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Coral sand foundation formed by hydraulic fill often faces the problem of poor
bearing capacity. This paper proposed for the first time to apply CFG pile
composite foundation to coral sand sites to verify the feasibility of this scheme
and understand its mechanical characteristics. Firstly, taking on-site coral sand as
the research object, a pile sand interface shear test was conducted to clarify the
mechanism of pile side friction. At the same time, the ultimate bearing capacity of
CFG pile and its composite foundation was measured through in-situ static load
tests. Then, based on the strength parameters of the pile sand interface revealed
by indoor tests, numerical simulations were conducted to analyze the bearing
characteristics of CFG piles and their composite foundations. Finally, a method for
calculating the vertical bearing capacity of rigid piles in composite foundation
considering interface parameters was proposed. The results showed that the
bearing capacity characteristic values of single pile and composite foundation
meet the design requirements; The interface friction angle and cohesion together
increased the ultimate side friction by 64.41%; The load is mainly borne by the pile
tip resistance, and the increase of the interface friction angle will make the
proportion of the side friction load first increase and then decrease more
obviously; The pile soil stress ratio first increased and then tended to stabilize
as the interface strength increased. Compared with the field static load test results,
the rationality of the calculation method for composite foundation rigid piles was
verified. This study may have reference significance for the design and
construction of coral sand foundation treatment in offshore island and reef
projects.

KEYWORDS

coral sand, CFG pile composite foundation, interface strength parameters, static side
pressure coefficient, bearing characteristics

1 Introduction

Coral sand (Wang et al., 2020) is a kind of rock and soil mass formed by the remains of
coral groups under geological action, it is characterized by irregular shape (Liu and Wang,
1998; Smith and Cheung, 2003), many pores (Chang-qi et al., 2016; Xu et al., 2022), easy
cementation (Meng et al., 2014), easily broken (Hu, 2008; Donohue et al,, 2009), and its
engineering mechanical properties are quite different from those of ordinary continental
sediments (JTANG et al., 2015; Wang et al., 2017). As the construction site gradually extends
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to the sea, more and more reclamation projects are being built. Due
to the characteristics of high cohesion, large internal friction angle
and high residual strength, coral sand has become a good blowing
filler and is widely used in island and reef engineering (Wang et al.,
2011; Wang et al, 2021); However, due to its engineering
characteristics of high porosity, large compressibility, and easy
crushing of particles (Coop, 1990; Ma et al., 2022), untreated
coral sand foundation often has problems such as large uneven
settlement and low foundation bearing capacity (Rittirong et al.,
2008), which brings great threats to the engineering construction
(Ohno et al, 1999). Therefore, proper foundation treatment
measures are suggested be taken.

At present, driven piles and bored piles were mostly used in coral
sand sites (Dean, 2009). In the earliest period, Angemeer et al. (1973)
used the field static load test to study the bearing characteristics of
the driven pile in the coral reef stratum, and it was found that the
side friction resistance of the steel pile was very low; through the test
of driving pile with openings, the ultimate side friction measured by
Dutt and Cheng, (1984) was only 9.2 kPa at the lowest level; Datta
et al. (1980) evaluated the bearing capacity of pile foundation in
calcareous sand, and they found that the surface friction might be
overestimated in the project because that the end bearing may not be
fully utilized. During the piling process of the driven pile, the coral
sand particles around the pile are damaged to a large extent, which
will make the bearing capacity decrease, and even cause pile sliding
(Poulos, 1988); Based on the deep mixing technology, Igoe et al.,
2014; Spagnoli et al. (2015) proposed a new type of cast-in-place pile
with steel casing inside, and systematically studied its bearing
capacity. Although the cast-in-place pile can significantly increase
the side friction resistance of the pile (Lee and Poulos, 1991) and has
little impact on the shape of coral sand around the pile, it has the
disadvantages offs high cost and long period. Compared with the
construction scheme of above pile foundations, the CFG pile
(i.e., pile constructed by granular materials of cement, fly-ash and
gravel) composite foundation has many advantages such as small
disturbance, small settlement, low cost, etc., but so far, its application
in the coral reef site is rarely reported. The mechanism of the pile-
soil interface is the key influencing factor for the bearing capacity of
pile foundation and has been studied by scholars. By conducting the
sand-steel interface shear test, Zhang et al. (2021) studied the shear
behavior of this interface under different roughness and
compactness. Similarly, Chen et al. (2022) studied the influence
of roughness and relative density on the mechanical properties of the
sand-concrete pile interface through the interface shear test. Uesugi
etal. (1990) found that the maximum friction coefficient of the sand-
concrete interface is closely related to the interface roughness and
the average diameter of sand. Based on the sand-steel interface shear
test, Kou et al. (2021) studied the interaction mechanism between
coral sand and steel pipe pile interface under the geological
conditions of coral reef. Wang et al. (2022) analyzed the
macroscopic  shear characteristics and particle crushing
characteristics. For the interface of the concrete pile, Li et al.
(2022) carried out large-scale direct shear tests to study the shear
failure characteristics of coral reef limestone-concrete interface.
Aiming to study the bearing capacity of pre-drilled rock-socketed
concrete piles on the coral reef debris layer, Liu et al. (2021)
conducted the direct shear test on the pile-coral reef debris
interface under the condition of constant normal stiffness and
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analyzed the friction mechanism and shear expansion
characteristics of the pile-rock interface. To sum wup, the
mechanical properties of the interface between continental
ordinary sand and steel pipe piles or concrete piles. For the coral
reef stratum, some scholars carried out research on the impact
mechanism of steel pipe piles on coral sand, except for the action
mechanism of concrete piles, while only reef limestone and its clastic
layer were involved, and fully classified coral sand (gravel sand,
coarse sand, medium sand, fine sand, and silt) was not taken into
account.

This article based on a high-rise residential project, which
was designed on a hydraulic fill coral sand site in Hulumale
Island, Maldives. Based on the special engineering properties of
coral sand, the shear characteristics of the interface between the
fully classified coral sand and the CFG pile were revealed through
the indoor shear test, and a large number of on-site static load
tests were conducted on the single pile and composite foundation
to evaluate the application effect of this composite foundation.
The influence of the interface strength parameters (cohesion and
friction angle) on the bearing characteristics of the CFG pile
composite foundation was clarified

it also proposed a calculation

through numerical
simulation. Furthermore,
method for the bearing capacity of rigid piles in the composite

foundation considering the interface strength.

2 Project overview

This high-rise residential project in Hulumale Island,
Maldives, is designed in the land area formed by coral sand
reclamation and is the largest residential building in this area.
This site is mainly distributed by coral sand from top to bottom,
and the pile end has quasi-reef limestone. The specific geological
overview is introduced in Table 1. In this project, the CFG pile
was used for foundation treatment; The pile diameter is 0.4 m, the
pile spacing is 1.3 m, and the pile body is made of C30 concrete.
These piles were arranged rectangular and drilled using the long
spiral, as shown in Figure 1. The pile end entered into the bearing

FIGURE 1
Construction of CFG pile.
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TABLE 1 Geological overview.

Geotechnical no. And

Morphological description

Average standard penetration

name number

®Hydraulic fill sand Loose~slightly dense, calcareous, uneven particles 11

@-2 Coral sand Local clumping and stickiness between particles 4

@Parareef limestone The skeleton is mostly 0.5-1.0 cm, with weak cementation between particles and high 30
hammering strength

£100

5 —e— Coral gravel sand
2 —=— Coral coarse sand
H 80 | —a— Coral medium sand
£ —— Coral fine sand

E 6oL —— Coral silt

=

2

= 401

5

.E

= 20+

£

g

4 I I 1
2

z 10 . . 0. 0.01
3 Particle size/mm

FIGURE 2

Particle grading curve of sample.

layer of the quasi-reef limestone for 50 cm, the design bearing
capacity of the single pile and the composite foundation is 420 kN
and 370 kPa, respectively.

3 Bearing characteristic test
3.1 Indoor direct shear test on interface

After sampling and analyzing the coral sand at the project site
for several times, the grain size distribution of the reclaimed coral
sand is found to be wide, which can be divided into coral gravel sand,
coral coarse sand, coral medium sand, coral fine sand and coral silty
sand according to Code for Geotechnical Investigation of Water
Transport  Engineering  (Partial ~ Revision)—Geotechnical
Investigation of Coral Reef (General Revision) in Table 2. The

TABLE 2 Classification of coral sand.

strength parameters of the interface bewteen different graded
coral sand and piles will directly affect the side friction resistance
of CFG piles, and furtherly affect the bearing characteristics of CFG
pile composite foundation.

3.1.1 Experiment scheme

In this paper, five kinds of coral sand were taken as the research
object to carry out the indoor interface shear test, so as to clarify the
shear strength parameters of the interface between coral sand and
concrete pile. The particle analysis test results of typical samples are
shown in Figure 2.

According to the particle grading curve in Figure 2, parameters
of the restricted particle size dgy, medium particle size ds,, average
particle size ds, effective particle size d;, nonuniformity coefficient
C, and curvature coefficient C. were all calculated and shown in
Table 3.

Due to the large and uneven particle size of coral sand, a large
special direct shear instrument for coral sand was invented, as
shown in Figure 3. The cutting box size is 15 x 15 x 15 cm, and
the measurement range is 0-50 kN with an accuracy of 0.01 kN
while using this special direct shear equipment to carry out
mechanical test of pile-sand interface, the sample was processed
into the size of 15cm x 15cm, and the density is 1.65 g/cm .
Besides, the normal stress of the test was set as 25, 50, 100, 200,
400 and 800 kPa, and the shear rate was 1 mm/min.

The specific test steps are as follows.

(1) Prefabricated the size to 15x 15 x 7.5 cm concrete block was
placed inside the sample box, with the top surface of the
concrete block located exactly at the shear plane position;

(2) According to the experimental design density (1.65 g/cm?) and
volume (15 x 15 x 7.5 cm) weighed a certain mass of coral sand
sample;

(3) Divided the weighed coral sand sample into three parts and
placed it in the upper half of the sample box. Vibrated according

Coral reef detritus Particle grading

Coral gravel sand

Percentage of the particle with the diameter of more than 2 mm is 25%-50%

Coral coarse sand

Coral sandy soil Coral medium sand

Percentage of the particle with the diameter of more than 0.5 mm is 50%

Percentage of the particle with the diameter of more than 0.25 mm is 50%

Coral fine sand

Coral silty sand

Frontiers in Earth Science

Percentage of the particle with the diameter of more than 0.075 mm is 85%

Percentage of the particle with the diameter of more than 0.075 mm is 50%
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TABLE 3 Grading parameters of coral sand.

10.3389/feart.2023.1204989

Parameter Coral gravel sand Coral coarse sand Coral medium sand Coral fine sand  Coral silty sand
dio 0.09 0.09 0.08 0.08 0.08
dso 045 0.28 0.16 0.14 0.09
dso 1.00 0.58 0.26 0.22 0.15
dso 1.50 0.80 0.36 030 020
Nonuniformity coefficientC, 16.67 8.70 4.80 4.00 2.67
Curvature coefficientC, 1.50 1.07 0.95 0.87 0.54
Gradation Good Good bad bad bad
A B

Shear force

Concrete

FIGURE 3

-
1
T

\

1

i

Large-scale direct shear test of Pile-coral sand interface (A) Schematic diagram of the large-scale direct shear test; (B) The equipment large direct

shear test.

to the height of the layers, so that the coral sand sample just
filled the upper half of the sample box;

—
N
=

Started the instrument and applied normal stress through the
cylinder;

—~
(S,
=~

Started the lateral pushing device, so that the lower part of the
shear box began to shear and move, from which the interface
shear strength between the concrete block and the coral sand
sample can be obtained.

3.1.2 Experiment results

Figure 4-Figure 8 shows the interface shear curves and the
change rule of strength with normal stress. From
Figure 4A-Figure 8A, it can be seen that with the increase of
shear strain, the shear stress on the coral sand-concrete interface
first increased and then basically remained unchanged; this
characteristic is similar to the ideal elastoplastic model.
Moreover, the interface strength of coral sand-concrete increased
with the side pressure. Draw the curve of normal stress and shear
strength, Figure 4B-Figure 8B shows the slope of the curves between
the interface strength and the normal stress was different under
different normal stress, that is, these curves were broken lines, and
the inflection point was about 100 kPa. After fitting the collected
data, the friction angle and cohesion of the coral sand-concrete
interface under different normal stresses are shown in Table 4. It can

be seen that the variation of shear stress on the coral sand-concrete
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interface with the normal stress showed a broken line, with an
inflection point of about 100 kPa. When the normal stress was less
than 100 kPa, the interface cohesion was between 13.1 and 23.4 kPa,
and the friction angle was between 17.2 and 27.7. When the normal
stress was greater than 100 kPa, the interface cohesion was close to 0,
and the friction angle was between 28.4 and 34.1.

By summarizing the results of the coral sand concrete
interface shear test, it can be found that due to the natural
multiple edges and irregular shapes of coral sand, these
irregular shapes have significant impact on the interface
strength when it shears with concrete. Especially under low
normal stress, irregularly shaped coral sand will generate
significant biting force at the interface and inside the sand,
The reason is that the edges and corners between particles are
embedded and occluded with each other, forming a strong whole,
exhibiting greater biting force than conventional terrestrial sand.
At this time, coral sand cannot be simply treated as conventional
sand; At the same time, due to the fragility of coral sand, under
high normal stress, the irregular edges and corners of coral sand
will be broken to varying degrees, and the particle roundness will
continue to increase. The embedding and interlocking effect
between particles will gradually weaken, and the interfacial
interlocking force displayed will continue to decrease,
approaching 0. At this time, the cohesive force between coral
sand particles is becoming closer to conventional terrestrial sand.
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FIGURE 4
Coral gravel sand. (A) Relation curve between shear strain and shear stress; (B) Strength curve.
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Coral coarse sand. (A) Relation curve between shear strain and shear stress; (B) Strength curve.
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FIGURE 6
Coral medium sand. (A) Relation curve between shear strain and shear stress; (B) Strength curve.

During the process of normal stress variation, coral sand itself 3.2 Site static load test

undergoes a dynamic change process, resulting in a large range of

fluctuations in interface bite force. Coral sand and concrete also ~ 3.2.1 Static load test results of single pile

exhibit different interface strengths, which in turn affect the A total of 48 single pile static load tests were conducted on
lateral friction resistance of the pile foundation and have  site, and the static load test results of two test piles were used as
different effects on the bearing characteristics of the pile examples to illustrate. The test pile is 14 m long and 0.4 m in
foundation. diameter. During the static load test of single pile, a ceratin low
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Coral fine sand. (A) Relation curve between shear strain and shear stress; (B) Strength curve.
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Coral silty sand. (A) Relation curve between shear strain and shear stress; (B) Strength curve.

TABLE 4 Statistical table of interface mechanical parameters.

Interface sand type Low normal stress High normal stress
Cohesion/kPa Interface friction angle/’ Cohesion/kPa Interface friction angle/’
Coral gravel sand 23.4 17.2 0 28.4
Coral coarse sand 19 24.1 0 33.7
Coral medium sand 18.3 27.7 0 34.1
Coral fine sand 16 26.6 0 33.6
Coral silt 13.1 23.2 0 322

speed was kept to sustain the load. The maximum stacking load is
1000 kN and is divided into 8 levels, the loading amount of each
level is set as 1/10 of the estimated limit load. The 1st level load is
applied by 2 times the graded loading amount, and the field
loading is shown in Figure 9. As Q-S curves of a single pile shown
in Figure 10, after applying the first eight levels of loading, the
settlement was observed to be relatively stable. When the load
was increased to the 9th level of 1000 kN, there was a significant
steep drop in the pile top, indicating that the pile has been
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damaged; thus, the ultimate bearing capacity of a single pile
was taken as 900 kN, and its characteristic value of the vertical
bearing capacity was taken as 450 kN, which meets the design and
specification requirements.

3.2.2 Static load test of composite foundation

A total of 48 single pile composite foundation static load tests
were conducted on site, and the results of the composite foundation
static load tests on two test piles were used as an example to
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FIGURE 9
Static load test.
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Q-S curve of single pile.

illustrate. The length, diameter and spacing of the test pile is 14 m,
0.4m, and 1.3 m, respectively; the size of the pressing plate is
1.30 m x 1.30 m. During the test, a ceratin low speed was kept to
sustain the load, the maximum load on the pile was set as the
ultimate bearable load, which was divided into 9 levels, the loading
amount of each level was set as 1/10 of the estimated limit load, and
the 1st level of loading took 1/5 of the maximum load. Figure 11
shows the Q-S curve of the composite foundation. It can be seen that
the increasing rate of settlement obviously became larger after the
last level of the load was applied. According to the key points of the
composite foundation static load test, the limit load was taken as
740 kPa, and the characteristic value of the composite foundation
bearing capacity was taken as 370 kPa to meet the requirements.
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Q-S curve of composite foundation.

FIGURE 12
Numerical grid model.

4 Numerical simulation research
4.1 The establishment of numerical model

The numerical model was established with PLAXIS 3D software, as
shown in Figure 12. The pile length was 14 m and the pile diameter was
0.4 m. The side dimension of soil was set as 60 times the pile diameter,
and the verticle dimension was set as 2 times the pile length. The
horizontal displacement of soil around the pile was fixed, and the
bottom was fixed. In this model, 29451 elements were generated and
with 45406 nodes in total. The solid element was adopted for CFG pile,
and the linear elastic model was selected; Based on the Mohr Coulomb
criterion, a hardening soil constitutive model considering small strain
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TABLE 5 Mechanical parameters of pile and soil.

10.3389/feart.2023.1204989

Material Elastic modulus  Poisson’s ratio Cohesion Friction angle Expansion angle
MPa kPa (°)
Pile 25000 0.2 — — —
Coral sand 5 0.3 34.5 41.5 10
Medium-coarse sand 10 0.3 23 44 10
Parareef limestone 35 0.2 34.5 23 10
Cushion layer 15 0.3 0 40 10
Interface material 9 0.25 0. 4. 8, 12, 16, 20, 24 | 0, 17, 205, 24, 275, 31, 345 10
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Comparison of Q-S curves of single pile.

stiffness was adopted for the soil layer. The contact interface between
piles and soil was set to simulate the real contact between piles and soil,
and this interface was regarded as an independent material, and its
material parameters were input separately. The specific operation
method is to set up a layer of interface unit between the pile and
sand when establishing the model. The interface unit does not have
actual thickness, and the material properties of the interface unit were
customized. By inputting the designed cohesion and internal friction
angle values in the material properties, accurate simulation of different
interface strengths can be achieved, simulating the interface interaction
between the pile and sand, Further results can be obtained on the
impact of different interface strengths on the bearing characteristics of
pile foundations. The mechanical parameters of all these materials are
shown in Table 5.

4.2 Model validation and analysis

To verify the rationality of the numerical model, the load-
displacement curves obtained from numerical simulation and
bearing capacity tests of single pile and composite foundation on
site were compared, as shown in Figures 13, 14. From Figure 13, it
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Q-S curve comparison of composite foundation.

can be seen that in the initial stage of loading, the trend of the two load
displacement curves was consistent, and the displacement increased
linearly with the load. The slope of the load displacement curve obtained
from numerical simulation was larger, and the displacement is greater
under the action of primary load; After the primary load, there was a
significant change in the slope of both curves, and the on-site measured
curves performed more significantly; When the load reached its
ultimate bearing capacity, the slope of the curve increased, and then
the two showed an approximate linear relationship. The on-site
measured load displacement curve showed a sharp drop, indicating
that the pile had undergone certain damage and reached its ultimate
bearing capacity. However, the slope change of the load displacement
curve obtained from numerical simulation was not significant. In the
primary and ultimate load stages, there was a deviation between the two
curves, especially in the ultimate load stage, where there was a certain
deviation in the ultimate bearing capacity obtained by the two curves.
However, overall, the calculated values of the two curves were in good
agreement with the measured values, verifying the rationality of the
numerical simulation.

From Figure 14, it can be seen that in the initial stage of loading,
the displacement in the two curves increased linearly with the load.
After loading to the primary load, the on-site measured load
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Influence of interface strength parameters on ultimate side friction under different loads (A) Influence of interface friction angle on ultimate side

friction; (B) Influence of interface cohesion on ultimate side friction.

displacement curve showed different amplitude fluctuations, leading
to a certain deviation in the two curves. When the load reached the
ultimate bearing capacity, the slope of the curve increases, and then
the two showed an approximate linear relationship. The slope of the
on-site measured load displacement curve showed a significant
change, indicating a certain degree of damage within the
composite foundation and reaching the ultimate bearing capacity.
However, the slope change of the load displacement curve obtained
from numerical simulation was relatively small, and there was a
certain deviation in the ultimate bearing capacity values obtained
from the two curves. However, overall, the calculated values were in
good agreement with the measured values, verifying the rationality
of the numerical simulation.

4.3 Influence of interface strength
parameters on bearing capacity of
composite foundation

The strength parameters of the pile-sand interface have a direct
impact on the pile side friction, which furtherly affects the bearing
capacity of the pile foundation. Therefore, in this research, the
interface strength parameters obtained from the indoor shear test
were input in the software as interface parameters to study the
impact of different interface strength parameters on the vertical
bearing capacity of the pile foundation.

4.3.1 Influence of interface strength parameters on
ultimate side friction

The influence of interface strength parameters on the ultimate
side friction is shown in Figure 15. It can be seen from Figure 15A
that with the increase of interface friction angle, the ultimate side
friction increased continuously, and when the interface friction
angle was 0, 17, 20.5, 24, 27.5, 31 and 34.5, the corresponding
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limit side friction was 12, 13.48, 14.71, 15.09, 15.53, 15.99 and
16.31 kPa respectively; it was noticed that when the friction angle
was 34.5, the limit side friction resistance increased by 35.92%. It can
be seen from Figure 15B that the increase in cohesion led to an
increase of ultimate side friction. When the interface cohesion was 0,
4, 8,12, 16, 20 and 24 kPa, the corresponding limit side friction was
11.76, 12.53, 13.29, 13.77, 14.68, 14.82 and 15.11 kPa respectively.
When the cohesion was 24 kPa, the limit side friction increased by
28.49%. The interface friction angle and cohesion together increased
the ultimate side friction by 64.41%, indicating that the interface
strength parameters are key factors affecting the ultimate side
friction, and also indicating that the interface strength parameter
is only one influencing factor.

4.3.2 Influence of interface strength parameters on
pile load sharing ratio

The ratio of pile side friction Q, and pile end resistance Q,
with load Q is shown in Figure 16. It can be seen from Figure 16A
that in the coral sand foundation, the pile end resistance plays a
major role in the bearing capacity of the pile foundation. The
proportion of side friction increased first and then decreased with
the increase in load. As the load increased, the pile side friction
gradually played its role and the share proportion gradually
increased; then, as the load continued to increase, the impact
of pile side friction was fully used and became stable. As the share
proportion of pile end resistance gradually increased, the
corresponding share of side friction decreased, so the load was
mainly sustained by the pile end resistance. This phenomenon
became more and more obvious with the increase of interface
friction angle. It can be seen from Figure 16B that with the
increase of cohesion, the proportion of pile side friction gradually
increased, while the proportion of pile end resistance decreased;
but their changing amplitudes were small, and the load
proportion tended to a stable level.
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4.3.3 Influence of interface strength parameters on
pile-soil stress ratio

The influence of interface strength parameters on the pile-soil
stress ratio is shown in Figure 17. It can be seen that with the
increase of interface friction angle and cohesion, the pile-soil stress
ratio gradually increased, but the increase ratio gradually slowed
down to a stable value; this indicated that with the increase of the
upper load, the load sustained by soil between piles gradually
decreased, and the pile body sustained more load, reflecting the
bearing characteristics of the rigid pile composite foundation.
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5 Formula correction of the
characteristic value of single pile
bearing capacity

According to the Technical Code for Building Foundation
Treatment, the characteristic value of the vertical bearing
capacity of composite foundation reinforcement single pile
can be estimated as follows; Based on the indoor test and the
vertical compressive static load test of single pile, the
calculation formula of the characteristic value of the vertical
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TABLE 6 The determination of parameter value.

Parameter Pile

ko

Interface
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FIGURE 18

The characteristic value of pile end resistance in the static load
test.

bearing capacity of composite foundation rigid single pile is
proposed:

[Ral =14y ) " Gl + €1 friAp (1)

Where the pile end bearing capacity is determined by the
uniaxial compressive strength f,, and development coefficient of
pile end resistance c, related to the integrity of rock mass. u, is the
perimeter of the pile m); I; is the thickness of the layer of soil within
the range of pile length m); A, is the sectional area of the pile (m?);
a, is the development coefficient of pile end resistance; g, is the
characteristic value of pile end resistance (kPa).

The characteristic value of pile side friction is related to the
horizontal effective stress and interface strength parameters, which
can be calculated according to the following formula:

qsi = c+a;tan8=c+k00:,tan8

)

Where g, is the horizontal effective stress of the soil at the pile
side, J is the interface friction angle, c is the interface cohesion, ky is
the static lateral pressure coefficient of the soil, U:, is the vertical
effective self-weight stress of the soil at the pile side.

