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Editorial on the Research Topic
Precision Medicine in Oncology

Recent advances in technology have unveiled a tremendous heterogeneity in cancer dysfunctional
mechanisms. This gain of knowledge has opened a new era in oncology, which relays on the concept
that each tumor is different and should be treated in a specific way depending on its distinctive
molecular dysfunctions. Fundamental achievements in cancer biology paralleled by unprecedented
improvements in disease modeling from all in silico, in vitro and in vivo perspectives, have
converged to offer nowadays the compelling opportunity to design therapeutic approaches tailored
on individual patients, namely precision medicine.

This Research Topic embodies 13 multidisciplinary manuscripts focused on multifaceted aspects
related to “Precision Medicine in Oncology.” Overall, each investigator discusses some of the
numerous pending issues associated with this ground-breaking field, ranging from basic research
findings, novel technologies, and computational approaches to potential innovative translational
venues and widely needed new platforms for precision medicine implementation. Specifically,
this issue includes: (i) original research reports on novel biological findings and an innovative
technology for immunotherapy; (ii) comprehensive reviews on key cancer biomarkers, signaling,
and metabolic pathways as well as on theoretical and preclinical models, and analytical integrative
methodologies; (iii) insightful perspectives on advanced computational platforms as well as on a
novel integrated murine/human clinical infrastructure.

A key aspect for accelerating the development of new effective targeted therapies is represented
by a deeper, faster and broader genomic characterization of patient samples. The National Cancer
Institute is currently leading numerous multi-disciplinary projects aiming at facilitating the
development of precision oncology diagnostics and therapeutic treatments. In a timely review
hosted in this Research Topic, Hinkson et al. introduce the Genomic Data Commons (GDC)
initiative, which redistributes high quality data and metadata and three Cloud Resources, thus
supporting cloud-based access to data, computational scalability and collaboration. Additionally,
the review from Davis’ group provides an insightful overview on catalogs, software and tools
useful for the interpretation of single nucleotide variants and short insertions and deletions in
point-of-care high throughput sequencing applications (Tsang et al).

Deep genome and transcriptome sequencing are having two major roles in: (i) facilitating
the discovery of new pathways and molecular players involved in cancer onset, progression and
drug resistance, thereby offering the opportunity to identify more reliable biomarkers and novel
druggable targets; (ii) revolutionizing the clinical approach to human diseases as a result of the
unprecedented characterization of the non-coding space of our genome.
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While the non-coding dark matter still remains a challenging
target in vivo, pharmacological tuning of the coding space
has been shown to yield promising results in vitro and, to
a certain extent, in preclinical and clinical trials. Comunanza
and Bussolino describe the insights gained on the vascular-
endothelial growth factor (VEGF) over the last 40 years and
relevant challenges raised by VEGF-targeted anti-angiogenic
therapies (Comunanza and Bussolino). They deeply review the
emergence of approaches combining anti-angiogenic regimens
with compounds targeting angiogenic mechanisms, oncogenic
drivers, and immunotherapy (Comunanza and Bussolino).

In an original research article, Astrologo and colleagues
provide evidence that the Bone Morphogenetic Protein 9 (BMP9)
might represent a novel therapeutic target in prostate cancer
(Astrologo et al). They nicely demonstrate that preventing BMP9
binding to its cell surface receptors, and thus blocking BMP9
signaling, efficiently diminishes prostate cancer cell proliferation
and substantially attenuates tumor growth in both an orthotopic
model of human prostate cancer and a xenograft derived from
an androgen-dependent bone metastatic prostate tumor patient
(Astrologo et al).

In respect of non-coding elements, Montironi’s group mini
review focused on in vitro and in vivo gain-of-function and
loss-of-function experiments showing that long non-coding
RNAs play a crucial role in cancer cell invasiveness and
metastasis through antagonizing the genome-wide localization
and regulatory functions of the SWI/SNF chromatin-modifying
complex (Cimadamore et al) In addition to long non-
coding RNAs, another class of regulatory RNAs, namely
microRNAs, have been implicated in nearly every signaling
pathway. Specifically, microRNA-mediated altered signaling
pathway regulation appears to affect a heterogeneous spectrum
of cancer behaviors. In this respect, Denti’s group provide
a comprehensive overview of the tight connection between
microRNA misfunction and cancer hallmarks (Detassis et al).
They also thoroughly discuss benefits and hurdles of microRNAs
as biomarkers to move personalized cancer biogenesis, evolution,
diagnosis, and treatment a step forward. Additionally, Gabra
and Salmena’s review contributes to the debate on the role of
microRNAs in personalized cancer therapy focusing on drug
resistance and the mechanisms of action that lead to poor
overall survival. They also discuss the potential clinical use
of miRNA mimic- or antagomir-based approaches in drug
resistance overcome (Gabra and Salmena).

Interestingly, two contributors pointed out to the relevance
of approaches encompassing metabolism to develop suitable
cancer-specific treatments. The extensive crosstalk within
and between reactive oxygen species (ROS) detoxification,
redox signaling transduction, energy metabolism and central
metabolism has been finely reviewed in this Research Topic by
Benfeitas et al. The outlined reconstruction of redox metabolism
has been connected to the heterogeneity in redox responses
displayed by different types of cancer, between individuals
affected by the same form of tumor, as well as within different
cancer stages. They also highlighted the utility of system-
level approaches to capture the role of redox systems in
cancer and to design redox-targeting drugs producing synergistic

responses for cancer treatment or prevention (Benfeitas et al).
On another review, Martin-Martin and colleagues accurately
depict the complex interrelationship between metabolism and
gene expression regulation in cancer (Martin-Martin et al).
The authors report recent advances highlighting how the tight
and dynamic coordination between gene expression programs
and metabolism dictates cellular adaptations during cancer
progression and might lead to new therapeutic opportunities
(Martin-Martin et al).

Although counteracting pro-tumorigenic stimuli has always
been a major goal in oncology, alternative innovative therapeutic
strategies are currently emerging impetuously. Among the
most promising ones, we highlight here the synthetic lethality
approach and cancer vaccines.

As reviewed by Caffo’s group, impairment of DNA
damage repair pathways is a common event in cancer,
resulting in genomic instability which is crucial for the
tumorigenic process (Caffo et al). Exacerbation of such
a condition through the administration of DNA damage
agents in combination with molecules further affecting
DNA repair pathways has been shown to effectively result
in cancer cell death (Caffo et al). Importantly, Caffo and
colleagues discuss the relevance of applying DNA sequencing
approaches for the screening of genomic aberrations
affecting DNA repair pathways in prostate cancer with
the ultimate goal of stratifying prostate cancer patients for
personalized synthetic lethal therapeutic approaches (Caffo
et al).

In an original research article, Grandi’s group explore the
applicability of the Outer Membrane Vesicles (OMVs) platform
technology in cancer vaccination (Grandi et al). Technological
promising aspects of OMVs, such as the rapidity they can
be decorated with foreign epitopes, the high yield production
from bacterial fermentation and the easy purification process,
inspired the authors to test OMVs amenability for cancer
vaccines. Immunization with OMVs engineered with the B
cell cancer-specific epitope strongly protected mice from tumor
development once injected with a syngeneic cancer cell line
expressing the epitope on its surface (Grandi et al). Finally, the
synergistic protective activity of multiple epitopes administered
with OMVs was found to potentiate the overall efficacy of the
OMV cancer vaccine (Grandi et al).

From a clinical perspective, our deeper understanding
of oncogenic mechanisms has recently begun to have a
crucial impact on clinical decisions at several steps, from
cancer prevention and diagnosis to therapeutic intervention.
Nowadays, the development of innovative investigational in
silico, in vitro, and in vivo platforms fostering the clinical
translational potential of basic research findings is of primary
relevance.

