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Editorial on the Research Topic
Technologies for neonatal care in LMICs

1 Introduction

Newborn babies are among the most vulnerable class of patients in any society. They
are entirely incapable of surviving on their own without external help from caregivers and
society. A poorly attended newborn will more likely die compared with another who
received well-guided and knowledgeable care (1). Therefore, the neonatal mortality rate
of any society represents a quick measure of the efficiency of its healthcare system,
available technologies, and knowledge base. It is common knowledge that low- and
middle-income countries (LMICs) disproportionately contribute over 98% of the global
annual burden of neonatal deaths (2, 3). Limited access to sustainable affordable
technologies for neonatal care is one of the major impediments in lowering neonatal
mortality in LMICs (4). Expensive medical equipment that works well in high-income
countries (HICs) may be unsustainable in LMICs due to poor operational infrastructure
(5), thus making sophisticated technologies used in HICs unaffordable and
unsustainable in LMICs. However, a well-crafted basic technology may be extremely
affordable, easily maintainable by in-house technicians, and effective at saving lives.

Therefore, we encouraged researchers to submit their practical demonstrations of
applicable LMIC innovations to enable a collection of hybridisable ideas for
empowering the rest of the LMICs in neonatal care.

2 Outline of contributions

This Research Topic has showcased 10 rigorous studies from 64 collaborating authors
across many continents, drawing from easy-to-apply innovative technologies to address a
variety of neonatal conditions.

Singh et al. (an Indian-Australian collaboration), explored the “diagnostic utility of
lung ultrasound” in predicting when surfactant therapy is needed during neonatal
respiratory support. They noted that lung pathologies for respiratory distress at birth
have overlapping symptomatology with other conditions, hence the need to research the
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diagnostic accuracy of a cutoff for the lung ultrasound score (LUS)
in predicting the need for surfactant therapy in neonatal respiratory
distress. They correlated LUS and the corresponding SPO, to FiO,
in 100 neonates and found that an LUS cutoff of 7 predicted the
need for the first dose of surfactant.

In another randomised controlled trial, Singh et al. compared the
effect of premature infant oral motor intervention (PIOMI) and
routine oromotor stimulation (OMS) on oral feeding readiness.
They concluded that PIOMI is a more effective oromotor
stimulation method for improving oral feeding in preterm neonates.

In a British-Indian collaboration, Hagan et al. assessed the
“feasibility of multimodal imaging in neonatal hypoxic-ischaemic
encephalopathy (NHIE) from an ovine model.” They argued that
the classical “Sarnat staging scale” used in NHIE classification is
compounded by difficulties in the clinical detection of seizures.
Hence, they proposed a low-cost bedside continuous monitoring
(EEG)
spectroscopy (fNIRS)—that non-invasively measures the electrical

electroencephalogram tool—functional  near-infrared
activity of the brain from the scalp, capturing the neurovascular
coupling (NVC) status. They tested how the imaging system may
differentiate between normal, hypoxic, and ictal states in
perinatal ovine models. Their main finding was that EEG-fNIRS
imaging results are feasible and may provide a biomarker of
sepsis effects on the NVC in NHIE.

Rauschendorf et al. (an  American-Filipino-British
collaboration) presented the effectiveness of a novel bubble
continuous positive airway pressure (CPAP) system—Vayu—for
neonatal respiratory support in the Philippines, where they
compared the clinical outcomes of 1,024 “control” neonates with
979 “test-cases” after the

Continuous Positive Airway Pressure (bCPAP) systems. They

introduction of Vayu bubble

found that Vayu device usage in a neonatal unit resulted in
significantly improved outcomes.

Reis et al. —in a Brazilian-Mozambican collaboration—presented
a study for enhancing “respiratory distress syndrome (RDS)
prediction at birth by optical skin maturity.” They developed a
handheld optical device that evaluates the photobiological properties
of skin tissue, processing it with other variables to predict early
prematurity-related neonatal prognosis and tested the device’s
ability to predict RDS. The test correctly discriminated RDS
newborns with 82.3% accuracy and demonstrated a new way of
assessing a newborn’s lung maturity, providing potential
opportunities for earlier detection and more effective care.

In a pilot preclinical study, Bluhm et al. (USA) demonstrated that
their low-cost “self-warming” biomedical device—the NeoWarm—
could comparatively assist the hypothermic recovery of six piglets
(TEST animal models) when assessed against five other unrecovered
piglets (CONTROL) in an induced hypothermia experimental
setting. The self-warming “NeoWarm” promises to be potentially
applicable—with additional validation—in humans as an alternative
to the time-consuming Kangaroo Mother Care technique.

In the first study to identify the factors affecting perinatal
with
collaboration from Portugal, Vasconcelos et al. concluded that

and neonatal deaths in Sao Tome and Principe,

the high-risk pregnancy score, meconium-stained fluid, the
prolonged rupture of membranes, the transfer from another unit,
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and instrumental vaginal delivery increased the risk of stillbirth
and neonatal deaths by four- to nine-fold. Therefore, prompt
intrapartum care is a key strategy that should be implemented in
Sao Tome and Principe.

In another fascinating work by researchers from the USA and
Cambodia to minimise CPAP-associated oxygen toxicity, Wu et al.
conducted a clinical safety assessment of their novel “low-cost
entrainment syringe” oxygen blender system for modified bubble
CPAP circuits. Thirty-two Cambodian children were included, of
which 31 were clinically successful in treatment, as determined
by the monitoring of oxygen saturation, the carbon dioxide
partial pressure, the fraction of inspired oxygen, the frequency of
device adjustments, and the duration of support. The overall
outcome declared the blender safe for clinical use.

From the Republic of Korea, Hwang and Lee conducted a
cross-sectional study, in which safe-delivery kits were distributed
to 534 mothers in rural Ethiopian communities to investigate
their impact on preventing newborn and maternal infection. The
outcome demonstrates that single-use delivery kits decrease the
likelihood of maternal infection, emphasising the need for their
adoption in vulnerable countries to improve hygienic birthing,
especially for deliveries outside of healthcare facilities.

Finally, a team of Nigerian, British, and Canadian researchers
—Amadi et al. —in their courtroom “jury-style systematic review
of 32 years of literature without significant mortality reduction,”
wondered why high neonatal mortality rates had persisted in
Nigeria and some LMICs since the days of “United Nations’
Millennium Development Goals (MDG) target (4)”. They
reviewed 4,286 publications but only 19 had the potential to
reduce neonatal mortality; however, these remained largely
unutilised by policymakers. The recommendation from this
article was that healthcare systems in LMICs may have to look
inwards to strengthen identifiable game-changing discoveries they
already possess.

3 Concluding remarks

We invite organisations and policymakers of relevant countries
to avail themselves of the rich contents of this Research Topic to
implement a far-reaching neonatal life-saving campaign across
LMIGCs, inspiring further research for inclusion in our next edition.
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Technical feasibility of multimodal
Imaging in neonatal hypoxic-
iIschemic encephalopathy from an
ovine model to a human case series

Brian Hagan', Radhika Mujumdar’, Jagdish P. Sahoo?, Abhijit Das’
and Anirban Dutta'™

School of Engineering, University of Lincoln, Lincoln, United Kingdom, ?Department of Neonatology, IMS
& SUM Hospital, Bhubaneswar, India, *Department of Neurology, The Lancashire Teaching Hospitals NHS
Foundation Trust, Preston, United Kingdom

Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia occurs
when the brain does not receive enough oxygen and blood. A surrogate marker
for “intact survival” is necessary for the successful management of HIE. The
severity of HIE can be classified based on clinical presentation, including the
presence of seizures, using a clinical classification scale called Sarnat staging;
however, Sarnat staging is subjective, and the score changes over time.
Furthermore, seizures are difficult to detect clinically and are associated with a
poor prognosis. Therefore, a tool for continuous monitoring on the cot side is
necessary, for example, an electroencephalogram (EEG) that noninvasively
measures the electrical activity of the brain from the scalp. Then, multimodal
brain imaging, when combined with functional near-infrared spectroscopy
(fNIRS), can capture the neurovascular coupling (NVC) status. In this study, we
first tested the feasibility of a low-cost EEG-fNIRS imaging system to
differentiate between normal, hypoxic, and ictal states in a perinatal ovine
hypoxia model. Here, the objective was to evaluate a portable cot-side device
and perform autoregressive with extra input (ARX) modeling to capture the
perinatal ovine brain states during a simulated HIE injury. So, ARX parameters
were tested with a linear classifier using a single differential channel EEG, with
varying states of tissue oxygenation detected using fNIRS, to label simulated HIE
states in the ovine model. Then, we showed the technical feasibility of the low-
cost EEG-fNIRS device and ARX modeling with support vector machine
classification for a human HIE case series with and without sepsis. The classifier
trained with the ovine hypoxia data labeled ten severe HIE human cases (with
and without sepsis) as the "hypoxia” group and the four moderate HIE human
cases as the “control” group. Furthermore, we showed the feasibility of
experimental modal analysis (EMA) based on the ARX model to investigate the
NVC dynamics using EEG-fNIRS joint-imaging data that differentiated six severe
HIE human cases without sepsis from four severe HIE human cases with sepsis.
In conclusion, our study showed the technical feasibility of EEG-fNIRS imaging,
ARX modeling of NVC for HIE classification, and EMA that may provide a
biomarker of sepsis effects on the NVC in HIE.

KEYWORDS

hypoxic-ischemic encephalopathy, electroencephalogram, near-infrared spectroscopy,
neurovascular coupling, experimental modal analysis
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1. Introduction

Hypoxic-ischemic encephalopathy (HIE) is one of the most
common causes of neonatal death worldwide, accounting for
approximately 23% of all neonatal deaths (1). Worldwide, it is
estimated to account for more than one million deaths annually.
HIE also accounts for considerably higher numbers of chronic
neurological deficits that create an economic burden, more so in
developing countries. Despite having such an immense societal
impact, an adequate rapid diagnostic method for HIE is lacking
(2). In HIE, there is a prolonged lack of oxygen entering the
brain, which causes serious neuronal damage within a very short
window of time, approximately 2-3 min if complete lack of
oxygen, and will lead to a cessation of any neuronal activity
shortly thereafter. Due to the direct effect of HIE on the
neuronal state, current monitoring and outcome prediction are
predominantly based on the electroencephalogram (EEG), which
measures neuronal activity in the cerebral cortex. Amplitude-
integrated EEG (aEEG) is an effective prognostic method for
long-term neurologic deficits induced by HIE with a 90%
classification accuracy at 6 h after injury in both positive and
negative predictions. Here, positive predictions dictate that a
subject will have significant deficits caused by the hypoxic event
and negative predictions characterize recovery of normal
neuronal function after the injury. In most studies, the least time
to obtain an accepted and accurate prediction of extended
deficits was found to be around 6 h and the lowest acceptable
was 3 h, where the positive prediction scores were below 80%,
and prior to that time window, the method did not provide any
consistent predictive value (3, 4). Other alternative methods for
prognosis in HIE such as magnetic resonance imaging (MRI)
have fallen out of favor as they lack prognostic ability or speed in
the early stage of brain injury. For example, T1- and T2-
weighted MRI takes approximately 1 week for an accurate
prognosis resulting from brain swelling from the injury. Also,
there is a lack of MRI facilities in resource-poor settings and it is
often cost-prohibitive. According to a meta-analysis by van
Laerhoven (5), the diagnosis is at best on par with the 6-h aEEG
with a positive predictive score of 83% and a negative score of
90%. Then, Chalak et al. (6) presented a neurovascular coupling
(NVC)-based approach in HIE using multimodal imaging with
aEEG combined with functional near-infrared spectroscopy
(fNIRS) and wavelet coherence analysis. Here, the challenge
remains in the continuous monitoring of NVC, where Sood et al.
(7) presented a Kalman filter-based method that allowed online
autoregressive with extra input (ARX) parameter estimation
using time-varying signals and could capture transients in the
coupling relationship between EEG and fNIRS signals. Then, the
availability of low-cost portable brain imaging devices, e.g.,
OpenBCI (https://openbci.com/) and M3BA (8), can be leveraged
for clinical translation of continuous cot-side brain monitoring in
limited resource settings that can potentially help for better
management of neonates with perinatal asphyxia and improve
the long-term neurodevelopmental outcome. In the current
study, the overarching objective was to test the feasibility of a
low-cost multimodal brain imaging device (8) and an ARX-based
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support vector machine (SVM) classifier for point-of-care HIE
monitoring in limited resource settings.

Continuous monitoring of neurovascular coupling may be
superior to clinical scores for HIE Cclassification (9). The
hypoxic state can be rapidly detrimental for the brain neurons
due to a large amount of oxygen needed in continuous supply
(~10 ml/100 g tissue/min) and its low reserve, leading to large
changes in neuronal firing during oxygen deficits that can affect
the EEG power spectrum. Indeed, hypoxia effects on the EEG
power spectrum have been extensively studied in both humans
and animal models (10, 11). The spectral density, more
commonly referred to as the power spectrum of the signal,
makes the EEG signal easier to analyze based on rhythms that
can be monitored over time as a spectrogram. The effect of
hypoxia on the power spectrum has been studied using animal
models (12); for example, Goel et al. (13) in an animal model
of a neonatal piglet showed results from hypobaric hypoxia that
was induced for 30 min using 10% oxygen concentration in air.
Then, the airway was occluded for min, during which the
piglet’s neural firing ceased, and the piglet was resuscitated
afterward. Throughout the protocol, the EEG was monitored
while the piglet was anesthetized. The power spectrum was
calculated at the end of both segments, airway occlusion and
resuscitation, and one remarkable feature was spectral
dispersion, where the low-frequency alpha and theta firings
were most affected by hypoxia; also, there was a degree of
disproportionality in the recovery of power of the three
(1.0-5.5, 9.0-14.0, 18.0-

21.0 Hz) relative to their mean recovered power. Time domain

dominant frequency bands and
features, such as Hjorth parameters, have also been used. The
Hjorth parameters are simple statistical calculations on the EEG
signal, with the first parameter known as the activity of the
signal, which is the variance of the amplitude for a window of
the signal in time, and the second Hjorth parameter known as
the mobility of the signal. Mobility is defined as the square root
of the ratio of the first parameter of the rate of change of the
signal, divided by the actual first parameter of the signal, or the
rate of change of the activity divided by the activity of the
signal. The last of the Hjorth parameters is known as the
complexity of the signal, which is the second derivative of the
activity divided by the first derivative of the activity. Each of
these Hjorth parameters changed during HIE and was found
useful, especially in the classification of early partial seizure
onset (14). Then, aEEG is a major clinical tool for the long-
term prognosis of HIE; however, it uses 10-min windows for
calculation and needs at least 6 h of data for accurate prognosis.
Here, aEEG on its own needs prolonged data acquisition for an
accurate prognosis that may outrun the early treatment window
for HIE. Also, aEEG can be processed using Washington
University-Neonatal EEG Analysis Toolbox (WU-NEAT) to
estimate NVC in conjunction with fNIRS (9), which can be
used for HIE classification (6). Another time series analysis is
autoregressive (AR) modeling, which takes a segment of data
and fits it to the current data point in a linear combination of
previous data points multiplied by parameters that have a fixed
value throughout the segment. The AR model requires matrix
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calculations to acquire these parameter values and requires
validation to ensure that it is adequately capturing the EEG
signal properties and not the noise especially when detecting
seizure activity (15). If the AR model adequately fits the data,
the power spectrum trends are captured in the transfer function
output of the system model and can be reconstructed. Then,
operational modal analysis using AR with the eXogenous input
(ARX) model can provide mechanistic insights from the NVC
system model with the simultaneously acquired EEG-fNIRS
data. We have extended published algorithms for online
multimodal brain imaging using EEG and fNIRS in our prior
work (7).

The current study is motivated by recent findings on the role
of NVC in the prediction of brain abnormalities in neonatal
Das et al. (9) found NVC to be a
promising biomarker in neonatal HIE that was superior to the

encephalopathy (9).

total Sarnat score (16) for the prediction of abnormal brain
MRI in the later stages. In estimating coherence, stationarity
and ergodicity of the signal are assumed, which needs
preprocessing of the raw EEG data to remove trends and low-
frequency variations. Then, the modeling accuracy becomes
more challenging when the spectra contain sharp peaks, e.g.,
during rhythmic activity (17). Therefore, an ictal classifier based
on EEG spectral features was developed using the Children’s
Hospital the of
Technology (CHB-MIT) dataset (18) to separately label seizure
activity (19). Then, a SVM was used with the AR parameters to
classify EEG (20) into various experimentally induced states in

of Boston and Massachusetts Institute

an ovine model of perinatal asphyxial arrest (21). Here, we
applied AR modeling and assumed AR parameters being
constant throughout the selected window size (22). Ahmed
et al. (20) have used a multiclass SVM classifier for the best
estimation of an outcome based on a commonly used clinical
grade of one to four: a grade of one being non- to mild
abnormalities, two being moderate, three being major EEG
depression, and four being a severe EEG discontinuity. Their
classifier overall had an 87% accuracy in classifying the recovery
grade of newborns from HIE and was found to be one of the
most effective such classifiers, while others were as accurate as
77% (23). Here, we also performed ARX modeling using EEG-
fNIRS data from the ovine model of perinatal asphyxial arrest
(21). The objective was to test the feasibility of a low-cost EEG-
fNIRS device and the ARX-based linear classifier to label
simulated HIE states in a perinatal ovine hypoxia model. Then,
we applied the ARX-based linear classifier trained with
perinatal ovine hypoxia model data to a human case series on
perinatal HIE with and without sepsis. We also investigated
experimental modal analysis (EMA) of the NVC system model
that provided mechanistic insights from simultaneously
acquired EEG-fNIRS data. Here, the ARX model allowed the
estimation of the modal parameters and frequency response
functions (FRFs) of the NVC system. Then, the FRFs of the
EEG power as input and the hemodynamic (fNIRS) changes as
output were used for the EMA of the NVC system dynamics
for the mechanistic insights into the HIE (with vs. without sepsis).
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2. Materials and methods

2.1. Animal model and data processing

The preparation of ovine subjects was carried out in
accordance with the Institutional Care and Use
Committee at the State University of New York at Buffalo,
United States (24-26). Term (140-147 days) pregnant ewes were
obtained from New Pasteur Family Farms (Attica, NY, United
States). fast,
anesthetized with intravenous diazepam and ketamine. The ewe