5.1 The determination of parameter value

Based on the field static load test of the single pile, the ultimate
bearing capacity of each pile was obtained, and its half value was
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Characteristic value interval of pile end resistance with 95%
confidence interval.

taken as the characteristic value of the vertical bearing capacity of a
single pile. Assuming the stratum only distributes medium-coarse

sand, g5 was calculated to be 15.6 kPa according to the parameters in
Table 6.

5.2 Comparison of characteristic values of
pile end resistance

After substituting all characteristic values of the bearing capacity of
single pile obtained from the field static load test into Formula (2), the
characteristic values of pile end resistance are shown in Figure 18.

By comparing the characteristic value of pile end resistance
obtained from the field static load test of the single pile with that
from the modified formula ¢; f, it was found in Figure 19 that the
confidence interval of the characteristic value of pile end resistance
corresponding to 95% confidence in the field test results was
1.48-2.64 MPa, the calculated value of ¢; f,x was 1.35 MPa and was
less than the measured value, with a small error, indicating that the

proposed calculation method of composite foundation rigid pile is
reliable.

6 Discussion

Currently, there are few engineering reports on the application
of CFG pile composite foundation to coral sand foundation. In this
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study, it was found that the maximum cohesive force at the pile coral
sand interface is 23.4 kPa, which is consistent with the research
conclusion that the coral sand bite force is relatively large (Feng
et al,, 2020; Liu and Li, 2022). At the same time, this study showed
that the pile end resistance in coral sand foundation plays a major
role in the bearing capacity of CFG piles, with the load sharing of pile
side frictional resistance accounting for about 20%, while the
remaining 80% of the load is borne by the pile end resistance.
The variation law of pile soil stress ratio is basically consistent with
that of pile soil stress ratio in general terrestrial strata (Chen et al.,
2008; Liu et al,, 2023). The difference is that the pile in coral sand
foundation always bears a large load, which is due to the relatively
poor bearing capacity of coral sand formation formed by hydraulic
fill, and the pile end bearing layer is quasi reef limestone, with a large
characteristic value of pile end resistance (Zhang et al., 2022). This
provides an important reference for the design of similar projects in
coral sand foundation. The first point is to pay attention to the
design of the vertical bearing capacity of the pile itself, and the pile
always bear the main load; The second point is that the design of pile
length in composite foundation should be embedded in rock, and
the design of pile end resistance should be strengthened (Li et al.,
2023). The limitations of the research work in the article are
explained as follows: The contact interface between CFG piles
and coral sand during on-site construction is rough and complex,
and the shear test of coral sand concrete interface failed to consider
the influence of interface roughness. The grading range of coral sand
listed in the article is limited, and in-depth research is needed on the
interfacial shear characteristics of other graded coral sand. Because
coral sand is brittle and anisotropic, the influence of these
characteristics on the bearing characteristics of pile foundation
has not been fully considered in the numerical simulation (Zhang
et al., 2023).

7 Conclusion

In this paper, a series of studies have been carried out on the
bearing characteristics of CFG pile composite foundation in the
reclaimed coral sand site, and the following conclusions can be
drawn.

(1) By conducting the shear test on the interface between the
concrete pile and coral sand, it is shown that under the low
normal stress, the corner bite effect of coral sand is obvious,
while the corner is damaged and the bite effect becomes
unobvious under the high normal stress. It is also revealed
that when the normal stress of pile-sand is less than 100 kPa, the
interface cohesion is between 13.1 and 23.4 kPa, and the
interface friction angle is between 17.2 and 27.7; When the
normal stress of pile-sand is greater than 100 kPa, the interface
cohesion is close to 0, and the interface friction angle is between
28.4 and 34.1.

(2) Aiming to the reclamation coral sand site, the treatment method

of CFG pile composite foundation was proposed for the first

time. The results of the field static load test of single pile and
composite foundation show that both the limit bearing capacity
and settlement of the pile meet the specification and design
requirements, which verifies the reliability and rationality of this
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foundation treatment. Furthermore, the practical engineerings

show that the application of the CFG pile composite foundation

in the hydraulic fill coral sand foundation is feasible.
(3) The numerical simulation results show that with the increase of
interface strength parameters, the ultimate side friction
resistance of the pile increases gradually. With the increase of
the interface friction angle, the proportion of the side friction
resistance increases first and then decreases more obviously. At
the same time, the increase of the interface cohesion leads to a
slight increase in the proportion of the side friction resistance of
the pile, and the pile end resistance bears the most of load. With
the increase of interface strength parameters, the pile-soil stress
ratio gradually increases and tends to be stable, reflecting the
bearing characteristics of rigid pile composite foundation.
Based on the field load test results, the rationality of the
calculation formula of the vertical bearing capacity of

(4)

composite foundation reinforcement single pile considering

the interface strength parameters is verified.

Suggestions for future research work are as follows.
(1) It is recommended to conduct coral sand concrete interface
shear tests considering interface roughness to improve the
accuracy of testing interface strength parameters;
(2) Tt is recommended to carry out on-site monitoring of CFG
pile composite foundation in coral sand sites, monitor the
stress characteristics of the pile foundation during the
bearing process, and verify and revise the numerical
simulation research results.
Due to the high porosity of coral sand, it is recommended to
conduct research on the post grouting technology of CFG piles
to enhance the bearing capacity of pile foundations.
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Effective real-time treatment and control of harmful gases are key to ensuring the
safety of tunnel construction workers. Currently, the monitoring ability of harmful
gases is insufficient to match the processing needs, which poses significant risks to
the safety of tunnel construction workers. This paper proposes an advanced
perception and treatment method for harmful gases during tunnel construction,
utilizing the DeepAR algorithm. Real-time monitoring of the concentration and
diffusion of harmful gases is conducted, and a harmful gas concentration
prediction model is established using the DeepAR algorithm, achieving
advanced perception of harmful gases during tunnel construction. The harmful
gas treatment plan is developed in advance, and the effectiveness of the proposed
method is demonstrated by simulation testing under realistic field scenarios and
comparing with other prediction models. The method was applied in a coal mine
tunnel in Qinghai Province, achieving an accuracy rate of 94.3%, which is higher
compared to those obtained using RNN and LSTM algorithms. Moreover, the
computational time is less than 60 s. The method provides timely perception of
the concentration distribution of harmful gases in the tunnel and proposes
targeted treatment measures, verifying the effectiveness of the prediction
model from the perspective of practical engineering application.

KEYWORDS

highway tunnel, harmful gas, DeepAR, advance forecast, tunnel construction

1 Introduction

With the continuous development of modern transportation facilities, more and more
underground tunnels, subway passages and underground spaces have been built and utilized.
In modern tunnel construction, due to the complexity of construction methods and
geological environment (Fei et al, 2010; He et al, 2017; Su et al, 2020), the
concentration and diffusion law of harmful gases produced by different coal seam
structures are different under coal-penetrating geological conditions (Zhang et al., 2023a;
Liu et al., 2023), and the generation and aggregation characteristics of toxic and harmful
gases such as gas and hydrogen sulfide need to be sensed in advance, which will effectively
protect the health of tile workers in tunnel construction (Cao et al., 2016; Zhao et al., 2020;
Gong et al., 2022). Excessive inhalation of harmful gases has a great negative impact on
human respiratory system, circulatory system and nervous system, especially under
continuous exposure to high concentration of harmful gases, workers may lose
consciousness and even die. Therefore, how to effectively warn and control the
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concentration of harmful gases during tunnel construction, adopt
take
countermeasures in advance is of great practical significance to

effective methods to forecast harmful gases and
tunnel engineering practice (Kang et al., 2010).

Current toxic and harmful gas monitoring and detection
methods rely on real-time sensing devices to monitor gases and
take prompt action to prevent harm to construction workers and
nearby environmental conditions (Chen et al, 2020).
Nonetheless, the

Assessment and identification of dangerous gases during tunnel
construction is greatly influenced by the location of sensor
placement, the work conditions, and the number of sensors
utilized in the process. Meanwhile, a range of geological factors
contribute to differing amounts of toxic gases, their fluctuations, and
overall trends during excavation, all of which pose formidable
challenges for the real-time management and control of these
gases, thereby endangering the wellbeing of construction personnel.

With the development, and application of deep-learning and
artificial intelligence technology, using deep-learning-based time-
series prediction models to make real-time predictions of noxious
gas concentrations has shown extensive potential applications
(Gong et al,, 2015a; Zhang and Yang, 2017a; Wu and Fan, 2020).
DeepAR, a deep-learning algorithm specially designed for the
data, holds high flexibility and

prediction accuracy and has been widely applied across domains,

prediction of time-series

including transportation, electricity, and finance (Salinas et al,
2020). However, pertinent research on the prediction and
evaluation of noxious gas concentrations during tunnel
construction lacks an adequate experimental foundation and
having improvement schemes implemented.

This article presents a proactive approach to monitoring and
mitigating the risks associated with harmful gases during tunnel
construction, utilizing the DeepAR algorithm for effective prediction
and control of gas concentrations. Firstly, existing technologies for
monitoring and controlling harmful gases are extensively reviewed,
including a detailed description of the data preprocessing process.
Following this, various time series prediction algorithms are
compared and analyzed to provide a comprehensive assessment of
their respective advantages and limitations. The DeepAR-based model
for predicting harmful gas concentrations is subsequently presented,
with simulated results obtained from actual field scenarios compared
and contrasted with other prediction models. Finally, a comprehensive
discussion is made on the effectiveness of the DeepAR approach in
mitigating harmful gas concentrations. The proposed method provides
a new and promising means of minimizing harmful gas exposure

during tunnel construction.

2 Overview of relevant work

The monitoring and early detection of hazardous gases has always
been a crucial aspect of construction site safety. In China, the
predominant method for mountain tunnel excavation is the drilling
and blasting technique. This method boasts simple, versatile, and
economically efficient equipment and facilities that can adapt to a
wide range of geographical conditions and has been widely employed in
China’s mountain-tunnel excavation processes. However, the use of
drilling and blasting for excavation produces hazardous gases (Zhang
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TABLE 1 Allowable concentration of harmful gases in tunnel construction site.

Country Harmful gas Allowable exposure
limits

Ppm mg/m?
China CcO 24 30
NO, 5 5
H,S 6.6 10
United States CO 50 55
NO, 5 9
H,S 20 25
Germany CO 30 33
NO, 5 9
H,S 10 14
Japan CO 50 57
NO, 5 9
H,S 5 7

etal,, 2023b; Liu et al., 2023), which are more prone to accumulation in
the relatively enclosed spaces of the tunnels. As a result, large-scale
excavation works in tunnel construction lead to a buildup of hazardous
gases on the tunnel surface, severely impacting the construction
workers’ health. Therefore, it is imperative to address this issue
promptly by effectively monitoring hazardous gases, predicting their
diffusion and development laws in real-time during construction
periods, and implementing appropriate countermeasures.

Domestic scholars have developed relevant standards and
specifications to alleviate the construction of tunnels, and have made
relevant regulations on the tunnel construction environment (Industry
Standards of the People’s Republic of China, 2002; Indus try Standards
of the People’s Republic of China, 2009; Industry Standards of the
People’s Republic of China, 2000). For the CO concentration in the
tunnel, it must not exceed 20 mg/m? and in special conditions, when the
time does not exceed 15 min, the concentration of CO must not exceed
30 mg/m’. CO, calculated by volume should not be less than 0.5%; NO,
in nitrogen oxides should not be less than 5 mg/m’. At the same time,
relevant standards and specifications also specify the highest allowable
concentration of harmful gases during tunnel construction, time-
weighted average allowable concentration and short-term exposure
allowable concentration. Foreign standards for tunnel construction
research have started early, and Germany, the
United States, and Japan have specified the concentration of carbon

relatively

monoxide, nitrogen dioxide, and hydrogen sulfide during tunnel
construction in Table 1.

According to the table, it is clear that China implements more
rigorous standards. However, the ventilation method on tunnel
construction sites still follows the traditional approach of “real-
time monitoring before forced ventilation” which leads to poor
effectiveness in treating harmful gas due to the inadequate awareness
of gas diffusion patterns and range. Numerous studies have been
conducted by domestic and international experts and scholars on
the monitoring and treatment of harmful gases in tunnels.
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Matsumoto et al. built a numerical model to analyze the
comprehensive of
environmental factors (Matsumoto et al,

impact structural,  geological, and
1998). Liu et al
conducted numerical simulations to investigate the diffusion of
harmful gases
ventilation conditions, revealing the patterns and changes in the
spread of these gases (Liu et al., 2009). Additionally, Liu et al. (2014)

used Fluent simulations to explore the distribution of harmful gases

during tunnel excavation under press-in

during the rock breaking process at tunnel exits and to investigate
the wind field characteristics and harmful gas distribution in the
tunnel cavity during this process. Klemens et al. (2001) investigated
the movement of tunnel dust and optimized the current ventilation
methods based on this understanding of dust distribution patterns.
Chen and Su, 2019 analyzed the features of harmful gases in tunnels
and drew upon experiences and data from similar underground
projects in geochemically comparable areas to provide a reference
for studying harmful gases in metamorphic and magmatic rock
areas. Lastly, Huo et al. (2023) applied the key stratum theory, fluid
mechanics, and other theories to propose conditions for the failure
of harmful gases in Jurassic goaf and establish a multi-parameter
control equation for harmful gas discharge from Jurassic goaf to the
coal seam working face.

During tunnel construction, various harmful gases are released, and
their prediction and treatment is essential. Gong et al., 2015b addressed
the problem of detecting multiple harmful gases by using the particle
swarm optimization (PSO) algorithm to optimize the weights and
thresholds of the BP neural network. They proposed a method that
combined a sensor array with the BP neural network for monitoring
multiple harmful gases. Fu, 2022 suggested corresponding preventive
measures for gas outburst at different positions in the tunnel and
developed a gas outburst prediction model based on the exponential
smoothing method. Li (Li, 2017) proposed a wireless network technology
that enables the transmission of video and audio data using 2.4G wireless
signals and gas data using 470 MHZ wireless signals, thereby freeing the
system from cable constraints. Ding, 2011 analyzed the factors affecting
coal and gas outbursts, established two tunnel gas concentration
prediction models using the exponential smoothing and curve trend
prediction methods, and monitored the short-term gas concentration of
the tunnel. Li (Li et al., 2022) tackled the problem of single control means,
control lag, low efficiency, and poor effects of ventilation systems, and
proposed a novel method using the fuzzy PID control technology based
on an improved fuzzy logic theory for comprehensive treatment of
various harmful gases. Wang, 2022 pointed out the drawback of using
harmful gas content prediction technology based on quality sensors,
which overly relies on sensor sensitivity and thus lowers the accuracy of
harmful gas content prediction. They proposed a harmful gas content
prediction technology based on sensitivity infrared sensors. Finally, to
address the high cost of numerous geological drills used in previous
studies that seriously affected construction progress, Zhang and Yang,
2017b used a comprehensive projection calculation method of tunnel-
rock relationship to predict the occurrence location of harmful gases in
the tunnel for the next phase.

3 Data preprocessing

During tunnel construction, harmful gases such as hydrogen
sulfide, methane, and carbon monoxide are monitored using gas-
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Abnormal result of data collection

collection sensors. Wind-speed sensors are used for information
control and monitoring. To track the diffusion of gas, sensors are
placed in various sections such as the leading end of the lining, the
return air outlet, and the face of the excavation area. Figure 1
displays the distribution of these sensors.

Four types of monitoring sensors are used to continuously
monitor gas concentrations inside the tunnel in two states,
traditional ventilation diffusion and system purification through
dilution and spraying. These sensors are programmed to
data every 5-60s, which then
transmitted via a network to a central PC for storage.

automatically collect are

The data collected from sensors are subject to limitations imposed
by the operating environment. These limitations may result in
erroneous, missing or duplicate data during the data collection
process. Thus, data must be cleared and repaired to ensure their
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FIGURE 3
Data patch results.

quality and reliability. In this study, we adopted the method of
identifying harmful gas data anomalies to explore the original data
and remove erroneous values. By drawing the time series graph of
harmful gases, we were able to easily identify the exceptional data. For
example, as shown in Figure 2, the hydrogen sulfide concentration and
the methane variation of a collected data segment suddenly drop to
zero, while adjacent data change normally, indicating data loss during
the data collection of hydrogen sulfide concentration. Therefore, the
data of this time period needs to be patched.

The collected raw data exhibits certain patterns. To address
missing data, we employed time series analysis. Specifically, we
utilized the sulfur dioxide data as a time series and employed the
weighted mean method to estimate and fill in the missing data. As a
result, we obtained a more comprehensive and reasonable trend of
the data, as depicted in Figure 3. Similarly, after identifying all
outliers in the raw data, we filled them in using time series analysis,
thereby maintaining the integrity of our dataset.

When dealing with large volumes of raw data or data with high
dimensionality, computing distances between different data can be
extremely difficult. Additionally, utilizing random sampling to
process data poses a risk of producing biased results, while still
being unable to guarantee data completeness. To overcome these
issues, data normalization becomes necessary, especially when
dealing with data that possess varying dimensions. This paper
utilizes the z-score method to normalize raw data. The z-score
method ensures that data errors resulting from varying dimensions
are eliminated. In the case of a data set on harmful gases, the z-score
expression is utilized.

Xi—X

(x-2)

1

y:

1
n

J

n

In the equation, y is the normalized value of harmful gases, X is
their respective mean. The normalized result falls within the range
of [-1, 1].
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Model training process.
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FIGURE 5
Model prediction process.

4 Prediction model based on DeepAR

4.1 Model building

Predicting changes in harmful gas concentrations during
tunnel construction can aid in the early formulation of
effective treatment plans and ensure the health and safety of
workers. The gas concentration data is time-dependent, and can
be viewed as time-series data. A wide range of time prediction
algorithms are available, including the traditional statistical
methods of ARIMA and exponential smoothing models. With
the development of artificial intelligence, deep learning methods
such as RNN, LSTM, and DeepAR have gradually been applied to
time series prediction. Compared to traditional models, DeepAR
is a self-autoregressive recurrent neural network-based time
series probability prediction method. It can handle complex
scenarios such as periodic and multi-variable time series,
accurately predict the probability of large-scale time series
through learning similar data, and is therefore used in this
study to predict harmful gas in the tunnel construction period.
Figure 4 and Figure 5 shows the training and prediction process,
which comprises the following steps.
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TABLE 2 Raw data result.

Date Gas/% H,S/(x107°)
2021-04-20 00:00:00 0.18 36
2021-04-20 00:02:00 03 42
2021-04-20 00:04:00 021 47
2021-04-20 00:06:00 023 55
2021-04-20 00:08:00 024 56
2021-04-20 00:10:00 021 45
2021-04-20 00:12:00 023 52

Step1l: the harmful gas data during the tunnel construction period
was preprocessed, and the results were divided into training and
testing sets. 70% of the data was used for the training set, and 30% for
the testing set.

Step2: the preprocessed harmful gas data was transformed into
DeepAR data format, which is a JSON file consisting of the following
attributes: “start” representing the starting time of the time series,
“target” representing the time series that meets the conditions, “cat”
indicating the classification variables related to the time series, and
non-classification  features

“dynamic_feat” representing the

associated with the time series.

Step3: we configured the hyperparameters and the model
structure of the DeepAR model. The hyperparameters included
the length of predicted time series, the number of LSTM
layer neurons, the number of LSTM layers, the Dropout
regularization rate, the loss function, the optimizer, and other
hyperparameters.

Step4: the DeepAR model was trained using a training dataset.
During the training process, at each time step t, the network takes
the input of harmful gases, the previous value z;;_;, and the previous
state l_q'i,t,l. The current state fl,;, =h (Ei,t,l, Zit-1, Xit-1) is calculated
first, and then the parameter 0;; = G(Ei,t) for the likelihood 1 (z]0) is
derived. Finally, the prediction result is obtained using maximum
likelihood estimation. The expression for this prediction is as
follows:

£ = Z Zt:log I(zi,]0( )

Step5: After comparing the predicted and actual values, the error
function E is calculated. If the loss function E is less than the
predetermined threshold, the training is considered complete.
Otherwise, the weights and biases in the neural network are
updated using gradient descent, and the computation returns to
step 4 for recalculation.

Step6: After the training process is completed, a model for

predicting the concentration of harmful gases at the tunnel
construction site is obtained.
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4.2 Model evaluation

To evaluate the outcomes of the model, this paper introduces the
Root Mean Square Error (RMSE) as the metric. The equation to
calculate RMSE is presented below.

RMSE = \/ 2 Oi-3)
i=1

The equation takes the form of y; and y,, which represent the

S|

actual and predicted values, respectively.

5 Model application and result analysis
5.1 Data source

A certain tunnel, spanning 6,044 m, is located in a frigid and
high-altitude area. In accordance with the requirement of geological
forecast for advanced tunnel construction, the geological drilling of
the left tunnel face was carried out in front of the construction plant
while crossing geological formations such as coal seams. When the
drilling was done at a distance of 2m from the floor, the
concentration of hydrogen sulfide and gas reached as high as
0.010% and 2.5%, respectively, after the drilling depth reached
2.5m. The analysis of onsite detection data shows that the coal
geological structure of the tunnel excavation is more likely to
produce a large amount of harmful gas, of which methane and
hydrogen sulfide are the main ones. Based on expert experience and
field judgment evaluation, it is necessary to monitor and perceive
harmful gases in real time and take corresponding control measures
to ensure the safety of personnel during the tunnel construction, as
there is still about 1,500 m of coal geological structure for the
subsequent tunnel section, which could be even longer. The
sampling interval of the harmful gas monitoring sensor is
sufficiently frequent, but since there are a lot of monitoring data
and the monitoring duration exceeds 24 h, only the harmful gas
concentration values before and after the detonation and in the front
end of the lining before the initial data selection were chosen.
Preliminary screening and analysis of the initial data shows that
the gas concentration changes are significant only before and after
the detonation, while at other times, they did not exceed the limit
value and tended to be stable. The data results are shown in Table 2.

4.2 Model parameter optimization

The prediction of harmful gas concentration in tunnels using Al
algorithms commonly uses mean squared error (MSE) or mean
absolute percentage error (MAPE) as the loss function. However,
MSE is sensitive to outlier values, and handling them may
compromise the integrity of actual data. Hence, this paper uses
MAPE as the loss function.

The DeepAR model was employed to construct a predictive
model for harmful gas concentration at a tunnel construction site.
The optimal parameters of the model were iteratively calculated.
Based on the data from April 2022 at a tunnel construction site in
Qinghai, the model was optimized by varying the number of hidden

frontiersin.org


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1225287

Cao et al.

10.3389/feart.2023.1225287

.15

£
« 010
z

0.05

(.00

5 10 15 20
Number of hidden layer nodes
FIGURE 6

Calculation of MAPE values for different hidden layer nodes.

0.18

0.16

[
~CAL
=
=
0.12
0.10
0.08
2 3 l 5 6 7 8
number of hidden layers
FIGURE 8

Calculation of MAPE values for different hidden quantities.

60

50

£a
L=4

time(s)

.

running
s
=

[2*)
=

5 10 15 20

Number of hidden layer nodes

FIGURE 7
Running time of different hidden layer nodes.

layer nodes, the number of hidden layers, and the optimizer used.
Specifically, the DeepAR predictive model for 5, 10, 15, and
20 hidden layer nodes separately optimized using
100 iterations. The resulting MAPE values and run times for

were

different parameters are presented in Figure 6 and Figure 7.

The MAPE values obtained from the DeepAR predictive models
for different structures suggest that the MAPE values decrease as the
number of hidden layer nodes increases and then stabilize,
indicating an increase in the accuracy of the model’s output.
However, an exponential increase in the running time of the
model accompanies the gradual increase in the number of hidden
layers. Therefore, to reduce the running time of the model while
maintaining its accuracy, the model with 10 nodes in the hidden
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layer was selected as the baseline parameter to build the predictive
model. The DeepAR predictive models for 2, 3, 5, and 8 hidden
layers were separately optimized using 100 iterations. The resulting
MAPE values and run times for different parameters are presented
in Figure 8 and Figure 9.

Based on the MAPE values obtained from the DeepAR
predictive models of different structures, an increase in the
number of hidden layers led to an improved model accuracy.
However, as the number of hidden layers increased to 5, the
improvement in the model’s accuracy reduced significantly while
the model’s running time increased drastically. Therefore, in this
study, a hidden layer size of five was selected as the baseline
parameter for the predictive model.
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TABLE 3 Predictive model parameters.

Indicator type Parameter result

Number of hidden layer nodes 10
Number of hidden layers 5
Optimizer Adam

We conducted a comparative analysis of Adagrad, Adadelta,
and Adam optimization algorithms, utilizing a learning rate of 10.
The corresponding results of our training are presented in
Figure 10.

Based on the MAPE results obtained from the DeepAR
forecast model with various structures, the MAPE values for
the models under every optimizer decrease continually with
increasing iterations. Among them, the MAPE values for the
models that use Adagrad and Adam as optimizers decrease at the
fastest rates. When the model is iterated 1,000 times, the MAPE
value of the model that uses Adam as the optimizer is
0.064, which is relatively the lowest. Thus, we chose Adam
as the optimizer for the tunnel construction site’s harmful
that  we
on DeepAR. The corresponding parameters can be found in
Table 3.

gas early warning model constructed based

4.3 Result analysis

This paper presents a case study on gas sampling during a tunnel
construction site. We selected the monitoring data of the past 7 days
to forecast the gas concentration in the tunnel 72 h ahead. Then, we
utilized the data in the advanced perception model for harmful gases
during the tunnel construction period. The prediction result is
shown in Figure 11.
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RNN model prediction results.