In this Research Topic, Re reviews significant advancements
in our capabilities to tailor synthetic genetic circuits to specific
applications in tumor diagnosis, tumor cell- and gene-based
therapy, and drug delivery (Re). From a different perspective,
Clohessy and Pandolfi present the Mouse Hospital and the Co-
Clinical Trial Project focused on the integration of data collected
from cancer patients and faithful cancer mouse models enrolled
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in concomitant trials (co-clinical trials) with identical treatment
protocols. They discuss how co-clinical studies can quickly
lead to effective clinical decisions by predicting patients’ drug
response on genetic and molecular bases as well as by anticipating
effective second line treatments for drug resistance-driven cancer
relapse (Clohessy et al).

Altogether, the original articles, reviews and perspectives
collected in this Research Topic represent an invaluable
resource  of insights on  important achievements
attained so far in identifying altered molecular events
that lead to the development of cancer and therapy
resistance as well as novel therapeutic strategies for the
successful delivery of precision medicine approaches in
oncology.
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Advancements in next-generation sequencing and other -omics technologies are
accelerating the detailed molecular characterization of individual patient tumors,
and driving the evolution of precision medicine. Cancer is no longer considered a
single disease, but rather, a diverse array of diseases wherein each patient has a
unique collection of germline variants and somatic mutations. Molecular profiling of
patient-derived samples has led to a data explosion that could help us understand the
contributions of environment and germline to risk, therapeutic response, and outcome.
To maximize the value of these data, an interdisciplinary approach is paramount. The
National Cancer Institute (NCI) has initiated multiple projects to characterize tumor
samples using multi-omic approaches. These projects harness the expertise of clinicians,
biologists, computer scientists, and software engineers to investigate cancer biology
and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic,
transcriptomic, epigenomic, proteomic, and imaging data have been generated by
these projects. To address the data analysis challenges associated with these large
datasets, the NCI has sponsored the development of the Genomic Data Commons
(GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests
and harmonizes genomic data, and securely redistributes the data. During its pilot
phase, the Cloud Resources tested multiple cloud-based approaches for enhancing
data access, collaboration, computational scalability, resource democratization, and
reproducibility. These NCl-led efforts are continuously being refined to better support
open data practices and precision oncology, and to serve as building blocks of the NCI
Cancer Research Data Commons.

Keywords: genomics, proteomics, imaging, big data, cancer, precision medicine, cloud infrastructure

INTRODUCTION

Precision medicine has evolved out of the seminal work of the Human Genome Project,
advancements in DNA sequencing technology, developments in high throughput and large-scale
molecular biology technologies, improvements in the speed and scale of computation, and
innovations in biomedical informatics. This progress has resulted in the molecular characterization
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Big Data in Cancer Research

of individual patient tumors, the identification of actionable
genetic alterations, and the development of evidence-based
molecular cancer diagnostics and targeted therapies. Although,
cancer types have been traditionally classified by organ or cell
type, with the aid of genomics, cancer patients are increasingly
being treated according to their cancer’s unique molecular
signature. Cancer is a diverse array of genetically-driven diseases.
The identification and validation of actionable genetic alterations
including amplifications, rearrangements, and gain-of-function
mutations, has spurred the use of genomic data in oncology
practices. Targeted gene sequencing panels, for example, offer
insight into the genetic drivers of an individual’s tumor and
inform the diagnosis, prognosis, and targeted treatment of
cancer patients. A number of targets for drug development
have been outlined previously (Hyman et al., 2017). Imantinib—
a BCR-ABL inhibitor for chronic myelogenous leukemia,
trastuzumab—a monoclonal antibody-based treatment for HER-
2 positive breast cancer, vermurafenib—a mutated BRAF V600E
inhibitor for metastatic melanoma, and many others serve
as precision oncology success stories. Other candidate genes
are currently under pre-clinical and clinical investigation for
the development of targeted cancer therapies. Increasing our
understanding of how molecular signatures are associated with
treatment outcomes in patient populations, and translating these
discoveries into the clinic, will improve treatment decisions for
the individual.

In support of NCI’s Precision Medicine in Oncology Initiative
and the Beau Biden Cancer Moonshot, NCI is leading numerous
multi-disciplinary efforts to accelerate the development of
precision oncology diagnostics and treatments. Here, we describe
a subset of ongoing NCI programs that combine biomedical big
data, biotechnology, informatics, clinical research, and computer
science to create new ways to more precisely study, predict,
diagnose, and treat cancers.

NCI PROGRAMS PROVIDE BIG DATA
RESOURCES TO SERVE THE CANCER
RESEARCH COMMUNITY

The goal of precision oncology is to use each patient’s unique
collection of germline variants and somatic mutations to inform
their diagnosis, prognosis, and therapy; working toward this goal,
there has been a push toward large-scale, high throughput studies
of patient-derived biospecimens.

Molecular profiling of patient-derived samples, including
whole genome sequencing, has led to a data explosion that is
contributing to our increased understanding of cancer driver
genes, cancer molecular subtyping, cancer risk, therapeutic
response, and treatment outcomes. NCI-supported programs
such as The Cancer Genome Atlas (TCGA), Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET), and Clinical Proteomic Tumor Analysis Consortium
(CPTAC) have generated large datasets amassing petabytes of
data. These, along with other datasets and resources described
in this paper are available to researchers both in the US and
internationally (Table 1).

In December 2005, TCGA was announced as a new
collaboration between the NCI and the National Human Genome
Research Institute (NIH, 2005). Building upon the pioneering
work of the Human Genome Project, the two institutes embarked
on a mission to explore the genomic changes that occur in human
cancers. The overarching goal of TCGA was to increase our
understanding of different cancer types to improve screening and
treatments, and to build on this data to create new prevention
strategies. TCGA includes the genomic analysis of 33 different
tumor types and matched normal tissue from over 11,000 patients
and has resulted in thousands of publications (Cancer Genome
Atlas Research Network, 2008, 2011, 2012, 2017; Cancer Genome
Atlas, 2012). Data types collected include DNA copy number
arrays, DNA methylation, exome, and whole genome sequencing,
mRNA arrays, microRNA sequencing, and reverse phase protein
arrays, totaling ~2.5 petabytes of data.

TARGET was launched in 2006. TARGET’s goal is to
characterize the genome and transcriptome of hundreds of
pediatric acute lymphoblastic leukemia, acute myeloid leukemia,
Wilms tumor, clear cell sarcoma of the kidney, rhabdoid
tumor, neuroblastoma, and osteosarcoma samples. Through
genomic and transcriptomic analyses, researchers are studying
the relationships among alterations at the DNA and RNA levels,
cancer growth, cancer progression, and pediatric patient survival
(Mullighan et al., 2009; Pugh et al., 2013; Eleveld et al., 2015). The
TARGET project has performed whole genome sequencing on
most samples collected and the entire dataset is in the petabytes
range.

NCI's CPTAC aims to interrogate cancers at the protein level
to link genotype to proteotype, with the goal of understanding
the basis of cancer phenotypes. CPTAC’s objectives are four-
fold: (1) characterize the proteomes of tumor and normal tissues;
(2) perform proteogenomic analyses of cancer biospecimens;
(3) identify potential biomarker candidates through discovery
proteomics and develop targeted assays against those candidates;
and (4) perform verification tests on those targeted assays.
Phase I of CPTAC consisted of technical quality assurance
studies (Paulovich et al., 2010). Complementary to TCGA
studies, CPTAC Phase II consisted of mass spectrometry-based
proteomic analyses of TCGA breast, ovarian, and colorectal
samples (Zhang et al.,, 2014, 2016; Mertins et al., 2016). The
recently launched CPTAC Phase III is a proteogenomic analysis
of prospectively collected tissues from additional cancer types.
Furthermore, to support precision oncology, CPTAC Phase III
has established Proteogenomic Translational Research Centers
that will study the efficacy of cancer therapies on individual
tumor samples to generate predictive models. CPTAC data
currently totals ~16 TB of data, and upon completion of CPTAC
111, this number is expected to increase four-fold to ~66 TB of
data.

