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This paper investigates the controlling factors of the evolution of debris flows along the Jinjiang River, which is located in an active orogen. The debris flows along the Jinjiang River are threatening nomads and pastures, as well as the power station on the river and its workers. Remote sensing images, geological maps, and field investigations were conducted to determine the distribution of the lithologies, faults, and debris flows. A total of 82.2 km of riverbank and 108 debris flows, including 22 huge flows, were investigated. The results indicate that the distribution of the huge debris flows is primarily controlled by either faults or boundaries between the sedimentary rocks and basalt. Both the faults and the stratigraphic boundaries play crucial roles in the evolution of the huge debris flows along the river. The fractured zone of faults and stratigraphic boundaries provides loose resource materials for the debris flows and is a weak strip prone to incision to become a debris flow valley. However, the lithology has relatively less impact on the evolution of the huge debris flows.
Keywords: faults, sedimentary rock, basalt, huge debris flow, active orogen
1 INTRODUCTION
A debris flow is a mixture of water and particles driven down a slope by gravity. Factors influencing the evolution and distribution of debris flow are of great importance for its forecasting, early warning, prevention, and hazard assessment. Previous studies have indicated that abundant water and an adequate debris supply, land use, disturbed landscape, wildfire, geology, topography, bedrock strength, meteorology, and human economic activities have great effects on the evolution of debris flow (e.g., Lorente et al., 2002; Wieczorek et al., 2004; Larsen et al., 2006; Picarelli et al., 2008; Wei et al., 2008; Klubertanz et al., 2009; Riley et al., 2013; Wei et al., 2017; Li et al., 2021; Xiong, 2023).
The Pamir and Tibetan Plateaus are in the active Himalayan–Tibetan orogen in central Asia (Yuan et al., 2013). They were formed due to the collision between the Indian Plate and Eurasia since the early Cenozoic (Ding et al., 2016; Hu et al., 2017). Debris flow is one of the main geohazards in this area (Alford et al., 2000; Shroder et al., 2011; Khan, 2013; Zhang et al., 2014; Deng et al., 2017; Huang et al., 2017; Li et al., 2018; Mohanty et al., 2018; Wei et al., 2018; Yuan et al., 2018; Lin et al., 2023; Zhang T.T et al., 2023), where there are Alpine landscape, active faults, and strongly metamorphosed rocks, glaciers, and extreme weather (Brookfield, 2008; Fuchs and Gloaguen, 2013; Schoenbohm et al., 2014; Owczarek et al., 2017). Debris flow is threatening local people’s lives and properties. However, due to the tough natural and, sometimes, social and economic environments, research on the debris flows in the Pamir and Tibetan Plateaus is limited compared to those in other mountainous areas such as the Alps (Hurlimann et al., 2003; Pirulli and Marco, 2010; Toreti et al., 2013; Nikolopoulos et al., 2015; Dietrich and Krautblatter, 2017; Lei et al., 2022; Du et al., 2023; Zhang M.Z et al., 2023).
In this study, we select the Jinjiang River in Wuqia, Xinjiang Uygur Autonomous Region, China (Figure 1), as a pilot case study to investigate the factors that control the evolution of debris flows along the river, which is very important for remote areas where debris flow research is limited. The conclusions can guide debris flow monitoring and early warning and local pasture planning and construction. The Jinjiang River is located in northern Pamir Plateau, and it is dominated by active faults, tectonic movements, and high-density debris flows and contains multiple lithologies such as volcanic, sedimentary, and metamorphic rocks. It provides an excellent benchmark for studying the factors controlling the distribution of debris flow in an active orogen.
[image: Figure 1]FIGURE 1 | Location map of the study area.
2 GEOLOGICAL SETTING
The Jinjiang River is located near the boundary between Kyrgyzstan and China and is the merger of the Suyueke River and Tulugart River, which originate from the west Tienshan range and merge together at Tuoyun town (Figure 1; Figure 2). The river is situated in the Tienshan Orogen, which extends roughly in the EW direction and has been uplifting since the collision between the Indian Plate and Eurasia Plate.
[image: Figure 2]FIGURE 2 | Tectonic background of the study area. The figure was drawn based on a 1: 5,000,000 geological map (Chen et al., 2003) and DEM downloaded from Google Earth.
A series of roughly EW-direction faults and folds were formed in the Tienshan Orogen due to the SN compression from the Indian Plate. The Jinjiang River is cut across by the large Maidan fault (Figure 2). Many small subsidiary faults developed, parallel or perpendicular to the Jinjiang River. Earthquakes occur frequently in the study area. There have been 17 earthquakes in Wuqia County since 1898, among which 4 earthquakes were between 7 and 8 in magnitude. Especially between 1983 and 1987, there were 3 earthquakes between 6 and 7 in magnitude. The latest earthquake larger than 6.0 in magnitude occurred on 5 October 2008. The magnitude was 6.8 and triggered numerous small-scale landslides and rockfalls in the study area.
