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Single energy CT-based
mass density and relative
stopping power estimation
for proton therapy using
deep learning method

Yuan Gao1, Chih-Wei Chang1, Justin Roper1, Marian Axente1,
Yang Lei1, Shaoyan Pan2, Jeffrey D. Bradley3, Jun Zhou1,
Tian Liu1,4 and Xiaofeng Yang1,2*

1Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United
States, 2Department of Biomedical Informatics, Emory University, Atlanta, GA, United States, 3Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, United States, 4Department of Radiation
Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
Background: The number of patients undergoing proton therapy has increased

in recent years. Current treatment planning systems (TPS) calculate dose maps

using three-dimensional (3D) maps of relative stopping power (RSP) and mass

density. The patient-specific maps of RSP and mass density were obtained by

translating the CT number (HU) acquired using single-energy computed

tomography (SECT) with appropriate conversions and coefficients. The proton

dose calculation uncertainty of this approach is 2.5%-3.5% plus 1 mm margin.

SECT is the major clinical modality for proton therapy treatment planning. It

would be intriguing to enhance proton dose calculation accuracy using a deep

learning (DL) approach centered on SECT.

Objectives: The purpose of this work is to develop a deep learning method to

generate mass density and relative stopping power (RSP) maps based on clinical

single-energy CT (SECT) data for proton dose calculation in proton therapy

treatment.

Methods: Artificial neural networks (ANN), fully convolutional neural networks

(FCNN), and residual neural networks (ResNet) were used to learn the correlation

between voxel-specific mass density, RSP, and SECT CT number (HU). A

stoichiometric calibration method based on SECT data and an empirical model

based on dual-energy CT (DECT) images were chosen as reference models to

evaluate the performance of deep learning neural networks. SECT images of a

CIRS 062M electron density phantom were used as the training dataset for deep

learningmodels. CIRS anthropomorphic M701 andM702 phantoms were used to

test the performance of deep learning models.

Results: For M701, the mean absolute percentage errors (MAPE) of the mass

density map by FCNN are 0.39%, 0.92%, 0.68%, 0.92%, and 1.57% on the brain,

spinal cord, soft tissue, bone, and lung, respectively, whereas with the SECT

stoichiometric method, they are 0.99%, 2.34%, 1.87%, 2.90%, and 12.96%. For RSP
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maps, the MAPE of FCNN on M701 are 0.85%, 2.32%, 0.75%, 1.22%, and 1.25%,

whereas with the SECT reference model, they are 0.95%, 2.61%, 2.08%, 7.74%,

and 8.62%.

Conclusion: The results show that deep learning neural networks have the

potential to generate accurate voxel-specific material property information,

which can be used to improve the accuracy of proton dose calculation.

Advances in knowledge: Deep learning-based frameworks are proposed to

estimate material mass density and RSP from SECT with improved accuracy

compared with conventional methods.
KEYWORDS

deep learning, CT, relative stopping power, mass density, proton therapy
1 Introduction

The number of patients receiving proton therapy treatment is

rising each year. Current proton treatment planning systems (TPS)

incorporate relevant proton energy deposition physics into the

process, determining the patient irradiation pattern. All patients

treated with radiotherapy (including protons) are simulated using

computed tomography (CT) typically acquired using a single energy

scanning protocol. This data is utilized for geometrical

implementation of the therapy and also to characterize the patient

from the point of view of the probability of charged particle

interactions. Therefore, proton dose calculation accuracy is

dependent on the capability of TPS to characterize patient tissues

based on CT imaging (1). This is done by correlating the CT number

of tissue substitute phantoms with known material composition with

mass density or relative stopping power (RSP) via the stoichiometric

calibration method (2). The accuracy of this approach relies on the

difference between patient tissue chemical composition and the tissue

substitute database used in the calibration (3–5). Since single-energy

computed tomography (SECT) can’t differentiate changes in CT

number as a result of differences in either mass density or material

chemical composition (6), the error in RSP calculation can become

significant. The accuracy of mass density estimation dominates the

uncertainty of RSP (7). Furthermore, tissue heterogeneity, CT image

noise, and artifacts can also contribute to the RSP calculation error.

The direct consequence of uncertainties associated with material

characterization (mass density) from SECT data is a loss of accuracy

in the prediction of energy deposition relative to the depth of proton

interaction, also called proton range uncertainty. To mitigate range

uncertainty, TPS have options to allow for the addition of margins in

the proton beam range, the standard being 2.5%-3.5% of the energy-

dependent range plus an additional 1mm-1.5mm (8).

To further increase the proton therapy therapeutic ratio

advantage, many efforts have been made to decrease the proton

range uncertainty. One approach is introducing Monte-Carlo dose
026
calculation algorithms to proton TPS (8–12), which can reduce the

margin down to 2.4% plus 1.2 mm (8, 13). Another proposed

avenue was to use dual-energy CT (DECT) to build calibration

curves between CT number and mass density (14). The

methodology allows for the acquisition of CT scans with different

X-ray spectra, which in turn can be used to determine relative

electron density and mean excitation energy (15). Furthermore,

DECT virtual monochromatic image reconstruction techniques can

reduce beam hardening artifacts and noise. Numerous algorithms

for DECT-based RSP estimation have been developed, and the

reported results indicate that the errors in RSP estimates can be

reduced to 1% (15–17).

As a robust implementation platform for DECT applications in

the area of RSP mapping, machine learning (ML) algorithms have

also been applied. Su et al. reported their approach for generating

parametric maps using ML, which produced accurate effective atomic

numbers, relative electron density, mean excitation energy, and RSP

from DECT data (18), and they concluded that artificial neural

network (ANN) outperformed other reported ML methods.

Building on the potential advantage of increased network depth

and compositionality (19, 20), deep learning (DL) is an extension

of machine learning, which consists of massive multilayered networks

or artificial neurons that can discover useful features in CT images

(21). DL methods were successfully applied to improve mass density

and RSP mapping from DECT datasets (22).

Despite all DECT-based ML and DL applications for improving

proton dose calculation, SECT is still the current standard in clinical

CT simulators for proton therapy. Therefore, an accurate and

efficient method to reduce range uncertainty based on SECT

images would benefit existing proton radiotherapy clinics and

workflows. DL networks have high degrees of freedom of

modeling, therefore offering the opportunity to improve the

accuracy of SECT-based RSP and mass density modeling, as has

been shown in DECT-based studies. In this study, we investigate the

feasibility of using DL models to correlate SECT-based CT numbers
frontiersin.org
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to voxel-specific mass density and RSP using two types of electron

density phantoms.
2 Materials and methods

2.1 Phantom SECT data sets

A CIRS 062M electron density phantom (Computerized

Imaging Reference Systems, Inc., Norfolk, VA, USA) was used to

generate the DL training dataset, while Gammex 467-1009 electron

density phantom, CIRS ATOM M701 (male) and M702 (female)

anthropomorphic phantoms were chosen to generate the DL

networks prediction datasets (Figure 1). Table 1 details the mass

density and RSP value for the phantoms used. All mass density

information was provided by the manufacturer except the bone

insert, for which measurements were utilized to produce a reference

value (11). All RSP values were calculated using a previously

reported method (22). Phantoms were imaged using a Siemens

SOMATOM Definition Edge CT scanner and clinical 120 kVp

single energy beam acquisition protocols. The electron density

phantom was scanned using a standard head-and-neck protocol.

A pelvis protocol was used for the Gammex electron density

phantom, while the M701 and M702 phantoms were scanned

using three different protocols: head-and-neck (HN), thorax, and

pelvis protocols. The manufacturer-reported CTDIvol is reported in

Table 2, as well as the reconstructed image resolution. All the
Frontiers in Oncology 037
reconstructed SECT images have a reconstructed field-of-view

diameter of 500 mm and a slice thickness of 0.5 mm.
2.2 Deep learning models

Three supervised DL models were implemented to demonstrate

the capability of artificial intelligence (AI) to improve proton range

calculation using SECT (21, 23–25). Figure 2A shows the artificial

neural network (ANN) workflow, and Figures 2B, C show the fully

convolutional neural network (FCNN) and residual neural network

(ResNet). 120 kVp spectra SECT images are used as DL input. The

same DL models are utilized to estimate both the mass density and

RSP relative to the input SECT CT number values. The DL models

were supervised by a loss function, defined as the difference between

the true value and predicted value at each voxel. All the DL models

were implemented in PyTorch (26). Su et al. reported that ANN with

30 hidden units outperforms traditional ML models in generating

quantitative parametric maps based on DECT images (18). Their

ANN design was adopted for SECT parametric mapping in this

study, with 30 hidden hyperbolic-tangent (tanh) layers and error

backpropagation (see Figure 2A). Convolutional neural networks

(CNNs) have gained widespread adoption in both regression and

classification tasks over the past decade. This popularity is primarily

due to their capability to autonomously learn deep, intricate features,

a significant advancement over the traditional machine learning

models that relied on manually extracted, handcrafted features (27).
FIGURE 1

Experiment set up, CIRS 062M electron density phantom (Computerized Imaging Reference Systems) (A1), Gammex 468 electron density phantom (A2)
CIRS M701 (A3), and CIRS M702 (Computerized Imaging Reference Systems) (A4) were scanning with Siemens SOMATOM Definition Edge scanner.
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A fully connected neural network (FCNN) is a type of CNN that has

fully connected hidden layers. A 1D FCNN model was previously

implemented to correlate the mass density and RSP map based on

DECT parametric maps (22). This 1D FCNN model was adapted to

the SECT images dataset input in this study, including seven hidden

layers (Figure 2B).

Due to the small size of the training set used in this study,

overfitting issues could be associated with trained DL model

outputs, which were also considered as vanishing gradient
Frontiers in Oncology 048
problems for our CNN models. A solution for the latter was

proposed: ResNet (25). The ResNet implementation in this study

includes a shortcut connection added between input and output

after a few weight layers: the residual block. Figure 2C shows the

ResNet workflow and Figure 2D shows the detail of the residual

block in the ResNet. In Figure 2C, the input is linked to a

convolutional layer, which is subsequently connected to four

distinct sequences of residual blocks. Each type of residual block

varies in terms of channel, kernel, stride, and padding. These details

are illustrated in Table 3.

All the networks were trained using an NVIDIA GeForce 3090

GPU with 24 GB of memory, utilizing a batch size of 100. We set the

learning rate for the Adam optimizer to 1e-5. During training, each

batch optimization consumed 0.5 GB of CPU memory and 2 GB of

GPU memory. All networks were implemented in PyTorch 2.1.
2.3 SECT stoichiometric method

A conventional physics-based SECT stoichiometric calibration

method was utilized (2) to provide a standard set of reference values

when comparing the DL models output for mass density and RSP.

The X-ray linear attenuation coefficient μ of a material can be

calculated using Equation (1):

m = r
NA

A
½ZKKN (E) + ZnKSCA(E) + ZmKPE(E)� (1)

where r is mass density, NA is Avogadro’s number, A is the

atomic weight, Z is the atomic number, KKN , KSCA, and KPE are

weighting constants for incoherent scattering, coherent scattering,

and photoelectric effect, respectively, as a function of the SECT

scanner X-ray spectrum (1). m and n are constants and were

assigned 4.62 and 2.86 (28) for the energies encountered in kV X-

ray imaging and the elements present in human tissue. Taking the

ratio of the attenuation coefficient of material of interest to the

attenuation coefficient of water, equation (2) can be derived:

HU
1000

+ 1 = r̂ e,w
½1 + Ẑ 1:86k1(E) + Ẑ 3:62k2(E)�

½1 + Ẑ w 
1:86k1(E) + Ẑ w 

3:62k2(E)�
(2)

where r̂ e,w is the electron density relative to water, Ẑ w is the

effective atomic number of waters, k1 =
KSCA

KKN , k2 =
KPE

KKN . k1 and k2
were calculated by nonlinear regression, while the CT number

values were taken as the mean value of each electron density

insert from the SECT scan. Finally, the RSP of each material of

interest was calculated using the Bethe equation (29):

RSP = r̂ e,w ln
2mec

2b2

Im(1 − b2)
− b2

� �
= ln

2mec
2b2

Iwater(1 − b2)
− b2

� �
(3)

where me is the electron rest mass, c is the speed of light in

vacuum, and b is the proton speed relative to the speed of light. Im
and Iwater are the mean excitation energies of the material of interest

and water. As recommended by ICRU49, Iwater was set to 75 eV (30).

Im can be calculated from the atomic components using the Bragg

additivity rule. Therefore, the stoichiometric calibration method can

establish a functional relationship between CT numbers from the

SECT datasets and RSP by Equation (2) and (3) (11).
TABLE 1 Phantom insert data: mass densities and RSP.

Tissue surrogate r (g/cm3) RSP

CIRS 062M

Lung (Inhale) 0.203 0.202

Lung (Exhale) 0.494 0.492

Adipose 0.965 0.977

Breast Tissue 0.996 1.003

Muscle 1.059 1.059

Liver 1.072 1.070

Bone 200 mg/cc 1.157 1.116

Bone 800 mg/cc 1.520 1.404

Bone 1250 mg/cc 1.830 1.647

Gammex 467-1009

LN450 Lung 0.450 0.448

Breast 0.980 0.969

Brain 1.050 1.061

Liver 1.090 1.090

B200 Bone Mineral 1.150 1.099

CB2-50%CaCO3 Bone 1.560 1.422

SB3 Cortical Bone 1.820 1.614

CIRS M701 & M702

Lung 0.202 0.201

Breast 0.991 0.982

Soft Tissue 1.055 1.041

Spinal Cord 1.065 1.035

Brain 1.069 1.049

Bone 1.5171 1.410
1The bone mass density was measured.
TABLE 2 CTDIvol and voxel grid spacing information at each site with
specified standard acquisition protocol.

CTDIvol (mGy)/Voxels

HN Thorax Pelvis

CIRS 062m 23.3/
512×512×495

Gammex 467 23.3/512×512×30

CIRS Atom
M701

23.6/
512×512×605

23.3/
512×512×609

23.3/
512×512×471

CIRS Atom
M702

23.6/
512×512×713

23.3/
512×512×881

23.3/
512×512×809
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A B

D

C

FIGURE 2

Deep learning framework for mass density and RSP map prediction based on SECT images. The red arrows illustrate the training workflows, while
the blue arrows depict the prediction workflow. The framework includes (A) ANN, (B) FCNN, (C) ResNet, and (D) the residual block of ResNet. During
the training phase (indicated by red arrows), the phantom SECT images are input into the three deep learning networks: ANN, FCNN, and ResNet.
For the prediction phase, the M701 and M702 phantoms are fed into the trained deep learning networks to predict mass density and RSP.
TABLE 3 Architecture of the 1D convolution components of ResNet (RN).

Network Layer Channel. Kernel Stride Pad

ConvA 64 7 2 3

Residual Block A1

Conv1_11 64 3 1 1

Conv1_12 64 3 1 1

Residual 64 1 2 0

Residual Block A2

Conv1_21 128 3 2 1

Conv1_22 128 3 1 1

Residual 128 1 2 0

Residual Block A3

Conv1_31 256 3 2 1

Conv1_32 256 3 1 1

Residual 256 1 2 0

Residual Block A4

Conv1_41 512 2 2 1

Conv2_42 512 2 1 1

Residual 512 1 2 0

Residual Block A5

Conv1_51 1024 3 2 1

Conv2_52 1024 3 2 1

Residual 1024 1 2 0
F
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2.4 Empirical model based on DECT
parametric mapping

In addition to the stoichiometric calibration standard, a second

set of reference values was obtained to compare the DL models

output in terms of mass density and RSP prediction based on

SECT images against the manufacturer-defined ground truth.

These were based on an empirical model for mass density and

RSP based on DECT parametric mapping (22), and corresponding

definitions are shown in Equation (4) and (5) (7, 31). Therein, r
denotes the mass density, and re and Zeff are relative electron

density and effective atomic number and were obtained from the

DECT scanner console (Siemens Healthineers, syngo.via, Malvern,

PA, USA). As used, the mass density model has a correction for the

inflated lung. The RSP model includes corrections for different

human tissues classified by various effective atomic numbers. The

same phantoms were used in both DECT and SECT scans, and all

tissue surrogate-defined contours were kept the same for reference

comparison. Detailed information on DECT scans is listed in a

previous publication (22).

r =
−0:1746 + 1:176re    

0:26                          

material   ≠   inflated   lung      

material   =   inflated   lung      

(
(4)

RSP =

re,                                            

(1:1114 − 0:0148Zeff )re
0:9905re,                                

(1:1117 − 0:0116Zeff )re,

    0 ≤ Zeff < 0:5

0:5 ≤ Zeff < 8:5

8:5 ≤ Zeff < 10

Zeff ≥ 10                

8>>>>><
>>>>>:

(5)
2.5 Evaluation metrics

The ground truth dataset included the reference mass density

and RSP values as shown in Table 1. The CIRS M701 and M702

phantom images were manually contoured in RayStation 9B

(RaySearch Laboratories, Stockholm, Sweden) for each of the

tissue surrogate inserts, and reference values were assigned to

each contour. Absolute percentage error (APE) and mean

absolute percentage error (MAPE) were calculated as defined in

Equation (6) and (7), where i denotes the ith voxel, x is the mass

density or RSP at specific voxel, and N is the total number of voxels.

The spatial distribution of error was also generated for the
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computed APE and displayed in error visualization maps of the

whole phantom datasets.

APEi =
xi − xi,REF
xi,REF

����
����� 100% (6)

MAPE =
1
No

N
i=1APEi (7)
3 Results

3.1 Gammex electron density phantom
analysis using pelvis protocol

Table 4 presents results comparing MAPE of mass densities

between DL models and the SECT stoichiometric method over

seven Gammex electron density phantom tissue surrogates. As

emphasized by the bold values, the DL models perform better on

all tissue surrogates. For the lung tissue surrogates (LN300 &

LN450), the DL models outperform conventional methods, while

for higher density inserts, the FCNN and ResNet perform better

than the traditional method in select cases. As seen in Table 5, a

similar trend can be observed for the DL RSP predictions.
3.2 HN site analysis using HN protocol

The mass densities and RSP predictions from the empirical

model based on DECT parametric mapping, the SECT

stoichiometric method, and the DL model results analysis are

shown in Tables 6, 7. For all four tissues in M701, the DL

methods are more accurate than the DECT empirical and SECT

stoichiometric methods. The performance of FCNN and ResNet

was comparable because of the similarity in the network

fundamentals. For M702, the DECT empirical model outperforms

the DL models in bone tissue prediction, which proves the

advantage of DECT in bone tissue mass density estimation over

SECT methods (ResNet has a comparable performance). However,

this is not true for M701, the DL models based on SECT can achieve

better results with the DECT empirical method in bone and other

tissues. Table 7 summarizes the RSP MAPE comparison between

the DECT empirical model, the stoichiometric method, and the DL

models. For M701, DL methods outperform the traditional
TABLE 4 Mass Density – MAPE [SECT DL vs. SECT stoichiometry].

Gammex Tissue Surrogates LN450 Lung Breast Brain Liver B200
Bone
Mineral

CB2-
50%
CaCO3

Bone

SB3
Cortical
Bone

SECT Stoichiometric 12.57 ± 5.14 1.63 ± 1.36 2.23 ± 1.78 1.89 ± 1.03 1.18 ± 0.91 1.98 ± 1.12 2.32 ± 1.09

ANN 6.92 ± 4.81 1.95 ± 1.40 1.34 ± 1.04 1.18 ± 0.90 0.95 ± 0.74 6.22 ± 1.26 4.85 ± 1.28

FCNN 6.43 ± 0.16 1.18 ± 1.24 1.58 ± 1.18 1.69 ± 0.65 0.45 ± 0.27 1.36 ± 0.12 0.43 ± 0.30

ResNet 11.66 ± 0.27 1.17 ± 1.37 1.72 ± 1.11 1.66 ± 0.71 0.77 ± 0.23 0.85 ± 0.38 0.29 ± 0.09
Bold values mean best performance.
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methods, while for M702, the DECT empirical method outperforms

the DL methods in the spinal cord.
3.3 Chest site analysis using
thorax protocol

Table 8 summarizes the MAPE comparison of mass density

estimated by empirical and DL models on the chest site using 120

kVp thorax protocol. For the lung site, the DECT empirical model

doesn’t apply to the normal lung tissue (the empirical model assigns

the inflated lung as constant mass density), so the lung tissue mass

density prediction is not reported. Table 9 shows the MAPE

comparisons of RSP between the reference and DL models. All

three DL models outperform the two reference models. The DECT

empirical model and the stoichiometric method show better

performance than ANN on lung tissue RSP prediction.
3.4 Pelvis site analysis using pelvis protocol

Table 10 shows the MAPE values of five models’ mass density

predictions at the CIRS M701 and M702 phantom pelvis sites. DL

methods show better performance in all three tissues and can

reduce the error to<1% in the spinal cord and soft tissue.

Table 11 shows the MAPE values of three DL models and the
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two reference models’ RSP estimations at the CIRS M701 and M702

phantom pelvis sites. The DL methods have better performance in

soft tissue and bone, and all models have comparable results in the

spinal cord.
3.5 Whole phantom site analysis using HN,
thorax, and pelvis protocols

Table 12 shows the MAPE comparisons of mass densities

between DL models and the SECT stoichiometric method over

the entire phantom site. Table 13 summarizes the MAPE

comparisons of RSP between DL models and the SECT

stoichiometric method over the entire phantom site.

Figure 3 illustrates the APE maps of the mass density estimation

error. Figures 3A17–C1 shows the SECT images of CIRS M701

phantom at three sites, HN, thorax, and pelvis, using 120 kVp

corresponding scanning protocols. As presented using the APE

color maps, the SECT stoichiometric model results in considerable

uncertainty at lung and bone sites. Overall, the analysis for FCNN

indicates the lowest error in the mass density estimation compared

with other DL models. Figure 4 illustrates the APE maps for RSP

error estimation. As with mass density, the SECT stoichiometric

method shows considerable error in RSP estimation, especially in

bone and lung tissue. ANN improves the estimation accuracy for

bone and soft tissue, while FCNN predictions indicate
TABLE 6 Mass Density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone

DECT empirical model 1.00 ± 0.80 1.40 ± 1.30 2.30 ± 2.20 2.50 ± 5.20

SECT Stoichiometric method 0.99 ± 0.66 1.53 ± 1.59 1.59 ± 1.72 4.79 ± 2.20

ANN 0.64 ± 0.50 0.96 ± 1.20 1.03 ± 1.08 1.95 ± 2.44

FCNN 0.39 ± 0.31 0.59 ± 0.64 0.62 ± 0.52 1.03 ± 1.30

ResNet 0.15 ± 0.20 0.74 ± 1.20 1.46 ± 1.03 0.66 ± 0.85

M702 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 1.30 ± 0.08 1.20 ± 1.00 2.20 ± 1.50 2.00 ± 1.90

SECT Stoichiometric method 1.10 ± 0.97 1.80 ± 2.01 1.64 ± 2.12 6.80 ± 4.76

ANN 0.86 ± 0.81 1.28 ± 1.68 1.07 ± 1.70 4.84 ± 7.00

FCNN 0.89 ± 0.57 0.95 ± 1.20 0.57 ± 1.15 3.74 ± 6.78

ResNet 0.19 ± 0.89 0.93 ± 2.18 1.38 ± 2.44 2.16 ± 5.18
Bold values mean best performance.
TABLE 5 RSP – MAPE [SECT DL vs. SECT stoichiometry].

Gammex Tissue Surrogates LN450 Lung Breast Brain Liver B200
Bone
Mineral

CB2-50%
CaCO3

Bone

SB3
Cortical
Bone

SECT Stoichiometric 3.71 ± 2.89 3.72 ± 2.09 4.50 ± 2.38 2.47 ± 1.67 1.64 ± 1.61 5.33 ± 1.10 7.99 ± 1.13

ANN 4.72 ± 3.54 3.33 ± 1.66 1.59 ± 1.12 1.50 ± 0.92 1.87 ± 0.73 4.81 ± 1.18 2.39 ± 1.10

FCNN 2.18 ± 0.15 2.47 ± 1.47 1.16 ± 1.53 1.78 ± 0.59 1.39 ± 0.16 1.08 ± 0.11 1.96 ± 0.03

ResNet 2.26 ± 0.24 2.55 ± 1.44 1.25 ± 1.46 1.73 ± 0.35 1.60 ± 0.18 1.66 ± 0.71 2.69 ± 0.14
Bold values mean best performance.
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improvements overall. ResNet shows smaller APE for bone,

specifically for the pelvis scan, even when compared with FCNN.
4 Discussions

External beam radiotherapy requires an accurate CT

characterization of the patient geometry and heterogeneities to

deliver accurate therapeutic patient doses. SECT imaging is the

current clinical paradigm for generating the necessary information

for clinical diagnosis and treatment planning in radiotherapy,

including protons. Su et al. demonstrated the capability of machine

learning methods to improve the prediction accuracy for mass

density and RSP based on DECT imaging (18). In order to

approach this methodology while using the more commonly

available SECT imaging, we proposed a framework that can
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accurately predict mass density and RSP parametric maps for

proton dose calculation while using SECT imaging as input. All

SECT DL methods for mass density and RSP estimation were

compared against the ground truth values defined in Table 1 and

compared to current standards for mass density and RSP

parametrization (DECT and stoichiometry). All parametrization

was done on phantom data since the DL network training requires

accurate ground truth definition, which excludes patient data. The

DECT model MAPE was consistently larger than that of the SECT

stoichiometric method for some of the tissues (specifically for the

spinal cord). This could be attributed to the fact that the DECT

empirical model depends on the relative electron density for mass

density prediction and effective atomic number for RSP, and it has

not been calibrated for the specific CT scanner used in this work. The

SECT DL models demonstrated good or better performance for

parametrization based on three different clinical scanning protocols
TABLE 8 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 3.40 ± 2.60 3.10 ± 2.50 3.40 ± 3.30 -1

SECT Stoichiometric method 1.53 ± 1.59 1.59 ± 1.72 3.68 ± 2.17 8.29 ± 7.34

ANN 0.96 ± 1.20 1.03 ± 1.08 3.64 ± 3.17 12.96 ± 7.09

FCNN 0.59 ± 0.64 0.64 ± 1.13 1.31 ± 2.36 1.57 ± 0.39

ResNet 0.58 ± 0.61 1.46 ± 1.56 1.28 ± 1.43 2.18 ± 0.73

M702 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 2.50 ± 1.90 2.70 ± 2.20 4.00 ± 6.80 -1

SECT Stoichiometric method 1.72 ± 1.60 1.98 ± 4.10 5.77 ± 4.80 6.91 ± 6.35

ANN 1.32 ± 3.70 1.32 ± 3.70 4.55 ± 6.50 14.86 ± 7.37

FCNN 0.89 ± 0.71 0.81 ± 3.65 3.41 ± 6.54 1.52 ± 0.49

ResNet 0.64 ± 0.83 1.53 ± 3.87 1.69 ± 4.87 2.42 ± 1.97
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
TABLE 7 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 1.20 ± 0.90 2.70 ± 1.90 2.90 ± 2.60 4.20 ± 4.90

SECT Stoichiometric method 0.95 ± 0.96 2.06 ± 1.53 2.96 ± 1.64 10.22 ± 3.00

ANN 1.15 ± 0.51 2.42 ± 0.85 1.11 ± 0.79 1.79 ± 1.68

FCNN 0.85 ± 0.37 2.11 ± 0.64 1.08 ± 0.51 0.67 ± 1.28

ResNet 1.85 ± 0.20 3.14 ± 0.83 2.24 ± 1.31 0.48 ± 1.18

M702 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 0.90 ± 0.80 1.60 ± 1.40 2.60 ± 2.40 3.90 ± 2.20

SECT Stoichiometric method 1.24 ± 1.32 2.19 ± 1.84 3.20 ± 2.03 10.65 ± 4.47

ANN 0.99 ± 0.69 2.39 ± 1.44 1.03 ± 1.49 4.35 ± 5.57

FCNN 0.45 ± 0.50 1.80 ± 1.22 0.74 ± 1.09 3.00 ± 5.67

ResNet 1.82 ± 0.62 3.20 ± 1.56 2.18 ± 1.22 1.67 ± 4.61
Bold values mean best performance.
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(HN, Chest, Pelvic). Note that DLmodels were trained with phantom

data, while the SECT stoichiometric method and DECT empirical

data were optimized for clinical use with both phantom and human

tissue, which might lead to worse performance on anthropomorphic

phantom mass density and RSP estimation.

Gomà et al. concluded that the Gammex phantom utilized in

this study contains tissue substitutes better representative of the

human body than the CIRS electron density phantom (17). As

shown in Tables 4, 5, we tested our DL models with Gammex 467

electron density phantom tissue surrogates, and the results indicate

that the DL models can improve the mass density and RSP

estimation relative to the stoichiometric method. Note that we

tested our DL models on Gammex 467-1009 electron density

phantom to evaluate the performance using different materials;
Frontiers in Oncology 0913
then, we tested our DL models with CIRS M701&M702 phantoms

for different materials and patient body sizes.

As shown in Figures 3, 4, the SECT stoichiometric method yields

larger error in the lung, skull, pelvic bone, and soft tissue than DL

networks. Also, the mass density and RSP maps generated with the

SECT stoichiometric method have more noise than those generated by

DL models, which indicates that DL models can handle noise and

artifact suppression superiorly. It was reported that the uncertainty

associated with mass density estimation dominates the proton range

calculation uncertainty (7, 15, 32). In this work, DL models were

trained with SECT images of electron density phantom, and Table 12

shows that the mass density MAPE can be improved significantly

relative to the SECT stoichiometric method. The FCNN and ResNet

outperform the ANN and referencemodels, and theirMAPE values are
TABLE 10 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs.
DECT model].

M701
Spinal
Cord

Soft
Tissue

Bone

DECT Empirical model 3.30 ± 2.70 2.50 ± 2.00 2.40 ± 1.80

SECT Stoichiometric
method

1.91 ± 1.62 2.07 ± 1.74 2.18 ± 2.00

ANN 1.05 ± 0.89 1.25 ± 1.03 3.15 ± 2.04

FCNN 0.73 ± 0.61 0.75 ± 0.60 0.73 ± 1.12

Resnet 0.51 ± 0.43 1.54 ± 1.05 1.19 ± 1.11

M702 Spinal Cord Soft Tissue Bone

DECT Empirical model 2.10 ± 1.80 2.30 ± 1.90 2.20 ± 1.70

SECT Stoichiometric
method

1.82 ± 1.47 1.92 ± 1.74 3.76 ± 4.60

ANN 1.03 ± 0.88 1.20 ± 1.06 4.57 ± 5.09

FCNN 0.67 ± 0.57 0.66 ± 0.54 2.61 ± 5.62

Resnet 0.53 ± 0.63 1.41 ± 1.03 1.79 ± 4.44
Bold values mean best performance.
TABLE 9 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 2.70 ± 2.60 3.20 ± 2.50 5.20 ± 3.60 7.00 ± 5.80

SECT Stoichiometric method 2.93 ± 2.35 3.06 ± 1.87 6.56 ± 2.94 8.29 ± 7.34

ANN 2.86 ± 1.36 1.07 ± 1.03 3.85 ± 2.88 12.36 ± 6.99

FCNN 2.37 ± 0.95 1.04 ± 0.94 1.73 ± 2.07 1.57 ± 0.43

ResNet 3.20 ± 0.75 2.14 ± 1.22 0.72 ± 1.09 0.95 ± 0.72

M702 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 3.30 ± 3.10 2.70 ± 2.20 4.70 ± 6.20 6.70 ± 5.50

SECT Stoichiometric method 2.53 ± 1.95 3.49 ± 3.86 9.23 ± 4.25 6.75 ± 6.35

ANN 2.03 ± 1.56 1.32 ± 3.70 4.31 ± 5.60 14.23 ± 7.37

FCNN 1.54 ± 1.30 0.89 ± 3.21 2.94 ± 5.56 1.30 ± 0.54

ResNet 2.90 ± 1.64 2.27 ± 3.31 1.36 ± 4.28 1.10 ± 0.70
Bold values mean best performance.
TABLE 11 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT
model].

M701
Spinal
Cord

Soft
Tissue

Bone

DECT Empirical model 2.80 ± 2.20 2.60 ± 2.10 3.50 ± 2.30

SECT Stoichiometric
method

1.93 ± 1.62 2.88 ± 1.64 6.56 ± 1.71

ANN 2.40 ± 1.45 1.25 ± 0.5 3.47 ± 1.91

FCNN 2.08 ± 1.18 1.13 ± 0.64 1.33 ± 1.12

Resnet 2.63 ± 1.31 2.22 ± 0.86 0.61 ± 0.81

M702 Spinal Cord Soft Tissue Bone

DECT Empirical model 2.50 ± 1.90 2.40 ± 1.90 3.40 ± 2.10

SECT Stoichiometric
method

1.90 ± 1.23 3.06 ± 2.80 7.21 ± 3.67

ANN 2.20 ± 1.27 1.05 ± 0.85 4.69 ± 4.63

FCNN 1.62 ± 0.92 0.74 ± 0.54 2.75 ± 4.75

Resnet 2.70 ± 1.14 2.08 ± 0.86 1.27 ± 3.77
Bold values mean best performance.
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close. A possible reason is that they share the same core network

feature, the convolutional layer. Considering the training cost, the

FCNN is recommended as the DL model for future dose calculation

study. The RSP uncertainty is considerably larger than that of mass

density, as demonstrated in Table 13, the DL models still exhibit the

potential to enhance the accuracy of RSP estimation. FCNN could

reduce the MAPE down to less than 2%, except in the spinal cord of

CIRS M701.

Figure 5 illustrates the mass density prediction map generated by

FCNN, ResNet, and the SECT stoichiometric method for two patients

using HN and pelvis scans. As shown in Figures 5A3, A4, B3, B4, the

DL models can reflect the patient’s anatomy qualitatively, compared

with the SECT images in Figure 5A1. Figures 6A–C shows the

comparison of CT number profile and density profile at the

position marked in Figures 5A1, B1. Figures 6A–C demonstrates
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that the mass density profile generated by FCNN and ResNet has a

strong agreement with the SECT number profile trend. As shown in

Figures 5A2–A4, B2–B4, the mass density maps predicted by DL

models have less noise than that predicted by the stoichiometric

method, especially in the scan of the soft tissue of the pelvis. This

implies that the DL models can suppress CT noises and artifacts, and

it is also shown in the mass density profile comparison in Figure 6

that the DL models’ mass density lines are smoother than that of the

stoichiometric method. The empirical model can provide better

contrast information between adipose and bone tissue than the DL

models; this might be because the DL models predict a higher density

(~0.96 g/cm3) for adipose compared to the stoichiometric method

(~0.88 g/cm3). The accurate density of the patient’s adipose tissue is

not known; DL models estimated it at 8% higher than the

stoichiometric method because the training dataset of the DL
TABLE 12 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.00 ± 0.80 2.60 ± 2.40 2.70 ± 2.30 3.00 ± 3.80 -1

SECT Stoichiometric method 0.99 ± 0.66 2.34 ± 2.14 1.87 ± 1.86 3.17 ± 2.26 8.29 ± 7.34

ANN 0.64 ± 0.52 1.46 ± 1.64 1.29 ± 1.19 2.90 ± 2.36 12.96 ± 7.09

FCNN 0.39 ± 0.31 0.92 ± 0.88 0.68 ± 0.86 0.92 ± 1.65 1.57 ± 0.39

ResNet 0.13 ± 0.20 0.97 ± 1.54 1.42 ± 1.29 1.04 ± 1.45 2.18 ± 0.73

M702 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.30 ± 0.90 1.90 ± 1.70 2.40 ± 2.00 2.50 ± 3.70 -1

SECT Stoichiometric method 1.10 ± 0.97 2.15 ± 1.52 1.92 ± 2.79 5.29 ± 4.89 6.91 ± 6.35

ANN 0.86 ± 0.81 1.53 ± 1.86 1.23 ± 2.35 4.65 ± 5.73 14.86 ± 7.37

FCNN 0.89 ± 0.57 1.09 ± 1.27 0.70 ± 2.16 3.19 ± 6.24 1.52 ± 0.49

ResNet 0.19 ± 0.89 1.08 ± 2.29 1.30 ± 2.48 1.87 ± 4.82 2.42 ± 1.97
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
TABLE 13 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.20 ± 0.90 4.40 ± 3.50 2.09 ± 2.40 3.20 ± 3.70 -1

SECT Stoichiometric method 0.95 ± 0.96 2.61 ± 2.10 2.08 ± 1.90 7.74 ± 2.78 8.62 ± 7.43

ANN 1.15 ± 0.51 2.74 ± 1.22 1.21 ± 1.17 3.03 ± 2.07 12.52 ± 7.39

FCNN 0.85 ± 0.37 2.32 ± 0.87 0.75 ± 0.88 1.22 ± 1.34 1.25 ± 2.37

ResNet 1.85 ± 0.20 2.73 ± 0.83 1.57 ± 1.31 1.26 ± 1.02 1.01 ± 2.45

M702 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 0.90 ± 0.80 3.60 ± 3.00 2.50 ± 2.10 2.70 ± 3.50 -1

SECT Stoichiometric method 1.24 ± 1.32 2.44 ± 2.05 2.13 ± 2.81 8.87 ± 3.76 6.75 ± 1.36

ANN 0.99 ± 0.69 2.28 ± 1.60 1.23 ± 2.32 4.47 ± 4.65 14.23 ± 7.28

FCNN 0.45 ± 0.50 1.71 ± 1.30 0.72 ± 2.16 2.88 ± 4.70 1.30 ± 0.54

ResNet 1.82 ± 0.62 2.07 ± 1.65 1.56 ± 2.40 1.42 ± 3.73 1.10 ± 0.70
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
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models doesn’t cover the mass density range from 0.5 to 0.95 g/cm3,

while the clinically used SECT stoichiometric method CT curve has

been calibrated with over 30 materials on various mass densities. If

more tissue surrogates can be adapted into the training set of this

framework, the robustness of DL models will be significantly

improved. As shown in Figures 6A, C, FCNN has better

performance in reproducing minor structure information from

SECT images, such as the mass density difference in pelvic bone

and bone marrow. Because ResNet has a complex model structure,

including deep CNN layers, for example, when the dimension of data

is insufficient (only SECT image as input), the complex model does

not necessarily lead to a robust result (33).

In supervised machine learning, a prevalent challenge is that DL

models do not consistently generalize effectively from the training
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input data to new, unseen data (34). This overfitting phenomenon

allows DL models to perform exemplarily in controlled conditions

(similar or identical to the training conditions) while performing

poorly on the application set. Many reasons can lead to this

phenomenon, a lack of training dataset diversity being the

predominant one. Only SECT phantom images were adapted into

the training set; therefore, the DL networks’ infrastructure needed to

be designed carefully to avoid overfitting. As shown in Figures 5, 6,

the mass density profile estimated by DL models can basically follow

the trend of SECT CT number and overlap with the profile of the

SECT stoichiometric method. As shown in Table 14, DL models

predicted a patient tissue mass density similar to that predicted using

traditional methods. Integrating these findings, the design of the DL

network successfully addresses and mitigates the overfitting issue.
FIGURE 3

(A1, B1, C1) SECT images scan using different 120 kVp protocols. APE maps of mass densities between the reference and SECT parametric models at
(A2–A5) HN, (B2–B5) thoracic, and (C2–C5) pelvic sites using CIRS M701 phantom.
FIGURE 4

(A1, B1–C1) SECT images scan using different 120 kVp protocols. APE maps of RSP between the reference and SECT parametric models at (A2–A5)
HN, (B2–B5) thoracic, and (C2–C5) pelvic sites using CIRS M701 phantom.
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5 Conclusion

A DL framework was proposed to improve the mass density and

RSP parametrization for proton dose calculation based on the SECT
Frontiers in Oncology 1216
images. All three DL models outperform the SECT stoichiometric

method in tissue substitute except the lung surrogate. FCNN and

ResNet improved the mass density and RSP estimation accuracy

based on SECT images, outperforming the SECT stoichiometric

method over the entire phantom, and outperforming the DECT

empirical model. DL models also demonstrate the ability to suppress

CT image noise. The proposed DL frameworks have the potential to

improve the clinical proton dose calculation based on SECT scans.
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licenses/restrictions: The dataset can be available by contact the

corresponding author. Requests to access these datasets should be

directed to xyang43@emory.edu.
FIGURE 5

Mass density maps of two patients generated by different SECT FCNN and ResNet models at A1–A4 and B1–B4 using HN and pelvis scan.
A B C

FIGURE 6

(A) the line profile from the blue line in Figure 5A1, (B) the line profile from green line in Figure 5B1, and (C) the line profile from the red line in
Figure 5B1.
TABLE 14 Average mass density of three tissues comparison among DL
models and the Stoichiometric model based on one patient SECT scan.

Patient
Brain

(g/cm3)
Bone

(g/cm3)
Lung

(g/cm3)

SECT Stoichiometric method 1.04 ± 0.04 1.69 ± 0.18 0.20 ± 0.05

ANN 1.04 ± 0.02 1.62 ± 0.17 0.17 ± 0.04

FCNN 1.05 ± 0.01 1.66 ± 0.17 0.20 ± 0.01

ResNet 1.05 ± 0.03 1.68 ± 0.15 0.21 ± 0.01
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Upright proton therapy for
esthesioneuroblastoma: a single-
institution experience
Konstantin Gordon1,2*, Igor Gulidov1, Daniil Smyk1,2,
Alexey Semenov1, Kirill Golubev1, Alyona Lemaeva1,
Sergey Koryakin1, Enar Jumaniyazova2, Polina Vishnyakova2,
Irina Eremina2, Timur Fatkhudinov2 and Andrey Kaprin1,2

1Proton Therapy Department, A. Tsyb Medical Radiological Research Center - Branch of the National
Medical Radiological Research Center, Obninsk, Russia, 2Research Institute of Molecular and Cellular
Medicine, Medical Institution, P. Lumumba People’s Friendship University of Russia, Moscow, Russia
Aim: This study presents an analysis (efficacy and toxicity) of outcomes in patients

with esthesioneuroblastoma after pencil beam proton therapy with a fixed

beamline in the upright position.

Background: Esthesioneuroblastoma (ENB) is an extremely rare tumor of

sinonasal area located in critical proximity to vital structures. Proton therapy

(PT) is often considered the optimal radiation treatment for head-and-neck

tumors, although of limited availability. Upright PT delivered using fixed pencil

beamline and rotating chair is a fairly promising option.

Methods: This is a single-center experience describing the outcomes of PT in 14

patients with ENB treated between January 2016 and October 2022; half of the

cases had a history of previous irradiation. The therapy was applied using a fixed

pencil beamline with 6D-chair for positioning. The median dose was 63 GyRBE

(total range 48–70 GyRBE; based on 1.1 RBE multiplier for protons) with 2.0

GyRBE per fraction. The mean gross tumor volume was 109.5 cm3 (17.1–257.7

cm3). Patient demography, pathology, treatment parameters and toxicity data

were analyzed. Radiation-induced reactions were assessed according to the

Common Terminology Criteria for Adverse Events (CTCAE) v 4.0.

Results: The median follow-up time was 28 months. The 1- and 2-year

locoregional control rates constituted 100% and 88.9%, respectively; the

median duration of local control was 52 months. The 1- and 2-year

progression-free survival (PFS) rates constituted 92.9% and 75.0%, respectively;

the median PFS duration was 52 months. The 1- and 2-year overall survival (OS)

rates constituted 92.9% and 84.4%, respectively. Two patients died of non-

cancer-related causes (coronavirus-induced pneumonia) and 1 patient died of

tumor progression. All patients tolerated PT well without any treatment gaps.

Serious late toxicity reactions included glaucoma in 1 patient and cataract in 2

patients, in over half a year since irradiation.
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Conclusion: PT with upright design of the unit affords promising outcomes in

terms of disease control and toxicity rates in ENB, a sinonasal tumor of

complicated localization.
KEYWORDS

esthesioneuroblastoma, proton therapy, radiation therapy, reirradiation, brain invasion,
upright position
1 Introduction

Esthesioneuroblastoma (ENB), also known as olfactory

neuroblastoma, is a tumor of neuroectodermal origin that develops

from olfactory receptor cells in the nasal cavity (1), wherefrom it

tends to invade the adjacent areas of pterygopalatine fossa, skull base

and sinuses. ENBs are rare neoplasms accounting for only 3–6% of all

tumors of the nasal cavity, which limits the patient recruitment for

randomized trials and interferes with the development of a uniform

treatment strategy (1, 2). The treatment is further complicated by

unspecific symptoms and accordingly a delay in medical attendance

and proper diagnosis; hence the prevalence of advanced cases with

locoregional and distant metastases (3).

By the spread of the primary disease, ENBs are classified into 4

stages according to the Kadish staging system: A, the tumor is

confined to nasal cavity; B, the tumor spreads to paranasal sinuses;

C, the tumor invades skull base, pterygopalatine fossa; D, distant

metastases are present. Clinical decisions in ENB are typically based

on Kadish stage (4), importantly also accounting for the Hyams

morphological grading scheme (5). The treatment mainstay for

ENB is a multimodal approach using surgery, irradiation and

chemotherapy (6).

Radiation therapy (RT) along with surgery is used as curative

treatment for ENB in stage A patients and some stage B patients.

The 5-year survival rates with this approach reach 29–63% (4, 7, 8).

For more common stages C and D, RT is used as neoadjuvant and

adjuvant options. Combining RT with chemotherapy potentially

can improve survival rates and reduce the probability of relapse (8).

RT for ENB is liable to multiple treatment-related risks; the

factors include tumor localization in the nasal cavity, invasion into

skull base, the need for higher doses (66–70 Gy) and the proximity

to critically vulnerable neural structures (brain stem, optic nerves,

chiasm, etc.). Only high-precision RT techniques should be used to

alleviate the risks of severe late toxicity (9, 10). In this regard, proton

therapy (PT) is particularly promising due to its favorable dose

distribution properties that alleviate the radiation burden on risk

organs located close to the tumor.

Since 2016 PT has been established as a standard radiation

treatment for patients with ENB at Tsyb Medical Radiological

Research Center in Obninsk. Here we present experience of ENB

treatment with horizontal pencil proton beam in the upright patient

position (Prometheus, JSC Protom).
0220
2 Materials and methods

The study included 14 patients (pts) with morphologically

confirmed diagnosis of ENB receiving a course of PT within the

period from January 2016 to October 2022. All patients were

approved for inclusion in a retrospective analysis by the Ethical

Review Board at the Tsyb Medical Radiological Research Center.

Informed consent was waived due to the retrospective nature of the

study and anonymous use of the evidence. The patient data are

given in Table 1.

PT was performed using a fixed horizontal beam of intensity-

modulated protons with the patient sitting in a 6D-movable 360°

rotating chair (upright position) (11). A standard immobilization

device (thermoplastic mask) was used to fix the patient’s position.

The patient’s positioning was guided each session using built-in

cone-beam computed tomography (CB-CT) (12).

The target volumes were delineated as recommended by the

international consensus guidelines for head-and-neck tumors (13,

14). For lymph collectors of the neck, the irradiation volumes were

also selected in accordance with specific recommendations (15, 16).