With the announcement of the Beau Biden Cancer Moonshot,
the Applied Proteogenomics Organizational Learning and
Outcomes (APOLLO) Network has emerged as a tri-agency
collaboration to enable oncologists to use their patients’ unique
proteogenomic profiles to inform precision oncology treatments
(Moonshot, 2016; OCCPR, 2016). Together with the Department
of Veterans Affairs (VA) and the Department of Defense (DoD),
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TABLE 1 | Selected NCl-supported projects.

Project name

Lead institution(s)

Project URL

The Cancer Genome Atlas (TCGA)

Therapeutically Applicable Research to Generate
Effective Treatments (TARGET)

Clinical Proteomic Tumor Analysis Consortium (CPTAC)

Applied Proteogenomics Organizational Learning and
Outcomes (APOLLO) Network

The Cancer Imaging Archive (TCIA)

Genomic Data Commons (GDC)

Database of Genotypes and Phenotypes (dbGaP)

National Cancer Institute
National Human Genome Research Institute

NCI Office of Cancer Genomics

NCI Office of Cancer Clinical Proteomics Research

Department of Defense
Department of Veterans Affairs
National Cancer Institute

University of Arkansas for Medical Sciences
NCI Division of Cancer Treatment and Diagnosis

NCI Center for Cancer Genomics

National Center for Biotechnology Information

cancergenome.nih.gov

ocg.cancer.gov/programs/target

proteomics.cancer.gov/programs/cptac

proteomics.cancer.gov/programs/apollo-network

www.cancerimagingarchive.net

gdc.cancer.gov

www.ncbi.nlm.nih.gov/gap

NCI Cloud Resources
Broad FireCloud Broad Institute

Institute for Systems Biology Cancer Genomics Cloud
(ISB-CGC)
Seven Bridges Cancer Genomics Cloud (SB-CGC) Seven Bridges

NCI Cancer Research Data Commons

National Cancer Institute

Institute for Systems Biology

National Cancer Institute

chiit.cancer.gov/cloudresources
firecloud.org

isb-cgc.org

www.cancergenomicscloud.org

chiit.cancer.gov/cancerdatacommons

NClI-supported projects annotated with lead institutions and URLs.

NCI aims to perform proteogenomic analyses of a cohort of 8,000
cancer patients within the VA and DoD healthcare systems. These
analyses will provide insight into the mutations and pathways
that drive cancer progression and support the development of
targeted and combination therapies. In the next 5 years, APOLLO
is expected to amass petabytes of genomic, proteomic, imaging,
and clinical data.

As the -omics sciences increase the volume of data collection,
the need for big data solutions intensifies. To address this
need, biomedical research has been moving toward data
curation and data sharing models established by other big
data fields such as astrophysics. Through major technological
advancements, the Hubble Deep Field image marked a turning
point in astrophysics where researchers led a concerted effort
in data quality assessment, annotation, and curation. This
work led to the development open source data resources,
and user interfaces that obviated the resource intensive
download of large datasets (Andersen, 2012). Biomedical
informatics has reached a similar a turning point where key
innovations in data storage and distribution such as compression
algorithms, indexing systems, and cloud platforms must be
leveraged.

NCI GENOMIC DATA COMMONS AND
CLOUD RESOURCES

In addition to the data curation and storage needs of modern
biomedical research, other challenges include the development

of robust analytical tools, as well as infrastructure and funding
models to support these efforts. As data generation expands,
local storage, and computational solutions become less feasible.
Thus, NCI has set out to build the NCI Cancer Research Data
Commons (NCRDC), a cloud-based infrastructure in support
of data sharing, tool development, and compute capacity to
democratize big data analysis and to increase collaboration
among researchers. NCI has sponsored two recent initiatives
that serve as the foundation for the Cancer Research Data
Commons—the Genomics Data Commons (GDC), and three
Cloud Resources.

The GDC, built and managed by the University of Chicago
Center for Data Intensive Science, in collaboration with Ontario
Institute for Cancer Research, all under an NCI contract with
Leidos Biomedical Research, is a unified genomic data repository
that hosts authoritative NCI reference datasets such as TCGA
and TARGET (Grossman et al., 2016; NIH, 2016). The primary
goals of the GDC are to ensure data and metadata quality,
ingest and harmonize genomic data, support data dissemination
practices in alignment with Findable Accessible Interoperable
Reusable (FAIR) principles (Mons et al., 2017), and securely
redistribute data to researchers. In addition, the GDC takes part
in collaborative efforts such as the Global Alliance for Genomics
and Health (Knoppers, 2014). Through the GDC, researchers
can download harmonized genomic data for analysis on their
local servers. To bolster data sharing practices and streamline
genomic data analysis, much of the genomic data stored at
the GDC have been made available through the NCI Cloud
Resources.
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The NCI Cloud Resources were initially launched in 2016
as the Cancer Genomics Cloud (CGC) Pilots. The purpose of
the CGC Pilots was to explore multiple cloud-based approaches
for enhancing secure data access, collaboration, computational
scalability, resource democratization, and reproducibility.
Through this program, the Broad Institute, the Institute for
Systems Biology, and Seven Bridges have each developed what
are now known as Cloud Resources. Each platform is deployed
in a commercial cloud, and has applied a distinct approach to
providing access to TCGA and TARGET genomic data in a cloud
environment, and integrating proteomic data from CPTAC as
well as radiology images and associated metadata from The
Cancer Imaging Archive (TCIA). In addition to providing
access to these datasets through rich Application Programming
Interfaces (APIs) and graphical user interfaces, the Cloud
Resources each provide a platform to enable the deployment
of analysis, visualization, and other computational tools in the
cloud, bypassing the need to bring data to a local infrastructure.
The Cloud Resources support tool deployment through the use
of Docker containers, which allow users to package their tools
along with all associated dependencies. These “containerized”
tools can be connected and executed as workflows in these cloud
environments. End user documentation provides users with
guidance on how to query data, install tools, as well as create and
run workflows in each environment. All three platforms conform
to strict federal information system security requirements and
manage access to controlled data through Database of Genotype
and Phenotype (dbGaP) authorization. In addition to their
fundamental charter of providing secure cancer genomic data
access co-localized with analysis pipelines and visualization
tools, the Cloud Resources each offer unique capabilities suitable
for a range of research needs.

Broad Firecloud

The Broad Institute’s FireCloud, was built as the next generation
of Broad Institutes Firehose data analysis infrastructure
developed for the TCGA program (Ulrich, 2016). FireCloud
harnesses the elastic compute capacity of Google Cloud Platform
for large-scale genomic analyses akin to those available through
Firehose. Key advantages offered by FireCloud include running
Broad’s best practice tools and pipelines such as ContEst,
MuTect, and Oncotator. FireCloud users can also access curated
open and controlled-access TCGA workspaces, upload their own
data, and share workspaces with collaborators. FireCloud also
allows users to leverage the rich query interface of the GDC to
create cohorts of interest and download data “just-in-time” to
a FireCloud-based workspace for follow on analyses. Similar
approaches are under development to support the analysis
of CPTAC data and TCIA images. Researchers at the Broad
Institute, in collaboration with IBM Watson, are using FireCloud
to tackle one of precision oncology’s toughest questions—which
genomic signatures are linked to drug-resistant cancers (Park,
2016)? While targeted therapies are currently being applied in
the clinic, oncologists have been unable to predict when a patient
will no longer respond to a given line of therapy. The data
analysis infrastructure provided by FireCloud directly supports

researchers investigating problems such as this one to increase
the efficacy of precision medicine for cancer patients.