The lithology along the investigated segment of the river includes: (1) Sedimentary conglomerate, mudstone, and sandstone, which were formed in the Jurassic, Carboniferous, Cretaceous, Devonian, and Tertiary periods. In particular, the red mudstone and sandstone that formed in the Tertiary period have gone through weak diagenesis and their strength is not developed very well. (2) Metamorphic rocks, including phyllite and slate metamorphosized from mudstone and sandstone. (3) Basalt, which is distributed at the junction of the three rivers and appears in the Tertiary mudstone and sandstone.
The average precipitation in the study area is 230 mm per year, with a maximum value of 326.4 mm and a minimum value of 139 mm. Rainfall and water from snow melt mainly occur from May to August and can reach as much as 60% of the annual precipitation. Short-term heavy rainfall is the main cause of debris flow in this area (Wang et al., 2020). However, there are no detailed data on the precipitation and corresponding rainfall-induced debris flow in the study area due to the adverse natural environment, sparse population, and consequent absence of monitoring stations.
The local people depend mainly on animal husbandry. The Jinjiang River Basin is an important pasture for the local people. In addition, a waterpower station is under construction on the river. Therefore, the debris flows along the Jinjiang River are threatening nomads and pastures, as well as the power station and its workers.
3 METHODS
A 1:200,000-scale geological map is available in the study area, but the scale is not large enough and far from satisfactory for our study. The map demonstrates large-scale faults and lithologic distribution, which were used to supplement and calibrate the results from our field investigation and remote sensing image interpretation.
Two remote sensing images with a resolution of 0.8 m taken by the China Aero Geophysical Survey and Remote Sensing Center for Land and Resources in August, 2017, were used to interpret the distributions of debris flows, lithologies, and faults. Since our study area goes beyond the range of the above two remote sensing images, we therefore downloaded another two Google Earth images as supplements. Although they were not as clear as the remote sensing images, we could also roughly distinguish the debris flows and, in some areas, the lithologies. The interpretation of the above remote sensing images was conducted by the Sichuan Geological Survey.
We conducted field investigations to examine the debris flows, faults, and lithologies in the study area. All the debris flows are distributed along the river valleys. We did not reach every part of every debris flow because it is very hard to access some of them due to the tough natural conditions. However, we made sure that we reached every debris flow deposit to determine their average thickness. For the faults the lithologies that are not distributed along the river, we mainly determined them through the geological map, Google Earth map, and interpretation of the remote sensing images.
All the information obtained was highlighted on the two remote sensing images and two images from Google Earth. Debris flows were marked as solid circles with four different areas based on their volumes. Debris flow with volumes larger than 50×104 m3, 20–50×104 m3, 20–2×104 m3 and smaller than 2×104 m3 were classified as huge, large, medium, and small debris flows, respectively, according to the Specification for Investigation of Landslides, Rockfall, and Debris Flow 1: 5000 (DD 2008-02) by the China Geological Survey (2008). Their volume is the volume of deposit, which could be measured using the area obtained from the remote sensing images or the Google Earth map, multiplying the average thickness of the deposit estimated in the field. The structure and composition of a debris flow deposit and alluvial deposit are obviously different. A debris flow deposit is not sorted by particle size, and the rocks are angular, while an alluvial deposit is well sorted in particle size, and its gravels are well rounded. Furthermore, the lithology of rocks in the above two deposits is always different because they are from different sources. Based on the above differences, we distinguished two deposits and estimated the average thickness of the debris flow deposits.
The distributions of the debris flow and fault along the studied segment of the Jinjiang River are presented in Figure 3, with faults marked as red solid lines and the boundaries between the lithologies marked as black solid lines. To make Figure 3 more readable, the distribution of the lithologies in the studied area is presented in Figure 3; Figure 5; Figure 6; Figure 9, which are its enlarged figures.
[image: Figure 3]FIGURE 3 | Distributions of debris flow, fault, and lithology in the study area. The rectangles represent different segments divided according to the distribution characteristics of the debris flows. The remote sensing image was downloaded from Google Earth.
4 DISTRIBUTION OF DEBRIS FLOW
The Jinjiang River can be divided into five segments based on the distribution characteristics of the debris flows (Figure 4).
[image: Figure 4]FIGURE 4 | Distributions of the debris flows and faults in Segments Ⅰ and Ⅱ. The map was downloaded from Google Earth. Because no remote sensing image and large-scale geological map of this segment are available, all the information related to fault, lithology, and debris flow in this map was obtained through field investigation. Lithologies that are not right near the riverbed could not be obtained only through the map and were therefore not marked in this map.
Segment Ⅰ: This segment is 8.8 km in length (Figure 4). The lithology along the river in this segment includes mainly lightly metamorphosed sandstone and mudstone. Because of the active tectonic movements, the surface of the rocks is very fractured. There are a total of 16 debris flows in this segment, of which 13 are less than 50×104 m3, distributed in the fractured rocks without fault, including 5 large and 8 medium ones. Three huge flows are distributed along the two faults in this segment.
Figure 5 displays the fractured fault zone of about 200 m wide (at the south end of the investigated route) on the west bank of the river and the debris flows in the fault zone on the opposite side of the river.