Animal

After an overnight the pregnant ewe was
was continuously monitored using a pulse oximeter and an end-
tidal carbon dioxide monitor. The ewe was intubated with a 10-
mm cuffed endotracheal tube and ventilated with 21% oxygen
and 2%-3% isoflurane at a breathing rate of 16 breaths per
minute. The perinatal ovines were delivered by a cesarean section
and partially exteriorized and intubated. Once the delivery
process was completed, excess fluid that remained in the lungs of
the newborn was removed via passive measures, by tilting the
head back and forth for simulating the process by which fluid is
removed during birth. Once the excess liquid was removed, the
airway was occluded to prevent gas exchange. The catheters were
then placed in the jugular vein and right carotid artery to sample
blood and administer any necessary medication. A 2-mm flow
probe (Transonic Systems Inc., Ithaca, NY, United States) was
placed around the left carotid artery and a 4-mm flow probe was
placed in the left pulmonary artery. The electrocardiogram
electrodes were then placed in the right and left axilla and right
inguinal area, a standard three-lead setup. The ECGI100C
(Biopac, Inc.) was used with Acknowledge software to record
data from leads I, II, and III of the ECG. The saturation of
preductal arterial oxygenated hemoglobin was monitored by a
pulse oximeter placed on the right forelimb of the neonate. Low-
cost wireless EEG-fNIRS (750 nm and 850 nm) sensors (OEM
from Technische Universitit Berlin) (8) were placed on the
forehead for continuous measurement at 500 Hz for EEG and
10 Hz for fNIRS (see Figure 1). Our low-cost wireless EEG-
fNIRS (750 nm and 850 nm) sensors (Bionics Institute, Australia)
were validated using off-the-shelf EEG (Biopac Inc., United
States) and fNIRS (Nonin Medical, United States) sensor data
the
experiments; see the experimental protocol by Vali et al. (26).

from established perinatal asphyxiated lamb model

Following instrumentation, the umbilical cord was occluded
until asystole, which is defined as the complete lack of carotid
artery flow, arterial blood pressure, and heart rate. The lamb
remained in the asystole for 5 min, and then resuscitation was
started. Positive pressure ventilation (PPV) via an endotracheal
tube was provided with 20% oxygen and was performed using a
T piece at a rate of 40 breaths per minute (25). After 1 min of
ventilation, chest compressions (CCs) were initiated and
coordinated with CCs in the ratio of 3:1 (3 CC: 1 PPV). After
5 min of resuscitation, if the lambs did not have a spontaneous
return of circulation (ROSC—defined as heart rate >60/m with
systolic blood pressures >30 mmHg), medications (epinephrine

or vasopressin) were administered through an umbilical venous
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FIGURE 1

Differential EEG and the fNIRS sensors were added to the perinatal asphyxiated lamb model experiments (26). The figure was adapted from Figure 1 of Vali
et al. (25). EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.
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catheter. Blood gases were obtained at intervals, and the lambs were
ventilated after ROSC for 2-3h. If the lambs had ROSC,
resuscitation was stopped at 20 min. Data from five ovine
subjects were analyzed in this study with a gestational time of
139-142 days, as shown in Table 1. The data analysis followed
five major portions: raw data extraction, preprocessing,
The

workflow presented in Figure 2 was used to obtain results from

autoregressive modeling, classification, and validation.

the EEG and fNIRS systems starting with the extraction of raw
data.

2.1.1. Major events were labeled offline as follows

First, we start the EEG or initiate our experiment; then, neonate
delivery was performed, followed by the asphyxiation of the
subject. Here, from the beginning of EEG to the start of
asphyxiation, the data were labeled as control or normal. The
next major event was the point of no cardiovascular function,
known as asystole. Data between the time of neonate delivery
and asystole were labeled as ischemic data. The next event was
the start of resuscitation. The data between the asystole and the
start of resuscitation were labeled the asystole segment. The two

TABLE 1 Five full-term ovine subjects used in the animal study.

Subjects | Gestational time (days) = Weight (lbs) Sex
11/16-1 142 55 Male
12/13 141 3.05 Female
3/26 139 4 Male
11/16-2 142 5.5 Male
11/15 141 44 Male
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portions consisting of ischemic and asystole data segments were
combined into a more generalized hypoxia phase for our AR-
SVM classifier testing. The last event was the recovery of
spontaneous circulation or ROSC. So, the data segment between
the start of resuscitation and the ROSC was labeled as the chest
compression segment, and then, the last segment was the
recovery segment in the case of ROSC of the subject.

2.1.1.1. Data preprocessing—removal of chest compression
As EEG is affected by the movement artifacts due to chest
compressions, the data segment was completely removed during
preprocessing.

2.1.1.2. Data preprocessing—removal of flat lines

The next stage of preprocessing was to remove sections of the data
where electrode contact was lost or obstructed, which can appear as
a flat-line artifact in the EEG. The EEG flat lines were removed by
measuring the standard deviation of the signal in the sliding
window after visual confirmation.

2.1.1.3. Data preprocessing—correcting for baseline drift
The removal of the baseline drift is the next step in the
preprocessing pipeline. EEG is considered a zero mean signal;
therefore, if the signal mean is not zero over time, then it was
considered a baseline drift artifact. In the case of a baseline drift
artifact, the EEG data were adjusted back to a zero mean using
the “detrend” function in MATLAB (MathWorks, Inc.).

2.1.1.4. Data preprocessing—bandpass filtering of data

A bandpass filter was designed with cutoff frequencies set to 0.5-
50 Hz [neonates rarely have high gamma activity (27)], thereby
removing both low-frequency artifacts (common causes of
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FIGURE 2

Algorithmic workflow for processing perinatal ovine EEG data. EEG, electroencephalogram.

nonstationarity) and high-frequency noise. We applied a fifth-
order filter that provided a stable filter for our specific cutoff
the “butter” in MATLAB

frequencies  using function

(MathWorks, Inc.).

2.1.1.5. Data preprocessing—LDA binary classifier for
seizure

The next stage of the preprocessing pipeline was to label ictal
activity using a sliding window of the data (22) as seizure activity
occurred frequently, and we aimed at hypoxia classification using
background (nonseizure) EEG activity (28). Linear discriminant
classifier (LDA) classifier training used the CHB-MIT dataset
(18). The CHB-MIT scalp EEG dataset contains 22 subjects from
children who have been removed from antiepileptic medication
and suffered seizures. The sampling rate for all data was 256 Hz,
and the international 10-20 standard montage was used for
recording. A physician trained in EEG-based seizure detection
manually labeled the occurrence of ictal activity in the CHB-MIT
dataset. To maximize the scalability of the LDA classifier from
the CHB-MIT dataset to our EEG measurement, only one
channel of differential data was chosen for training the classifier,
as described next.

The differential EEG channel used in our perinatal ovine study
was comparable to the Fz-Cz electrode pair from the human 10-20
labels. Therefore, Fz-Cz electrode data were processed for
differential EEG like our perinatal ovine data but we did not use
their (19) SVM classifier that had several hyperparameters. We
used a simpler LDA that was trained using the labeled CHB-MIT
dataset [using 3.4-s sliding window that was longer than 2 s used
in their SVM classifier (19)]. Our chosen features were alpha and
low gamma band power (29). Here, LDA is a binary classifier
that generates a linear decision plane to maximize the accuracy
of binary classification. To avoid overfitting, a fivefold cross-
validation was used, which divided the EEG data into five
segments and used four-fifth of the data to train the classifier
and one-fifth to test and performed this processing five different
times, so all the EEG data can be used for both testing and
training. This method is widely used in machine learning to
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avoid generating overfit classifiers. Once the LDA classifier was
trained by the labeled CHB-MIT dataset, the Fz-Cz EEG ovine
data in a 2-s sliding window was run through the binary
classifier, and the windows with seizure were labeled.

2.1.1.6. Data preprocessing—removal of large-amplitude
data segments

The last in the preprocessing was to remove data segments
containing large activity (and not labeled as a seizure); this was
done by finding the overall standard deviation of the EEG data
and removing data segments that had a mean larger than two
standard deviations of the whole EEG data.

2.1.1.7. Autoregressive (AR) modeling of the EEG data

The AR model is a linear model that fits the current output using a
defined number of previous outputs, multiplied by the same
number of coefficients, known as AR parameters. The AR
parameters are optimized based on the linear algebra principle of
least-squared estimate for the best fit, where the AR model yields
higher resolution for spectral analysis than nonparametric
approaches when the signal length is short. If an accurate AR
model is constructed, then the spectral analysis of the signal can
be solely described and reconstructed from AR parameters. AR
model delay was included in our model, and the delay
calculation was done using autocorrelation, which is a measure
of mutual information shared between the signal and a time-
shifted version of itself. The analysis of the data autocorrelation
was performed for every possible positive delay. The maximum
value denotes the time point when there is the most shared
information. The delay was calculated for each ovine subject
separately from the control phase of the EEG data. The AR
model order is the other property of the model that must be
optimized, which was done to make sure that the system is being
accurately modeled while also being the least computationally
expensive, e.g., using Akaike’s information criterion (AIC). Prior
work (13) also found an optimal AR model order of six for a
similar kind of EEG data. After AR modeling the EEG data,
these AR parameters were plotted in 3D to visualize clusters
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from the nonictal background EEG activity. The ictal activity was
labeled LDA
Preprocessing—seizure binary classifier. Then, AR parameters

using a first-level classifier—see  section
were used as features to visualize the clusters for all the three
different experimental conditions in the 3D AR feature space;

seizure state, hypoxia state, and normal/control state.

2.1.1.8. SVM classification using EEG AR parameters

Separation into the three experimentally induced states, normal/
control, hypoxia, and seizure, was done using two different
linear classifiers in the hierarchy. The first of the two linear
classifiers in the hierarchy was the LDA seizure classifier that
CHB-MIT dataset—see
Preprocessing—seizure binary classifier. This binary classifier

was trained using the section
was applied to identify the data segments that contained ictal
activity, which were removed before training and testing the
second-level SVM classifier using the background EEG (3.4-s
sliding window). The second-level SVM classifier was used to
classify the AR parameters from the seizure-free (background)
EEG data segments into the hypoxia state and the control
(normal) state. Here, AR parameters were used as features (see
Supplementary material Figures S1-S3), and the response
variable used for training and validation were the event
markers from the animal experiment. The SVM classifier was
chosen for a more generalizable decision plane since this SVM
classifier that was trained using perinatal ovine data was then
applied to human perinatal case series. To avoid overfitting
the SVM classifier, a fivefold cross-validation was used.

2.1.1.9. SVM classification using EEG-fNIRS ARX
parameters

We applied the ARX model to the EEG-fNIRS data (here, a 60-s
sliding window was used due to a slower fNIRS signal) for the
second-level SVM classifier using seizure-free data segments
for labeling hypoxia and control (normal) states. We used the
basic nirs-toolbox (30) script in MATLAB (MathWorks, Inc.)
to process the fNIRS data (750 and 850 nm). Specifically, we
used the with  default
nirs.modules.OpticalDensity, nirs.modules.BeerLambertLaw,
and nirs.modules.AR_IRLS. We used the AR-IRLS model (31)
that employed both prewhitening and robust regression to

following modules parameters:

remove noise from the data. The ARX model order of six from
AIC was comparable to our previous work (7) that used the
fNIRS oxyhemoglobin signal in the low-frequency (0.1 Hz)
range as the output and the transformed EEG band power as
the input (7). In this study, we used an EEG frequency band
of 1.0-21.0 Hz due to the dominant frequencies found in a
related prior work (13). Then, the ARX parameters (“arx” in
MATLAB) were used as features in the SVM classifier, and the
response variable used was the event markers from our animal
experiment. To avoid overfitting the classifier, a fivefold cross-
validation was used.

2.1.1.10. Hierarchical classifier outcome vis-a-vis carotid

flow
After the hierarchical classifier was found from the perinatal ovine
data, the classifier outcome was compared with the carotid blood
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flow data. Here, the objective was to compare the changes in the
carotid flow rate (irrespective of the manually placed event
boundaries) when the ovine subject physiologically entered the
global hypoxia stage.

2.2. Human data acquisition and feasibility
testing

The human perinatal study was conducted based on
convenience sampling at the Department of Neonatology and
approved by the Institutional Review Board (IRB) of the IMS &
SUM Hospital, Bhubaneswar, India. The study objectives were to
test the feasibility of the EEG-fNIRS joint imaging for the ARX-
based SVM classifier that was trained with the perinatal ovine
data to detect the severity of human perinatal HIE. The study
was a prospective observational study. Ten newborns with
moderate to severe HIE and four severe HIE cases with sepsis
were recruited for the feasibility study. Sepsis screening was
performed according to the clinical guidelines at the IMS &
SUM Hospital, Bhubaneswar, India. Specifically, sepsis was
suspected when there was a history of lethargy, poor feeding,
instability,
distension, feeding intolerance, and tachypnea. The suspicion was

fever, hypothermia, or temperature abdominal
corroborated with a positive sepsis screen (total leukocyte count
<5,000/cmm or absolute neutrophil count < 1,800/cmm, micro-
ESR>15mm in the first hour, immature-to-total neutrophil
ratio>0.2, CRP>10mg/dl, any two of the four positive
parameters meant sepsis screen positive). Sepsis was also
confirmed if the blood culture was positive. Here, the physical
and neurological examination was performed by neonatologists
trained with Sarnat and Sarnat scoring criteria (32).

The inclusion and exclusion criteria were the following:

o Inclusion criteria: Neonates with gestation >35 weeks and
>1,800 g admitted to the neonatal intensive care unit (NICU)
for the treatment of perinatal asphyxia.

o Exclusion criteria: Premature babies <35 weeks, babies with
multiple congenital anomalies, and not giving consent for
inclusion in the study.

The experimental setup is shown in Figure 3, where the
parietal EEG channels were averaged and subtracted from
the averaged frontal channels to get a single channel EEG data.
The bilateral frontal-parietal fNIRS channels were also averaged
to get a single channel of fNIRS data. The preprocessing used in
the perinatal ovine model study was applied to the human EEG-
fNIRS data. The first-level LDA classifier [trained using human
perinatal EEG data from the CHB-MIT dataset (19)—see section
Preprocessing—seizure binary classifier] was applied to label the
seizure segments in the EEG data. Then, the second-level SVM
classifier in the hierarchical classifier, trained using the ovine
EEG-fNIRS data, was applied to 60-s sliding windows of the
human EEG-fNIRS data to label the hypoxia and the control
(normal) states. Then, for mechanistic investigation of the NVC
system using modal analysis (33), we applied EMA using the
ARX system model (“arx”, System Identification Toolbox). Here,
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FIGURE 3

PN,

Experimental setup for perinatal human study in the NICU using the low-cost EEG-fNIRS device (OEM from Technische Universitat Berlin)—see the
bottom left inset. The eight EEG electrodes were distributed bilaterally in the frontal and the parietal areas—see the top right inset. The two fNIRS
sources were placed bilaterally in the frontal area, while the two fNIRS detectors were placed bilaterally in the parietal area in the cap (using a black
cloth headband). NICU, neonatal intensive care unit; EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.
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we performed EMA of the estimated NVC system that was
estimated from the EEG-fNIRS data. Input and output time
series were stored using a data object in the time domain
(“iddata” in MATLAB). We used the modal analysis functions
“modalfrf” to determine the FRFs, “modalfit” to determine the
modal parameters of the FRF, and “modalsd” to generate a
stabilization diagram for the modal analysis in MATLAB
(MathWorks, Inc.). A single set of modal parameters was
generated using the least-squares complex exponential (LSCE)
algorithm in MATLAB (MathWorks, Inc.) by analyzing multiple
“modalsd”. Then, a

stabilization diagram was used to identify the physical modes by

response signals simultaneously in
examining the stability of the poles as the number of modes
increased. Here, the given pole was considered stable in
frequency if its natural frequency changes by less than 1% and
stable in damping if the damping ratio changes by less than 2%

as the model order increases in the stabilization diagram.

3. Results

3.1. Results from the perinatal ovine
study—classification based on
autoregressive parameters

Clustering of the AR parameters for the experimentally
induced HIE states in the ovine model (see the upper panel of
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Figure 4) allowed binary decision planes for the first level
(seizure vs. nonseizure EEG data) and the second level (hypoxia
vs. control EEG data) in the hierarchical linear classifier using a
sliding window of 3.4 s for the EEG data. Here, a sliding window
of 3.4 s [longer than 2s used in the prior work with the SVM
classifier (19)] was found to be adequate for the estimation of
AR parameters for the reconstruction of the EEG power
spectrum (22)—more details are in the thesis (24). The first level
of the hierarchical linear classifier determined the seizure state
using the LDA classifier applied to EEG data in sliding windows
of 3.4s, where the confusion matrix of the binary classifier
trained with the human CHB-MIT dataset is shown in Table 2.
Here, the accuracy is 92.68%, sensitivity is 76.88%, and specificity
is 93%, which are comparable to those in the prior work (19).
Then, the decision plane of the LDA seizure classifier was used
to identify and label the seizure data segments (=3.4s) in the
perinatal ovine EEG data. Then, the second-level classifier was
trained to separate the control (normal) segment from the
hypoxia segment using either the AR parameters from EEG data
(with a 3.4-s sliding window) or the ARX parameters from the
EEG-fNIRS (with a 60-s sliding window). AR parameters
performed moderately well to separate the control (normal)
segment from the hypoxia segment (see Table 3), where the
accuracy was 98.44%, sensitivity was 70.75%, and specificity was
81.78%. However, with ARX parameters from EEG-fNIRS data,
the classifier performance to separate the control (normal)
segment from the hypoxia segment (see Table 4) (also
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[llustrative example of subject 11/16-1—comparing EEG classifier labels vis-a-vis carotid blood flow and oxygen influx data. The top panel shows the
labeling by the hierarchical classifier in the AR feature space that could discriminate the brain state—control or normal (blue), hypoxia (green), and
seizure (yellow). The bottom panel shows the corresponding carotid flow and oxygen (O,) influx from the oxygen saturation (SpO,) data. Note that
around the 4,000-s timepoint, the carotid blood flow increase is followed by a steep decrease—the response of the neonate to asphyxial arrest (21).
The chest compression and resuscitation data sections were removed (around 5,000 seconds), which was followed by ROSC with the return of the
carotid flow and oxygen influx. Here, the gap in the EEG data (in black) before ROSC and after the asphyxial arrest is due to the removal of the
artifactual (due to chest compression) EEG data. EEG, electroencephalogram; AR, autoregressive; ROSC, spontaneous return of circulation

Supplementary material Figures S1-S3) improved sensitivity and
specificity, with the accuracy at 95.30%, sensitivity at 91.95%, and
specificity at 96.75%. Figure 4 shows an illustrative example of
the correspondence of the classification of the control (normal)
segment from the hypoxia segment vis-a-vis normalized carotid
flow recordings and global hypoxia (oxygen influx based on
oxygen saturation).
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3.2. Results from the human feasibility study

A nontechnical staff was trained to conduct cot-side continuous
EEG-fNIRS data acquisition in NICU that was established in a
limited resource setting with 1 day of shadowing of a technical
expert to learn the experimental protocol—the setup is shown in
Figure 3. The two-level hierarchical classifier developed using the
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TABLE 2 Confusion matrix of the ictal state classification using the LDA
classifier.