The contours of target volumes and risk organs were determined

based on CT images obtained during simulation, co-registered with

magnetic-resonance images (MRI). The target volume included

gross tumor volume (GTV) with a margin of 5 to 10 mm

(considering anatomical barriers and organs at risk) to obtain the

clinical tumor volume (CTV). The margin to the planned tumor

volume (PTV) was 3 mm. All patients underwent CT control

(typically on 10th and 20th fractions) in order to identify and

correct errors coming from inflammation and tumor response, as

charged particles are sensitive to density changes. The treatment

data are given in Table 2.

The relative biological effectiveness (RBE) of the protons was

accepted as 1.1. Restrictions on risk organs were set considering the

RBE according to the QUANTEC group recommendations. The

doses were delivered using a conventional regimen, with 2 GyRBE

per fraction.

The total doses were selected in accordance with medical

histories: 60–70 Gy for primary cases and 48–60 Gy for

reirradiation. The PT dose was prescribed to the PTV with the

aim of at least 95% coverage, but in the case of meeting OAR limits,

dose constraints prioritized PTV coverage. Doses for reRT cases

were chosen based on the reserve of the series OARs, and time from
frontiersin.org
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prior RT. We used single-field optimized PTV-based plans, usually

generated with 4–5 fields.

Representative plan of PT is shown in Figure 1. Treatment

planning system ProtomTherapyPlanner ver. 2.14 (JSC Protom)

was used.

All patients were examined before the start of the treatment,

then every 3 months during the first year after the end of treatment

and subsequently at 6 months intervals. The control examination
Frontiers in Oncology 0321
after the course of PT included contrast-enhanced MRI (or CT in

cases of MRI contraindication), ultrasound scan of cervical lymph

nodes and positron-emission CT with glucose if required. The

toxicity was assessed using CTCAE v 4.0 criteria.

The follow-up time was calculated from the end of the

treatment to the last clinical assessment. Local control was

defined as the absence of tumor growth in the irradiated area.

Progression-free survival was defined as the absence of locoregional

or distant progression. The overall survival (OS) was calculated

from the end of PT to the last visit or date of death. Statistical

analysis was carried out using StatTech v3.1.8 (Stattekh LLC). The

survival curve was built using the Kaplan-Meyer method. An

adjusted p-value <0.05 indicated a statistically significant

difference; p-values ≥0.05, but <0.1 were noted as tendencies. No

stratification by disease or treatment parameters was made due to

the small size of the cohort.
3 Results

The patient and PT data for 14 pts with ENB included in the

study are listed in Tables 1, 2. The mean age of participants was 53

years (range 48–59 years). Most of the tumors were located in the

nasal cavity (64.3%) and paranasal sinuses (14.3%). Most of the

patients had locally advanced disease at the time of the treatment,

with intracranial invasion observed in 35.7% of the cases (Figure 2).

Two patients had no previous treatment history, 4 pts had

surgery, 1 pt received RT only, 2 pts received surgery and RT, 1 pt

received surgery with adjuvant and neoadjuvant chemotherapy, 1 pt

received PT followed by chemotherapy and 2 courses of

chemoembolization, 3 pts had surgery, and also received radiation

and chemotherapy. Thus, 7 out of 14 pts underwent reirradiation.

The median follow-up for the group was 28 months (range 4–

64). The 1- and 2-year locoregional control rates were, respectively

100% and 88.9% (95% CI: 43.3–98.4); the median local control

duration was 52 months (95% CI: 43.9–60.0). The 1- and 2-year

progression-free survival (PFS) constituted, respectively, 92.9%
TABLE 2 Proton therapy characteristics.

Treatment data Number

Mean total dose (GyRBE) 63 (48-70)

RT intention

RT only 9 (64.3 %)

Postoperative RT 5 ( 35.7 %)

RT course

Primary RT 7 (50%)

Repeated RT 7 (50%)

Median time from previous RT (years) 7.3 (3-17)

Median previous dose (Gy) 62 (50-70)

Median GTV volume (cm3) 109.5 (17.1–257.7)
*GTV, gross tumor volume; RBE, relative biological efficacy; RT, radiation therapy.
TABLE 1 Patients’ and tumors’ characteristics.

Indicator Number

Median age 53 (48- 59)

Sex

Male 4 (28.6 %)

Female 10 (71.4 %)

Hyams grade

Grade II 8 (57.1 %)

Grade III 6 (42.9 %)

Kadish stage

A 1 (7.1 %)

B 5 (35.8 %)

C 8 (57.1 %)

Stage (TNM)

I 1 (7.1 %)

II 1 (7.1 %)

III 2 (14.3 %)

IVа 4 (28.6 %)

IVb 6 (42.9 %)

Tumor origin

Nasal cavity 9 (64.3 %)

Paranasal cavity 2 (14.3 %)

Other 3 (21.4 %)

Brain invasion

Yes 5 (35.7 %)

No 9 (64.3 %)

Treatment history

No 2 (14.3 %)

RT 1 (7.1 %)

Surgery 4 (28.7 %)

Surgery + RT 2 (14.3 %)

Surgery + CTX 1 (7.1 %)

Surgery + RT+ CTX 3 (21.4 %)

RT + CТX 1 (7.1%)
*CTX, chemotherapy; RT, radiation therapy.
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(95% CI: 59.1–99.0) and 75.0% (95% CI: 40.3–91.3); the median PFS

was 52 months (95% CI: 18–∞). The 1- and 2-year OS rates

constituted, respectively, 92.9% (95% CI: 59.1 – 99.0) and 84.4%

(95% CI: 50.4–95.9) (Figures 3, 4).

In the follow-up, disease progression was recorded in 4 pts, including

3 pts with local (in-field) progression and 1 pt with lymph node

metastases. Due to inoperability of the local relapses, 2 pts received

systemic chemotherapy and 1 pt received chemoembolization, and 1 pt

with regional progression underwent extended unilateral cervical

lymphadenectomy. It should be noted that in all 4 cases of

progression, the patients had stage IVa-b tumor process at the time of

PT, and 3/4 pts had intracranial invasion appearing to interfere with the

locoregional control after RT (p= 0.09) (Figure 5). No other significant
Frontiers in Oncology 0422
factors influencing the treatment outcome were revealed. Two patients

died due to non-cancer reasons (COVID-19 infection), and 1 pt died of

disease progression with severe brain edema.

Early toxicity reactions were assessed for the entire cohort (14

pts, 100%). In 6 pts (42.8%) the early toxicity was limited to grade 1,

in 7 pts (50.0%) it was grade 2, and 1 pt had acute toxicity of grade 3.

The reactions, mostly local, included dermatitis (85.7%), mucositis

(57.1%), conjunctivitis (50.0%) and xerostomia (28.5%).

Late toxicity events were recorded in 11 pts (78.5%).

Specifically, 9 pts (64.2%) had grade 1-2 reactions including nasal

cavity mucosa atrophy (64.2%) and in-field post-radiation fibrosis

(35.7%). Also, 1 pt developed glaucoma and 2 pts developed

radiation-induced cataract within 6–12 months after the treatment.
FIGURE 1

Representative 3-fields plan of proton therapy, showing dose distribution in (A) axial and (B) sagittal view. Physical doses are given in a dose legend (A).
FIGURE 2

Magnetic-resonance (T1 sequence with contrast enhancement, axial, frontal and sagittal views) of the patient with Kadish C tumor stage, with a
massive frontal lobes invasion.
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4 Discussion

Sinonasal esthesioneuroblastomas (ENBs) are rare malignant

neoplasms of the head-and-neck region. The lack of uniform

clinical approaches for ENBs is due to their rarity. In addition,

the principle of clinical decision-making on the basis of tumor

morphology plus localization might not be well applicable to ENBs,

as these tumors may combine certain properties of neuroendocrine

tumors (due to their origin from olfactory neuroepithelium) with

those of squamous cell carcinomas. Additional difficulties arise

from the established clinical classification for ENBs, which is

different from the TNM staging system, and malignancy grade

determination for these tumors, which also differs from the typically

used grading system.

The default first-line option for ENB is surgery, but, given the

tumor localization, curative surgery for ENB is often dismissed as

crippling or technically unfeasible. The use of adjuvant modalities,

notably a range of chemotherapies from platinum monotherapy to

cyclophosphamide, decarbazine, etoposide, vincristine, etc., in

various combinations over decades, produced extensive clinical

data indicating the doubt of significant benefits of chemotherapy

in ENB (8, 17).
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The main clinical strategies envisioned for ENB account for its

dual nature of neuroendocrine tumor and squamous cell head-and-

neck carcinoma by using both the Kaddish staging system and

Hyams histological grading. The local Kadish stage A-B and Hyams

grade I-II are subject to monotherapy― either surgery or RT. By

contrast, locally advanced tumors of Hyams grade III-IV require a

combination of surgery, chemotherapy and RT (optionally a

combined chemoradiotherapy) (1). In such cases, RT can be

considered as an alternative to surgical treatment (18).

The choice of irradiation method for ENB is extremely

important, since the tumor is localized in the facial part of the skull

packed with vital structures and also cosmetically important. With

clear indications for RT, as ENBs are radiosensitive tumors (19), the

risks of radiation complications should be addressed scrupulously.

PT is a generally accepted irradiation method that allows

significant reduction of the dose to surrounding tissues, especially

relevant for head-and-neck tumors (20). However, its use is limited

by complexity, big size and high costs of the equipment. The upright

position design of the unit levels some of these disadvantages,

making the treatment more accessible for clinical practice while

maintaining its quality (21).

Our study enrolled 14 patients who underwent PT for local and

locally advanced ENB in upright position with an active scanning

beam. The limitations of our finding include small size of the

cohort, as well as its considerable heterogeneity. However, most of

the published clinical evidence for ENB has similar limitations of

small studies. Of note, even the largest analysis of ENB treatment

for more than 900 patients provides no detailed data on RT

outcomes (17).

The median age of our patients was 53 ( ± 10 years), which is

typical for ENB (8). The median total radiation dose was high,

amounting to 63 GyRBE. The median survival constituted 52

months. The 1- and 2-year locoregional control rates constituted

100% and 88.9%, respectively. At the time of this analyses, 11/14 pts
FIGURE 3

Overall survival after PT for ENB. Kaplan-Meyer plot.
FIGURE 4

Progression-free survival after PT for ENB. Kaplan-Meyer plot.
FIGURE 5

Locoregional control in patients with (blue line) / without (red line)
frontal lobe invasion. Kaplan-Meyer plot.
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remain under observation. Three patients died; in 2 cases the death

was related to the consequences of coronavirus infection and 1 pt

died from intracranial progression.

As demonstrated byWang et al., intracranial extension is not an

adverse prognostic factor in ENB treatment (22). In our cohort,

about one-third of the patients had frontal lobe invasion at the time

of the treatment. However, we observed a tendency towards worse

treatment outcomes in cases of frontal lobe invasion (p = 0.09); in

addition, the local control rates constituted 40.0% vs 88.9% for

patients with and without intracranial invasion, respectively.

At the same time, such key parameters of the disease as Hyams

malignancy grade, Kadish prevalence stage and the presence of

regional metastases showed no significant effect on the local control

in ENB (23), although this result may reflect the relatively short

follow-ups and the issue should be additionally addressed for longer

observation periods.

As demonstrated in some studies, PT not only has dosimetric

advantages, but also favorable profiles of treatment-related toxicity

(24). In our study, acute radiation toxicity was typically represented by

grade 1-2 local mucositis and grade 1-2 dermatitis. The sinus area is

one of the most difficult locations to plan and administer irradiation.

PT with an active scanning beam is particularly challenging due to

multiple density transitions (air-bone-soft tissue) in a relatively small

volume, as well as changes in the density and size of the mucous

membrane due to extensive inflammatory reaction. We used the

strategy of 2 verification cone-beam CT scans after each 20 GyRBE,

which allowed us to decrease the potential set-up and density errors

and avoid late toxicity, especially from visual structures.

Late complications encountered for the cohort included grade 3

dry mucous membrane in 1 pt, hypoosmia in 2 pts and cataract in 2

pts. Also, 2 pts noted prolonged swelling of the nasal mucosa; 1 pt

was diagnosed with ocular melanoma shortly after treatment, which

required enucleation.

One of the earliest reports on PT in sinonasal ENB was

published by Nishimura et al. in 2007. The authors presented

clinical outcomes for 14 patients after PT on a 235 MeV

cyclotron with a gantry system, with a dose of 2.5 GyRBE/daily

and a total dose of 65 GyRBE. Five-year OS and PFS constituted,

respectively, 93% and 84%. The authors encountered acute toxicity

grade 1-2 and late toxicity grade 3, and no higher grade radiation

toxicity reactions throughout the observation period (25).

Later on, a clinical experience of PT for sinonasal ENBs in a

small cohort of 13 patients was reported by researchers at the

University of Florida. The treatment was carried out with a passive

scattered proton beam, in hyperfractionation mode, 1.2 GyRBE per

fraction, which enabled safe delivery of 64.8–74.4 GyRBE doses. In

this study, 10 of 13 recipients survived for at least 35 months; the

acute toxicity was low and regressed within 4 weeks after the end of

irradiation (26).

In 2015, a small experience of PT in 8 patients aged 4 to 21 was

presented by Massachusetts General Hospital. Four-year OS in the

group was 87.5%. It is important to note that 4 pts (half of the

cohort) developed endocrine dysfunctions; other complications

included retinopathy in 2 pts and grade III ophthalmopathy in 1

pt (27). The higher tissue radiosensitivity in children compared to

adults requires special consideration when planning PT (28).
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A cohort of 42 patients described by Nakamura et al. in 2017 can

be considered the largest experience of PT for ENB. The authors

noted a weak relationship of treatment outcomes to Kadish stage.

Thus, 5-year OS rates were 100% and 76% for Kadish stages A and C,

respectively, although the difference was statistically non-significant.

Treatment failures were primarily due to distant or regional

progression (48%) and only 10 pts developed local recurrence.

Moreover, age under 50 was a significant favorable factor, even in

cases of tumor progression. In contrast to the experience of PT at

other centers including ours, the study encountered acute grade 3

reactions including mucositis in 4 pts and dermatitis in 1 pt. Visual

complications grade 3-4 emerged in 4 pts; also, 1 pt with Kadish stage

C developed grade 4 liquorrhea. Another important note was the lack

of effectiveness of adding chemotherapy in Kaddish stage C (10).

In 2018, the University of Heidelberg presented experience with

IMRT and carbon-ion therapy (CIT) in a heterogeneous group of

17 patients with primary and recurrent tumors, including 4 cases of

re-irradiation, which was identified as a factor for a worse

prognosis. In 13 patients without a history of RT, 4-year OS was

100%. The most common radiation toxicity reaction in this cohort

was asymptomatic cerebral edema (30%) (29). Similarly with our

study, 2 pts died of intracranial tumor growth. A history of RT had

no effect on the outcomes probably due to the long interim between

the courses (median gap 7.3 years).

Another study of 2018 enrolled 21 patients receiving CIT for T4

ENB in Japan. Three-year OS and LC rates were, respectively, 88.4%

and 83%; 3 pts developed severe ophthalmopathy grade 4 (30).

One of the most recent studies on PT in ENB, published by

Chang et al. in 2022. assessed post-operative IMPT in 15 patients with

ENB; the doses constituted 60–72 GyRBE (median 68 GyRBE). At a

median follow-up of 20 months, 2-year OS and relapse-free survival

rates were, respectively, 88% and 83%. Severe complications

encountered in this study included single cases of brain tissue

necrosis and sinus obstruction (31).

In general, due to the rarity of ENBs, no optimal radiation

treatment parameters for these tumors have been determined in

clinical trials. Importantly, 50% of patients the studied cohort

received reirradiation with protons. Thus, PT afforded positive

clinical outcomes even for already treated and relapsed cases of

ENB. A recent large multi-institutional analysis features PT as an

effective and safe option of radiation treatment for tumors of

sinonasal localization (including ENB) regardless of tumor

morphology (32). Moreover, for sinonasal tumors, repeated

irradiation with protons and/or carbon ions allows radiation

toxicity risk minimization as compared with other protocols (33).

Upright PT is an old technology almost suspended from clinical

use due to the lack of reliable means for precision patient

positioning at the beginning of the proton era. With new

technological advances in the image guidance, patient positioning,

beam delivery, etc., the approach is gaining a renewed interest (21).

Our own clinical practice comprises a positive experience of upright

PT for similarly complicated tumors including skull base

chordomas and chondrosarcomas (34).

Apart from small size and heterogeneous treatment history of

the cohort. The second is its retrospective design of the study. All

abovementioned studies are heterogeneous in treatment criteria,
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outcome assessment. This variability affects the direct comparability

of the results. Still, we consider it important to report the outcomes

for the state-of-the-art upright PT in ENBs due to their

pathogenetic distinctiveness combined to rarity and limited

knowledge about optimal management for these tumors.
5 Conclusion

The study provides a unique example of upright PT for

sinonasal ENB. The outcomes indicate acceptable effectiveness

and safety of the treatment independently of irradiation history.

Accordingly, the treatment can be considered as a strong alternative

to gantry PT in ENB.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

This study was approved by the local ethical committee and the

institutional review board of A. Tsyb Medical radiological research

center—branch of the National medical research radiological center

of the Ministry of Health of Russia, including waver of informed

consent due to its retrospective nature. All procedures were

performed following the ethical standards of the responsible

committee on human experimentation and with the Helsinki

Declaration of 1964, as revised in 2013.
Author contributions

KoG: Conceptualization, Validation, Writing – original draft,

Writing – review & editing. IG: Conceptualization, Supervision,

Writing – review & editing. DS: Data curation, Writing – original
Frontiers in Oncology 0725
draft. AS: Data curation, Formal analysis, Software, Validation,

Writing – original draft. KiG: Data curation, Investigation,

Methodology, Writing – original draft. AL: Data curation, Formal

analysis, Resources, Writing – original draft. SK: Resources,

Supervision, Validation, Writing – review & editing. EJ: Data

curation, Formal analysis, Validation, Writing – original draft.

PV: Formal analysis, Investigation, Supervision, Writing – review

& editing. IE: Project administration, Resources, Supervision,

Writing – review & editing. TF: Funding acquisition, Project

administration, Resources, Writing – review & editing. AK:

Funding acquisition, Project administration, Resources, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The study

was carried out with the financial support of the Ministry of

Education and Science of Russia; Agreement dated 7 October

2021 No. 075-15-2021-1356 (internal number of the Agreement:

15.SIN.21.0011); (ID: RF 0951.61321X0012).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Fiani B, Quadri SA, Cathel A, Farooqui M, Ramachandran A, Siddiqi I, et al.
Esthesioneuroblastoma: A comprehensive review of diagnosis, management, and
current treatment options. World Neurosurg (2019) 126:194–211. doi: 10.1016/
j.wneu.2019.03.014

2. Ghaffar S, Salahuddin I. Olfactory neuroblastoma: A case report and review of the
literature. Ear Nose Throat J (2005) 84:150–2. doi: 10.1177/014556130508400311

3. Veyrat M, Vérillaud B, Fiaux-Camous D, Froelich S, Bresson D, Nicolai P, et al.
Olfactory neuroblastoma. Adv Otorhinolaryngol (2020) 84:154–67. doi: 10.1159/
000457935

4. Platek ME, Merzianu M, Mashtare TL, Popat SR, Rigual NR, Warren GW, et al.
Improved survival following surgery and radiation therapy for olfactory
neuroblastoma: analysis of the SEER database. Radiat Oncol (2011) 6:41.
doi: 10.1186/1748-717X-6-41

5. Saade RE, Hanna EY, Bell D. Prognosis and biology in esthesioneuroblastoma: the
emerging role of Hyams grading system. Curr Oncol Rep (2015) 17:423. doi: 10.1007/
s11912-014-0423-z
6. Sheehan J, Payne R. Esthesioneuroblastomas. In: Winn HR, editor. Youmans and
Winn neurological surgery e-book. New York: Elsevier Health Sciences (2016). p. 1284–92.

7. Yin Z, Gao L, Luo J, Yi J, Huang X, Qu Y, et al. Long-term outcomes of patients
with esthesioneuroblastomas: A cohort from a single institution. Oral Oncol (2016)
53:48–53. doi: 10.1016/j.oraloncology.2015.11.021

8. Dulguerov P, Allal AS, Calcaterra TC. Esthesioneuroblastoma: a meta-analysis
and review. Lancet Oncol (2001) 2:683–90. doi: 10.1016/S1470-2045(01)00558-7

9. Bao C, HuW, Hu J, Dong Y, Lu JJ, Kong L. Intensity-modulated radiation therapy
for esthesioneuroblastoma: 10-year experience of a single institute. Front Oncol (2020)
10:1158. doi: 10.3389/fonc.2020.01158

10. Nakamura N, Zenda S, Tahara M, Okano S, Hayashi R, Hojo H, et al. Proton
beam therapy for olfactory neuroblastoma. Radiother Oncol (2017) 122:368–72.
doi: 10.1016/j.radonc.2016.12.020

11. Pryanichnikov AA, Sokunov VV, Shemyakov AE. Some results of the clinical use
of the proton therapy complex “Prometheus”. Phys Particles Nuclei Lett (2018) 15:981–
5. doi: 10.1134/S1547477118070592
frontiersin.org

https://doi.org/10.1016/j.wneu.2019.03.014
https://doi.org/10.1016/j.wneu.2019.03.014
https://doi.org/10.1177/014556130508400311
https://doi.org/10.1159/000457935
https://doi.org/10.1159/000457935
https://doi.org/10.1186/1748-717X-6-41
https://doi.org/10.1007/s11912-014-0423-z
https://doi.org/10.1007/s11912-014-0423-z
https://doi.org/10.1016/j.oraloncology.2015.11.021
https://doi.org/10.1016/S1470-2045(01)00558-7
https://doi.org/10.3389/fonc.2020.01158
https://doi.org/10.1016/j.radonc.2016.12.020
https://doi.org/10.1134/S1547477118070592
https://doi.org/10.3389/fonc.2024.1348291
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gordon et al. 10.3389/fonc.2024.1348291
12. Balakin VE, Belikhin MA, Pryanichnikov AA, Shemyakov AE, Strelnikova NS.
Clinical application of new immobilization system in seated position for proton
therapy. KnE Energy (2018) 3:45. doi: 10.18502/ken.v3i2.1790

13. Li R, Tian S, Zhu Y, Yan L, Zhu W, Quan H, et al. Management of orbital
invasion in esthesioneuroblastoma: 14 years’ experience. Radiat Oncol (2019) 14:107.
doi: 10.1186/s13014-019-1313-1

14. Hansen CR, Johansen J, Samsøe E, Andersen E, Petersen JBB, Jensen K, et al.
Consequences of introducing geometric GTV to CTV margin expansion in
DAHANCA contouring guidelines for head and neck radiotherapy. Radiother Oncol
(2018) 126:43–7. doi: 10.1016/j.radonc.2017.09.019

15. Vorwerk H, Hess CF. Guidelines for delineation of lymphatic clinical target
volumes for high conformal radiotherapy: head and neck region. Radiat Oncol (2011)
6:97. doi: 10.1186/1748-717X-6-97

16. Biau J, Lapeyre M, Troussier I, Budach W, Giralt J, Grau C, et al. Selection of
lymph node target volumes for definitive head and neck radiation therapy: a 2019
Update. Radiother Oncol (2019) 134:1–9. doi: 10.1016/j.radonc.2019.01.018

17. Orton A, Boothe D, Evans D, Lloyd S, Monroe MM, Jensen R, et al.
Esthesioneuroblastoma: A patterns-of-care and outcomes analysis of the national
cancer database. Neurosurgery (2018) 83:940–7. doi: 10.1093/neuros/nyx535

18. Benfari G, Fusconi M, Ciofalo A, Gallo A, Altissimi G, Celani T, et al.
Radiotherapy alone for local tumour control in esthesioneuroblastoma. Acta
Otorhinolaryngol Ital (2008) 28:292–7.

19. Eich HT, Staar S, Micke O, Eich PD, Stützer H, Müller R-P. Radiotherapy of
esthesioneuroblastoma. Int J Radiat Oncol Biol Phys (2001) 49:155–60. doi: 10.1016/
S0360-3016(00)00811-7

20. Gordon KB, Smyk DI, Gulidov IA. Proton therapy in head and neck cancer
treatment: state of the problem and development prospects (Review). Sovremennye
tehnologii v Med (2021) 13:70. doi: 10.17691/stm2021.13.4.08

21. Volz L, Sheng Y, Durante M, Graeff C. Considerations for upright particle
therapy patient positioning and associated image guidance. Front Oncol (2022)
12:930850. doi: 10.3389/fonc.2022.930850

22. Wang J, Wang L, He H, Li Y, Song X. The treatment outcomes of olfactory
neuroblastoma patients with frontal lobe invasion. Front Oncol (2021) 11:640892.
doi: 10.3389/fonc.2021.640892

23. Konuthula N, Iloreta AM, Miles B, Rhome R, Ozbek U, Genden EM, et al.
Prognostic significance of Kadish staging in esthesioneuroblastoma: An analysis of the
National Cancer Database. Head Neck (2017) 39:1962–8. doi: 10.1002/hed.24770
Frontiers in Oncology 0826
24. Jumaniyazova E, Smyk D, Vishnyakova P, Fatkhudinov T, Gordon K. Photon-
and proton-mediated biological effects: what has been learned? Life (2022) 13:30.
doi: 10.3390/life13010030

25. Nishimura H, Ogino T, Kawashima M, Nihei K, Arahira S, Onozawa M, et al.
Proton-beam therapy for olfactory neuroblastoma. Int J Radiat Oncol Biol Phys (2007)
68:758–62. doi: 10.1016/j.ijrobp.2006.12.071

26. Malyapa RS, Mendenhall WM, McKenzie C, Yeung D, Li Z, Mendenhall NP,
et al. Proton therapy of esthesioneuroblastoma: the UFPTI experience. Int J Radiat
Oncol Biol Phys (2011) 81:S524–5. doi: 10.1016/j.ijrobp.2011.06.810

27. Lucas JT, Ladra MM, MacDonald SM, Busse PM, Friedmann AM, Ebb DH, et al.
Proton therapy for pediatric and adolescent esthesioneuroblastoma. Pediatr Blood
Cancer (2015) 62:1523–8. doi: 10.1002/pbc.25494

28. McGovern SL, Okcu MF, Munsell MF, Kumbalasseriyil N, Grosshans DR,
McAleer MF, et al. Outcomes and acute toxicities of proton therapy for pediatric
atypical teratoid/rhabdoid tumor of the central nervous system. Int J Radiat Oncol Biol
Phys (2014) 90:1143–52. doi: 10.1016/j.ijrobp.2014.08.354

29. Liermann J, Syed M, Held T, Bernhardt D, Plinkert P, Jungk C, et al. Advanced
radiation techniques in the treatment of esthesioneuroblastoma: A 7-year single-
institution’s clinical experience. Cancers (Basel) (2018) 10:457. doi: 10.3390/
cancers10110457

30. Hiroaki Suefuji, Koto M, Demizu Y, Saitoh JI, Shioyama Y, Tsuji H, et al. A
retrospective multicenter study of carbon ion radiotherapy for locally advanced
olfactory neuroblastomas. Anticancer Res (2018) 38. doi : 10.21873/
anticanres.12399

31. Chang J-H, Wu C-C, Yuan KS-P, Wu ATH, Wu S-Y. Locoregionally recurrent
head and neck squamous cell carcinoma: incidence, survival, prognostic factors, and
treatment outcomes. Oncotarget (2017) 8:55600–12. doi: 10.18632/oncotarget.16340

32. Yu NY, Gamez ME, Hartsell WF, Tsai HK, Laramore GE, Larson GL, et al. A
multi-institutional experience of proton beam therapy for sinonasal tumors. Adv
Radiat Oncol (2019) 4:689–98. doi: 10.1016/j.adro.2019.07.008

33. Vischioni B, Ingargiola R, Bonora M, Ronchi S, Camarda AM, Russo S, et al.
Particle reirradiation of Malignant epithelial and neuroectodermal sinonasal tumors: A
case series from CNAO. J Clin Med (2023) 12:2624. doi: 10.3390/jcm12072624

34. Gordon K, Gulidov I, Koryakin S, Smyk D, Makeenkova T, Gogolin D, et al.
Proton therapy with a fixed beamline for skull-base chordomas and
chondrosarcomas: outcomes and toxicity. Radiat Oncol (2021) 16:238.
doi: 10.1186/s13014-021-01961-9
frontiersin.org

https://doi.org/10.18502/ken.v3i2.1790
https://doi.org/10.1186/s13014-019-1313-1
https://doi.org/10.1016/j.radonc.2017.09.019
https://doi.org/10.1186/1748-717X-6-97
https://doi.org/10.1016/j.radonc.2019.01.018
https://doi.org/10.1093/neuros/nyx535
https://doi.org/10.1016/S0360-3016(00)00811-7
https://doi.org/10.1016/S0360-3016(00)00811-7
https://doi.org/10.17691/stm2021.13.4.08
https://doi.org/10.3389/fonc.2022.930850
https://doi.org/10.3389/fonc.2021.640892
https://doi.org/10.1002/hed.24770
https://doi.org/10.3390/life13010030
https://doi.org/10.1016/j.ijrobp.2006.12.071
https://doi.org/10.1016/j.ijrobp.2011.06.810
https://doi.org/10.1002/pbc.25494
https://doi.org/10.1016/j.ijrobp.2014.08.354
https://doi.org/10.3390/cancers10110457
https://doi.org/10.3390/cancers10110457
https://doi.org/10.21873/anticanres.12399
https://doi.org/10.21873/anticanres.12399
https://doi.org/10.18632/oncotarget.16340
https://doi.org/10.1016/j.adro.2019.07.008
https://doi.org/10.3390/jcm12072624
https://doi.org/10.1186/s13014-021-01961-9
https://doi.org/10.3389/fonc.2024.1348291
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xinyuan Chen,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China

REVIEWED BY

Alexander Rühle,
University Hospital Leipzig, Germany
Ciprian Camil Mirestean,
University of Medicine and Pharmacy of
Craiova, Romania

*CORRESPONDENCE

June Corry

june.corry@genesiscare.com.au

RECEIVED 04 November 2023
ACCEPTED 20 December 2023

PUBLISHED 05 February 2024

CITATION

Corry J, Moore A, Kenny L, Wratten C, Fua T,
Lin C, Porceddu S, Liu C, Ruemelin M,
Sharkey A, McDowell L, Wilkinson D, Tiong A
and Rischin D (2024) Radiotherapy quality
assurance in the TROG 12.01 randomised trial
and its impact on loco-regional failure.
Front. Oncol. 13:1333098.
doi: 10.3389/fonc.2023.1333098

COPYRIGHT

© 2024 Corry, Moore, Kenny, Wratten, Fua, Lin,
Porceddu, Liu, Ruemelin, Sharkey, McDowell,
Wilkinson, Tiong and Rischin. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 05 February 2024

DOI 10.3389/fonc.2023.1333098
Radiotherapy quality assurance
in the TROG 12.01 randomised
trial and its impact on loco-
regional failure
June Corry1,2,3*, Alisha Moore4, Liz Kenny5,6, Chris Wratten7,
Tsien Fua3, Charles Lin5, Sandro Porceddu8, Chen Liu3,
Michael Ruemelin9, Amy Sharkey9, Lachlan McDowell3,
Dean Wilkinson10, Albert Tiong3 and Danny Rischin11,12

1Genesiscare Radiation Oncology Department, St Vincents Hospital, Melbourne, VIC, Australia,
2Department Medicine, University of Melbourne, Melbourne, VIC, Australia, 3Department Radiation
Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia, 4Department Radiation Quality
Assurance, Trans-Tasman Radiation Oncology Group (TROG), Newcastle, NSW, Australia,
5Department Radiation Oncology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia,
6Faculty Medicine, University of Queensland, Brisbane, QLD, Australia, 7Department Radiation
Oncology, Calvary Mater Hospital and University Newcastle, Newcastle, NSW, Australia, 8Department
Radiation Oncology, Princess Alexander Hospital, Brisbane, QLD, Australia, 9Department Radiation
Therapy, Peter MacCallum Cancer Center, Melbourne, VIC, Australia, 10Department Radiation Therapy,
Illawarra Cancer Care Centre, Wollongong, NSW, Australia, 11Department Medical Oncology, Peter
MacCallum Cancer Center, Melbourne, VIC, Australia, 12Sir Peter MacCallum Department of
Oncology, University of Melbourne, Melbourne, VIC, Australia
Introduction: There is no consensus as to what specifically constitutes head

and neck cancer radiotherapy quality assurance (HNC RT QA). The aims of this

study are to (1) describe the RT QA processes used in the TROG 12.01 study, (2)

review the RT QA processes undertaken for all patients with loco-regional

failure (LRF), and (3) provide prospective data to propose a consensus

statement regarding the minimal components and optimal timing of HNC

RT QA.

Materials and methods: All patients undergoing RT QA in the original TROG

12.01 study were included in this substudy. All participating sites completed IMRT

credentialling and a clinical benchmark case. Real-time (pre-treatment) RT QA

was performed for the first patient of each treating radiation oncologist, and for

one in five of subsequent patients. Protocol violations were deemedmajor if they

related to contour and/or dose of gross tumour volume (GTV), high dose

planning target volume (PTVhd), or critical organs of risk (spinal cord,

mandible, and brachial plexus).

Results: Thirty HNROs from 15 institutions accrued 182 patients. There were 28

clinical benchmark cases, 27 pre-treatment RT QA cases, and 38 post-

treatment cases. Comprehensive RT QA was performed in 65/182 (36%)

treated patients. Major protocol violations were found in 5/28 benchmark

cases, 5/27 pre-treatment cases, and 6/38 post-treatment cases. An

independent review of all nine LRF cases showed major protocol violations in

four of nine cases.
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Conclusion: Only pre-treatment RT QA can improve patient outcomes. The

minimal components of RT QA in HNC are GTVs, PTVhd, and critical organs

at r i sk . What const i tutes major dos imetr ic v io la t ions needs to

be harmonised.
KEYWORDS

quality assurance, intensity modulated radiotherapy (IMRT), radiotherapy, head and
neck (H&N) cancer, human papilloma virus - HPV
Introduction

Since the publication of the landmark study by Peters et al. (1),

head and neck radiation oncologists (HNROs) have been aware of

the importance of the quality of radiotherapy in optimising patients’

loco-regional control and overall survival. Since that study, some

form of radiotherapy quality assurance (RT QA) has been

incorporated into the majority of head and neck cancer (HNC)

clinical trials.

However, the term “radiotherapy quality assurance” is an

umbrella term with no current consensus as to its optimal

components, the timing, or what is the optimal percentage of

HNC patients who should undergo RT QA.

We have previously retrospectively shown the impact of pre-

treatment RT QA of all curative intent cases at a large HNC centre

(2). In our study the RT QA consisted of a review of the staging

imaging and of the gross tumour volumes (GTVs), planning

treatment volumes (PTVs), and critical organs at risk (OARs) by

a second RO for all patients having curative intent non-surgical

treatment. This RT QA occurred prior to dosimetric planning and

prior to treatment.

While most HNC published studies include a statement

regarding performance of RT QA in their study, the precise

details of that RT QA are not always included. There is general

agreement in HNC that a major goal of RT QA is to reduce errors

that are likely to lead to reduced tumour control probability and/or

significant and serious treatment-related toxicity. Questions remain

as to what is the optimal RT QA process required to achieve this

goal—how do we balance effectiveness, efficiency, and cost within

the RT QA process? Clearly, real-time review of every case would be

optimal, but this is seen as costly in terms of time and effort and

possibly unnecessary.

This prospective study reports fully on the RT QA processes

that were used in the randomised trial of weekly cetuximab versus

weekly cisplatin and radiation in good prognosis loco-regionally

advanced HPV-associated oropharyngeal squamous cell carcinoma

—TROG 12.01 (3).

The aims of this study are to (1) give a detailed account of the

RT QA processes used in the original study, (2) review the RT QA

processes that had been undertaken for all patients who failed loco-

regionally, and (3) provide prospective data to propose a consensus
0228
statement regarding the minimal components and optimal timing

of HNC RT QA.
Methods

Intensity-modulated radiotherapy (IMRT) was mandatory for

participation in the TROG 12.01 study. All participating sites in

TROG 12.01 had pre-study credentialing that included completion

of a volumetric arc therapy (VMAT)/IMRT facility questionnaire, a

Level III dosimetry audit (determining the absorbed dose delivered to

selected points within an anthropomorphic phantom; this is an end-

to-end audit where the phantom undergoes all steps within the

radiotherapy treatment chain), and submission of a library

benchmarking case for RT QA review of dosimetry and of all

protocol contours by an independent HNRO from a panel of five

HNROs. Once the library benchmark case was successfully completed,

sites were then eligible to commence patient accrual (Figure 1).

In centres where one or more benchmark case had been

submitted by other HNROs from that centre, subsequent

benchmarking cases were not required for the remaining HNROs

enrolling patients from that centre on the proviso that they had a

robust institutional RT QA programme (i.e., defined as a review of

all new definitive cases’ imaging and contours) and their first case

underwent real-time RT QA prior to commencing treatment.

A central real-time pre-treatment RT QA review was performed

for the first patient of each radiation oncologist investigator, and

post-treatment reviews were performed for one in five patients for

each investigator (Figure 2).

Centres sent the diagnostic images and the simulation CT images

with all radiotherapy dosimetry and contouring data to the Trans-

Tasman Oncology Group (TROG) group. Dosimetry, treatment

delivery, and scheduling were reviewed centrally, and the accuracy

of all the contouring volumes was reviewed by an independent

member of the five-HNRO review panel. Each panel member

specialised in HNC and had five or more years of experience.

Each investigator had a copy of the protocol that detailed the RT

techniques, including GTV to PTV margins of minimum 10 mm,

and the criteria for unilateral RT. In addition, each investigator had

the table of items to be reviewed and the acceptable, minor, and

major protocol violations for each of these structures (Table 1).
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Major protocol violations were those with major variations in

contour and/or dose to the Priority 1 structures (GTVp, GTVn, and

PTV70 and critical organs at risk—spinal cord, mandible, and

brachial plexus). All other structures were placed in the Priority 2

category (PTV intermediate and low dose, pharyngeal constrictors,

larynx, parotids, and oral cavity). The protocol included contouring

atlases for brachial plexus and pharyngeal constrictors.
Statistical analysis

Formal statistical analysis was not required. This report is a

presentation of the RT QA results and was limited to descriptive

reporting and percentages.
Frontiers in Oncology 0329
All cases of loco-regional failure (LRF) were reviewed by one of

the authors (JC). These cases were blinded for institutional site and

responsible radiation oncologist; the actual site of failure (i.e., either

local or regional, or both) and the clinical outcomes for each case

were also unknown. Once the RT QA review was complete for that

list of patients, then the site of failure was made known so that a

correlation could then be made between any major protocol

violations and the clinical likelihood of that violation (RT dose

and/or contour) contributing to the site of failure. For each case, it

was also documented what prospective RT QA had been performed

in relation to that case, specifically whether a benchmark case had

been submitted, and whether pre-treatment or post-treatment RT

QA had been performed. We also documented the presence or

absence of institutional RT QA for each case.
FIGURE 1

Pre-Trial Credentialing.
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Results

Overall, there were 182 patients available for analysis in the

TROG 12.01 study. All except one patient from each arm (180/182,

99%) received the prescribed dose in the prescribed time frame, 70

Gy in 35 fractions over 7 weeks.

Thirty HNROs from 15 institutions accrued patients to

TROG 12.01.

There were 28 library benchmark cases, 27 cases underwent

real-time RT QA pre-treatment, and 38 cases had their RT QA

review performed after completion of their treatment. Thus, in total,
Frontiers in Oncology 0430
there was comprehensive RT QA performed in 93 cases and in 65/

182 (36%) treated patients.
Benchmark cases

There were 28 benchmark cases submitted. Twenty-three cases

were protocol compliant, and five cases required resubmission due

to major protocol variations in Priority 1 structures (contouring of

brachial plexus 2, contour PTV70, and D1% dose to brachial

plexus × 4 and spinal cord × 1). Of these, two were corrected by
FIGURE 2

On-Trial Radiotherapy Quality Assurance.
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TABLE 1 Major and minor protocol violations criteria in TROG 12.01.

Question Protocol Baseline Acceptable
Minor
variation

Major
variation

Missing/
Invaluable

Target Volumes—GTV & CTV

GTV-P: Minimum Dose (D100%) No >/=66.5 Gy N/A N/A N/A N/A

Percentage GTV-P receiving <95% of the
prescribed dose (V95)

Yes 0 0%–2% 2.01%–7% >7% N/A

GTV-N: Minimum Dose (D100%) No >/=66.5 Gy N/A N/A N/A N/A

Percentage GTV-N receiving <95% of the
prescribed dose (V95)

Yes 0 0%–2% 2.01%–7% >7% N/A

Is the maximum dose contained within the CTV? No Yes Yes N/A N/A N/A

Target Volumes—PTV

PTV70Gy: D95% Yes >/=66.5 Gy >/=66.5 Gy 65.1–66.49 Gy <65.1 Gy N/A

Percentage of PTV70 receiving </=66.5
Gy (V95%)

Yes 0 0%–5% 5.01%–7% >7% N/A

PTV70: Near Minimum (D98%) No >/=66.5 Gy N/A N/A N/A N/A

PTV70: Median Dose (D50%) No 70 Gy 68.6–71.4 Gy N/A N/A N/A

PTV70: Near Maximum (D2%) Yes 70 Gy
<110%
(76.99 Gy)

110%–115% (77–
80.5 Gy)

>115%
(80.51 Gy)

N/A

PTV67Gy: D95% Yes
>/=63.65
Gy

>/=63.65 Gy 60.3–63.64 Gy <60.3 Gy N/A

Percentage of PTV67 receiving </=63.65
Gy (V95%)

Yes 0 0-5% 5.01%–10% >10% N/A

PTV67: Near Minimum (D98%) No
>/=63.65
Gy

N/A N/A N/A N/A

PTV63Gy: D95% Yes
>/=59.85
Gy

>/=59.85 Gy 58.6–59.84 Gy <58.6 Gy N/A

Percentage of PTV63 receiving </=59.85
Gy (V95%)

Yes 0 0%–5% 5.01%–10% >10% N/A

PTV63: Near Minimum (D98%) No
>/=59.85
Gy

N/A N/A N/A N/A

PTV54Gy: D95% Yes >/=51.3 Gy >/=51.3 Gy 45.9–51.29 Gy <45.9 Gy N/A

Percentage of PTV54 receiving </=51.3
Gy (V95%)

Yes 0 0%–5% 5.01%–15% >15% N/A

PTV54: Near Minimum (D98%) No >/=51.3 Gy N/A N/A N/A N/A

Critical OARs

Spinal Cord: D1% Yes </=45 Gy </=45 Gy
0%–3% (45.01–
46.35 Gy)

>3%
(>46.35 Gy)

N/A

Spinal Cord: Maximum Point Dose No </=45 Gy N/A N/A N/A N/A

Spinal Cord: PRV (Sc + 5 mm): D1% Yes </=50 Gy </=50 Gy
0%–3% (50.01–
51.5 Gy)

6(>51.5 Gy) N/A

Spinal Cord: PRV (Sc + 5 mm): Maximum
Point Dose

No </=50 Gy N/A N/A N/A N/A

Brachial Plexus Left: D1% Yes </=66 Gy </=66 Gy
0%–3%
(66.01–67.98Gy)

>3% (>67.98Gy) N/A

Brachial Plexus Left: Maximum Point Dose No </=66 Gy N/A N/A N/A N/A

Brachial Plexus Right: D1% </=66 Gy </=66 Gy
0-3%
(66.01–67.98Gy)

>3% (>67.98Gy) N/A

(Continued)
F
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the responsible HNRO and resubmitted and passed RT QA (2/5,

40%), and one was not resubmitted but the first patient from that

investigator was reviewed in real time (thus included in the pre-

treatment review section). Two were never resubmitted, and these

two investigators did not then participate in the study.
Pre-treatment review

Priority 1 structures
There were 30 clinicians and, thus, 30 patients were to have real-

time pre-treatment review. However, two clinicians did not submit

their cases with adequate time for pre-treatment review to be

completed (and they were subsequently reviewed post-treatment),

and one case was missed from pre-treatment review. Thus, there

was a total of 27 real-time pre-treatment RT QA review completed.

In these 27 cases, there were six major variations in Priority 1

structures in five patients (four in contouring—GTVp contour × 2,

PTV70 contour, and brachial plexus contour, and two in dosimetry

to the brachial plexus) (D1% > 68 Gy).

There were 13 minor variations in Priority 1 structures in nine

patients (7 in contouring—spinal cord × 2, PTV70 × 3, and brachial

plexus × 2, and 6 in dosimetry—mandible D1% × 2, brachial plexus

D1% × 1, 95% of PTV70 received less than 65.1 Gy × 2, and 100%

GTVn receiving less than 66.5 Gy × 1).

Priority 2 structures
There were two major variations in two patients in Priority 2

structures (one contour PTV63, one dosimetry 95% of PTV63

received < 58.6 Gy).

There were 20 minor variations in 13 patients in Priority 2

structures (19 in contouring—pharyngeal constrictors × 5, oral

cavity × 5, larynx × 2, PTV54 × 3, and PTV63 × 4, and 1 in

dosimetry 95% PTV54 receiving less than 51.3 Gy).

Pre-treatment cases with major violations in Priority 1

structures were corrected and resubmitted in three of the five

cases. The violations corrected in these resubmitted cases were
Frontiers in Oncology 0632
the GTV contour × 2 and PTV70 contour × 1. The three patients

where correction and resubmission were not requested had major

violations, namely, contouring of the brachial plexus × 1, and dose

to the brachial plexus exceeding 68 Gy × 2.
Post-treatment review

Priority 1 structures
In the 38 cases reviewed post-treatment, there were seven major

variations in Priority 1 structures in six patients: two in contouring

(GTVn and PTV70) and five in dosimetry (95% of PTV70 receiving

less than 65.1 Gy × 2, brachial plexus D1% > 68 Gy, mandible D1%,

and 100% GTVp receiving < 66.5 Gy).