(a) Cross-section of a fractured fault zone of about 200 m wide on the west bank exposed by slope excavation for road building. The lower part is lightly metamorphosed sandstone and mudstone, where the fractured fault zone exists. The upper part is conglomerate. This indicates that the fault occurred before the conglomerate was formed.
(b) Debris flows in the 200-m-wide fault zone on the east bank of the river.
[image: Figure 5]FIGURE 5 | Two-hundred-wide fractured fault zone (A) and the huge debris flows originated along it at the opposite bank (B).
Segment Ⅱ: This segment is about 8.4 km long (Figure 4). The lithology includes lightly metamorphosed limestone and mudstone with two faults perpendicular to the river. The rocks are extremely fractured due to the active tectonic movements and strong weathering.
In this segment, only sporadic debris flows, including a huge flow and five medium ones, were developed. The huge debris flow evolved along one of the two faults. The other fault is a smaller one, and two medium debris flows on both sides of the river are distributed along it.
Segment Ⅲ: This segment is 25 km long (Figure 6). The lithology includes mudstone, sandstone, and lightly metamorphosed mudstone and sandstone. The rocks are more complete than those in Segments Ⅰ and Ⅱ. Faults are well developed in this segment. Several large and small faults are distributed roughly parallel or perpendicular to the river.
[image: Figure 6]FIGURE 6 | Distribution of the debris flows, lithologies, and faults in Segment Ⅲ. The remote sensing image was taken by the China Aero Geophysical Survey and Remote Sensing Center for Land and Resources in August, 2017. The information related to the debris flows, lithologies and faults in this map was obtained through the geological map, the interpretation of the remote sensing image and the field investigation.
In this segment, debris flow is particularly intense, with a total of 39 incidents, 13 of which were classified as huge. The huge debris flows were either found along river-parallel faults or originated from river-perpendicular faults. To facilitate the analysis of the relationship between the huge debris flows and the faults, they were numbered from No. 1 to No. 13.
Debris flows No. 1, 2, 3, 7, 8, 10, 11, 12, and 13 incised the river-perpendicular fault zones, and the debris flow deposits reached the riverbed. Debris flows No. 4, 5, 6, and 9 originated from the river-perpendicular fault zones. The representative photo of this kind of debris flow that originated from and perpendicular to the fault zone can be found in Figure 7.
[image: Figure 7]FIGURE 7 | A group of debris flows originated from the strongly fractured fault zone. (A) The strongly fractured black sandstone and conglomerate in the hanging wall could be seen from the opposite bank. The mountains in the following (B, C) are the lateral banks of one of the debris flow valleys. (B) The fault plane in the left mountain of one of the debris flow valleys. The hanging wall is black sandstone and conglomerate. The footwall is red mudstone and sandstone. (C) The opposite bank of the mountain in (B). The black sandstone and conglomerate in the hanging wall near the fault plane is strongly fractured (The fractured mountain seen in (A)). The deposits of rockfalls and landslides occurred in the hanging wall accumulated at the slope toe, becoming the material resource of debris flow.
Segment Ⅳ: This segment is 19 km long and is part of the Suyueke River (Figure 8). The lithology along the river mainly includes red mudstone and sandstone, as well as black basalt, which appears at the junction of the three rivers. Although the red mudstone and sandstone are weak in strength because they were formed in the Tertiary and their diagenesis was not very good, they are quite intact. The surface of the basalt is strongly weathered and very fractured, hence comprising cubes with several cubic centimeters in volume. There are three faults in this area. Two faults are perpendicular to the river, and one of them presents an about 2000-m-wide fractured fault zone along the river (Figure 8). The third one is parallel to the river and about 8.5 km long.
(a) A group of debris flows originated from the fractured fault zone. The strongly fractured black sandstone and conglomerate in the hanging wall could be seen from the opposite bank. The mountains in the following (b) and (c) are the lateral banks of one of the debris flow valleys.
(b) The fault plane on the left mountain of one of the debris flow valleys. The hanging wall is black sandstone and conglomerate. The footwall is red mudstone and sandstone.
(c) The opposite bank of the mountain in (b). The black sandstone and conglomerate on the hanging wall near the fault plane is strongly fractured (the fractured mountain seen in (a)). The deposits of rockfalls and landslides that occurred on the hanging wall accumulated at the foot of the slope, becoming the material resource of the debris flow.
[image: Figure 8]FIGURE 8 | Distributions of the debris flows, lithologies, and faults in Segment Ⅳ. This map was downloaded from Google Earth. The information related to lithology, fault, and debris flow was obtained through the geological map, field investigation, and interpretation of the map.
In this segment, there are three groups of debris flows (Figure 8). Group 1 is at the northwest end of our investigated route and contains 12 large, medium, and small debris flows. All the debris flows are controlled by the two faults and their fractured zones, and one of the fractured zones reaches about 2000 m in width. We investigated the fault zone on the east bank of the river, and therefore, we only drew the fault on this side and inferred that it extends in the same strike to the other side, where most of the debris flows are distributed.