N=28,670

Predicted class

P
143
592

Actual Class

7,892 |

LDA, linear discriminant classifier.

TABLE 3 Confusion matrix of the hypoxia classification based on AR
parameters from EEG using the SVM classifier.

Predicted class

P
Actual class P 1,819 752 ‘
N 1,077 4,836 |

EEG, electroencephalogram; AR, autoregressive; SVM, support vector machine.

TABLE 4 Confusion matrix of the hypoxia classification based on ARX
parameters from EEG-fNIRS using the SVM classifier.

Predicted class

P
Actual class P 2,364 207 ‘
N 192 5,721 |

EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy.

ovine EEG-fNIRS data (see Figure 4) was applied to the human EEG-
NIRS data. The hierarchical classifier labeled the six severe HIE cases
and four severe HIE cases with sepsis as “hypoxia® and the four
moderate HIE cases as the “control”—hypoxia and control labels
are based on the perinatal ovine experiment (see Figure 4). Here,
EMA provided insights into the NVC modes (33), where the severe
HIE and the severe HIE with sepsis cases were found to be
different in the stabilization diagram.

3.3. Results from the EMA of the human
NVC

Figure 5 shows the stabilization diagrams of the NVC system
estimated from the EEG-fNIRS signals (60-s sliding window)
from six severe HIE human perinatal cases, four severe HIE
human perinatal cases with sepsis, and four moderate HIE
human perinatal cases. Here, the stabilization diagrams of the
four moderate HIE human perinatal cases did not show a dip at
around 1Hz in the averaged frequency response function;
however, the four severe HIE human perinatal cases with sepsis
had a dip at around 1Hz and a stable pole mainly in the
frequency between 0.5 and 1 Hz—is this related to respirocardiac
dysfunction?

4. Discussion

Our study showed the feasibility of training an SVM classifier
with the ARX parameters from the perinatal ovine model
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EEG-fNIRS data and then applying the SVM classifier to the
human data to detect HIE severity. The SVM classifier was at the
second level of our hierarchical classifier, where the first level was
an LDA seizure classifier that was trained using the human
CHB-MIT dataset (18). The LDA seizure classifier had an
accuracy of 92.68%, a sensitivity of 76.88%, and a specificity of
93%, which were comparable to those in the published prior
work using the CHB-MIT dataset (19). Then, the trained LDA
seizure classifier was used to label the seizure data segments
(=3.4s) in the perinatal ovine model EEG data and the human
EEG data. ARX parameters from the EEG-fNIRS seizure-free
data segments (in 60-s windows) from the perinatal ovine model
achieved an accuracy of 95.30%, a sensitivity of 91.95%, and a
specificity of 96.75%. The
hierarchical classifier was applied to the human data, where it

perinatal ovine model-trained
labeled the six severe HIE cases and four severe HIE cases with
sepsis as “hypoxia” and the four moderate HIE cases as the
“control.” Therefore, we showed the technical feasibility of our
two-level hierarchical classifier in differentiating severe HIE from
moderate HIE, which is feasible for hardware implementation (34).

Prolonged hypoxic events in the ovine model led to substantial
seizure activity when the neonates were inherently susceptible to
seizures with many more excitatory synapses than inhibitory
synapses. So, the seizure data segments (=3.4s) were removed
using the LDA classifier trained with the CHB-MIT dataset (18)
before second-level HIE classification. Here, the LDA classifier
used only EEG data for the classification of the seizure data
segments since the manually labeled CHB-MIT dataset did not
provide simultaneous fNIRS data. Then, our second-level SVM
classifier using ARX parameters from the EEG-fNIRS seizure-free
data segments (in 60 s windows) performed better in terms of
sensitivity and specificity than the SVM classifier using AR
parameters from the EEG seizure-free data segments—see
Tables 3, 4. Indeed, tissue oxygenation and hemodynamics can
provide additional information (35) including seizure effects on
the neurovascular tissue (36), as shown by our perinatal ovine
model data (see that bottom panel of Figure 4), that may guide
the hemodynamic care (37), especially in severe HIE cases with
seizure load, which is time-critical (38). Under oxygen starvation,
an extracellular increase in the gamma-aminobutyric acid
(GABA), the most common inhibitory neurotransmitter, can
help in metabolic suppression (39), which correlates with the
hemodynamics and neurovascular coupling (40)—the excitation/
inhibition (E/I) ratio can be estimated with EEG-fNIRS (41).
Importantly, the neurodevelopmental circuits in neonates under
HIE insults may maladaptively coordinate their excitatory and
to establish an E/I ratio (42),
neuroenergetics may play a crucial role (43). For example,

inhibitory inputs where
hypoglycemia may reduce GABA levels due to ATP depletion in
the hypoxia state (44). Also, the HIE effects on the cerebellum
(45) may be underestimated (46), which needs future
development of whole head fNIRS technology (47, 48) for
neonates as the thin skin and skull allow deep penetration of the
NIR light. Cerebellar Purkinje fibers are sensitive to hypoxic
injury and can show damage even in the mild cases of HIE (49).

Indeed, HIE accounts for chronic cerebellar deficits, including
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schizophrenia and other nonaffective psychoses (50), which create
an economic burden; hence, low-cost technological innovations are
crucial (51).

Our perinatal ovine hypoxia model benefited from previous
studies on hypoxia-ischemia animal models for a mechanistic
understanding of the SVM classifier results. In the study by
Bjorkman et al. (52), the ictal activity was subclassified into two
subgroups, clinical and subclinical. Clinical seizures had some
visual effect on movement, limb jerks, or mouth quivering,
while subclinical seizures can only be detected by abnormalities
in the EEG with the absence of movement. In this study on 28
piglets with 77% ictal activity, the background EEG showed
lower amplitude compared to that of the nonseizure ischemic
state. This supports our SVM classifier approach, where we
analyzed the background EEG after removing seizure data
segments (using the first-level LDA seizure classifier). Here, a
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lower amplitude background EEG activity can be a marker of
increased neurological damage, where the importance of a lower
amplitude background EEG activity was shown by histological
analysis after euthanasia (52). Then, fast oscillations (>40 Hz)
in neonatal EEG are rare, and high gamma frequencies (27)
evaded our first-level LDA classifier. More advanced seizure
detection methods are available to identify fast oscillations
(>40 Hz) (27); for example, in previous publications (53, 54),
researchers have used backpropagation neural networks (53)
with an input layer of 9 neurons, a hidden layer of 2-3
neurons, and an output layer containing 1 neuron. The input
layer was trained on statistical measures of the ictal waveform
itself. Researchers used this classifier to identify the differences
between EEG activity and obtained a 93.75% accuracy. Another
group (54) attempted to identify all ictal activity with one
classifier by dividing peaks that are separated enough to be
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considered seizures, that is, at least 100 ms. Then, the researchers
analyzed the portions of the wave before and after the peak with
the amplitude difference and the duration of the wave. These
parameters of each half-wave were used to train an SVM with a
high sensitivity of 97%. Many advanced machine learning
algorithms are under development; however, their clinical utility
beyond conventional EEG needs further investigation, especially
in limited resource settings (55).

In the current study, we showed the importance of EMA of the
NVC system estimated from the seizure-free background EEG and
NIRS data that provided insights. Here, stabilization diagrams with
and without stable poles were found for the different cases of severe
HIE, severe HIE with sepsis, and moderate HIE. However, the
clinical and physiological significance of the dip at around 1 Hz
and a stable pole mainly in the frequency between 0.5 and 1 Hz
in the four severe HIE human perinatal cases with sepsis (see
Figure 5) needs a larger clinical study with another control
group with depressed neonates without HIE. Here, changes in
the NVC due to HIE have been demonstrated by previous works
by Chalak’s group (6, 9); however, our system analysis using
EMA may provide further insights into the neurovascular (and
neurometabolic) dynamics. Neurovascular (and neurometabolic)
dynamics is also relevant to adult acute brain injury cases, where
normalization of neurovascular coupling may herald recovery of
consciousness (56). Here, the effects of seizure activity on the
coupling dynamics of the neural activity (measured with EEG)
with the cerebral metabolism, oxygen delivery, and blood volume
may be crucial to guide medication (36, 57), especially by
leveraging optical monitoring in neonates (58). Other relevant
chromophores, cytochrome ¢ oxidase (CCO) and water, can also
be investigated with optical monitoring in the neonates (58),
which was developed in another study by adding four different
wavelengths (780, 810, 820, and 840 nm) to the low-cost EEG-
fNIRS  sensor  (https://neuromodec.org/nyc-neuromodulation-
online-2020/P18.html) (59). In that case series (59), we found
that neurometabolic coupling was specifically affected in HIE
with sepsis, which may be related to the differences in the
stabilization diagrams (see Figure 5) between the six severe HIE
human perinatal cases and the four severe HIE human perinatal
cases with sepsis. Howard et al. (58) highlighted the importance
of the estimation of the oxidation state of the CCO (oxCCO)
concentration changes in HIE. Here, CCO is essential to generate
ATP efficiently during aerobic respiration, so the effects of
seizure activity on the background EEG and oxCCO will be
important to study its metabolic effects (58). Then, Howard et al.
(58) reviewed the literature that showed preictal changes in the
cerebral hemodynamics that aligns with our perinatal ovine data
(24)—see Figure 4. Figure 4 shows a small increase in the
preictal carotid artery flow that was also detected with fNIRS and
may improve the latency [or even predict (60)] of ictal period
classification when fNIRS is added to EEG monitoring of seizure
activity. Also, the accuracy of the ictal period classification may
be improved with multimodal EEG-fNIRS data due to the
of
deoxyhemoglobin concentration changes (58). Nevertheless, the

primarily ~ biphasic  response oxyhemoglobin  and

hemodynamic responses to seizures are not uniform across
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the literature (58), and the individual differences in the
neurovascular and neurometabolic coupling may subserve the
effects of seizures on the brain tissue (57). For example, any
progressive decrease in oxCCO baseline with sequential seizures
(61) needs

including exacerbation of epileptogenesis following HIE (62).

future investigation vis-a-vis clinical outcomes

Hypoglycemia is a common metabolic problem among
malnourished newborn babies (63), which can also disturb brain
metabolism in HIE. A multiscale model will be needed for the
mechanistic understanding of the hypoglycemia effects on the
outcome from HIE and sequential seizure events. Sepsis is
characterized by systemic changes in the metabolism (64) that
can further disturb brain metabolism in HIE where optical
monitoring can provide insights (58). Prior work by Jolivet et al.
(65) provided a detailed neurometabolic model that captured the
concentration of lactate in the neuronal, astrocytic, and
extracellular compartments that was coupled as modulatory
feedback (66, 67) with the voltage of the neuronal membrane.
Such mechanistic investigation is crucial since oxygen and
glucose deprivation can lead to an increase in the extracellular
concentrations of excitatory amino acid neurotransmitters (68),
leading to an E-I imbalance in the brain tissue (at the level of
neuronal circuits) (43). Then, neuronal circuits may try to self-
organize toward E-I balance (69) via changes in the connectivity
that can be dysfunctional when there is a genetic risk (70, 71).
Also, hypoxia-ischemia-induced gene transcription effects are
(72).
organoids has revealed gene expression patterns suggesting

possible Previous work on patient-derived cerebral
dysregulation of mitochondrial function (73) that can lead to
long-term deficits in synaptic E-I balance in susceptible
interactions can be

individuals. Such gene-environment

investigated mechanistically using a subject-specific brain
organoid model from human-induced pluripotent stem cells
(iPSCs) to test optical theranostics (59). Then, oxygen—glucose
deprivation can be implemented in an in vitro subject-specific
brain organoid model (59) for mechanistic studies. Notably, our
(https://

neuromodec.org/nyc-neuromodulation-online-2020/P18.html) (59)

in  vitro subject-specific brain organoid study
showed an increase in the CCO activity and pH in the organoid
tissue and a decrease in the electrophysiological spectral exponent
[related to the E-I balance (74)] following photobiomodulation.
These preliminary results are important for future works on
nonpharmacological therapeutics since histogenous hypoxia and
acid retention are closely related to glucose metabolism (71)
that may be photobiomodulated (https://neuromodec.org/nyc-
neuromodulation-online-2020/P18.html) (59), which needs future
investigation. In phase zero studies (43), the brain organoid
platform (59) can use a dual-polymer sensor in the Matrigel
matrix to provide real-time glucose and oxygen monitoring (75)
the

relationship for individualized

during mitochondrial photobiomodulation to capture
neurometabolic dose/response
delivery (33). However, our brain organoid platform (59) cannot
currently model neurovascular coupling, which may be feasible
with vascularized organoids (76).

In conclusion, the current study showed the feasibility of

multimodal EEG-fNIRS data acquisition and the EMA approach
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for the systems analysis of NVC that may provide biomarkers of the
sepsis effects on the neurovascular brain tissue in human HIE. Here,
the EMA approach to the NVC dynamics using EEG-fNIRS data is
novel in our knowledge; however, the systems analysis may need to
be extended beyond the neurovascular bundle (77) to include
noninvasive measurements of blood pressure and cardiac output
(e.g., electrocardiogram of the heart rate) in the human studies
[see Figure 1 and the published results from the perinatal
asphyxiated lamb model experiments (26)]. Then, cerebral blood
flow (CBF) is regulated by cerebral autoregulation, cerebral
vasoreactivity, and neurometabolic coupling (78, 79), which can be
monitored using cerebral near-infrared spectroscopy (35). Also,
seizure-induced autonomic dysfunction is possible (80), which
requires systems analysis beyond EEG and fNIRS with the
inclusion of simultaneous blood pressure and cardiac monitoring.
Here, the effect of the preictal increase in the CBF during a severe
metabolic deficit in HIE (e.g., slowing of background EEG) may
be physiologically important (52, 81-83)—see Supplementary
material Figure S4 from the perinatal asphyxiated lamb model
experiments in the Supplementary Material. So, a unified theory
of seizure-induced brain state abnormalities including the effects
of sepsis in HIE, which may share a common point of origin with
hypoperfusion/hypoxia (57), needs future investigation for the
development of a robust biomarker amenable to optical brain
tissue monitoring in the neonates (58).
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SUPPLEMENTARY FIGURE S1

AR parameter 1 in the three cases: control, hypoxic, and ictal states.
control and hypoxic clusters have average separation but are
completely separated, while the ictal activity is clearly separated.

The
not

SUPPLEMENTARY FIGURE S2

AR parameter 2 in the three cases: control, hypoxic, and ictal states.
control and hypoxic clusters have average separation but are
completely separated, while the ictal activity is clearly separated.

The
not
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Respiratory distress syndrome
prediction at birth by optical skin
maturity assessment and machine
learning models for
limited-resource settings: a
development and validation study

Zilma Silveira Nogueira Reis™, Gisele Lobo Pappa’,

Paulo de Jesus H. Nader®, Marynea Silva do Vale*, Gabriela Silveira
Neves®, Gabriela Luiza Nogueira Vitral®, Nilza Mussagy’,

Ivana Mara Norberto Dias’ and Roberta Maia de Castro Romanelli’

'Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, ?Departamento de
Ciéncia da Computacédo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, *Pediatrics and
Neonatology Department, University Hospital, ULBRA, Canoas, Brazil, “Neonatal Intensive Care Unit,
University Hospital, UFMA, S&o Luis, Brazil, *Hospital Sofia Feldman, Belo Horizonte, Brazil, °Faculdade de
Medicina da Ciéncias Médicas de Minas Gerais, Belo Horizonte, Brazil, "Hospital Central de Maputo,
Maputo, Mozambique

Background: A handheld optical device was developed to evaluate a newborn’s
skin maturity by assessing the photobiological properties of the tissue and
processing it with other variables to predict early neonatal prognosis related to
prematurity. This study assessed the device's ability to predict respiratory distress
syndrome (RDS).

Methods: To assess the device's utility we enrolled newborns at childbirth in six
urban perinatal centers from two multicenter single-blinded clinical trials. All
newborns had inpatient follow-up until 72 h of life. We trained supervised
machine learning models with data from 780 newborns in a Brazilian trial and
provided external validation with data from 305 low-birth-weight newborns
from another trial that assessed Brazilian and Mozambican newborns. The index
test measured skin optical reflection with an optical sensor and adjusted
acquired values with clinical variables such as birth weight and prenatal corticoid
exposition for lung maturity, maternal diabetes, and hypertensive disturbances.
The performance of the models was evaluated using intrasample k-parts cross-
validation and external validation in an independent sample.

Results: Models adjusting three predictors (skin reflection, birth weight, and
antenatal corticoid exposure) or five predictors had a similar performance,
including or not maternal diabetes and hypertensive diseases. The best global
accuracy was 89.7 (95% Cl: 87.4 to 91.8, with a high sensitivity of 85.6% (80.2 to
90.0) and specificity of 91.3% (95% CI: 88.7 to 93.5). The test correctly
discriminated RDS newborns in external validation, with 82.3% (95% CI: 77.5 to
86.4) accuracy. Our findings demonstrate a new way to assess a newborn’s lung
maturity, providing potential opportunities for earlier and more effective care.

Abbreviations

LMICs, low- and middle-income countries; ACU, accuracy; ACTFM, antenatal corticosteroid therapy for fetal
maturation; CI, confidence interval; CPAP, continuous positive airway pressure; DB, diabetes; HD,
hypertensive disease; IQR, interquartile range; LBW, low birth weight; LR+, likelihood ratio positive; LR,
likelihood ratio negative; NICU, neonatal intensive care unit; NPV, negative predictive value; RDS,
respiratory distress syndrome; SEN, sensibility; SPE, specificity; TTN, transient tachypnea of the newborn;
PPV, positive-pressure ventilation; PPV, positive predictive value.
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Trial registration: RBR-3f5bm5 (online access: http://www.ensaiosclinicos.gov.br/
rg/RBR-3f5bm5/), and RBR-33mijf (online access: https://ensaiosclinicos.gov.br/

newborn, prematurity, childbirth, skin physiological

phenomena, machine learning, equipment and supplies, medical device

Reis et al.

rg/RBR-33rnjf/).

