain (Hulshof and van Zanten, 1987; Bovenzi and
Hulshof, 1999; Lings and Leboeuf-Yde, 2000; Burström et al.,
2015), which is one reason for the establishment of international
health and safety standards by ISO 2631:1997 (ISO, 1997) and the
European Directive 2002/44/EC (EU, European Parliament and
the Council of the EuropeanUnion, 2002) in this context (Griffin,
2004).

Commonly, the dynamic response of the body of an individual
seated or standing still to vibrations is expressed in terms of
mechanical impedance or apparent mass (i.e., the ratio between
motion and force at the driving point) and transmissibilities (i.e.,
the ratio between two motions at distant points) (Matsumoto
and Griffin, 1998). Recent studies have demonstrated that when
standing still while barefoot or wearing regular shoes without any
additional load, the dynamic response to vibrations (apparent
mass) depends on posture (Subashi et al., 2006, 2008; Tarabini
et al., 2013). More specifically, acceleration of higher frequencies
at the driving point were found to be significantly more
attenuated within the body with the knees bent than when erect.
Nevertheless, higher spinal loads were caused by low and higher
frequency WBV in both of these postures (Rohlmann et al.,
2014).

During slalom and giant slalom ski racing, the most powerful
vibrations had a frequency of less than 30Hz, with the root mean
square vibrational values being higher in the case of giant slalom
(Spörri et al., 2017). In addition, that investigation suggested that
vibrations of lower frequencies, i.e., between 4 and 10Hz, might
be particularly prone to cause injuries of the back in connection
with alpine ski racing.

Furthermore, one beginner and one skilled skier skiing under
uncontrolled conditions were found to be exposed to WBV that
exceeded the 2-h equivalent values set by the European Directive
2002/44/EC (Tarabini et al., 2015), but no generalization could be
made due to the small sample size. Therefore, it remains to be
determined which forms of skiing (e.g., skidding, carved turns)
are more likely to produce vibrations and whether these exceed

the thresholds set by the ISO standard and European Directive.
The current investigationwas designed to answer these questions.

METHODS

Measurements and Collection of Data
Eight highly skilled ski instructors, all former competitive
racers, performed six different types of skiing on 165-cm
slalom/carving skis (SLX, Elan d.d., Begunje, Slovenia) with a
14.5-m side-cut radius. These skis complied with International
Ski Association (FIS) regulations for slalom. These six types of
skiing corresponded to the core stages of progression typically
followed by ski instructors:

1. Straight running: From a stationary start, skiing straight
downhill for∼40m in a basic stance.

2. Plowing: After achieving straight running speed, slowing
down by plowing until coming to a complete stop.

3. Snow-plow swinging: Making consecutive turns in the snow-
plow position.

4. Basic swinging: Making turns slowly with the skis parallel.
5. Short swinging: Making “slalom-like” turns rapidly with the

skis parallel.
6. Carved turns: Making long, wide (carving) turns with the skis

parallel and without skidding to the side.

It should be noted that snow-plowing, as well as basic and short
swinging by definition involve skidding, where the ends of the
skis glide out to the side; while with carving turns the tip and end
of the ski follow the same trajectory. The ski course for testing was
well prepared and groomed, the snow natural and well packed,
and the air temperature between −3 and −7◦C with partially
sunny weather that provided good visibility.

An integrated electronic piezoelectric accelerometer
(sensitivity: 100mV/g, range: 50 g, mass: 4.3 g) (3097A2, Dytran
Instruments Inc., Chatsworth, CA, USA) was firmly attached
to each ski boot to record accelerations of the superior-inferior
axis. In addition, three variable capacitance accelerometers
(sensitivity: 80mV/g, range: 50 g, mass: 12 g) (7300A5, Dytran
Instruments Inc., Chatsworth, CA, USA) attached to a belt
tightened around and taped to the body measured accelerations
of the sacrum in three dimensions aligned with the orientation
of the trunk. A 10-Hz Global Navigation Satellite System (GNSS)
(ST 1612G, Locosys Technology Inc., Taipei, Taiwan) with
external antennae tracking both United States (GPS) and Russian
(GLONASS) satellites (1240, Locosys Technology Inc., Taipei,
Taiwan) was positioned at the level of the upper thoracic spine
(T2–T4) to track the skier’s speed. These accelerometers and
the GNSS were wired to a 24-bit, 200-kHz data acquisition
system (DEWE-43 & DEWESoft X2, DEWESoft d.o.o., Trbovlje,
Slovenia).

The data on accelerations, sampled at 5 kHz, were used to
calculate power spectrum densities (PSD) and ground reaction
forces, while the positioning data allowed monitoring of speed.
The accuracy and tolerance of the entire set-up for determining
WBV adhered to the requirements of the ISO 8041:2005 (ISO,
2005). The study design was pre-approved by the Regional
Ethics Committee of the University of Ljubljana and informed
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written consent obtained from all the volunteers prior to
testing.

Computation of the Parameters
To determine the frequencies of WBV, the single-sided non-
parametric Fast-Fourier-Transform was first used to calculate
power spectrum densities (PSD) from the ski boot accelerations
for each skier and each type of skiing. The average PSD curves
for both legs of each skier were created and then the data
for all participants while performing the same type of skiing
were combined to calculate the average power spectrum. For
more effective illustration, the PSD graphs presented display
a logarithmic scale and have been smoothed with an equally-
weighted, zero-lag moving average filter with a length of five.

Further evaluation of WBV was based on the approach
described in ISO 2631-1:1997 and in accordance with the
European Directive 2002/44/EC. The raw data transmitted
from the principal surface supporting the accelerometers on
the ski boots were first bandpass-filtered from 0.5 to 80Hz.
Subsequently, frequency weighting of these accelerations in
combination with the multiplier for a vertical z-axis for a
standing position were applied, as required by the ISO 2631-
1:1997 standard, to calculate the following exposures to periodic,
random or transient vibrations:

1. the weighted root-mean-square acceleration (RMS):

RMS =

[

1
T

∫ T
0 a2w (t) dt

]
1
2
, where T was the duration of

measurement and aw acceleration weighted as a function of
time t

2. the crest factor (CF), defined as the modulus of the ratio
of the maximum instantaneous peak value of the frequency-
weighted acceleration to its RMS value,

3. the maximum transient vibration value (MTVV), i.e., the
running RMS, given as the maximum in time of RMS(t0):

RMS (t0) = [ 1
τ

∫ t0
t0−τ

a2w (t) dt]
1
2 , where τ was the integration

time (according to the ISO recommendation that τ = 1 s) and
t0 the time-point of observation

4. the fourth-power vibration dose value (VDV):

VDV =

[

∫ T
0 a4w (t) dt

]
1
4
.

From each type of skiing involving turning and each skier, the
first and last turn were excluded from the analysis, resulting
in ∼15-s periods of data collection. In accordance with the
standards, vibrations from both ski boots were considered. As
required by the standard, the VDV values were expressed as 8-
h and 10-min exposures for direct comparison to the action and
limit values formulated in the European Directive 2002/44/EC
(Griffin, 2004), while the RMS values were compared to the action
and limit exposure values set by this same directive.

The three variable capacitance accelerometers positioned at
the pelvis allowed estimation of ground reaction forces (GRF) as
multiples of body weight (BW). These calculations involved the
assumptions that the pelvis was the center of mass and air drag
negligible. The GRF values were smoothed with a zero-lag third-
order digital Butterworth filter employing a cut-off frequency of
7Hz. Thereafter, the peak GRF values for turns were calculated

and utilized for further evaluation. From the GNSS data mean
skiing speeds were calculated. All calculations were performed
with the DEWESoft X2 andMatlab 7.7 software (Mathworks Inc.,
Natick, MA, USA).

Statistical Analyses
The means and standard deviations for all parameters are
presented. The Shapiro-Wilk test was used to explore the
normality of distributions and, when necessary, the Box-Cox
power transformation was performed to achieve normality. One-
way ANOVA with repeated measures was used to test for
differences between parameters. Mouchly’s W-test was used to
indicate whether the assumption of sphericity had been violated
and, if so, this was corrected for with the epsilon value, utilizing
either the Huynh-Feldt or Greenhouse-Geisser procedure. For
post-hoc analysis, paired sample t-tests were applied to test for
differences between parameters. The false discovery rate for
a family of hypotheses was controlled for by the Benjamini–
Hochberg–Yekutieli procedure (Benjamini and Yekutieli, 2001).
The level of statistical significance was set at p < 0.05 and all
statistical analyses carried out with the Matlab software.

RESULTS

Whole-Body Vibrations
Representative raw time-courses for acceleration at the ski
boots of one subject while skiing with sub-techniques that
involved turning are presented in Figure 1 and the overall
average PSD values for frequencies up to 80Hz for the six types
of skiing examined in Figure 2. Straight running and carved
turns demonstrated similar patterns (Figure 2A), with highest
densities between ∼3 and ∼8Hz and continuous attenuation
at increasing frequencies. At the same time, plowing, snow-
plow swinging, basic swinging and short swinging exhibited two
regions of intensified PSD (Figure 2B), the first between ∼1.5
and ∼8Hz and the second between ∼8.5 and ∼35Hz, above
which the PSD values declined. These attenuations of the PSD
curves continued for all six types of skiing until ∼70Hz, above
which the values remained steady until 200Hz, followed by
another attenuation (∼200–500Hz), finally remaining more or
less constant until 2.5 kHz, where the power densities were 2–3
orders of magnitude lower than the maximal values.

Evaluation of the exposure to periodic, random and transient
WBV associated with all six forms of skiing are also shown in
Table 1. In the case of MTVV, one subject had considerably
higher values (outliers) for snow-plow swinging and short
swinging and had to be eliminated from evaluation of these
particular forms of skiing, in order to achieve normality and
sphericity of the data. Overall, the highest levels of exposure were
observed in connection with short swinging followed by carved
turns and the lowest with snow-plow swinging and straight
running. The RMS and VDV values for plow were also high, but
not the MTVV.

The ISO 2631:1997 states that if CF>9, then not only RMS,
but also VDV and MTVV should be taken into consideration.
The mean crest factors for straight running and snow plowing
exceeded the ISO safety margin, while the maximal CF values for
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FIGURE 1 | Representative time-courses of acceleration measured at the left and right ski boot of one skier while performing forms of skiing that involved turning.

all six types of skiing except plowing also exceeded this margin
(Table 2).

Speed and Ground Reaction Forces
Themean values and standard deviations for speed and peakGRF
are documented in Figures 3, 4, respectively. In these cases, the
Shapiro-Wilkinson test confirmed that all data were distributed
normally and the condition of sphericity was also satisfied (in the
case of speed data after appropriate correction). Application of
paired t-tests revealed that the peak GRFs for straight downhill
and plowing did not differ significantly (p= 0.11), as was also the
case for plowing vs. snow-plow swinging (p = 0.27) and basic
swinging vs. carved turns (p = 0.37). Comparison of all other
possible pairs demonstrated significant differences (p < 0.0001).
Overall, the mean GRFs were lowest for straight running (1.23

BW) and plowing (1.18 BW) and highest for short swinging (1.89
BW) and carved turns (1.93 BW).

With respect to speed, plowing and carved turns were
associated with means that differed significantly from all the
other types of skiing, while the mean values for straight downhill,
basic and short swinging did not differ from each other. The
lowest mean speed was observed in connection with snow-plow
swinging (4.8 m/s) and the highest with carved turns (13.3 m/s).

DISCUSSION

The major novel findings of the present investigation were as
follows: (i) all types of skiing examined produced whole-body
vibrations (WBV), with the highest power spectrum densities
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(PSD) ranging from ∼1.5–8Hz; (ii) intensified PSD between
8.5 and 35Hz was observed only with the types of skiing that
involved skidding; (iii) the RMS values for 10min of short
swinging and carved turns and all 10-min equivalent VDV values
exceeded the limit values formulated by the European Directive
2002/44/EC for health and safety; and, finally, (iv) measurement
of theWBV, particularly in connection with high ground reaction
forces, revealed an important high-risk factor for low back pain
in active alpine skiers.

Whole-Body Vibrations Associated With
Different Forms of Alpine Skiing
Our present findings demonstrate that all forms of alpine skiing
produce vibrations. The WBV in the PSD spectrum below
8Hz was associated with absence of both turning and skidding
(straight running), presence of skidding (snow-plow swinging
and short swinging), as well as carved turns. At the same time,
higher frequency vibrations (8–35Hz) were intensified only with
skiing techniques that by definition involved side-skidding, in
line with a previous pilot study (Supej, 2013). Furthermore, the

FIGURE 2 | The power spectrum densities for whole-body vibrations

associated with carved turns and straight running (A), as well as short

swinging, basic swinging, plowing and snow-plow swinging (B).
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TABLE 2 | Crest factors for all six forms of skiing.

Crest factor Straight running Plowing Snow-plow swinging Basic swinging Short swinging Carved turns

Mean 9.60 6.80 9.58 7.52 8.52 7.60

SD 1.67 1.12 1.97 1.13 1.37 1.23

Minimum 6.05 5.36 7.75 6.29 7.02 5.46

Maximum 11.04 8.49 13.70 9.86 10.86 9.05

SD, standard deviation.

regions of intensified and attenuated power spectrum densities
associated with skidding here were similar to those reported for
slalom and giant slalom ski racing (Spörri et al., 2017). This
indicates that even competition skiing involves skidding, despite
the fact that elite athletes strive for carving turns.

Interestingly, neither the peak PSD values for the low-
frequency vibrations associated with all skiing forms nor with the
“skidding vibration” were centered around the first two typical
eigen-frequency values reported previously for skis, i.e., f 1 =

∼10–13Hz and f 2 =∼40–50Hz (Piziali and Mote, 1972; Fischer
et al., 2007). This discrepancy has two interesting implications:
first, the frequencies measured here are not caused by the ski’s
own chattering, but rather bymovements (e.g., turning, skidding)
during skiing. Secondly, in order to optimize performance and
kinaesthetic feeling, manufacturers appear to have developed skis
with properties that avoid resonances in the two most dominant
frequency ranges of the PSD.

Comparison of the Whole-Body Vibrations
Associated With Alpine Skiing to
Recommendations for Health and Safety
In comparison to the 8-h limit values set by the European
Directive 2002/44/EC for health and safety, the RMS and 8-h
equivalent VDV values here were 2–11- and 49–220-fold higher,
respectively (Table 1). However, a typical descent from a ski
lift or racing run lasts ∼1min and most skiers perform 10 or
more runs daily, making such comparisons to 8-h exposures
somewhat problematic. On the other hand, even comparison to
10-min equivalents (Griffin, 2004) revealed that short swinging
and carved turns exceeded the limit values, while basic swinging
was close to this limit and plowing exceeded the action value
(Table 1). For example, 10min of short swinging was found to
result in exposure to vibration equivalent to ∼18min of carved
turns or 216min of snow-plow swinging. The 10-min equivalent
VDV values here were∼7–32-fold higher than the corresponding
limits.

These observations reveal that WBV constitute an important
risk factor for LBP in alpine skiers (Seidel and Griffin, 2001;
Burström et al., 2015), particularly since substantial acceleration
of the spine typically occurs between 4 and 10Hz, during alpine
skiing as well (Kiiski et al., 2008; Spörri et al., 2017). Interestingly,
the average 10-min equivalent VDV values for plowing and
basic swinging obtained here corresponded closely to the 2-
h equivalent VDV values (scaled to 10-min equivalent values
for comparison) reported previously for those two skiers under
uncontrolled conditions (Tarabini et al., 2015).

Although the vibrations with all skiing forms examined
here exceeded the WBV threshold limits for safety, there were
substantial differences between these forms in this respect.
Importantly, carved turns involved significantly less WBV than
short swinging and only slightly more than basic swinging, the
first and simplest form of “parallel skiing.” Even though our
measurements were performed during “free skiing” by former
competitive ski racers, this observation should probably be taken
into account when regulations concerning equipment, slope
preparation and course setup are formulated with the aim of
making competitive skiing safer.

Due to random bumps on uneven terrain, transient vibrations
(occasional shocks or short-term vibrations) are also to be
expected during alpine skiing. Indeed, these occurred in all forms
of skiing investigated here, particularly during short swinging
(Figure 1). However, the mean crest factor values here (Table 2)
were not as high as expected. Surprisingly, only in the cases
of straight running and snow-plow swinging did these values
exceed the margin (CF > 9 according to ISO 2631-1:1997) above
which evaluation of VDV andMTVV to verify exposure to WBV
is obligatory. This reflected the fact that for all other types of
skiing, the RMS values were so high that the ratio of the maximal
instantaneous peak value of the frequency weighted acceleration
signal to the corresponding RMS value (i.e., CF) remained below
the threshold. Note that the latter situation, in combination
with the high VDV and MTVV values observed, demonstrate
clearly that our skiers were actually exposed to both short- and
longer-term vibrations.

Ground Reaction Force and Speed
Peak resultant forces on the spine are on the average 24%
higher in the presence than absence of vibrations (Rohlmann
et al., 2014). Therefore, the high GRF values observed both
here and earlier in connection with competitive skiing (Supej
et al., 2004, 2015; Supej and Holmberg, 2010; Vaverka and
Vodickova, 2010; Spörri et al., 2015, 2016), in combination with
intensive WBV (Burström et al., 2015), support the conclusion
that vibrations are at least partially responsible for the high
incidence of low back pain in alpine skiers. In addition,
alpine skiing typically involves relatively extensive flexion of
the hip joint, during which muscle forces, while maintaining
trunk equilibrium, increase compression and shear forces on
the spine substantially (Seidel and Griffin, 2001; Wang et al.,
2010).

On the other hand, flexion, particularly at the knee joint, exerts
an important influence on apparent mass behavior in response
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FIGURE 3 | Peak ground reaction forces (GRF) for the six different types of

skiing. In each box, the central line indicates the mean and the bottom and top

edges the standard deviation. The whiskers extend to the maximal and

minimal data points. Note that for more effective presentation, the p-values for

pairs that did not differ significantly are the only ones shown.

FIGURE 4 | Speeds with the six different types of skiing. In each box, the

central line indicates the mean and the bottom and top edges the standard

deviation. The whiskers extend to the maximal and minimal data points. Note

that for more effective presentation, the p-values for pairs that did not differ

significantly are the only ones shown.

to WBV (Subashi et al., 2006, 2008; Tarabini et al., 2013). More
specifically, the resonance frequency is reduced significantly as
the knees become more bent. The static conditions employed
in previous studies, with no additional load and standing
either barefoot or in everyday shoes, differ considerably from
those encountered during alpine skiing, thus, future studies
should be designed to elucidate the effect of apparent mass in
this context.

From our current findings, speed itself does not appear
to have contributed directly to the WBV, since the highest
exposure was observed even at quite low speeds during short
swinging and, on the other hand, the highest speeds during
carved turns were associated with substantially lower WBVs
than short swinging. This is somewhat contradictory to the
previous findings on one beginner and one skilled skier (Tarabini
et al., 2015). More systematic investigations in the future will
help to further elucidate the connection between WBV and
speed.

Methodological Considerations
It was challenging to position the accelerometers here for
measurement ofWBVduring alpine skiing. Nevertheless, the ISO
2631-1:1997 specifies that the transducers should be positioned
so as to indicate the vibration at the interface between the human
and source of vibration, or more specifically, measurements on
the feet should be made at the surface where the feet are most
supported. From this perspective, positioning on the ski boots,
although not immediately obvious, was fully in line with this
standard.

It is not yet known whether the ISO 2631-1:1997 and
European Directive 2002/44/EC recommendations for health
and safety are also appropriate for sports. However, these
threshold values were set for occupations involving standing-
up, while not necessarily stationary or fully extended, as well
as when bearing heavy loads. This is undeniably similar to the
situation during alpine skiing and exposure of active alpine
skiers, including competitors, to WBV (e.g., days per year) is
comparable to that associated with certain occupations covered
by the standard and the directive.

Estimation of the ground reaction forces using accelerometers
here involve the assumption that the pelvis was the center
of mass and may therefore be somewhat biased. The basic
concepts of Newtonian mechanics dictate that the reliability
of our estimation of the GRF on the basis of a single-
point acceleration depends on the extent to which this
acceleration matches the “model acceleration” of the center
of mass. Since the largest contribution to the GRF during
the alpine skiing turns can be attributed to the radial
forces and body flexion-extension, for the purpose of this
study this estimation of overall load was considered to be
sufficient.

Finally, since our measurements were performed on a
moderate incline under nearly ideal conditions of snow and
weather, generalization is not straightforward. However, it can be
speculated that, for example, icy conditions and/or more difficult
slopes would result in more vigorous WBV.
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FUTURE PERSPECTIVES

The ISO 2631-1:1997 and underlying directives such as European
Directive 2002/44/EC currently provide the only verified limits
for health and safety concerning WBV. Accordingly, to fully
comprehend the impact of WBV on the incidence of LBP in
alpine skiers, additional systematic and/or epidemiological
studies are required. Furthermore, various slopes, snow
conditions, ski racing disciplines, ages of the skiers/athletes, etc.
needed to be investigated in a standardized manner to enable
more focused preventive measures. In particular, monitoring the
training load of the athletes at highest intensity, as suggested
earlier (Spörri et al., 2017), with miniaturized equipment would
be beneficial, but the equipment must, of course, comply with
the ISO 8041:2005 requirements.

CONCLUSIONS

Here, we show that with all types of alpine skiing examined
WBV exceeded health and safety limits, with the more advanced
forms such as short swinging or carved turns exceeding these
limits by as much as ∼30-fold. Thus, alpine skiing, where active
participants can train 100–150 days each year with demanding
snow conditions and slopes and high loads, appears to be
associated with high long-term risks to health. One appropriate
preventive measure would be to reduce the number of skiing
days and/or at least the number of runs and skiing days
involving conditions where WBV are strongest (e.g., with side-
skidding). This is particularly important for younger skiers, since

many deteriorations of the spine develop early in adolescence
(Rachbauer et al., 2001). At the same time, alpine skiing
has several positive effects on health (Müller et al., 2011a,b).
Therefore, for most recreational skiers, with relatively few
skiing days each year, the preventive measures would be to
ski on natural (not icy) snow and slopes where employing
skiing techniques associated with weaker WBV are possible
and safe.
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The objectives of the present study were to examine the validity and reliability of the 10Hz

Johan GPS unit in assessing in-line movement and change of direction. The validity was

tested against the criterion measure of 200m track-and-field (track-and-field athletes,

n= 8) and 20m shuttle run endurance test (female soccer players, n= 20). Intra-unit and

inter-unit reliability was tested by intra-class correlation coefficient (ICC) and coefficient

of variation (CV), respectively. An analysis of variance examined differences between the

GPS measurement and five laps of 200m at 15 km/h, and t-test examined differences

between the GPS measurement and 20m shuttle run endurance test. The difference

between the GPS measurement and 200m distance ranged from −0.13 ± 3.94m (95%

CI −3.42; 3.17) in the first lap to 2.13 ± 2.64m (95% CI −0.08; 4.33) in the fifth lap. A

good intra-unit reliability was observed in 200m (ICC = 0.833, 95% CI 0.535; 0.962).

Inter-unit CV ranged from 1.31% (fifth lap) to 2.20% (third lap). The difference between

the GPS measurement and 20m shuttle run endurance test ranged from 0.33 ± 4.16m

(95% CI−10.01; 10.68) in 11.5 km/h to 9.00± 5.30m (95% CI 6.44; 11.56) in 8.0 km/h.

A moderate intra-unit reliability was shown in the second and third stage of the 20m

shuttle run endurance test (ICC = 0.718, 95% CI 0.222;0.898) and good reliability in the

fifth, sixth, seventh and eighth (ICC= 0.831, 95%CI−0.229;0.996). Inter-unit CV ranged

from 2.08% (11.5 km/h) to 3.92% (8.5 km/h). Based on these findings, it was concluded

that the 10Hz Johan system offers an affordable valid and reliable tool for coaches and

fitness trainers to monitor training and performance.

Keywords: GPS, team sport, tracking, direction, change

INTRODUCTION

A global positioning system (GPS) is a satellite-based navigational technology that has been
used extensively in outdoor team sports to track the players’ activity (Cummins et al.,
2013). Small portable GPS units have been progressively used to quantify players’ locomotion
and to characterize the external load (work performed) of training sessions and matches
(Portas et al., 2010; Bourdon et al., 2017). Based on the information of GPS technology, it
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is possible to measure basic components of players’
patterns of movement, speed, distance covered and
accelerations/decelerations in combination with inertial
measurement unit, thus characterizing the physical impact of
the session and evaluating the training programs (Cummins
et al., 2013; Malone et al., 2017). Such metrics can be used in
real-time or post data processing to control the training impact
and to adjust the stimulus to find the “sweet-spot” of progressive
training load and avoid injury risk situations (Gabbett, 2016).

Despite of the practical applications of this technology, some
issues have been discussed (Malone et al., 2017): (i) reliability
and validity of the device; (ii) data collection and processing; (iii)
satellite connection and horizontal dilution of precision; and (iv)
data exclusion criteria. GPS trackers are often commercialized

FIGURE 1 | Estimated distance by GPS of 200m. Error bars represent

standard error of measure. The dashed line represents 200m distance.

TABLE 1 | GPS recorded distance for each participant in the five laps of 200m.

Participants Lap

1 2 3 4 5

1 202 203 208 201 207

2 196 198 202 194 199

3 201 204 202 203 201

4 193 194 197 200 200

5 201 198 204 197 200

6 198 201 195 200 203

7 203 202 199 206 203

8 205 203 206 205 204

Mean

difference (%)

−0.06 0.19 0.81 0.38 1.06

SD 0.70 0.60 0.78 0.71 0.47

90% CI −1.38;1.26 −0.96;1.33 −0.67;2.30 −0.96;1.71 0.18;1.95

CV (%) 1.97 1.71 2.20 1.99 1.31

CV, coefficient of variation.

and used before essential independent information about the
precision and accuracy of the data is known (Russell et al., 2016).
Both validation and accuracy are important contributors to
ensure the quality of the information, thus essential independent
studies allow confirmation of the usability of the data (Vickery
et al., 2014). GPS devices are currently manufactured with 5-
and 10-Hz sampling rates, suggesting that higher frequency
rates provide greater validity for measuring distance (Cummins
et al., 2013). Usually, GPS trackers are validated by using a tape
measure to measure the distance between the timing gates at
the start and finish to compare speed (Waldron et al., 2011).
Comparisons with other tracking technologies such as a semi-
automatic system or local position measurement have been also
conducted (Buchheit et al., 2014; Beato et al., 2016). Frequency
rates of 5-Hz seem to be enough to guarantee an acceptable
level of accuracy and reliability for total distance (∼10% of
variance) (Coutts and Duffield, 2010), although not satisfactory
to measure high-speed running (Rampinini et al., 2015) or rapid
directional change (Rawstorn et al., 2014). Based on that, 10-
Hz units or higher combined with an inertial measurement unit
(>100-Hz) have now been recommended to ensure the necessary
level of accuracy and precision (Aughey, 2011; Rampinini et al.,
2015).

Validation of GPS devices is usually done by completing a
standard circuit, running at a linear sprint or with changes of
direction, and uses specific tasks that simulate the game (Beato
et al., 2016). In most cases, the validation studies only focus on
one specific analysis (total distance or high-speed running), one
kind of task (circuit, linear sprint or change of direction) and
one type of comparison (tape measure, timing gates or other
tracking methods) (Coutts and Duffield, 2010; Portas et al., 2010;
Buchheit et al., 2014; Vickery et al., 2014). However, there is
limited research that uses an integrative approach with multiple
analyses, kinds of tasks and types of comparisons to test the
validity and reliability of GPS units. Based on that, the purpose
of this article was to determine the validity and reliability of the
10-Hz JOHAN sports tracker during straight line running and
multi-direction movement patterns by comparing with a tape
measure.

METHODS

The present cross-sectional study included two parts; in the first
part, participants (female, n= 6, and male, n= 2, track-and-field
athletes; age 13.1 ± 1.1 years, weight 49.9 ± 5.8 kg, height
163 ± 8 cm) performed five 200-m runs across a 200-m
track-and-field stadium, whereas in the second part, participants
(female soccer players, n = 20, age 15.5 ± 2.7 years,
weight 60.9 ± 9.5 kg, height 162 ± 4 cm) performed the 20-
m shuttle run endurance test. All participants’ parents or
guardians provided consent after having been informed about
the content of the study. The study design was approved
by the local institutional review board (Ethics Committee,
Exercise Physiology Laboratory, Nikaia, Greece). In the first
study, participants were eight young track-and-field athletes who
performed five laps of 200m high-intensity running (∼48 s per
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FIGURE 2 | Bland-Altman plots in five laps of 200m. The solid line represents the bias. The dashed lines represent 95% limits of agreement.

lap, 15 km/h) with a 1min break wearing the Johan GPS (JOHAN
Sports, Noordwijk, Netherlands) consisting of a GPS sensor
(10Hz, including EGNOS correction), accelerometer, gyroscope
and magnetometer (100Hz, 3 axis, ±16 g). In the second study,
participants were 20 female soccer players, members of a club
participating in the first national league. All participants received
the motion trackers before the warm-up to become familiarized
with them. The motion trackers were worn in a body tight vest
between the scapulae.

In the first study, participants were instructed to start the 200-
m runs from a standstill and to slow their speed immediately at
the finish. They ran in a single group consisting of four pairs
and were asked to be close to each other continuously. The
200m runs were captured separately and were repeated for each
participant. The start of the 200m run was chosen when the
speed started to increase exponentially, whereas the end of 200m
run was highlighted after the speed started to decrease. In the
20m shuttle run test, participants were instructed to run between
two lines 20m apart at a pace dictated by audio signal. The
test started at 8.0 km/h with the speed increasing by 0.5 km/h
every minute. It finished when the participants either stopped
due to fatigue or failed to follow the pace on two consecutive
occasions (Vanhelst et al., 2017). The number of shuttles (20m)
varies as the test progresses, e.g., seven shuttles (i.e., 140m) are
performed at 8.0 km/h and eight shuttles at 8.5 km/h. There were
light clouds during the two testing days and there were no high
buildings in the surroundings. Motion data from the trackers
were uploaded post-experimentally to the JOHAN Sports online
analysis platform. For both studies the JOHAN Software was
used to capture the 200-m runs and shuttle runs motion data.
This capturing was executed using 1 s data resolution (aggregated
from 10Hz motion data). The capturing was executed by one
person who had three years of experience working with JOHAN
Software. In the second study, participants ran multiple sets
of shuttles with different speeds in the context of the 20m
shuttle run test. The capturing of the 200m runs and 20m

shuttles were carried out for each player, separately. The start
of one set of shuttles was chosen when the speed started to
increase exponentially, whereas the end of one set of shuttles was
highlighted by the dip in the speed (before the next set of shuttles
started). Finally, all the capturing was exported from JOHAN to
Excel for statistical analyses.

Statistical Analyses
All statistical analyses were performed using SPSS and Graphpad.
The validity was tested against the gold standard of real distance
(200 and 20m with change of direction in the first and second
study, respectively). An athletic track was also previously used
as the criterion measure in the validation of a GPS system
(Petersen et al., 2009). A repeated measures analysis of variance
(ANOVA) examined differences betweenGPSmeasurements and
five laps of 200m at 15 km/h. The magnitude of these differences
was examined using eta squared (η2) and evaluated as: small
(0.010 < η2 ≤ 0.059), moderate (0.059 < η2 ≤ 0.138) and large
(η2 > 0.138) (Cohen, 1988). The paired samples t-test examined
differences between GPS measurements and 20m shuttle run
endurance test. The magnitude of the differences in the t-test was
determined using the following criteria of Cohen’s d: d ≤ 0.2,
trivial; 0.2 < d ≤ 0.6, small; 0.6 < d ≤ 1.2, moderate; 1.2 < d ≤

2.0, large; and d> 2.0, very large (Batterham andHopkins, 2006).
Validity was assessed using the standard error of the estimate
(SEE), which was calculated as the SD (±90% CI) of the %
difference between the known distance and the GPS recorded
distance for each trial (Jennings et al., 2010). The percentage
difference between the known distance and the GPS recorded
distance was also calculated to indicate bias (Petersen et al., 2009).
The percentage difference between the GPS recorded and the
known distance was calculated as 100∗(GPS recorded distance-
known distance)/known distance. In addition, the GPS recorded
distance and the known distance were compared using Bland-
Altman plot, where the difference was calculated as recorded
minus known distance and the average as (recorded-known
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distance)/2. Intra-class correlation coefficient (ICC) tested intra-
unit reliability among exercises of the same distance, i.e. in study
1, among the five laps, and in study 2, between stages of 160m
(8.5 and 9.0 km/h) and among stages of 200m (10, 10.5, 11.0,
and 11.5 km/h). ICC was interpreted as poor (<0.5), moderate
(0.5–0.75), good 0.75 and 0.90, and excellent (>0.90). Inter-
unit reliability was tested using coefficient of variation (CV)
considering the performance of the samemovements by different
participants (Duffield et al., 2010). Statistical significance for all
calculations was set at alpha= 0.05.

RESULTS

Study 1
No statistically significant difference was observed among the
five 200m GPS recorded distance trials and the known 200m
distance (p = 0.436, η

2 = 0.119). The difference between GPS

measure and 200m distance was−0.13± 3.94m (95% CI−3.42;
3.17) in the first, 0.38 ± 3.42m (95% CI −2.48; 3.23) in the
second, 1.63 ± 4.44m (95% CI−2.09; 5.34) in the third, 0.75 ±

3.99m (95% CI −2.59; 4.09) in the fourth and 2.13 ± 2.64m
(95%CI−0.08; 4.33) in the fifth lap (Figure 1,Table 1). Themean
difference between the GPS recorded distance and the reference
distance was less than ∼1%. The Bland-Altman plot for each lap
is shown in Figure 2. A good intra-unit reliability was observed at
200m (ICC = 0.833, 95% CI 0.535; 0.962). Inter-unit CV ranged
from 1.31% (fifth lap) to 2.20% (third lap) (Table 1).

Study 2
A statistically significant difference was observed between the
GPS recorded distance and the known distance at 8.0 km/h
(p < 0.001, d = 1.85), 8.5 km/h (p= 0.002, d = 1.13) and 9 km/h
(p = 0.006, d = 1.09), but not at 9.5 km/h (p = 0.167, d = 0.53),
10.0 km/h (p= 0.274, d= 0.59), 10.5 km/h (p= 0.821, d= 0.15),

TABLE 2 | GPS recorded distance for each participant in the 20-m endurance shuttle run test.

Speed (km/h)

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

Distance (m)*

140 160 160 180 200 200 200 200 220

PARTICIPANTS

1 146 160 164 186 204 210 205 205 199

2 146 156 161 175 187 196 190 199

3 154 167 165 186 208 198 201 197

4 157 175 168 188 205 198

5 143 156 162 179 202 201

6 147 164 163 181 207

7 150 168 167 187 202

8 151 173 161 182 208

9 149 164 158 184

10 158 174 164 183

11 146 184 180 188

12 153 165 171 183

13 149 166 168 182

14 148 170 165 182

15 135 167 165 166

16 150 169 165

17 152 165 151

18 153 166

19 144 166

20 133 148

Mean difference (%) 5.37 4.04 2.67 1.08 1.31 0.24 −0.78 0.14

SD 4.18 5.27 3.52 3.24 3.53 2.69 4.01 2.06

90% CI 3.75;6.98 2.00;6.08 1.18;4.16 −0.40;2.55 −1.05;3.68 −2.32;2.80 −7.53;5.98 −3.33;3.61

CV (%) 3.56 3.92 3.63 3.11 3.38 2.77 3.91 2.08

*Distance covered in each speed varies due to the different number of shuttles performed. CV, inter-unit coefficient of variation.
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11.0 km/h (p = 0.794, d = −0.24) and 11.5 km/h (p = 0.902,
d= 0.11). The difference between GPS measure and 20m shuttle
run endurance test was 9.00 ± 5.30m (95% CI 6.44; 11.56) at
8.0 km/h, 7.11 ± 6.55m (95% CI 3.95; 10.26) at 8.5 km/h, 4.59
± 5.98m (95% CI 1.51; 7.66) at 9.0 km/h, 2.13 ± 5.67m (95% CI
−1.01; 5.27) at 9.5 km/h, 1.20 ± 8.23m (95% CI −9.02; 11.42)
at 10.0 km/h, 0.60 ± 5.55m (95% CI −6.29; 7.49) at 10.5 km/h,
−1.33 ± 7.77m (95% CI −20.63; 17.96) at 11.0 km/h and 0.33 ±
4.16m (95% CI−10.01; 10.68) at 11.5 km/h (Table 2). The mean
difference between the GPS recorded distance and the reference
distance was less than ∼5%. The Bland-Altman plot for each lap
is shown in Figure 3. A moderate intra-unit reliability was shown
in the second and third stage of the 20m shuttle run endurance
test (ICC = 0.718, 95% CI 0.222;0.898) and good reliability
in the fifth, sixth, seventh, and eighth (ICC = 0.831, 95% CI
−0.229;0.996). Inter-unit CV ranged from 2.08% (11.5 km/h) to
3.92% (8.5 km/h) (Table 2).

DISCUSSION

The main findings of the present study were that Johan GPS
system (i) accurately measured the distance in the 200m and in
the relatively fast stages of the 20m shuttle run test; (ii) had inter-
unit CV lower than 3.92% at short distances and 2.20% at longer
distances; and (iii) had moderate-to-good intra-unit reliability in
short and long distances, and the reliability was larger at relatively
faster speeds. These results suggest that 10-Hz JOHAN sports

GPS is valid and reliable for linear movements typically observed
in team sports such as soccer. However, these properties differed
between running long and short distances.

We examined the validity of the Johan GPS system against
the gold standard of real distance (Muñoz-Lopez et al., 2017).
Overall, the GPS shows accurate values since no difference was
observed between measured and real distance in 200m and in
the relatively fast speeds of the 20m shuttle run test. On the other
side, the GPS overestimated the distance in the low speeds of
the test, which should be attributed to the participants’ behavior.
Particularly, the participants might perform excess movements
in the change of direction during the first slow stages of the test,
whereas, as the test proceeded, they becamemore careful in order
to avoid unnecessary movements that would result in additional
fatigue. The ability of successful change of direction is related
to speed, reactive strength, power and balance (Sheppard and
Young, 2006) and characterizes athletes of team sports such as
soccer (St Clair Gibson et al., 1998). Although the soccer players
participating in the present study were experienced and were
accustomed to the 20m shuttle run test from previous testing
sessions, the excess movements in the first levels of the test might
partially explain the smaller accuracy of the GPS in this part of
the test.

With regards to the reliability of the GPS, a previous review
on acceptable error in GPS suggested CV values <5% can be
classified as good, 5.1–10% moderate and greater than 10%
poor results (Scott et al., 2016). In study 1, the inter-unit CV
ranged from 1.31% (fifth lap) to 2.20% (third lap) and in

FIGURE 3 | Bland-Altman plots in the 20m shuttle run test. The solid line represents the bias. The dashed lines represent 95% limits of agreement.
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study 2, inter-unit CV ranged from 2.08% (11.5 km/h) to 3.92%
(8.5 km/h), thus suggesting that the 10-Hz GPS (Johan Sports)
ensures good results and can be classified as reliable to measure
both long and short distances. The lower inter-unit reliability in
the shorter distance might be due to the effect of acceleration
and the change of direction. Previous research has shown that
the validity of 10Hz GPS is inversely related to acceleration
(Akenhead et al., 2014). Moreover, it has been observed that fast
change of direction reduces the accuracy of GPS (Rawstorn et al.,
2014). For instance, a comparison of linear and non-linear 200m
courses showed larger error in the latter (Gray et al., 2010).

Ten Hz GPSs are more valid than GPS units with smaller
sampling frequency such as 1Hz (Coutts and Duffield, 2010) or
5Hz (Duffield et al., 2010). A comparison between 1 and 5Hz
showed that a higher frequency rate improved validity (Jennings
et al., 2010). A 10Hz unit has been proved three times more valid
and six times more reliable than 5Hz unit (Varley et al., 2012).
However, a comparative study of 10 and 15Hz showed higher
validity in the former than in the latter (Johnston et al., 2014).
An explanation of the improved validity of GPS with increased
sampling frequency might be that the larger sampling frequency
results in the theoretically more precise identification of motion.
For instance, a 10Hz unit can analyze a motion with precision
0.1 s, whereas a 5Hz unit can analyze with 0.2 s precision.

A limitation of this study was that it focused on linear
movements of moderate intensity; thus, the findings should
be generalized with caution to other modes of movements
(such as multi-directional) and different speeds. One strength
of this study is that it included 20m with change of direction
as well as linear running, and both are relevant for soccer.
Considering the wide use of GPS units to monitor training
and performance in team sports (Aughey and Falloon, 2010;
Castellano and Casamichana, 2010;Wisbey et al., 2010; Clemente

et al., 2017), the results of the present study will help coaches
and trainers optimize their work. The results are of great
practical value for professionals (e.g., coaches, fitness trainers,
exercise physiologists, analysts) working with team sport players,
especially soccer, as they demonstrate that a 10-Hz GPS system is
a valid and reliable tool to monitor training. The error found by
the GPS unit can be used by soccer professionals for detecting
changes in performance (Waldron et al., 2011). Furthermore,
this particular model offers an inexpensive solution compared
to other commercially available models. Future studies should
examine the validity and reliability of this GPS unit in larger
samples of athletes performing more sport-specific movements.

CONCLUSION

Based on the findings of the present study, we conclude that
the 10-Hz Johan GPS system is a valid and reliable tool that
professionals working with team sport players and endurance
runners can use to monitor training involving linear in-line
movement and change of direction. Moreover, those using this
equipment should be aware of the differences in its accuracy

between monitoring long-distances and short distances with
change of direction.
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Analysis of running mechanics has traditionally been limited to a gait laboratory using

either force plates or an instrumented treadmill in combination with a full-body optical

motion capture system. With the introduction of inertial motion capture systems,

it becomes possible to measure kinematics in any environment. However, kinetic

information could not be provided with such technology. Furthermore, numerous

body-worn sensors are required for a full-body motion analysis. The aim of this study is to

examine the validity of a method to estimate sagittal knee joint angles and vertical ground

reaction forces during running using an ambulatory minimal body-worn sensor setup.

Two concatenated artificial neural networks were trained (using data from eight healthy

subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural

network maps the information (orientation and acceleration) of three inertial sensors

(placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint

angles in combination with measured vertical accelerations are input to a second artificial

neural network that estimates vertical ground reaction forces. To validate our approach,

estimated joint angles were compared to both inertial and optical references, while kinetic

output was compared to measured vertical ground reaction forces from an instrumented

treadmill. Performance was evaluated using two scenarios: training and evaluating on a

single subject and training on multiple subjects and evaluating on a different subject.

The estimated kinematics and kinetics of most subjects show excellent agreement

(ρ > 0.99) with the reference, for single subject training. Knee flexion/extension angles

are estimated with a mean RMSE<5◦. Ground reaction forces are estimated with a mean

RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and

maximal knee flexion during stance were compared, however, no significant differences

were found. With multiple subject training the accuracy of estimating discrete and

continuous outcomes decreases, however, good agreement (ρ > 0.9) is still achieved

for seven of the eight different evaluated subjects. The performance of multiple subject

learning depends on the diversity in the training dataset, as differences in accuracy were

found for the different evaluated subjects.

Keywords: machine learning, artificial neural networks, reduced sensor set, inertial motion capture, running,

kinetics
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1. INTRODUCTION

Running is a very popular form of physical activity, that is often
accompanied with a high occurrence of lower extremity injuries
(incidence rate varies between 19.4 and 79.3%; van Gent et al.,
2007). It is assumed that there is a correlation between the
development of these injuries and a runner’s technique (Goss
et al., 2012). Additionally, improvements in running technique
could lead to improved running performance (Kyröläinen et al.,
2001; Tartaruga et al., 2012; Folland et al., 2017). Identifying the
parameters in running technique that might be associated with
injury development and/or running performance improvement
requires a biomechanical analysis. This has traditionally been
performed inside a gait laboratory using a three-dimensional
optical motion capture system and force plates (Novacheck,
1998). The most relevant kinematic and kinetic parameters
analyzed are: joint angles (Devita and Skelly, 1992; Edwards
et al., 2012) and ground reaction forces (Cavanagh and Lafortune,
1980), as these are important determinants of running technique
(Goss et al., 2012). Discrete kinetic parameters that are related
to running injuries and/or performance are: loading rate and
peak vertical ground reaction forces (Crowell and Davis, 2011;
Goss et al., 2012; Schmitz et al., 2014), whereas maximal knee
flexion during stance is a relevant discrete kinematic parameter
(Edwards et al., 2012). However, a lab setting is not identical
to the regular running environment and may therefore result in
different kinematics and kinetics (Sinclair et al., 2013). Previous
studies have confirmed this, showing significant differences
between running on a treadmill and outdoors (Nigg et al.,
1995). Furthermore, dissimilarities in running kinematics can
also occur as a result of force plate targeting in overground
lab running (Challis, 2001). Therefore, a system capable of
measuring relevant parameters outside of a laboratory may
address these shortcomings.

Kinematic analysis can be performed in an ambulatory setting
using inertial measurement units (IMUs) (see for instance,
Roetenberg et al., 2013). Reenalda et al. (2016) have used
IMUs to measure the effects of fatigue on running mechanics
during an actual marathon. However, this approach requires
one sensor to be attached on each main body segment along
a continuous “kinematic chain,” and therefore results in a
large number of sensors and extensive subject preparation.
Data driven approaches were shown to have potential for
reducing the number of sensors in motion capture. Tautges
et al. (2011) proposed a method for full-body motion capture
by using a limited number of accelerometers; however, their
nearest neighbor approach requires a database of prerecorded
movements to be available at run-time. Wouda et al. (2016)
showed comparable performance with a reduced sensor setup
using an artificial neural network (ANN), trained to map five
orientations to a full-body pose. ANNs have the advantage to
create a “model” for mapping certain inputs to outputs based
on the dataset used for training (Alpaydin, 2009). Running
applications using a minimal inertial sensor set have mainly
focused on temporal outcomes, such as the use of gyroscopes
on the feet to estimate temporal running parameters (McGrath
et al., 2012). Bailey and Harle (2014, 2015) showed that with

foot-mounted IMUs this can be extended to estimate spatio-
temporal running parameters.

Ground reaction forces are also relevant outcome parameters
for running analysis (e.g., Cavanagh and Lafortune, 1980;
Novacheck, 1998; Riley et al., 2008; Caekenberghe et al., 2013;
Clark et al., 2014), since abnormal peak and/or loading rate
values can lead to impact and overuse injuries, when the
stress/frequency combination is above the runner’s threshold
(Hreljac, 2004; Milner et al., 2007). However, none of
the aforementioned approaches provided users with kinetic
information. Efforts to move kinetic analyses out of the
laboratory setting have proven to be effective for trunk
bending (Faber et al., 2016), gait (Karatsidis et al., 2017),
dance (Shippen and May, 2012), and running (Pavei et al.,
2017). However, aforementioned approaches require full-body
kinematic information. The peak vertical ground reaction forces
(vGRF) estimation approach of Charry et al. (2013) relied only
on tibial accelerations, but was not suitable for estimation of
kinetics during the whole stance phase. An approach relying
only on trunk accelerations was not sufficient for vGRF
estimation using amass-spring-dampermodel (Nedergaard et al.,
2017).

To the best of our knowledge, there is no system that can
provide runners with insights in both their kinematics and
kinetics in an outdoor setting. The aim of this study is to assess
the validity of a method to estimate knee joint angles and vertical
ground reaction forces during running using an ambulatory
minimal body-worn sensor setup. An ANN is trained to estimate
joint angles based on lower leg orientations relative to the pelvis,
similar to the approach presented in previous work (Wouda
et al., 2016). Corresponding performance is evaluated using both
inertial and optical full-body motion capture data. The estimated
joint angles in combination with sensor accelerations can be fed
into a second ANN which estimates (vertical) ground reaction
forces. The proposed method was evaluated using continuous
outcomes (vGRF and knee angle profiles) and discrete outcomes
(peak vGRF, loading rate, and maximal knee flexion during
stance). The findings of this study could have potential for future
applications in prevention of running injuries and improvement
of running performance.

2. MATERIALS AND METHODS

2.1. Measurement Protocol
Eight healthy experienced runners (8 males; age: 25.1± 5.2 years;
height: 183.7 ± 4.5 cm; weight: 77.7 ± 9.4 kg; body mass index:
23.0 ± 2.5 kg/m2) voluntarily participated in this research. The
runners were recruited from a local track and field club and all
reported no recent injuries. Subjects were instructed to run at 3
different speeds (10, 12, and 14 km/h, in this order) for 3 min
each on an instrumented treadmill, located at the gait laboratory
of the Roessingh Research and Development (Enschede, the
Netherlands). A warm-up session at a self-selected running
speed (of approximately 3 min) was performed by all subjects
preceding the measurements. The ethics committee of the
Faculty of Electrical Engineering, Mathematics and Computer
Science at the University of Twente approved this protocol
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and all subjects provided written informed consent prior to the
measurements.

2.2. Measurement Setup
Reference kinematics were recorded with an optical motion
capture system using the Plug-in Gait protocol1 (Nexus 1.8.5,
Vicon, Oxford, UK), with 41 retroreflective markers placed
directly on the runners’ skin, as shown in Figure 1. The
position of these markers was captured (at 100 Hz) by six
high-speed infrared cameras (MX-13, Vicon, Oxford, UK)
placed around the treadmill. Any object that could block the
camera view or produce undesired reflections was removed from
the measurement environment. Additionally, kinematics were
synchronously captured using the Xsens MVN Link inertial
motion capture system (Xsens, Enschede, the Netherlands),
consisting of 17 IMUs placed at both shoulders, upper arms,
lower arms, hands, upper legs, lower legs, feet, head, sternum,
and pelvis (Roetenberg et al., 2013). The required full-body
Lycra suit (for IMU placement) was modified with holes to
reduce motion artifacts of the retroreflective markers, which
are placed directly on the subject’s skin. Full-body kinematics
were exported using the accompanying software (MVN studio
4.3.7, Xsens, Enschede, Netherlands) at a selected sampling
frequency of 240 Hz. Subjects ran on a S-Mill instrumented
treadmill (ForceLink, Culemborg, the Netherlands), with a
running area of 250 × 100 cm, which can be seen in Figure 1.
The treadmill was equipped with a 1-dimensional force plate, able
to measure reference vGRF at 1,000 Hz. Data of the different
systems were synchronized using an analog synchronization
signal.

2.3. Data Processing
The different trials were cropped to contain only kinematic
and kinetic data of running at a steady speed, i.e., starting and
stopping of the treadmill was disregarded. Optical kinematic

1https://www.vicon.com/downloads/documentation/plug-in-gait-product-guide

data was processed using Plug-in Gait (Kadaba et al., 1990;
Davis et al., 1991). The optical and inertial motion data did not
require coordinate systems alignment as the outcome measures
were expressed in the joint frame, according to ISB conventions
(Wu et al., 2002). The vGRFs were low-pass filtered at 20
Hz using a zero-phase 6th order Butterworth filter, to remove
noise artifacts such as vibrations of the treadmill (Sloot et al.,
2015), while neither the optical nor inertial motion capture
data were filtered. Beside the temporal alignment (achieved with
an analog synchronization signal), the data were resampled at
120 Hz using linear interpolation (for the optical data) and
downsampling (for the inertial and vGRF data), such that all
synchronized data can be used in the proposed machine learning
approach. This data resampling does not significantly influence
the measured kinematics and kinetics, as was also concluded by
Pavei et al. (2017). For analysis, the kinematic and kinetic data
were segmented in stance phases using a 20 N threshold (Milner
and Paquette, 2015). All data processing and statistical analyses
was done in MATLAB R2017a (Mathworks, Inc., Natick, MA,
USA).

2.4. Learning Approach
The proposed learning approach relies on data from three body-
worn sensors (placed at the pelvis and lower legs), which are fed
to a concatenation of two ANNs, as schematically represented
in Figure 2. The first artificial neural network (ANN1) maps
relative (to the pelvis) orientations (in quaternions) of the lower
legs to joints angles, whereas the second artificial neural network
(ANN2) maps the estimated joint angles in combination with
vertical sensor accelerations (in the global frame) to vertical
ground reaction forces. This architecture was chosen to allow
for independent training of the two ANNs. Additionally, the
proposed architecture separates the learning problems allowing
for "selective" re-training of the ANNs (for instance, additional
running environments can be included in the dataset of ANN1

without measuring GRFs simultaneously).

FIGURE 1 | The measurement setup, (A) shows a front and back view of the sensor and retroreflective marker placement (B) shows the measurement setup (only 2

cameras are visible in this angle). Subjects wore a Lycra suit to hold the IMUs in place, which was customized with holes to accommodate the placement of

retroreflective markers on the subject’s skin. In this manner it was possible to measure kinematics simultaneously using both an inertial and optical motion capture

system. The retroreflective markers were placed according to the Plug-in Gait protocol. To ensure retroreflective marker placement during the whole measurements,

tapes were placed around these markers. Note that written informed consent was provided for use of these images.
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FIGURE 2 | The IMU in the top left represents the sensors strapped to the lower legs and pelvis. Information from these sensors is used by two concatenated Artificial

Neural Networks (ANNs) to estimate kinematics and kinetics. ANN1 maps the relative orientations of the lower legs (with respect to the pelvis) to lower body joint

angles (hip, knee and ankle). ANN2 is trained to map the estimated kinematics in combination with the vertical (after transformation to the global frame) sensor

accelerations to the reference ground reaction forces.

TABLE 1 | The training and testing schemes for both the kinematic and kinetic

estimations are represented.

ANN1

Scheme Training input Training output Reference

1 3 IMU orientations IMU lower-body joint

angles

IMU lower-body joint

angles

2 3 IMU orientations Plug-In Gait lower-body

joint angles

Plug-In Gait lower-body

joint angles

ANN2

1 IMU lower-body

joint angles

vGRF (FP) vGRF (FP)

2 Plug-In Gait

lower-body joint

angles

vGRF (FP) vGRF (FP)

Where input to ANN1 is in all cases the measured relative orientations from the three

on-body IMUs (placed at the pelvis and both lower legs), and the output can be from

the inertial (IMU) or optical (Plug-In Gait) measurements. This is then input to the kinetic

estimation part (ANN2), for which the output is all cases the measured vertical Ground

Reaction Forces (vGRF) using the forceplates (FP).

Estimated kinematic outputs were being compared to
measured reference kinematics, which were obtained from
both inertial or optical motion capture systems. To that end,
two training schemes were evaluated, as shown in Table 1, to
test the proposed method irrespective of the motion capture
technology.

Previous studies have achieved varying performance in GRF
estimation (Shippen and May, 2012; Charry et al., 2013; Faber
et al., 2016; Karatsidis et al., 2017; Nedergaard et al., 2017;
Pavei et al., 2017). Therefore, several ANNs were trained using
combinations of different input features (joint angles, pelvis,
and lower leg vertical accelerations) to select the best set of
input features. The selection of these input features is based
on their physical relation to the ground reaction forces, where

joint angles define the continuous kinematic chain (Faber et al.,
2016; Karatsidis et al., 2017) and accelerations are related to force
according to Newton’s second law of motion.

In accordance with previous work of the authors (Wouda
et al., 2016), a two-layer (with 250 and 100 neurons) function
fitting neural network architecture was used for both ANNs,
capable of mapping non-linearities between input and output.
The networks were trained for 2,000 iterations and training was
stopped early if the gradient did not decrease for 6 consecutive
iterations or if the gradient was smaller than 1×10−6. The neural
network toolbox of MATLAB R2017a (Mathworks, Inc., Natick,
MA, USA) was used to design, train, and evaluate the ANNs
described above.

Two different evaluation scenarios were evaluated to
show single (section 3.1) and multiple subject (section 3.2)
performance:

1. For each subject, evaluation was done using all running data
at 12 km/h, while data with other speeds (i.e., 10 and 14 km/h)
are used for training.

2. All data from one subject were used at turn for evaluation,
while all data of remaining subjects were used for training.
Note that, for the sake of simplicity, we will show only results
corresponding to data of running at 12 km/h.

Scenario 1 would require every new user to perform a training
phase. Scenario 2 could potentially produce a more generic
model, although the lack of personalization of the network may
result in decreased performance.

2.5. Outcome Measures
The performance of the proposed method was evaluated by
comparing both discrete and continuous outcomes, as commonly
done in similar works about biomechanical analysis of running
(Cavanagh and Lafortune, 1980; Devita and Skelly, 1992; Crowell
and Davis, 2011; Edwards et al., 2012; Schmitz et al., 2014).
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For the knee flexion/extension (F/E) the similarity between
the estimates and reference was calculated using the Pearson’s
correlation coefficient (ρ) and Root Mean Squared Error (RMSE)
(as defined by Ren et al., 2008). The mean ρ over these different
strides was calculated using a Fisher transformation to obtain
a more representative average Pearson’s correlation coefficient
(Corey et al., 1998). Additionally, the maximum knee F/E angle
during the stance phase was evaluated using a paired t-test
(significance level of 0.05) and Bland-Altman plot (Bland and
Altman, 1986). Estimated vGRFs (normalized to body weight,
BW) were also evaluated using both continuous (ρ and RMSE)
and discrete metrics (loading rate and peak vGRF). The kinetic
analysis was however limited to the stance phase of each leg (as
there is no contact during swing phase). Since the passive vGRF
peak is not clearly defined for mid- or forefoot strikers, this event
was determined using the peak acceleration from the lower leg
IMUs (Willy et al., 2008). Using this event the loading rate was
calculated as the slope of vGRF between 20 and 80 percent of the
passive vGRF peak time (Willy et al., 2008; Crowell and Davis,
2011).

3. RESULTS

Section 3.1 shows performance of the proposed method for
training and evaluating on a single subject, where the difference
between both sets is the running speed (scenario 1). Section 3.2
is about generalization of this approach over different subjects
(scenario 2).

3.1. Single Subject Learning
3.1.1. Kinematics Estimation
The accuracy of estimated knee F/E angles based on different
references (full-body IMU motion capture system or optical
Plug-In Gait output) is presented in Table 2. The estimates
provided by most individually trained ANNs have excellent
agreement (ρ > 0.99) with the reference joint angles.

Furthermore, only subject eight shows significant differences in
performance between the different references.

Mean (and standard deviation) of the estimated knee F/E
angle profiles are shown in Figure 3 for a representative subject
(S03). The largest difference between the estimate and its
respective reference can be seen at the largest flexion angle,
which is overestimated in all cases. As observed before in Table 2,
differences between the estimates based on the various references
are limited (4◦ on average).

Table 3 shows the mean (and standard deviation) of the
maximal knee F/E angle for each subject. Only inertial results
and the corresponding estimates are presented in this table for
conciseness. The mean difference in maximal knee flexion angle
during stance between the estimate and its reference are <2◦ for
all subjects, and this result shows no significant differences (p >

0.05). A small bias of 0.4◦ was found with limits of agreement
–4.1 to 4.9◦ for the comparison between the estimated maximal
knee F/E angle during stance and the corresponding reference.
Figure 4A shows the related Bland-Altman plot. Occasional
outliers (for three of the evaluated subjects) can be observed,
which are mostly overestimating the maximal knee F/E angle
during stance.

3.1.2. Kinetics Estimation
Table 4 shows an overview of performance when different
combinations of input features (joint angles, pelvis and lower
leg accelerations) are evaluated. On average the best results
(marked in bold for individual subjects) were achieved using a
combination of all vertical accelerations and joint angles as input
features. Therefore, results presented below are obtained when
ANN2 was trained using these features.

The estimated ground reaction profiles of a representative
subject (S03) are shown in Figure 5 for ANN2 based on both
reference kinematics (IMUs and Plug-In Gait). Similarly to what
was observed for the estimated knee F/E angles, differences
between the networks (ANN2) trained on the various references
are minimal. Largest differences between the estimated and

TABLE 2 | Accuracy of estimated knee flexion/extension (F/E) angles (using ANN1) with different training outputs (namely: IMU or Plug-in Gait-based), using single subject

training and evaluation.

Subjects IMU Plug-in Gait

Left F/E Right F/E Left F/E Right F/E

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.99 3.24 (1.53) 0.99 4.38 (1.71) 0.99 3.56 (0.97) 0.99 4.76 (1.46)

S02 0.99 1.74 (0.48) 0.99 1.77 (0.54) 0.99 4.14 (1.39) 0.99 3.79 (1.41)

S03 0.99 2.65 (0.64) 0.99 2.05 (0.53) 0.99 3.70 (1.22) 0.99 2.58 (0.72)

S04 0.99 2.60 (0.47) 0.99 2.26 (0.58) 0.99 3.02 (1.28) 0.99 3.59 (1.41)

S05 0.99 3.39 (1.79) 0.99 3.55 (2.05) 0.99 4.03 (1.19) 0.99 4.49 (1.33)

S06 0.99 3.57 (0.67) 0.99 3.52 (0.64) 0.99 2.62 (0.54) 0.99 2.27 (0.63)

S07 0.99 3.30 (0.57) 0.99 2.86 (0.51) 0.99 5.27 (1.14) 0.99 5.41 (1.21)

S08 0.99 3.95 (1.70) 0.99 3.17 (1.49) 0.98 7.33 (2.68) 0.98 8.41 (3.02)

Pearson’s correlation coefficient (ρ) is calculated for each stride and averaged over approximately 200 strides for each subject (S01, S02, S03, S04, S05, S06, S07, and S08). The Root

Mean Squared Error (RMSE) is calculated similarly over all strides. Training of the artificial neural networks was performed using running data at 10 and 14 km/h, while 12 km/h running

data was used for evaluation.
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FIGURE 3 | Mean (and standard deviation band) of the flexion/extension knee joint angle (in degrees) estimates are presented (normalized to the stride cycle)

compared to their respective references (IMU and Plug-In Gait output). These estimates were obtained from training (using running data at 10 and 14 km/h) and

evaluating (using running data at 12 km/h) on a single subject, similar results were obtained for the other subjects. The top row shows the angles of the left side and

the bottom row presents the right side. At the top of each graph Pearson’s correlation coefficient, root mean square error (RMSE) and the standard deviation (between

the brackets) are specified, which were calculated for the estimate compared to its respective reference kinematics.

TABLE 3 | The mean (and standard deviation) of discrete outcome measures for both the estimate and its corresponding reference (based on inertial full-body motion

capture data) of all subjects.

Subjects Max knee F/E angle (degrees) vGRF peak (BW) Loading rate (BW/s)

Reference Estimate Reference Estimate Reference Estimate

S01 45.41 (3.56) 45.05 (3.94) 2.79 (0.08) 2.83 (0.06) 44.39 (7.37) 45.52 (8.05)

S02 42.96 (1.55) 42.56 (1.29) 2.96 (0.07) 2.94 (0.05) 50.72 (4.93) 46.38 (6.25)

S03 35.18 (1.25) 35.55 (1.06) 2.95 (0.08) 3.00 (0.08) 58.41 (6.86) 51.90 (7.47)

S04 41.11 (1.22) 41.68 (1.17) 2.81 (0.07) 2.82 (0.05) 56.97 (8.71) 50.55 (7.60)

S05 36.38 (2.08) 38.24 (4.36) 3.21 (0.10) 3.12 (0.08) 68.77 (7.65) 64.86 (7.44)

S06 35.12 (3.05) 34.30 (2.63) 3.01 (0.09) 3.07 (0.08) 48.56 (5.13) 53.81 (5.57)

S07 39.24 (1.92) 40.85 (2.37) 2.99 (0.08) 2.98 (0.12) 58.06 (8.37) 51.73 (6.10)

S08 39.45 (1.99) 39.58 (1.65) 3.02 (0.08) 3.02 (0.07) 47.92 (7.23) 44.88 (6.11)

Mean 39.36 (3.72) 39.72 (3.59) 2.97 (0.13) 2.97 (0.10) 54.23 (7.86) 51.20 (6.44)

p-value 0.31 0.79 0.08

These estimates were obtained by training and evaluating on a single subject. Outcomes are averaged over approximately 400 steps (left and right combined). P-values are calculated

using a paired t-test with the subject mean values.

reference vGRF can be seen at the beginning of stance phase.
However, peak values are estimated with high accuracy, resulting
in correlation coefficients larger than 0.96.

Results for the discrete outcomes (peak vGRF and loading
rate) can be found in Table 3. Mean peak vGRF differences
between the estimate and its reference are within 0.09 BW
for all subjects, which resulted in no significant differences
(p > 0.05). Variation between the estimate and its reference

is larger for the loading rate, however this difference is still
not significant (p > 0.05). Figures 4B,C show the Bland-
Altman plots for both the peak vGRF and loading rate. A
small bias of 0.01 BW is present in the estimated peak vGRF,
with limits of agreement –0.17 to 0.18 BW. The loading rate
is estimated with a bias of –2.9 BW/s with limits of agreement
–16 to 10 BW/s. Both plots show occasional outliers for multiple
subjects.
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FIGURE 4 | The left side shows the correlation plot of the discrete outcome measures: maximal knee flexion angle during stance (A), peak vGRF (B), and loading rate

(C). The right side shows the corresponding difference plots of those three discrete outcome measures. Approximately 4,000 data points are shown, where different

subjects are represented by the various colors.