There were 24 minor violations in Priority 1 structures in 15

patients: 16 in contouring (GTVp × 1, GTVn × 2, brachial plexus ×

8, and spinal cord × 5) and 8 in dosimetry (95% of PTV70

received < 66.5 Gy × 4, mandible D1% × 2, and brachial plexus

D1% × 2).
Priority 2 structures
There were five major variations in Priority 2 structures in four

patients: four in contouring (parotid × 2, pharyngeal constrictors ×

1, and PTV54 × 1) and one in dosimetry, 95% PTV54 received <

45.9 Gy).

There were 39 minor variations in Priority 2 structures in 24

patients: 33 in contouring (PTV54 × 12, PTV 63 × 1, pharyngeal

constrictors × 7, oral cavity × 9, and larynx × 4) and 6 in dosimetry

(95% of PTV67 received < 60.3 Gy × 2, 95% of PTV63 received <

58.6 Gy × 2, and 95% of PTV54 received < 45.9 Gy × 2).

Overall, there were a total of 10 major violations in either

contour or dosimetry in nine patients, 13.8% of the RT QA

population. The major variations were two for unacceptable

contours (GTVn × 1 and PTV70 × 1) and eight for dosimetry

(mandible D1% > 72.1 Gy, Brachial plexus D1% > 68 Gy × 4, 95%

PTV70 receiving less than 65.1 Gy × 2, 95% GTVp receiving less

than 65.1 Gy).
TABLE 1 Continued

Question Protocol Baseline Acceptable
Minor
variation

Major
variation

Missing/
Invaluable

Brachial Plexus Right: Maximum Point Dose No </=66 Gy N/A N/A N/A N/A

Other OARs

Mandible D1% Yes </=70 Gy </=70 Gy
0-3% (70.01–
72.1 Gy)

>3% (>72.1 Gy) N/A

Mandible: Maximum Point Dose No </=70 Gy N/A N/A N/A N/A

Parotid Gland (Right): Mean Dose No </=26 Gy </=26 Gy N/A N/A N/A

Parotid Gland (Left): Mean Dose No </=26 Gy </=26 Gy N/A N/A N/A

Glottic Larynx: Mean Dose No </=45 Gy </=45 Gy N/A N/A N/A

Constrictors: Mean Dose No </=63 Gy </=63 Gy N/A N/A N/A

Oral Cavity: Mean Dose No </=42 Gy </=42 Gy N/A N/A N/A
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RT QA of the patients with loco-regional failure
There were nine LRFs in the 182 treated patients: six regional,

two local, and one loco-regional. Of these nine cases, the results of

the RT QA associated with each case are tabulated in Table 2.

In these nine cases, four had undergone study RT QA and five

had not. In the four cases that had undergone review, three were

reviewed post-treatment and one was reviewed pre-treatment. The

RT QA reviews in these patients had not shown any major protocol

violations, and the second review (JC) was concordant in three cases

(75%). The non-concordant case had originally been reviewed post-

treatment as having no major protocol violations, but the second

review assessment had major protocol violations in the contouring

of GTVn and hence PTV70, and this had a significant probability of

contributing to the regional failure. This regional recurrence was

not resectable and the patent died of disease.

In the five cases not previously reviewed, RT QA revealed major

protocol violations in three cases (60%), with a significant probability

of contributing to local or regional failure (see Figure 3). In the first

case, the GTVn was assessed as under contoured and hence the

GTVn-to-PTV70 margin was too small. In addition, the margin from

GTVp to PTV70 was 7 mm and the protocol recommended a

minimum of 10 mm. This patient died of local and regional failure.

In the second case, the margin from GTVn to PTV70 ranged from 4

to 6 mm, and this patient failed in the neck. They had a salvage neck

dissection and remain alive with no evidence of disease. In the third

case, the GTVp was assessed as under contoured with a subsequent

close GTV-to-PTV margin, and this probably contributed to their

local failure. They had surgical salvage and remain alive with no

evidence of disease. In none of these cases were the less-than-10-mm

GTV-to-TV margins related to anatomical boundaries.
Discussion

The study represents the most detailed report of any RT QA

process in an HNC study in the IMRT era.

Over a third of the study patients had comprehensive RT QA.

Within that group, 86% had no major protocol violations, and if

brachial plexus was omitted as a Priority 1 structure (four cases in

three patients) , then 90% would have had no major

treatment violations.

Thus, the question remains—what items should be included as a

minimum for adequate RTQA? As mentioned, the main purpose of

HNC RT QA is to optimise cancer control probability and minimise
Frontiers in Oncology 0733
the risk of serious late treatment toxicity. Hence, in terms of items to

be assessed, it is not controversial to include GTVp, GTVn, and

PTV70 and spinal cord as “Priority 1” structures in oropharyngeal

cancer RT QA. However, inclusion of the mandible and brachial

plexus, and the maximum doses that constitute a major protocol

violation is more controversial. We believed that they were worthy

of inclusion because mandibular osteoradionecrosis and brachial

plexopathy are serious late treatment toxicities that cause

considerable patient morbidity.

There is considerable variation in dosimetry criteria used for RT

QA in different protocols. Table 3 compares the RT QA criteria in

the protocols of TROG 12.01 and RTOG 1016 (3). It is important to

remember that the RTOG 1016 protocol was for 70 Gy in 35

fractions over 6 weeks, with PTV2 56 Gy and PTV3 50 Gy, whereas

TROG 12.01 prescribed 70 Gy in 35 fractions over 7 weeks with

PTV2 63 Gy and PTV3 54 Gy. However, if we compare “Priority 1

structures”, in the RTOG 1016 trial, there was no major protocol

violation ascribed to GTV coverage, whereas in the TROG 12.01

trial, the GTV had to receive a minimum of 66.5 Gy. For PTV70, the

major deviation was 95% receiving <65.1 Gy in the TROG 12.01,

but in RTOG 1016, it was only if <63 Gy. Spinal cord doses were

also recorded differently. In TROG 12.01, if the maximum point

dose to the spinal cord was >46.4 Gy, it was a major violation,

whereas in RTOG 1016, it was >50 Gy, which was considered a

major violation.

The brachial plexus D1% maximum dose was a major violation

if greater than 68 Gy in TROG 12.01, but it was not mandated in

RTOG 1016. The maximum mandible dose in TROG 12.01 was 70

Gy, and D1% maximum dose > 72 Gy was a major violation. In

RTOG 1016, it was recommended the maximum dose be less than

66 Gy, but it did not seem to be a major violation. Interestingly the

maximum dose allowed within PTV1 in TROG 12.01 was D2% 77

Gy and any higher was a major violation, whereas in RTOG 1016, a

PTV1 hot spot was accepted up to 82 Gy. Thus, two experienced

HNC trial groups, within the same disease subsite, demonstrate

significant differences for structures and dosimetric constraints

recorded as major protocol violations. Hence, that needs to be

standardised by a consensus statement from major HNC research

groups for future studies.

Regarding the number and timing of cases be reviewed, when

first planning the RT QA for this study, we had thought completion

of the benchmark case may be the most important component of

the RT QA process. Successful completion of the benchmark case

would be the best way to ensure that all had read and adhered to the

study RT protocol prior to entering patients on the study.

However, eight of the nine cases of LRF had had a

benchmarking case performed by that clinician; thus, this

suggests that it may not be that helpful in reducing specific RT

protocol violations.

A significant proportion (3/9, 33%) of the LRF cases had had

post-treatment review, but this is of limited value as the patient has

completed treatment and any protocol violations cannot be

adjusted. It is helpful as a general overview of the quality of the

RT delivered, but not for reducing adverse outcomes in any

particular patient.
TABLE 2 Distribution of the RT QA processes for the loco-regional
failure patients (n = 9).

Yes No

Benchmark case submitted 8 1

Institutional RT QA 5 4

Pre-treatment RT QA review 1 8

Post-treatment RT QA review 3 6
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Perhaps the greatest concern was that eight of the nine patients

with LRF had not had pre-treatment review. This is clearly the timing

that allows corrections before treatment (as per the Peters et al. study)

and hence most directly correlates with better oncological outcomes.

Thus, pre-RT QA is the area that deserves greater concentration of

resources. Pre-treatment review in the TROG 12.01 study resulted in

a 40% reduction in Priority 1 major violations, given that three of five
Frontiers in Oncology 0834
cases with major violations in Priority 1 structures were corrected

prior to treatment. Theoretically, if the nine patients with LRF had all

undergone pre-treatment RT QA review, and the major protocol

violations in Priority 1 structures had been corrected, then the LRF

rate could potentially have been reduced by 4, i.e., from 9 to 5, so a

reduction in the LRF rate from 9/182 (4.9%) to 5/182 (2.7%), or a

halving of the rate of LRF.
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The financial cost of RT QA is not insignificant but may vary greatly

between different countries. Dosimetry recalculations and

dosimetric protocol violations can be recorded automatically via

programmes such as CQMS (central quality management system).

What cannot currently be automated is the review of GTV and PTV

contours. It is possible that in the future, artificial intelligence could

be helpful in this area. Currently, the average time taken for RT QA

review of imaging and contours by an independent HNRO is

approximately 20 min per case (4), or approximately 60 AUD.

Quite apart from the emotional cost of salvaging an LRF, the

financial cost is high. There are no Australian figures for the cost

of managing LRF, but American and European studies suggest that

it is in the order of 30,000 AUD (5, 6). In fact, in the TROG 12.01

study, all the HNRO RTQA was performed on an honorary basis.

However, if not, the approximate costing of contour reviews for all

182 patients’ pre-treatment would have been approximately 11,000

AUD, or roughly a third of managing a single recurrence.

Finally, what proportion of HNC patients need to undergo

RTQA for optimal results? There are no data to answer that

question. To date, percentages used range around the 10% mark

(7), but this is a pragmatic response to available resources rather

than a scientific or financial costing of relative benefit.

Ideally, one would review all cases and see if an algorithm could

be formulated to determine the optimal percentage of cases needed
Frontiers in Oncology 0935
to undergo pre-treatment RT QA for optimal or most efficient

detection of major protocol violations.
Conclusions

RT QA is important for the optimal management of HNC. This

study reinforces the point that pre-treatment peer review with

formal RT QA and feedback to the treating HNRO offers the

highest likelihood of reducing major protocol violations and

improving patient outcomes. There needs to be consensus as to

the items to be included in RT QA, but GTV, PTVs, and critical

OAR are a good starting point. The percentage of cases that should

undergo such review requires further study. Nevertheless, we need

to arrest the drift of RT QA being performed post-treatment. Pre-

treatment RT QA needs to be a standard procedure during the

treatment planning stage and deserves appropriate allocation of

resources for the optimal management of HNC patients.
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TABLE 3 Comparisons of Items included in HNC RT QA trial protocols.

Item TROG 12.01 RTOG 1016 Major Deviations
TROG 12.01

Major Deviations
RTOG 1016

GTV Mandatory Mandatory Minimum dose > 66.5 Gy Not stated

GTV-PTV margin Mandatory Mandatory 10–15 mm 10–25 mm

PTV70 Mandatory Mandatory 95% PTV70 < 65.1 Gy 95% PTV70 < 63 Gy

PTVid* Mandatory Mandatory 95% PTVid < 58.6 Gy 95% PTVid < 45 Gy

PTVld# Mandatory Mandatory 95% PTVld < 45.9 Gy 95% PTVld < 40 Gy

Spinal cord PRV Optional Mandatory Not stated >52 Gy

Spinal cord Mandatory Mandatory > 46.4 Gy >50 Gy

Brain stem PRV Optional Mandatory Not stated >52 Gy

Mandible Mandatory Optional >72 Gy >66 Gy

Brach Plex Mandatory Not required >68 Gy Not stated

Max dose in PTV1 >77 Gy >82 Gy

Recommended doses Recommended doses

Parotids Mandatory Mandatory Mean < 26 Gy Mean < 26 Gy

Pharynx Mandatory Optional Mean < 63 Gy Uninvolved mean < 45 Gy

Glottis Mandatory Optional Mean < 45 Gy Mean < 20 Gy

SMG Mandatory Optional Mean < 39 Gy Mean < 39 Gy

Oral cavity Mandatory Optional Mean < 42 Gy Uninvolved mean < 30 Gy

Lips Optional Optional Not stated Mean < 20 Gy

Cervical oesoph Optional Optional Not stated Mean < 30 Gy
*PTVid, planning target volume intermediate dose; #PTVld,– planning target volume low dose.
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Impact of radiation dose
distribution on nutritional
supplementation needs in head
and neck cancer radiotherapy:
a voxel-based machine
learning approach
Sudharsan Madhavan, Mauricio Gamez, Yolanda I. Garces,
Scott C. Lester, Daniel J. Ma, Daniel W. Mundy,
Michelle A. Neben Wittich, Jing Qian, David M. Routman,
Robert L. Foote and Satomi Shiraishi*

Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
Objectives: To investigate the relationship between nutritional supplementation

and radiation dose to the pharyngeal constrictor muscles and larynx for head and

neck (HN) cancer patients undergoing radiotherapy.

Methods:We retrospectively analyzed radiotherapy (RT) dose for 231 HN cancer

patients, focusing on the pharyngeal constrictors and larynx. We defined

nutritional supplementation as feeding tube utilization or >10% weight loss

from baseline within 90 days after radiotherapy completion. Using deformable

image registration (DIR), we mapped each patient’s anatomical structures to a

reference coordinate system, and corresponding deformations were applied to

dose matrices. Voxel doses were utilized as features for ridge logistic regression

models, optimized through 5-fold cross-validation. Model performance was

assessed with area under the curve of a receiver operating curve (AUC) and F1

score. We built and compared models using 1) pharyngeal constrictor voxels, 2)

larynx voxels, 3) clinical factors and mean regional dose metrics, and 4) clinical

factors and dose-volume histogram metrics. Test set AUCs were compared

among the models, and feature importance was evaluated.

Results: DIR of the pharyngeal constrictors and larynx yielded mean Dice

coefficients of 0.80 and 0.84, respectively. Pharyngeal constrictors voxels and

larynx voxel models had AUC of 0.88 and 0.82, respectively. Voxel-based dose

modeling identified the superior to middle regions of the pharyngeal constrictors

and the superior region of larynx as most predictive of feeding tube use/weight

loss. Univariate analysis found treatment setting, treatment laterality,

chemotherapy, baseline dysphagia, weight, and socioeconomic status predictive

of outcome. An aggregated model using mean doses of pharyngeal constrictors

and larynx subregions had an AUC of 0.87 and the model using conventional DVH

metrics had an AUC of 0.85 with p-value of 0.04. Feature importance calculations

from the regional dose model indicated that mean doses to the superior-middle
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pharyngeal constrictor muscles followed bymean dose to the superior larynx were

most predictive of nutritional supplementation.

Conclusions: Machine learning modeling of voxel-level doses enables

identification of subregions within organs that correlate with toxicity. For HN

radiotherapy, doses to the superior-middle pharyngeal constrictors are most

predictive of feeding tube use/weight loss followed by the doses to superior

portion of the larynx.
KEYWORDS

voxel-based analysis, head and neck cancer, outcomes modeling, feeding tube,
explainable machine learning, larynx, pharyngeal constrictor muscles, weight loss
1 Introduction

Swallowing difficulties are a prevalent side effect of radiotherapy

(RT) treatments for head and neck cancers (1–5). RT involves

targeting cancers with a three-dimensional (3D) radiation dose.

This often leads to the incidental irradiation of nearby organs that

play a role in swallowing. In contemporary practices, radiotherapy

treatment plans condense the 3D dose distributions inside

delineated organs into two-dimensional dose-volume histograms

(DVHs). Specific metrics for organs at risk (OARs) and target

volumes are scrutinized to reduce the chance of adverse side effects.

Physicians qualitatively assess the spatial distribution of radiation

doses, focusing on regions that may pose potential toxicities or

affect target coverage. This method has proven effective, with a

number of toxicities linked to DVHmetrics through various normal

tissue complication probability (NTCP) modeling, as evidenced in

QUANTEC and various clinical trials (1, 5–10). For example,

Mavroidis et al. (11), showed that generalized mean dose for

superior pharyngeal constrictors to be most predictive of

dysphagia at 6 months post-RT. Using Lyman Kutcher Burman

(LKB) model which is a popular methodology accounting for

seriality of the OAR (12, 13), their study reported D50 (dose at

which there is 50% chance of complication) of 62.0 Gy, slope

parameter m = 0.1, and dose-volume parameter n = 0.49 with

AUC of 0.74 for superior pharyngeal constrictor muscles,

suggesting moderate sensitivity to subregion damage (14).

However, when relying exclusively on DVHs for analysis,

delineation of the OARs is necessary, and it is presupposed that

every section of an organ has an equal sensitivity to radiation and

contributes identically to the overall risk of toxicity. Additionally,

Samant et al. reported that machine learning (ML) models can often

quantify NTCP better than LKB models, motivating explorations of

ML approaches for toxicity analysis (15).

Furthermore, recent studies have shown that the toxicity

observed can depend on which subregion of a segmented organ

was irradiated (2–4, 16–37). Functionally distinct subregions within

a single OAR contour may not be accounted for in current
0238
treatment planning. For example, Jiang et al. used ML to identify

subregions within the parotid and submandibular glands that

correlated with xerostomia (22). Another study by Eisbruch et al.

found the pharyngeal constrictor muscles and glottic/supraglottic

larynx subsites were most dysphagia-related using videofluoroscopy

(38). In clinical practice, it is common for glottic, supraglottic, and

subglottic larynx subregions to be grouped under a single larynx

segmentation. Likewise, the superior, middle, and inferior

pharyngeal constrictor muscles are collectively evaluated as one

entity during treatment planning. In addition to the potential

presence of distinct subregions, there is a growing number of

studies on voxel-based optimization of radiation treatment plans

(39–41). These studies have used voxel-based objectives for

optimization and opens an opportunity to reflect spatial dose

constraints during treatment planning.

Conventionally, investigation of sub-regions of an OAR

required radiomics texture extraction based on images and/or

time-consuming and resource-intensive manual contouring of

each region (42). Manual contouring is also subject to inter-

observer variations and inconsistent implementation of

contouring guidelines (43–45). In this study, we employed a

machine-learning approach to determine the radiation dose’s

voxel-wise correlation with malnutrition, pinpointing distinctive

features in the pharyngeal constrictors and larynx sub-regions

without preliminary contouring. We focused on interpretable

feature importance to analyze the spatial dose dependency within

an organ. This may eventually inform dose sparing of a subregion

during treatment planning to reduce malnutrition risk. While

methodologies akin to ours have been used in head and neck RT

studies focusing on toxicities such as xerostomia and acute

dysphagia (28, 29), to the best of our knowledge, there has not

been an investigation into the 3D dose distribution’s impact on

malnutrition, measured by feeding tube (FT) utilization and weight

loss. Furthermore, predicting the need for a feeding tube early in

radiotherapy can also enhance patient care. Although prophylactic

FT placement is occasionally advised (46), its blanket application

can be unnecessary or harmful. About half of the preemptively
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inserted FTs prove marginally beneficial (47), with complications

such as infections being prevalent (48). Moreover, FT placement

postpones the transition back to regular diets (49), adversely

affecting long-term well-being (18, 50, 51). Therefore, identifying

patients in true need of FT can improve quality of care.
2 Materials and methods

2.1 Cohort selection

After Institutional Review Board approval, we conducted a

retrospective analysis of 352 patients treated for head and neck

cancer at our institution from January 2016 to November 2020, all

of whom had granted consent for their medical records to be used in

research. We accessed our department’s patient outcomes database

(52) and filtered for patients based on International Classification of

Diseases (ICD)-9 and 10 codes (53, 54) specific to cancers in the

salivary glands, oropharynx, oral cavity, nasopharynx, nasal cavity,

sinuses, larynx, and hypopharynx. We excluded patients based on the

following criteria: absence of baseline dysphagia assessment before

radiotherapy (60 patients), FT insertion before RT (34 patients),

radiation doses outside the range of 1.2-2.2 Gy/fraction, discernible

disfigurement of the pharyngeal constrictors and larynx due to

disease or surgery, and prior RT in an area with potential overlap

(27 patients). Ultimately, 231 patients, treated with either photon or

proton radiotherapy with prescription dose in the range of 30-81.6

Gy delivered in 15-68 fractions, were deemed suitable for this study.
2.2 Data collection

Table 1 summarizes the clinical variables studied in our

analysis. We sourced data from our institution’s electronic health

record reporting database, focusing on parameters such as gender,

feeding tube usage, weight, birth date, and the primary address’s 9-

digit zip code. Feeding tube utilization data was gathered by looking

for procedure codes corresponding to the insertion of stomach,

gastrostomy, or jejunostomy tubes. Patients who had a feeding tube

before starting RT were excluded based on the procedure date, as

such utilization is likely attributable to surgery, disease, or both as

opposed to RT. Socioeconomic status was inferred using the Area

Deprivation Index by Kind and Buckingham (55), derived from the

zip code associated with the patient’s primary address. This index,

ranging from 1 to 100, gauges the socioeconomic disadvantage of a

neighborhood, with higher scores denoting greater disadvantage.

We also collected baseline dysphagia grades assessed by the care

team following the Common Terminology Criteria for Adverse

Events (CTCAE v4.03) within ±2 weeks of radiotherapy initiation

(56, 57). Additionally, data on smoking habits, concurrent

chemotherapy, and treatment context (either primary or post-

operative RT) was obtained via chart reviews. Table 1 provides

information on clinical variables and on treatment sites of the

patients included in the study.

All radiotherapy treatments were planned in the Eclipse

treatment planning system (Siemens Healthineers company,
Frontiers in Oncology 0339
Erlangen, Germany). Physical radiation doses in proton plans

were scaled by 1.1 (58–60) to account for relative biological effect

compared to photon plans. Photon treatments were generally

planned to use two to four volumetric modulated arcs. Proton

treatments were planned with a pencil beam scanning method

utilizing two to five static fields. From our planning system, we

exported DICOM files corresponding to radiation doses, CT scans,

and structural sets. Of note, the head and neck anatomy of these

data sets were retrospectively segmented consistently by a specially

trained team of physicians and medical dosimetry assistant as part

of a separate project (61). The contouring followed the consensus

guidelines in Brouwer et al. (62).
2.3 Endpoint definition

The endpoint used to characterize malnutrition was feeding

tube (FT) utilization or >10% weight loss from baseline within 90

days after radiotherapy completion. Though FT usage typically

arises when a patient sheds over 10% of their initial weight, some
TABLE 1 List of clinical parameters investigated, and treatment site of
the patient cohort considered in this study.

Clinical variables Value

Baseline dysphagia grade Grades 0-1 208

Grades 2-3 23

Age at RT start Mean 60.85 years

Range [23, 89] years

ADI Mean 45.01

Range [1, 98]

Treatment setting Surgery before RT 146

No surgery before RT 85

Smoker status Smoker 120

Never smoker 111

Gender Male 189

Female 42

Radiation type Photon 131

Proton 100

Concurrent chemotherapy Yes 156

No 75

Treatment site
(% of FT/WL)

Salivary glands 6 (50%)

Oropharynx 155 (54%)

Oral cavity 23 (61%)

Nasopharynx 12 (75%)

Nasal cavity and sinuses 15 (33%)

Larynx 17 (35%)

Hypopharynx 3 (67%)
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clinicians and/or patients opt against it on a case-by-case basis. Our

practice is to only recommend a FT if it is clinically indicated

(typically >10% weight loss from baseline). We do not use FT

prophylactically. Regardless, such patients remain malnourished,

indicating a toxicity affecting their quality of life. We chose to merge

these observations and study them as one endpoint; for the

remainder of the paper, this endpoint will be referred to as FT/

WL for simplicity. The baseline weight was defined as the weight

recorded closest to the RT commencement, ensuring it was within

a ±2-week window of that date.
2.4 Analysis

2.4.1 Overview
As illustrated in Figure 1, this analysis had two different

methodologies after data processing. In the first methodology, 3D

voxel-based dose models were trained to identify regions within the

pharyngeal constrictors and larynx that better differentiated toxicity

endpoints. Because the voxel-based model utilized a large number

of input voxels (22,020 for pharyngeal constrictors and 20,814 for

larynx), it was prone to overfitting. To validate and confirm the

subregion findings, the second methodology investigated models

with reduced features where mean doses from segmented sub-

regions of the pharyngeal constrictor muscles and larynx along with

clinical variables (14 input features). Similarly, another model that

combined DVH metrics used in our clinic with the identical clinical

parameters (13 input features) was studied as a comparison.
Frontiers in Oncology 0440
2.4.2 Data preprocessing
All patients’ pharyngeal constrictors and larynx were

deformably registered to a reference patient’s corresponding

organs to align them in the same coordinate system. The

reference patient shown in Figure 2, was chosen based on having

a larynx structure size close to the population average, as well as the

absence of any disfigurement due to prior surgery or disease

involving the pharyngeal constrictors and/or larynx. Deformable

registration was performed using the open-source package, Elastix

(63–65). The planning images of most patients included in the study

had a native resolution of 1.27 x 1.27 mm2 in the axial direction,

with slice thicknesses of either 1 or 2 mm. To maintain uniformity,

all images were interpolated to a resolution of 1.27 mm x 1.27 mm x

1 mm in the coronal, sagittal, and axial directions, respectively. The

DICOM images (66) were then cropped around organ +4 mm using

the open-source packages DicomRTTool and ANTs (67, 68). Rigid,

affine, and deformable transformations were subsequently applied.

The quality of image registrations was evaluated using the Dice

coefficient. For the 3D models, we also augmented the training

dataset by flipping the OAR contours and dose left-right to create

mirrored dose distributions. This is based on the premise that both

the pharyngeal constrictors and larynx are midline structures and

there are no laterality preferences for one versus the other. The

flipped contour and doses were registered to the reference

coordinate system in the same manner as the original data. After

the deformable image registrations, the same deformation was

applied to each patient’s dose matrix to obtain dose within the

reference coordinate system. Dose to each voxel was extracted, and
FIGURE 1

Flow diagram of the analysis.
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each numerical input feature was standardized. This

standardization process involved adjusting each feature such that

it had a mean of zero and a standard deviation of one among the

training set. Standardization ensures that our model’s performance

is not biased by variations in the absolute dose levels, but rather

focuses on the relative differences in dose distribution. All

categorical features were one-hot encoded and expressed in terms

of zeros and ones.

2.4.3 Modeling and statistical analysis
We initially evaluated ridge logistic regression, eXtreme

Gradient Boosting (XGBoost), and Light Gradient Boosting

Machine (LightGBM) algorithms for modeling. Ridge logistic

regression was implemented using the open-source package cuML

(69) and scikit-learn (70), while XGBoost (71) and LightGBM (72)

models were utilized from their respective repositories. We

performed voxel-based analysis using these algorithms with a

subset of cohort, and areas under the curves (AUCs) for receiver

operating curves (ROCs) were compared. The feature importance

maps from XGBoost and lightGBM were sparse and their

performance were comparable, so we opted to utilize ridge

logistic regression for the remainder of the study.

In Methodology 1, voxel doses were the only input features for

the models, with the pharyngeal constrictors and larynx analyzed in

separate models. The data set was randomly split into training and

test sets in an 80-20% ratio, and the same training patients were

used for both pharyngeal constrictors and larynx models. The

hyperparameter was tuned using the Optuna package (73) over

the 5-fold cross-validation, with ROC AUC as the performance

metric. Accuracy and F1 scores evaluated at the threshold of 0.5

were also utilized to compare the general performance of the

models. Full training data was used to perform the final fit with

the optimized hyperparameter to create the model. For the 3D

models, the standardized input features allowed the coefficients
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from the ridge logistic regression to directly signify feature

importance. Specifically, each coefficient from the regression

showcases the change in log odds of the outcome for a unit

increase in its respective feature. These feature importance

coefficients were qualitatively reviewed in a scatter plot for any

sub-regions that differentiated FT/WL better than others. In

addition to ridge logistic regression, other regularized methods

such as LASSO and elastic net were also attempted. However,

these L1-based regularization, promoting sparsity combined with

highly correlated input parameters yielded spatially fragmented and

variable feature importance maps. Therefore, ridge regression was

preferred to retain spatial coherence for subregion identification.

In methodology 2, a univariate logistic regression was first

performed for each clinical and demographic variable fitting to

the binary outcomes of FT/WL, and p-value and odds ratio were

calculated. We first developed a model exclusively incorporating the

non-dosimetric clinical variables listed in Table 2, which served to

establish a baseline for prediction performance. Variables identified

as predictive of FT/WL in the univariate analysis were used for

modeling with the dosimetric variables. In the final models, there

were seven to eight dosimetric variables and six clinical and

demographic variables. The clinical and demographic variables

were common between the DVH model and the regional dose

model: area deprivation index, baseline weight, treatment setting

(primary/post-operative), concurrent chemotherapy (yes/no),

bilateral treatment (yes/no), and baseline dysphagia grade 0 (yes/

no). The dosimetric variables for the DVH metrics model were

mean larynx dose, mean pharyngeal constrictor dose, larynx V50Gy

and V60Gy, and pharyngeal constrictor V50Gy, V55Gy, and

V60Gy, where VxGy represents the percent volume of the organ

covered by x Gy or more. These DVH metrics were chosen because

they are used to evaluate head and neck treatment plans in our

clinic. For the regional dose model, the pharyngeal constrictors

were divided into superior, middle and inferior pharyngeal

constrictors on the reference patient as well as midline and lateral

regions as shown in Figure 3C, grouping the regions based on the

feature importance from the voxel models. Following a similar

grouping, the larynx was divided into supraglottic larynx and

inferior regions as shown in Figure 3F. Mean doses from these

subregions were used as the dosimetric variables for the regional

dose model. Using these input features, models were trained 50

times with the 5-fold cross-validation process with varying random

data splits to confirm that the learned hyperparameters and feature

importances were not heavily dependent on a specific random

partitioning of the dataset. To assess feature importance, we

employed a permutation test (74). We randomized the data of

one input variable at a time and evaluated the resulting drop in

model performance. The magnitude of performance decline, as

measured by the change in ROC AUC from the unaltered data,

indicates the importance of that variable to the model’s predictive

capability. We conducted this permutation process 50 times for

every variable, incorporating 5-fold cross-validation on the training

dataset in each iteration. The average change in the AUC was used

to assess the difference in performance, and the two-tailed

Wilcoxon rank sum test was used to evaluate the statistical

significance of this change. To compare the general performance
FIGURE 2

Pharyngeal constrictor muscles and larynx of the reference patient.
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of the regional dose model and the DVH metrics model, test set

AUCs from the 50 trials were also compared using the two-tailed

Wilcoxon rank sum test.
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3 Results

Of the 231 patients, 64 patients were found to have utilized FT,

and 106 patients lost more than 10% of their baseline weight within

90 days after completing RT. Combining these observations, 122

patients had either FT, WL or both. All registrations in this study

yielded a Dice coefficient of greater than 0.7, with a mean and

standard deviation of 0.80 ± 0.02 for pharyngeal constrictors and

0.84 ± 0.06 for larynx. Figure 4A, B shows the mean and standard

deviation of pharyngeal constrictor dose distributions for the entire

cohort. The average mean pharyngeal constrictor dose was 52.3 ±

11.3 Gy and 31.7 ± 15.2 Gy for those who experienced FT/WL and

those who did not, respectively. Figure 4C, D show the mean and

the standard deviation of larynx dose distributions. Among those

who experienced FT/WL, the average mean larynx dose was 41.6 ±

14.4 Gy while that of patients who did not experience FT/WL was

26.5 ± 18.3 Gy.
3.1 Voxel-based dose model

Figure 3A shows the ROC curves for the 3D pharyngeal

constrictor model. The AUC for the models’ training and test

data were found to be 0.87 and 0.86, respectively, with cross-

validation yielding 0.86 ± 0.02. The accuracy and F1 scores for

the test data were 0.83 and 0.85, respectively. Figure 3B shows the

feature importance from the model, highlighting the middle to

superior pharyngeal constrictors as being more impactful when
TABLE 2 P-values and odds ratios from the univariate analysis of non-
dosimetric variables correlating with FT/WL.

Non-dosimetric variables P-
value

Odds Ratios
[95% CI]

Treatment setting (primary vs post-
operative treatment)

<0.0001 4.62 [2.55 – 8.38]

Bilateral treatment <0.0001 6.72 [3.07
– 14.73]

Concurrent chemotherapy 0.001 2.54 [1.44 – 4.49]

Baseline weight 0.01 1.014
[1.000-1.028]

Area deprivation index 0.02 1.014
[1.002-1.026]

Baseline dysphagia grade = 0 0.03 0.51 [0.28 – 0.92]

Gender 0.16 1.63 [0.83-3.20]

Treatment modality
(photon vs proton)

0.17 0.69 [0.41 – 1.17]

Never smoker 0.34 0.78 [0.46 – 1.30]

Age 0.39 0.99 [0.97-1.01]
P-values and odds ratios from the univariate analysis of nondosimetric variables correlating
with FT/WL. Variables with p-values below 0.05 (bold) showed a statistically significant
correlation with FT/WL placement.
A B

D E F

C

FIGURE 3

Evaluation of 3D models for pharyngeal constrictor and larynx. ROC for pharyngeal constrictor (A) and larynx (D) 3D models. Feature importance
patterns for pharyngeal constrictor (B) and larynx (E). Subregions of pharyngeal constrictor (C) and larynx (F) used for the aggregate models.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1346797
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Madhavan et al. 10.3389/fonc.2024.1346797
compared to the inferior region. The midline voxels of the superior

and middle pharyngeal constrictors were most important for

determining FT/WL for this cohort. Figure 3D, E illustrates ROC

and the feature importance pattern from the larynx 3D model. The

AUC for the model’s training and test data was 0.80 and 0.82,

respectively, with cross-validation yielding 0.80 ± 0.06. The

accuracy and F1 scores for the test data were both 0.72. The

feature importance consistently highlights the superior part of the

larynx as a critical factor for predicting FT/WL.
3.2 Univariate analysis and aggregated
dosimetric model

The results of the univariate fits to non-dosimetric variables are

shown in Table 2. There were six variables that showed significant

correlation with FT/WL: treatment setting (primary/post-

operative), treatment laterality (bilateral/unilateral), concurrent

chemotherapy (yes/no), baseline dysphagia grade =0, baseline

weight, and ADI. These six non-dosimetric variables were used as

part of the aggregated dosimetric models. Gender, treatment

modality (photon vs proton), smoking status and age did not

show significant correlation with FT/WL. A clinical variables-only

model using the non-dosimetric variables in Table 2 achieved an

AUC of 0.76 ± 0.01 and 0.74 ± 0.06 for training and test set,

respectively. The pharyngeal constrictor and larynx subregions are

illustrated in Figure 3C, F, respectively. Test set ROCs from the
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regional dose and DVH metrics models are shown in Figure 5. The

lines indicate the average of the 50 trials, and the shaded area

indicates the standard deviations. The regional dose model, with a

mean AUC of 0.87 ± 0.05, demonstrated marginally superior

performance compared to the DVH metrics model, which had a

mean AUC of 0.85 ± 0.05 with a p-value of 0.04. The F1 scores for

both models were 0.82 ± 0.04. The incorporation of dosimetric

features in the DVH and regional dose models significantly

improved performance over the clinical variables-only model (p <

0.0001). Table 3 shows the results of a permutation test to evaluate

feature importance. Input features that significantly affected the

performance of the model when shuffled–as assessed by AUC

compared to the actual data–are listed in order of significance.

For the regional dose model, the most important features were

pharyngeal constrictor doses, particularly the superior to middle

region. While dose to the superior part of the larynx significantly

contributed to the performance of the regional dose model, none of

the larynx DVHmetrics showed significant performance gain in the

DVH metrics model.
4 Discussion

This study delves into the relationship between radiation dose

distributions to two organs at risk (OARs) and feeding tube use or

weight loss in head and neck cancer patients receiving radiotherapy.

Employing deformable image registration and ridge logistic
A B

DC

FIGURE 4

(A) and (B) are mean and standard deviation of pharyngeal constrictor doses. (C) and (D) are mean and standard deviations of larynx doses.
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regression, we mapped structures and identified key regions,

particularly the superior part of the pharyngeal constrictors and

the superior part of the larynx, as crucial determinants for FT/WL.

This finding was revealed with 3D voxel-based models and

validated using aggregated dose model with reduced input

features to minimize risk of overfitting.

Our study highlights that dose to the superior pharyngeal

constrictor muscles was most important in predicting FT/WL in

our cohort. While we did not find studies investigating the same

endpoint, our findings are in general agreement with prior clinical

(75) and outcomes studies (43) demonstrating the radiosensitivity

of sub-regions in organs and their role in post-radiation dysphagia
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and aspiration. Feng et al. (76) and Eisbruch et al. (38) also reported

that highest correlations of videofluoroscopy based aspiration and

dysphagia to the superior pharyngeal constrictor in a prospective

study. Petras et al. (77) have evaluated the relationship between dose

to larynx subregions and swallowing toxicities assessed by

aspiration at one year, and Hedstrom et al. (78) considered

dysphagia at 6-months post-treatment. Both studies identified the

epiglottis as a critical subregion, in line with our findings.

Overall, the performance of the DVH metrics and the regional

dose models were similar. This supports our current standard of

care of using DVH for treatment planning. However, we note that

feature importance analysis for the DVH metrics model revealed

that the model performance did not significantly depend on larynx

DVH metrics. On the other hand, the aggregated regional dose

model utilized mean doses from superior-middle pharyngeal

constrictor and supraglottic larynx. This study motivates further

investigation into dose sparing of these subregions. Understanding

the dose distribution effects will facilitate voxel-based optimization,

evaluation and interpretation of treatment plans that have similar

DVH metrics.

The strength of our work includes the number of cohorts,

standardized contouring of the pharyngeal constrictors and the

larynx, as well as inclusion of patients treated with proton therapy.

In contrast to the pharyngeal constrictor and larynx segmentation

created during clinical workflow, contours used in this study were

retrospectively drawn to achieve high consistency and conformance

to the contouring guideline. Consequently, the definition of the

organ was consistent across the entire patient cohort. For future

studies, automatic segmentation using artificial intelligence-driven

algorithms along with quality assurance processes could aid in

generating more consistent anatomical segmentations than those

available from clinical data. However, automatic segmentation

algorithms are typically not trained to segment substructures. As

this study demonstrated, a voxel-based approach allows us to

eliminate the need for exhaustive contouring of each substructure

a priori for the entire cohort, thereby streamlining the

analytical process.
FIGURE 5

Test set ROC for FT/WL prediction using regional dose and dose-
volume histogram (DVH) metrics models. Curves show the average
area under the ROC curve (AUC) over 50 trials, with shading
indicating standard deviation. The regional dose model (mean AUC
0.87 ± 0.05) outperformed the DVH metrics model (0.85 ± 0.05)
with p=0.04.
TABLE 3 Evaluation of feature importance based on a permutation test for the DVH metrics and regional dose models. The table lists input features in
descending order of significance, based on their impact on model performance assessed by ROC AUC. (PC: Pharyngeal constrictor muscles).

Features from DVH metrics model Mean AUC loss Features from regional dose model Mean AUC loss

1 PC: Mean dose -0.021 PC: superior lateral mean dose -0.022

2 PC: V50Gy (%) -0.016 PC: superior midline mean dose -0.020

3 PC: V55Gy (%) -0.012 PC: middle midline mean dose -0.011

4 Baseline weight -0.006 PC: middle lateral mean dose -0.009

5 PC: V65Gy (%) -0.006 Baseline weight -0.004

6 Area Deprivation Index -0.004 Larynx: superior mean dose -0.004

7 Concurrent chemotherapy (yes/no) -0.002 Area Deprivation Index -0.003

8 Treatment setting -0.001 Concurrent chemotherapy (yes/no) -0.002

9 Baseline dysphagia grade = 0 (yes/no) -0.0006 Baseline dysphagia grade = 0 (yes/no) -0.0004
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Limitations of our work include the nature of single-institution

studies and the lack of a treatment planning component to the

study, so that it remains to be seen what amount of dose reduction

to the mid to superior pharyngeal constrictor and supraglottic

larynx could be achieved without compromising treatment

quality. An additional limitation is the lack of controlled study on

treatment modality (proton/photon). The relative biological

effectiveness (RBE) of 1.1 (58–60) for protons used in this study

applies to tumor control outcomes, which may not directly translate

to functional outcomes in normal tissues. Furthermore, our study

included 21 photon patients who received lower prescription doses

of 30 Gy. Since our primary objective was to investigate effects of

various dose distributions, we opted to include those treatments to

increase diversity. However, these choices likely confounded the

analysis with respect to treatment modality. While promising, our

findings warrant validation in diverse cohorts, treatment modality,

treatment planning techniques, and treatment regimens.

Nevertheless, our study highlights the potential of interpretable

voxel-based modeling to elucidate impact of inhomogeneous dose

distributions within an organ.
5 Conclusion

In conclusion, the 3D voxel-based analysis and the aggregated

regional dose analysis highlighted the superior subregion of the

pharyngeal constrictor muscles and the supraglottic larynx as the

most important predictor of FT/WL within 90 days of RT.
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3Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
Introduction: Manual review of organ at risk (OAR) contours is crucial for

creating safe radiotherapy plans but can be time-consuming and error prone.

Statistical and deep learning models show the potential to automatically detect

improper contours by identifying outliers using large sets of acceptable data

(knowledge-based outlier detection) and may be able to assist human

reviewers during review of OAR contours.

Methods: This study developed an automated knowledge-based outlier

detection method and assessed its ability to detect erroneous contours for all

common head and neck (HN) OAR types used clinically at our institution. We

utilized 490 accurate CT-based HN structure sets from unique patients, each

with forty-two HN OAR contours when anatomically present. The structure sets

were distributed as 80% for training, 10% for validation, and 10% for testing. In

addition, 190 and 37 simulated contours containing errors were added to the

validation and test sets, respectively. Single-contour features, including location,

shape, orientation, volume, and CT number, were used to train three single-

contour feature models (z-score, Mahalanobis distance [MD], and autoencoder

[AE]). Additionally, a novel contour-to-contour relationship (CCR) model was

trained using the minimum distance and volumetric overlap between pairs of

OAR contours to quantify overlap and separation. Inferences from single-

contour feature models were combined with the CCR model inferences and

inferences evaluating the number of disconnected parts in a single contour and

then compared.

Results: In the test dataset, before combination with the CCR model, the area

under the curve values were 0.922/0.939/0.939 for the z-score, MD, and AE

models respectively for all contours. After combination with CCR model

inferences, the z-score, MD, and AE had sensitivities of 0.838/0.892/0.865,

specificities of 0.922/0.907/0.887, and balanced accuracies (BA) of 0.880/

0.900/0.876 respectively. In the validation dataset, with similar overall

performance and no signs of overfitting, model performance for individual
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OAR types was assessed. The combined AE model demonstrated minimum,

median, and maximum BAs of 0.729, 0.908, and 0.980 across OAR types.

Discussion: Our novel knowledge-based method combines models utilizing

single-contour and CCR features to effectively detect erroneous OAR contours

across a comprehensive set of 42 clinically used OAR types for HN radiotherapy.
KEYWORDS

contour review, quality assurance, automation, radiotherapy, outlier detection
1 Introduction

Standardized and precise organ at risk (OAR) contours are

essential for head and neck (HN) radiation therapy, enabling safe

treatments and more consistent dose reporting (1). While manual

contouring is time-consuming and prone to user variation, Deep

learning (DL) autocontouring methods have demonstrated time

savings (2, 3) and reduced variation (4, 5) compared to manual

contouring methods. Autocontouring tools generally perform well,

however, a variety of clinically relevant failures, ranging fromminor

to severe, do occur with no warning given from the model-hosting

tool (Supplementary Figure S1). Consequently, both contours

created manually and with autocontouring tools require thorough

quality assurance (QA) review by trained personnel to ensure safe

and effective radiotherapy treatments.

The ability of DL autocontouring tools to quickly create many

contours enables more contours to be used for a given treatment site

and expedites both offline and online adaptive treatment planning.

However, it also increases the amount of time spent reviewing

contours. Automated approaches to contour review may be able to

both decrease review time and improve consistency (6, 7), making

them a desirable potential tool for clinical use. Such approaches

could be deployed on their own, or in combination with human

reviewers to assist them in identifying contours of poor quality.

Several automated algorithmic methods have been proposed for

automated OAR contour QA (8–11). One of the most popular

approaches utilizes a set of features calculated from high-quality

contours to classify contours of unknown quality as similar

(acceptable) or different (erroneous). This is referred to as

knowledge-based outlier detection using one-class training.

Features for this approach include contour volume, shape,

orientation, position, and image characteristics. Models for

knowledge-based contour classification include statistical

approaches looking at several features independent of one

another (univariate statistical models) (12, 13), as well as

multivariate statistical models, and DL models (14, 15). Most

knowledge-based outlier detection methods for OAR contour QA

have relied on a few hand-selected features for evaluation which are

largely informed by domain experts in radiation oncology. This

expertise may allow for comparable performance between simpler
0249
statistical models and DL models. Despite several publications, it

remains unclear how the performance of univariate models,

multivariate statistical models, and DL models compares for

knowledge-based OAR contour QA.

In previous studies, knowledge-based contour outlier detection

models have used features describing the relationships between

different OAR types (henceforth referred to as contour-to-contour

relationships or CCRs) to minimize patient-to-patient variation and

detect erroneous contours (14–16). Ensuring that contours are

appropriately separate, touching, or overlapping is crucial for HN

radiation treatment planning due to the precise relationships

between many OARs. Neglecting to do so can lead to inaccurately

contoured anatomy and unreported dose to OARs because of

contour gaps between anatomically touching OARs during IMRT

optimization. While CCR relationships are both quantifiable and

important, we are not aware of any studies that have directly

evaluated the effectiveness of features that quantify contour

separation and overlap for the detection of erroneous contours.

To ensure the usefulness of an automated OAR contour quality

assurance tool for a specific treatment site, it ideally should have

acceptable performance that generalizes to many OAR types (brain,

left lung, larynx, etc.) and should encompass various disease types,

and patient anatomies. For HN treatment sites, as many as 42 OAR

types have been reported to be relevant for HN treatment planning

(3). However, existing knowledge-based contour QA studies that

have evaluated individual OAR types, assess no more than 17 in any

given study (9, 10, 12, 14, 16). This limitation may be attributed to

the lack of standardized and curated contours available for model

training. Analysis of additional OAR types for HN is needed to

demonstrate whether knowledge-based contour outlier detection

models can be used for any clinically relevant HN OAR types.

This study investigates the performance and generalizability of

knowledge-based, outlier detection methods to identify erroneous

contours for 42 HN OAR types used clinically for radiotherapy.

This is the largest number of OAR types evaluated for HN in a

single study to date. Model training was performed using manually

contoured, highly curated, contour sets derived from patients with

HN cancer being treated with radiotherapy. Three single-contour

feature model types that have not been compared for contour

outlier detection in previous work, a univariate statistical model
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(z-score) (12), a multivariate statistical Mahalanobis distance (MD)

(17, 18) model, and a DL autoencoder (AE) model (19), are

compared to identify the model type with the best performance

and generalizability to each HN OAR type. As a secondary aim, the

study investigates the potential of a novel CCR model, that assesses

contour separation and overlap, in combination with the three

compared models to enhance performance.
2 Materials and methods

2.1 Data curation and allocation

The study utilized retrospectively collected data from patients

with HN cancers who underwent radiotherapy at Mayo Clinic

Rochester and Mayo Clinic Arizona between 2016 and 2020. The

dataset encompassed a diverse range of HN disease sites and

progressions, including patients with prior resection, representing

the current treatment landscape at the institutions. CT images were

acquired at simulation before the start of radiotherapy treatment

using multiple Somatom Definition AS (Siemens, Munich

Germany) CT scanners with voxel dimensions of 1.27 mm x 1.27

mm x 2 mm. The CT images were acquired at 120 kVp and most

were reconstructed using iterative metal artifact reconstruction

techniques to minimize artifacts caused by dental fillings or other

metallic objects commonly present during HN radiotherapy. All CT

scanners underwent monthly testing using a CatPhan® phantom

(Phantom Laboratory, Salem New York) to ensure Hounsfield Unit

accuracy (Supplementary Methods and Supplementary Table S1).