KEYWORDS

respiratory distress syndrome,
Introduction

Infant mortality is a critical human development indicator since
it reflects the quality of assistance, and social, economic, and
environmental factors (1). Most child deaths occur due to
prematurity meeting lung immaturity as the main bare reason (2).
Approximately 11% of newborns worldwide are preterm, born
earlier than 37 weeks of gestational age, and of whom 6% are late
preterm, born between 34 and 37 weeks of gestational age (3) and
require specialized care (4). Respiratory distress syndrome (RDS)
is a common reason for neonatal intensive care unit (NICU)
admission and neonatal mortality. Since lung immaturity due to
surfactant deficiency is the cause of the disease, respiratory failure
occurs soon after birth. However, most respiratory insufficiency at
birth is not accurately evaluated, leading to poor outcomes because
of delays in appropriate treatment (4, 5). Indeed, on many
occasions, the respiratory picture at birth can be confused with an
adaptive syndrome such as transient tachypnea of the newborn
(TTN), as well as non-respiratory reasons, which may be cardiac,
neurological, metabolic, or hematological, among others (6).
Clinical history, lung image assessment, and blood lab tests are
clues to discriminate between RDS and other respiratory distress,
pointing newborns at higher risks of severe complications (7).
Beyond clinical manifestation, assessing lung maturity is supported
by biochemical and biophysical tests on amniotic fluid, genetic
approaches, and microbubble evaluation in gastric aspirates (8).
Unfortunately, the lack of healthcare technologies increases
exponentially in low- and middle-income countries (LMICs) in
scenarios with limited neonatal assistance, where the burden of
preterm birth is higher than in other countries (4).

To achieve lower infant morbidity and mortality rates focused
on the day of birth, early identification of lung maturity risk
enhances chances of survival even based on referral safe
transportation among facilities. Nevertheless, very often, especially
late preterm infants are inappropriately classified as full-term
This
improvements centered on equity of technology access and quality

newborns, delaying care for the former (9). way,

of antenatal and childbirth care can reduce neonatal health
disparities among birth scenarios with or without full support for
preterm children identification and treatment (1, 10). The search
for an affordable approach to quickly identify premature infants
according to the degree of lung maturity remains a relevant target
for health systems. Early intervention to manage respiratory
distress in a newborn could mean the difference between survival
and, possibly, a reduction in mortality (11).

Lungs develop linearly before childbirth; however, the
maturational competence for extrauterine breathing occurs later
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in pregnancy or under stressful influences such as maternal
disease, placental dysfunction, and drug exposition (12). Under
the scientific basis, evidence is extensive concerning the influence
of corticosteroid exposition during the prenatal period to prepare
fetuses for after-birth life (13). At the same time, the skin is a
tissue with late maturation, postponing the protective external
barrier to near-term and term gestation (14, 15). Meanwhile,
there is a direct relationship between epidermal layer competence
and neonatal survival, facing risks of hypothermia, water loss,
and infections (16, 17). Likewise, in this organ, antenatal
corticotherapy induces cytodifferentiation and keratinization,
enhancing the chances of survival (13). Beyond visual inspection
of skin appearance, which characterizes preterm newborns (18),
an objective measure of skin reflectance with a photometer was
correlated with gestational age (19). Based on a multicenter
clinical trial, a new medical device was able to assess the
gestational age by adjusting a machine learning model for optical
skin maturity to antenatal corticosteroid therapy for fetal
maturation (ACTFM) and birth weight, discriminating preterm
from term newborns, with 37 weeks of gestational age or more,
with an area under ROC curve of 0.970, [95% CI: 0.959-0.981]
(20).
algorithms on the same optical device, to evaluate its ability to

The present study explored new machine learning
predict RDS in the first 72 h of life, even in places with scarce

resources.

Methods
Cohorts

We analyzed two birth scenarios, one to provide predictive
models and the other to apply them to a more realistic picture of
the usage of the model. Accordingly, both studies were
multicenter prospective, concurrent cohorts comprised of six
urban referral perinatal centers. Five Brazilian urban referral
centers for high-complexity perinatal care took part in the study:
Clinical Hospital—Universidade Federal de Minas Gerais (as
coordinator), Minas Gerais State; Sofia Feldman Hospital—Minas
Gerais State; Hospital da Universidade Luterana do Brasil—Rio
Grande do Sul State; Hospital Materno-infantil de Brasilia—
Federal District; and Hospital Universitario da Universidade
Federal do Maranhdo—Maranhdo State. One referral center in
Mozambique, the Maputo Central Hospital, the largest in the
country, is headquartered in its capital.

Both cohorts shared inclusion criteria for live newborns
enrolled within the first day of life, with the available reference
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standard gestational age, and childbirth after 24 weeks of gestation.
Combining the last menstrual period with obstetric ultrasound
assessment, we assessed gestational age at birth following
international consensus for the due date (21). Anhydramnios,
edema, congenital skin diseases, or chorioamnionitis were the
exclusion criteria because they could modify skin structure,
affecting the optical properties of the tissues. Teams of trained
and certified health professionals and health professionals’
research assistants enrolled and evaluated skin optical reflectance
and clinical data at birth. All newborns had inpatient follow-up
within the first 72h of life to monitor immediate neonatal
outcomes, with an early ending when discharge or death
occurred, according to clinical trial protocols deposited in
protocolos.IO (22). However, differences between the clinical
characteristics of the newborns express different realities provided
by birth weight eligibility criteria below 2.5 kg in the validation
cohort (Figure 1).

For transparency, the clinical trials register and details of
enrollment remain public. From clinical trial 1, registered under
the number RBR-3f5bm5 (23), we evaluated Brazilian newborns
with a gestational age of 24 weeks, and with any birth weight.
The enrollment occurred from 2 January 2019 to 30 May 2021.
Data from this study grounded the modeling process of
machine learning prediction, thus being the baseline cohort.
From clinical trial 2, registered under the number RBR-33rnjf
(24), we assessed only newborns with birth weights under
2.5kg in Brazil and Mozambique. The enrollment occurred
from 15 February 2019 to 11 December 2021, and the dataset
was used as the validation cohort. Most of the newborns were
Mozambican (n =177, 58.0%).

10.3389/fped.2023.1264527

Primary outcome

The primary outcome was to predict the RDS. The reference
standard for RDS diagnosis has a basis in clinical, laboratory,
(7).

However, concerning the reference standard in the scenario of

and radiological findings and respiratory outcomes
LBW Mozambican newborns, when a radiological exam was
absent, the diagnosis was based on clinical evaluations such as
tachypnea, nasal flaring, retractions, and grunting with the
possibility of progress to respiratory failure (24). In such a
scenario where and other resources

propaedeutics are

unavailable, maternal and delivery context and clinical
progress of respiratory failure were considered, based on
clinical priority in 72 h of follow-up. Transient tachypnea of
the newborn (TTN) was a differential diagnosis of respiratory
complications at birth. Despite RDS being the target outcome,
we introduced an exploratory modeling step by discriminating
between RDS, TTN, or none. The diagnosis had a basis in
clinical findings and respiratory outcomes (7). Again, TTN
was diagnosed for exclusion in the Mozambican -center,
typically with clinical evidence of tachypnea shortly after

birth, grunting, nasal flaring, retractions, and occasionally

cyanosis (24). The procedures for clinical evaluation,
complementary exams of the newborn, and RDS diagnosis are
available in the Supplementary Material. Subgroups of

analysis, according to LBW and very-LBW newborns, with a
birth weight of less than 2.5Kg and 1.5Kg, respectively,
provided a potential picture of the application according to
ranges of birth weight.

Clinical Trial 1
Newborns >24 weeks
of gestation
(n=780)

Birth scenario 1
(27.6% RDS)

Y
Machine learming
RDS predictive
models

|

Outcome
RDS prediction accuracy
Cross-validation

Birth scenario 2
(36.7% RDS)

Clinical Trial 2
Newborns <2.5kg
(n=305)

|

Outcome
RDS prediction accuracy in
LBW newborns
External validation

FIGURE 1

Database, birth scenarios, and index test (outcomes). LBW, low birth weight;

RDS, respiratory distress syndrome
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The index test

The assessment of newborns’ skin maturity with the optical
device was possible with the development of the equipment. We
already noticed a high agreement between gestational age
calculated by this device with the best available gestational age as
a reference, as well the accuracy for discrimination of preterm
against term infants (24). The error of the optical component
had a prior evaluation, resulting in an intraobserver error of
1.97% (95% CI: 1.84-2.11) and an interobserver error of 2.6%
(95% CI: 2.1-3.1) (24). The present analysis focused on RDS
prediction as an additional value beyond the gestational age.
Here, the index test was intended to analyze newborn lung
maturity, clinically represented by RDS, as an unprecedented
association with the optical skin maturity measurement in a
machine learning algorithm.

In this study, data temporality of predictors was the first day of
life, a moment when the user did not receive the result of RDS
prediction to provide test blinding. Alongside skin reflectance,
automatically acquired with the device when it touches the sole
of the newborn, clinical variables were added by the user, and
machine learning algorithms delivered the RDS prediction and
were stored in the processor (Figure 2). In the future, the RDS
prediction will be available on the device’s screen.

The testing steps were standardized and supported by the
prior proof of concept publications. The sole was the site of the
newborn’s body with a higher correlation between the skin
reflection and pregnancy dating than other body sites, with the
advantage of fulfilling the patient security recommendation for

& 1
A\
s

FIGURE 2

Steps of the testing process. (1) The device touches the skin over the
sole of a newborn. (2) The sensor acquires skin maturity by assessing
the photobiological properties of the tissue when measuring the
reflection portions of the light beam incident on the skin. (3) The user
inputs clinical data. (4) The data processor uses machine learning
algorithms to predict respiratory distress syndrome
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minimum manipulation of newborns (19). The influence of skin

color and environmental conditions such as humidity,
temperature, and ambient light were reasons for enhanced
sensor design, achieving a prediction model without its
adjustments (19, 25). This approach to newborns attended to
requirements of patient security, including disinfection of the
device with alcohol 70, and minimum manipulation of the child
anywhere they were: inside incubators, warm crib, or in the

mother’s lap.

Standard and data collection

According to recommendations for good clinical practices
involving human research with medical devices, and according to
Organization for Standardization (ISO
14155:2011), trained research assistants collected data on 65
demographic and clinical features and 25 skin variables. The

the International

framework of variables is available in a previous report (20).

Clinical ~information was collected through structured
questionnaires using software developed for the clinical trials,
and, simultaneously, in paper formularies containing the exact
requests. The data curation process double-checked the data from
paper and electronic collection conducted by senior researchers,
before opening the outcome blinding. Data consistency and

completeness resulted in only one exclusion.

Data availability

Data is available upon reasonable request and after
anonymization to ensure ethical and legal data sharing, thus
preserving the confidentiality of the persons who participated in

this study.

Ethics and dissemination

The studies involving humans had independent ethical board
approval at each hospital. The Brazilian National Research
Council approved the clinical trials under numbers
81347817.6.1001.5149 and 91134218.4.0000.5149. In
Mozambique, ethical approval was under the number
IRB00002657, according to the National Bioethics Council.
Parents signed an informed consent form on behalf of the
newborns as recommended by the Regulatory Bodies for Good
Clinical Research Practice, and copies were retained in case they
should be needed. Patients were not involved in the design of
clinical trials. However, participants’ parents received oral
explanations and a press-illustrated folder with the proposal of
the studies. Besides scientific articles, the results are continuously
disseminated by non-scientific publications in media and on the
project website: http://skinage.medicina.ufmg.br.
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Methods for estimating or comparing
measures of diagnostic accuracy

Model development

We trained the models to binary prediction of RDS occurrence
until 72 h of life with the five variables, and, additionally, for RDS,
TTN, or none. The variables were: skin reflection, birth weight,
ACTMEF, diabetes, and hypertensive disturbances. The choice of
independent variables took into account the easy access to data
in the delivery scenario, the biological plausibility, and the
importance-feature graphic analysis. Furthermore, we compared
models based on three or five independent variables, including or
not including maternal diseases. A wide range of models was
tested, and the best results were obtained by the XGBoost
Regressor model (26).

Model validation

The model was created using data from Clinical Trial 1. Two
experiments were performed. In the first one, a ten-fold cross-
validation procedure was used to assess the robustness of the
model. This procedure was repeated 30 times, generating a total
of 300 models that had their metrics of accuracy averaged and
with The
experiment used data from Clinical Trial 1 to generate the model

reported together confidence intervals. second

and from Clinical Trial 2 to validate the model.

Statistical analysis
For descriptive analysis of variables, we used average (SD)
(IQR)

symmetric and asymmetric distributions, respectively. We used

and median to describe continuous variables for
frequencies (%) for categorical variables. The Mean-T and Mann-
Whitney U tests were used to compare the mean or median
between two groups of interest as RDS yes or no, according to
the wvariables’ parametric or non-parametric frequency
distribution. For comparisons between frequencies, the Chi-
square Test evaluated the independence hypothesis between
categorical variables as preterm vs. RDS yes or no, and the
Likelihood ratio chi-square statistic was the alternative when
more than 20% of expected values were above five. ANOVA or
Kruskall Wallis tests compared three groups analysis as RDS,
TTN, and none according to the variables’ parametric or non-
parametric frequency distribution.

The set of machine learning models provided outcomes
for binary RDS (yes or no) and three classes (RDS, TTN,
none). The choice of the best models occurred by means of
reliability analysis. The accuracy of the prediction of best
models was evaluated using sensitivity, specificity, positive
predictive  value, negative predictive value, positive
likelihood ratio, and negative likelihood ratio. P-values of
<0.05 were considered suggestive of statistical significance.
SPSS software (version 19.0; IBM Corp) was used for statistical

data analysis.
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Results
Description of newborns

Newborns from two clinical trials summed up 1,085 tests with
the medical device. From the baseline scenario dataset where we set
the RDS predictive models, we analyzed data from 702 Brazilian
pregnant women who gave birth to 781 newborns with
gestational ages older than 24 weeks (scenario 1). One exclusion
occurred due to uncertainty in either an TTN or RDS diagnosis.
Among 780 included newborns, 325 (41.7%) were low-birth-
weight (LBW), and 27.6% (n=215) had RDS. In the validation
scenario, we analyzed data from 263 pregnant women who gave
birth to 308 newborns with birth weights under 2.5 kg (scenario
2). Three exclusions occurred due to incorrect enrollment.
Among the 305 included newborns, 37.7% (n=112) had RDS.
An overview of participants, according to development and
model validation steps with respective birth scenarios and test
outcomes, for the best models of prediction, is shown in Figure 3.

The participants’
characteristics are shown in Table 1, considering subgroups of

baseline demographic and clinical
newborns with and without RDS in the birth scenarios of the
study. Regarding prenatal data, newborns with RDS had a higher
frequency of mothers with diabetes (p <0.001) and hypertensive
disease (p <0.001) in birth scenario 1, but not in scenario 2 (p =
0.086 and p=0.453,

characteristic to highlight is the no-RDS subgroup profile with

respectively). An important baseline
high maternal disease frequency, ventilatory support, and NICU
admission. For instance, the no-RDS subgroup of LBW newborns
in the validation scenario comprised 102 (53.1%) newborns with
mothers affected by hypertensive diseases and 115 (59.6%)
newborns admitted to NICU. In both scenarios, children with
RDS had higher ACTMF exposition (p <0.001), lower gestational
age (p<0.001), lower birth weight (p <0.001), and lower first-
minute Apgar score (p <0.001) than those without RDS.
had
characteristics concerning rupture of membranes more than 18 h

Comparing birth scenarios, the newborns similar
(p =0.421), positive-pressure ventilation (p = 0.844), intubation at
birth (p=0.131) surfactant resuscitation steps, (p=0.697), and
mechanical ventilation (0.864) until 72 h of life. However, the
LBW newborns in the birth scenario 2 had higher morbidity and
mortality rates (p <0.001) than newborns in the birth scenario 1.

Despite the primary outcome being RDS prediction, we still
provided a more detailed analysis in the Supplementary
Material, comparing three subgroups: RDS newborns, TTN

newborns, and newborns without RDS or TTN.
Primary outcome

The machine learning modeling incorporated combinations of
maternal and newborn characteristics associated with RDS to

develop predictive algorithms that are useful at birth. Analyzing
the importance feature given by XGBoost (Figure 4), and metrics
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Birth scenarios

Birth scenario 1
224 weeks
Potential eligible newborns (n=781)

Eligible newborns

(n=780) Exclusions (n=1)

Birth scenario 2
<2.5Kg
Potential eligible newborns (n=308)

Eligible newborns

(n=305) Exclusions (n=3)

RDS prediction
Total sample
(n=780)

RDS prediction in
<2.5 Kg newborns
(n=325)

Test + and RDS
126 and 112

Test - and no-RDS
179 and 193

Test + and RDS
233 and 215

Test - and no-RDS
547 and 565

Test + and RDS
233 and 211

Test - and no-RDS
92 and 114

FIGURE 3

Flowchart of participants using STARD diagram, according to development and model validation birth scenarios

of accuracy, precision, and recall (Supplementary Material), we
consider the gain insufficient when maternal disease variables
were inserted into the model. Models including hypertensive
disease and diabetes data for the binary outcome for RDS had
similar accuracy and F1 scores to models with the three baseline
variables: skin reflection, birth weight, and ACTMF. The ACTMF
was the variable with the highest importance in predicting RDS,
followed by birth weight and skin reflection acquired by the
optical component of the medical device in model 1 and model
2 (Figure 4).

In relation to discriminating among RDS, TTN, and neither of
them using three classes of outcome modeling (models 3 and 4,
Supplementary Material), the performance was worse than
binary RDS yes/no prediction (models 1 and 2, Supplementary
Material). When applying the models in the scenario of LBW
newborns for external validation, metrics of prediction
performance confirmed the advantages of the three-variable
model with a binary RDS yes or no outcome, with an accuracy
of 89.4% (95% CI: 88.6 to 90.3) and 82.3% in the cross-
validation and external validation, respectively (model 1,
detailed

Material, we chose the most parsimonious models for complete

Supplementary Material). As in Supplementary
accuracy analysis.