With the exception of four medium and small flows on the east bank, all the debris flows on the west bank in Group 2 are perpendicular to the 8.5-km-long fault, which is roughly parallel to the river (Figure 8). The resource areas of these debris flows are in the fractured zone of the fault, which is between the hanging wall of the black mudstone and sandstone and footwall of red mudstone and sandstone. It is more than 100 m in width. Small-scale landslides and rockfalls frequently occur in fractured rocks of the fault zone. Their debris was deposited at the slope toe in the valley and became the material resources of the debris flow.
There are six debris flows in Group 3, including one huge, two large, and three medium ones. All the three huge and large debris flows evolved along or near the interfaces among the red sedimentary mudstone and sandstone and the black basalt (Figures 9, 10). The rocks in the interface between the sedimentary rocks and basalt are pretty fractured and underwent incision to become debris flow valleys.
[image: Figure 9]FIGURE 9 | Debris flows developed along the interface between the red sedimentary rocks and basalt. The scene is deformed (e.g., the road is almost straight rather than curved) due to the photo-syntheses.
[image: Figure 10]FIGURE 10 | Distributions of the debris flows, lithologies, and faults in Segment V. The remote sensing image was taken by the China Aero Geophysical Survey and Remote Sensing Center for Land and Resources in August, 2017. The information related to the debris flows, lithologies, and faults in this map was obtained through the geological map, the interpretation of the remote sensing image, and the field investigation.
Segment Ⅴ: This segment is about 25 km long (Figure 10). The lithology includes red mudstone and sandstone, as well as black basalt near the junction of the three rivers. The red mudstone and sandstone that formed in the Tertiary is weak in strength but comparatively complete. There is no fault found in this area.
There are a total of 19 debris flows in this segment. Most of them are medium and small and distributed in the red mudstone and sandstone due to their weak strength. Two huge and two large debris flows are distributed near the interface between the sedimentary rocks and the basalt, such as those in Segment Ⅳ.
5 DISCUSSION AND CONCLUSIONS
A total of 82.2 km of riverbank and 108 debris flows, including 22 huge flows, were investigated. Almost all the huge debris flows evolved along or originated from the faults or along the interfaces between the sedimentary rocks and basalt. Fault and stratigraphy, therefore, control the distribution of debris flow along the Jinjiang River. In Segment Ⅲ, the rocks are not strongly weathered and, therefore, are more complete than those in Segments Ⅰ and Ⅱ, but the debris flows are well developed and most intense due to widespread faults. While in Segment Ⅱ even the rocks are strongly weathered and fractured, only sporadic medium debris flows are distributed without faults and an interface between the sedimentary rock and basalt. Furthermore, in Segments Ⅳ and Ⅴ, five huge debris flows either originate from faults or along the boundaries of the sedimentary rocks and basalt. Only medium and small debris flows evolved in the weak sedimentary mudstone and sandstone without faults and strata boundaries. We hence conclude that lithology has little impact on evolution of large-scale debris flows.
Faults have two aspects of effects on the evolution of debris flow (Figure 11). Firstly, a fractured fault zone is prone to incision to become a debris flow valley (He et al., 2003; You et al., 2023). Secondly, landslide and rockfall occur in the fractured rocks of the fault zone and, therefore, provide the loose deposits for the material resources of debris flows (Huang et al., 2022; Jin et al., 2023). For the debris flows that develop along fault, both of the above two effects play important roles during their evolution. For the debris flows that originate from the perpendicular fault zones, only the former effect takes part in their evolution.
[image: Figure 11]FIGURE 11 | The pattern of a debris flow evolves in a fractured fault zone.
Huge debris flows develop along or near the interface between red sedimentary rocks and basalt. This is because the red mudstone and sandstone were compressed and sheared to be strongly fractured by the magma during its eruption. Furthermore, the basalt underwent strong incision to become small cubes, from a few cubic centimeters to more than ten cubic centimeters in volume, by joints produced during the condensation of the magma. Therefore, the fractured zone of about several tens of meters in width, or even more than hundreds of meters in width, along the interface between the two kinds of lithologies could supply loose material and is prone to gradually incision into a valley by rainfalls and debris flows, which are actually the same as the effects of faults.
Debris flow is an important form of erosion and sedimentation of orogens. It is, therefore, very common that debris flows develop well in an orogen (Wang, 2013; Chen et al., 2015). However, there have been few studies on the controlling factors and mechanisms of debris flows in orogens. Many studies related to orogenic erosion and sedimentation have indicated that debris flows occur due to tectonic uplift and rainfall (Savi et al., 2016; Wang et al., 2022) but did not reveal exactly what factors control the evolution of debris flows and how they occur. Our study indicates that the faults and boundaries between sedimentary rocks and basalt control the distribution of debris flows along Jinjiang River in the Himalayan–Tibetan orogen, and it explains their roles in the evolution of debris flows. The conclusions can provide a theoretical basis for the monitoring, early warning, and forecasting of debris flows and construction planning in orogenic belts.