Head and neck planning CT images and contours used for patient

treatment were retrospectively selected and curated to ensure they

adhered to institutional guidelines for standardization. This

included physician, dosimetrist and physics review and editing

during retrospective curation. A thorough description of the

dataset and curation efforts has been published (20). The dataset,

comprising 490 patient structure sets with corresponding CT

images, was considered the gold-standard acceptable patient

dataset. These sets were divided into training (80%), validation

(10%), and test (10%) subsets. The use of retrospective HN patient

data for model training was deemed exempt by our

institutional IRB.

Before assessing the performance and generalizability of

knowledge-based outlier detection methods to detect erroneous

contours, it is essential that the erroneous contours evaluated

reflect errors that commonly result from clinical failures. Such

errors can occur from both manually created contours, or

contours generated using autosegmentation tools. We identified

four main categories of such failures that occur: boundary errors,

volume errors, non-adjacent slice errors, and positional errors.

Boundary errors encompass instances of accidental border

expansion or subtraction, poor delineation of anatomical

boundaries, incorrect identification of boundaries based on HU-

intensity thresholding, or incorrect propagation of contours from

one image set to another due to small deformable or rigid image

registration errors.
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Volume errors encompass the addition or removal of volumes

from an OARs correct volumes. Unlike boundary errors, which

pertain to inaccuracies in contour borders, volume errors result

from the addition or subtraction of convex shapes from the correct

contour. These errors can occur due to incorrect definitions of

anatomical boundaries, incomplete contouring, disconnected

volumes, or the improper identification of the slices where a

contour should start and end.

Non-adjacent slice errors occur due to inadvertent selections of

single-slice volumes (i.e. ‘misclicks’) or inconsistent and ‘jagged’

delineations of contour boundaries from one slice to another, which

may occur during contouring.

Positional errors represent errors resulting in the central

location of a contour being substantially misplaced. Such errors

arise from mismatched structure labels, errors in manual

identification of OARs, or errors made by CT autocontouring

tools. Such errors made by autocontouring tools have been

observed during the analysis of CT images with abnormal

anatomy, positioning, or CT values for several FDA-approved

autocontouring tools evaluated by the authors.
2.2 Data augmentation

After identifying these common clinical failure modes,

manually generated erroneous contours were introduced ad hoc

by a medical physicist (JB) who edited gold-standard acceptable

contours to mimic clinically observed errors encountered during

both manual contouring and autocontouring processes. Manually

generated erroneous contours were added directly to the validation

and test sets after creation. Each erroneous contour error was

additionally categorized as moderate or major by the contour

editor, providing the ability to assess how the clinical severity of

errors influenced the performance of automated outlier detection.

Errors categorized as moderate may or may not be clinically

relevant depending on clinical context such as the treatment

planning approach and the relationship with the target, while

errors categorized as major would be relevant in nearly all

clinical contexts.

The total number of contours with boundary, volume, non-

adjacent slice, and position errors were 74, 99, 14, and 40

respectively. The total number of contours with major and minor

errors were 111 and 116. Error types were distributed randomly

across OAR types. In the validation set, a minimum of four

erroneous contours were created for each OAR type that had left

or right counterparts (i.e. left and right lung), and a minimum of

five erroneous contours were created for all other OAR types (i.e.

brain, larynx, etc.).
2.3 Overview of knowledge-based
QA framework

In this study, the knowledge-based QA framework was

developed through several steps (Figures 1A, B). First, the

training dataset, which consisted of acceptable contours only, was
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separated by OAR type (i.e. brain, left eye, esophagus). Then, the

desired features were calculated for each contour, and model

training was performed. Features dependent on only one contour

were assigned to each of the three single-contour feature model

types (AE, MD, and Z-score), while features involving the

relationship between two contours were assigned to the CCR

model type. A feature counting the number of disconnected parts

in a single contour was included as an additional statistical check

outside of the other models as the connectedness model. Separate

single-contour feature, CCR, and connectedness models were

trained for each OAR type. All models generated a single output

metric that indicated the likelihood of a contour being erroneous.

Output metrics from models of the same model type were

thresholded using a single value to obtain classifications. After

model training, the validation set, which included both acceptable

and erroneous contours, was used to evaluate the model’s

performance, select input features, and determine output metric

thresholds. Classifications obtained from the single-contour feature

models, CCR models, and connectedness models were combined to

form the final classification. Lastly, to ensure no overfitting, the

models were evaluated on the test set.
2.4 Single-contour feature selection

Feature selection for the single-contour feature models was

performed initially by choosing features describing contour shape,

volume, location, orientation, and CT number. Features were

selected to be generalizable to a wide variety of OAR types and

were based on common features used in the literature (12–16). A

total of 44 features were included and the Pearson correlation
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coefficient (21) was used to identify and remove features that

were strongly correlated, either positively or negatively, across all

OARs (Supplementary Figure S2). This was when the correlation

was greater than approximately ±0.7. Feature reduction was

performed using the validation set to reduce feature correlation

while maintaining high classification performance for single-

contour feature models . After single-contour feature

determination, the same feature set was used for all OAR types

and model types (Table 1). This was done to identify a set of features

that would generalize well to a wide variety of OARs.

The centroid features in the lateral, vertical, and longitudinal

directions (defined as positive x, y, and z respectively) were

calculated as the difference between the contour’s centroid and

the brainstem’s centroid. For brainstem contours, it was calculated

as the difference in centroid locations between the brainstem

contour and the pituitary contour. This accounted for variations

in image coordinates between CT images. The brainstem contour

was chosen because of its central location and because it is

anatomically present in every patient. The extent in x, y, and z

was calculated as the difference between the largest and smallest

pixel coordinate values for a given contour. Principal component

analysis was performed to obtain the eigenvectors and eigenvalues

of the principal components (PC) of a contour’s pixel coordinates.

The x, y, and z components of the first and second PC eigenvectors

were used as orientation features, while the ratio of the second and

third PC eigenvalues (l) to the first were used as shape features.

The orientation of a PC eigenvector can be arbitrarily positive

or negative (for example v
*
= +0.58 x̂ +0.58 ŷ+0.58 ẑor v

*
= -0.58

^  x -0.58 ŷ -0.58 ẑ ). To standardize the orientation of PC1 or PC2

vectors for a given OAR, we identified a representative eigenvector

r
*

OAR
from the training set using Equation 1.
A B

FIGURE 1

(A) Diagram showing the distribution of data used to create and evaluate the knowledge-based QA framework. (B) Workflow diagram for the
knowledge-based QA framework. AE, Autoencoder; MD, Mahalanobis Distance; CCR, contour-to-contour relationship; MSRE, mean squared
reconstruction error.
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r
*
 OAR = argmax

vi
*
∈VOAR

on
j≠i v

*
 i · v
*
 j

��� ���� �
(1)

Where VOAR is the set of all PC1 or PC2 eigenvectors for a given

OAR type in the training set with number n and v
*
  is a single PC

eigenvector. After identification of r
*
 OAR, the orientation of all

eigenvectors in the training, validation, and test set (V     ∗
OAR ) were

oriented either positive or negative to maximize the dot product

between r
*
 OAR and each eigenvector v

*
  ∈ V     ∗

OAR .

Since outlier detection approaches that use one-class training

are sensitive to outliers in the training dataset, an outlier removal

technique was applied to the training dataset after feature selection.

To do this, the training dataset consisting of only acceptable

contours was grouped based on its OAR type, and the median

absolute deviation (MAD) from the median was calculated for

single-contour features. A contour was excluded from the training

set if any of its single-contour features deviated from the median by

more than twelve MAD. This resulted in the removal of 0% to 3.6%

of contours from the training set for each OAR type. The threshold

of twelve MAD was determined by evaluating the number of

contours removed for each OAR type and the impact of contour

removal on model performance for the validation dataset.
2.5 Single-contour feature models

After single-contour feature calculation using acceptable

contours in the training dataset, an individual model was trained

for each OAR type for three single-contour feature model types (z-

score, MD, and AE models). The z-score model calculated

individual feature z-scores using Equation 2.

z =
x − m
s

��� ��� (2)

Where m and s are the mean and standard deviation of feature

values in the training set. After calculation, the maximum z-score

value across all the features is selected as the output metric. The MD
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model used the Mahalanobis distance of a contour’s features with

respect to the training dataset features as the output metric (17, 18)

and is calculated using Equation 3.

D( x
*
) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( x
*
−m̂ )TS−1( x

*
−m̂ )

q
(3)

Where m̂ is a vector containing the mean feature values and S−1

is the inverse of the covariance matrix calculated from the training

data set. The output metric for the AE network was the mean

squared difference between reconstructed features and input

features for a given contour (19). The AE network was trained in

MATLAB® using the ‘trainAutoencoder’ function and consisted of

a single hidden layer with 18 neurons and a cost function with a

single L2 regularization term. To standardize the feature set, feature

z-scores were calculated for input into the AE model. The number

of epochs was limited to a maximum of 7000, and the L2 weight

regularization coefficient was set to 0.005. The number of hidden

layers and L2 regularization coefficient were optimized by

evaluating model performance on the validation set across a

range of values. The results of each single-contour feature model

type were assessed individually and in combination with CCR and

connectedness models for the validation and test set.
2.6 CCR model

For the CCR model, our objective was to come up with a set of

features that could quantify varying degrees of contour-to-contour

overlap and separation. To do this, the CCR model utilized the

minimum distance between two contours and the fractional volume

of overlap of one contour with another as its features. The

combination of both features yielded all the information needed

to quantify these relationships. A boolean matrix with 42 rows and

43 columns was generated to select the CCRs to include in the CCR

model. Rows were associated with the selected contour, while

columns were associated with the comparison contour. An

additional column was added to allow comparison to the body
TABLE 1 A list of features used for each model.

Single-contour feature models
(Z-score, MD, AE) Connectedness model CCR model

Location
features

Orientation
features
{0<x<1}

Volume
features

Shape
features

CT
number
features

Missing slices or
‘ditzel’ features Relational features

Centroid
X [mm]

PC1x̂ Volume [cc]
lPC2=lPC1
{0<x<1}

CT minimum Number of disconnected parts
Minimum distance [mm]

{0<x<∞}

Centroid
Y [mm]

PC1ŷ
lPC3=lPC1
{0<x<1}

CT maximum
Fractional volume overlap

{0<x<1}

Centroid
Z [mm]

PC1ẑ X extent (mm) CT mean

PC2x̂ Y extent (mm) CT std. dev.

PC2ŷ Z extent (mm)

PC2ẑ
Sphericity
{0<x<1}
frontiersin.org

https://doi.org/10.3389/fonc.2024.1295251
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Brooks et al. 10.3389/fonc.2024.1295251
contour (Supplementary Figure S3). The selected CCRs primarily

focused on OARs that were close to each other. This included OAR

types with distinct anatomical boundaries (e.g., cord and brain

stem) and cases where one OAR was a subset of another (e.g., brain

stem and brain). Well-defined contours in these cases should

exhibit consistent anatomical boundaries with each other. In

contrast, contours that are not in close proximity to each other

may have more uncertainty in their relationship, making them

susceptible to false positives.

The minimum distance feature data was fit to a gamma

distribution (22) ranging from zero to infinity, while the fractional

overlap volume feature data was fit to a beta distribution (23) ranging

from zero to one. Distribution types were selected to have the same

upper and lower input domains as their representative features and

followed the probability distribution of the CCR features. Initial

upper and lower outlier cutoffs were determined by taking the

upper and lower 99th percentile boundaries of the fitted

distribution. The percentile boundaries were set manually to

minimize the number of false positives detected by the CCR model

in the validation set. The determined percentile boundary cutoffs

were expanded by 0.02 for fractional volume and 2mm for minimum

distance to minimize identification of errors that were present, but

small enough to not be clinically relevant.
2.7 Connectedness model

For human reviewers, identifying disconnected voxels in a

contour can be time-consuming. To improve clarity for potential

human reviewers using this QA tool, we separated the

connectedness feature from the single-contour feature models and

created a separate model including only the number of connected

parts in a contour. This enables easy reporting of this feature to

reviewers. To establish the maximum number of allowable parts, a

statistical threshold of 99.95% was set using a gamma distribution

fitted to the training data. The threshold was optimized by

evaluating performance on the validation dataset and selected to

minimize false positives. A statistical threshold was used instead of

setting a predetermined cutoff as some contours were allowed to

have multiple parts anatomically (e.g. thyroid) and other contours

could have multiple parts due to CT image-related scan truncation

(e.g. left and right brachial plexus).
2.8 Model combination

To obtain the final combined classifications, if any individual

model identified a contour as erroneous, it was classified as such.

Thresholds for the connectedness model and CCR model output

metrics were set manually and the single-contour features model

thresholds were tuned to maximize balanced accuracy for the

combined classifications (24). Balanced accuracy is defined as the

average of sensitivity and specificity. While accurate detection of

erroneous contours is more clinically relevant, the prevalence of

erroneous contours will typically be low in the clinical workflow.
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We estimate a reasonable prevalence of erroneous contours in the

clinical workflow to be 10% and the relative severity of incorrectly

categorizing erroneous compared to acceptable contours at 9 to 1.

In this case, balanced accuracy will be an appropriate optimization

metric (25). The values of prevalence and relative severity can easily

be adjusted, resulting in different optimal thresholds for future

clinical use. The performance of the single-contour feature models

without combination with CCR and connectedness models was also

evaluated using the same threshold tuning. Thresholds for

individual and combined single-contour feature models were not

necessarily the same. The test set was assessed using the same

thresholds obtained from the validation set.
2.9 Statistics

To reduce class imbalance during statistical assessment, we

adopted a solution involving random subsampling. Specifically, we

selected five acceptable contours at random from the input curated

gold-standard contours for each OAR type and merged them with

the erroneous validation contours. This approach allowed us to

present a single statistical test that was more evenly balanced in

terms of its evaluation of performance on both acceptable and

erroneous contours. The subsampling included 210 acceptable and

190 erroneous contours. Statistical testing of model performance

was performed using the two-sided mid-p value McNemar test with

a p-value of less than 0.05 considered to be significantly different

(26, 27).
3 Results

3.1 Single-contour feature method
comparison and model combination

Receiver operating curves were used to evaluate the

performance of individual z-score, MD, and AE models for all

contours. The z-score, MD, and AE models had an area under the

curve (AUC) values of 0.922, 0.939, and 0.939 respectively for the

test set (Figure 2, Table 2). Combining the single-contour feature

models with CCR and connectedness models led to improved

performance for all three single-contour feature models. The high

specificity of the CCR (0.982) and connectedness (0.990) models

made it possible to combine them by identifying a contour as an

outlier if any of the models flagged it as one (logical OR) with

minimal decrease in combined model specificity. Test set results

were similar to the validation set for all models, indicating minimal

overfitting due to the single feature selection, model thresholding,

and hyperparameter tuning using the validation dataset. In the

statistical subset of the validation data, combination of the CCR and

connectedness models with the single-contour feature models

significantly improved the performance of the z-score (P=0.0007),

MD (P=0.0175), and AE (P=0.0201) models (Supplementary Table

S2), demonstrating the added benefit of incorporating CCR features

for outlier detection.
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3.2 Model performance across OAR types,
error types, and error severity

The performance of the knowledge-based QA framework for

each OAR type individually was evaluated using the validation

dataset without distinguishing between left and right-sidedness for

bilateral OARs (Figure 3, Supplementary Figures S4, S5). Analysis of

the validation set allowed for an adequate number of contours of

each OAR type to be available for classification evaluation. Of the

three combined single-contour feature models, the combined AE

model had both the highest median and highest minimum BA

across all OAR types (Minimum median and maximum BA of

0.729, 0.908, and 0.980 respectively). Combining the single-contour

feature models with CCR and connectedness models resulted in an

average increase of 0.077 (z-score), 0.055 (MD), and 0.048 (AE) in

BA values per OAR type. The improvements in BA were not evenly

distributed across all OAR types. The AE model type showed the

largest improvements for the spinal cord and oral cavity, while the

mandible experienced worse performance (Figure 4), attributable to

changes in the optimal single-contour feature thresholds when

combined with CCR and connectedness models.

The sensitivity of the combined AEmodel for boundary, position,

non-adjacent slice, and volume error types was 0.867, 0.971, 0.833,

and 0.8116 in the validation set. Similar classification accuracies
TABLE 2 Classification results.

Model AUC
Balanced
Accuracy

Sensitivity Specificity
True
positive

False
negative

True
negative

False
positive

Validation Set

Connectedness – 0.527 0.063 0.991 12 178 1966 18

CCR – 0.730 0.474 0.987 90 100 1958 26

Z-score 0.852 0.794 0.684 0.904 130 60 1793 191

MD 0.899 0.826 0.811 0.842 154 36 1671 313

AE 0.896 0.838 0.763 0.913 145 45 1812 172

Z-score combined – 0.866 0.816 0.916 155 35 1818 166

MD combined – 0.882 0.842 0.921 160 30 1828 156

AE combined – 0.884 0.863 0.906 164 26 1797 187

Test Set

Connectedness – 0.522 0.054 0.990 2 35 1984 21

CCR – 0.721 0.459 0.982 17 20 1969 36

Z-score 0.922 0.816 0.730 0.903 27 10 1811 194

MD 0.939 0.851 0.865 0.837 32 5 1679 326

AE 0.939 0.866 0.838 0.893 31 6 1791 214

Z-score combined – 0.880 0.838 0.922 31 6 1848 157

MD combined – 0.900 0.892 0.907 33 4 1819 186

AE combined – 0.876 0.865 0.887 32 5 1779 226
FIGURE 2

Receiver operating curve (ROC) results from the test dataset for
three individual single-contour features models, z-score, MD, and
AE models. The false positive rate and sensitivity of single-contour
feature models combined with CCR and connectedness models are
plotted as circles on the ROC plot.
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A B

D

C

FIGURE 3

(A) Box and whisker plot (Box-inner quartile range, whisker-range) of balanced accuracy for each OAR type in the validation dataset. Left and right
matching OARs were combined before plotting. (B) Balanced accuracy, (C) sensitivity, and (D) specificity are plotted for each OAR for the
combined models.
A B

D

C

FIGURE 4

Change in (A) balanced accuracy, (B) sensitivity, and (C) specificity for single contour feature models on the validation dataset when single contour
feature models are combined with CCR and connectedness models. Each datapoint on the plots represent an OAR type. Change for each OAR type
individually is also plotted (D). Positive change indicates improvement in performance after model combination.
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across different error types were observed between combined AE,

MD, and z-score models in both the test and validation sets

(Supplementary Table S3). Higher sensitivity was observed for

position errors compared to the other types of errors across all

three combined model types, likely due to position errors tending to

be more severe than other error types (Figures 5A–D).

The sensitivity of the combined AE model for detecting major

and moderate errors was 0.922 and 0.810. Similar differences in

sensitivity between major and moderate errors were observed for

the combined MD and z-score models (Supplementary Table S4),

suggesting that more sever errors are more likely to be detected by

the knowledge-based QA framework.
3.3 Misclassifications

Some erroneous esophagus, lung, and brachial plexus contours that

were incorrectly classified by all models had missing volumes

(Figure 5E). These OARs are commonly affected by CT scan
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truncation which increases variation in volume and shape features.

Additional undetected errors included improper boundary delineation

(either over-contouring or under-contouring boundary edges) and

volume changes that were small relative to the total volume of the

contour. Some acceptable contours were identified as erroneous by all

combined models. These included contours with clinically insignificant

inaccurately delineated boundaries, contours that were anatomically

accurate but contoured on patients with abnormal positioning or

anatomy, and contours on CT scans with metal artifact-related

image quality issues (Supplementary Figure S6). The CCR model

was able to identify outliers from improper separation or overlap

(Supplementary Figure S7). Out of the 34 erroneous contours from the

validation set that were missed by all individual single-contour feature

models, the CCR model identified 15.

4 Discussion

We have developed a knowledge-based method for detecting

clinically relevant erroneous OAR contours in HN radiotherapy.
A B

D E

C

FIGURE 5

Examples of erroneous contours with volume, boundary, non-adjacent slice, and position errors are shown (A–D). Examples of undetected contour
errors (false positives are shown (E). The corresponding gold-standard acceptable contours that were edited to create erroneous contours are displayed.
Hounsfield unit display ranges were -10 to 70 for images with brainstem contours, -250 to 1500 for images with contours of bone, -1000 to 100 for
images with lung contours and -115 to 115 for all other images.
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Our method uses models based on single-contour features, as well

as CCRs. Combining the single-contour feature model with the

CCR and connectedness models significantly improves

performance for the z-score, MD, and AE models. The combined

AE model achieves a sensitivity of 0.865, specificity of 0.887, and BA

of 0.876 for the test set. Similar BA, sensitivity, and specificity were

observed for the combined z-score, MD, and AE models for both

test and validation datasets, indicating no overfitting in the

validation set. Minimum, median, and maximum balanced

accuracies across individual OAR types for the AE model were

0.729, 0.908, and 0.980, respectively on the validation set. Our

results demonstrate satisfactory model performance for a

comprehensive set of OAR types utilized in HN radiotherapy.

Accurately detecting contour errors across a wide range of OAR

types is a significant challenge. Many studies examining model

performance have been limited to assessing no more than 17 OAR

types (9, 10, 12, 14, 16). One study looking at pelvis, abdomen, and

thorax regions reported results for 40 OAR types, however, their

primary aim was to develop a method for classification of contours

to an OAR type or label rather than to detect erroneous contours

(15). Furthermore, they did not report the model performance for

each OAR type, instead only reporting the overall AUC results. In

our study, we use a knowledge-based outlier detection approach

with a combined AEmodel that achieves a minimum sensitivity and

specificity of 0.600/0.837 (ignoring left-right distinction) per OAR

type for 42 HN OAR types used clinically. The wide variety of

contour volumes, and shapes, as well as a large dataset of patients

with several different HN disease types and sites, demonstrates that

knowledge-based OAR QA for HN radiotherapy is both feasible

and generalizable to a wide variety of OARs.

Abnormalities in CT images, caused by factors like CT artifacts,

patient positioning, or abnormal anatomy, can contribute to higher

false positive rates for knowledge-based outlier detection. However,

these images may still result in suboptimal quality for both human-

generated and DL-generated contours, highlighting the importance

of careful manual review in such situations. Although the

knowledge-based quality assurance system may yield false

positives when encountering abnormal image data with accurate

contours, it provides a rapid and efficient method to aid reviewers in

automatically identifying erroneous contours.

The CCR model is a novel tool that can identify incorrect

amounts of overlap or separation between two contours. This is

crucial in clinical settings for two reasons: first, overlap and

separation should be consistent with actual anatomy, and second,

gaps between contours that are anatomically touching may result in

unreported high doses to the OAR. In this study, we chose CCRs

that had consistent anatomical relationships or were close to each

other, but the technique can be extended to any CCRs. The high

specificity of the CCR model allows for easy deployment as a

contour review tool, either on its own or in conjunction with

other models.

One limitation of this study is that CCR calculations for both

erroneous and acceptable contours were performed only in relation

to acceptable contours and never in relation to erroneous contours.

This facilitated the identification and quantification of the CCRs

model performance. In a real-world application, the CCR model
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will only detect incorrect CCRs instead of directly identifying

incorrect contours. Therefore, in clinical practice, the end user

would need to review two contours for each improper CCR to

identify a single unacceptable contour.

The exclusion of data from the training set based on the number

of MAD from the median provides a way to remove contours of

questionable quality in the training dataset. The threshold for data

removal can be tuned with a validation dataset. In this work, increases

in balanced accuracy for the combined models when implementing

outlier removal ranged from 0.00 to 0.06 depending on the model

used. For less curated datasets, this approach may have a larger

impact on model performance and help improve the generalizability

of the QA framework to different datasets.

The knowledge-based QA framework presented in this work

has the potential to improve the detection of erroneous contours

when used in conjunction with human reviewers. This will require

an efficient integration within the clinical contour review workflow,

where the QA framework results can be quickly accessed and

interpreted by a human reviewer. A script-based approach run

directly from the clinical contouring software would be an effective

option. This script could allow human reviewers to automatically

archive human review labels, model inferences, and contours when

run. This data archiving would facilitate model performance

tracking, iterative model improvement, and the assessment of the

dosimetric impact of erroneous contours.

The use of a large, highly curated HN OAR dataset for model

development is a clear foundational strength of our study. However,

our modeling also required erroneous H&N contours. This data was

not available a priori, necessitating fabrication; we recognize that

this could be perceived as a weakness in terms of presented model

performance evaluation. Our immediate goal is to iteratively

develop a clinical solution based on the presented methodology

for integration within our contour review workflow. As we detect

true erroneous contours during preliminary deployment phases,

these erroneous OARs detected “in the wild” can be leveraged for

future refinements (iterations in model training/tuning). Thus, we

emphasize that the presented model framework, model comparison,

and the generalizability of this approach to many OAR types should

be recognized as the main focus of this study.

The best-performing combined AE. model can identify

erroneous contours but does not identify individual features that

are abnormal. To reduce the time spent during human review of

contours marked as erroneous by the QA framework, it may be

beneficial to identify specific abnormal features along with

erroneous contours to guide reviewers more quickly to the errors

in the contours. To obtain predictions on abnormal features after

identifying erroneous contours using the combined AE model, a

separate z-score model could be used post hoc to report outlier

features. However, this approach may result in both models

disagreeing on a contour’s classification. Alternatively, more

sophisticated model-agnostic tests can be employed to determine

the importance of input features in making predictions, which can

be useful in identifying features that strongly influence model

decisions (28, 29). Additional research is needed to determine

whether the identification of erroneous features in this manner

would reduce contour review time.
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Further research is necessary to evaluate the developed QA

framework for other anatomical sites. The QA framework can be

extended to other treatment regions with additional sets of curated

and outlier data given its adaptability to a variety of OARs for HN.

However, it is anticipated that the performance of the CCR model

may decrease in the thorax, abdomen, and pelvis due to fewer

consistent anatomical relationships between OARs. A better

understanding of the amount of curated data needed will become

more apparent after the integration of the HN model into our

clinical workflow.

In the future, model generalizability to other institutions also

needs to be assessed. Several challenges are associated with this,

including variation in contour definitions (7), and variation in the

determination of clinically relevant contour errors between different

institutions. While trained models could be directly deployed in

outside institutions, outside institutions could also train their own

institution specific model using the same QA framework as

illustrated here. This would allow any differences in contour

definitions, and contour error definitions to be accounted for.

More research is needed to assess the generalizability of this

approach to other institutions.
5 Conclusion

In this study, we have created a method for knowledge-based QA

that utilizes single-contour features and contour-to-contour

relationships to identify erroneous contours for forty-two HN OAR

types. The effectiveness of multiple models has been evaluated, both in

general and for each OAR type. The findings of this study demonstrate

the developed framework for knowledge-based QA of HN contours is

both feasible and generalizable to a full set of clinical HN OARs.
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Clinical acceptance and
dosimetric impact of
automatically delineated elective
target and organs at risk for head
and neck MR-Linac patients
Vesela Koteva1*, Björn Eiben1, Alex Dunlop2, Amit Gupta3,
Tarun Gangil1, Kee Howe Wong4, Sebastiaan Breedveld5,
Simeon Nill 1,2, Kevin Harrington6 and Uwe Oelfke1,2

1Radiotherapy Physics Modelling, Division of Radiotherapy and Imaging, The Institute of Cancer
Research, London, United Kingdom, 2The Joint Department of Physics, The Royal Marsden Hospital
and The Institute of Cancer Research, London, United Kingdom, 3Head and Neck Unit, The Royal
Marsden National Health Service (NHS) Foundation Trust and The Institute of Cancer Research,
London, United Kingdom, 4Head and Neck Unit, The Royal Marsden National Health Service (NHS)
Foundation Trust, London, United Kingdom, 5Department of Radiotherapy, Erasmus University
Medical Center (MC) Rotterdam, Rotterdam, Netherlands, 6Targeted Radiotherapy, Department of
Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
Background: MR-Linac allows for daily online treatment adaptation to the

observed geometry of tumor targets and organs at risk (OARs). Manual

delineation for head and neck cancer (HNC) patients takes 45-75 minutes,

making it unsuitable for online adaptive radiotherapy. This study aims to

clinically and dosimetrically validate an in-house developed algorithm which

automatically delineates the elective target volume and OARs for HNC patients in

under a minute.

Methods: Auto-contours were generated by an in-house model with 2D U-Net

architecture trained and tested on 52 MRI scans via leave-one-out cross-

validation. A randomized selection of 684 automated and manual contours

(split half-and-half) was presented to an oncologist to perform a blind test and

determine the clinical acceptability. The dosimetric impact was investigated for

13 patients evaluating the differences in dosage for all structures.

Results: Automated contours were generated in 8 seconds per MRI scan. The

blind test concluded that 114 (33%) of auto-contours required adjustments with

85 only minor and 15 (4.4%) of manual contours required adjustments with 12

only minor. Dosimetric analysis showed negligible dosimetric differences

between clinically acceptable structures and structures requiring minor

changes. The Dice Similarity coefficients for the auto-contours ranged from

0.66 ± 0.11 to 0.88 ± 0.06 across all structures.
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Conclusion: Majority of auto-contours were clinically acceptable and could be

usedwithout any adjustments. Majority of structures requiringminor adjustments

did not lead to significant dosimetric differences, hence manual adjustments

were needed only for structures requiring major changes, which takes no longer

than 10 minutes per patient.
KEYWORDS

clinical acceptability, dosimetric impact, MR-Linac, automated delineation, head and
neck cancer
1 Introduction

Every radiotherapy treatment starts with a generation of a

treatment plan specifying a clinically optimized dose distribution

and its delivery parameters for each patient. In our head and neck

cancer (HNC) radiotherapy protocol, a treatment plan is initially

generated based on a CT scan, prescribing 65 Gy to the primary target

and 54 Gy to the elective target (the combined volume of the neck

lymph nodes excluding the overlap of the nodes and the primary

tumor) delivered in 30 fractions. The treatment plan is usually based

on a CT scan, acquired one or more weeks before the treatment (1).

However, this plan does not consider anatomical changes during

treatment, risking compromised clinical goals and increased toxicity

(1–7). For instance, the parotid glands may move closer to high-dose

regions, posing a risk of overdosing these sensitive organs. Figure 1A

shows a patient’s scan acquired during their final fraction (fraction

30) with overlayed contours of the parotid glands, spinal cord and

brainstem from the patient’s initial scan. Hence, if we simply copy the
0261
contours from the initial to the final scan the parotid glands would be

partially located outside of the patient’s external outline and the

spinal cord and brainstem would not be at the correct position.

Patient anatomy changes, even with radiotherapy masks, necessitate

adapting contours to ensure accurate dose delivery.

Adaptive radiotherapy (ART) using an MR-Linac allows for

real-time treatment plan adaptation based on daily anatomical

changes (8, 9). In order to adapt the treatment plan, the ROIs

need to be re-delineated on the daily scan while the patient is on the

treatment couch. This requires organ delineation in less than one

minute (10). Manual delineation, taking around 45 minutes, is

infeasible for HNC patients within acceptable time frames. Current

practice involves deformable image registration, but it requires

initial manual delineation, lasting 45 to 75 minutes, and is prone

to inaccuracies, often requiring additional manual adjustments due

to imperfect results (11, 12).

In the past decade numerous groups have investigated

automatic delineation using deep convolutional neural networks
frontiersin.org
A

B

FIGURE 1

(A) Example of anatomical changes where contours of the parotid glands (orange: right parotid, yellow: left parotid), spinal cord (green) and
brainstem (pale green) obtained from the initial scan are overlayed with the scan of the patient from the last fraction (fraction 30). (B) General
workflow of the study split into three main groups: data acquisition, where a clinician manually contours all available data, training and testing where
the model is trained to learn the manual contours and tested to produce a set of contours on an unseen scan, and last, validation where the model
has been validated based on clinical acceptability, dosimetric impact and geometric analysis.
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(CNNs) and have shown their great potential (13–16). The

assessment of automatically generated contours typically relies on

metrics like Dice similarity coefficient (DSC) and geometric

measures such as Hausdorff distance. This study seeks to employ

an in-house model for automatic delineation of the elective target

volume and OARs, reducing delineation time for HNC patients,

and assess the clinical acceptability and dosimetric impact of the

auto-contours.
2 Materials and methods

A graphical representation of the complete workflow is shown

in Figure 1B.
2.1 In-house model for
automated delineation

The dataset employed in this study comprised 52 MR-Linac

scans, 14 T1-weighted and 38 T2-weighted, obtained from 52

patients diagnosed with HNC. All scans were acquired using the

7MV (flattening filter free - FFF) Elekta Unity MR-Linac (Elekta

AB, Stockholm, Sweden) with magnetic strength of 1.5T. A

radiation oncologist thoroughly examined all available scans for

each of the 52 patients, selecting a single scan per patient based on

optimal imaging quality. Each scan was resampled via SimpleITK

(Insight Software Consortium) (17, 18) to cover the HN region with

an in-plane resolution of 0.6 x 0.6 mm2, slice thickness of 1.1 mm

and dimensions (x, y, z) = (768, 768, 420), where z represents the

number of slices, while x and y represent the number of pixels of

each slice. From the available scans, 38 originated from the

MOMENTUM study (19) and 14 were provided by the Royal

Marsden Hospital (RMH), UK. The radiation oncologist

delineated the neck nodes (levels 1a-5), parotid glands, spinal

cord, brainstem, inferior pharyngeal constrictor muscle (IPCM),

superior and middle pharyngeal constrictor muscle (SMPCM)

and mandible.

A deep convolutional neural network (CNN) was trained to

reproduce the manually-delineated (ground truth) structures. The

CNN had a typical 2D U-Net architecture with 58 layers in total

inc luding batch normal izat ion and act ivat ion layers

(Supplementary Material provides more details. The MR scans

were fed into the network slice-by-slice (20). This approach

makes use of deep learning using Python (version 3.7) and the

open-source libraries Tensorflow (21) and Keras both Google,

Menlo Park, California, United States (22). The model was

trained utilizing the computational power of an NVIDIA Tesla

V100 GPU. Although some studies favor 2.5D and 3D U-Nets over

2D U-Nets (23, 24), providing this extra information doesn’t

consistently enhance accuracy (15). Additionally, 2D CNNs are

more computationally efficient than 2.5D or 3D U-Nets, requiring

fewer resources for processing. We believe the available MRI scans

have sufficient resolution for the task. Training a 3D network would

demand decreased resolution and spatial size, risking loss of

important features. Furthermore, 2D U-Nets require less data and
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are less prone to overfitting than 3D U-Nets, potentially leading to

better generalization.

Leave-one-out cross-validation was used (25). This technique

takes all but one patients as input for training and uses the

remaining patient for testing. This is repeated until predictions

are made for all patients. All images were downsampled by a factor

of 2 before being fed to the network which was trained for 40 epochs

with a learning rate of 0.0001. We used the Dice loss, optimizing it

with the Adam optimizer (26, 27). Data augmentation was applied

through rotation within ±3°, zoom up to ±10% and vertical/

horizontal shifts up to 10% of the original image size.

We timed the generation of contours on a 3D scan and

evaluated geometrically using DSC, mean surface distance (MSD)

and 95th percentile Hausdorff distance (HD95). The DSC shows

how good the overlap between the auto-generated and manual

contour is (1 for complete, 0 for none). The MSD represents the

mean distance between each point of the auto-contour to the closest

point from the manual contour. HD95measures the largest distance

among the closest 95% of the points from both contours (28).
2.2 Clinical acceptance

A clinical acceptance test by a second oncologist with 13 years

of clinical experience assessed 684 contours—half manual, half

model-generated. About 57% of model contours had DSC above

0.8, while 9% scored below 0.6. For detailed breakdown of the exact

number of structures from the different groups of DSC that were

presented to the oncologist we refer the reader to the

Supplementary Data. To perform a ‘blind test’ the oncologist had

no prior knowledge which contours were manual and which were

auto-generated. The same patient and contours were presented to

the oncologist on two separate days without their knowledge. The

oncologist stated if the contours are clinically acceptable and if not,

they stated the level of adjustments required from 1 to 5 (1 =

minimal adjustments, 5 = complete re-contouring), similar to the

method presented in (29). Afterwards a detailed breakdown was

performed to find how many model-generated contours from each

DSC group were classed as clinically acceptable and requiring

minor and major adjustments.
2.3 Dosimetric impact

The dosimetric impact of the model-generated structures was

evaluated. Using our standard clinical template, new treatment

plans were optimized using the automatically generated contours

and compared to dose distributions derived from the ground truth

contours for 13 of the patients. These 13 patients were chosen as

contours of the primary target volume were available, whereas

contours of the primary target were not provided for the

remaining patient population. To create the elective planning

target volume, a margin of 3 mm was used around the combined

volume of the left and right neck nodes, subtracting the primary

planning target volume. The dosimetric impact was evaluated on

the neck nodes separately without adding a margin. As quality
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indicators we selected the mean dose delivered to the parotid

glands, pharyngeal constrictor muscles (PCMs) and mandible,

maximum dose delivered to spinal cord and brainstem, and dose

delivered to 95% of the volume of the neck nodes for both

automated and manual structures. The results are presented as

the absolute differences between the two respective doses

normalized as a percentage of the prescribed dose of 65 Gy. Our

findings are separated into three groups:
Fron
1. dos imetr ic impact on st ructures c lass ified as

clinically acceptable

2. dosimetric impact on structures that required minor

changes (levels 1-2)

3. dosimetric impact on structures that required major

changes (levels 3+).
Furthermore, we asked the oncologist to perform the required

adjustments manually for several patients and recorded the time it

would take to amend the contours. We compared the dosimetric

results to the average absolute dosimetric difference between dose

delivered to manually delineated structures and the corresponding

automated and later on manually adjusted contours.

Approximate representation of the dosimetric impact for best,

median, and worst algorithm performances was shown, analyzing

cases from Figure 2A. The evaluation included median performance

for neck nodes and parotid glands, worst and median performance

for spinal cord, worst performance for brainstem, and worst,

median, and best performance for mandible. Limited target

volume information precluded analysis for other examples, so

structures with similar DSC values were selected for assessment.
3 Results

3.1 In-house model for
automated delineation

The network took an average of 32 hours to train (range 16-48

hours), while full 3D MRI organ delineation completed within 8

seconds. Figure 2A displays model-generated structures overlaying

manually delineated contours, showcasing best, median, and worst

performances based on DSC on a contour-by-contour basis.

Average DSCs were 0.71 ± 0.17/0.77 ± 0.11, 0.84 ± 0.12/0.85 ±

0.10, 0.75 ± 0.13, 0.88 ± 0.06, 0.66 ± 0.11, 0.63 ± 0.15, and 0.84 ±

0.06 for left/right neck nodes, left/right parotid glands, spinal cord,

brainstem, SMPCM, IPCM, and mandible, respectively. Further

details on DSC, MSD, and HD95 are in Figure 2B.
3.2 Clinical acceptance

The blind test showed that 114 (≈ 33%) of the auto-generated

contours required adjustments. The mean score of adjustments was

M =  1:89 (range 1-4) with a median score of ~M =  1. From the

manually delineated structures 15 (≈ 4.4%) required editing with mean
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score M =  1:60(range 1-3) and median eM =  1. Figure 3A shows

detailed breakdown of the number of ROIs requiring adjustments.

No clear DSC-adjustment correlation was observed. Generally,

DSC>0.8 indicated clinically acceptable contours (except PCMs).

DSC between 0.6 and 0.8 showed acceptability or minor changes (3

neck nodes needed major adjustments). DSC < 0.6 usually required

major amendments. Due to the small size of the PCMs, most results

scored DSC between 0.6 and 0.8 and majority were classed as

requiring minor adjustments and when the DSC was below 0.6

majority of contours required major adjustments. Only 2 PCMs had

DSC above 0.8 and one of them was clinically acceptable, whereas

the other one required minor amendments. Of 196 contours with

DSC≥0.8, 180 were acceptable, 16 needed minor adjustments; 39

out of 72 contours (DSC 0.7-0.8) were clinically acceptable, 32

needed minor adjustments, and one (neck node) required major

changes. In the next group, 7 out of 43 structures (DSC 0.6-0.7)

were acceptable, 31 needed minor adjustments, and 3 required

major changes. Lastly, 2 out of 30 structures (DSC<0.6) were

acceptable; 5 needed minor adjustments, and 23 required major

changes. Detailed breakdown in Supplementary Material. Clinical

acceptance test was performed for majority of the best, median and

worst performance of the model except for the worst performance

for neck nodes and best performance for the parotid glands. Based

on the other results, most likely the neck nodes contours for the

worst performance would have required major adjustments, while

the best performance contours of the parotid glands would have

been clinically acceptable. Figure 4 shows detailed outcomes

for other cases. All structures (except PCMs) from best and

median performance were clinically acceptable; PCMs needed

minor adjustments.

No correlation was found between amendment level and

manual correction time. Average time for model-generated

structure correction is 7.5 minutes per patient: 1min 27s for OAR

with minor adjustments (levels 1-2) and 4mins 23s for neck nodes

with the same adjustments level. For level 3+ adjustments, it takes

1min 4s for OAR and 4mins 39s for neck nodes. When presenting

contours on two days, initially, the oncologist suggested level 1

corrections for SMPCM and right neck nodes, but later deemed all

regions clinically acceptable.
3.3 Dosimetric impact

The results of the dosimetric impact analysis are shown in

Figure 3B. The median absolute difference between dose delivered

to auto-generated and manual contours for structures requiring no

changes and structures requiring levels 1-2 amendments were very

close and under 5% of prescribed dose. The average dosimetric

difference between dose delivered to algorithm-generated, manually

adjusted contours and manually delineated contours was in most

cases higher than the median differences. Dosimetric difference was

higher for structures requiring adjustments of levels 3+. Figure 4

shows the dosimetric impact of the structure for which the model

had best, median and worst performance or closest to these DSC

values if information for the primary target was missing. DSCs of
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the structures used for this analysis were in the range of 0.44 - 0.87

for neck nodes, 0.48 - 0.91 for parotid glands, 0.35 - 0.87 for spinal

cord, 0.64-0.93 for brainstem, 0.52 - 0.79 for SMPCM, 0.42 - 0.79 for

IPCM, and 0.55 - 0.91 for Mandible. For all structures from the best

and median performance of the model, the dosimetric difference is

under 5% of prescribed dose.
4 Discussion

This study investigates the clinical acceptability and dosimetric

impact of automatically obtained contours of the elective target

volume and OARs required for treatment planning on MR-Linac
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HNC patients’ data. It was found that majority of automated

contours (≈ 67%) were clinically acceptable and in general the

ones that require minor adjustments do not lead to significant

dosimetric differences.

With the increasing interest in deep learning-based strategies

for automated segmentation in radiation oncology, numerous

groups have developed their own in-house models. Kieselmann

et al. (15) have developed a model, similar to the one presented in

this study, for delineating the parotid glands on MRI, reporting

average DSC of 0.85 ± 0.11, which is comparable to our achieved

DSC of 0.84 ± 0.12/0.85 ± 0.10 for left/right parotid glands,

respectively. Dai et al. (30) have also developed a very similar

model for multi-organ delineation on MRIs, reporting again
A

B

FIGURE 2

(A) Examples of the automatically generated contours (yellow) overlaid onto the manually delineated contours (red), representing the model's best,
median, and worst performances determined by the DSC scores on a case-by-case basis. (B) Box plot showing the obtained range of the DSCs,
MSDs, HD95s for all structures.
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comparable results with average DSCs of 0.89 ± 0.06, 0.85 ± 0.06/

0.86 ± 0.05, 0.77 ± 0.15 and 0.82 ± 0.10 for brainstem, left/right

parotid gland, spinal cord and mandible, respectively. Their

achieved average DSCs are marginally higher for the brainstem

and the spinal cord, however they have not attempted to delineate

the elective target volume. Korte et al. (31) and Kawahara et al. (32)

have developed models to delineate the parotid gland and elective

target volume levels II and III with Korte et al. investigating three

different CNN, whereas Kawahara et al. compares CNNs to
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generative adversarial networks (GANs). Both groups achieve

similar results for the parotid glands equivalent to the ones from

the other discussed studies. Korte et al. have achieved 0.708 ± 0.053/

0.715 ± 0.071 and 0.561 ± 0.100/0.573 ± 0.105 for left/right level II

and level III, respectively. Kawahara et al. have shown that GANs

have better performance when delineating the elective target

volume with DSCs of 0.80/0.81 and 0.77/0.75 for left/right level II

and level III, respectively. In comparison, we have achieved 0.71 ±

0.17/0.77 ± 0.11 for left/right neck node, however our contour is the
A

B

FIGURE 3

(A) Detailed breakdown of the number of automated and manual contours that were clinically acceptable, as well as requiring each level of
corrections from 1 to 5. (B) Box plots illustrating dosimetric impact on structures that were clinically acceptable (not requiring any change),
structures requiring minor changes (levels 1-2), and structures requiring changes of levels 3+. Plots show absolute difference in dose delivered to
95% of the volume of the neck nodes (top left), absolute difference in mean dose delivered to the parotid glands (top middle), absolute difference in
maximum dose delivered to the spinal cord (top right), absolute difference in maximum dose delivered to the brainstem (bottom left), absolute
difference in mean dose delivered to the pharyngeal constrictor muscles (PCMs) (bottom middle), and absolute difference in mean dose delivered to
the mandible (bottom right). Blue horizontal lines represent the average dosimetric difference between dose delivered to algorithm-generated
manually adjusted contours and manually delineated contours.
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combined volume of all levels 1a-5, therefore we cannot fairly

compare our results.

Prior studies have predominantly focused on geometric

evaluations, neglecting clinical acceptability. A 2020 review by

Vrtovec et al. (33) highlighted this gap, emphasizing the scarcity

of studies assessing the clinical viability of automated contours.

Recent research post-2020 delves into the impact of auto-contours

on HNC patient workflows (29, 34–36). Wong et al. (29) and Zhong

et al. (35) mirrored a methodology similar to this study, seeking

expert opinions on clinical acceptability or required adjustments for

auto-contours. Zhong et al. found a majority of auto-contours

clinically acceptable, aligning with this study, while Wong et al.

reported that most required minor adjustments. Thor et al. (34) and

Radici et al. (36) explored dosimetric impacts, with Thor et al.

optimizing treatment plans using auto-generated contours and

Radici et al. recalculating doses on auto-contours using original

clinical plans. Notably, these studies utilized CT scans. Liu et al. (37)

reviewed deep learning-based segmentation in the HN region,

finding superior brainstem segmentation accuracy on MR scans

(DSC 0.92) than CT (DSC 0.86). Other CT-based studies, He et al.

(38) and Zhang et al. (39) reported successful auto-segmentation of
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HN region organs-at-risk (OARs). Our results showed improved

parotid gland segmentation and comparable brainstem

performance. Although spinal cord DSC was slightly lower, it

remained comparable to inter-observer variability DSC. Strijbis

et al. (40) segmented individual levels of the lymph nodes,

achieving a combined structure DSC of 0.86, exceeding our model

in geometrical evaluation. While the results showcase an impressive

performance, it is noteworthy that the sizes of the available datasets

for CT scans significantly surpass those for MR images. We expect

an enhancement in the performance of our model as the dataset size

expands. Moreover, these studies only reported geometrical results

without dosimetric or clinical acceptability analyses. This study, to

the best of current knowledge, is the first obtaining autocontours for

elective target volumes and this set of crucial OARs (per clinical

protocol) using MR-Linac HNC patient data. It specifically

investigates both clinical acceptability and dosimetric impact, a

facet rarely explored in prior research.