3.1.3. Variation in Running Speeds
Extrapolation capabilities of the proposed approach were
investigated by evaluating different running speeds for
subject 3. Figure 6 shows RMSEs for the evaluated speeds,
where the remaining trials are in the training dataset. This

figure shows that the most accurate continuous estimation
can be achieve when an intermediate speed (12 km/h) is
used, rather than the ones which are slower (10 km/h)
or faster (14 km/h) than those in their respective training
datasets.
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TABLE 4 | Accuracy of the estimated vertical ground reaction force (vGRF) using different input features (namely: joint angles (θjoint ), pelvis vertical acceleration (aP ), all
(pelvis, left and right lower leg) vertical accelerations (aP+L) or a combination of these).

Subjects Features

aP aP+L θjoint aP & θjoint aP+L & θjoint

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 L vGRF 0.97 0.26 (0.03) 0.98 0.21 (0.03) 0.99 0.20 (0.06) 0.99 0.15 (0.04) 0.99 0.12 (0.03)

R vGRF 0.96 0.26 (0.02) 0.99 0.17 (0.02) 0.99 0.21 (0.05) 0.99 0.16 (0.04) 0.99 0.15 (0.04)

S02 L vGRF 0.94 0.33 (0.03) 0.97 0.23 (0.02) 0.98 0.24 (0.07) 0.97 0.24 (0.05) 0.97 0.25 (0.03)

R vGRF 0.97 0.27 (0.03) 0.97 0.25 (0.03) 0.96 0.29 (0.08) 0.96 0.28 (0.06) 0.97 0.25 (0.04)

S03 L vGRF 0.96 0.29 (0.03) 0.99 0.14 (0.03) 0.99 0.20 (0.07) 0.99 0.12 (0.04) 0.99 0.10 (0.03)

R vGRF 0.95 0.32 (0.03) 0.99 0.11 (0.03) 0.99 0.16 (0.05) 0.99 0.10 (0.03) 0.99 0.09 (0.02)

S04 L vGRF 0.96 0.25 (0.03) 0.99 0.14 (0.03) 0.99 0.16 (0.05) 0.99 0.17 (0.04) 0.99 0.15 (0.04)

R vGRF 0.96 0.27 (0.03) 0.99 0.13 (0.04) 0.99 0.20 (0.07) 0.99 0.13 (0.04) 0.99 0.11 (0.03)

S05 L vGRF 0.97 0.28 (0.04) 0.98 0.25 (0.05) 0.95 0.37 (0.11) 0.97 0.30 (0.07) 0.97 0.30 (0.07)

R vGRF 0.98 0.27 (0.03) 0.98 0.25 (0.05) 0.93 0.44 (0.14) 0.96 0.33 (0.08) 0.96 0.33 (0.08)

S06 L vGRF 0.95 0.32 (0.03) 0.98 0.22 (0.04) 0.95 0.38 (0.09) 0.96 0.34 (0.07) 0.96 0.30 (0.05)

R vGRF 0.94 0.35 (0.04) 0.98 0.21 (0.04) 0.93 0.42 (0.10) 0.95 0.36 (0.06) 0.95 0.33 (0.05)

S07 L vGRF 0.91 0.40 (0.30) 0.96 0.27 (0.04) 0.93 0.38 (0.10) 0.96 0.30 (0.06) 0.96 0.28 (0.05)

R vGRF 0.93 0.38 (0.03) 0.96 0.28 (0.04) 0.96 0.33 (0.08) 0.96 0.29 (0.07) 0.97 0.25 (0.06)

S08 L vGRF 0.97 0.27 (0.02) 0.99 0.12 (0.02) 0.99 0.20 (0.07) 0.99 0.14 (0.04) 0.99 0.11 (0.03)

R vGRF 0.96 0.28 (0.03) 0.99 0.14 (0.03) 0.98 0.24 (0.07) 0.99 0.19 (0.05) 0.99 0.12 (0.04)

The evaluated set of features is shown above each column. These results were obtained using single subject training and evaluation. Pearson’s correlation coefficient (ρ) is calculated for

each contact and averaged over approximately 200 stance phases for each subject (S01, S02, S03, S04, S05, S06, S07 and S08). The Root Mean Squared Error (RMSE) is calculated

similarly over all contacts, and the standard deviation of the RMSE is shown in brackets. The highest correlations (ρ) and smallest RMSE are shown in bold.

Additionally, discrete outcome measures were evaluated for
the same subject, which are presented in Table 5. The peak
vGRF and maximal knee flexion during stance also show that
interpolating speeds results in more accurate outcomes than
extrapolating. However, this trend is not present for the loading
rate accuracy.

3.2. Multiple Subject Learning
The generalization performance of both ANNs were evaluated by
training with all different combinations of subjects in the training
and evaluation datasets. Table 6 (top-half) shows the results of
kinematics for the different evaluated subjects. Seven out of
the eight subject show correlations larger than 0.9, indicating
good agreement. However, the RMSE is expectantly larger than
for single subject learning (section 3.1). The estimated knee
F/E angles for subjects 1 and 3 are significantly less accurate.
Additionally, the mean estimated knee F/E angle profiles of
subject 4 are shown in Figure 7, with the measured references
used for comparison. The stance phase (until approximately 30%
of the stride cycle) is estimated with higher accuracy than the
swing phase, same behavior can be seen for single subject learning
(Figure 3).

Results of the kinetic estimations can be seen in Table 6

(bottom-half) . Similar to the joint angles, vGRFs are mostly

estimated with correlations larger than 0.9 indicating good
agreement with the measurements. However, subjects 1 and
3 show lower correlation coefficients, as was also seen for
the kinematics. Vertical ground reaction force profiles of one
representative subject (S04) are shown in Figure 8, which shows
an increase in RMSEs compared to the single subject learning
(Figure 5). The maximum estimated ground reaction forces are
mostly comparable to the reference.

The accuracy of estimating discrete outcome measures is
shown in Table 7. The estimation accuracy varies between
different subjects and outcome measures. However, in most
cases an increase in error can be seen when comparing to the
single subject training (Table 3). Additionally, an increase in the
standard deviations of the different estimated outcome measures
can be seen. However, the estimated outcome measures and
the corresponding references were not found to be significantly
different.

4. DISCUSSION

This work shows that sagittal knee kinematics and vGRF can be
estimated using only three inertial sensors placed on the lower
legs and pelvis, in particular, the peak vGRF, maximal knee F/E
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FIGURE 5 | Mean (and standard deviation band) of the estimated ground reaction forces (in BW) are presented (normalized to the stance phase) compared to their

respective references (IMU and Plug-In Gait joint angle output). These estimates were obtained from training and evaluating on a single subject, similar results were

obtained for the other subjects. The top row shows the forces of the left contacts and the bottom row presents the right contacts. At the top of each graph Pearson’s

correlation coefficient, root mean square error (RMSE) and the standard deviation (between the brackets) are specified, which were calculated for the estimate

compared to its respective reference kinematics.
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evaluated relative to a full-body inertial kinematic measurement (Table 1, training scheme 1). The results for a representative subject are shown in this graph. The Root
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14 km/h).
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TABLE 5 | The variation in discrete outcome measures for different speeds in subject 3.

Parameter Speed Reference (IMU) Estimate

Left Right Left Right

Max knee flexion (degrees) 10 km/h 34.49 (1.10) 33.90 (1.20) 30.57 (0.98) 30.24 (1.22)

12 km/h 35.64 (1.20) 34.71 (1.13) 36.18 (0.71) 34.92 (0.98)

14 km/h 36.93 (1.24) 35.11 (1.16) 38.22 (1.58) 36.23 (2.76)

peak vGRF (BW) 10 km/h 2.85 (0.06) 2.77 (0.06) 2.76 (0.07) 2.67 (0.08)

12 km/h 3.00 (0.06) 2.90 (0.07) 3.06 (0.04) 2.93 (0.05)

14 km/h 3.13 (0.07) 3.00 (0.07) 2.96 (0.13) 2.92 (0.10)

Loading rate (BW/s) 10 km/h 52.92 (5.82) 55.11 (6.10) 46.05 (5.92) 56.05 (8.37)

12 km/h 55.47 (6.12) 61.34 (6.29) 47.67 (6.28) 56.13 (6.03)

14 km/h 63.25 (7.31) 67.17 (9.78) 59.11 (9.06) 55.52 (13.91)

The mean (and standard deviation) of peak vGRF, loading rate and max knee flexion during stance are shown for both the estimate and its corresponding reference (based on inertial

full-body motion capture data), these are calculated over approximately 400 steps (left and right combined). The artificial neural networks were trained using running data of two speeds

(different from the evaluation speed), while the shown speed was used for evaluation.

TABLE 6 | Accuracy of the estimated knee flexion/extension (F/E) angles (by ANN1) and vertical ground reaction forces (vGRF) (by ANN2) using different training outputs

(namely: IMU or Plug-in Gait-based) by training on data of all subjects except for one which is used for the evaluation at 12 km/h.

Knee F/E angle accuracy

Subjects IMU Plug-in Gait

Left F/E Right F/E Left F/E Right F/E

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.88 19.11 (4.92) 0.83 19.47 (3.66) 0.77 25.05 (2.20) 0.83 23.57 (2.13)

S02 0.99 8.57 (0.74) 0.99 8.09 (0.79) 0.98 11.87 (1.08) 0.98 6.76 (0.71)

S03 0.95 14.92 (1.54) 0.94 11.08 (1.32) 0.91 15.19 (1.54) 0.91 22.57 (4.03)

S04 0.98 8.35 (0.76) 0.98 6.68 (1.12) 0.93 11.36 (0.93) 0.98 6.90 (0.94)

S05 0.98 9.89 (1.10) 0.98 7.00 (1.28) 0.96 19.62 (3.62) 0.97 7.41 (1.43)

S06 0.98 7.33 (1.00) 0.99 6.99 (1.07) 0.97 7.70 (0.99) 0.98 8.76 (1.46)

S07 0.98 5.88 (0.68) 0.99 4.83 (0.99) 0.98 6.83 (0.81) 0.98 6.62 (0.85)

S08 0.98 6.36 (1.18) 0.99 4.66 (0.92) 0.98 6.29 (1.09) 0.99 7.21 (0.89)

vGRF accuracy

Subjects IMU Plug-in Gait

Left vGRF Right vGRF Left GRF Right vGRF

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.92 0.45 (0.10) 0.90 1.25 (0.25) 0.94 0.52 (0.11) 0.86 0.56 (0.08)

S02 0.95 0.31 (0.08) 0.99 0.16 (0.03) 0.98 0.22 (0.04) 0.97 0.27 (0.05)

S03 0.95 0.50 (0.18) 0.98 0.60 (0.09) 0.83 0.81 (0.19) 0.97 0.38 (0.07)

S04 0.98 0.26 (0.06) 0.95 0.32 (0.05) 0.95 0.34 (0.19) 0.98 0.30 (0.05)

S05 0.99 0.21 (0.05) 0.97 0.32 (0.07) 0.97 0.33 (0.08) 0.99 0.20 (0.07)

S06 0.98 0.25 (0.04) 0.94 0.36 (0.03) 0.97 0.28 (0.04) 0.99 0.20 (0.04)

S07 0.96 0.30 (0.04) 0.98 0.22 (0.04) 0.97 0.29 (0.05) 0.97 0.27 (0.05)

S08 0.93 0.46 (0.05) 0.98 0.24 (0.04) 0.91 0.44 (0.05) 0.98 0.28 (0.04)

Pearson’s correlation coefficient (ρ) is calculated for each stride and averaged over approximately 200 strides for each different test subject (S01, S02, S03, S04, S05, S06, S07 and

S08). The Root Mean Squared Error (RMSE) is calculated similarly over all strides.
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FIGURE 7 | Mean (and standard deviation band) of the flexion/extension knee joint angle (in degrees) estimates are presented (normalized to the stride cycle)

compared to their respective references (IMU and Plug-In Gait joint angle output). These estimates were obtained from training on multiple subjects and evaluating on

a different subject, and were comparable to the other evaluated subjects. The top row shows the angles of the left side and the bottom row presents the right side.

At the top of each graph Pearson’s correlation coefficient, root mean square error (RMSE) and the standard deviation (between the brackets) are specified, which were

calculated for the estimate and its respective reference kinematics.
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TABLE 7 | The mean (and standard deviation) of discrete outcome measures for both the estimate and its corresponding reference (based on inertial full-body motion

capture data) of all subjects.

Subjects Max knee F/E angle (degrees) vGRF peak (BW) Loading rate (BW/s)

Reference Estimate Reference Estimate Reference Estimate

S01 45.41 (3.56) 65.90 (24.61) 2.79 (0.08) 3.82 (0.96) 44.39 (7.37) 33.86 (35.59)

S02 42.96 (1.55) 33.04 (1.19) 2.96 (0.07) 2.92 (0.13) 50.72 (4.93) 43.91 (7.38)

S03 35.18 (1.25) 40.21 (5.38) 2.95 (0.08) 2.72 (0.64) 58.41 (6.86) 38.72 (8.27)

S04 41.11 (1.22) 38.35 (3.73) 2.81 (0.07) 2.86 (0.14) 56.97 (8.71) 70.75 (12.11)

S05 36.38 (2.08) 41.88 (3.81) 3.21 (0.10) 3.15 (0.19) 68.77 (7.65) 48.87 (17.20)

S06 35.12 (3.05) 37.42 (2.68) 3.01 (0.09) 3.01 (0.12) 48.56 (5.13) 41.47 (3.58)

S07 39.24 (1.92) 38.97 (3.65) 2.99 (0.08) 2.91 (0.08) 58.06 (8.37) 58.19 (8.75)

S08 39.45 (1.99) 38.36 (1.68) 3.02 (0.08) 3.17 (0.23) 47.92 (7.23) 56.06 (10.79)

Mean 39.36 (3.72) 41.77 (10.08) 2.97 (0.13) 3.07 (0.34) 54.23 (7.86) 48.98 (12.10)

p-value 0.47 0.26 0.37

These estimates were obtained by training on multiple subjects and evaluating on a different subject (using running data at 12 km/h). Outcomes are averaged over approximately 400

steps (left and right combined). P-values are calculated using a paired t-test with the subject mean values.

angles during stance, and the knee F/E angles and vGRF profiles
are estimated with no significant differences with respect to the
reference.

Estimation of joint angles for a single subject has shown
to be more accurate (average RMSE < 5◦) than was achieved
in previous work of the authors (average RMSE ≈7◦) (Wouda
et al., 2016). This can partly be explained by the difference in
composition of the training databases between both methods,
since the current dataset had less variation of motions, i.e., only
running. This approach requires obtaining reference kinetics and
kinematics of each subject, i.e., each subject has to run on an
instrumented treadmill.

Additionally, multiple subject learning results showed good
agreement (ρ > 0.9) for most subjects in the continuous
outcomes. However, the ANNs could not generalize over
all idiosyncrasies of the individual subjects as RMSEs and
differences in discrete outcomes increased, expectantly. Subjects
had different landing patterns (heel, mid, or forefoot striking),
which may be a reason for the degraded performance shown
for example in subject 1. By including more subjects different
models could be trained for each different landing phenotype.
Alternatively, larger soft-tissue artifacts of the inertial sensors
compared to the other subjects may explain the degraded
performance.

No significant differences were found between any of the
reference and estimated discrete outcome measures, for both
evaluation scenarios. However, the required accuracy would
largely be defined by the application of interest. An example of
such an application could be tracking kinematic/kinetic changes
due to fatigue, since they may relate to increased chance of injury
(Reenalda et al., 2016). However, more data (specific for such an
application, e.g., running under fatigue) should be acquired to
evaluate if the proposed approach can track such differences.

The running mechanics in this work are estimated based on
inertial or optical motion capture data. Each of these technologies
have their advantages and disadvantages (Field et al., 2011).
Differences in the reference knee F/E profiles for the different

technologies are observed for the results in section 3.1.1, which
can be explained by differences in the underlying models of
the human body and their assumptions (Kainz et al., 2016).
However, the estimated kinematics based on the different
technologies are similar to their respective measured kinematics.
This shows that the method has potential to be applied in this
context irrespective of the preferred technology for recording
training data. Therefore, the proposed method has potential to
estimate output based on other kinematic references, such as
biomechanical models driven by optical data (Delp et al., 2007;
Stief et al., 2013).

The measured dataset contains only treadmill running,
however, the proposed method is not limited to be applied
under these conditions. Evaluating the proposed method in a
different setting (e.g., outdoor running) might result in less
accurate estimations of knee F/E angles and vGRFs. To improve
such results, the dataset can be extended by including running
at different slopes of the treadmill. Furthermore, 3D ground
reaction forces could be measured using pressure insoles for
example (Rouhani et al., 2010), which enables data collection
in any running environment for training data collection.
Extrapolating kinematic and kinetic data outside of the training
dataset appears to be more difficult than interpolating such
data. This was shown by the degraded performance after
training with different running speeds or extrapolating over
various subjects. This indicates that careful construction of
the training dataset is required to obtain the best possible
performance.

A limitation of the proposed method is that only vertical
kinetics can be estimated. This can be contributed to the
available measurement setup, since it would require a treadmill
instrumented with a force plate that can measure three-
dimensional forces. However, our proposed method could be
extended using the three-dimensional GRF estimation approach
of Karatsidis et al. (2017) using full-body inertial motion capture.
Furthermore, only sagittal plane knee kinematics could be
estimated in the proposed approach, possibilities of estimating
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kinematics of other joints and/or planes would require additional
research.

The concatenated ANN approach allows for training the
ANN1 (kinematics) independent of the ANN2 (kinetics). This
enables the use of only inertial motion capture data in various
environments for training ANN1. Instead of concatenating
two ANNs, a single ANN could be trained to map relative
orientations and vertical accelerations to ground reaction forces
and joint angles. Initial tests show comparable results for single
subject training, however, multiple subject training was less
successful.When one ANN is trained to estimate both kinematics
and kinetics, cross-dependencies between features and outputs
become important, which is less so for concatenated ANNs. This
can be seen in the differences in accuracy between estimation
of kinematics (ANN1) and kinetics (ANN2) for multiple subject
training in section 3.2.

Figure 5 shows differences in the measured reference vGRF
between left and right stance phases, which can also be
seen from the estimated output. This could indicate that the
proposed method is capable of detecting differences between
left and right kinetics. Note that, given the relatively short
duration of the running sessions, effects of fatigue could not be
evaluated using the current setup, but it is an interesting future
development.

The estimated vertical ground reaction forces (ρ > 0.99 and
RMSE < 0.27 BW) using the proposed method are comparable
to that of Faber et al. (2016) (R2 > 0.981 and RSME < 10 N),
who estimated GRFs during a bending task by using a full-body
inertial motion capture system. Karatsidis et al. (2017) evaluated
a similar approach on walking using inertial sensors, where the
errors are comparable to the ones reported in the proposed
method. Charry et al. (2013) showed that by exploiting only tibial
accelerations to estimate peak vGRFs an approximate RMSE of
6% can be achieved, however this method was only applied to
training and testing on individual subjects. Shippen and May
(2012) estimated vGRF more accurately (3% error) than the
proposed method, by relying on full-body optical motion capture
for their method. Pavei et al. (2017) reported similar performance
in estimation of the loading rate, while our proposed method
was shown to estimate peak vGRFs more accurately. Charry et al.
(2013) reported peak vGRF estimation errors of approximately

6%, whereas our proposed method is able to estimate peak vGRF
with an accuracy of <0.10 BW (≈3.5%).

5. CONCLUSIONS

This work has shown the potential of estimating kinetics (vGRF)
and kinematics (knee F/E angles) during running using a
minimal on-body sensor setup (namely, three sensor devices
placed on the lower legs and pelvis). Best performance can be
obtained when the proposed approach is applied to a single
subject. Training over multiple subjects was shown to be possible,
since good agreement between the estimates and references were
achieved, however the RMSEs are larger than for single subject
training. In other words, the proposed method has potential to
be applied for individual subjects, and with additional research
can be extended for running in various environments.
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Electromyography systems are widely used within the field of scientific and clinical

practices. The reliability of these systems are paramount when conducting research. The

reliability of Myon 320 Surface Electromyography System is yet to be determined. This

study aims to determine the intra-session and inter-day reliability of the Myon 320 Surface

Electromyography System. Muscle activity from fifteen participants was measured at the

anterior deltoid muscle during a bilateral front raise exercise, the vastus lateralis muscle

during a squat exercise and the extensor carpi radialis brevis (ECRB) muscle during an

isometric handgrip task. Intra-session and inter-day reliability was calculated by intraclass

correlation coefficient, standard error of measurement and coefficient of variation (CV).

The normalized root mean squared (RMS) surface electromyographic signals produced

good intra-session and inter-day testing intraclass correlation coefficient values (range:

0.63–0.97) together with low standard error of measurement (range: 1.49–2.32) and CV

(range: 95% Confidence Interval= 0.36–12.71) measures for the dynamic-and-isometric

contractions. The findings indicate that the Myon 320 Surface Electromyography System

produces good to fair reliability when examining intra-session and inter-day reliability.

Findings of the study provide evidence of the reliability of electromyography between

trials which is essential during clinical testing.

Keywords: sEMG, ICC, squat, front raise, handgrip

INTRODUCTION

Electromyography (EMG) is the study of electrical activity produced by skeletal muscles. EMG
analysis has become an important tool in many areas of scientific and clinical research (Norali
and Som, 2009). EMG signals can be recorded in many different ways; with electrodes being
placed under the skin but over the muscle (subcutaneous EMG), in the muscles between the fibers
(intramuscular EMG), or on the skin over the belly of the muscle (surface EMG) (Enoka, 2008).
Surface EMG (sEMG) is a non-invasive technique that has been used to analyse muscle activity.
The sEMG method has been used to diagnose muscle dysfunction for clinical purposes (Wakeling
et al., 2007), provide insight into the neural control of gait (Byrne et al., 2007) and different
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muscular contraction types (Troiano et al., 2008). It can also
be used to determine muscle activation levels when performing
athletic actions. The usability of sEMG data however is
dependent on the reproducibility of the signal detection both
within and between recording sessions (Hashemi Oskouei et al.,
2013).

Intra-session sEMG measurements largely show good relative
reliability (intraclass correlation coefficient, ICC> 0.80) (Worrell
et al., 1998; Dankaerts et al., 2004; Hashemi Oskouei et al.,
2013; Jobson et al., 2013; Carius et al., 2015). During intra-
session testing, variability of how the skin is prepared and
electrode placement are excluded, therefore making the repeated
measurements less variable (Carius et al., 2015). Intra-session
reliability of the sEMG signal has been previously measured
during isometric and dynamic contractions (Larsson et al., 1999;
Pincivero et al., 2000; Larivière et al., 2004; Meskers et al.,
2004; Hashemi Oskouei et al., 2013). Previous studies that
have investigated sub-maximal isometric contractions during
intra-session testing generally report good reproducibility of
the sEMG signal (ICC > 0.80) (Allison et al., 1993; Larsson
et al., 2003; Dankaerts et al., 2004). When investigating
dynamic contractions, there are limited studies that compare
the reproducibility of the sEMG signal during intra-session
testing. The few studies that have investigated the sEMG signal
during dynamic contractions report fair (ICC = 0.60–0.79) to
good (ICC = 0.80–1.00) reproducibility for EMG amplitude
and mean power frequency (Larsson et al., 1999; Dorel et al.,
2008). Dorel et al. (2008) reported that no significant differences
were found between test and retest for 10 lower limb muscles
investigated during a cycling task. Larsson et al. (1999) also
reported good levels of reproducibility (ICC > 0.80) during sub-
maximal shoulder flexion movements when recording muscle
activity from the deltoid muscle.

Studies examining inter-day reliability often report reduced
ICC and increased coefficient of variation (CV) measures
(Worrell et al., 1998; Hashemi Oskouei et al., 2013; Jobson et al.,
2013). It has been suggested in the literature that skin preparation
and electrode placement, even if care is taken to reposition
electrodes, is a major influence on inter-day variance (Veiersted,
1991). Jobson et al. (2013) marked participants with henna
markings in an attempt to replicate the electrode position for
inter-day testing, however, this method still displayed variability
within the sEMG signal (CV: 15.8–41.5%). Hashemi Oskouei
et al. (2013) also reported poor inter-day reliability when testing
various isometric handgrip forces (ICC < 0.60). With regards to
inter-session reliability for dynamic movements, the literature is
limited and contrasting (Hashemi Oskouei et al., 2013). Larivie
et al. (2000) reported acceptable ICC values (range: 0.70–0.88)
from the trunk muscles during lateral bending movements.
However, Jobson et al. (2013) reported low reliability of the sEMG
signal during cycling during inter-day testing (ICC < 0.60).

Literature discussing intra- and inter-session reliability often
report ICC as a measure of relative reproducibility or CV as a
measure of absolute reliability (Dankaerts et al., 2004; Hashemi
Oskouei et al., 2013; Jobson et al., 2013). Standard error of
measurement (SEM) is also often reported to quantify the
absolute consistency of the measurement (Weir, 2016). Previous

studies have conducted experiments using sEMG systems such as
Delsys, Noraxon and Bortec (Dankaerts et al., 2004; Mathur et al.,
2005; Hashemi Oskouei et al., 2013; Jobson et al., 2013; Carius
et al., 2015). These systems are popular amongst researchers due
to their proven reliability in peer reviewed research (Mathur
et al., 2005; Auchincloss and McLean, 2009; Hashemi Oskouei
et al., 2013; Jobson et al., 2013). This study was designed to
enable future research to be conducted with the Myon 320 sEMG
System. With the Myon AG Company being relatively new to the
EMG market, a limited amount of research has been published
using this system (Konrad and Tilp, 2014a,b; Rashid et al.,
2015). Studies published previously have investigated stretching
techniques in addition to engineering and textile related works.
While these studies provide insightful information on the efficacy
of the Myon 320 sEMG System, there is still a limited amount
of biomechanical related research to support the reliability of the
Myon 320 sEMG System as a useful tool kit for sEMG assessment.
The reliability of the sEMG system that is employed during
clinical and research trials is paramount in order to provide
reliable and accurate findings in clinical settings, as it can be used
to guide diagnosis or therapeutic option.

Therefore the aim of the study was to determine the intra-
session and inter-day reliability of the Myon 320 sEMG System
and Prophysics Software using dynamic and isometric sub-
Maximum Voluntary Contraction (MVC).

METHODS

Fifteen healthy male participants (Mean ± SD: age 23 ± 3
years, stature 180.8 ± 7.5 cm, mass 80.6 ± 9.6 kg), who were
physically active, with no history of knee, hip or shoulder
surgery or neuromuscular conditions volunteered for this study.
Participants were asked to refrain from physical activity 24 h
prior to taking part in the experiment in order to avoid the
effects of cumulativemuscular fatigue. All participants completed
a physical readiness questionnaire and consent form before
participating in the study. Ethical approval was granted by the
University of the West of Scotland, School of Science and Sport
Ethics Committee.

Participants were required to attend the laboratory on two
separate occasions. The length between each of the trials was
required to be greater than 2 days but no longer than 10 days. At
the first visit to the laboratory the participants were familiarized
with the environment and the exercises prior to data collection.
All visits were performed at the same time of day to minimize the
effects of diurnal variation and any variation of the procedure.
Experimental data preparation and collection was performed by
the same researcher to eliminate researcher variation. The order
in which the exercises were performed was randomized for all
testing conditions.

The sEMG activity was recorded using surface electrodes
(AMBU, Cambridgeshire, UK) and a set of 6 Surface EMG
Transmitters (Myon 320, Schwarzenberg, Switzerland). Prior
to the sEMG data collection for the dynamic and isometric
contractions, the skin was prepared by hair removal from the
tested area, as well as skin abrasion and alcohol cleaning. This

Frontiers in Physiology | www.frontiersin.org 2 March 2018 | Volume 9 | Article 309172

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sorbie et al. Reliability Study of the Myon 320 System

skin preparation procedure is essential in order to reduce the
impedance of the interface between the skin and electrode. Pairs
of sEMG electrodes were attached to the skin no more than 2 cm
apart (center to center) over the dominant side of the anterior
deltoid (AD) and vastus lateralis (VL) and extensor carpi radialis
brevis (ECRB) muscles (Figure 1). To standardize the placement
of the electrodes for the AD muscle, electrodes were placed
one finger width distal and anterior to the acromion process,
in the direction of the line between the acromion process and
the thumb. For the VL muscle, electrodes were placed at two
thirds on the line from the anterior superior iliac spine to the
lateral side of the patella in the direction of the muscle fibers.
These placement positions are in accordance with surface EMG
for non-invasive assessment of muscles (SENIAM) guidelines.
For the ECRB muscle electrode placement, a line was marked
between the lateral epicondyle and the radial styloid process. The
ECRB is located in the proximal half of the forearm, just lateral
to the line (Basmajian, 1989; Sorbie et al., 2017). In order to
ensure repeated sensor replacement between the days of testing,
the location of the sensor was marked using a surgical skin
demographic marking pen. Participants were instructed not to
wash the markings off between the testing days.

For the dynamic contractions, two separate movement
patterns were assessed: one for the upper and one for the lower
extremity. For the upper extremity, a bilateral front raise, the
lifting of an object in front of the body, exercise was performed
with sEMG electrodes placed on the right AD muscle. All
participants completed the bilateral front raise exercise with a
calibrated 10 kg Taishan bumper plate weight (Taishan Sports
Industry Group Co., Ltd, Leling, China). To execute the exercise,
and standardize procedures, participants were instructed to stand
with their feet shoulder width apart, holding the bumper plate
with both hands around the waist line. From this position,
participants raised the arms up in front of the body until the
weight was directly above the head, with only a slight bend in
the elbows, which was maintained throughout the movement.
The shoulder at this stage of the exercise was required to be
between 170 and 190◦ anterior to the body. The weight was
then returned to the start position. Three trials of the front
raise exercise were performed, with each trial consisting of three
repetitions. Each of the three repetitions was performed at a rate
of 4 s for the concentric phase and 4 s for the eccentric phase
of the exercise, lasting a total of 24 s. This timing sequence was
regulated through an interval timer, which enabled participants
to move at a constant pace over the three trials, therefore making
the movements more reliable. Between each trial, participants
rested for 5min to limit the effect of muscular fatigue. Retro-
reflective markers were applied to the shoulder and hip area.
This enabled the researchers to identify joint angles required to
complete the movement.

For the lower extremity, sEMG data was collected from the
right VL muscle during the unloaded squat exercise. During the
squat, participants were instructed to have their feet shoulder
width apart, whilst looking straight ahead. They were then asked
to flex their knees between 100◦ and 80◦, before returning to
full knee extension, keeping their back as straight as possible.
Three trials of the squat exercise were performed, with each trial

consisting of three repetitions. The timing sequence as detailed
above for the front raise exercise was implemented for the
squat exercise, with the 5min rest period between trials. Retro-
reflective markers were applied to the hip, knee and ankle joints
to enable the researchers to identify joint angles at the start and
end of the exercise.

Isometric contractions were performed via three sub-MVC
recordings from the right ECRB forearm muscle during a
handgrip strength test. Following electrode placement and signals
being verified, participants were seated with their right arm firmly
strapped into the previously discussed experimental rig. Grip
strength was recorded with a handheld dynamometer (Medical
research Ltd digital analyzer, Leeds, UK). Firstly, participants
were asked to perform two MVICs in order to normalize the
sEMG data. Fifty percent of the greatest MVIC reading for the
handheld dynamometer was selected for the three reproducibility
trials. Participants had to build up to sub-MVCs in 3 s and then
hold it for a further 3 s (Hoozemans and van Dieën, 2005).
Participants were permitted to rest for 5min between each trial
to limit the effects of muscular fatigue on the ECRB muscle and
surrounding forearm muscles.

The MVICs were recorded for 5 s for each muscle tested
and was used as a reference for comparison of muscle activity
during the bilateral front raise, squat and handgrip exercises
(i.e., percentage of MVIC). Two 5 s MVICs were performed for
each of the three muscles tested in the following positions; VL
while the back was against the wall with 90◦ of knee flexion, AD
while holding a 10 kg weight anterior to the body and shoulder
flexed at 90◦, and ECRB while seated with the right arm firmly
strapped into a previously validated rig (unpublished data). In
accordance with Hashemi Oskouei et al. (2013), the rig held the
elbow at approximately 120◦ during repeated recordings, and
kept the posterior side of the forearm stationary. The MVICs
were performed prior to the front raise, squat and handgrip
exercises on both testing days and controlled with the motion
analysis device as described above.

All sEMG data was sampled at 1,000Hz. During the
processing procedures, all sEMG data was digitally filtered (20–
400Hz) in order to reduce transients and instrumentational
noise and root mean squared (RMS) values calculated. For
MVIC recordings, the maximum 1 s value across the 2 MVIC
recordings for all muscles was identified and selected in order to
normalize the bilateral front raise, squat and handgrip exercises.
For the dynamic contractions, an RMS time window of 50ms was
employed. For the bilateral front raise exercises, the total duration
of the movement was averaged and analyzed for reproducibility
between the three trials. The identical procedure was also carried
out for analysis of the squat exercise. In order for the researcher
to analyse the dynamic exercises, kinematic data was recorded
through the Vicon Bonita Motion System (Oxford Metrics Ltd,
United Kingdom), sampling at a rate of 250Hz. For the sub-
MVIC handgrip test, an RMS time window of 100ms was
used and the 3 s 50% contraction was averaged to determine
reproducibility of the three trials.

A two way random effects model with single and average ICC
measures, with a 95% confidence interval, was used to measure
the repeatability of the average normalized RMS sEMG signal
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FIGURE 1 | (A) Surface electrode connected to the anterior deltoid muscle; (B) Surface electrode connected to the vastus lateralis muscle; (C) Surface electrode

connected to the extensor carpi radialis brevis muscle; and (D) Myon receiver box with transmitters sitting in cradle.

during the intra-session testing. Inter-session reliability (ICC 2,
1) was determined by comparing the average normalized RMS
sEMG muscle activity for the three trials for each exercise of
both testing sessions. ICC, CV and SEM were obtained using
the Statistical Package of Social Sciences (SPSS V 22.0). ICC was
categorized as follows: good reliability: 0.80–1.00; fair reliability:
0.60–0.79; poor reliability: <0.60 (Sleivert and Wenger, 1994).
Atkinson et al. (1999) also suggests a measurement tool is reliable
if the ICC is above 0.800 and the CV is below 10%. SEM was used
to express absolute reliability of the measure. The CV and the
SEM were calculated as follows:

CV =
SD

Mean
× 100% SEM (x) = SD

√
1− r

Calculation acronyms: Coefficient of variation (CV), Standard
deviation (SD), Reliability (r), Standard error of themeasurement
(SEM).

RESULTS

All participants successfully completed the required movements
during the dynamic bilateral front raise and squat exercises.
During the isometric handgrip task all participants, achieved 50%
(±5%) of their MVIC value.

The average normalized RMS sEMG data between
participants from the AD muscle over the three sub-MVC
trials of the bilateral front raise exercise displayed good within-
day reliability [ICC (2, 1)= 0.97] and an acceptable CV of 4.73%

(95% CI = 1.35–9.79). The average muscle activation between
participants was 66.05% ± 20.15 for the sub-MVC bilateral front
raise exercise. SEM between participants was 2.06. Inter-day
reliability for the average normalized RMS sEMG for the AD
during the bilateral front raise exercise produced good reliability
[ICC (2, 5) = 0.94] and an acceptable CV of 3.86% (95% CI =
0.82–7.46). The average muscle activation for inter-day testing
between participants was 65.85%± 18.51 for the sub-MVC front
raise exercise. The SEM between participants during inter-day
testing was 1.49.

For the squat exercise, the average normalized RMS sEMG
data from the VL muscle over the three sub-MVC trials
displayed good within-day reliability [ICC (2, 1) = 0.95] and
an acceptable CV of 5.73% (95% CI = 1.48–8.94). The average
muscle activation during intra-day testing between participants
was 67.87% ± 21.25 for the sub-MVC squat exercise. SEM
between participants was 2.32. Inter-day reliability for the average
normalized RMS sEMG from the squat exercise produced good
reliability [ICC (2, 5) = 0.93] and an acceptable CV of 4.77%
(95% CI = 1.62–7.52). The average muscle activation for inter-
day testing between participants was 67.10% ± 20.63 for the
sub-MVC squat exercise. The SEM between participants during
inter-day testing was 1.84.

For the isometric handgrip test the average normalized RMS
sEMG data from the ECRB forearm muscle over the three trials
displayed good within-day reliability [ICC (2, 1) = 0.87] and
an acceptable CV of 5.89% (95% CI = 0.36–12.36). The average
muscle activation between participants was 45.98% ± 8.82 for
the handgrip test. SEM between participants was 1.57. On the
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other hand, inter-day relative reliability was fair during single
isometric contractions [ICC (2, 5) = 0.63]. CV also increased to
7.18% (95% CI = 3.40–12.71). The average muscle activation for
inter-day testing between participants was 45.91% ± 8.09 for the
sub-MVIC handgrip test. The SEM between participants during
inter-day testing for the isometric contraction was 1.93.

DISCUSSION

This is the first study to assess the reliability of the Myon
320 sEMG system during low velocity controlled movements,
such as those routinely used in rehabilitation. The researchers
investigated intra-session and inter-day reliability during sub-
maximal dynamic and isometric contractions while recording
sEMG measurements using the Myon 320 sEMG System.
The main findings were that the Myon 320 sEMG System
displayed good reliability associated with normalized RMS sEMG
measures (ICC > 0.80) for intra-session and inter-day testing
during dynamic sub-MVC. During 50% MVIC contractions the
Myon 320 sEMG System produced good intra-session repeated
measures (ICC > 0.80) and fair inter-day measures (ICC
0.60–0.79). The normalized RMS sEMG within the group of
participants in the study displayed a strong correlation with the
50% MVIC during the intra (45.98%) and inter-day (45.91%)
testing.

The high intra-session ICC for the normalized RMS sEMG
signal during the bilateral front raise and squat exercises
presented in the current study is consistent with previously
published literature (Worrell et al., 1998; Larsson et al., 1999;
Jobson et al., 2013). Larsson et al. (1999) reported that
reproducibility of the RMS sEMG signal was good and clinically
acceptable during dynamic forward flexion exercises when
recording muscle activity from the deltoid muscle. Similar to
the current study, Worrell et al. (1998) used normalized RMS
sEMG and reported good reliability when recording sEMG from
the VL muscle during an unweighted lateral step exercise (LSU)
(ICC = 0.91). During the LSU the VL muscle had an activation
percentage of 63% ± 24 MVIC. These reported reliability and
muscle activation results are similar to the current studies results
(ICC = 0.95) (68% ± 21 MVIC). However, even with these
good ICC reliability measures during dynamic contractions, two
participants displayed high variability between the three trials
performed on each of the testing days. The researchers suggest
these inconsistences are a result of increased perspiration levels
from the participants. This increased perspiration caused the
AMBU surface electrodes to move or detach leading to artifacts
within the sEMG signal. The movement of the surface electrodes
was more noticeable during the dynamic contractions than the
isometric contractions. These views are supported by Rashid
and colleagues who also documented problems with perspiration
when testing with the Myon 320 sEMG System (Rashid et al.,
2015). In addition, signal artifacts were also displayed within
one participant’s data set when testing the VL during the squat
exercise when the cable connection (length: 13 cm) between
the transmitter box and surface electrode came in contact with
the participants shorts. This problem was solved by taping the

shorts above the VL muscle. The taping in no way restricted the
participants’ movements during the squat exercise.

When comparing intra-session to inter-day testing for
dynamic exercises, the present study reported reduced ICC
measures, however, these were still within the suggested range
for good reliability (ICC > 0.80). The literature for inter-session
reliability is somewhat contrasting to the findings of the current
study. Worrell et al. (1998) reported poor ICCs during a dynamic
lateral step task. Jobson et al. (2013) results also displayed
poor ICC measures during cycling. One explanation for the
contrasting results could be the highly standardized range of
motion (ROM) of each of the dynamic exercises performed in
this study. This could have resulted in more consistent measures.
It could also be suggested that the step (Worrell et al., 1998)
and cycling (Jobson et al., 2013) reliability tests were performed
at a higher velocity than the squat and bilateral front raise
tests performed in this study, which could have resulted in the
contrasting findings. In addition to this, differences in findings
could be attributed to surface electrode placement repeatability
on the specified muscles and not the exercises performed within
the different protocols.

With regards to isometric contractions, the good ICC (0.87)
values for the normalized sEMG RMS data during intra-
session testing in the current study is consistent with previously
published research (Dankaerts et al., 2004; Hashemi Oskouei
et al., 2013). Hashemi Oskouei et al. (2013) reported good intra-
session ICC of 0.90 when recording muscle activity from the
forearm flexor muscles during gripping tasks. Good within-day
reliability (ICC = 0.91) has also been reported during MVIC
trunk exercises (Dankaerts et al., 2004).

With regards to inter-session reliability during isometric
contractions in this study, it would appear that reapplying the
electrodes on a subsequent day reduces the repeatability of the
normalized RMS sEMG signal. These findings are in agreement
with previous published literature (Hashemi Oskouei et al., 2013)
in which the removal and replacement of the surface electrodes
to the flexor muscles of the forearm resulted in fair to poor inter-
day reliability of the sEMG signal. A possible explanation for
the reduction in ICC results during the isometric contractions
within the two studies could be caused by the size and proximity
of the flexor and extensor muscles of the forearm (Hägg and
Milerad, 1997). The forearm area is comprised of many adjacent
small muscles, therefore increasing the possibility of EMG cross-
talk. When measuring muscle activity for the ECRB muscle
during the current study an inter-electrode distance of 2 cm
was selected which is in accordance with previous literature
(Hägg and Milerad, 1997; Sorbie et al., 2017), however, a
reduced inter-electrode distance should be considered in future
reliability research in order to reduce potential cross-talk. The
potential for surface electrodes to record signals from multiple
extensor forearmmuscles is a concern (Gallina and Botter, 2013).
These suggestions are supported by Dankaerts et al. (2004) who
reported good ICC values for inter-day reliability when testing
muscles with a larger belly circumference (trunk muscles) than
that of the forearm muscles. It could also be suggested that these
contrasting findings could be the result of difficulty in controlling
fatigue in the smaller forearm muscles. As a result of these
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concerns, isometric contractions from larger muscle groups are
preferred when using the Myon 320 sEMG System. In addition
to this, the current study is limited with regards to measuring
dynamic contractions from the forearm muscles. As a result
of this limitation, the reliability of dynamic contractions from
forearmmuscles when using the Myon 320 sEMG System should
be considered in future.

CONCLUSION

When using the Myon 320 sEMG System, the present study
shows that it is possible to obtain good reliability for normalized
RMS sEMG during intra-session and inter-day testing during
dynamic sub-MVC, when exercises are performed at low
velocities. This study also highlights the fair reproducibility of the
normalized RMS sEMG from the extensormuscles of the forearm
during a handgrip task during inter-session testing, which is in
agreement with previously published literature. Therefore, the

current study demonstrates that the Myon 320 sEMG System is
a reliable sEMG measurement tool, for low velocity controlled
movements.
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Aim: The aim of the present study was to determine the validity of position, distance

traveled and instantaneous speed of team sport players as measured by a commercially

available local positioning system (LPS) during indoor use. In addition, the study

investigated how the placement of the field of play relative to the anchor nodes and

walls of the building affected the validity of the system.

Method: The LPS (Catapult ClearSky T6, Catapult Sports, Australia) and the reference

system [Qualisys Oqus, Qualisys AB, Sweden, (infra-red camera system)] were installed

around the field of play to capture the athletes’ motion. Athletes completed five tasks, all

designed to imitate team-sports movements. The same protocol was completed in two

sessions, one with an assumed optimal geometrical setup of the LPS (optimal condition),

and once with a sub-optimal geometrical setup of the LPS (sub-optimal condition). Raw

two-dimensional position data were extracted from both the LPS and the reference

system for accuracy assessment. Position, distance and speed were compared.

Results: The mean difference between the LPS and reference system for all position

estimations was 0.21 ± 0.13m (n = 30,166) in the optimal setup, and 1.79 ± 7.61m

(n = 22,799) in the sub-optimal setup. The average difference in distance was below

2% for all tasks in the optimal condition, while it was below 30% in the sub-optimal

condition. Instantaneous speed showed the largest differences between the LPS and

reference system of all variables, both in the optimal (≥35%) and sub-optimal condition

(≥74%). The differences between the LPS and reference system in instantaneous speed

were speed dependent, showing increased differences with increasing speed.

Discussion: Measures of position, distance, and average speed from the LPS show

low errors, and can be used confidently in time-motion analyses for indoor team sports.

The calculation of instantaneous speed from LPS raw data is not valid. To enhance

instantaneous speed calculation the application of appropriate filtering techniques to

enhance the validity of such data should be investigated. For all measures, the placement

of anchor nodes and the field of play relative to the walls of the building influence LPS

output to a large degree.

Keywords: kinematics, position, instantaneous speed, accuracy, performance analyses, physical demands
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INTRODUCTION

Analyses of physical demands can improve the understanding
of physical performance and injury risk in sports. Such analyses
are therefore conducted in many individual and team sports
(Bangsbo et al., 2006; Montgomery et al., 2010; Gabbett,
2013; Gilgien et al., 2013; Luteberget and Spencer, 2017). In
investigations of physical demands in team sports, the overall
workload is often reported as a measure of athletes’ total effort.
Overall workload is dependent on the intensity and duration of
the tasks, and is often reported using parameters such as total
distance covered and distance covered in different speed zones.
Sometimes high intensity events are also measured, which are
characterized by inertia-based measures (Bangsbo et al., 2006;
Michalsik et al., 2013; Luteberget and Spencer, 2017). High
intensity events are reported using variables such as number of
sprints, number of accelerations, or distances covered above a
predefined speed threshold (Bangsbo et al., 2006; Michalsik et al.,
2013; Luteberget and Spencer, 2017). To measure the parameters
that describe these physical demands, Global Navigation Satellite
Systems [GNSS; e.g., Global Positioning System (GPS)], inertial
measurement units, a combination of the two, or video-based
analysis systems are used. In outdoor sports, GNSS is one
of the most frequently used methods for kinematic metrics
in team sports (Malone et al., 2016). Total distance traveled,
speed (e.g., time and distance in different speed zones), and
number of sprints are calculated from position data, which can
be obtained using GNSS technology, (sometimes integrated with
inertial measurement units). The main drawback of GNSS is its
restriction to outdoor facilities; therefore, indoor sports cannot
use GNSS for tracking of players in competition and training.
In indoor sports such as team handball, video-based analysis has
been the main method used to analyze position-related variables
(Sibila et al., 2004; Chelly et al., 2011; Michalsik et al., 2012,
2013; Póvoas et al., 2012, 2014; Karpan et al., 2015). However,
in the past decade local positioning systems (LPSs) have been
developed, which complement the role of hand operated and
semi-automatic video based analysis systems in team sports
(Leser et al., 2011). Most LPSs used in team sports are radio-
frequency based (Muthukrishnan, 2009; Frencken et al., 2010;
Ogris et al., 2012; Sathyan et al., 2012; Leser et al., 2014; Rhodes
et al., 2014; Stevens et al., 2014), in which radio-frequency signals
are used to measure the distance between several base stations
(anchor nodes) at known locations distributed around the field
of play, and mobile nodes worn by the athletes (Muthukrishnan,
2009; Hedley et al., 2010).

To allow meaningful analysis in sports, internal and external
validity (Atkinson and Nevill, 2001) of systems used for data
collection (e.g., LPS or GNSS) are important. External validity
is related to the degree the data acquisition setting reflects the
real sport setting. To maximize external validity, data acquisition
should be conducted in a real-life sport setting, with minimal
obstruction of the execution of the sport. Internal validity relates
to the accuracy and repeatability of the measurements, and
should be of a quality that allows quantification of small changes
of practical importance within and between athlete activity
profiles (Jennings et al., 2010). If the validity of a system is not

sufficient, the implementation of training or competition results
based on the measurement system may cause harm to athletes in
terms of prescription of inadequate training, leading to decreased
performance and/or increased health risks (Foster, 1998; Gabbett,
2004). In turn, this can result in reduced team performance, thus
affecting a team’s structure and economic situation. Compared
with investigating athletes in a laboratory setting, external validity
has been improved to a large degree by systems such as GNSS
and LPS, as these facilitate data acquisition in real-life training
and competition. However, optimization of external validity can
have a negative impact on internal validity (Atkinson and Nevill,
2001). Thus, investigations of the accuracy and repeatability of
systems are important in order to be confident about the validity
of data.

The accuracy of GNSS has been quantified for use in
individual sports (Waegli and Skaloud, 2009; Gilgien et al.,
2013, 2014, 2015; Supej and Cuk, 2014; Boffi et al., 2016; Fasel
et al., 2016; Specht and Szot, 2016) and for team sports over a
wide range of courses and velocities (Coutts and Duffield, 2010;
Jennings et al., 2010; Cummins et al., 2013; Johnston et al., 2013,
2014; Scott et al., 2016). However, to our knowledge, only a small
number of studies have investigated the accuracy of LPS for team
sports (Frencken et al., 2010; Ogris et al., 2012; Sathyan et al.,
2012; Leser et al., 2014; Rhodes et al., 2014; Stevens et al., 2014).
The accuracy of LPS is mainly dependent on the signal type;
environmental conditions, such as obstructions and materials in
the surroundings of the field of play; the geometry between signal
anchor nodes and the units on the athletes (Muthukrishnan,
2009; Malone et al., 2016); and the signal analysis and parameter
calculation process. Indoor venues have been shown to elicit
greater errors in LPS compared to outdoor venues, probably as
a consequence of an increased multipath propagation compared
to outdoor conditions (Sathyan et al., 2012). Thus, validation of
a positioning system should be executed in the typical conditions
in which it is used. In GNSS, the geometrical setup of the satellites
(anchor nodes) is outside the user’s control. In LPS, on the other
hand, the geometry of the anchor nodes can be altered by the user
in the installation process. To our knowledge, no studies have
assessed the effect of the anchor node setup and the positioning
of the field of play relative to the building’s walls (signal multipath
problem) on the accuracy of LPS.

In commercial positioning systems, data processing, such as
derivation of kinematic metrics from position data, may vary
between different LPS and GNSS systems, and even between
different software in the same service product (Gilgien et al.,
2014; Malone et al., 2016). However, the derivation of metrics
is often not elucidated in the manufacturer’s documentation,
which complicates comparisons between different systems and
software (Malone et al., 2016; Specht and Szot, 2016). Currently
multiple LPS systems are commercially available, which differ in
data acquisition technology, sampling rates and data processing
steps; this affects the validity of the data output (Malone et al.,
2016; Varley et al., 2017). Thus, the validity of one system does not
apply to other systems, and individual validation of each system
is required.

The aim of the present study was to (1) determine the
validity of position, distance traveled and instantaneous speed
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of a commercially available LPS (Catapult ClearSky T6, Catapult
Sports, Australia) for indoor use; and (2) to investigate how
the placement of the field of play relative to the anchor nodes
and walls of the building affects the validity of the system.
The study investigated these two questions in a typical indoor
sport application, comparing the raw data from the LPS with
a gold standard reference system (infrared light-based camera
system).

METHOD

In the present study, we investigated the validity of an LPS system
for monitoring movements in indoor team-sport athletes. Two
male and two female active team handball players [age, 23.0 ±

2.2 years; body mass, 76.6 ± 11.4 kg; height, 172.3 ± 10.1 cm;
mean ± standard deviation (SD)] participated in the study. All
participants received verbal and written information about the
procedures of the study, and gave signed consent to participate in
the study. The Norwegian Social Science Data Services approved
the study.

Data Acquisition
The study was conducted in a sports hall measuring 50 × 70
× 11m, on an indoor surface (Pulastic SP Combi, Gulv og
Takteknikk AS, Norway). The participants completed a total of
five tasks, all designed to imitate team-sports movements, as
shown in Figure 1. Task 1: a straight-line sprint and deceleration
to a stop. Task 2: two diagonal movements, forward and back
to the left and the right, with the paths separated by an angle
of ∼75◦.Task 3: a straight-line sprint, a 90◦ turn, and then
deceleration to a stop. Task 4: a zig-zag (angle of turns ≈ 60◦)
course executed with sideways movements, and a 360◦ turn. Task
5: five continuous laps of the same course as in task 4, without the
360◦ turn. All tasks were commenced from a standing position.
Each task was executed 5 times, with the exception of task 1,
which was executed 9 times. Thus, a total of 116 trials were
captured for each of the test conditions. Participants completed
an individually selected warm-up before commencement of the
tasks. All tasks were practiced during the warm-up. Participants
were instructed to give maximal effort in all tasks. Subjects were
tested on two separate days. The same protocol was completed
in both sessions, on 1 day with an assumed optimal setup of the
LPS (Optimal; Figure 1, field B), and on the other day with a
sub-optimal setup of the LPS (Sub-optimal; Figure 1, field A).
In the optimal setup, the LPS was arranged symmetrically, with
a larger distance between the nodes and the testing area. In the
sub-optimal setup, the LPS was asymmetrical, and the distance
between the nodes and the testing area was small (Figure 2). This
was done to replicate the effect of short distances between LPS
anchor nodes and the field of play.

The LPS (Catapult ClearSky T6, Catapult Sports, Australia)
and the reference system (Qualisys Oqus, Qualisys AB, Sweden)
were installed around the field of play to capture the athletes’
motion with both systems. During each trial 16 anchor nodes
that were fixed around the handball court (Figure 2) collected
LPS data, with a reported capturing frequency of 20Hz. The LPS
was set up to cover a field size of 20× 40m, the dimensions of an

official team handball court. Each participant was instrumented
with a lightweight (≈28 g) mobile node (firmware version: 1.40),
measuring L: 40mm×H: 52mm× D: 14mm. The mobile node
was positioned between the shoulder blades, in themanufacturer-
supplied vest (Catapult Sports, Australia). At all times during the
data acquisition, 14 mobile nodes were turned on to simulate
the usual data load on the system. The spatial calibration of
the LPS was conducted using a tachymeter (Leica Builder 509
Total Station, Leica Geosystems AG, Switzerland), according
to the manufacturer’s recommendations preceding the testing
sessions. Reference data was collected using eight infra-red
cameras mounted on tripods around the testing area (Figure 2),
using a capture frequency of 100Hz. The capture volume was
10× 14m. A reflective marker, 12mm in diameter, was mounted
on the mobile node’s center to obtain a three-dimensional
position. The reference system was spatially calibrated according
to the manufacturer’s recommendations prior to the testing
sessions. Infra-red camera systems, such as the reference system
in this study, can provide accuracy within a possible error range
in a magnitude of millimeters (Chiari et al., 2005; Windolf
et al., 2008; Jensenius et al., 2012). The accuracy is dependent
on the number of cameras used, capturing volume, technical
specifications and settings of system parameters (Windolf et al.,
2008; Jensenius et al., 2012). In the current study, the calibration
was carried out using a calibration wand, with the exact length
of 749.2mm. The calibration resulted in a 6.14mm and 6.85mm
SD of the wand length, for optimal and sub-optimal condition,
respectively.

Data Processing
To compare the LPS-based data with the reference system, the
coordinate system of the reference system was transformed into
the LPS’s coordinate system using a Helmert transformation
(Sheynin, 1995). The transformation between the coordinate
systems was based on four reference points (12mm reflective
markers, positioned 1m above floor level, in the four corners
of the testing area). The positions of the reference points
were measured with the reference system in all trials, and
with a tachymeter (Leica Builder 509 Total Station, Leica
Geosystems AG, Switzerland) in the LPS coordinate system. The
Helmert transformation resulted in a mean position residual per
calibration point of 2.3 cm for the optimal condition and 0.4 cm
for the sub-optimal condition.

Raw position data (X and Y coordinates) was extracted,
both from the LPS and from the reference system, using
their respective software (LPS: OpenField, Catapult Sports,
Australia. Reference system: Qualisys Track Manager, Qualisys
AB, Sweden). All data analyses were conducted in MatLab
(The MathWorks inc., USA). Due to incomplete LPS raw data
(resulting from loss of signal during parts of the trials), 22
(sub-optimal condition) and 1 (optimal condition) trials were
excluded from further data analyses. The capture frequency of
the LPS system was not constant. The mean capture frequency
was calculated to be 17.5Hz. To overcome the issue of a variable
capture frequency, the position data, from both the LPS and
reference system, were resampled at the mean capture frequency
of the LPS using a second order natural spline function. Trials
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FIGURE 1 | Diagram of the tasks.

FIGURE 2 | Setup of nodes around the handball court. The anchor nodes were suspended ∼3m above the floor.

including data gaps >1 s were excluded from the analyses. This
resulted in the exclusion of 30 (sub-optimal condition) and 12
(optimal condition) trials from analysis. Thus, 64 (55%) trials
(sup-optimal condition) and 103 (89%) trials (optimal condition)
were available for analysis in this study. LPS and reference system
data were time synchronized using cross-correlation of speed
data. For that purpose the following steps were undertaken: (1)
Position data in the horizontal plane (X and Y coordinates)
were differentiated to obtain horizontal plane speed, for both
LPS and reference system, using a four-point finite central
difference formula (Gilat and Subramaniam, 2011). (2) LPS

and reference system data were time synchronized using cross-
correlation (Buck et al., 2002) of horizontal plane speed data.
After time synchronization, data was trimmed to reflect only
the time athletes were performing the trials, by using a speed
threshold of 0.5 m·s−1 (determined from the reference system).
Two-dimensional position data at 17.5Hz were used to calculate
distance and speed. Distance traveled per trial was calculated as
sum of the Euclidean distance between consecutive points. Speed
in the horizontal plane (hereafter called speed) was calculated
from position data, using a four-point finite central difference
formula (Gilat and Subramaniam, 2011).

Frontiers in Physiology | www.frontiersin.org 4 April 2018 | Volume 9 | Article 115181

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Luteberget et al. Validity of LPS for Indoors Sports

Method Comparison
The variables of position, distance and speed were compared for
each task, using the norm of the differences between the LPS
and the reference system. Mean difference, SD, and maximal
difference in position were calculated. To express the results
for position, the difference for each task from the reference
system was assigned to bin limits in a histogram, and expressed
as a percentage of the total number of raw data points, thus
excluding the effect of duration of the task on the results. For
distance, instantaneous and mean speed, the differences were
characterized by mean, SD and maximal difference.

RESULTS

The mean difference between the LPS and reference system for
all position estimations was 0.21 ± 0.13m (n = 30′166) in the
optimal setup, and 1.79± 7.61m (n= 22′799) in the sub-optimal
setup. Task 2 and task 5 showed the lowest mean (<0.20m) and
maximal differences (<1m) in the optimal setup. In the sub-
optimal condition, task 3 showed the lowest mean and maximal
differences, but all differences in the sub-optimal condition were
greater than in the optimal condition. Mean and maximum
position differences for all tasks are displayed inTable 1. Figure 3
presents the difference distribution in position in the five tasks,
for both the optimal and sub-optimal condition.

With respect to distance, the mean differences between
systems were 0.31 ± 0.40m and 11.42 ± 26.21m in the optimal
and sub-optimal condition, respectively, for all tasks combined.
The mean difference was well below 2% in the optimal condition,
for all tasks (Table 2). Task 5 showed the lowest difference in the
optimal condition. In the sub-optimal condition, all tasks showed
higher differences, of ≥15% in all tasks. The LPS overestimated
the distance compared to the reference system for both the
optimal and sub-optimal condition.

Instantaneous speed showed mean differences of ≥33% for
both the optimal and sub-optimal condition (Table 3). Figure 4
displays all instantaneous speed measurements and reveals a
direct association between speed and mean error. For mean
speed, the mean difference was below 3% for all tasks (Table 4) in
the optimal condition. The sub-optimal condition showed higher
values across all tasks (≈15–30%).

DISCUSSION

The aim of the current study was to investigate the validity
of a commercially available LPS designed to track indoor team
sports. The mean difference in position between the LPS and the
reference system was below 0.35m in all tasks in the optimal
condition, while in the sub-optimal condition the difference was
above 8m in all tasks. Mean difference in distance was below
2% in the optimal condition, while it was below 30% in the sub-
optimal condition for all tasks. Instantaneous speed showed the
largest differences between the LPS and reference systems of all
measures tested, both in the optimal (≥35%) and sub-optimal
condition (≥74%). Further, the difference between instantaneous
speed measurement in the LPS and the reference system was

TABLE 1 | Difference between the LPS and reference system for position, for

optimal and sub-optimal condition respectively.

Optimal Sub-optimal

n Average Maximum n Average Maximum

(m) (m) (m) (m)

Task 1 2468 0.27 ± 0.22 1.40 1449 1.46 ± 1.95 13.07

Task 2 4675 0.17 ± 0.11 0.81 2822 1.72 ± 1.42 8.24

Task 3 1190 0.34 ± 0.24 1.41 565 1.37 ± 1.72 9.60

Task 4 2379 0.26 ± 0.17 1.91 2118 1.41 ± 1.52 9.85

Task 5 19454 0.19 ± 0.10 0.96 15845 1.89 ± 9.10 194.64

dependent on the reference speed, with a higher speed yielding
a higher difference.

The position error of LPS is often investigated with static
measurements due to the lack of a reference system that
allows instantaneous position comparisons in motion. Static
measurements of the validity of LPS have shown an error range
of ∼1 to 32 cm (Frencken et al., 2010; Sathyan et al., 2012;
Rhodes et al., 2014). This large range can partly be attributed
to the different methodological setups and LPS technologies
used. The largest error was found in an indoor environment
(Rhodes et al., 2014), while the smallest error was found in an
outdoor environment (Frencken et al., 2010). Only one previous
study reported errors in position using LPS measurements in
dynamic tasks, with a mean error of 0.23m (Ogris et al., 2012).
Although the previous reported value was from an outdoor
environment, the results showed approximately the same error
in position as in the optimal condition in the current study
(0.21m in the current study vs. 0.23m in Ogris et al., 2012).
Position measurements are mainly used for time motion analyses
in sports, and thus our results seem acceptable for this purpose.
However, for other applications, such as tactical analyses, the
lack of information regarding the accuracy level needed makes
it difficult to confidently state that the LPS is either acceptable
or not. The similarity in error between the outdoor study by
(Ogris et al., 2012) and the current indoor study could indicate
that measurements in large halls with no obstructions may
create measurement conditions that are not much different from
outdoor conditions. However, the current study also seems to
indicate that small distances to walls and corners of halls, along
with the anchor node setup, have a major impact on position
accuracy.

Previous studies on LPS in indoor conditions show mean
errors ranging from 2.0 to 3.5% (Sathyan et al., 2012; Leser
et al., 2014), while studies in outdoor conditions have shown
errors ranging from 0.2 to 3.9% (Frencken et al., 2010; Sathyan
et al., 2012; Stevens et al., 2014). Presumably, previous studies
optimized the setup of the LPS when investigating the accuracy
of the systems, resembling the optimal condition in the current
study. The results of the current study showed a mean difference
in distance from the reference system of between 0.5 and
1.8% in the optimal condition, which is lower than previously
reported for indoor conditions. Some previous studies showed
an underestimation of distance with LPS systems (Frencken
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FIGURE 3 | Distance differences for each task compared to the reference system. The differences were assigned to accuracy categories, and expressed as

percentages of the total number of raw data points.

et al., 2010; Leser et al., 2014; Stevens et al., 2014), while
others overestimated distance (Sathyan et al., 2012; Rhodes
et al., 2014). The studies that showed an overestimation of
distance were conducted indoors, as was the current study,
leading to the speculation that indoor conditions may be
a contributing factor to the overestimation. However, the
differences could also be caused by differences in the filtering
techniques applied in different studies (Sathyan et al., 2012).
In the current study, no filters were applied to the data, in
order to investigate the raw output from the LPS. Further
investigations of the effect of filtering techniques on the validity
of the current data could be interesting, as filtering techniques
can affect the estimated distance and speed (Sathyan et al.,
2012; Malone et al., 2016). Distance traveled might be less
vulnerable to position error, since no amplification of error
through position derivation of position was conducted, as was
done with speed. However, error in distance traveled in sub-
optimal conditions was of a critically large magnitude, and
not useful for quantifying the distance covered for training

load purposes. Hence, for quantification of distance, only data
from the optimal condition can be used with confidence. In
addition, it might be reasonable to investigate whether filtering
techniques could reduce the error in distance for sub-optimal
conditions.