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The 2017 Jiuzhaigou earthquake caused numerous landslide masses in the Jiuzhaigou cultural heritage site, leading to frequent surface mass movements and affecting the hydrological landscape. This was the first time a strong earthquake hit the heritage site in China, making it an important area for ecological geological environment protection and restoration research. To understand the influence of slope runoff erosion on the activation of landslide accumulations, this study examined remote sensing images from 2017 to 2020 to investigate the geological disaster, while field scour tests were conducted to study the rainfall seepage, mass erosion, and migration.The results indicated that the steep-sloped landslide deposits in the heritage site contain a high content of fine grains and good permeability.
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1 INTRODUCTION
The Jiuzhaigou cultural heritage site located in Sichuan Province, China, is known for its beautiful calcified lakes, beaches, waterfalls, and karst water systems. It is the first nature reserve in China, established primarily for the protection of natural scenery. Jiuzhaigou is one of the 25 global hotspots of biodiversity and a core distribution area for the panda population in the Minshan Mountains. It is also a typical fusion area of the Tibetan and Han culture zones. In 2017, an Ms 7.0 earthquake hit Jiuzhaigou, resulting in 89 new geological hazards, 132 square kilometers of vegetation damage, and 55 square kilometers of soil erosion.
Strong earthquakes in mountainous areas can trigger a large number of landslides, resulting in loose and unstable rockslide deposits. These deposits are easily reactivated due to a low rainfall threshold (Yang et al., 2021; Li et al., 2016; Huang et al., 2020a) and evolve into a debris flow (Lin et al., 2006; Hovius et al., 2011; Zhang et al., 2014; Fan et al., 2021). Within 3 years after the Jiuzhaigou earthquake, at least 83 debris flows occurred in the core area, posing a serious threat to the opening and operation of the Jiuzhaigou scenic area, natural landscapes, and geological safety (Lei et al., 2018; Hu et al., 2019). Through remote sensing interpretation and field investigation, a significant increase in the post-earthquake debris flow has been revealed (Fan et al., 2018; Wang and Mao, 2022), which is mainly caused by rainfall (Zhang et al., 2019; Zhang et al., 2022), as the post-earthquake threshold is lower than the pre-earthquake threshold (Liu et al., 2021). It is necessary to understand the mechanisms of rainfall infiltration and runoff generation to trigger shallow slope failure in loose landslide deposits before triggering a debris flow (Cui et al., 2014).
Physical model experiments, numerical simulations, and field experiments are the main methods to study the triggering mechanism of slope instability. Field experiments can better reproduce actual conditions than physical model experiments and numerical simulations. Hu et al. (2014) proposed that a gradient is the main factor controlling the scale of the debris flow by using flume experiments. Cui et al. (2014) analyzed the hydraulic response of landslide deposits under rainfall conditions and proposed surface runoff, interflow, and fine particle migration effects to explain the shallow failure process. A frictional resistance model based on the limit equilibrium and unsaturated theory is established to study the triggering mechanism of landslide deposits (Travis et al., 2010). Zhou et al. (2013) identified that the increase in surface water runoff and decrease in the saturated deposit shear strength are the main causes of the debris flow under heavy rainfall conditions. Hu et al. (2018) believed that erodible small particles play an important role in triggering failure and fluidization and causing particle coarsening. The initiation of loose deposits is actually a process of increasing the soil pore pressure and reducing frictional resistance (Terajima et al., 2014; Sidle and Bogaard, 2016). Torres et al. (1998) pointed out that rainfall-induced slope instability is related to the formation height of stable unsaturated flow fields. The pressure wave caused by rainfall infiltration results in a relatively rapid response of the pressure head inside the soil during rainfall. Teeca et al. (2003) measured the soil pore pressure in a shallow slope layer located in the starting area of a debris flow and found an instantaneous and upward increase in the pore pressure during a debris flow. Jiuzhaigou possesses the richest and most typical ecological and hydrological landscape in the western region of China, making it an experimental field for studying the science of ecological geological environment systems. A debris flow causes damage to the water quality at the Jiuzhaigou cultural heritage site; however, there is still a lack of experimental data supporting this process.
This study takes landslide deposits in the core area of Jiuzhaigou as the research object to reveal the impact of runoff erosion on landslide deposits and improves the understanding of the transformation of post-earthquake deposits. Based on remote sensing image interpretation from 2017 to 2020, this study investigates the seepage response, erosion and transport processes, and the erosion initiation mechanism of the deposit through field erosion experiments. The aim of this study is to provide a theoretical reference for geohazard mitigation of the Jiuzhaigou cultural heritage site.