ISB-CGC

The Institute for Systems Biology Cancer Genomics Cloud
(ISB-CGC) runs on the Google Cloud Platform and offers
an interactive web-based application and hosts Application
Programming Interfaces (APIs) such as the Global Alliance
for Global Health API. ISB-CGC takes advantage of Google
Cloud Platform’s built-in resources such as BigQuery, Compute
Engine, App Engine, Cloud Datalab, and Google Genomics.
Researchers can use BigQuery to explore clinical, biospecimen,
level-3 open access TCGA, and CPTAC II data. ISB-CGC
hosts numerous genomics tools and has recently added the
Trans Proteomic Pipeline analysis suite. Researchers can now
access complementary genomic and proteomic data, run multi-
omic analyses, and perform BigQuery searches to investigate
genetic alterations, copy number, transcript expression, protein
expression, and molecular pathways that are involved in cancer
biology. ISB-CGC has also made radiology and tissue images
from TCIA and the GDC available through Google Cloud
Storage. Additional datasets available at ISB-CGC include the
Catalog of Somatic Mutations in Cancer! and the Cancer Cell
Line Encyclopedia (CCLE)2. A recent publication in Nature
Scientific Reports showcased a project which used the ISB-CGC
to perform fast, cheap, and robust RNA-sequencing analyses of
12,307 samples from CCLE and TCGA (Tatlow and Piccolo,
2016). Authors, P. J. Tatlow and Dr. Stephen Piccolo, used
preemptible virtual machines to analyze over 64 terabytes of
TCGA data for only $0.09 per sample. The scalable, cost effective
compute capabilities of ISB-CGC have enabled researchers to
perform robust analyses of big data that will ultimately lead to
the enhanced understanding of individual cancers.

SB-CGC

Currently, over 1,600 researches from over 40 countries are using
the Seven Bridges Cancer Genomics Cloud (SB-CGC) to analyze
hosted genomic data, and/or their own data’. Dr. Julia Salzman’s
lab at Stanford University has deployed Mismatched Alignment
CHimEra Tracking Engine (MACHETE) (Hsich et al., 2017), a
statistical algorithm for the detection of gene fusions, on the
SB-CGC (Salzman, 2017). Using RNA-seq data from hundreds
of TCGA samples, MACHETE was used to perform statistical
modeling of fusion artifacts to precisely detect novel gene fusions
including rare potential drivers of cancer. This research, fueled
by cloud computing, is enabling precision oncology through
the discovery of novel, potentially druggable gene fusions.
In addition to the TCGA and TARGET data, SB-CGC hosts
TCGA radiology images, CCLE data, as well as Simons Genome
Diversity Project data®. Leveraging its Cancer Genomic Cloud
work, Seven Bridges has partnered with the Blood Profiling
Atlas in Cancer Consortium®, to develop the Blood Profiling

1 cancerAsanger.ac.uk/cosmic

Zportals.broadinstitute.org/ccle
Shttp://www.cancergenomicscloud.org/usage
“4docs.cancergenomicscloud.org/docs
Shttp://www.bloodpac.org
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Atlas Analysis Cloud and provide the research community with
analysis algorithms for liquid biopsy.

CGC Pilot Beta-Testing and Evaluation

The initial versions of The NCI Cloud Resources, the CGC Pilots,
were created to maximize the value of cancer -omics data through
harnessing multi-disciplinary expertise. Synergizing technologies
from the fields of medicine, molecular biology, informatics,
and cloud computing, the CGC Pilots have begun to transform
how cancer data analysis is conducted. Researchers, both in
the US and internationally, have been able to advantage of
these cloud-based resources. To ensure the success of this
project and to identify areas for improvement, the CGC
Pilot and NCI teams established mechanisms to support
early adopters’ use of these platforms and to collect their
feedback.

The CGC Pilots teams provided technical support to new
users who sought to implement new tools, access data, or
create collaborative workspaces. Through the three CGC
Pilots, NCI provided cloud compute and storage “credits”
to offset the costs of evaluation of these platforms by

cancer researchers. These funds directly impacted the work
of researchers such as post-doctoral scholar Dr. Brittany
Lasseigne, at the HudsonAlpha Institute for Biotechnology
in Huntsville, AL. Dr. Lasseigne used the SB-CGC, to study
dosage effects, context dependency, and tissue specificity
of tumor suppressors across human cancers in TCGA.
These Cloud credits supported the use of the large-scale
genomic datasets co-located with computational resources
and analysis tools, and increased research efficiency for many
early stage researchers like Dr. Lasseigne (Lasseigne, Personal
Communication).

To evaluate the CGC Pilots and support on-going NCI-
funded cancer research, NCI funded administrative supplements
to the active grants of investigators performing genomics-
based research. The Funding Opportunity Announcement,
Supplements to Support Evaluation of the NCI Cancer Genomics
Cloud Pilots (PA-15-305), funded projects to use one or
more of the NCI CGC Pilots for ongoing research activities.
Funds were awarded to investigators whose projects aimed
to install and test the performance of new analysis tools
on a CGC Pilot, upload locally-generated genomic data and
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Future plans include the addition of nodes that support other research modalities suc
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FIGURE 1 | The NCI Cancer Research Data Commons: An Expandable Infrastructure. The NCI Cancer Research Data Commons will be a cloud-based network in
which each node is focused on a specific data type. Nodes will include the Genomic Data Commons, Proteomic Data Commons, and Imaging Data Commons.

authentication and authorization process, biomedical researchers, tool developers, computer scientists, informaticians, clinicians, and patients will be able to bring
their own data and tools to nodes, as well as access harmonized data and hosted tools via APIs and a web interface. Users will also be able to harness elastic
compute capabilities for computational analyses, visualization of results, and data queries in the cloud (NCI, 2017).

ta Commons

h as clinical data, epidemiological data, and cancer models. Through a secure
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perform analyses on a CGC Pilot, and/or perform analyses
of hosted TCGA data. The researchers reported having a
generally positive experience working on the CGC Pilots;
however, as expected, some encountered technical hurdles.
When those technical issues arose, the vast majority of
the groups were able to resolve their problems by working
directly with the CGC Pilot support teams. Each research
group provided extensive feedback to the CGC Pilots and
NCI teams on what elements of the CGC Pilots could be
improved. The majority of the administrative supplement
awardees reported that they plan to continue to use the
CGC Pilots to accelerate their research and that the CGC
Pilots have the potential to be a vital resource for the
cancer research community. The activities and outcomes
of projects funded through these supplements have helped
inform NCI’s decision to continue supporting this project
beyond the pilot phase and to develop a more comprehensive
computational infrastructure for -omics and other big data

types.

Future Vision: NCI Cancer Research Data

Commons

Cancer research in the era of big data presents major challenges:
computing on large datasets, combining expertise from various
disciplines, and developing the infrastructure needed to enhance
research efficiency. Recognizing the importance and urgency of
these needs, the Beau Biden Cancer Moonshot Blue Ribbon
Panel has recommended that the cancer research community
aim to, “collect, share, and interconnect a broad array of
large datasets so that researchers, clinicians, and patients
will be able to both contribute and analyze data, facilitating
discovery that will ultimately improve patient care and outcomes
(BRP, 2016).” In line with this recommendation, the NCI is
taking steps toward establishing the NCRDC, with the GDC
and the Cloud Resources serving as the foundation for this
vision.

The GDC and Cloud Resources currently support basic
and translational research, primarily using genomic and
clinical data. These activities serve as the building blocks
of the cloud-based NCRDC (Figurel). The NCRDC will
consist of multiple “nodes,” or digital knowledge bases with
functionalities like those of the GDC and Cloud Resources.
NCRDC nodes will each be centered on different research
and clinical data types such as genomics, proteomics, imaging,
cancer models, and epidemiology. Each node will house
annotated datasets, raw data files, metadata, analysis, and
visualization tools, as well as individual and collaborative
workspaces. NCRDC users will be able to access authoritative
datasets generated by NCI funded programs such as TCGA,
TARGET, CPTAC, APOLLO, and TCIA. Each node will
also employ a standardized process for data submission and
quality control that will allow for the harmonization of
new data, including user-generated data. Containerized tool
deployment will also be supported by each Data Commons
node. Each node will provide consistent, well-defined identifiers

and semantics for access to data housed in that node and
provide broadly-available computational support critical to the
demands of modern cancer research and precision oncology.
The Data Commons will thus support cancer research across
multiple domains and platforms, allow for these data to be
queried and analyzed in an integrated, secure, cross-domain
manner, and provide the mechanisms for new data sources
to be incorporated as they are generated. Through fostering
community-driven, open-development informatics initiatives,
the Cancer Research Data Commons will create, maintain, and
extend informatics infrastructure and standards to improve
connectivity among disparate information systems. Combining
innovation, cloud computing, big data, and FAIR principles,
this robust infrastructure will provide significant support for
NCI’s Precision Medicine in Oncology Initiative and the Beau
Biden Cancer Moonshot by accelerating the discovery of novel
therapeutic targets and disease biomarkers for individual cancer
patients.