As shown in Figure 11, the predicted results are consistent with
the trend of actual values, with relatively small errors, indicating that
the model has good forecasting results.

To ensure the accuracy of the harmful gas advanced perception
model during tunnel construction based on DeepAR, this paper
performs a comparison between Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM) models. The prediction
results of both models are shown in Figure 12 and Figure 13, and
their RMSE values and run times are listed in Table 4.

After comparing the results obtained from different models, it
can be concluded that the DeepAR model is a more effective tool for
predicting harmful gases concentration at highway tunnel
construction sites compared to RNN and LSTM models. The
RMSE for the DeepAR model is relatively smaller, and its
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LSTM model prediction results.

TABLE 4 Comparison of calculation results of different models.

Model RMSE Running time (s)
DeepAR 267 58.46

RNN 6.59 34.17

LSTM 3.79 39.62

accuracy has reached 94.3%. These results demonstrate that the
DeepAR model’s predicted values are closer to actual values.
However, the DeepAR model takes longer time to run compared
to other models, albeit still within 60s. Nevertheless, the model’s
prediction time fully satisfies the daily working requirements.

5 Discussion on harmful gas control
methods in tunnels

Road tunnel construction sites are prone to harmful gas
diffusion, which poses a significant threat to the health and
safety of workers. In this study, we use real-time sensors installed
at construction sites to preprocess and analyze harmful gas data. By
implementing artificial intelligence algorithms, we can predict and
anticipate the concentration and distribution of harmful gases. This
method enables us to effectively track the development and spread of
harmful gases.

Traditional methods of treating harmful gas during tunnel
construction involve enhancing ventilation and spraying diluting
fluids to purify the tunnel’s air. However, it is currently common
practice to intensify ventilation only after conducting real-time
gas monitoring at construction sites. This practice may lead to
mismatched connections between the concentration and range of
harmful gases, and the effectiveness of ventilation or dilution.
Consequently, ventilation and dilution may not occur on time, be
imprecise, and unsafe. By accurately perceiving and predicting
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harmful gases in advance, we can provide a basis for ventilation or
dilution efficacy during tunnel construction. Using advanced
fuzzy PID control technologies, we can open the fans early
and regulate the wind volume, speed, and pressure inside the
tunnel. This will ensure that harmful gases remain within the
health, guarantee their
physical wellbeing, and simultaneously maintain construction

acceptable range for worker
progress.

This study proposes a DeepAR-based method for accurately
anticipating harmful gases during tunnel construction. By leveraging
real-time sensor data and considering harmful gas diffusion
characteristics, this approach enables advanced perception and
which
remediation and providing accurate data. The harmful gas
prediction data obtained from this method can be utilized by

prediction of harmful gases, can ensure effective

remediation equipment such as fans and atomizers, to implement
intelligent control measures. By setting up the necessary index
advance, an
appropriate working environment can be secured within the

parameters for harmful gas remediation in
tunnel while reducing material and resource waste incurred by

ineffective  ventilation or atomization, reducing tunnel

construction costs.

6 Conclusion

In the context of constructing coal tunnels, there exist concerns
regarding the safety of workers due to exposure to three types of
toxic and harmful gases: gas, hydrogen sulfide, and carbon
monoxide. To address this issue, this paper proposes a method
for forecasting and managing hazardous gases during tunnel
construction based on the DeepAR model. The proposed method
has been verified through actual tunnel monitoring data,
demonstrating its capability to precisely predict changes in gas
concentration and facilitate effective synchronous treatment of
hazardous gases. These findings contribute to enhancing the
safety of tunnel construction. The primary research conclusions
are summarized below.

(1) Superior advance perception and advance handling of
hazardous gases in tunnel construction sites are of significant
importance for the safety of the construction process. As tunnel
excavation progresses, different layers contain varying
concentrations and changes of harmful gases which, when
anticipated and treated in advance, guarantee the safety of
the construction process. By perceiving and processing
harmful gases ahead of time, accidents during tunnel
construction can be prevented or reduced.

(2) Combining real-time monitoring data of harmful gases in the
tunnel, a method for predicting the concentration variation of
harmful gases at the construction site ahead of time is proposed.
This method enables the prediction of the concentration change
of harmful gases within the next 72 h. The Root Mean Square
Error (RMSE) of this method is superior to that of both the
Recurrent Neural Network (RNN) model and the Long Short-
Term Memory (LSTM) model, demonstrating an accurate
prediction of the changes in harmful gas concentrations in
the tunnel. The prediction speed is within 60 s, allowing for
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sufficient time to develop effective and timely treatment
solutions for harmful gases in the tunnel.

—
W
~

The tunnel harmful gas prediction method proposed in this
study can sense the changes of harmful gas at the tunnel
construction site in advance, and also provides an effective
and accurate data basis for the control parameters of the
treatment equipment, which can save costs and increase
construction efficiency while ensuring construction safety.
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We present a numerical model for blast-induced seismic waves. This model is
based on the transformation mechanism of the seismic wave field, and the process
of the seismic wave's generation is divided into two stages. The first stage is the
generation of elastic waves. Due to the plastic deformation of the geotechnical
medium in this stage, we have established the Euler model to describe it. The
second stage is the prorogation of the elastic waves; we have established the
Lagrange models to describe this stage. Finally, the influence of the main
parameters of the explosive sources (detonation pressure and expansion index)
on the seismic wave is analyzed by the established model. The results show that
the proposed model in this paper can reasonably predict the evolution law of the
seismic wave field based on the explosive source parameters.

KEYWORDS

explosive source, seismic wave, numerical model, seismic exploration, transformation
mechanism

1 Introduction

It is essential to improve seismic resolution, since the seismic exploration has challenges
in exploring the smaller, deeper, and thinner targets.

For a long time, physicists have been expected to explain the corresponding relationship
between the elastic wave caused by the explosion and the initial conditions, such as the
explosive performance and dynamic characteristics of the soil medium, by establishing an
equivalent model. Jeffreys (1931) first introduced the operator symbol and operator to solve
the one-dimensional cavity vibration problem. The particle displacement caused by the body
wave (P wave) and surface wave (S wave) in the spherical impact propagating in the medium
changes with time, and the displacement analytical solution of the two waves is obtained. In
1942, Sharpe (1942) observed and recorded the time travel curve of the particle vibration
velocity at different positions through a large-scale explosion test in soil and clarified the
relationship between some characteristics of the recorded results and the characteristics of
explosive seismic sources. According to these experimental results, the equivalent model of
the “equivalent cavity” elastic medium was proposed, and many studies conducted later were
based on this equivalent cavity model. Goldsmith and Allen (1955) assumed that the elastic
medium is isotropic, there is a spherical cavity with a certain radius inside, and the cavity is
subjected to the pulse stress in the exponential attenuation form. The function equations of
particle displacement, velocity, normal stress, and shear stress with respect to space and time
are derived to reflect the propagation law of stress waves in the elastic medium. Friedman
et al. (1965) calculated the one-dimensional stress—wave propagation during the expansion

29 frontiersin.org
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of the medium cavity, obtained the analytical expression of the
elastic region with respect to time and spatial location parameters,
and calculated the particle disturbance caused by the elastic
unloading near the cavity when the pressure on the cavity wall
decayed exponentially with the spatial location parameter by a
“jump” difference scheme. However, the method he proposed
becomes unstable as the distance increases. Achenbach and Sun
(1966) also studied the effect of the initial cavity size on the
explosion in the medium under the assumption that the medium
is an elastomer. The stress fields when the cavity wall is not moving
and the cavity radius increases with the time parameter alignment
are calculated, and the propagation of the stress wave after the cavity
stops expanding is discussed. Garg (1968a) changed the pressure
load on the cavity under the premise of Friedman operation and
gave a more complicated pressure form to calculate the particle
stress and particle vibration velocity distribution in the plastic region
near the cavity. The results obtained by this method can clearly
reflect the spatial distribution of the particle stress and particle
vibration velocity near the cavity in a short time. However, this
method still requires a complex boundary processing method. In
another research by Garg (1968b), the start-up conditions of the
computation procedure were improved, which simplified the
boundary condition process, and a new pressure attenuation load
was applied. The numerical solution obtained by the theoretical
method is only applicable to particles with a small time parameter
and near the cavity. No detailed calculation methods are given for
the more distant medium.

On the basis of the elastic medium, considering the destruction
and compression of the soil medium caused by an explosive high-
pressure effect, it is very meaningful to introduce the elastic—plastic
medium. Ghosh (1968) took the large underground explosion as the
premise, assumed that the medium around the cavity was an
elastomer, and pointed out that the medium near the cavity
should exhibit plastic properties, and there was a plastic wave
that propagates outward from the cavity boundary after the
elastic wave. Elastoplastic region boundaries also propagated
outward at a certain speed. In his article, he assumed two
situations: first, the propagation velocity of the elastoplastic
boundary is constant, and the pressure load on the cavity
boundary is under normal pressure; second, the propagation
velocity of the elastoplastic boundary and the pressure load of
The
corresponding analytical expression is obtained by solving the

the cavity boundary decay exponentially with time.

displacement field in these two cases. Lyakhov (1964) and
LyakhovPolyakova (1967) obtained the relationship between peak
overpressure and distance by the closed explosion test of the TNT
spherical charge in sand. The results show that the larger the air-to-
volume ratio, the smaller the moisture content and the larger the
overpressure attenuation velocity. The peak overpressure in the
unsaturated soil may be 1/100th of the peak overpressure in the
saturated soil. The explosives in unsaturated soil produce a stable
shock wave, and the shock wave attenuation becomes the
elastic—plastic wave when the overpressure attenuation is
4-12 kg/cm”. (1935) solved the
displacement field of the cavity wall when the spherical pressure

Kawasumi and Yosiyama

load is given by the Fourier’s integral and proved that the simplest

reason for the seismic wave is the existence of the initial strain
potential energy. It is pointed out that the cavity is subjected to
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different loads, and the excited damping oscillation form still
maintains a certain degree of similarity. G. N. Bycroft (1966)
solved the cavity-expansion problem of the semi-infinite space
analytically, taking into account the free-surface particle vibration
caused by the seismic wave returning to the cavity wall after free-
surface reflection and re-reflecting. The particle displacement
solution of the free surface with the known expansion velocity of
the cavity wall is calculated.

In addition, the pressure time function of the point source is
determined according to the far-field vibration waveform and
spectral characteristics, and this kind of inversion is also an
effective seismic source model to interpret the explosive seismic
wave. The pressure load of the equivalent seismic source is the
difference between the true stress and the linear elastic model
stress, which is essentially different from the “ideal cavity” model.
Heelan (1953) proposed a point-source moment model to explain
linear explosion, and the theoretical prediction results are close
to the experimental results. Aboudi (1972) used the finite
difference method to calculate the stress and displacement
fields during the explosion of shallow-buried deep explosives.
The numerical calculation is carried out for two different cases of
cavity non-expansion and cavity expansion velocity constants.
Thiruvenkatachar derived the series form the transient solution
of the semi-infinite elastic space problem using the iterative
method (Thiruvenkatachar 1965) and
proved its convergence. Considering the complexity of the

and Viswanathan,

series solution, the analytical approximation
(Thiruvenkatachar and Viswanathan, 1967) was made on the
steady-state solution using the saddle-point method, and the
approximate solution of three emissions between the chamber
wall and the free surface is obtained. At the same time, the
transient solution is also calculated for the case where the

pressure load on the chamber wall is subjected to an

€A ep &c €

FIGURE 1
Stress—strain relationships of the soil medium (Henrych, 1979).
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Evolution of explosion waves (Henrych, 1979). (A) steady shock wave, (B) unsteady shock wave, (C) plasticity, (D) elasticity.

exponential decay law with time. Pekeris (1955) studied the
problem of free-surface vibration caused by the impact
pressure under the one-dimensional column model and solved
the displacement of the free-surface particle of horizontal and
vertical directions caused by the action of a single impact
pressure (impact pressure only related to the time parameter)
on the semi-infinite elastic medium. Based on the Heelan model,
Blair proposed a class of models that can calculate infinite linear
explosion (Blair, 2007) and finite linear explosion (Blair, 2010).

However, all these methods focus on the destruction of the
medium rather than the propagation of explosion waves. The
solutions of non-wave dynamic expansion and elastic wave
propagation are independent.

In this study, we propose a numerical model that describes
the whole process from the explosion of explosive sources to the
propagation of seismic waves. Based on our model, the blast-
induced seismic waves can be predicted. The influence of the
main parameters of the explosive sources (detonation pressure
and expansion index) on the seismic wave is briefly discussed.
The model shows that the frequency spectrum of seismic waves
can be enhanced by lowering the initial explosion pressure of
explosive sources or increasing the adiabatic exponent. This
model would help us to predict seismic waves, which are
generated by explosion, and control the seismic waves for a
specific exploration target.

2 Transformation mechanisms of the
seismic wave field

There are four stages of the explosion process involved
during the blast-induced
hydrodynamics,

seismic  wave’s

of

generation:

crushing soil mediums, dynamic
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expansion, and elastic-wave outside the
destructed zone (Opjiehko, 2011).

These four stages and the evolution of explosion waves are

propagation

illustrated by the stress—strain relationship of the soil media in
Figure 1 (Henrych, 1979), and the evolution process of the explosion
wave profile is illustrated in Figure 2 (Henrych, 1979). The complete
transformation mechanisms are illustrated in our previous research
results (Chenglong et al., 2018) (Chenglong et al., 2017). At the same
time, the medium is subject to different intensities in the process of

Initial status Generation of cavity

D

Generation of crushing zone

Generation of radial cracking zone
and elastic zone

FIGURE 3
Response regions in a spherical explosive (Favreau, 1969).
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stress—wave propagation, and different deformation areas will be
generated after the seismic wave propagation, as shown in Figure 3
(Favreau, 1969).

In order to find the key influencing factors of explosive
seismic wave propagation, specific propagation stages need to
be divided. According to Ding’s research, the seismic signals are
produced from the vibration of the elastic cavity, rather than
being decided by the non-elastic properties of a medium (Ding
and Zheng, 2002), and the whole process of the explosion wave’s
evolution could be considered in two parts. They are the
and the
propagation of elastic waves. These two parts are associated

dynamic expansion of blast-induced cavities
with the condition of the elastic zone’s boundary (Drukovanyi
et al., 1976).

According to the seismic wave field transformation theory
mentioned previously, the whole process of the explosive source-
excited seismic wave can be categorized into the formation of
seismic waves of the close-in blasting zone and propagation of the
seismic wave in elastic regions. As the two processes differ vastly
in the range and scale, the numerical simulation method of the
multiscale seismic wave field is adopted to establish models to
conduct the research.

3 Excitation model of explosion seismic
waves

The formation of the initial seismic wave is simulated by the
Euler model. Due to the high-pressure load in the vicinity of the
explosion, the Euler method is applied to manage large
deformation problems. With the simulation of the close-in
this paper grasps
elastoplastic boundary,

the explosive source
and the

between the pressure load characteristics on the boundary and

explosion area,
parameters, relationship
extracts the pressure load as the conditions of loading in the
simulation of far explosion zones.

3.1 Control equation

The simulation of the close-in explosion area is aimed at
addressing problems such as large deformation in very short time
periods and finite strain transient. Such problems are described in
terms of mass, momentum, energy conservation equation, and the
equations of continuous mechanics made of equations that describe
the behavior of the material.

In order to simplify the problem, the following assumptions are
usually made.

3.1.1 Continuum assumption

It is assumed that the substance is composed of a large
number of micelles, and the size of the micelles is negligible
compared with the discussed flow field. However, it is much
larger than the molecular free path and the size of the solid crystal
structure. The micelles are processed statistically and on average
to obtain corresponding macroscopic variables, thus leading to
the natural conclusion that matter is a continuous composition of
micelles with microscopic quantities.
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3.1.2 Assumption of local heat balance

It is assumed that each micelle in the substance is in a thermal
equilibrium state, and there exists a statistically averaged
thermodynamic quantity in each micelle. All the conclusions of
equilibrium thermodynamics can be applied to any micelle. Ignoring
the dissipative process in micelles, it is considered that micelles have
instantaneously reached heat balance, and then, an energy balance
relation can be established for the material micelle.

3.1.3 Material homogeneity and isotropy
assumption

It is assumed that each material micelle is composed of the same
species, the physical and mechanical properties of which are the
same in any direction.

The processes of non-steady flows such as seismic source-
explosive detonation, product expansion, and deformation of the
soil medium depend not only on the time variable t but also on
spatial variables r and z. In a 2D rectangular coordinate system (a =
0) or an axisymmetric cylindrical coordinate system (a = 1), without
considering external force, external source, and heat conduction, the
conservative form of the partial differential equations of Euler fluid
elastoplastic dynamics is as follows.

Mass-conservation equation:

dp 0

10,
313, (pu) + — = (r*pu,) = 0. (1)

re or
Momentum-conservation equation:

opu, 0 , , 0
or * oz (puiz) + ror

9P 25 90",
0Z 0Z r*or
_% . 9S,, 0(r"S,,) B a%
or 0Z '

(Fpucin) =

opu,
or

0 0 4 o
+ g (Puluf) + rOr (r Pur) -

ror r

)

Energy-conservation equation:

0 (pE) . 0 (pEu) . o(r*pEu,) 0(S.cu,) . 0(-P+Ss)
or 0Z redr  0Z 0Z
. orr*u, (-P +S,,)

reor

o(r*S,.uz)
redr

3)
3.2 Physical model

3.2.1 Geotechnical medium models and
parameters

The geomaterial model in the finite-element model is an
elastoplastic model, and the equation of state in the model is in
the linear equation of state, which is expressed as follows (Blake,

1952):
P
=K[—-1), 4
P (Po > @

where K is the bulk modulus of the geomaterial, and the intensity
model of the geomaterial is the von Mises model (Forrestal and
Tzou, 1997).

(01— 02)" + (02— 03)* + (03— 01)" = 207 = 6G, (5)
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TABLE 1 Soil parameters (Chenglong et al., 2018) (Chenglong et al., 2017).

Bulk modulus (MPa)

Density (kg/m?)

10.3389/feart.2023.1189129

Shear modulus (MPa) Yield strength (MPa)

2000 32.1

14.8 10

TABLE 2 Parameters of the JWL equation of state for TNT explosives (Yixin et al., 2013).

3.737 x 10" 3.747 x 10° 4.15 0.90 0.35

where oy is the yield strength of the medium and G is the shear
modulus of the medium. The engineering elastic constants of the soil
are determined by the triaxial and light-gas gun tests, as shown in
Table 1.

3.2.1 The equation of state and parameters for
detonation products of explosives

JWL model is used to describe the effects of explosives. It should
be noted that this model is a simplified model. When the type and
shape of explosives change, the calculation results will be different.
For TNT, the equation of state commonly taken for the ideal
explosive detonation products is the JWL equation of state (Yixin
et al., 2013).

pP= c1<1 - i)e"'” + C2(1 - 1)6'” + 9, (6)
v v 4

where e is the C-] detonation energy and C;, C,, 11, 73, and w are the
experimentally determined parameters (Figure 2). The values of
these parameters are listed in Table 2.

3.3 Geometric model

A one-dimensional wedge soil model is established, and the
numerical simulation of the dynamite scheme calculated by the
analytical model in the second section is carried out to obtain

1,630 6,930 6.0 x 10° 2.1 x 10"

the variation of each area and the main factors affecting the
elastic-wave pressure. The model and the status of each area after
the explosion are presented in Figure 4.

3.4 Simulation results and analyses

The explosion of 1 kg TNT in silty clay is calculated, and the
motion of the damage area by explosion is calculated through the
one-dimensional model, as shown in Figure 4:

From the simulation results in Figure 5, it can be seen that an
explosive cavity is formed in the medium in direct contact with the
explosive and shows a fluid state. With the attenuation of the
pressure peak, a plastic range with a certain width is formed
between the explosive cavity and the elastic zone. With the
spread of the explosive stress wave, the cavity and the plastic
range gradually expand. After a certain time, when the stress in
the medium tends to be stable, the cavity radius and the elastoplastic
boundary stop expanding. By documenting the development of the
cavity and the elastic-plastic range, the curve of development time of
the two boundaries is obtained, as shown in Figure 6.

In Figure 6A, the blasting cavity radius is formed after the
dynamite blast increases with time, and the size of the blasting cavity
gradually tends to a certain value near the position of 2 ms. The
region of the explosion cavity in this method is 0.36 m (Chenglong
and Wang, 2017), and the region which is calculated by a quasi-static

tnt

Cycle0

Time 0.000E+000 ms
Units mm, mg, ms
Axial symmetry

1 kg TNT with charge radius of 52 mm

FIGURE 4
One-dimensional wedge calculation model.
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Cavity Plastic zone Elastic zone

FIGURE 5
Movement of the explosion-damaged area.

model is 0.37 m. The regions we obtained through experiments are
0.38 m (Chenglong and Wang, 2017). In Figure 6B, it is obvious that
the plastic range formed after the dynamite blast begins to develop
almost at the same time as the cavity and expands outward at the
same time. When the pressure reaches the limit of yielding of
geomaterials, the plastic range stops developing and approaches a
certain value, which is the elastoplastic boundary after the final
stabilization.

The initial pressure load generated by the explosion (Figure 7) and
the pressure load on the elastoplastic boundary (Figure 8) are extracted,
respectively. It can be seen from the change in the pressure load that the

10.3389/feart.2023.1189129

peak value of the pressure load drops rapidly from 3 GPa to 2.5 MPa,
and the duration also increases from 0.02 ms to 2 ms.

4 Propagation model of explosive
seismic waves

The Lagrange model is adopted to simulate the propagation
of the initial elastic wave in geomaterials. Since the pressure peak
of the initial elastic wave is basically consistent with the yield
condition of the geomaterial, under the loading condition of the
initial elastic wave, the medium will not experience large
deformation. By changing the load of the initial elastic wave,
the whole process of the seismic wave field excited by the
explosive source is simulated.

4.1 Control equations

When the initial elastic wave is formed, its pressure peak is less
than the limit of yielding of the medium. Hence, it will not cause
large deformation in the geomaterial. In this regard, the Lagrange
method is applied to simulate the propagation process of seismic
waves, and the governing equations include the mass-conservation
equation, the momentum-conservation equation, and the energy-
conservation equation in the following form.

Mass-conservation equation:

= POTV" = g )
Momentum-conservation equation:
. 00y 00y, 00y, . 00, 00 d0,,
pi = y Py = =2 oy T2 s

ox dy 0z ox 0dy 0z

00,; 00,, 00,
= - . (8)

ox dy 0z

Energy-conservation equation:

A T T T T B Lo T T T T T T
400 | -‘ ol ]
350 E 08 | i
1 07| N
300 . z ]
o, i ?3’ 06 | o
E 250 . g osf ]
£ 200 - z T ]
3 1 ? s i
150 y Z o2f ]

h =5

100 4 01 f 4
50 . = p
B 4 N N N -0.1 1 1 1 1 1 1 A

0 2 4 6 8 10 g & . . . i

.
Time(ms) S
Variation of blasting cavity radius with time Variation of plastic radius with time
FIGURE 6

Time-dependent movement of the boundary of different blasting areas.
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é= E(axxexx + Oy €y + 0226 + 20,6y + 20,6, + Zazxezx). 9)

4.2 Physical model

By simulating the formation of the blasting seismic wave, the radius
of the elastoplastic boundary and the pressure curve on the elastoplastic
boundary are obtained. When the curve is applied to the viscoelastic

Pressure(Gpa)

medium models in the initial condition, the propagation process of

seismic waves can be simulated.

For the geomaterial in the propagation process of the seismic

40D TS SO0 S UE 508 10 wave, the viscoelastic medium model is adopted, in which the linear

Time(ms) equation of state is selected. The linear viscoelastic model is adopted

for the intensity model of geomaterials. The long-term behavior of
FIGURE 7 this model is described by the elastic shear modulus G, and the
Initial pressure elastic—plastic boundary. viscoelastic behavior is introduced by the instantaneous shear
modulus (Gy) and the viscoelastic attenuation constant (f). The
viscoelastic deviatoric stress at the time increment n + 1 is calculated

from the viscoelastic stress at the time increment n and is expressed

25k oo ] as follows (Ricker, 1953):
20 1 . ~patn 1—ePan) Ag
= s 4 Opii= 0'H° - 2(Gy — G)(i) 2 (10)
g 15 i B At,
=) X
E 1.0 4 For the effect of the explosive source, we extract the data curve of
E 18 I 1 the blasting seismic wave formation simulation in the previous step
1 | and load the corresponding explosive source.
0.0 .
0.5k - .
[ ] 4.3 Geometric model
-l0 -
Il A L A L A 'l A Il A Il . . . .
0 > P 6 S 10 The calculation model is shown in Figure 9.
i) The observation points (Gaussian point) are set at the free
surface of the geomaterial and below the explosive source, with a
FIGURE 8

burial depth of explosives of 15 m as measured by the observation
P the elastic plastic boundary. . s A . .
essUre ol Hhe Elastic plastic boundary points. The variation of the seismic wave excited by the explosive

source on the surface and the downward direction is analyzed. The
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FIGURE 9
Calculation model diagram.
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Seismic wave velocity nephogram at different times.
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FIGURE 11
Comparison of particle vibration velocities obtained by
numerical simulation.

overall computational domain is 200 m X 100 m, and the free
boundary is selected on the surface of the soil medium, while the
transmitting boundary is adopted for other boundaries. These
boundary conditions do not reflect the stress wave propagating
along these boundaries.