There were no adverse events when performing the index test.
The prediction accuracy of the test using the medical device at birth
for RDS occurrence until 72 h of life is detailed in Table 2. Using
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cross-validation in the birth scenario used for modeling, algorithms
with three or five independent variables delivered similar
predictions regarding RDS discrimination, 89.7% (95% CI: 87.4
to 91.8) and 89.4% (95% CI: 87.0 to 91.4), respectively. Such
accuracy occurred with high sensitivity and specificity, and the
likelihood ratio for RDS was increased by approximately 10 times
when the index test was positive. According to LBW and very-
LBW newborns subgroup analysis, RDS prediction occurred with
a high accuracy of 91.9% (95% CI: 86.0 to 95.9) despite a low
specificity of 9.1% (95% CI: 0.23 to 41.3) when using model
1. Model 2, obtained with five variables, had no utility for RDS
prediction in very-LBW newborns.

Using the models for external validation in LBW newborns,
algorithms with or without maternal diseases included had
similar performance in predicting RDS as RDS occurrence
was correctly predicted in 82% of newborns (95% CI: 77.5 to
86.4). The likelihood ratio for RDS increased approximately
five times when the index test was positive (Table 2).
Regarding the subgroup analysis of very-LBW newborns, global
accuracy was similar to the overall group: 84.9% (95% CI: 74.6
to 92.2) for the model with or without maternal diseases as
predictors.

Analyzing the confusion matrix for RDS prediction according
to gestational age at birth (Figure 5), we found false positives
and false negatives more frequently around 33 and 34 weeks of
gestation in both birth scenarios. However, it is relevant to notice
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TABLE 1 Baseline demographic and clinical characteristics of the pregnancy and newborns of the baseline and validation cohorts.

Birth scenario 1 (modeling) Brazil Birth scenario 2, LBWP (validation) Brazil  Comparison
(n=780, 100%) (n =128, 42.0%); Mozambique between
(n=177, 58.0%) scenarios
Characteristics RDS No-RDS p- Total RDS No-RDS p-
(n=215) | (n=565) (n=305) (n=112) | (n=193) @ value
Prenatal conditions
ACTEM, n/N (%) 273 (35.1) | 184 (86.0) 89 (15.8) <0.001° | 141 (46,4) | 86 (77.5) 55 (28.5) <0.001" <0.001*
Mother with diabetes, n/N (%) 125 (16.0) | 54 (25.1) 71 (12.6) <0.001* | 20 (6.6) 11 (9.8) 9 (4.7) 0.086" <0.001%
Mother with hypertensive disease, 169 (21.7) | 80 (37.2) 89 (15.8) <0.001* | 156 (51.5) | 54 (48.6) 102 (53.1) 0.453% <0.001*
n/N (%)
Rupture of membranes more than 91 (11.7) 39 (18.1) 52 (9.3) 0.001% 41 (13.5) 22 (19.8) 19 (9.9) 0.015" 0.421%
18 h, n/N (%)
Childbirth
Reference gestational age at birth 37.3 (6.3) 31.1 (4.4) 39.0 (3.4) <0.001** | 34.3 (3.5) 31.7 (3.5) 35.9 (3.3) <0.001* <0.001*
(weeks), median (IQR)
Preterm?, n/N (%) 366 (46.9) | 214 (99.5) | 152 (26.9) | <0.001° | 234 (76.7) | 109 (97.3) | 125 (648) | <0.001" <0.001"
Birth weight (g), median (IQR) 2,740 1,360 (870) | 3,085 (823) | <0.001** | 1,930 (687) | 1,385 (771) | 2,075 (430) | <0.001* <0.001%
(1496)
Low-birth-weight®, n/N (%) 325 (41.7) | 211(98.1) | 114(202) | <0.001° | 305 (100) | 112 (100) 193 (100) - -
Very-low-birth-weight®, n/N (%) 136 (17.4) | 125 (58.1) 11 (1.9) <0.001" | 73 (23.9) 65 (58.0) 8 (4.1) <0.001% 0.015"
Sex, male, n/N (%) 389 (50.1) | 113 (52.6) | 276 (48.8) 0.355% | 131 (43.0) | 54 (51.8) 116 (60.1) 0,157% 0.033"
Anthropometric reference? <0.001* 0.001% <0.001"
o Small for gestational age, n/N (%) | 114 (14.6) 55 (25.6) 59 (10.4) 139 (45.6) 73 (65.2) 82 (42.5)
« Appropriate for gestational age, 607 (77.8) | 154 (71.6) 453 (80.2) 155 (50.8) 35 (31.3) 104 (53.9)
nIN (%)
o Large for gestational age, n/N (%) 59 (7.6) 6 (2.8) 53 (9.4) 11 (3.6) 4 (3.6) 7 (3.6)
1-min Apgar score, median (IQR) 8 (1) 7 (3)* 9 (1) <0.001** 7 (2) 7 (2) 7 (1) 0.037%* <0.001*
5-min Apgar score, median (IQR) 9 (1) 9 (1) 9 (1) <0.983** 9 (1) 9 (2) 9 (1) 0.653** <0.001*
Resuscitation steps: initial, n/N (%) | 384 (49.4) | 202 (94.0) | 182 (32.4) | <0.001" | 152 (50.8) | 87 (77.7) 65 (34.8) <0.001" <0.001"
Resuscitation steps: PPV, n/N (%) 155 (19.9) | 105 (48.8) 50 (8.8) <0.001° | 59 (19.5) | 44 (39.6) 15 (7.9) <0.001" 0.844"
Resuscitation steps: Intubation at 49 (6.3) 42 (19.5) 7 (1.2) <0.001% 12 (4.0) 11 (9.8) 1 (0.5) <0.001% 0.1317
birth, n/N (%)
Resuscitation steps: drugs, n/N (%) 2(0.3) 1 0 - 3 (1.0) 3(2.7) 0 - -
72 h of life follow-up
NICU admission, n/N (%) 239 (30.6) | 210 (97.7) 70 (12.4) <0.001° | 225(73.8) | 110 (98.2) & 115 (59.6) | <0.001" <0.001%
Surfactant, n/N (%) 112 (14.4) | 112 (52.1) 0 <0.001" | 41 (13.4) 41 (36.6) 0 <0.001% 0.697"
Ventilatory support: CPAP, n/N (%) | 250 (32.1) | 181 (84.2) 69 (12.2) <0.001° | 128 (42.0) | 97 (86.6) 31 (16.1) <0.001* 0.002*
Ventilatory support: other 56 (7.2) 55 (25.6) 1(0.2) <0.001" | 37 (12.1) | 32 (28.6) 5 (2.6) <0.001* 0.009*
noninvasive ventilation, n/N (%)°
Ventilatory support: mechanical 95 (12.2) 87 (40.5) 8 (1.4) <0.001% 36 (11.8) 33 (29.7) 3 (1.6) <0.001% 0.864"
ventilation, n/N (%)
Newborn mortality, n/N (%) 15 (1.0) 15 (7.0) 0 <0.001* | 20 (6.6) 18 (16.1) 2 (1.0) <0.001%* <0.001%*

ACMF, antenatal corticosteroid therapy for fetal maturation; CPAP, continuous positive airway pressure; IQR, interquartile range; LBW, low birth weight; NICU, neonatal
intensive care unit; NTT, transient tachypnea of the newborn; PPV, positive-pressure ventilation; RDS, respiratory distress syndrome.

Less than 37 weeks.

Pbirth weight <2.5 kg.

“birth weight <1.5 kg.

9According to Intergrowth 21st.

®Hood, nasal cannula, face mask and Biphasic Positive Airway Pressure.

*Mann Whitney U Test.

#Chi-square.

##ikelihood ratio chi-square statistic.

validation  scenario
birth  weight,

that, in external validation, the three-variable model (model 1)  the clinical characteristics in the

discriminated most of the LBW newborns with (true positive)  (Supplementary Material). Gestational age,

and without (true negative) RDS in the range of 29 to 37 weeks
of gestation.

In order to inspect similarities and differences between
newborns with or without correct RDS prediction, we compared
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maternal diseases, and TTN occurrence were statistically similar
between subgroups. Only NICU admission within the first 72 h
occurred more frequently in newborns with an incorrect
prediction (90.7% vs. 70.9%, p = 0.002).
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Attribute importance given by XGBoost when considering information gain that a variable brings when inserted into the model. (A) Model 1: trained with
skin reflection + birth weight + Antenatal corticosteroid therapy for lung maturation, for the binary outcome RDS vs. non-RDS. (B) Model 2: trained with
Skin reflection + birth weight + Antenatal corticosteroid therapy for lung maturation + diabetes + hypertensive diseases for the binary outcome RDS vs.

non-RDS.

Discussion
Main findings

Improving healthcare equity is a primary goal of the United
Nations — this aim makes the reduction of infant mortality a
priority (27). Digital health, including affordable and valuable
medical devices and artificial intelligence, has brought hope to
improve health for everyone (28, 29). The main outcome of the
present study was providing a promissory predictive model using
a medical device with an AI algorithm inside. Of every 100
newborns assessed, 90 were correctly classified as a higher risk or

Frontiers in Pediatrics

not for RDS until 72h of life, considering the dataset that
provides predictive models. The prediction accuracy remained
high in the LBW newborns that composed the validation
scenario, 82 in every 100, where the RDS and other neonatal
morbidities and mortality were more frequent than in the model
development scenario.

The same sort of study has been presented, integrating
computational technology to identify predictors of neonatal
mortality, such as the lecithin and sphingomyelin ratio by
machine learning applied to mild-infrared spectra (30) or
acoustic features of the crying of newborns (31). Reviews have
highlighted the importance of birth weight, Apgar score, and
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TABLE 2 Accuracy for respiratory distress syndrome during the first 72 h of life, according to the predictive algorithms with binary outcomes.

Occurrence in
overall group

Birth scenario 1—cross-validation (n =780)

Model 1 (skin reflection,

BW, ACTMF)

RDS 215/780 (27.6%)

Model 2 (skin reflection,
BW, ACTMF, DB, HD)

RDS 215/780 (27.6%)

Model 1 (skin reflection,

BW, ACTMF)

RDS 112/305 (36.7%)

Birth scenario 2, LBW—external validation (n = 305)

Model 2 (skin reflection,
BW, ACTMF, DB, HD)

RDS 112/305 (36.7%)

All sample Value (95% Cl) Value (95% Cl) Value (95% Cl) Value (95% Cl
ACU (%) 89.7 (87.4 to 91.8) 89.4 (87.0 to 91.4) - -
SEN (%) 85.6 (80.2 to 90.0) 84.7 (79.1 to 89.2) - -
SPE (%) 91.3 (887 to 93.5) 91.2 (88.5 to 93.4) - -
VPP (%) 79.0 (74.1 to 83.2) 78.5 (73.5 to 82.7) - -
VPN (%) 94.3 (923 to 95.8) 94.0 (919 to 95.5) - -
LR+ 9.87 (7.51 to 12.97) 9.57 (7.30 to 12.54) - -
LR- 0.16 (0.11 to 0.22) 0.17 (0.12 to 0.23) - -

Occurrence in LBW

RDS 211/325 (64.9%)

RDS 211/325 (64.9%)

RDS 112/305 (36.7%)

RDS 112/305 (36.7%)

Value (95% Cl)

Value (95% Cl)

Value (95% Cl)

Value (95% Cl)

Occurrence in VLBW

RDS 125/136 (91.9%)

Value (95% Cl)

RDS 125/136 (91.9%)

Value (95% Cl)

RDS: 65/73 (89.0%)

Value (95% Cl)

ACU (%) 76.6 (71.6 to 81.1) 75.7 (70.7 to 80.3) 823 (77.5 to 86.4) 82.3 (77.5 to 86.4)
SEN (%) 872 (819 to 91.4) 86.3 (80.9 to 90.6) 82.1 (73.8 to 88.7) 79.5 (70.8 to 86.5)
SPE (%) 57.0 (47.4 to 66.3) 56.1 (46.5 to 65.4) 82.4 (763 to 87.5) 83.9 (78.0 to 88.8)
VPP (%) 79.0 (75.1 to 82.4) 785 (74.6 to 81.9) 73.0 (663 to 78.8) 742 (67.2 to 80.1)
VPN (%) 70.7 (62.1 to 78.0) 68.8 (60.3 to 76.3) 88.8 (84.2 to 92.2) 87.6 (83.0 to 91.1)
LR+ 2.03 (1.63 to 2.52) 1.97 (1.59 to 2.44) 4.66 (3.40 to 6.40) 4.95 (3.54 to 6.92)
LR- 0.22 (0.15 to 0.33) 0.24 (0.17 to 0.36) 0.22 (0.14 to 0.32) 0.24 (0.17 to 0.35)

RDS: 65/73 (89.0%)

Value (95% Cl)

ACU (%) 91.9 (86.0 to 95.9) 91.2 (85.1 to 95.4) 84.9 (74.6 to 92.2) 84.9 (74.6 to 92.2)
SEN (%) 99.2 (95.6 to 100) 99.2 (95.6 to 100) 93.9 (85.0 to 98.3) 93.9 (85.0 to 98.3)
SPE (%) 9.1 (0.23 to 41.3) 0 (0.0 to 28.5) 12.5 (0.32 to 52.7) 12.5 (0.32 to 52.7)
VPP (%) 925 (91.1 to 93.7) 91.9 (91.7 to 92.0) 89.7 (86.9 to 91.9) 89.7 (86.9 to 91.9)
VPN (%) 50 (6.3 to 93.7) 0 22.0 (3.1 to 66.3) 22.0 (3.1 to 66.3)
LR+ 1.09 (0.90 to 1.32) 0.99 (0.98 to 1.01) 1.07 (0.82 to 1.40) 1.07 (0.82 to 1.40)
LR— 0.09 (0.01 to 1.31) - 0.49 (0.06 to 3.88) 0.49 (0.06 to 3.88)

ACU, accuracy; ACTFM, antenatal corticosteroid therapy for fetal maturation; BW, birth weight; DB, diabetes; Cl, confidence interval; HD, hypertensive disease; LBW, low-
birth-weight; LR+, likelihood ratio positive; likelihood ratio negative; LR-. SEN, sensibility; SPE, Specificity; NPV, negative predictive value; PPV, positive predictive value;

VLBW, very-low-birth-weight.

antenatal steroids (28). Our approach has the advantage of using
only three predictive variables obtained from a prospective
temporality clinical trial approach to provide prediction before
the disease occurrence. Models with five predictive variables,
including maternal diseases (i.e., diabetes and hypertensive
diseases) did not show advantages over models based on skin
maturity optical assessment, birth weight, and steroids. This
finding will certainly facilitate the use of the device by caregivers
who deliver care at birth in LMICs.

Comparisons and subgroups of analysis

Considering the very-LBW subgroup of analysis, our results
with a three-variables predictive model achieved an accuracy of
84.9% (95% CI, 74.6 to 92.2). In comparison, using an extensive
historical 14-year inpatient dataset and many predictive variables,
Jaskari et al. classified bronchopulmonary dysplasia in a
retrospective dataset of very-LBW, with an accuracy of around
0.899 AUROC (32). Furthermore, analyzing a prospective dataset
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of newborns older than 24 weeks of gestation, our modeling
achieves an accuracy of 89.7% (95% CI, 87.4 to 91.8), while Betts
et al. reported RDS prediction with an accuracy of 0.923 (0.917,
0.928) among inpatients younger than 39 weeks of gestation (33),
using the same dataset as Jaskari et al. (32). So far, our study is
the first that has used a physical measurement of skin maturity,
previously described (16, 19, 20), using a prospective dataset
from clinical trials with nearly similar accuracy to other more
complex models.

Early detection of severe neonatal morbidities such as RDS is
critical to halt disease progression and prevent further
complications or death. Risk identification of the occurrence
might provide means for opportune diagnosis and due care with
surfactant access, enhancing chances of survival with minimal
sequelae, even with the referral of newborns (5). In LMICs, the
availability of a NICU in a center of excellence is often far from
the place of birth of this preterm infant (4). The limited number
of intensive care beds that can receive real RDS-risk newborns
justifies a reliable and helpful predictive test to support low-risk
newborns’ retention decisions, optimizing resources. By analyzing
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FIGURE 5

Confusion matrix for Respiratory Distress Syndrome prediction until 72 hours of life, according to gestational age at birth, using a three-variable-mode.
(A) Incorrect prediction in birth scenario 1 - Cross-validation (n =780). (B) Incorrect prediction in birth scenario 2, LBW - External validation (n = 305).
(C) Correct prediction in birth scenario 1 - Cross-validation (n = 780). (D) Correct prediction in birth scenario 2, LBW - External validation (n = 305).

the confusion matrix, the outcome of the present study showed
early and promising discrimination of RDS even in late preterm
newborns in the development and LBW validation scenarios.
Worldwide, hard decisions in scenarios with scarce resources
are taken daily based on birth weight, with particular attention to
late preterm births that account for most preterm births (34).
Birth weight is the most accessible and significant determinant of
the likelihood of survival at birth, but it alone is not enough to
predict neonatal outcomes. Placental dysfunction, maternal-fetal
conditions affecting lung maturation such as smoking,
cardiovascular diseases, and prenatal exposure to drugs such as
steroids are also determinants (35). Known antenatal predictors
of RDS, such as prenatal Doppler velocimetry and the lamellar
body count test on gastric aspirates have limitations in LMICs
due to high costs and a lack of professionals with the necessary

skills (8, 36).
Implications for practice and the role of the
index test

The role of the index test used to predict RDS might be a

prompt risk indication immediately at birth, anticipating best
practices of management in scenarios with limited resources or
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optimizing access to existing facilities. This study is a premarket
approach using data from two clinical trials to validate the
algorithm for real-time RDS prediction at birth. The skin
reflection can be acquired from the device, and the user quickly
introduces some clinical variables, as presented in Figure 1.
Facilities without neonatologists, mobile emergency services, and
caregivers in primary units where a preterm birth can occur are
the potential targets of this device. The approach is intended to
quickly offer a prediction based on variables easily accessible at
birth scenarios added to the skin maturity assessment, even
outside hospitals. In the same way, a professional in maternity
and NICU settings could be interested in this prediction to
manage clinical follow-up of newborns and bed occupancy.
Despite recent advances in the perinatal management of RDS,
controversies still exist. Lower emphasis on radiographic diagnosis
and classification of RDS, such as ground glass with air
bronchograms, directs management toward a preventive
surfactant treatment approach. Definitions based on blood gas
analyses are also redundant, as management has moved towards
a preventive surfactant treatment approach based on clinical
assessment of the work of breathing and oxygen requirement to
avoid worsening the syndrome. Current RDS management aims
to maximize survival by minimizing complications such as air

leaks and bronchopulmonary dysplasia (5).
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Sources of potential bias and
generalizability

Despite the development of a new technology that allows skin
maturity associated with birth data to be used as a marker of lung
maturity, sources of potential bias can limit the generalizability of
the outcomes. The development and validation scenarios had
relevant differences regarding RDS frequency in newborns,
morbidity, and mortality. Moreover, the accuracy of the machine
learning models was sustained by a high specificity of 91.3% (95%
CI, 88.7 to 93.5). In false-positive RDS prediction in LBW
newborns, unnecessary interventions such as transferring to a
referral center can occur in approximately 18% of newborns.
Nonetheless, assuming the implementation of a screening test, a
point-of-care prediction in conjunction with clinical protocols, this
approach has the potential to enhance neonatal care. Future
studies are necessary to measure the influence of disease incidence
on generalizing the models, as in the primary care birth scenario
or low complexity hospitals where the incidence of preterm birth
and RDS is lower than ours. The performance of the prediction in
the subgroups analysis considering ranges of gestational age and
birth weight might still require further large samples.