The era of big data in biomedical research and precision
oncology calls for creative strategies borrowed from multiple
scientific and technological disciplines. The GDC and Cloud
Resources are important steps in supporting the next generation
of data-driven cancer research. Looking ahead, the NCRDC
represents an interdisciplinary solution to the challenges of big
data in cancer research. NCI will continue to lead open science
efforts toward the goals of improving prevention strategies,
developing targeted diagnostics and therapeutics, and reducing
the burden of cancer on patients, their families, and society.
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Precision genomic oncology —applying high throughput sequencing (HTS) at the point-
of-care to inform clinical decisions—is a developing precision medicine paradigm that is
seeing increasing adoption. Simultaneously, new developments in targeted agents and
immunotherapy, when informed by rich genomic characterization, offer potential benefit
to a growing subset of patients. Multiple previous studies have commented on methods
for identifying both germline and somatic variants. However, interpreting individual vari-
ants remains a significant challenge, relying in large part on the integration of observed
variants with biological knowledge. A number of data and software resources have been
developed to assist in interpreting observed variants, determining their potential clinical
actionability, and augmenting them with ancillary information that can inform clinical
decisions and even generate new hypotheses for exploration in the laboratory. Here, we
review available variant catalogs, variant and functional annotation software and tools,
and databases of clinically actionable variants that can be used in an ad hoc approach
with research samples or incorporated into a data platform for interpreting and formally
reporting clinical results.

Keywords: precision oncology, high throughput sequencing, genomic variation, cancer variants, precision
medicine, databases, genetic

1. INTRODUCTION

Genomic technologies and approaches have transformed cancer research and have led to the produc-
tion of large-scale cancer genomics compendia (1, 2). The resulting molecular characterization and
categorization of individual samples from such compendia has driven development of molecular
subtypes cancers as well as enhanced understanding of the molecular etiologies of carcinogenesis
(3-5). The development of novel and effective targeted therapies has proceeded in parallel with and
been accelerated by deeper, faster, and broader genomic characterization (6), enabling early applica-
tion of molecular characterization at the point of care to inform clinical decision-making (7-10)
and to address resistance to primary therapy (11). Genomic characterization also has applications
in immune approaches to cancer. For example, chimeric antigen receptor T-cell (CARt) therapy has
shown great success in diseases with well-characterized antigens that are relatively tumor-specific
(12) as identified by genomic profiling. Variously referred to as precision oncology (13), genomics-
driven oncology (14), genomic oncology, and even simply as precision medicine, the paradigm
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of applying high-throughput genomic approaches to patient
samples is rapidly changing the landscape of oncology care and
clinical oncology research.

Conventional approaches to clinical trials design may be inad-
equate due to molecular heterogeneity of tumors derived from
a single primary tissue (15), leading to the adoption of basket,
umbrella, and hybrid trials designs. A number of studies are
ongoing to determine feasibility and potential impact of precision
genomic oncology at the point-of-care (16-18). In addition to
studies focused on identifying targetable mutations, immune-
based therapeutic approaches are also being informed by HTS
applied to patient samples (19-21).

One of the most recent developments in the field of precision
oncology is the approval of Pembrolizumab (Keytruda), an anti-
PD-1 antibody that functions as a checkpoint inhibitor, by the
US Food and Drug Administration for treatment of solid tumors
that show genetic evidence of mismatch repair and, therefore,
carry very high mutational burdens (22). Pembrolizumab was
previously approved for use in melanoma, but the most recent
approval is the first that is targeting allows a drug to be used
in a non-tissue-specific context in patients showing a specific
genomic marker in any solid tumor (23).

As with any clinical testing modality, whether in a research set-
ting or at the point-of-care, a clear understanding of the goals of
applying the test is necessary when first designing the test and its
validation. However, the flexibility and number of potential data
items that arise from even a limited application of HT'S has lead
the US Food and Drug Administration (FDA) to begin to define
its regulatory role (24) and, critically, how existing knowledge
bases can be applied in real time to address findings from clinical
HTS testing (25).

This review aims to provide an organized set of biological
knowledge bases with relevance to the interpretation of small vari-
ants, defined as single nucleotide variants or short (on the order
of 20 base pairs or fewer) insertions and deletions. The catalogs of
observed variants section list large-scale catalogs of variants, use-
ful for filtering known common polymorphisms and identifying
previously identified cancer variants. When a variant observed in
a clinical sample has not been seen but appears to affect the pro-
tein coding sequence, the functional annotation resources section
presents a sampling of some of the most common software and

databases for predicting the impact on protein function. Finally,
we catalog several data products and knowledgebases have been
developed to provide decision support (with strong disclaimers
and caveats) directly linking observed variants to clinical inter-
vention in point-of-care HTS applications. Integrating the vari-
ous data sources described in this review with variants observed
in individual patients can be accomplished with combinations of
software tools for the manipulation of variant datasets.

1.1. Catalogs of Observed Germline
and Somatic Variants

Databases of observed variation in normal populations, diseased
individuals, and cancer compendia form the map onto which
observed variants in patients are projected. Because of the vast
quantities of genomic data and, specifically, DNA variants, there
is a tension between providing rich, highly curated information
about individual variants and producing the largest possible
catalog of variants with manageable levels of curation. This sec-
tion reviews some of the available catalogs (Table 1) of genomic
variation observed in the germline as well as those that appear in
tumors as somatic mutations. Note that many of the databases
mentioned below overlap in data sources (some nearly com-
pletely), but they may differ in the amount and depth of curation,
additional metadata added to each variant, speed of updates, and
methods or formats for access.

1.2. Germline
Comprehensive catalogs of germline variants inform decisions
about the frequency of variants as seen in the general population
as well as to identify variants that are annotated as cancer associ-
ated. In the context of tumor sequencing, common variants are
unlikely to be genomic drivers of carcinogenesis and are often
filtered from a report of potential somatic variants. This filter-
ing process is particularly important when tumor sequencing is
not accompanied by matched normal sequencing. Additional
germline databases that catalog disease-associated variants can
be useful to begin to address familial risk and potentially phar-
macogenomic loci (38, 39).

Perhaps the oldest of the variant catalogs, dbSNP contains
325,658,303 individual variant records (build 150, accessed

TABLE 1 | Catalogs of germline and somatic variants.

Resource Variant Type URL Reference
dbSNP= Germline and somatic https://www.ncbi.nlm.nih.gov/projects/SNP/ (26)
COsMICce Somatic http://cancer.sanger.ac.uk/cosmic 27)
ClinVar? Germline predisposition and somatic https://www.ncbi.nlm.nih.gov/clinvar/intro/ (28)
gnomADP Germline http://gnomad.broadinstitute.org/ (29)
69 genomes from CGI° Germline http://www.completegenomics.com/public-data/69-genomes/ (80)
Personalized Genome Project Germline http://www.personalgenomes.org/ (81)
NCI Genomic Data Commons Germline and somatic https://portal.gdc.cancer.gov/ (82)
cBioPortal Somatic http://www.cbioportal.org (33, 34)
Intogen (Partial TCGA dataset) Somatic https://www.intogen.org/search (35, 36)
Pediatric Cancer Genome Project Somatic http://explorepcgp.org 37)

The most commonly used catalogs include dbSNF, COSMIC, ClinVar, and gnomAD.
2Primary resources useful for all studies.

bParticularly useful for exome sequencing projects.