To our knowledge, very few studies have investigated the
validity of instantaneous speed measurements in team sports
(Varley et al., 2012). However, in match and training analyses,
distance data are often categorized into speed zones in order to
provide amore comprehensive metric for “intensity distribution”
of the athletes external loading (Malone et al., 2016). Such
categorization relies on instantaneous speed measurements. It
has been previously shown that peak speeds in LPS are less
accurate than mean speeds (Ogris et al., 2012; Rhodes et al.,
2014; Stevens et al., 2014); however, no previous study has
assessed the accuracy of instantaneous speed as determined
with an LPS over the whole range of dynamic tasks in team
sports. The current study shows that instantaneous speed differed
substantially between LPS and the reference system in both
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TABLE 2 | Difference between the LPS and reference system for distance traveled, for optimal and sub-optimal condition respectively.

Optimal Sub-optimal

n Reference Average diff Max diff Average diff Max diff n Reference Average diff Max diff Average diff Max diff

(m) (m) (m) (%) (%) (m) (m) (m) (%) (%)

Task 1 34 9.52 ± 1.40 0.14 ± 0.26 1.00 1.5 10.5 17 9.90 ± 0.16 2.46 ± 2.10 7.68 24.9 77.6

Task 2 16 33.31 ± 1.25 0.60 ± 0.57 2.18 1.8 6.5 13 23.88 ± 1.53 6.92 ± 5.07 17.37 29.0 72.7

Task 3 19 9.41 ± 2.36 0.15 ± 0.21 0.86 1.6 9.1 8 11.71 ± 0.29 2.45 ± 2.75 8.73 20.9 74.5

Task 4 18 15.97 ± 6.19 0.24 ± 0.18 0.64 1.5 4.0 13 21.38 ± 2.47 3.21 ± 3.35 9.43 15.0 44.1

Task 5 16 132.81 ± 3.92 0.64 ± 0.46 1.65 0.5 1.2 13 140.17 ± 4.95 41.38 ± 48.23 192.54 29.5 137.4

TABLE 3 | Difference between the LPS and reference system for instantaneous speed, for optimal and sub-optimal condition respectively.

Optimal Sub-optimal

n Average diff Max diff Average diff Max diff n Average diff Max diff Average diff Max diff

(m/s) (m/s) (%) (%) (m/s) (m/s) (%) (%)

Task 1 34 0.77 ± 0.86 10.40 34.8 375 17 1.43 ± 1.86 16.79 83.7 6101

Task 2 16 0.78 ± 0.70 7.56 33.5 237 13 1.60 ± 1.97 18.62 74.4 353

Task 3 19 0.92 ± 0.88 7.40 39.2 355 8 2.30 ± 2.94 31.25 87.7 982

Task 4 18 0.79 ± 0.71 8.10 35.3 477 13 1.64 ± 1.79 18.44 90.8 1175

Task 5 16 0.68 ± 0.58 8.67 37.0 197 13 1.73 ± 3.41 53.73 75.4 769

FIGURE 4 | Differences in instantaneous speed from the reference system, divided into speed thresholds.

the optimal and sub-optimal condition (Table 4), and that the
differences were speed-dependent (Figure 4). Our study shows
considerably higher errors than those previously shown in a
GNSS study (Varley et al., 2012). However, the GNSS-based study
investigated straight line running only, which could contribute
to these results. In addition, time synchronization and filtering

of raw data could play a significant role in error reduction for
instantaneous speed (Ogris et al., 2012; Stevens et al., 2014),
and the filtering techniques and time synchronization method
used in the aforementioned study (Varley et al., 2012) were not
disclosed. Mean speed has been investigated in several studies
(Frencken et al., 2010; Ogris et al., 2012; Rhodes et al., 2014;
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TABLE 4 | Difference between the LPS and reference system for average speed, for optimal and sub-optimal condition respectively.

Optimal Sub-optimal

n Reference Average diff Max diff Average diff Max diff n Reference Average diff Max diff Average diff Max diff

(m/s) (m/s) (m/s) (%) (%) (m/s) (m/s) (m/s) (%) (%)

Task 1 34 2.30 ± 1.38 0.05 ± 0.14 0.77 2.2 33.3 17 1.93 ± 1.46 0.50 ± 0.47 2.02 26.0 105.1

Task 2 16 2.00 ± 0.71 0.03 ± 0.03 0.08 1.4 4.1 13 1.82 ± 0.76 0.50 ± 0.34 1.12 27.6 61.4

Task 3 19 2.64 ± 1.25 0.07 ± 0.17 0.71 2.8 26.9 8 2.75 ± 1.47 0.55 ± 0.62 2.00 20.2 72.8

Task 4 18 2.12 ± 0.79 0.05 ± 0.07 0.30 2.3 14.0 13 2.18 ± 0.90 0.32 ± 0.33 0.94 14.7 43.4

Task 5 16 1.91± 0.56 0.01 ± 0.01 0.02 0.5 1.2 13 1.90 ± 0.54 0.55 ± 0.67 2.65 29.1 139.0

Stevens et al., 2014), and is often used as an overall indicator of
the intensity of an activity. Compared to previous studies, the
current study shows similar results (Table 3) in terms of mean
speed errors (Frencken et al., 2010; Ogris et al., 2012; Rhodes
et al., 2014; Stevens et al., 2014), thus, the LPS can give an overall
indication of the intensity of the activity.

In the current study, the same measurement system was
applied with the same measurement setting, but in two different
conditions (optimal and sub-optimal condition). The factors
that changed between the two conditions were the anchor
node positions relative to the field of play and the distance
between the side walls and corners of the hall to the field of
play. The current study shows that changes in the placement
of anchor node positions relative to the field of play and the
distance between the side walls and corners of the hall to
the field of play can affect the accuracy of data. Placement
of nodes has an effect on the geometry of the anchor nodes
relative to each other and the mobile node. In addition to
changes in geometry, close proximity of the edge of the field
and the walls may cause the mobile nodes to go undetected
by multiple anchor nodes, thus producing a higher error rate.
Close proximity between the edge of the field and the walls
may also increasemultipath propagation (Muthukrishnan, 2009),
which will reduce the accuracy of data. The current study was
not designed to isolate the different contributors (geometry,
undetected nodes, andmultipath propagation), thus the results of
this study show the sum of errors accumulated from all sources.
Further investigations are needed to understand the impact of
the different contributors and how this could contribute to the
optimization of anchor node placement.

LIMITATIONS

The method used in this study resulted in a position difference
of 2.3 and 0.4 cm between the LPS and reference system, during
optimal and sub optimal conditionings respectively. This is
sufficient to detect the differences between the systems.

The effect of anchor node placement is especially important in
smaller sports halls, when all distances to the walls are small. In
the current study, both conditions were tested in a large sports
hall, in order to keep variables such as distance to ceiling and
material of walls and floors constant. The current results for the
sub-optimal setup cannot be assumed to be true for smaller sports

halls, since small sport halls will have shorter distances between
field of play and the walls on all four sides of the field, while
in the current study only two side walls were close to the field
of play. In small sports halls we might therefore expect even
higher errors than in the sub-optimal condition of the current
study. However, the study showed that changing the anchor node
positions relative to the field of play and the distance between
the side walls and corners of the hall to the field of play does
affect the accuracy of the system. To optimize the measurement
setup in small sport halls, future investigations should include
tilting of nodes in the vertical direction to the field of play,
and optimization of the geometry of anchor node positions
relative to the field of play. Special attention should be given to
multipath minimization to avoid mobile nodes going undetected
by multiple anchor nodes close to corners by adjusting the tilting
and positioning of nodes close to corners.

In the current study the raw positional data was examined.
However, not all systems provide unfiltered raw positioning data
for the user. In addition, practitioners will most likely not process
data in independent software. Hence, validation of software-
derived metrics is still needed, and should also be undertaken
in future for the system investigated in this study. The current
study provides insight into the raw positional data and the errors
in the acquisition technology, without the possible influence of
the manufacturer’s software, which is important for researchers
who want to process data using independent software. The
export of raw positioning data from the systems allows filtering
and processing of metrics independent of the manufacturer’s
software. Using manufacturer-independent software for raw
data treatment and metric calculation may not only increase
control of the process (Malone et al., 2016), but also avoid
inaccuracies when collecting longitudinal data, which will be
affected by software updates and other changes in the capture
system. In addition, independent processing allows the user
to provide details on the data processing in publications to
facilitate appropriate interpretations and ease replication by
other investigators. The positioning data (granted that it is not
subjected to any filtering) is not affected by software updates,
and thus could be used as a more stable measure of validity
than software-derived metrics. In addition, raw position might
be themost unaffected variable and should be used as the primary
variable to compare measurements between different positioning
systems’ acquisition technology.
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CONCLUSIONS AND PRACTICAL
APPLICATIONS

The accuracy of LPS output is highly sensitive to relative
positioning between field of play and walls/corners and anchor
nodes. Measures of position, distance, and mean speed from the
LPS can be used confidently in time-motion analyses for indoor
team sports, in conditions similar to the optimal condition in
this study. In small sport halls or in conditions when walls, and
especially the corners of the room are close to the field of play,
accuracy is relatively poor and caution is indicated.

The LPS is not valid in calculating instantaneous speed from
raw data. Therefore the use of LPS systems for quantifying
distance covered at different velocity bands is not recommended.
The application of appropriate filtering techniques to enhance the
validity of such data should be investigated.

Future studies should assess the relative contribution to total
error of (1) signal multipath effects, which occur to a larger extent
in close proximity to walls and corners; and (2) by the positioning
and orientation of anchor nodes relative to the field of play. The
inclusion of a dilution of precision measure would enhance the
optimization of anchor node positions.
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Muscle activity and fatigue performance parameters were obtained and compared
between both a smart compression garment and the gold-standard, a surface
electromyography (EMG) system during high-speed cycling in seven participants. The
smart compression garment, based on force myography (FMG), comprised of integrated
pressure sensors that were sandwiched between skin and garment, located on five
thigh muscles. The muscle activity was assessed by means of crank cycle diagrams
(polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue
was assessed by means of the median frequency of the power spectrum of the EMG
signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal.
The smart compression garment returned performance parameters (muscle activity and
fatigue) comparable to the surface EMG. The major differences were that the EMG
measured the electrical activity, whereas the pressure sensor measured the mechanical
activity. As such, there was a phase shift between electrical and mechanical signals,
with the electrical signals preceding the mechanical counterparts in most cases. This
is specifically pronounced in high-speed cycling. The fatigue trend over the duration of
the cycling exercise was clearly reflected in the fatigue parameters (FDs and median
frequency) obtained from pressure and EMG signals. The fatigue parameter of the
pressure signal (FD) showed a higher time dependency (R2 = 0.84) compared to the
EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue
as a function of time rather than on the origin of fatigue (e.g., peripheral or central
fatigue). In light of the high-speed activity results, caution should be exerted when
using data obtained from EMG for biomechanical models. In contrast to EMG data,
activity data obtained from FMG are considered more appropriate and accurate as an
input for biomechanical modeling as they truly reflect the mechanical muscle activity.
In summary, the smart compression garment based on FMG is a valid alternative to
EMG-garments and provides more accurate results at high-speed activity (avoiding the
electro-mechanical delay), as well as clearly measures the progress of muscle fatigue
over time.

Keywords: smart compression garment, force myography, pressure sensors, EMG, cycling, crank polar diagram,
muscle fatigue, fractal dimension
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INTRODUCTION

The European Parliament Scientific and Technology Options
Assessment Panel . . . identified wearables as one of the ten
technologies which will change our lives. Market prospects for
wearables are very promising: wearables shipments are forecasted
to increase to $150 billion by 2026 from the estimated level of $30
billion in 2016 (European Commission, 2016).

Wearable technologies were the most popular and leading
fitness trend in 2016 for the first time, and continued to be so
in 2017 (Thompson, 2015, 2016). The major drawback of smart
wearables, in contrast to non-wearable laboratory equipment, is
that their technology is not very accurate yet, mainly due to too
many unvalidated products in the market (Düking et al., 2016).

This research deals with smart wearables for muscle
performance assessment, the gold standard of which is
undeniably electromyography (EMG). There are several
problems associated with EMG, clearly pointed out by De Luca
(1997) which makes it difficult to use EMG in wearables:

(1) EMG measures the electrical activity of a muscle which the
mechanical activity lags behind (electro-mechanical delay).

(2) The amplitude of the EMG signal is non-linearly correlated
to the muscle force, and depends on the number of motor
segments recruited on the surface of the muscle, next to the
electrodes.

(3) The electrodes should be located in the midline of the
muscle, halfway between innervation zone and the next
myotendinous junction.

(4) Shifting the electrodes along the action line of the muscle
decreases the signal amplitude and a sideward shift
decreases the amplitude of higher frequencies (thereby
suggesting fatigue if the textile integrated electrode moves
sideways).

(5) Tri-polar electrodes are preferable over bipolar ones, as the
former eliminate crosstalk between muscles.

Furthermore, gel-/salt-based electrodes are required to reduce
the skin resistance, although special design of embroidered
electrodes can overcome this problem (Taelman et al., 2007; Shafti
et al., 2017).

In spite of the issues pointed out above, two companies are
selling EMG-based garments for performance analysis: Athos
(Mad Apparel Inc., Redwood City, CA, United States) and
Myontec (Myontec Ltd., Kuopio, Finland). A third company,
Leo (GestureLogic Inc., Ottawa, Canada), developed an EMG
thigh-sleeve but never sold the product (Early, 2016). B10nix1

(B10NIX Ltd., Milano, Italy) have announced an EMG-based
shirt that is not commercially available yet. Athos2, for example,
assesses right-left muscle imbalance. Given the fact that precise
electrode placement is crucial for accurate results, equal activity
levels of muscle groups on the right and left side of the body
would generate different signals if the electrode were not placed
on the same spot on both right and left muscle groups. To the
best knowledge of the authors, there is not a single research

1http://wise.b10nix.com/
2https://www.liveathos.com/athletes

paper available on validation of the Athos garments, in contrast
to Myontec garments (e.g., Finni et al., 2007).

There are some research papers available that investigate
prototypes of EMG-based garments for activity analysis (Taelman
et al., 2007; Finni et al., 2007; Ribas Manero et al., 2016; Shafti
et al., 2017). Finni et al. (2007) used traditional EMG electrodes
incorporated in a garment, whereas Shafti et al. (2017) utilized
customized, embroidered electrodes, validated with traditional
gel-electrodes. Taelman et al. (2007) investigated the effect of
electrode misalignment in a smart shirt, in the same way as
Belbasis et al. (2015a) did (cf. Figure 1 of Belbasis et al., 2015a).
Ribas Manero et al. (2016), however, did not validate their
leggings prototype.

De Luca (1984) was the first to develop the concept of
myoelectrical manifestations of localized muscle fatigue (Merletti
et al., 1990). Fatigue is expressed in the EMG signal as an
increase in EMG amplitude (increase of motor unit recruitment
or synchronization by the central nervous system to maintain the
required force level, related to central fatigue) and a shift to the
lower frequencies of the EMG frequency spectrum (decrease of
the conduction velocity of motor unit action potentials over the
muscle, related to peripheral fatigue) (Mesin et al., 2009; Crozara
et al., 2015).

The Myontec garment measures the muscle fatigue threshold
(EMGFT2 according to Crozara et al., 2015), i.e., breakpoint in
the linear relationship between EMG amplitude and exercise
intensity (Lucia et al., 1999). The muscle fatigue threshold,
however, is not suitable for measuring the increasing fatigue over
time. Ribas Manero et al., 2016 were the first that attempted to
measure fatigue with an EMG garment prototype, by using the
instantaneous Average Rectified Value (iARV) signal. However,
they did not validate the fatigue data they obtained. For example,
although their iARV signal is supposed to increase with fatigue,
their initial data at the beginning of the exercise are also very high.
Another limitation in this technique is that sweat increases the
iARV signal (Ribas Manero et al., 2016).

There are several methods available for the assessment of
fatigue with EMG, such as FFT-based, time-based, amplitude-
based, and wavelet-analysis-based methods. Details can be found
in comprehensive reviews of Cifrek et al. (2009) and Gonzalez-
Izal et al. (2012). Both papers mention fractal dimension (FD)
methods without going into detail. The most common method
for assessment of fatigue (gold-standard method) is FFT-based,
and the onset of fatigue is characterized by a shift of the median
frequency to smaller frequencies (De Luca, 1997). Basmajian
and De Luca (1985) conducted an isometric experiment that
shows the difference between mechanical fatigue and metabolic
fatigue (measured with EMG and FFT method): the muscle force
decreased at the failure point, whereas the preceding fatigue point
was only detectable with EMG through the decreasing median
frequency (see Figure 8.1 in Basmajian and De Luca, 1985).

The FD methods for assessing muscle fatigue have increased
in importance over the last 10 years, with researchers using
different methods, such as the box-counting method (Troiano
et al., 2008, Beretta-Piccoli et al., 2015; Boccia et al., 2016)
to understand the fractal behavior. Marri and Swaminathan
(2016) used several methods [e.g., Higuchi (1988), Katz, Sevcik,
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box counting; multifractal analysis]. In most cases, Marri and
Swaminathan’s (2016) monofractal algorithms delivered smaller
FDs for fatigued muscles compared to non-fatigue; while the
opposite was true for multifractal algorithms where the FD was
mostly smaller than 1. In general, a signal’s FD ranges between a
value of 1 and 2, i.e., between a straight line or smooth curve, and
a maximally noisy signal filling up an area (Fuss, 2013).

Mesin et al. (2009) compared the FD of EMG signals to other
muscle fatigue indexes, indicating that EMG FD was least affected
by changes in conduction velocity and most related to the level
of motor unit synchronization, and suggesting that the FD is an
index of central rather than peripheral fatigue.

Furthermore, Mesin et al. (2009) found that in a power-trained
subject, FD does not have a clear trend, indicating that the level
of motor unit synchronization does not change, whereas the rate
of change of the median frequency is high. In an endurance-
trained subject, the rate of change of the median frequency is
lower than in the power-trained subject, whereas rate of change of
FD was high. These results suggest that power-trained athletes are
affected more by peripheral fatigue, whereas endurance-trained
athletes suffer more from central fatigue. Consequently, EMG-
FD seems to be more sensitive in endurance-trained muscles, and
EMG-FFT more sensitive in power-trained muscles regarding
fatigue.

An alternative method to EMG is mechanomyography
(MMG; Islam et al., 2013). In contrast to surface EMG, the quality
of the MMG signal is not affected by electrical interference and
changes of skin conditions as MMG measures the mechanical
action of a muscle. MMG offers two methodological options:

(1) Vibromyography or acoustic-myogram (phono-myo-
graphy) using accelerometers and/or micro-
phones.
The method assesses the low amplitude sound of lateral
oscillations generated by volumetric changes in active
muscle fibers at frequencies between 5 and 100 Hz with
microphones or low mass accelerometers (Fang et al., 2015).
However, the signals are affected by limb movements and
ambient noise, such that the method is not suitable for
sports applications (Islam et al., 2013).

(2) Pressure sensors used for force myography (FMG). The
sensors measure the pressure exerted by the muscles against
the skin by volumetric changes of the active muscles
(Castellini et al., 2014; Connan et al., 2016). Muscle bulging
increases the pressure non-linearly with respect to the
increase in muscle force (Belbasis et al., 2015a). The
most common sensors used for FMG purposes are off-
the-shelf FSR (force sensing resistive) sensors, either as
single sensors, several sensors (Connan et al., 2016) or
sensor matrix arrays (Zhou et al., 2017), that are preloaded,
compressed either by tight fitting garments or by elastic
bands to the surface of the relevant muscles (Lukowicz
et al., 2006; McLaren et al., 2010; Zhou et al., 2017),
Velcro bracelets (Connan et al., 2016), integrated in a
textile sleeve (Ogris et al., 2007), equipped with mechanical
preload adjustments (Li et al., 2012), or placed inside
a forearm orthosis (Wininger et al., 2008). Belbasis and

Fuss (2015) and Belbasis et al. (2015a,b) used several
customized piezoresistive polymer sensors sandwiched
between compression garment and skin. Meyer et al. (2006)
applied a capacitance pressure sensor array embedded in
textiles. Alternatively, Cheng et al. (2010) did not use any
sensors but instead measured the body capacitance and its
changes with movement.

The FMG or pressure sensor-based garments are a typical
example of lateral innovation, i.e., achieving the same goal
with other or alternative means, a common precursor of
a disruptive technology. Lateral innovation is characterized
by, e.g., lower costs, higher accuracy, better user-friendliness,
smaller hardware, simpler solution, simpler implementation,
less affected by error and method, better wearability, providing
additional information, or improved manufacturability (Fuss,
2017). However, none of these FMG solutions are commercially
available yet.

The aim of this paper was to explore an existing prototype
of pressure sensor-based garment (Belbasis and Fuss, 2015;
Belbasis et al., 2015a,b) for opportunities in performance analysis,
specifically muscle activation and fatigue, and to validate the
prototype against EMG, used as the gold standard for muscle
performance assessment.

The method selected for this task had to comprise of a
standardized repeatable activity and a defined fatigue protocol.
We used cycling on a stationary power-controlled bicycle as the
method of choice. Fatigue was assessed through the Fast Fourier
Transform (FFT, gold standard) of the EMG signal, as well as
with FD signal processing. For the latter, the Higuchi’s (1988)
method is considered the gold standard method, however, a new
customizable FD method (Fuss’ method; Fuss, 2013) was selected
that offers advantages over Higuchi’s (1988) method.

MATERIALS AND METHODS

Participants
Seven male participants (age: 28 ± 3.6 years; body height:
1.751 ± 0.059 m; body mass: 78.7 ± 7.9 kg) were involved
in the experiments. This study was granted Ethics approval by
the RMIT University Human Ethics Committee (approval no.
ASEHAPP 45-15) and adhered to the Declaration of Helsinki. An
informed consent form was filled in by all the participants before
the start of the experiment.

All participants were deemed healthy volunteers, passing
RMIT University Ethics Committee approval for health
requirements to sustain the level of exertion required during the
tests. The participants were all of above-average levels of fitness
participating in various sports such as running (participant 1
and 5), soccer (2 and 4), and cycling (3, 6, and 7) at least three
times a week. The overall cycling skill range was from Amateur
(participant 2) through to Semi-elite (participants 3 and 7).

Data Collection
A motion capture system (9 Camera – Qualisys Oqus System,
Göteborg, Sweden) was utilized to capture the limb segment
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angles of the participants, as well as providing tracking for
the rotational crank angle of the bicycle (Figure 1). The data
sampling frequency for motion tracking was set at 100 Hz, where
the marker positions are shown in Figure 1.

A previously developed smart compression prototype garment
(Belbasis and Fuss, 2015; Belbasis et al., 2015a,b) was utilized for
the testing of each athlete. The garment provided capability for
measuring and mapping changes in the surface pressure above
a muscle (Figure 1) where the active movement of the muscle
under the compression fabric was detected by a distributed
network of pressure sensors. The low-pressure sensors were
manufactured from two layers of a conductive piezoresistive
polymer, with an almost linear calibration curve of the average
equation of P = 97282000 σ1.184335 for two layers, where P is the
pressure in Pascal, and σ is the conductivity in Siemens (Fuss
et al., 2016).

The sensors were positioned over five of the thigh muscles
[rectus femoris (RF), vastus medialis (VM) and vastus lateralis
(VL), biceps femoris (BF), and semitendinosus (ST)] of the
participant’s right leg. In addition to the utilization of pressure
sensors, a 16-channel wireless EMG system (Wave Plus Wireless
EMG, Cometa Systems, Bareggio, Italy) was used for recording
the electrical signal (Figure 1) of the same muscles. The general
placement of the electrodes followed the recommendations of
SENIAM [Surface Emg for NonInvasive Assessment of Muscles]
(1999) and the optimum placement of the electrodes was
achieved by using the method of Belbasis et al. (2015a). To ensure
accurate capture of the muscle behavior throughout the tests a
data sampling frequency of 2000 Hz was utilized for both the
pressure and EMG sensors.

Experimental Method
A fatigue-inducing regiment based upon work by Dorel
et al. (2009) was developed to quantify the effects of fatigue
during cycling. The test protocol deliberately introduced
fatigue to the active muscles, allowing for the analysis of
muscle activity and performance under two known definitive
conditions, namely, a non-fatigued and a fatigued state.

To allow for sufficient muscle recovery, participants were
asked to follow the following testing procedures over two
testing sessions which were separated by at least 4 recovery
days.

The tests were performed on the participant’s own bicycle
mounted on the stationary ergometer (Wahoo Kickr, Wahoo
Fitness, United States).

To ensure that muscles were activated during the upstroke of
the pedal phase (180–360◦ of the crank cycle) clip-in shoe/pedal
combinations or caged pedals were utilized to prevent separation
of the foot and pedal.

The test persons performed a cycling exercise at a constant
power output equal to 80% of their functional threshold power
(FTP) for as long as possible; and maintained a constant pedaling
rate (cadence). The test continued until the cyclists were no
longer able to maintain their initial test cadence (±5 rpm).

Session One: FTP Ramp Test
Each participant was tasked with completing an incremental
cycling exercise (Ramp test). This involved the incremental
ramp-up of generated power to determine the exercise
limitations of the participant. Other than a heart-rate strap,
no instrumentation of the participant’s body was necessary for
this session. All testing begun at a target power output of 120
Watts with increasing workload increments of 20 W/min until
the target power could no longer be satisfactorily sustained.

To ensure consistent power output during the test the ERG-
mode setting of the Wahoo Kickr ergometer was utilized. This
setting constantly monitors the generated power and cadence
(angular velocity), and enforces a consistent target power output
through automatic adjustments to the cycling resistance level
(torque) through a magnetic actuator.

To prevent artificially enforcing an earlier end to the test,
reasonable changes in both cadence and gearing were permitted
by the participant to find their comfort zone to complete the
task. The FTP, defined as the last stage that was completed in its
entirety, was used to calculate the appropriate workload imposed
by the cycle ergometer during the second test session.

FIGURE 1 | Experimental set-up, motion capture, EMG signal, and muscle pressure signals; the latter three subfigures are screen shots of the software; the unit of
the EMG signal on the screen shot is mV·10−2 and unit of the pressure signal on the screen shot is V.
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Session Two: 80% FTP Fatigue Test
The second session, notably the primary data collection session,
involved the complete instrumentation of the participant’s right
upper leg with EMG, motion capture, and pressure sensor
equipment. Participants performed a self-directed warm-up
routine consisting of at least 3 min of cycling at a lower power
output to the test condition, ensuring sufficient preparation of
the participant for the test. Following the warm-up, subjects
performed a cycling exercise at a constant power output equating
to 80% of their measured FTP for as long as physically
maintainable. The ergometer was set at a fixed resistance
setting and the participant instructed to maintain the two target
parameters displayed to them; the target power output (80%
FTP), and a constant cadence freely adopted from the end
of the warm-up session. Surface muscle pressure, EMG and
angular parameters were recorded continuously throughout the
session.

To enforce repetitive muscle activation, participants were
asked to maintain a single cycling position, where shifting along
the saddle or handlebars was not allowed. The test continued until
the cyclists voluntarily chose to stop the exercise (fatigue-induced
exhaustion) or until they were no longer able to maintain their
initial test cadence (± 5 rpm), which was considered as a failure to
maintain the required task (the target power output at a constant
cadence).

Data Analysis and Statistics
The raw data of both pressure and EMG signals were recorded
in volts and millivolts, respectively, at a frequency of 2000 Hz,
simultaneously and synchronized with the motion capture
data utilizing a centralized trigger device. From the pedal
marker, the top dead center of the crank (highest marker
position) was set to 0◦ with increases in crank angle in the
clockwise direction (as viewed from right-hand side of the
bicycle).

For the muscle activity analysis, the signal amplitude (of
pressure signal and EMG) for ± 1.5 SD (removal of outliers) was
assigned to the crank angle. The average amplitude was calculated
with a running median filter of a window width of 7.5◦.

Subsequently, the average crank cycle data were normalized.
In order to calculate the average signal of each muscle across
all seven participants, the data of all participants were averaged,
squared (thereby assigning a greater weight to higher data),
and normalized again. The average crank angle of each muscle
was determined from that angle that divides the areas under
the signal into two equal parts (integration window = 180◦).
The average crank angle represents the position of the activated
muscle on the crank diagram as a single number for comparative
purposes.

For the fatigue analysis, the raw signal amplitude was
expressed as a time series with a fourth-order Butterworth
bandpass filter (10–350 Hz) applied to the EMG data to remove
noise. Raw pressure values were utilized with no further filters
applied, however, the original sampling frequency was reduced
to 80 Hz via postprocessing, due to the smoothness of the
pressure signals. Each of the muscle signals were subjected to
FFT (EMG only) and fractal dimensional analysis (EMG and

pressure signal). De Luca (1997) established that the median
frequency of an EMG signal over a set time period shifted
toward lower frequencies as a result of increasing muscular
fatigue. The negative trend of the median frequency over time
provided an understanding of the performance decrease in the
muscle under investigation. More specifically to cycling and this
research, the analysis builds on the approach taken by Dingwell
et al. (2008) by utilizing a Short-Time Fourier Transform (STFT)
technique, whereas the calculation of the power spectrum, and
the resultant median frequency, is performed over individual
time segments attributed to each crank cycle revolution. All
calculation was made using the FFT function within MATLAB
(The MathWorks, Inc., Natick, MA, United States) and a sliding
average window of 1 min width to define the averaged trend of
the data.

The FD of EMG and pressure signals was calculated with
the method developed by Fuss (2013). This method allows for
maximal separation of two conditions (e.g., fresh and fatigued
muscle states) by means of adjusting and optimizing the signal
amplitude multiplier. If this multiplier is set to high values
(infinity in theory), then Fuss’ method is identical to Higuchi’s
(1988) method. In order to identify the optimal amplitude
multiplier, the EMG and pressure signal’s FDs were calculated
for the second (fresh muscle) and second last (fatigued muscle)
full minute of the tests at different multipliers. The differential
of the FDs of fatigued and fresh states (Figure 2) was plotted
against the decadic logarithm of the multiplier (Fuss, 2013) and
the optimal multiplier was identified at the maximum differential.
This amplitude multiplier was then used to calculate the FDs
continuously through the signals with a running window width
of 1 min.

Both median frequency data and FDs data were normalized.
For comparing the fatigue development across all participants,
the time was normalized as well (due to different experiment
durations; cf. Table 2). The median frequency data and FDs data
were linearly correlated to the normalized time to assess the
percentage of the time dependence by means of R2. The R2-values
were compared as to their significant difference with Fisher’s
Z-test for comparing correlations from independent samples.

RESULTS

Power Data
The primary objective of the first testing session was to determine
each participant’s achievable FTP wattage level, allowing for
the normalized testing FTP target during the second test.
Outputs from the cycling trainer pertaining to the participant’s
performance data were collected and are shown in Table 1.
Application of the ramp test specifically assessed an individual’s
ability to increasingly deliver higher power output over time, as
such we expect a distribution in the resultant efforts throughout
the sample group because of differences in physical ability and
familiarization with the task. Due to the similarity in skill set
and fitness between the participants, five participants fell within
the bounds of one SD from the mean of the duration and
achieved FTP level. The other two participants, namely, the
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FIGURE 2 | Fractal dimension (FD) optimization procedure (Fuss, 2013); (Left) EMG; (Right) pressure; top row: raw data and data segments used for calculating the
FD differential of fresh (blue) and fatigued (red) muscle; bottom row: FDs and FD differential against multiplier of signal amplitude; blue curve: FD of fresh muscle;
dashed red curve: FD of fatigued muscle; bold orange curve: FD differential (FD of fatigued muscle – FD of fresh muscle); the optimal multiplier of signal amplitude is
found at the maximum (peak) of the bold orange curve.

TABLE 1 | Session one activity summary.

Participant Duration
(min:s)

Duration
(s)

FTP Level
(W)

Total work
(kJ)

Mean cadence
(rpm)

Mean cadence
(rad/s)

Mean power
(W)

Mean torque
(Nm)

1 10:35 635 320 141 88 9.2 222 24.1

2 06:09 369 220 62 58 6.1 168 27.7

3 17:11 1031 420 272 82 8.6 264 30.7

4 12:12 732 320 151 74 7.7 206 26.6

5 09:11 551 260 100 70 7.3 181 24.8

6 12:14 734 340 167 90 9.4 228 24.1

7 13:07 787 360 189 68 7.1 240 33.7

Mean 11:31 691 320 154.57 75.71 7.9 216 27.4

SD 03:26 206 65.32 66.92 11.57 1.2 33 3.7

FTP = functional threshold power, i.e., the maximal power achieved in the incremental ramp-up of generated power (stepwise increase of power starting at 120 W).

least experienced cyclist (participant 2; Table 1), and the most
experienced (participant 3) were within two SDs.

Following the determination of the participant’s FTP level,
individual 80% FTP calculations were made for each participant
and utilized for the second session to ascertain fatigue behavior.
This inclusion of the additional biomechanical measurement
systems (Pressure, EMG, and MOCAP) within the second test
session allowed for greater insight into the onset and continued
fatigue behavior of the muscles in the lower limbs.

A summary of key test data relating to each test is shown in
Table 2. Accuracy of achieving the target of 80% FTP loading
required was met within a satisfactory range (5%) for each
participant with the mean accuracy within 1% of the grouped
aim.

A noticeable deviation in the results was the duration of
the test for participant 2 (least experienced). While all other
participants concluded the test within one SD of the test mean
(9:33 min of exercise), the fatigue tolerance for participant 2
forced an end to the test after only 3:28 min. This result aligns
with the experience level of the participant in comparison with

that of the other participants, where duration of the test is
largely driven on the physiological and psychological conditioned
nature of the muscle and participant to operate under increasing
fatigue-limiting conditions. The experience level also correlated
with the mean power and torque (Table 2) such that the least
(participant 2) and most experienced (participants 3 and 7)
participants exhibited the lowest and highest values, respectively.

Muscle Activation
Through the motion capture of the pedal stroke movement, the
muscle activity was resolved to the corresponding angle of the
crank where each individual muscle was utilized, shown on polar
diagrams.

The polar diagrams of three representative participants are
shown in Figure 3. The EMG graphs of the extensors (RF, VM,
and VL) exhibited overlapping activity in the same sector of
the diagram, with individual differences: in Figure 3 (top and
bottom rows) at 330–360◦, whereas in Figure 3 (middle row) at
30◦. The pressure-based activity deviated from the EMG-based
activity in general by a clock-wise phase shift. For example, in
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TABLE 2 | Session two activity summary.

Participant Duration
(min:s)

Duration
(s)

Mean
power (W)

Total work
(kJ)

Mean
cadence (rpm)

Mean cadence
(rad/s)

Mean
torque (Nm)

Target Power
(W)

Target
Accuracy %

1 09:28 568 259 147 84 8.8 29.4 256 98.84

2 03:28 208 175 36 68 7.1 24.6 176 100.57

3 11:18 678 330 224 81 8.5 38.9 336 101.82

4 09:15 555 257 143 71 7.4 34.6 256 99.61

5 12:41 761 208 158 64 6.7 31.0 208 100

6 09:52 592 268 159 80 8.4 32.0 272 101.49

7 12:00 720 275 198 66 6.9 39.8 288 104.73

Mean 09:43 583 253 152.00 73 7.7 32.9 256 101.01

SD 03:03 183 49.6 59.1 8.1 0.8 5.4 52.3 1.94

Target power = 80% of FTP shown in Table 1; target accuracy = target power/mean power × 100.

Figure 3 (bottom row), the extensors still overlap, although not
that perfectly as in the EMG plot, but the peak activities are
shifted by 30–60◦ clockwise. In Figure 3 (middle row), RF shows
pressure and EMG activity in the same sector, whereas for VM,
the pressure signal is shifted counter clockwise by approximately
30◦ with respect to the EMG signal, and VL is shifted clockwise
by more than 60◦. In Figure 3 (top row), RF and VM are
shifted clockwise by 30◦ and 70◦, respectively, and VL by almost
180◦.

Comparing the three pressure plots, the activity of RF ranges
from 20 to 30◦, VM from−10 to 50◦, and VL from 40 to 150◦.

The flexor muscles (BF and ST) showed less consistent EMG
activation patterns than the extensors: ST at 90◦, 90◦, and 180◦;
and BF at 100◦, 110◦, and 340◦. The pressure activation patterns
are, in general, shifted clockwise as already seen in the extensor
muscles, namely the BF by 70◦, 70,◦ and 200◦; and the ST by
−30◦, 70◦, and 150◦.

Comparing the three pressure plots, the peak activity of BF
occurs around 170–180◦, whereas the one of ST ranges from 150
to 240◦.

Figure 3 (top row) shows a co-contraction of the three
extensors and the BF on the EMG plot, whereas the
pressure plot confines the co-contraction to VL and BF.
The same is true for both the hamstrings and the VL on the
pressure plot [Figure 3 (middle row)], whereas the EMG
plot appears to be free of co-contractions. The latter is
true for both pressure and EMG plots in Figure 3 (bottom
row).

Figure 4 shows the average muscle activation patterns of all
seven participants combined, thereby highlighting the sectors
used by most participants.

In general, while the muscle activities, measured with EMG
or pressure, are relatively consistent across athletes, they do not
coincide when the two different methods are compared directly
(Figures 3, 4).

The average angles of the EMG signal are: RF – 8◦, VM – 24◦,
VL – 23◦, BF – 110◦, and ST – 122◦; and of the pressure signal of
the five muscles are: RF – 24◦ (phase shift+16◦), VM – 8◦ (phase
shift−16◦), VL – 124◦ (phase shift+101◦), BF – 143◦ (phase shift
+33◦), and ST – 156◦ (phase shift+34◦);

The pressure plots of all but one muscle are characterized by a
clockwise phase shift with respect to the EMG plots of 16–101◦.

Only VM is shifted counter-clockwise by 16◦. This phase shift
phenomenon is attributed to the electromechanical delay of the
muscle signal, which will be explained in detail in the section
“Discussion.”

Muscle Fatigue
Assessment of the fatigue performance over the entirety of
the second test was made through two different measurement
methods and two different algorithms resulting in the need to
compare by correlation three different fatigue signals, namely, the
FFT (FFT median frequency; FFT-EMG) and the FD (FD-EMG
and FD-Pressure).

In general, when considering the overall behavior of each
participant (Figure 5), the overall fatigue trend is clearly seen in
all signals, with increasing (fractals) and decreasing (FFT) trends.

The normalized pressure fractals correlate with the
normalized cycling time in 84% of the results (R2 = 0.8405,
linear fit; 84% of the fatigue level is explained from the time
progression of the exercise). The normalized EMG fractals and
median frequencies correlate with the normalized cycling time
in 51% (R2 = 0.5081) and 71% (R2 = 0.7092) of the results
respectively. All three R2 values are significantly different (p = 0).

The R2-value expresses merely that, for the FFT method,
71% of the fatigue level are time-dependent whereas 29% are
not time-dependent. Time-independent fatigue would be if a
fatigue level or the average fatigue was kept relatively constant
over a longer time. Furthermore, the different performance levels
of the subjects could also contribute to the time-independent
fatigue; for example, more experienced athletes are more skilled
in fatigue management over time. FD-EMG reflects more time
independent fatigue (49%) compared to FD-pressure (16%), i.e.,
approximately three times as much. This phenomenon will be
discussed in more detail in the section “Discussion.”

DISCUSSION

The purpose of this study was to explore the applicability of a
smart compression garment based on FMG with pressure sensors
(Belbasis and Fuss, 2015; Belbasis et al., 2015a,b), measuring
muscle contraction, for assessment of muscle activity and fatigue,
as an alternative to EMG.
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FIGURE 3 | Polar plots of the activity of five muscles and three participants; Left column: EMG data, Right column: force myography data (pressure data).
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FIGURE 4 | Combined polar plots of the activity of five muscles of all seven participants; Left plot: EMG data, Right plot: force myography data (pressure data).

First of all, it is worth noting, that while the maturity
of the pressure monitoring technique is still in development,
the majority of common experimental issues (such as restarts,
corrupted data, time-consuming instrumentation of athletes)
was attributed to the installation and attachment of the EMG
equipment and electrodes, and the motion capture markers. The
simplicity and robustness of the wearable smart compression
garment system limited the possibility of experimental failures.

The first question to address is whether muscle activity can be
assessed and measured with the smart compression garment. The
signals obtained, related to the contraction pattern when cycling,
were highly comparable and consistent on the polar diagrams,
with some individual differences between participants.

The second objective of this study was to validate the muscle
activity pattern obtained from the smart compression garment
with a gold standard, i.e., a laboratory-based EMG system.
However, the muscle activation patterns obtained from EMG
and the smart compression garment were, to some extent,
not comparable (Figures 3, 4). The reason for this is not the
inferiority of the smart compression garment, which could be
easily deduced from the data, but rather the choice of the gold
standard. Undoubtedly, EMG is the (even if the only) gold
standard for assessment of muscle activity and fatigue. Yet,
EMG measures the electrical activity of the muscle, whereas the
smart compression garment detects the mechanical activity, i.e.,
muscle bulging that compresses the pressure sensors between
skin and garment. The difference between EMG and pressure-
sensor polar plots simply reflects the difference between electrical
and mechanical activity. The electro-mechanical delay (De Luca,
1997) of the contraction force with respect to the electrical
stimulation of a muscle is explained from the time difference
between onset of electrical activity and the increasing muscle
force. This delay is also dependent on muscle fiber distribution,
i.e., the percentage of fast- and slow-twitch fibers. For example,
to reach a contraction level of 50% of the maximal muscle force,
it takes a fast- and slow-twitch fiber approximately 0.15 and

0.25 s, respectively (De Luca, 1997). When cycling at a cadence
of 73 rpm (average cadence from Table 2), these two delay times
would cause, in theory, a phase shift of 66◦ and 110◦ on the polar
diagram. The differences seen in the EMG and pressure sensor
polar diagrams are therefore expected. According to EMG data
of Jorge and Hull (1986) and Hug et al. (2010), the quadriceps is
active from 300 to 130◦ and from 235 to 162◦, respectively, and
the hamstrings from 15 to 255◦ and from 324 to 288◦, respectively
(maximal ranges). The data seen in Figure 4 perfectly fit into
these ranges, which the exception of the VL, which exceeds 130◦.
Jorge and Hull (1986) also reference other papers, the results of
which show considerable differences and fluctuations, suggesting
that there is considerable variety of EMG results.

Nevertheless, EMG is still a gold standard for validating
the smart garment, as there is no other system available. The
gold standard therefore serves primarily for understanding the
differences between the data, and the underlying principles of
the different measurement systems. Validation is still possible, if
differences are known in the first place or at least expected, and
subsequently confirmed through a validation study. This issue
poses a new challenge for wearable technology not experienced
before, specifically when dealing with lateral innovation (Fuss,
2017). Finding a suitable gold standard could then become a
problem.

The third objective of this study was to assess whether
muscle fatigue can be measured from the pressure signals. The
evaluation was based on the calculation of the FDs of pressure
and EMG signals. For calculating these FDs, Fuss’ method
was used as it maximally separates the FDs of a normal and
an abnormal signal, by finding the maximum differential of
FD-abnormal − FD-normal, when subjecting both signals to
the same amplitude multiplier. Normal and abnormal signals
could be physiological/pathological ones, less/more chaotic ones,
signals from fresh and fatigued states, low/high activity signals,
etc. From common sense, the abnormal signal is expected to have
a higher FD. Common sense is confirmed if there is a maximum
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FIGURE 5 | Normalized average fatigue (fractal dimensions and median frequency) vs. normalized time: (A) pressure fractal, (B) EMG fractal, and (C) EMG median
frequency.

differential, and the two asymptotic fractal differentials at
multipliers of close to 0 or to infinity (Figure 2) are smaller
than the maximum. It has been seen on numerous occasions,
that Higuchi’s (1988) method, corresponding to Fuss’ method
with an infinite multiplier, returns higher FD for normal signals

(Fuss, 2013, 2016), compared to abnormal ones. This problem is
seen in Figure 2 as well, more pronounced in the EMG FD data,
though. This behavior is not unexpected in the EMG signal, as the
decreased amplitude of high frequencies in the power spectrum
(typically seen in fatigued muscles) leads to a decrease of FD.
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The increase in EMG amplitude, also typical for fatigue, increases
the FD. If the cadence drops, so does the FD. Even if there are
multiple influences that affect the FD, it would be more logical to
assume that the FD of a fatigued muscle’s signal is smaller than the
one of a fresh muscle, if the principle of left-shift of the median
frequency is known.

Irrespective of logical assumptions, all three methods applied,
FD-Pressure, FD-EMG, and FFT-EMG, showed the same clear
trend, namely, that fatigue increases with time, with some
individual differences between participants.

The fourth objective of this study was to validate the
muscle fatigue trend obtained from the smart compression
garment with a gold standard, i.e., a laboratory-based EMG
system. The same gold-standard problem as seen in the
muscle activation patterns is also applicable to fatigue to some
extent. When comparing FD-Pressure and FD-EMG to FFT-
EMG, all three variables correlated to the normalized time of
the experiments, FD-pressure showed highest time dependent
correlation (84%), and FD-EMG the highest time-independent
component (41%). These differences come from the fact that
FD-Pressure is more related to mechanical fatigue, whereas FD-
EMG and FFT-EMG are related to central and peripheral fatigue,
respectively.

There is indication (Mesin et al., 2009) that shift of the median
frequency of the EMG signal is related to peripheral muscle
fatigue (decrease in conduction velocity) whereas the FD of the
EMG signal is related to central fatigue (increase in motor unit
synchronization). This seems illogical at first sight, as the higher
the amplitude of higher frequencies is, the greater is the FD,
and therefore any reduction of median frequencies is coupled
to a smaller FD. This principle can be easily verified when
using synthetic fractal signals, such as Knopp/Takagi function,
Weierstrass cosine and Weierstrass-Mandelbrot functions, and
stochastic Brownian Motion function (Fuss, 2013). However,
EMG data are not based on functions that generate signals with
predefined FDs. As such, low median frequencies and small FD
do not necessarily exhibit a parallel trend. This possibility is also
affected by the method used for calculating FDs.

Furthermore, there is indication that a power-trained subject
was more affected by peripheral fatigue whereas an endurance-
trained subject was more prone to central fatigue (Mesin et al.,
2009). It is therefore expected that the correlation of fatigue
parameters that measure different components of fatigue is not
necessarily high. This correlation is not just affected by the
fatigue component, but also by the distribution of training type
across the participants of a study. For example, participant 3 is
a long-distance cyclist and therefore endurance-trained, whereas
participant 4 is a soccer player and thus power-trained.

If FD-EMG and FFT-EMG are related to central and
peripheral fatigue, respectively, then FD-pressure could be

related to mechanical fatigue. Mechanical fatigue is actually
defined as the failure of the muscle system, i.e., that the force
level cannot be maintained anymore (Basmajian and De Luca,
1985). Nevertheless, metabolic fatigue (measured with EMG)
becomes apparent even before system failure (Basmajian and De
Luca, 1985). As such, the term mechanical fatigue is probably not
appropriate, and should be replaced by mechanical pre-fatigue.

CONCLUSION

The smart compression garment based on FMG with pressure
sensors returned performance parameters (muscle activity and
fatigue) comparable to the surface EMG, used as gold standard
for validation. The major differences were that the EMG
measured the electrical activity whereas the pressure sensor
measured the mechanical activity. As such, there was a phase shift
between electrical and mechanical signals, with the electrical ones
preceding the mechanical ones in most cases. This is specifically
important in high-speed cycling, the activity investigated in this
study. Using the activity sectors on the polar diagrams, obtained
from EMG, for biomechanical models, could result in incorrect
outcomes, compared to using the activity data obtained from
FMG. The latter are considered more appropriate as input for
biomechanical modeling.

In terms of fatigue, apart from individual differences between
the participants, the fatigue trend over the duration of the cycling
exercise was clearly reflected in the fatigue parameters (FDs and
median frequency) obtained from pressure and EMG signals.
The fatigue parameter of the pressure signal (FD) showed a
higher time dependency (R2 = 0.84) compared to the EMG signal.
This reflects that the pressure signal puts more emphasis on the
fatigue as a function of time rather than on the origin of fatigue
(peripheral or central).
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A comprehensive monitoring of fitness, fatigue, and performance is crucial for

understanding an athlete’s individual responses to training to optimize the scheduling of

training and recovery strategies. Resting and exercise-related heart rate measures have

received growing interest in recent decades and are considered potentially useful within

multivariate response monitoring, as they provide non-invasive and time-efficient insights

into the status of the autonomic nervous system (ANS) and aerobic fitness. In team

sports, the practical implementation of athlete monitoring systems poses a particular

challenge due to the complex and multidimensional structure of game demands

and player and team performance, as well as logistic reasons, such as the typically

large number of players and busy training and competition schedules. In this regard,

exercise-related heart rate measures are likely the most applicable markers, as they

can be routinely assessed during warm-ups using short (3–5min) submaximal exercise

protocols for an entire squad with common chest strap-based team monitoring devices.

However, a comprehensive and meaningful monitoring of the training process requires

the accurate separation of various types of responses, such as strain, recovery, and

adaptation, which may all affect heart rate measures. Therefore, additional information

on the training context (such as the training phase, training load, and intensity distribution)

combined with multivariate analysis, which includes markers of (perceived) wellness

and fatigue, should be considered when interpreting changes in heart rate indices.

The aim of this article is to outline current limitations of heart rate monitoring, discuss

methodological considerations of univariate and multivariate approaches, illustrate the

influence of different analytical concepts on assessing meaningful changes in heart

rate responses, and provide case examples for contextualizing heart rate measures

using simple heuristics. To overcome current knowledge deficits and methodological

inconsistencies, future investigations should systematically evaluate the validity and

usefulness of the various approaches available to guide and improve the implementation

of decision-support systems in (team) sports practice.

Keywords: player monitoring, cardiac autonomic nervous system, individual response, smallest worthwhile

change, multivariate analysis, decision-making
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INTRODUCTION

Successful training and recovery management aims at optimizing
adaptation and overall preparedness for enhanced competitive
performance (Buchheit, 2014; Cardinale and Varley, 2017;
Coutts et al., 2018; Kellmann et al., 2018). Monitoring the
training dose and athletes’ responses (e.g., fitness, fatigue,
performance, and wellness) is crucial in making informed
decisions on training and recovery prescriptions (Halson, 2014;
Bourdon et al., 2017; McGuigan, 2017; Coutts et al., 2018;
Kellmann et al., 2018). Current technological developments in
the field of wearable sensors enable steady improvement in the
quantification of internal- and external-load indicators during
athletic activity and expand the variety of tools available to
measure training responses (Cardinale and Varley, 2017). Ideally,
a comprehensive monitoring system includes markers for all
relevant physiological and psychological aspects of training and
performance, combining them into a holistic approach (Heidari
et al., 2018). Nevertheless, the handling of collected data poses
a great challenge for researchers and practitioners, and available
analytical strategies have rarely been systematically investigated
(Thorpe et al., 2017). In this context, it is necessary to clarify how
the individual longitudinal data can be analyzed on the one hand,
and in which form the various parameters should be linked to one
another, on the other hand.

Because team sport performance is a complex and
multidimensional construct, comprehensive monitoring is
crucial in understanding athletes’ training response to modify
training and recovery strategies (Halson, 2014; Bourdon et al.,
2017; McGuigan, 2017; Coutts et al., 2018). Moreover, team
sport coaches and practitioners usually deal with a large
number of athletes. Another great challenge is, therefore, the
implementation of a simple but effective monitoring system
that involves at least some measures of training load, wellness,
fitness, and readiness (Gabbett et al., 2017; McGuigan, 2017).
The frequent assessment of various metrics could be difficult as
compliance can be affected by the busy schedule and complex
requirements of the team sport athlete.

In this regard, the use of heart rate (HR) and heart rate
variability (HRV) measures in sports have been discussed for
decades, as they represent an inexpensive, time-efficient, and
non-invasive method to monitor the status of the autonomic
nervous system (ANS) and cardiovascular fitness (Achten
and Jeukendrup, 2003; Aubert et al., 2003; Borresen and
Lambert, 2008; Alexandre et al., 2012; Daanen et al., 2012;
Buchheit, 2014). Despite the large body of research and possible
applications, monitoring athletes’ training responses with HR

Abbreviations: %HRmax, Percentage of maximum heart rate; ANS, Autonomic

nervous system; CV, Coefficient of variation; HR, Heart rate; HRex, (Submaximal)

exercise heart rate; HRmax, Maximum heart rate; HRR, Heart rate recovery

following (submaximal) exercise; HRrest, Resting heart rate; HRV, Heart rate

variability; HR(V), Heart rate and heart rate variability; HRVpost, Post-exercise

heart rate recovery; HRVrest, Resting heart rate variability; Ln rMSSD, Natural

logarithm of the rMSSD; Ln rMSSD/RR, Ln rMSSD to R-R interval ratio; rMSSD,

square root of the mean squared differences of successive normal R-R intervals;

RPE, Rating of perceived exertion; SD, Standard deviation; SWC, Smallest

worthwhile change; TE, Typical error.

measures is not widely implemented (Buchheit, 2014), which
is due in part to contradictory findings (Alexandre et al.,
2012; Bellenger et al., 2016), methodological inconsistencies
(Plews et al., 2013), or partial misinterpretations (e.g., assuming
that HR measures can reflect overall fatigue or fitness
directly) (Achten and Jeukendrup, 2003; Buchheit, 2014). In
any case, it is indisputable that HR data can measure only
a limited number of aspects of performance or training
response, and therefore must be combined with additional
parameters.

In this technology report, we first briefly outline current
applications and limitations of monitoring training response
with HR and HRV in team sport athletes. Second, we present
a conceptual framework for contextualizing HR measures, and
methodological considerations of univariate and multivariate
analysis approaches of HR monitoring data are addressed.
Finally, we illustrate how different analysis concepts may affect
the evaluation of data, and provide two case examples for
practical decision-making with a simple, multivariate heuristical
approach.

HR MONITORING IN ATHLETES

HR measures are used as surrogate markers of the cardiac
ANS status (Aubert et al., 2003; Michael et al., 2017). As
the ANS is interlinked with many physiological systems, HR
measures might reflect (aerobic-based) adaptation and fatigue
status (Buchheit, 2014; Hottenrott and Hoos, 2017; Thorpe
et al., 2017). However, HR measures are determined by multiple
influencing factors, such as environmental (e.g., noise, light,
temperature), physiological (e.g., cardiac morphology, plasma
volume, autonomic activity), pathological (e.g., cardiovascular
disease), psychological (e.g., mood, emotions, stress) conditions,
and non-modifiable factors (e.g., age, sex, ethnicity), as well
as lifestyle (e.g., fitness, sleep, medication, tobacco, alcohol)
and determinants of physical activity (e.g., intensity, duration,
modality, economy, body position) (Sandercock et al., 2005;
Buchheit, 2014; Fatisson et al., 2016; Sessa et al., 2018).
Nevertheless, it is assumed that, in competitive sports, the
influence of training plays a predominant role in ANS status
changes and, therefore, HR measures might be able to represent
the athlete’s training status (Lamberts et al., 2010; Buchheit,
2014).

The large number of original and review articles on HR
monitoring published in recent decades documents the high
interest in exercise and sport science (Task Force, 1996; Achten
and Jeukendrup, 2003; Aubert et al., 2003; Carter et al., 2003;
Sandercock et al., 2005; Hottenrott et al., 2006; Borresen
and Lambert, 2008; Bosquet et al., 2008; Alexandre et al.,
2012; Daanen et al., 2012; Plews et al., 2013; Stanley et al.,
2013; Buchheit, 2014; Hettinga et al., 2014; Bellenger et al.,
2016; Kingsley and Figueroa, 2016; Berkelmans et al., 2017).
The growing popularity of HR measures among practitioners
(Akenhead and Nassis, 2016; Thorpe et al., 2017), combined
with the increasing number of commercial products and
software for HR recording and analysis (Naranjo et al., 2015;
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Flatt and Esco, 2016; Perrotta et al., 2017; Plews et al.,
2017b) further highlights the practical significance of this
research field. While relying on countless years of scientific
and practical experience (Israel, 1982), no other physiological
parameters are available that provide a non-invasive, time-
efficient, cost-effective, and continuous insight into a human’s
physiological response in almost any environment or stress
situation. Nevertheless, HR measures cannot address all aspects
of performance, fatigue, and well-being, but are mainly
reflective of ANS status and cardiovascular fitness (Buchheit,
2014).

HR Measures and Protocols
Heart activity (HR and stroke volume) is integrated into
numerous feedback (e.g., muscle mechanoreceptors) and
feedforward (e.g., “central command”) loops, and is continuously
modulated by ANS activity on a beat-to-beat basis (Michael et al.,
2017). Thus, it is critical to consider standardized procedures
when collecting, analyzing, and comparing HR and HRV
[HR(V)] within or between athletes. All HR measures are
somehow related to ANS activity, but differ in their physiological
determinants and their time course of adaptation, and display
different sensitivity to changes in fitness, performance and
training load (Bosquet et al., 2008; Buchheit, 2014). In this
chapter (HR Monitoring in Athletes), we refrain from a detailed
survey of the literature, as many review articles have already
described the relationships between HR measures, the ANS,
and other influencing factors, and have further defined general
methodological guidelines for data collection and preparation.
For example, an excellent overview of monitoring training
status with HR measures has been provided by Buchheit
(2014). Nevertheless, we provide a brief and focused account
of the application and limitations of HR monitoring in team
sports.

Resting Measures
Supine or seated short-term (5–10min, Task Force, 1996) resting
HR measures (HRrest, HRVrest) are currently suggested as a
best practice for monitoring an athlete’s ANS status (Buchheit,
2014). Resting HR(V) can be directly influenced by short-
term (e.g., blood/plasma volume changes, fatigue) and long-
term training responses (e.g., cardiac morphology), which in
turn may obscure the observation of changes in ANS activity
(Fellmann, 1992; Zavorsky, 2000; Achten and Jeukendrup, 2003;
Buchheit, 2014). Resting measurements (during nocturnal sleep
or after awakening) are attractive since they are characterized by
a high degree of standardization and, therefore, minimize many
confounding factors (e.g., previous activity, time of day) (Achten
and Jeukendrup, 2003; Fatisson et al., 2016). Additionally, these
measurements can also be collected on resting days, in case
of injury or sickness, and can further be used to modify
individual training and recovery plans before the first daily
session (Buchheit, 2014). Although some authors suggest that
resting HRV might be more sensitive to training status than
resting HR (Naranjo et al., 2015; Flatt and Esco, 2016), the
superiority of HRVrest could be neither confirmed nor rejected
(Billman et al., 2015). There are still large methodological

inconsistencies in HRV assessment that impede the comparison
and summary of findings (Task Force, 1996; Bellenger et al.,
2016).

In team sports, daily morning assessments may prove useful,
especially in short- to mid-term periods of increased stress,
such as the evaluation of pronounced travel loads or training
camps (Fowler et al., 2017; Malone et al., 2017). Under
field conditions, time-domain HRV indices (e.g., Ln rMSSD:
natural logarithm of the square root of the mean squared
differences of successive normal R-R intervals) have become
established to assess daily changes in ANS status, as they
are more reliable (Al Haddad et al., 2011) and less affected
by different breathing patterns (Penttilä et al., 2001; Saboul
et al., 2013) compared to spectral analyses. When assessing
long-term changes, it is suggested to analyze (rolling) weekly
averages (≥3–4 measurements per week) to increase validity
(Plews et al., 2014) and express day-to-day-fluctuations as a
weekly coefficient of variation (CV; Plews et al., 2012; Flatt
and Esco, 2016). However, it might be unrealistic in practice to
implement frequent (≥3–4 times per week) home-based resting
measures in an entire squad of elite or high-level players over
a prolonged training period (Buchheit, 2014; Thorpe et al.,
2017). An alternative approach could use pre-training recordings
(Nakamura et al., 2016; Malone et al., 2017). Furthermore,
the extended evaluation and application of ultra-short-term
recordings (<5min, often ≤1min; Flatt and Esco, 2013; Esco
and Flatt, 2014; Nakamura et al., 2015; Pereira et al., 2016;
Esco et al., 2018) with commercial software, such as smartphone
applications (e.g., Elite HRV Perrotta et al., 2017; ithlete Flatt
and Esco, 2013; HRV4Training Plews et al., 2017b), enables
feasible analysis of an entire team’s data almost immediately
after the assessment. These technological developments may
improve compliance and increase the applicability of resting
measurements in the future, at least in settings with high formal
program commitment as in junior or high school and college
athletes.

Exercise Measures
Over a wide range of endurance exercise intensities, exercise
HR (HRex) is linearly related to oxygen uptake and energy
expenditure during continuous work and is therefore commonly
used to monitor and prescribe exercise intensity and training
load (Achten and Jeukendrup, 2003; Borresen and Lambert, 2009;
Alexandre et al., 2012; Berkelmans et al., 2017). Furthermore,
exercise HR has been traditionally evaluated under submaximal
(HRex) and maximal efforts (HRmax) using incremental tests
to assess cardiovascular fitness (Achten and Jeukendrup, 2003;
Buchheit, 2014). As the relationship between common (vagal-
related) HRVmeasures and exercise intensity is flawed (Buchheit,
2014; Michael et al., 2017; see also section Limitations of
Univariate HR Monitoring) and beat-to-beat recordings during
exercise are susceptible to artifacts (e.g., lost beats due to HR
belt movement), only HRex at fixed external loads (not exercise
HRV) averaged over the last 30-60 s can be recommended
for longitudinal athlete monitoring (Buchheit, 2014). Whether
exercise HR can depict fitness impairments sensitively is
still unclear, as increased HRex does not indicate impaired
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performance per se (Buchheit, 2014; Thorpe et al., 2017) but likely
occurs with prolonged detraining (Mujika and Padilla, 2000a,b).
Moreover, similar to interpreting changes in resting HR(V), long-
term fitness-related changes in HRex may also be skewed due
to acute or short-term responses to training or environmental
conditions.

Since the repeated assessment of maximal physical
performance is unsuitable in (team sport) athletes, submaximal,
non-exhaustive tests have been more frequently adopted by
researchers and practitioners during recent decades (Buchheit,
2014; Halson, 2014; Akenhead and Nassis, 2016; Capostagno
et al., 2016; Thorpe et al., 2017). However, the protocols used
vary greatly in modality (running Malone et al., 2017 vs. cycling
Thorpe et al., 2015), load characteristics (continuous Buchheit
et al., 2010 vs. intermittent Brink et al., 2013, linear Buchheit
et al., 2010 vs. shuttle runs Bradley et al., 2011, constant Buchheit
et al., 2010 vs. graded Bradley et al., 2011), test duration (5min
Buchheit et al., 2010 to 16min Vesterinen et al., 2017), intensity
(low-intensity Buchheit et al., 2013c vs. high-intensity Vesterinen
et al., 2017) and workload prescription (standardized Bradley
et al., 2011 vs. individualized Buchheit et al., 2010, internal
Vesterinen et al., 2017 vs. external Bradley et al., 2011).

In team sports, standardized (rather than individualized)
submaximal running tests seem to be most appropriate in a
variety of settings (level of competition, team budget, squad size).
Low-intensity exercise could be implemented in the first part of
the warm-up for most athletes (fit, unfit, fatigued, early stage
of return to activity after an injury or sickness) and scenarios
(training camps, preparation and recovery periods, in-season)
without adding substantial fatigue, whereas higher intensities
might be associated more closely with sport-specific performance
(Bangsbo et al., 2008; Lamberts et al., 2010, 2011; Bradley et al.,
2011). In absence of definite protocol recommendations in terms
of test quality criteria (validity, reliability, signal-to-noise ratio),
we suggest using either submaximal versions of established field-
tests (Multi-stage Fitness Test Léger and Lambert, 1982, Yo-
Yo Tests Bangsbo and Mohr, 2012, 30-15 Intermittent Fitness
Test Buchheit, 2010) or fixed-intensity runs on a specific shuttle
length (or field size). Figure 1 shows exemplary HR recordings
of a semi-professional basketball player during submaximal and
maximal shuttle runs, which display typical changes in HRex in
response to a preparation period (see figure legend for details).

Post-exercise Measures
Following exercise cessation, HR decreases exponentially, and
HRV indices start to increase. Post-exercise HR measures
(HRR: HR recovery, HRVpost) reflect general hemodynamic
adjustments and might be related to aerobic fitness, wellness, and
readiness to perform (Buchheit, 2014). ANS activity following
exercise cessation is influenced primarily by parasympathetic
reactivation in the early stage of recovery [during the first
minute(s)], followed by additional sympathetic withdrawal
during mid- to long-term recovery (minutes to hours; Borresen
and Lambert, 2008; Hottenrott and Hoos, 2017; Michael et al.,
2017; Peçanha et al., 2017). However, post-exercise ANS activity
and HR(V) recovery are influenced by the preceding (relative)
intensity (Stanley et al., 2013; Michael et al., 2017), and

may, therefore, be more indicative of fitness than ANS status
(Buchheit, 2014). In general, HRR is more favorable than
HRVpost. It requires shorter recording periods (HRR: 30–60 s vs.
HRVpost: ≥3–5min), is accessible with any HR device, and may
have a superior signal-to-noise ratio (Buchheit, 2014). The easiest
way to calculate HRR is by taking the difference of HR at exercise
cessation and after, for example, 1min recovery (Peçanha et al.,
2017). However, it is recommended to average HR recordings
over several seconds (typically 5–15 s) to increase objectivity
and reduce (measurement) error (Daanen et al., 2012; Buchheit,
2014).