2 STUDY AREA
The uplift of the Tibet Plateau plays a significant role in the evolution of Chinese landforms, changes in the climate and environment, formation of ecological barriers, and the proliferation of nomadic cultures. It has also given rise to extremely complex geological conditions and frequent strong seismic environments, making the ecological and geological environment extremely fragile. The Jiuzhaigou earthquake occurred on 8 August 2017, in Jiuzhaigou County, Sichuan Province, China, and caused damage to more than 73,000 buildings and resulted in 25 fatalities, six missing people, and 525 injuries (Fan et al., 2018). The Jiuzhaigou earthquake ruptured a strike-slip fault to the northwest of the Huya fault (Li et al., 2018; Yi et al., 2018; Zhang et al., 2018; Ling et al., 2020). The epicenter and focal mechanism of the Jiuzhaigou earthquake did not seem sufficiently correlated with any of the already known active faults in the area. The seismogenic fault of the Jiuzhaigou earthquake was first hypothesized by Li et al. (2017) to be an unknown blind strike-slip fault, based on the combination of fault mechanism solutions, field-inferred signs of rupture, and radon anomalies. However, since the inferred fault slip was rather slight, the location of the Jiuzhaigou earthquake’s seismogenic fault has been debated.
The area belongs to the Minshan range in the Bayankala block of the eastern Tibet Plateau and is characterized by a Paleozoic–Mesozoic sequence composed of a marine platform, shallow-water siliciclastic rocks, and reef-bearing limestone or dolomite (Kirby et al., 2000). The regional geology of the study area features Devonian to Triassic outcrops, mostly consisting of limestone, dolomite, slate, and metamorphic sandstone and also including the Neogene conglomerate to a lesser extent. Under the effect of the plateau cold and sub-cold monsoon climate, the annual average precipitation was 704.3 mm, while precipitation from April to October contributes the most (89.61%) to the total precipitation throughout the year. Figure 1 shows that the epicenter of the earthquake is located in Bisang Village, 5 km west of the core scenic area, and the maximum intensity can reach IX degrees, resulting in the Jiuzhaigou earthquake having the characteristics of a large magnitude, deep epicenter, wide impact range, and serious secondary geological disasters. The use of field investigation and remote sensing image interpretation is becoming increasingly frequent in natural hazard studies (Huang et al., 2020b; Chang et al., 2020; Huang et al., 2020c). The data mainly contain satellite images, topographic data, and high-definition photographs in this study. Remote sensing images and high-definition photographs are used to interpret geohazards by manual annotation. The data information used in this study is shown in Table 1.
[image: Figure 1]FIGURE 1 | Earthquake intensity map of the Jiuzhaigou scenic area.
TABLE 1 | Data information used in this study.
[image: Table 1]We interpreted the pre-earthquake (5 August 2017), co-seismic (6 September 2017), and post-earthquake (22 August 2018, 16 August 2019, and 28 August 2020) remote sensing images in an area of 655 km2. There are 180, 1,344, 1,582, 1,638, and 1,757 landslides with the disaster areas of 2.52 km2, 8.34 km2, 9.87 km2, 10.16 km2, and 10.97 km2, respectively. It should be noted that both the number and area of landslides increased gradually in the 3 years after the earthquake (Figure 2). Figure 3 shows that the collapse was significantly distributed in the steep slope section with an elevation of 2,800–3,400 m and 30°–55° before and after the earthquake; this is basically the same as the conclusion Tian et al. (2019) reached. Figure 4 shows that rainfall gradually increased from May to August after the 2017 earthquake, especially in 2020. It can be reasonably inferred that rainfall is an important triggering factor for the increase in post-seismic landslides in Jiuzhaigou.
[image: Figure 2]FIGURE 2 | Interpretation results of the pre-earthquake (5 August 2017), co-seismic (6 September 2017), and post-earthquake (22 August 2018, 16 August 2019, and 28 August 2020) images. (A) 2017.8.5, (B) 2017.9.6, (C) 2018.8.22, (D) 2019.8.16, and (E) 2020.8.28.
[image: Figure 3]FIGURE 3 | Distribution of the earthquake-induced landslide area with respect to the (A) elevation and (B) slope classes.
[image: Figure 4]FIGURE 4 | Impact of rainfall on landslides in the Jiuzhaigou area after the 2017 Ms 7.0 earthquake.
Field investigation showed that the sediment composition of most of the earthquake-induced landslide deposits gradually became coarse, with fine particles (smaller than 0.075 mm) on the top and large blocks at the bottom. Horizontally, the particles in the middle are larger than those on both sides, which is favorable for the erosion and migration of fine particle matters. A total of 76 deposits are developed along the road in scenic areas. The slope angles of the deposits are within the range of 35°–42°, and approximately 31.5% of them are at the gradient of 40° (Figure 5). Compared with deposits formed under gravity, the deposits induced by earthquakes contain fewer fine grains and are steeper. An investigation showed that soil loss and the debris flow are generally caused by rainfall after an earthquake. These result in the turbidity of lake water and damage to the infrastructure (Figure 6), extremely threatening the natural landscape and scenic spot security in the study area.
[image: Figure 5]FIGURE 5 | Slope angle of the deposit.
[image: Figure 6]FIGURE 6 | Deposit activity under heavy rainfall after the earthquake. (A) Heavy rainfall caused turbidity to the water in 2017; (B) landslide accumulation rushed into the sea of arrows and bamboos in 2018; (C) debris flows block roads in 2019; (D) rainfall washes away the accumulation to form gullies in 2020.