Regarding skin maturity importance in the model, the rationale
which relies on a direct relationship between epidermal barrier
competence and neonatal survival faces limitations after 35 weeks
of gestation, when the epidermis is complete (37). Therefore, the
test may perform better in preterm newborns than in term
newborns; similar to previous studies, we used the device to
predict gestational age (38). Finally, there is a potential bias
associated with suboptimal pregnancy dating in the validation
scenario since the inclusion criteria admitted obstetric ultrasound
examinations before 24 weeks or just using a reliable last
menstrual period, which has already been reported (38). At the
same time, data from the clinical trials in Brazil and
Mozambique provided a picture of using the test under natural
conditions with barriers to high-cost technologies.

Conclusions

The objective measurement of skin maturity alongside machine
learning models opens new opportunities to recognize complex
patterns among variables in RDS outcome prediction. The
models adjusted for skin reflection, birth weight, and ACTMF at
birth as RDS predictors for 72 h of life achieved high accuracy in
developing and validating modeling using clinical trial datasets.
This study demonstrates a new way to assess neonatal lung
immaturity, providing potential opportunities for more effective
and early caring with an automated medical device tester.
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(unstructured) stimulation in
improving readiness for oral
feeding in preterm neonates
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Arjun Verma', Nandini Nagar’, Rajesh Maheshwari’
and Pradeep Suryawanshi*

'Department of Neonatology, Bharati Vidyapeeth Deemed University, Pune, India, ?Department of
Neonatology, Cloudnine Hospital, Bengaluru, India, *Department of Neonatology, Westmead Hospital,
Westmead, NSW, Australia

Background: Oral motor stimulation interventions improve oral feeding readiness
and earlier full oral feeding in preterm neonates. However, using a structured
method may improve the transition time to full oral feeds and feeding efficiency
with respect to weight gain and exclusive breastfeeding when compared to an
unstructured intervention.

Objective: To compare the effect of Premature Infant Oral Motor Intervention
(PIOMI) and routine oromotor stimulation (OMS) on oral feeding readiness.
Methods: Randomised controlled trial conducted in a neonatal intensive care unit
between June-December 2022. Preterm neonates, 29*°-33%® weeks corrected
gestational age, were studied. The intervention group received PIOMI| and the
control group received OMS. Primary outcome: time to oral feeding readiness
by Premature Oral Feeding Readiness Assessment Scale (POFRAS) score >30.
Secondary outcomes: time to full oral feeds, duration of hospitalisation, weight
gain, and exclusive breastfeeding rates.

Results: A total of 84 neonates were included and were randomised 42 each in
PIOMI and OMS groups. The mean chronological age and time to oral feeding
readiness were lower by 4.6 and 2.7 days, respectively, for PIOMI. The transition
time to full oral feeds was 2 days lower for PIOMI and the duration of
hospitalisation was 8 days lower. The average weight gain was 4.9 g/kg/day
more and the exclusive breastfeeding rates at 1 month and 3 months post-
discharge were higher by 24.5% and 27%, respectively, for the PIOMI group. The
subgroup analysis of study outcomes based on sex and weight for gestational
age showed significant weight gain on oral feeds in neonates receiving PIOMI.
Similarly, the subgroup analysis based on gestational age favoured the PIOMI
group with significantly earlier transition time and weight gain on oral feeds for
the neonates >28 weeks of gestational age. The odds of achieving oral feeding
readiness by 30 days [OR 1.558 (0.548-4.426)], full oral feeds by 45 days [OR
1.275 (0.449-3.620)], and exclusive breastfeeding at 1 month [OR 6.364 (1.262—
32.079)] and 3 months [3.889 (1.186-12.749)] after discharge were higher with
PIOMI.

Abbreviations
PIOMI, premature infant oral motor intervention; OMS, oromotor stimulation; POFRAS, premature oral
feeding readiness assessment scale; CGA, corrected gestational age; DOL, days of life.
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Conclusion: PIOMI is a more effective oromotor stimulation method for earlier
and improved oral feeding in preterm neonates.

Clinical trial

registration:
trialid=700548EncHid=34792.72281&modid=1&compid=19",70054det’,

https://ctri.nic.in/Clinicaltrials/pdf_generate.php?
identifier,

CTRI/2022/06/043048.

KEYWORDS

neonate, oral motor stimulation, prematurity, oral feeding readiness, exclusive breastfeeding

Introduction

Annually, approximately 15 million neonates are born
prematurely (1) with a high risk for oral feeding difficulties due to
uncoordinated suck swallow reflexes and poor oral muscle tone (2,
3). Therapies for early attainment of oral feeding are oromotor
stimulation (OMS) techniques such as intraoral, perioral stroking
sucking (NNS), Beckman’s Oral Motor
Intervention (BOMI), and Premature Oral Motor
Intervention (PIOMI). PIOMI is a 5-minute 8-step therapy

focusing on the lip, jaw, and tongue movements. It simulates the

and non-nutritive
Infant

in-utero oral motor experience and has been reported to result in
a faster transition to full oral feeds, improved suck strength, and
increased breastfeeding rates (4). A study by Arora et al. suggested
that PIOMI skills
improved mean Neonatal Oromotor Assessment Scale (NOMAS)

improves the oromotor documented as
scores in preterm neonates (5). As a part of feeding rehabilitation,
Ghomi et al. reported the earlier introduction of first oral feeds
and shorter hospitalisation with PIOMI (6). A few studies have
reported the beneficial effect of PIOMI on feeding efficiency and
breastfeeding rates but a statistically significant inference could not
be drawn from these (7-9). Hence, conflicting evidence exists for
the said outcomes and there is a paucity of data for comparison
between structured and unstructured methods of oral motor
stimulation. This study was, therefore, designed to test the
effectiveness of PIOMI over routine OMS on oral feeding readiness.

Methodology

A single-centre randomised controlled trial was conducted in a
tertiary-level neonatal intensive care unit enrolling neonates
between June to December 2022. All preterm neonates with birth
gestation of <34 weeks and corrected gestational age (CGA)
29*°-33" weeks who were free of invasive ventilation and
inotropic support were assessed for eligibility. Neonates with a
neuromuscular disorder, chromosomal anomaly, or craniofacial
malformation were excluded. Any neonate with maternal
retroviral disease was excluded from the outcome analysis for
exclusive breastfeeding. Written informed consent was taken
from parents prior to enrolment. Maternal and neonatal baseline
(mode

characteristics of delivery,

gestational age, sex, birth weight, and resuscitation details) were

indication of delivery,

recorded. Included neonates were randomised into two groups,
namely, PIOMI and routine OMS in a 1:1 ratio by simple
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randomisation using a computer-generated random number
table, and intervention was started after 297 weeks CGA.

The baseline Premature Oral Feeding Readiness Assessment Scale
(POFRAS) assessment was done before the initiation of intervention by
one of the two independent blinded scorers (Supplementary file). The
blinding of the study participants and intervention providers could not
be done, however, the intervention providers and POFRAS scorers were
blinded to each other. Neonates who were randomised to the PIOMI
group were administered intervention 15 min before the gavage feed
once daily using all aseptic precautions and with gloved fingers if
CGA was 29"°-30"° weeks. This process was continued for 7 days
until the next POFRAS assessment. After CGA 31 weeks, PIOMI was
similarly performed twice daily. PIOMI was done by the principal
investigator who underwent training under the founder of PIOMI
prior to the commencement of the study. The other group received
OMS from trained nursing staff.

For PIOMLI, the neonate was positioned in the midline position
with the neck slightly flexed and the chin tucked in. Following this,
the neonate underwent one cycle each of cheek C-stretch, lip roll,
lip curl/stretch, and gum massage for 30 s each. This was followed
by stretching of lateral borders of the tongue/cheek for 15s and
mid-blade of the tongue/palate for 30 s. After this, elicitation of
suck was performed for 15s followed by non-nutritive sucking
on the mother’s breast (or gloved finger/pacifier if the mother
was not available) for 2 min. The entire process lasted 5 min.

The second group received OMS as part of routine care. This
was a 15-min, 3-step technique comprising of two finger circular
movements in a U-shaped fashion from both ears, followed by
O-shaped perioral stimulation and ending with pouting
stimulation of the cheeks. This method was done 15 min prior to
each gavage feed by a trained nurse.

In both groups, the intervention was suspended if there was
sudden heart rate acceleration/deceleration, desaturation, apnoea,
hiccupping, yawning, sneezing, frowning, looking away,
squirming, frantic/disorganised activity, pushing away of arms
and legs or if the neonate became sick in the intervening period
and required invasive ventilator support/inotropes. The
intervention was resumed after 24 h of resolution of the issue
and continued for the subsequent 7 days.

Each POFRAS assessment was done after 7 days of
intervention. If the score was <25 in either group, the respective
intervention was repeated for another 7 days and POFRAS was
reassessed. If the score was 25-29 in either group, the respective
intervention was repeated for another 3 days and POFRAS was

reassessed. Oral feeds were started after POFRAS >30. Upon
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tolerance, feeds were increased gradually to full oral feeds.
Exclusive breastfeeding was assessed at 1 month and 3 months
post-discharge in both groups. Exclusive breastfeeding was
defined as feeding the infant only breastmilk from his or her
mother until the time of assessment and no other solids or
liquids except for drops or syrups containing vitamins, minerals,
supplements, or medicines.

The primary outcome measure was time to oral feed readiness
and secondary outcome measures were transition time to full oral
feeds, duration of hospital stay, weight gain, and exclusive
breastfeeding rate post-discharge.

The study conformed to the reporting checklist criteria for
randomised trial based on the CONSORT guidelines.

Statistical analysis

Data was entered in a Microsoft Excel spreadsheet (Microsoft
Corp, Redmond, WA, USA) and analysed using IBM SPSS
statistical software version 25. Continuous variables were
expressed as mean (standard deviation) or median (inter-quartile
range), depending on the distribution of the data. Categorical
variables were expressed using frequencies and percentages. For
qualitative data variables, the Chi-square test was used and for
quantitative data variables, two independent sample t and
median tests were used. P-value < 0.05 was considered significant.
Kaplan-Meier probability analysis curves were used for the
establishment of oral feeds. An odds ratio analysis was
performed for outcomes related to oral feeding and exclusive
breastfeeding. Intention to treat and per protocol analysis was
done for exclusive breastfeeding rates. For the outcomes related
to the progression of feeds and weight, a subgroup analysis was
conducted for sex, gestational age, and weight for gestational age.
The inter-observer variability was calculated to be 0.933
(Cronbach’s alpha) between the two independent blinded scorers
on 20 subjects prior to the commencement of the study. The
sample size calculated for statistical significance as per the

feeding outcome of a previous study (5) was 42 with 21 in each
group.

Results

The study included 84 neonates divided into two groups of
42 each to receive either PIOMI or routine OMS. The study
flowchart is described in Figure 1. At birth, the mean
gestational age (GA) of the neonates in the PIOMI and OMS
groups was 30.6 and 30.3 weeks, respectively, and the mean
birthweight was 1,304 and 1,372 g, respectively. The maternal
and neonatal characteristics were comparable for both groups
(Table 1).

The mean CGA in both groups at the start of intervention was
31.4 weeks (P- 0.851) and the mean birthweight was 1,245 and
1,323 g (P- 0.256), respectively, for PIOMI and OMS.

Although the CGA at POFRAS score >30 was similar for both
groups, the chronological age was lower by 4.6 days for the PIOMI
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group (P->0.05) and these neonates achieved oral feeding
readiness 2.7 days earlier (P->0.05) (Table 2). This primary
outcome was assessed for 73 neonates who completed treatment
until oral feeding readiness was achieved.

As per Kaplan-Meier analysis, the probability of not achieving
oral feeding readiness by 30 days of life (DOL) was lower for the
PIOMI group (Figure 2A).

Out of 66 neonates followed until discharge, the CGA at full
oral feeds was 35.9 and 36.4 weeks, respectively, for PIOMI and
OMS (P->0.05). The age for full oral feeds was 6.1 DOL lower,
the transition time from initiation to full oral feeds was 2 days
less, and the duration of hospitalisation was 8 days less for the
PIOMI group (P->0.05). The average weight gain was higher by
4.9 g/kg/day with PIOMI (P- < 0.05) (Table 2).

As per Kaplan-Meier analysis, the probability of not achieving
full oral feeds by 45 DOL was lower for the PIOMI group
(Figure 2B).

A
characteristics

subgroup analysis for the progression of feeding
of the study from birth till the

achievement of full oral feeds was done for sex and weight for

sample

gestational age (Table 3). A statistically significant result could
only be achieved for average weight gain from initiation to
achievement of full oral feeds.

The subgroup analysis for the feeding characteristics based on
gestational age (Table 4) favoured the PIOMI group, however, a
statistically significant inference could only be drawn for

*0_31%% weeks

transition to full oral feeds for neonates 28
gestation and average weight gain on oral feeds for neonates >28
weeks gestational age.

A total of 62 neonates were assessed for breastfeeding till 3
months post-discharge. The exclusive breastfeeding rate was
higher by 24.5% (P- 0.015) at 1-month post-discharge in the
PIOMI group (per protocol analysis) and by 14.37% (P- 0.185)
(per intention to treat analysis). At 3 months post-discharge,
27% (P- 0.022) more neonates in the PIOMI group were on
exclusive breastfeeding (per protocol analysis) and 16.6% (P-
0.128) (per intention to treat analysis).

Although not statistically significant, the odds of achieving oral
feeding readiness and establishment of full oral feeds were higher in
the PIOMI group. The odds of exclusive breastfeeding at 1 and 3
months post-discharge were significantly higher in the PIOMI

group as compared to OMS (Figure 3).

Discussion

In this study comparing the effect of two methods of oromotor
stimulation on readiness for oral feeding in preterm neonates, we
did not find a significant difference. We, however, noted the
significantly earlier transition from initiation to full oral feeds,
better weight gain, and post-discharge breastfeeding rates in the
structured method of oromotor stimulation (PIOMI).

Our study had comparable baseline characteristics with the
previous studies (5, 8, 10). Most of the neonates in both groups
were of GA 28"°-31"° weeks with a birthweight ranging from
1,000 to 1,499 g, which was appropriate for GA. However, as
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Preterm neonates <34 weeks gestation born during the study period and
assessed for inclusion - 135

>33+6 weeks gestation when off
invasive ventilation/inotropes -
33

Expired - 18

Neonates randomised during the study period- 84 (42 in each arm)

Baseline
POFRAS
>30-2

Number of neonates received intervention - 82 (41 in each arm)

Did not complete treatment
until oral feeding readiness - 7
Expired - 2

Number of neonates received intervention until oral feeding readiness - 73
PIOMI group - 35; OMS group - 38

Did not complete treatment
until full oral feeds - 7

Number of neonates received intervention until full feeding - 66
PIOMI group - 31; OMS group - 35

Lost to follow up - 3
Excluded due to
maternal seropositive
status - 1

Number of neonates followed up till 3 months post discharge - 62
PIOMI group - 30; OMS group - 32

FIGURE 1
Flowchart of the study.

opposed to the previous studies (5, 8, 10), in which, intervention  clinically and hemodynamically stable and a minimum feeding
was started after attaining a pre-specified gavage feeding volume,  volume was not considered necessary for beginning the
in our study, the neonates were included as soon as they were intervention. Furthermore, most of the previous studies
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TABLE 1 Birth characteristics of the study sample.

Routine

OMS
[n=42] (%)

10.3389/fped.2023.1296863

compared PIOMI to routine care where the control groups had not
received any form of oral motor stimulation.

Both the intervention groups achieved oral feeding readiness at
a similar CGA and a trend for lower chronological age for oral

PIOMI, premature infant oral motor intervention; OMS, oro-motor stimulation;
LSCS, lower segment caesarean section; SGA, small for gestational age; AGA,

appropriate for gestational age.

Mode of delivery feeding readiness was noted with PIOMI but this was not
LSCS 32 (76.2) 30 (71.4) 0.621
Vaginal 10 (23.8) 12 (28.6)
Indication of delivery TABLE 2 Characteristics of the study sample at the time of feeding
Premature labor/rupture of 21 (50) 26 (61.9) 0.505 readiness and full oral feeds.
membranes .
Severe pre-eclampsia/eclampsia 10 (23.8) 6 (14.3) PIOMI Routine OMS P-
Antenatal ultrasound Doppler 5(11.9) 5(11.9) R (’ﬂ (n=38) value
changes Mean gestational age in weeks at 3411 343+15 0.542
Placenta previa/Abruptio 5(11.9) 4 (9.5) score 230
placentae Mean age at score >30, days of life | 24.7+13.6 293+18.3 0.233
Severe oligohydramnios 1(24) 1(24) Median [IQR] age at score >30, 21 [14, 31] 22 [15, 40] 0911
days of life
Parity Mean number of days from the 18.6+11.6 213+13.6 0.374
Primiparous 28 (67) 32 (76.2) 0.352 start of the intervention to score
Multiparous 14 (33) 10 (23.8) >30
Gestational age Median [IQR] number of days for 16 [10, 28] 16 [11, 34] 0.911
<28 weeks 3(7.0) 4(95) 0570 score 230
28-31 + 6 weeks 26 (61.9) 27 (64.3) PIOMI Routine OMS P-value
32-33 + 6 weeks 13 (31) 11 (26.2) : : (n=31) (n=35
Mean gestational age in weeks at 359+1.22 364+1.9 0.248
Mean gestational age in weeks 30.6 +1.66 30.3+1.85 full oral feeds
Sex Mean age at full oral feeds, days of | 383 £15.1 44.4+234 0.210
Male 21 (50) 25 (59.5) 0.383 life
Female 21 (50) 17 (40.5) Median [IQR] age at full oral feeds, 37 [26, 48] 35 [27, 69] 0.468
Birth weight days of life
Mean number of days from the 9.1£22 11.1+3.3 0.007
<1000 g o (214 7 (166) 0.525 start of oral feeds to full oral
1,000-1,499 g 22 (52.4) 22 (52.4) feeding
>1,500 g 11 (26.2) 13 (31) Mean weight in grams at full oral | 1,862 185 1,874 201 0.8
Mean weight in grams 1,304 + 350 1,372 + 333 0.365 feeds
Weight for gestational age Average duration of hospital stay in | 37.06 + 16.2 45.1+23.1 0.104
SGA 8 (19) 5 (11.9) 0368 days
AGA 34 (81) 37 (88.1) Median [IQR] duration of hospital | 38 [27, 48] 36 [27, 69] 1
Mean 5-min APGAR 82+12 797411 0363 stay in days
Average weight gain [g/kg/day] 146 +3.7 9.7£29 0.0001

PIOMI, premature infant oral motor intervention; OMS, oro-motor stimulation;
PMA, post menstrual age; IQR, inter-quartile range.