From a practical point of view, team sports practitioners
should evaluate the additional effort and benefit of post-exercise
measures critically in their own setting. While an additional
(standing or seated) 30–60 s recording seems to be reasonable,
it remains unclear whether HRR after submaximal exercise adds
beneficial information (to HRex), especially when workloads
are fixed rather than individualized in team sports (different
relative intensities between players). Additionally, post-exercise
measures could unnecessarily complicate data collection and
interpretation in the worst-case scenario (see Buchheit, 2014 for
discussion).

Monitoring Training Response With HR
Measures
Acute Responses
Monitoring an athlete’s acute changes in HR measures in
response to training is a critical but, at the same time,
debated topic in HR(V) research. A major component of the
scientific discussion is centered around day-to-day fluctuations
in (especially resting) HR measures and possible causes of these
variations (Buchheit, 2014). The underlying mechanisms are
not entirely clear yet. There are arguments for daily changes
as reflective of measurement noise (i.e., measurement error),
which results in poor reliability of daily resting measures (Al
Haddad et al., 2011) compared to exercise HR (Buchheit,
2014) and should, therefore, be interpreted as random error.
Furthermore, day-to-day fluctuations might be interpreted as
(physiological) signal, and changes being related to training
load, stress, and fatigue (Stanley et al., 2013). In line with the
latter assumption, several attempts have been made to guide
training programs based on daily (resting) HRV as a marker of
(cardiovascular) recovery, resulting in either larger adaptations
or more efficient training compared to conventional predefined
training programs (Kiviniemi et al., 2007, 2010; Vesterinen et al.,
2016; da Silva et al., 2017; Nuuttila et al., 2017). However, it must
be considered that HRV-guided training programs have always
been exclusively based on endurance training and were subject
to certain restrictions and training principles (for example, a
maximum of two successive high-intensity training days).

In general, training intensity is a key determinant of
cardiac autonomic activity alterations following aerobic-oriented
exercise (e.g., the higher the intensity, the longer the homeostatic
distraction) andmight be more influential than duration (Stanley
et al., 2013; Hottenrott and Hoos, 2017; Michael et al., 2017).
Complete cardiac autonomic recovery requires up to 24 h
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FIGURE 1 | Example of heart rate (HR) recordings during submaximal and maximal shuttle runs as part of preseason performance testing in a semi-professional

basketball player. Performance testing was conducted at the beginning and the end of an 8-week preseason preparation period for a 25-year-old semi-professional

basketball player. The submaximal shuttle run consisted of 5min of running (∼1, 1, and 3min at 9.0, 10.5, and 12.0 km/h, respectively; 28m shuttle length) followed

by 1min of passive recovery and was performed as the first part of the warm-up. Maximum (aerobic) fitness was assessed using an incremental field test (30-15 IFT,

30-15 Intermittent Fitness Test, Buchheit, 2008) at the end of each session. The player showed a 1.5 km/h increase in maximum running speed (VIFT), a 13 bpm

decrease in exercise HR during, and a 16 bpm increase in HRR following, the submaximal shuttle run. The colored horizontal bars represent 10%-wide HR zones

starting at 50%HRmax (e.g., red bar: 90–100%HRmax). HRex: exercise HR; HRR: HR recovery over 60 s; Prep: preparation period.

following low-intensity, 24–48 h following threshold-intensity
and at least 48 h following high-intensity endurance exercise
(Stanley et al., 2013). Therefore, acute changes in training load
can result in altered vagal-related HRV (Stanley et al., 2013;
Malone et al., 2017; Michael et al., 2017), HRR (Borresen and
Lambert, 2007; Daanen et al., 2012; Malone et al., 2017) and
HRex (Buchheit et al., 2013a,c; Malone et al., 2017). Furthermore,
stable (Plews et al., 2012) or reduced (Flatt and Esco, 2016) day-
to-day variations (expressed as a weekly CV) in resting HRV
have been observed together with positive adaptation, but also

a large reduction in CV was reported before non-functional
overreaching (Plews et al., 2012). However, as previously
described, numerous circumstances are known to acutely affect
HR indices, such as plasma volume changes [e.g., due to heat
acclimatization, (intense) aerobic exercise (Fellmann, 1992)],
hydration status (Achten and Jeukendrup, 2003; Buchheit, 2014),
sickness (Buchheit et al., 2013c), or long-haul travel (Fowler et al.,
2017), which must be considered when interpreting day-to-day
changes. Typically, these acute effects are reversed within a few
days.
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Short-Term Responses
During short- to mid-term periods of increased stress or
intensified training, such as long-haul flight travel (Fowler et al.,
2017) and heat, altitude, or training camps with increased volume
and/or intensity (Achten and Jeukendrup, 2003; Buchheit et al.,
2011; Berkelmans et al., 2017), HR monitoring might enable
practitioners to assess an athlete’s ability to cope with, and recover
from, the induced demands. In the context of training, all of the
previously described HR measures have been shown to reflect
overload-induced performance changes sensitively on several
occasions (Pichot et al., 2000; Borresen and Lambert, 2007;
Bosquet et al., 2008; Bellenger et al., 2016; Capostagno et al., 2016;
Hammes et al., 2016; Flatt et al., 2017) and therefore are possibly
reflective of short-term (i.e., cumulative) fatigue responses. For
example, in unpublished studies, we observed substantially
increased HRrest (decreased HRVrest) in supine position within
6-day overload microcycles of either high-intensity interval
training or intensive whole-body strength training. While these
changes in the supine recording position might be somewhat
plausible due to the excessive overload, the standing HR(V)
recordings displayed a large progressive reduction in HRrest
(increased HRVrest) during the high-intensity interval training
period. In the subsequent 4-day recovery phase, these alterations
showed reverse trends. In summary, the changes in (supine)
resting HR measures were parallel to the (stress- and fatigue-
related) changes in training-specific performance (repeated
sprint ability and maximal strength, respectively; see Table 1 in
section Training Context is Key for further details).

Long-Term Responses
Since an athlete’s training status is influenced by acute, short-
term, and long-term responses, it is of central importance to
consider the (aerobic) fitness level, chronic training loads, and
the current training phase of the athlete for correct interpretation
and contextualization of HR measures. In general, HR measures
correlate with aerobic fitness or performance markers, with
resting and exercise HR being lower and resting HRV being
higher in better-trained athletes (Achten and Jeukendrup, 2003;
Aubert et al., 2003; Sandercock et al., 2005; Hottenrott et al.,
2006; Messina et al., 2012; Plews et al., 2013; Hottenrott and
Hoos, 2017; Proietti et al., 2017; Thorpe et al., 2017; Sessa
et al., 2018). However, it must be considered that increased
exercise or test performance is not necessarily reflective of
positive adaptation since increased “readiness” or motivation at
the same fitness level may cause higher performance outcomes
(Plews et al., 2013; Coutts et al., 2018). This likely contributes
to some of the contraindicatory findings in research (see section
Contextualizing HR Measures). Overall, fewer data exist on the
sensitivity of HR measures to detect negative training response
or maladaptation (Buchheit, 2014; Bellenger et al., 2016).

In trained athletes, moderate training loads typically increase
aerobic fitness andHRV, whereas high training loads reduce HRV
(Iellamo et al., 2002; Manzi et al., 2009; Plews et al., 2013). HRR is
typically accelerated with high training volume (Buchheit, 2014).
It is generally assumed that increased training volume likely
results in HR(V) changes reflecting increased parasympathetic
activity (e.g., decreased HRrest and increased HRVrest), whereas

increased training intensity with a concomitant decrease in
training volume results in HR(V) changes reflecting increased
sympathetic activity (increased HRrest and decreased HRVrest)
(Israel, 1982; Fry and Kraemer, 1997; Lehmann et al., 1998;
Armstrong and VanHeest, 2002; Plews et al., 2013; Buchheit,
2014; Hottenrott and Hoos, 2017).

In endurance athletes, a bell-shaped time course of resting
HRV in the weeks leading up to a key race may reflect an optimal
scenario for peak competitive performance (Manzi et al., 2009;
Plews et al., 2013, 2017a; Buchheit, 2014). Vagal-related HRV
likely increases during the building phase, which is characterized
by high training volume at low intensities (Buchheit, 2014).
During tapering, decreased HRVrest and increased performance
is typically observed, which could be explained by a shift of
training distribution toward high-intensity exercise, as well as
pre-competition stress (Edmonds et al., 2013; Plews et al., 2013;
Buchheit, 2014). We assume that some contradictory findings
on the relationship between HR measures, performance, and
fatigue are caused by these observations, since neither aspects of
periodization nor delayed training effects have been adequately
considered in the available meta-analysis (Bosquet et al., 2008;
Bellenger et al., 2016), nor has inter-individual time course of
HR(V) response been properly assessed or reported, with the
exception of several case studies (Plews et al., 2012, 2017a;
Stanley et al., 2015). In summary, cumulative, and long-term
HR(V) responses during different training phases could be
explained by a prolonged accumulation of intensity-related acute
effects of single training sessions in the presence or absence of
sufficient recovery to reach baseline levels (Stanley et al., 2013;
Buchheit, 2014). An overview of acute, short-term and long-term
training responses inHRmeasures is provided inTable 1 (section
Training Context is Key).

Applications in Team Sports
In recent years, elite team sport athletes have become more
exposed to high competitive loads due to the increased frequency
and intensity of domestic and international competitions during
both the domestic season and the off-season period (Thorpe
et al., 2017). As increased player availability may lead to an
increase in chances for success, fatigue management is crucial for
injury and illness reduction (Bourdon et al., 2017; Thorpe et al.,
2017). However, at moderate to high performance levels, there is
usually a consistent and similar structure for each week during
the competitive period, which may intuitively lead to weekly
scheduling of training and testing relative to days until or after
game-day (McGuigan, 2017; Thorpe et al., 2017). This weekly
structure creates regular and comparable testing conditions (e.g.,
two days after competition), which may help to minimize acute
“confounding” effects (e.g., fatigue) when interpreting long-term
training changes in HR measures (e.g., fitness).

A large challenge in team sport monitoring is the complex
and multifactorial nature of sports performance, training, and
game demands, which includes technical, tactical, physiological,
psychological, and social components (Coutts et al., 2018).
To date, there is no uniform definition of player or team
performance, which limits its quantitative description and
the identification of possible influencing factors. Further, it
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FIGURE 2 | Changes in HR measures in a semi-professional basketball player during a preseason preparation period and the first half of the competitive season.

Resting HR measures (HRrest, Ln rMSSD) were assessed daily with 1-min ultra-short-term recordings upon awakening, in a seated position using commercial HR

monitoring software (HRV4Training, Plews et al., 2017b). Values are displayed as daily values and rolling 7-day averages. Exercise HR (HRex) and HR recovery (HRR)

were assessed weekly with a submaximal shuttle run (see Figure 1 for details) during the warm-up in the team’s evening practice 2-days post game-day. Acute and

chronic training loads were calculated over 1 and 4 weeks of training, respectively [training load (AU, arbitrary units) = session-RPE (0–10) × training duration (min),

(Gabbett, 2016)]. The gray horizontal bars represent trivial changes based on the suggested smallest worthwhile change for each measure: 0.5 × SD during the first 2

weeks for HRrest and HRVrest (Ln rMSSD), 1% for HRex and 7% for HRR (Buchheit, 2014).
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remains speculative as to which amount the previously described
associations between changes in training volume and intensity
with changes in HR measures in endurance athletes are
transferable to team sports, since the appropriate quantification
of training load, volume, and intensity over the variety of training
modalities and biological systems stressed in team sport practice
is challenging (Buchheit, 2014; Bourdon et al., 2017).

Despite these limitations, analyzing dose-response
relationships is a central component of athlete management
(Gabbett et al., 2017; McLaren et al., 2018), as it helps to assess
injury risk (Gabbett, 2016; Bourdon et al., 2017) and thus may
indirectly influence sports performance (i.e., success) through
increased player availability (Thorpe et al., 2017). Since physical
performance measures during sport-specific drills and match
play are highly variable, external-internal load relationships
are commonly assessed using submaximal tests (Buchheit,
2014; Thorpe et al., 2017). The protocols are typically based
on continuous or intermittent aerobic-based exercise (Bradley
et al., 2011; Brink et al., 2013; Buchheit et al., 2013a), which
are well standardized but correspondingly less valid for overall
physical performance (Thorpe et al., 2017). The use of sport-
specific “closed-loop” drills might be an alternative approach,
as sport-specific motion patterns and demands are simulated
and performance output might be less variable than during
an actual match (Buchheit et al., 2013a; Malone et al., 2017;
Thorpe et al., 2017). Also, developments in wearable sensor
technology will enable researchers and practitioners to assess
integrated external and internal loads during any sport-specific
training modalities in the future (see Lacome et al., 2018 for
practical example). These developments, for example, may allow
(almost) real-time analysis of locomotor movement patterns
on the physiological response, such as changes in running
technique and, therefore, running economy on HR response.
For illustrative purposes, Figure 2 represents an overview of
currently suggested applications of resting and exercise HR
measures in a semi-professional team sport athlete during a
preparatory phase and the first half of the competitive season.

CONTEXTUALIZING HR MEASURES

Limitations of Univariate HR Monitoring
Although each of the previously described HR measures
was sensitive to changes in fitness, fatigue, and performance
in several instances, a recent meta-analysis found that the
direction of change was the same for both increased and
decreased performance (Bellenger et al., 2016). For example,
vagal-related HRVrest increased parallel to both increased and
decreased (aerobic) performance, representing either increased
parasympathetic modulation or parasympathetic hyperactivity.
Similarly, decreased HRex was observed in both concurrent
performance increases (Buchheit, 2014) and overreaching-
associated performance impairments (Bosquet et al., 2008).
To date, the only promising approach for deciphering this
dilemma lies in the contextualization of HR measures and the
use of multivariate approaches (Bosquet et al., 2008; Lamberts,
2009; Plews et al., 2013; Buchheit, 2014; Bellenger et al., 2016;
Capostagno et al., 2016; Bourdon et al., 2017; Hottenrott and

Hoos, 2017; Thorpe et al., 2017; Coutts et al., 2018; Kellmann
et al., 2018).

As previously described, a fundamental difficulty is that
fatigue and performance are multifactorial constructs (Fry and
Kraemer, 1997; Armstrong and VanHeest, 2002; Borresen and
Lambert, 2008; Meeusen et al., 2013; Buchheit, 2014; Thorpe
et al., 2017; Coutts et al., 2018; Kellmann et al., 2018), which,
under certain circumstances, can be influenced measurably by
changes in an athlete’s ANS status (Israel, 1982; Lehmann et al.,
1993) and vice versa. However, training elicits a variety of
responses and adaptations on various levels (e.g., cardiovascular,
hormonal, neuromuscular, psychological), any of which may
result in performance or fatigue changes, either in isolation or
combination. Conversely, it is unlikely that any single marker can
accurately display changes in a multidimensional construct, such
as performance or fatigue (Meeusen et al., 2013; Bourdon et al.,
2017; Coutts et al., 2018; Kellmann et al., 2018). Therefore, HR(V)
measures can only be used to assess ANS status (at rest, exercise
onset, post-exercise) and overall cardiovascular function (during
exercise; Buchheit, 2014) and should be considered as only one of
the determinants influencing an athlete’s training status.

Also, the (mathematical) relationship between ANS activity
and HR(V) is indirect and is an often-overlooked limitation in
research, which could cause partial misinterpretations (Plews
et al., 2013; Buchheit, 2014). More precisely, this means that
changes in ANS status (i.e., ANS activity) are not directly
reflected in changes in HR measures, and direct associations
cannot be assumed (Plews et al., 2013; Buchheit, 2014; White
and Raven, 2014; Hottenrott and Hoos, 2017). For example,
increasing vagal nerve activity generally increases vagal-related
HRV. However, at low HR levels, HRV is often reduced rather
than increased due to parasympathetic hyperactivity causing the
so-called saturation phenomenon, which may be explained by
saturation of acetylcholine receptors at the myocyte level (Plews
et al., 2013; Buchheit, 2014). To overcome this issue, resting
HR and HRV should be concomitantly assessed and interpreted
using intraindividual historical data, representing vagal tone and
modulation respectively, and normalizing HRV for the prevailing
R-R interval (Plews et al., 2013; Sacha, 2013; Buchheit, 2014;
Billman et al., 2015). During exercise, ANS balance continuously
shifts from parasympathetic to sympathetic dominance as a
function of intensity, whereas vagal-related HRV indices typically
level off at moderate intensity (Buchheit, 2014; Michael et al.,
2017) and therefore cannot measure ANS activity over the entire
range of intensities. Furthermore, HRR and HRVpost, as possible
indicators of ANS activity, might be biased by metaboreflex
stimulation and should, therefore, be concomitantly interpreted
with HRex (Buchheit, 2014).

Training Context Is Key
The most relevant information for contextualizing HR measures
includes training phase, training load, and intensity distribution
(Buchheit, 2014). Also, it seems necessary to consider the
specific time course of training schedules and training responses
and further examine (subjective) measures of well-being and
recovery/fatigue state, or rating of perceived exertion (RPE) when
using exercise measures. To get a more holistic impression of
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an athlete’s training status, practitioners must combine these
measures with additional markers of sport-specific performance
(Bosquet et al., 2008; Lamberts, 2009; Plews et al., 2013;
Buchheit, 2014; Bellenger et al., 2016; Capostagno et al., 2016;
Hottenrott and Hoos, 2017; Thorpe et al., 2017). Table 1

provides an overview of changes in HR and context measures
within different training settings. Particular emphasis was
placed on structuring the information regarding the time
course of training responses as well as the respective training
context. The summarized and schematized changes reflect
overall group-based effects. Typically, these observed group-
effects are accompanied by large inter-individual variation, which
might display contrary behavior on the individual level and
highlights the necessity for individualized analysis in sports
practice (Plews et al., 2013; Buchheit, 2014; Volterrani and
Iellamo, 2016; Hottenrott and Hoos, 2017). However, referring
to group-based suggestions of expectable changes might be
an appropriate starting point if practitioners are aware of the
common between-athlete variations in response and try to
identify individual response patterns to consider them for future
analysis.

Methodological Considerations
Using appropriate analysis strategies to interpret individual
monitoring data is an essential component of successfully
implementing athlete monitoring systems in professional and
elite settings (Akenhead and Nassis, 2016). However, there
is a considerable research deficit in the area of single-case
analysis in sport science and, accordingly, there is a lack of
systematic methodological comparisons and recommendations
(Buchheit et al., 2014). On the one hand, there is a need for
theory-driven and evidence-based methods for data processing
and making sense of time series in each measure, while on
the other hand, several measures must be combined within a
theoretical framework and with multivariate analysis techniques
(Kellmann et al., 2018). From a scientific perspective, the ideal
overall decision-making process incorporates formalized and
validated analysis approaches with high prognostic precision.
Furthermore, practitioners need to be able to make quick
decisions to modify training and recovery strategies when
identified necessary (Starling and Lambert, 2017). Therefore,
analysis concepts and methods that enable informative and
intuitive visualization are crucial to inform and impact the
coaching process (Bourdon et al., 2017; Buchheit, 2017;
McGuigan, 2017; Robertson et al., 2017; Thorpe et al., 2017;
Heidari et al., 2018). In this regard, the work of Will
G. Hopkins on interpreting changes in athlete monitoring
(Hopkins, 2004) has had significant impact on current analysis
approaches and recommendations in sports research and practice
(Akenhead and Nassis, 2016; Buchheit, 2016; McGuigan, 2017;
Robertson et al., 2017; Thorpe et al., 2017; Coutts et al.,
2018; Kellmann et al., 2018). However, critical evaluation and
comparison of the proposed approaches is still pending. In
this section, we briefly discuss some of the available analysis
concepts, methodological approaches based on univariate data,
and possible multivariate strategies to evaluate HR monitoring
data.

Assessing Meaningful Change
The overall objective of monitoring training response is to
identify meaningful changes to adjust training and recovery
prescription, when necessary. To evaluate the importance of an
observed change, themeasurement accuracy or uncertainty of the
observed response, as well as themagnitude of the response, must
be considered (Hopkins, 2004; Buchheit, 2014; Thorpe et al.,
2017). The minimal detectable change refers to changes that are
larger than the typical within-subject variation in ameasurement,
which includes technical error as well as biological variation, and
which is usually estimated by measures of reliability (McGuigan,
2017; Thorpe et al., 2017; Hecksteden et al., 2018). However,
establishing this threshold requires a normative, and therefore
to some degree subjective, determination of “acceptable” error
rates (see Hecksteden et al., 2018 for discussion). In this regard,
monitoring parameters are commonly rated as useful or sensitive
based on providing high reliability and, therefore, low (random
or unavoidable) test-retest variation (i.e., noise), which is typically
measured as the standard error of measurement (i.e., typical
error, TE) and often expressed as CV in %. Although a low
measurement error is required to identify small observed changes
as true changes (e.g., changes that are larger than the TE), the
magnitude of change that can be expected or elicited by an
intervention (i.e., signal) is of equal importance. Therefore, it is
preferable to judge the sensitivity in a measure by evaluating the
signal-to-noise ratio (Buchheit, 2014).

Furthermore, the smallest worthwhile change [SWC, also
minimum (clinically) important difference] describes the minimal
change in a measurement that results in a practically meaningful
enhancement in sport-specific or competitive performance
(Hopkins, 2004) (e.g., a change larger than 1/3 of between-
competition CV in individual sports to substantially increase
chances of winning a medal, or ∼0.03 s for 20-m sprint time in
soccer to be ahead of the opponent to win a ball; Buchheit, 2018).
Two main concepts may be distinguished when determining the
SWC: distributional and anchor-based approaches (Thorpe et al.,
2017).

In distributional approaches, monitoring data are evaluated
in reference to within-group and/or within-athlete variation,
which is commonly done by data-transformation (i.e., Z-
Scores) and defining (usually arbitrary) thresholds for trivial vs.
substantial variation (e.g., Z-Score >1; Akenhead and Nassis,
2016; McGuigan, 2017). In the former case, an athlete’s score
or response is compared to the reference group (Julian et al.,
2017) and therefore strongly dependent on the group’s level and
heterogeneity in performance. The latter could be described as a
within-athlete distributional approach, typically rating observed
values/changes as meaningful when located outside the “normal”
fluctuation around the individual mean (Akenhead and Nassis,
2016; McGuigan, 2017). Also, week-to-week changes may be
expressed as standardized differences [e.g., week-to-week change
divided by weekly standard deviation (SD); (Stanley et al., 2015)].

In contrast to distributional approaches, anchor-based
approaches rely on the association between the observedmeasure
and an external (criterion) measure of interest. For instance, a
certain amount of (change in) training load, which is associated
with increased injury risk (Soligard et al., 2016). Ideally, the
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assessment of training response incorporates an estimation of
an individual confidence interval (or remaining uncertainty) in
relation to the SWC (Hopkins, 2004; Hecksteden et al., 2018). For
example, practitioners can use an online spreadsheet1 to analyze
individual changes considering the TE and a (normative) SWC
(Hopkins, 2000).

In absence of a sound theory or corresponding empirical
observations, changes in resting HR measures are commonly
evaluated in reference to the individual within-athlete variation
(i.e., SD: standard deviation) in a period of “normal” training,
(Buchheit, 2014; Plews, 2014), as they have no direct link to
(aerobic) performance (Buchheit, 2017). However, the choice of
the threshold value, which in this case is a fraction or amultiple of
the SD, is highly arbitrary and subjective, and thus depends on the
individual response profile and how conservative the coaching
or decision-making should be (Buchheit, 2017). In contrast, the
relationship between exercise HR and (aerobic) performance is
quite strong, and an empirical SWC of 1% in submaximal HRex
was suggested, as it may correspond to a meaningful change in
(aerobic) performance (Buchheit, 2014, 2017).

In athlete monitoring, there are also other analysis methods
that cannot be clearly assigned to the concepts of minimal
detectable change or SWC. In training load management,
it has become best practice to evaluate short-term (acute,
usually ∼5–10 days) and long-term (chronic, usually ∼4–
6 weeks) accumulated loads using (exponentially weighted)
rolling averages and acute-to-chronic ratios (Bourdon et al.,
2017). Also, mid- to long-term changes and trends could be
evaluated with (linear) trend analysis (i.e., the slope of the
regression; Plews et al., 2012; Hopkins, 2017; Sands et al., 2017).
Moreover, a more advanced approach was recently introduced
by Hecksteden et al. (2017), using Bayesian statistics to compile
individualized reference ranges to differentiate between two
states of muscle recovery. Group-based reference ranges (i.e.,
priori distribution) were combined with repeated individual
measures to generate individual posterior distributions for each
recovery state (Hecksteden et al., 2017; a spreadsheet is provided
online by the authors). In summary, although a variety of
analysis concepts and methods have been described, there is
only a negligible number of studies that systematically compare
different analysis approaches (Buchheit et al., 2014; Hecksteden
et al., 2018). Moreover, it remains unclear whether and how
reference values (e.g., baseline mean and SD or TE) need to be
adjusted over time since, among other elements, measurement
variability and error are likely training-phase dependent (Taylor
et al., 2016). For example, we are only aware of one study that
(arbitrarily) updated the individual HR(V) reference values after
4 weeks of training (Vesterinen et al., 2016).

Figure 3 visualizes different analysis concepts and methods
and their effects on rating observed changes as meaningful.
This example highlights the necessity of a systematic evaluation
of the suggested analysis methods and concepts since there
is considerable disagreement between approaches (see also
Hecksteden et al., 2018 for a detailed discussion).

1sportsci.org/resource/stats/xprecisionsubject.xls (Accessed February 07, 2018).

Multivariate Approaches
A common multivariate approach in HR monitoring is a
parallel inspection of several markers in combination with simple
decision rules. For example, if RPE during and HRR following
submaximal exercise are (clearly) elevated, the athlete is likely
fatigued (Lamberts et al., 2011). Typically, either each marker,
or a minimum number of markers (e.g., at least 2 out of 3),
are required to change beyond predefined cut-off values to be
interpreted as substantially deviated (Lamberts, 2009). Rather
than analyzing markers in a dichotomous fashion (above- or
below-threshold), a continuous combination of different markers
as ratios (e.g., HR/RPE, Ln rMSSD/RR) is also often proposed
(Buchheit, 2014; Halson, 2014; Bourdon et al., 2017). Moreover,
visualizing individual response (pattern) with spider diagrams
illustrates another valuable and more insightful alternative to
ratios since they display the magnitude of change in every
single measure and allow the assessment of changes relative to
each other when data are appropriately scaled (Julian et al.,
2017).

However, the gradual or hierarchical evaluation of variables
in the structure of flow charts (Plews, 2014) or closed-loop
models (Kiviniemi et al., 2007; Gabbett et al., 2017) appears
somewhat advanced. In this context, the so-called (fast-and-
frugal) heuristics approach (Raab and Gigerenzer, 2015) provides
an attractive opportunity to organize several markers, both
structurally and content-wise (i.e., decision trees). At the same
time, such heuristics represent an intuitive and simplistic
strategy, which reflects fast and practical decision-making in
(sports) practice in situations with high uncertainty since only
data on a limited number of relevant influencing factors are
available (Raab and Gigerenzer, 2015; Jovanovic, 2017). They
emerge in the form of (fast-and-frugal) decision trees and
consist of three main factors: search rules (where to look
for information), stopping rules (when to end search) and
decision rules (how to make a decision, Raab and Gigerenzer,
2015). However, although “heuristical” interpretation and
decision-making appears appealing in general, the application
of fast-and-frugal decision trees in HR monitoring is still
largely limited by the previously discussed research deficits
(e.g., inconclusive association between HR measures and
training load, fatigue, and fitness or performance; see sections
Limitations of Univariate HR Monitoring and Training Context
is Key).

Obviously, there are more advanced and complex multivariate
analysis methods than the previously mentioned simple
approaches available. For example, the current training research
also suggests the use of multiple (logistic) regressions (Weiss
et al., 2017), generalized estimating equations, neural-networks
(Pfeiffer and Hohmann, 2012; Bartlett et al., 2017), or modeling
techniques based on the original systems-theory model by
Banister, developed in 1975 (Perl and Pfeiffer, 2011). Although
these advanced concepts are scientifically promising and
probably superior to simple or linear concepts, a more detailed
discussion is beyond the scope of this report as we are only
aware of one investigation using such an advanced multivariate
approach to analyze athletes’ training response with HRmeasures
(Lacome et al., 2018). Therefore, a broad implementation in
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FIGURE 3 | Example of visualization and comparison of different analysis concepts and methods for assessing meaningful change in weekly exercise heart rate

(HRex) in a semi-professional basketball player over an entire season. HRex was assessed on a weekly basis using a submaximal shuttle run during the warm-up (see

Figure 1). In (A), changes from baseline level (average of first 4 weeks of the preparation period) are rated and highlighted as meaningful with three different methods:

First, when changes are larger than the smallest worthwhile change (SWC, gray horizontal bar, s), second, when changes are larger than the typical error (TE, error

bars, t), or third, when changes are larger than both (SWC+TE, circle). The values for the SWC (>1%) and the TE (>3%) are derived from Buchheit (2014). In (B),

changes are analyzed with two within-athlete distributional approaches [Z-Scores: individual mean ± standard deviation (SD)]. The values are rated and highlighted as

being meaningfully deviated when Z-Scores are >1. In the first approach, Z-Scores are calculated based on the entire data set (solid horizontal lines, *), which

represents a retrospective analysis after the data collection was completed. In the second approach, Z-Scores are calculated on a “rolling” and additive basis and with

all data available at each point in time (dashed lines, #). This likely represents a more realistic approach in sports practice, as monitoring data are analyzed as soon as

available and therefore based on a steadily increasing data set. The analysis concepts and methods visualized illustrate a considerable disagreement between

methods and concepts. Symbols: ↓: below baseline, ↑: above baseline, –: 1xSD below the mean, +: 1xSD above the mean.

sports practice in the near future seems difficult to achieve
(Bourdon et al., 2017).

PRACTICAL DECISION-MAKING WITH HR
MONITORING—CASE EXAMPLES

This section aims to provide two case studies that illustrate
how short- and long-term responses in HR measures could be
contextualized and analyzed in a multivariate fashion, using a

heuristics approach to guide training and recovery prescription.
For this purpose, we first differentiate between the analysis of
short- and long-term changes and further define the training
context. For simplicity, we distinguish between training and
recovery periods. Training periods are defined as constant or
increasing training loads, whereas recovery is characterized by
training load reductions or rest. These initial determinations
specify how observed changes are interpreted and, therefore, how
decisions are made (i.e., decision rules). Based on the previously
presented research (Table 1), a multivariate analysis of HRex in
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FIGURE 4 | Short-term changes in exercise heart rate (HRex) and rating of

perceived exertion (RPE) in an elite, male badminton player (20-year-old)

throughout a preparatory period. HRex (circles) and RPE (bars) were assessed

on Mondays (post Rec., gray symbols) following 2 days of pronounced

recovery, and on Fridays (post Train., blue symbols) following four consecutive

days of training (with two sessions on several days) using a submaximal shuttle

run (∼1, 1, and 3min at 8.2, 9.6, and 11.0 km/h, respectively; 12.8m shuttle

length) during the warm-up of the morning sessions. HRex was consistently

reduced on Fridays (mean ± SD, −7 ± 1 bpm) and increased on Mondays

(+5 ± 2 bpm), which may be interpreted as a result of short-term changes in

training load between tests. Similarly, RPE during the shuttle runs was typically

increased on Fridays and decreased on Mondays. When applying the

presented heuristical logic to decision-making, in most cases the obvious

conclusions are drawn corresponding to the general training plan: After several

consecutive (intensive) training days, the training load should be reduced in the

following days to encourage recovery, as the reduced HRex, and the increased

RPE indicate acute fatigue. Likewise, the increased HR and reduced RPE on

Mondays indicate recovery, which supports a resumption of (intense) training.

However, according to the presented logic, one could have deviated from the

training plan at two points in time: On day 24, the relatively high RPE indicates

an incomplete recovery, and consequently further facilitating of recovery

strategies or at least a reduction in planned workload seemed appropriate. In

contrast, the low RPE and the somewhat less severe decline in HRex on day

35 point to the possibility of continuing to tolerate high training loads at least

for another training session. Furthermore, the overall decline in HRex over the

training weeks, while maintaining a constant or slightly decreasing RPE,

indicates positive adaptation and appropriate training periodization.

combination with the rating of received exertion (RPE) might
provide adequate information to interpret an athlete’s training
status (i.e., search rules and stopping rules) in the following case
examples.

In the first example (Figure 4), an elite, male badminton
player was monitored twice per week using a submaximal shuttle
run throughout a preparatory period. Although the player is
specialized in the (mixed) Doubles discipline, badminton is
typically classified as a racket sport, not as a team sport. There are,
however, great similarities in the training structure and training
demands to those in team sports, since different domains,
such as endurance, strength, power, speed, and technical and
tactical elements are concurrently trained. Accordingly, we are
convinced that the observed short-term responses in exercise
HR (HRex) and their underlying physiological mechanisms
justify transferability to team sport settings. During the training
period, we observed a noticeable and consistent pattern in

changes in HRex and RPE during a submaximal run in response
to the typical weekly training schedules (see Figure 4’s text
legend for details). In this case, accumulated training loads
within the training weeks resulted in reduced HRex and
increased RPE, whereas the relief period over the weekend
resulted in an increase in HRex and a decrease in RPE. In
addition to the short-term fluctuations, an overall decrease
in HRex was observed throughout the training period that,
taking into account the RPE scores, can be interpreted as a
positive adaptation [increased (aerobic) fitness], and thus as
an appropriate training periodization. When this observation
is transferred to team sports, it highlights the importance
of consistent scheduling of testing sessions (e.g., 2 days
post game-day), as acute or short-term changes in load can
significantly affect HRex response. Furthermore, it may be
necessary to consider short-term and long-term changes at the
same time when evaluating training programs. Otherwise, in the
absence of continuous data, it might be challenging to separate
the different types of response (i.e., strain, fatigue, recovery
and adaptation) for the interpretation of long-term training
responses.

In the second example, a semi-professional basketball player
was monitored on a weekly basis using a submaximal shuttle
run throughout 1.5 competitive seasons (Figure 5). During the
preseason training periods, HRex was markedly reduced both
times, likely reflecting positive adaptation. In contrast, in periods
of reduced training loads (winter break during weeks 22–23
and off-season), increased HRex in combination with increased
RPE indicated (partial) detraining and a loss of (aerobic)
fitness. The time course of HRex and RPE response, during the
first preparatory period and the beginning of the first season,
highlights the importance of training context and multivariate
analysis when interpreting long-term changes (see Figure 5

text legend for details). Accordingly, we question some of the
conclusions in the HRmonitoring literature that show a so-called
“counterintuitive” response in overreached athletes (reduced,
rather than increased, HRex in fatigued or overreached athletes;
Siegl et al., 2017) or “disagreement between studies” (similar
changes in HR measures following endurance training periods
leading to increased or decreased performance; Bellenger et al.,
2016). Using this second example, we suggest that changes in
HRmeasures should be interpreted primarily against the training
context, rather than directly projected onto the constructs of
fatigue or performance. Therefore, a (sustained) reduction of
HRex due to a training period leading to overreaching (likely
reduced performance due to fatigue) followed by an adequate
relief period should be interpreted as a “typical” training response
in the sense of a (positive) adaptation to increased training load.
It should not be seen as an “inconsistent” or “conflicting” finding
because a performance outcome measured at different times was
increased or decreased. This interpretation goes in line with the
fitness-fatigue model, as a performance outcome is a result of
fitness and fatigue effects (Coutts et al., 2018). Accordingly, HRex
should be interpreted as a fitness indicator rather than a marker
of fatigue or performance.
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FIGURE 5 | Long-term changes in exercise heart rate (HRex), rating of perceived exertion (RPE) and training load in a semi-professional basketball player

(26-year-old, 3rd highest German basketball league) throughout 1.5 competitive seasons. HRex and RPE were assessed on a weekly basis, using a submaximal

shuttle run during the warm-up (see Figure 1). Acute and chronic internal training loads were calculated over 1 and 4 weeks of training, respectively (Gabbett, 2016).

The gray horizontal bar represents trivial changes from the baseline HRex (average of first four weeks during the first preseason) based on the smallest worthwhile

change (SWC; Buchheit, 2014). During the first preseason, HRex displayed a continuously decreasing trend with a concomitantly increasing trend in RPE in response

to consecutive weeks of high training load. Since this probably indicates overreaching (Table 1), a (sustained) reduction in training load seems reasonable. As HRex

remains substantially reduced during the following months and RPE scores have fallen below the initial values, it can be assumed that the initially reduced load at the

beginning of the competitive season allowed sufficient recovery and the training routine at moderate to high training loads can be resumed. In periods of pronounced

relief, such as the 2-week winter break (weeks 22–23) and the offseason, there was a significant increase in HR and RPE in both cases. This likely indicates a loss of

(aerobic) fitness through detraining, and calls for intensification or resumption of training.

CONCLUSION

As previously suggested (Buchheit, 2014), in team sports,
exercise-related measures (HRex, HRR) are probably superior to
those under resting conditions (HRrest, HRVrest) as the former
have more favorable signal-to-noise and cost-benefit ratios.
Moreover, HRex is more reflective of (aerobic) fitness-related
training responses than a surrogate marker of performance
or fatigue. Therefore, a comprehensive (team sport) athlete
monitoring system must incorporate multivariate approaches
that further examine training context, fatigue, and sport-
specific performance (Kellmann et al., 2018). When athlete
monitoring is integrated into a decision-support system,
numerous methodological considerations must be addressed
throughout the decision-making process. It is necessary to
interpret individual training responses by considering the
measurement accuracy as well as the smallest worthwhile change.
As outlined in this technology report, future studies should
examine the usefulness of different analytical concepts and
methods, as this represents a significant research deficit. Finally,
themost appropriate analytical approachesmust be implemented
in software solutions by wearable manufacturer or software
providers to improve the decision-making process in sports
practice comprehensively. To provide a starting point, we

have developed a conceptual framework to contextualize HR
measures, focusing on the time course of training responses
as well as training context, and illustrate its application
for multivariate interpretation and decision-making using a
heuristics approach.
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The aim of this study was to assess the performance of different kinematic features
measured by foot-worn inertial sensors for detecting running gait temporal events (e.g.,
initial contact, terminal contact) in order to estimate inner-stride phases duration (e.g.,
contact time, flight time, swing time, step time). Forty-one healthy adults ran multiple
trials on an instrumented treadmill while wearing one inertial measurement unit on the
dorsum of each foot. Different algorithms for the detection of initial contact and terminal
contact were proposed, evaluated and compared with a reference-threshold on the
vertical ground reaction force. The minimum of the pitch angular velocity within the
first and second half of a mid-swing to mid-swing cycle were identified as the most
precise features for initial and terminal contact detection with an inter-trial median ± IQR
precision of 2 ± 1 ms and 4 ± 2 ms respectively. Using these initial and terminal contact
features, this study showed that the ground contact time, flight time, step and swing
time can be estimated with an inter-trial median ± IQR bias less than 12 ± 10 ms and
the a precision less than 4 ± 3 ms. Finally, this study showed that the running speed
can significantly affect the biases of the estimations, suggesting that a speed-dependent
correction should be applied to improve the system’s accuracy.

Keywords: running, inertial measurement unit (IMU), validation study, temporal parameters, contact time

INTRODUCTION

In running, two temporal events (initial contact or touchdown and terminal contact or toe-off)
need to be detected in order to extract the main temporal parameters of each step: cadence,
contact time, flight phase duration, and swing phase duration. Initial contact (IC) is defined as
the time instant when the foot initiates contact with the ground at landing. Terminal contact
(TC) corresponds to the end of the pushing phase, when the foot ends contact with the ground.
The intrinsic relationships between the different inner-stride temporal parameters and running
speed, shoe configuration, running economy, running performance, injury risks have been widely
investigated. Therefore, an accurate detection of IC and TC are paramount.

In the literature, the majority of studies that investigated temporal parameters in running have
used force plates, contact mats or high speed cameras as reference measurement system (Viitasalo
et al., 1997; Garcia-Lopez et al., 2005; Leitch et al., 2011; Ogueta-Alday et al., 2013; Handsaker et al.,
2016). Although force plates are accepted as state-of-the-art systems for temporal events detection
in running, they suffer from several limitations. In fact, the detection timing of IC and TC on the
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vertical ground reaction force depends on the filtering method
and on the detection threshold used (Cronin and Rumpf, 2014).
Moreover, their lack of portability and their setup complexity
restrict their use for in-laboratory experiments, which is a major
drawback given the in-field nature of the running activity.

Thanks to the recent improvements in MEMS inertial sensors,
their low production cost, their decrease in weight and size
and their ability to measure kinematics over large periods of
time, inertial sensors are now widely accepted systems to analyze
human locomotion. In fact, studies on gait analysis have shown
that inertial measurement units (IMUs), when used with state-
of-the-art algorithms, can reliably fill the gap between subjective
observational analysis and bulky in-laboratory installations
(Mariani et al., 2012, 2013). In running, inertial sensors have
predominantly been used to detect inner-stride temporal events
and derive temporal parameters estimations from them. Some
studies have used IMUs on the upper body (Bergamini et al., 2012;
Norris et al., 2014), other focused on the shank/tibia segments
(Mercer et al., 2003; Crowell et al., 2010; McGrath et al., 2012) and
some used foot-worn IMUs (Strohrmann et al., 2011; Chapman
et al., 2012; Lee et al., 2015; Reenalda et al., 2016; Brahms, 2017).
However to the authors’ knowledge, only a few studies have
reported on the validity of their algorithms when compared with
state-of-the-art reference system. In Ammann et al. (2016), CT
estimations were compared between shoe laces worn IMUs and
a high-speed video camera for 132 steps of 12 athletes at running
speeds within 22.3± 5.8 km/h. Because data processing was done
by a proprietary software, the algorithms used to estimate CT
were not described in the methods. In Weyand et al. (2001) the
authors used acceleration peak from a foot-worn accelerometer
to detect IC and TC and compared their estimation of CT with a
treadmill-mounted force plate. The exact method used to detect
IC and TC is not documented in this study and only the bias
(mean ± STD) of the 165 trials is provided in the results. There
is therefore, no information about the precision of the proposed
system. For all other methods, where no validation was reported,
there is no evidence that the parameters measured are within an
acceptable error range and that this error range does not change
with the running conditions.

Therefore the aim of the present study was to investigate
different algorithms to detect IC and TC from different features
measured by foot-worn IMU kinematic signals, and estimate
the main inner-stride temporal parameters. The performance
metrics (bias and precision) of each algorithm were assessed in
comparison with a reference system (instrumented force plate
treadmill), that allowed a validation of inner-stride temporal
parameters over a high number of steps and a large range of
running speeds.

MATERIALS AND METHODS

Measurement Protocol
In total, 41 healthy adults (13 females and 28 males, age
29 ± 6 years, weight 70 ± 10 kg, height 174 ± 8 cm, running
weekly 2.1± 1 h, 11 being affiliated to a running club) running at
least once a week and without any symptomatic musculoskeletal

injuries volunteered to participate to this study. The study was
approved by the local ethic committee (CCER-VD 2015-00006),
was conducted according to the declaration of Helsinki, and
written informed consent was obtained from all the participants
prior to the measurements. Each participant was asked to run
multiple trials of 30 s each, wearing their usual shoes, on an
instrumented treadmill, starting at 8 km/h and increasing by
2 km/h up to their maximum speed. A 6 min familiarization
period (Lavcanska et al., 2005) was carried out on the treadmill
and served as warm-up for the participants. The participants were
free to decide on the rest duration in-between the trials.

Wearable Device and Temporal Features
Estimation
IMU Based System
One inertial measurement unit (IMU) (Physilog 4, Gait Up,
Switzerland, weight: 19 g, size: 50 × 37 × 9.2 mm) was worn
on the dorsum of each foot and measured both 3D acceleration
and 3D angular velocity at 500 Hz. Each IMU was affixed to the
foot using an adhesive strap around the shoe. The range of the
accelerometer was set to±16 g and±2000◦/s for the gyroscope.

Functional Calibration
In order to use single axes of the inertial sensors in a meaningful
and reproducible manner, we designed a functional calibration
method to automatically align the technical frame of the foot-
worn IMUs with the functional frame of the foot. The functional
frame of the foot was defined as in Figure 1: the origin is at
the base of the second metatarsal bone, YF is orthogonal to
the horizontal plane defined by the ground surface, XF lies on
the horizontal plane projection of the line joining the center
of the calcaneus bone and the head of the second metatarsal
bone, pointing distally, and ZF is orthogonal to the XFYF plane
pointing to the right-hand side of the subject. The functional
calibration process requires static standing periods in order to

FIGURE 1 | Shows both the technical frame of the foot-worn IMU (XT, YT, ZT)
and the functional frame of the foot (XF, YF, ZF). The 3 by 3 rotation matrix R
aligns the IMU’s technical frame with the functional frame of the foot.
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align YT with YF using the gravitational acceleration measured
by the IMU. Then, using the hypothesis that most of the foot’s
angular rotations occur along the ZF axis while running, we used
Principal Component Analysis to find the rotation angle around
the ZT axis which aligns ZT with ZF. Finally, XT is the result of
the cross-product<ZT, XT>.

Gait Cycle Detection
Using the cyclic nature of the running movement, an algorithm
was designed to segment a complete trial into mid-swing to mid-
swing cycles. Following previous work on gait analysis (Aminian
et al., 2002; Sabatini et al., 2005), we hypothesized that the pitch
angular velocity (Ωp) of the foot is maximum at mid-swing. To
enhance and detect the mid-swing peak, a 2nd-order Butterworth
low-pass filter was designed with an adaptive cut-off frequency.
The cut-off frequency was set at 60% of the stride frequency
estimated using an auto-correlation method over a 5 s sliding
window. This adaptive filtering method was used to cope with
the range of running speeds used in this study. The length of the
sliding window (5 s) was selected empirically and based on our
observations of the signals.

Temporal Features Detection
The estimation of inner-stride phases relies on two main
temporal events: initial and terminal contact. The initial contact
(IC) event corresponds to the time instant when the foot initiates
contact with the ground at landing. The terminal contact (TC)
event, also known as toe-off, corresponds to the end of the
pushing phase when the toes terminates contact with the ground.
For each cycle, we identified kinematic features that seemed to
be valid candidates to detect IC and TC. Such features varied
from global maximum (MAX), local maximum (MAXloc), global
minimum (MIN), local minimum (MINloc) and zero crossing
(ZeroX) time samples and were detected on the following signals:
the pitch angular velocity (Ωp: angular velocity around ZF),
the pitch angular acceleration (Ω’p), the pitch angular jerk or
first derivative of the pitch angular acceleration (Ω”p), the roll
angular velocity (Ωr: angular velocity around XF), the norm of
the angular velocity (||Ω||), the vertical axis acceleration (Avert:
acceleration along YF), the longitudinal axis of the acceleration
(Along: acceleration along XF), the coronal axis acceleration
(Acoro: acceleration along ZF), the norm of the acceleration (||A||)
and the first derivative of the acceleration norm or jerk (||A||).
In some cases, an empirically chosen threshold was also used
to improve the feature detection (e.g., < −100◦/s). All these
detection rules are detailed in Table 1 and illustrated in Figure 2.
Prior to the detection, the acceleration and angular velocity
signals were filtered using a 2nd-order low-pass Butterworth filter
(fc = 30 Hz) to minimize the influence of the IMU fixation
artifacts and a temporal estimation of mid-stance was carried
out for each gait cycle in order to separate the detection zones
for IC and TC. The detection zone for IC was set as the period
between the first zero-crossing of the pitch angular velocity
(Ωp) and mid-stance. For TC, the detection zone was set as the
period between mid-stance and the last zero-crossing of the pitch
angular velocity. Mid-stance was set as the time instant when
the angular velocity norm (||Ω||) is minimum within the 30–45%

time-range of each mid-swing to mid-swing cycle. Finally, the IC
and TC events of left and right foot steps were combined in order
to estimate for each step i the ground contact time (CT), the flight
time (FLT), the swing time (SWT) and the step time (SPT) using
the following relations:

CTi = TCi − ICi (1)

FLTi = ICi + 1 − TCi (2)

SWTi = ICi + 2 − TCi (3)

SPTi = ICi + 1 − ICi (4)

Reference System and Temporal
Features
Force Plate
This study used an instrumented treadmill (T-170-FMT, Arsalis,
Belgium) sampling at 1000 Hz as reference system for the
validation. The force plate system and the inertial sensors were
electronically synchronized using a 5 V pulse triggered manually
and recorded on each system while IMUs were synchronized
with each other’s using radio frequencies. To reduce the noise
inherent to the treadmill’s vibrations, we first applied, on the
vertical ground reaction force (GRF) signal, a 2nd-order stop-
band Butterworth filter with edge frequencies set to 25 and
65 Hz. The filter configuration was chosen empirically to obtain a
satisfactory reduction of the oscillations observed during flight
phases (i.e., subject not in contact with the treadmill) while
minimizing its widening effect during ground contact timeS.

Temporal Features Detection
IC and TC events were detected using a threshold on the
filtered vertical GRF signal, setting the first threshold-crossing
occurrence as IC and the second as TC for each step. As previous
studies (Weyand et al., 2001; Cronin and Rumpf, 2014) used
different reference thresholds, we have decided to investigate the
effect of eight reference thresholds on the validation results. Four
thresholds were set to 20, 30, 40, and 50 N, independently of the
subjects’ body weight (BW) and four others were set to 3, 5, 7,
and 9 %BW. Finally, we combined IC and TC events to find the
reference inner-stride phases durations (CT, FLT, SWT, and SPT)
as in Equations 1–4.

Statistical Analysis and Error Estimation
In order to avoid developing algorithms that over-fits our data
set and would therefore bias the results, first 10 subjects were
randomly selected and dedicated to the development set while
the remaining subjects were only used as the validation set. The
design of the algorithms described in Section “Wearable Device
and Temporal Features Estimation” was conducted using solely
the data from the development set. No algorithms debugging was
done over signals from the validation set.

To evaluate the error of the proposed system against the
reference force plate, we computed for each temporal feature, the
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TABLE 1 | Summary of the features used on the inertial sensors signals to detect initial contact (Ic) and terminal contact (Tc).

Detection zone Feature Description

Signal Rule Label

Initial contact (IC) Ωp MIN k1 Minimum of the pitch angular velocity

ZeroX k2 First zero-crossing of the pitch angular velocity

MINloc < −100 ◦/s k3 First local minimum smaller than 100◦/s on the pitch angular velocity

Ω’p MAX k4 Maximum of the pitch angular acceleration

MIN before k4 k5 Minimum of the pitch angular acceleration before k4

Ω”p ZeroX k6 Last zero-crossing of the pitch angular jerk before k4

||Ω|| MAX k7 Maximum on the angular velocity norm

Avert MAX k8 Maximum of the vertical acceleration

||A|| MAX k9 Maximum of the acceleration norm

MIN before k9 k10 Minimum of the acceleration norm before k9

MINloc k11 First local minimum of the acceleration norm

||A||’ ZeroX k12 Last zero-crossing of the jerk

Terminal contact (TC) Ωp MIN t1 Minimum of the pitch angular velocity

Ω’p ZeroX after t1 t2 First zero-crossing of the pitch angular acceleration after t1

Ωr ZeroX after t1 t3 First zero-crossing of the roll angular velocity after t1

||Ω|| MAX t4 Maximum of the angular velocity norm

Avert MAXloc after t1 t5 First local maximum of the vertical acceleration after t1

Along MIN t6 Minimum of the longitudinal acceleration

Acoro MAXloc after t1 t7 First local maximum of the coronal acceleration after t1

||A|| MAX t8 Maximum of the acceleration norm

MAXloc after t1 t9 First local maximum of the acceleration norm after t1

IC candidates are identified by kj with j ∈ {1.. 12} and TC candidates are identified by tj with j ∈ {1.. 9}. The features presented in this table were used in the respective
detection zone of IC and TC.

FIGURE 2 | Features used on the kinematic signals recorded by the foot-worn inertial sensors. IC candidates are identified by kj with j ∈ {1 . . . 12} and TC
candidates are identified by tj with j ∈ {1 . . . 9}. The vertical gray dashed lines show the limits of the detection zones for IC and TC candidates. The signals showed in
this figure belong to the same step and are represented during one mid-swing to mid-swing cycle.

bias (intra-trial mean) and precision (intra-trial STD) for all steps
within a trial. We then combined the results from each trial and
computed the median and IQR of both the bias and precision

over all trials. These two steps resulted in four inter-trial statistics
per temporal feature for both sets (development and validation
sets): bµ is the inter-trials median bias, bσ is the inter-trials IQR of
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the bias, σµ is the inter-trials median precision and σσ is the inter-
trials IQR of the precision. Note that we have used the median
and IQR functions for the inter-trial statistics as the intra-trial
bias and precision were not normally distributed.

A similar method was used for the inner-stride phases.
However, to avoid having a large number of candidates for each
parameter (12 IC candidates ∗ 9 TC candidates = 108 possible
pairs of candidates for each phase estimation), we have decided
to keep only the three most precise candidates for IC, the three
most precise candidates for TC and to combine them into 9 pairs
of estimates for CT, FLT, SWT, and SPT. Then, similarly, the
inter-trials bias (bµ, bσ) and the inter-trial precision (σµ, σσ) were
evaluated. Precision (i.e., intra-trial STD) was chosen as selection
criteria for IC and TC candidates as it informs about the range of
random errors made by the system among the steps of a trial. The
bias, however can potentially be decreased using an appropriate
model of the errors.

To investigate if the speed affects the intra-trial bias of the
IC and TC candidates, we used the Kruskal–Wallis test with a
significance level of 0.05. We preferred this non-parametric test
to the one-way ANOVA because the Lilliefors test rejected, in
most cases, the hypothesis that the intra-trial bias were normally
distributed among the running speeds. Consequently, in this
study, the null hypothesis was accepted only if the rank of
the biases were equal among the running speeds. The same
hypothesis has also been tested on the precision. Note that this
test was applied on the complete data set (development and
validation set) as there was no speed-depend adaptations of our
detection algorithms.

Finally, we used Bland-Altman plots and the best linear fit, in
the least squares sense, to show the trend in the CT estimation
errors on the development set. Finding the best linear fit on the
development set, allows to further use the linear coefficients to
correct the inter-steps errors in the validation set. The inter-steps
errors refers to the error of all steps within a group, independently
of the trial they belong to. The inter-steps bias is defined as the
mean error of all steps and the inter-steps precision as the STD of
the error of all steps.

RESULTS

Temporal Events Detection
Out of the 41 participants, 35 were kept for the evaluation of
the proposed system. Within the 6 participants removed, 2 were
removed because the data loss rate was above 20% and 4 were
removed because of calibration errors of the systems. The results
for the development set and the validation set were computed
from 10 subjects with 59 trials (4836 steps) and 25 subjects with
146 trials (12092 steps), respectively. Trials with running speed at
8 km/h were removed due to the presence of steps with double
support for some subjects that makes the detection of IC and TO
impossible with the GRF of the reference system. The minimum
number of steps per trial was 67 and the maximum number of
steps per trial was 105 given that the running speed recorded
ranged from 10 to 20 km/h. Figure 2 illustrates the features used
to detect IC and TC with the vertical gray dashed lines showing

the limits of the detection zones for IC and TC candidates. The
signals showed in Figure 2 belong to the same step and are
represented during one mid-swing to mid-swing cycle.

Table 2 summarizes the IC and TC events detection error
for development and validation sets, and for each kinematics
feature candidate (kj and tj) extracted by applying the specific
detection rule on the kinematics signal. The results are obtained
by using the reference value estimated with a threshold at 7
%BW on the vertical GRF. The differences shown in the table
were computed such that a positive difference indicates that the
event was detected later in the signal than the reference. The
three most precise IC candidates (median ± IQR) with respect
to the results from the validation set are: k1 (2 ± 1 ms), k3
(2 ± 1 ms) and k8 (3 ± 2 ms). The three most precise TC
candidates (median ± IQR) with respect to the results from the
validation set are: t1 (4 ± 2 ms), t4 (4 ± 2 ms) and t5 (4 ± 2 ms).
One TC candidate shows a noticeably lower inter-trial bias IQR:
t5 with bσ = 7 ms.

Figure 3 shows the influence of the running speed on the
IC and TC inter-trials bias for the features (k1, k3, k8) and
(t1, t4, t5). The graph was generated using the complete data
set (development and validation set) as it is solely used for
visualization purpose. When the trials are grouped according to
the running speed, the Kruskal–Wallis test applied on the biases
shows that the running speed significantly affects the biases in k8
(p = 0.001), t1 (p < 0.001), t4 (p < 0.001), t5 (p < 0.001) and
precision in t1 (p< 0.001), t4 (p = 0.014) and t5 (p< 0.001).

Inner-Stride Phases Estimation
Table 3 lists absolute and relative errors obtained for the
estimations of CT, on the validation set, when compared with
the force plate estimation found using the reference threshold at
7 %BW. The bias and precision obtained when comparing the
other force plate thresholds with the 7%BW reference threshold
are also listed at the end of Table 3.

The most precise pair of IC and TC candidates for CT was
(k1, t1) with an inter-trial median ± IQR precision of 4 ± 2 ms
or 1.8 ± 0.9%. CT estimators (k1, t5) and (k3, t5) both have the
lowest absolute inter-trial IQR of the biases (bσ = 12 ms) while
(k1, t5) has the lowest IQR in relative values (bσ = 5.0%). The
reference values observed in this study ranged from 132 to 354
ms for CT, from 29 to 238 ms for FLT, from 367 to 613 ms for
SWT and from 254 to 435 ms for SPT. Table 4 shows the relative
and absolute errors for FLT, SWT, and SPT estimations for both
(k1, t1), (k1, t5) and (k3, t5) pairs.

Finally, Figure 4 shows the Bland-Altman plot for the CT
estimation of the (k1, t1) and (k1, t5) estimators. The orange
dashed line represent the best linear fit according to the least
squares method. These graphs were computed using all the steps
in the development set (N = 4836), independently of the trials.

DISCUSSION

In this study we proposed, evaluated and compared how different
algorithms based foot-worn IMU kinematic features performed
in detecting IC and TC during running and in estimating the
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TABLE 2 | List of time differences for all the IC and TO candidates, computed over 4836 and 12092 steps for the development set and the validation set, respectively.

Feature Development set (N = 59) errors
when threshold at 7%BW is used

on vertical GRF (ms)

Validation set (N = 146) errors when
threshold at 7%BW is used on

vertical GRF (ms)

Signal Rule Label bµ bσ σµ σσ bµ bσ σµ σσ

Initial contact (IC) Ωp MIN k1 11 14 2 1 11 10 2 1

ZeroX k2 −30 11 6 3 −29 11 6 2

MINloc < −100◦/s k3 11 14 2 1 11 10 2 1

Ω’p MAX k4 22 20 3 2 23 15 4 2

MIN before k4 k5 −5 7 3 4 −4 7 4 4

Ω”p ZeroX k6 −3 11 2 3 −2 8 3 3

||Ω|| MAX k7 14 4 3 2 14 5 4 2

Avert MAX k8 19 13 3 2 20 13 3 2

||A|| MAX k9 19 18 3 3 17 17 3 3

MIN before k9 k10 1 19 3 5 0 13 5 6

MINloc k11 6 19 7 5 4 13 7 5

||A||’ ZeroX k12 2 17 2 4 2 13 3 4

Terminal contact (TC) Ωp MIN t1 −24 14 3 2 −21 13 4 2

Ω’p ZeroX after t1 t2 31 18 10 13 29 17 9 10

Ωr ZeroX after t1 t3 33 24 13 39 39 33 14 25

||Ω|| MAX t4 −22 14 3 2 −18 13 4 2

Avert MAXloc after t1 t5 −7 8 4 3 −4 7 4 2

Along MIN t6 20 18 5 9 18 15 6 7

Acoro MAXloc after t1 t7 −2 14 21 9 1 11 22 9

||A|| MAX t8 33 38 24 28 37 57 22 40

MAXloc after t1 t9 −3 11 4 2 0 13 5 6

Time differences are expressed in milliseconds (ms). The reference system used in this table is the vertical GRF with a threshold set at 7% BW. IC candidates are identified
by kj with j ∈ {1.. 12} and TC candidates are identified by tj with j ∈ {1.. 9}. “b” and “σ ” are the abbreviations for accuracy (intra-trial mean error) and precision (intra-trial
STD of the error), respectively, while suffix “µ” and “σ ” represent the median and the IQR over all the trials.

FIGURE 3 | Initial contact (left graph) and terminal contact (right graph) inter-trials bias for the features (k1, k3, k8) and (t1, t4, t5), respectively. The graph was
computed using the complete data set (development set and validation set) and using the reference threshold on the vertical GRF at 7 %BW. Each group of speed
contains N = 35 trials except the 20 km/h group where N = 30.
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TABLE 3 | List of the duration differences for CT estimation in the validation set (N = 146 trials, 12092 steps) when compared to the force plate estimation using the
reference threshold set at 7 %BW.

Features CT errors when compared with reference at 7
%BW (ms)

CT errors when compared with reference at 7
%BW (%)

IC TC bµ bσ σµ σσ bµ bσ σµ σσ

k1 t1 −30 17 4 2 −13.8 5.5 1.8 0.9

k1 t4 −27 17 4 2 −12.9 5.5 1.9 1.2

k1 t5 −15 12 5 3 −7.1 5.0 2.1 1.0

k3 t1 −30 18 4 2 −13.8 5.6 1.8 1.0

k3 t4 −27 17 4 3 −12.9 5.5 1.9 1.4

k3 t5 −15 12 5 3 −7.1 5.2 2.2 1.1

k8 t1 −38 21 5 3 −18.1 6.0 2.1 1.0

k8 t4 −35 21 5 3 −17.4 6.1 2.2 1.3

k8 t5 −23 15 5 3 −10.8 5.5 2.2 1.3

20 N 8 6 3 1 4.0 2.2 1.3 0.9

30 N 5 4 2 1 2.2 1.6 1.0 0.6

40 N 2 3 1 1 0.9 1.2 0.6 0.5

50 N 0 2 1 1 −0.1 1.1 0.4 0.3

3 %BW 9 5 3 2 3.9 1.7 1.3 0.9

5 %BW 4 2 2 1 1.7 0.6 0.8 0.5

9 %BW −3 2 2 1 −1.4 0.5 0.7 0.4

The first nine rows show the estimation errors of the three most precise candidates for IC and TO detection arranged as pairs while the last seven rows show the difference
observed when using other reference thresholds on the vertical GRF signal. “b” and “σ ” are the abbreviations for bias (intra-trial mean error) and precision (intra-trial STD
of the error), respectively, while subscript characters µ and σ represent the median and the IQR over all the trials in the validation set.

TABLE 4 | Flight phase duration (FLT), swing phase duration (SWT) and step time duration (SPT) estimations errors for the (k1, t1), (k1, t5) and (k3, t5) candidates when a
reference threshold at 7 %BW is used on the vertical GRF.

Parameter Estimator Absolute errors when compared with reference
threshold at 7 %BW (ms)

Relative errors when compared with reference
threshold at 7 %BW (%)

bµ bσ σµ σσ bµ bσ σµ σσ

FLT (k1, t1) 30 17 4 3 22.8 17.2 4.0 2.8

(k1, t5) 15 12 5 3 10.7 10.7 3.7 2.7

(k3, t5) 15 12 5 3 10.7 10.7 3.9 2.6

SWT (k1, t1) 30 17 4 2 6.3 3.7 0.9 0.4

(k1, t5) 15 12 5 3 3.2 2.6 1.0 0.6

(k3, t5) 15 12 5 3 3.2 2.6 1.0 0.6

SPT (k1, t1) 0 0 3 2 0.0 0.0 0.8 0.5

(k1, t5) 0 0 3 2 0.0 0.0 0.8 0.5

(k3, t5) 0 0 3 2 0.0 0.0 0.8 0.5

The results were computed from the data in the validation set (N = 146 trials, 12092 steps). “b” and “σ ” are the abbreviations for bias (intra-trial mean error) and precision
(intra-trial STD of the error), respectively, while subscript characters µ and σ represent the median and the IQR over all the trials in the validation set.

main inner-stride temporal parameters: CT, FLT, SWT, and SPT.
The errors (displayed in Table 2) show that the bias and precision
for IC and TC could reach very low values depending on the
kinematic features used. Therefore by considering the most
performant kinematic features an accurate and precise estimation
of inner-stride temporal parameters was proposed and validated
against a force plate as reference system.