4.4 Calculation results

We simulated the aforementioned case using a dual-core
CPU (Intel Xeon Silver 4210 R Processor) and calculated each
scenario for 10 h, resulting in the following results. By simulating
the propagation process of the seismic wave, Figure 10 reveals the
vibration velocity nephogram of seismic waves excited by 1 kg
TNT at 10 ms, 30 ms, and 50 ms. Qualitative analysis is adopted
on the nephogram of different particle vibration velocities. At
10 ms, the seismic wave excited by the explosive takes the
explosive source as its center and radiates spherical stress
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Spectrum features of particle vibration.

waves to the surrounding area. As the stress wave propagates,
stress waves with different peaks are gradually formed in the
medium. It is easily seen from the velocity contours of 30 ms and
50 ms that although the detonation products of the explosive
source have already been completed at this time, the particle
velocity of the explosion center is higher than the external
vibration velocity, indicating that the blasting cavity generated
by the explosive source is still moving after the explosion. This is
the main cause of the subsequent seismic wave, which is the same
as Ding Hua’s conclusion that the seismic wave signal is due to
the cavity vibration.

The results of the particle velocity at 30 m from the explosion center
are shown in Figure 11, and by Fourier analysis on the vibration velocity,
we obtained Figure 12:

Through the numerical simulation of the explosive source
excitation seismic wave process, the explosive cavity, plastic
range, particle velocity, and spectrum features at different
distances can be obtained. As a result, the relation between
parameters of explosive-source characteristics and amplitude-
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FIGURE 13
Particle velocity at 15 m from the explosion center at different
distances of explosion pressure.

frequency characteristics of the seismic wave field can be deeply
analyzed.

5 Influence of parameters of explosive
source characteristics on amplitude
frequency characteristics of seismic
waves

Through the theoretical study on seismic waves stimulated by
explosive sources, when the geotechnical medium parameters are
determined, the detonation pressure of explosive sources and the
expansion index of explosion products are the main factors that
affect the amplitude frequency characteristics of seismic waves.
The following are respective studies on the patterns of how
different detonation pressures and product expansion indexes
affect the amplitude frequency characteristics of seismic waves.
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We continue to use the numeric simulation scheme
propagated by blasting seismic waves as described previously
to change the bursting pressure of explosive sources so that the
detonation pressure can vary in the range of 5-25GPa. A
monitoring point on the surface directly above the explosive
source is selected 15 m away from the explosive source, and the
particle velocity caused by different detonation pressures at this
point is shown in Figure 13.

By extracting the particle vibration velocity peak under
different detonation pressures, the influence law of the
detonation pressure on the particle vibration velocity peak is
obtained, as shown in Figure 14A; PPV in this figure is the
peak particle velocity. Through Fourier transform on the
velocity curve in Figure 13, the influence law of the detonation
pressure on the dominant frequency of the seismic wave is
acquired, as shown in Figure 14B:

Figure 14 proves that the particle vibration velocity peak value
increases with the increase in the detonation pressure. Both the
particle vibration velocity peak value and the particle vibration
amplitude are parameters representing the seismic wave energy.
The law of energy increasing with the increase in the bursting
pressure obtained by the numerical method is consistent with the
conclusion of the theoretical model of the seismic wave by the
explosive source. The increase in the explosive pressure leads to the
expansion of the damage area by the media and more loss on high-
frequency parts, lowering the master frequency of seismic waves.
The detonation pressure of the explosive source in the numerical
simulation scheme remains unchanged, and the expansion index
of the explosion products of the explosive source varies from 1.0 to
4.0. Then, the calculated attenuation law is obtained as shown in
Figure 15:

Figure 15 shows that the particle vibration velocity peak
decreases with the expansion index of detonation products, and
the dominant frequency of the seismic wave increases with the
increase in the product expansion index. The process of
explosive source exploding and forming a damage area is
very fast, which is considered as an adiabatic process.
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The influence law of seismic wave field characteristics under different detonation pressures
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Influence of the expansion index of different explosion products on the characteristics of seismic wave field.

According to the adiabatic law, when the product expansion
index increases, the damage area decreases by explosion, the
energy decreases, but the main frequency increases.

6 Conclusion

Based on the numerical simulation of the characteristics of the
explosive source and the relation of the wave field, the development
process of the explosive cavity and elastic—plastic boundary is collected
along with the variation rule of seismic wave amplitude frequency
characteristics with distance.

The formation of seismic waves is simulated by the Eulerian method.
During the formation of seismic waves, along with the development of
explosive cavities and elastoplastic range, the boundaries between the
three zones almost expand simultaneously along the explosion center
until the explosive cavity, plastic range, and elastic zone are formed
in turn.

The Lagrange method is applied to simulate the propagation
process of seismic waves, extract the numerical simulation data
curve of the formation process of seismic waves, and load it into the
two-dimensional Lagrange model. The vibration velocity of the
particles at different positions can be acquired, and the Fourier
transform can be adopted to obtain the spectral features of the
particle vibration.

Finally, the influence law of the explosive source detonation
pressure and the expansion index of explosion products on the
particle vibration velocity peak and the dominant frequency of
the seismic wave are analyzed. The detonation pressure and
expansion index of explosive sources exert opposite effects on
the energy and dominant frequency of seismic waves, and the
change law between the energy of the seismic wave and the
master frequency is often the opposite, and this conclusion
by
amplitude—frequency characteristics of blast-induced seismic

was  calculated our  prediction  model  for

waves (Chenglong et al, 2018). While the energy of the

seismic wave increases, the master frequency of the seismic
wave decreases. To finally realize the control of the seismic
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wave field and improve the seismic exploration accuracy, it is
vital to comprehensively consider the influence law of the
explosion pressure of the blasting source and product
expansion index on the amplitude and frequency of seismic
waves and adjust the amplitude and frequency characteristics
of seismic waves to a certain extent, so as to improve the seismic
exploration accuracy.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

CY finished writing the manuscript. XS completed the numerical
calculation. QG completed the data processing. XZ completed the
translation of the thesis. FW completed the typesetting and
modification of the paper. All authors listed made a substantial,
direct, and intellectual contribution to the work and approved it for
publication.

Funding

This work was supported by the National Natural Science
Foundation Young Investigator Grant Program (No. 41904131).

Conflict of interest

FW was employed by the company Shanxi Transportation
Technology Research and Development Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

frontiersin.org


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1189129

Yu et al.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

Aboudi, J. (1972). The response of an elastic half-space to the dynamic expansion of
an embedded spherical cavity. Bull. Seismol. Soc. Am. 62 (1), 115-127. doi:10.1785/
BSSA0620010115

Achenbach, J. D., and Sun, C. T. (1966). Propagation of waves from a spherical surface
of time-dependent radius. J. Acoust. Soc. Am. 40 (4), 877-882. doi:10.1121/1.1910160

Blair, D. P. (2007). A Comparison of heelan and exact solutions for seismic radiation
from a short cylindrical charge. GEOPHYSICS 72 (2), E33-E41. doi:10.1190/1.2424543

Blair, D. P. (2010). Seismic radiation from an explosive column. Geophysics 75 (1),
E55-E65. doi:10.1190/1.3294860

Blake, F. G. (1952). Spherical wave propagation in solid media. J. Acoust. Soc. Am. 24
(2), 211-215. doi:10.1121/1.1906882

Bycroft, G. N. (1966). Surface displacements due to an underground explosion. Bull.
Seismol. Soc. Am. 56 (4), 877-888. doi:10.1785/bssa0560040877

Chenglong, Y., and Wang, Z. (2017). Quasi-static model for predicting explosion
cavity with spherical charges. Explos. Shock Waves (02), 249-254.

Chenglong, Y., Zhongqi, W., and Wengong, H. (2018). A prediction model for
amplitude-frequency characteristics of blast-induced seismic waves. Geophysics 83 (3),
5MJ-Z13. doi:10.1190/ge02017-0228.1

Chenglong, Y., Zhongqi, W., and Wengong, H. (2017). A prediction model for
frequency spectrum of blast-induced seismic wave in viscoelastic medium. Geophys.
Prospect. 66 (S1), 87-98. doi:10.1111/1365-2478.12601

Ding, H., and Zheng, Z. M. (2002). Source model for blasting vibration. Sci. China
(Series E:Technological Sci. (4), 395-407. doi:10.1360/02ye9046

Drukovanyi, M. F,, Kravtov, V. S., Chernyavskii, Y. E., Shelenok, V. V., Reva, N. P.,
and Zverkov, S. N. (1976). Calculation of fracture zones created by exploding
cylindrical charges in ledge rocks. Soviet Min. Sci. 12 (3), 292-295. doi:10.1007/
bf02594873

Favreau, R. F. (1969). Generation of strain waves in rock by an explosion in a spherical
cavity. J. Geophys. Res. 74 (17), 4267-4280. doi:10.1029/jb074i017p04267

Forrestal, M. J., and Tzou, D. Y. (1997). A spherical cavity-expansion penetration
model for concrete targets. Int. L Solids Struct. 34 (31-32), 4127-4146. Nos. doi:10.1016/
$0020-7683(97)00017-6

Friedman, M. B., Bleich, H. H., and Parnes, R. (1965). Spherical elastic plastic shock
propagation. J. Eng. Mech. Div. 91 (3), 189-203. doi:10.1061/jmcea3.0000623

Garg, S. K. (1968). Numerical solutions for spherical elastic-plastic wave propagation.
Z. fur Angew. Math. Phys. (ZAMP) 19 (5), 778-787. d0i:10.1007/bf01591008

Frontiers in Earth Science

39

10.3389/feart.2023.1189129

organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Garg, S. K. (1968). Spherical elastic-plastic waves. Z. fur Angew. Math. Phys. 19 (2),
243-251. doi:10.1007/bf01601469

Ghosh, M. L. (1968). On the propagation of spherical waves due to large underground
explosion. Pure Appl. Geophys. 72 (1), 22-34. doi:10.1007/bf00875689

Goldsmith, W., and Allen, W. A. (1955). Graphical representation of the spherical
propagation of explosive pulses in elastic media. J. Acoust. Soc. Am. 27 (1), 47-55.
doi:10.1121/1.1907495

Heelan, P. A. (1953). Radiation from a cylindrical source of finite length. Geophysics
18 (8), 685-696. doi:10.1190/1.1437923

Henrych, J. (1979). The dynamics of explosion and its use. Amsterdam, Netherlands:
Elsevier Scientific Publishing Company.

Jeffreys, H. (1931). On the cause of oscillatory movement in seismograms. Roy. Astr.
Soc. Geophys.suppl. 2 (2), 407-416. doi:10.1111/j.1365-246x.1931.tb04462.x

Kawasumi, H., and Yosiyama, R. (1935). On an elastic wave animated by potential
energy of initial strain. Bull. Earthq. Res. Inst. Tokyo Imp. Univ. 13, 496-503. doi:10.
3390/computation11020015

Lyakhov, G. M. (1964). Principles of explosion dynamics in soils and in liquid media.
Mocksa, Russia: Henpa.

LyakhovPolyakova, G. M. N. (1967). Waves in compact media and loading of
structures. MockBa, Russia: Hepipa.

Opjiehko, L. P. (2011). Explosion physics. Beijing, China: Science press. SUN
Cheng-wei.

Pekeris, C. L. (1955). The seismic surface pulse. Proc. Nat. Acad. Sei. U.S.A. 41,
469-480. doi:10.1073/pnas.41.7.469

Ricker, N. (1953). The form and law of propagation of seismic wavelets. Geophysics
18, 10-40. List of symbols. doi:10.1190/1.1437843

Sharpe, J. A. (1942). The production of elastic waves by explosion pressures.
Geophysics 7 (7), 311-321. doi:10.1190/1.1445016

Thiruvenkatachar, V. R., and Viswanathan, K. (1967). Dynamic response of an elastic
half-space to time-dependent surface tractions over an embedded spherical cavity. Proc.
Roy. Soc. Lond. A 300, 159-186. doi:10.1098/rspa.1965.0196

Thiruvenkatachar, V. R., and Viswanathan, K. (1965). Dynamic response of an elastic
half-space to time-dependent surface tractions over an embedded spherical cavity. Proc.
Roy. Soc. Lond. A 287, 549-567. doi:10.1098/rspa.1965.0196

Yixin, Z., Chunhua, B., Chen, J., and Zhongqi, W. (2013). Simulations of seismic
waves stimulated by aluminized explosive. Chin. J. High Press. Phys. 027 (006), 872-876.

frontiersin.org


https://doi.org/10.1785/BSSA0620010115
https://doi.org/10.1785/BSSA0620010115
https://doi.org/10.1121/1.1910160
https://doi.org/10.1190/1.2424543
https://doi.org/10.1190/1.3294860
https://doi.org/10.1121/1.1906882
https://doi.org/10.1785/bssa0560040877
https://doi.org/10.1190/geo2017-0228.1
https://doi.org/10.1111/1365-2478.12601
https://doi.org/10.1360/02ye9046
https://doi.org/10.1007/bf02594873
https://doi.org/10.1007/bf02594873
https://doi.org/10.1029/jb074i017p04267
https://doi.org/10.1016/s0020-7683(97)00017-6
https://doi.org/10.1016/s0020-7683(97)00017-6
https://doi.org/10.1061/jmcea3.0000623
https://doi.org/10.1007/bf01591008
https://doi.org/10.1007/bf01601469
https://doi.org/10.1007/bf00875689
https://doi.org/10.1121/1.1907495
https://doi.org/10.1190/1.1437923
https://doi.org/10.1111/j.1365-246x.1931.tb04462.x
https://doi.org/10.3390/computation11020015
https://doi.org/10.3390/computation11020015
https://doi.org/10.1073/pnas.41.7.469
https://doi.org/10.1190/1.1437843
https://doi.org/10.1190/1.1445016
https://doi.org/10.1098/rspa.1965.0196
https://doi.org/10.1098/rspa.1965.0196
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1189129

Yu et al.

Nomenclature

List of symbols

Ga, OB, Critical stresses of different deformation characteristics of the
and o¢ medium under the stress loading

€4, €B) Corresponding strains of the medium under different stress loadings
and gc 04, Op, and o¢

am Radius of the expanding cavity

b. Inner boundary of the elastic zone

bo Radius of the crushed zone

P Pressure on the medium

p Density of the medium

Po Initial density of the medium

e C-J detonation energy

K Bulk modulus of the geomaterial

os Yield strength of the medium

G Shear modulus of the medium

Gy Instantaneous shear modulus

B Viscoelastic attenuation constant
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combustion in coal mine gobs: a
simulation approach

Jiafeng Fan*
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Shenyang Research Institute, Shenfu Demonstration Zone, Fushun, China

The spontaneous combustion of residual coal in the gob seriously threatens the
safety of coal mining. Injecting CO, into the gob not only prevents the residual
coal from spontaneous combustion but also realizes CO, storage in the mined
areas. Injection flux and burial depth of the port are crucial for CO,-preventing fire
in coal mine gobs. In this study, the distribution of the oxidation zone in the
Tanyaoping coal mine was field-measured, and the coal oxidation kinetic model
was built by the adiabatic test. Then, a 3-D mathematical model was constructed
based on the conditions of the 5011 working face by COMSOL Multiphysics.
Furthermore, the coupled effects of the two factors on the distribution of the
oxidation zone were investigated. Increases in both injection flux and burial depth
result in a decrease in the oxidation zone volume. The reasonable ranges of the
injection flux and burial depth are 540-720 m* h™* and 30-40 m, respectively.
These results provide some guidelines on how to prevent the spontaneous
combustion of residual coal in mine gobs.

KEYWORDS

coal, spontaneous combustion, CO, injection, oxidation zone, oxidation kinetic model

1 Introduction

China is the largest producer of coal in the world. Coal mining normally faces several
types of accidents that can cause environmental disruption, fatalities, and equipment loss
(Zhang et al., 2021; Li et al., 2022). The reaction between coal and O, at low temperatures
usually results in spontaneous combustion and uncontrolled coal fires (Zhang et al., 2023).
During underground coal mining, spontaneous combustion of residual coal in the mine gob
often leads to a wide range of secondary disasters, such as methane explosions, carbon
monoxide generation, and ventilation disorders. The oxidation process of residual coal in the
gob is extremely complex. High-mechanized technology, especially coal caving mining,
results in considerable coal resources left in the gob. However, it is necessary to keep enough
fresh air through the airways and working face for human survival and methane dilution.
Therefore, the residual coal in the gob is exposed to continuous O, and has the possibility of
spontaneous combustion. The hazardous areas of self-ignition in the gob depend on many
factors, such as air leakage, thickness of residual coal, and the advanced rate of the working
face (Zhu and Wen, 2023). Normally, the “three zones” (the cooling zone, oxidation zone,
and suffocation zone) in the gob are determined based on the distribution of O,
concentration in the gob area (Ma et al., 2020).
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FIGURE 1

Measurement of O, concentration in the gob.

Spontaneous combustion of coal is influenced by coal
oxidation reactions, heat accumulation, and the characteristics
of porous media (Si et al., 2021). Therefore, many technical
solutions were presented to prevent coal from spontaneous
combustion and inhibit coal fire, which normally focus on two
aspects: isolating coal active sites from O, and cooling the
temperature (Dou et al., 2022). The present strategies can be
broadly classified as uniform pressure ventilation (Lu et al,
2017), grouting (Zhang et al., 2018), spray inhibitors (Lu et al,
2020; Sun et al., 2022), pumping inert gas (Zhu and Wen, 2023),
and injecting gel foam or gel (Lu et al,, 2018; Lu et al,, 2021; Han
et al., 2022; Huang et al., 2022). CO, is an inert gas and can dilute
the O, concentration and protect the coal from heat release.
Furthermore, broken coal can absorb CO, and thus saved from
oxidation (Guan et al, 2018). With the advancement of the
working face, the volume of the mine gob increases. The
resistance of internal airflow is small, and the porosity is large.
Thus, the coal mine gob is an ideal location for storing CO,.
Injecting CO, into the gob can achieve the dual benefits of fire
prevention and CO, storage.

This study is based on the actual conditions of the 5011 working
face of the Tanyaoping coal mine. To achieve the fire prevention of
residual coal in the gob by injecting CO,, the oxidation zone was
using COMSOL
Multiphysics. This simulated result without CO, injection was
verified to be reasonable by comparing it with the field

calculated by mathematical simulation

measurement. By studying the effect of the injection flux and
burial depth of the injection port on the oxidation zone, the
superior injection parameters were determined.

2 Overview of the 5011 working face

The Tanyaoping coal mine is located in Lvliang city, China. The
recoverable coal seams consist of 5# and 10# coal seams. The

5011 working face is in coal seam 5# and adopts the “U
ventilation method. Coal seam 5# is the main production seam
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FIGURE 2
O, concentration of measured points in the intake and return
airways.

and is around 4.4 m thick. The width and design length are 180 and
2,000 m, respectively. The width and height of the intake and return
airways are 5 and 4.5 m, respectively. The thickness of the residual
coal that remains in the mined area, that is, the gob, is about 0.4 m.
The mined coal has a spontaneous combustion tendency.

As shown in Figure 1, two sensors were fixed in the intake and
return airways to collect the gas. The monitoring system was based
on the measurement of bundle tubes. With the advancement of the
working face, O, concentrations at different buried depths were
drawn out through the bundle tubes using a vacuum pump. A gas
chromatography analysis system was used to analyze the O,
concentrations of the collected bags. Figure 2 shows the
measured O, concentration values in the intake and return
airways. The O, concentrations at the observation points
decrease with increasing buried depth. According to the actual
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FIGURE 3
Schematic representation of the adiabatic oxidation test.

condition and other studies, the “three zones” were divided by using
an O, concentration of 10%-18% (Ma et al., 2020). The O,
concentration at the point in the intake airway decreased to 18%
and 10% at 90 and 147 m, respectively. For the measured point in the
return airway, the buried depths of O, concentrations of 18% and
10% are 30 and 73 m, respectively. Normally, there are three
parameters to determine the “three zones” in the gob: the air
leakage velocity, O, concentration, and heating rate (Deng et al.,
2018). However, the O, concentration is the most accessible and
was, therefore, applied in this study to judge the oxidation zone.

3 Coal oxidation kinetic model

Coal exothermic processes under low temperatures include
three forms: physical adsorption, chemical adsorption, and
chemical reactions (Liang et al., 2021). Chemical adsorption and
chemical reactions are recognized as the main reasons for promoting
the self-heating of coal under low temperatures (Zhang et al., 2019;
Qu et al,, 2023). Although partially active functional groups are self-
reacting, a significant amount of heat will be released from the
coal-0, reaction. Therefore, a linear relationship between the O,
consumption rate and heat generation rate is generally considered to
exist, expressed as follows:

q =rAH, (1)

where g is the heat generation rate of the coal reaction (W-m™); AH
is the coal oxidation heat (J-mol™'); and r is the O, consumption rate
(mol-m~-s7).

Based on the coal oxidation dynamics theory, another major
influence on coal oxidation is temperature, which increases, causing
the activation of functional groups, i.e., the exothermic intensity
increases with increasing temperature. Most of the models on O,
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consumption in the previous studies were based on the Arrhenius
equation, expressed as follows:

r = Ac, exp(—E/RT), )

where A is the pre-exponential factor (s7); E is the activation energy
(Jomol™); R is the gas constant (8.314 J mol "K™); ¢, is the O,
concentration (%); and T is the temperature (K). The kinetic
parameters in Equation 2 are normally obtained from the
adiabatic oxidation test.

As shown in Figure 3, the coal sample was mined from the
5011 working face of the Tanyaoping coal mine. Moisture, ash,
volatile matter, and fixed carbon of coal are 7.64, 2.21, 26.24, and
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Fitting of IndT/dt versus —1/T.

63.19, respectively. Elements of C, H, O, and N of coal are 63.61,
4.86, 0.81, and 30.69, respectively. Approximately 220 g of coal
particles (0.2-0.45 mm) were prepared and naturally filled into
the reaction vessel. The sample was dried in N, at 105°C for 5h
and then cooled to 40°C under a N, atmosphere (Wang et al., 2010).
Once the temperature was stable, the mixed gases with 21% O, were
injected into the reaction vessel at 10 mL min™". It should be ensured
that the oven temperature is synchronized with the coal temperature
using the temperature controller. The change in coal temperature
over time was recorded using the recorder for later analysis. Figure 4
shows the temperature profile versus time of the adiabatic
oxidation test.

Under the adiabatic conditions, the coal sample was subjected to
accelerated self-oxidation so that the heat released in the last step
was completely converted to internal energy, which can be described
by Equation 3 as follows:

T
q= pCCPCZ—t =rAH = AHAc, exp(-E/RT), (3)

where p, is the density of coal (kgm~) and C,, is the specific heat
capacity of coal (J-kg "-K™"). Equation 4 can be rearranged by taking
the natural logarithm, which is expressed as follows:

dr _, AHAc, E 1 @
n—=1In -—— =
dt pCpc R T
y1 = —17230x +45.476 R? =0.9796  (x <48.1),
y2 = —6910.4x + 13.353 R? = 0.9933 (48.1 < x < 56), )

Y=y, = -3955.9x + 4.3786 R? = 0.9937 (56 < x <68.7),
y4 = —2343.1x - 0.3393 R*>=0.9974  (x>68.7).

The relationship between IndT/dt and —1/T shown in Figure 5 is
a nonlinear positive correlation, which does not follow the standard
Arrhenius equation, and this phenomenon also appears in other
studies (Zhang et al., 2020; Yoruk and Arisoy, 2022). It is difficult to
fit the curve with one or two straight lines. The curve was divided
into four stages with three break points of 48.1, 56, and 68.7°C. In
each stage, IndT/dt and —1/T exhibit good linearity, as shown in
Equation 1. The slope of the fitting line in each stage presents the
value of -E/R, and the intercept is the value of InAHAcy/p.C,.. The
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apparent activation energies of the four stages are 143.25, 57.45,
32.89, and 19.48kJ mol™', respectively. Accordingly, the pre-
exponential factors of the coal sample are 2.53x10%, 2.83x10°,
358.31, and 3.2 s7', respectively. In the numerical calculation,
different E and A are invoked based on the coal temperature for
the heat generation model.

4 Numerical simulation

The process of spontaneous combustion of residual coal in the
gob area will involve heat transport and generation, O, consumption
and transport, CO, emission and migration, and gas airflow. As
shown in Figure 6, all the involved equations are interrelated based
on the fluid-solid-thermal coupling (Xia et al., 2016; Zhang et al.,
2019; Qi et al., 2021). The continuity equation and the momentum
conservation equation are as follows:

o(ep
% +9(p,U) =0, (6)
@+v-(epguu)=—sv‘o+v. (sr)+sF—%U, (7)

where p, is the density of air (kg-m~); ¢ is the porosity of gob; t is the
time (s); U is the seepage air velocity vector (m-s'); p is the static
pressure (Pa); T is the stress tensor (Pa); u is the air viscosity (Pa s); K
is the permeability (m?); and F is the gravitational body
force (N-m™).