. Intervention 104 Intervention
10 group : group
_oMs —0MS
~IPIOMI IPIOMI
~+— OMS-censored ~+-OMS-censored
—+—PIOMI-censored . +-PIOMI-censored
0.8 08
> >
£ £
o Qa
BRI S o6
< [
o} a
) ]
: -
O 0.4 O 04
= =
= = -+ -
(@] [e) y
e
0.2 0.2
0.0 0.0
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0 200 400 60.0 80.0 0 200 400 60.0 800 100.0

Days of life at POFRAS score <30 Days of life at full oral feeds

FIGURE 2

Kaplan-Meier analysis curves for the probability of (A) not achieving oral feeding readiness by 30 days of life and (B) not achieving full oral feeds by 45 days
of life.
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TABLE 3 Progression of feeding characteristics of the study sample from birth till achievement of full feeds based on sex and weight for gestational age.

10.3389/fped.2023.1296863

PIOMI (n=42) Routine OMS (n =42) P-value
Mean gestational age in weeks at birth 30.6 + 1.66 30.3+1.85 0.436
Male AGA n=19 308+1.4 n=21 304+2.1 0.487
Male SGA n=2 29.3 n=4 309+1.38 0.333
Female AGA n=15 305+22 n=16 302+1.6 0.666
Female SGA n=6 30.8+1 n=1 28.6 -
Mean weight in grams at birth 1,304 + 350 1,372 +333 0.365
Male AGA n=19 1,401 +295 n=21 1,424 + 345 0.823
Male SGA n=2 800 = 141 n=4 1,140 + 209 0.113
Female AGA n=15 1,371 £ 377 n=16 1,401 + 301 0.784
Female SGA n=6 996 + 165 n=1 745 -
PIOMI (n =35) Routine OMS (n = 38) P-value
Mean gestational age in weeks at score >30 34.1+1 343+15 0.542
Male AGA n=17 33.8+1.05 n=19 343+1.1 0.173
Male SGA n=1 345 n=4 358+1.8 -
Female AGA n=12 341+038 n=14 33.5+0.9 0.087
Female SGA n=>5 349+1 n=1 39 -
Mean number of days from the start of the intervention to score >30 18.6+11.6 21.3+13.6 0.374
Male AGA n=17 172+11.1 n=19 21.4+139 0.327
Male SGA n=1 33 n=4 21.5+10.4 -
Female AGA n=12 19+13.6 n=14 18.4+£10.9 0.901
Female SGA n=>5 1921116 n=1 58 -
PIOMI (n=31) Routine OMS (n = 35) P-value
Mean gestational age in weeks at full oral feeds 359+1.22 36.4+19 0.248
Male AGA n=15 358+1.3 n=18 363+19 0.394
Male SGA n=1 36.2 n=4 37.6+19 -
Female AGA n=11 356+038 n=12 359+15 0.561
Female SGA n=4 372+13 n=1 40.5 -
Mean number of days from the start of oral feeds to full oral feeding 9.1£22 11.1+3.3 0.007
Male AGA n=15 87x25 n=18 99+24 0.170
Male SGA n=1 10 n= 11.8+1.5 -
Female AGA n=11 9.8+2 n=12 125+44 0.076
Female SGA n=4 8.8+1.3 n= 13 -
Mean weight in grams at full oral feeds 1,862 + 185 1,874 + 201 0.8
Male AGA n=15 1,888 + 187 n=18 1,931 +220 0.554
Male SGA n=1 1,875 n=4 1,731 £108 -
Female AGA n=11 1,902 +173 n=12 1,845+ 177 0.444
Female SGA n=4 1,650 £ 103 n=1 1,750 -
Average weight gain [g/kg/day] 14.6 +3.7 9.7+29 0.0001
Male AGA n=15 13.6+3.7 n=18 8.6%2.6 0.0001
Male SGA n=1 13.1 n=4 10.5+4.1 -
Female AGA n=11 15.8+3.7 n=12 11.2+24 0.0018
Female SGA n=4 155+3.5 n=1 7.7 -

PIOMI, premature infant oral motor intervention; OMS, oro-motor stimulation; AGA, appropriate for gestational age; SGA, small for gestational age.

statistically significant. The probability of achieving oral feeding
readiness by 30 DOL was higher with PIOMI.

Similar to our observation, Sumarni et al. (11) evaluated oral
by POFRAS score before and after
administration of 7 days of oral motor stimulation and observed
that the neonates receiving PIOMI had a higher increment in
post-POFRAS  scores but the result was not statistically
significant. Variability in statistical significance has also been

feeding readiness

observed for this outcome in other studies, most of which did
not utilise any feeding readiness assessment tool (8, 10, 12).

The lower CGA and chronological age for achieving full oral
feeds for the PIOMI group was not statistically significant,
however, a significantly faster transition to full oral feeding was
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observed with PIOMI. The probability of achieving full oral feeds
by 45 DOL was also higher with PIOMI. Some of the previous
studies have also suggested a shorter transition time to full oral
feeds using PIOMI (5, 6, 10, 13, 14). The difference in the days
to independent oral feeding as compared to the present study
could be attributed to variable methodology.

Neonates in the PIOMI group in our study could be discharged
8 days earlier. Similarly, Arora et al. (5) reported that neonates
receiving PIOMI could be discharged earlier as compared to sham
intervention (P >0.05). Some of the other studies have observed a
statistically significant reduction in the duration of stay with
PIOMI, however, the control groups in these studies had not
received any form of oral motor stimulation (4, 6, 8, 12, 14-16).
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TABLE 4 Progression of feeding characteristics of the study sample from birth till achievement of full feeds based on gestational age.

PIOMI (n = 35) Routine OMS (n = 38) P-value
Mean gestational age in weeks at score >30 341+1 343+1.5 0.542
<28 weeks n=2 34.6+0.8 n=4 352+05 0.305
28-31 + 6 weeks n=24 341+1.1 n=25 342+1.8 0.816
32-33 + 6 weeks n=9 33.9+0.6 n=9 342+0.2 0.174
Mean number of days from the start of the intervention to score >30 186+ 11.6 213+13.6 0.374
<28 weeks n=2 39.5+0.7 n=4 41.8+4.6 0.543
28-31 + 6 weeks n=24 20.9+10.3 n=25 22+12.6 0.740
32-33 + 6 weeks n=9 7.7+3.6 n=9 9.8+3.1 0.203
PIOMI (n=31) Routine OMS (n =35) P-value
Mean gestational age in weeks at full oral feeds 359+1.22 36.4+1.9 0.248
<28 weeks n=2 36.1+1.2 n=4 384+1.1 0.077
28-31 + 6 weeks n=22 36.1+1.3 n=22 36.4+2.1 0.572
32-33 + 6 weeks n=7 354+0.7 n=9 35.7+0.7 0.417
Mean number of days from the start of oral feeds to full oral feeding 9.1+£22 11.1+£33 0.007
<28 weeks n=2 11+14 n=4 13.5+3.1 0.357
28-31+ 6 weeks n=22 89+2 n=22 10.7 £2.7 0.016
32-33 + 6 weeks n=7 92+28 n=9 11.1+44 0.338
Mean weight in grams at full oral feeds 1,862 + 185 1,874 + 201 0.8
<28 weeks n=2 1,925+ 134 n=4 2,107 + 358 0.544
28-31+ 6 weeks n=22 1,845 £ 199 n=22 1,842+ 174 0.958
32-33 + 6 weeks n=7 1,897 £ 164 n=9 1,847 £ 114 0.483
Average weight gain [g/kg/day] 146 +3.7 9.7£29 0.0001
<28 weeks n=2 123+ 1.1 n=4 9.8+2.2 0.219
28-31 + 6 weeks n=22 145+3.7 n=22 99+31 0.0001
32-33 + 6 weeks n=7 156 +4.2 n=9 9+28 0.002
PIOMI, premature infant oral motor intervention; OMS, oro-motor stimulation.
Outcome PIOMI [n/N] (%) Routine OMS [n/N] (%) 0Odds Ratio (CI)
Not achieved oral feeding 8135 (22.9%) 12/38 (31.6%) 1.558 (0.548-4.426)
;:;n:lnn::f:uore <30) within 30 N
Achieved full oral feeding within | 22/31 (71%) 23/35 (65.7%) 1.275 (0.449-3.620) i
45 days of life
nnl?;:.;n;:::r;;:::erg?g at1 28/30 (93.3%) 22/32 (68.8%) 6364 (1.262-32.079) -
Exclusive breastfeeding at 3 25/30 (83.3%) 18/32 (56.3%) 3.889 (1.186-12.749)
months post discharge ===

PIOMI, premature infant oral motor i ion; OMS, oro-motor stil

Favours PIOMI 0dds Ratio (1)

FIGURE 3
Outcome analysis based on the odds ratio.

Although the difference between the groups for oral feeding
readiness, full oral feeding, and duration of hospitalisation was
not statistically significant, each day saved in terms of clinical
management has a significant implication on the expenditure for
the affected family and the healthcare system. Earlier initiation
and achievement of oral feeds will help to establish the
emotional bond between the mother-infant dyad and enhance
the mother’s confidence in feeding and taking care of the
neonate. Decreased duration of hospitalisation would reduce the
financial burden on the family, especially in a low-middle
income setting. Additionally, this will have a profound effect on
the available health resources and the economics of the health
structure.
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The neonates receiving PIOMI had significantly higher weight
gain on oral feeds in our study. A similar observation was noted in
the study by Thakkar et al. (10). This may indirectly be indicative
of better oral feeding efficiency and milk volume transferred in each
feed, as has been suggested by some previous studies (7, 10, 17) in
favour of PIOMI. However, overall the results have been variable
(6, 8). This could be attributed to not following a feeding
readiness assessment scale across the previous studies, which may
have subjectively altered the judgement of feeding efficiency.

While the subgroup analysis as per sex, weight for gestational
age, and gestational age did not reveal statistically significant
differences for all study outcomes, it favoured the PIOMI group,
particularly the neonates >28 weeks gestation. The results of
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individual analyses, however, need interpretation, taking into
account the small sample size.

The exclusive breastfeeding rates in the present study were
significantly higher after discharge in the neonates who had
received PIOMI per protocol (p<0.05). The OR analysis of the
same also favored PIOMI, with statistical significance. This finding
supports that PIOMI improves the feeding efficiency in preterm
neonates (7, 10, 17). Sasmal et al. (8) observed higher breastfeeding
rates with PIOMI at 1 month after discharge. Skaaning et al. (9)
evaluated the effect of a parent-administered PIOMI-based oral
motor stimulation method. Both studies, however, could not
establish a significant impact on exclusive breastfeeding with
PIOMI. This could be speculated to lower sample size (8), variable
methodology, and caregiver-dependent method of PIOMI.

The abovementioned observations suggest that although a
structured form of oral motor stimulation may not have resulted
in statistically significant differences in initiation and attainment
of oral feeds, its effects on improving oral feeding efficiency and
exclusive breastfeeding rates are evident.

Our study has several strengths. More than the required number
of participants were recruited to achieve statistical power. Both
structured and unstructured methods of oral motor stimulation
were compared in the present study, thereby, assessing the overall
effect of various methods of oral motor stimulation utilised in
clinical settings. Additionally, the intervention was started as soon
as the neonate was hemodynamically stable, as has been suggested
by Lessen et al. (4). The oral feeding was established as per
validated scoring systems and not based on subjective assessment.
However, the study is not devoid of limitations. It is a single-
centre study and, therefore, the findings may not be generalizable.
Although the intervention providers were blinded to the weekly
POFRAS assessment and scores, the blinding of study participants
at the time of providing intervention could not be achieved. The
allocation concealment for randomisation was also not performed.
Data on maternal education and socio-economic status was not
collected, which may have been significant attributing factors for
exclusive breastfeeding.

Conclusion

The neonates receiving PIOMI showed higher weight gain and
post-discharge.  This
improvement in feeding efficiency with a structured intervention.

exclusive  breastfeeding rate suggests
Although a statistically significant difference could not be derived
for all outcomes, it may still offer clinical benefit for the patient
and the treating facility. We, thus, recommend PIOMI to be more
effective for improved oral feeding in preterm neonates 29*°-33"°
weeks GA. However, multicentric trials with larger sample sizes

would be necessary to further strengthen the recommendation.
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Diagnostic utility of lung

ultrasound in predicting the need
for surfactant therapy in preterm
neonates with respiratory distress
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Rajesh Maheshwari’ and Pradeep Suryawanshi™

'Neonatology, Bharati Vidyapeeth (Deemed to be) University Medical College, Pune, India, °Neonatology,
Westmead Hospital, Westmead, NSW, Australia

Background: Lung ultrasound is an accurate and early predictor for surfactant
replacement therapy in respiratory distress syndrome (RDS) as compared to
clinical parameters and chest x-ray. However, lung pathologies for respiratory
distress at birth have overlapping symptomatology and low middle-income
countries have a higher incidence of congenital pneumonia, in addition to RDS,
making the immediate diagnosis difficult. Thus, there is a need for assessing a
cutoff for lung ultrasound scores in the given setting.

Objectives: The primary objective was to determine the diagnostic accuracy of the
lung ultrasound score (LUS) in predicting the need for surfactant therapy in preterm
neonates with respiratory distress. Secondary objectives were to correlate LUS with
corresponding oxygen saturation to the fraction of inspired oxygen ratio (SpO2/
FiO2), arterial/Alveolar oxygen pressure ratio (a/A), and chest x-ray (CXR) findings.
Methodology: A prospective observational study was carried out at a tertiary-level
neonatal intensive care unit in India in 2022 enrolling 100 neonates <34 weeks
gestational age with respiratory distress at birth. After initial stabilization of the
neonate, LUS was performed and baseline parameters were noted. Surfactant was
administered as per the 2019 European Consensus guidelines and LUS was
repeated after 6 h of therapy.

Results: The mean gestation of enrolled neonates was 31.06 + 2.12 weeks and the
mean birthweight was 1,412 + 391 g. Approximately 58% were diagnosed with RDS
and 30% had congenital pneumonia. Surfactant was administered to 40% of
neonates. The cutoff LUS for surfactant therapy was 7 [area under the curve
(AUC) 0.977; 95% CI, 0.947-1; P<0.001; with sensitivity 92.5%, specificity 96.67%,
PPV 94.87%, and NPV 95.08%] and the cutoff LUS for the second dose of
surfactant was 10 (AUC 0.964; 95% Cl, 0.913-1; P<0.001). The score decreased
by 3.24 (2.44-4.05) after 6 h of the first dose and correlated significantly with
SpO2/FiO2 ratio (—0.750), a/A ratio (—0.650), and CXR findings (0.801).
Conclusion: The study predicted an optimal LUS cutoff of 7 and 10 for the need for
the first dose of surfactant and re-treatment, respectively, in neonates <34 weeks
gestational age with respiratory distress.

KEYWORDS

lung ultrasound score, prematurity, neonate, respiratory distress, surfactant therapy

Abbreviations

RDS, respiratory distress syndrome; LUS, lung ultrasound score; SpO2/FiO2, oxygen saturation to the fraction
of inspired oxygen ratio; a/A, arterial/Alveolar oxygen pressure ratio; CXR, chest x-ray; CPAP, continuous
positive airway pressure; FiO2, fraction of inspired oxygen; NICU, neonatal intensive care unit; PEEP, peak
end-expiratory pressure; NIPPV, nasal intermittent positive pressure ventilation; TTNB, transient tachypnea
of the newborn.
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Introduction

One of the most important causes of morbidity and mortality
in preterm neonates, respiratory distress occurs in almost 5.8% of
all live births (1) and accounts for 30%-40% of admissions to
neonatal units (2). The management is based on earlier and
timely administration of surfactant along with continuous
positive airway pressure (CPAP) support. However, identifying
the narrow window for administering surfactant remains
challenging, given the advantages of early rescue surfactant
therapy in reducing the risk of acute pulmonary injury, neonatal
mortality, and chronic lung disease (3).

In recent times, lung ultrasound has gained a crucial role in the
early diagnosis and evaluation of respiratory distress in neonates
(4). It is a quick and safe bedside technique and can be repeated
several times a day (5).

Over the years, studies have developed a lung ultrasound score
(LUS) for the evaluation of lung aeration and prediction of
surfactant administration (6, 7). The same was validated in 2015,
demonstrating its utility in the management of respiratory
distress syndrome (RDS) (8).

The indication of surfactant administration is variable among
different neonatal intensive care units (NICU) and is guided by
parameters such as chest x-ray (CXR), arterial/Alveolar oxygen
pressure ratio (a/A), and FiO2. Presently, the guidelines for
surfactant therapy are based on the fraction of inspired oxygen
(Fi02) values (9), which may be arbitrary and non-specific (10).

In previous studies, lung ultrasound aided in guiding early
rescue therapy within 2 h of delivery, thereby reducing the need
for a repeat dose of surfactant, the need for invasive ventilation,
and the number of days on a ventilator (11-14). When compared
with chest x-ray, it was found to have higher specificity and
sensitivity in predicting the need for surfactant in RDS (12).

Although the utility of LUS in predicting the disease severity
and need for surfactant has been reported (15), data related to
lung ultrasound scoring and its accuracy in predicting the need
for surfactant in preterms with respiratory distress is lacking for
the Indian population. It has the potential to be an accurate and
early predictor of the need for surfactant therapy in this
population cohort, thus, allowing timely treatment and reduced
radiation exposure.