Table 3 shows that, the three most precise IC candidates (k1,
k3 and k8) and TC candidates (t1, t4, and t5) can be combined
to provide a precise estimation of ground contact time (CT). The
most precise pair of features obtained from the two minimums of
pitch angular velocity in IC and TC detection zones (k1, t1) had

an inter-trials median± IQR precision of 4± 2 ms (1.8± 0.9%).
However the accuracy of the t1 candidate is speed dependent
(p< 0.001). This explains the relatively high inter-trial IQR of the
biases (bσ = 17 ms) of CT for the (k1, t1) candidate. In Figure 3,
the median of the biases for the t1 (as well for t4 and t5) seem
to linearly decrease as the speed increases. However, even though
the Kruskal–Wallis test shows that speed also affect t5 (p< 0.001),
the range of the median biases is approximately two times shorter
for t5 (10 ms) than for t1 (21 ms).

To reduce the effect of the running speed on the bias, the
minimums of pitch angular velocity in IC zone and the maximum
of vertical acceleration in TC zone, i.e., (k1, t5) candidate can
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FIGURE 4 | Bland-Altman plot of the ground contact time (CT) estimation errors for the (k1, t1) (top graph) and (k1, t5) (bottom graph) candidates. The error is
measured on all the steps of the development set (N = 4836). The orange dashed line represent the best linear fit according to the least square method.

be used. Although it is slightly less precise on the detection of
CT, the results in Table 4 show better results in the estimation
of FLT for both the accuracy and precision. Given that the CT
decreases as speed increase, a measure of the CT itself already
contains information about the running speed. Therefore, using
the coefficients from the best linear fit (development set data)
showed on the Bland-Altman plots in Figure 4, the validation
set inter-trials median ± IQR bias decreased to −2 ± 14 ms
(−1 ± 6.2%) and 1 ± 10 ms (0.3 ± 4.9%) for the (k1, t1) and the
(k1, t5) pairs, respectively. For both the (k1, t1) and the (k1, t5)
candidates, the precision did not change after the aforementioned
correction. Note that the outliers observed on the top graph of
Figure 4 correspond to the detection errors of the t1 feature
due to a second minimum happening later in the pitch angular
velocity signal.

Moreover, Table 2 reveals that the most precise features for
IC detection were found on the measurements from a single
axis of the IMUs (k1, k3, and k8). This observation emphasizes
on the importance of the functional calibration which aligns the
technical frame of the inertial sensors with the biomechanically
meaningful axes of the foot.

Table 2 also shows that, in general, the kinematic features
used in this study tend to better detect IC than TC. Considering
that the IC event comes with a landing impact, while no abrupt
variation in the foot’s motion occurs at TC, the odds of missing
the exact instant of TC are higher. Moreover, the vertical force

applied by the foot on the ground decreases drastically at the end
of the CT although foot is still in contact with the ground leading
to a potentially early detection of TC. Similar observations were
reported by Weyand et al. (2001). In fact, we observed that the
3%BW detection threshold showed a bias (bµ ± bσ) of −2 ± 2
ms and 7 ± 4 ms for IC and TC when compared to the 7%BW
reference threshold. For both IC and TC, the bias was the highest
when compared to a force threshold set at 20N. These results
show that the detection accuracy of the force plate for TC, is more
sensitive to the variations in the reference threshold than IC.

Lastly, the inter-step errors of the k1 feature seem to follow
a bimodal distribution when including all step of the validation
set, independently of the trials (N = 12092 steps). This implies
that there might be an additional source of variance other than
running speed that affects the detection of IC. Because the k1
feature is based on the angular velocity of the foot at landing, we
assume that the type of foot-strike employed (fore-foot strike or
rear-foot strike) could also introduce an error in the detection of
IC. Further study would be required to evaluate how foot-strike
angle influences detection accuracy and precision of temporal
events during running. In addition, determining the applicability
of the algorithms developed for level running in this study to
uphill or downhill running would also need further study.

This study used a different method to express the CT errors
than in Ammann et al. (2016). In the aforementioned study, the
authors reported an inter-steps bias (N = 132 steps) of −1.9 ms
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(−1.3%) and a random error (95% confidence interval) of 17.4 ms
(6.1%) for CT. The inter-steps bias and precision for the (k1, t1)
pair showed comparable results. In fact, the validation set inter-
steps bias (N = 12092 steps) was −2 ms (−0.5%) for CT, after
applying the linear fit correction showed in the Bland-Altman
plots in Figure 4. However, the inter-steps random error (95%
confidence interval) was slightly higher (23 ms) for the (k1, t1)
pair than in Ammann et al. (2016). This can be explained by the
fact that t1 precision is affected by speed (p < 0.001) and that
the range of speed in this study (10 – 20 km/h) is larger than in
Ammann et al. (2016) (22.3± 5.8 km/h). In Weyand et al. (2001),
the authors reported a bias (mean ± STD) of 14.6 ± 0.5% when
computed over 165 trials. These results are in accordance with the
biases showed in Table 3.

To the authors’ knowledge this study is the first to
quantitatively demonstrate how, when using foot-worn IMUs in
running, the choice of kinematic features affect the detection
accuracy and precision of IC, TC and the inner-stride parameters
derived from these two events. Consequently, it is important
that researchers report on the methods applied to detect IC and
TC events as it provides some information about the confidence
interval of the measurements.

CONCLUSION

This study aimed to validate, against a gold standard reference
system, the performance of several algorithms using foot-worn
inertial sensors to detect running gait temporal events and
estimate inner-stride phases duration. The results highlighted the
importance of suitable kinematic signals and features to avoid
large errors in detecting initial and terminal contact. The two

minimum values of the pitch angular velocity in the first half
and second half of a mid-swing to mid-swing cycle provide
the best estimation of IC and TC. Also the maximum value of
vertical acceleration during the second half mid-swing to mid-
swing cycle provides a good estimation of TC which is less
dependent on running speed. Using these initial and terminal
contact features, we showed that the ground contact time, flight
time, step and swing time can be estimated with an inter-trial
median ± IQR bias less than 15 ± 12 ms and the inter-trial
median ± IQR precision less than 4 ± 3 ms. Running speed
could have significant impact on the biases of the estimations
and therefore the knowledge about the speed could improve the
results. Further studies should investigate the effect of the foot-
strike angle on the errors made by the features during initial
contact.

AUTHOR CONTRIBUTIONS

MF, FM, BM, GM, and KA conceptualized the study design.
MF and FM conducted the data collection. MF designed the
algorithms and KA supervised the study. MF, FM, BM, GM, and
KA contributed to the analysis and interpretation of the data. MF
drafted the manuscript, all other authors revised it critically. All
authors approved the final version, and agreed to be accountable
for all aspects of this work.

FUNDING

This study was supported by the Swiss CTI grant no. 17664.1
PFNM-NM.

REFERENCES
Aminian, K., Najafi, B., Büla, C., Leyvraz, P. F., and Robert, P. (2002). Spatio-

temporal parameters of gait measured by an ambulatory system using
miniature gyroscopes. J. Biomech. 35, 689–699. doi: 10.1016/S0021-9290(02)
00008-8

Ammann, R., Taube, W., and Wyss, T. (2016). Accuracy of PARTwear inertial
sensor and Optojump optical measurement system for measuring ground
contact time during running. J. Strength Cond. Res. 30, 2057–2063. doi: 10.1519/
JSC.0000000000001299

Bergamini, E., Picerno, P., Pillet, H., Natta, F., Thoreux, P., and Camomilla, V.
(2012). Estimation of temporal parameters during sprint running using a trunk-
mounted inertial measurement unit. J. Biomech. 45, 1123–1126. doi: 10.1016/j.
jbiomech.2011.12.020

Brahms, C. M. (2017). The Assessment of Fatigue-Related Changes in Stride
Mechanics, Variability and Long-Range Correlations in Recreational and Elite
Distance Runners Using Foot-Mounted Inertial Sensors. Doctoral dissertation,
University of Regina, Regina, SK.

Chapman, R. F., Laymon, A. S., Wilhite, D. P., Mckenzie, J. M., Tanner, D. A., and
Stager, J. M. (2012). Ground contact time as an indicator of metabolic cost in
elite distance runners. Med. Sci. Sports Exerc. 44, 917–925. doi: 10.1249/MSS.
0b013e3182400520

Cronin, J. B., and Rumpf, M. C. (2014). Effect of four different step detection
thresholds on nonmotorized treadmill sprint measurement. J. Strength Cond.
Res. 28, 2996–3000. doi: 10.1519/JSC.0000000000000497

Crowell, H. P., Milner, C. E., Hamill, J., and Davis, I. S. (2010). Reducing impact
loading during running with the use of real-time visual feedback. J. Orthop.
Sports Phys. Ther. 40, 206–213. doi: 10.2519/jospt.2010.3166

Garcia-Lopez, J., Peleteiro, J., Rodgriguez-Marroyo, J. A., Morante, J. C., Herrero,
J. A., and Villa, J. G. (2005). The validation of a new method that measures
contact and flight times during vertical jump. Int. J. Sports Med. 26, 294–302.
doi: 10.1055/s-2004-820962

Handsaker, J. C., Forrester, S. E., Folland, J. P., Black, M. I., and Allen, S. J. (2016).
A kinematic algorithm to identify gait events during running at different speeds
and with different footstrike types. J. Biomech. 49, 4128–4133. doi: 10.1016/j.
jbiomech.2016.10.013

Lavcanska, V., Taylor, N. F., and Schache, A. G. (2005). Familiarization to treadmill
running in young unimpaired adults. Hum.Mov. Sci. 24, 544–557. doi: 10.1016/
j.humov.2005.08.001

Lee, Y. S., Ho, C. S., Shih, Y., Chang, S. Y., Róbert, F. J., and Shiang, T. Y. (2015).
Assessment of walking, running, and jumping movement features by using the
inertial measurement unit. Gait Posture 41, 877–881. doi: 10.1016/j.gaitpost.
2015.03.007

Leitch, J., Stebbins, J., Paolini, G., and Zavatsky, A. B. (2011). Identifying gait events
without a force plate during running: a comparison of methods. Gait Posture 33,
130–132. doi: 10.1016/j.gaitpost.2010.06.009

Mariani, B., Rochat, S., Büla, C. J., and Aminian, K. (2012). Heel and toe clearance
estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed.
Eng. 59, 3162–3168. doi: 10.1109/TBME.2012.2216263

Mariani, B., Rouhani, H., Crevoisier, X., and Aminian, K. (2013). Quantitative
estimation of foot-flat and stance phase of gait using foot-worn inertial sensors.
Gait Posture 37, 229–234. doi: 10.1016/j.gaitpost.2012.07.012

McGrath, D., Greene, B. R., O’Donovan, K. J., and Caulfield, B. (2012).
Gyroscope-based assessment of temporal gait parameters during treadmill
walking and running. Sports Eng. 15, 207–213. doi: 10.1007/s12283-012-
0093-8

Frontiers in Physiology | www.frontiersin.org 9 June 2018 | Volume 9 | Article 610228

https://doi.org/10.1016/S0021-9290(02)00008-8
https://doi.org/10.1016/S0021-9290(02)00008-8
https://doi.org/10.1519/JSC.0000000000001299
https://doi.org/10.1519/JSC.0000000000001299
https://doi.org/10.1016/j.jbiomech.2011.12.020
https://doi.org/10.1016/j.jbiomech.2011.12.020
https://doi.org/10.1249/MSS.0b013e3182400520
https://doi.org/10.1249/MSS.0b013e3182400520
https://doi.org/10.1519/JSC.0000000000000497
https://doi.org/10.2519/jospt.2010.3166
https://doi.org/10.1055/s-2004-820962
https://doi.org/10.1016/j.jbiomech.2016.10.013
https://doi.org/10.1016/j.jbiomech.2016.10.013
https://doi.org/10.1016/j.humov.2005.08.001
https://doi.org/10.1016/j.humov.2005.08.001
https://doi.org/10.1016/j.gaitpost.2015.03.007
https://doi.org/10.1016/j.gaitpost.2015.03.007
https://doi.org/10.1016/j.gaitpost.2010.06.009
https://doi.org/10.1109/TBME.2012.2216263
https://doi.org/10.1016/j.gaitpost.2012.07.012
https://doi.org/10.1007/s12283-012-0093-8
https://doi.org/10.1007/s12283-012-0093-8
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00610 June 8, 2018 Time: 18:25 # 10

Falbriard et al. IMU-Based Temporal Analysis of Running

Mercer, J. A., Devita, P., Derrick, T. R., and Bates, B. T. (2003). Individual effects
of stride length and frequency on shock attenuation during running. Med. Sci.
Sports Exerc. 35, 307–313. doi: 10.1249/01.MSS.0000048837.81430.E7

Norris, M., Anderson, R., and Kenny, I. C. (2014). Method analysis of
accelerometers and gyroscopes in running gait: a systematic review. Proc. Inst.
Mech. Eng. Part P 228, 3–15. doi: 10.1249/JSR.0b013e3181a6187a

Ogueta-Alday, A., Morante, J. C., Rodríguez-Marroyo, J. A., and García-López, J.
(2013). Validation of a new method to measure contact and flight times during
treadmill running. J. Strength Cond. Res. 27, 1455–1462. doi: 10.1519/JSC.
0b013e318269f760

Reenalda, J., Maartens, E., Homan, L., and Buurke, J. J. (2016). Continuous
three dimensional analysis of running mechanics during a marathon by
means of inertial magnetic measurement units to objectify changes in
running mechanics. J. Biomech. 49, 3362–3367. doi: 10.1016/j.jbiomech.2016.
08.032

Sabatini, A. M., Martelloni, C., Scapellato, S., and Cavallo, F. (2005). Assessment
of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 52,
486–494. doi: 10.1109/TBME.2004.840727

Strohrmann, C., Harms, H., Tröster, G., Hensler, S., and Müller, R. (2011). “Out
of the lab and into the woods: kinematic analysis in running using wearable
sensors,” in Proceedings of the 13th International Conference on Ubiquitous
Computing (New York, NY: ACM), 119–122.

Viitasalo, J. T., Luhtanen, P., Mononen, H. V., Norvapalo, K., Paavolainen, L., and
Salonen, M. (1997). Photocell contact mat: a new instrument to measure contact
and flight times in running. J. Appl. Biomech. 13, 254–266. doi: 10.1123/jab.13.
2.254

Weyand, P. G., Kelly, M., Blackadar, T., Darley, J. C., Oliver, S. R., Ohlenbusch,
N. E., et al. (2001). Ambulatory estimates of maximal aerobic power from foot-
ground contact times and heart rates in running humans. J. Appl. Physiol. 91,
451–458. doi: 10.1152/jappl.2001.91.1.451

Conflict of Interest Statement: BM was employed by company Gait Up.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2018 Falbriard, Meyer, Mariani, Millet and Aminian. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 10 June 2018 | Volume 9 | Article 610229

https://doi.org/10.1249/01.MSS.0000048837.81430.E7
https://doi.org/10.1249/JSR.0b013e3181a6187a
https://doi.org/10.1519/JSC.0b013e318269f760
https://doi.org/10.1519/JSC.0b013e318269f760
https://doi.org/10.1016/j.jbiomech.2016.08.032
https://doi.org/10.1016/j.jbiomech.2016.08.032
https://doi.org/10.1109/TBME.2004.840727
https://doi.org/10.1123/jab.13.2.254
https://doi.org/10.1123/jab.13.2.254
https://doi.org/10.1152/jappl.2001.91.1.451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


REVIEW
published: 25 June 2018

doi: 10.3389/fphys.2018.00778

Frontiers in Physiology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 778

Edited by:

Billy Sperlich,

Universität Würzburg, Germany

Reviewed by:

Can Ozan Tan,

Harvard Medical School,

United States

Fabien Andre Basset,

Memorial University of Newfoundland,

Canada

*Correspondence:

Melanie Ludwig

melanie.ludwig@h-brs.de

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 25 November 2017

Accepted: 04 June 2018

Published: 25 June 2018

Citation:

Ludwig M, Hoffmann K, Endler S,

Asteroth A and Wiemeyer J (2018)

Measurement, Prediction, and Control

of Individual Heart Rate Responses to

Exercise—Basics and Options for

Wearable Devices.

Front. Physiol. 9:778.

doi: 10.3389/fphys.2018.00778

Measurement, Prediction, and
Control of Individual Heart Rate
Responses to Exercise—Basics and
Options for Wearable Devices
Melanie Ludwig 1*, Katrin Hoffmann 2, Stefan Endler 3, Alexander Asteroth 1 and

Josef Wiemeyer 2

1Department of Computer Sciences, Institute of Technology, Resource and Energy-Efficient Engineering, Bonn-Rhein-Sieg

University of Applied Sciences, St. Augustin, Germany, 2Department of Human Sciences, Institute of Sport Science,

Technical University of Darmstadt, Darmstadt, Germany, 3Department of Computer Science in Sports, Institute of Computer

Science, Johannes Gutenberg University of Mainz, Mainz, Germany

The use of wearable devices or “wearables” in the physical activity domain has been

increasing in the last years. These devices are used as training tools providing the

user with detailed information about individual physiological responses and feedback

to the physical training process. Advantages in sensor technology, miniaturization,

energy consumption and processing power increased the usability of these wearables.

Furthermore, available sensor technologies must be reliable, valid, and usable.

Considering the variety of the existing sensors not all of them are suitable to be integrated

in wearables. The application and development of wearables has to consider the

characteristics of the physical training process to improve the effectiveness and efficiency

as training tools. During physical training, it is essential to elicit individual optimal strain to

evoke the desired adjustments to training. One important goal is to neither overstrain nor

under challenge the user. Many wearables use heart rate as indicator for this individual

strain. However, due to a variety of internal and external influencing factors, heart rate

kinetics are highly variable making it difficult to control the stress eliciting individually

optimal strain. For optimal training control it is essential to model and predict individual

responses and adapt the external stress if necessary. Basis for this modeling is the valid

and reliable recording of these individual responses. Depending on the heart rate kinetics

and the obtained physiological data, different models and techniques are available that

can be used for strain or training control. Aim of this review is to give an overview

of measurement, prediction, and control of individual heart rate responses. Therefore,

available sensor technologies measuring the individual heart rate responses are analyzed

and approaches to model and predict these individual responses discussed. Additionally,

the feasibility for wearables is analyzed.

Keywords: wearable sensors, heart rate modeling, heart rate control, heart rate prediction, phenomenological

approaches, training monitoring, load control
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1. INTRODUCTION

The use of wearable devices (“wearables”) as tools for training or
activity tracking has increased considerably. More precise and
accurate data acquisition due to improved sensor technology,
advanced usability, and portability due to miniaturization and
more powerful data analysis due to increased processing power
allows the industry to introduce new and improved wearables
(Chan et al., 2012; Mukhopadhyay, 2015). Therefore, wearables
can be used as “every day” devices providing the user with
detailed and individual information about physical activity (PA),
fitness level, and physiological responses. Especially for non-
athletes, wearables are claimed to be effective and efficient tools
for physical training. “Find your own Fit” (Fitbit.com), “beat
yesterday” (garmin.com), “listen to your body” (POLAR), or
“Eat. Sleep. Move. Better” (Jawbone) are some of the slogans
of well-known distributors of those wearables. In this context,
especially the heart rate (HR) has become an often used indicator
for individual cardiovascular strain during training. Exercise
according to defined HR zones is already well established
in professional and recreational endurance training. Several
wearable devices do not only measure a person’s heart rate, but
might even give visual, acoustic, or vibro-tactile feedback if HR
is outside a specified area. Most apps and devices are connected
to web portals that provide a visualization of a subject’s training
data as well as more or less detailed recommendations for
training.

The wide-spread use of HR is not surprising since the
pumping action of the human heart is the driving force of
blood circulation of the cardiovascular system. The main tasks
of this system are to supply the cells with oxygen and nutrients,
to remove carbon dioxide and metabolites, and to transport
hormones, vitamins, and enzymes (Weiss and Jelkmann, 1989).
This is especially apparent in the physical training process, when
a defined external stimulus (i.e., load, pedal rate, velocity) is
applied to the human body. The increased energy demand of the
working muscles causes an increase in cardiovascular functions.
Depending on the extent of individual strain (e.g., sleep or activity
conditions) the heart has to sensitively adjust the ejection of
blood to fulfill different demands of the human body. In contrast
to other indicators of cardiovascular strain (e.g., stroke volume
(SV), oxygen uptake (VO2), release of carbon dioxide (VCO2),
metabolites as lactate or urea, and hormones) HR can be recorded
non-invasive, with minimal technical effort, and without the
constraints of laboratory conditions.

However, HR responds individually to physical stress or
training load. Due to a high amount of internal (i.e.,
training status, genetics, mood) and external (i.e., environmental
conditions, nutrition, water supply) influencing factors, the HR
response can even fluctuate in the same individual during a
single training session (Bunc et al., 1988; Ewing et al., 1991;
Boushel et al., 2001; Achten and Jeukendrup, 2003; Bouchard
and Hoffman, 2011; Hoffmann et al., 2016). By recording every
single heartbeat, a high variation of longer and shorter heart
cycles can be observed. This heart rate variability (HRV) is
to a large extent modulated by the stimulating sympathetic
and repressing parasympathetic influences of the Autonomous

Nervous System (ANS) (Lacey, 1956; Stauss, 2003). Integrated
in a variety of complexly nested regulatory mechanisms and
reflexes, the antagonistic influences of ANS are modulated
according to afferences from sensors that are situated throughout
the human body. These sensors measure, e.g., changes in blood
pressure, blood volume, or partial pressure of CO2 or O2 in the
blood.

To evoke training responses corresponding to defined training
goals, it is necessary to elicit individual optimal cardiovascular
responses to neither overstrain nor under challenge the training
person. Therefore, it is essential to model and predict these
individual responses. This is the prerequisite for effective and
efficient training.

Although the complex influence of reflexes and mechanisms
on heart performance has been studied for centuries (e.g.,
Starling, 1918; Brandfonbrener et al., 1955), modeling and
predicting every single heartbeat is yet not possible. In particular,
the unpredictability of HRV must be considered as a source of
error in modeling.

Therefore, the following HR kinetics need to be considered for
modeling acute responses to stress:

• Short-term responses, expressed by the kinetics of HR to the
onset or offset of load,

• Individual relationship of stress parameters and
cardiopulmonary indicators.

This review aims at giving an overview of measurement,
prediction, and control of individual HR responses. Therefore,
different sensor technologies measuring HR and their feasibility
for wearables are analyzed. Afterwards, current models of acute,
individual HR responses are addressed, and the implementation
and use cases of these models are discussed.

2. MEASURING CARDIAC OUTPUT VIA HR

HR kinetics can provide valuable information about the
individual responses and therefore the individual strain of the
human body. However, valid and reliable measurement of HR
is essential to convey the required information and to enable a
valid modeling and prediction of these responses. The following
chapter analyzes the reliability of different sensor technologies
currently available. Additionally, their feasibility for wearables is
discussed.

The exclusive measurement of HR as a body’s physiological
response to exercise is widely used in several areas and
applications. For example, HR is used to estimate a person’s
exhaustion or degree of fatigue (Vautier et al., 1994; She et al.,
2013), to indicate individual cardiovascular function (Carter
et al., 2003; Borresen and Lambert, 2008), to monitor exercise
parameters (e.g., condition, intensity, exercise duration) of single
persons or whole groups (Sornanathan and Khalil, 2010; Lee
et al., 2015), or to control the individual training (Weghorn, 2013;
Hunt and Hunt, 2016).

Due to the central location of the heart inside the torso
and the vulnerability of the cardio-respiratory system, heart
functions are often measured indirectly by acquiring signals that
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are caused by these functions. One possibility to measure cardiac
output is by assessing SV. Although available measurement
technologies (i.e., echocardiography, thermodilution, or direct
Fick-method Smyth et al., 1984) show high reliability and
validity and provide detailed information about the individual
performance of the heart, none of them is suitable to be
used during physical training. All described methods and
techniques require a clinical setting and preferably a stationary
participant.

An alternative way to measure cardiac output is by registering
the individual HR or the electric and mechanical effects caused
by the heartbeat. Due to the technological progress, new sensors
and technologies for reliable and valid measurement of HR
are available. Additionally, the sensors available so far still
improve in quality and feasibility and allow for a more exact
representation of the HR signal. At present, the following
measuring technologies are used (see Table 1):

• Electrographic sensor
• Optical sensors
• Infrasonic cardiac vibration sensors
• Magnetic induction monitoring sensors
• Phonocardiographic sensors
• Sphygmographic sensors

The gold standard technique for measuring HR is by quantifying
the changes of potentials that are caused by the excitation
conduction along a myocardial pathway. This conduction
produces electrical potentials that can be registered on the
skin using an electrocardiograph. In general, 12 electrodes are
arranged at defined sites on the body. However, the obtained
electrocardiogram (ECG) is only an indicator for the process
of excitation. It does not provide information about the actual
contraction work of the heart. The application procedure is time
consuming and complicated. Therefore, complex knowledge
about medical procedures and a clinical setting are essential to
obtain valid information. An appropriate and reliable integration
in wearables is not feasible so far. A more common use of
the electrocardiography are HR breast belts, which also register
varying electrical potentials. In contrast to the ECG, only two
electrodes are used. The belt can be attached to the thorax. The
recorded RR intervals are used to calculate HR. Applied correctly,
these belts show high correlation of 0.85–0.99 to the ECG
(Weippert et al., 2010). As the sensors need direct skin contact,
participants might feel discomfort to undress for application.
Another approach is the capacitive electrocardiogram (cECG).
The electrodes of the cECG do not need any conductive electrical
contact with the participant but can cover distances for example
through at least two layer of clothes. Thus, they can be placed
in chairs, car seats, and bath tubs. Czaplik et al. (2010) obtained
high correlations to conventional ECG at rest in supine position.
However, the correlation varied between 0.10 and 0.85 depending
on the body position, (breathing) movements, type of clothing,
and sweat production of the participants. Additionally, the
technological challenges are still high due to motion artifacts
and possible filter effects (Teichmann et al., 2012). Therefore,
cECG sensors are not feasible to be used in wearables for physical
training.

All electrocardiographic measurements can show measuring
errors caused by electromagnetic waves of electrical devices and
potentials that are caused by muscular activity.

Optical sensors also becamemore andmore popular.Whereas
transmissive photoplethysmographic imaging is widely used
in clinical settings, reflective photoplethysmography imaging
is already applied in smartwatches or activity trackers. Both
technologies use a light source and a detector. In transmissive
photoplethysmographic sensors, the light source is placed toward
the detector, whereas light source and detector are placed on
one side of the captured area in reflective photoplethysmography
imaging. While the pulse wave is running through the captured
area, the amount of arterial blood is slightly increased. The red
blood cells absorb the red light leading to different reflections that
can be detected. The registered pulse wave therefore represents
HR. Although evidence shows a close correspondence of pulse
wave and HR (Drinnan et al., 2001; Opalka, 2009), measuring
errors can occur due to the latency of the pulse wave and
varying vascular resistance (Selvaraj et al., 2008). Therefore,
inconsistent findings regarding the reliability can be found
depending on location of sensor, experimental condition and
performed exercise (0.11–0.99; Schäfer and Vagedes, 2013).
Whereas the sensors show high reliability in clinical settings, at
rest, and during sleep, the accuracy becomes considerably smaller
during movements. Weghorn (2016) found measurements of
118 bpm, while the ECG reference measure was at 65 bpm.
Similar results where obtained by Gillinov et al. (2017). Parak and
Korhonen (2014) evaluated two photoplethysmographic based
HR monitors, where HR measurement lay within a 10 bpm
interval in about 87 % of the time compared to the ECG reference
heart rate. This incongruence is mainly caused by the signal
processing of the pulse wave. In contrast to the sharp increase
of the R-spike in the ECG, the pulse wave shows a slow increase
and decrease leading to different detection depending on the
analyzing algorithm. Additionally, skin color and external light
sources might lead to artifacts.

Due to the comfortable handling and application in different
locations at the upper and lower extremities, optical sensors
have a high potential to be applied in wearables. However, the
reliability essentially needs to improve.

Measuring the alternating magnetic field at distinct areas
(e.g., wrist) is another measuring approach that has already been
implemented in wearable technologies. This technology registers
the pulse wave by measuring the regional changes of tissue
connectivity and corresponding changes of impedance. It has the
advantage that no contact between sensor and measuring site is
needed. At rest, the assessment of heart rate variability (HRV)
shows very high correlations (0.99–1.00) compared to 3 channel
ECG (Kristiansen et al., 2005). However, the interference caused
by movements and muscular activity is still very high; reliable
values were only achieved under laboratory conditions and at rest
(Teichmann et al., 2012). Currently, the technology is not feasible
to be used in wearables for physical training.

Infrasonic cardiac vibration sensors (i.e., ballistocardiographic
or seismocardiographic sensors) measure the vibration of the
human body that is caused by the heart function and the blood
flow through the body (Teichmann et al., 2012; Inan et al., 2015).
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TABLE 1 | Feasibility of measurement techniques used in wearables.

Sensor Method Author Validity r Error sources Feasibility for

wearables

Electrographic ECG 1.00 • Electromagnetic waves −

• Motion artifacts

• Incorrect placement of

electrodes

HR breast belt Weippert et al., 2010 0.85–0.99 • Electromagnetic waves +

• Motion artifacts

• Disturbed signal conduction

• Incorrect placement of belt

cECG Teichmann et al., 2012 0.10–0.85 • Electromagnetic waves −

• Motion artifacts

• Filter errors

Optical Photoplethysmography Selvaraj et al., 2008;

Schäfer and Vagedes, 2013

0.11–0.99 • Latency of pulse wave

depending on measuring point

o

• Varying vascular resistance

• Skin type

• External light sources

• Algorithms that analyze pulse

wave kinetics

Inductive Magnetic induction Teichmann et al., 2012 n.a. • Interference with external

Sources

−

• Motion artifacts

Vibration Ballistocardiographie Teichmann et al., 2012 n.a. • Motion artifacts −

• No direct contact

• External vibration interference

Phonocardiographic Microphone sensors Torres-Pereira et al., 1997 n.a. • Interference with external

noises

−

• Placement of sensors

Sphygmomanometrical Blood pressure sensors Kugler et al., 1997 n.a. • Motion artifacts −

• Contraction of muscles

• Incorrect placement of cuffs

−, not feasible; o, limited feasibility; +, feasible; n.a., no data available for exercise.

These sensors do not require direct skin contact. Therefore, they
can be integrated into devices of daily life (i.e., beds, wheel chair).
Shin et al. (2011) obtained a strong correlation (0.97–0.98) on a
weighing scale type sensor at rest. However, muscular activity,
movements, and floor vibrations may cause measurement errors.
Therefore, these sensors do not provide reliable information
during physical activity.

Phonocardiographic sensors measure the noise that is
produced by the heart function or the blood wave. Modern
technology has replaced the stethoscope by a more reliable
microphone sensor. However, the reliability of the sensor is not
sufficient due to a high amount of interference caused by noise
from the environment (Torres-Pereira et al., 1997).

Sphygmographical and sphygmomanometrical sensors
measure the differences of blood pressure elicited by systole
and diastole. The sphygmo graphical sensor formerly used an

inconvenient device attached to the arm, and is therefore not
feasible to be used in wearables. Sphygmomanometrical sensors
nowadays measure the variance of blood pressure using air
pressure cuffs. However, these sensors must be applied by a
skilled physician and measurements are non-continuous (Kugler
et al., 1997). Therefore, sphygmomanometrical sensors are not
feasible for wearables.

Several recent studies showed that accuracy and precision
of HR measurement not only depend on the technique of
measurement, but is strongly depending on the wearable device
used and the completed activity. El-Amrawy and Nounou (2015)
compared nine smartwatches and eight fitness trackers. Accuracy
for HR measurement (compared to ECG reference heart rate
signal) ranged from 92.8 to 99.9 % dependent on the device, and
precision ranged from 5.9 to 20.6 %, respectively. Another way to
overcome the deficiency of single measurement technologies is to
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combine sensors obtaining multi-input systems. The developed
systems show high reliability and validity (0.993; Brage et al.,
2005; Peter et al., 2005).

3. MODELING AND PREDICTION OF
HEART RATE

In the previous section we discussedmany difficulties and sources
of errors regarding the feasibility of HRmeasurement approaches
for wearables.

While usage of wearables has rapidly increased over the last
few years, modeling aspects of health and health care are also
helpful in numerous applications as stated in Fone et al. (2003).
This is especially accounting for HR. Numerous models have
been discussed with regard to HR modeling within the last
decades. Physiological models are usually built to simulate a
specific behavior of a biological system with high accuracy. These
simulations of the human’s cardiovascular system encompass
a wide range of different purposes and cover wide variations
in complexity. For example, Grodins (1959) described the
cardiovascular system as “a feedback regulator” and emphasized
the importance of identifying the relevant components in a
system with inputs and outputs and the connection between
both. Therefore, he identified input and output parameters for
the right and the left heart, the open pulmonary circuit amongst
others, before formalizing and modeling the cardiovascular
system. Similar kinds of models on special parts of the
cardiovascular system in general can be found in, e.g., Ursino
(1998); McLeod (1966); Hotehama et al. (2003); Whittam et al.
(1998); Asteroth (2000). A detailed review with focus on the
dynamics of the cardiovascular system and physiological models
can be found in Lim et al. (2012).

Following a specific purpose, e.g., providing scientific
explanations, such physiological “white box” models try to
represent special parts of the physiological functions of
a human’s body. Additionally, there are many techniques
which model phenomenological observations. For setting up a
phenomenological model, the phenomena have to be defined,
which can (or should) be covered by the model. HR response
under different load conditions especially in endurance specific
context can be described by the following four phenomena:

1. Delayed exponential attenuated HR response to the onset or
offset of load, e.g., varying speed, incline or decline conditions
on the track (Bunc et al., 1988; Boucsein, 2000);

2. S-shaped HR response with continuous incremental load
(Brooke and Hamley, 1972);

3. Cardiac drift during longer activities (Heaps et al., 1994);
4. Exhaustion, which is also defined as “Hitting the wall,” which is

described as the moment, where glycogen supplies have been
exhausted and energy must be converted from fat (Stevinson
and Biddle, 1998).

Additionally, other aspects like a pre-exercise HR or a person’s
maximumHR can be considered directly or implicitly in amodel.

In the remaining, we will focus on phenomenological models
because they seem to be more applicable in wearables. Therefore,

we will first define different aspects of modeling and differentiate
between approximation and prediction. Additionally, we will
present different types of models and shortly summarize results
of the corresponding studies. This section will end with a
discussion of the usage of presented models with regard on
modeled physiological phenomena.

3.1. Overview of Phenomenological Models
Phenomenological models and black box models are more
applicable than physiological models in terms of approximation
and prediction of HR under stress, even if they cannot accurately
mirror all effects which occur in a human’s body. However,
they are used to observe and model essential effects during the
training process. Particularly since possibilities of measurement
are restricted during training (see section 2), an accurate model
which depicts too many different physiological aspects is not
applicable.

In this paper, we will focus on modeling acute HR responses
under stress. As stated in section 1, these responses can be
subdivided as following: Short-term responses expressed by HR
kinetics to the change of load and mid-term responses expressed
by individual relationship of stress intensity and HR. These
acute responses of human HR under stress are part of numerous
phenomenological models.

We can define four different aspects which are relevant when
considering HR models from modeling perspective; we have
to discriminate between approximation, short term prediction,
session prediction, and controlling, which will be explained in
more detail in the following.

As defined in Ludwig et al. (press), many (non-black box)
models M can be defined as functions mapping all parameters
Eα required by the model, and a stress curve u, to an artificially
computed HR curve y. In this curve both, input (i.e., stress curve)
and output (i.e., HR curve), are real time series. The estimated
HR at point of time t is labeled by y(t) while y = M(Eα, u), where
Eα ∈ P is the parameter setting1 and u = u1, ..., ut ∈ (R+)∗ serves
as the model input.

Mathematically, approximation is just a curve fitting problem,
which is a specific type of optimization problems. The goal of
curve fitting is to find the best solution to a specific problem
by finding the maximum (or the minimum) of a fitness (or
error) function which correlates to the problem. There are several
methods for finding local optima—usage of variants of least
squares method is most common. In terms of HR modeling,
optimization is used to find parameters Eα as optimal as possible,
such that the error between the measured HR curve and the
modeled HR curve is as small as possible.

Going further, the term prediction2 can be used to forecast HR,
i.e., computing HR values which were not known by the model
beforehand and not used for optimizing the model’s parameter

1Since HR response is delayed, HR increases after a certain time of physical activity

and regeneration in relaxation for example are delayed as well. The speed of these

adaption processes is highly personalized, and therefore the models should be

parametrized for such individual model components.
2In estimation theory estimating the value of a function at a given point in time

based on the observations made up to this point is denoted as filtering rather than

predicting.
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space. A prediction is dependent on the model parameters
previously identified in approximation on different data sets (i.e.,
approximation is performed on training data and prediction on
test data). In short term prediction, we are interested in predicting
HR responses to the change of load based on current input data
over a certain time horizon. This type of prediction is often used
to properly control the stress applied to a subject to prevent
unwanted physical effects. If instead the task is to develop a
sensitive training plan for a subject over a whole workout session
beforehand or to plan a competition, then the input-output
relation between imposed stress and resulting HR needs to be
predicted over a longer period of time. We use the term session
prediction to refer to this capability of a model. This means,
session prediction is used for predicting a whole time series, such
that mid-term HR effects can be modeled as well.

Controlling is a special case of HR prediction in this context.
It is usually based on short term prediction since the model is
used to control the stress which is exposed to a subject, e.g., by an
ergometer. Apart from short term prediction, input and output
are interchanged in the control application, since the power of
an ergometer should be changed dependent on a subject’s HR.
HR models used for control are often some kind of short term
prediction models.

Adjustment of short term prediction models for the usage of
session prediction is mathematically possible, but can lead to a
lack of accuracy as shown in Ludwig et al. (2015) and Hoffmann
and Wiemeyer (2017a). If a short term prediction model makes
use of previous HR values, respective previously computed HR
values could be used in the corresponding session prediction
model. It is possible that the prediction error accumulate quite
fast in doing so. Vice versa, models for session prediction can be
transformed into models of short term prediction by using the
model stepwise.

In general, all HR models have the potential to be used
for any application which requires HR modeling with varying
accuracy. Some effects might be modeled only indirectly and
thus less accurate as in models considering them as phenomena
to be modeled directly. Thus phenomenological models cannot
represent all possible HR behaviors, but best describe the effects
they are built for. For example, Paradiso et al. (2013) stated
that they avoid workloads inducing the cardiovascular drift and
therefore do not need to include the drift effect in their model. On
the other hand, models used for indoor control purposes – like
ergometer or treadmill control – do not need to predict future
HR values for more than a few seconds.

Table 2 gives an overview of common HR models and
summarizes their properties. Each model is first specified by
its property of being a black box model, a regression analysis
model, or a white box model. Most properties are marked with
an “x” if applicable, are further specified, or are marked with
“ø” for clarification if a certain property is not specified within
the corresponding paper; if the model is used for prediction, the
type of prediction is further specified. The number of parameters
which need to be optimized is stated where possible; in case
of Artificial Neural Networks (ANS) , the number results by
multiplication of the number of hidden nodes with aggregation
of number of input and output nodes (and a bias added

if used), since the networks here are built with one hidden
layer. Amount of parameters is not specified if a model is not
explicitly given and the amount of necessary parameters for
optimization is not specified in the correlating paper. The focus
for the effects covered by a model is set to the four effects
identified asmain effects at the beginning of this section—namely
delayed exponential attenuated response, S-shaped response,
cardiovascular drift, and complete exhaustion. The inclusion of
a pre-exercise HR or a person’s maximum HR in the model,
and the way how stress is included as input is stated here, too.
Additionally, some models contain a component for recovery
different from the HR response to increasing stress. In this case,
the function used for recovery is stated in the table.

It can clearly be seen that most phenomenological models
discussed in this paper are modeled and evaluated for control
purposes or for analyzing correlations between HR and specific
other measurements or influences. Prediction of complete
training sessions beforehand (“C”)—which corresponds to a
proper evaluation with a test set independent of training sets
used for parameter estimation—is not yet evaluated very well.
Regarding the effects, it is noticeable that most models include
both, an exponential response to stress and the S-shaped HR
response. Many models use some initial or pre-exercise HR, and
all other effects are considered more sparsely. Additionally, while
only fewmodels incorporate stress linearly, most authors seem to
assume a polynomial influence.

Although black box (or gray box) models (e.g., Hammerstein
and Wiener models, ANNs) usually do not have physiological
correspondence, simulating an existing HR curve or predicting
the next few seconds works very well. But when it comes
to planning of training or competition, HR approximation of
existing training sessions and prediction of only some seconds
into the future is not enough any more. For planning a
whole training session or simulating a person’s capabilities in
a competition, HR needs to be predicted over a complete
training session. However, black box models tend to overfit in
HR response prediction of a complete training session. This is
caused by the high number of parameters, which are also often
used in non-black-box phenomenological HR models (Ludwig
et al., press). Particularly interpretability of a model’s parameters
is favorable in HR prediction: to model not artifacts but real
factors influencing the HR significantly improves the accuracy of
prediction. Ludwig et al. (2015) gives a comparison of different
types of phenomenological models and presents their accuracy
in approximation and prediction of different time horizons of
HR. The results illustrate that good accuracy in approximation or
prediction of few seconds does not transfer to prediction accuracy
in session prediction.

In the following, all considered models are allocated in
subsections appropriate to the underlying type of model. Results
cited there are always results of approximation (i.e., evaluation of
training data set) if not specified otherwise.

3.1.1. Artificial Neural Networks
Yuchi and Jo (2008) implemented a feedforward ANN to predict
HR for the next second based on physical activity (obtained as 3-
D acceleration signals), while Mutijarsa et al. (2016) did the same
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based on cycling cadence. In both networks, the current HR and
the respective stress value (physical activity respectively cadence)
were used as input variables. HR for the directly following second
was set as output. Yuchi and Jo (2008) found a mean absolute
error of 3.31 bpm in their test set and found a number of 50
neurons in the hidden layer suitable. Mutijarsa et al. (2016) found
a mean absolute error of 3.02 bpm in their test set and identified
a number of 333 neurons in the hidden layer via trial and error.
The test set is specified as 30 s prediction interval.

Xiao et al. (2009, 2010, 2011) presented different optimization
methods based on evolutionary algorithms to train neural
networks for HR prediction based on physical activity based on
the network described by Yuchi and Jo (2008). HR values were
predicted every 30 s for one subject with a short term prediction
accuracy of 4.38 bpm (test set) in the mean absolute error.

3.1.2. Differential Equation (DE) Models
To have a closer look at the differences within the following three
DE models, the models share the following general structure:

ẋ1(t) = −a1 · x1(t)+ a2 · x2(t)+ f (u(t))

ẋ2(t) = −a4 · x2(t)+ g(x1(t), x2(t))

y(t) = x1(t)

(1)

Here, ai, i ∈ N
+ are the parameters, u serves as model input

(stress), and y serves as model output (computed HR). The
functions f and g will be specified in the model description to
clarify differences in the models.

Cheng et al. (2007) proposed aDEmodel, which was originally
used for treadmill walking and is stated to describe HR behavior
during even longer lasting exercises as well as for the recovery
phase. One year later, Cheng et al. (2008) published a slightly
different DE model used to control speed of a treadmill for
regulation of HR in walking at different speeds. In both DE
models, the authors formulate two short-term components for
different responses in HR changes: One component (x1) is
stated to describe changes in HR based on parasympathetic and
sympathetic neural effects as a central response to exercise stress,
the second component (x2) is stated to describe changes in HR
based on effects from the hormonal system, increase in body
temperature or other slowly-acting effects from the peripheral
local metabolism. The output in both models describes the
changes in HR from resting HR, while the input signal is set to the
walking velocity during the training (and set to 0 for recovery).
Velocity is supposed to have a quadratic influence on changes of
HR in both models: regarding Equation 1, Cheng et al. (2007)
defined:

f (u(t)) =
a2 · u

2(t)

1+ exp(−u(t)+ a3)
, a2 = 1,

where the exponential function is used to depict further non-
linear effects of the HR; and Cheng et al. (2008) reduced this part
of the model to:

f (u(t)) = a2 · u
2(t).

Furthermore, Cheng et al. (2007)model slow recovery of HR after
exercise again with a hyperbolic tangent function within:

g(x1(t), x2(t)) = a4 · tanh(x2(t))+ a5 · x1(t).

Only changes of the first component were dependent on
input velocity within a sigmoidal function. The five parameters
used in this model were estimated using Levenberg-Marquardt.
Approximation accuracy is analyzed only visually. The model
proposed in Cheng et al. (2008) has no such explicit component
to cover slow recovery. While input velocity in this model
still only effects changes of the first component, the sigmoidal
function here covers changes of the second component, but
dependent on the first component, using:

g(x1(t), x2(t)) =
a4 · x1(t)

1+ exp(−(x1(t)− a5))
.

The possibility to individualize the model using the set of
five parameters is retained for this DE model, but the authors
estimated fixed parameters based on data of all their subjects
to identify a model with no free parameters for their controller
design. Approximation accuracy is analyzed only visually, since
the focus of the presented work was on controller design and
parameter stability. While Scalzi et al. (2012) used the model by
Cheng et al. (2008) to describe a new controller design, Paradiso
et al. (2013) slightly adapted this model for usage in ergometer
cycling. Compared to the original model, they used a new scaling
parameter for multiplication with the quadratic input term, i.e.,

f (u(t)) = a6 · u
2(t).

The authors stated that the model can be used for cycling
ergometer control.

A different DE model was proposed by Stirling et al. (2008).
Here, changes of HR are modeled as a function dependent on
speed (or other intensity measures) and time. Their model is
based on two basic components: changes in HR and the exercise
demand, which are both dependent on speed and time and
constrained by the minimum and maximum HR values of a
subject. Three differences are modeled, which are scaled with
different parameters and multiplied afterwards: the difference
between current HR and minimal HR, between maximum HR
and current HR, and between actual exercise demand and current
HR. The parameters are used for scaling and to control how
quickly HR approaches or diverges from maximum/minimum
HR. Parameters do not change during a certain period of training.
Changes in parameters over different training seasons are stated
to give information about the subject’s cardiovascular condition.
Approximation accuracy is analyzed only visually. Improved
versions of this model with less parameters were presented by
Zakynthinaki (2015) andMazzoleni et al. (2016); we will describe
their work in section 3.1.5.

3.1.3. Regression Models
Analyzing HR using probabilistic approaches as multiple
regression, a frequent goal is to test certain correlations between
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HR and other parameters3. Hoffmann and Wiemeyer (2017b)
used multiple regression methods to find factors, which may
have a significant effect on changes in HR additional to
training effort. They analyzed 19 variables (like restfulness of
sleep, nutrition, current mood and others) in terms of their
impact on three different parameters of the Bunc equation
(Bunc et al., 1988) of HR, i.e., HR at start of the exercise,
steady state HR, and a factor used in a basic underlying HR
model for slope of the HR curve. The authors found that
influences on HR response are very individual, but that physical
health, negative mood, the number of intervals in training,
as well as time of the day seem to generally influence HR
changes. Jang et al. (2016) aimed to find a relationship between
running speed and HR using statistical regression methods.
In 217 subjects with incremental step tests they analyzed
a regression for linear and non-linear HR components; the
latter are important because of metabolic demands and cardiac
drift effects. In both, inter- and intra-subject analysis, they
found a strong correlation between HR and running speed.
Smallest errors were achieved with higher regression orders.
The regression model of fourth order yielded a correlation of
0.997 and a mean error in HR difference of 2.04 bpm. Similarly,
Fairbarn et al. (1994) found linear relationships between HR and
oxygen uptake for different aged groups of men and women
by analyzing data of 231 subjects during incremental cycle
ergometer tests with random effects regression. Richards (1980)
provides a good overview comprising (amongst other topics)
the HR analysis with statistical measures, multivariate statistical
methods, and time series analysis of HR with auto regression.
A short workflow of choosing the appropriate statistical method
when working with HR data is also given for analysis of raw
data.

Bennett et al. (1993) discussed four different autoregressive
methods to fit and predict HR time series based on past HR
values and noise. They found that the bilinear autoregressive
model describes HR dynamics best in comparison to
autoregression with and without moving average and polynomial
autoregression, but performs poorly in prediction. A similar
analysis of Christini et al. (1995) confirms the results. Both
concluded that control of HR dynamics should be non-linear.

Wang et al. (2008, 2009) used linear regression and support
vector regression (SVR) to examine the relationship between
oxygen uptake and other cardiovascular variables like HR.
The regression here was focused between oxygen uptake and
other cardiovascular factors. Hence, no conclusions were drawn
for correlations between HR and other cardiovascular factors.
Ludwig et al. (2015) showed that support vector regression can
also be used to simulate and predict HR dynamics based upon
earlier HR measurements. Esmaeili and Ibeas (2016) applied a
particle swarm optimizationmethod for the SVRmodel proposed
by Wang et al. (2008) and claimed to reach better model
parameters compared to other studies. Girard et al. (2016) used
this model to successfully regulate HR response during treadmill
exercise with a PID-controller for treadmill speeds lower than
8 km/h.

3In this specific context, parameters mean measures or effects.

3.1.4. Hammerstein and Wiener Models
Su et al. (2007a,b, 2010) identified a Hammerstein model for HR
modeling. Model identification was done separately for the linear
and non-linear part of the model by decoupling these parts using
pseudorandom binary sequences, which were found to be helpful
in this task. Bothmodel parts were identified bymachine learning
algorithms (e.g., SVR) based on collected experimental treadmill
data. The model was used for PID control of the treadmill, which
is the focus of the respective work. Based on these Hammerstein
model approaches, a modified Hammerstein model is presented
and tested by Mohammad et al. (2011). Here, the non-linear part
is approximated by a polynomial function.

Gonzalez et al. (2016) focused on approximation and
prediction of V̇O2 but showed that their identified model can
also be applied to HR modeling and prediction. In their work,
they analyzed different types ofmodels like autoregressivemodels
with and without a moving average, State-Space models, and
Hammerstein-Wiener models and stated that a Hammerstein-
Wiener model showed best results in their experiments.
Optimization finally leads to a pure Wiener model. In an analysis
of five subjects each performing four different bicycle ergometer
protocols, average approximation accuracy (training set) of HR
was 4.55 bpm, and average session prediction accuracy (test set)
was 7.46 bpm.

The model proposed by Ludwig et al. (press) can be illustrated
as Wiener model, but has a strong focus on reduction of
parameters and thus is presented in section 3.1.5.

3.1.5. Parameter-Reduced HR Models
Zakynthinaki (2015) stated that HR dynamics in response to
movement should be dependent on one parameter describing the
cardiovascular condition only. They built their model upon the
DE model by Stirling et al. (2008), but added, e.g., different HR
phases and time delays and simultaneously reduced parameters
to only one global parameter, which represents the cardiovascular
condition. The basic structure of their model is still a DE model
with difference between current HR and minimal HR, maximum
HR, or actual exercise demand. For example, the difference
between actual and maximum HR is now part of a sigmoidal
function similar to Cheng et al. (2008) instead of scaling this
difference by one exponent as before (i.e., (HR − HRmax)

A with
parameter A). The number of parameters was reduced via trial-
and-error such that all parameters except one could be fixed. The
author states that the model is able to predict complete training
sessions. The published evaluation is performed visually without
numeric values and based on a single protocol for two subjects. In
Zakynthinaki (2016), the same model is used to predict different
stress courses for synthetic data. Transferability to real training
data seems to be not yet proved completely.

Mazzoleni et al. (2016) also built their model based on the
DE model by Stirling et al. (2008) for HR modeling in cycling
exercises. Additionally, they included a term, which considered
torque and cadence, which they stated to be crucial in cycling.
They ended up with fourteen parameters, but with a stability
analysis using eigenvalues they were able to reduce the number
of free parameters to 11 and to restrict ranges of at least two
parameters. Parameters were computed based on synthetic data,
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resulting in a coefficient of determination of r2 = 0.90, when
both cadence and power output are used as model input values.

Koenig et al. (2009) aimed to identify themain effect of change
in treadmill speed and human energy expenditure to HR to
predict HR during Lokomat walking. Therefore, they calculated
the average HR increase for different walking velocities after
subtracting a pre-exercise HR value and built a model presented
as relay block chart with 11 parameters to scale the effects of the
input values including, e.g., fatigue of the subject, and were able
to reduce number of free parameters to four.

Ludwig et al. (2016, press) proposed a model which can be
described asWienermodel. The basic model has four parameters,
which can be reduced to one free parameter. Similar to the idea
in Zakynthinaki (2015), this parameter is meant to represent the
cardiovascular condition of a person. Furthermore, this model
intended to be as simple as possible without lack of accuracy. The
model was compared to different other models and yielded lower
errors in a complete session prediction. In one study, the average
prediction error (test set) was 7.08 bpm in a leave-one-out cross
validation of altogether 17 tests of three subjects (Ludwig et al.,
2016). In a second study, average approximation error (training
set) of 4.95 bpm and an average prediction error (test set) of
7.34 bpm in altogether 20 tests of five subjects was observed
(Ludwig et al., press).

3.1.6. Further Types of Models
Some furthermodel types are occasionally used for HRmodeling;
to give a short impression of the variety the models will be shortly
mentioned in this section.

Dur-e Zehra Baig et al. (2010) compared a linear time
invariant (LTI) model with a linear time varying (LTV) model
for HR approximation during walking, cycling, and rowing, each
at three different intensities, i.e, nine different tasks per subject.
The model using parameters varying in time performed better
than the LTI model in all analyzed cases with an average mean
squared error of 0.158 bpm2 for the LTI and 0.071 bpm2 for the
LTV model over both subjects and all performed tasks.

Le et al. (2009), Sinclair et al. (2009), and Yang et al. (2012)
all defined HR as sum of an initial HR value before the start
of the exercise and changes due to stress at every point in
time. The changes in HR are subdivided into a phase where HR
increases, and some phase where the cardiac drift occurs. While
Le et al. (2009) differentiated between moderate and exhaustive
intensities for the phase of increase, Sinclair et al. (2009) defined
a steady-state HR phase including the cardiac drift and used
accumulated work instead of plain stress values. Le et al. (2009)
and Yang et al. (2012) additionally defined a recovery phase,
defined by an exponential function in Yang et al. (2012), and a
sum of the HR at anaerobic thresholdminus calculatedHR values
up to exhaustion in Le et al. (2009) – basically the counterpart to
their implementation of HR exhaustion. The phase of increase
respective HR at moderate intensity is modeled as a single
parameter in Sinclair et al. (2009), Le et al. (2009) summed up
workload and change in HR at the preceding point in time—each
scaled by a parameter—and Yang et al. (2012) additionally added
up some noise. The drift is againmodeled as a single parameter in
Sinclair et al. (2009), while Le et al. (2009) and Yang et al. (2012)

used a scaled exponential function depending on the current or
last workload respectively.

Endler (2013) adapted a model by Perl (2004) to running,
which was initially developed for modeling training processes.
PerPot-Run uses speed as input, which is divided antagonistically
in a positive and negative potential. The model determines HR as
output by flow equations, where positive and negative potentials
are effecting the HR with different delays. For prediction usage
of the model, it has to be calibrated to an individual subject
by a graded incremental test of the subject. PerPot-Run can be
used to calculate the individual anaerobic threshold (Endler et al.,
2017). Furthermore, it is used to optimize endurance running
competitions and training. Endler and Friedrich (2016) presented
an extension of PerPot-Run, including incline and decline of
tracks.

3.2. Usage of HR Models and Applicability
in Wearables
A commonly used application for HR models is control of
HR on a treadmill (Mazenc et al., 2010; Nguyen et al., 2011;
Pătraşcu et al., 2014; Hunt and Fankhauser, 2016; Hunt and
Liu, 2017), on a bicycle ergometer (Mohammad et al., 2012;
Paradiso et al., 2013; Argha et al., 2014, 2015a,b; Leitner et al.,
2014), for gait training (Koenig et al., 2011) or to control strain
in exergames (Sinclair et al., 2009). Even apart from strain or
stress control, use of HR models is conceivable for many other
areas like training planning (Brzostowski et al., 2013; Schäfer
et al., 2015), generating individualized training zones based on
past training sessions, keeping track of performance development
and adjustment of HR training zones, potentially enhancing
accuracy by predicting the HR after a model is individualized
and adjust the displayed HR according to measurement and
model prediction, compensate missing or incorrectly detected
HR values [see Jang et al. (2016)], and more.

A simple way to control the individual HR response is by
using the closed loop principles of regulatory circuits. Wagner
et al. (1993) used the approach of a PD controller for HR
control that is solely influenced by the applied load on a bicycle
ergometer (u). Thus, the load is adapted proportionally and
differentially according to the adaptation course of the HR. Since
HR response is delayed the load is adapted at distinct time points.
The proportional part analyzes the deviation of the desired target
(HRtarget) to the actual measured HR (HRcurrent). The differential
part analyzes the increase of HR represented by the deviation
of HRcurrent and the starting HR (HRstart) within these intervals.
The following formula was used:

u(t) = Kp · (HRtarget − HRcurrent(t))

+ Kd · (HRcurrent(t) − HRstart(t))

Wagner et al. (1993) obtained sufficient results adapting the
parameters Kp and Kd individually.

Stirling and Zakynthinaki (2003) provide additional examples
how modeling can be used for different processes in sport with a
focus on modeling physiological responses to exercise.

In addition to these use cases, applicability of
phenomenological models to wearables is an interesting
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issue. But how can wearables benefit from integration of models?
Since several wearables already provide some general training
information on a computer based platform, inclusion of HR
models could be used to already inform the user during the
training about, e.g., the training progress or provide suggestions
according to a training plan. Even more, it could help to control
the strain a person summons up during a competition [similar
to the idea of PerPot-Run by Endler (2013)] by providing useful
information about an expected HR or performance progress
based on current HR data. Independent of concrete activities
or goals, information based on model predictions provided
by wearables could help to avoid overstrain, enhance training
progresses, and altogether motivate the user to train in an
expedient and suitable way. In addition, a well-individualized
model could improve the accuracy of wearables by comparing
current measurements to predicted HR values.

Some limitations of wearables such as a small screen size
and moderate computer performance have to be considered.
To provide predictive information during training, it would be
necessary that either stress is known beforehand, which might
be the case only for very specific applications, or to update the
model predictions regularly during the training and based on
current strain or stress. Since most HRmodels use only one input
(or input curve), which can be power, velocity, physical activity
values, and so forth, the kind of stress considered has to be
chosen carefully. For example, in running it might be beneficial
to include both, running velocity and slope, which would need
to be combined to one stress value for usage in most HR
models. While a stress value can be well defined in, e.g., walking,
running, and cycling, finding an appropriate measure might be
much more difficult in other sports. Here, the use of machine
learning algorithms (like ANNs, SVR, or Hammerstein orWiener
models) could be beneficial, since they allow easily to include any
desired number of different inputs. However, machine learning
algorithms need a huge amount of data to be appropriately
trained, and training or updating a model sometimes requires
a high computational power and a corresponding computing
time depending on the underlying system. Especially for ANNs, a
small network with up to 10 neurons should be sufficient for HR
prediction. Higher amounts of neurons in the hidden layer can
quickly lead to overfitting resulting in bad prediction accuracy.
On the other hand, simply using an already trained ANN does
not require much time and can easily be executed in real time
even on wearables. Therefore, an ANN would be feasible to be
used on demand, but should be trained beforehand and not on a
wearable.

A potential workability of a model on a wearable is strongly
dependent on the specific implementation of this model. Models
used for control purposes are often feasible in predicting
a few seconds of HR which could also be applicable to
wearables. Predicting longer time horizons of HR or controlling
a complete training session can also be implemented with
models, which are able to accurately predict complete training
sessions. Using a suitable implementation, most models will
be efficient in just computing current HR values based on a
given stress value, while parameter optimization can be time
expensive.

In general, individualization of a given model always requires
optimization of model parameters, which need data to be trained
on and can hardly be performed online during a training.
Statistical models and results from statistical analysis can help
identifying important parameters affecting HR (like gender, age,
body mass index, or similar). With this additional information,
HR models could be improved such that less parameters have
to be optimized. Adjusting model parameters can certainly be
performed faster for less parameters, such that a less complex
model with only few parameters could possibly be optimized
and adjusted online on a wearable and during training. HR
models by Zakynthinaki (2015) and Ludwig et al. (press) are
reduced to one parameter and might be good candidates for this
purpose. Additionally, results obtained in regression analysis as
in Hoffmann andWiemeyer (2017b) can help reducing necessary
parameters in other models. Actual applicability of particular
models to wearables has to be analyzed and compared against
each other in more detail in the future.

4. SUMMARY

Wearables controlling individual strain via HR have the potential
to be used as effective and efficient tools for the physical training
process. As the HR is integrated in a variety of nested regulatory
mechanisms and reflexes, different and highly individual HR
kinetics can be observed.

Currently, different sensor technologies measuring HR are
available: electrographic sensors, optical sensors, infrasonic
vibration sensors, magnetic induction monitoring sensors,
phonocardiographic sensors, and sphygmographic sensors.
Whereas the electrocardiogram is the “gold standard” for
measuring HR, most sensors show high reliability and validity
in clinical settings as well. HR breast belts are considered
an acceptable compromise of reliability, validity, and usability.
Especially optical sensors have a high potential due to high
usability and acceptability. However, signal processing, i.e.,
analysis of pulse wave representing heartbeat, has to be improved.
The integration of HR sensors operating on different principles
(e.g., photoplethysmography) in wearables for training control
is not (yet) feasible due to a variety of possible error sources.
Modeling individual responses can be performed using biological
and phenomenological models. As biological models are very
complex and are more appropriate for offline analysis, they
are not feasible to be integrated in wearables for physical
training. Phenomenological models in contrast focus specifically
on HR response integrating many relevant aspects as cardiac
drift or maximum HR. Among other classifications, modeling
approaches can be divided into ANN, DE models, regression
models, Hammerstein and Wiener models, parameter-reduced
HR models, and further models that are occasionally used. The
described models can be integrated into wearables for controlling
HR on a treadmill, a bike ergometer, for gait training, or strain
control within exergames. Additionally, some models can be
applied to provide information regarding the long term training
process. The feasibility of model implementation in wearables
is depending on the reliability of the model, the required

Frontiers in Physiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 778240

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ludwig et al. Feasibility of HR Models for Wearables

processing power, and the output of the model. Currently, pre-
trained ANNs, models with individually pre-adapted parameters,
or parameter-reduced models seem to be most appropriate
for integration into wearables. However, most models were
optimized and tested on specific samples. A comparison of the
models based on independent data sets is required for objective
and reliable evaluation.
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The commercial market for technologies to monitor and improve personal health and

sports performance is ever expanding. A wide range of smart watches, bands, garments,

and patches with embedded sensors, small portable devices and mobile applications

now exist to record and provide users with feedback on many different physical

performance variables. These variables include cardiorespiratory function, movement

patterns, sweat analysis, tissue oxygenation, sleep, emotional state, and changes in

cognitive function following concussion. In this review, we have summarized the features

and evaluated the characteristics of a cross-section of technologies for health and sports

performance according to what the technology is claimed to do, whether it has been

validated and is reliable, and if it is suitable for general consumer use. Consumers

who are choosing new technology should consider whether it (1) produces desirable

(or non-desirable) outcomes, (2) has been developed based on real-world need, and

(3) has been tested and proven effective in applied studies in different settings. Among

the technologies included in this review, more than half have not been validated through

independent research. Only 5% of the technologies have been formally validated. Around

10% of technologies have been developed for and used in research. The value of

such technologies for consumer use is debatable, however, because they may require

extra time to set up and interpret the data they produce. Looking to the future, the

rapidly expanding market of health and sports performance technology has much to

offer consumers. To create a competitive advantage, companies producing health and

performance technologies should consult with consumers to identify real-world need,

and invest in research to prove the effectiveness of their products. To get the best

value, consumers should carefully select such products, not only based on their personal

needs, but also according to the strength of supporting evidence and effectiveness of

the products.
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245

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00743
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00743&domain=pdf&date_stamp=2018-06-28
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jonathan.peake@qut.edu.au
https://doi.org/10.3389/fphys.2018.00743
https://www.frontiersin.org/articles/10.3389/fphys.2018.00743/full
http://loop.frontiersin.org/people/212788/overview
http://loop.frontiersin.org/people/65022/overview
http://loop.frontiersin.org/people/514816/overview


Peake et al. A Review of Health and Sports Performance Technologies

INTRODUCTION

The number and availability of consumer technologies for
evaluating physical and psychological health, training emotional
awareness, monitoring sleep quality, and assessing cognitive
function has increased dramatically in recent years. This
technology is at various stages of development: some has
been independently tested to determine its reliability and
validity, whereas other technology has not been properly tested.
Consumer technology is moving beyond basic measurement and
telemetry of standard vital signs, and predictive algorithms based
on static population-based information. Health and performance
technology is now moving toward miniaturized sensors,
integrated computing, and artificial intelligence. In this way,
technology is becoming “smarter,” more personalized with the
possibility of providing real-time feedback to users (Sawka and
Friedl, 2018). Technology development has typically been driven
by bioengineers. However, effective validation of technology
for the “real world” and development of effective methods for
processing data requires collaboration with mathematicians and
physiologists (Sawka and Friedl, 2018).