The relationship between porosity and permeability is
expressed as

de’

K=Tsoa-o” ®

where d is the particle size (mm). With the working face advanced,
the stress status of overlying strata is damaged, and the roof-bed
formation collapses. The overlying strata are vertically divided into a
caving zone, fissure zone, and bent deformation zone based on the
differences in the balance status and re-compaction degree of the
damaged strata (Qin et al, 2016). Therefore, it is a significant
with
permeability and porosity in the gob area. According to the

challenge to build mathematical models reasonable

observation of the mine pressure, the compaction bulking factor,
k, of the gob follows the law (Xia et al.,, 2015):

1
=1--, 9
€ " ©)
k= kp,min + (kp,max - kp,min) : eXp{_aldl : [1 — eXp (fl : aOdO)])

(10)

where kj min and kj, max are the initial bulking factors before and
after compacting in the gob area, respectively, (1.15 and 1.5). aq
and a; are the decay ratios of the bulking factor in the dip and
strike directions of the working face, respectively, (0.268 and
0.0368 m™'). dy and d, are the distances between the point (x,y)
in the gob and the working face and coal pillar, respectively. & is
the adjustment factor controlling the distribution pattern of the
model, 0.233.

The local thermal non-equilibrium is considered in the energy
equation of conservation, which is given by
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oT
For gas, SPgCPga—tg +p,CpgUVT, = sV(}thTg) +qge  (11)

T,
Forsolid, (1 - s)pCCPC% = (1 -eV(AVT,) — qgc + (1 - £)qo»

(12)

where C,,, is the specific heat capacity of air (J-kg"-K™'); A;and A are
the thermal conductivities of air and coal, respectively (W-m-K™");
Tgand T, are the temperatures of air and coal, respectively (K); g, is
the heat generation rate of coal (W-m ) obtained using Equation 3;
g is the solid-gas heat exchange around coal particles (W-m™),
which has

dge = hyea(T. - T,), (13)
where hg is the convective heat transfer coefficient (W-m™K™),
indicating the heat exchange between coal and pore air; a is the
specific surface area, that is, the exposed area of coal particles per
unit volume (m™).

O, conservation is a unique consideration without CO,
injection. However, we must consider the conservation of O, and
CO, for fire prevention by injecting CO, into the gob, which is
expressed as follows:

e% +V(Uc,) = V(eDVc¢,) + 1o, (14)
oc,,
s§+V(Ucm) =V (eDVcy) + s (15)

where c,, is the concentration of CO, (mol-m™); D, and D,,, are the
effective diffusivities of O, and CO,, respectively (m*s™"); and r, is
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the O, consumption rate (mol-m >s™"). r,,, is the CO, generation rate
(mol-m~-s™") of coal oxidation, whose ratio to r, is 0.1 (Taraba et al.,
2014). The oxidation reaction of residual coal in the gob is affected
by working face advance. Based on Equation 2, r, can be expressed as

T, = Wr, (16)

where w is the influence coefficient of working face advance.

In addition, to ensure the normal operation of modeling, the
following main assumptions are supplemented (Ma et al., 2020;
Zhang et al,, 2022):

(i) The effects of moisture transport and evaporation are not
considered.

(ii) Thermal conductivity and heat capacity of coal and gas are
independent of other parameters.

(iii) The transfer of heat in the gob merely involves convection
and conduction, and the radiative transfer is not taken into
account.

(iv) The gas in the gob is incompressible.

According to the actual conditions of the 5011 working face,
the corresponding geometric model has been established.
COMSOL Multiphysics software was applied to simulate the
oxidation process of residual coal in the mine gob. The whole
model consists of four parts: the mining area, the inlet airway, the
return airway, and the working face. The cross-sectional area of
both the inlet and return airways is 22.5 m?, and the cross-sectional
area of the working face is 25 m”. The length of the inlet and return
airways is 5 m. The length of the working face is set as 220 m, and
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TABLE 1 Main parameters applied in the numerical simulation.

Residual coal

Parameter Item Value Unit
Ao Pre-exponential factor 40 kJ-mol !
E Apparent active energy 320 st
Pa Density of air 1.225 kg-m™
Pe Density of coal 1300 kg-m™
Ca Specific heat capacity of air 1007 J-kg K"
c Specific heat capacity of coal 1210 Jkg 'K
Na Thermal conductivity of air 0.02 W-m K™
A Thermal conductivity of coal 0.21 W-m K™
U Viscosity 1.87x107° Pa-s
D, O, diffusion coefficient 1.76x10°° m?s™!
D,, CO, diffusion coefficient 1.6x107° m?s!
hge Convective heat transfer coefficient 11 W-m?>K!
AH Coal oxidation heat 380,000 J-mol™!
w Influence coefficient of working face advance 0.9 -

the length and height of the gob area are 180 and 15m,
respectively. For the condition without CO, injection, grid
independence was checked by carrying out three sets of grids.
Eventually, after considering the CPU time and the sensitive
parameter, 34,954 mesh blocks are divided among this model,
including 32,389 mesh blocks in the gob area. The mesh blocks of
the models for CO, injection were slightly larger than those
without CO, injection. The time step was set as 1 h. As shown
in Figure 7, the CO, injection port was a round tube with a radius
of 0.2 m and a length of 0.2 m. Two parameters, injection flux (U,
m’h ") and injection port burial depth (L, m), were considered to
investigate the performance of CO, injection in preventing residual
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coal fires. The parameters used in the simulations are listed in
Table 1. The boundary and initial conditions used in the
mathematical model are illustrated in Table 2.

5 Results and discussion

5.1 Analysis of the oxidation zone without
COs, injection

As shown in Figures 8A, B, the porosities and permeabilities of
the gob near the working face and pillars are larger than those of the
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TABLE 2 Boundary and initial conditions of the mathematical model.

10.3389/feart.2023.1191049

Types Positions Values
Boundary conditions Inlet x=-5m Velocity: 0.7 m's™ (1050 m® min™")
y=0-5m Temperature: 20°C
z=0-5m O, concentration: 9.7 mol m™
x=L Velocity: U
y=-02m Temperature: 20°C
z = 0.1 m (circle) CO, concentration: 44.6 mol m™
Outlet x=-5m Free outflow
y =115m-120 m
z=0-5m
Wall Other surfaces Temperature: 20°C
Initial conditions Temperature Entire domain 20°C
(Seepage) velocity 0
CO, concentration 0
O, concentration 9.7 mol m™

inner zone due to the mining process. Fresh air enters the working
face from the inlet airway with a velocity of 0.7 m s, and more than
90% of the ventilation flux passes through the working face and then
flows into the return airway. The airflow streamlines in the gob area,
normally from the windward zone near the inlet airway to the zone
near the return airway. The airflow velocity near the working face is
larger than that in the inner zone due to the smaller forced-
convection resistance.

With the deepening of the gob, the O, concentration gradually
decreases. As shown in F8(e), on the side of the inlet airway, the fresh
air from the intake airway enters the gob and flows toward the
deep. However, gases with low O, concentrations flow from the deep
to the return airway. Therefore, the O, concentration near the side of
the return airway shows a more rapid decline than that of the intake
airway.

This distribution of the oxidation zone has been observed
in many other field measurements and simulations (Xia et al,
2015; Chu et al.,, 2019; Xu et al., 2020). Coal near the working
face undergoes a strong oxidation reaction because of the
abundant O,, accompanied by the release of heat. We can find
that the high-temperature zone is located on the windward side
of the oxidation zone, as shown in Figure 8C. It is due to the
fact that O, was consumed in the high-temperature zone,
causing fewer O, molecules to enter the interior of the gob.
Therefore, it is difficult to transport enough O, to the inner
zone, resulting in a low concentration of O, within the area.
The distribution of CO, in the gob is the opposite of the
distribution of O, because most of the CO, in the gob is
derived from low-temperature oxidation of residual coal, as
shown in Figure 8D. The overall CO, values are much lower
than those of O,. The CO, concentration near the working face is
lower than that in the inner zone due to the dilution of airflow
seepage.
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distribution of O,
concentration in the gob area. The O, concentration in the upper

Figure 8E is a three-dimensional
area in the same vertical direction is slightly higher than that in the
lower area. The volume of the oxidation zone without CO, injection
is calculated to be 121,000 m®. The average width of the oxidation
band is 45 m. Figure 8F shows the range comparison of the oxidation
zones (z=0.2 m) between the field measurement and simulation. The
two results show good alignment. It indicates that the numerical
simulation can reflect the performance of the self-ignition of the
residual coal in the gob.

5.2 Analysis of the base case with CO,
injection

The base case of U =540 m*h™" and L = 20 m was calculated,
and the distributions of O,, CO,, and temperature in the gob area are
shown in Figure 9. CO, injection has the properties of a
displacement effect on the air leakage, a dilution effect on the O,
distribution, and a cooling effect on the high-temperature zone.
Therefore, the spontaneous combustion of residual coal is delayed or
prevented. CO, injection can dilute the O, concentration. CO,
concentration is much higher than O, concentration downstream
of the injection port. The oxidation zone on the inlet airway side
moved significantly toward the injection port, and the width of the
oxidation zone decreased significantly. CO, was continually mixed
with leaked O,, and the dilution effect on the O, distribution was
gradually attenuated. The high-temperature zone under CO,
injection was a smaller area than that without CO, injection.
CO, also suppresses the maximum temperature in the gob. It
indicates that CO, can restrict the self-ignition of coal. In
addition, the area of the oxidation zone for CO, injection on the
surface z = 0.2 m is 1300 m*, much smaller than that without CO,
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injection, which is 7400 m*. However, the volumes of the oxidation
zone with and without CO, injection are 63,000 m® and 121,000 m?,
respectively. The injection port is located near the bottom, causing a
large amount of CO, cluster in the lower area and, therefore, not
easily diluting O, in the upper area. As a result, the width of the
oxidation zone in the upper area is much greater than that of the
lower area.

5.3 Effect of the CO, injection flux

Based on the base case and the corresponding simulation
without CO, injection, the effects of the CO, injection flux on
the prevention of residual coal fires were analyzed. The assumed
CO, injection fluxes are 180, 360, 540, 720, 900, and 1080 m*h™',
respectively. Figure 10 shows the oxidation zone in the gob for
different CO, injection fluxes at L=20 m. An increase in the
injection flux weakens the O, concentration in the gob and
increases the displacement effect. When U > 180 m*h™’, the
higher pressure of the intake airway and gravity suppress the
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injected CO,, which flows along the lower side of the gob in the
direction of airflow seepage, as shown in Figure 11. At U= 180 and
540 m*> h™', CO, concentrations in the upper zone of the gob are
much lower than those in the bottom zone. Because the CO,
injection fluxes (<1080 m® h™') are smaller than the air flux from
the intake airway (1050 m® min™"). CO, injection hardly affects the
air leakage streamlines, and thus, the high CO, areas at different U
values are extremely similar. With the increase in CO, injection
flux, the overall distribution of the oxidation zone moves toward
the working face. The oxidation zone in the lower gob area moves
toward the upwind side of the injection port when U > 0. As wind
speeds increase, the distance between the iso-surfaces increases by
10% to 18%, reducing the volume of the oxidation zone. The
volumes of the oxidation zone at U = 180, 360, 540, 720, 900, and
1080 m*h™' are 89,000, 62,500, 43,000, 2,950, 24,000, and
23,000 m®> at L=20m, respectively. Therefore, when U <
900 m> h™!, the volume of the oxidation zone decreases with the
injection flux, and when U > 900 m*® h™’, the volume changes little
as flux increases. This phenomenon also appears in other cases
with different L values.
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Simulated oxidation zone with different injection fluxes at L = 20 m

5.4 Effect of the CO, injection location

Figures 12, 13 show O, and CO, distributions in the gob with
different burial depths at U = 540 m*h™". Once CO, is injected, the
oxidation zone on the inlet side is significantly reduced. This is because
the high CO, concentration near the injection port effectively dilutes O,.
The closer the inlet port is to the working face, the closer the oxidation
zone on the inlet side is to the working face, and the weaker the effect of
the O, concentration in the upper area of the inlet side being displaced by
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CO,. It is due to the high leakage strength near the working face and a
large amount of fresh air that suppresses CO, diffusion by the dilution
effect. Therefore, as shown in Figure 13, the smaller L is, the lower the
CO, concentration within the gob. At L = 10, 20, and 30m, the CO,
concentration in the upper area of the gob is low. Moreover, as the burial
depth of the injection port increases, the airflow leakage from the
working face is small, and CO, can migrate to the upper area
without high resistance. The volumes of the oxidation zone at L= 10,
20, 30, 40, 50, and 60 are 65,000, 43,000, 27,000, 23,000, 19,200, and
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18,500 m’ at Q=540 m® h™", respectively. As L increases, the width of the
oxidation zone in the upper area decreases rapidly. The volumes of the
oxidation zone are almost identical at L = 50 and 60 m. In addition, the
change in the burial depth of the injection port has little effect on the
distribution of the oxidation zone on the return side.

5.5 Comprehensive analysis of coupling the
CO, injection flux and location

Figure 14 shows the effects of coupling factors, that is, the
CO, injection flux and location, on the predicted volume of
the oxidation zone. A decrease in the CO, injection volume or
burial depth of the port will reduce the volume of the oxidation zone.
When U < 720 m* h™', an increase in the burial depth significantly
reduces the volume of the oxidation zone, especially at a lower
injection flux. When U=1080 m’ h™', the change in the position of
the injection port does not have a significant effect on the
distribution of the oxidation zone. At L = 10 m, the volume of
the oxidation zone decreases linearly with the injection flux.
However, when L > 30 m, the volume dramatically reduces with
increasing U from 0 to 540 m’h™', but changes little as flux
continues increasing. In practice, longer gas injection lines are
avoided, which can make operations difficult. Smaller U values
can save costs and reduce CO, concentrations in the upper
corner and working face when achieving similar effects of
suppressing coal spontaneous combustion for different U values.
Therefore, based on the simulation results, the parameters of U =
540-720m*h™" and L = 30-40m are recommended for the
5011 working face.

6 Conclusion

To accurately predict the effectiveness of CO, injection

on spontaneous combustion in the coal mine gob. A
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mathematical simulation by COMSOL Multiphysics
applied in this study.

According to the conditions of the 5011 working face in the

was

Tanyaoping coal mine, a 3-D mathematical model considering
fluid-solid-thermal inter-relationship was established. The coal
oxidation kinetic model was derived from the adiabatic
oxidation test, where four stages were considered in the
model. The apparent activation energies of the four stages are
143.25, 57.45, 32.89, and 19.48 k] mol™', respectively. A good
agreement between the field measurement and numerical
simulation indicates the rationality of the mathematical
model. CO, injection can dilute the O, concentration and
prevent spontaneous combustion of coal. The coupling effects
of injection flux, U, and the burial depth of the injection
port, L, on the oxidation zone were investigated. The
oxidation zone volume decreased with increasing U and L.
When U or L is small, the upper width of the oxidation
zone is wider, and as U or L increases, the upper width
gradually decreases until it is no longer sensitive to parameter
changes. An optimum injection plan is to keep the volume of
the oxidation zone at a lower value in consideration of
economic viability and operational parameters. The injection
parameters of U = 540-720m’h™' and L = 30-40m are
recommended after considering the activity of the 5100 working
face. The volume of the oxidation zone was estimated to be

18,500-23000 m”>.
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In southern China, the karst landform areas possess a complex geological and
topographic environment, a fragile ecosystem, poor surface stability, and frequent
occurrences of landslides and other geological disasters. To effectively monitor
and predict such events, it is crucial to process landslide monitoring data and
establish reliable prediction models. This paper presents an |IPSO-ELM
displacement prediction model that integrates the improved particle swarm
optimization algorithm (IPSO) and extreme learning machine (ELM). The
proposed coupling model predicts decomposed displacement subsequences
individually, which are then reconstructed to obtain the total displacement
prediction value. In this study, displacement monitoring data from a typical
landslide in the karst landform area between 2007 and 2012 were selected.
Various prediction and verification scenarios were established to validate the
accuracy and stability of the prediction model. The MAPE of the IPSO-ELM
model is 0.18%, which outperforms the ELM and BPNN models with MAPEs of
0.56% and 0.65%, respectively, in predicting landslide displacement in karst
landform areas. This study provides a solid theoretical foundation and practical
value for landslide displacement prediction.

KEYWORDS

complex and unstable area of karst, improved particle swarm optimization algorithm,
landslide, displacement prediction, extreme learning machine (ELM)

1 Introduction

Karst of China are widely distributed in mountainous areas with complex geological and
topographical environments, fragile ecosystems and poor surface stability. The typical
landslide disaster in this paper is located in the area with the most active karst landform
in China. The karst activities on the underground surface are very frequent, resulting in the
very active micro-movement of the underground surface and frequent geological disasters.
The prediction of landslide displacement in this area is helpful to predict natural disasters
such as landslides (Li et al., 2023; Liu et al., 2023a; Liu et al., 2023b; Liu et al., 2023¢; Zhang
et al., 2023a; Liu et al., 2022; Zhou et al., 2022; Li et al., 2021).

Landslides seriously damage to the natural environment, and cause social property
losses. How to use the landslide monitoring data to predict the deformation of landslide and
disaster is an important scientific subject in the research of geological disaster prevention.
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The formation of most landslides is a gradual accumulation process,
so the long-term deformation monitoring data of landslides is an
important basis for landslide deformation prediction at present.
There are many prediction methods for landslide deformation based
on the monitoring data of landslide cumulative deformation. The
mainstream method is to decompose the time series of landslide
cumulative displacement into trend, periodic, and random items,
and use different methods to carry out targeted prediction. For
example, Peng et al. and Zhang et al. decomposed the landslide
deformation based on time series and ignored the influence of
random items (Peng et al, 2013; Zhang LB. et al,, 2023). Qiu
et al. used the grey model to solve the trend term, and ignored
the random term and then used the AR model to solve the periodic
term (Qiu et al., 2020). Guo et al. used the reverse order method to
calculate the trend and trigonometric functions to fit the periodic
term (Guo et al,, 2018). Jiang et al. used the variational mode to
decompose the accumulated deformation of the landslide, and then
used different methods to solve it respectively (Jiang et al., 2022).
Huang et al. used the moving average method to decompose the
cumulative displacement into trend term and periodic term
displacement, and used the support vector machine model to
predict the landslide deformation (Huang et al, 2014). Li et al.
and Huang et al. established an autoregressive moving average time
series model and used support vector machines, neural networks
and other algorithms to predict landslides (Huang et al., 2018; Li
et al., 2018).

The research shows that the deformation of landslides is often
affected by many factors, and different methods and models are used to
decompose the cumulative deformation, and different decomposition
results will reduce the accuracy of data fitting. For the prediction of
cumulative deformation under the influence of multiple variables, Duan
et al. and others used different smoothing parameters to predict the
deformation of landslides under different monthly rainfall conditions,
but the selection of models and the weight of different factors have a
great impact on the results (Duan et al,, 2016). Yang et al. used short-
term and short-term memory neural networks to predict landslides,
proving the feasibility and high accuracy of using neural networks to
predict landslides (Yang et al, 2019). Genetic algorithm is used to
optimize the structure of BP neural network, and a nonlinear synergetic
bifurcation model is established to predict the deformation of single
variable (Guo et al,, 2011). Cai et al,, 2019 and others used FA algorithm
to optimize the selection of neural network structure, but the same
network structure will also lead to different training effects due to the
random selection of initial value (Cai et al., 2019). The above results
have been well applied in the study of deformation prediction using
long-term monitoring data of landslides, but there are still some areas
for improvement in the accuracy of the prediction results. Zhou et al.
proposed a new extreme gradient boost (XGBoost) and Hodgrick
Prescott (HP) filtering coupling method to predict landslide
displacement (Zhou et al,, 2022). Tang et al. developed a progressive
landslide displacement prediction model driven by Semantic
information, which includes the identifier of the displacement stage
and the predictor of acceleration stage (Tang et al. . 2022). Miao et al.
took the Baishui River landslide as the research object and decomposed
the landslide displacement into three parts (trend term, periodic term,
and random term) through variational mode decomposition (VMD),
introduced a data mining algorithm to select the triggering factors of
periodic displacement, and applied the fruit fly optimization algorithm
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backpropagation neural network to train and predict periodic and
random displacement (Miao et al.,, 2022). Long et al. applied the multi-
feature fusion transfer learning method to the Baijiapu landslide scene
to obtain sufficient monitoring data and laws, improving landslide
prediction ability (Long et al, 2022). Zheng et al. proposed a
displacement prediction method based on multi-source domain
and used the
decomposition model based on minimum sample entropy to

transfer learning, optimal variational mode
decompose the cumulative displacement into trend component,
periodic component and random component (Zheng et al., 2023).
The trend component is predicted by the autoregressive model, and the
cycle component is predicted by the long-term and short-term memory.
For random components, a combination of Wasserstein-generated
adversarial networks, and multi-source domain transfer learning is
used for prediction to improve prediction accuracy.

Therefore, the difficulty of landslide displacement prediction
research lies in the scientific and reasonable analysis of the original
data and improving the accuracy of the prediction model as much as
possible. On the basis of previous research results, this paper adopts the
variational modal decomposition algorithm to decompose the landslide
displacement sequence, which can avoid modal aliasing in the process of
decomposition and can control the number of sub-sequences. The
improved particle swarm optimization algorithm is used to optimize
the ELM parameters, and IPSO-ELM is constructed. The model is used
to predict the decomposed displacement subsequences respectively, and
the prediction results of each subsequence are reconstructed to obtain the
predicted value of landslide cumulative displacement. On the basis of the
above work, the displacement prediction values obtained by the model
used in this paper are compared with those obtained by the traditional
ISPO-ELM, extreme learning machine (ELM), and back propagation
neural network (BPNN) models. The mean square error (MSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) of
these models are calculated, respectively. Thus, the prediction accuracies
of these three models were quantitatively compared, and the models with
the highest prediction accuracy were indicated.

2 Principle and algorithm of variational
mode decomposition (VMD)

The landslide displacement sequence is a nonlinear and non-
stationary time series. If the prediction is made directly on the basis
of the original cumulative displacement monitoring data, it is easy to
produce large errors. In relevant research, the method of
decomposing the original displacement sequence using a
decomposition algorithm (i.e, decomposing first and then
predicting) is widely used, and the landslide displacement
prediction based on this method has achieved good prediction
results. By decomposing the original sequence, on the one hand, the
complexity of the data is reduced, on the other hand, the information of
the original monitoring data is fully utilized, and the prediction accuracy
is improved. Typical sequence decomposition algorithms include wavelet
analysis, empirical mode decomposition (EMD), ensemble empirical
mode decomposition (EEMD), etc (Shihabudheen, 2017; Miao et al,
2022).

Variational mode decomposition (VMD) can convert the
original signal into non-recursive VMD mode. Compared with

EMD algorithm and EEMD algorithm, VMD algorithm has an
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FIGURE 1
The Schematic of extreme machine learning.

excellent performance in anti-noise. In addition, the VMD
algorithm controls the convergence conditions and the number
of decompositions reasonably, and the number of modes
obtained after decomposition is also less than EMD and EEMD.
Therefore, VMD has the advantages of solid mathematical
foundation and fast calculation speed, which is extremely
beneficial to reduce the workload of later prediction.

The overall idea of VMD algorithm is to construct a variational
problem first, and then decompose a real value signal S into a
discrete number of modes Sk (t), k=1,2,---,K by solving the
that
approximately compact around the center pulse. Wiener filter,

variational ~problem, and assume each mode is
Hilbert transform and frequency mixing in signal analysis are the

important basis of VMD algorithm.

3 Improved particle swarm
optimization extreme learning machine
(IPSO-ELM)

3.1 Extreme learning machine (ELM)

The extreme learning machine was proposed in 2004. Because of
its simple structure, less parameters and fast learning speed, many
scholars have studied and applied the algorithm (Huang et al., 2006;
Marti etal., 2011; Xue et al., 2020; Panghal et al., 2021). The principle
of extreme machine learning is shown in Figure 1.

In a single hidden layer neural network, it is assumed that there
are N samples (x;, y;), where x; = [xi1,Xi2, X3, o xin)T € R,
vi = [yin> yio» Vis» ~~-,yim]T € R,,, when in a single hidden layer
neural network, the output samples can be expressed as:

1
yi= Zﬁig (wi gxi +b;) 1)
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Where, f3; is the output weight; g () is the activation function; w; is
the input weight; b; is the offset of hidden layer nodes; w; - x; is the
inner product of w; and x;.

The purpose of using ELM model is to minimize the output
error value. Assume that when the error value is 0, the output of
the existence, and make formula f8,, w; and b; is equal to the
actual output, and the following matrix can be established:

Y =BH

Y= (}’b}’z,“',yi)

13 = (ﬁl’ﬁp"'aﬁi) (2)
g(w-x;+b))...g(w - x; +by)

H = M M

glwi-x;+b)...g(w;-xi+b)

To sum up, calculate the minimum value |H@ — Y|?, where Y is
the actual output; H is determined according to the value of w; and
b;, from which it can be concluded that the prediction model is
established.