cUseful if the Complete Genomics platform was used.
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May 30, 2017) and is available in multiple formats, searchable,
and linked to records in literature and other data resources and
databases. While the vast majority of variants in dbSNP have
been observed in individuals without cancer, somatic variants are
included and annotated in the database. Because dbSNP is driven
by community submission of variants, levels of evidence vary
among individual variants. The genome Aggregation Database,
or gnomAD (29, 40), contains information from 123,136 exomes
and 15,496 whole-genomes from unrelated individuals sequenced
as part of various disease-specific and population genetic studies
(accessed May 30, 2017). These data were collected by numer-
ous collaborations, underwent standard processing, and unified
quality control and results area accessible as a searchable online
database and as a downloadable VCF-format text file. ClinVar
(28), maintained by the NIH National Center for Biotechnology
Information (NCBI), is a freely available archive for interpreta-
tions of clinical significance of variants for reported conditions.
Entries in ClinVar are taken directly from submitters and repre-
sent the relationship between variants and clinical significance.
When multiple submissions concerning a single variant are
available, ClinVar supplies high-level summaries of agreement
or disagreement across submitters. Importantly, though, clinical
significance in ClinVar is reported as supplied by the submitter.
The Personalized Genome Project (31) provides a limited number
of fully open-access genome sequencing results provided by
volunteers with trait surveys and even some microbiome surveys
of participants. A catalog of germline variants derived from 69
genomes sequenced using the Complete Genomics sequencing
platform (30) may be useful for groups who have data generated
from the same platform, particularly for identifying sequencing-
platform-specific false positive results.

1.3. Somatic

Whereas databases of germline variants are useful to filter out
variants unlikely to be directly involved in carcinogenesis, data-
bases of somatic variants are useful to identify variants and their
frequencies as observed in tumors. In some cases, identified
variants may be associated with specific tumor types, offering
mechanistic clues, particularly in the rare cancer setting where
biological understanding may be limited.

Several catalogs of somatic variants have, at their core, variants
derived from The Cancer Genome Atlas (TCGA). These data-
bases vary in the pipelines used to define the variants, the level
of annotation associated with individual variants, the proportion
of TCGA included, and methods for accessing or querying.
Recently, National Cancer Institute (NCI) has established the
Genomic Data Commons (GDC) to harmonize clinical informa-
tion and genomic results across enterprise cancer datasets (32),
particularly those funded by NCI, such as TCGA. In addition to
the adult tumors profiled as part of the TCGA, the NCI GDC
also contains data from several pediatric tumors profiled as part
of the Therapeutically Applicable Research To Generate Effective
Treatments (TARGET) project (41). Cancer cell line data from
the Cancer Cell Line Encyclopedia (CCLE) are also included (42)
in the GDC data collection. The GDC is a modern data platform
that provides multiple access methods, including a programmatic
application programming interface (API), data file download,

and web browser-based text and graphical queries and visualiza-
tion. The International Cancer Genome Consortium (ICGC) is a
large, international collaboration with a collection of 76 studies
(including TCGA studies) encompassing 21 tissue primary sites.
Like the NCI GDC, the ICGC data portal provides modern data
platform approaches to data access, visualization, and query (43).
The Catalog of Somatic Mutations in Cancer (COSMIC) database
is perhaps the largest and best-known cancer variant database.
It presents a unified dataset consisting of curated cancer variants
for specific genes as well as genomic screens from projects, such
as TCGA. Several other cancer variant data resources are listed
in Table 1.

2. FUNCTIONAL ANNOTATION
RESOURCES

When faced with variants with little or no literature or database
support, differentiating those that variants that are likely to be
deleterious, perhaps contributing to carcinogenesis, versus those
that likely are tolerated by the cell is a critical task, particularly
in the setting of clinical precision genomic oncology. Note that
determing that a variant is deleterious is not likely to result in a
change in diagnosis, prognosis, or therapy. However, prioritizing
variants for further study, research interest, and for discussion
in forums such as a molecular tumor board is a valuable and
necessary aspect of applying genomic technologies in the clini-
cal arena.

A number of algorithms and methods have been developed
to predict the effect of observed variants on protein structure
and function as well as the potential for clinical impact. These
prediction methods utilize features of the variant and its context,
such as sequence identity, sequence conservation, evolutionary
relationship, protein primary and secondary structure, entropy-
based protein stability, and approaches such as clustering based
on sequence alignments and machine learning. Some of them are
specific to the type of variant or mutation, some to a disease type,
and some more general. Therefore, applying these functional
annotational tools and interpreting the results in a clinical or
research setting may require significant human curation before
being recognized as clinically actionable. Here, we present a review
of a representative set of approaches for predicting pathogenicity
of different variants. For a comprehensive list of prediction tools
and their details, see Table 2. For more detailed scientific and
technical explanations of these methods, we refer the reader to
a comprehensive review (44).

2.1. SIFT

Sorting Intolerant From Tolerant, or SIFT, that predicts functional
impacts of amino acid substitutions (48) is one of the earliest vari-
ant effect prediction tools and represents the class of prediction
algorithms that utilizes protein conservation. It has since been
updated and an online version of the tool is available (67). SIFT
uses sequence homology, as measured by protein-level conserva-
tion, to classify variants based as tolerated or deleterious based
on the associated protein coding changes. SIFT has served as a
benchmark against which other methods are compared because
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TABLE 2 | Tools, software, and databases for functional prediction and annotation of variant impact.

Resource URL Reference Notes

Integrated predictive methods and aggregated databases

dbNSFPared https://sites.google.com/site/jpopgen/dbNSFP (45) Aggregated database of variant information
myvariant.info? http://myvariant.info/ (46) Aggregated database of variant information
Functional effect prediction software and algorithms

PolyPhen-2° http://genetics.bwh.harvard.edu/pph2 (47) Bayesian classification

SIFT® http://sift.jcvi.org (48) Alignment scores

MutationAssessor http://mutationassessor.org 27) Conservation, naive Bayes classifier
MutationTaster http://www.mutationtaster.org (49)

PROVEAN http://provean jcvi.org/index.php (50)

CADDP* http://cadd.gs.washington.edu (51)

GERP++° http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html (52)

PhyloP and PhastCons http://compgen.cshl.edu/phast/index.php (53, 54)

nsSNPAnalyzer http://snpanalyzer.uthsc.edu/ (55) Random Forest

SNPs&GO http://snps-and-go.biocomp.unibo.it/snps-and-go/ (56) SVM

SNAP2 https://rostlab.org/services/snap2web/ (67) Neural Networks

SNPs3D http://www.snps3d.org/ (58) Structure and sequence analysis

MutPred2 http://mutpred.mutdb.org/ (59) Random Forest

AUTO-MUTE http://binf2.gmu.edu/automute/ (60) Topology and statistical contact potential
Panther http://www.pantherdb.org/tools/csnpScoreForm.jsp 61) Hidden Markov Model

stSNP http://ilyinlab.org/StSNP/ (62) Comparative modeling of protein structure
CondelP http://bg.upf.edu/fannsdb/ (63) A weighted average of multiple methods
CoVEC https://sourceforge.net/projects/covec/files

CAROL® http://www.sanger.ac.uk/science/tools/carol (64) Combines PolyPhen-2 and SIFT
Cancer-specific prediction tools

CHASM http://wiki.chasmsoftware.org/index.php/Main_Page (65) Random Forest

CanDrA http://bicinformatics.mdanderson.org/main/CanDrA#CanDrA (66) 96 structural, evolutionary and gene features

2Aggregated databases combine outputs of other databases and algorithms are, therefore, efficient resources to use in annotation pipelines. Adding these resources to observed
variants is supported software in Table 4 including Ensembl VEP software (notec in this table), Annovar (noted®), and snpEff (noted®).

of its relative simplicity. SIFT considers the type of amino acid
change induced by a genomic variant and the position at which
the change/mutation occurs. SIFT relies on the presence of
sequences from which conservation can be determined; variants
for which such databases are limited will potentially lack robust
predictions.