Although there is some overlap between certain technologies,
there are also some differences, strengths and weaknesses
between related technologies. Various academic reviews have
summarized existing technologies (Duking et al., 2016; Halson
et al., 2016; Piwek et al., 2016; Baron et al., 2017). However,
the number and diversity of portable devices, wearable sensors
and mobile applications is ever increasing and evolving. For
this reason, regular technology updates are warranted. In this
review, we describe and evaluate emerging technologies that
may be of potential benefit for dedicated athletes, so-called
“weekend warriors,” and others with a general interest in tracking
their own health. To undertake this task, we compiled a list
of known technologies for monitoring physiology, performance
and health, including concussion. Devices for inclusion in the
review were identified by searching the internet and databases
of scientific literature (e.g., PubMed) using key terms such
as “technology,” “hydration,” “sweat analysis,” “heart rate,”
“respiration,” “biofeedback,” “respiration,” “muscle oxygenation,”
“sleep,” “cognitive function,” and “concussion.” We examined the
websites for commercial technologies for links to research, and
where applicable, we sourced published research literature. We
broadly divided the technologies into the following categories
(Figure 1):

• devices for monitoring hydration status and metabolism
• devices, garments, and mobile applications for monitoring

physical and psychological stress
• wearable devices that provide physical biofeedback (e.g.,

muscle stimulation, haptic feedback)
• devices that provide cognitive feedback and training
• devices and applications for monitoring and promoting sleep
• devices and applications for evaluating concussion.

Our review investigates the key issues of: (a) what the technology
is claimed to do; (b) has the technology been independently
validated against some accepted standard(s); (c) is the technology
reliable and is any calibration needed, and (d) is it commercially

available or still under development. Based on this information
we have evaluated a range of technologies and provided some
unbiased critical comments. The list of products in this review
is not exhaustive; it is intended to provide a cross-sectional
summary of what is available in different technology categories.

DEVICES FOR MONITORING HYDRATION
STATUS AND METABOLISM

Several wearable and portable hardware devices have been
developed to assess hydration status and metabolism, as
described below and in Table 1. Very few of the devices
have been independently validated to determine their accuracy
and reliability. The Moxy device measures oxygen saturation
levels in skeletal muscle. The PortaMon device measures
oxy-, deoxy-, and total hemoglobin in skeletal muscle. These
devices are based on principles of near infrared spectroscopy.
The PortaMon device has been validated against phosphorus
magnetic resonance spectroscopy (31P-MRS) (Ryan et al., 2013).
A similar device (Oxymon) produced by the same company has
been proven to produce reliable and reproducible measurements
of muscle oxygen consumption both at rest (coefficient of
variation 2.4%) and after exercise (coefficient of variation 10%)
(Ryan et al., 2012). Another study using the Oxymon device to
measure resting cerebral oxygenation reported good reliability
in the short term (coefficient of variation 12.5%) and long term
(coefficient of variation 15%) (Claassen et al., 2006). The main
limitation of these devices is that some expertise is required
to interpret the data that they produce. Also, although these
devices are based on the same scientific principles, they do
vary in terms of the data that they produce (McManus et al.,
2018).

The BSX Insight wearable sleeve has been tested
independently (Borges and Driller, 2016). Compared with
blood lactate measurements during a graded exercise test, this
device has high to very high agreement (intraclass correlation
coefficient >0.80). It also has very good reliability (intraclass
correlation coefficient 0.97; coefficient of variation 1.2%) (Borges
and Driller, 2016). This device likely offers some useful features
for monitoring muscle oxygenation and lactate non-invasively
during exercise. However, one limitation is that the sleeve that
houses the device is currently designed only for placement on
the calf, and may therefore not be usable for measuring muscle
oxygenation in other muscle groups. The HumonHex is a similar
device for monitoring muscle oxygenation that is touted for its
benefits in guiding warm-ups, monitoring exercise thresholds
and recovery. For these devices, it is unclear how reference limits
are set, or established for such functions.

Other non-wearable devices for monitoring metabolism,
such as Breezing and the LEVL device, only provide static
measurements, and are therefore unlikely to be useful for
measuring metabolism in athletes while they exercise. Sweat
pads/patches have been developed at academic institutions
for measuring skin temperature, pH, electrolytes, glucose,
and cortisol (Gao et al., 2016; Koh et al., 2016; Kinnamon
et al., 2017). These devices have potential applications for
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FIGURE 1 | Summary of current technologies for monitoring health/performance and targeted physical measurements.

measuring heat stress, dehydration and metabolism in
athletes, soldiers, firefighters, and industrial laborers who
exercise or work in hot environments. Although these
products are not yet commercially available, they likely
offer greater validity than existing commercial devices
because they have passed through the rigorous academic
peer review process for publication. Sweat may be used for
more detailed metabolomic profiling, but there are many
technical and practical issues to consider before this mode
of bioanalysis can be adopted routinely (Hussain et al.,
2017).

TECHNOLOGIES FOR MONITORING
TRAINING LOADS, MOVEMENT
PATTERNS, AND INJURY RISKS

A wide range of small attachable devices, garments, shoe
insoles, equipment, and mobile applications have been
developed to monitor biomechanical variables and training
loads (Table 2). Among biomechanical sensors, many are based
around accelerometer and gyroscope technology. Some of
the devices that attach to the body provide basic information
about body position, movement velocity, jump height, force,
power, work, and rotational movement. This data can be used
by biomechanists and ergonomists to evaluate movement
patterns, assess musculoskeletal fatigue profiles, identify
potential risk factors for injury and adjust techniques while

walking, running, jumping, throwing, and lifting. Thus, these
devices have application in sporting, military and occupational
settings.

Among these devices listed in Table 2, the I Measure
U device is lightweight, compact and offers the greatest
versatility. Other devices and garments provide information
about muscle activation and basic training metrics (e.g., steps,
speed, distance, cadence, strokes, repetitions etc). The mPower
is a pod placed on the skin that measures EMG. It provides a
simple, wireless alternative to more complex EMG equipment.
Likewise, the Athos garments contain EMG sensors, but the
garments have not been properly validated. It is debatable
whether the Sensoria and Dynafeed garments offer any more
benefits than other devices. The Mettis Trainer insoles (and
Arion insoles in development) could provide some useful
feedback on running biomechanics in the field. None of
these devices have been independently tested to determine
their validity or reliability. Until such validity and reliability
data become available, these devices should (arguably) be
used in combination with more detailed motion-capture video
analysis.

Various mobile applications have been developed for
recording and analyzing training loads and injury records
(Table 2). These applications include a wide range of metrics
that incorporate aspects of both physical and psychological
load. The Metrifit application provides users with links to
related unpublished research on evaluating training stress. Many
of the applications record and analyze similar metrics, so it
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TABLE 1 | Devices for monitoring hydration status and metabolism.

Product

category

Product name Technical characteristics Validated Reliability

testing

Calibration

required

Development

company/organization

Commercially

available

Smart watch Hydra Alert HRM

Hydration

Monitor

Monitors hydration status.

Sensors for detecting temperature

and humidity.

MAX MET (VO2max) calibration.

Heat index calculator.

Standard heart rate monitor and

interval timer/countdown.

No No Not stated AcumenTM Yes

Smart watch Halo Edge Monitors hydration status, activity

levels, and environmental conditions.

No No Not stated Halo Wearables Yes

Strap/band/patch Humon Hex Strap with sensor paired to

wristwatch and mobile application to

measure muscle oxygenation levels.

No No No Dynometrics Inc Available mid

2017

Strap/band/patch Nobo B60 Strap with sensor monitor hydration

status.

No No Not stated Nobo Inc. In development

Strap/band/patch ECHOTM Smart

Patch

Wearable device to measure

hydration, sodium, glucose,

metabolites, various molecules, and

proteins.

No No Not stated Kenzen In development

Strap/band/patch BSX Insight Sleeve with near infrared sensors to

detect muscle oxygenation and

lactate levels. Useful for determining

lactate thresholds non-invasively.

Connectable to ANT+ fitness tracking

watches, mobile application, and

computers.

Yes Yes No BSX Athletics Yes

Wearable device PortaMon Measures oxy- deoxy- and total

hemoglobin, blood volume and blood

flow, as well as tissue saturation in

muscle tissue using near infrared

spectroscopy. Bluetooth (150m) or

on-board data collection.

Independent

published

research

Yes Yes Artinis Medical Systems Yes

Wearable device Moxy Uses near infrared spectroscopy to

measure muscle oxygenation levels in

muscle tissue. Lightweight (40 g) and

water resistant. On-board data

collection and wireless data

transmission.

Independent

published

research

No Yes Fortiori Design Yes

Non-wearable

device

Breezing Device linked to mobile application to

measure respiratory quotient in

exhaled breath as a measure of the

balance of carbohydrate and fat

metabolism.

Measures and records history of

energy expenditure.

No No Not stated Breezing Yes

Non-wearable

device

The LEVL Device Device linked to mobile application to

measure the acetone content of

exhaled breath as a measure of fat

metabolism.

No No Not stated Medamonitor LLC Yes

Device is considered the gold standard in its class i.e., no comparison with other technology is possible.

Frontiers in Physiology | www.frontiersin.org 4 June 2018 | Volume 9 | Article 743248

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Peake et al. A Review of Health and Sports Performance Technologies

TABLE 2 | Devices and garments for monitoring training loads, movement patterns, and injury risks.

Product category Product
name

Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/
organization

Commercially
available

Wearable device mPower Pod containing electrodes placed on the skin (with
strap or adhesive strips) to record surface EMG
signals.
Can be used to determine activation of different
types of muscle fibers, muscle fatigue, timing of
muscle activation relative to movement.
Derived metrics include activation power, activation
volume, active power balance, fatigue index.
Connected to mobile application.

No No Uncertain Fibrux Oy Yes

Wearable device ZephyrTM Sensor connected to a strap around the chest or
imbedded within a singlet.
Measures biomechanical data including posture,
physical activity, peak acceleration, impact on the
body, jump height and flight time, explosiveness,
peak force, GPS speed, distance and elevation.
Integrates data to provide a summary of
physiological load/intensity, mechanical load, training
load/intensity.

No No Uncertain Medtronic Yes

Wearable device KuaiFit Headphones that measure heart rate, speed, steps,
distance, cycling cadence, swimming laps and
strokes, calories.
Audible training plans.
Connected by Bluetooth and ANT+ to wristwatches,
bike computers, mobile devices, gym equipment.

No No Not stated KuaiFit Not at present

Wearable device Biostrap Shoe clip with a three-axis accelerometer and
gyroscope. Recognizes different exercise modes and
quantifies the number of repetitions, exercise
duration, form and consistency.

No No No Biostrap USA,
LLC

Yes

Wearable device I Measure U Clip with inertial sensor with three-axis
accelerometer, gyroscope, and compass.
Measures jump height, velocity, power, peak force,
rate of force development, flight time, vertical
displacement, number of steps, velocity, and number
of barbell movements.

No No Not stated I Measure U
Ltd

Yes

Wearable device PUSH Accelerometer and gyroscope attached to a strap to
record velocity, power, and total work.

No No Not stated PUSH Inc Yes

Wearable device Lumo Run Clip that attaches to shorts; clip contains 9-axis
inertial measurement unit (IMU), accelerometer,
gyroscope, magnetometer, and barometer.
Provides data on cadence, braking, bounce, pelvic
rotation, pelvic drop. Connected to mobile
application.

No No Not stated Lumo
BodyTech

Yes

Garments DynaFeed Smart garment combining advanced biosensor
technology with an ultra-thin conductive carbon
nanotubes polymer film. Monitors heart rate,
workout effort, provides real-time guidance to
improve efficiency and avoid injuries.

No No Uncertain Far Eastern
New Century
Corporation

No

Garments Sensoria
garments

Upper body garments that monitor heart rate; socks
that monitor distance, cadence, foot landing, foot
contact, pace.
Connected to a mobile application that provides
dashboard tracking and coaching.

No No Uncertain Sensoria Yes

Wearable and
non-wearable
devices

VERT A range of devices for measuring vertical jump
height, number of jumps, average height, jump rate,
power, movement intensity, and asymmetry.

No No Not stated VERT Yes

Garments Athos Garments with embedded EMG sensors to measure
muscle activity, muscle effort, and balance.
Upper body garment measures heart rate
Connected to mobile application.

No Not stated Mad Apparel
Inc.

Yes

(Continued)

Frontiers in Physiology | www.frontiersin.org 5 June 2018 | Volume 9 | Article 743249

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Peake et al. A Review of Health and Sports Performance Technologies

TABLE 2 | Continued

Product category Product
name

Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/
organization

Commercially
available

Wearable device Mettis Trainer Biomechanical shoe insoles containing force and
pressure sensors; measure cadence, distance
travelled, gait, weight distribution of foot landing,
heel-to-toe-strike, impact force, contact time.
Provide real-time audio feedback.
Connected to mobile application.

No “Self-
calibrating”

Mettis Trainer Yes

Wearable device Arion Biomechanical shoe insoles connected to a footpod,
wristband, and mobile application.
Record foot position, cadence, stride length.

No Uncertain ATO Gear Not at present

Mobile application Kinduct Collects, processes and stores large amounts of
data on athletes.
Data analytics and visualization tools for identifying
areas of strength, opportunities for improvement and
potential risks for injury.
Tracking, notification and communication tools for
personalized performance plans.
Data driven training programs and rehabilitation
protocols.

No Not stated Kinduct Yes

Mobile application Metrifit Descriptive analytics and intelligent feedback for
altering coaches and athletes and behavioral
changes.
Body and mind module (mood state, sleep quality
and duration, energy levels, health, muscle
readiness, nutrition, stress).
Session RPE module
Injury tracker.
Analytics/reports.
Daily Traffic Light report for coaches on their athletes.

Team training load report.
Acute:Chronic workload ratio.

No Not stated Metrifit Yes

Mobile application Athlete
Monitoring

Mobile application
Recovery, risk and readiness monitoring (soreness,
stress, health, sleep).
Pre-training wellness questionnaire (sleep quality,
stress, fatigue, heart rate variability).
Record, import, store and track data.
Customizable questionnaires.
Injury tracking and health management (Scat3
concussion assessment; mental health survey;
eating disorder screening; depression screening;
alcohol use; sleep apnoea).
Data import from wearable devices (e.g., GPS and
HR).
Alerts and dashboards are updated in real-time using
individual planned and reported data.
Evidence-based algorithms are used to detect
issues.

No Not stated Fitstats
Technologies
Inc

Yes

Mobile application SportsMed
Elite

Offers predictive insights into sports, wellness and
performance data.
Psychological data; fatigue, motivation, stress.
Physical data; muscle tightness and soreness.
Nutrition; appetite, nutrition quality.
Technology; phone use before bed.
Readiness; general soreness, illness, recovery,
productivity.
Sleep; quality, quantity.
Capacity for recording data on anthropometry,
performance tests, injury, and rehabilitation.

No Not stated SMG
Technologies

Yes

Mobile application SMARTABASE Records data on injury and rehabilitation, training
loads, performance metrics for predictive purposes
and talent identification.
Records data on muscle soreness, stress/pressure,
sleep, types, and amount of physical activity.
Direct connections with 3rd party products.

No Not stated Fusion Sport Yes
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is difficult to differentiate between them. The choice of one
particular application will most likely be dictated by individual
preferences. With such a variety of metrics—which are generally

recorded indirectly—it is difficult to perform rigorous validation

studies on these products. Another limitation of some of these

applications is the large amount of data they record and how to

make sense of all the data.

TECHNOLOGIES FOR MONITORING
HEART RATE, HEART RATE VARIABILITY,
AND BREATHING PATTERNS

Various devices and mobile applications have been developed
for monitoring physiological stress and workloads during
exercise (Table 3). The devices offer some potential advantages
and functionality over traditional heart rate monitors to
assess demands on the autonomic nervous system and the
cardiovascular system during and after exercise. They can
therefore be used by athletes, soldiers and workers involved in
physically demanding jobs (e.g., firefighters) to monitor physical
strain while they exercise/work, and to assess when they have
recovered sufficiently.

Among the devices listed in Table 3, the OmegaWave offers
the advantages that it directly records objective physiological data
such as the electrocardiogram (ECG) as a measure of cardiac
stress and direct current (DC) potential as a measure of the
activity of functional systems in the central nervous system.
However, one limitation of the OmegaWave is that some of
the data it provides (e.g., energy supply, hormonal function,
and detoxification) are not measured directly. Accordingly, the
validity and meaningfulness of such data is uncertain.

The Zephyr sensor, E4 wristband and Reign Active Recovery
Band offer a range of physiological and biomechanical data, but
these devices have not been validated independently. The E4
wristband is also very expensive for what it offers. The Mio
SLICETM wristband integrates heart rate and physical activity
data with an algorithm to calculate the user’s Personal Activity
Intelligence score. Over time, the user can employ this score
to evaluate their long-term health status. Although this device
itself has not been validated, the Personal Activity Intelligence
algorithm has been tested in a clinical study (Nes et al., 2017).
The results of this study demonstrated that individuals with a
Personal Activity Intelligence score ≥100 had a 17–23% lower
risk of death from cardiovascular diseases.

The HELO smart watch measures heart rate, blood pressure,
and breathing rate. It also claims to have some more dubious
health benefits, none of which are supported by published or
peer-reviewed clinical studies. One benefit of the HELO smart
watch is that it can be programmed to deliver an emergency
message to others if the user is ill or injured.

The Biostrap smart watch measures heart rate. Although it
has not obviously been validated, the company provides a link
to research opportunities using their products, which suggests
confidence in their products and a willingness to engage in
research. The Lief patch measures stress levels through heart
rate variability (HRV) and breathing rate, and provides haptic

feedback to the user in the form of vibrations to adjust their
emotional state. The option of real-time feedback without
connection to other technology may provide some advantages.
If worn continuously, it is uncertain if or how this device (and
others) distinguishes between changes in breathing rate and
HRV associated with “resting” stress, as opposed to exercise
stress (Dupré et al., 2018). But it is probably safe to assume
that users will be aware of what they are doing (i.e., resting
or exercising) during monitoring periods. Other non-wearable
equipment is available for monitoring biosignals relating to
autonomic function and breathing patterns. MyCalmBeat is a
pulse meter that attaches to a finger to assess and train breathing
rate, with the goal of improving emotional control. The CorSense
HRV device will be available in the future, and will be tailored
for athletes by providing a guide to training readiness and fatigue
throughmeasurements of HRV. It is unclear how data from these
devices compare with applications such as OmegaWave, which
measures ECG directly vs. by photoplethysmography.

A range of garments with integrated biosensor technology
have been developed. The Hexoskin garment measures
cardiorespiratory function and physical activity levels. It has
been independently validated (Villar et al., 2015). The device
demonstrates very high agreement with heart rate measured
by ECG (intraclass correlation coefficient >0.95; coefficient
of variation <0.8%), very high agreement with respiration
rate measured by turbine respirometer (intraclass correlation
coefficient >0.95; coefficient of variation <1.4%), and moderate
to very high agreement with hip motion intensity measured
using a separate accelerometer placed on the hip (intraclass
correlation coefficient 0.80 to 0.96; coefficient of variation
<6.4%). This device therefore offers value for money. Other
garments including Athos and DynaFeed appear to perform
similar functions and are integrated with smart textiles, but have
not been validated.

TECHNOLOGIES FOR MONITORING AND
PROMOTING BETTER SLEEP

Many devices have been designed to monitor and/or promote
sleep (Table 4). Baron et al. (2017) have previously published
an excellent review on these devices. Sleep technologies offer
benefits for anyone suffering sleep problems arising from chronic
disease (e.g., sleep apnea), anxiety, depression, medication,
travel/work schedules, and environmental factors (e.g., noise,
light, ambient temperature). The gold standard for sleep
measurement is polysomnography. However, polysomnography
typically requires expensive equipment and technical expertise to
set up, and is therefore not appropriate for regular use in a home
environment.

The Advanced Brain Monitoring Sleep Profiler and Zmachine
Synergy have been approved by the US Food and Drug
Administration. Both devices monitor various clinical metrics
related to sleep architecture, but both are also quite expensive for
consumers to purchase. The disposable sensor pads required to
measure encephalogram (EEG) signals add an extra ongoing cost.
The Somté PSG device offers the advantage of Bluetooth wireless
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TABLE 3 | Devices and garments for monitoring cardiorespiratory functions.

Product

category

Product name Technical characteristics Validated Reliability

testing

Calibration

required

Development

company/organization

Commercially

available

Smart watch HELO Monitors blood pressure, heart rate, ECG,

blood temperature and O2 saturation,

sleep cycle, breathing rate, calories,

mood, and physical activity levels.

Germanium, Hematite and Himalayan Salt

plates to improve blood circulation,

eliminate toxins, and purify cells.

No No Not stated HELO Yes

Smart watch E4 Wristband Contains

a photoplethysmography sensor that

records blood pulse volume (from which

heart rate and heart rate variability can be

derived)

a 3-axis accelerometer for recording

activity

an electrodermal sensor to measure

activity of the sympathetic nervous system

(to derive features related to stress,

engagement, and excitement)

an infrared thermophile to record skin

temperature. Connected to a mobile

application and data stored in a cloud.

No No Uncertain Empatica Inc Yes

Smart watch Reign Active

Recovery Band

Records type and amount of activity,

calories burned, heart rate variability

(through two metal sensors).

Calculates a “Go-Zone” based on heart

rate variability to determine personal

fatigue and recovery.

Training recommendations based on heart

rate variability. Records habitual sleep

patterns (through an accelerometer) to

determine personal “Ideal Sleep” hours;

makes recommendations for sleep

Connects to mobile application.

No No Uncertain Jaybird Yes

Smart watch Amiigo Monitors heart rate, heart rate variability,

blood pressure variations, pulse volume

variations, respiratory rate, skin

temperature, arterial blood O2 saturation,

sleep time/quality, restful sleep, calories

burned.

Connected to mobile application.

No No Not stated Amiigo Yes

Smart watch Mio SLICETM Monitors physical activity levels and heart

rate.

Calculates Personal Activity Intelligence

(PAI) score to match physical activity and

heart rate to health assessment.

No No Not stated MioTM Yes

Strap/band/patch Lief Patch that monitors heart rate and

breathing rate. Provides haptic signals to

the user following extended periods of

stress. Associated mobile application

records various emotions to create a mood

rating and provides cognitive behavioral

therapy for emotional regulation.

No No No Lief Therapeutics Not at present

Strap/band/patch ZephyrTM Sensor connected to a strap around the

chest or imbedded within a singlet.

Measures physiological data including

heart rate, breathing rate, heart rate

variability, estimated body temperature,

calories burned, blood pressure, arterial

blood O2 saturation.

No No Uncertain Medtronic Yes

(Continued)
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TABLE 3 | Continued

Product

category

Product name Technical characteristics Validated Reliability

testing

Calibration

required

Development

company/organization

Commercially

available

Strap/band/patch Biostrap Wristband that captures high-fidelity raw

photoplethysmography waveforms to

evaluate heart health. Connected to

mobile application.

No No No Biostrap USA, LLC Yes

Wearable device CorSense HRV

monitor

Portable device placed on the finger and

connected to a mobile application to

measure heart rate variability, provide a

readiness score, guide to stress and

recovery.

No No Uncertain CorSense Not at present

Non-wearable

device

MyCalmBeat Near infrared pulse meter to assess

personal best breathing rate when calm

and train breathing at that rate.

Consciously monitoring and adjusting

breathing rate improves heart rate

variability, leading to greater resilience,

better pain management, improved sense

of wellbeing, enhanced ability to focus and

think clearly. Connected to mobile

application.

No No Self-

calibration

MyBrainSolution

Garment Hexoskin Singlet garment containing an ECG

sensor, a breathing sensor and an

accelerometer; measures: heart rate, heart

rate variability, breathing rate, tidal volume,

minute ventilation, steps, cadence,

estimated calories burned.

Connected to mobile application.

Yes Yes Not stated Carre Technologies Inc

(Hexoskin) ©

Yes

Mobile application

and non-wearable

device

OmegaWave Evaluates heart rate variability,

neuromuscular, sensorimotor, and physical

work capacity.

Data derived to determine Windows of

TrainabilityTM for “readiness” of central

nervous, cardiac, energy supply, gas

exchange/pulmonary and hormonal

systems and detoxification.

Sensors placed on the body to record

ECG and DC potential.

Team and individual athletes analysis

packages.

No No Uncertain OmegaWave Yes

technology for recording EEG during sleep, without the need for
cables.

A large number of wearable devices are available that
measure various aspects of sleep. Several of these devices
have been validated against gold-standard polysomnography.
The UPTM and Fitbit FlexTM devices are wristbands connected
to a mobile application. One study reported that compared
with polysomnography, the UP device has high sensitivity for
detecting sleep (0.97), and low specificity for detecting wake
(0.37), whereas it overestimates total sleep time (26.6± 35.3min)
and sleep onset latency (5.2± 9.6min), and underestimates wake
after sleep onset (31.2 ± 32.3min) (de Zambotti et al., 2015).
Another study reported that measurements obtained using the
UP device correlated with total sleep time (r = 0.63) and time
in bed (r = 0.79), but did not correlate with measurements of

deep sleep, light sleep or sleep efficiency (Gruwez et al., 2017).
Several studies have reported similar findings for the Fitbit FlexTM

device (Montgomery-Downs et al., 2012; Mantua et al., 2016;
Kang et al., 2017). In a validation study of the OURA ring, it was
shown to record similar total sleep time, sleep latency onset and
wake after sleep onset, and had high sensitivity for detecting sleep
(0.96). However, it had lower sensitivity for detecting light sleep
(0.65), deep sleep (0.51) and rapid eye movement sleep (0.61),
and relatively poor specificity for detecting wake (0.48). It also
underestimated deep sleep by about 20min, and overestimated
the rapid eye movement sleep stage of sleep by about 17min (de
Zambotti et al., 2017b). Similar results were recently reported for
the Fitbit Charge2TM device (de Zambotti et al., 2017a). These
devices therefore offer benefits for monitoring some aspects of
sleep, but they also have some technical deficiencies.
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TABLE 4 | Wearable devices and equipment for monitoring and promoting better sleep.

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/organization

Commercially
available

Wearable device UPTM Wristband connected to a mobile
application. Activity tracker to measure
light, deep and rapid eye movement sleep.
Measures heart rate.

Yes No No Jawbone Yes

Wearable device FitBit FlexTM Wristband connected to a mobile
application. Activity tracker to total sleep
time, time in bed.

No Yes No FitBit Yes

Wearable device FitBit Charge2TM Wristband connected to a mobile
application. Activity tracker to total sleep
time, time in bed.

Yes No No FitBit Yes

Wearable device OURA Ring with 3D accelerometer and gyroscope
to measure light, deep, and rapid eye
movement sleep. Measures heart rate.

Yes No No OURA No

Wearable device Dreem Headband that transmits sound
simulations through bone conduction
technology that synchronize with sleep.
Miniaturized EEG sensors provide
feedback on sleep through mobile
application.

No No No Rythm Yes

Wearable device Plex® Sleep
Scanner

Chest strap that measures breathing
patterns, pulse and oxygen levels during
sleep. Connects to mobile application.

No No Not stated Somnology No

Wearable device Sleep Profiler
PSG2

EEG sleep monitor. Three channels of
frontal EEG. Pulse rate and optional ECG.
Monitors head movement and position.
Provides data on total time and percentage
sleep, rapid eye movement and slow wave
sleep, sleep efficiency and average number
of cortical, sympathetic and behavioral
arousals. Recording device connects to
computer to download data.

No No No Advanced Brain
Monitoring

Yes

Wearable device Zmachine® Three skin sensors placed behind each ear
and the back of the neck are connected to
a device for recording EEG. Records
periods of light sleep, deep sleep, rapid
eye movement, arousals, sleep period
time, total sleep time, sleep efficiency,
latency to sleep persistency, wake after
sleep onset and time spent out of bed.
Recording device connects to computer to
download data. Two models (Insight and
Synergy) available.

No No No General Sleep
Corporation

Yes

Wearable device Somté PSG Headband device with 6-channel EEG for
polysomnography (PSG) assessment.
Enable to simultaneously record
oculomotor activity and ECG. Bluetooth
wireless connection to computer software
for sleep staging and events.

No No No Compumedics® Yes

Wearable device Sleep Shepherd Fabric headband that monitors EEG
signals and sends audio sounds to reduce
brain activity to a level conducive to sleep.
Mobile application tracks sleep and
provides alarm to lift brain out of sleep
before the user wakes up.

No No No Sleep Shepherd LLC Yes

Wearable device Re-Timer Eyewear that projects green-blue light.
Designed to be worn for 30min in morning
or afternoon. Used to re-train timing of
sleep onset. Online calculator available for
sleep schedules and adjustment to jet lag.

No No No Re-Time Pty Ltd Yes

(Continued)
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TABLE 4 | Continued

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/organization

Commercially
available

Wearable device AYO Eyewear containing sensors to detect
ambient light and projects blue light.
Connected to mobile application to deliver
blue light at the best time of day or night
according to personal preferences and
lifestyle (e.g., known periods of sleepiness
or low energy); programmable to match
different time zones.

No No No Novology Yes

Wearable device illumy Sleep
Smart Mask

Mask that uses gently dimming red light to
promote sleep and gently brightening blue
light to wake up. Sleep and wake times
programmed into mobile application and
synched to mask.

No No No Headwaters Inc Yes

Wearable device HUSH Wireless ear plugs connected to a mobile
application that plays soothing music to
encourage sleep or wakefulness.

No No No Hush technology Inc Not at present

Wearable device Kokoon Headphones that mold to the shape of the
user’s head. Detects EEG signals and
movement to find the lightest point of the
user’s natural sleep cycle during which to
wake up. Active noise cancellation and
white noise.

No No Not stated Kokoon Not at present

Non-wearable
device

Dreampad Specialized pillow connected to a mobile
application with programmable songs
designed to encourage relaxation and
sleep. Music is relayed through the pillow.

No No No Dreampad Yes

Non-wearable
device

NightWave Sleep
Assistant

Device that projects a soft blue light. Slow
steady breathing coupled with blue light is
intended to promote onset of sleep.

No No no NightWave® Yes

Non-wearable
device

Withings Aura
and REM Sleep
Tracker

Light-emitting diodes that project light of
different colors to promote sleep or
wakefulness. Programmable music to
accompany time of waking. Sensors to
detect ambient temperature, light intensity,
and sound. Optional sleep sensor placed
under mattress to monitor sleep duration,
sleep cycle (light, deep, rapid eye
movement), time awake; wakes you up at
best time of the sleep cycle.

No No No Nokia Yes

Non-wearable
device

Circadia sleep
tracker

Contactless sensor that attaches to
bedroom wall. Wireless measurement of
heart rate, breathing, and body movement
while sleeping. Integrated environmental
sensors detect ambient temperature,
humidity, light, and sound. Sleeping
patterns calculate a model of the body’s
internal clock, signaling when your body
will be at peak alertness, when you’ll start
feeling tired and when your body is ready
to sleep. Model also predicts how much
your internal clock is out of sync, and the
impact on your alertness and sleep quality
later in the day.

No No Not stated Circadia No

Non-wearable
device

Beddit3 Sleep
Tracker

Device with pressure, capacitive touch,
humidity, and temperature sensors; placed
under the mattress. Connected to mobile
application records sleep time, sleep
efficiency, time to fall asleep, restless sleep,
sleep cycles, light/deep sleep, bedtime,
wake-up time, away from bed, awake in
bed, sleep score, heart rate and breathing
cycles. No wearable devices required.

No No No Beddit Yes

(Continued)
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TABLE 4 | Continued

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/organization

Commercially
available

Non-wearable
device

ResMed+ “Non-contact” device for monitoring sleep,
ambient temperature, light, and noise.
Projects soothing sounds to promote sleep
onset. Connected to mobile application
that provides data on different sleep cycles,
sleep patterns and a smart alarm to wake
the user during light sleep. Measures
breathing and movement patterns.

No No No ResMed Yes

Various other devices are available that play soft music or
emit light of certain colors to promote sleep or wakefulness.
Some similar devices are currently in commercial development.
Although devices such as the Withings Aura and REM Sleep
Tracker, Re-Timer and AYO have not been independently
validated, other scientific research supports the benefits of
applying blue light to improve sleep quality (Viola et al., 2008;
Gabel et al., 2013; Geerdink et al., 2016). The NightWave Sleep
Assistant is appealing based on its relatively low price, whereas
theWithings Aura and REMSleep Tracker records sleep patterns.
The Re-Timer device is useful based on its portability.

Some devices also monitor temperature, noise and light in the
ambient environment to identify potential impediments to restful
sleep. The Beddit3 Sleep Tracker does not require the user to
wear any equipment. The ResMed S+ and Circadia devices are
entirely non-contact, but it is unclear how theymeasure sleep and
breathing patterns remotely.

TECHNOLOGIES FOR MONITORING
PSYCHOLOGICAL STRESS AND
EVALUATING COGNITIVE FUNCTION

The nexus between physiological and psychological stress is
attracting more and more interest. Biofeedback on emotional
state can assist in modifying personal appraisal of situations,
understanding motivation to perform, and informing emotional
development. This technology has application for monitoring
the health of people who work under mentally stressful
situations such as military combat, medical doctors, emergency
service personnel (e.g., police, paramedics, fire fighters) and
traffic controllers. Considering the strong connection between
physiology and psychology in the context of competitive sport,
this technology may also provide new explanations for athletic
“underperformance” (Dupré et al., 2018).

Technology such as the SYNC application designed by
Sensum measures emotions by combining biometric data
from third-party smartwatches/wristbands, medical devices for
measuring skin conductance and HR and other equipment (e.g.,
cameras, microphones) (Dupré et al., 2018). The Spire device
is a clip that attaches to clothing to measure breathing rate
and provide feedback on emotional state through a mobile
application. Although this device has not been formally validated
in the scientific literature, it was developed through an extended
period of university research. The Feel wristband monitors

emotion and provides real-time coaching about emotional
control.

In addition to the mobile applications and devices that
record and evaluate psychological stress, various applications and
devices have also been developed to measure EEG activity and
cognitive function (Table 5). Much of this technology has been
extensively engineered, making it highly functional. Although
the technology has not been validated against gold standards,
there is support from the broader scientific literature for the
benefits of biofeedback technology for reducing stress and
anxiety (Brandmeyer and Delorme, 2013). The MuseTM device
produced by InterAxon is an independent EEG-biofeedback
device itself, but it has also been coupled with other biofeedback
devices and mobile applications (e.g., Lowdown Focus, Opti
BrainTM). The integration of these technologies highlights the
central value of measuring EEG and the versatility of the
MuseTM device. The NeuroTracker application is based around
the concept of multiple object tracking, which was established
30 years ago as a research tool (Pylyshyn and Storm, 1988).
NeuroTracker has since been developed as a training tool
to improve cognitive functions including attention, working
memory, and visual processing speed (Parsons et al., 2016). This
technology has potential application for testing and training
cognitive function in athletes (Martin et al., 2017) and individuals
with concussion (Corbin-Berrigan et al., 2018), and improving
biological perception of motion in the elderly (Legault and
Faubert, 2012). The NeuroTracker application has not been
validated.

In the fields of human factors and ergonomics, there
is increasing interest in methods to assess cognitive load.
Understanding cognitive load has important implications for
concentration, attention, task performance, and safety (Mandrick
et al., 2016). The temporal association between neuronal activity
and regional cerebral blood flow (so-called “neurovascular
coupling”) is recognized as fundamental to evaluating cognitive
load. This assessment is possible by combining ambulatory
functional neuroimaging techniques such as EEG and functional
near infrared spectroscopy (fNIRS) (Mandrick et al., 2016).
Research exists on cognitive load while walking in healthy
young and older adults (Mirelman et al., 2014; Beurskens
et al., 2016; Fraser et al., 2016), but there does not appear
to be any research to date evaluating cognitive load in
athletes. A number of portable devices listed in Table 5

measure fNIRS, and some also measure EEG and EMG.
These integrated platforms for measuring/assessing multiple
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TABLE 5 | Wearable devices and mobile applications for monitoring psychological stress, brain activity, and cognitive function.

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/
organization

Commercially
available

Mobile application Opti BrainTM Coupled to MuseTM headband for tracking
brain activity while performing different
tasks. Maps and displays patterns of activity
in four areas of the brain. Also offers
advanced option to analyse EEG maps.

No No Self-
calibration

Opti Brain Yes

Mobile application T2 Mood Tracker Monitors and tracks emotional health.
Records a range of emotions for anxiety,
depression, head injury, stress,
posttraumatic stress, and general
well-being. Tracks progress in customizable
areas and displays results in an
easy-understand graph.

No No Not stated National Center for
Telehealth and
Technology

Yes

Task-based mobile
application

King-Devick Test Test cognitive function and eye movement
under healthy conditions and following a
concussion.

Yes Yes Baseline
screening
recommended

Yes

Task-based mobile
application

HitCheck Tests short term memory, balance,
coordination, visual memory, impulse
control, long term memory, reaction time,
problem solving and color recognition,

No No Not stated HitCheck Yes

Task-based mobile
application

BrainCheck
SportTM

Tests attention, memory, response time and
visual processing.

No No Not stated BrainCheck Yes

Task-based mobile
application

BrainFx Assessment of mild brain disorders.
Measures up to 30 cognitive function skills,
including mood, social, behavioral, fine
motor and balance effects. Two platforms
available to provide different levels of
assessment. Requires training as an
assessor.

No No No BrainFx Yes

Task-based mobile
application

Sway Tests balance and reaction time, and
tracking symptom severity (e.g., headache,
neck pain, nausea, vomiting, dizziness,
blurred vision, sensitivity to light).

Yes No Not stated Sway Medical LLC Yes

Task-based
computer
software/mobile
application

NeuroTracker Computer software that uses 3D multiple
object tracking at increasing difficulties to
develop high-level brain functions. Includes
a series of mini-tests that involves
remembering key targets, tracking them
among moving distractors and then
identifying them. Intended to improve
attention and executive function, increase
brainwave and processing speed, inhibition
and response control, increase biological
motion perception, filter out distractions,
make more tactical and accurate decisions
and improve anticipation and response
times.

No No Uncertain CogniSens Inc Yes

Task-based
computer software

HeadSmartTM Computer programme to assess simple
reaction time, learning and memory skills,
attention, and concentration, problem
solving.

No No Baseline
screening
recommended

HeadSmartTM Sport
Concussion
Programme

Yes

Strap/band/patch Feel Wristband connected to a mobile
application that monitors emotions and
offers training for emotional regulation.

No No No Sentio Solutions Inc Not at present

Strap/band/patch CSx A microsensor that detects linear and
rotational acceleration forces exerted on the
head during collisions.
Connected to a mobile application.

No No No CSx Uncertain

Strap/band/patch TriaxTM A triaxial microsensor that detects
acceleration forces exerted on the head.
Worn attached to a headband or a skullcap.
Connected to a mobile application.

No No No Triax Technologies
Inc

Yes

(Continued)
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TABLE 5 | Continued

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/
organization

Commercially
available

Strap/band/patch X-Patch Pro A sensor that attaches behind the ear,
records impacts forces and sends data to a
mobile application.

No No No X2 Biosystems Inc Yes

Wearable device PreventTM

mouthguard
Custom fabricated or individually molded
mouthguards with sensors to monitor
impact forces with 6 degrees of freedom.
Patented algorithm calculates center of
gravity of the head and measures the force,
location and direction of each head impact.
Compares each impact to a pre-set Max G
head impact threshold.
Data uploaded via the cloud to a mobile
application for monitoring by medical staff.

No No Not stated PreventTM

Concussion
Intelligence

Yes

Wearable device Spire Clip that attaches to clothing to monitor
breathing rate, provides feedback on
emotional state and recommendations for
controlling stress.

No No No Spire Yes

Wearable device MuseTM Headband that measures EEG.
Biofeedback provided to control breathing
pattern to reduce brain activity and
stimulate relaxation. Reduces stress and
anxiety and improves resilience. Personal
data record and training goals.

No No Self-
calibration

InterAxon Yes

Wearable device Lowdown Focus Sports/fashion eyewear with EEG sensors
embedded in the ear bridges. Coupled with

a variation of the MuseTM mobile
application. Provides real-time feedback on
brain activity and cognitive training activities
to improve focus, decision-making,
relaxation, attention and emotional control.

No No Self-
calibration

Smith Yes

Wearable device PortaLite Small, lightweight, flexible portable
single-channel oxygenation monitoring
device. Uses near infrared spectroscopy to
measure oxy-, deoxy- and total hemoglobin
concentrations at capillary level. Capable of
measuring tissue saturation index. Used for
monitoring task specific cerebral
oxygenation levels particularly during real
world activities. Bluetooth (150m) or on
board data collection.

Independent
published
research

No Yes Artinis Medical
Systems

Yes

Wearable device OctaMon Lightweight, flexible portable 8-channel
oxygenation monitoring device. Uses near
infrared spectroscopy to measure oxy-,
deoxy- and total hemoglobin concentrations
at capillary level. Used for monitoring task
specific cerebral oxygenation levels.
Bluetooth (100m) data collection; real-time
data analysis.

Independent
published
research

No Yes Artinis Medical
Systems

Yes

Wearable device Brite23 Portable 23 channel, lightweight (<300g)
fNIRS device. Uses near infrared
spectroscopy to measure oxy-, deoxy- and
total hemoglobin concentrations at capillary
level. Used for monitoring cerebral
oxygenation levels during real-world
activities including everyday physical
activities and sports exercises. Bluetooth
(30m) data collection; real-time data
analysis. Fully synchronized with other
physiological and behavioral measurements;
integration with multiple NIRS devices within
a single data stream. Offline measurement
data storage for over 200 h of recording.

Independent
published
research.

Yes Yes Artinis Medical
Systems

Yes

(Continued)
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TABLE 5 | Continued

Product category Product name Technical characteristics Validated Reliability
testing

Calibration
required

Development
company/
organization

Commercially
available

Wearable device NIRSPORT Portable 8-channel near infrared
spectroscopy for recording cerebral oxy-
and deoxy- hemoglobin concentrations.
Wireless real-time data streaming. Enabled
to couple with other measurements of EEG,
EMG, functional magnetic resonance
imaging, eye-tracking.

Independent
published
research

No Yes NIRx Yes

Wearable device Mobita Portable wireless 32 channel physiological
signal amplifier for EEG, EMG and other
physiological or biomechanical data. Built-in
3D accelerometer. True active shielding for
all channels. Battery operated with multiple
channel configurations. Real time wireless
(10m) or flash disk recording (16 GB). 2 kHz
sampling per channel and 24 bit data
resolution.

Independent
published
research

No Yes TMSi Yes

Wearable device g.Nautilus Portable wireless 32 channel EEG. Active
electrodes. 3D accelerometer. 24 bit data
resolution, 500Hz sampling rate. Real time
wireless (10m).

Independent
published
research

No Yes G.Tec Medical
Engineering

Yes

Wearable device Starstim fNIRS Headset that combines sensors for
measuring EEG with near infrared sensors
for local blood blow (hemodynamics). Is also
capable of applying transcranial direct
stimulation. Application for understanding
cognitive function.

Independent
published
research

Yes Artinis Medical
Systems

Yes

Wearable device B2v2 Headband containing sensors that read
EEG signals that are then converted to
audio sounds in headphones. By listening to
the sounds, the brain recognizes
imbalances and recalibrates itself to create
more balanced brainwaves. Intended to
improve stress management, memory,
self-awareness, mental flexibility, and quality
of sleep.

No No Not stated Brain State
Technologies

Yes

EyeSinc® Device for measuring oculomotor activity
following a concussion.

No No Not stated SyncThink No

physiological systems present significant value for various
applications. These devices all measure physiological signals
directly from the brain and other parts of the body. Research
using these devices has demonstrated agreement between
measurements obtained from fNIRS vs. the gold standard of
functional magnetic resonance imaging (Mehagnoul-Schipper
et al., 2002; Huppert et al., 2006; Sato et al., 2013; Moriguchi
et al., 2017). These devices require some expertise and specialist
training.

Concussion is a common occurrence in sport, combat
situations, the workplace, and in vehicular accidents. There is
an ever-growing need for simple, valid, reliable, and objective
methods to evaluate the severity of concussion, and to monitor
recovery. A number of mobile applications and wearable devices
have been designed to meet this need. These devices are of
potential value for team doctors, physical trainers, individual
athletes, and parents of junior athletes.

The King-Devick Test R© is a mobile application based on
monitoring oculomotor activity, contrast sensitivity, and eye

movement to assess concussion. It has been tested extensively
in various clinical settings, and proven to be easy to use,
reliable, valid, sensitive, and accurate (Galetta et al., 2011;
King et al., 2015; Seidman et al., 2015; Walsh et al., 2016).
Galetta et al. (2011) examined the value of the King-Devick
Test R© for assessing concussion in boxers. They discovered that
worsening scores for the King-Devick Test R© were restricted to
boxers with head trauma. These scores also correlated (ρ = 90;
p = 0.0001) with scores from the Military Acute Concussion
Evaluation, and showed high test–retest reliability (intraclass
correlation coefficient 0.97 [95% confidence interval 0.90–1.0]).
Other studies have reported a very similar level of reliability
(King et al., 2015). Performance in the King-Devick Test R© is
significantly impaired in American football players (Seidman
et al., 2015), rugby league players (King et al., 2015), and combat
soldiers (Walsh et al., 2016) experiencing concussion. Because
the King-Devick Test R© is simple to use, it does not require any
medical training, and is therefore suitable for use in the field by
anyone.
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The EyeSync R© device employs a simple test that records
eye movement during a 15-s circular visual stimulus, and
provides data on prediction variability within 60 s. It is not yet
commercially available, and has therefore not been validated. The
BrainCheck SportTM mobile application employs the Flanker and
Stroop Interference test to assess reaction time, the Digit Symbol
Substitution test to evaluate general cognitive performance, the
Trail Making test to measure visual attention and task switching,
and the Coordination test. It has not been independently
validated, but is quick and uses an array of common cognitive
assessment tools.

The Sway mobile application tests balance and reaction. Its
balance measurements have been validated in small scale studies
(Patterson et al., 2014a,b). Performance in the Sway test was
inversely correlated (r = −0.77; p < 0.01) with performance in
the Balance Error Scoring System test (Patterson et al., 2014a)
and positively correlated (r= 0.63; p< 0.01) with performance in
the Biodex Balance System SD (Patterson et al., 2014b). Further
testing is needed to confirm these results. One limitation of this
test is the risk of bias that may occur if individuals intentionally
underperform during baseline testing to create lower scores than
they may attain following a concussion (so as to avoid time out of
competition after concussion).

Various microsensors have been developed for measuring
impact forces associated with concussion (Table 5). Some of these
microsensors attach to the skin, whereas others are built into
helmets, headwear or mouth guards. The X-Patch Pro device is
a device that attaches behind the ear. Although it has not been
scientifically validated against any gold standard, it has been used
in published concussion research projects (Swartz et al., 2015;
Reynolds et al., 2016), which supports its sensitivity for assessing
head impact forces. The PreventTM mouth guard is a new device
for measuring the impact of head collisions. Its benefits include
objective and quantitative data on the external force applied
to the head. Many of the sensors vary in accuracy, and only
record linear and rotational acceleration. Whereas, many sports
involve constantly changing of direction, planes of movement
will provide the most accurate data. A study by Siegmund et al.
(2016) reported that the Head Impact Telemetry System (HITS)
sensors detected 861 out of the 896 impacts (96.1%). If a sensor
is detecting better than 95%, it has good reliability. However,
helmetless sports have fewer options for such accuracy and
actionable data.

CONSIDERATIONS AND
RECOMMENDATIONS

In a brief, yet thought-provoking commentary on mobile
applications and wearable devices for monitoring sleep, Van
den Bulck makes some salient observations and remarks that
are applicable to all forms of consumer health technologies
(Van den Bulck, 2015). Most of these technologies are not
labeled as medical devices, yet they do convey explicit or
implicit value statements about our standard of health. There
is a need to determine if and how using technology influences
peoples’ knowledge and attitude about their own health. The

FIGURE 2 | Matrix to guide decision-making process for evaluating and

selecting new technologies.

ever-expanding public interest in health technologies raises
several ethical issues (Van den Bulck, 2015). First, self-diagnosis
based on self-gathered data could be inconsistent with clinical
diagnoses provided by medical professionals. Second, although
self-monitoring may reveal undiagnosed health problems, such
monitoring on a large population level is likely to result in
many false positives. Last, the use of technologies may create an
unhealthy (or even harmful) obsession with personal health for
individuals or their family members who use such technologies
(Van den Bulck, 2015). Increasing public awareness of the
limitations of technology and advocating health technologies
that are both specific and sensitive to certain aspects of
health may alleviate these issues to some extent, but not
entirely.

For consumers who want to evaluate technologies for
health and performance, we propose a matrix based around
two dimensions: strength of evidence (weak to strong) and
effectiveness (low to high) (Figure 2). This matrix is based
on a continuum that was developed for use in a different
context (Puddy and Wilkins, 2011), but is nonetheless
appropriate for evaluating technology. When assessing the
strength of evidence for any given technology, consumers
should consider the following questions: (i) how rigorously
has the device/technology been evaluated? (ii) how strong
is the evidence in determining that the device/technology is
producing the desired outcomes? (iii) how much evidence exists
to determine that something other than this device/technology
is responsible for producing the desired outcomes? When
evaluating the effectiveness of technologies, consumers should
consider whether the device/technology produces desirable
or non-desirable outcomes. Applying the matrix in Figure 2,
undetermined technologies would include those that have not
been developed according to any real-world need and display no
proven effect. Conversely, well-supported technologies would
include those that have been used in applied studies in different
settings, and proven to be effective.

Most of the health and performance technologies that
we have reviewed have been developed based on real-world
needs, yet only a small proportion has been proven effective
through rigorous, independent validation (Figure 3). Many of
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FIGURE 3 | Classification of technologies based on whether they have been

validated and/or used in research.

these technologies described in this review should therefore
be classified “emerging” or “promising.” Independent scientific
validation provides the strongest level of support for technology.
However, it is not always possible to attain higher standards
of validation. For example, cognitive function is underpinned
by many different neurological processes. Accordingly, it is
difficult to select a single neurological measurement to compare
against. Some technologies included in this review have not
been independently validated per se; but through regular use
in academic research, it has become accepted that they provide
reliable and specific data on measurement items of interest. Even
without formal independent validation, it is unlikely (in most
instances at least) that researchers would continue using such
technologies if they did not offer reliable and specific data. In
the absence of independent validation, we therefore propose that
technologies that have not been validated against a gold standard
(but are regularly used in research) should be considered as “well-
supported.” Other technical factors for users to consider include
whether the devices require calibration or specialist training to
set up and interpret data, the portability and physical range for
signal transmission/recording, Bluetooth/ANT+ and real-time
data transfer capabilities, and on-board or cloud data storage
capacity and security.

From a research perspective, consumer health technologies
can be categorized into those that have been used in validation
studies, observational studies, screening of health disorders,
and intervention studies (Baron et al., 2017). For effective
screening of health disorders and to detect genuine changes in
health outcomes after lifestyle interventions, it is critical that
consumer health technologies provide valid, accurate and reliable
data (Van den Bulck, 2015). Another key issue for research
into consumer health technologies is the specificity of study
populations with respect to the intended use of the technologies.
If technologies have been designed to monitor particular health
conditions (e.g., insomnia), then it is important for studies
to include individuals from the target population (as well

as healthy individuals for comparison). Scientific validation
may be more achievable in healthy populations compared
with populations who have certain health conditions (Baron
et al., 2017). There is some potential value for commercial
technology companies to create registries of people who use
their devices. This approach would assist in collecting large
amounts of data, which would in turn provide companies
with helpful information about the frequency and setting

(e.g., home vs. clinic) of device use, the typical demographics
of regular users, and possible feedback from users about
devices. Currently, very few companies have established such
registries, and they are not consistently publishing data
in scientific journals. Proprietary algorithms used for data
processing, the lack of access to data by independent scientists,
and non-random assignment of device use are also factors
that are restricting open engagement between the technology
industry and the public at the present time (Baron et al.,
2017).

It would seem advisable for companies producing health
and performance technologies to consult with consumers to
identify real-world needs and to invest in research to prove
the effectiveness of their products. However, this seems to be
relatively rare. Budget constraints may prevent some companies
from engaging in research. Alternatively, some companies may
not want to have their products tested independently out of a
desire to avoid public scrutiny about their validity. In the absence
of rigorous testing, before purchasing health and performance
technologies, consumers should therefore carefully consider
whether such technologies are likely to be genuinely useful and
effective.
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Performance development in international soccer is undergoing a silent revolution fueled

by the rapidly increasing availability of athlete quantification data and advanced analytics.

Objective performance data from teams and individual players are increasingly being

collected automatically during practices and more recently also in matches after FIFA’s

2015 approval of wearables in electronic performance and tracking systems. Some

clubs have even started collecting data from players outside of the sport arenas. Further

algorithmic analysis of these data might provide vital insights for individual training

personalization and injury prevention, and also provide a foundation for evidence-based

decisions for team performance improvements. This paper presents our experiences

from using a detailed radio-based wearable positioning data system in an elite soccer

club. We demonstrate how such a system can detect and find anomalies, trends, and

insights vital for individual athletic and soccer team performance development. As an

example, during a normal microcycle (6 days) full backs only covered 26% of the sprint

distance they covered in the next match. This indicates that practitioners must carefully

consider to proximity size and physical work pattern in microcycles to better resemble

match performance. We also compare and discuss the accuracy between radio waves

and GPS in sampling tracking data. Finally, we present how we are extending the

radio-based positional system with a novel soccer analytics annotation system, and a

real-time video processing system using a video camera array. This provides a novel

toolkit for modern forward-looking soccer coaches that we hope to integrate in future

studies.

Keywords: player load, athlete quantification, GPS tracking, LPM tracking, wearables, player monitoring

1. INTRODUCTION

Over the last decade, we have witnessed the emergence of a myriad of wearable devices and
sensors for quantification of sport and physical activity. These are frequently touted as a game
changer and a key for future development of many sports. Key sport governance organizations
like Fédération Internationale de Football Association (FIFA), with its 265 million members in
various local clubs world-wide (Kunz, 2007), have already approved use of wearables and Electronic
Performance and Tracking Systems (EPTSs) in official matches. This has undoubtedly accelerated
research and development of athlete quantification technology. Training and matches are already
being impacted. For instance, it is believed that the German national soccer team used wearable
technology to profile the players, and with these statistics, coach Joachim Low made the crucial
substitute of Mario Götze who scored the winning goal in the world cup final in Brazil 2014.
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Although such success stories certainly do exist, the general
usefulness of athlete quantification technologies has several
shortcomings. The aim of this paper is to highlight some of the
challenges we encountered when using positional data as part of
research and team development, and to suggest other promising
data sources. Our main observation is that athlete quantification
systems are often inhibited by questionable validity of acquired
data. We argue that by combining data from multiple systems,
some of the shortcomings of existing positional tracking systems
can be detected and perhaps avoided. All data in this report was
collected from autumn 2011 until spring 2017. All participants
have given their written informed consent, and the project has
been given institutional approval.

2. TRACKING USING LPM (RADIO
SIGNALS) AND GPS IN A PROFESSIONAL
FOOTBALL CLUB

Football is an open-loop sport, and it is important to emphasize
the need for more research to develop our understanding
of valid indications of physical match performance and
competitive success (Carling, 2013). Toward that end, the
athlete quantification technologies deployed in our research
facilities at Alfheim Stadium is already generating important
insight. At Alfheim Stadium, there has been a substantial
development and use of various tracking technology,
including multiple camera semi-automatic systems, Local
Position Measurement (LPM) systems, and GPS systems,
each capable of quickly recording and storing data about
team players. We have to a large extend moved away from
GPS based technology, which has traditionally been the
preferred choice by clubs to quantify training load of team-
sports athletes, both during training and matches (Aughey,
2010).

An alternative to GPS based systems, are those based on
LPM radio signals. Unlike GPS systems, where devices are
passive receivers of signals from overhead satellites, LPM systems
work by having the wearable emit signals to local receivers,
which do the actual triangulation. Our experience is that LPM
systems have better accuracy than GPS-based systems. In our
case, we have several years of experience with positional tracking
using the stationary LPM system: ZXY Sport Tracking System
by ChyronHego (Trondheim, Norway). This system is based
on using the 5.0GHz Industrial, Scientific, and Medical (ISM)
radio band for communication and signal transmissions. With
ZXY, each player wears a belt with a transponder placed at
his lumbar (Pettersen et al., 2014), and there are six stationary
sensors placed at the stadium perimeter. The stationary sensors
compute the position data for each belt by advanced vector based
processing of the received radio signals. The processing system
in each stationary sensor enables direct projection of the player’s
positions on the field without having to exchange data with other
sensors. Multiple receivers are still required to cover the entire
field and to avoid occlusions. The default resolution is fixed to
20Hz for each belt. Data is stored in the system’s internal database
and can be exported as comma separated values files.

To quantify the accuracy difference of GPS technology
compared to LPM systems, we performed two studies, as will be
described next.

2.1. Study 1 and Study 2: GPS vs.
LPM-Tracking
In Study 1 (2011), we instrumented 6 high-level female players
(weight 59.6± 6.8 kg, height 171.5± 4.2 cm) with both GPS and
LPM tags and instructed them to perform the Copenhagen Soccer
Test for Women (CSTw). Each player ran the CSTw course 18
times, simulating a match and accumulating a distance of 10,331
m (Bendiksen et al., 2013). Each player wore two GPS tags from
the GPSport SPI-ProX1 5.0Hz system in a vest on their upper
body, and two ZXY tags placed in a small belt near the lumbar
spine. Having multiple tags enables us to measure both the inter
and the intra reliability of the systems.

The average distance covered was measured by SPI-ProX1
(12 tags on 6 players) to 11,668 ± 1,072 m with a CV value
of 6%, while ZXY (14 tags on 7 players) measured the distance
to 10,204 ± 103 m with a CV value of 1%. For High Intensity
Runs (HIRs) (>16.0 kmh−1), the values were 612± 433m with
a CV value of 37.4% and 1238± 38m with a CV value of 3.1%,
respectively.

In the intra reliability test, the measured discrepancy between
the two tags placed on the same player ranged between 800
and 2,071 m using SPI-ProX1 and 25–290m using ZXY. Our
observation that the SPI-ProX1 system seems to measure higher
values for total distance covered is further supported by an
experiment where 19 players of two junior elite teams were
equipped with both ZXY and SPI-ProX1. The average distance
covered was measured by SPI-ProX1 to 10,805 ± 847 m, while
ZXY measured the distance to 9,891 ± 974 m (Johansen et al.,
2013).

In Study 2 (2016), 12 male youth elite players (weight
64.2± 8.2 kg, height 176.0± 6.7 cm) were instructed to jog
clockwise around the pitch at Alfheim Stadium, following the
side and end-lines of the pitch. All players wore both the Polar
Team Pro 10GHz GPS system (Kempele, Finland) and the ZXY
system. The GPS tags were connected to the anterior part of
the chest by a elastic chest strap. Figure 1B shows the recorded
positional information for both Polar and ZXY. (The Polar
system could not plot more than five players per figure.) As can
be seen in the figures, players were not capable of performing 90◦

turns in the corners, which is to be expected. The GPS tracks
in Figure 1B can clearly bee seen to deviate significantly from
the actual trajectory of the players, while the tracks shown in
Figure 1A much more closely follow the lines. A similar effect
was also observed by Buchheit et al. (2014).

Next, seven of the twelve players were selected to complete a
training session. With statistical significance levels obtained by
Paired T-test, sprint performance (>25.2 kmh−1) was measured
lower by ZXY 55.3± 7.3m compared to Polar Team Pro
70.0± 12.9m (P > 0.05). HIR and number of accelerations
(≥2m s−2) showed an inverse tendency with higher values
222.8± 77.8m and 100.9± 19.9 counts vs. 164.4± 54.9m and
81.0± 15.9 counts (ns). All tracking generated raw data was
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FIGURE 1 | Comparison of tracking technologies in Study 2 for 12 players running at the side and endlines of the pitch at Alfheim Stadium. (A) LPM tracking tracking

results (ChyronHego ZXY, 12 players shown. (B) GPS tracking results (Polar Team Pro, 5 of 12 players shown. The figure shows movement after the experiment cutoff.

loaded into Microsoft Excel, where statistical procedures were
executed.

It could be speculated that the GPS signal reception at
Alfheim Stadium is poor. However, the stadium does not have
an overhanging roof, nor are there any nearby high buildings
that obscures the sky. A few 9m high stands are located 9.3m
behind the sidelines, but we do not suspect these to interfere with
the GPS signal. Measurement accuracy may still be reduced by
atmospheric conditions such as clouds and fog. A more plausible
explanation is perhaps the stadium’s arctic location at 69.65◦

north. The inclination of GPS satellite orbits is approximately 55◦

(north or south), so that no satellites have been directly overhead
during our tracking sessions (Langley, 1999). High error rates
have, however, been reported elsewhere for inter-unit reliability
across different GPS models (Jennings et al., 2010; Castellano
et al., 2011). A stationary reference GPS receiver can improve
accuracy by averaging its position over time. As long as such a
reference receiver detects the same satellite signals as the wearable
GPS receiver, it can send correction data. In the northern areas,
GPS based solutions that also communicate with the Russian
Global Navigation Satellite System (GLONASS) system should
also be considered as these generally provide better precision
here. Still, ours and Stevens et al. (2014) findings indicate superior
accuracy in Local Position Systems (LPS) compared to GPS. It
remains unclear to what extent the inherent accuracy limitation
in the GPS system limits its usefulness for athlete quantification.

Although the CSTw has a 10,331 m preset course that
the players should follow, some discrepancies in the measured
distance are to be expected. Even small deviation of the sensor
device from the set trajectories of the test, like the player leaning
in the turns of the course, will impact the measurements and
adds up throughout the test. However, the high meter values in

relation to the course length and in addition the large CV between
units of the SPI-ProX1 system suggest that the results should be
interpreted with caution.

Using an absolute sprinting or high-velocity threshold for
all athletes in a team does not account for individual genetic
or physiological differences. The same external load calculated
by an acceleration, HIR, or sprinting threshold for two athletes
could represent a different internal load based on individual
characteristics (Impellizzeri et al., 2004). Positive and negative
accelerations are metabolically demanding and often do not
elicit velocities defined as HIR or sprint (Osgnach et al., 2010).
The starting velocity is critical when measuring accelerations or
decelerations, the metabolic cost of changing speed more than
2.0m s−2 is much larger at a starting speed of 5.0m s−1 compared
to 1.0m s−1. In addition, quantification of these variables is
dependent upon the validity and reliability of athlete tracking
systems.

An alternative may be individual thresholds for external load
expressed relative to maximum speed attained during sprint
testing. An individualized approach of arbitrarily derived velocity
thresholds may benefit the training prescription for players, but
will limit comparisons with other teams and leagues. Limited
research exists on how to individualize accelerations, which
are energy demanding, and therefore, we will have limited
information on total external load even with individualized speed
zone limits (Sweeting et al., 2017).

2.2. Study 3: High Intensity Activity in
Training vs. Match
In Study 3 (2017), 5 players (age 25.2± 4.0 , height
178.4± 5.0 cm, weight 75.2± 6.6 kg) were randomly selected
from 5 different playing positions: central back, full back,
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TABLE 1 | High-intensity actions (HIRs and Sprints) and number of appearances (counts) and/or meters for five training sessions, compared to an official match in five

players in different positions.

High Intensity Runs (HIRs) Sprints

Count % Dist (m) % Count % Dist (m) %

Match Train. Match Match Train. Match Match Train. Match Match Train. Match

CB 35 38 109 560 327 59 8 7 88 112 58 52

FB 44 54 123 835 694 83 13 11 85 183 104 57

CM 60 56 93 1305 698 53 16 4 25 259 67 26

WM 49 60 122 1032 559 54 18 10 56 228 84 37

CF 49 54 110 851 705 83 10 15 150 103 153 149

CB, Center back; FB, Full back; CM, Center midfield; WM, Wide midfield; CF, Center forward.