The geometric evaluation revealed lower DSC scores for neck

nodes and PCMs. Larger HD95 values for the spinal cord and neck

nodes suggested misclassified voxels and incomplete delineation.

Instances with DSC below 0.6 led to increased Mean Surface
FIGURE 4

Clinical acceptance of exact examples from the best, median and worst performance of the model. Dosimetric difference evaluated for exact
examples (orange circle) if information of the primary target was available, or with closest DSC (blue cross) to the exact example if primary target
information was not available.
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Distance (MSD) and HD95 (see Figure 2). Detailed analysis

highlighted misclassifications in various regions across multiple

patients (left neck nodes for 10 patients, right neck nodes - 3

patients, left parotid - 4 patients, right parotid - 2 patients, SMPCM

- 7 patients, IPCM - 16 patients, and mandible - 1 patient). Larger

organs, like the neck nodes and spinal cord, resulted in higher

maximum MSD and HD95 values due to their size. In some cases

(refer to Figure 2A), correct classification was limited to specific

areas, causing substantial differences in MSD and HD95 for lower

DSC cases. The dataset’s mix of T1- and T2-weighted MRIs, with

differing contrasts, most likely impacted the deep learning model’s

performance. Studies have shown that when multiple oncologists

delineate the neck nodes, the DSC ranges between 0.67 - 0.82 (41).

Van der Veel et al. (42) have found that the mean DSC of the inter-

observer variability is 0.82/0.83, 0.78, 0.88, 0.50/0.53/0.53, and 0.90

for left/right parotid glands, spinalcord, brainstem, superior/

middle/inferior pharyngeal constrictor muscles, and mandible,

respectively. Expectedly, due to their small size, PCMs had lower

DSC values compared to other regions (43). However, the obtained

value still closely aligns with the inter-observer variability DSC

similar to the rest of the ROIs.

The blind test found that about 67% of model-generated and

approximately 95.6% of manual contours were clinically acceptable.

Approximately 75% of required adjustments for model-generated

contours were only minor (mean level of changes: 1.89), with only

around 8% of all aut-contours needing major adjustments (levels 3-4).

The oncologist noted that PCMs are generally thin (3 mm), but slight

widening was observed on number of presented examples. We

explored the relationship between DSC metrics and clinical

acceptability criteria, building on Heilemann et al.’s (44) suggestion

of a DSC threshold above 0.7 for clinical acceptability. However, due to

size-dependent characteristics, smaller ROIs may still be deemed

acceptable with DSC below 0.7. Our results indicated that DSC

below 0.6 tended to signify major adjustments, and while higher

DSC values generally suggested better clinical acceptability, a

straightforward correlation between DSC and adjustment levels was

not apparent. Corrections didn’t consistently correlate with the time

required for manual adjustments, averaging 7.5 minutes per patient for

non-clinically acceptable contours. Evaluation time averaged about 1.5

minutes per patient for the oncologist. Therefore, the entire process—

generating, evaluating, and potentially adjusting some structures -

averages under 10 minutes per patient, significantly quicker than

manual delineation. The different clinical acceptability outcome for

the same patient on different days suggests subjectivity, potentially

addressable with deep learning strategies.

The dosimetric impact revealed higher average absolute

dosimetric differences for contours needing more adjustments, with

outliers stemming from OAR proximity to high-dose regions and

steep dose falloff. Achieving the clinical goal for the elective target

volume heavily relies on precise contours; expanding the exposed

range to cover any shape often meets goals but lacks clinical

acceptability. Median dosimetric differences between clinically

acceptable contours and those needing minor adjustments (levels 1-

2) are quite similar. PCMs and neck nodes requiring minor

adjustments show slightly lower median values than clinically

acceptable ones. Except for the spinal cord, average dosimetric
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differences between algorithm-generated manually adjusted contours

and manual delineated ones surpass median dosimetric differences

between automated and manual contours. In most cases, contours

needing minor changes can be used without significant dosimetric

impact changes. Higher dosimetric differences are observed for

contours needing level 3+ changes, representing only 8% of

automated contours. Correcting these takes an average of about 1.5

minutes per organ, varying with organ size. Notably, the dosimetric

analysis for best, median, and worst performance echoed general

findings, highlighting an intriguing case where brainstem

misclassification led to a significant dosimetric difference despite

being categorized as needing only level 1 adjustments (see Figure 2A).

After thorough evaluation, we are confident in the algorithm’s

effectiveness for contouring the parotid glands, brainstem, and

mandible. While the outcomes for pharyngeal constrictor muscles

were less satisfactory, a detailed dosimetric investigation showed

minimal dosimetric differences in most cases. The algorithm shows

promise for automating segmentation of the elective target volume

and spinal cord, though additional refinements are needed

for precision.

A key limitation in this and similar studies conducted on MR

scans, is the limited availability of high-quality data. There are vast

amounts of delineated CTs available, however consistent planning

MRI data collection has only recently started. We utilized the

entirety of the accessible data, resulting in a composite dataset

with both T1 and T2-weighted MR-Linac scans. This combination

may have negatively affected automated segmentation precision.

Future research could explore using separate models for T1-

weighted and T2-weighted scans, aiming for improved

segmentation accuracy through such differentiation. Some of the

other limitations of the current study were that primary target

information was provided only for 13 of the patients. This allowed

us to perform dosimetric analysis only for a small proportion of the

patient population and cannot state for certain that the findings will

remain the same when tested on larger patient population. Future

studies would benefit of primary target information for all patients

in order to perform more generalized dosimetric analysis.

Furthermore, contouring of the primary target cannot be

attempted with the current available data. Delineation of primary

target varies among experienced clinicians and requires additional

sequences (e.g., T1 post Gd or T2 SPAIR) along with endoscopic

findings to aid contouring, accounting for natural anatomical

barriers to tumor spread, such as air or bone. Another limitation

is our reliance on contours delineated by a single oncologist as the

ground truth. The clinical acceptability test showed that not all of

these contours would be considered acceptable by another expert,

highlighting the influence of inter-observer variability specifically,

for smaller ROIs such as the pharyngeal constrictor muscles, the

DSC is relatively low, ranging between 0.50 and 0.53. To enhance

the model’s learning, incorporating contours from multiple experts

would be beneficial. Furthermore, evaluating the results by only one

oncologist could lead to personal bias. Therefore, incorporating

clinical acceptability evaluations by multiple different experts for

each task could offer a robust solution to enhance the validity and

reliability of our findings. However, our oncologists have been

through multiple quality assurance exercises aligned with
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established international benchmarks, such as the Gregoire et al.

(45) atlas for nodal contouring. This ensures the reliability of the

‘clear’ pass or fail outcome derived from this assessment.
5 Conclusion

Majority (67%) of contours of the elective target volume and

organs at risk for HNC patients automatically generated by an in-

house developed model were found to be clinically acceptable and

could be used for treatment planning without any manual

adjustments. Among structures categorized as unfit for clinical

use, the majority (≈75%) required only minor adjustments and

the dosimetric impact showed that not performing the changes did

not lead to significant dosimetric differences in most scenarios.

Significant dosimetric differences could be observed for this group

only if the ROIs or parts of ROIs were located exactly at the steep

dose gradient. The model reliably contoured the parotid glands,

brainstem, and mandible. The outcomes for the pharyngeal

constrictor muscles were acceptable and the dosimetric impact

analysis reveals minimal differences in most cases. While the

algorithm shows promise for automating segmentation of the

elective target volume and spinal cord, refinements could be

performed for acquiring required precision in these areas. The

analysis for the structures requiring major adjustments led to the

conclusion that the time required for these adjustments to be made

is minimal (on average 1min 4s per OAR and 4mins 39s per nCTV).

Thus, delineation for HNC patients could be significantly sped up

and the presented model could be used for initial delineation and

subsequent re-delineation for each treatment fraction.
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Oncologic outcome with
versus without target volume
compartmentalization in
postoperative radiotherapy
for oral cavity squamous
cell carcinoma
Elena Riggenbach1*†, Manuel Waser2†, Simon A. Mueller2,3,
Daniel M. Aebersold1, Roland Giger2‡ and Olgun Elicin1‡

1Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern,
Bern, Switzerland, 2Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern
University Hospital, University of Bern, Bern, Switzerland, 3Department of Otorhinolaryngology Head
and Neck Surgery, University Hospital and University of Zurich, Zurich, Switzerland
Background and purpose: The volume treated with postoperative radiation

therapy (PORT) in patients with oral cavity squamous cell carcinoma (OCSCC)

is a mediator of toxicity affecting quality of life. Current guidelines only allow for

very limited reduction of PORT volumes. This study investigated the safety and

efficacy of de-intensified PORT for patients with OCSCC by refined

compartmentalization of the treatment volume.

Materials and methods: This retrospective cohort study identified 103 OCSCC

patients treated surgically from 2014 to 2019 with a loco-regional risk profile

qualifying for PORT according to guidelines. PORT was administered only to the

at-risk compartment and according to a refined compartmentalization concept

(CC). Oncological outcome of this CC cohort was compared to a historical

cohort (HC) of 98 patients treated before the CC was implemented.

Results: Median follow-up time was 4.5 and 4.8 years in the CC and HC cohorts,

respectively. In theCC cohort, a total of 72 of 103 patients (70%) had a pathological risk

profile that allowed for further compartmentalization and, hence, received a reduced

treatment volume or omission of PORT altogether. Loco-regional control at 3 and 5

years was 77% and 73% in the CC cohort versus 78% and 73% in the HC (p = 0.93),

progression-free survival was 72% and64% versus75% and68% (p=0.58), respectively.

Similarly, no statistically significant difference was seen in other outcome measures.

Conclusions: De-intensified PORT limiting the treatment volume to the at-risk

compartment or avoiding PORT altogether for low-risk patients with OCSCC does

not seem to compromise disease control in this retrospective comparison. Based

on these hypothesis-generating findings, a prospective study is being planned.
KEYWORDS

head and neck cancer, oral cavity cancer, head and neck squamous cell carcinoma,
postoperative radiotherapy, de-escalation, compartmentalization, radiotherapy, head
and neck surgery
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1 Introduction

Oral cavity squamous cell carcinoma (OCSCC) represents one

of the most frequently diagnosed head and neck malignancy.

Despite advances in treatment strategies and technology, OCSCC

remains a significant cause of morbidity and mortality (1). Primary

surgery with or without postoperative radio(chemo)therapy or

primary radio(chemo)therapy are treatment options for patients

with OCSCC. While different approaches are effective, they incur

long-term morbidity that escalates with treatment intensity (2, 3).

Reducing target dose and volume in radiotherapy (RT) or omitting

postoperative RT (PORT) altogether are important potential

toxicity-mitigation strategies that may improve quality of life (4,

5). To maintain oncological outcomes while reducing the toxicity,

an appropriate definition of candidates qualifying for RT volume

reduction or even complete omission due to a lower risk of

recurrence is essential.

Many factors influence survival and loco-regional tumor

control in patients with head and neck cancers. The presence of

remaining postoperative microscopic/macroscopic disease at the

margins of resection (R1/R2) and/or the presence of extracapsular

extension of nodal disease (ECE) in the neck have been clearly

defined as poor prognostic features. In patients with these high-risk

features, both postoperative radiation therapy (PORT) and

additional concurrent chemotherapy (6–9) improve loco-regional

control as well as overall survival (OS). The presence of other

“minor” adverse risk factors, such as multiple positive lymph nodes

(without ECE), perineural invasion (Pn1), vascular invasion (V1),

lymphatic invasion (L1), pT3 or pT4 primary, and oral cavity

primary cancers with positive lymph nodes in level IV or V, are

generally established indications for PORT as well. The direct

individual association of each of the minor risk factors on local,

regional, or general outcome is, however, not clear.

There is no consensus to whether the primary tumor bed and

each hemi-neck of the nodal basin should be considered as separate

target compartments when these risk factors arise either only in the

primary tumor bed or (hemi-)neck. According to current guidelines

(10), the only accepted compartmentalization strategy in PORT for

OCSCC is to spare the contralateral neck in case of a lateralized

primary with local factor (R+ and/or >1 minor factor) and node

negative disease after neck dissection. However, some aspects of

PORT target volume definition are based on tradition, rather than

evidence. Compared to the recommendations in the current

guidelines, our institutional compartmentalization concept (CC)

allows further de-intensification of PORT considering the tumor

bed and each hemi-neck as three separate compartments for

adjuvant RT decisions (Figure 1). Compared to the traditional

holistic approach, the intent of the CC is to apply the required

dose only to the compartment under risk.
Abbreviations: CC, compartmentalization concept; DMFS, distant metastasis-

free survival; ECE, extracapsular extension of nodal disease; HC, historical cohort;

L1, lymphatic invasion; LC, isolated local control; LRC, loco-regional control;

OCSCC, oral cavity squamous cell carcinoma; OS, overall survival; Pn1,

perineural invasion; PORT, postoperative radiation therapy; PFS, progression-

free survival; RC, isolated regional control; V1, vascular invasion.
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The current study investigates further compartmentalization

strategies in patients with operated OCSCC mandating PORT and

compares their oncological outcome to a historical cohort (HC),

where no compartmentalization was implemented.
2 Materials and methods

2.1 Study design and patient selection

A retrospective cohort study design was pursued following the

Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guidelines (11). The study was approved

by the regional ethics committee.

Eligible patients were 18 years of age or older with

histologically confirmed diagnosis of OCSCC, treated with

curatively intended primary surgery from January 2014 to

March 2019. The study cohort was limited to patients having

one of the following unfavorable loco-regional risk factors: close

resection margin of histopathologically less than 5 mm from the

tumor, perineural invasion, lympho-vascular space invasion,

tumor (T-) stage ≥3, or more than one positive neck lymph

node. PORT was administered according to our refined CC

detailed below. Oncological outcome of this CC cohort was

compared to a HC diagnosed and treated in our institution

from January 2007 to December 2013. The period of the HC

was started by the standard establishment of concomitant

systemic treatment regimens, including cetuximab (12) (as an

extrapolation from the definitive RT setting), which was similar to

the period of treatment of the CC cohort. All patients in both

cohorts were treated with intensity modulated RT techniques.

Patients with a previous head and neck squamous cell

carcinoma (HNSCC) or previous RT to the head and neck area

before the treatment course under investigation, or an active

synchronous cancer at the start of treatment were excluded.
FIGURE 1

Illustrating the three compartments (T = tumor bed, I = ipsilateral
neck, and C = contralateral neck) for postoperative radiotherapy in
oral cavity squamous cell carcinoma.
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2.2 Treatment procedures and
compartmentalization approach

Resection of the primary tumor was required with additional ipsi-

or bilateral neck dissection according to multidisciplinary tumor

board decision. All patients in the CC cohort met the criteria for

PORT according to international consensus criteria (6, 10, 13). PORT

was administered according to a clearly defined risk profile and only

to the at-risk compartment (Figure 2). For RT of the primary tumor

compartment we seek either an inadequate resection margin (R1/R2

or close) as a major risk factor or at least two minor risk factors (Pn1,

L1, V1) with the exception of Pn1 with a nerve diameter >0.1 mm or

“named nerve” that is enough as a sole factor warranting irradiation

of the primary tumor bed (14, 15). We consider the operated pT3-4

tumor bed as pathological low-risk profile if no other risk factor is

present (16, 17). To irradiate each hemi-neck, we seek either the

presence of ECE or at least two involved lymph nodes. The theoretical

treatment volumes (i.e., the compartments) according to the

international consensus were recorded retrospectively for each

patient depending on the pathological risk profile.

When treatment to the three compartments (i.e., tumor bed,

ipsilateral and contralateral hemi-neck) according to CC was

discordant from the guideline-conform PORT, it was classified

into five categories: tumor bed spared (CC#1T), one hemi-neck

spared (CC #1N), both hemi-necks spared (CC#2NN), tumor bed

and one hemi-neck spared (CC#2TN), and all three compartments

spared (CC#3TNN).

We detail our CC in Figure 2 for various clinical settings and

classify into five different variations of CC, depending on the

compartment spared when comparing the treatment to the three

compartments according to CC with the treatment corresponding

scenarios governed by the pathologic risk profile. Patients in

which the application of the refined CC did not result in a

deviation from international consensus were classified as “no

compartmentalization used”.

The concomitant systemic treatment was prescribed according

to the international consensus guidelines, namely, based on the

results of the EORTC 22931 (9) and RTOG 9501 (7), and

Cetuximab (12) was used as substitute for cisplatinum-

ineligible patients.
2.3 Diagnosis and follow-up

All treatment recommendations were discussed at the head and

neck cancer specific multi-disciplinary tumor board after the initial

histopathologic confirmation of OCSCC and again postoperatively,

concerning the need of an adjuvant treatment. Our standard follow-

up protocol is provided in Supplementary Table S1. The sequence

and modalities of the diagnostic work-up were similar in the CC

cohort and HC. In both cohorts, lymph node levels of the neck

dissection were separated and individually marked during surgery

before sending off to pathology. The number of positive (with and

without ECE) and the total number of harvested lymph nodes were

reported separately for each level by the pathologists. Staging for all

patients was done according to the 7th edition of UICC (18).
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2.4 Statistical analysis

The primary endpoint of this retrospective cohort study was to

estimate the rate of loco-regional control (LRC), defined as the time

from the date of histopathological diagnosis to the first documented

local and/or regional recurrence. Median follow-up time was

calculated by excluding the deceased patients.

Secondary endpoints included isolated local (LC), isolated

regional (RC), LRC, and distant control (DMFS), progression-free

survival (PFS) and OS. Kaplan–Meier method was used to depict

survival curves for the oncologic endpoints, and the log-rank test for

group comparisons. Analyses were performed using JMP® statistical

software (Version 16.2.0; SAS Institute Inc., Cary, North Carolina).
3 Results

3.1 Patient characteristics and
treatment variables

The baseline demographic and clinical characteristics were

comparable in both groups (Table 1). Of 187 consecutive patients

with OCSCC treated with curative intent in our hospital from

January 2014 to March 2019, 103 patients had a pathological risk

profile based on which, an adjuvant treatment (i.e., PORT with or

without concomitant systemic treatment) was indicated according

to international guidelines.

The CC cohort comprised these 103 patients. The median age

was 62 years (range, 28–95) and 60.2% of patients were male. Median

number of total harvested lymph nodes was 48 (range, 17–128).

Thirty-six patients (35%) had a node positive disease. Node positive

to harvested ratio was median 2% (range, 0%–28%). Treatment

strategy was surgery alone (without adjuvant therapy) in 25

patients (24.3%), surgery followed by PORT in 33 patients (32.0%),

and PORT with concomitant systemic treatment in 45 patients

(43.7%). Low-risk volume in PORT received a median dose of 50

Gy (range, 50–54), intermediate-risk volume 60 Gy (range, 55–60)

and high-risk volume 66 Gy (range, 2–68) in 2 Gy daily fractions.

All 98 patients from the HC received standard PORT according

to guidelines, and no further compartmentalization strategy was

implemented at that time. As with the treatment technique, RT

doses in the HC for low-, intermediate-, and high-risk volume did

not differ from the CC cohort. Due to the amount of missing data,

detailed patient and tumor characteristics such as the anatomical

subsites, smoking, and alcohol consumption as well as some

pathologic factors (L1, V1, and Pn1) were not extracted.
3.2 Compartmentalization concept

Of the CC cohort, 52 patients (50.4%) would have had the

theoretical indication for irradiation of the tumor bed and

the unilateral neck, while 51 patients (49.5%) would have had the

indication to irradiate all three compartments (tumor bed and

bilateral neck) according to the standard protocol. Due to the

implementation of CC, only 20 patients (19.4%) were effectively
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irradiated to all three compartments, while 23 patients (22.3%)

received PORT to the tumor bed and unilateral neck, one patient

(1.0%) to bilateral neck without the tumor bed, seven patients

(6.8%) unilateral neck without the tumor bed, and 27 patients

(26.2%) tumor bed only. In 25 patients (24.3%) with indication for

PORT according to the standard protocol, PORT was omitted

altogether under the CC.

Comparing the treatment and volume applied according to our

CC with the guideline-conform indications, a total of 72 patients

(69.9%) had a pathological risk profile that allowed further

compartmentalization and hence received a reduced treatment

volume. The category of compartmentalization of PORT applied

in these 72 patients using the CC is shown in Table 2. In the
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remaining 31 patients (30.1%), no further compartmentalization

was deemed safe, and they hence received a treatment volume

identical to established guidelines.
3.3 Oncologic outcome

Median follow-up time for patients still alive was 4.5 years

(range, 0.3–7.4) for the CC cohort and 4.8 years (range, 0.2–8.9)

for the HC. None of the oncological outcome measures showed a

statistically significant difference when comparing survival curves

of the CC cohort with the HC, that is, the null hypothesis of the

log-rank test was retained for LC, RC, LRC, PFS, DMFS, and OS
FIGURE 2

Compartmentalization concept (CC): clinical criteria and risk factors in each of the three compartments for one of five strategies of
compartmentalization for postoperative radiotherapy in oral cavity squamous cell carcinoma. For staging the 7th edition of the International Union
against Cancer (UICC), staging system was used. Each hemi-neck is regarded distinctly for pN-staging. Strategies of CC (#1–5) are shown as images
(blue contour = compartment treated according to guidelines, yellow fields = compartments treated according to CC). CC = compartmentalization
concept; L1 = lymphatic invasion; Ncontra = compartment of the contralateral neck; Nipsi = compartment of the ipsilateral neck; Pbed = compartment of
the primary tumor bed; Pn1 = perineural invasion; R+ = positive resection margin; Rclose = close resection margin (less than 5 mm from the tumor); risk
factors (RF) of the primary tumor bed (RF-P), ipsilateral neck (RF-Nipsi) or contralateral neck (RF-Ncontra); V1= vascular invasion. *: exception Pn1 with a
nerve diameter >0.1 mm or «named nerve» is enough as a sole factor.
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(Table 3). Detailed actuarial survival data are presented

in Figure 3.

Isolated nodal failure occurred in four out of 67 patients (6%) from

the CC cohort, where irradiation to at least one hemi-neck was spared.

However, two of those four recurrences occurred in the irradiated

volume. Local failures were observed in four out of 33 patients (12%)

from the CC cohort, where irradiation of the tumor bed was spared.
4 Discussion

In this retrospective study of OCSCC with adverse features, the

efficacy and safety of further compartmentalizing PORT was

evaluated. Compared to a HC, our approach did not impact loco-

regional disease control or survival rates, suggesting our CC to be

safe. To our knowledge, this is the first analysis implementing

different compartmentalization strategies at once for a relatively

large OCSCC cohort.

The indication for PORT for OCSCC is based on the presence of

major (ECE, close or positive margins) and minor (Pn1, V1, L1,

pT≥3, pN≥2, and lymph node involvement in level IV or V)

pathologic risk factors. There is no consensus to whether the

primary tumor bed and each hemi-neck of the nodal basin should

be considered as separate target compartments when these risk

factors arise either only in the (hemi-)neck or in the primary tumor

bed. The only accepted compartmentalization strategy in PORT for

OCSCC according to current guidelines (10) is, to omit the

contralateral neck in case of a lateralized primary with local risk

factors (R+ and/or >1 minor factor) and node negative disease after

neck dissection.
TABLE 1 Patient characteristics of the study cohorts.

Modern
cohort
(n = 103)

Historic
cohort
(n = 98)

p-
value

Percent (n) or
median
(range)

Percent (n)
or
median
(range)

Age at diagnosis (y) 62 (28–95) 60 (20–89) 0.06

Sex 0.29

Male 60.2% (62) 67.3% (66)

Female 39.8% (41) 32.7% (32)

Primary tumor location within oral cavity

Tongue 49.5% (51) NA

Floor of the mouth 19.4% (20) NA

Alveolus and gingiva 12.3% (16) NA

Buccal mucosa 4.9% (5) NA

Hard palate 1.0% (1) NA

Unclear/multiple
sites infiltrated 10.0% (10) NA

Pathologic AJCC
tumor stage (7th ed.)

< 0.01

pT1 27.2% (28) 15.3% (15)

pT2 39.8% (41) 41.8% (41)

pT3 7.8% (8) 8.2% (8)

pT4a 24.3% (25) 17.3% (17)

pT4b 1.0% (1) 17.3% (17)

Pathologic AJCC
nodal stage (7th ed.)

< 0.01

pN0 35.0% (36) 43.9% (43)

pN1 16.5% (17) 17.3% (17)

pN2a 1.0% (1) 3.1% (3)

pN2b 28.2% (29) 21.4% (21)

pN2c 9.7% (10) 14.3% (14)

pNX 9.7% (10)

Pathologic AJCC
stage classification
(7th ed.)

< 0.01

Stage I 15.5% (16) 10.2% (10)

Stage II 12.5% (13) 22.4% (22)

Stage III 18.4% (19) 10.2% (10)

Stage IVA 50.5% (52) 39.8% (39)

Stage IVB 2.9% (3) 17.3% (17)

Presence of ENE
in pN>0 46.3% (31) 45.5% (25)

0.06

(Continued)
TABLE 1 Continued

Modern
cohort
(n = 103)

Historic
cohort
(n = 98)

p-
value

Percent (n) or
median
(range)

Percent (n)
or
median
(range)

Median number of
LN involved 1 (0–16) 1 (0–9)

0.12

Adjuvant treatment < 0.01

No adjuvant treatment 24.3% (25) 0% (0)

Radiotherapy 32.0% (33) 46.9% (49)

Radiotherapy with
systemic treatment 43.7% (45) 53.1% (52)

Cisplatin* 100 mg/
m2 three-weekly 35.9% (37) 44.9% (44)

Cetuximab* weekly 7.8% (8) 8.2% (8)
front
AJCC, American Joint Commission on Cancer; ENE, extranodal extension; LN, Lymph node;
RT, radiation therapy; NA, not available.
*Cisplatin concomitant 100 mg/m2 three-weekly, cetuximab 400 mg/m2 loading dose 1 week
prior to radiotherapy and concomitant 250 mg/m2 weekly.
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A de-escalation of PORT in our cohort of OCSCC was possible

in 70% of the patients, either with reduction of the treatment

volume by means of sparing the compartment(s) not harboring

the corresponding risk factors (45.7%) or omitting PORT

altogether (24.3%).

RT is associated with significant acute and long-term toxicities,

primarily mediated by treatment volume and prescription dose.

Thus, a reduction in radiation volume is expected to have a direct

impact on acute and late toxicity as well as patients’ quality of life.

This, in turn, would potentially allow for selective treatment

intensification if deemed necessary. Toxicity mitigation by

compartmentalization is to be weighed against the risk of loco-

regional recurrence in untreated compartments, but our CC

demonstrates this to be feasible without impacting the oncological

outcome. Compared to the classical holistic approach, the CC also

increases the rate of feasibility in re-irradiation scenarios in terms of

the application of the adequate dose in required target volumes.
4.1 Omitting the pN0 and/or pN1 neck

The recently demonstrated long-term results of a prospective

phase II study supports the safety of omitting the pathologically
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negative (pN0) neck (19). In this mixed cohort of operated HNSCC

(n = 72 patients), including 14 patients with OCSCC, sparing the

contralateral pN0 neck (74%) or even the ipsilateral pN0 neck

(26%) resulted in an excellent unirradiated neck control of 97%. In

our cohort, the omission of PORT to the hemi-neck was

additionally allowed in the setting of a single-positive lymph node

(pN1) without ECE. An earlier meta-analysis tested this approach

but did not allow for general treatment recommendations due to

large clinical heterogeneity of included studies (20). A more recent

large retrospective study of patients with surgically treated OCSCC

or oropharyngeal SCC shows that PORT to the pN1 neck in the

absence of other adverse features might be associated with

improved survival for pT2 disease or even pT1, especially in those

younger than 70 years (21). While another, albeit smaller study only

predicted a benefit for pN1 OCSCC if the lymph node yield at levels

I–III was less than 20 (22). The hallmarks of a high-quality neck

dissection, including at least 18 lymph nodes removed for levels I–

III was again stressed in the recent ASCO guideline, making this a

prerequisite for considering omission of the pN0 or pN1 neck in the

PORT target volume (23). Although omission of RT to the pN1-

neck without other adverse features seems to be currently accepted

in most clinics, its controversy persists because PORT conferred a

survival benefit in a recent large cancer registry-based study

independent of adequacy of the neck dissection (24).

The lymph node yield in our CC cohort for patients receiving a

neck dissection ensures the required quality. The abovementioned

ASCO guideline (23) allows to omit PORT to the pN1 neck unless

indications arising in the primary tumor, such as Pn1, L1, V1, or a

pT≥3 primary are present. This prompts the question of whether

in fact these local factors independently portend a higher risk for

nodal recurrence. In a retrospective study on OCSCC, neither L1

nor V1 were independently associated with increased rates of

regional or distant recurrence (25). A Japanese study group

however revised their strategy of reducing treatment volumes

when whole neck-PORT showed to be associated with a better

OS, PFS, and LRC compared to limited-field-PORT in a

retrospective analysis (26).

Isolated nodal failures in patients, where one or both hemi-

necks were spared, was low (6%) in our cohort, suggesting a

correct selection of patients with nodal low-risk profile (Figure 2)

where irradiation of the nodal compartments might be

safely omitted.
TABLE 3 Oncologic outcome with versus without target volume compartmentalization.

CC cohort Historical cohort

Outcome 3-year (%) 5-year (%) 3-year (%) 5-year (%) p-value

Local control 88.3 83.4 82.9 77.6 0.25

Regional control 87.6 87.6 85.8 83.8 0.64

Locoregional control 77.3 73.0 78.5 73.3 0.93

Progression-free survival 72.5 63.8 74.7 67.9 0.58

Distant metastasis-free survival 86.6 86.6 87.6 87.6 0.72

Overall survival 76.6 63.6 79.4 70.6 0.48
fro
TABLE 2 Compartmentalization strategy used in the CC
(compartmentalization concept) cohort.

#
of
CC

Spared
compartment*

# of spared com-
partment(s)

Percent
(n)

1 Tumor bed 1 4.9% (5)

2 One hemi-neck 1 26.2% (27)

3 Both hemi-necks 2 11.7% (12)

4
Tumor bed and one
hemi-neck 2 24.3% (25)

5
All
three compartments 3 2.9% (3)

0

No
compartmentalization
used 0 30.1% (31)
*In total, PORT was omitted in a total of 25 (24.3%) patients through the
compartmentalization strategy.
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4.2 Omitting the primary tumor bed
(CC#1T and CC#2TN)

Another compartmentalization strategy for HNSCC is the

omission of the primary tumor bed for patients with a favorable

local risk profile that receive PORT to the at-risk areas in the

involved neck. Why the postoperative primary tumor bed should be

irradiated in the presence of multiple nodal positivity and/or ECE,

whereas the same tumor bed would not receive any radiation if the

neck is pN0-1 lacks a logical rationale (27). A national patterns of

care study revealed no consensus on this issue with 70% of the

centers not separating the tumor bed from the dissected nodal

levels, and 30% allowing for this type of de-escalation (27).

The recent prospective single-arm phase 2 “AVOID” trial for

human papilloma virus-associated oropharyngeal SCC has explored

de-intensification for PORT, which resulted in a 2-year local

recurrence-free survival of about 98%. The investigators concluded

this to be a safe strategy worthy of further study (28). However, one

has to be aware that the incidental dose to the primary tumor bed in

oropharyngeal SCC is somewhere between 30 Gy and 43 Gy (29)

even if only the neck is targeted, which might be high enough to

effectively sterilize residual microscopic disease, especially for HPV-

associated oropharyngeal SCC. A more significant dose reduction

however occurs in the oral cavity due to geometrical relationship and

distance between the nodal and primary tumor bed volumes (30)

resulting in a more evident compartmentalization effect when sparing

the primary tumor bed for OCSCC. In addition to the anatomical,

and as a result, dosimetric differences when considering the CC,

OCSCC and oropharyngeal SCC (especially HPV+) are known to be

distinct diseases from a biological perspective.
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According to the recently published AIRO-GORTEC consensus

for early stage OCSCC (15), omitting irradiation of the primary

tumor bed should be investigated further for OCSCC, given the

promising results observed in oropharyngeal SCC. With our current

study we provide data that omission of the primary tumor bed may

also be safe for selected OCSCC patients.

In terms of limitations, our cohort suffers from the intrinsic

problems due to its retrospective nature. Potential unknown

confounding bias cannot be eliminated. For the HC, data on

pathological risk profile was incomplete and could therefore not

be analyzed in the same detail as the CC cohort.

Additionally, owing to lack of randomization there are inherent

differences between the two cohorts. Mitigating the impact of this

limitation through statistical approaches such as propensity score

matching would have been a futile effort with the available sample

size and data.

Last, but not least, toxicity and quality of life data is not reported

as it was largely missing and not recorded in the same systematic

manner in the HC. However, the dose-volume and response (toxicity

and quality of life) relationship is well-known, with smaller treatment

volumes and lower doses being associated with less treatment-related

toxicity in head and neck cancer (31–34). Justifying a de-escalation

approach as a potential improvement in quality of life is only

warranted as far as the non-inferiority of recurrence is ensured.

Therefore, there is a tremendous international effort for de-

escalation of dose and target volumes in HPV-associated

oropharyngeal cancer compared to the non-HPV-associated head

and neck cancer (35).

Given the extent of missing data in the HC and minor known

und potential unknown differences between the two cohorts, our
A B

DC

FIGURE 3

(A–D) Locoregional control (A), progression-free survival (B), distant metastases-free survival (C) and overall survival (D) for the compartmentalization
cohort (CC, continuous line), and historical control (HC, dashed line).
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exploratory comparative result should be considered as

supplementary and is not the main emphasis of our paper.
5 Conclusions

With implementing a clearly defined strategy of further

compartmentalization based on the pathologic risk profile in the

respective compartment, a de-escalation of PORT is possible in the

majority of OCSCC patients by reducing treatment volume or

omitting PORT altogether. No compromise in disease control was

seen when compared to a historical control. Based on these

hypothesis-generating findings, a prospective trial is being designed.
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3Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China,
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Purpose:We tried to establish the normal tissue complication probability (NTCP)

model of temporal lobe injury of recurrent nasopharyngeal carcinoma (NPC)

patients after two courses of intensity modulated radiotherapy (IMRT) to provide

more reliable dose-volume data reference to set the temporal lobe tolerance

dose for recurrent NPC patients in the future.

Methods and materials: Recurrent NPC patients were randomly divided into

training data set and validation data set in a ratio of 2:1, All the temporal lobes

(TLs) were re-contoured as R/L structures and named separately in the MIM

system. The dose distribution of the initial IMRT plan was deformed into the

second course planning CT via MIM software to get the deformed dose.

Equivalent dose of TLs in 2Gy fractions was calculated via linear quadratic

model, using an a/b=3 for temporal lobes. NTCP model that correlated the

irradiated volume of the temporal lobe and? the clinical variables were evaluated

in a multivariate prediction model using AUC analysis.

Results: From Jan. 2010 to Dec. 2020, 78 patients were enrolled into our study.

Among which 26 (33.3%) developed TLI. The most important factors affecting TLI

was the sum-dose d1.5cc of TL, while the possible clinical factors did not reach

statistically significant differences in multivariate analysis. According to NTCP

model, the TD5 and TD50 EQD2 dose of sum-dose d1.5cc were 65.26Gy (46.72–

80.69Gy) and 125.25Gy (89.51–152.18Gy), respectively. For the accumulated

EQD2 dose, the area under ROC shadow was 0.8702 (0.7577–0.9828) in

model validation, p<0.001.
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Conclusion: In this study, a NTCP model of temporal lobe injury after a second

course of IMRT for recurrent nasopharyngeal carcinoma was established. TD5

and TD50 doses of temporal lobe injury after re-RT were obtained according to

the model, and the model was verified by validation set data.
KEYWORDS

recurrent nasopharyngeal carcinoma, intensity modulated radiotherapy, re-irradiation,
temporal lobe injury, normal tissue complication probability model
Introduction

Nasopharyngeal carcinoma (NPC) is prevalent among Asians,

particularly in Southern China, and is epidemiologically linked to

Epstein-Barr virus infection, where the age-standardized incidence

ranges from 15 to 50 cases per 100,000 population (1, 2). Now

Intensity modulated radiotherapy (IMRT) is widely used as the

primary treatment modality for non-metastasis NPC due to its

anatomic location and radio-sensitivity. Local recurrence remains

one of the common patterns of treatment failure. Overall, 10% to

20% local failures occur after definitive IMRT. Surgery is a preferred

choice for small resectable superficial recurrent lesion (3, 4). Re-

irradiation with IMRT remains the mainstay of treatment for

advanced stage recurrence. However, due to the considerable

critical organs surrounding the tumor, re-irradiation may lead to

severe toxic side effects.

Temporal lobe injury (TLI) is a common late complication after

re-irradiation for recurrent nasopharyngeal carcinoma, which is

often manifested as memory decline, cognitive dysfunction, motor

dysfunction, emotional disorders, language disorders, and other

related symptoms, leading to a decline in the quality of life. IMRT

can effectively limit the high-dose exposure of the temporal lobe.

The TLI probability after the first course radiotherapy was about

4.6–16% (5–7). However, in recurrent nasopharyngeal carcinoma,

especially for patients with large tumor volume, especially those

with skull base invasion or intracranial invasion, a second course of

high dose irradiation would be necessary, thus TLI is inevitable (8–

10). Currently, there is very limited experience in determining the

dose-volume tolerance of the temporal lobe for a second course of

radiotherapy. In this study, we retrieved the first and second course

of IMRT plan data for recurrent nasopharyngeal carcinoma patients

and established the NTCP model of TLI based on clinical and
T, Intensity modulated

al tissue complication

al tumor volume; CT,

tomography-computed

arnofsky performance

dose; AUC, Operating

e; TD, Tolerance dose;

ects in the Clinic.
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dosimetric parameters. We believe this study would provide a more

reliable reference for dose-volume data, and would provide

assistance in the decision of temporal lobe dose limitation in

the future.
Method and materials

Inclusion and exclusion criteria

Inclusion criteria included:(1) Recurrent nasopharyngeal

carcinoma confirmed by pathology or at least two imaging

methods; (2) Both of the two courses of radiotherapy were using

IMRT techniques, and the 2 courses of radiation plans were

attainable; (3) Distant metastasis was excluded by chest CT,

abdominal ultrasound, emission CT bone scan or whole body

positron emission tomography-computed tomography (PET-CT);

(4) Karnofsky performance scale (KPS) score ≥70; (5) Patients

received complete 2 courses radiotherapy; (6) Patients were

regularly followed up in the outpatient clinic with complete

magnetic resonance images for at least every 6 months. Exclusion

criteria included: (1) TLI occurred before the second course of

radiotherapy; (2) The follow up time was less than 6 months; (3)

Patient was unable to receive MRI to accurately assess TLI; (4) TLI

cannot be differentiated from tumor progression or recurrence; (5)

The two courses radiotherapy plan cannot be obtained completely.
Immobilization and treatment plan

All initial and re-irradiation plans were obtained in Fudan

University Shanghai Cancer Center. All patients can proceed to

the immobilization, planning, and treatment process only after

signing the informed consent for radiotherapy. Patient was

immobilized in the supine position with a thermoplastic mask.

CT was performed with slice thickness of 5mm after

immobilization, ranging from1.5cm above the cranial vertex to at

least 2cm below the sternoclavicular joint. The target volumes were

delineated on CT images using Pinnacle (Pinnacle 3; Philips Corp,

Fitchburg, WI) treatment planning system. Inverse IMRT plans

were optimized using Pinnacle. For the initial course IMRT, the
frontiersin.org
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total dose to primary tumor was 66 Gy in 30 fractions for T1 or T2

stage disease, and 70.4 Gy in 32 fractions for T3 or T4. A total dose

of 60 Gy and 54 Gy was delivered to the high-risk and low-risk

clinical tumor volume (CTV) in 30–32 fractions, respectively. For

the re-irradiation course, only recurrent tumor and the positive

involved lymph node regions were irradiated. The prescribed doses

were 60–70 Gy to the gross tumor volume (GTV)and 50–60 Gy to

the CTV, delivered in 25–35 fractions. The normal tissue

constraints and plan evaluation were in accordance with the

Radiation Therapy Oncology Group 0225 protocol. All the

radiation were delivered using a simultaneous integrated boost-

IMRT technique using Pinnacle. Patients with advanced T stage

disease or positive lymph nodes received cisplatin-based induction

or concurrent chemotherapy during IMRT.
Image assessment and diagnostic criteria
for TLIs

All the TLIs were diagnosed based on MRI findings. These

abnormalities were verified by two radiologists, and any dis-

agreements were resolved by consensus. Residual or progressive

disease was excluded when determining the TLI site. The diagnostic

criteria for TLI were as follows: (1) contrast-enhanced lesions,

lesions with spotted or patchy enhancement with or without

necrosis on post-contrast T1-weighted images; (2) white matter

lesions, increased signal intensity on T2-weighted images in white

matter; (3) cysts, round or oval lesions of very high signal intensity

on T2-weighted images with a thin or imperceptible wall.
Dose volume histogram data calculation

Both the two courses IMRT plan were imported into the MIM

system (MIM software v6.5.9, Cleveland, OH, USA). To ensure

precise delineation of the temporal lobe, all temporal lobes were

re-contoured by the physician in the re-irradiation plan as R/L

structures and named separately using MIM software and cross-

checked by another experienced physician. In cases where the

tumor infiltrated into the intracranial tissue, this specific region of

the temporal lobe was delineated as normal tissue. The dose

distribution of the first IMRT plan was deformed into the

planning CT of the re-radiotherapy via MIM to get the

deformed dose. Since the fractionation of the two IMRT plans

were not identical, equivalent dose in 2Gy fractions was calculated

via linear quadratic model, using an a/b=3 for temporal lobes. The

equivalent dose (EQD2
3) of the deformed dose and the dose of re-

radiotherapy was accumulated to obtain the accumulated dose

based on former registration via Python program (v3.9.6). The

dose volume histograms of the bilateral temporal lobes and the

TLI of the deformed dose, re-irradiated dose, and accumulated

dose were exported. Based on the DVH data, the max dose, the
Frontiers in Oncology 0381
dose to 0.5–5cc in 0.5cc. increments were expressed as Dmax, and

D0.5-D5cc.

EQD2 = Dx 
a
b + dx
a
b + D2
Construction and validation of the
NTCP model

Our NTCP model for temporal lobe was constructed based on

multivariate logistic regression, formula of which is shown below as

equation. x1, x2… xm are different input parameters; b0, b1… bm
are the logistic regression coefficients of corresponding input

parameters. Both dosimetric parameters and clinical factors were

considered as potential input parameters in this model. Dosimetric

parameters include D0.5cc-D5cc in 0.5cc increments and Dmax.

NTCP =
1

1 + e−(a+o
m
i=1

bixi)

All the patients were randomly divided into training set and

validation set at a ratio of 2:1. Training set data were utilized for

deriving model parameter, while validation set data were employed for

accessing the model. Model construction involved two primary steps.

Initially, three modes (linear, quadratic, exponential) were explored to

assess the necessity of incorporating the time interval in the combination

of doses from two courses. The verification process included the

following steps: 1. Defining the range and stride of the parameter

based on clinical data and time model formulation; 2. Applying

parameter values to the time model to derive the combined dose; 3.

Calculating dosimetric indices of the combined dose distribution; 4.

Conducting univariate logistic analysis on the dosimetric index and

obtaining Nagelkerke’s R squared value; 5. Repeating steps 2–4 for

different parameter values and various time models.

dose _ tol = (1 − a∗gap)∗dose1 + dose2

dose _ tol = (1 − a∗ gap∗gap)∗ dose1 + dose2

dose _ tol = exp ( − a∗ gap)∗dose1 + dose2

Subsequently, multivariate logistic regression was conducted

with different sets of factors. Considering diverse clinical scenarios,

three protocols were presumed for broader application: 1st, the

primary RT plan was unable to obtain, we only consider the 2nd RT

plan dosage; 2nd, both the first and second RT plan were available,

but we cannot calculate the accumulated dose; 3rd, both the RT plan

were available and we use the accumulated EQD2 dose.

To validate the model, the area under the receiver operating

characteristic curve (AUC) for the receiver operating characteristic

curve (ROC) was calculated. Statistical analyses were performed

using SPSS version 26.0 (IBA, SPSS Inc., Chicago, IL).
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Results

From Jan. 2010 to Dec. 2020, 78 patients were enrolled into our

study. These patients were randomly divided into training data set and

validation data set in a ratio of 2:1, yielding 52 patients in training set

and 26 patients in validation set. There were no significant differences

in clinical characteristics between these two sets. Characteristics of

patients are listed in Table 1. Themedian follow-up time was 31 (range,

6–127) months. Among these patients, 26 (33.3%) developed TLI,

among which 16 patients experiencing bilateral TLI and 10 patients

with unilateral TL. The median latency for development of TLI (from

beginning of re-irradiation to first MRI-detected TLI) was 11.5 (range,

3–29) months. The median interval between initial radiotherapy and

re-irradiation was 26 (range, 12–108) months.

The ‘a’ value corresponding to maximum R2 value for various

indices in the linear time model was presented in Figure 1. It can be

observed that the dose-volume parameter corresponding to the

maximum R2 value is D1.5cc, as indicated in Table 2. Results of

the ROC curve analysis, using the ‘a’ value corresponding to the

maximum R2 value in the linear time model as the model parameter

value, were displayed in Table 3. However, equation incorporating

the time factor exhibited minimal deviation from the value obtained

by straightforwardly summing temporal lobe doses voxel to voxel,

as shown in Figures 1–3. Therefore, the necessity of incorporating

interval time into the model was not clearly evident in our data.

Multivariate NTCP model was derived by analyzing dosimetric

variables, including relative dose delivered to specific volumes of

temporal lobe (in 0.5 cc bins from Dmax to D5cc), and clinical

factors, including primary and recurrent tumor stage, RT dose,

tumor volume, time interval between two RT courses,

chemotherapy, gender, and age. Possible clinical factors did not

reach statistically significant differences in multivariate analysis,

details were shown in Table 4. According to NTCP model, the TD5

and TD50 EQD2 re-RT dose of d1cc were 13.8Gy (0–20.35Gy), and

62.90Gy (42.49–80.93Gy), respectively. The TD5 and TD50 EQD2

dose of sum-dose d1.5cc were 65.26Gy(46.72–80.69Gy) and

125.25Gy(89.51–152.18Gy), respectively, see in Figure 4.

Model validation: If we consider the 2nd RT plan dose only, the

AUC of the verification set was 0.9008, (0.7881–1), p< 0.001; If we

consider the first and second RT plan dose individually, without

considering their cumulative effect, the AUC was 0.7745(0.6199–

0.9292), p=0.0012; For the accumulated EQD2 dose, the AUC was

0.8702 (0.7577–0.9828), p<0.001, as it’s shown in Figure 5.
Discussion

With the widely use of three-dimensional conformal

radiotherapy, dose-volume metrics are very important to

understand and evaluate the tolerance of normal tissue to dose

variation. Quantitative Analysis of Normal Tissue Effects in the

Clinic (QUANTEC) (11) reported the relationship between the

incidence of TLI and the volume dose of radiotherapy.