3.2 Improved particle swarm optimization
(IPSO)

Particle swarm optimization algorithm (PSO) is an evolutionary
computing technique derived from the study of bird swarm predation
behavior. The algorithm was originally inspired by the regularity of bird
cluster activity and then a simplified model using swarm intelligence.
Each particle represents different possible solutions. The quality of the
particle’s position is judged according to the fitness function value.
Through continuous learning from the global optimization and
individual optimization, the particle’s position and speed are updated
to achieve the optimization purpose.

Assume that in the dimensional space, it represents the position of
particles and the speed. Under this condition, X; = (X1, X2, ***, Xid)
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indicates the position of particles, V; = (V;1,Vi, -+, Vi) indicates
speed, its position and speed are updated according to formulaunder
this condition:

X = Xl 4 ®)
Vil =w - Vig+ar (piy - Xiy) + CZrZ(Ptgd - th‘d) (4)

Where, w is inertia weight; pfd is the best individual under this
condition; P;d is the corresponding global optimum; ¢y, ¢; is the sub-
factor of students; 1, 7, is a random number with a value range
of [0 1].

In particle swarm optimization, inertia weight w, as one of the
important parameters, plays a vital role in the search effect. The
value of w determines the global search ability of PSO. The larger
the value of w, the stronger the global search ability of PSO;
otherwise, the stronger the local search ability of PSO. In order to
achieve higher search efficiency, the random weight method is
introduced to optimize this algorithm in the optimization
process. When optimizing based on this method, the PSO
algorithm is considered to be random. The advantages of this
setting are:

(1) When the initial position is close to the global optimum, the
random value obtained is small, which is beneficial to improve
the convergence speed.

(2) Overcome the limitation that the algorithm cannot converge to
the best point caused by linear decline.

The inertia weight is modified based on the following
expression:

{w=y+oxN(0,1) 5)

U= HUmin + (/’lmax_,umin) x r and (0, 1)

Where, N (0, 1) represents the random number of the standard state
distribution, and rand(0,1) represents the random number
between [0 1].

The calculation steps of random weight method are as follows.

(1) Initializes the speed of particles.

(2) Calculate and determine the fitness of each particle, save its
position and fitness information in ppey, and compare and
analyze all of ppe to get the best individual value and then
store it in Gpest-

(3)The displacement and velocity are updated by the following
expression:

Xig(t+1) = x4 (t) +vig(t+1) (6)
Via(t+1) =w - vig(t) +cir1 [ pia — Xia ()] + 212 [Pg,d = Xid (t)]

(7)

(4) Update the inertia weight according to the formula.

(5) Compare the current position and the best position of particles,
and replace the latter with the current position in the case of
proximity. Compare all ppesr and gpesr and update Gpest.

(6) If the algorithm meets the stop condition, the iteration
operation is ended and the result is output. On the contrary,
return to step (3).
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3.3 IPSO-ELM model

The random weight method is applied to the PSO algorithm,
which overcomes the shortcomings of the PSO algorithm that the
global search ability and local search ability are poor due to the
improper value of inertia weight. The improved particle swarm
optimization algorithm (IPSO) is used to globally optimize the
connection weight and hidden layer threshold of the extreme
thus IPSO-ELM model is
constructed for landslide displacement prediction.

learning machine (ELM), and

4 Landslide displacement prediction
process

The steps of landslide displacement prediction based on VMD
and IPSO-ELM coupling model are as follows, Figure 2 shows the
flow of landslide displacement prediction.

5 Engineering case analysis

5.1 Typical landslide engineering geology
and monitoring overview

A typical landslide selected for this project case analysis is
located on the south bank of the Yangtze River in the Three
Gorges Reservoir area, 56 km away from the dam site of the
Three Gorges Dam. The landslide is an old landslide, which has
repeatedly occurred bedding sliding in history. The landslide mass is
located in the broad valley section of the Yangtze River, a monoclinic
bedding slope, high in the south and low in the north, and is
distributed in a stepped manner towards the Yangtze River. The rear
edge elevation of the landslide is 410 m, bounded by the geotechnical
boundary, and the front edge is about 70 m, which has not been
below the reservoir water level, the eastern and western sides are
bounded by the bedrock ridge, with an overall slope of about 30°".

The deformation of typical landslide mainly occurs in the early
warning area of the sliding mass, and the deformation of other parts
of the sliding assembly obvious could be clearer. There are currently
6 GPS monitoring points in the early warning area. The monitoring
data shows that in 2011, the cumulative horizontal displacement of
GPS monitoring points M1, M2, and M3 for the whole year was
182.2, 128.5, and 145.8 mm, respectively, with an average rate of
152, 10.7, The
displacement of the whole year in 2012 was 239.6, 113.0, and
113.6 mm respectively, with the average rate of 20.0, 9.4, and

12.2 mm/month; cumulative  horizontal

9.5 mm/month respectively.

5.2 Prediction of landslide displacement

Reasonable selection of landslide displacement influencing factors is
of great significance to the rationality and prediction accuracy of
displacement prediction. Based on the previous research experience,
the monthly rainfall, reservoir water level value, bimonthly rainfall,
inter-monthly reservoir water level variation, bimonthly reservoir water
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FIGURE 2

Flow chart of landslide displacement prediction.(1) VMD is used to decompose the original cumulative displacement sequence to obtain the
subsequence components.(2) IPSO is used to optimize the parameters of ELM, and IPSO-ELM coupling model is established.(3) The IPSO-ELM coupling
modelis used to predict the subsequences obtained from VMD decomposition.(4) Reconstruct the prediction results of each displacement subsequence

to obtain the total displacement prediction value of the monitoring point.(5

) Error analysis. In error analysis, the degree of dispersion of prediction

results and the degree of deviation between prediction value and actual value are taken as careful consideration, and MSE, MAE and MAPE are selected as

accuracy evaluation indicators.

level variation and monthly displacement increment are considered the
displacement influencing factors system.

Under the conditions of engineering practice, the prediction
model must have strong adaptability to the dynamic monitoring
data to accurately and stably output the prediction results. To verify
the validity and stability of the proposed model, the monitoring data
of this typical landslide monitoring point is divided into two datasets
to train and test the model. Select the monitoring data from 2007 to
2010 as the training set, and the monitoring data from 2011 as the
corresponding test set.

5.2.1 Selection of mode number

Before the VMD decomposition of the original displacement
sequence, the number of decomposition subsequences needs to be
set first. In order to facilitate the subsequent prediction, the
cumulative displacement sequence of the monitoring point from
2007 to 2011 is decomposed, and the modal number is set as
K=2, 3, 4.

According to the previous test, the first sub-sequence (the main
component of the cumulative displacement sequence) obtained by
decomposition is obviously inconsistent with the original series in
the trend when K=4, and it is considered that there is over-
decomposition. Therefore, K=3 appropriate. To
maximize the use of the information of the original data, the

is more

original cumulative displacement sequence is decomposed into
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TABLE 1 Accuracy comparison of three models.

Error index IPSO-ELM ELM BPNN
MSE 115.23 496.21 762.12
MAE 4.95 15.36 20.14

MAPE 0.18% 0.56% 0.65%

three sub-sequences, and the three modes are obtained by
decomposition.

5.2.2 Sub-sequence displacement prediction

According to the landslide displacement prediction flow, the
three subsequences obtained from the decomposition of the original
displacement sequence are modelled and predicted, respectively, and
three groups of corresponding displacement prediction values are
obtained.

5.2.3 Sub-sequence prediction displacement
reconstruction

The final total landslide displacement prediction value is
obtained by superposition of three groups of prediction values,
and compared with the actual monitoring value. The prediction
accuracy results of the prediction model were obtained by the
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validation of the displacement data in 2011. The comparison of
prediction accuracies is shown in Table 1.
The comparison results show that.

(1) Both ELM and BPNN have prediction effects only in a particular
range, but the prediction accuracy in a more extensive range is
very low, indicating that the robustness and generalization
ability of these two models are relatively poor.

@

~

The prediction accuracy of BPNN depends on the training of
large data samples. For the prediction of small samples similar
to this paper, BP neural network’s prediction accuracy and
generalization ability the are worse than ELM.

—
(SN]
~

The IPSO-ELM model proposed in this paper can adapt to the
changing data environment. Displacement data from different
scenarios were used for stability testing of the IPSO-ELM model.
The displacement data from 2007 to 2011 as training set and the
2012 data as test set. The results show slight differences in
prediction accuracy in different scenarios, but high accuracy,
indicating the good stability.

6 Conclusion

This paper studies the landslide displacement prediction based
on VMD and IPSO-ELM coupling model. In the landslide
displacement prediction, the original displacement sequence is
decomposed into three sub-sequences, and then predicted
separately is an effective method to make full use of the limited
data information. On the basis of VMD, IPSO algorithm is used to
optimize the parameters of ELM, which can effectively solve the
problem of premature particle swarm optimization algorithm. It is
easy to fall into the problem of local optimization, and it also retains
the advantages of particle swarm optimization algorithm itself, such
as fast convergence speed.

The verification results of typical landslide examples show that
the coupling model can accurately predict the displacement value of
landslides, with good accuracy and stability, and has high

References

Cai, Shuling, Li, Erbing, and Liang, Chen (2019). Research on temporal prediction of
tunnel surrounding rock deformation based on FANAR dynamic neural network. Chin.
J. Rock Mech. Eng. 38, 3346-3353. (in chinese). doi:10.1007/s00366-019-00894-y

Duan, Gonghao, Niu, Ruiging, and Zhao, Yannan (2016). Rainfall-induced landslide
prediction based on dynamic exponential smoothing model. J. Wuhan Univ. 41 (7),
958-962. (in chinese). doi:10.13203/j.whugis20140276

Guo, H. Q,, Liu, Y., and Deng, A. (2011). The GA improved ANN-synergy-bifurcation
model method on slope slide forecasting. Geotech. Spec. Publ. 216, 149-156. doi:10.
1061/47627(406)20

Guo, Zizheng, Yin, Kunlong, and Huang, Faming (2018). Landslide displacement prediction
based on combined model of surface monitoring data and nonlinear time series. Chin. J. Rock
Mech. Eng. 37 (1), 3392-3399. (in chinese). doi:10.13722/j.cnkijrme.2016.1534

Huang, Faming, Yin, Kunlong, and Jiang, Shuihua (2018). Landslide susceptibility
evaluation based on cluster analysis and support vector machine. Chin. J. Rock Mech.
Eng. 37 (1), 156-167. doi:10.1016/j.geomorph.2008.02.011

Huang, G. B,, Zhu, Q. Y., and Siew, C. K. (2006). Extreme learning machine: Theory
and applications. Neurocomputing 70 (1-3), 489-501. doi:10.1016/j.neucom.2005.
12.126

Huang, H., Yi, W., and Song, K. (2014). Influence of parameters on support vector
machine for landslide displacement prediction in Three Gorges Reservoir. New Front.
Geotechnical Eng. Geo-Shanghai 2014, 160-168. doi:10.1061/9780784413456.017

Frontiers in Earth Science

10.3389/feart.2023.1222920

application value in landslide displacement prediction. When
using IPSO-ELM coupling model based on VMD. When
predicting landslide displacement, the K value of VMD can be
set manually. When the appropriate K value is selected, the
prediction effect of the model is perfect.

Data availability statement

The datasets presented in this article are not readily available
because the data used to support the findings of this study are
available from the corresponding author upon request. Requests to
access the datasets should be directed to giaojunwei@xust.edu.cn.

Author contributions

JQ wrote and modified this paper; YZ provided algorithm
processing for it; WL collected and processed the data in the
paper; JT collected on-site data for the paper. All authors
contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Jiang, Yuhang, Wang, Wei, and Zou, Lifang (2022). Research on dynamic prediction
model of landslide displacement based on PSOVMD, NARX and GRU. Rock Soil Mech.
43 (1), 601-612. doi:10.156800/]JIRCCE.2016

Li, H., Xu, Q., He, Y., and Deng, J. (2018). Prediction of landslide displacement with
an ensemble-based extreme learning machine and copula models. Landslides 15 (10),
2047-2059. doi:10.1007/s10346-018-1020-2

Li, X. L., Chen, S. ], Liu, S. M., and Li, Z. H. (2021). AE waveform characteristics of
rock mass under uniaxial loading based on Hilbert-Huang transform. J. Central South
Univ. 28 (6), 1843-1856. doi:10.1007/s11771-021-4734-6

Li, X. L., Zhang, X. Y., Shen, W. L., Wang, Y., Qin, Q,, and Lu, X. (2023). Abutment
pressure distribution law and support analysis of super large mining height face. Int.
J. Environ. Res. Public Health 20 (2), 227. doi:10.3390/ijerph20010227

Liu, H.Y,, Zhang, B. Y., Li, X. L., Liu, C.,, Wang, C., and Wang, F. (2022). Research on
roof damage mechanism and control technology of gob-side entry retaining under close
distance gob. Eng. Fail. Anal. 138 (5), 106331. doi:10.1016/j.engfailanal 2022.106331

Liu, S. M., and Li, X. L. (2023a). Experimental study on the effect of cold soaking with
liquid nitrogen on the coal chemical and microstructural characteristics. Environ. Sci.
Pollut. Res. 30 (3), 36080-36097. doi:10.1007/s11356-022-24821-9

Liu, S. M., Sun, H. T., Zhang, D. M., Yang, K, Li, X, and Wang, D. (2023c).
Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and
fractal characteristics. Energy 275 (7), 127470. doi:10.1016/j.energy.2023.127470

frontiersin.org


mailto:qiaojunwei@xust.edu.cn
https://doi.org/10.1007/s00366-019-00894-y
https://doi.org/10.13203/j.whugis20140276
https://doi.org/10.1061/47627(406)20
https://doi.org/10.1061/47627(406)20
https://doi.org/10.13722/j.cnki.jrme.2016.1534
https://doi.org/10.1016/j.geomorph.2008.02.011
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1061/9780784413456.017
https://doi.org/10.156800/IJIRCCE.2016
https://doi.org/10.1007/s10346-018-1020-2
https://doi.org/10.1007/s11771-021-4734-6
https://doi.org/10.3390/ijerph20010227
https://doi.org/10.1016/j.engfailanal.2022.106331
https://doi.org/10.1007/s11356-022-24821-9
https://doi.org/10.1016/j.energy.2023.127470
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1222920

Qiao et al.

Liu, S. M., Sun, H. T., Zhang, D. M,, Yang, K., Wang, D., and Li, X. (2023b). Nuclear
magnetic resonance study on the influence of liquid nitrogen cold soaking on the pore
structure of different coals. Phys. Fluids 35 (1), 012009. doi:10.1063/5.0135290

Long, J., Li, C,, Liu, Y., Feng, P., and Zuo, Q. (2022). A multi-feature fusion transfer
learning method for displacement prediction of rainfall reservoir-induced landslide
with step-like deformation characteristics. Eng. Geol. 297, 106494. doi:10.1016/j.enggeo.
2021.106494

Marti, P, Manzano, J., and Royuela, A. (2011). Assessment of a 4-input artificial
neural network for ETO estimation through data set scanning procedures. Irrigation Sci.
29 (3), 181, doi:10.1007/s00271-010-0224-6

Miao, F., Xie, X., Wu, Y., and Zhao, F. (2022). Data mining and deep learning for
predicting the displacement of "step-like" Landslides. Sensors 22 (2), 481. doi:10.3390/
522020481

Panghal, S., and Kumar, M. (2021). Neural network method: Delay and system of delay
differential equations. Eng. Comput. 38 (2), 2423-2432. doi:10.1007/s00366-021-01373-z

Peng, Ling, Niu, Ruiqiu, and Wu, Ting (2013). Landslide displacement
prediction by time series analysis and support vector machine. J. Zhejiang
Univ. 47 (9), 1672-1679. (in chinese).doi:10.3390/ijerph19042077

Qiu, Mao, Dong, Jianhui, and Zhao, Jianjun (2020). Prediction of landslide
displacement based on time series analysis:taking the revival of Jianshanying ancient
landslide as an example. Sci. Technol. Eng. 20 (30), 12361-12366. (in chinese). doi:10.
3390/ijerph19042077

Shihabudheen, K., and Peethambaran, B. (2017). Landslide displacement prediction
technique using improved neuro-fuzzy system. Arabian J. geosciences 10 (22), 502.
doi:10.1007/s12517-017-3278-4

Frontiers in Earth Science

59

10.3389/feart.2023.1222920

Tang, F., Tang, T., Zhu, H,, Hu, C,, and Jiang, H. (2022). A semantic information-
driven stepwise landslide displacement prediction model. Environ. Monit. Assess. 194:
836, 1-23. doi:10.1007/s10661-022-10417-w

Xue, J. K., and Shen, B. (2020). A novel swarm intelligence optimization approach:
Sparrow search algorithm. Syst. Sci. &Control Eng. 8 (1), 22-34. doi:10.1080/21642583.
2019.1708830

Yang, B, Yin, K,, Lacasse, S., and Liu, Z. (2019). Time series analysis and long short-
term memory neural network to predict landslide displacement. Landslides 16 (4),
677-694. doi:10.1007/s10346-018-01127-x

Zhang, J. C,, Li, X. L, Qin, Q. Z,, Wang, Y., and Gao, X. (2023a). Study on overlying

strata movement patterns and mechanisms in super-large mining height stopes. Bull.
Eng. Geol. Environ. 82 (3), 142. d0i:10.1007/s10064-023-03185-5

Zhang, L. B., Shen, W. L, Li, X. L., Wang, Y., Qin, Q,, and Lu, X. (2023b). Abutment
pressure distribution law and support analysis of super large mining height face. Int.
J. Environ. Res. Public Health 20 (1), 227. doi:10.3390/ijerph20010227

Zheng, H. Q, mHuy, L. N,, Jin, S. Y., and Zhang, Y. (2023). Slope displacement
prediction based on multisource domain transfer learning for insufficient sample data.
Appl Geophys 20 (1), 1-9. doi:10.1007/s11770-022-1003-x

Zhou, L. S., Fu, Y. H,, and Berto, F. (2022). Prediction of landslide displacement by the
novel coupling method of HP filtering method and extreme gradient boosting. Strength
Mater. 54 (5), 942-958. doi:10.1007/s11223-022-00470-8

Zhou, X. M., Wang, S., Li, X. L., Meng, ., Li, Z., and Zhang, L. (2022). Research on
theory and technology of floor heave control in semicoal rock roadway: Taking longhu
coal mine in Qitaihe mining area as an Example. Lithosphere 2022 (Special 11), 3810988,
1-17. doi:10.2113/2022/3810988

frontiersin.org


https://doi.org/10.1063/5.0135290
https://doi.org/10.1016/j.enggeo.2021.106494
https://doi.org/10.1016/j.enggeo.2021.106494
https://doi.org/10.1007/s00271-010-0224-6
https://doi.org/10.3390/s22020481
https://doi.org/10.3390/s22020481
https://doi.org/10.1007/s00366-021-01373-z
https://doi.org/10.3390/ijerph19042077
https://doi.org/10.3390/ijerph19042077
https://doi.org/10.3390/ijerph19042077
https://doi.org/10.1007/s12517-017-3278-4
https://doi.org/10.1007/s10661-022-10417-w
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s10346-018-01127-x
https://doi.org/10.1007/s10064-023-03185-5
https://doi.org/10.3390/ijerph20010227
https://doi.org/10.1007/s11770-022-1003-x
https://doi.org/10.1007/s11223-022-00470-8
https://doi.org/10.2113/2022/3810988
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1222920

& frontiers | Frontiers in Earth Science

’ @ Check for updates

OPEN ACCESS

EDITED BY
Jingjing Meng,
Lulea University of Technology, Sweden

REVIEWED BY
Zhaolin Li,

Anhui University of Science and
Technology, China

Tong Zhao,

Taiyuan University of Technology, China

*CORRESPONDENCE
Ruimin Du,
857196702@qg.com

RECEIVED 07 April 2023
ACCEPTED 13 June 2023
PUBLISHED 27 June 2023

CITATION

Guo Y, Gu S, Du R and Shen J (2023),
Multi-parameter comprehensive early
warning of coal pillar rockburst risk based
on DNN.

Front. Earth Sci. 11:1201946.

doi: 10.3389/feart.2023.1201946

COPYRIGHT
© 2023 Guo, Gu, Du and Shen. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science

TvpPE Original Research
PUBLISHED 27 June 2023
Dol 10.3389/feart.2023.1201946

Multi-parameter comprehensive
early warning of coal pillar
rockburst risk based on DNN

Ying Guo?, Shitan Gu?, Ruimin Du** and Jianbo Shen*

'Key Laboratory of Deep Coal Resource Mining (Ministry of Education), School of Mines, China University
of Mining and Technology, Xuzhou, China, ?Baodian Coal Mine, Yankuang Energy Group Co, Ltd,
Zoucheng, China, *College of Energy and Mining Engineering, Shandong University of Science and
Technology, Qingdao, Shandong, China, *Shandong Jining Mine Luneng Coal Power Company Limited,
Wenshang, China

A multi-parameter comprehensive early warning method for coal pillar-type
rockburst risk based on the deep neural network (DNN) is proposed in this
study. By utilizing preprocessed data from the surveillance of coal pillar impact
hazards in Yangcheng Coal Mine, this study incorporates training samples derived
from three distinct coal pillar-type impact hazard monitoring methodologies:
microseismic monitoring, borehole cutting analysis, and real-time stress
monitoring. The data characteristics of the monitoring data were extracted,
evaluated, classified, and verified by monitoring the data of different working
faces. This method was applied to develop the depth of multi-parameter neural
network comprehensive early warning software in engineering practice. The
results showed that the accuracy of the depth for burst monitoring data
processing is improved by 6.89%-16.87% compared to the traditional
monitoring methods. This method has a better early warning effect to avoid
the occurrence of coal pillar rockburst hazard.

KEYWORDS

deep neural network, rockburst, model training, hazard monitoring, comprehensive early
warning

1 Introduction

Currently, most impact risk monitoring data processing methods are directly obtained
and classified according to warning values or processed by statistical machine learning
methods based on shallow models. In the feature selection process, these methods rely more
on human subjective factors, which affects the accuracy of impact risk assessment. The
rockburst hazard monitoring data are processed by deep learning feature extraction methods
to avoid the shortcomings of the traditional shallow learning models in feature selection (Ji
et al, 2003; Jiang et al, 2014; Chen et al, 2015; He et al, 2022; Wang, 2022; Li et al, 2023).

The deep learning algorithm is derived from an artificial neural network, known as a
deep neural network (DNN), which is a multilayer perceptron with multiple hidden layers.
The algorithm can learn, adjust, improve, and understand huge data contents and
independently find the optimal solution from data changes (Ren, 2016; Zheng, 2022;
Wang et al, 2023). The rockburst hazard monitoring data are enormous, and the drilling
chip method generally requires drilling multiple holes to judge the rockburst hazard of a
specific roadway or working face while driving and mining (Chen et al, 2013; Zhang, 2020; Li
etal, 2022). Microearthquake monitoring requires arranging 6-8 groups of measuring points.
Each group of measuring points acquires and records monitoring data every 10 seconds,
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FIGURE 1

Comprehensive early warning technology application diagram.

stress online monitoring is utilized to arrange more than a dozen
groups of measuring points and record data every few seconds, and a
large number of impact hazard monitoring data are obtained in
actual mining scenarios. However, there are great deficiencies in the
application and processing of data, especially in the in-depth mining
processing of monitoring data feature information (Yuan et al, 2018;
Baoetal, 2019; Ai et al, 2020). Therefore, Chen et al (2020) proposed
the integrated high-precision intelligent microseismic monitoring
technology based on the high-precision time synchronization
strategy of PTP. In general, the velocity model database was used
to match the micro-source location algorithm, and these
technologies were integrated. Many chaotic initial data were
abstracted into distinguishing feature information, evaluated, and
classified through the DNN to ensure that the precursor information
of rockburst hazard monitoring can be accurately identified in the
subsequent monitoring and early warning (Pan, 2003; Bosch et al,
2007; Sun et al, 2013; Lu et al, 2021; Yin, 2022; Zhang et al, 2023).

2 Monitoring method of rockburst
hazard

2.1 Monitoring technology

Rockburst hazard monitoring mainly includes drilling chip
method monitoring, microearthquake monitoring, stress online
monitoring, and electromagnetic radiation (Jiang and Zhao, 2015;
Lan and Zhang, 2022).

Among them, the drilling chip method monitoring mainly
monitors the discharge amount of drilling cuttings, the change in
particle size of drilling cuttings, and the change in drilling noise and
strength and judges the crushing zone range, plastic zone, and elastic
zone in the coal body using a number of drilling cuttings. The rockburst
hazard of the coal pillar is judged by the dynamic effect during drilling
to identify the stress state of the coal body (Zhu et al, 2014; Jia et al,
2019). Generally, a rockburst hazard occurs when the average
pulverized coal amount per meter exceeds the critical pulverized

Frontiers in Earth Science

coal amount. When the pulverized coal increases first and then
decreases with the increase in the drilling depth, it is considered that
there is no impact hazard but stress concentration. The dynamic
properties, such as drilling suction and sticking, are based on the
dynamic characteristics of the rockburst. This is more obvious from
the increase in drill cuttings’ particle size of pulverized coal.