The Xiajijiehai landslide deposit triggered by the Jiuzhaigou earthquake is taken as a geological prototype in this study (Figure 7). The deposit here has an average gradient of approximately 40°, a slope length of approximately 17 m, a maximum bottom width of approximately 9 m, and a maximum top width of approximately 1.2 m. The deposit is made of loose gravel soil and blocks. The surface is covered by sandy soil and silty clay (Figure 8) (Table 2). The measurement errors arising from equipment, procedural operators, and random testing effects during soil testing are generally unavoidable (Jiang et al., 2018). Interested readers can refer to Phoon and Kulhawy (1999a); Phoon and Kulhawy (1999b) for a detailed explanation about the measurement errors. Serious water and soil loss situations during rainfall occur here after an earthquake.
[image: Figure 7]FIGURE 7 | Studied slope. (A) Location of the studied slope; (B) enlarged view of the studied slope.
[image: Figure 8]FIGURE 8 | Particle size analysis of the deposit.
TABLE 2 | Basic properties of a deposit.
[image: Table 2]3 METHODS
According to the precipitation data from 2018 to 2020 from the Scientific Research Department of Jiuzhaigou Administration, the daily average rainfall of the 3 years after the earthquake is approximately 4.3 mm, while the rainfall of July and August in 2020 is 326.3 and 239.2 mm, respectively, having reached a “once-in-a-century” rainfall level. The corresponding scouring flows of the return periods of “once-in-20-years”, “once-in-50 years,” and “once-in-a-century” extreme rainfall conditions are planned to be set for our tests. Based on the peak flow method (Eqs 1 and 2), peak discharges at different rainfall frequencies in the test area and test flows are derived from the following (Table. 3):
[image: image]
[image: image]
TABLE 3 | Peak discharge under different rainfall frequencies.
[image: Table 3]wherein H1 (mm) represents the maximum precipitation. Kp is the modulus ratio coefficient of the Pearson type III curve, and [image: image] (mm) represents the mean of the maximum precipitation values. Qp (m3/s) represents the storm flow at its frequency of P. Ψ represents the flood peak runoff coefficient. H1 (mm) represents the maximum precipitation of 1 h, and F (km2) represents the catchment area. According to the calculation results, three scouring flows at 22.4 L/min, 29.6 L/min, and 35.2 L/min are set for the test.
To obtain the internal seepage process of the slope under different conditions, including the change of moisture content, matrix suction, and pore water pressure, the flow meter, 20 sensors, and acquisition instrument are used in this study. The layout of the sensors in the test is mainly based on the overall size of the accumulation and related literature (Liu et al., 2021; Zhang et al., 2022). The sensor arrangement, including volumetric moisture content sensors, pore water pressure sensors, and matric suction sensors, is divided into three layers in total, each spaced 15 cm apart in the direction of the vertical slope, and the interval is 2, 2, 3, 3, and 4 m in the parallel slope direction. Moreover, a Polaris 3D laser scanner is set in front of the deposit to get the slope scouring pattern and deposit migration conditions. Monitoring instruments are set at three levels on the middle profile section of the deposits, 15, 30, and 45 cm from the surface of the deposits, respectively. The first layer is set with a volumetric moisture content sensor, pore water pressure sensor, and matric suction sensor; the second layer with a volumetric moisture content sensor and pore-water pressure sensor, which are vertically 2, 4, 7, and 10 m from the deposit top; and the third layer with volumetric moisture content sensors are vertically 2 and 4 m from the deposit top. The parameters of all the instruments and sensors are shown in Table 4 and Figure 9, respectively.
TABLE 4 | Summary of the instruments.
[image: Table 4][image: Figure 9]FIGURE 9 | Layout of sensors for tests.
Landslide deposit instability is the co-effect of early rainfall and short-term heavy rainfall. Early rainfall changes the saturation degree of the deposit, playing a supplementary role in deposit migration later. It could be found that short-term heavy rainfall triggers the deposit instability and debris flow, so the test is designed by suddenly increasing the scouring flow after pre-wetting to get the concentrated runoff erosion effect. After repeated tests on the deposits in the study area, it has been discovered that the large-scale migration of matters under runoff erosion usually happens in the first 30 min (Hu et al., 2011). This study sets the duration of pre-wetting and scouring as 30 min and 60 min, respectively.
After 3D laser scanning the deposit slope, we pre-wet the deposit for 30 min with the flow of 2.6 L/min first and then scan the deposit slope again. We then increase the flow to 22.4, 29.6, and 35.2 L/min (three tests). The rainfall time duration is 60 min for each rainfall level. We keep recording the situation of the slope under scouring and gully characteristics by using a 3D laser scanner during tests.