The bioequivalent doses of TD5 and TD50 with TLI at a single

dose< 2.5Gy were 120Gy (range: 100–140Gy) and 150Gy (range:

140–170Gy), respectively. However, it was generally believed that the
Frontiers in Oncology 0482
tolerated dose of temporal lobe tissue was higher than the

recommended reference dose of QUANTEC. There are very

limited number of studies on the DVH probability of TLI after

two-course radiotherapy for recurrent nasopharyngeal carcinoma.
TABLE 1 Clinical characteristics of 78 patients with recurrent
nasopharyngeal carcinoma.

Clinical
characteristics

Training set
No. (%)

Validation set
No. (%)

P
value

Gender

Male 39 (75.0) 20 (76.9) 0.924

Female 13 (25.0) 6 (23.1)

Median age (y) (range) 45 (29–66) 49 (30–62) 0.725

T stage of primary tumor

1–2 29 (55.8) 12 (46.2) 0.728

3 14 (26.9) 7 (26.9)

4 9 (17.3) 7 (26.9)

N stage of primary tumor

0–1 32 (61.5) 14 (53.8) 0.261

2–3 20 (38.5) 12 (46.1)

RT dose of primary tumor

66 23 (44.2) 10 (38.5) 0.493

70.4 29 (55.8) 16 (61.5)

Interval between 1st

and 2nd

RT (range)

23.5 (12.1–108.3) 33.1 (13.8–84.4) 0.531

T stage of recurrent tumor

0–2 31 (59.6) 12 (46.1) 0.742

3 16 (30.8) 10 (38.5)

4 5 (9.6) 4 (15.4)

N stage of recurrent tumor

0 38 (73.1) 17 (65.4) 0.498

1 13 (25.0) 9 (34.6)

2 1 (1.9) 0 (0)

RT dose of recurrent tumor

60 10 (19.2) 6 (23.1) 0.971

62 3 (5.8) 2 (7.7)

64 3 (5.8) 1 (3.8)

66 36 (69.2) 17 (65.4)

Induction
chemo

Yes 25 (48.1) 12 (46.2) 0.283

No 27 (51.9) 14 (53.8)

Concurrent
chemo

Yes 13 (25.0) 5 (19.2) 0.373

No 39 (75.0) 21 (80.8)

Temporal
lobe injury

Yes 16 (32.7) 10 (38.5) 0.774

No 36 (67.3) 16 (61.5)
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Lee et al. (12) analyzed 487 cases of nasopharyngeal carcinoma

patients after re-radiotherapy, in which both primary and

retreatment radiotherapy were two-dimensional radiotherapy. They

found re-radiotherapy significantly increased the incidence of TLI. In

the meta-analysis of re-radiotherapy of brain tissue (13), they found

the two 2D radiotherapy treatments is safe when the sum of EQD2 is

less than 96Gy, and the probability of TLI was 0–3% when the sum of

EQD2 is less than 101Gy. Liu et al. (14) conducted dose-volumetric

analysis on TLI of 227 patients with recurrent nasopharyngeal

carcinoma. In these cases, the first course of radiotherapy was two-

dimensional radiotherapy and the second course of radiotherapy was

IMRT radiotherapy. However, in this study, the first temporal lobe
Frontiers in Oncology 0583
dose was an estimated dose, and there is a question about the

accuracy of directly summing two doses together.

Our study represents a comprehensive evaluation of the NTCP

model for TLI in recurrent nasopharyngeal carcinoma. The rigorous

approach includes the use of IMRT technology for both primary and

recurrent treatment, dual RT plans?, and a minimum 6-month follow-

up with availableMRI images. Based on theNTCPmodel, the TD5 and

TD50 of D1.5cc for the temporal lobe in our study, derived from the

cumulative effect of two radiotherapy plans, was 65.3Gy and 125.3Gy,

respectively. Notably, these values weremore stringent compared to the

EQD2-pMAX dose presented in Liu et al.’s study (14). This

discrepancy may be attributed to the overlap of high-dose regions

resulting from deformable image registration. TLI is often inevitable

when dealing with recurrent tumors with re-irradiation, especially for

recurrent tumors invading skull base or cavernous sinus. Consequently,

minimizing temporal lobe exposure for the second course treatment

planning is important. Consistent with prior research, our study

revealed a shorter latency time for TLI post re-radiotherapy, with a

median duration of 11.5 months.

The time interval between two radiotherapy treatments

influences the incidence of temporal lobe injury, because with the

extension of the interval time, the damage of normal tissue will

recover gradually. The study by Liu et al. (14) found that the risk of

TLI was significantly reduced in patients with nasopharyngeal

carcinoma whose interval time was > 26 months. The study by

Lee et al. (15) also found that the normal tissue tolerance of patients

with an interval of more than two years had a trend of improvement

compared with patients with recurrence within two years, but the

difference was not statistically significant. Ang et al. (16) carried out
TABLE 2 The ‘a’ value corresponding to maximum R2 value for different indices in linear time model.

d1 dmax d0.5cc d1cc D1.5cc D2cc D2.5cc D3cc D3.5cc D4cc D4.5cc D5cc

R2_max 0.1920 0.2069 0.2084 0.2227 0.2228 0.2186 0.1993 0.1911 0.1813 0.1777 0.1755 0.1745

max_a 0.0018 0.0020 0.0026 0.0026 0.0022 0.0024 0.0022 0.0020 0.0024 0.0024 0.0022 0.0026
fronti
The volume‐dose parameter corresponding to the maximum R2 value is D1.5cc. The value of 0.2228 in the table represent the highest Nagelkerke’s R squared values obtained by testing various 'a'
values and volume-dose parameters: applying different 'a' values to time models to calculate combined doses, computing dosimetric indices, and performing univariate logistic analysis.
TABLE 3 ROC curve analysis results with the ‘a’ value corresponding to maximum R2 value in linear time model as model parameter value.

Variable Area under ROC curve b p Lower- Upper limit Cutoff point Sensitivity Specificity

Dmax 0.8241 0.04718 <0.000 0.7317–0.9166 125.6 74.19 92.47

D0.5 0.8144 0.04600 <0.0001 0.7243–0.9046 119.6 67.74 90.32

D1 0.8103 0.04559 <0.0001 0.7209–0.8996 116.0 67.74 89.25

D1.5 0.8068 0.04427 <0.0001 0.7200–0.8936 115.3 61.29 91.4

D2 0.8075 0.04392 <0.0001 0.7214–0.8936 113.1 58.06 92.47

D2.5 0.7971 0.04554 <0.0001 0.7078–0.8864 109.5 58.06 87.1

D3 0.7867 0.04646 <0.0001 0.6956–0.8777 94.48 80.65 63.44

D3.5 0.7829 0.04657 <0.0001 0.6916–0.8741 91.74 77.42 66.67

D4 0.7792 0.04674 <0.0001 0.6876–0.8708 89.60 77.42 67.74

D4.5 0.7784 0.04697 <0.0001 0.6863–0.8704 87.27 77.42 68.82

D5 0.7763 0.04743 <0.0001 0.6833–0.8692 84.06 77.42 69.89
FIGURE 1

The relationship between ‘a’ value and R square of different indices
in linear time model.
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two-course irradiation on the spinal cord of 56 macaque monkeys,

and they believed that the spinal cord tolerance recovered

significantly within one year after radiotherapy and gradually

recovered further in the following years. In this study, we

endeavored to formulate two radiotherapy dose superposition

models by incorporating interval time variables in various

approaches, such as linear, quadratic, and exponential time

models. Our findings indicate that the equation incorporating the

time factor exhibited minimal deviation from the value obtained by

straightforwardly summing the temporal lobe doses voxel to voxel.

Furthermore, no statistically significant difference was observed in

the impact of interval time within the multifactor regression

equation. Therefore, we believe that the two doses can be

converted to EQD2 and then added on the corresponding voxels.
Frontiers in Oncology 0684
The possible reason is, the minimum interval between the two

radiotherapy treatments was 12 months, and the recovery of

temporal lobe tissue was most obvious within one year.

MIM software was applied to map the first dose distribution to the

second-course CT by registration of the two CTs. Python was applied

to calculate and add EQD2 voxel by voxel. The rigid registration of

these two CTs is challenging due to the relatively long interval between

CT scans (median 28 months in this study). While there’s uncertainty

in fusing MRI with CT, the rigid nature of the intracranial temporal

lobe minimizes shape changes. The study’s method, utilizing MIM

software for image fusion, is deemed effective in obtaining relatively
FIGURE 2

The relationship between ‘a’ value and R square of different indices
in quadratic time model.
FIGURE 3

The relationship between ‘a’ value and R square of different indices
in exponential time model.
TABLE 4 Multivariate logistic regression analysis for temporal lobe injury.

P value Wald 95% CI Regression function Nagelkerke’s R squared

Only second course RT indices

2nd D1 <0.001 13.841 1.036–1.121 S=0.075×2ndD1–4.649 0.285

First and second radiation therapy indices, but without dose combination

2ndD1 <0.001 12.190 1.032–1.117 S=0.071×2ndD1 + 0.084*1stDmax -10.281 0.497

1stDmax 0.030 4.688 1.008–1.173

Indices of combined dose

D1.5 <0.001 16.405 1.035–1.105 S=0.067×D1.5–8.216 0.330
FIGURE 4

Dose-response curves for temporal lobe injury.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1394111
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guan et al. 10.3389/fonc.2024.1394111
accurate results under these circumstances (17, 18). To enhance clinical

applicability, we addressed challenges such as the absence of the first-

course treatment plan or the inability to accumulate initial and

recurrent radiotherapy. In such cases, we employed corresponding

models for calculations, extending the practicality of our study to

accommodate diverse patient scenarios.

Beyond the considerations of volume-dose and interval time’s

impact on TLI discussed above, correlation analysis was performed to

investigate whether TLI was correlated with T stage, tumor volume, KPS

score, gender, age, dose prescription, and administration of concurrent

chemotherapy. No statistically significant difference was found in the

correlation between these clinical factors and the occurrence of TLI. Su

et al. (5) reported the incidence of TLI in nasopharyngeal carcinoma

patients receiving chemo-radiotherapy is significantly higher than those
Frontiers in Oncology 0785
of patients receiving radiotherapy alone. However, NPC patients

received chemotherapy tend to be advanced stage, thus temporal lobe

would be exposed to higher dose. In this study, patients with advanced T

stage or larger tumor volume tended to have a higher proportion of TLI,

but the differences were not statistically significant.

The study acknowledges several limitations, including a small

sample size with both primary and secondary plans, inadequacy of

follow-up duration (minimum six months in this study), a relatively

low two-year overall survival rate (65%) which means that patients

may passed away before developing TLI). Furthermore, developing

a more comprehensive grading system for TLI grades is crucial,

differentiating between mild (grades 1–2) and severe cases (grades

3–4). Achieving precision in these distinctions requires a larger

sample size to ensure the accuracy of the results.
Conclusion

In this study, anNTCPmodel of temporal lobe injury after re-IMRT

radiotherapy for recurrent nasopharyngeal carcinoma was established.

The most important factors affecting TLI was the sum-dose d1.5cc of

TL. According to NTCPmodel, the TD5 and TD50 EQD2 dose of sum-

dose d1.5cc were 65.26Gy (46.72–80.69Gy) and 125.25Gy (89.51–

152.18Gy), respectively. When considering only the re-IMRT dose,

the TD5 and TD50 EQD2 re-RT dose of d1cc for TLI were 13.8Gy

(0–20.35Gy), and 62.90Gy (42.49–80.93Gy), respectively. Consequently,

minimizing temporal lobe exposure during re-RT planning is crucial.
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Clinical validation of commercial
deep-learning based auto-
segmentation models for organs
at risk in the head and neck
region: a single institution study
Casey L. Johnson1, Robert H. Press1, Charles B. Simone 2nd1,
Brian Shen1, Pingfang Tsai1, Lei Hu1, Francis Yu1,
Chavanon Apinorasethkul1, Christopher Ackerman1,
Huifang Zhai1, Haibo Lin1 and Sheng Huang1,2*

1New York Proton Center, New York, NY, United States, 2National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute &
Hospital, Tianjin, China
Purpose: To evaluate organ at risk (OAR) auto-segmentation in the head and

neck region of computed tomography images using two different commercially

available deep-learning-based auto-segmentation (DLAS) tools in a single

institutional clinical applications.

Methods: Twenty-twoOARs weremanually contoured by clinicians according to

published guidelines on planning computed tomography (pCT) images for 40

clinical head and neck cancer (HNC) cases. Automatic contours were generated

for each patient using two deep-learning-based auto-segmentation models—

Manteia AccuContour and MIM ProtégéAI. The accuracy and integrity of

autocontours (ACs) were then compared to expert contours (ECs) using the

Sørensen-Dice similarity coefficient (DSC) and Mean Distance (MD) metrics.

Results: ACs were generated for 22 OARs using AccuContour and 17 OARs using

ProtégéAI with average contour generation time of 1 min/patient and 5 min/

patient respectively. EC and AC agreement was highest for the mandible (DSC

0.90 ± 0.16) and (DSC 0.91 ± 0.03), and lowest for the chiasm (DSC 0.28 ± 0.14)

and (DSC 0.30 ± 0.14) for AccuContour and ProtégéAI respectively. Using

AccuContour, the average MD was<1mm for 10 of the 22 OARs contoured, 1-

2mm for 6 OARs, and 2-3mm for 6 OARs. For ProtégéAI, the average mean

distance was<1mm for 8 out of 17 OARs, 1-2mm for 6 OARs, and 2-3mm for

3 OARs.

Conclusions: Both DLAS programs were proven to be valuable tools to

significantly reduce the time required to generate large amounts of OAR

contours in the head and neck region, even though manual editing of ACs is

likely needed prior to implementation into treatment planning. The DSCs and
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MDs achieved were similar to those reported in other studies that evaluated

various other DLAS solutions. Still, small volume structures with nonideal contrast

in CT images, such as nerves, are very challenging and will require additional

solutions to achieve sufficient results.
KEYWORDS

deep-learning, autosegmentation, head&neck cancer, OARs, radiotherapy
1 Introduction

The evolution of radiation therapy techniques in recent decades

has led to major improvements in dose conformality along with

precision in dose delivery. Modern methods of dose delivery such as

intensity-modulated radiation therapy, volumetric arc therapy, and

recently, intensity-modulated proton therapy all have proven to

improve local control as well as normal tissue sparing in various

tumor types (1–4).

However, to capitalize on the benefits of these treatment

modalities, target volumes and surrounding organs-at-risk

(OARs) must be carefully delineated on computed tomography

(CT) images. This is heavily demonstrated in the case of head and

neck cancer (HNC) that often lie in complex anatomical locations

surrounded by numerous OARs. The delineation of neighboring

structures is a time-consuming manual process, that mandates

experienced knowledge of the local anatomy. Furthermore,

manual delineation introduces inter-observer variability as

evidenced in several recent studies (5–7). OAR delineation

guidelines have been published by many authors to combat this

but vary widely causing difficulty when comparing dose-volume

relationships across studies (8). Consensus guidelines were

established in 2015 integrating advice and expertise from

radiation oncologists from across the world (9). However, even

with established evidence-based guidelines, inter-observer

variability still exists as shown in a study conducted by van der

Veen et al. (10)in which only around half of the participating

radiation oncologists utilized the standardized guidelines.

Methods of utilizing advancements in automatic segmentation

techniques have emerged to potentially combat lengthy processing

times and wide inter-observer variability. Atlas-based auto-

segmentation (ABAS) is one such method in which an ‘atlas’ of

OARs is established by training a software program with a dataset

that has OARs already labeled. An explanation of this process has

been published by Han et al. (11). This technique has been proven

to reduce processing time as well as generating appropriate

sedimentation for various OARs (12, 13). Another automated

segmentation method currently being investigated is deep-

learning-based auto-segmentation (DLAS). DLAS utilizes machine

learning to incorporate vast datasets and generate an automated

solution. This technique has shown promise in recent studies

assessing the efficiency in the head and neck region (14, 15).
0288
There are several commercially available ABAS software

programs as well as in-house developed DLAS programs that

have been validated on HNC. A comparison study conducted by

La Macchia et al. (16) compared three auto-segmentation programs

and reported significant reductions in time to generate quality

contours when compared to manual processes. However, many

studies have shown the contours generated by either ABAS or

DLAS methods still require additional manual editing to be

clinically acceptable (16–18). In a study conducted by van Dijk

et al. (19), time to generate clinically acceptable contours still

proved to be significantly less when created using either ABAS or

DLAS. Even still, the authors noted that the DLAS method used

outperformed ABAS when evaluating on a cohort of HNC patients.

However, large cohorts of training data sets are required to train

and get an accurate DLAS model. It is not feasible for each center to

develop and train their own DLAS model, thus commercially

available models or shared DLAS packages would be

advantageous. Evidence from clinical validation of DLAS

packages will allow for centers to identify solutions that will

provide optimal performance for their particular needs. Thus, this

study aims to clinically validate the generic models for HNC OAR

autocontouring of two commercially available deep-learning-based

auto-segmentation software packages, AccuContour (version 3.1,

Manteia Medical Technologies, Wisconsin, MI) and ProtègèAI

(version 1.0, MIM Software Inc., Cleveland, OH), Both MIM and

Manteia’s solutions include a generic HNC autocontouring model.

Quantitative evaluation on a set of 40 clinical HNC patients will

be performed.
2 Materials and methods

2.1 Expert contour creation

To validate each DLAS model, a cohort of 40 HNC patients

were selected who previously received treatment at our institution.

All patient data in this retrospective study was approved under an

internal review board. All planning CT (pCT) images consisted of

512 pixels × 512 pixels in each slice with voxel size of

0.98mm×0.98mm×1.50mm. All the CT data were acquired on the

same version of CT scanner (Somatom Definition AS, Siemens,

Forchheim, Germany) without contrast enhancement. In total, 22
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OARs were manually contoured to establish the expert contours

(ECs) on the pCT images by expert radiation oncologists at our

institution according to international consensus guidelines. These

OARs were divided into five groups: 1) Glandular: submandibular

and parotid glands; 2) Aerodigestive Tract: oral cavity, larynx,

esophagus, constrictor muscle; 3) Ocular and Aural: cochlea, lens,

eye; 4) Neural: brainstem, chiasm, spinal cord, optic nerves,

temporal lobes; 5) Other: mandible.
2.2 DLAS contour creation

In contrast to atlas model-based auto-segmentation which

utilizes a trained model of shape and appearance characteristics

of anatomy structures and then project onto a new image set

through deformable imaging registration, DLAS uses deep neural

network architectures with multiple (2 or more) hidden layers to

learn features from a dataset by modeling complex nonlinear

relationships. These architectures are usually formed by stacking

several different-type layers that transform input images to the

desired output. The transformation through convolution filters, or

kernels, reveals local connectivity between neurons of adjacent

layers exploiting spatially local correlation. This permits the

networks to learn features both globally and locally allowing the

network to detect subtle variations in the input data, which here

mean the features of different OARs. The training processes

generally utilize supervised learning by back-propagation

algorithms, which optimize the node weights to minimize the loss

between the predicted and known output through each training

iteration to a satisfactory level of accuracy. It remains to be

unanswered how many patient scans are optimal to produce

clinically acceptable results. One would agree that a robust dataset

that includes a large variability of patient anatomies would achieve

reasonable and robust model. During past years, more and more

commercial DLAS software have emerged and become clinically

available. The following two different DLAS packages were

implemented in our clinic and assessed in this study:

Manteia AccuContour is a commercial deep-learning-based

auto-segmentation software using deep convolutional neural

network models based on a U-Net architecture, the design of

which follows the work of Ronneberg et al. (20). The training

data included in the model consists of 100 HNC image sets acquired

from GE, Philips, and Siemens CT scanners. The HNC model was

then applied to the same 40 pCTs used in the expert contour

creation. As with the expert contour creation, a unique set of

autocontours (ACs) was generated for each patient case.

The MIM ProtégéAI generic HNC model is a cloud-based deep

learning segmentation model with a similar structure to U-Net. The

training data included in the model consists of about 400 HNC

images gathered from 31 institutions mainly across the US, but with

a few additional institutions located in Europe, Hong Kong, and

Australia. MIM’s HNC model was also applied to the 40 pCTs used

in the expert contour creation. No post-processing was completed

after the 3D volume generation for each contour. Again, a unique

set of ACs was generated for each patient case. The MIM ProtégéAI

autocontour model did not provide contours for temporal lobes,
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cochlea, or the constrictor muscle. Thus, only 17 OAR contours

were generated for each patient.
2.3 Evaluation metrics

For performance evaluation, the Sørensen-Dice similarity

coefficient (DSC) (21), and the mean distance (MD) between the

ECs and ACs for the OARs of each patient were calculated as a

comparison metric. The DSC is defined as:

DSC(A,B) =  
2 A ∩​ Bj j
jjA +j jBjj (1)

Which describes the overlapping volume between two

structures A and B. A value of 0 indicates no overlap; a value of 1

indicates complete overlap. The MD is a bi-directional measure of

the distance between the surface of two contours and is defined as:

MD(A,  B)  =  
1

N(A)o
N(A)
i=1 min d(ai, b ∈ SB)   (2)

Where N(A) is the total nodes on the surface of A structure, min

d(a, b ∈ SB) is the minimum Euclidean distance of node ai   to any

point b on surface of B. The smaller mean distance indicates the

surfaces of A and B are closer to each other. For every clinical case,

each OAR delineated on the ECs and ACs was compared,

generating a DSC and MD value. Results are presented as

averages across the patient cohort for each OAR with ranges

describing the performance of grouped OARs and mean ±

standard deviation describing the performance of specific OARs.
3 Results

3.1 Manteia AccuContour evaluation

The time to autocontour all 22OARs usingManteiaAccuContour

was 1min/patient. Table 1 lists the average DSC and MD values

between ECs and Manteia AccuContour ACs for each OAR.
○ GlandularOARs: the AccuContour model showed high DSCs

and contour agreement (0.73-0.78). The MDs were similarly

acceptable for both left and right parotid glands (1.75 ± 1.13,

1.88 ± 1.15mm, respectively). The left submandibular gland

MDs were slightly larger than the right submandibular gland

(2.05 ± 5.67, 1.72 ± 3.63mm, respectively).

○ Aerodigestive TractOARs: the AccuContour model generated

the best DSCs for the oral cavity (see Figure 1B) and

esophagus (0.80 ± 0.09, 0.75 ± 0.11, respectively), while

generating lower DSCs for the constrictor muscle and

larynx (0.55 ± 0.08, 0.42 ± 0.10, respectively). The MDs for

these OARs were relatively large (1.79-2.65mm).

○ Ocular and Aural OARs: AccuContour ACs resulted in high

DSCs for both eyes (0.83 ± 0.05) (see Figure 1A), and

moderate DSCs for the left and right lens and cochlea (0.68-

0.70). The MDs for all these OARs were low (0.16-0.70mm).
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○ Neural OARs: the AccuContour model showed high DSCs

for the brainstem and spinal cord (0.84 ± 0.05, 0.78 ± 0.06,

respectively). Both the right and left optic nerve were lower

(0.62 ± 0.10, 0.64 ± 0.08, respectively), and the chiasm

performed the lowest (0.28 ± 0.14) (see Figure 1A). The

resulting MDs were low for the brainstem and right and left

optic nerve (0.47-0.88mm) but were higher for the spinal

cord and chiasm (1.80-2.20mm).

○ Mandible OAR: ACs generated by AccuContour resulted in high

DSCs(0.90±0.07)andasimilarlyacceptableMD(0.43±0.15mm).
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3.2 MIM ProtègèAI evaluation

The average time to autocontour all 17 OARs using MIM

ProtègèAI was 5min/patient. Table 2 lists the average DSC and

MD values between ECs and MIM ProtègèAI ACs for each OAR.
o Glandular OARs: the ProtégéAI model showed high DSCs

for both left and right parotid glands (0.77 ± 0.13, 0.79 ±

0.09, respectively) (Figure 1B). The MDs were similarly
FIGURE 1

Comparison of ACs and ECs for, (A) Brainstem, Temporal Lobes, Eyes, Lenses; (B) Spinal Cord, Constrictor Muscle, Submandibular Glands, Parotid
Glands, Oral Cavity, Mandible.
TABLE 1 DSCs and MDs for multiple-subject Manteia AccuContour ACs vs. ECs.

Variable* OAR

Brainstem Chiasm Cochlea L Cochlea R
Constrictor
Muscle Esophagus

DSC 0.84 ± 0.05 0.28 ± 0.14 0.68 ± 0.13 0.68 ± 0.10 0.55 ± 0.08 0.75 ± 0.11

MD (mm) 0.88 ± 0.32 2.20 ± 1.28 0.24 ± 0.14 0.26 ± 0.12 1.98 ± 2.81 1.79 ± 6.74

Eye L Eye R Larynx Lens L Lens R Mandible

DSC 0.83 ± 0.05 0.83 ± 0.05 0.42 ± 0.10 0.68 ± 0.11 0.70 ± 0.10 0.90 ± 0.07

MD (mm) 0.70 ± 0.26 0.67 ± 0.27 2.65 ± 0.79 0.19 ± 0.15 0.16 ± 0.11 0.43 ± 0.15

Optic Nerve L Optic Nerve R Oral Cavity Parotid L Parotid R Spinal Cord

DSC 0.64 ± 0.08 0.62 ± 0.10 0.80 ± 0.09 0.78 ± 0.10 0.77 ± 0.11 0.78 ± 0.06

MD (mm) 0.47 ± 0.30 0.96 ± 0.61 2.31 ± 0.91 1.75 ± 1.13 1.88 ± 1.15 1.80 ± 5.43

Submandibular L Submandibular R Temporal Lobe L Temporal Lobe R

DSC 0.73 ± 0.19 0.73 ± 0.17 0.78 ± 0.09 0.78 ± 0.09

MD (mm) 2.05 ± 5.67 1.72 ± 3.63 2.78 ± 1.95 2.80 ± 2.02
*Mean ± Standard Deviation.
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acceptable for both the left and right parotid glands (1.31 ±

0.74, 1.44 ± 1.57mm, respectively).

o Aerodigestive TractOARs: the ProtégéAI model produced the

best DSCs for the oral cavity (Figure 1B) and esophagus

(0.82 ± 0.06, 0.75 ± 0.11, respectively), but resulted in lower

DSCs for the larynx (0.65 ± 0.09). The MDs for the

esophagus were relatively low (0.76 ± 0.50mm) but were

higher for the oral cavity and larynx (2.04 ± 0.71, 2.51 ±

0.97mm respectively).

o Ocular and Aural OARs: ProtégéAI ACs resulted in high

DSCs for both right and left eyes (0.89 ± 0.02, 0.89 ± 0.03,

respectively) (Figure 1A), but performed less effectively for

the left and right lenses (0.55 ± 0.27, 0.54 ± 0.29,

respectively). However, the MDs for these OARs were low

(0.43-0.62mm).

o Neural OARs: the ProtégéAI model showed high DSCs for

the brainstem and spinal cord (0.81 ± 0.04, 0.79 ± 0.05,

respectively). Like AccuContour, the right and left optic

nerve DSCs were lower (0.63 ± 0.13, 0.53 ± 0.09,

respectively), and again, the chiasm performed the lowest

(0.30 ± 0.14) (Figure 1A). The resulting MDs were low for

the left and right optic nerves (0.54 ± 0.34, 0.40 ± 0.22mm,

respectively), but were slightly higher for the brainstem,

chiasm, and spinal cord (1.04-1.49mm).

oMandible OAR: ACs generated by ProtégéAI resulted in high

DSCs (0.91 ± 0.03) and similarly acceptable MDs (0.62

± 0.32mm).
4 Discussion

Both ABAS and DLAS methods have shown promise in

reducing variability and time required to establish contours (22–

25). This study aimed to clinically validate two DLAS commercial

software programs by comparing automatically-generated OAR

contours with those created manually for a cohort of 40 HNC

patients. DLAS contours were evaluated with two gold-standard
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geometric measures. Reasonable agreement was shown for the

glandular OARs, eyes, brainstem, spinal cord, oral cavity,

esophagus, and mandible across both autocontour programs.

Moderate agreement was shown for the optic nerves and lenses,

constrictor muscle, and larynx (ProtégéAI specifically). There was

poor agreement for the larynx (AccuContour specifically) and

chiasm. The results demonstrate that each DLAS package can

adequately contour most HNC OARs efficiently in an

independent cohort of patients.

We were able to provide results that closely resemble those

reported in other DLAS studies in the head and neck region. There

is a consensus on the efficiency of DLAS programs to contour the

mandible and brainstem as reported by Brunenberg et al. (26) (DSC

0.95 and 0.87, respectively) validating another commercially-

available DLAS program, DLCExpert™. The results for the

glandular OARs and optic nerves in this study resemble those

reported by Ibragimov and Xing (15) (DSC parotid gland 0.78,

submandibular gland 0.73, optic nerve 0.65) using a convolutional

neural network (CNN) approach. Willems et al. (27) reported

pharyngeal constrictor muscle results (inferior, middle, and

superior constrictor muscle average DSC 0.55) that closely

resemble the overall constrictor muscle ACs generated in this

study. Overall, structures with larger volumes appeared to be

easier for the DLAS models to contour as given by the larger DSCs.

Figure 2 shows that all the ACs generated by MIM ProtégéAI

and Manteia AccuContour were comparable except for the larynx.

The average DSC for the larynx contoured by AccuContour was

noticeably lower than that of the larynx contoured using ProtégéAI.

When investigated further, it was noted that the larynx AC within

AccuContour was consistently omitting the airspace within the

larynx when generating a contour (Figure 3). Our institution’s

standard of practice for contouring the larynx is to include the

entire structure as well as the airspace within. This apparent

discrepancy led to less agreement between the EC and AC for the

larynx using AccuContour, while ProtégéAI was able to contour in a

similar fashion to our experts. Fortunately, Mantiea’s AccuLearning

software allows for the creation of in-house models. Should we want

to establish a DLAS model using our institution’s method of

contouring the larynx, we would be able to do so in the future.
TABLE 2 DSCs and MDs for multiple-subject MIM ProtégéAI ACs vs. ECs.

Variable* OAR

Brainstem Chiasm Eye L Eye R Larynx Lens L

DSC 0.81 ± 0.04 0.30 ± 0.14 0.89 ± 0.03 0.89 ± 0.02 0.65 ± 0.09 0.55 ± 0.27

MDs (mm) 1.04 ± 0.29 1.33 ± 0.95 0.47 ± 0.20 0.44 ± 0.19 2.51 ± 0.97 0.38 ± 0.17

Lens R Mandible Optic Nerve L Optic Nerve R Oral Cavity Parotid L

DSC 0.54 ± 0.29 0.91 ± 0.03 0.53 ± 0.09 0.63 ± 0.13 0.82 ± 0.06 0.77 ± 0.13

MDs (mm) 0.43 ± 0.40 0.62 ± 0.32 0.54 ± 0.34 0.40 ± 0.22 2.04 ± 0.71 1.31 ± 0.74

Parotid R Spinal Cord Submandibular L Submandibular R Esophagus

DSC 0.79 ± 0.09 0.79 ± 0.05 0.68 ± 0.23 0.70 ± 0.28 0.75 ± 0.11

MDs (mm) 1.44 ± 1.57 1.49 ± 4.55 2.41 ± 5.42 1.91 ± 3.36 0.76 ± 0.50
*Mean ± Standard Deviation.
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The OAR contours from each DLAS model which suffered the

most were the chiasm and optic nerves (Figure 4). The low average

DSCs of these structures do not appear unique to our study, as

several other papers have reported low values for the chiasm and

optic nerves (28–30). This can likely be attributed to small volumes

of these structures as well as low contrast to the surrounding brain

tissue in CT, making it difficult to accurately segment the structures

as noted by a study from Ren et al (31). In this study, investigators

were able to improve small structure DSCs (including the chiasm

and optic nerves) using a specialized 3D CNN approach. In a 2018

study aiming to improve segmentation for small volume structures

in the head and neck region, Tong et al. (28) were able to rescue the

low DSC of the chiasm and optic nerves to an extent by employing a

Shape Representation Model (SRM) to a Fully Convolutional

Neural Network (FCNN), improving the average DSC for these

small structures. Thus, further effort to adjust autocontouring
A

B

FIGURE 2

Comparison of Manteia AccuContour and MIM ProtègèAI for various OARs Sørensen-Dice similarity coefficients (A), and Mean Distances (B).
FIGURE 3

Comparison of AC and EC Larynx contour.
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solutions to accurately contour structures with small volumens

appears advantageous.

Our study does have potential limitations. First, the generic HNC

model withinMIM ProtégéAI does not currently contain the temporal

lobes, constrictor muscle, or cochlea. However, MIM’s research &

development team has confirmed that these structures will be included

in future updates and can be clinically validated at that time. We also

only validated each model on 40 pCTs from one institution, thus

limiting the power and generalizability of our results. Lastly, additional

manual editing of ACs after creation was not performed, and only the

first iteration of ACs generated was compared.

Thus, one consideration for future use is the practice of assessing

ACs with additional manual editing where needed. This practice has

proved useful in improving contour acceptability in previous studies.

Willems et al. (27) recorded the time required to correct ACs as well

as resulting DSCs and found that only an additional 15 minutes total

were required to improve the ACs. This was also confirmed in a study

by Teguh et al. (22), where the ACs were edited, improving similarity

metrics while still requiring less time thanmanually creating contours

from scratch. We did not routinely edit the contours generated by

ProtégéAI or AccuContour, but future work could include this

practice to assess time sparing and contour improvements.

While the auto-segmentation similarity metrics investigated in

this study are commonly used, future research should incorporate

advanced comparison metrics such as the surface DSC, as described

by Vaassen et al. (32). A comprehensive overview of additional

metrics is provided by Kiser et al. (33), who corroborate previous

findings that surface DSC may better correlate with clinical

applicability. Additionally, this study focused on the performance

of commercially available auto-segmentation solutions; however,

there is a growing trend of research teams developing open-source

solutions, available on platforms like GitHub (34, 35). These open-

source solutions often yield competitive results, rivalling

commercial software and may be of particularly beneficial for

research studies with limited funding or in clinics with

constrained resources. Beyond the two commercial artificial

intelligence based auto-segmentation software evaluated in this

study, other options such Mirada, MVsision, Radformation,
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Raystation and TheraPanacea also provide contours of

comparable quality for the organs at risk (OARs) in the head and

neck region (36). The structures covered by each system are

adequate for clinical application and can be customized for

specific anatomical sites. The reported accuracy metrics of each

system should be considered as one of the critical factors in the

decision-making process. Additionally, institutions should evaluate

the cost, service quality, and integration capability with existing

clinical workflows when selecting an auto-segmentation solution.
5 Conclusion

Both commercially available DLAS programs were able to

significantly reduce the time required to generate OAR contours,

even though manual editing of ACs is likely needed prior to

implementation into the clinic. The DSCs and MDs achieved

were similar to those reported in other studies that evaluated

various other DLAS solutions. Still, structures with small volumes

are difficult to generate accurate ACs for and will require additional

solutions to achieve sufficient contours.
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Consolidation immunotherapy
following concurrent
chemoradiotherapy in a patient
with sinonasal NUT carcinoma: a
case report
Xiaotao Geng1, Xiaolong Chang1, Xiaoli Wang1, Shunjia Li1,
Guiyan Han2, Zhiyu Song3, Furong Hao1 and Jianwen Li1*

1Department of Radiation Oncology, Weifang People’s Hospital, Weifang, China, 2Department of
Pathology, Weifang People’s Hospital, Weifang, China, 3Department of Otolaryngology, Weifang
People’s Hospital, Weifang, China
Background: Nuclear protein in testis (NUT) cancers, also known as midline

cancers, tends to occur in organs near the midline, such as the nasal sinuses and

mediastinum. NUT carcinoma is very rare and has a poor prognosis.

Case description: We report the case of a 44-year-old female patient with

sinonasal NUT carcinoma who presented with a soft tissue mass in the left frontal

sinus, ethmoid sinus, and left nasal cavity on computed tomography; the tumor

was poorly demarcated from the left rectus medialis. After discussion with a

multidisciplinary team with expertise on head and neck tumors, the patient was

considered inoperable, and definitive concurrent chemoradiotherapy (CCRT)

was recommended. The patient underwent CCRT followed by three cycles of

consolidation chemotherapy with albumin-bound paclitaxel and nedaplatin.

Subsequently, the patient underwent 16 cycles of consolidation therapy with

the programmed death–1 (PD-1) inhibitor tislelizumab. The immune-related

adverse events included grade 2 hypothyroidism. After CCRT, consolidation

chemotherapy, and consolidation immunotherapy, the patient achieved a

favorable outcome. The patient survived for 31 months, and there were no

signs of recurrence or metastasis during follow-up.

Conclusion: At present, there is no clear consensus on the consolidation

treatment plan after CCRT for sinonasal NUT cancer. We used consolidation

immunotherapy for the first time and achieved good efficacy, providing an

innovative and promising treatment plan for refractory sinonasal NUT cancer.
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1 Introduction

Nuclear protein in testis (NUT) carcinoma is extremely rare

and has mostly been reported in case studies; the main primary

tumor sites are the chest and head and neck (1, 2). The main

molecular feature is a rearrangement of the testicular nucleoprotein

gene (NUTM1). Although NUTM1 can fuse to numerous different

partner genes, it most frequently forms a BRD4-NUTM1 fusion

oncogene related to NUT carcinoma (2). The prognosis is very

poor, with a median survival of less than 1 year (3). The treatment

options for NUT cancer include surgery, radiation therapy, and

chemotherapy. Surgery is critical for the treatment of NUT cancer,

and surgery combined with postoperative chemoradiotherapy or

radiotherapy is associated with improved survival (4). For patients

with inoperable tumors or those who refuse surgery, radical

concurrent chemoradiotherapy (CCRT) is an alternative. Recent

advances in treatment options for head and neck NUT cancer

include induction chemotherapy, proton radiotherapy, and

immunotherapy. The SINTART 1 study showed that patients

with tumor shrinkage greater than or equal to 80% after

induction chemotherapy for surgically resectable sinonasal tumors

were given the option of radiotherapy and exemption from surgical

treatment (5). The SINTART 2 study showed that the addition of

induction chemotherapy to treatment regiments for inoperable

sinonasal tumors did not significantly improve survival (6). The

above two phase II studies of induction chemotherapy did not

include NUT cancers, and only one retrospective study of NUT

cancers has analyzed the value of induction chemotherapy. Ramesh

et al. (7) conducted a retrospective analysis of 12 patients with

sinonasal NUT cancer and concluded that induction chemotherapy

may be beneficial to patients. Patients with recurrent sinonasal

NUT may be considered for proton radiotherapy. Muramatsu et al.

(8) reported a case of sinonasal NUT carcinoma with local

recurrence followed by reirradiation using proton radiotherapy,

which led to complete response. In recent years, the rapid

development of immunotherapy has led to the development of

new options and useful additions to treatments for NUT cancer,

which is often refractory. Currently, treatment with PD-1 and

programmed death–ligand 1 (PD-L1) inhibitors has been

reported for a small number of patients with lung, thyroid, and

parotid NUT cancer (9, 10) but has not yet been reported for

sinonasal NUT cancer. Moreover, there is no standard for

consolidation regimens after CCRT. This study aimed to explore

new treatment options for NUT cancer and strategies for

consolidation immunotherapy after CCRT: we report the

treatment of one patient with sinonasal NUT cancer with

immunotherapy with PD-1 inhibitors after CCRT.
2 Case presentation

The patient was a 44-year-old female from Shandong, China. She

was first admitted to our hospital on 17 June 2021, with the complaint

of left eye pain and headache for 3 months. She had undergone surgery

for congenital heart disease 30 years prior. She was admitted to the

hospital and underwent relevant examinations. Nasal endoscopy
Frontiers in Oncology 0297
revealed a mass in the left middle nasal meatus adjacent to the left

middle nasal turbinate (Figure 1). Biopsy pathology revealed that the

tumor cells were blue, rounded, heterogeneous cells, some of which

were naked nucleated cells with minimal cytoplasm (Figures 2A, B).

Immunohistochemical (IHC) staining revealed tumor cells that were

positive for NUT expression (Figure 2C). The Ki-67 mitotic index was

nearly 70%. Epstein-Barr virus (EBV)-encoded RNA (EBER) in situ

hybridization was negative. Based on NUT IHC, a diagnosis of NUT

cancer was established. Further testing revealed positive PD-L1

expression in both tumor cells and immune cells (Figure 2D). The

percentages of tumor cells and immune cells with PD-L1 positivity

were 65% and 1%, respectively. Enhanced computed tomography (CT)

of the sinuses revealed that most of the mass was located in the left

ethmoid sinus, with the mass invading the frontal sinus upward,

invading the medial orbital wall and the rectus medialis to the left,

with a discontinuity of bone in the medial orbital wall on the left side of

the orbital wall, invading the intracranial area upward, and breaching

the wall of the floor of the sieve sinus downward into the middle nasal

passages (Figures 3A–C). 18F-fluorodeoxyglucose (18F-FDG)

PET/CT demonstrated hypermetabolic activity with increased

fluorodeoxyglucose uptake in the ethmoid sinus mass (maximum

standardized uptake value, SUVmax 27.7) (Figure 3D). Regional

lymph node involvement and metastatic disease were also excluded.

Considering the results of nasal endoscopy, paranasal sinus CT, and

PET/CT, the final diagnosis was sinonasal NUT carcinoma

(cT4bN0M0, stage IVA AJCC-8 version). After discussion with our

multidisciplinary team (MDT) of experts on head and neck tumors,

including the Department of Radiology, Pathology, Otolaryngology,

Radiation Oncology and Medical Oncology, we concluded that the

tumor was inoperable and recommended definitive CCRT. The patient

agreed with the treatment plan derived from the MDT discussion and

underwent definitive CCRT in our department. The gross tumor

volume (GTV) contained macroscopic primary tumor detectable on
FIGURE 1

Nasal endoscopy revealed a mass (black arrow) in the left middle
nasal meatus adjacent to the left middle turbinate (white arrow).
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CT imaging. The clinical target volume (CTV) was defined as the GTV

plus a 5- to 10-mm margin to encompass the sites of microscopic

extension including bilateral parapharyngeal space, bilateral

retropharyngeal lymph node drainage area, left II–IV lymph

drainage area, right partial II area, left cavernous sinus, bilateral sieve

sinus and pterygoid sinus, frontal sinus, left maxillary sinus,

nasopharyngeal, oropharyngeal, bilateral intrinsic nasal cavities,

cranial base, bilateral pterygoid plate, pterygoid, medial pterygoid

muscle, and pterygopalatine fossa. A planning target volume (PTV)

was generated by incorporating a three-dimensional margin of 3 mm

to the target volume in order to account for the uncertainties associated

with treatment setup and internal organ mobility. The prescribed doses

were 70 Gy and 60.06 Gy in 33 fractions, for the PTVs derived from

GTV and CTV, respectively. Volume-modulated arc therapy

technology was used to administer radiotherapy. During

radiotherapy, the patient received three cycles of synchronized

cisplatin chemotherapy (50 mg/m2 days 1–2 q3w) and sodium

glycididazole (1.25 g days 1, 3, and 5 qw). According to the

Response Evaluation Criteria in Solid Tumors, the efficacy of

chemoradiotherapy (1 month after CCRT) was evaluated as a partial

response (PR). Afterward, the patient received three cycles of

consolidation chemotherapy with albumin-bound paclitaxel (260 mg/

m2 day 1 q3w) and nedaplatin (80 mg/m2 day 1 q3w). The efficacy of

three cycles of consolidation chemotherapy was evaluated as PR

(Figure 3E). Considering that NUT cancer is a highly malignant
Frontiers in Oncology 0398
tumor with a poor prognosis, subsequent consolidation

immunotherapy was agreed upon after thorough communication

with the patient. Sixteen cycles of consolidation therapy with

intermittent tislelizumab (200 mg day 1) were started on 7 January

2022, and the last immunotherapy treatment was given on 6 December

2023. Details of the timing of the use of tislelizumab are given in the

Supplementary File. After 16 rounds of immunotherapy, the ethmoid

sinus lesions achieved a state of sustained remission, and the efficacy

assessment revealed a PR (Figure 3F). Adverse effects throughout

treatment are tolerable. Acute toxicity during radiotherapy is mainly

characterized by localized radiodermatitis of the facial skin. According

to the Radiation Therapy Oncology Group’s acute radiation morbidity

scoring criteria for skin, acute radiation dermatitis was grade 1. There

was no late toxicity after radiotherapy, and, to date, the patient has not

experienced vision loss. The immune-related adverse events included

grade 2 hypothyroidism. The recent workup on 6 December 2023

demonstrated no local recurrence or distant metastasis. The entire

treatment timeline of the patient is shown in Figure 4.
3 Discussion

Sinonasal NUT carcinoma is very rare. There is a lack of large-

scale epidemiologic studies and only a few retrospective studies with

small sample sizes. A review of the literature by Lee et al. revealed
FIGURE 2

(A, B) The tumor cells were blue rounded heterogeneous cells, some of which were naked nucleated cells with minimal cytoplasm (hematoxylin and
eosin; original magnification, ×200 and ×400); (C) positive NUT staining in the nucleus of tumor cells (hematoxylin and eosin; original magnification,
×200); (D) positive PD-L1 staining in tumor cells and immune cells (hematoxylin and eosin; original magnification, ×200).
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that 4 of the 362 cases of poorly differentiated or undifferentiated

carcinomas of the head and neck were sinonasal NUT carcinomas

(11). A single-center study from China revealed that 3 of the 145

cases of sinonasal malignancies were NUT carcinomas (12). NUT

has a very unfavorable prognosis. The median survival time for
Frontiers in Oncology 0499
patients with primary NUT cancer of the chest is only 4.4 months

(13). Compared to that for primary tumors in the lungs, the median

survival time for primary NUT cancers of the head and neck is

slightly greater, at only 9.7 months (13). In head and neck NUT

cancers, survival may also vary depending on the location of the
FIGURE 3

(A) CT axial view showed a mass in the left ethmoid sinus that was poorly demarcated from the left rectus medialis; (B) CT coronal view showed the
mass invading the left orbit with intracranial invasion; (C) CT sagittal view shows the mass invading the frontal sinus with intracranial invasion; (D)
PET/CT revealed a hypermetabolic mass with an SUVmax of 27.7 in the left ethmoid sinus; (E) CT after three cycles of consolidation chemotherapy
revealed that the left ethmoid mass was considerably reduced compared with the previous mass, and the efficacy evaluation was PR; (F) the lesions
reached a state of sustained remission after 13 cycles of immunotherapy, and the efficacy evaluation remained a PR.
FIGURE 4

Timeline of the treatment. CCRT, concurrent chemoradiotherapy; PR, partial response.
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primary focus. A recent single-center study of 12 patients with

sinonasal NUT carcinoma revealed median OS and median disease-

specific survival times of up to 14.6 months (7).