Microearthquake monitoring is mainly used to monitor the
whole mine according to microseismic sensors, determine the
location and energy of the seismic source, compare it with the
energy calculated according to the minimum energy principle, and
adjust the early warning energy combined with the actual
monitoring experience of the mine to determine the monitoring
indicators within the monitoring coal pillar. The driving and mining
speed affect the evolution process of strata fracture movement. The
determination of an early warning value for microearthquake
monitoring should fully reflect the influence of tunneling and
mining, with the early warning value of microearthquake
monitoring for a single event being set to 10°J (Tan et al, 2022;
Wang et al, 2014; Liu et al, 2022; Zhang et al, 2023).

FIGURE 2
Activation function structure diagram.
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FIGURE 4
Evaluation of the neural network structure by an impact ground

the stress reaches the coal failure’s ultimate stress, the rockburst will
be caused. At the same time, the stress state in the coal pillar can be
reflected by stress online monitoring, and the safety factor of the coal

Stress online monitoring takes coal stress increment as the
rockburst hazard evaluation index. Before a rockburst hazard
occurs, there will be a gradual increase in stress, and only when
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FIGURE 5
Position of the working face and geological condition.

pillar can also be obtained by the coal pillar strength. The early
warning of coal pillar impact hazard can be obtained based on the
change in stress increment (Wang et al, 2015; Dou et al, 2020).

2.2 Multi-parameter comprehensive early
warning

The impact monitoring methods are becoming complicated,
with the increase in monitoring data. When monitoring is equipped
with multiple monitoring systems, especially when the monitoring
data are contradictory, it is a common problem to rely on one of the
monitoring methods or comprehensively evaluate multiple
monitoring methods simultaneously (Jiang et al, 2011; Luo et al,
2013; Lv et al, 2013; Wang et al, 2018; Liu and Li, 2023).

Microearthquake monitoring is a means of regional rockburst
hazard monitoring, which has a wide monitoring range and is
suitable for large-scale regional rockburst monitoring. The position
and level of energy events are reflected and confirmed through
microearthquake monitoring. Hence, microearthquake monitoring is
an effective means of regional rockburst monitoring. The earthquake,
quantity, frequency, intensity, density, scale, and properties of rock mass
fracture can be monitored by microseismic monitoring. Stress online
monitoring has the advantages of good continuity and the capability of
monitoring stress change in the coal pillar while reflecting its stress
change. Hence, it is suitable for continuous monitoring of long-term
impact hazards. The position of the stress peak in the coal body and
whether the supporting pressure of the coal body reaches its limit
strength are based on the relationship between the drilling chip’s
monitoring value obtained by the drilling chip method and the
stress state and damage degree of the working face and coal pillar.
The stress in coal mass is reflected by the amount of drilling chips,
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which effectively monitors the rockburst risk at a fixed point. The
application of comprehensive multi-parameter monitoring and early
warning technology of rockburst is shown in Figure 1.

For coal pillar rockburst, due to many influencing factors,
rockburst has different stress characteristics and energy variation
laws, and it is difficult to effectively monitor the rockburst hazard by
using a monitoring method. Therefore, an appropriate monitoring
method should be selected based on the expected rockburst
performance characteristics (Jia et al, 2014; Zhang, 2021; Wang
et al, 2022; Liu et al, 2023a; Liu et al, 2023b).

3303 Data of drill chip 3303 Stress online data of belt

[ along belt entry M Microseismic ’N\ calry
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L oalonagar:il e:tryc P data N 3303 Stress (e)rr:ltir;e data of rail
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FIGURE 6

Normalization of monitoring data.
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Early warning index of the critical coal quantity.

3 Deep learning analysis of monitoring
data

3.1 DNN

The DNN model structure includes an input layer and several
hidden layers. The difference between DNN and BP neural networks
is the number of hidden layers, where DNN has many hidden layers
that might exceed 10 in some cases. The data enter the network from
the input layer and passes through L hidden layers: H”, H?, H?,
and H", to perform data abstraction and feature extraction step by
step. H" is the desired representation, and this process is the
representation learning of DNN.

The basic unit in DNN is the node which comprises an input,
a state function, and an activation function, wherein the input
includes an input value and a connection weight. The input value
is the same as the output value of the upper node, and the weight
adjusts the node’s connection strength. The state function is the
linear accumulation of the input values and weights, and the node
state is controlled by an offset term. The general state function
form is provided in Eq. 1, while the state function’s matrix is
given in Eq. 2. The activation function is the number used to
select a linear, non-linear, continuous, discrete, numerical, or
probability function to control the output range (Zhang et al,
2015), as shown in Figure 2.

N
yi = Y xwg +b;, 6))
k=1
yi(x) = xT'x w+b;, (2)

where x; is the kth input value of the upper layer of the network,
including energy x;, frequency x,, drilling powder x;, deep hole
stress x4, and shallow hole stress xs5; W is the connection strength
between the node and x;; and b; is the bias term.

Support vector machine (SVM) plays a critical role in
classification and linear regression. This method uses statistical
learning theory to establish a decision surface and maximize the
isolation between different results. In this paper, the early warning
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identification results of coal pillar rockburst hazards are divided
into four situations: danger (DAN), probable danger (CRI),
probable danger (AN), and safety (NOR). The support vector
machine classifier is extended from binary classification to a
multi-class classifier. The classifier is constructed with n(n —1)/2 =
6 based on the one-to-one method. Hence, six binary SVMs must
be constructed. The specific classification process is shown in
Figure 3.

The DNN constructed in this paper adopts the greedy
initialization method, and the data representation of the neural
network is obtained by iteration of input values. The network’s
internal parameters are initialized to obtain a better initial value that
reduces the possibility of the network falling into the local limit
value. The DNN model adopts greedy initialization layer by layer to
obtain a better training effect, or the optimal value, so that the low-
level network can be fully trained. First, the deep network is built by
restricted Boltzmann machine (RBM), and the marked data and
unlabeled data are used to find the network space W.

A fully connected directional multilayer neural network is
established. The input layer h° includes energy, frequency,
powder drilling amount, deep-hole stress value, and shallow-
hole stress value. The label layer contains four units: danger,
probable danger, probable danger, and safety. The number of
hidden layers and nodes in each hidden layer are selected
through an iterative approach. In the training process, one
hidden layer is trained first, this layer is fixed next, then two
hidden layers are trained, and multiple hidden layers are trained
according to the second method. Thereafter, the spatial
parameter w of the multilayer network is found through label
data. The gradient descent method is used to train the deep
structure based on the exponential loss function, and the
parameter space is further optimized using the labeled data.
The structure of the rockburst evaluation neural network is
shown in Figure 4.

According to the DNN characteristics, if the number of nodes in
each layer is enough, each hidden layer’s output value contains the
input data’s complete information. Thus, each hidden layer
represents the input data, but the specific form is different.
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3.2 Sample data

The monitoring data of the drilling cutting method,
microseismic monitoring data, and stress online monitoring data
are analyzed based on the monitoring methods and conditions of the
rockburst in Yangcheng Coal Mine. The monitoring data of
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FIGURE 9
Typical stress monitoring
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rockburst hazards during mining in the 3303 working face of
Yangcheng Coal Mine were collected and used as training data to
develop the neural network. The layout of the 3303 working face of
Yangcheng Coal Mine is shown in Figure 5.

Before using the DNN model to train the impact monitoring
and early warning data, it is necessary to preprocess the mine
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impact monitoring data and correct and deal with some missing
and obvious errors to ensure data reliability. Preprocessing of
rockburst hazard monitoring data mainly checks the data’s
completeness and accuracy. The specific processing methods
include removing the inaccurate data, trimming the missing
data, and rearranging the out-of-order monitoring data. The
microseismic monitoring system extracts, records, and saves
microseismic events and continuously saves energy signals. The
errors in microseismic monitoring are mainly related to timing
and wave velocity. However, because data processing software
of the microseismic system itself has good data judgment and
ability, the
monitoring data only requires checking the integrity. Online

extraction preprocessing of microseismic
stress monitoring data errors are mainly caused by problems
such as initial pressure, pipeline length, and inner diameter, so
it is necessary to eliminate and correct the measuring points
with abnormal initial stress and the wrong points. The problems
of drilling cutting monitoring data are mainly data
discontinuity, errors caused by construction conditions, and
data loss caused by untimely records. Therefore, the processing
of drilling cutting monitoring data needs to complete the
monitoring data and eliminate the wrong parts. The

rockburst hazard monitoring training samples are selected,

Close |

FIGURE 11

DNN multi-parameter integrated early warning system.
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Schematic diagram of DNN multi-parameter comprehensive early warni

and the data are normalized by the mapminmax function. The
processing results are shown in Figure 6.

3.3 Classification index

Determining the monitoring and early warning index of the
drilling cutting method is performed to calculate the amount of
pulverized coal in the area without impact danger and discard the
first 1m of pulverized coal. Under normal circumstances, the
pulverized coal per m is G, the drilling rate index is K, the
correction coefficient o is 1.1, and the critical pulverized coal
amount is Gi =G-K-a. According to test results, the critical
pulverized coal amount of the early warning index is calculated,
the rockburst danger in the monitored area is judged, and the impact
danger monitoring data sample is selected. The coal powder early
warning index of Yangcheng Coal Mine is shown in Figure 7.

The laws of early warning of impact hazards summarized from
the microseismic monitoring site include total energy active high-
frequency sub-vibration type, vibration silence maintaining high-
frequency sub-vibration type, typical strong impact hazard early
warning, monitoring daily energy release curve, and cumulative
energy characteristic curve, as shown in Figure 8.
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According to the monitoring experience of Yangcheng Coal
Mine, early warning is required when the stress increment
reaches 2 MPa, the stress of 8 m measuring point reaches
11 MPa, or the stress of 14m measuring point reaches
12.5 MPa. High-stress concentration and sudden change are
the necessary conditions to induce a rockburst, so before a
rockburst occurs, the stress values of the surrounding rock all
change greatly. Therefore, analyzing the borehole stress gauge
reveals the change in surrounding rock stress, and when the stress
changes greatly, the rockburst is warned. The typical rockburst
stress monitoring curve is shown in Figure 9.

3.4 Model training

After data preprocessing, the data of microseismic monitoring,
online stress monitoring, and drilling cutting monitoring are selected as
experimental samples. The data are further corresponded according to
timepoints to obtain input vectors, and the sample data are divided into
training and verification data. The microseismic data include energy
and frequency, online stress monitoring data include deep hole stress
and shallow hole stress, and the drilling cutting monitoring data include
the number of drilling cuttings.
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In the DNN model, the performance may be improved with the
deepening of the network layers, but there may also be over-fitting.
For the DNN, there may be a small gradient near the input layer
and a large gradient near the output layer. When the model’s
learning rate is constant, the learning rate near the input layer will
be slow, while that near the output layer will be too fast, which may
lead to local minimum. For such problems, the neural network is
generally optimized by changing the activation function or the
learning rate. Using the ReLU activation function instead of
sigmoid activation function solves the training gradient vanish

TABLE 1 Multi-source information early-warning number table.

nal view of coal pillar impact hazard monitoring data classification. (B)

problem, and the output of the ReLU activation function is
calculated as max (0, x"w + b).

After preprocessing the data, five-dimensional parameters
corresponding to the pulverized coal amount, energy, frequency,
shallow hole stress, and deep hole stress can be obtained. The
standard sample output divides the impact hazard monitoring
results into four levels: danger, probable danger, probable danger,
and safety. This paper uses the early warning information of
rockburst hazards extracted from the monitoring data of
1310 and 3303 working faces in Yangcheng Coal Mine as

System name DAN/time CRl/time False alarm/time Accuracy/time Accuracy/%
Microearthquake 12 266 42 236 75.88
Stress 17 309 68 258 82.95
Drill chips 14 293 52 255 83.06
Comprehensive early warning of microearthquake stress 6 248 36 218 85.86
Multi-parameter comprehensive early warning 10 266 20 256 92.75
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training samples. According to the data characteristics, types, and
quantities of judgment results, it is determined that in the pre-
training stage, the number of iterations for each layer is 30, the
learning rate is 0.1, and the initial impulse v is set to 0.5. In the
training stage of supervised learning, the conjugate gradient descent
method is used, and the number of training steps is 3,325.

4 Evaluation classification model and its
application

4.1 Multi-parameter comprehensive early
warning software

The procedure for establishing DNN  multi-parameter
comprehensive early warning is shown in Figure 10. The early
warning process of the impact hazard using multiple parameters
includes the following: when the model has not been trained, train
the model by configuring training parameters to select sample data and
basic algorithms; when the training is completed, directly select the data
to be evaluated and import the data into the trained model to obtain the
evaluation result. This method evaluates and classifies the output based
on the rockburst hazard monitoring data characteristics and obtains the
rockburst hazard grade.

Based on the characteristics of coal pillar rockburst monitoring
data, it is determined that the functional modules of the DNN multi-
parameter comprehensive early warning model include the graphic
module, data loading module, and algorithm analysis module. The
graphic module mainly displays data and early warning results. The
data loading module is used to create new data or extract stored data
and classify the data. The algorithm module is used to select the basic
parameters of the neural network model, and its DNN multi-parameter
comprehensive early warning software interface is shown in Figure 11.

The real-time database is established through the monitoring
data obtained by the drilling chip method, microearthquake
monitoring, and stress online monitoring. In addition, the
of different hazard
monitoring data are drawn, and the data are preprocessed.

continuous numerical curves impact
Intelligent identification method for coal pillar rockburst hazard
monitoring finds the characteristics of monitoring data, including
the relationship between indicators and causality or correlation
between indicators and evaluation targets. Studying the data and
mining the data characteristics are needed to establish an evaluation
model. Using the DNN multi-parameter comprehensive early
warning model, the imported information of rockburst hazard
monitoring is evaluated, and conclusive information on the safety
status of the rockburst hazard is obtained. Data processing is carried
out in the multi-parameter comprehensive early warning system to

obtain the interface information, as shown in Figure 12.

4.2 Early warning result analysis

The DNN model is used to evaluate and classify the test data. Two
groups of stress online monitoring and microearthquake monitoring data
are selected for training to obtain two-dimensional stress and energy
classification results. Three groups of microearthquake, stress, and drill
chip data are selected for training to obtain three-dimensional
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classification stress, pulverized coal, and energy results, where yellow
indicates danger, red indicates probable danger, pink indicates probable
danger, and blue indicates safety. The evaluation and classification results
of the test data are shown in Figure 13.

Pre-training abstractly extracted feature information of impact
hazard monitoring data, learning impact hazard monitoring data
through DNN, and evaluating and classifying different data groups.
The node’s output value reflects the feature extraction result of the input
data by the neural network in this layer structure to obtain new data
representation. When the output value of a node is large, that is, closer to
1, the role and position of the node in representation are great, and
conversely, the output value is small, and its importance is negligible.
Hence, the situation of feature learning can be judged according to the
node’s output value.

In the early warning mode of multi-parameter comprehensive early
warning, comprehensive monitoring information is obtained through
different monitoring means. However, there is a lack of an effective,
comprehensive evaluation method when there is a contradiction in
monitoring data, and the daily obtained monitoring data are not used
deeply enough. Thus, the monitoring data are not mined. The DNN
model is used to extract the features of the monitoring data, then
evaluate and classify the monitoring data, and make early warnings of
rockburst hazards according to the classification results. The DNN
SVM classification method is used to judge the accuracy of the
rockburst hazard. Compared to the traditional monitoring and early
warning methods, this approach fully uses the monitoring data and has
a better early warning effect. The specific comparison results are shown
in Table 1 (Qin et al, 2022; Zhang et al, 2022).

5 Conclusion

(1) The coal pillar rockburst model is established based on the DNN
analysis using the drilling chip method, stress online, and
comprehensive microearthquake monitoring. The energy, stress,
and pulverized coal data recorded in the mining process of
Yangcheng Coal Mine are used for training, and the precursor
characteristic information of rockburst hazard monitoring data is
extracted to realize the evaluation and classification of rockburst
hazard monitoring results, and a multi-parameter comprehensive
early warning system based on DNN is designed to perform the
comprehensive monitoring and early warning of the coal pillar
rockburst hazard.

(2) The DNN model can learn data features independently. The DNN
model is trained by the collected rockburst hazard monitoring data.
The features with discrimination are extracted from the monitoring
data by greedy layer-by-layer training methods. The unsupervised
learning model is optimized by the symmetric hidden layer
method. The supervised learning model is optimized by adding
a single-layer algorithm to obtain the standard output value, which
improves the data processing ability of the model.

(3) Multi-parameter comprehensive early warning based on DNN
improves the early warning accuracy of rockburst risks.
Compared with traditional microseismic monitoring, drilling
cuttings method, online stress monitoring, and comprehensive
microseismic stress early warning, the accuracy of this method is
improved by 16.87%, 9.8%, 9.69%, and 6.89%, respectively. This
study provides a new method for rockburst monitoring and early
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warning and introduces a new research idea for rockburst
monitoring and early warning.
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There are abundant deep coal resources in northern Shaanxi, but the fragile
natural environment in this area hinders the large-scale exploitation of oil-rich
coal. In-situ thermal conversion of deep coal to oil and gas will become an
environmentally friendly technology for oil-rich coal mining. Accurate prediction
of oil-rich coal tar yield in various regions is a prerequisite. Based on a particle
swarm optimization algorithm and two machine learning algorithms, BP neural
network and random forest, a prediction model of tar yield from oil-rich coal is
constructed in this paper. Combined with the particle swarm optimization
method, the problem of slow convergence speed and possibly falling into local
minimum value of BP neural network is solved and optimized. The results showed
that the PSO-BP had a convergence speed about five times faster than that of the
BP neural network. Furthermore, the predicted value of the PSO-BP was
consistent with the measured value, and the average relative error was 4.56%
lower than that of the random forest model. The advantages of fast convergence
and high accuracy of the prediction model are obviously apparent. Accurate
prediction of tar yield would facilitate the research process of in-situ fluidized
mining of deep coal seams.

KEYWORDS

particle swarm optimization (PSO), BP neural network, machine learning, oil-rich coal, tar
yield prediction

1 Introduction

Tar-rich coal is a resource that integrates coal, oil, and gas attributes, and it has
received significant attention due to its high tar yield (Ju et al., 2021; Du and Li, 2022).
When the coal is subjected to pyrolysis (500°C-700°C) and Gray-King assay, coal with a
tar yield of more than 7% and less than or equal to 12% is classified as tar-rich coal (Jiang
etal., 2020; Shi et al., 2022). This type of coal is an important way to increase oil and gas
supply (one tonne of tar-rich coal can yield approximately 10% oil and 500 m®> of
combustible gas (Marshall et al., 2015; Chen et al., 2017; Li et al., 2022; Ma et al., 2022),
thereby realizing clean and efficient utilization of coal resources. Specifically, China is
rich in tar-rich coal resources but faces the pressure of “poor oil and gas” energy, which
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has promoted the development of the coal-to-liquids industry
(Wang et al., 2020; Wang et al., 2021; Liu et al., 2023a; Liu et al.,
2023b; Liu and Li, 2023). The subversive idea of deep fluidization
mining is to realize the local fluidization of solid resources in
deep
biological, and mixed fluidization resources, and efficiently

earth, form liquefied, gasification, electrochemical,
and intelligently transfer them to the surface in the form of
fluidization. The subversive theory and technical conception of
deep-ground fluidized mining break through the limitation of the
traditional mining depth of coal solid mineral resources, and
fundamentally subvert the mining mode of reliable resources.
Oil-rich coal’s oil and gas properties ensure in-situ conversion in
fluidized mining technology. The fluidized mining technology of
deep coal seams has also been deeply studied (Zhang et al., 2023;
Zhang et al., 2023; Li et al., 2023). Oil-rich coal has been one of
the important ways to guarantee national energy security in
China. However, more than 80% of coal is directly combusted
for power generation, result in a massive wastage of precious oil
resources (Xu et al., 2015; Ju et al., 2021). Moreover, only a few
coal samples were tested for tar production during past geological
explorations, limiting the study and large-scale development of
tar-rich coal (Fu et al, 2023; Wang et al., 2023). Thus, it is
essential to explore the mathematical relationship between tar
yield and the geological evaluation index of tar-rich coal to
predict the tar yield.

In the study of the tar-rich coal in oil-rich coal mining areas,
some scholars have summarized the mathematical relationship
between tar yield and coal seam thickness, industrial analysis,
macrolithotype and micro-composition, ash content, actual
density (Shi et al, 2022). Furthermore, a prediction model for
the tar yield of low-rank coal in Shenfu Southern mining area
was established using multiple linear regression and other
mathematical methods, and the multiple correlation coefficient
reached 0.8 (Guo et al, 2021). A general relationship exists
between tar yield and these parameters, but the Pearson
correlation coefficient is low, indicating a complex nonlinear
relationship. Thus, a machine learning method is suitable for
investigating the relationship between tar vyield and other
geological evaluation indices of coal. With the progress of science
and technology, the technique of machine learning is more and
more applied to the geological coal industry such as gas outburst
prediction (Wu et al., 2020; Gao et al., 2023; Zhu et al.,, 2023), coal
ash softening temperature prediction (Liang et al, 2020), coal
gangue identification (Wang et al., 2022), coal dust wettable
identification (Zheng et al, 2023), coal seam impact risk
assessment (Zhang et al, 2022), etc. It has become a new
research hotspot in coal geological engineering practice to mine
the relationship between various nonlinear big data through
machine learning algorithms to realize data prediction. Based on
the geological data, coal quality testing data and geophysical logging
data of Huangling mining area in the past geological exploration
stage, the relationship between tar-rich coal tar yield and
geophysical logging data has been studied, and the calculation
model of tar-rich coal tar yield and logging compensation density
value has been established (Yan et al., 2022). Using logging data, BP
neural network technology has been applied to predict coal tar yield
(Zhao et al., 2021).
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Although the above study can get a particular-pattern of tar
yield, it is only a rough estimate. The research using the BP neural
network method to predict the tar yield is still in the beginning
stage. There are some problems, such as slow convergence speed
and easy falling into the local optimum, so it can not realize the
accurate prediction of the tar yield of the coal that has been mined
before but has not been tested (Zhang et al., 2022; Li et al., 2022).
In this paper, we established the prediction model of PSO-BP,
which combines the PSO algorithm and BP neural network based
on the geological evaluation index of tar-rich coal. In this paper,
the particle swarm optimization algorithm (PSO) is used to
optimize the BP network connection weights and thresholds to
overcome the defects of BP network. Based on the measured coal
quality data in the past, the PSO-BP tar yield prediction model
was established to predict the coal tar yield. The convergence
speed and prediction accuracy are significantly improved
compared with the traditional BP network.

2 Materials and methods
2.1 Experimental data

Samples of coal were obtained from coal seam 27 in oil-rich
coal mining areas, which have high calorific value, rich tar, low
ash, low sulfur, and low phosphorus. The coals were analyzed
according to ISO 17247:2013 (Coal-Ultimate analysis) and ISO
17246:2010 (Coal-Proximate analysis). Proximate analysis used
an automatic analyser to determine the moisture (M,q4), ash (Aq),
volatile matter (Vg,s), and fixed carbon (FC,q) content of coal
samples. The ultimate analysis of coal was performed to
determine the elemental content of C,H and S. The seven
geological evaluation indices [volatile matter (Vq,¢), ash (Ag),
moisture (M,q), fixed carbon (FC,q), Sulfur (S.4), hydrogen
(Hgar) and carbon (Cgu)] and tar yield values of 52 coal
samples were used for this research. These seven coal quality
indicators are the external manifestation of the essential nature of
coal. From the analysis results of these seven coal quality
indicators, the types of coal, processing and utilization ways
and mining technologies can be related and corresponding
policies can be adopted for efficient mining.

Some studies show that with the increase of volatile matter, the
coal tar yield shows a weak, increasing trend. The moisture content
in coal decreases with the increase in coal grade, and the moisture
content also affects the tar yield. The effect of ash content on tar yield
is reflected in that clay minerals in ash composition are positively
correlated with tar. In contrast carbonate minerals are negatively
correlated with tar yield (Du and Li, 2022). Tar yield is also closely
carbon structure of the carbon in coal. Carbon content (Cg,¢) and
hydrogen content (Hg,f) determine the H/C atomic ratio of coal,
which indicate the key hydrogen-rich structure or the distribution
type of hydrogen and oxygen elements in coal (Liu et al., 2016; Li
et al, 2022), which plays a more critical role in tar yield. The
migration of sulfur content (S, 4) during pyrolysis also affects the tar
yield. In addition, as the most widely tested items in coal, these seven
indices have been generally recorded in the previous exploration
results. The selection of these seven indices to predict the coal tar
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FIGURE 1
BP neural network structure for predicting tar yield.

yield of great significance to realize the full utilization of the previous
exploration results.

2.2 BP neural network

The BP network has a simple structure, is easy to use, and has
broad applicability (Hinton et al., 2006). The design of the BP neural
network is shown in Figure 1, which is composed of an input layer, a
hidden layer and an output layer. The layers are fully connected to
each other (Wu et al., 2020; Wang et al., 2022). The input layer is the
normalized value of each coal geological evaluation index, and the
output layer is the value of tar yield to be predicted.