Therefore, this study was conducted to determine the
diagnostic accuracy of LUS in predicting the need for surfactant
in preterm neonates with respiratory distress and correlate it
with corresponding oxygen saturation to the fraction of inspired
oxygen ratio (SpO2/Fi02), a/A ratio, and findings on CXRs.

Methodology

A single-centre prospective observational study was conducted
in a tertiary care NICU attached to a medical college with
approximately 1,500 annual admissions and 130-150 admissions
per month. The study was approved by the institutional ethics
committee and registered in the clinical trials registry. All inborn
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as well as outborn neonates <34 weeks gestational age admitted
to the NICU within 24 h of life with respiratory distress were
included. Informed consent was obtained from the patient’s
parents. Neonates with complex cyanotic congenital heart
disease, congenital malformation, chromosomal abnormality,
inborn error of metabolism, and congenital lung disorder were
excluded. The included neonates were started on non-invasive
respiratory support from the time of admission to the NICU
with an appropriately sized nasal interface. Peak end-expiratory
pressure (PEEP) was set at 6 cm H20O and FiO2 levels were
adjusted to maintain target oxygen saturations within the 90% to
95% target range. In case of failure of CPAP support (not
maintaining target oxygen saturation on PEEP 6 cm H2O and
FiO2 up to 0.3 or persistent/worsening respiratory distress),
mode of respiratory support was stepped up to nasal intermittent
positive pressure ventilation (NIPPV) support. The NIPPV
support was started on peak inspiratory pressure (PIP) of 14 cm
H20 and escalated as required up to 20 cm H2O and 0.4 FiO2
to alleviate respiratory distress and maintain the target oxygen
saturation. A trial of NIPPV support was opted before invasive
ventilation, considering it to be a superior modality of respiratory
support to CPAP for preterm neonates with respiratory distress
(16). The following criteria were used for considering mechanical
ventilation: (a) repeated episodes of apnea defined as more than
four episodes of apnea per hour or more than two episodes
requiring bag and mask ventilation, (b) hypoxia defined as FiO2
>0.40 to maintain SpO2, and (c) respiratory acidosis with PaCO2
>60 mmHg and pH <7.20. The same criteria were utilised for the
requirement of respiratory support post-surfactant therapy.

On admission, as per the unit protocol, a baseline arterial blood
gas and CXR were performed. Baseline lung ultrasound scoring was
done and was denoted as “pre-surf LUS”. The surfactant was
administered as per the European consensus guidelines (early
rescue surfactant therapy if FiO2 >0.3 on CPAP pressure of at
least 6 cm H20) (9). The neonates requiring NIPPV or invasive
ventilation were also given rescue surfactant therapy in case of
FiO2 >0.3 and PEEP >6cm H20. All the neonates were
administered surfactant via the intratracheal route and the
INSURE (intubate-surfactant-extubate) technique was utilised for
the neonates on non-invasive ventilation. The type of surfactant
administered was as per the available and affordable option and
hence, both beractant and poractant alfa were administered at a
dose of 100 mg/kg of phospholipid. Following this, a repeat LUS
was done after 6h of the first dose of surfactant and was
denoted as “post-surf LUS”. A second dose of surfactant at
100 mg/kg of phospholipid was administered if the FiO2 value
remained above the cutoff (9). Apart from this, SpO2/FiO2 ratio
and a/A ratio were calculated for all the neonates prior to
surfactant therapy, and CXR grading was done based on the
radiological characteristics, namely, reticulogranular pattern,
radiolucency, cardiac silhouette, and air-bronchograms—Stage 1:
fine granular pattern with few air-bronchograms; Stage 2: distinct
granularity and excessive air-bronchograms; Stage 3: increased
opacity with reduced air-bronchograms; and Stage 4: diffuse
bilateral opacified lung (white-out) with lack of cardiac borders
and loss of all air-bronchograms (17).
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Lung ultrasound scoring

Lung ultrasound was done on the Philips Affinity 50G
(Koninklijke Philips, Nevada, USA) machine with the “hockey
stick” L15-17 MHz transducer. Each lung was divided into three
areas (upper anterior, lower anterior, and lateral) and scored.

Each area of the lung was given a score between 0 and 3, with
the total score ranging from 0 to 18, where 0 indicated A-pattern
[defined by the presence of A-lines only (horizontal, parallel
echogenic lines under the pleural line)]; 1 indicated B-Pattern
[defined as the presence of >3 well-spaced B lines (well defined
that
perpendicular to and obscured the A-lines)]; 2 indicated severe B

vertical lines originated on the pleural line, ran
pattern (defined as the presence of crowded and coalescent B
lines with or without consolidation limited to subpleural space
and/or white out of lung); and 3 indicated extended
consolidation (Figure 1) (8).

Lung ultrasound was performed by a clinician who had
received formal training under senior faculty and who had at
least 6 months of experience in the NICU. The pre-recorded
ultrasound videos were scored by a single trained blinded
observer with an acceptable level of expertise.

Maternal characteristics (antenatal corticosteroid cover, mode
of delivery, and risk factors) and neonatal characteristics [sex,
gestational age, birth weight, weight for gestational age, the
requirement of resuscitation at birth, age at enrolment, doses of
surfactant, SpO2/FiO2 and a/A ratios just prior to surfactant
administration and before each dose, CXR grading before each
dose of surfactant, days on mechanical ventilation, days on non-

invasive ventilation, duration of oxygen support (days), length of

FIGURE 1

Score values correspond to different patterns as shown. Scores were
given as follows: (A) O, presence of only A-lines; (B) 1, presence of >3
well-spaced B lines; (C) 2, presence of crowded and coalescent B
lines with or without consolidations limited to sub-pleural space;
(D) 3, presence of extended consolidation.
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NICU stay (days), bronchopulmonary dysplasia (%)] were
recorded. The neonates were subdivided as per respiratory
pathology into RDS, transient tachypnea of the newborn
(TTNB), and congenital pneumonia. The criteria for diagnosing
congenital pneumonia was respiratory distress along with at least
two laboratory parameters positive for sepsis (c-reactive protein
>6 mg/L, thrombocytopenia with platelet count <100,000/mm?,
immature:total neutrophil ratio >0.2:1, neutropenia as per
newborn cutoffs) (18). RDS was diagnosed based on clinical
respiratory distress, chest x-ray showing features consistent with
the disease, and no laboratory features of sepsis (19). The
presence of respiratory distress (transient and self-limiting) with
a radiographic picture of inter-fissural fluid or interstitial fluid
was diagnosed as TTNB (20).

Statistics

Categorical variables were expressed as frequency (percentage)
and compared using the chi-squared test or Fisher’s exact test, as
needed. Quantitative data was expressed as mean+SD and
median (IQR). A value of p<0.05 was considered statistically
significant. Receiver operating characteristic (ROC) analysis was
used to evaluate the reliability of the LUS to predict the need for
surfactant treatment and re-treatment; area under the curve
(AUC) and reliability data were reported with confidence
intervals (CIs). Paired analysis was done for comparison of LUS
at 0 and 6h post surfactant. Correlational analysis using
Pearson’s coefficient was done to determine the correlation of
LUS with the SpO2/FiO2 ratio, a/A ratio, and CXR grading. To
determine the correlation between LUS and CXR at <3 and >3 h
of life at enrolment, correlational analysis was conducted using
the Spearman coefficient.

The sample size was calculated using observational data from
the previous year where surfactant was administered to
approximately 50% of NICU-admitted infants who fulfilled the
same inclusion criteria and followed the surfactant
administration protocol. To achieve an AUC of >0.7 in ROC

analysis with o error of 0.05 and power of 0.95, 100 samples

same

were needed.

Results

A total of 100 neonates were included in the study. The mean
(SD) gestation of enrolled neonates was 31.06 + 2.12 weeks and the
mean birthweight was 1,412 + 391 g. Upon diagnosis, 58% of the
enrolled neonates had RDS, 30% had congenital pneumonia, and
12% had TTNB. Baseline characteristics of the study population
are reported in Table 1. Out of the 100 enrolled patients, 40
neonates received surfactant therapy. Among these, 18 received
beractant and 22 received poractant alfa surfactant preparation.
The mean age at first dose of surfactant was 1.9+ 1 h of life. The
characteristics of the neonates who received surfactant therapy
are given in Table 2. The pre-surf LUS was done at the hour
of enrolment and with an AUC 0.977, 95% CI (0.947-1), and
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TABLE 1 Characteristics of the study cohort, n =100.
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TABLE 1 Continued

Maternal characteristics (n = 100) N (%) Maternal characteristics (n = 100) N (%)
Maternal history Congenital pneumonia 7 (5.5-12)
Preterm labor 49 (49) Transient tachypnea of the newborn 5 (4-6)
Severe pre-eclampsia/eclampsia 21 (21) LUS, lung ultrasound score; SpO2/FiO2, oxygen saturation to fraction of inspired
Antepartum haemorrhage 10 (10) oxygen ratio; a/A, arterial/Alveolar oxygen pressure.
Antenatal Doppler changes 16 (16)
Severe oligo/anhydramnios 2(2)
Fetal bradycardia 1(1) P <0.001, the cutoff score as per ROC curve was 7 (sensitivity
Scar tenderness 1(1) 92.5%, specificity 96.7%, positive predictive value (PPV) 94.87%,

Antenatal steroid course and negative predictive value (NPV) 95.08%) (Figure 2A and
Complete 2 @) Table 3). The mean age of the neonates at the time of pre-Surf
I let 58 (58 .
feompree (58) LUS was 1.37+£0.84 h. The mean LUS of neonates with RDS,

Mode of delivery ital . 4 TT d

+ +

Cacsarean section 77 (77) congenital pneumonia, an NB were 8.9+ 3.5, 8.6+3.7, an

Vaginal delivery 23 (23) 4.8+ 1.6, respectively. The mean (SD) LUS for neonates with

N tal ch reristics (n=100) N %) RDS who did not require surfactant was 55+ 1.6 and the
eonatal characteristics (n= o
Mol 50 (50) median (IQR) was 4 (4-6), and the mean LUS for neonates with

e
RDS who required surfactant was 11.6 2 and the median was
Inborn 80 (80)

Gestational age (weeks) 12 (11-13). This result was statistically significant with
<28 9 (9) P <0.0001. The pre-surf LUS cutoff determining requirement of
28-31+6 48 (48) >1 dose of surfactant was 10 (sensitivity 100%, specificity
32-33+6 43 (43) 86.36%, PPV 95.24%, and NPV 100%) as per ROC with an AUC

Birth weight (g) 0.964, 95% CI (0.913-1), and P<0.001 (Figure 2B). A total of

1, 16 (1 .
<1,000 6 (16) 23 neonates required a repeat dose of surfactant, 17 of these were
1,000-1,499 45 (45) . . .. .
~1500 39 (39) diagnosed with RDS and the remaining 6 had congenital
S_ma]l for gestational age 21 1) pneumonia. The mean (SD) age at repeat dose of surfactant

Hours of life at enrolment therapy was 7.5+ 0.8 h of life. In neonates requiring one dose of
<3 86 (86) surfactant therapy, the LUS decreased by a median value of 3.24
>3 14 (14) (2.44-4.05) over 6h. The mean difference between pre- and

Resuscitation at birth post-surf LUS for neonates who received beractant was 3.73 +
No resuscitation 46 (46) 1.35 (P 0.1) and for neonates who received poractant alfa, it was
Physical stimulati 5(5 . .

ysical stimuation ©) 2.94+1.76 (P 0.12). Figure 3 shows the distribution of LUS
Positive pressure ventilation 29 (29) . . . .

; X . values with the corresponding FiO2. A correlation of —0.75
Delivery room intubation 18 (18)
Chest compressions 2@ (P<0.001) was found between pre-surf LUS and SpO2/FiO2
Medications _ ratio and a correlation of —0.235 (P 0.144) was found between

Respiratory pathology post-surf LUS and SpO2/FiO2 ratio after 6h of surfactant.
Respiratory distress syndrome 58 (58) Between pre-surf LUS and a/A, the correlation was —0.65
Congenital pneumonia 30 (30) (P<0.001), and between post-surf LUS and a/A at 6h
Transient tachypnea of the newborn 12 (12)

Surfactant therapy 40 (40)
Number of doses of surfactant required o .
TABLE 2 Characteristics of the neonates receiving surfactant therapy,
1 17 (43) n=40.
2 23 (58)
Type of surfactant used Neonatal characteristics N (%)
Beractant 22 (55) Male 23 (58)
Poractant alfa 18 (45) Inborn 31 (78)

LUS, median (IQR) Mean gestational age (weeks) 30.1+2.3
1st dose of surfactant 6 (5-12) Mean birth weight (g) 1,344 +441
2nd dose of surfactant 8.5 (6-10.5) Respiratory pathology

SpO2/FiO2 ratio, median (IQR) Respiratory distress syndrome 29 (73)
1st dose of surfactant 3.7 (2.3-4.5) Congenital pneumonia 11 (27)
2nd dose of surfactant 4.5 (2.8-4.6) Transient tachypnea of the newborn 0 (0)

a/A ratio, median (IQR) Hours of life at 1st dose of surfactant
1st dose of surfactant 0.42 (0.28-0.55) <3 28 (70)
2nd dose of surfactant 0.345 (0.275-0.38) >3 12 (30)

Median LUS as per respiratory pathology Mean age at 1st dose of surfactant (hours)

Respiratory distress syndrome 10 (5-12) Inborn 1.6+0.8
(Continued) Outborn 29+0.9
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FIGURE 2
(A) Receiver operating characteristic (ROC) curve for pre-surfactant LUS cutoff for the requirement of surfactant therapy (B) receiver operating
characteristic (ROC) curve for pre-surfactant LUS cutoff for the requirement of repeat surfactant therapy.

surfactant at 0.811 (P<0.001). The correlation between pre-surf
LUS and CXR at <3 h of enrolment was 0.829 (P <0.001) and it
was 0.832 (P<0.001) at >3h of enrolment. A total of 80

post-therapy, it was —0.075 (P 0.645). A significant correlation was
found between pre-surf LUS and first CXR at 0.801 (P < 0.001) and
post-surf LUS and CXR in babies requiring a repeat dose of
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TABLE 3 Diagnostic utility of lung ultrasound score with surfactant

therapy.
Surfactant therapy

Lung ultrasound score

Yes
<7 3 58
>7 37 2
Sensitivity 92.5% (76.91-98.43

(
Specificity 96.67% (88.47-99.59)
94.87% (82.52-98.64)
95.08% (86.67-98.29)
27.75 (7.08-108.71)

0.08 (0.03-0.23)

Positive predictive value
Negative predictive value
Positive likelihood ratio

Negative likelihood ratio

100 o o o o
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°
20 o.'.!" §
10

0 r T T T T T ]
0 3 6 9 12 15 18

Lung ultrasound score

FiO2
00

FIGURE 3
Scatter plot showing the distribution of pre-surfactant LUS with
corresponding FiO2.

neonates were followed up till discharge. Six neonates among the
enrolled patients died. Caregivers of 12 and 2 neonates opted to
leave against medical advice due to financial constraints and
poor neurodevelopmental outcomes (secondary to post-
total of 80

neonates were given non-invasive respiratory support after

hemorrhagic hydrocephalus), respectively. A
birth, 31 of which required escalation to mechanical ventilation,
and 22 of these were administered surfactant therapy as per
eligibility criteria.

Discussion

In this study, a quantitative lung ultrasound score was observed
to be an excellent predictor of the need for surfactant therapy in
respiratory distress in preterm neonates. It was noted that this
ultrasonographic marker of lung aeration has a significant
correlation with other clinical markers (a/A ratio and SpO2/FiO2
ratio) and radiological markers (CXR grading).

In 2012, Raimondi et al. (21) highlighted the role of lung
ultrasonography in respiratory distress in newborns and since
then there have been multiple studies to evaluate the same. It is
now increasingly being recognised as a primary modality of
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choice for the assessment of respiratory distress in newborns.
However, the existing cutoffs for surfactant replacement therapy
have been developed through studies from high-income countries
enrolling neonates with RDS and limited data from the Indian
population exist for the same, especially in the setting of
congenital pneumonia.

Our study population was similar in terms of gestational age
and birth weight to the studies previously reported (12, 13). The
median time for the first LUS assessment in the present study
was 1 h. Taking into account that the study population included
newborns that were delivered in the hospital as well as those that
were referred from outside hospitals for respiratory distress, this
time of assessment was lower as compared to other studies. In
their research, Perri et al. reported the time of first assessment as
3.3 (1.8) hours and 2.5 h (12, 13). It has been observed that LUS
may vary and even worsen in the first 4 h of life owing to the
liquid clearance from airways (22). Therefore, earlier evaluation
within the first 1-2 h of life is expected to increase the clinical
value of the score and reduce false positive results. Previously,
the superiority of LUS done as early as 5-10 min of life has been
reported (23).

Developing countries have a higher incidence of congenital
pneumonia (24). Moreover, it is difficult to differentiate and
establish this diagnosis at birth and the time frame for early
rescue surfactant therapy is limited. For this reason, all neonates
with respiratory distress were enrolled in our study cohort in
contrast to previous studies where inclusion criteria for
respiratory pathology were restricted to RDS. Notably, almost
one-third of our study population was diagnosed with congenital
pneumonia and the average LUS of these neonates was
comparable with RDS. Therefore, through this study, the
diagnostic utility of lung ultrasound for timely surfactant
replacement therapy is highlighted in congenital pneumonia as
well as RDS.

For an objective assessment of the requirement of surfactant in
neonates with respiratory distress, Brat et al. (8) developed and
established LUS through their study in 2015. However, the LUS
cutoff as per their study in 65 infants <34 weeks gestation was 4
in comparison to our cutoff score of 7. The LUS cutoff for the
second dose of surfactant as per our study was 10. Our findings
were similar to those of De Martino et al. (14), who studied
more preterm populations (<30 weeks gestational age) but had
ultrasound protocols that matched ours. In similar studies, Perri
et al. reported the LUS cutoff for surfactant treatment to be 5
and for retreatment to be 7 (12, 13). A recent study by Raimondi
et al. reported 9 as the LUS cutoff for surfactant therapy (11).
Another recently published study (25) from India reported an
optimal cutoff score >9 for giving surfactants. However, the
sensitivity and specificity for the same was lower. Additionally,
posterior chest areas were also included in their scoring system
to calculate the final LUS. This may account for the differences
in their findings as compared to ours.

In the present study, we found that LUS decreased after
surfactant administration. This was expected owing to changes