Pathologic diagnosis of NUT cancer includes IHC and genetic

testing, and genetic testing methods include fluorescence in situ

hybridization (FISH), next-generation sequencing (NGS), and

reverse transcription–polymerase chain reaction (RT-PCR) (14).

Diffuse (>50%) positive NUT expression on IHC is sufficient for

diagnosing NUT cancer (15). The diagnosis of NUTMI molecular

rearrangements by FISH and NGS is not necessary, but the above

two tests are helpful in determining the prognosis of NUT cancer

patients (13). In this case, the patient was diffusely positive for NUT

expression according to IHC, and the diagnosis was confirmed on

this basis.

We reviewed the literature on sinonasal NUT cancer (7, 8, 12, 16–

30) (Table 1). Treatment decisions were made on the basis of the above
Frontiers in Oncology 05100
literature by first assessing the tumor stage. The treatments for locally

advanced disease include surgery combined with postoperative

adjuvant radiotherapy, definitive chemoradiotherapy, induction

chemotherapy combined with surgery, and induction chemotherapy

combined with radiotherapy. The treatments for metastatic disease

include chemotherapy combined with immunotherapy and debulking

surgery and chemotherapy combined with local palliative radiotherapy.

Bromodomain and extra-terminal domain inhibitors may be an option

after progression on first-line therapy for metastatic NUT cancer. In

this case, tumor was considered late stage and considered to be

unsuitable for surgical treatment by the MDT; ultimately, CCRT was

selected as the treatment strategy. After CCRT, we first performed

consolidation chemotherapy include albumin-bound paclitaxel and

nedaplatin. There are few previous studies on consolidation

chemotherapy after CCRT for sinonasal cancer. The consolidation

chemotherapy regimen can refer to the induction chemotherapy
TABLE 1 Summary of previous studies reporting sinonasal NUT cancer.

Authors Year
Number

of patients
Location Treatment Outcome

Ramesh et al. (7) 2024 12
Nasal cavity maxillary sinus

ethmoid
sphenoid

Surgery ± induction chemotherapy;
chemoradiotherapy ± induction chemotherapy

14.6 months
(median OS)

Caner et al. (16) 2024 1 Nasal cavity
Induction chemotherapy combined with
immunotherapy + surgery + radiotherapy

5.4 months
(OS)

Qayum et al. (17) 2024 1 Maxillary sinus Endoscopic sinus surgery+ maxillectomy NM

Arai et al. (18) 2024 1 Maxillary sinus
Induction cheomotherapy + chemoradiotherapy
(initial treatment); immunotherapy + targeted
therapy and chemotherapy (after progression)

11 months
(OS)

Wang et al. (12) 2023 3
Nasal cavity maxillary sinus

ethmoid
Surgery + radiotherapy

One patient 13
months (OS); two
survived 12 and

15 months

Wartenberg et al. (19) 2023 1 Maxillary sinus Surgery + radiotherapy NM

da Costa et al. (20) 2023 1 Nasal cavity Chemotherapy NM

Zheng et al. (21) 2023 1 Maxillary sinus Chemoradiotherapy + chemotherapy NM

Wei et al. (22) 2022 1 Nasal sinus; frontal sinus Surgery + radiotherapy NM

Muramatsu et al. (8) 2022 1 Ethmoid Chemoradiotherapy survived 26 months

Patel et al. (23) 2021 1 Sphenoid
Ehemotherapy + radiotherapy (initial

treatment); targeted therapy (after progression)
survived 21 months

Vakani et al. (24) 2020 1 Sphenoid NM NM

Oliveira et al. (25) 2019 1 Maxillary sinus
Induction cheomotherapy + chemoradiotherapy;

chemotherapy (after progression)
NM

Arimizu et al. (26) 2018 1 Nasal cavity
Chemotherapy + chemoradiotherapy + surgery;

chemotherapy + targeted therapy
(after progression)

9 months
(OS)

Edgar et al. (27) 2017 1 Nasal cavity Surgery + radiotherapy and chemotherapy
3 months
(OS)

Yang et al. (28) 2015 1 Nasal cavity Surgery + radiotherapy and chemotherapy Survived 10 months

Suzuki et al. (29) 2014 1 Nasal cavity Chemoradiotherapy Survived 12 months

Hsieh et al. (30) 2011 1 Nasal cavity Chemoradiotherapy NM
NM, not mentioned.
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regimen. The most commonly used induction chemotherapy regimens

for sinonasal cancer are docetaxel and platinum (TP) and docetaxel,

cisplatin, and fluorouracil (TPF) (31). TP includes paclitaxel and

cisplatin, and TPF includes paclitaxel, cisplatin, and fluorouracil.

These two consolidation chemotherapy regimens also provide a

reference for consolidation chemotherapy for nasal sinus NUT

cancer. At the end of CCRT and consolidation chemotherapy, the

patient received consolidation immunotherapy based on three

considerations. First, recent evidence has confirmed that

consolidation therapy with immune checkpoint inhibitors (ICIs) can

improve the survival of patients with lung and esophageal cancer after

CCRT (32–34). In rare tumors, such as pulmonary sarcomatoid

carcinoma (PSC) and pulmonary pleomorphic carcinoma (PPC),

there are also case reports of encouraging results with consolidation

immunotherapy after CCRT (35, 36). Although there is currently no

evidence of survival benefits from ICI consolidation therapy after

CCRT in patients with head and neck tumors, these findings in

patients with lung and esophageal cancer can guide studies on head

and neck tumors. A summary of clinical trials or case reports of

consolidation immunotherapy after radiotherapy for malignant tumors

is listed in Table 2 (32, 35–42). These clinical trials and case reports

provide some reference for the selection of future consolidation ICI

regimens after chemoradiotherapy for sinonasal NUT cancer patients.

Second, although the patient’s treatment efficacy after radiotherapy was

evaluated as PR, NUT cancer has a poor prognosis and is prone to

recurrence and metastasis, and good recent treatment efficacy may not

necessarily indicate a good long-term prognosis. Thus, maintenance

therapy may be needed after radical treatment is completed.

Maintenance therapy requires the selection of an agent that is both

highly effective and less toxic, and PD-1 inhibitor immunotherapy may
Frontiers in Oncology 06101
be an option. Third, the case in this study had high PD-L1 expression

in tumor cells. High-dose anti–PD-1/anti–PD-L1 therapy is generally

believed to indicate a greater response rate and clinical benefit when

PD-L1 is expressed (43). According to a recent report from the NUT

symposium, patients with PD-L1 positivity or a high tumor mutation

load can receive ICIs in combination with chemotherapy (15).

Additionally, there have been recent case reports of the combined

use of immunotherapy in head and neck NUT cancers. One patient

had thyroid NUT cancer combined with carelizumab immunotherapy

in addition to postoperative chemotherapy (9). Another case involved

parotid NUT cancer, which was treated with targeted agents combined

with sintilimab immunotherapy after multiple postoperative

metastases were detected (10).
4 Conclusions

NUT carcinoma of the nasal cavity and sinuses is very rare,

and only 50 cases have been reported in the literature. Surgery is

the first choice for the treatment of NUT carcinoma, and CCRT

can be chosen for patients who cannot be treated surgically.

Compared with surgery, radiotherapy has the advantage of

preserving organ function, thus improving the quality of life of

patients. There is no consensus yet on consolidation treatment

after CCRT. In this case, we studied a case of ethmoid NUT cancer

that was treated with consolidation PD-1 inhibitor therapy after

CCRT, which yielded a good therapeutic response. More case

studies are needed in the future to validate the efficacy of

consolidation immunotherapy after CCRT and to study the

underlying mechanisms involved.
TABLE 2 Summary of clinical trials or case reports of consolidation ICI after chemoradiotherapy in patients with different cancer.

Trial/NCT
number/authors

ICI Target Dose Frequency Duration (time/cycles)
Cancer
type

RATIONALE 311 (37)

Tislelizumab PD-1 200 mg

q3w 24 months ESCC

Geng et al. (our case) Irregular 23 months
Sinonasal

NUT cancer

NCT03671265 (38) Camrelizumab PD-1 200 mg q2w
32 weeks (from the beginning

of radiotherapy)
ESCC

InTRist (39) Toripalimab PD-1 240 mg q3w 12 months or until progression NSCLC

KEYNOTE-412 (40) Pembrolizumab PD-1 200 mg q3w 14 cycles HNSCC

PACIFIC (32)

Durvalumab PD-L1

10 mg/kg q2w 12 months or until progression NSCLC

ADRIATIC (41) 1,500 mg q4w
24 months or until PD or

intolerable toxicity
SCLC

Wang et al. (36) 620 mg q2w 12 months PSC

Yorozuya et al. (35) NM NM 12 months PPC

JAVELIN Head and Neck
100 (42)

Avelumab PD-L1 10 mg/kg q2w 12 months HNSCC

NCT03377400 (34)
Durvalumab PD-L1 1,500 mg

q4w 24 months ESCC
Tremelimumab CTLA4 75 mg
ICI, immune checkpoint inhibitor; NCT, National Clinical Trial; PD-1, programmed cell death–1; PD-L1, programmed cell death–ligand 1; NM, not mentioned; q3w, every 3 weeks; q2w, every 2
weeks; q4w, every 4 weeks; CTLA4, cytotoxic T-lymphocyte antigen–4; ESCC, esophageal squamous cell carcinoma; NSCLC, non–small-cell lung cancer; SCLC, small cell lung cancer; HNSCC,
head and neck squamous cell carcinoma; PSC, pulmonary sarcomatoid carcinoma; PPC, pulmonary pleomorphic carcinoma.
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Complete remission after
sintilimab combined with
chemoradiotherapy in double
primary head and neck
carcinoma: case report
Xiameng Lu1,2†, Bibo Tan1†, Liuting Yang1 and Suning Huang1*

1Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning,
Guangxi, China, 2Medical College of Oncology, Guangxi Medical University, Nanning, Guangxi, China
The simultaneous occurrence of head and neck squamous carcinoma in two

anatomical sites is rare, posing challenges in treatment selection. This paper

presents a clinical case of concurrent hypopharyngeal carcinoma and

nasopharyngeal carcinoma, successfully treated with a combination of

chemoradiotherapy and an immune checkpoint inhibitor. The patient achieved

complete remission and progression-free survival of nearly 3 years, with

preserved organ function and minimal toxic side effects, leading to a good

quality of life. This case highlights the potential of combined concurrent

chemoradiotherapy and immune checkpoint inhibitors in managing double

primary HNSCC, offering a promising treatment option for these patients.
KEYWORDS

head and neck carcinoma, double primary tumor, immune checkpoint inhibitor,
chemotherapy, radiotherapy, case report
Introduction

Hypopharyngeal cancer, a common malignant tumor with a poor prognosis, poses a

significant threat to human health and quality of life. Nasopharyngeal cancer typically

presents as locally advanced at diagnosis, with radiotherapy being the primary treatment.

Although both hypopharyngeal and nasopharyngeal cancers are classified as head and neck

squamous carcinoma (HNSCC), the incidence of double primary cancers arising in these

two regions is rare. Consequently, there is a scarcity of treatment protocols that specifically

address this uncommon condition. Moreover, the potential of immunotherapy in treating

double primary cancers warrants further exploration.

In this report, we present the case of a 70-year-old male patient diagnosed with

hypopharyngeal and nasopharyngeal cancers who underwent a treatment regimen

consisting of chemoradiotherapy and immunotherapy. The patient achieved complete

remission in both tumors and no evidence of recurrence or metastasis during 35 months of
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regular follow-up assessments. Furthermore, the patient

experienced minimal toxic side effects and maintained good

organ function and a high quality of life.

This case highlights the potential efficacy of combining

chemoradiotherapy with immune checkpoint inhibitors (ICIs)

managing advanced double primary HNSCC, suggesting a

promising treatment approach for patients with similar presentations.
Case presentation

We present a case of a 70-year-old male patient. The patient

presented with a sore throat and obstruction sensation. Over the

past three months, the patient’s throat pain has relapsed repeatedly,

with worsening the sensation of swallowing obstruction and

difficulty opening the mouth, leading to a consultation at the

hospital. A head and neck magnetic resonance imaging (MRI)

showed that an abnormal signals in the posterior wall of the

hypopharynx, with invasion into the right pyriform sinus,

epiglottis, and bilateral aryepiglottic folds. The tumor

demonstrated unclear demarcation from the thyroid and

compressed the trachea. The nasopharyngeal wall is thickened,

with enlarged retropharyngeal lymph nodes (Figure 1). PET-CT

scans were performed and showed no signs of metastasis in other

organs, except for hypermetabolism in the hypopharyngeal,

nasopharynx and metastatic lymph nodes in the neck.

Subsequently, surgical procedures performed on the patient

included direct laryngoscopy, transoral laryngeal mass excision,

rigid esophagoscopy, and tracheostomy. The tracheostomy was

performed to establish an open airway due to the trachea

compression and to prevent potential suffocation during

treatment. During the laryngoscopy, a mass was observed on the

posterior wall of the hypopharynx, extending into the right

pyriform sinus. A biopsy of the mass was taken for pathological

diagnosis. The esophagoscopy was performed, and no abnormalities

were noted. Pathology indicated keratinized squamous cell

carcinoma of the hypopharynx (Figure 2A). He then underwent a

fibro-laryngoscope examination and revealed a nasopharynx mass.

A biopsy of the nasopharyngeal confirmed it was non-keratinizing

undifferentiated squamous cell carcinoma (Figure 2B), with positive

EBERs staining.

The patient was in good physical health prior to treatment,

exhibiting no heart, brain, liver, or kidney diseases, and was not on

any long-term medication. He worked as a farmer, with no

exposure to chemical toxins, industrial dust, or radiation. The

patient has a 30-year smoking history, with a smoking index of

450 (30 pack-years). And he has consumed alcohol for 30 years,
Abbreviations: HNSCC, head and neck squamous cell carcinoma; ICI, immune

checkpoint inhibitor; NPC, nasopharyngeal carcinoma; MRI, magnetic resonance

imaging; IMRT, intensified modulated radiotherapy; NCCN, National

Comprehensive Cancer Network; PFS, progression-free survival; ORR,

objective response rate; OS, overall survival; PD-1, programmed cell death

protein 1.
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averaging 50 mg per day. Following his diagnosis in July 2021, he

ceased both smoking and alcohol consumption.

In conclusion, the patient presented with a sore throat and

odynophagia. Physical examination revealed palpable lymph

nodes in the right neck. Imaging examination identified masses

in the hypopharynx and the nasopharynx, with local invasion into

the thyroid and trachea. Pathological examination indicated

different histological type in hypopharynx and nasopharynx.

Two anatomical site masses with different histological type raise

the certainty of a double primary malignancy. The diagnosis of

double primary cancers presents challenges. In terms of

hypopharyngeal carcinoma, the tumor was located in the

posterior wall of the hypopharynx, invading the pyriform sinus,

thyroid and trachea, and was classified as T4a. Bilateral cervical

lymph node metastasis leading to a staging of N2c. In terms of

NPC staging, the patient exhibited a thickened posterior

nasopharyngeal wall without infiltration of the pharyngobasilar

fascia, leading to a local classification of T1. Besides, the boundary

between the retropharyngeal lymph node and nasopharynx

was unclear while the lymph node was anatomically distant

from the hypopharyngeal tumor. Therefore, we prefer that

nasopharyngeal carcinoma with retropharyngeal lymph node

metastasis, leading to a staging of N1. Following the staging

criteria for double primary tumors, the diagnosis was as follows:

1. Hypopharyngeal squamous cell carcinoma (T4aN2cM0 IVA,

AJCC8th); 2. Nasopharyngeal non-keratinizing undifferentiated

carcinoma (T1N1M0 II, AJCC8th).

Following a multidisciplinary discussion, the treatment

approach of “radiotherapy-chemotherapy-immunotherapy” has

been established. The patient received three cycles of induction

therapy, including albumin-bound paclitaxel combined with

cisplatin chemotherapy, along with the ICI sintilimab. The doses

were as follows: albumin-bound paclitaxel 260mg/m2 d1, cisplatin

75mg/m2 d1-2, sintilimab 200mg d1. Subsequently, the patient

received concurrent chemotherapy and intensified modulated

radiotherapy (IMRT). The gross tumor volume (GTV) included

tumors in the hypopharynx and nasopharynx, retropharyngeal

lymph nodes, and adjacent organs invaded by the tumor. The

GTVnd was defined as the metastatic cervical lymph nodes. The

GTV was expanded by 1 cm to establish the clinical tumor volume

(CTV), which encompassed potential sites of tumor invasion and

the drainage area of the bilateral cervical lymph nodes. The

prescribed radiation doses were as follows: 6MeV, X-ray, PGTV:

60.2Gy/28f (2.15Gy/f), PGTVnd-L/R: 60.2Gy/28f (2.15Gy/f),

PCTV: 50.4Gy/28f (1.8Gy/f), with acceptable dose limits for

normal organs (Figure 3). The patient also received the fourth

cycle of chemotherapy combined with sintilimab shortly before

completing radiotherapy, maintaining the exact dosages as

previously mentioned. Throughout the treatment, this patient

experienced grade 2 leukopenia, grade 2 acute radiation-induced

mucositis, and mild gastrointestinal reactions. A nutrition nursing

unit was established in the radiotherapy ward to provide

comprehensive nutritional guidance, including intravenous

nutrition and oral supplementation. The patient maintained a

satisfactory nutritional status, experiencing only a 2 kg weight

loss, and therefore did not undergo a gastrostomy.
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An MRI re-assessment after comprehensive therapy indicated a

complete tumor regression, including hypopharyngeal and

nasopharyngeal mass, as well as the adjacent peripheral soft tissue

and metastatic lymph nodes (Figure 2). The nasopharyngoscope

confirmed that the tumor mass had complete remission. The patient

subsequently received regular immunotherapy maintenance for a

year. The therapeutic efficacy was assessed to have achieved a

complete clinical response (cCR). Over a 35months follow-up

period, the patient’s self-care abilities and organ functions

remained usual, with no adverse events or complications

reported. The clinical timeline is shown in Figure 4.
Discussion

Multiple primary malignant tumors, referring to the patient

simultaneously occurring two or more primary malignant tumor,

present significant clinical challenges. The pathogenesis of multiple

primary tumors has not been clarified but may be related to genetic

susceptibility, viral infection, and radiation induction (1). The

double primary head and neck cancer in hypopharyngeal and

nasopharyngeal is rare and presents a poor prognosis and low

quality of life, posing substantial challenges for clinical treatment.
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This case involves a patient with double primary HNSCC. Based

on the multiple primary tumors treatment guideline in China and the

poorer prognosis associated with hypopharyngeal carcinoma, we

prioritized the control of hypopharyngeal cancer while incorporating

treatment strategies for NPC (2). The treatment approach of

“radiotherapy-chemotherapy-immunotherapy” has been established.

For one thing, induction chemotherapy followed by concurrent

chemoradiotherapy is recommended by National Comprehensive

Cancer Network (NCCN) guideline due to the complicated anatomy

in nasopharynx and hypopharynx. Specifically, paclitaxel combined

with platinum is suitable for both induction and concurrent

chemotherapy in hypopharyngeal carcinoma (category 1). Besides,

locally advanced HNSCC presents challenges in effectively targeting

cells at the center of the tumor, resulting in treatment resistance.

Immunotherapy enhances body’s anti-tumor immunity, enabling the

elimination of these resistance tumor cells.

We finalized a treatment consisting of a induction chemotherapy

and partially hypofractionated radiotherapy dose of 60.20 Gy over 28

fractions (2.15 Gy per fraction) with concurrent ICI and

chemotherapy. On the one side, in the 2022 NCCN guidelines, the

combination of paclitaxel with cisplatin was recommended for

induction chemotherapy in HNSCC (category 1). Albumin-bound

paclitaxel, approved by the US FDA for the first-line treatment of
FIGURE 1

Response evaluation during the clinical course. (A) Representative images of the MRI scan revealed the decreasing process of both hypopharyngeal
primary cancer and metastasis lymph nodes. Red arrows indicate tumor lesions. (B) Representative images of the MRI scan revealed the decreasing
process of both nasopharyngeal primary cancer. Red arrows indicate tumor lesions.
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non-small cell lung cancer (3), breast cancer (4), ovarian cancer (5),

and pancreatic cancer (6), has been demonstrated to simplify pre-

treatments and reduce allergic events during chemotherapy. The

dosage was settled: albumin-bound paclitaxel 260mg/m2 d1, cisplatin

75mg/m2 d1-2. Furthermore, the 2022 NCCN guidelines also

recommend paclitaxel and cisplatin as concurrent chemotherapy

agents (category 2B) or weekly cisplatin for concurrent

chemotherapy following induction chemotherapy (category 2B).
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Therefore, the patient received three cycles of albumin-bound

paclitaxel with cisplatin before radiation and exhibiting a favorable

response (Figure 2). Then he received the fourth cycle of albumin-

bound paclitaxel with cisplatin based on the tumor response and

the guideline.

On the other side, China was in the challenging stage of

COVID-19 epidemic prevention and control measures at the time

of treatment. Hypofractionated radiotherapy, which shortens the
FIGURE 3

Dose profile of the primary cancers and the metastasis lymph nodes.
FIGURE 2

Histopathology of the cancer of this patient. (A) Microscopic observation (4x,20x) of H&E staining of the hypopharyngeal lesion. (B) Microscopic
observation (4x, 10x) of H&E staining of the nasopharyngeal lesion.
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overall treatment duration and minimizes patient hospital

exposure, was anticipated to lower the risk of COVID-19

infection (7). Evidence indicates that the hypofractionated

regimen (2.2-2.75 Gy per fraction, daily for five days a week)

demonstrates enhanced efficacy and reduced toxicity in elderly

patients with HNSCC (8, 9). The ASTRO and ESTRO guidelines

also recommend increasing conventional radiation doses for

HNSCC during the pandemic (10). This hypofractionated

radiotherapy protocol was determined with the patient’s full

informed consent.

Despite receiving chemoradiotherapy, the prognostic survival of

patients with local advanced HNSCC, especially double primary

carcinoma, remains unsatisfactory. Studies have confirmed that the

median survival time for double primary cancers is 22.8 months (1).

Researches showed that immunotherapy improved patients’ long-

term survival with locally advanced HNSCC. For immunotherapy,

pembrolizumab was recommended as a first-line treatment for

unresectable HNSCC. Both sintilimab and pembrolizumab are PD-1

inhibitors that limit tumor evasion and activate the immune response.

Sintilimab, an IgG4 monoclonal antibody, mitigates tumor-induced

immunosuppression by binding to programmed cell death protein 1

(PD-1), inhibiting its interaction with programmed death ligands2.

Additionally, sintilimab is economically accessible for patients.

Research has consistently shown the antitumor efficacy of sintilimab.

In recent years, there has been a deep exploration of programmed cell

death receptor 1 (PD-1)/programmeddeath ligand1 (PD-L1) immune

checkpoint inhibitors. Theoretically, ICIs reduce immune evasion by

tumor cells and enhance the function of tumor-specific T-cells,

potentially improving overall anti-tumor effectiveness (11).

Prospective trials have shown that ICIs significantly improve

objective response rate (ORR) and 2-year overall survival (OS) in

HNSCCpatients. APhase II clinical trial conducted byProfessor Zhou

and his colleagues investigated the efficacy and safety of sintilimab in

patients with platinum-resistant HNSCC. The trial results

demonstrated that sintilimab significantly prolonged progression-
Frontiers in Oncology 05108
free survival (PFS) without increasing the incidence of adverse effects

(12). Besides, the KEYNOTE-048 study (NCT02358031) at Yale

Cancer Center showed that pembrolizumab combined with

chemotherapy had a better OS than the standard treatment in

HNSCC patients (13). Checkmate 141 and Keynote-040 studies

demonstrated a significant OS benefit with the second line of the

immune checkpoint inhibitor PD-1over standard therapy in recurrent

or metastatic HNSCC (14, 15). These research findings indicated that

sintilimab can be a promising immune checkpoint inhibitor in locally

advanced HNSCC, which offering new treatment options for HNSCC

or other carcinoma, thereby expanding the therapeutic possibilities for

cancer patients.

Furthermore, the optimaldurationofmaintenance immunotherapy

remains uncertain. Based on previous research findings, a maintenance

immunotherapy period of 1 to 2 years is a viable option (16, 17). The

patient ultimately received ICI maintenance therapy for 1 year but

discontinued it for personal reasons. Clinical trials (NCT04557020,

NCT04453826, NCT03700476) are currently enrolling participants,

aiming to advance medical applications and guide optimal treatment

strategies for HNSCC in the era of immunotherapy.

However, there are limitations to the treatments and dilemmas in

strategizing the approach. On the one hand, despite the patient

achieving nearly complete tumor regression during induction

treatment, as well as the bioequivalent dose of the radiotherapy

regimen exceeding 70 Gy, conventional fractionation remains the

predominant method for treating HNSCC. Some hypofractionated

radiotherapy protocols are still in clinical trials, lacking randomized

controlled trials and long-term follow-up data. Nevertheless, upon

reviewing the available data, many experts have endorsed partially

hypofractionated radiotherapy as the preferred dosage during the

pandemic, as it minimizes hospital exposure, particularly for elderly

patients, and reduces the risk of COVID-19 infection while

maintaining effective tumor control without significantly increasing

adverse effects (8, 9).On theotherhand, immunecheckpoint inhibitors

may lead to immune-related adverse events (irAE). Therefore,
FIGURE 4

The whole clinical timeline of the patient, with major treatment and disease status. PFS, progression-free survival.
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monitoring key indicators regarding the patient’s heart, liver, kidneys,

lungs, thyroid, and other organs is essential throughout the treatment

and follow-up. This approach enables prompt identification and

management of irAE, facilitating timely interventions or drug

discontinuation when necessary.

In all, the treatment strategy takes into account the COVID-19

epidemic and the patient’s characteristicswhile concerning the treatment

guidelines. The patient was well-informed about the treatment strategy

and demonstrated good compliance, facilitating the treatment process

and minimizing side effects. All therapeutic interventions were

communicated clearly, and comprehensive informed consent was

secured from the patient. After treatment, he regularly received

comprehensive examinations, revealing no disfunction in organs and

nosignsof tumorprogression.Thepatient’squalityof lifewassatisfactory.
Conclusion

This patient diagnosed with double primary cancer underwent

treatment with sintilimab and chemoradiotherapy, resulting in

complete regression of the tumor. This case underscores the

efficacy and safety of this regimen for hypopharyngeal carcinoma

and nasopharyngeal carcinoma. Nevertheless, further meta-

analyses and real-world clinical trials are warranted to validate its

efficacy in managing multiple primary HNSCC.
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Proof of concept of fully
automated adaptive workflow
for head and neck radiotherapy
treatments with a conventional
linear accelerator
Gaia Muti1*, Marco M. J. Felisi 1, Angelo F. Monti1,
Chiara Carsana2, Roberto Pellegrini3, Edoardo Salmeri3,
Mauro Palazzi2 and Paola E. Colombo1

1Medical Physics Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano
(ASST GOM) Niguarda, Milano, Italy, 2Radioteraphy Department, ASST GOM Niguarda, Milano, Italy,
3Elekta AB, Medical Affairs, Stockholm, Sweden
Introduction: The objective of this study is to evaluate the performance of an

automatic workflow for head-and-neck (H&N) radiotherapy using a multi-atlas

based auto-contouring software and an a-priori multicriteria plan optimization

algorithm and implement an adaptive online approach with CBCT images. Two

different modalities are investigated, the fluence-to-position (FTP) and the

adapt-to-shape (ATS) approach.

Materials and methods: Nine patients are used for the multi-atlas database. The

organs at risk (OARs) of the H&N district and five additional structures (air, fat,

tissue, bone and patient’s exterior) subsequently used for the creation of the

synthetic CT are auto-contoured with the Elekta ADMIRE
®
software. The mCycle

algorithm is used for the a-priori multicriteria plan calculation. A total of twenty

H&N patients are selected for this step. The automatic plans are compared to

manual VMAT plans by assessing differences in planning time, dose delivered to

targets and OARs, and calculating the plan quality indexes (PQIs). Two patients

are chosen for the retrospective CBCT adaptive online feasibility analysis. To

assess the differences for the two adaptive modalities, the clinical goals for

targets and OARs and the number of passed constraints are explored. An analysis

of the timing for the different steps is carried out to assess its clinical applicability.

Result: The dice of the five HU layer structures range between 0.66 and 0.99. The

mCycle auto-planning significantly reduces planning time, from 2 hours to 10

minutes. The radiotherapist deems all plans clinically acceptable, and in the

majority of cases the automatic plan is the preference choice. The automatic

plans enhance OARs sparing and preserve a good target coverage, this is also

confirmed by the PQIs result. Comparing FTP and ATS modes in adaptive

radiotherapy, ATS exhibits superior outcomes, mostly in the target coverage. In

the FTP techniques target coverage is inadequate and statistically different from

the accepted values. In the ATS the results align with the initial approved values.

Using the ATS mode the planning time takes around 14 minutes and

approximately 20 minutes for the entire treatment.
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Conclusion: This study contributes to the advancement of automatic and

adaptive radiotherapy, demonstrating the potential of an automated workflow

in H&N treatments.
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1 Introduction

Head and neck cancer is a challenging site to treat in terms of

contour definition, planning technique and anatomical changes

between sessions. Anatomical changes may occur from as early as

the first irradiation sessions. Inter-fraction changes, that include

shrinkage of the tumor and/or normal tissue, result in target

movement in different positions relative to other structures (1).

Adaptive radiation therapy (ART) is a process to control

anatomical variations over the treatment course. This provides a

day-by-day representation of the patient’s anatomy to better

delineate the target and the OARs volumes (2). ART can be

performed online or offline: both accommodate anatomical

changes during treatment, but differ in their implementation and

timing of treatment plan adaptations. Offline ART relies on

periodic, usually CT, imaging sessions, which are separated from

the actual treatment. It focuses on adapting the treatment plan

periodically for future sessions. Online ART involves the

observation of the patient’s anatomy using imaging techniques,

such as CBCT or MRI, and then it assesses the anatomical or

position changes before the treatment. In this way the treatment

plan is continually updated on a daily basis to account for the

current anatomical configuration. Online ART aims to enhance

treatment accuracy by reducing setup uncertainties and improving

target localization. In recent years, the rise of MRI-LINACs and the

resulting MRI image-guided radiotherapy (MRgRT) (3) has

renewed the interest in the field of adaptive online treatment,

which also has led to the investigation of ART with CBCT images

to promote its applicability on conventional linear accelerators.

The CBCT online ART workflow begins with a CBCT acquisition,

creating new reference images. PTVs and OARs can be propagated

from the planning CT onto the current CBCT. For the CBCT planning,

their inaccuracy in Hounsfield units (HU) and electron densities could

induce a non-negligible dose error (4). For this reason the use of a

synthetic CT (sCT) in CBCT planning is an essential point. The

densities of each volume are calculated from the initial planning CT

and subsequently assigned to the contours propagated on the CBCT,

resulting in a sCT. The final step is the creation of a new treatment plan

that exactly matches the anatomy of the day.

Using CBCT for online ART is a dynamic and iterative

treatment process. It requires fast image acquisition, quick

outlining of all relevant OARs and targets, and rapid plan
02112
creation (5). This can be accomplished by embedding automated

methods such as auto-contouring and auto-planning within

the workflow.

Atlas-based auto-segmentation and CT-to-CBCT deformable

propagation of OAR contours makes the deformable transfer of

original contours defined on the initial planning CT to daily CBCT

rapid and practical (6). Auto-planning systems such as knowledge-

based (KB) (7), protocol-based automatic iterative (8) and

multicriteria optimization (MCO) (9) allow the planning process

to be optimized while also reducing the timing.

ART is intended as a technological improvement offering

potential gains in therapeutic outcomes and reduced adverse

effects. Plan adaptation is related to anatomical, physiological, and

positioning changes observed during therapy. In head and neck

cancer patients, such changes can drastically affect the dose

distribution and hence the associated toxicities.

Weight loss during radiotherapy for head and neck cancers

leads to changes in body contour, fat distribution, and soft tissue

thickness, affecting treatment positioning and accuracy. Minor

positional shifts in bony structures can also occur due to changes

in soft tissue support, affecting patient alignment. Muscle atrophy

or changes in muscle mass around the head and neck area also

influence patient stability and positioning. Changes in airway and

esophagus positions are noted as surrounding tissues respond to

treatment, leading to mucositis and dysphagia. Parotid glands often

shrink and deform due to their proximity to the radiation field,

altering their position and increasing the risk of xerostomia. Similar

changes can occur in the salivary glands. Lymph nodes and tumor

shrinkage, a common response to radiation, necessitate adjustments

to ensure adequate dosing of the remaining tumor mass. Daily ART

accounts for these factors and represents a substantial advance in

personalized cancer care. However, the implementation of ART

presents challenges. Frequent imaging and plan adjustments require

sophisticated technology and organization, increasing the

complexity and cost of treatment. Leveraging clinical workflow to

incorporate adaptive processes without significant delays or

interruptions in patient care is mandatory. Full clinical

implementation of ART for head and neck cancer is still limited

and requires improvement in both technology and practice

guidelines before it becomes a new standard.

In this work, an automated workflow for H&N radiotherapy,

using the available resources at our facility is analyzed. An Atlas
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Based Auto Segmentation (ABAS) contouring system is employed

for automatic contouring, followed by deformable contour

propagation to generate sCT images. Planning is carried out using

anMCO a priori auto-planning system with a wish-list (WL) for the

head and neck region. Subsequently, a proof of concept for an

automated workflow leveraging the obtained results is tested for the

CBCT online adaptation with conventional linear accelerators. A

similar strategy conventionally adopted for MRgRT is replicated for

two patients, employing the adapt to shape technique (3). We also

evaluate a fluence to position approach with the CBCT. For the

CBCTgRT, with a C-Arm linac with a 6 degrees of freedom couch,

the fluence to position (FTP) is a couch shift and fluence calculation

as opposed to the adapt to position (ATP) in the Unity System

where the “virtual couch shift” is implemented. To assess the

effectiveness of the workflow, the timing of different phases is

considered, the robustness of the WL is evaluated, and the

acceptability of a treatment plan is examined applying the two

adaptive techniques.
2 Materials and methods

The workflow starts with the pre-treatment phase, depicted in

green in Figure 1. This phase starts with a CT simulation, during

which the OARs are defined using automatic tools, as described in

Section 2.1. Following this, the reference treatment plan is generated

using the automatic planning software outlined in Section 2.2. Both

the target/OAR definition and plan creation are performed with the

involvement of the physician and medical physicist, ensuring

accuracy and quality control during the use of the automatic

software. The daily treatment workflow begins with the

acquisition of a CBCT, which provides a new set of reference

images. These images are then imported into the treatment

planning software, where the contours from the planning CT are

propagated onto the current CBCT by means of the Deformable
Frontiers in Oncology 03113
Image Registration and contours projection. These propagated

contours must be reviewed and, if necessary, manually corrected

by the physician. Once the CBCT is loaded into the treatment

planning system, the Adapt Setup and Force ED options are used to

apply bulk density correction to the CBCT images. After generating

the synthetic CT (sCT) from the CBCT, clinicians have two options,

depicted in orange and described in Section 2.3, for the next step:

they can either use the Fluence-to-Position method to verify the

dose delivered by the reference plan in the patient’s current

position, or they can use the Adapt-to-Shape option to perform

an adaptive replan, leveraging the automatic tools described in

Section 2.2. Finally, the patient’s position is re-checked, and the

selected treatment plan, either the reference plan or an adapted one,

is delivered.
2.1 Auto-contouring

Although Deep Learning or Atlas Based auto-contouring are

used to automatically outline the organs at risk, in daily clinical

practice a manual inspection and confirmation is always performed

by the Radiation Oncologist prior to allow the optimization phase.

ADMIRE® software (ADvanced Medical Imaging Registration

Engine, research version 3.37, Elekta AB, Sweden) with random

forest (RF) algorithm for the multi atlas-based segmentation on CT

images is used. The OARs for the head and neck region considered

in this study are: cochleae, mandible bone, larynx, oesophagus, oral

cavity, brainstem, optic chiasm, optic nerves, lens, eyes, lachrymal

glands, pituitary gland, brain, lips, muscles constrictor, parotids,

thyroid gland, trachea, brachial plexus, spinal cord and lungs.

Additionally, structures essential to manage CBCT images in the

planning process are also introduced. These structures represent

different HU layers, divided into external body, air, fat, tissue, and

bones. To define these structures for the atlas, the semi-automatic

“whole-body” tool available in the MIM® software (MIM Software
FIGURE 1

Diagram illustrating the key steps of the workflow.
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Inc, version 7.2.8, OH) is exploited. The five HU layers are

associated with different voxel’s HU value. The atlas used for the

auto-contouring process contains both the previously listed OAR

structures and the HU layers.

To assess the accuracy of the HU layer and the OARS structures

generated by the auto-contouring software, the volumetric

disparities between semi-automatic contours (ground-truth) and

the automatic segmentation of nine patients are measured (Table 1).

The analyzed OARs are divided into large-sized structures

(volume>15cc) and small-sized structures (volume ≤ 15cc).

For the evaluation, the Dice similarity coefficient (DSC) is

considered. To perform the geometrical analyses the Golden Rule

software (version 1.2, Canis Lupus LLC, Wisconsin, USA)

is employed.
2.2 Auto-planning

The mCycle algorithm, recently launched under the name of

“ElektaONE AutoPlanning”, is used for the a-priori Lexicographic

multicriteria plan calculation with a WL for a Simultaneously

Integrated Boost (SIB) treatment. mCycle is the Elekta

implementation of the iCycle algorithm by Erasmus University and

is based on the Lexicographic Approach developed by Sebastian

Breedveld (10). The cost functions and the Dose Calculation

algorithm are adapted to Monaco. The basis of iCycle is an a priori

definition of constraints and priority treatment goals. The so-called

wish-list can be constructed, goals are optimized sequentially, resulting

in a pareto-optimal solution without interactions (11). The overall

process is defined as Intelliplan Optimization in the mCycle

environment and is summarized in two diagrams included in the

Supplementary Material. To exploit the auto-planning process, the WL

must be tuned and subsequently validated. For the validation of theWL

twenty patients are chosen (Table 1) with a prescribed dose of 70 Gy to

themacroscopic tumor and 56Gy to the nodes in 35 fractions. For each

patient a manual and an automatic plan are calculated using the same

calculation settings and sequencing parameters. For the validation, the

dosimetric quality of the plans and the planning times are analyzed.

Dosimetric quality is assessed both qualitatively and

quantitatively. The qualitative assessment is carried out by a

physician, based on a blinded dosimetric comparison between
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plans. Automatic and manual plans are together presented to the

physician using identical layouts of plotted dose distributions and

dose volume histograms. The physician assigned to each plan a

score from 1 to 5 (1-unacceptable; 2-borderline; 3-sufficient; 4-

good; 5-excellent) for target coverage, OARs sparing and plan

acceptability. The mean value of the physician’s score and the

percentage of automatic plan choices is then analyzed to

determine the effectiveness of automated planning over manual

planning. The quantitative assessment of the dosimetric quality is

carried out by analyzing the dosimetric objectives for PTV coverage

and OARs sparing and introducing a plan quality index (PQI) (12,

13). For the dosimetric scores, the median values distribution (with

1st and 3rd quartile) of each constraint for the two planning

modalities is observed.

The PQI defines the overall performance of a plan in an

operator independent manner. PQIs for PTVs and OARs are first

considered independently and then collectively. The generalized

formula for the PQI assessment is shown in Equation 1

PQI =ow  ∗  
Dgoal
x% − Dplan

x%

Dplan
x%

(1)

Dx% stands for the dose received by the x% of the volume of

PTV or OAR, “plan” refers to the dose–volume indexes in the dose

plan, “goal” refers to the dose objective and w refers to the weighting

factor used as function of clinical relevance of the OAR or PTVs.

For the PQI calculation of both PTVs, emphasis is placed on four

specific points of the DVH to describe its steepness (D95%, D90%,

D50%, D7%) and on the percentage of the volume covered by the 95%

of the prescription dose.

The weight w is assessed with the physician on a scale from 1 to

5 to account for the relatively clinical importance assigned by the

radiation oncologist team as part of the clinical intent, and it is set

equal to 0 for OARs that correspond to the GTVs. Two different

templates are defined for the w: one for the NPC cases (wH) and

one for the “middle-lower” cases (wL). Table 2 showed the values

used for the calculation. The statistical significance (p < 0.05) of the

dosimetric result is evaluated with a signed-rank Wilcoxon test

using Python version 3.10.12.

For the two plan modalities, the time needed for the calculation

is measured.
TABLE 1 Patient information for each analysis with cancer diagnosis and staging.

Auto-contouring (9 patients) Auto-planning (20 patients) CBCT Adaptive (2 patients)

1 Nasopharynx stage III 4 Nasopharynx stage III
1 Nasopharynx stage IVA

1 Oropharynx stage I 2 Oropharynx stage I
2 Oropharynx stage IVA

1 Hypopharynx stage IVB 1 Hypopharynx stage IVB 1 Hypopharynx stage IVB

4 Larynx stage III
1 Larynx stage IVA

3 Larynx stage III
3 Larynx stage IVA

1 Larynx stage IVA

1 Oral cavity stage III

1 Parotid stage I 1 Parotid stage IIIB
1 Neck stage IVA
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The use of automated planning with Lexicographic

optimization allows a more uniform set of results that are pretty

much independent on the planner experience as they rely on the

description of the wish-list as a class solution with the

personalization both to intra-patient and inter-patient anatomical

variations carried on via the Muli-criteria optimization approach.

The wish-lists have been created and tweaked to try to achieve the

minimum modulation degree able to assure the achievement of the

convergence of the optimization (ATS) throughout all the given

fractions and the consistency of the Patient Specific Quality

Assurance (PSQA) with a clinically acceptable Gamma Index pass
Frontiers in Oncology 05115
rate. All of the above, in order to assure that results can be applied

and replicated to the Head&Neck patient class solution.
2.3 CBCT adaptive

Once the auto-planning WL is validated, two patients (Table 1)

are chosen for a retrospective CBCT adaptive online feasibility

analysis: patient A and B. The first seven CBCTs performed on the

patients and the first of the following four weeks are selected, for a

total of eleven CBCTs. The two modalities of adaptive online

investigated are: fluence to position (FTP) and adapt to

shape (ATS).

FTP focuses on adjusting the plan isocentre to accommodate daily

variations in patient positioning. This mode replicates the current

routine clinical practice of treatment delivery where shifts in the x, y,

and z coordinates are performed. These shifts are extracted from the

R&V (MOSAIQ®, Elekta, Sweden) and applied to the plan isocentres.

The dose calculation is performed without further plan optimization,

using the same patient-specific template previously saved.

The ATS mode takes into consideration not only changes in

patient positioning but also anatomical variations, allowing the

adaptation of the treatment plan on the shape of the daily patient’s

anatomy. For the ATS mode the patient template is calculated and

optimized using mCycle without any manual tweaking. The

achievements and failures of dose constraints are recorded for the

eleven fractions. This assessment involves evaluating the adherence of

the adapted plans to the predefined dose constraints established for

the OARs and targets. To determine if there are any statistically

significant differences between the two adapted plan modalities, the

Wilcoxon signed-rank test is performed (p < 0.05) using Python

version 3.10.12 in a Colab notebook. Any significant differences

between the FTP plans and ATS plans are then further

investigated. An analysis of the timing for the different steps

required to produce an online adaptive plan is also carried out to

assess its clinical applicability.
3 Result

3.1 Auto-contouring

The DSC of the five HU layer structures, large-sized structures

and small-sized structures are reported in Table 3. For each layer,

the median values and the first (Q1) and third quartile (Q3)

are provided.
TABLE 2 OARs weights for the calculation of the PQI.

OARs Objective wH wL

Bone_Mandible D0.03cc 2 2

Brachial_Plex D0.1cc 2 2

Brain D0.03cc 3 1

Dmean 2 1

Brainstem D0.03cc 5 3

Cochlea D0.03cc 1 1

Dmean 4 1

Esophagus D0.03cc 3 3

Eye D0.03cc 3 1

Glnd_Lacr D0.03cc 3 1

Dmean 2 1

Larynx D0.03cc 3 4

Dmean 3 4

Lens D0.03cc 4 1

Lips D0.03cc 2 3

OpticChiasm D0.03cc 5 1

OpticNrv D0.03cc 5 1

Cavity_Oral V30Gy 1 1

Dmean 4 4

Parotid Dmean 4 5

Musc_Constrict Dmean 3 4

Pituitary D0.03cc 4 1

SpinalCord D0.03cc 5 5
TABLE 3 Median and interquartile value of the geometric evaluation using DSC index for the HU layer, large-sized and small-sized
automatic contours.

Structures Air Bones Tissue Fat External Large Small

DSC Median 0.66 0.82 0.87 0.80 0.99 0.88 0.67

DSC [Q1;Q3] [0.60;0.69] [0.55;0.89] [0.85;0.88] [0.63;0.84] [0.99;1.00] [0.83;0.92] [0.52;0.77]
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3.2 Auto-planning

To assess the quality of the auto-planning system the physician

assigned scores and the percentage blind preference choice are

provided in Table 4.

The quantitative dosimetric quality evaluation involves the analysis

of the dosimetric score cards and the PQI. Table 5 presents the median

values (with Q1 and Q3 in square brackets) of each constraint in both

automatic and manual plans. Table 6 shows the PQI values calculated

for each plan. The Wilcoxon test p-value results are provided in

Tables 5 and 6. Significant p-values are in bold and the best average

constraint achieved value is highlighted in gray.
Frontiers in Oncology 06116
Planning times are drastically reduced through the auto-

planning system. Figure 2 shows the time difference between the

two planning modalities. Automatic planning reaches an average

time of eleven minutes, while manual planning is about two hours.
3.3 CBCT adaptive

The number of passed clinical goal for the two modalities are

displayed in Table 7, only the constraints that showed a different

number between the two modalities are reported. Following the

Wilcoxon test to compare the two modes of adaptive planning, the
TABLE 5 Constraint median value results for automatic and manual plans, with Q1 and Q3 in square brackets and Wilcoxon test p-value result.