The difference (% match) correspond to the total value of the training week compared to the match. The value of the match is considered as 100%. Example from a normal microcycle

(5 training sessions between two official matches).

central midfielder, wide midfielder, and central forward. The
players were tracked in 5 consecutive in-season training sessions
(microcycle) and in one official home match. Distances and
number of HIR and sprints were compared (Table 1). We
observed large discrepancies in high-intensity activities between
trainings in the microcycle and match. As shown in Table 1, we
have recorded substantial underload in HIR and sprint for most
players during the training week compared to macth. Following
the principle of overload, this indicates that the format of the
small side games does not elicit the sufficient amount of HIR
and sprint, with exception of the central forward position in
the team’s style of play. Practitioners should be aware of and
take into consideration how different pitch size and number of
players dictate the external and internal training load.

From a training load perspective, the large intra/inter unit
differences in tracked distance described in section 2 can also
have significant practical implications for an athlete across a
longitudinal period, which questions meaningful interpretation
of the data. For within-athlete longitudinal monitoring, we
therefore recommended that practitioners assign a specific device
to each athlete. To appropriately detect changes in physical
performance, researchers must also account for match-to-
match variation and device reliability. Any possible interference
between co-located devices has to our knowledge not yet
been fully explored. Nevertheless, developing a device including
algorithms describing position-specific match demands might
be useful to control training load in relation to match
demands. By integrating information about training content,
load periodization, and fatigue status we can provide real-world
insight into optimal approaches for player preparation.

3. PERSPECTIVE

The studies described above indicate that existing positional
technologies do not guarantee an accuratemeasurement of player
locomotor activities. We are therefore experimenting with two
specific supplemental data sources that we plan to integrate
in future studies: one based on video and one based on self-
reporting.

3.1. Full-Stadium Video Coverage
Video of player actions are generally considered a useful tool for
soccer analytics. Videos have traditionally been obtained from the
following three sources: professional TV broadcasts, hand-held
cameras, or fixed arena cameras. Unfortunately, these sources are
either not available for practices, too personnel demanding, or
too costly. More importantly, none of these solutions provide
a sufficient high-resolution coverage of all players throughout a
session. Our solutionwas to develop the Bagadus (Stensland et al.,
2014) video system.

Bagadus consists of multiple small shutter and exposure
synchronized cameras that record a high-resolution video of the
soccer field. The cameras are set in a circular pattern; pitched,
yawed, and rolled to look directly through a point five cm in
front of the lenses, minimizing the parallax effect. Combined, the
cameras cover the full pitch with sufficient overlap to identify
common features necessary for camera calibration and image
stitching to generate a panorama video.

Bagadus video playback can switch between streams delivered
from the different cameras, eithermanually by selecting a camera,
or automatically following players based on sensor information.
It can also play back a panorama video stitched from the different
camera feeds. Using the panorama video, a virtual view can also
be extracted (Gaddam et al., 2015), for instance to automatically
follow one particular player (Gaddam et al., 2014).

3.2. Video Indexing With Rich Metadata
Many elite soccer clubs spend much time on manual labor-
intensive post-game analysis by carefully watching full-length
recordings of the game. By enriching video archives with time-
synchronized metadata from external sensors, Bagadus enables a
much more efficient video retrieval and summarizing experience,
reducing the time needed for coaches to locate relevant video
segments. At Alfheim Stadium we found positional data from
ZXY particularly useful as it enables Bagadus to track individual
players and generate on-the-fly video summaries based on player
or group formation and trajectories. For instance, a video
summary of all situations where a particular player sprints toward
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his own goal, or all situations where the midfielder is in the
mid-circle (Mortensen et al., 2014).

In addition to positional data, we have developed an
annotation system (Johansen et al., 2012; Stensland et al., 2014)
for use during matches to tag important events with metadata as
they occur. A key design principle for this systemwasminimizing
deployment effort and hardware investments. Mobile devices
like smartphones and tablets are as such ideal platforms as they
are highly available, mostly Internet connected, and provide
sufficient computational resources. In combination with an tile-
based interface optimized for fast input, the average annotation
time was cut down to less than 3 seconds (Johansen et al.,
2012) while operated on the field. The registered events are
time-aligned with the video and stored in an analytic database,
immediately available for use by the video retrieval system. This
enable video-based team or individual feedback in the locker
room during half time, or after practice.

3.3. Individual Subjective Reports
We have also implemented a player monitoring system
PMSys: a self-reporting system1 for mobile devices, which
enables monitoring of individual phenotypic parameters through
repeated questionnaires that the players answer on their own
mobile phones.

Having regular reports from all team members is a key goal
for PMSys. As such, a key design requirement was support on
all smart-phone platforms (e.g., iOS and Andoid) in use by team
members. To reduce the costs of multi-platform support, we
opted to develop PMSys as a hybrid-mobile application based
on the Ionic 2+ Framework2. Recent versions of the framework
generate applications that look and feel similar to native ones, and
earlier performance and appearance disadvantages are mostly
mitigated. PMSys is currently deployed in Google Play for
Android devices, and in Apple’s iTunes store for iOS devices.
Themobile application provides graphical visualization feedback,
which gives the player a timeline overview.

In addition to the smart-phone app, we also constructed a
web-portal that team coaches can use to analyze and present data.
The portal is constructed with the coaches in mind, providing
several tools and plots for teams and individual players. In
combination with the web portal and mobile application, we
have implemented our own communication service between the
mobile phone and the web portal, allowing a coach to send

1PMSys, http://forzasys.com/pmsys.html.
2https://ionicframework.com/

push-messages directly to a player’s mobile phone. A key feature
of PMSys is the ability for coaches to schedule future and repeated
push-messages.

Our experience with PMSys Athlete Self-Report Measures
(ASRM) at Alfheim, is that education and feedback is of utmost
importance to maintain daily usage. The scope of education
should include why an ASRM should be used, the purpose of
the questions asked, and who is analysing the data. Education
should emphasize that results are to be used for the player benefit,
and not to their detriment. Feedback should consist of daily
interactions and reminders pushed directly to the users device,
showing what action is taken in response to reported data. During
the season, the generated daily wellness reports may form the
basis of the regular conversations between coaching staff and
players. Engagement of staff, especially in the implementation
process, is essential (Saw et al., 2015), with particular emphasis
on the need for a key-staff member to oversee the day-to-day
responses and be able to analyze and interpret the ASRM.

By complimenting GPS and LPM positional data, like the
ones we have used in our previous studies, with data from video
and self-reporting tools, we hope to better predict injury or
reduced performance for a player. The extended data sources are
in particular interesting when considered as additional input to
modern machine learning algorithms.
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Purpose: In this study wearable global navigation satellite system units were used on
athletes to investigate pacing patterns by describing exercise intensities in flat and uphill
terrain during a simulated cross-country ski race.

Methods: Eight well-trained male skiers (age: 23.0± 4.8 years, height: 183.8± 6.8 cm,
weight: 77.1 ± 6.1 kg, VO2peak: 73 ± 5 mL·kg−1

·min−1) completed a 13.5-km
individual time trial outdoors and a standardized indoor treadmill protocol on roller skis.
Positional data were recorded during the time trial using a differential global navigation
satellite system to calculate external workloads in flat and uphill terrain. From treadmill
tests, the individual relationships between oxygen consumption and external workload
in flat (1◦) and uphill (8◦) terrain were determined, in addition to VO2peak and the
maximal accumulated O2-deficit. To estimate the exercise intensity in the time trial,
the O2-demand in two different flat and five different uphill sections was calculated by
extrapolation of individual O2-consumption/workload ratios.

Results: There was a significant interaction between section and average O2-demands,
with higher O2-demands in the uphill sections (110–160% of VO2peak) than in the
flat sections (≤100% of VO2peak) (p < 0.01). The maximal accumulated O2-deficit
associated with uphill treadmill roller skiing was significantly higher compared to flat
(6.2 ± 0.5 vs. 4.6 ± 0.5 L, p < 0.01), while no significant difference was found in
VO2peak.

Conclusion: Cross-country (XC) skiers repeatedly applied exercise intensities
exceeding their maximal aerobic power. 6O2-deficits were higher during uphill skiing
compared to flat which has implications for the duration and magnitude of supramaximal
work rates that can be applied in different types of terrain.

Keywords: cross-country skiing, exercise intensity, external power, global navigation satellite system, metabolic
rate, pacing
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INTRODUCTION

Cross-country (XC) skiing is an endurance sport in which the
goal is to cover a known distance in the shortest time possible.
Unlike most other endurance sports such as track running,
rowing, or swimming, a substantial variation in speed exists, since
competition courses in XC skiing must consist of approximately
one-third ascending, one-third flat and one-third descending
terrain (FIS, 2017). The large fluctuations in speeds, imposed by
the topography of the course, challenge skiers’ ability to control
the exercise intensity, also described as the athletes pacing (Abbiss
and Laursen, 2008).

It is widely accepted that pacing patterns have a significant
influence on performance in a variety of sports, including
XC skiing (Abbiss and Laursen, 2008; Losnegard et al., 2017).
Theoretically, an even pacing pattern is regarded as optimal for
performance in endurance sports events with durations > 2 min,
where athletes race against the clock over a known distance
(Abbiss and Laursen, 2008). In contrast, studies of running
(Tucker et al., 2006; Hanley, 2015), cycling (Thomas et al., 2012),
mountain bike (Martin et al., 2012), and rowing (Garland, 2005)
have shown that athletes, in fact, apply positive, J-shaped or
variable pacing patterns. Furthermore, studies on pacing patterns
in XC ski racing have consistently shown that, on a lap-by-lap
basis, XC skiers apply a positive pacing pattern independent
of both race distance and level of the skiers (Larsson and
Henriksson-Larsen, 2005; Bolger et al., 2015; Formenti et al.,
2015; Andersson et al., 2016; Losnegard et al., 2017). However,
describing pacing patterns in terms of lap-by-lap comparisons
in sports where course topography changes substantially are
insufficient due to the non-constant relationship between speed,
external work rate, and thereby metabolic energy demand.
Therefore, describing such pacing patterns in a sport such as
XC skiing, demands alternative methods where the total energy
turnover could be estimated.

Previous investigations of exercise intensity and pacing
patterns in XC skiing have mainly focused on sprint skiing
(≤1.8 km) (Andersson et al., 2010, 2016; Sandbakk et al.,
2010, 2011). The pacing pattern in XC sprint skiing has been
shown to be regulated according to the terrain, with skiers
applying considerably higher metabolic rates during uphill
compared to flat sections of the course (Andersson et al., 2016;
Sandbakk and Holmberg, 2017). This is in line with computer
modeling from XC skiing and road cycling, which suggests
that increased exercise intensity in uphill terrain improves
performance compared to maintaining an even exercise intensity
(Swain, 1997; Atkinson et al., 2007; Sundstrom et al., 2013).
Moreover, estimations of the work rate during single uphill
sections of competitive skiing have revealed metabolic rates
of approximately 110–160% of peak aerobic power (Norman
et al., 1989; Sandbakk et al., 2011), implying a considerable
anaerobic energy production. However, no study has investigated
anaerobic energy turnover during competitions in XC skiing. In
running, Olesen (1992) has shown that the anaerobic capacity
(with the maximal accumulated oxygen deficit method) during
uphill running is higher compared to running on flat terrain,
which may also apply to XC skiing (Andersson et al., 2016).

Consequently, this may have implications for the maximal
metabolic power attainable in different terrains and adds to
the complexity of pacing in XC skiing. However, except for
the pioneering work by Norman et al. (1989) conducted nearly
30 years ago, little information is available on exercise intensity in
various terrains in distance XC skiing (>10 and 15 km for female
and male skiers, respectively). Moreover, to our knowledge,
no study has investigated individual energy turnover rates in
different terrains during XC skiing. Since specificity is a known
principle in training, a more detailed evaluation of sport specific
requirements may, therefore, contribute to optimizing training
and competition strategies.

One challenge when estimating energy turnover, and thereby
exercise intensity, in XC skiing on snow is to control the ski
friction, and thereby the external load. An alternative approach
is to use roller skis, which are also used in treadmill skiing.
The relationship between external workload and metabolic cost
can, therefore, be determined by testing skiers during treadmill
roller skiing (Sandbakk et al., 2010). Recent advances in wearable
sensor technology allow tracking of athletes as a point mass
model for position, speed, and acceleration, by using a differential
global navigational satellite system (dGNSS), during outdoor
roller skiing (Larsson and Henriksson-Larsen, 2005; Andersson
et al., 2010). Using this wearable technology, the external work
load can be determined (Swaren and Eriksson, 2017) and the
metabolic cost of roller ski racing can be estimated to illustrate
the exercise intensity during a race.

The present study, therefore, investigated pacing patterns in a
13.5 km self-paced time trial (TT), performed on roller skies on
an international race course, by describing exercise intensities in
flat and uphill terrain. To determine exercise intensities in the TT,
external workloads were derived from accurate positioning data
collected with a dGNSS system worn by the skiers. The external
workloads from the TT were converted into energy demands
using individual relationships between energy cost and workload
collected during treadmill roller skiing. We hypothesized that:
(I) During a XC distance race, skiers apply a variable pacing
pattern; (II) XC skiers repeatedly perform exercise intensities
exceeding their peak aerobic power during a XC distance
race.

MATERIALS AND METHODS

Subjects
Eight well-trained male XC skiers (mean ± SD: age,
23.0± 4.8 years; body mass, 77.1± 6.1 kg; height 1.84± 0.07 m)
volunteered to participate in the study. The skiers were recruited
via convenience sampling using the following criteria: (1) either
active or former active competitor at a national level in Norway,
(2) experienced with treadmill roller skiing and (3) familiar with
the specific race course. The protocol was approved by the local
ethics committee of the Norwegian School of Sport Sciences
and the Norwegian Social Science Data Services (NSD). All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. If younger than 18 years of age, parental
written consent and assent from the skier were obtained.
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Experimental Overview
All skiers attended two separate sessions, separated by
11.0 ± 4.9 days. In the first session, the skiers completed a
self-paced 13.5-km individual TT on an international race
course to simulate a XC ski race. In the second session,
individual relationships between external work rate and oxygen
consumption (VO2), and peak oxygen consumption (VO2peak)
and maximal accumulated O2-deficit in flat and uphill terrain
was determined in the laboratory on a roller ski treadmill. The
O2-demand in seven sections of the TT course was estimated by
extrapolating the individual linear relationships between VO2
and workload using individual positioning data collected in
the TT. All tests were performed on roller skis using the skate
technique. The same test leaders conducted all tests.

Time Trial
The individual TTs were carried out in the roller ski course in
Holmenkollen (Oslo, Norway). The course profile resembled the
actual profile of a XC-ski course used in the FIS World Cup
and consisted of three identical laps of 4.5 km (height difference
51 m, maximum climb 32 m, total climb 166 m). The TTs were
conducted on two separate days; six skiers completed the TT on
the first day and two skiers on the second day. Before starting the
TT, the skiers performed 20 min of individual warm-up, wearing
the dGNSS equipment and the assigned test skis to familiarize
themselves with the equipment. The skiers started the TT at
2-min intervals and were instructed to complete the TT as fast as
possible. No instructions regarding pacing patterns were given.
Continuous individual positioning data were recorded with a
dGNSS system during the TT. Heart rate data were recorded with
a separate HR monitor. In two preselected sections of the course,
one uphill (S4) and one flat (S7), video recordings of the skiers
were conducted to determine sub-techniques applied in these
sections. In addition, the skiers verbally reported their rating of
perceived exertion (RPE) on a category ratio scale (Foster et al.,
2001). Air temperature during the outdoor TTs was between 8

and 16◦C, and air pressure was approximately 1005 hPa. Local
wind direction was northeast and southeast on the first and
second day, respectively. The asphalt was completely dry on both
occasions.

Laboratory Tests
The indoor tests were performed on a roller ski treadmill. Speeds,
inclinations, and sub-techniques were chosen to resemble those
from the outdoor TT to enable estimation of O2-demands during
flat and uphill skiing. The indoor test protocol is illustrated in
Figure 1. First, skiers completed a standardized 15 min warm
up at 3◦ and 3.0 m·s−1 (∼ 60–75% of HRpeak). The skiers then
performed six submaximal workloads divided into two subsets
consisting of three flat and three uphill workloads, respectively.
The flat subset was meant to resemble the flat sections of the TT
course, and was carried out at 1◦ and 4.5, 5.5, and 6.5 m·s−1 using
the V2 technique (two pole plants for two ski pushes). The uphill
subset was meant to resemble the uphill sections of the TT course
(mean incline ≈ 8◦), and was carried out at 8◦ and 1.5, 1.75, and
2.0 m·s−1 in the V1 technique (one pole plant for two ski pushes).
The duration of each submaximal workload was 5 min, and each
workload was separated by 2 min. The two subsets were separated
by 5 min of passive recovery.

After 8 min of active recovery (∼60–70% of HRpeak) the
skiers completed two self-paced 3 min all-out performance
tests separated by 20 min as described by Sandbakk et al.
(2016). The 3 min all-out performance test has been shown
to be a valid method to determine VO2peak during treadmill
roller skiing (Losnegard et al., 2012a). The speed was constant
the first 30 s starting at 2.5 m·s−1 and 7.5 m·s−1 in
the uphill (8◦) and flat (1◦) performance test, respectively.
Thereafter the subjects controlled the speed (uphill; 0.25 m·s−1,
flat; 0.5 m·s−1 increments or decrements by adjusting their
position on the treadmill relative to laser beams situated in
front of and behind the skier. External power, steady state
VO2, respiratory exchange ratio (RER), ventilation (VE) and

FIGURE 1 | Test protocol for the treadmill submaximal workloads and performance tests. The skiers completed one subset consisting of three workloads (of 5 min
each) in the V1 technique at 8◦ inclination and a speed of 1.5, 1.75, and 2.0 m·s−1, and one subset consisting of three (5 min) workloads in the V2 technique at 1◦

inclination and speeds of 4.5, 5.5, and 6.5 m·s−1. The order in which the inclined and level subsets were performed was counter-balanced between athletes.
Thereafter the skiers completed two 3 min maximal performance tests at inclinations of 8◦ and 1◦ respectively. The speed was fixed the first 30 s, and thereafter the
subjects controlled the speed (uphill; 0.25 m·s−1, flat; 0.5 m·s−1 increase or decrease) by adjusting their position on the treadmill. The performance tests were
performed in the same order as the submaximal workloads.
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breathing rate (BR) were measured continuously during all
tests. Heart rate and rating of perceived exertion (RPE) were
registered, and blood lactate concentration ([La−]) was measured
immediately after the completion of each workload. The order in
which the submaximal subsets and the performance tests were
performed were counter balanced. The temperature indoors was
approximately 20◦C, and the total duration of the indoor session
was approximately 1.5 h.

External Power
External power (Pext) on the treadmill was calculated as the
sum of power against gravity (Pg) and power against rolling
resistance (Prr), without dGNSS equipment, previously described
by Losnegard et al. (2013). External power outdoors (Pext_out) was
calculated as the sum of power against gravity (Pg), power against
rolling resistance (Prr) and power against air drag resistance (Pd):

Pext_out =
∑

P = Pg + Prr + Pd

Power against gravity was calculated as the increase in potential
energy per unit time:

Pg = m · g · sin α · v

where m represents the total mass of the skier (incl. equipment),
g the gravitational acceleration, α the inclination of the course in
degrees and v the skier’s speed along the track.

Power against rolling resistance (Prr) was calculated as work
against rolling resistance forces per unit time:

Prr = Crr ·m · g · cos α · v

where Crr represented the coefficient of rolling resistance of the
roller skis and was measured (Crr = 0.024) before and after the
project using a towing test previously described by Losnegard
et al. (2011). We used the same Crr for the treadmill and asphalt
surface, as previous studies by our group did not find any
differences using the same roller skis, asphalt track and treadmill
belt (Myklebust, 2016).

Power against air drag resistance (Pd) was estimated as follows:

Pd = Fd · v

where Fd represents the force from air drag acting on the
skier. Fd was estimated assuming a turbulent air flow and no
environmental wind (Sundstrom et al., 2013):

Fd = 0.5 · CDA · ρ · v2
air

where CD represents the drag coefficient, A the projected frontal
area of the skier, ρ the air density, and vair the speed of
the skier relative to the air. Due to the assumption of no
environmental wind, vair was set equal to v. The drag area (CDA)
was determined by scaling, as described by Sundstrom et al.
(2013).

Air density (ρ) was calculated from ambient temperature
measurements on site on the test day. Air pressure (p)
was obtained from the meteorological station at Blindern
(Oslo, Norway1). Air density ρ was calculated from the following

1eklima.net

equation, assuming dry air:

ρ =
p

R · T

where R is the specific gas constant of dry air (287.058
J·kg−1

·K−1) and T the ambient temperature in kelvins.

Definitions and Data Analysis
The pacing pattern was concidered variable if there were
statistically significant changes in exercise intensity, expressed as
O2 demand, throughout the TT. Conversley, the pacing pattern
was concidered even if the changes in exercise intensity were
statistically non-significant. VO2peak in uphill and flat terrain,
respectively, was defined as the highest average 30-s epoch during
each of the performance tests. Peak heart rate (HRpeak) was
defined as the highest HR registered during the performance
tests. Oxygen cost for each workload was defined as the average
oxygen consumption between 3 and 4.5 min in each workload.
6O2-deficit was calculated based on the method presented by
Losnegard et al. (2012a). Gross efficiency (GE) in the submaximal
workloads was defined as the ratio between external power output
(W) and aerobic energy turnover rate (W) and was expressed as
percentages, as described by Losnegard et al. (2014).

Two regression equations were computed for each athlete, one
for flat and one for uphill skiing, assuming a linear relationship
between external power and VO2. Individual positional data
from each section were standardized according to section length
(100 sample points in each section), and individual external
work rate was calculated at each sample point. An estimate of
the O2-demand was then made using the individuall regression
equations and external work rates. Individual section O2-demand
was defined as the average O2-demand of the 100 sample points
in each section.

Instruments and Materials
All tests were performed on Swenor Skate Long roller skis (length:
630 mm, weight incl. binding: 795 g·ski-1, Swenor, Sarpsborg,
Norge) equipped with wheel type 2 and Rottefella Xcelerator 2.0
bindings (Rottefella, Klokkarstua, Norge). The skiers used the
same pair of roller skis and their personal ski boots and ski poles
(90± 1% of body height) in both the outdoor TT and the indoor
session. Before the indoor session, the ski poles were fitted with
customized treadmill ferrules. Laboratory tests were performed
on a roller ski treadmill with belt dimension 3 × 4.5 m (Rodby,
Södertälje, Sverige).

The dGNSS system used in the TT has previously been
described and validated for kinematics (Gilgien et al., 2015)
and kinetics (Gilgien et al., 2013) in alpine skiing, and has an
expected accuracy < 5 cm when double difference ambiguities
are fixed (Gilgien et al., 2014). The dGNSS system consisted
of an antenna mounted on the skier’s helmet (G5Ant-2AT1,
Antcom, United States) connected to a GPS/GLONASS dual
frequency (L1/L2) receiver (Alpha-G3T, Javad, United States)
placed in a small backpack. Total weight of the dGNSS system
was 940 g (receiver 430 g, backpack 350 g, antenna 160 g).
A stationary base station was placed in a fixed position close to
the course, to facilitate differential positioning. The base station
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consisted of an antenna (GrAnt-G3T, Javad, United States) and
a receiver (Alpha-G3T, Javad, United States). The antenna was
mounted on a tripod and raised approximately 2 m above
ground level. The dGNSS measurements were determined in
the global coordinate system WGS84 (Universal Transverse
Mercator zone 32, northern hemisphere). The dGNSS position
was calculated using kinematic carrier phase double difference
solutions (Gilgien et al., 2014) at 50 Hz using geodetic
post-processing software (Justin, Javad, United States), and
filtered using smoothing splines (smoothing parameter p = 0.1)
weighted by their fixed/float status (Skaloud and Limpach, 2003).
The position measurements were mapped onto a common
trajectory based on a kinematic position tracking of the race
track sampled at 1 Hz (antenna and receiver: GrAnt-G3T and
Alpha-G3T, Javad, United States). The skiers’ speed v (Eq. 2)
along the track was determined from the time derivative of the
positions along the mapping trajectory.

During the laboratory tests, oxygen consumption was
measured using an automatic ergospirometry system (Oxycon
Pro, Jaeger GmbH, Hoechberg, Germany). Blood lactate
concentration was measured in unhemolyzed blood from
capillary fingertip samples (YSI 1500 Sport; Yellow Springs
Instruments, Yellow Springs, OH, United States). The lactate
analyzer and the Oxycon Pro Jaeger Instrument were calibrated
according to the instruction manual as described in detail
previously (Losnegard et al., 2011). Body mass and mass
including equipment were measured before the TT and the
treadmill test (Seca model 708; Seca, Hamburg, Germany).

Rating of perceived exhaustion was evaluated using a category
ratio RPE scale (0–10) validated by Foster et al. (2001). Heart
rate was recorded using the athletes’ personal training computers.
Video was recorded with two Canon HF100 video cameras
(frame rate = 25 Hz, Canon Inc., Tokyo, Japan). Environmental
temperature, air pressure, and wind data were retrieved from
local weather stations (met.eklima.no, Meteorological Institute of
Norway, Oslo, Norway).

Statistics
Data are presented as the mean± standard deviation (SD) unless
otherwise stated. Normality of the data was assessed using the
Shapiro–Wilks test of normality (α = 0.05). Outliers were assessed
by inspection of boxplots and by examination of studentized
residuals for values greater than ± 3. Paired sample T-tests were
used to detect statistical differences in average speed, VO2peak,
6O2-deficit, HRpeak, [La−], VE and RPE between the 3-min all-
out performance tests, and between GE during flat and uphill
submaximal skiing. One-way repeated measures ANOVAs, with
Bonferroni correction for multiple comparisons, were conducted
to determine whether there were statistical differences in average
lap speed, section O2-demand, section external power and section
speed between laps, and in average section O2-demands between
sections in the TT. Average HR between laps and RPE during the
TT failed the assumption of normality and were analyzed with
related samples Friedman’s tests, with Bonferroni correction for
multiple comparisons. Pearson’s Product Moment Correlation
Analysis was applied for correlation analysis between VO2 and
external work rate on the treadmill. The strengths of correlation

(r) were interpreted as follows: correlation coefficient (r) < 0.1
trivial; 0.1–0.3, small; 0.3–0.5, moderate; 0.5–0.7, strong; 0.7–0.9,
very strong; and 0.9–1.0, almost perfect (Hopkins, 2002). An
α level of p ≤ 0.05 was considered significant, and p ≤ 0.10
was considered a tendency. All calculations were performed in
MATLAB R2016a (MathWorks, Inc., Natick, MA, United States),
and statistical analyses were performed in SPSS Statistics (IBM
Corp., Armonk, NY, United States).

RESULTS

Laboratory Tests
Oxygen consumption during the flat and uphill submaximal
workloads corresponded to 57 ± 5%, 66 ± 6%, 78 ± 6%,
and 62 ± 9%, 69 ± 8%, 76 ± 8.0% of VO2peak, respectively
(Figure 2). Heart rate was 76 ± 7%, 83 ± 7%, 91 ± 5%, and
80 ± 7%, 86 ± 7%, and 90 ± 6% of HRpeak, respectively.
Correlations between VO2 and external power were large to very
large during flat [r(25) = 0.86, p = 0.001] and uphill [r(25) = 0.90,
p = 0.001] roller skiing, respectively. There were no differences
in GE between workloads at the same inclination, but GE was
significantly different between flat [(14.4% ± 0.6%) = 0.9%]
and uphill (17.8% ± 0.7%) with a mean differense of 3.4%
[t(25) =−26.480, p < 0.001].

Physiological variables from the flat and uphill performance
tests are presented in Table 1. There were no significant
differences in VO2peak, HRpeak, [La−], RER or RPE between the
two conditions. However, the 6O2-deficit was 34.8% higher in
the uphill compared to the flat performance test [t(7) = −5.676,
p = 0.001].

Time Trial Characteristics
Mean TT finishing time was 33:25± 01:38 mm:ss, corresponding
to an average speed of 6.7 ± 0.3 m·s−1. Average lap speed
changed significantly during the TT [F(2,12) = 7.371, p = 0.008],
with a significant reduction in speed between lap 1 and
lap 2 (−0.2 m·s−1, p = 0.044). There were no significant
differences between lap 1 and lap 3 or between lap 2 and lap
3 (Figure 3E). Comparing speeds within each setion revealed
significant changes in S4 [F(2,12) = 14.765, p = 0.001], with a a
reduction in speed from lap 1 to lap 2 and from lap 1 to lap 3,
with a mean difference of 6.1% (p = 0.048) and 7.1% (p = 0.003),
respectively. In addition, there were significant changes in S7
[F(2,12) = 5.915, p = 0.016], with an increase in speed from lap
2 to lap 3, with a mean difference of 5.0% (p = 0.035). Continuous
time loss and speed are presented in Figures 3D,E.

External power varied between ∼230 and 600 W (Figure 3B).
Section O2-demands from each lap are presented in Figure 3A.
Section O2-demand varied significantly in S4 [F(2,12) = 14.163,
p = 0.001] and S7 [F(2,12) = 6.802, p = 0.011]. In S4, there was
a tendency to a reduction in O2-demand between lap 1 and lap
2 (7.4%, p < 0.051), and a significant reduction in O2-demand
between lap 1 and lap 3 (8.3%, p = 0.005). In S7, there was
an increase in O2-demand (8.9%, p = 0.034) between lap 2
and lap 3. There were no significant differences in O2-demands
between laps in S1, S2, S3, S5, or S6. Comparing average
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FIGURE 2 | VO2, HR, RPE and external power during the submaximal level and inclined workloads on the roller ski treadmill. Square and solid line: average data.
Dotted lines: individual data. (n = 8). Subject 2 completed one extra workload at 7.5 m·s−1 (total number of level workloads: 4) and one extra workload at 2.25
m·s−1 (total number of inclined workloads: 4). Subject 8 started the level submaximal workloads at 5.5 m·s−1 and the inclined submaximal workloads at 2.0 m·s−1.

O2-demands (over three laps) between sections, showed that
section significantly influenced O2-demands [F(6,36) = 65.816,
p < 0.001, post hoc results presented in Figure 3A], which ranged
from 89 to 157% of VO2peak.

The average HR during the TT was 94 ± 3% of HRpeak
(Figure 3C). There were significant changes in average HR
between laps [χ2(2) = 8.3, p = 0.016]. From lap 1 (Mdn = 92%
HRpeak, IQR = 4%) to lap 3 (Mdn = 95% HRpeak, IQR = 2%)
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TABLE 1 | Average speed and physiological responses during the flat (1◦) and uphill (8◦) 3 min all-out performance tests on the roller ski treadmill.

1◦ 8◦

Variable Mean ± SD Range Mean ± SD Range p

Average speed (m·s−1) 8.04 ± 0.36 7.58 − 8.62 2.92 ± 0.28 2.57 − 3.37 < 0.001

VO2peak (mL·kg−1
·min−1) 72.7 ± 5.3 64.9 − 81.5 72.3 ± 6.2 64.2 − 82.7 0.411

6O2-deficit (L) 4.6 ± 0.5 3.8 − 5.3 6.2 ± 0.6 5.3 − 7.0 0.001

HRpeak (b·min−1)a 182 ± 5 174 − 188 183 ± 6 173 − 190 0.365

[La−] (mmol·L)b 7.6 ± 1.0 6.1 − 8.9 6.9 ± 1.6 4.9 − 9.6 0.138

VE (L·min−1) 200.5 ± 10.8 175.1 − 210.7 188.6 ± 14.1 169.0 − 211.3 0.037

RPE (0–10) 9 ± 1 8 − 10 9 ± 1 7 − 10 0.504

n = 8, an = 6, bn = 7.

(p = 0.016). There were, however, no statistical differences in
average HR between the other laps.

Rating of perceived exertion changed significantly between
the different laps of the TT [χ2(2) = 26.393, p < 0.001], with
differences between S4 lap 1 (Mdn = 6.0, IQR = 3.0) and S4 lap 3
(Mdn = 8.0, IQR = 1.0) (p = 0.009), between S4 lap 1 (Mdn = 6.0,
IQR = 3.0) and S7 lap 3 (Mdn = 9.0, IQR = 1.5) (p = 0.002) and
between S7 lap 1 (Mdn = 7.0, IQR = 2.0) and S7 lap 3 (Mdn = 9.0,
IQR = 1.5) (p = 0.015). The preferred sub-techniques in S4 and S7
were V1 and V2, respectively.

DISCUSSION

The present study investigated pacing patterns by describing
exercise intensities in flat and uphill terrain during a self-paced
roller ski time trial. The principal findings were that in a XC
distance race: (I) the skiers frequently applied exercise intensities
exceeding their peak aerobic power and exercise intensity was
higher in uphill compared to flat terrain; (II) the skiers applied
a variable pacing pattern, evidenced by significant changes in
exercise intensity; (III) while peak aerobic power in flat and uphill
skiing were similar, the 6O2-deficit during uphill skiing were
greater compared to flat.

Pacing Pattern and Exercise Intensity
Distribution
To our knowledge, this is the first investigation to use positional
data, combined with physiological measurements, to determine
the individual oxygen demand in multiple sections of a self-paced
XC ski race. As evident by the considerable variations in
O2-demand (Figure 3A), the skiers applied a variable pacing
pattern throughout the TT, which is in accordance with earlier
observations from competitive XC sprint skiing (Andersson et al.,
2010, 2016). It has been suggested that athletes apply a variable
pacing pattern in an attempt to maintain the same exercise
intensity throughout a race (Abbiss and Laursen, 2008). In this
study, however, even though the speed was substantially lower in
the uphill sections of the course, O2-demands were considerably
higher compared to the flat sections (Figure 3A). This implies
that the skiers did not maintain an even exercise intensity, but
rather repeatedly increased the intensity in the uphill sections.

Moreover, the large variations in exercise intensity and the
disassociation between exercise intensity and speed between
different terrains emphasizes that describing pacing patterns
exclusively by inter-lap variations in speed is insufficient (Abbiss
and Laursen, 2008). At least, this is true for endurance sports
events where substantial variations in the topography exist.

Comparing the exercise intensity in S1 and S6, two sections of
approximately the same length and inclination, the O2-demand
was approximately 50% higher in S6 (Figure 3A). This difference
in exercise intensity can be explained by the fact that prior to
S6, the skiers performed approximately 1 km of downhill terrain
(Figure 3F). This allowed the skiers to arrive at S6 in a partially
recovered state abel to apply a greater amount of anaerobic work
in this section. Further, S6 was followed by relatively even terrain,
thus implying, that the skiers had a less strenuous part of the
course ahead of them after S6. It was also evident that when
the length and inclination of the uphill section increased (S4
and S5), the skiers reduced the intensity (∼115% of VO2peak)
compared to the shorter and less steep sections (S3 and S6,
140–160% of VO2peak). Furthermore, as the skiers approached
the end of the race, they increased the exercise intensity (S6 and
S7). This increase in exercise intensity has been described as the
“endspurt phenomenon,” and has been explained by a reduction
in uncertainty regarding the remaining work (Tucker, 2009).
Taken together, these observations imply that skiers modify their
exercise intensity and hence their pacing according to the terrain
and their current position in the course.

Exercise Intensity in Uphill Terrain
The rationale for applying higher exercise intensities in uphill
than in flat terrain, and thus a variable pacing pattern, involves
at least three factors. First, the quadratic increase in air drag
with speed implies that a substantial fraction of the increase in
propulsive power is dissipated to overcome the increase in air
drag resistance. In the flat sections, air drag resistance accounted
for approximately 50% of the external work. In contrast, in the
uphill sections where the speeds were low, the work against
air drag was negligible (∼3% of Pext_out). Since performance in
uphill terrain is a determinant of overall performance in XC
skiing (Andersson et al., 2010; Sandbakk et al., 2011), the most
rational choice is to increase work rate in the uphill parts of the
course.
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FIGURE 3 | Physiological and performance characteristics from the 13.5 km time trial. (A) Section O2-demands (%VO2peak), (B) external power (W), (C) continuous
HR (b·min−1), (D) time loss compared to lap 1 (s·m−1), (E) speed (m·s−1) and (F) course profile. Due to challenging conditions at ∼2700 m the GNSS-solution were
poor. Hence, the spikes in time loss does not represent the real difference. Exercise intensity and external power are presented as mean ± 95% confidence intervals.
Open diamond: lap 1. Closed square: Lap 2. Gray triangle: lap 3. Numbers indicate a significant difference (p < 0.05) in average section O2-demand across the 3
laps from the section with the corresponding number. #Significantly different from lap 1. ∗Significantly different from lap 2. (n = 7).
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Second, repeated periods of supramaximal intensities are
possible because of the downhill sections, where the skiers
are propelled mostly by gravity. Since the anaerobic capacity
is limited, either cessation of work or a reduction in work
rate to a level that can be met by aerobic metabolism must
occur following a period of supramaximal work rates (Gastin,
2001). In the present study, we did not estimate the O2-
demand of downhill skiing, but previous estimations suggest
that it is approximately 40–60% of VO2max (Sandbakk and
Holmberg, 2017). Further, VO2 values of approximately
65% of VO2max during downhill skiing have been reported
during competition (Welde et al., 2003). Therefore, it
seems reasonable to assume that there is a sufficient drop
in O2-demand during downhill skiing to recover at least
some of the O2-deficit attained. This is exemplified by the
differences in O2-demands between S1 and S6, as described
above.

Third, the possibility of repeatedly attaining an O2-deficit
and at least partially recovering from it without a decrease
in speed separates XC skiing from other endurance sports,
such as running, track cycling and speed skating. In these
endurance sports athletes can maintain an intensity relying
on a high contribution of anaerobic metabolism for only a
limited time, without reducing the speed (Gastin, 2001). To our
knowledge, the present study is the first to directly compare
the VO2peak and the 6O2-deficit of XC skiers during both
flat (1◦) and uphill (8◦) skiing. A novel finding was that the
6O2-deficit was significantly greater in the uphill performance
test compared to the flat. Such a difference has previously
been reported in treadmill running and has been attributed
to a greater amount muscle mass being active when running
uphill (Olesen, 1992). The difference in O2-deficit between
flat and uphill terrain has implications for the duration and
magnitude of supramaximal work rates in different type of
terrains. Since the peak aerobic power was similar in flat and
uphill terrain, the total metabolic power attainable in different
terrains is determined by the anaerobic energy turnover. In
addition, the 6O2-deficit seems to be an important factor for
training-induced seasonal changes and thereby performance in
elite distance XC skiers (Losnegard et al., 2013). Taken together,
even though the duration of a XC distance race is relatively
long (>30 min), and the relative contribution from anaerobic
metabolism is low, the ability to repeatedly apply work rates
covered by a high anaerobic turnover seems to be a crucial factor
for performance in elite XC skiing, which to date is not fully
understood.

Heart Rate and Exercise Intensity
From a practical standpoint, HR is a widely used tool to
describe exercise intensity in endurance sports (Achten and
Jeukendrup, 2003). In the present study, HR remained high
for most of the race (>90% of HRpeak) (Figure 3C), which
is in accordance with previous observations in XC skiing
(Mognoni et al., 2001; Formenti et al., 2015). Our results also
show that HR to some extent reflects the exercise intensity
in various parts of the course. However, the ability of the
HR to reflect rapid-intensity transients and supramaximal

exercise intensities is limited due to the temporal dissociation
between HR, VO2 and work rate during high-intensity exercise
(Buchheit and Laursen, 2013; Bolger et al., 2015). This is
supported by our observations when comparing HR and O2-
demands in the different sections of the course (Figures 3A,C).
While a considerable variation in O2-demand was evident,
there were relatively small variations in HR. Hence, HR is
not suitable for describing exercise intensity in XC skiing
competitions.

Methodological Considerations
In the present study, we assumed that the linear relationship
between external power and O2 cost established during the
submaximal workloads (∼55–80% of VO2peak) also applied to
maximal and supramaximal workloads observed in the TT
(∼85–160% of VO2peak). This relationship is well established
at workloads below the lactate threshold (Bassett and Howley,
2000; Noordhof et al., 2010). However, it is debated whether
this linearity also applies to workloads above the lactate
threshold (Noordhof et al., 2010). Furthermore, taking both
the duration of the TT and the intensities applied into
account, a VO2 slow component must be expected (Jones
et al., 2011). This could result in a reduction in GE and an
increase in the energy cost of maintaining the same external
workload. We did not quantify alterations in the GE during
the TT. Thus, we may potentially have underestimated the
actual O2-demand, at least in the later parts of the TT. These
considerations should be taken into account when interpreting
the results.

The air drag resistance acting upon a XC skier is a complex
mechanism, affected by changes in body position, sideways
movement and clothing (Spring et al., 1988; Leirdal et al., 2006).
In the present study, we assumed that the upright position,
described by Spring et al. (1988) represented the average body
position of the skier. Because of the quadratic behavior of the
air drag resistance, the body position of the skier potentially
has a significant influence on the external power at high speeds.
However, most of the sections in the current study were uphill
(nuphill = 5). Hence, the speeds and the relative contributions
of air drag resistance were small (∼3%) and should not have
influenced the results. Moreover, environmental wind conditions
may influence the relative air flow and affect the air drag
resistance. In the present study, no environmental wind was
assumed in the calculations as wind conditions on both test
occasions were negliabe.

Power against rolling resistance on the treadmill was
quantified using the method described by Losnegard et al.
(2012a). The limitations of this approach were discussed by the
authors and can be attributed to changes in the normal force
and the orientation angle of the roller ski in relation to the
direction of travel. However, the effects were small, and would
only have minor implications for the estimation of total external
power.

The different ski-skating techniques applied in the flat and
the uphill sections could potentially influence the VO2peak
and O2-deficit. However, Losnegard et al. (2012b) reported
no differences in performance, VO2max or O2-deficit between
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V1 and V2 at steep inclines (6–8◦) and differences in applied
sub-techniques were considered to have minimal impact on the
results.

A strength of the present study is the use of individually
estimated O2-demands, which to date has not been applied in
simulated races outdoors. Thus, the presented method makes
it possible to describe not only the external workload but also
the physiological workload imposed on skiers in a XC ski race.
However, it should be noted that the results are based on
estimations and not direct measurement of the O2-demand. To
our knowledge, direct methods to measure anaerobe turnover
during field tests are at present not well developed. Moreover,
the positional data were collected during a self-paced time trial
conducted on a world-cup race course, implying that the results
are of high relevance to determine performance in international
competitions.

Future Studies
In this study, measurements of GE were restricted to steep
inclines (8◦) or flat (1◦) terrain, which limits inferences about
inclinations between these two conditions. Hence, further
knowledge of how metabolic rate depends upon inclination
and/or skiing speed would be useful for assessing exercise
intensity throughout a ski race. Moreover, we did not
measure aerobic energy consumption during the TT. Such
measurements would enable calculation of the O2-deficits
attained throughout the race, thereby providing a more
detailed view of the rates of aerobic and anaerobic energy
production.

Practical Application
Even though a high aerobic energy turnover always has
been mandatory for performance in elite XC skiing, our
results also suggest that the ability to repeatedly utilize
a high anaerobic energy turnover is of great importance
in distance XC skiing. Furthermore, we revealed that the
O2-deficit is terrain specific, implying the importance to
develop this capacity specifically for different terrains. Further,
the observation that HR did not accurately reflect exercise
intensity during the TT suggests that athletes and coaches
should consider other methods to quantify exercise intensities
during competitions and high intensity training sessions
with rapid changes in terrain. Finally, the wearable GNSS
units used in the current study provides researchers a
valuable tool for detailed analysis of performance in XC

skiing. As the technology improves and smaller units become
available, these units could also become a valuable tool for
coaches and athletes when evaluating training and competition
strategies.

CONCLUSION

The present study investigated energy demands flat and uphill
terrain during a self-paced roller ski time trial. This was
accomplished by applying a novel approach combining accurate
positioning data collected with a wearable dGNSS system, with
individual physiological data collected during treadmill roller
skiing. Our findings revealed that XC skiers repeatedly applied
exercise intensities exceeding their maximal aerobic power
during a XC distance race. Hence they applied a variable pacing
pattern. Furthermore, the 6O2-deficit was considerably higher
during uphill skiing compared to flat which has implications for
the duration and magnitude of supramaximal work rates that can
be applied in different types of terrain.
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Purpose: Training methods based on small-sided game (SSG) seem to promote
physiological and tactical benefits for soccer players as they present characteristics
more specific to the game. Thus, the main objective of the present study was to analyze
the hormonal, biochemical, and autonomic parameters in an acute manner and the
recovery dynamics (up to 72 h after) in a SSG.

Methods: Thirteen professional female soccer players participated in the study
(18.8 ± 0.8 years, body mass 59.4 ± 6.2 kg, and height 1.68 ± 0.05 m). During and
after the SSG session (4 min × 4 min separated by 3 min of passive interval and 120 m2

coverage per player), autonomic modulation was analyzed in the time and frequency
domains using heart rate variability, and blood samples (5 ml) were collected before (0 h)
and after (10 min and 24, 48, 72 h) the SSG for biochemical and hormonal analysis.

Results: The SSG induced an increase effect for LF (low frequency) (92,52%; Very
likely increase) and a decrease effect for HF (high frequency) values (−65,72%;
Very likely decrease), after 10 min of recovery. The LF/HF increase after 10 min of
recovery (386,21%; Very likely increase). The RMSSD (square root of the mean squared
differences of the successive N–N intervals) and pNN50 (measure of the number of
adjacent NN intervals which differ by more than 50 ms) values presented a decrease
effect 10 min after SSG (61,38%; Very likely decrease and−90%; Very likely decrease).
The CK (creatine kinase) values presented no changes 10 min after SSG. The LDH
(lactate dehydrogenase) values presented an increase effect 10 min after the SSG
(19,22%; Likely increase). Both testosterone and cortisol concentrations presented
the same behavior after SSG, where no alterations were observed with after 10 min
(<0,37%; Most likely trivial).

Conclusion: The SSG promoted significant cardiovascular stress that was restored
within the first 24 h of recovery. Parasympathetic parameters continued to increase while
sympathetic parameters declined significantly during the 72 h of recovery. In addition,
the reduced game did not alter biochemical or hormonal responses during the 72 h.

Keywords: training, soccer, heart rate variability, muscle damage, hormone, fatigue, recovery, sport science
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INTRODUCTION

Decisive actions during an official football match are carried out
at maximum intensity over short periods of time (i.e., anaerobic
efforts), however, the majority of energy required during a match
is supplied by the aerobic metabolism (Jones and Drust, 2007;
Hill-Haas et al., 2009a,b; Casamichana and Castellano, 2010). As
a result, several training methods, with and without the ball, have
been tested (Helgerud et al., 2001; Hoff et al., 2002; Impellizzeri
et al., 2006; Little and Williams, 2006; Rampinini et al., 2007; Iaia
et al., 2009).

In this sense, different small-sided game have become widely
used alternatives, mainly to include actions with the ball,
opponents, and specific situations of the game such as defensive
or offensive numerical superiority or inferiority (recurring and
decisive context in a game of soccer) (Costa et al., 2009). SSGs
present specificity, subjecting the participant to the technical,
tactical, and physical aspects inherent in soccer practice due to
characteristics very close to the formal game (i.e., physical and
physiological impact, ball actions, and the presence of opponents
and teammates that imply specific situations of the game
such as defensive or offensive numerical superiority/inferiority)
(Michailidis, 2013). In this way, different SSGs present a
high degree of specificity, subjecting the participant to the
technical, tactical, and physical aspects inherent in soccer (Owen
et al., 2004; Little and Williams, 2006; Jones and Drust, 2007;
Michailidis, 2013). By exposing the athletes to a certain level
of physical stress, SSGs promote changes in blood lactate
concentration, rate of perceived exertion and heart rate, as well
as alterations in the autonomic nervous system (Boullosa et al.,
2013). One method used to evaluate the autonomic nervous
system and its sympathetic and parasympathetic branches is
HRV which describes the dynamics of the intervals between
consecutive heart beats.

Vanderlei et al. (2009) described that part of the control
of the cardiovascular system is performed by the autonomic
nervous system and is closely linked to heart rate. Thus, the
increase in HR is a consequence of the greater action of the
sympathetic pathway and the lower parasympathetic activity.
The authors state that irregularities in HRV indicate the heart’s
ability to respond to multiple stimuli such as exercise. Thus,
the rigorous training programs that professional athletes follow
lead to significant changes in the mechanisms of cardiovascular
adaptation, improving cardiac function (Francavilla et al., 2018).

After acute physical exercise, HRV can allow easy and non-
invasive analysis of the neural control of heart rate, besides
being able to measure important modifications in the functioning
of the cardiovascular system and its mechanisms of autonomic
adjustments (Alonso et al., 1998). The cardiac autonomic

Abbreviations: AM, before midday; C, cortisol; CK, creatine kinase; HF,
high frequency; HR, heart rate, HRV, heart rate variability; LDH, lactate
dehydrogenase; LF, low frequency; pNN50, proportion of interval differences of
successive N–N intervals greater than 50 ms; RMSSD, square root of the mean
squared differences of the successive N–N intervals; RR, interval beat-to-beat;
SDNN, standard deviation of the normal-to-normal intervals; SSG, small-sided
game; T, testosterone; VO2, oxygen consumption; VO2MAX , maximum oxygen
consumption.

modulation index has been used as a marker of the quality
of cardiac function, representing a technique that allows the
evaluation of risks of sudden cardiac death (Sessa et al., 2018)
and also of the stress induced by exercise (Mazon et al., 2013).
This analysis is an attempt to avoid states of fatigue, in order to
promote adequate recovery, thus optimizing the training (Bricout
et al., 2010). Moreover, it presents sensitivity to the effects of the
SSG on the autonomic system as observed by Hammami et al.
(2016). The study found low parasympathetic reactivation 10, 20,
and 30 min after an SSG effort.

In addition to variables related to the cardiovascular system,
the determination of injury biomarkers and physiological stress
are also frequently used to determine the internal training load
(Nakamura et al., 2010; Souza et al., 2010; Coelho et al., 2013;
Mazon et al., 2013). Previous studies have shown that both
soccer training and formal games can alter plasma concentrations
of catecholamines (adrenaline and noradrenaline), cortisol,
testosterone, creatine kinase, and lactate dehydrogenase as a
consequence of the efforts (Coelho et al., 2011, 2013; Silva et al.,
2012, 2014), which could be partially attributed to intermittent
repetitions of intense eccentric activation (Ispirlidis et al., 2008).

Different responses are observed between the sexes, mainly
in the inflammatory profile (Souglies et al., 2015). Bowtell
et al. (2016) investigated the CK response in women with little
or no experience of American football during two sessions
of different SSGs and found elevated levels of the protein
up to 48 h post-game. Ispirlidis et al. (2008) investigated
performance, muscle damage, and inflammation during a 6-
day recovery period in elite soccer players after a simulated
game and found elevated CK and LDH levels up to 96 and
72 h after, respectively, while cortisol levels reached a peak
immediately after the game and returned to baseline within the
first 24 h of recovery. No change was observed in testosterone
levels.

Although it is possible that the delay in HRV recovery after
exercise may be indicative of the overall magnitude of the induced
stress response, the course of recovery time does not indicate total
recovery from the systemic stress response (Seiler et al., 2007).
Therefore, simultaneous evaluation of HRV and other markers
of stress and fatigue is of utmost importance. Thus, the main
objective of the present study was to determine and understand
the recovery dynamics of autonomic, biochemical, and hormonal
parameters after SSG effort in soccer players.

The SSG seems to be advantage to the training routine,
however, little is known about the dynamics of recovery of
physiological parameters with this stimulus. Therefore, the main
innovative factor of the research was the determination and
the understanding of the dynamics of recovery of autonomic,
biochemical, and hormonal parameters after the SSG with
women soccer players.

MATERIALS AND METHODS

Participants
Thirteen athletes belonging to a professional women’s soccer
team participated in the study, who competed in state
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championships, with minimum experience of 5 years of
systematized training, all affiliated to the Brazilian Football
Confederation (CBF) [age: 18.8 ± 0.8 years; body weight:
59.4 ± 6.2 kg (Evolution Sanny Professional Precision-
Scale); height: 1.68 ± 0.05 m (Sanny Standard Stadiometer);
VO2max: 36,07 ± 7,50]. All procedures were approved by the
University’s Institutional Review Board for Human Subjects
(Human Research Ethics Committee) and were conducted
according to the Declaration of Helsinki. Athletes were
informed about the experimental procedures and risks and
signed an informed consent form prior to participation
in the study. This study was performed in accordance
with international ethical standards (Harriss and Atkinson,
2015).

Experimental Design
The evaluations were performed 2 months after the
competitive period (August, 2017) and all sessions took
place on synthetic grass (where the formal games of the team
took place) wearing cleats. On the first day, a progressive
test (20 m go and back) was performed on the field to
determine maximum oxygen consumption (VO2max). The
SSG was applied on the second day of evaluations, 1 week
after the application of the progressive test. All players
did not practice any physical activity for 48 h preceding
the SSG.

Heart rate variability and HR were evaluated constantly (i.e.,
prior to, during the SSG, and in the first 30 min and 24, 48, 72 h
of recovery). At 0 h, 30 min, 24, 48, and 72 h after the SSG,
HRV monitoring was performed for 20 min. Blood samples for
biochemical and hormonal analysis were collected prior to, and
5 min and 24, 48, 72 h after the SSG session.

The SSG took place at the team training center in atmospheric
conditions of 25–28◦ C, 40–44% humidity, wind 13 km/h,
and atmospheric pressure 1013–1016 hPa (App The Weather
Channel).

Progressive Test and Backward
Extrapolation Technique
Before the beginning of the tests, the athletes were kept in a seated
position for 5 min to determine the baseline of the blood lactate
concentration and oxygen consumption (VO2). The participants
performed 20 m races in the form of go and back on the
soccer field. They started the test at an intensity of 8 km/h and
increased 1 km/h every 3 min. The intensity of each stage was
controlled by sound stimuli and the athletes were instructed to
pass the 20 m demarcation lines at each signal. Exhaustion was
defined as the player’s inability to continue the test or when she
could not complete the 20 m at each beep for three consecutive
times.

After each effort, athletes were instructed to breathe
immediately into a face mask, connected to a gas analyzer system
(VO2000, Medgraphics, EUA). VO2 values were log-transformed
and plotted against time, which was linearly adjusted. Thus,
the y-intercept was considered as VO2 at the end of exercise
(Montpetit et al., 1981) and assumed as the first point of recovery.

Small-Sided Game
The coverage area per player was set at 120 m2 (Kelly and Drust,
2009; Jastrzebski et al., 2016). The evaluated model was the 4x4;
each session lasted 25 min, with 16 min of effort (four efforts of
4 min) and 9 min of passive rest (three rest intervals of 3 min).
To perform the evaluations in a staggered way and to respect
the minimum interval between evaluations post-SSG, a total of
16 sequential games of 4 min duration and 3 min interval were
played. The players warmed up before the start of the SSG with
three laps running around the field and short runs with a change
of direction for 8 min.

The game consisted of passing the end lines with the ball
controlled and possession of the ball was alternated, that is, when
a team scored or exceeded the demarcation limits of the game,
the ball was quickly returned to the other team. The athletes were
motivated by the coaches throughout all games.

Analysis of Heart Rate Variability (HRV)
The HRV was analyzed pre, 10 min after, and at 24, 48, and
72 h of recovery after the SSG. With the exception of collections
10 min after play, the collections were part of the players’ first
daily activity. The players woke up at the training center and
went to a pre-determined room for evaluation to begin at 6:30
AM. The HRV was recorded beat-to-beat (RR intervals) by a
heart rate monitor – Polar Team2 (Polar Kempele R©, Finland)
in a continuous manner and later transmitted to a computer
through interface model – IR interface (Polare R©, Finland) using
the Software “Kubios HRV,” for Windows (Polar Electro Oy,
Kempele, Finland, 2010).

Heart rate variability was analyzed in the frequency domain:
the power of the high frequencies (HF: 0.15–0.40 Hz) and low
frequencies (LF: 0.04–0.15 Hz) in normalized units and the
LF/HF in ms2 (milliseconds). In the time domain, the following
indices were used: mean RR (mean of RR intervals), SDNN
(standard deviation of all normal RR intervals recorded in a time
interval, expressed in ms), RMSSD (square root of the difference
between adjacent normal RR intervals in a time interval expressed
in ms), and pNN50 (percentage of adjacent RR intervals with
duration difference greater than 50 ms) (Task Force of the
European Society of Cardiology and the North American Society
of Pacing and Electrophysiology, 1996).

TABLE 1 | Mean ± standard deviation (SD) values of the anthropometric
characteristics and the physiological variables of the players.

Variables Mean SD

Age (years) 18,80 0,80

Weight (kg) 59,40 6,20

Height (m) 1,70 0,10

BMI (kg/m2) 21,00 1,30

LAN (km/h) 11,41 0,39

iVO2máx (km/h) 12,23 0,33

VO2máx (L.min) 3,85 1,38

VO2máx (ml.kg.min) 36,07 7,50

BMI, body mass index; LAN, anaerobic threshold; iVO2max, intensity of maximum
oxygen consumption; VO2max, maximum oxygen consumption.
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Blood Collection and Analysis
All venous blood collections were performed under the
responsibility of an accredited nurse, following all hygiene and
asepsis care. Analyzes of the samples were performed by the
Clinical Analysis Service (CAS) of the Faculty of Pharmaceutical
Sciences of Ribeirão Preto. The athletes were instructed to
maintain a 12-h fast, not to practice physical activities, and
not to consume alcohol or drinks containing caffeine. While
the female athletes were still fasting, 5 mL of blood was
collected (7 AM) at moments 0, 24, 48, and 72 h after the
SSG in a predetermined room in the training center. The
collection 5 min after the game was performed between 10
and 12 AM in a room next to the field where the SSG was
played.

For collection and storage of blood samples, BD Vaccutainer R©

EDTA tubes with separator gel were used (1 Becton Drive,
Franklin Lakes, NJ, United States). After collection, the blood was
centrifuged for 8 min at 3000 rpm and 8◦C and stored at 8◦C for
further biochemical and hormonal analysis.

For quantification of cortisol and free testosterone,
specific radioimmunoassay procedures were used through
the IMMULITE/IMMULITE 1000 Total Testosterone and
Cortisol Kit (Siemens Medical Diagnostics, Los Angeles, CA,
United States). As a marker of muscle damage, CK and LDH
were determined with the aid of a specific kit provided by Wiener
lab. CK dosing was performed using the optimized UV method
(IFCC) in serum. LDH was performed through the optimized
UV method (SFBC) in serum.

Statistical Analysis
The normality of the data was confirmed using the Shapiro–
Wilk test, which allowed the description of the variables using
mean ± standard deviation. The values observed in each
recovery time were compared with baseline values using the
Magnitude Based Inferences using the spreadsheets proposed
by Hopkins et al. (2009). The effects on HRV, biochemical
and hormonal parameters were classified qualitatively as an
increase effect, trivial effect or decrease effect. For this, the
differences from baseline values were expressed as standardized
differences (Cohen’s d) and the smallest standardized change

was assumed to be 0.20 (Cohen, 1988). Qualitative inferences
were classified as most unlikely (<1%), very unlikely (1–
5%), unlikely (5–25%), possibly (25–75%), likely (75–95%),
very likely (95–99%), and most likely (>99%). The inference
was Unclear when both the increase and the decrease effects
were > 5%.

RESULTS

Anthropometric and Physiological
Characteristics
Table 1 presents the values referring to the anthropometric
characteristics and physiological variables found in the
progressive test performed by the players.

Small-Sided Game
The players presented a mean blood lactate concentration
([La]mean) of 2.66 ± 0.95 mM at the anaerobic threshold during
the incremental test. During the SSG, the [La]mean and %HRmax
attained were 6.35 ± 2.22 mM and 94.67 ± 0.87%, characterizing
the high energy demand in this activity.

Heart Rate Variability
The HRV responses were demonstrated in Table 2. In the
frequency domain (Figure 1), SSG induced an increase effect for
LF (92,52%; Very likely increase) and a decrease effect for HF
values (−65,72%; Very likely decrease), after 10 min of recovery.
Both LF and HF returned to baseline values after 24 h (<2,13%;
Very likely trivial effect) and presented effects related to the
autonomic adaptation after 48 h (Likely decrease for LF and
Likely increase for HF), which was maintained after 72 h. The
LF/HF increase after 10 min of recovery (386,21%; Very likely
increase), returned to baseline values after 24 h (13,44%; Possibly
trivial) and decrease after 48 and 72 h of recovery (−53%;
Likely decrease). In the time domain (Figure 2), the RMSSD
values presented a decrease effect 10 min after SSG (61,38%;
Very likely decrease) but showed an increase effect from 24 h
of recovery (>57,04%; Likely increase). The same behavior was
observed for pNN50, where a decrease effect occurred after

TABLE 2 | Descriptive values for the heart rate variability parameters.

Recovery

Baseline 10 min 24 h 48 h 72 h

RR (ms) 1083, 32 ± 165, 55 739, 63 ± 87, 57 1150, 16 ± 205, 17 1097, 32 ± 209, 01 1137, 35 ± 192, 49

LF (un) 41, 49 ± 16, 32 79, 88 ± 6, 08 42, 38 ± 19, 65 34 ± 12, 95 27, 95 ± 12, 37

HF (un) 58, 43 ± 16, 31 20, 03 ± 6, 08 57, 56 ± 19, 64 65, 92 ± 12, 97 71, 77 ± 12, 42

LF/HF (ms2) 0, 91 ± 0, 85 4, 43 ± 1, 66 1, 03 ± 1, 05 0, 57 ± 0, 33 0, 43 ± 0, 25

RMSSD (ms2) 61, 68 ± 32, 62 23, 82 ± 12, 89 96, 87 ± 77, 96 137, 65 ± 129, 58 102, 33 ± 89, 34

pNN50 (%) 40, 53 ± 24, 75 4, 05 ± 4, 55 46, 72 ± 27, 78 50, 23 ± 32, 36 50, 34 ± 23, 95

SDNN (ms2) 63, 62 ± 27, 80 55, 01 ± 31, 97 94, 81 ± 51, 67 122, 98 ± 58, 85 40, 53 ± 24, 75

RR, interval beat-to-beat; LF, low frequency; HF, high frequency; LF/HF, low frequency/high frequency; RMSSD, square root of the mean squared differences of the
successive N–N intervals; SDNN, standard deviation of the normal-to-normal intervals; pNN50, proportion of interval differences of successive N–N intervals greater than
50 ms.
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FIGURE 1 | Standardized differences (Cohen’s d) and magnitude-based
inference analysis for HRV responses in frequency domain. Chances of effects
(decrease/trivial/increase; inference) for Low frequency (LF) values were: after
10 min (2/1/97; Very likely increase), 24 h (0/97/3; Very likely trivial), 48 h
(92/8/1; Likely decrease), and 72 h (95/4/1; likely decrease). For high
frequency (HF) were: after 10 min (97/2/1; Very likely decrease), 24 h (0/97/3;
Very likely trivial), 48 h (1/8/92; Likely increase), and 72 h (1/5/94; likely
increase). For LF and HF ratio (LF/HF): after 10 min (2/1/97; Very likely
increase), 24 h (42/58/0; Possibly trivial), 48 h (93/6/1; Likely decrease), and
72 h (94/5/1; likely decrease).

FIGURE 2 | Standardized differences (Cohen’s d) and magnitude-based
inference analysis for HRV responses in time domain. Chances of effects
(decrease/trivial/increase; inference) for RMSSD values were: after 10 min
(96/3/2; Very likely decrease), 24 h (1/5/94; Likely decrease), 48 h (1/4/95;
Likely increase), and 72 h (1/6/93; Likely increase). For pNN50 were: after
10 min (97/2/1; Very likely decrease), 24 h (1/9/90; Likely increase), 48 h
(1/9/90; Likely increase) and 72 h (1/12/88; Likely increase). For SDNN: after
10 min (40/60/0; Possibly trivial), 24 h (1/4/95; Likely increase), 48 h (1/3/96;
Very likely increase), and 72 h (93/7/1; Likely increase).

10 min (−90%; Very likely decrease), which was followed by
an increase from 24 h of recovery (>15,28%; Likely increase).
Although the SDNN values demonstrated no alterations 10 min
after the SSG (−13,52%; Possibly trivial), an increase effect

Frontiers in Physiology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 887286

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00887 July 9, 2018 Time: 15:28 # 6

Mascarin et al. Post Small-Sided Game Recovery Dynamics

TABLE 3 | Descriptive values for the muscle markers and hormonal variables.

Recovery

Baseline 10 min 24 h 48 h 72 h

CK (U/L) 231, 62 ± 127, 44 237, 92 ± 95, 09 186, 23 ± 81, 61 147, 77 ± 47, 06 108, 38 ± 33, 68

LDH (U/L) 397, 38 ± 127, 87 473, 77 ± 98, 29 366, 85 ± 107, 13 374, 62 ± 96, 51 343, 85 ± 84, 05

Cortisol (ug/dL) 16, 30 ± 3, 66 16, 36 ± 3, 35 10, 98 ± 3, 87 14, 85 ± 3, 67 16, 85 ± 3, 68

Testosterone (ng/dL) 32, 44 ± 9, 88 32, 49 ± 12, 39 19, 11 ± 8, 32 29, 51 ± 8, 42 32, 41 ± 10, 56

T/C 2, 11 ± 0, 81 2, 01 ± 0, 70 1, 79 ± 0, 72 2, 06 ± 0, 75 2, 01 ± 0, 83

CK, creatine kinase; LDH, lactate dehydrogenase; T/C, testosterone/cortisol.

was also observed from 24 h of recovery (>49,03%; Likely
increase).