2.2. PolyPhen-2

Polymorphism Phenotyping v2, or PolyPhen2, predicts the
effecting of coding non-synonymous SNPs on protein structure
and function and annotates them (47). This algorithm uses a
naive Bayes approach to combine information across a panel of
3D structural, sequence-based, and conservation-based features.
Trained on two datasets, HumDiv and HumVar, and associated
non-deleterious controls, the PolyPhen2 algorithm represents a
class of multivariate prediction algorithms that employ machine
learning and multiple features of variant impact.

2.3. Mutation Assessor

Mutation Assessor is an algorithm and tool that, such as SIFT, uses
a conservation-based approach. However, Mutation Assessor also
incorporates evolutionary information in an attempt to account
for shifts in function between subfamilies of proteins (27), poten-
tially extending the functional annotation of variants to “switch
of function” as well as loss or gain of function. By quantifying
the impact to conserved residues both globally and within sub-
families (residues that distinguish subfamilies from each other
are thought to be less tolerant to change), Mutation Assessor

defines a functional impact score to predict which variants are
likely to be deleterious.

2.4. CONDEL

The CONsensus DELeteriousness, or CONDEL score, is an inte-
grated prediction method for missense mutations that is rela-
tively easy to extend with additional prediction resources (63).
Originally implemented as a weighted average of the normalized
scores from the output of two computational tools, Mutation
Assessor and FATHMM, CONDEL can be extended or adapted to
data at hand and represents an “aggregator” approach to variant
effect prediction. Condel scores can be derived for a limited set of
specified mutations via an online web application. The Ensembl
database provides a variation of position-specific CONDEL pre-
dictions that combine SIFT and Polyphen-2 for every possible
amino acid substitution in all human proteins.

2.5. CHASM

Cancer-specific High-throughput Annotation of Somatic Muta-
tions, or CHASM, is a computational method that identifies and
prioritizes the missense mutations likely to enhance tumor cell
proliferation (65). CHASM uses machine learning to classify
putative “driver” cancer mutations as distinct from “passenger”
mutations. Training the CHASM model employed in silico simu-
lation to generate realistic “passenger” mutations, specifically
modeled to represent variant context and genes that are observed
in cancer settings. Multiple features of the variants, including their
DNA and protein contexts, were then used to build a machine
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learning approach that attempted to maximize the specificity of
separating driver mutations from passenger mutations. CHASM
represents a relatively specific algorithm focused not on “delete-
riousness” but, rather, on the likelihood that an observed variant
is a cancer “driver”

2.6. dbNSFP

Recognizing that applying all of the effect prediction tools avail-
able is potentially challenging (45), developed a database that
aggregates predictions for all possible SNVs associated with
coding changes (in Gencode gene models). With more than
ten different prediction algorithms and extensive additional
annotation, this database can be a useful one-stop-shop for add-
ing annotations to variant datasets. The snpEff suite (described
below) can be used in conjunction with dbNSFP to efficiently
annotate SNPs with the potential to effect coding genes.

3. CLINICAL ACTIONABILITY

The ultimate goal for many of the abovementioned resources is to
develop an individualized approach to the diagnosis, prevention,
and treatment of cancer, or precision oncology. However, despite
recent advances in HTS, determining the clinical relevance of
experimentally observed cancer variants remains a challenge in
the application of HTS in clinical practice. Difficulties in differ-
entiating driver and passenger mutations, lack of standards and
guidelines in reporting and interpretation of genomic variants,
lack of clinical evidence in associating genomic variants to clini-
cal outcome, lack of resources to disseminate clinical knowledge
to the cancer community, and the precise definition of actionabil-
ity have been reported to contribute to the bottleneck (68-71).
Comprehensive resources linking experimentally determined
cancer variants and clinical actionability have been developed
to address some of these challenges and address various aspects
of translating research results into clinical valuable information
to support clinical decisions in precision oncology (see Table 3).
In recognition of the fact that central curation of information
regarding actionability is extremely challenging, several of the
resources below use crowdsourcing as a means of gathering
updates and enhancing curation efforts. In addition to a web

interface, some tools provide additional access via API, mobile
app, and/or social media tagging to facilitate dissemination of
information and enhance accessibility. While some of these tools
share similar functions, in the section below, we highlight distinct
features and capabilities for a representative set of resources that
might be used as a “starter” set for clinical annotation of variants.

The myvariant.info database is one of the newest and attempts
to provide a “one-stop-shop” for variants. It is included in this sec-
tion because it has recently incorporated the CIViC and Cancer
Genome Interpreter databases. In addition, it provides annota-
tions for SNVs from multiple other data sources (a growing list,
so see the site for updates) and aggregates functional annotations
for variants present in its database, making it a good all-around
tool for cancer variant annotation. It is available as a performant
web API only at this time.

Clinical Interpretation of Variants in Cancer (CIViC) is an
open access and open source platform for community-driven
curation and interpretation of cancer variants. It is based on a
crowdsourcing model where individuals in the community can
contribute to produce a centralized knowledge base with the goal
of disseminating knowledge and encouraging active discussion.
Users, including patients, patient advocates, clinicians, and
researchers, can participate, along with community editors, in
various stages of interpreting the clinical significance of cancer
variants using standards and guidelines developed by community
experts (68, 72).

The Drug Gene Interaction Database (DGIdb) is an open
source and open access platform for gene and drug annotation
for known interaction and potential druggability. Users can cross-
reference genes of interest and drugs against up to 15 sources
and in functionally classified gene categories (73, 74). Cancer
Genome Interpreter (CGI) identifies mutational events that are
biomarkers of drug response or interact with known chemical
compounds (75). PharmGKB is a pharmacogenomic resource
for building clinical implementation and interpretation based
on annotating, integrating, and aggregating knowledge extracted
from research-level publications. It provides scored clinical
annotation, prescription annotation (drug dosing, prescribing
information), as well as pharmacokinetics/pharmacodynamics
(PK/PD) annotation, with primary literature reference.

TABLE 3 | In a clinical setting, these databases are the most relevant, as they are maintained to provide clinically actionable and curated content.

Resource URL Reference Crowd-sourcing used  Bulk access
myvariant.info? http://myvariant.info/ (46) Yes API?

CIViCa https://civic.genome.wustl.edu/home (72) Yes API, Download
DGldb* http://dgidb.genome.wustl.edu/ (73, 74) Yes API, Download
Cancer Genome Interpreter? https://www.cancergenomeinterpreter.org/nome (75) Yes API

OncoKb? http://oncokb.org/ (76) API

Cancer Driver Log https://candl.osu.edu/ (77) Yes Download
Clinical Knowledge Base https://www.jax.org/clinical-genomics/clinical-offerings/ckb

My Cancer Genome http://www.mycancergenome.org (78) Yes (licensed) API
Personalized Cancer Therapy https://pct.mdanderson.org Account required

PharmGKB https://www.pharmgkb.org/ (79) Yes Download
Precision Medicine Knowledge Base (Beta)  https://pmkb.weill.cornell.edu/ (80) Yes

While evalutation of each database by both clinical and informatics team members, databases marked with “” are maintained, recently (or continuously) updated, and curated. The
myvariant.info database includes both CiVIC and Cancer Genome Interpreter data. The last column in the table notes bulk access approaches as these are relevant when including

databases in an annotation pipeline or automated report.
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OncoKb contains information on the clinical implication
of specific genetic alterations in cancer. Each variant is annota-
tion from multiple sources and scored using Levels of Evidence
ranging from Level 1, which includes FDA-approved biomarker
predictive of response to an FDA-approved drug, to Level 2,
which includes variants for which an FDA-approved or standard
of care treatment is available, Level 3 and Level 4 contain variants
with investigational and hypothetical therapeutic implications,
respectively. A similarly structured scoring system is available for
indicating therapeutic implications for variants associated with
resistance (76). Cancer Driver Log (CanDL), an expert-curated
database for potential driver mutations in cancer, employs a
similar four-level scoring system based on FDA approval, clini-
cal, pre-clinical, and experimental functional evidence (77).