Structure Constraint Optional Mandatory Automatic Manual p

PTV1 V95% 98% 95% 97.5 [97.0-98.2] 97.6 [96.9-98.9] 0.41

PTV2 V95% 98% 95% 99.1 [98.8-99.4] 98.9 [98.7-99.6] 0.65

PTV2-1 V95% 98% 95% 98.7 [98.3-99.1] 98.6 [98.1-99.4] 0.65

PTV1 D50% 70 70 [70-70] 70 [70-70] 0.41

PTV1 D7% 73.5 72.1 [71.8-72.2] 71.4 [71.1-71.7] <0.01

PTV2-1 D7% 66 66.0 [65.1-66.6] 66.2 [65.1-66.7] 0.02

Bone_Mandible D0.03cc 70 73.5 68.6 [58.3-70.2] 68.5 [55.5-70.5] 0.33

Brachial_Plex_L D0.1cc 60 66 60.0 [57.8-64.6] 59.2 [57.4-64.4] 0.97

Brachial_Plex_R D0.1cc 60 66 58.9 [57.8-61.4] 57.6 [57.2-60.0] 0.13

Brain D0.03cc 72 34.2 [13.6-50.5] 30.4 [9.0-50.1] 0.02

Brain Dmean 30 1.3 [0.6-4.5] 1.5 [0.6-4.2] 0.23

Brainstem D0.03cc 54 55 26.7 [11.1-38.3] 22.3 [5.9-31.0] 0.01

Cochlea_L D0.03cc 60 1.9 [1.3-12.9] 2.2 [1.4-16.7] 0.02

Cochlea_L Dmean 45 1.7 [1.1-10] 2.0 [1.3-15.3] 0.02

Cochlea_R D0.03cc 60 2.0 [1.2-23] 2.5 [1.4-27.3] <0.01

Cochlea_R Dmean 45 1.7 [1.1-18.4] 2.1 [1.3-24.5] <0.01

Esophagus D0.03cc 45 55 52.4 [49.4-53.8] 53.1 [48.1-56.9] 0.18

Eye_L D0.03cc 40 45 1.3 [0.9-3] 1.6 [0.9-4.1] <0.01

Eye_R D0.03cc 40 45 1.3 [0.9-3] 1.7 [1.0-4.4] <0.01

Glnd_Lacr_L D0.03cc 40 0.7 [0.6-1.9] 0.8 [0.6-2.1] 0.01

Glnd_Lacr_L Dmean 26 0.6 [0.5-1.3] 0.7 [0.5-1.7] <0.01

Glnd_Lacr_R D0.03cc 40 0.8 [0.6-1.8] 0.9 [0.6-1.9] <0.01

(Continued)
fro
TABLE 4 Median physician’s scores and percentage of plan preference choices.

OARs Sparing Target Coverage Plan Acceptability Plan preference
choice

Automatic 5.0 4.5 5.0 65%

Manual 4.5 5.0 5.0 35%
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results showed significant differences in the requests for targets and

certain OARs. Figure 3 shows the differences in percentage by

coverage and hot-spots of the targets in the two modes for the

selected patients. Figure 4 shows the dose differences for the mean

dose constraints, when the results are significantly different in the

two modalities. Figure 5 shows the dose differences for the

maximum dose constraints, when results are significantly different

in the two modalities. For an evaluation of the clinical feasibility in

implementing an adaptive online workflow, the time required for

each step of the process is recorded. Table 8 presents the averages

times and their standard deviations obtained for the two adaptive

modalities. It includes the estimated times for CBCT acquisitions,

both for the pre-treatment scan, currently in use with a standard

acquisition protocol, and for the “optional” position verification

second scan, performed with a fast protocol. The table also presents

the total time, offering an esteem of the time required for the two

adaptive modalities.
Frontiers in Oncology 07117
4 Discussion

In this study, we demonstrated the feasibility of implementing

an adaptive online treatment without dedicated systems, but

leveraging a combination of available automated software. Our

project is the first to leverage this combination of automated

software (auto-contouring, auto-planning, sCT creation) on

conventional accelerators in an Elekta environment.
4.1 Auto-contouring

The software used for the OARs auto-contouring was already

validated for clinical application and our results are in agreement

with the literature (14, 15). However, no results for the auto-

contouring of HU layers are obtained on CT images. Instead,

DSC values from MRI images are available (16, 17). Our results

for bones, tissue, fat and external reach a DSC median value of over

0.8, while for air the DSC median value is 0.66. The external and

bones results are comparable to those reported by Guerreiro (16),

and for air, fat, and tissue to those reported by Hsu (17). The auto-

contouring process shows promising results and strongly facilitates

the creation of sCTs necessary for the following adaptive process.
4.2 Auto-planning

The WL definition for the mCycle auto-planning involves a

precise iterative tuning process, which may take several days.
TABLE 5 Continued

Structure Constraint Optional Mandatory Automatic Manual p

Glnd_Lacr_R Dmean 26 0.7 [0.5-1.5] 0.8 [0.5-1.6] <0.01

Larynx D0.03cc 66 68.2 [52.9-70.6] 64.9 [54.9-72.1] 0.15

Larynx Dmean 44 50 24.2 [20.3-58.7] 38.8 [37.1-63.8] <0.01

Lens_L D0.03cc 4 10 0.8 [0.6-1.4] 0.9 [0.7-1.9] <0.01

Lens_R D0.03cc 4 10 0.8 [0.6-1.7] 1.0 [0.7-2.2] <0.01

Lips Dmean 30 50 15.4 [8.3-23.5] 25.8 [14.5-30.1] <0.01

OpticChiasm D0.03cc 55 1.2 [0.9-5.2] 1.3 [0.9-4.8] 0.94

OpticNrv_L D0.03cc 55 1.1 [0.8-4.6] 1.2 [0.9-4.6] 0.28

OpticNrv_R D0.03cc 55 1.1 [0.8-4.2] 1.2 [0.9-3.9] 0.04

Cavity_Oral V30Gy 73% 45.7 [24.9-73.7] 73.2 [42.5-99.6] <0.01

Cavity_Oral Dmean 30 45 30.8 [20.0-43.1] 41.7 [29.6-50.0] <0.01

Parotid_L Dmean 20 25 19.8 [17.1-25.2] 21.7 [15.8-26.6] 0.65

Parotid_R Dmean 20 25 19.4 [16.6-20.9] 19.3 [14.3-24.0] 0.97

Musc_Constrict Dmean 35 50 51.9 [46.0-55.5] 56.7 [50.0-58.4] <0.01

Pituitary D0.03cc 50 1.2 [0.9-7.2] 1.3 [1.0-6.9] 0.46

SpinalCord D0.03cc 45 50 29.6 [27.5-30.4] 25.1 [24.2-31.1] <0.01
fro
Dose values are reported in Gy. Optional and Mandatory clinical goals are also reported in the table. Significant p-values are written in bold and the better average constraint achieved value is
highlighted in gray.
TABLE 6 PQI median values (OARs, PTVs and total) for automatic and
manual plans, with Q1 and Q3 in square brackets and Wilcoxon test p-
value result.

Automatic Manual p

PQI_OARs 0.35 [0.24-0.50] 0.32 [0.22-0.46] 0.01

PQI_PTVs 0.31 [0.29-0.35] 0.33 [0.31-0.38] 0.02

PQI_total 0.68 [0.54-0.83] 0.67 [0.52-0.79] 0.32
Significant p-value are written in bold and the better average constraint achieved value is
highlighted in gray.
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Familiarity with planning in Monaco certainly accelerates the initial

steps of this process and the time needed to develop a robust WL is

influenced by the level of detail in the defined protocol. When the

protocol is more explicit and detailed, mCycle finds easier to get the

expected results efficiently. In our case, we took this opportunity to

update the clinical constraints commonly used for H&N cases. After

the physician’s review of all constraints, the first WL is defined and

it is then tested and modified until an optimal solution is obtained

for all cases. In the qualitative and quantitative dosimetric

evaluation of the automatic treatment plans, favorable outcomes

have been achieved. The physician deems all plans clinically

acceptable, and in the majority of cases (65%), the automatic plan

is chosen over the manual one, as shown in Table 4. The automatic

plans are preferred by the physician due to their optimal

compromise between PTVs coverage and OARs sparing. This

finding aligns with the data presented in Table 6. The PQI_OARs

value is higher for the automatic plans, indicating its ability to

achieve more sparing of the critical organs. This result suggests that

the automatic plans offer greater overall sparing of the OARs at the

cost of slightly reducing coverage of the PTVs. However Table 5

shows that the requests for PTVs coverage are always well fulfilled

in the automatic plans. mCycle auto-planning, enables greater

OARs sparing while meeting the target coverage requirements set

in theWL. This outcome is consistent with the literature findings on

a priori MCO auto-planning (9, 10, 13). Looking at the achieved

result, we noticed that the constraints of constrictor muscles and

larynx are within those modified in the upgrade of our hospital’s

protocol. Therefore, from the standpoint of the manual planner,

there has been an initial response to address these new

requirements, and over time better results could be reached. This

challenge is not encountered in the investigated auto-planning

system, where modifying a clinical protocol involves the

adjustment of a parameter in the WL that is automatically
Frontiers in Oncology 08118
optimized during the calculation. The WL approach allows for

easy modification as needed, making it highly adaptable to meet

specific new requirements or clinical needs. This cannot be asserted

for all auto-planning systems, for example, the KB automatic plans

rely heavily on the manual plans and the protocol used up until that

point (7). The mCycle auto-planning allows real-time adjustments,

supporting, rather than replacing, the role of the medical physics

expert to achieve optimized results in a short time. The time

required for planning is shown in Figure 2, the automatic

modality significantly reduces the planning time from about 2

hours in manual mode to about 10 minutes in the automatic

mode. The time-saving advantage of auto-planning over manual
FIGURE 2

Boxplot showing the time spent for the manual and automatic planning, semilog scale graph.
TABLE 7 Number of passed clinical objectives for the mandatory and
[optional] constraints in the two adaptive modes, for patients A and B
out of the 11 CBCT fractions analysed.

Patient A

Structure Constraint FTP pass
Mandatory
[Optional]

ATS pass
Mandatory
[Optional]

PTV1 V95% 1 [0] 11 [1]

PTV2 V95% 10 [0] 11 [11]

PTV2-1 V95% 7 [0] 11 [11]

PTV1 D50% 10 11

Brachial_Plex_L D0.1cc 10 [0] 11 [0]

Esophagus D0.03cc 0 [0] 2 [0]

Cavity_Oral Dmean 11 [10] 11 [11]

Parotid_L Dmean 10 [7] 11 [7]

Parotid_R Dmean 8 [2] 11 [11]
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planning is also highlighted in different studies. Focusing on those

related to head and neck cases, one study compares the automatic

planning times of a posteriori MCO, of a protocol-based automatic

iterative approach and of a KBmethods, resulting in 31 ± 4 minutes,

83 ± 10 minutes, and 27 ± 4 minutes, respectively (18). In other

studies focused on KB, planning times of around 30 minutes (19)

and 60 minutes (20) are obtained. For the protocol-based automatic

iterative approach, planning times exceeding one hour are also

reported (20, 21). For a priori MCO, one study reports calculation

times of around 60 minutes (13).

In our case, the time required for manual planning aligns with

the above-cited publications (around 2 hours per patient’s plan),

while for automatic planning, there is a significant reduction not
Frontiers in Oncology 09119
only compared to all other auto-planning systems, but also when

using the same auto-planning system with a different WL. Reducing

planning time through auto-planning systems (Figure 2) allows

adaptive online sessions to be implemented.
4.3 CBCT adaptive

The starting point is the audit of the feasibility of all steps in the

workflow, analyzing the difficulties and proposing potential

solutions for future clinical applications. The auto-contouring of

different layers (anatomical structures and HU layers) facilitates the

creation of sCTs, which are made using bulk density override. The

quality of CT-adapted contours on daily CBCTs is validated, and

reported in literature (6). The time required for the physician to

check these contours is not considered in this project. However, the

contours propagated are the auto-contoured ones which have

already been reviewed and corrected by the physician, thereby

errors such as missing or major inaccurate contours that typically

require extensive revision, are reduced.

The analysis of the two adaptive modalities “Fluence To

Position” (FTP) and “Adapt To Shape” (ATS) reveals a better

correspondence of the ATS plans with the reference CT plans

compared to the FTP ones. The number of passed clinical goal,

reported in Table 7, shows that FTP plans fail to meet the target

coverage and also some OARs clinical constraints.

Among the constraints used, the same ones shown in Table 5,

there are significant p-values for target coverage, hot-spots and

some OARs objectives. The percentage difference for target

coverage and hot-spots between the value obtained in each

fraction and the reference CT is shown in Figure 3 for both

modalities. Moreover, the dose difference with a significant p-

value of the mean and max dose objectives for patient A and B
Patient B

Structure Constraint FTP pass
Mandatory
[Optional]

ATS pass
Mandatory
[Optional]

PTV1 V95% 3 [0] 11 [11]

PTV2 V95% 2 [0] 11 [11]

PTV2-1 V95% 0 [0] 11 [11]

PTV1 D50% 8 11

PTV1 D7% 10 11

Bone_Mandible D0.03cc 11 [10] 11 [0]

Brachial_Plex_ L D0.1cc 11 [8] 11 [10]

BrachialPlex_R D0.1cc 2 [0] 11 [0]

Cavity_Oral Dmean 11 [2] 11 [4]

Parotid_L Dmean 6 [0] 11 [7]

Parotid_R Dmean 11 [6] 11 [11]
FIGURE 3

Boxplot showing the PTV1, PTV2 and PTV2−1 percentage difference coverage and PTV1 and PTV2−1 percentage difference hot-spots between the
scheduled plan and the FTP plans and between the scheduled plan and the ATS plans, for patient A and B In the boxplot, the inner line denotes the
median value, the box the interquartile range and the whiskers the minimum and maximum value excluding the outliers that are presented as
single markers.
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FIGURE 4

Boxplot showing the mean dose difference between the scheduled plan and the FTP plans and between the scheduled plan and the ATS plans, for
patient A and B, only for OARs that are significantly different.
FIGURE 5

Boxplot showing the max dose difference between the scheduled plan and the FTP plans and between the scheduled plan and the ATS plans, for
patient A and B, only for OARs that are significantly different.
TABLE 8 Average times ± SD (when available) for each step and total time of the FTP and ATS workflow for both patients.

Pretreatment
CBCT
(mm:ss)

Adapt anatomy
tool-contour

(mm:ss)

Replanning time
(mm:ss)

Position
verification (mm:ss)

Dose
delivery
(mm:ss)

Total time
(min)

Patient A FTP 01:10 01:06 ± 00:04 01:32 ± 00:02 00:40 04:10 ≈9

ATS 11:06 ± 00:44 ≈18

Patient B FTP 01:10 01:05 ± 00:04 01:37 ± 00:03 00:40 04:27 ≈9

ATS 13:33 ± 01:05 ≈21
F
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are reported respectively in Figures 4 and 5. From the PTV graphs,

the inadequate coverage of targets in FTP modality is further

highlighted, whereas for ATS, it is optimized in each fraction.

Regarding the parotids, which in both patients are close to the

PTV, an increase in the mean dose objective is observed in FTP

modality, while for ATS, it remains constant. For maximum dose

values, both increases and reductions are observed in both

modalities. The variation in maximum dose delivered to OARs

did not affect the acceptability of the plans. However, the low

target coverage achieved in FTP mode negatively impacts

their acceptability.

Analysis of the two adaptive modes, FTP and ATS, shows that

re-optimizing the plan based on the images acquired at the

beginning of the treatment session yields superior results,

particularly in enhancing PTV coverage and optimizing sparing

of OARs, especially those in close proximity to the target.

Adaptive radiotherapy requires the patient to maintain the

treatment position at the linac until the adaptive process is

completed. This aspect makes it unsuitable for manual

contouring-planning methods. Auto-planning enables the

calculation of the treatment plan based on the daily anatomy

while maintaining the time limited. For the two analyzed patients,

the ATS re-planning time is less than 14 minutes (Table 8), which is

also supported by the automatic calculation time results in Figure 2.

The estimated workflow total time for online ATS treatment is

approximately 20 minutes, which is aligned with data reported in

the literature (5, 22). Furthermore, these processing times can be

reduced by leveraging more powerful computing systems (e.g.

Graphic Processing Units, GPUs). The time required for the

clinician to check the contours quality must also be considered in

the evaluation of the timing, but in our case this is not assessed. The

use of CBCT images for adaptive planning is a topic that has been

explored for several years now, exploiting both the use of average

structure density override (23, 24), the use of deformed CT images

on CBCT (25, 26), and the establishment of Hounsfield numbers

versus densities curves (27). The innovation lies in the online

implementation of this technique. Currently, this topic is gaining

considerable interest, especially due to the introduction of systems

that facilitate, automate, and expedite the various steps involved in

this process [e.g. ETHOS, Varian Medical Systems (22, 28, 29)].
5 Conclusion

This project has undertaken an in-depth analysis of an

automated workflow for H&N radiotherapy, using the available

resources at our facility.

The auto-contouring approach facilitates the creation of sCTs

necessary for the adaptive process. The mCycle auto-planning

significantly reduces planning time while maintaining or improving

clinical acceptability. In the feasibility study of online adaptive

radiotherapy, the ATSmode, which optimizes treatment based on daily

anatomy, demonstrates superior outcomes compared to the FTPmode.

Time is a pivotal factor in online adaptive approaches, as all

must be managed within the context of a single treatment session.

ATS demonstrates efficiency in terms of time, with an estimated
Frontiers in Oncology 11121
total treatment time of about 20 minutes. This outcome marks a

preliminary step toward clinical implementation.

The analysis of adaptive methods is focused on feasibility and

preliminary evaluation, but the potential of this automated workflow

to improve the clinical practice and the patient outcomes remains

significant. Further investigations into online adaptive approaches,

including retrospective clinical studies with a larger cohort and

prospective studies, will contribute to unveiling the complete

spectrum of benefits and limitations, particularly regarding the

choice between adaptation strategies for each fraction, which

remains a critical consideration for future optimization.

This study contributes to the advancement of automatic and

adaptive radiotherapy, demonstrating the potential of an automated

workflow in challenging cases, such as H&N treatments. The

successful validation of auto-contouring and auto-planning

software, combined with preliminary findings on online adaptive,

underscores the significance of exploiting technology to optimize

treatment and improve care for radiotherapy patients.
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A dosimetric comparison of
non-coplanar volumetric
modulated arc therapy and
non-coplanar fixed field
intensity modulated radiation
therapy in hippocampus-
avoidance whole-brain
radiation therapy with a
simultaneous integrated
boost for brain metastases
Huaqu Zeng1*, MinZhi Zhong2, Zongyou Chen1, Shukui Tang1

and Zunbei Wen1

1Radiotherapy Center, Gaozhou People’s Hospital, Gaozhou, China, 2Department of Radiology,
Guangzhou Red Cross Hospital, Guangzhou, China
Objective: The aim of this study was to investigate the dosimetric differences

between non-coplanar volumetric modulated arc therapy (VMAT) and non-

coplanar fixed-field intensity-modulated radiotherapy (IMRT) in hippocampus-

avoidance whole-brain radiation therapy with a simultaneous integrated boost

(HA-WBRT+SIB) for brain metastases using the Monaco treatment planning

system (TPS).

Method: A total of 22 patients with brain metastases were retrospectively

enrolled. Two radiotherapy treatment plans were designed for each patient:

non-coplanar VMAT and non-coplanar fixed field IMRT. The dose distribution of

targets and organs at risk (OAR), the number of monitor units (MUs), and pre-

treatment plan verification were compared between the two plans while meeting

the prescribed dose requirements of the target volume.

Results: There were no significant differences in V50, V55, Dmax, heterogeneity index

(HI) and conformity index (CI) of target PGTV between the two plans (p>0.05). For

PTV-brain-SIB, there was no significant difference in D98% between IMRT and VMAT

(p=0.103). VMAT significantly improved the V30 of PTV-brain-SIB (p<0.001),

decreased HI (p=0.003), and increased CI (p<0.001). There were no significant

differences in the Dmax to the brain stem, left and right lens, optic chiasm, pituitary

gland, and left and right hippocampus between the two plans (p>0.05). Compared

with IMRT, VMAT significantly reduced the Dmax to the left and right eyes (p<0.001)

and significantly increased the Dmax to the right inner ear (p=0.010). There was no

significant difference in the Dmax to the left inner ear between VMAT and IMRT

(p=0.458). Compared with IMRT, VMAT significantly reduced the Dmax to the left
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optic nerve (p=0.006), but significantly increased the Dmax to the right optic nerve

(p=0.001). There was no significant difference in the Dmax to the left and right

hippocampus between VMAT and IMRT (p>0.05), but VMAT significantly increased

the D100% (p<0.05) compared with IMRT. Compared with VMAT, IMRT significantly

reduced the MU (p<0.001) but VMAT has a higher treatment efficiency than IMRT,

with an average reduction of 41 seconds (294.1 ± 16.4 s for VMAT, 335.8 ± 34.9 s for

IMRT, p<0.001). Under the conditions of 3%/2 mm, and 2%/2 mm, the gamma

passing rate of the IMRT QA was improved compared to VMAT, with an average

increase of 0.6%, p=0.013, and 1.7%, p<0.001, respectively.

Conclusion: Both non-coplanar VMAT and non-coplanar fixed field IMRT based

on the Monaco TPS produce clinically acceptable results for HA-WBRT+SIB in

patients with brain metastases. Compared with IMRT, VMAT has better dose

distribution in the target volume and treatment efficiency, but IMRT can better

protect the hippocampus and reduce the number of MUs.
KEYWORDS

hippocampus sparing, brain metastases, simultaneous integrated boost, whole brain
radiotherapy, volumetric modulated arc therapy, intensity modulated radiotherapy
1 Introduction

Over the past few years, the incidence rate of brain metastases has

increased consistently (1). Whole brain radiotherapy (WBRT) for

treating brain metastases, prophylactic cranial irradiation for treating

small cell lung cancer, and cranial or craniospinal irradiation for

treating malignant tumors of the central nervous system in children

have all demonstrated clinical efficacy; however, they also increase

cognitive neurotoxicity (2–6). Radiation-induced hippocampal damage

plays a significant role in the decline of neurocognitive abilities in

patients after WBRT (7). The hippocampus is a central element in

memory formation, and the degree of atrophy and cognitive deficits are

dependent on the delivered dose; thus, maximal protection of the

hippocampus is imperative. Furthermore, the risk of brain metastases

occurring in the hippocampus is below 5%; this also suggests that

hippocampal avoidance during WBRT (HA-WBRT) is safe (8).

Therefore, Radiation Therapy Oncology Group (RTOG) report 0933

proposed hippocampal protection during WBRT (9).

The combination of WBRT and a simultaneous integrated boost

(SIB) of localized lesions for brain metastases has been shown to have

advantages in terms of shortening treatment time, prolonged local

control time, and overall survival (10). For patients with non-small cell

lung cancer brain metastases, WBRT combined with a stereotactic

radiotherapy boost or simultaneous boost may improve their survival

rate compared to WBRT alone (11, 12). With the development of

radiation therapy techniques, especially the advent of intensity-

modulated radiation therapy (IMRT) techniques, it has become

possible to protect organs-at-risk (OARs) such as the hippocampus

during WBRT for brain metastases (13). IMRT has significant benefits

in hippocampal protection for primary brain tumors, preventing
02124
neurocognitive decline and reducing the average dose to the

hippocampus. Even after 6 months of follow-up post-irradiation, a

neurocognitive benefit was seen in most patients (14). Many

researchers have studied whether IMRT or volumetric modulated arc

therapy (VMAT) alone in HA-WBRT protect the hippocampus during

brain metastases and have confirmed that IMRT or VMAT can

effectively protect the hippocampus in HA-WBRT (15–18).

Ilinca Popp et al. confirmed that hippocampus-avoidance

whole-brain radiation therapy with a simultaneous integrated

boost (HA-WBRT+SIB) could be an efficient therapeutic option

for patients with multiple brain metastases. It is associated with

improved local tumor control of existing metastases, higher

intracranial progression-free survival, reduced death rates

associated with neurological conditions, and an acceptable risk of

radiation necrosis (19). HA-WBRT+SIB is a complex treatment

regimen for patients with brain metastases, aimed at reducing

adverse neurocognitive effects while increasing tumor control (19).

Developing an effective hippocampal protection plan for HA-

WBRT+SIB treatment poses a challenge. Johannes Kraft et al.

compared the dose delivered by the Varian Halcyon linear

accelerator based on the Eclipse treatment planning system (TPS)

and that delivered by the Elekta Synergy linear accelerator based on

the Pinnacle TPS for HA-WBRT+SIB using VMAT. The whole-

brain prescribed dose was 30 Gy, and the local boost was 51 Gy

administered in 12 fractions. In their study, a 7 mm expansion

around the hippocampus was implemented to form the

hippocampal avoidance region (HAR).The Halcyon and Synergy

Agility linear accelerators produced clinically comparable treatment

plans for HA-WBRT+SIB in patients with multiple brain

metastases (20). R. Vysakh et al. compared the dose distributions
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of the coplanar jaw-fixed VMAT (fVMAT) and the conventional

coplanar VMAT without the jaw fixed based on the Versa HD linear

accelerator and the Monaco TPS for HA-WBRT. With a whole-

brain irradiation dose of 30 Gy in 10 fractions, and a 5 mm

extracorporeal expansion of the hippocampus forming the HAR,

they found that the Elekta Agility™ collimator system and the

Monaco TPS can generate superior HA-WBRT plans using the

fVMAT technique (21). Xie Xin et al. compared the dosimetric

differences between the coplanar dynamic IMRT (dIMRT) and

coplanar VMAT plans of the Varian Linear accelerator on the

Eclipse TPS in HA-WBRT alone. They found that the hippocampal

dose of the dIMRT group was superior to that of the VMAT group,

but neither met the standard of RGOT 0933 (22). Fangyu Liu et al.

evaluated the potential of the flattening filter-free (FFF) mode of a

linear accelerator for patients with HA-WBRT in comparison with

the flattened beams (FF) technique in the application of VMAT and

IMRT using dosimetric and radiobiological indexes based on the

volume of the hippocampus and target. Their study suggests that

the FFF mode is feasible and advantageous in HA-WBRT and

VMAT-FFF is the optimal solution in terms of dose distribution of

the target, sparing OARs, probability of normal tissue

complications of the hippocampus,and delivery efficiency

compared to the other three techniques. Additionally, the

advantages of the FFF technique for VMAT are more prominent

in cases with small hippocampal volumes (33).

No comparative study based on the Monaco TPS has been

conducted between non-coplanar VMAT and non-coplanar fixed-

field IMRT for HA-WBRT+SIB. The purpose of this work is to

explore their advantages and provide feasible treatment plans for

patient treatment.
2 Materials and methods

2.1 Patient data

In total, 22 patients with brain metastases who received

radiotherapy at our hospital from June 2022 to October 2023

were retrospectively enrolled, including 10 men and 12 women,

aged 27 to 83 years. None of the patients had metastases invading

the hippocampus. The basic characteristics of the 22 patients are

shown in Table 1.

The study was approved by the ethics committee of Gaozhou

People’s Hospital (GYLLYJ-2022111). Since it is a retrospective

study that presents no risk to the participants’ health or economic

well-being, the ethics committee of Gaozhou People’s Hospital

granted an exemption from obtaining informed consent.
2.2 Computed tomography simulation and
target delineation

The patients were immobilized in a supine position using a head

and neck thermoplastic mask and immobilization bag. All the

patients underwent computed tomography (CT) imaging

acquisition using a large-bore CT simulator (Siemens AG,
Frontiers in Oncology 03125
Forchheim, Germany), with a scan slice thickness and slice

interval of 1.5 mm. The scanning range extended from the cranial

apex to the third cervical vertebra. Additionally, each patient

underwent contrast-enhanced T1-weighted magnetic resonance

imaging (MRI) (Siemens AG, Forchheim, Germany) with a slice

thickness of 1.5 mm. CT and MR images were imported to the

Monaco TPS (Elekta, Crawley, England) for fusion. Following the

RTOG 0933 delineation guideline, the hippocampus was delineated,

expanding the total hippocampus by 5 mm in all directions to create

a HAR. Other OARs were also delineated, including whole-brain

tissue, brainstem, lens, eyes, optic nerves, optic chiasm, pituitary,

and inner ears. An enhanced lesion was defined by the gross tumor

volume (GTV), which was expanded by 3 mm in all directions to

form the planning gross tumor volume (PGTV). The whole-brain

tissue excluding the HAR, and subtracting the PGTV was defined as

the whole-brain planning target (PTV-brain-SIB).
2.3 Treatment planning

The prescription dose for all patients was 30 Gy to the PTV-

brain-SIB in 15 fractions (2 Gy per fraction), and 50 Gy to the

PGTV in 15 fractions (3.33 Gy per fraction). Both targets were

treated simultaneously. The PGTV requires 100% of the

prescription dose to cover at least 95% of the volume (V50≥95%).

Two plans were created for each patient, namely, non-coplanar

VMAT and IMRT. Both plans were optimized using the Monte

Carlo dose calculation algorithm base Monaco 5.4 TPS on an

Axesse linear accelerator (Elekta, Crawley, Sweden) with an

Agility multileaf collimator, using a 6 MV photon beam. Non-

coplanar VMAT included two fields, with the first field being a 360°

coplanar rotation arc starting from 180°, with an increment of 20°,

the collimator angle was set at 0°, and the treatment couch angle

was set at 0°. The second non-coplanar field couch was set at 270°,

while the gantry started at 330°, with a rotational span of 210° and

an increment of 15°. The collimator angle was set at 0°.

Non-coplanar fixed-field IMRT used nine fields with gantry

angles at 5°, 55°, 135°, 165°, 215°, 270°, 315°, 70°, and 30°, where the

treatment couch angle for the 70° and 30° fields was 270°, and for

the other seven fields couch angle was 0°. The collimator angle for

all nine fields was 315°. The choice of field angle and couch angle

was based on experience in daily practice.

The planned sequencing parameters, dose deposition calculation

properties, and prescription parameters are shown in Figure 1.

The dose limits for the targets and OARs for both plans are

shown in Table 2. The same optimization functions and parameters

were used for both plans and optimization templates were created

to save planning time, as shown in Table A1.
2.4 Dosimetric comparison of target
and OARS

A comparison was conducted between the VMAT and IMRT plans

for the patient cohort. For the PGTV, V50 and V55, the heterogeneity

index (HI), and the conformity index (CI) were compared. For the
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PTV-brain-SIB, D98%, V30, the HI, and the CI were compared. The HI

was calculated as D5%/D95% (8). A smaller HI indicates a more uniform

dose distribution in the target. The CI was calculated as V2RX/(TV*VRI)

(23), where VRX is the volume covered by the prescription dose in the

target, TV is the volume of the target, and VRI is the volume covered by

the prescription dose. The CI ranges from 0 to 1. A higher CI indicates a

more conformal dose distribution in the target. For the hippocampus,

D100% and the maximum dose (Dmax) were compared, while for other

OARs, the Dmax was compared (brainstem, lens, eyes, optic nerves, optic

chiasm, inner ears, and pituitary).
2.5 Deliverability of the two plans

To examine the deliverability, the monitor units (MUs) and beam-

on time for the two plans were compared. All plans were delivered in

quality assurance (QA) mode, and the beam-on time was recorded

using a calibrated stopwatch. The beam-on time only considered the

beam irradiation time without considering the gantry rotation time

between arcs or fields.
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2.6 Pre-treatment quality assurance

Pre-treatment plan verification was performed using ArcCheck

(SUN NUCLEAR, California, US). We composited all the fields and

did not reset the gantry to 0° but reset the couch to 0°. Gamma

analysis was conducted on the dose distribution of the planned and

measured data, with evaluation criteria of 3%/3 mm and a 10% dose

threshold (TH). A pass rate of at least 95% was considered passed. A

more stringent gamma analysis was performed using 3%/2 mm or

2%/2 mm to test the two techniques.
2.7 Statistical analysis

Statistical analysis was conducted using SPSS 17.0 (IBM, USA).

Normality was tested on the data, and for parameters conforming to a

normal distribution, data were expressed as mean ± standard deviation

(x ± s). Those that did not fit the normal distribution were tested using

the non-parametric Friedman test for multi-correlated samples, and

quantitative data were expressed as medians and 25% and 75%
TABLE 1 Basic patient characteristics (n= 22).

Number Sex Age Primary tumor
Number of
metastatic
lesions

Metastatic
lesions total
volume(cm3)

Hippocampal
volume(cm3)

Hippocampal
avoidance (HA)
volume(cm3)

PTV-brain-SIB
volume(cm3)

HA volume as a
percentage of total
brain volume(%)

1 Female 38 Breast 2 50.8 8.9 38.3 1275.2 2.81%

2 Female 75 Lung 5 28.8 6.7 32.0 1071.7 2.83%

3 Male 54 Lung 1 8.8 8.3 36.3 1443.7 2.44%

4 Female 54 Lung 3 28.4 7.5 34.9 1004.6 3.27%

5 Female 60 Lung 1 4.2 6.3 32.0 1137.3 2.73%

6 Male 58 Lung 2 45.0 7.4 32.9 1398.2 2.23%

7 Male 72 Lung 11 40.4 8.2 37.0 1245.3 2.80%

8 Male 55 Lung 6 108.1 7.5 34.6 1180.8 2.62%

9 Female 66 Sigmoid 2 20.3 7.0 33.3 1234.9 2.59%

10 Female 63 Rectum 1 21.6 4.4 31.0 1103.7 2.69%

11 Female 52 Lung 3 16.7 3.3 21.3 1134.7 1.82%

12 Male 40 Lung 7 60.7 6.6 32.9 1265.8 2.42%

13 Male 65 Lung 4 21.5 10.8 44.2 1305.5 3.22%

14 Female 27 Lung 2 20.3 5.7 29.2 1335.5 2.11%

15 Female 83 Lung 2 88.6 5.2 27.2 1065.8 2.31%

16 Male 69 Lung 1 14.8 7.8 34.8 1437.9 2.34%

17 Male 75 Lung 3 90.8 6.0 29.1 1348.2 1.99%

18 Female 55 Lung 13 34.0 6.6 34.8 1141.8 2.88%

19 Male 36 Brain 1 30.7 4.1 25.9 1354.6 1.84%

20 Male 77 Ascending colon 1 20.1 8.1 36.7 1312.1 2.68%

21 Female 46 Lung 2 39.2 9.5 38.9 1231.2 2.97%

22 Female 48 Breast 1 197.1 7.3 35.0 1141.0 2.55%
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percentiles (P25 and P75). A paired t-test was used for comparisons

and a p-value<0.05 was considered statistically significant.
3 Results

3.1 Target dose comparison

The target dose of both plans for the 22 patients met the clinical

goals, as shown in Table 2. For the PGTV, there was no significant

difference in V50, V55, Dmax, the HI, and the CI between VMAT and

IMRT (p > 0.05). For the PTV-brain-SIB, there was no significant

difference in D98% between IMRT and VMAT (p = 0.103); VMAT

significantly increased the V30 for PTV-brain-SIB (p< 0.001),

reduced the HI (p = 0.003), and increased the CI (p< 0.001), as

shown in Table 3. The dose distribution for a typical patient is
Frontiers in Oncology 05127
illustrated in Figure 2, where the VMAT plan showed a better

coverage of the 30 Gy dose, and the IMRT plan had larger cold

spots. The dose-volume histogram (DVH) for a representative

patient is shown in Figure 3.
3.2 Organs-at-risk dose comparison

The dose comparison of OARs for both plans is presented in

Table 4. There were no significant differences in the Dmax for the

brainstem, left and right lenses, optic chiasm, pituitary, and left and

right hippocampus between the two plans (p>0.05). VMAT, relative

to IMRT, significantly reduced the Dmax for the left eye and right

eye (p< 0.001), significantly increased the Dmax for the right inner

ear (p = 0.010), and had no significant difference in the Dmax for the

left inner ear (p = 0.458). VMAT significantly reduced the Dmax for
FIGURE 1

Plan setting parameters. (A–D) are the sequencing parameters of the VMAT plan, sequencing parameters of the IMRT plan, the calculation properties
of the planned dose deposition, and the prescription dose parameters, respectively.
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the left optic nerve (p=0.006) but significantly increased the Dmax

for the right optic nerve (p = 0.001) compared to IMRT. There were

no significant differences in the Dmax for the left and right

hippocampus between VMAT and IMRT (p > 0.05), but VMAT

significantly increased the D100% for both the left and right

hippocampus (p< 0.05).
3.3 Deliverability of the plans

The average MUs for non-coplanar IMRT and non-coplanar

VMAT were 1174 MU (990~1592) and 1326 MU (1112~1660),

respectively. IMRT significantly reduced the planned MU

compared to VMAT (p<0.001). VMAT significantly reduced the

beam on time with a mean reduction of 41 seconds (294.1 ± 16.4

seconds vs. 335.8 ± 34.9 seconds, p<0.001) compared to IMRT.
3.4 Pre-treatment plan quality assurance

The mean gamma passing rates for the VMAT and IMRT plans

were 99.4% and 99.5%, respectively, with the 3%/3 mm and 10%
Frontiers in Oncology 06128
threshold criteria, and there was no significant difference (p=0.125).

However, with the 3%/2 mm, and 2%/2 mm criteria, the passing

rate for IMRT was higher than VMAT (99.1 ± 0.56 vs 98.5 ± 0.86,

97.6 ± 1.05 vs 96.0 ± 1.41) with a mean increase of 0.6% (p=0.013)

and 1.7% (p<0.001), respectively.
4 Discussion

Several publications have studied HA-WBRT or HA-WBRT

+SIB based on different techniques or different linear accelerators

(10, 15–17, 21, 24–27). However, there have been no dose

comparison studies on HA-WBRT+SIB using non-coplanar

VMAT and non-coplanar IMRT based on the Monaco TPS.

Different from previous studies (10, 15, 16), the current research

protected the brainstem, inner ear, pituitary, and hippocampus

while reaching the dose coverage of the target. The Dmax of the left

hippocampus of the current study was 1554.1 ± 249.4 Gy for IMRT

and 1515.3 ± 130.1 Gy for VMAT, respectively. The Dmax of the

right hippocampus was 1504.3 ± 129.7 Gy for IMRT and 1496.6 ±

96.7 Gy for VMAT, respectively, which were much lower than that

of the study of Johannes Kraft (20) and XIE XIN (22), and the HAR
TABLE 2 Dose criteria for the targets and organs at risk.

Structure Dose limits

PGTV V55<5%, V50≥95%

PTV-brain-SIB V30≥90%, D98%≥25 Gy

Left and right hippocampus D100%<9 Gy(D100%>10 Gy not acceptable), Dmax<16 Gy(Dmax>17 Gy not acceptable)

Left and right optic nerves Dmax<37.5 Gy

Optic chiasm Dmax<37.5 Gy

Left and right lens Dmax<8 Gy

Left and right eyes Dmax<37.5 Gy

Brainstem Dmax<37.5 Gy

Left and right inner ears Dmax<37.5 Gy

Pituitary Dmax<37.5 Gy
Vx is the volume of the region of interest (ROI) when the dose received is x Gy, Dx% is the dose corresponding to x% of the ROI volume, and Dmax is the maximum dose.
TABLE 3 PGTV and PTV-brain-SIB dose comparison between the IMRT and VMAT plans for the patient cohort.

Structure Parameter IMRT VMAT Difference (%) p-value

PGTV

V50 (%) 97.26 ± 1.43 97.46 ± 1.62 -0.01 ± 0.01 0.350

V55 (%) 1.35 ± 1.19 1.35 ± 0.97 0.26 ± 1.33 0.983

Dmax (cGy) 5582.8 ± 62.8 5578.5 ± 46.3 0.08 ± 1.11 0.749

HI 1.07 ± 0.01 1.07 ± 0.01 0.13 ± 0.82 0.480

CI 0.68 ± 0.10 0.69 ± 0.09 -1.37 ± 6.21 0.341

PTV-brain-SIB

D98% (cGy) 2696.2 ± 82.9 2724.5 ± 71.2 -1.01 ± 2.90 0.103

V30 (%) 92.09 ± 1.25 93.32 ± 1.23 -0.01 ± 0.01 <0.001

HI 1.46 ± 0.17 1.44 ± 0.16 1.44 ± 2.03 0.003

CI 0.77 ± 0.05 0.81 ± 0.04 -4.16 ± 2.44 <0.001
p value denotes the results of paired t-test between IMRT and VMAT plans. The italicized values indicated p value is less than 0.05.
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TABLE 4 Comparison of the OAR doses between the IMRT and VMAT plans.

Structure Parameter IMRT VMAT Difference (%) p-value

Brainstem Dmax (cGy) 3564.7 ± 511.7 3551.6 ± 513.2 0.40 ± 2.60 0.493

Left eye Dmax (cGy) 2625.1 ± 363.1 2320.7 ± 271.3 13.26 ± 11.23 <0.001

Right eye Dmax (cGy) 2672.8 ± 374.0 2380.5 ± 442.0 13.54 ± 12.52 <0.001

Left lens Dmax (cGy) 620.8 ± 32.6 630.2 ± 28.5 -1.39 ± 5.15 0.194

Right lens Dmax (cGy) 630.5 ± 52.3 646.7 ± 32.8 -2.34 ± 8.26 0.185

Left inner ear Dmax (cGy) 3190.2 ± 105.7 3160.8 ± 123.1 1.10 ± 5.90 0.458

Right inner ear Dmax (cGy) 3073.0 ± 170.2 3152.1 ± 169.9 -2.43 ± 4.08 0.010

Left optic nerve Dmax (cGy) 3070.2 ± 125.8 2978.3 ± 130.0 3.20 ± 4.72 0.006

Right optic nerve Dmax (cGy) 2724.5 ± 296.2 2943.5 ± 208.4 -7.30 ± 9.54 0.001

Optic chiasm Dmax (cGy) 3246.8 ± 108.8 3215.2 ± 110.0 1.03 ± 3.30 0.183

Pituitary Dmax (cGy) 3034.7 ± 115.4 3053.9 ± 67.0 -6.03 ± 3.74 0.445

Left hippocampus
D100% (cGy) 757.2 ± 49.6 778.8 ± 59.1 -2.59 ± 5.00 0.018

Dmax (cGy) 1554.1 ± 249.4 1515.3 ± 130.1 2.14 ± 7.00 0.186

Right hippocampus
D100% (cGy) 742.7 ± 62.6 790.0 ± 59.1 -5.96 ± 4.07 <0.001

Dmax (cGy) 1504.3 ± 129.7 1496.6 ± 96.7 0.49 ± 5.17 0.647
F
rontiers in Oncology
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p value denotes the results of paired t-test between IMRT and VMAT plans. The italicized values inidicate pvalue is less than 0.05.
FIGURE 2

The dose distribution of the VMAT (upper) and IMRT (down) plans in cross-section (left), coronal (middle), and sagittal plane (right) for a typical
patient. The red area represents the coverage with an isodose of 50 Gy and the blue area represents the coverage with an isodose level at 30 Gy.
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in this study was only a 5 mm outward expansion around the

hippocampus. Yu Xiao et al. used the Pinnacle TPS to improve the

existing non-coplanar VMAT HA-WBRT plan, and compared the

dosimetric differences between the improved non-coplanar VMAT

plan and the traditional non-coplanar and coplanar VMAT plans in

HA-WBRT (28). For the Dmax and D100% in hippocampal tissue, the

improved non-coplanar VMAT could be controlled at

approximately 14.37 Gy and 8.40 Gy, respectively, which were

significantly smaller than the traditional non-coplanar and

coplanar plans (p<0.05). However, the improved non-coplanar

VMAT plan was too complicated, with a total of six arcs and four

couch angles (270°, 315°, 45°, and 0°), so the treatment efficiency

was low. Shao Wei et al. investigated the dosimetric differences

between VMAT with a flattening filter (FF) and flattening filter free

(FFF) in HA-WBRT using four half arcs with a prescribed dose of

30 Gy in 10 fractions. The Dmax of the hippocampus in the FF-

VAMT and FFF-VMAT plans was 16.46 ± 0.56 Gy and 15.13 ± 0.38

Gy, respectively, and the D100% was 7.72 ± 0.28 Gy and 7.12± 0.34

Gy, respectively. The results of the current study are comparable to

the two plans, but their study did not have SIB (29).

This study was conducted based on the Monaco TPS and the

Elekta Axesse linear accelerator, and a template for field setup and

optimization functions was created to save planning time. The most

important factor in successful HA-WBRT+SIB planning is the TPS

and field setup and the optimization of function criteria. While

some plans required fine-tuning for specific cases, such as an SIB

region that is too close to the hippocampus (<3 mm) or a large

number and volume of brain metastases, the optimization function

template provided in this study met the planning requirements for

the majority of patients. Among the 22 patients, only one patient

had a Dmax to the left hippocampus that exceeded 17 Gy (26.21 Gy

for IMRT and 20.52 Gy for VMAT, respectively). This was due to its

proximity to the SIB target, which was only 1 mm from the lesion at

50 Gy. This differs from previous studies that only provided field

settings without essential optimization functions (8, 30–32). This
Frontiers in Oncology 08130
study provides detailed planning optimization parameter settings

for the clinical implementation of this treatment technique. It

protects the pituitary gland, inner ear, and hippocampus. The two

plans in this study showed no significant differences in the dose

distribution for the target PGTV with SIB. However, VMAT

significantly increased the V30, conformity, and uniformity for

PTV-brain-SIB (p<0.05). The plans exhibited no significant

differences in the Dmax to the hippocampus (p>0.05), but IMRT

significantly reduced the D100% for the hippocampus, with a lower

MU compared to VMAT. Although IMRT reduced the MU, it did

not reduce the beam on time, resulting in a time advantage. The

reason may be that VMAT can beam on continuously during

rotation. When considering the idling time of the gantry, IMRT

requires more treatment time than VMAT, so from a cost/benefit

perspective, VMAT can treat more patients than IMRT in the same

amount of time. IMRT had a significantly higher gamma passing

rate than VMAT under the 3%/2 mm and 2%/2 mm criteria,

possibly due to the reduced MU that reduced the linear

accelerator’s head leakage.

Collision avoidance is an important issue in a non-coplanar

plan, and the Monaco TPS provides the Room’s Eye View function

to view the gantry, couch, lighting, decorations, axes, and the active

treatment beam in a room to make sure that the patient is in a safe

position. Acquiring the patient’s CBCT will be a problem when the

non-coplanar plan is implemented for treatment; we can only

acquire CBCT when the couch angle is at 0°, so it is important to

make sure that the center of couch rotation accuracy meets the

requirements so that the dose distribution is as expected.

The current study has several limitations. First, it was a

retrospective study comparing dosimetry, did not compare

biology such as probability of tumor control and probability of

normal tissue complications, and was not a prospective study with

clinical outcomes. Therefore, the advantages and disadvantages of

the two techniques need to be determined by long-term patient

follow-up and based on extensive case practice. Second, there were
FIGURE 3

DVH of the VMAT and IMRT plans for a representative patient. The solid line indicates the VMAT plan and the dotted line indicates the IMRT plan.
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no comparisons of other IMRT techniques such as helical

tomography and proton and carbon ion therapy. Third, the

correlation between dose limitation in the hippocampus and

symptom reduction in patients has not been adequately

demonstrated. Fourth, the TPS and dose calculation algorithms

used for planning can also have an impact on outcomes. Thus,

different TPSs such as Varian’s Eclipse and RaySearch’s RayStation

and different algorithms such as anisotropy analysis algorithm and

pencil beam need to be further investigated. Fifth, the measurement

data for all QA measurements in this study were not completed

during the same time period, and the deviation of the dose output

from the machine each time may have an effect on the QA results.

Sixth, the control point limits of the two plans were not uniform,

and different control points may have significant effects on

dose distribution.
5 Conclusion

This study performed a dosimetric comparison of non-coplanar

VMAT and non-coplanar IMRT for HA-WBRT+SIB in brain

metastasis patients on the Monaco TPS. Both plans demonstrated

clinically acceptable results for hippocampal protection. VMAT had

advantages in target dose distribution and treatment efficiency,

while IMRT protected the hippocampus better and reduced the

machine monitor units.
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