2.3 Particle swarm optimization (PSO)
algorithm

Although BP neural network has excellent self-learning, high
fault tolerance, good generalization performance, and other
advantage, but could be better, there are some things that could
be improved. Given the main defect of slow convergence speed,
many researchers focus on combination with other intelligent
algorithms. The combination with different intelligent algorithms
is mainly combined with genetic algorithm (GA) and Particle Swarm
Optimization (PSO) algorithm. We introduce PSO to improve the
convergence speed and accuracy of the tar yield prediction model.

Based on previous research, the PSO algorithm can obtain the
optimal global value and assign it to the weight and threshold of the
BP neural network, which can overcome some of the defects of the
BP neural network (Li et al., 2022; Zhu et al., 2023). PSO is an
algorithm that searches for the best solution by simulating the
movement and flocking of birds. The algorithm randomly
initializes a flock of birds over the search space, where each bird
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is called a “particle.” These “particles” fly with a certain velocity and
find the best global location after some iterations. The steps of the
PSO algorithm are as follows (Moazen et al., 2023; Song et al., 2023;
Yin et al., 2023).

Step 1. Initialize the particle swarm (there are n particles): assign a
random initial location and velocity to each particle.

Step 2. Calculate the fitness value according to the objective
function of the optimization problem.

Step 3. Compare the fitness value of the particle’s current location
with its historical best location (pbest). If the fitness value of the
current location is better, the place location is replaced.

Step 4. Compare the fitness value of the particle’s current location
with its global best location (gbest). If the fitness value of the current
location is better, the gbest is replaced.

Step 5. Update the velocity and location of each particle according
to Eq. 1 and Eq. 2.

vE = w4+ clrl(pbest,-d - xf;,’l) + czrz(gbestd - xf.‘d’l) (1)

k k- —

Xig = X" + vy )
vk, represents the d-dimensional component of the velocity
vector of particle i in the K-th iteration; x%, represents the
d-dimensional component of the position vector of particle i in
the K-th iteration; ¢; and ¢, represent the acceleration constant and
are used to adjust the maximum learning step length; r; and r,
represent two random parameters with a value range of [0,1] to
increase the randomness of search. Inertia weight w represents the
non-negative parameter and is used to adjust the search range of the
solution space.
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Step 6. The global optimum is output if the stopping criteria are
achieved, Otherwise, the algorithm goes back to Step 2.

2.4 Random forest regression

Random forest is a supervised machine learning method that
integrates decision trees as individual learners. It further introduces
randomness into the training process of decision trees, so that it has
excellent anti-overfitting and anti-noise ability. The random forest
algorithm performs the following steps.

1) Extract a training set from the original sample. Each round uses
Bootstrapping to extract n training examples from the original
sample set (with replacement sampling). A total of k extractions
are made.

2) One training set obtains a model at a time, resulting in k models
from k training sets.

3) For the regression problem, calculate the mean of the above
model as the final result.

3 The establishment of a tar yield
prediction model

3.1 Structure design of BP neural network

Firstly, the node number of the input and output layers of the BP
network is determined according to the actual problem. Then the
most appropriate hidden layer number and node number are
determined on the premise of ensuring the accuracy of the
algorithm. As for the number of hidden layers, the three-layer
BP network of a single hidden layer can complete the nonlinear
mapping of any dimension (Hinton et al., 2006; Liang et al., 2020;
Zhang et al., 2022). Thus, the network structure of a single hidden
layer is adopted. As for the number of nodes in the hidden layer, too
many nodes may lead to a massive amount of computation, while
too few nodes may reduce the model’s accuracy (Tang et al., 2023;
Xie et al., 2023). Thus, the number of hidden layer nodes is usually
determined according to the empirical formula, as shown in Eq. 3:

H=VI+O+b (3)

Where H, I and O are the nodes of the network’s hidden layer,
input layer and output layer respectively. B is a natural number
from (0,10).

3.2 The structure of particles and
populations

Based on the particle population of training sample data, the
mapping relationship between the weight and threshold of the BP
network and the particle dimension of PSO is established. Suppose
the number of neurons in the input layer, hidden layer and output
layer of the BP network is I, H and O respectively, the spatial
dimension of PSO particles is d=IxH+HxO+O, which corresponds
to the number of weights and thresholds in the BP neural network.
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3.3 Construction of fitness function

The mean square error calculation formula of BP neural network
output is used as the fitness function of PSO algorithm, as shown in
Eq. 4.

n

F=MSE= %Z(y,- )

i=1

(4)

Where y; is the i-th actual output value of the network; y} is the
expectation value of the i-th.

3.4 Design of PSO-BP neural network model

The steps of weight and threshold of BP neural network
optimized based on particle swarm optimization are as follows.
The algorithm flow of the PSO-BP model is shown in Figure 2.

Input: Training sample set.

Step 1. Initialize network parameters.

1) Set the learning parameters of the BP network. These include the
activation function, training function, learning rate (Ir), goal
error (goal), and maximum iterations (epochs), which are
determined based on the training sample data.

Set the parameters of the PSO algorithm. The parameters in the
particle swarm are initialized, including the number(n) of
particles, their initial location (x;) and velocity (v;) of particles,
acceleration constants (c;, c), inertia weight (w), optimal
personalized value (pbest) and global optimal value (gbest).

Step 2. Tteratively update particle locations, velocities, individual
optimal values, and global optimal values.

1) Calculate the fitness value F(x) of each particle based on Eq. 4,
and then calculate the pbest and gbest.

2) Update the location and velocity of particles based on Eq. 1 and
Eq. 2, and then update the pbest and gbest.

Step 3. Evaluate whether one of the following conditions is met. If
yes, go to Step 4; otherwise, Step 2.

1) The training errors of the network meet the accuracy
requirements.

2) The training frequency of the network reaches the maximum
number of iterations.

Step 4. Output the global optimum (gbest) and assign the weight
and threshold to the network. The algorithm ends.

Output: A trained BP neural network. This illustration belongs
to 3.5.

3.5 The structure of random forest

The establishment of random forest model is inseparable from the
combination of decision trees. Similar to the flowchart of the tree
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TABLE 1 Original training sample data (partial data).

10.3389/feart.2023.1227154

Serial Moisture Ash Volatile matter  Fixed carbon Sulfur Carbon Hydrogen Tar yield
number (M34)% (Ag)% (Vaan)% (FCaa)% (St.q)% (Cyap)% (Haar)% (Tar.d)%
1 6.76 449 36.78 56.3 0.34 83.4 468 9.4
2 6.19 9.19 35.65 54.82 0.87 81.38 412 7.8
3 5.34 10.79 37.31 52.94 043 81.53 47 9.2
4 571 9.97 37.73 52.86 047 81.67 4.88 111
5 518 10.97 36.99 53.19 26.72 0.51 81.53 48
6 5.93 7.25 37.66 54.39 27.94 045 81.81 4.86
7 6.07 7.24 37.69 54.29 27.82 0.49 81.83 4.83
8 5.73 7.47 36.62 55.29 27.83 0.57 82.2 465
9 459 189 37.12 48.66 23.62 0.86 80.51 428
10 5.62 1857 36.17 49.05 23.67 0.65 80.82 433
11 5.74 10.84 37.34 52.66 26.08 0.94 81.06 427

TABLE 2 Statistical data of various coal quality indicators.

Indicators Average Variance Kurtosis Skewness Correlation coefficient
Moisture (M,a)% 632 1.31 1.20 0.44 0.08
Ash (Ag)% 9.84 73.38 19.93 3.80 -0.18
Volatile Matter (Vg,1)% 38.08 10.76 0.05 025 -0.11
Fixed Carbon (FC,q)% 5231 3443 8.81 -2.22 020
Sulfur (S.4)% 0.68 0.20 11.43 2.86 -0.45
Carbon (Cya)% 80.98 3.01 5.01 -1.85 0.16
Hydrogen (Hgap)% 447 0.13 —-0.02 —-0.15 0.23
Tar Yield (Tar.d)% 8.02 171 0.48 -0.18 1.00

structure, a decision tree is a recursive process from top to bottom. It
starts from the tree’s root node, selects the optimal features in different
internal nodes, determines the corresponding branch according to the
test output, and the final result comes from the nodes of the leaf of the
decision tree (Figure 3).

4 The studying and training of the tar
yield prediction model

4.1 Learn parametric sample selection

We collected 52 coal quality analysis data of coal seam 27 in oil-rich
coal mining areas, and used the data set random partition function in the
python language sci-kit-learn machine learning library to take 40 coal
quality analysis data as the training data set of the model, and the other
12 coal quality analysis data as the test data set of the model. The
industrial analysis and elemental analysis data of 40 groups of coal
samples are used as training dataset for the model. The dataset includes
seven geological evaluation indices [volatile matter (Vg,), ash (Ag),
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moisture (M,q), fixed carbon (FC,q4), Sulfur (S,4), Hydrogen (Hg,g), and
carbon (Cg,g)] and tar yield values of 40 coal samples used as the model
output parameters. Part of the original training sample data is shown in
Table 1. The statistical data of the actual training sample and the
correlation coefficients with the tar yield are shown in Table 2.

4.2 Preprocessing training data

If the geological evaluation indices of coal with significant
differences are directly input to the model, the prediction
accuracy will be reduced and the convergence speed will be slow.
Therefore, the z-score standardized method was adopted to map the
input sample data to the same magnitude, as shown in Eq. 5:

1,2,5m,j = 1,2,,m) (5)

Where X;; represents the data of the i-th sample and j-th
variable before standardization; Zjj is the standardized data; Xj
and s; are the average and variance values in the data series.
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BP neural network iterative training optimization process.

4.3 Select and set model parameters

4.3.1 Select studying and training parameters of BP
networks

Based on the practical problem, the number of nodes in the
input and output layers of the BP neural network was determined
tobe 7 and 1 respectively. These values were then substituted into
Eq. 3 to calculate that H ranged from 2 to 13. After repeated tests,
the optimal number of hidden layer nodes was determined to be
4. The target error goal was 0.25, the learning rate was set to
0.005, and the maximum number of iterations was set to epochs =
3000. The activation function for the hidden layer was selected as
the Sigmoid function, a smooth function biased towards
derivative and can map any input to the range of [0,1]. The

10.3389/feart.2023.1227154

BP neural network’s iterative training and optimization process is
shown in Figure 4.

4.3.2 Set the PSO algorithm parameters

The number of particles generally ranges from 20 to 200. A large
number of particles leads to a robust global optimization ability of
the algorithm but also increases the amount of computation and
slows down the convergence speed. Thus, based on the complex
nonlinear relationship between the input and output of the model,
the number of particles was set to 50 to obtain the global optimum.

The inertia weight w affects the global and local search ability of
particles. The more oversized w is, the more conducive it is to global
search; the smaller w is, the more conducive it is to local search.
Therefore, the value of w was set to 0.1.

The acceleration constants ¢; and ¢, are the weights that adjust
the role of their experience and social experience in their motion.
The fixed ¢; and ¢, are only limited to the application of some
problems and cannot be generalized to all problem domains. In
general, ¢; + ¢, < 4, and ¢; = ¢, = 1.49445 is commonly used.

To balance the algorithm’s running speed and the practical
problem’s needs, the maximum of iterations was set to 30 (Li et al.,
2022).

4.3.3 Set the random forest parameters

To establish a reliable tar yield prediction model, it is necessary
to adjust the parameters of the random forest regression algorithm
to obtain the optimal algorithm parameters.

The most crucial algorithm parameter is the number of decision
trees. A small number of decision trees will not make the effect of the
model entirely play, and a large number of decision trees will not
only reduce the training and prediction speed of the model, but also
cause the problem of over-fitting. In this problem, when the number
of decision trees is greater than 50, the accuracy performance of the
model almost stops improving. Therefore, the value 50 is selected as
the optimal this paper’s random forest regression algorithm in this

paper.

4.5 1.50
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FIGURE 5

PSO-BP neural network iterative training process.
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Comparison of predicted values and measured values of tar yield
in each model.

Parameters such as max tree depth, max min leaf nodes, and
max number of features have little impact on the random forest
regression model, and we keep the default Settings in the scikit-learn
machine learning library.

4.4 Comparison of model training speed

The original training data in Table 1 were imported into the BP
and PSO-BP models for training after standardized processing. The
training times required for both models to achieve the target

TABLE 3 Analysis of tar yield prediction deviation.

10.3389/feart.2023.1227154

accuracy requirements were obtained. The iterative training
process of the PSO-BP neural network is shown in Figure 5. The
random forest model is not iterative, so we don’t compare its
training speed.

It can be seen from Figure 5 that the PSO-BP prediction model
needs about 400 iterations to meet the accuracy requirements, while
the BP neural network prediction model needs about
2000 iterations. Therefore, the training speed of the PSO-BP
prediction model was about five times faster than the BP
prediction model when meeting exact same accuracy
requirements. It indicates that the BP network optimized by the
PSO algorithm overcomes the problem of slow convergence speed,

and improves the training speed.

5 Practical engineering project

In engineering practice, the model’s generalization ability is
more important than the fitting performance. To test the
prediction performance and universality of the tar yield
prediction model, we used three models of BP neural network,
PSO-BP, and random forest to predict the tar yield values of the
12 test set data mentioned above and compared them with the
measured values.

The test set data are standardized and then imported into BP
model and PSO-BP model respectively. Since the random forest
model is not sensitive to the numerical magnitude, the test set
brought into the random forest model does not need to be
standardized. The comparison between the predicted and
measured values of each model is shown in Figure 6, and the
corresponding error is shown in Table 3.

Figure 6 shows deviations between the predicted values of the
three predictive models and the measured values. Notably, the

Actual BP Relative PSO-BP Relative Rf EEYOYS

value (%) prediction (%) error (%) prediction (%) error (%) prediction (%) error (%)
2 7.9 6.60 16.42 7.12 9.83 6.97 11.79
3 10.1 8.00 20.79 7.95 2127 7.07 30.03
4 6.8 6.14 9.64 6.77 037 7.12 468
5 8.6 9.29 7.9 7.87 8.48 7.89 8.29
6 6.3 6.80 7.88 7.01 11.21 8.81 39.79
7 9 8.52 528 8.87 1.44 7.69 14.56
8 8.3 8.70 477 8.23 0.86 8.36 0.70
9 7.6 7.92 4.25 7.88 3.65 7.73 1.75
10 7.3 7.18 1.62 7.84 7.43 6.98 436
11 8.5 8.99 573 8.48 024 8.85 4.14
12 7.6 7.68 1.02 8.03 5.62 8.73 14.85
AVG 8.1 7.85 8.17 7.84 7.17 7.90 11.73
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PSO-BP network model is more accurate than the BP network
and random forest model, with a better fitting effect and the
predicted values are closer to the measured values. As shown in
Table 3, the relative errors of the PSO-BP network model are
minor. Compared with the BP network model, the PSO-BP tar
yield prediction model has a more stable nonlinear fitting ability
and more vital generalization ability. Compared with the
random forest model, the results of the PSO-BP model are
more accurate. The model is a simple and effective method
for predicting the tar yield, indicating the nonlinear relationship
between the geological evaluation index (industrial analysis and
elemental analysis) and the tar yield index of coal.

6 Conclusion

Based on the three machine learning algorithms, a tar yield
prediction model was constructed for seven geological evaluation
indices of tar-rich coal in oil-rich coal mining areas. Following
conclusions were drawn.

(1) The convergence speed of the PSO-BP model was about five
times faster than that of the traditional BP network, thus
overcoming the disadvantage of slow convergence speed of
the BP network.

(2) The coal tar yield of the 27 coal seam in oil-rich coal mining

~

areas was predicted, and verified, demonstrating the model’s
easy implementation, high prediction accuracy, and strong
generalization ability.

—
W
~

The practical engineering project showed that the predicted
values of the PSO-BP model were close to the measured
values. The relative error of the PSO-BP model was smaller
than that of the random forest model, and the average
relative error of the 12 test samples was reduced by
4.56%. Therefore, the
universality of the PSO-BP model were significantly

prediction accuracy and

improved compared to the random forest model,

providing reliable data support and a new technical
approach for coal tar yield prediction.

In conclusion, the PSO-BP prediction model provides reliable data
support and a new technical approach for predicting coal tar yield.
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Education for Safe Mining of Deep Metal Mine, Northeastern University, Shenyang, China

The construction of deep underground engineering is greatly influenced by
complex geological conditions such as high stress, faults, and fracture zones,
which significantly affects the stability of the project. Taking the construction of
1,915-m-deep shaft in Sanshandao Gold Mine as the engineering background,
which passes through many different strata and multiple fracture zones, the
stability evaluation and failure zone prediction during its excavation under the
influence of high stress, uneven strata, and fault structure are studied. Results
show that the range of the failure zone increases significantly when the shaft
passes through the fracture zone or different lithologies, and the maximum depth
is 5.28 m. When the distance between the rock mass in the borehole and the
excavation face is greater than 48 m, the disturbance superposition effect basically
disappears. This paper provides theoretical and data support for the design and
construction of the kilometer-deep shaft in Sanshandao Gold Mine.

KEYWORDS

deep shaft, uneven strata, surrounding rock stability, fault, damage proximity

1 Introduction

With the depletion of shallow resources, metal mines at domestic and abroad have
gradually entered the stage of deep mining. As the first project of deep mining, the
construction of deep shafts has become the primary problem to be solved. Overviewing
the deep mining activities at domestic and abroad, many deep shafts with a depth of over
2,000 m have been built and operated in South Africa, Canada, the United States, and Russia.
The deep shafts that have been built in China include the main and auxiliary shafts of
Sishanling Iron Mine of Jianlong Group, with depths of 1,505 and 1,503.9 m, respectively, the
No. 3 shaft of Huize lead-zinc mine in Yunnan Province, with a depth of 1,526 m, and the
new main shaft of Xincheng Gold Mine in the Shandong Gold Group, with the depth of
1,527 m. However, there are few engineering examples of shafts deeper than 1,500 m (Zhao,
2018; Tan et al,, 2021). The deep shaft, with a depth of over 1,000 m, passes through multi-
layer non-uniform complex strata, faults, and fracture zones of different scales during the
construction process. Therefore, due to the influence of high stress and complex geological
conditions, there are obvious regional differences in the mechanical response characteristics
of the surrounding rock on the shaft wall during its construction, bringing difficulties to the
stability control of the rock mass during the construction process (Kaiser et al., 1983; Gao
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et al,, 2009; He et al., 2009; Wang et al., 2009; Qian and Zhou, 2018;
Zhang and Zhou, 2020; Wang et al., 2022; Li et al., 2023; Zhang et al.,
2023).

Experts in the field of shaft construction and rock mechanics
have carried out many research studies on borehole stability when
shafts or tunnels pass through rock mass of different strata (Liu et al.,
2016; Song et al., 2018; Walton et al., 2018; Cheng et al., 2020; Li and
Wang, 2020; Huang et al., 2022). Sun et al. (2020) utilized UDEC
software combined with surface subsidence monitoring to analyze
the stress and displacement meter damage changes in rock mass of a
shaft of Jinchuan Group at different mining stages of the ore body
and pointed out that as the mining activities pass through the upper
and lower parts of the fault, it will be activated in different ways, and
suggestions were made for the stability of the shaft during the
operation. Gao et al. (2021) analyzed the stress distribution of
the surrounding rock in granite and homogeneous mixed rock
strata using FLAC3D and demonstrated clear requirements for
the strengthening of the lining concrete, aiming at the wall
cracking of the west second auxiliary shaft of Longshou Mine in
the Jinchuan mining area. Feng et al. (2012) pointed out that the
instability and failure of the tunnel mostly occurred in the contact
zone of soft and hard rocks and studied the stress distribution during
excavation using FLAC3D. It was concluded that there is obvious
stress concentration and uneven distribution in the soft and hard
rock foundation zone after tunnel excavation. The stress is
concentrated in hard rock, whereas a certain degree of stress
release occurs in the soft rock area. The plastic zone of soft rock
is significantly larger than that of hard rock. Yassaghi and Salari-Rad
(2004) illustrated that the stress concentration occurs when the
tunnel passes through the fault zone. The convergence value of the
roadway near the fault zone is approximately 3% higher than that of
the normal area. The deformation of the tunnel gradually stabilizes
after 1 month of excavation. Sun et al. (2018) used 3DEC to analyze
the deformation characteristics of rock mass and borehole when the
shaft passes through different lithologies and pointed out that shear
stress concentration occurs in the contact zone of soft and hard
rocks, where the depth of the plastic zone is the largest, forming a
pressure relief zone.

The the
deformation law and instability mode of surrounding rock

aforementioned research studies analyze
and supporting system when the shaft or tunnel passes
through different strata or fault zones at different angles.
However, in view of the lack of systematic research on
crossing multi-layer non-uniform complex strata during
construction, this paper uses FLAC3D to analyze stability and
evaluate failure zone prediction of the 1,915-m auxiliary shaft of
Sanshandao Gold Mine, which is the deepest shaft in China and
the fourth deepest shaft in Asia. First, the failure proximity
index is introduced for rock mass stability analyzation.
Meanwhile, the size characteristics and variation law of the
failure zone are predicted. The study provides theoretical and
foundation data support for shaft construction and its long-term

stability.
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2 Engineering background

On the purpose of the construction of a 1,915-m auxiliary shaft
in Sanshandao Gold Mine, a 2,017-m prospecting hole was drilled in
the center of the shaft; the wellhead elevation was 15 m. During the
drilling process, the core investigation, in situ stress test, and rock
mechanics experiments were carried out simultaneously, which
obtained the distribution of strata, the variation law of in situ
stress, and the mechanical parameters of rock mass in this deep
shaft, respectively. According to the results of the in situ stress test,
its three-dimensional variation law (Hou et al., 2022) is shown in Eq.
1. The investigation results showed that the auxiliary shaft of
Sanshandao Gold Mine passes through seven different lithologies
and six obvious fracture structures during its construction. Based on
the results of rock mechanics experiment and rock mass quality
classification, the whole length of the geological exploration
borehole was divided into 18 areas with the lithology boundary
and fault as the interface, as shown in Figure 1. According to the
results of engineering exploration, it can be seen that the 1,915-m
auxiliary shaft of Sanshandao Gold Mine is affected by the combined
action of complex geological conditions such as uneven strata, high
stress, and fault structure, which inevitably leads to the deformation
and failure characteristics of borehole rock mass showing significant
regional differences.

oy = 0.030H + 10.142,
o, = 0.020H + 7.986,
o, =0.027H - 0.019,

(1)

where H is the depth of rock mass, oy is the maximum
horizontal principal stress, o, is the minimum horizontal
principal stress, and o, is the vertical principal stress.

3 Numerical simulation of the deep
shaft excavation process under uneven
stratum conditions

3.1 Numerical calculation model and
scheme

According to the results of the rock mass quality investigation
and in situ stress test of the exposed strata, a refined numerical
calculation model of the auxiliary shaft of Sanshandao Gold Mine
was established, and the corresponding rock mechanics parameters
were assigned to the 18 rock mass regions. The excavation response
characteristics of rock mass under the combined influence of stress
state, uneven strata, and faults were analyzed, and the stability of
surrounding rock was evaluated. Since the design diameter of this
shaft section was 10.5m, the diameter of this model was set to
10.5 m, as shown in Figure 2. In order to eliminate the boundary
effect of the model, its scale was set to 3-5 times of the engineering
scale. Meanwhile, the model size was 100 m x 100 m x 2,200 m, and
the single excavation footage of this model was 5.0 m.
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FIGURE 1

Diagram of the shaft crossing different strata.

3.2 Boundary conditions and assignment
parameters

In this paper, the Hoek-Brown criterion (Sun et al., 2011; Hoek
and Brown, 2019; Renani and Cai, 2021) was used to carry out
numerical simulation. The boundary conditions were the normal
displacement constraints on the left, right, front, back, and upper
boundaries of the model and the three-way fixed displacement
constraints at the bottom. The stress conditions of the model
were set according to the in situ stress results, and the
calculation expression of rock mechanical parameters is given as
follows:

c=0;[l1+2a+ (1_“)mbffan]fc/|:fa 1+f}fc:|)

. (2)
¢ = sm [fbe/(Zfa"'fbe)]’

or = _So'ci/mba
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where ¢ represents the internal friction angle of rock mass, ¢
represents cohesion, and o represents the tensile strength of rock
mass. f, = (1 + a) (2 + a) and f;, = 6amy, f. = (s + mp03,,)* ", where g3,
= O3max/Oci> O3max = 04704, [0cm/yH] *, and 0, represents the
rock mass strength, o,,, = o,[my, + 4s-a (m,-8s) (my/(4+s))""'1/2f,.
Furthermore, a, s, and m, represent Hoek-Brown material
parameters related to rock damage.

{ s = exp[ (GSI - 100)/ (9 - 3D)],

a=0.5+1/6[exp(-GSI/15) — exp (-20/3)],
my = m; exp[ (GSI — 100)/ (28 — 14D)].

3)

The value m; in the aforementioned formula is the empirical
parameter of rock dimension, which is obtained using the following

empirical formula (Zhang et al.,, 2019):
oiflo = 0.81m; +7. (4)

GSl is a geological strength index, which can