MyCancerGenome (MCG) is a knowledge resource highlight-
ing the implication of tumor mutation on cancer care. It allows
users to access its content via a mobile app and provide patient-
focused information. Patients can access a database entitled DNA-
mutation Inventory to Refine and Enhance Cancer Treatment
(DIRECT) for Epidermal Growth Factor Receptor (EGFR)
mutation for non-small cell lung cancer (NSCLC). Personalized
Cancer Therapy (PCT) at the MD Anderson Cancer Center is
a resource for clinical response associated with cancer variants
and aims to facilitate patient involvement in biomarker-related
clinical trials. Drug effectiveness is associated with a specific
biomarker and scored based on prospective clinical study as well
as Food and Drug Administration (FDA) approval.

4. TOOLS FOR MANIPULATING VARIANT
DATASETS

Processing sequence data with the goal of determining variants
(somatic or germline) often end with a file in Variant Call Format
(VCF format), a loose, self-describing data standard describing
variants along a genome, associated statistical and numeric
metrics for each variant, and information integrated from data
resources such as those described in the preceding sections (81).
An ecosystem of tools, listed in Table 4, has been developed for
basic transformations, manipulations, merge operations, and for
adding transcript, protein, and higher-level functional annota-
tions to variants in a VCF file. The vt and bcftools software suites

TABLE 4 | Software tools for manipulating and adding annotations to variant
datasets.

Software URL Reference
vt http://genome.sph.umich.edu/wiki/Vt 87)
bcftools http://www.htslib.org/download/ (88)
ANNOVAR http://annovar.openbioinformatics.org/en/latest/ (83)
Ensembl Variant http://www.ensembl.org/vep (85)
Effect Predictor (VEP)

SnpEff http://snpeff.sourceforge.net/ (84)

Oncotator
vcfanno

https://portals.broadinstitute.org/oncotator/ 8
https://github.com/brentp/vcfanno

©

@
2

Variant calling produces a list of observed variants. The tools in this table are useful for
adding biological interpretation and for annotating the variants with information from
resources in Tables 1-3.

perform operations such as slicing by genomic coordinate, data
compression, and, importantly variant normalization, rendering
variants more readily comparable across resources. Annovar
(82, 83) and the SnpEff suite (84) add annotations relative to
gene annotations, including information about transcript and
protein-coding changes. The Ensembl Variant Effect Predictor
(VEP) utilizes Ensembl gene models to annotate variants in gene
context and offers an interesting plugin architecture that supports
adding variant information from resources in (Table 1) (85).
Recently, several software developers of variant annotation tools
have developed a standard for reporting gene-centric annotations
that has simplified post-processing of variants after annotation.
Finally, tools such as Vcfanno (86) have been developed that can
flexibly add fields to variants in a VCF file based on relatively
sophisticated logic and data transformations, reducing the num-
ber of tools required to bring a new data resource into the anno-
tation pipeline.

5. DISCUSSION

5.1. Pragmatic Details

Despite advanced toolsets for manipulating variant files and
increasing adoption available standard formats, practical pitfalls
and challenges remain to the basic manipulation of variant data-
sets. Some data resources are available in multiple formats and
not all formats contain identical information. Matching variants
between resources and observed variants can be challenging, as
some variants can be represented validly in multiple forms. Ideally,
variants are cataloged with clarity with respect to a reference
genome and, whenever possible, using HGVS nomenclature (90).
In spite of increasing awareness and uptake of HGVS standard
nomenclature, the critical step of matching variants across tools
and databases in assessing clinical significance is still hampered
by inconsistencies across tools and databases (91). Particularly,
when handling clinical samples, an information system that
provides results from multiple resources when assessing novel
variants, incorporates in silico controls when adding or updat-
ing data resources (to avoid introducing errors), and adheres
to HGVS nomenclature wherever possible in data processing
pipelines can increase the likelihood of discovering potentially
relevant variants.

5.2. Where to Start?

This review is meant to be comprehensive, so the reader might
wonder “Where do we start?” While it is difficult to make hard-
and-fast recommendations about what resources, tools, and
databases are “the best” given the lack of gold-standard datasets
on which to base such evalutations, annotations in Tables 1-3
are meant to provide context for prioritization. The context for
sequencing (clinical or not, targeted mutations, trial setting, or
novel variant and biomarker discovery) will also drive annotation
pipeline development. Not all data resources need to be added
simultaneously if developing a pipeline for annotating cancer
variants for precision oncology applications. In a clinical setting,
targeting the reporting workflow and working with clinicians to
understand the most relevant annotations is the most efficient
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approach to determining relevant resources for annotation. Devel-
oping a modular informatics pipeline, perhaps using a compu-
tational workflow framework (https://github.com/pditommaso/
awesome-pipeline) that can be easily extended and re-run on
previously annotated data is helpful to keep pace with the rapidly
changing and growing collection of annotation resources. Newer
aggregation resources such as myvariant.info offer a wholistic
solution (annotation, catalog, and clinical actionability), but with
some risk of “lossiness” with respect to the primary resources
contained within.

Finally, given the rapid pace of new development in this
space, we have established a crowd-sourced list of cancer variant
resources for precision medicine available at https://github.com/
seandavi/awesome-cancer-variant-databases.

5.3. Conclusion

Robust sequencing technologies and increasingly reliable bio-
informatics pipelines, combined with parallel development of
therapeutics and diagnostics has bolstered the field of precision
genomic oncology. However, the sheer number of resources
available that can inform the interpretation of small variants is
staggering, except for the very few variants with well-established
clinical relevance or an associated targeted therapy. This review
has highlighted a number of important data resources individu-
ally. For other variants, data integration remains a significant hur-
dle to the rapid turnaround required to apply HTS in a clinical
context. Expert panel review (the molecular tumor board) has
been effective for some groups (13, 92, 93) while other groups
have adopted a protocol-based approach (94). Even when
molecularly targetable lesions are identified, barriers to deliver-
ing therapy have been observed, limiting the impact of precision
genomic oncology in some settings (95). Not covered in this
review is the increasing utility of HTS in the burgeoning field of
immunotherapy, where early efforts to predict response based
on HTS results have been promising (19, 96, 97).

Some interesting trends are evident in the databases and
resources presented in this review that highlight the overarch-
ing trends in delivering precision medicine. First is the sheer
volume and rapid growth of numbers of observations to learn
about the spectrum of variation cancer and normal genomes.
Projects such as GnomAD, COSMIC, and other data sharing
efforts enhance precision by cataloging rare variants as well as
precise estimates of the frequencies of common variants. Second
is the use of crowd-sourcing to produce rich clinical annotation
(e.g., CiVIC) in response to the need for intensive human
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The concept that blood supply is required and necessary for cancer growth and
spreading is intuitive and was firstly formalized by Judah Folkman in 1971, when he
demonstrated that cancer cells release molecules able to promote the proliferation of
endothelial cells and the formation of new vessels. This seminal result has initiated one of
the most fascinating story of the medicine, which is offering a window of opportunity
for cancer treatment based on the use of molecules inhibiting tumor angiogenesis
and in particular vascular-endothelial growth factor (VEGF), which is the master gene
in vasculature formation and is the commonest target of anti-angiogenic regimens.
However, the clinical results are far from the remarkable successes obtained in pre-clinical
models. The reasons of this discrepancy have been partially understood and well
addressed in many reviews (Bergers and Hanahan, 2008; Bottsford-Miller et al., 2012;
El-Kenawi and El-Remessy, 2013; Wang et al., 2015; Jayson et al., 2016). At present
anti-angiogenic regimens are not used as single treatments but associated with standard
chemotherapies. Based on emerging knowledge of the biology of VEGF, here we sustain
the hypothesis of the efficacy of a dual approach based on targeting pro-angiogenic
pathways and other druggable targets such as mutated oncogenes or the immune
system.

Keywords: cancer, VEGF, angiogenesis, target therapy, resistance

VEGF-TARGETED ANTI-ANGIOGENIC THERAPY