Biochemical and Hormonal Examinations
Biochemical and hormonal responses were presented in Table 3.
Figure 3 shows the muscle damage values obtained before
and during recovery after SSG. The CK values presented no
changes 10 min after SSG (2,72%; Most likely trivial) and
decrease progressively from 24 h of recovery (> −19,59%;
Likely decrease until 48 h and Very likely decrease at 72 h).
Although the LDH values presented an increase effect 10 min
after the SSG (19,22%; Likely increase), these concentrations
decrease progressively from 24 h of recovery (> −7,68%;
Likely decrease until 48 h and Very likely decrease at 72 h).
Both testosterone and cortisol concentrations presented the
same behavior after SSG (Figure 4), where no alterations were
observed with after 10 min (<0,37%; Most likely trivial), an
decrease effect occurred after 24 h (> −32,65%; Very likely
decrease) and 48 h >8,92%; Likely decrease), with the return
to the baseline values after 72 h of recovery (< −0,09%;
Most likely trivial for testosterone and Likely trivial for
cortisol).

DISCUSSION

The investigation of the autonomic, biochemical, and hormonal
parameters pre- and post-SSG, demonstrate that the stimulus
promoted a break in the organic homeostasis of soccer players.
In this sense, was determined and monitored the dynamics of
recovery of autonomic, biochemical, and hormonal that promote
specific and desired adaptations in women soccer players in the
training routine.

The temporal course of cardiac autonomic recovery reflects
the restoration of cardiovascular homeostasis, which is an
important component of general recovery (Stanley et al., 2013).
Thus, HRV indices may be useful for monitoring the effects
of soccer training as they are sensitive to periods of stress
and recovery (Bara-Filho et al., 2013). In relation to this,
the findings of Boullosa et al. (2012), with male and female
Spanish soccer players, suggest that a higher baseline HRV
may allow greater use of autonomic resources for responses
of soccer players to stress. Dutra et al. (2013) investigated
baseline HRV indices in women divided into three groups
according to aerobic capacity and found values similar to those

FIGURE 3 | Standardized differences (Cohen’s d) and magnitude-based
inference analysis for muscle damage markers. Chances of effects
(decrease/trivial/increase; inference) for CK were: after 10 min (0/100/0; Most
likely trivial), 24 h (87/13/0; Likely decrease), 48 h (95/4/1; Likely decrease),
and 72 h (96/3/1; Very likely decrease). For LDH were: after 10 min (1/7/92;
Likely increase), 24 h (69/31/0; Possibly decrease), 48 h (51/49/0; Possibly
decrease), and 72 h (89/10/1; Likely decrease).

of the present study for RR, LF, HF, and the LF/HF ratio.
In a study conducted with trained and highly trained runners
(Seiler et al., 2007), baseline values for all autonomic indices
corroborate with the data of the present study. Similar values
were also found in soccer players during the pre-season (Oliveira,
2012).
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FIGURE 4 | Standardized differences (Cohen’s d) and magnitude-based
inference analysis for hormonal variables. Chances of effects
(decrease/trivial/increase; inference) for cortisol values were: after 10 min
(0/100/0; Most likely trivial), 24 h (96/3/1; Very likely decrease), 48 h (85/15/0;
Likely decrease) and 72 h (0/77/23; Likely trivial). For testosterone were: after
10 min (0/100/0; Very likely decrease), 24 h (96/3/2; Very likely decrease),
48 h (79/21/0; Likely decrease), and 72 h (0/100/0; Most likely trivial). For
testosterone and cortisol ratio (Testosterone/Cortisol): after 10 min (12/88/0;
Likely trivial), 24 h (86/14/0; Likely decrease), 48 h (0/100/0; Most Likely
trivial), and 72 h (8/92/0; Likely trivial).

The results of the present study demonstrate a high mean
RR and HF (parasympathetic predominance index) pre-game,
followed by a significant decrease 10 min after the SSG. The
values of HF pre- SSG corroborate with a study conducted
with female professional basketball players (Messina et al.,
2012). The authors suggest that a lower resting heart rate is
a consequence of high vagal tone due to the training effect.
In relation to the LF and LF/HF ratio (indices related to
the predominance of the sympathetic component action on
the heart), low pre-SSG means were observed followed by a
significant increase in the first 10 min of recovery. These results
reflect an increase in sympathetic stimulation or an attenuated
parasympathetic modulation mitigated by the SSG (Boullosa
et al., 2012) in order to bring the ANS to a stress condition
and consequently, low HRV values that are attributed to a
decrease in the efferent vagal tonus and a lower β-adrenergic
response capacity (Dong, 2016). That is, during exercise, with
the increase in HR, autonomic dysfunctions occur such as
vagal inhibition and increased sympathetic activation (Buchheit
et al., 2009). This post-exertion behavior has been reported in
several studies with varied efforts in soccer among young trained
individuals, untrained individuals, players, and elite players
(Bricout et al., 2010; Boullosa et al., 2012, 2013; Bara-Filho et al.,
2013; Dellal et al., 2015; Flatt et al., 2016, 2017; Hammami et al.,
2016).

When the recovery data were observed 24 h after exercise,
it was observed that HRV values returned to baseline and
continued to decrease (LF and LF/HF) or increase (RR, HF,
RMSSD, pNN50, and SDNN) in the following hours. This is
due to parasympathetic cardiac reactivation. We emphasize the
decrease in LF and a significant increase in HF found at 72 h in
relation to the pre-game and 24 h recovery moments. This result
may be associated with the recommendation not to practice any
physical activity for only 48 h preceding the test. It is possible
that if there had been a pause in the training sessions in the
72 h that preceded the SSG, the values found in the pre-analysis
would not show a significant difference in relation to the 72 h
moment. Another hypothesis is based on the fact that the SSG
and other collections performed in the study may have altered
the daily autonomic control of the players. The participants in
the study of Boullosa et al. (2012) presented significantly lower
HRV before and after a football match compared to the day of
rest. The authors state that concern or mental preparation for
the soccer game may lead to an increased sympathetic response
and/or attenuated parasympathetic modulation, resulting in
lower player HRV.

Based on the results, the players demonstrated significant
cardiovascular stress during the SSG with decreased cardiac
autonomic control, evidenced in the first minutes of recovery
(10 to 30 min) in relation to the pre-game. Previous studies
with a simulated formal game in soccer players observed low
HRV in up to 10 h of recovery (Boullosa et al., 2013). In
contrast, Seiler et al. (2007) in a study with highly trained
runners observed recovery at approximately 120 min post-
exercise, regardless of the intensity of the training. However,
Stanley et al. (2013) demonstrate that the time required for
complete autonomic cardiac recovery after a single aerobic
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training session is up to 24 h after low-intensity exercise, 24–
48 h after moderate exercise, and at least 48 h after high intensity
exercise. However, the authors suggest that individuals with
higher fitness are more resistant to training stress and require
less time to recover due to lower variations and faster recovery
of cardiac parasympathetic activity after exercise. In the present
study, although the SSG was an intense aerobic activity (92.7–
94.77% HRmax), cardiovascular autonomic recovery occurred
after 24 h.

The baseline plasma CK concentrations of the present study
are close to those found by Coelho et al. (2011) when evaluating
soccer players of the first division of Brazilian soccer. The
authors evaluated the team throughout the training period and,
therefore, values close to 300 U/L are expected during the season.
These values are also similar to those of Zoppi et al. (2003),
Ascensão et al. (2008), and Souglies et al. (2015). In contrast,
Lazarim et al. (2009) found higher resting values (493 U/L) and
Andersson et al. (2007), lower values (158 ± 33 U/L) when
analyzing protein concentrations in professional soccer players.
The latter author, however, did not report the interval between
CK collection and team training. In relation to LDH, Bezerra
et al. (2016) found resting values close to those of the present
study and reported that the interval between the final training
and collections was 24 h, suggesting that the values found were
influenced by the daily training. Ispirlidis et al. (2008), when
evaluating professional soccer players, pre- and post-game, found
CK and LDH resting values below 200 U/L, however the author
states that the athletes did not practice any strenuous activity
for 7 days before and after the game. In the present study,
the players stopped training 48 h preceding the SSG, and for
this reason it was possible to observe a significant reduction
in CK and LDH at 48 h in relation to at 5 min and 24 h of
recovery.

Despite resting values close to those reported in the literature,
there was no significant increase in CK in the 72 h of recovery
in relation to rest. On the other hand, it was possible to observe
a significant increase in LDH soon after (10 min) the SSG.
Observing the other results, this increase is associated with
a decrease in the O2 demand in the muscle and, therefore,
intensification in the lactate formation in order to provide energy
for muscular action.

No studies were found that assessed muscle damage in
response to an SSG with female soccer players. Bowtell et al.
(2016) analyzed the CK response using soccer SSGs in untrained
women, however, the rest values presented were much lower
(69 ± 23 U/L) than in the present study. After the SSG the authors
found values significantly higher than pre-game, with the peak at
48 h of recovery (108 ± 39 U/L). The literature is vast concerning
responses to game stimuli and muscular damage in soccer players
(Andersson et al., 2007; Ascensão et al., 2008; Ispirlidis et al.,
2008; Coelho et al., 2011; Souglies et al., 2015). Thus, it can be
concluded that although the practice of the SSG chosen may be
intense, it does not impose stimuli that produce muscular stress
when compared to the formal game, probably because of its short
duration.

By monitoring the quantitative changes in hormones with
anabolic and catabolic properties, such as testosterone and

cortisol, it is possible to identify a momentary catabolic state
(Mazon et al., 2013). Several studies have reported the behavior
of these hormones against stimuli from formal male and female
soccer games (Ispirlidis et al., 2008; Oliveira et al., 2009; Maya
et al., 2016). Haneishi et al. (2007), in addition to evaluating
the post-game responses, analyzed the cortisol responses after
training of 105 min. The authors found that the post-game
cortisol response was 250% higher than the post-training values,
which did not present any significant differences in relation
to the pre-training evaluation. Competitive events (i.e., games)
are more likely to generate acute hormonal responses than
routine training activities (e.g., SSGs), as they promote an
early increase in cortisol levels to prepare the individual for
action (Oliveira et al., 2009). In the present study, there was
no significant increase in cortisol or testosterone during the
72 h of recovery after the SSG. Waal (2017) evaluated the
acute endocrine responses of soccer players in an SSG close
to the model proposed in the present study and also found
no significant difference after the SSG in relation to rest. This
appears to be the only study to evaluate hormonal responses from
stimuli using SSGs. The author also concludes that training based
on SSGs or unofficial (i.e., friendly) matches does not seem to
produce the same significant hormonal responses to the stimulus
as the competitive environment. Consequently, no significant
alterations were observed in the T/C ratio.

It can be concluded that the athletes presented cardiovascular
stress during the SSG with reduced cardiac autonomic control,
evidenced in the first minutes of recovery. The parasympathetic
cardiac reactivation was reestablished after 24 h although the
values at 72 h still demonstrated a significant reduction. However,
although the physical requirements related to the SSG caused a
decrease in the autonomic parameters, the hormonal and muscle
damage markers were not altered.

The limitation of the present study was the relatively small
number of participants. The study evaluated 13 players, however,
a total of 23 players took part in the study to make the ideal
scheduling possible in the participation in each of the SSG efforts
(fundamental aspect so that the collection moments are met post-
SSG for each player) besides the precaution related to possible
injuries from the SSG. Nevertheless, the study offers valuable
insights into the SSG among women soccer players.

Further studies should be devoted to verifying the influence
and recovery time required for autonomic, neuromuscular,
inflammatory, and hormonal parameters using generic training
methods (e.g., interval aerobic training, intermittent high-
intensity training) which seek improvement in aerobic fitness and
game performance in male and female amateur and professional
soccer players. In addition, new efforts should be directed in an
attempt to simulate competitive scenarios using SSGs and generic
training methods.

As a practical implications, it is important that high
performance coaches simulate competitive practice
environments in order to make training, based on internal
loads, as close as possible to the context and physiological
demand experienced during a formal competitive football
match. Thus, the understanding and monitoring of certain
stress markers during the season could contribute to the
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systematization and optimal control of individual training loads
in an attempt to minimize the onset of the fatigue process and
enhance performance of the athletes.
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Advances in global navigation satellite system (GNSS) technology have resulted in
smaller and more accurate GNSS receivers, which have become increasingly suitable
for calculating instantaneous performance parameters during sports competitions,
for example by providing the difference in time between athletes at any location
along a course. This study investigated the accuracy of three commercially available
GNSS receivers directed at the sports market and evaluated their applicability for
time analysis in endurance racing sports. The receivers evaluated were a 1 Hz
wrist-worn standalone receiver (Garmin Forerunner 920XT, Gar-920XT), a 10 Hz
standalone receiver (Catapult Optimeye S5, Cat-S5), and a 10 Hz differential receiver
(ZXY-Go). They were validated against a geodetic, multi-frequency receiver providing
differential position solutions (accuracy < 5 cm). Six volunteers skied four laps on
a 3.05 km track prepared for cross-country skiing, with all four GNSS receivers
measuring simultaneously. Deviations in position (horizontal plane, vertical, direction
of travel) and speed (horizontal plane and direction of travel) were calculated. In
addition, the positions of all receivers were mapped onto a mapping trajectory along
the ski track, and a time analysis of all 276 possible pairs of laps was performed.
Specifically, the time difference between any two skiers for each integer meter along
the track was calculated. ZXY-Go, CAT-S5, and GAR-920XT had horizontal plane
position errors of 2.09, 1.04, and 5.29 m (third quartile, Q3), and vertical precision
2.71, 3.89, and 13.35 m (interquartile range, IQR), respectively. The precision in the
horizontal plane speed was 0.038, 0.072, and 0.66 m s−1 (IQR) and the time analysis
precision was 0.30, 0.13, and 0.68 s (IQR) for ZXY-Go, Cat-S5, and Gar-920XT,
respectively. However, the error was inversely related to skiing speed, implying that
for the low speeds typically attained during uphill skiing, substantially larger errors
can occur. Specifically, at 2.0 m s−1 the Q3 was 0.96, 0.36, and 1.90 s for
ZXY-Go, Cat-S5, and Gar-920XT, respectively. In summary, the differential (ZXY-Go) and
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10 Hz standalone (Cat-S5) receivers performed substantially better than the wrist-worn
receiver (Gar-920XT) in terms of horizontal position and horizontal speed calculations.
However, all receivers produced sub-second accuracy in the time analysis, except at
very low skiing speeds.

Keywords: global navigation satellite systems, GPS, speed, position, time, validity, human performance

INTRODUCTION

In most endurance sports such as cycling, running, rowing, or
cross-country skiing, athletes move from a start point along
a pre-defined track to finish in the shortest time possible.
To provide athletes, coaches, and spectators with information
describing the development of a race, intermediate times are
commonly used to provide section time information. Such
information provides some insight into the development of a
race, but is limited, since changes in athletes’ performance often
occur at a higher rate than the time elapsed in the individual
sections. This limitation in analysis detail can be overcome if
the athlete’s position is tracked instantaneously along the course
from start to finish using wearable positioning devices such as
global navigation satellite systems (GNSS) or local positioning
systems (LPS). Instantaneous performance can be characterized
by instantaneous time analysis, providing the relative difference
in time between athletes at any location along the course. Such
instantaneous time analysis allows the identification of events
where athletes gain or lose time compared to their compatriots,
and can even provide the rate at which time is gained and lost
from start to finish of the entire race (Self et al., 2012; Bolger
et al., 2015; Johnson et al., 2015; Gilgien et al., 2016; Losnegard
et al., 2016; Sandbakk et al., 2016; Marsland et al., 2017). For
cases where athletes follow a given track, differences in time
between athletes are explained by differences in speed between
the athletes. Hence, the measurement of instantaneous time
and speed differences between athletes provides a more detailed
performance analysis compared to the commonly used discrete
intermediate time analysis. To allow instantaneous performance
analysis, an athlete’s position and speed need to be tracked
continuously during the race using methodologies that cause the
least possible interference with the athlete’s sporting action, but
that exhibit sufficient accuracy.

To track athletes’ positions and speed instantaneously, the
primary technologies used are video-based tracking, LPS, and
GNSS (Muthukrishnan, 2009). Video-based tracking is only
applicable if the athletes are in the field of view of a camcorder
throughout the race and are therefore not often used in racing
and endurance sports. LPS is typically used for indoor sports but
can also be used in outdoor sports that are held in limited space,
such as on track loops (Self et al., 2012; Swarén et al., 2016; Swarén
and Eriksson, 2017). GNSS does not have the two limitations
described above and is therefore the most commonly applied
wearable technology used to track athletes in outdoor sports.

The rapid development in GNSS technology over recent
decades has substantially increased the number of different
commercially available GNSSs suitable for sports applications.
The GNSS receivers used in sports devices range from

single-frequency chips incorporated in smartphones and
wrist-worn training computers, to standalone units solely
designed for athlete tracking and high-end geodetic receivers,
which are typically carried on the athlete’s back and developed
for purposes different from sports (tracking of planes, drones,
etc.). Hence, the GNSS technologies applied in sports differ
substantially in hardware and software quality and complexity
(Supej and Cuk, 2014), which has an impact on measurement
accuracy (Muthukrishnan, 2009). The major characteristics
of GNSS properties that have impacts on position accuracy
are: Antenna and GNSS board type; GNSSs used; GNSS
frequencies used; and GNSS processing method (standalone,
differential, precise point positioning, etc.) (Madry, 2015). Since
GNSS receivers applied in sports should be small, light, and
user-friendly, the manufacturers of wearable GNSS receivers
need to find a trade-off between form factor, simplicity, system
performance, and cost. Watches and smartphones obviously
have limited space for a GNSS antenna and board and limited
accuracy is expected, while receivers carried on the back can have
a larger form factor. The number of GNSSs and satellites available
has increased substantially over the last decade; with NAVSTAR
GPS, GLONASS, Beidou, and the launching of Galileo, four
functioning global systems are available. The number of GNSSs
and satellites used also increases the accuracy and stability
of position solutions for applications in sport (Gilgien et al.,
2014b). Therefore, GNSS receivers used in sports increasingly
tend to combine more than one GNSS. GNSS satellites send
information on several frequencies. Use of multiple frequencies
helps cancel out inaccuracies caused by the ionosphere. However,
most GNSS receivers used in sports use only one frequency.
Also, most GNSS receivers used in sports use only the GNSS
information from the receiver carried by the athlete to calculate
position (standalone solution). Combining the GNSS signal
information from the receiver on the athlete with the GNSS
information captured by a stationary GNSS receiver in close
proximity (short baseline) substantially improves the position
accuracy in dynamic applications (kinematic double difference
method, hereafter called differential method) (Gilgien et al.,
2014b). Further, position accuracy and robustness can be
enhanced if GNSS data are combined with inertial measurement
technology (IMU) (Skaloud and Limpach, 2003; Wägli, 2009;
Fasel et al., 2016). GNSS solutions aimed at sports with reduced
position accuracy requirements (i.e., most wrist-worn receivers
or smartphones) apply single frequency analysis to one or two
GNSSs in standalone mode (Terrier et al., 2000; Edwards et al.,
2002; Townshend et al., 2008; Jennings et al., 2010a,b; Wisbey
et al., 2010; Aughey, 2011; Clark et al., 2011; Macutkiewicz
and Sunderland, 2011; Waldron et al., 2011; Bolger et al., 2015;
Sandbakk et al., 2016). However, in sports with high demands

Frontiers in Physiology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 1425293

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01425 October 6, 2018 Time: 12:15 # 3

Gløersen et al. Validation of Three GNSS Technologies

for position accuracy, geodetic GNSS receivers are used in
differential mode using multiple signal frequencies from one
or several GNSSs to calculate position, speed, and acceleration
(Larsson and Henriksson-Larsen, 2001; Skaloud and Limpach,
2003; Wägli, 2009; Andersson et al., 2010; Supej, 2010; Supej
and Holmberg, 2011; Supej et al., 2012; Gilgien et al., 2013,
2014a,b, 2015a,b; Bucher Sandbakk et al., 2014; Nemec et al.,
2014; Fasel et al., 2016; Kröll et al., 2016). Speed can be derived
from time differentiation of the position data, or by using the
Doppler principle on the GNSS signal (Zhang et al., 2006; Wang
and Xu, 2011; Boffi et al., 2016), acceleration can be derived
from position or measured with inertial sensors (Gilgien et al.,
2014b; Supej and Cuk, 2014; Boffi et al., 2016). The accuracy
of GNSS methods used in sports has been assessed for position
(Townshend et al., 2008; Gilgien et al., 2014b, 2015b; Fasel
et al., 2016), displacement (Townshend et al., 2008; Coutts and
Duffield, 2010; Jennings et al., 2010a; Waldron et al., 2011; Hoppe
et al., 2018), speed (Schutz and Herren, 2000; Witte and Wilson,
2004, 2005; Barbero-Alvarez et al., 2009; Coutts and Duffield,
2010; Waldron et al., 2011; Gilgien et al., 2015b; Boffi et al.,
2016; Fasel et al., 2016), and acceleration (Gilgien et al., 2013,
2015b). However, most of these validations exhibited at least one
of the following limitations: (1) Only one receiver was assessed
per study, which does not allow a direct comparison between
receivers/studies, since studies were conducted under different
GNSS conditions and in different applications; (2) some studies
applied a reference method that did not allow for instantaneous
accuracy comparisons; (3) between-device reliability was not
assessed. Further, only one of the validations focused on accuracy

for split times and section times when validating a differential
high-end receiver (Supej and Holmberg, 2011).

Therefore, the aim of this study was to assess three different
classes of GNSS receivers that are frequently applied in sports for
position, speed, and segment time accuracy in endurance racing
sports. The receivers assessed were a 1 Hz low-grade wrist-worn
receiver (Garmin Forerunner 920XT), a 10 Hz standalone
receiver (Catapult Optimeye S5), and a 10 Hz differential GNSS
receiver (ZXY Go). The accuracy of the three receivers was
assessed by comparison with measurements using a high-end
differential, multi-frequency, and multi-GNSS receiver (reference
system) (Gilgien et al., 2013, 2014b, 2015b) for position, speed,
and time analysis.

MATERIALS AND METHODS

Participants and Test Protocol
The data presented in this study were collected during the
Norwegian national cross-country skiing teams training camp
at Sognefjell, Norway (61◦33′53.79′′N, 7◦59′51.54′′E, elevation
1434 m) on May 31, 2017. Six volunteers were recruited from the
team’s support group. All participants were able skiers, but none
of them were actively competing. The participants gave their
written consent to participation, and the study was approved by
the ethics board at the Norwegian School of Sport Sciences.

All participants were instructed to ski four laps of a specified
track section (L = 3048 m, Figure 1). Between each lap, they were
allowed a rest of approximately 1 min. They were instructed to ski

FIGURE 1 | Track topography (vertical coordinates are multiplied by a factor of 3). The gray planes indicate the four sections to avoid local minima during the
mapping procedure (see the section “Mapping trajectory”).
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at a pace close to their own typical racing speed. The participants
were divided into two equally sized groups, with group 1 starting
at approximately 10:15 a.m., and group 2 at approximately
4:45 p.m. Since GNSS conditions change with time (due to
changes in constellations and atmospheric effects), the results
were expected to vary between the two groups. The differences
are highlighted in the results when these were substantial.

Materials
Each participant was equipped with one high-end differential
GNSS receiver used as a reference, and the three GNSS receivers
whose performance was to be evaluated. The reference system
consisted of a differential multi-frequency and multi-GNSS
receiver. Specifically, the base station consisted of a GNSS
antenna (Grant-G3T, Javad, San Jose, CA, United States) and
receiver (Alpha-G3T, Javad, San Jose, CA, United States) and was
placed at the start of the ski track allowing for short baseline
differential solutions. The athletes carried a GNSS antenna
(G5Ant-2AT1, Antcom, Torrance, CA, United States, 160 g)

mounted on a cycling helmet, and a GNSS receiver (Alpha-G3T,
Javad, San Jose, CA, United States, 430 g) was carried in a
small backpack (Figure 2). The sampling frequency was set to
10 Hz, which was the same frequency as the highest sampling
frequencies of the evaluated receivers.

Evaluated Receivers
The Catapult Optimeye S5 (Firmware version 7.18, abbreviated
as Cat-S5) has a 10 Hz GNSS with an external antenna, packaged
with an IMU in a casing with dimensions: 96× 52× 13 mm. The
sensor is intended to be worn in a harness on the torso and has
a mass of approximately 67 g. In the current study it was placed
in the athlete’s backpack, close to where it would be placed in the
harness (Figure 2). The receiver was oriented in an erect position
as recommended by the manufacturer.

A Garmin Forerunner 920XT (Garmin International, Inc.,
Olathe, KS, United States, abbreviated as Gar-920XT) was worn
on the wrist. It samples at 1 Hz, has a mass of 61 g, and measures
45× 55× 13 mm.

FIGURE 2 | Experimental setup. (A) The reference system antenna was mounted on a bicycle helmet and coupled to the receiver in the backpack (hidden under the
start bib). (B) Arrangement of receivers in the backpack. The ZXY-Go receiver was positioned just below the Cat-S5 receiver, and is not visible in this image. The
Garmin receiver was worn on the wrist, and is also not visible. (C) The three evaluated receivers (on top, from left to right): Gar-920XT, Cat-S5, and ZXY-Go. Below:
Reference receiver (Javad Alpha-G3T).
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The ZXY-Go system (ChyronHego Norge A/S, Oslo, Norway)
consists of tracking receivers intended to be worn in a harness on
the torso. They measure 45 × 90 × 15 mm, have a mass of 63 g,
and sample at 10 Hz. The current version of the receivers did
not have local storage and data were sent in real time to a base
station and were processed using a post-processing approach.
This implies that position solutions were only calculated in
periods when the receiver on the athlete was in the line of sight
of the base station, which was not the case for the entire track
(Figure 3). Future versions of this type of receivers tailored for
the endurance sports market are expected to have local storage
and/or a different radio transmission technology, avoiding the
line-of-sight limitation. For post-processing, the GNSS data of
the base station from the reference system were used. In the
current study the receiver was placed in the athlete’s backpack,
directly beside the Cat-S5 receiver, and was oriented based on the
manufacturer’s recommendation. All three receivers apply single
frequency (L1) analysis on GPS and GLONASS signals.

Data Analysis
Reference System
Geodetic short baseline position solutions were calculated using
dual frequency (L1 and L2) data from NAVSTAR GPS and the
GLONASS satellite systems. The ambiguities of the differential
position solutions were solved for all athletes and the entire time
periods when athletes were skiing, using the kinematic algorithm
of the geodetic post-processing software Justin (Javad, San Jose,
CA, United States).

GNSS Position Solution Calculation
The conditions for GNSS measurements were excellent, with
a position dilution of precision (PDOP) of 1.23 ± 0.15. Data
from the ZXY-Go system were processed by ZXY staff according
to their best practice principles, but were not filtered by the
manufacturer. To reduce system bias, the GNSS base station data
of the reference system were used, before they were sent to the
authors as text files. GNSS solutions for Cat-S5 and Gar-920XT
were calculated using their respective automated processing
procedures and position results were exported to text files using

FIGURE 3 | Heat map showing the spatial distribution of received ZXY-Go
coordinates. The mapping trajectory is plotted in gray.

Catapult Sprint software version 5.1.7, and Fit CSV Tool version
1.0.12.20, respectively. Data from the Cat-S5 and Gar-920XT
were passed through their manufacturer’s proprietary filters.
GNSS coordinates were expressed in the WGS84 coordinate
frame. The Cat-S5 and Gar-920XT adjust for geoid height. The
offset between orthometric height and GPS ellipsoidal height was
calculated to be 46.022 m at the recording location, and was
removed from the data (Wong and Gore, 1969). All subsequent
analyses were conducted using Matlab R2017a (The MathWorks,
Natick, MA, United States).

Time Synchronization
The ZXY-Go receivers were synchronized with the reference
receiver using its GPS time stamps. Both Gar-920XT and Cat-S5
lacked support to export accurate GPS time. Therefore, they were
first synchronized using their local time. In a second step, the
synchronization offset (1t) from the reference receiver time was
estimated from the slope of the position difference (1s) vs. speed
(| v| ) relationship:

1s = |v| × 1t + k.

Here 1s refers to the position difference along the skiing
direction, defined as the reference receiver’s horizontal plane
velocity vector (Figure 4). The constant k was the systematic
offset due to different antenna mounting positions (see the
section “Correction of antenna mounting locations”). The
regression was performed using a robust regression scheme with
a bi-square weighting function and a tuning constant of 4.685.

Correction of Antenna Mounting Locations
The position data from each evaluated receiver were corrected
for the typical offsets due to different anatomical mounting
locations. Specifically, mean displacement vectors between
markers positioned close to the different GNSS receivers’

FIGURE 4 | Example of the synchronization procedure used for the
Gar-920XT and Cat-S5 receivers. If the receivers are not time synchronized
with the reference receiver, it results in a position deviation in the direction of
travel (1s) that increases linearly with skiing speed (| v| ). The slope of the fitted
line is an estimate of the synchronization offset.
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positions were calculated based on optical motion capture marker
positions from a previous study (Myklebust et al., 2015; Gløersen
et al., 2017). A marker on the superior section of the head was
used to represent the reference antenna location; a marker on the
10th thoracic vertebra was used to represent the two receivers
in the backpack; and a marker located on the distal end of
the left radius was used to represent the wrist-worn receiver.
These vectors were added to the evaluated receiver position
measurements (by transforming them to the East-North-Up
coordinate frame). Specifically, the two receivers in the backpack
were translated 33 cm forward (i.e., in the skiing direction), and
43 cm vertically upward. The wrist-worn device was translated
5 cm forward, 52 cm vertically upward, and 33 cm medially.

Mapping Trajectory
For the time analysis, the GNSS measurements were mapped
onto a common trajectory (mapping trajectory). Because of the
relatively narrow ski track (approximately 3 m), each athlete’s
position in the direction perpendicular to the track was neglected.
The trajectory computed from the reference system from the
first lap of one of the subjects was used as a mapping trajectory.
During this lap, our reference receiver had a fixed solution
throughout the lap. The coordinates of the mapping trajectory
were filtered with a 0.3 Hz low pass filter to remove frequencies
caused by postural movements (see the section “Filtering and
parameter calculation”). The filtered coordinates were then
resampled to every integer meter and interpolated using a cubic
spline.

The criterion for mapping onto the mapping trajectory was
to minimize the Euclidean distance between a measured position
and any given point along the mapping trajectory. Only the two
horizontal coordinates were used for the mapping. To avoid
situations where the mapping could suddenly jump to incorrect
sections of the track (i.e., when two sections of the ski track passed
close to each other), a piecewise mapping onto track segments
of length max (10 m, 1t × 20 m s−1) was performed. Here 1t
denotes the time since the last measurement. If there was a gap in
the measurements of more than 5 s (relevant only for the ZXY-Go
receivers), the mapping was done onto the whole mapping
trajectory for the next position measurement. To minimize the
likelihood of the solver finding only a local minimum, the track
was partitioned into four sub-segments (Figure 1), and only the
solution that returned the minimal Euclidean distance was kept.

The distance along the track was calculated from a piecewise
linear curve through the mapping trajectory, starting at the first
point and ending at the mapped position, with a node every
integer meter. The start time was defined as the time of the
reference system at the first sample after crossing the virtual start
position, i.e., the first sample with a non-zero distance along the
mapping trajectory.

Filtering and Parameter Calculation
The reference method measurements were filtered using
smoothing splines weighted by their fixed/float status and
predicted accuracy (Skaloud and Limpach, 2003) using a
smoothing parameter of p = 0.995, as implemented in Matlab’s
curve fitting toolbox. In a second filtering step, weights were set

equal to zero for any samples having an acceleration norm greater
than 25 m s−2, before reevaluating the smoothing spline. The
smoothing spline was evaluated at the same times as the evaluated
receivers, enabling an estimate of the reference receiver position
at the time of each receiver’s position measurement.

Because the receivers were not positioned on the same
anatomical locations, the GNSS positions of all receivers
(including the reference receiver) were low pass filtered using a
second order Butterworth filter with a cutoff frequency of 0.3 Hz.
This cutoff frequency was determined based on the frequency
spectrum of similar anatomical locations during treadmill ski
skating. Specifically, the displacements of the head, hand, and
10th thoracic vertebra were determined using marker positions
sampled at 250 Hz [data from previous study (Myklebust
et al., 2015; Gløersen et al., 2017)]. The frequency spectrums of
these measurements indicated that most of the signal’s power
was confined to frequencies greater than 0.5 Hz. Velocity was
calculated from differentiation of the position data using a
five-point finite difference algorithm (Gilat and Subramaniam,
2008), and was filtered with the same 0.3 Hz low pass filter as the
position measurements.

Horizontal plane speed was defined as the vector magnitude
of the easting and northing velocity vector components. Speed
along the mapping trajectory was obtained from numerical
differentiation of the distance moved along the track using
the same five-point finite difference algorithm (Gilat and
Subramaniam, 2008), and was filtered using the same filter as the
horizontal plane speed. Distance covered, i.e., the length of the
trajectory traveled by the athlete, was calculated as the cumulative
sum of Euclidean distances between each horizontal-plane GNSS
position measurement. Hence, the distance covered could be
calculated for each position measurement from the receivers. Due
to gaps in the ZXY-Go position measurements (periods when
the receivers did not have radio contact with the base station),
distance covered could not be evaluated for the ZXY-Go receivers.

Both Catapult and Garmin calculate their own measurements
of speed and distance covered using proprietary algorithms.
Because of the filtering procedure specified in the previous
paragraph, and to ensure a fair comparison against the ZXY-Go
measurements, we decided to perform identical speed and
distance covered calculations based on the GPS positions
for all evaluated receivers. Deviations between proprietary
measurements of speed or distance covered and the calculations
performed in this study are briefly discussed later.

Time Analysis
To evaluate the time difference between athletes at identical
positions along the mapping trajectory, the timestamps from each
receiver were linearly interpolated to every integer meter along
the mapping trajectory. Using the evaluated time points, both a
split time (i.e., time from the common start time to any given
position along the track) and a segment time (i.e., time between
two given positions along the track) analysis were conducted. In
both analyses, all 276 possible pairs of laps were analyzed.

In the split time analysis, the time difference between each
pair of laps was calculated for every integer meter (starting at
10 m), disregarding measurements where one or more receivers
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were not recording. The segment time analysis also compared
all possible pairs of laps, and the track was divided into equal
length segments between 20 and 180 m, in steps of 20 m. The first
segment started at the start line, and the subsequent segments
started every 20 m. The time taken to complete the segment in
each possible pair of laps was then compared. Segments where
the ZXY-Go receiver was missing data at the end points were
omitted from the analysis. Time analysis precision and accuracy
of each GNSS method were then judged from the difference to
the reference receiver results.

Statistics
Position errors were quantified as horizontal plane deviations
(vector magnitude), vertical deviation, and the difference in
distance measured along the mapping trajectory. The error
distributions were visualized as histograms displaying the count
density in each bin, where the bin spacing was chosen according
to the Freedman–Diaconis rule (Freedman and Diaconis, 1981).
The area of the histogram columns was normalized to unity. For
the speed we calculated the difference in horizontal plane speed,
and the difference in speed along the mapping trajectory. Robust
statistical measures were used as descriptive statistics of the
distributions. Specifically, median error (Med) and interquartile
range (IQR) were used to quantify accuracy and precision,
respectively. For the strictly positive horizontal plane deviations,
distribution mode and third quartile (Q3) were used instead. In
addition, the typical error of the estimate (TEE) was calculated
as described by Hopkins et al. (2009) to allow comparison with
studies where TEE was used. Measurements with more than three

median absolute deviations from the median were considered
outliers and were omitted from the calculation of TEE. The
95% confidence intervals for the statistics were calculated using
a bootstrap approach valid for stationary time series (Politis
and Romano, 1994). Each empirical distribution was subsampled
block-wise using block lengths of n2/3, where n was the number
of measurements in the empirical distribution. All statistics
are presented in the text as 95% confidence intervals. Two of
the laps contained short periods (a few seconds) where the
reference receiver’s position ambiguities could not be resolved
(i.e., the double difference ambiguities were float and accuracy
not as good as when ambiguities are fixed). These two laps
were omitted from the analyses of distances covered, because
the reduced accuracy of the reference receiver during these time
periods will affect measurements of distance covered throughout
the lap.

RESULTS

Results are reported directly in the text or figures, but main results
are summarized in Tables 1, 2.

Position Errors
Typical horizontal plane position errors were similar for the ZXY-
Go and Cat-S5 receivers (distribution modes [0.46, 1.21] and
[0.34, 0.51] m, respectively), but the ZXY-Go exhibited a heavier
tail (Q3 [1.79, 2.55] m compared to Cat-S5 [0.95, 1.11] m. See also
Figures 5A,D). The Gar-920XT receiver showed substantially

TABLE 1 | Summary of the receiver errors observed in the current study.

ZXY-Go Cat-S5 Gar-920XT

δxy Mode (m) 0.53 [0.46, 1.21] 0.37 [0.34, 0.51] 2.72 [2.54, 3.28]

Q3 (m) 2.09 [1.79, 2.55] 1.04 [0.95, 1.11] 5.29 [4.97, 5.54]

δz Med (m) 1.35 [ − 1.50, 2.61] 5.18 [4.70, 5.47] −1.27 [ − 4.41,−0.54]

IQR (m) 2.71 [2.26, 4.54] 3.89 [3.40, 3.59] 13.35 [10.80, 13.12]

TEE (m) 2.57 [2.14, 2.62] 2.00 [1.76, 1.88] 5.11 [4.20, 5.03]

δl Med (m) 0.13 [ − 0.38, 0.39] 0.00 [ − 0.08, 0.04] −0.32 [ − 0.59,−0.09]

IQR (m) 0.95 [0.80, 1.51] 0.72 [0.65, 0.81] 4.31 [3.93, 4.66]

TEE (m) 0.71 [0.60, 0.78] 0.51 [0.47, 0.54] 2.96 [2.81, 3.07]

δ| v| xy Med (m s−1) 0.000 [ − 0.001, 0.002] 0.011 [0.010, 0.013] 0.087 [0.076, 0.097]

IQR (m s−1) 0.038 [0.036, 0.043] 0.072 [0.070, 0.075] 0.658 [0.614, 0.835]

TEE (m s−1) 0.027 [0.026, 0.028] 0.050 [0.049, 0.051] 0.484 [0.456, 0.505]

δ| v| l Med (m s−1) 0.001 [ − 0.003, 0.004] 0.003 [0.002, 0.005] 0.015 [0.002, 0.027]

IQR (m s−1) 0.046 [0.041, 0.067] 0.081 [0.077, 0.087] 0.752 [0.701, 0.927]

TEE (m s−1) 0.035 [0.032, 0.036] 0.058 [0.056, 0.060] 0.551 [0.526, 0.575]

δds·t−1/2 Med (m s−1/2) N/A 0.000 [ − 0.021, 0.015] 0.192 [0.044, 0.387]

IQR (m s−1/2) N/A 0.094 [0.085, 0.104] 0.743 [0.640, 0.800]

TEE (m s−1/2) N/A 0.060 [0.054, 0.060] 0.518 [0.445, 0.525]

1t Median (s) −0.00 [ − 0.03, 0.06] −0.02 [ − 0.03,−0.02] 0.05 [0.02, 0.091]

IQR (s) 0.30 [0.27, 0.40] 0.13 [0.12, 0.14] 0.68 [0.64, 0.75]

TEE (s) 0.22 [0.20, 0.23] 0.09 [0.09, 0.09] 0.53 [0.52, 0.54]

All errors are reported as the observed value with 95% confidence intervals. Distribution mode and third quartile (Q3) are reported for vector magnitudes, otherwise
median, IQR, and TEE are used. Nomenclature: δxy, horizontal plane position error; δz, vertical position error; δl, error along mapping trajectory; δ| v| xy, horizontal plane
speed error; δ| v| l, error in speed along mapping trajectory; δds t−1/2, stochastic error in distance covered normalized by the square root of time elapsed since the start
of the lap; δt, split time error.
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TABLE 2 | Accuracy (median error) and precision (IQR and TEE) of the evaluated receivers’ position measurements, calculated for each individual lap.

Receiver Median (m) IQR (m) TEE (m) Outliers (%)

Easting ZXY-Go 0.21 ± 1.25 0.36 ± 0.30 0.17 ± 0.09 19.3 ± 10.5

Cat-S5 0.26 ± 0.45 0.43 ± 0.08 0.31 ± 0.06 0.8 ± 1.9

Gar-920XT 2.09 ± 1.12 3.22 ± 0.53 2.40 ± 0.46 1.6 ± 1.4

Northing ZXY-Go −0.35 ± 1.15 0.61 ± 0.82 0.29 ± 0.33 19.3 ± 10.5

Cat-S5 −0.25 ± 0.32 0.60 ± 0.16 0.40 ± 0.12 0.8 ± 1.9

Gar-920XT −0.43 ± 1.04 3.66 ± 0.67 2.54 ± 0.45 1.6 ± 1.4

Vertical ZXY-Go 0.87 ± 4.47 1.16 ± 1.16 0.52 ± 0.55 19.3 ± 10.5

Cat-S5 4.71 ± 2.00 0.92 ± 0.28 0.58 ± 0.15 0.8 ± 1.9

Gar-920XT −4.45 ± 7.02 1.57 ± 0.31 0.99 ± 0.16 1.6 ± 1.4

The results are presented as the mean ± SD of all laps. When calculating TEE, measurements with a Euclidean difference exceeding three median absolute deviations
from the median were considered outliers and were omitted from the analysis. The fraction of discarded measurements is presented in the last column.

FIGURE 5 | Position errors. (A,D,F) Distributions of horizontal plane errors for ZXY-Go, Cat-S5, and Gar-920XT, respectively. Dashed lines, distribution mode; dotted
lines, third quartile. Horizontal axes are equally scaled. (B,C,E) Distributions of vertical error for ZXY-Go, Cat-S5, and Gar-920XT, respectively. Dashed lines, median
error; dotted lines, IQR. Horizontal axes are equally scaled. The vertical error distributions of the two standalone receivers were clearly multi-modal, which suggests
that the offset changed with time (as indicated by the different color saturation for the two groups of skiers, G1 and G2). Therefore, the analysis was also done on a
lap-by-lap basis to evaluate accuracy and precision over shorter (∼9 min) time intervals (Table 2).
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larger errors compared to the two other receivers (distribution
mode [2.54, 3.28] m, Figure 5F).

The vertical position accuracy was best for ZXY-Go
(distribution median [−1.50, 2.61] m), while Gar-920XT
underestimated (median [−4.41, −0.54] m) and Cat-S5
overestimated (median [4.70, 5.47] m) vertical position
slightly. However, as is apparent from Figure 5, the vertical
accuracy changed substantially between the two groups of
participants who started at different time points, especially for
the Gar-920XT and Cat-S5 receivers. This implies that the IQR
calculated from the aggregated data probably overestimates
the expected variation over a typical race duration. Therefore,
the median and IQR of the position deviations (both vertical
and horizontal plane) were also calculated on each individual
lap. The results of this analysis are presented in Table 2, and
show that the IQRs of vertical deviation evaluated over a
single lap were 1.16 ± 1.16, 0.92 ± 0.28, and 1.57 ± 0.31 m

(mean ± SD of all laps) for ZXY-Go, Cat-S5, and Gar-920XT,
respectively.

Mapping Onto Mapping Trajectory
To reduce the position error, position data were mapped
onto the mapping trajectory. The error in mapped position,
measured as the distance between the receiver position and the
reference position along the mapping trajectory, was similar
for ZXY-Go and Car-S5 (IQR [0.80, 1.51] and [0.65, 0.81] m,
respectively, Figure 6), while Gar-920XT exhibited a substantially
larger error (IQR [3.93, 4.66] m). Example measurements
and their corresponding mapped coordinates are plotted in
Figure 6B.

Speed Errors
The horizontal plane speed error distributions are plotted
in Figures 7A,C,E. The ZXY-Go receivers were most

FIGURE 6 | Mapping on mapping trajectory. (B) Section of the track showing how a subset of receiver coordinates were mapped onto the mapping trajectory (black
line). The gray line shows the trajectory of the reference receiver for the given trial. The dots are the receivers’ coordinates sampled at the same time, with 3-s
intervals (see legend for color specification). (A,C,D) Distributions of the mapped position errors, quantified as the distance to the reference receiver position along
the mapping trajectory [see legend in (D) for color specification].
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FIGURE 7 | (A,C,E) Error distribution of horizontal plane speeds for ZXY-Go, Cat-S5, and Gar-920XT, respectively. (B,D,F) Error distributions of speed along the
mapping trajectory for ZXY-Go, Cat-S5, and Gar-920XT, respectively. Dashed lines, median error; dotted lines, IQR. Horizontal axes are equally scaled. The ZXY-Go
receiver showed the highest precision. Cat-S5 was comparable to the ZXY-Go receiver, while Gar-920XT showed substantially lower precision.

precise (IQR [0.036, 0.043] m s−1), followed by the Cat-S5
receivers (IQR [0.070, 0.075] m s−1) and Gar-920XT ([0.614,
0.835] m s−1). Both ZXY-Go and Cat-S5 were accurate (median
[−0.001, 0.002] and [0.010, 0.013] m s−1, respectively), while
Gar-920XT overestimated horizontal plane speed (median
[0.076, 0.097] m s−1). Speed along the mapping trajectory
(Figures 7B,D,F) showed similar precision to the horizontal
plane distributions (IQR [0.041, 0.067], [0.077, 0.087], and
[0.701, 0.927] m s−1 for ZXY-GO, Cat-S5, and Gar-920XT,
respectively), but Gar-920XT accuracy was improved (median
[0.002, 0.027] m s−1).

Errors in Distance Covered
Both Cat-S5 and Gar-920XT overestimated the distance covered
during one lap compared to the length of the reference receiver
trajectory (median errors 9.0 and 34.8 m, respectively). Precision
was also better for Cat-S5 compared to the Gar-920XT (IQR

1.8 and 14.2 m, respectively), as apparent from Figure 8B.
The variation (IQR) in distance covered between single laps
(measured with the reference receiver) was 10.1 m. Hence, the
precision of Cat-S5 is better than the differences that can be
expected due to different trajectories used by the athletes over a
3.05 km course.

For both Cat-S5 and Gar-920, the time evolution of the
error in distance covered was a combination of a linear
drift which was equal to the mean error in speed, and a
stochastic error (Figures 8A,C). The linear drifts were 1.7 and
67 mm s−1 for Cat-S5 and Gar-920XT, respectively. If the
stochastic errors are independent, identically distributed, and
zero mean, Donsker’s theorem implies that the mean-squared
deviations from the linear trend line caused by systematic
errors in speed should increase linearly with time. Although the
assumptions of independence (due to the low pass filtering) and
identical distributions (due to changing receiver conditions) are
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FIGURE 8 | (A, C) Time evolution of the error in distance covered for Cat-S5 and Gar-920XT when compared to the distance covered by the reference receiver.
Note the different scaling of the vertical axes. The errors show a linear drift term in agreement with the systematic difference in speed measurements between the
evaluated receivers and the reference receiver. In addition, stochastic errors cause a deviation from the linear drift line which was approximately proportional to the
square root of time. The gray shaded regions indicate the RMSD from the linear drift. (B) Box plot of the errors in distance covered evaluated at the end of each lap.
Both Cat-S5 and Gar-920XT overestimated distance covered compared to the reference receiver, but Cat-S5 was substantially more precise.

violated in this study, the mean-squared residuals still appeared
to increase approximately linearly with time (Figure 9), except
for some regions of the track. The color-coding in Figure 9
suggests that changes in skiing speed could explain at least
some of these deviations. The slope of the linear regression line
of squared residuals was 0.0043 and 0.27 m2 s−1 for Cat-S5
and Gar-920XT, respectively (Figure 9). These findings imply
that the expectation value for the error in distance covered
increased linearly with time, and that the root mean-squared
(RMS) deviation from the expectation value increased by the
square root of time (Figures 8A,C). Therefore, the stochastic
error in distance traveled divided by the square root of time
elapsed was approximately constant throughout the lap. For the
Cat-S5 and Gar-920XT receivers, the IQR of the stochastic error
divided by the square root of time elapsed was [0.085, 0.104] and
[0.64, 0.80] m s−1/2, respectively (Table 1).

Split Time Analysis
The split time analysis resulted in precision (IQR) values of [0.27,
0.40], [0.12, 0.14], and [0.64, 0.75] s for ZXY-Go, Cat-S5, and
Gar-920XT, respectively (Figures 10A,C,D). The split time error

showed an inverse relationship with speed at the location where
the split time was evaluated (Figure 10B).

Segment Time Analysis
Segment time error increased with segment length, but appeared
to plateau for segment lengths >100 m, particularly for ZXY-Go
and Cat-S5 (Figures 11A–C). When averaged over the four
segment lengths >100 m, the ZXY-Go receiver’s absolute error
(Q3) was 0.19 s, Cat-5S was 0.11 s, and Gar-920XT 0.85 s
(Figure 11D).

ZXY-Go Data Transmission
The ZXY-Go receivers successfully transmitted data on average
for 33% (range: 21–44%) of the track length (Figure 3).

DISCUSSION

The aim of this study was to assess the accuracy of three different
classes of GNSS receivers (1 Hz wrist worn, 10 Hz standalone, and
10 Hz differential), to measure position, speed, and segment time
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FIGURE 9 | Scatter plots of the squared deviations from the linear drift line in
Figure 8 for Cat-S5 (A) and Gar-920XT (B). The residuals are color-coded
based on skiing speed. Solid colored lines show the mean-squared deviation
at the given time. Black lines are the least squares fit (with zero y-intercept) to
all the measurements. If the errors in speed were independent, identically
distributed, and zero-mean, the expectation value of the squared error in
distance covered would increase linearly with time (by Donsker’s theorem). In
this experiment, these assumptions are violated due to changing receiver
conditions and low-pass filtering of the trajectories. Nonetheless, the after
subtraction of the linear drift, the error increases approximately linearly with
time.

accuracy in endurance racing sports. The key findings of the study
were: (1) there were substantial differences in accuracy between
the three GNSS receivers, which need to be considered if applied
to endurance racing sports; (2) split time error was strongly
dependent on (and inversely related to) the athlete’s speed; and
(3) segment time error increased with increasing segment length.

Few other studies have evaluated the performance of multiple
GNSS receivers simultaneously in sports applications. One study
evaluated three different receivers, but the experiment was aimed
at typical team sports exercises (Coutts and Duffield, 2010).
Furthermore, most sports-specific GNSS receiver validations
have used straight line distances and optical speed traps (or
chronometers) as reference measures for distance and average
speed (Schutz and Herren, 2000; Townshend et al., 2008;
Barbero-Alvarez et al., 2009; Coutts and Duffield, 2010; Waldron
et al., 2011). The average speed determined from speed traps

is not an ideal reference for evaluating GNSS receiver errors
for three reasons: (1) during human locomotor tasks the GNSS
receiver will seldom follow a straight line between two speed
traps; (2) care must be taken to average over the same time
interval, particularly if the sampling interval is not negligible
compared to the averaging time; and (3) average speed provides
only limited insight in sport applications. Therefore, to assess
receiver position and speed the reference tracking system should
be capable of measuring the true instantaneous trajectory
of the receivers, using systems such as video-based tracking
(Gilgien et al., 2013, 2014b, 2015b; Fasel et al., 2016), reflective
marker-based tracking (Nedergaard et al., 2015) or, as in this
study, a high-end GNSS receiver previously validated against
video-based systems or similar. This study extends previous
studies on sport-specific GNSS applications in three ways:
(1) by comparing three different GNSS receiver technologies
under the same conditions; (2) by comparing the trajectories
in a dynamic situation where each receiver’s position could
be validated instantaneously by comparison with the reference
receiver’s smoothing spline; and (3) by investigating the accuracy
of split times and segment times obtained from GNSS receivers
aimed at the sports market, in a situation relevant for typical
endurance racing sports (i.e., running, cycling, or cross-country
skiing).

Position Error
Position itself was not of primary interest in this study, as
differences in choice of trajectory were not assessed in the
performance analysis. However, position error was of interest
since speed, split, and segment time are derived directly from
position. Comparing the instantaneous position errors found
in this study with the instantaneous position error found in a
GNSS method validation in a racing sport application (Gilgien
et al., 2014b), indicates that not only the GNSS method applied
but also the receiver and antenna type and positioning of the
GNSS antenna on the athlete play an important role in position
error. The GNSS conditions (PDOP) were comparable between
the studies, being very good in the alpine skiing study and
excellent in the present study, while the dynamics were more
pronounced in the alpine skiing study, resulting in overall more
challenging measurement conditions in the Gilgien et al. (2014b)
study. The present study agrees with the findings of Gilgien
et al. (2014b) that position error can be reduced by using a
differential solution (ZXY-Go) compared to a standalone solution
(Gar-920XT) and shows that there are substantial differences
between different standalone solutions. Although the Cat-S5
receiver and the ZXY-Go receiver were similar in many of
the evaluated parameters, there was a clear indication that the
ZXY-Go measurements were less robust than those obtained with
the Cat-S5. This can be clearly seen from the heavier distribution
tail in Figure 5 and the number of outliers in Table 2. One
explanation is that the ZXY-Go position solutions were not
filtered by the manufacturer, leaving potential for further position
accuracy enhancement (although all receivers were filtered using
the same low pass filter in the data processing). Comparing the
standalone GNSS solutions of the Gar-920XT and Cat-5S with the
standalone GNSS code position method (E) in the Gilgien et al.
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FIGURE 10 | Time analysis errors. (A, C, D) Error distributions for time analysis errors for the three evaluated receivers [see legend in (D) for color specifications].
Dashed lines indicate median time error, and dotted lines IQR. Cat-S5 provided the most precise split times, followed by ZXY-Go and Gar-920XT. (B) Scatter plot
showing that split time precision appeared to be inversely related to skiing speed (| vxy | ) at the split time position. The solid lines are the hyperbolic functions | δt|
= c/| vxy | encompassing 75% of the samples (i.e., the third quartile).

(2014b) study, the position error was substantially larger for the
Gar-920XT and smaller for Cat-S5. A more than 10 times larger
error was found for the kinematic differential solution by ZXY-Go
compared to a similar solution (Gilgien et al., 2014b) in the alpine
skiing study. The fact that a geodetic high-end receiver was used
in the alpine skiing study, combined with the large differences
in position error for a given GNSS method between the present
study and the Gilgien et al. (2014b) study, indicate that not only
the GNSS method applied but also antenna and receiver size
and quality are of importance for position accuracy in sport
applications. Hence, the large position errors in the Gar-920XT
might be associated not only with the heavily compromised
antenna size and the receiver quality and processing procedure,
but also with the mounting point on the athlete. The mounting
point of the Gar-920XT, the wrist, which is swung forth and

back continuously during skiing, causes changes in antenna
orientation and GNSS signal reception, which challenges the
GNSS processing (Weaver et al., 2015). GNSS signal shading
by the athlete’s body may also reduce the performance of the
Gar-920XT compared to the other receivers.

Speed Error
With respect to horizontal plane speed, a study comparing five
GNSS receivers ranging from a mobile phone receiver to a
high-end differential receiver found larger errors in speed for
a standalone wrist watch and a standalone handheld receiver
than the present study could find (Supej and Cuk, 2014). The
authors related the large error partly to the latency of about 2 s
in the speed readings of these receivers. Latency effects were
removed in the present study using the time synchronization
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FIGURE 11 | (A–C) Box plots of segment time error vs. segment length for
ZXY-Go, Cat-S5, and Gar-920XT, respectively. Maximal whisker length is
1.5 × IQR. Horizontal grid lines are equally separated (0.5 s). (D) Third quartile
of the absolute segment time error, with error bar indicating 95% CI. Segment
time error increased with increasing segment length, but started to flatten out
for segment lengths of 100 m, particularly for ZXY-Go and Gar-920XT. The
dashed lines show the mean of segments with length >100 m.

procedure. The removal of latency could be an important reason
for the reduced speed errors found in the present study compared
to Supej and Cuk (2014). An alpine skiing study (Gilgien
et al., 2015b), validating the speed of the center of mass
approximation using GNSS and modeling, found larger speed
errors than the present study. However, these were based on
three-dimensional position data and included the error from
the modeling approximation of the center of mass. A study

conducted on a roller coaster, simulating the dynamics of racing
sports, found errors in the range of cm/s for consumer-grade
receivers targeted to dynamic applications (Boffi et al., 2016),
which is similar to the results of the present study.

We found only minor differences in the precision of speed
measurements between horizontal plane speed and speed along
the mapping trajectory. However, speed accuracy was improved
by the mapping procedure, particularly for Gar-920XT. The
speed used in the current study was deduced by differentiating
the GPS positions (before or after mapping onto the mapping
trajectory). Most GNSS receiver manufacturers calculate speed
using other (proprietary) algorithms. For the Gar-920XT, the
manufacturer’s speed estimate was similar in precision to the
speed reported in the current study, but was more accurate
(exhibiting only a trivial overestimation). The Cat-S5 can
calculate speed based on the Doppler principle. The precision
was similar to the speed reported in the current study, but
it tended to overestimate speed slightly compared to our
reference receiver. A likely explanation for this overestimation
is the low pass filter applied to the GNSS coordinates of
the reference receiver in the current study. This filtering
process removes high frequency movements within each
technique cycle, effectively shortening the true trajectory of
the receiver prior to differentiation. In contrast, the Doppler
method measures speed directly based on the receiver’s true
trajectory. Therefore, the two speed measurements are not
directly comparable even when treated with the same low pass
filter.

The accuracy requirements to assess instantaneous speed
differences during a race would obviously depend on the specific
sport. To elucidate these requirements for cross-country ski
racing, we compared the intra-athlete variation in instantaneous
speed on successive laps. Specifically, we compared the speed on
laps 1 vs. 3, and 2 vs. 4, evaluated at every integer meter along
the track (Figure 12). From these data it was clear that the Gar-
920XT receiver would fail in most instances to report reliable
instantaneous speed differences (speed differences were greater
than 0.5 IQR for only 43% of the measurements). In contrast,
both the ZXY-Go and the Cat-S5 could be used to differentiate
typical speed differences observed in this study (speed differences
greater than 0.5 IQR in 98 and 94% of the measurements,
respectively).

Error in Distance Covered
The findings of the current study suggest that errors in the
distance covered exhibit a drift that is linear in time and equal
to the errors in speed measurement, and a stochastic drift with an
expectation value that increases with the square root of time. For
many applications, the latter effect will be the most important,
for instance when comparing several trials using the same GNSS
receiver. The results also show that measurements of the distance
covered by a GNSS receiver cannot be used for the time analysis
purposes in the current study, because differences in the length
of the athletes’ trajectories accumulate over time. This problem
cannot be wholly resolved by using more accurate position
measurements, but requires a common mapping trajectory, as
used in the time analysis in the current study.
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FIGURE 12 | Kaplan–Meier curve showing the estimated probability of
observing speed differences (1V ) greater than 1v on different laps, but at the
same location and for the same participant. Half the IQR of the horizontal
plane speed errors is indicated for the three evaluated receivers. It is clear that
Gar-920XT cannot provide sufficiently precise estimates of speed to
discriminate typical differences in speed within each athlete, while ZXY-Go and
Cat-S5 can.

Split and Segment Time Error
An obvious, but important, prerequisite for using GNSS for
time analysis is that a “meaningful difference” in performance is
encompassed by a position difference greater than the receiver
error, for two athletes starting simultaneously. Therefore, and as
the results of this study imply, it is beneficial to segment the track
so that the athlete has a high speed when passing the segment
boundaries. For instance, for the Gar-920XT receiver, split time
accuracy (Q3) was 1.90 s where the speed was 2 m s−1, and 0.25 s
where the speed was 15 m s−1 at the evaluated position.

Furthermore, the error in the time analysis decreases with
decreasing segment length. This is most likely due to correlated
position errors at both segment end points, resulting in a
cancelation of the errors, given that the track is relatively straight.
It is important to note that if the evaluated segment of the track
includes a sharp turn and the track points in approximately
opposite directions at the endpoints, the errors will most likely
no longer cancel. However, as a minimal criterion, short track
segments should be avoided for time analysis.

Time analysis accuracy requirements are typically a function
of segment duration, since the relative time difference is almost

independent of competition duration (Stöggl and Müller, 2008).
However, for endurance racing sports, individual choices of
pacing strategy (de Koning et al., 2011) or differences in
technical skill level can result in considerable differences over
relatively short segments. The results for section time accuracy
presented in the current study may help to define sections for
analysis in which the applied GNSS system provides the required
accuracy.

Methodological Considerations
Validity of the Reference System
Under circumstances with excellent conditions for GNSS
measurements (PDOP < 2), the reference system used in this
study has previously been shown to have a position accuracy of
about 5 cm (Gilgien et al., 2014b). This is small, but not negligible,
compared to the distribution modes in Figure 5. Furthermore,
the four GNSS antennas were mounted on different anatomical
locations. We corrected for the average position differences
by translating the evaluated receiver’s position measurements,
but individual differences in anthropometrics and changes in
posture will introduce deviations from the ideal situations of
identical antenna positions. The magnitude of these errors can
be estimated by calculating the distances from the head-mounted
antenna to the translated wrist or thoracic antennas. Using
the measurements from a previous study (Myklebust et al.,
2015; Gløersen et al., 2017), this error was estimated to be
0.26 m (RMS) for the wrist-worn receiver, and 0.09 m (RMS)
for the backpack-mounted receivers. This is about 10 and 20%
of the distribution modes (Figure 5) for the wrist-worn and
backpack-worn receivers, respectively. It is therefore likely to
have had some influence on the calculated errors. The error in
speed derived from the reference receiver has not been validated
directly, but was estimated to be <10 mm s−1 using numerical
simulations based on the expected position uncertainties (5 cm)
and the filtering procedure applied in the current study. This
estimate is in agreement with the findings of Boffi et al.
(2016), who evaluated speed using a lower-end receiver than the
reference receiver used in the current study.

Mapping Procedure
The mapping of the measured positions onto a common
trajectory was necessary for a successful time analysis, because the
distance covered by the individual athletes during each lap varied
from lap to lap. We chose to omit the vertical position dimension
when performing the mapping procedure. Because the vertical
dilution of precision (DOP) is often substantially higher than the
horizontal DOP, including the vertical position is likely to reduce
the mapped position accuracy.

This mapping procedure would also be useful in calculations
of the mechanical work rate of the athletes. On a track with
substantial inclines, the energy required to raise the center of
gravity is often the dominant work athletes need to perform.
Having accurate measurements of vertical position is a key
prerequisite to making reliable estimates of this work. The
validity of mechanical work rate estimations using GNSS
receivers was not addressed in the current study, but it should
be considered in future studies.
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Limitations
Because the conditions for GNSS measurements during
these experiments were excellent, our findings reflect a
best-case situation. Therefore, further assessment in sub-optimal
conditions (higher PDOP and more challenging signal multipath
conditions) is necessary to investigate how the different receiver
methods are affected by changes in measurement conditions.
Furthermore, the accuracies reported here cannot be generalized
to sports with substantially higher speeds or accelerations
(e.g., motor sports or alpine skiing). Large vertical speed and
displacement can also cause the receiver accuracy to deteriorate,
because of changes in the atmospheric signal transmission
properties.

The differential receiver (ZXY-Go) evaluated in the current
study did not have local storage and, due to frequent lack of
line of sight, lost the data transfer link between receiver on the
athlete and the base station, leading to loss of data in those
time periods. However, both these issues can be resolved in
future receivers. Because small carrier-phase differential receivers
have the potential to substantially increase the three-dimensional
accuracy of position tracking in sports applications, we decided
to include this receiver in the study even if the current version is
not suitable for time analysis in cross-country skiing.

Between-device reliability and test–retest reliability were not
addressed in the current study, but could be of interest for further
research.

SUMMARY AND CONCLUSION

The results of this study revealed substantial variation in the
accuracy obtained using commercially available GNSS receivers
aimed at sports applications, which should be considered when a
GNSS receiver is chosen for a specific application in endurance
racing sports. In summary, the ZXY-Go (differential) and Cat-S5
(standalone) receivers performed substantially better than the
wrist-worn Gar-920XT receiver for horizontal plane position,

speed, and time analysis calculations. The receiver’s horizontal
plane speed errors suggested that the ZXY-Go and Cat-S5 can
detect typical instantaneous speed differences in cross-country
ski racing, while the Gar-920XT cannot.
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