4 RESULTS
4.1 Mass migration
Figure 10 shows that the three tests have formed shallow gullies during their pre-wetting stages (duration time: 30 min), which are 0.07–0.1 m wide, 0.02–0.09 m deep, and approximately 7 m long. When the scouring flow is 22.4 L/min (Figure 10A), the soil on the surface is quickly eroded and flows. It is mainly presented by an erosion gully on the top and multiple thin gullies in the middle. As time goes on, the finer and smaller particles on the surface are taken away by the flow, and the gully mainly plays a role in progressive erosion to a width of 0.3 m and a depth of 0.12 m, with a maximum migration distance of 11.7 m. When the scouring flow rate increases to 29.6 L/min (Figure 10B), downcutting and surface erosion decrease at the beginning of this stage compared to a scouring flow of 22.4 L/min. Scouring is mainly presented in modes of downcutting and lateral erosion with weak migration power. In this period, the erosion gully is approximately 0.32 m wide, 0.22 m deep, and 14 m long. The eroded deposits are made of gravel stones, sandy soil, and silty clay at first and fine and small sand particles later. When the flow rate reaches 35.2 L/min (Figure 10C), the superficial matter is quickly carried down by a strong hydrodynamic force; gravel stones accumulate along both the sides of the eroded channel. The eroded gully takes shape in a short time with a width of approximately 0.33 m and a depth of approximately 0.2 m. Scouring in this stage is dominated by lateral erosion and downcutting. The eroded deposits mainly accumulate in the middle-upper and -lower parts of the slope. It should be noted that a flow of 29.6 L/min produces the maximum scouring depth of approximately 0.22 m and the largest migration distance of approximately 15.5 m, which has greater effects than the flow of 35.2 L/min (Figure 10D).
[image: Figure 10]FIGURE 10 | Response of material migration characteristics (unit: m). (A) 22.4 L/min; (B) 29.6 L/min; (C) 35.2 L/min; (D) sections.
4.2 Seepage characteristic
The volumetric water content responses of deposits are shown in Figure 11. The initial water content of the deposit is in the range of 14.5%–20.5%, which changes in the form of “increasing slowly—increasing quickly—high fluctuation of the water content—decreasing slowly” throughout the process of scouring. In the stage of pre-wetting, the volumetric water content of the points at 2 m and 4 m on the surface of the slope change. Sensors in the upper layers (at the depth of 15 cm) respond quickly within 10 min, while points at 7 m and 10 m almost have no response at this stage.
[image: Figure 11]FIGURE 11 | Response of the volumetric water content under different flushing flows. (A) 22.4 L/min; (B) 29.6 L/min; (C) 35.2 L/min.
At the scouring rate of 22.4 L/min, the sensor in the upper shallow layer starts to respond at the time of 40 min. The volumetric water content at point H1-1 increases sharply to 40.2%, while the volumetric water content at points H3-1 and H4-1 below change notably in a matter of 52 min. Points H3-2 and H4-2 deep under the ground fluctuate in a narrow range as the wetting front moves down to the monitoring level at the depth of 30 cm (Figure 11A). At the flow rate of 29.6 L/min, points H1-1, H1-2, H2-1, H2-2, and H3-1 are the first to respond to the runoff as their volumetric water contents increase quickly and stop at 65.6%, 60.1%, 62.8%, 49.7%, and 45.7%, respectively. Points H4-1 and H4-2 in the lower part and points H1-3 and H2-3 in the middle-upper part of the deposit respond first, with an increase in a relatively small amplitude (Figure 11B). When the flow rate increases to 35.2 L/min, points at different levels respond more quickly. At last, the volumetric water contents of points H1-1, H2-1, H3-1, and H4-1 stabilize at 70.3%, 57%, 49.5%, and 22.5%, respectively (Figure 11C).
Pore water pressure responses are shown in Figure 12. The pore water pressure of natural deposits is within the range of −100–0 Pa, suggesting that there is capillary water in the soil of the slope surface. The pore water pressure generally changes in slightly in a short time, increases quickly, fluctuates, and drops quickly. In the period of slope pre-wetting, monitoring points in the upper part have a notable response. Points K1-1 and K2-1 increase relatively faster. Points K3 and K4 in Figure 10B and K3 in Figure 10C also show an intensity response. When the flow rate is at 22.4 L/min at the beginning of scouring, points K1-1, K1-2, and K2-1 increase sharply in a short time with pore water pressures, while point K4 almost has no change during the whole course (Figure 12A). When the flow rate increases to 29.6 L/min, the monitoring points on the surface respond violently, with the frequent volatility of the monitoring curve for a short-term channel blockage (Figure 12B). During the period when the flow rate is 35.2 L/min, points K1 and K2 respond with large fluctuation amplitudes, while points K3 and K4 respond with smaller amplitudes (Figure 12C).
[image: Figure 12]FIGURE 12 | Response of the pore water pressure under different flushing flows. (A) 22.4 L/min; (B) 29.6 L/min; (C) 35.2 L/min.
The changes in the matric suction of deposits are shown in Figure 13. At the beginning of scouring, when the flow rate is at 22.4 L/min, points J1 and J2 change quickly. J1 drops from 11.6 kPa to 9.3 kPa in 41 min, and J2 drops to 9.7 kPa in 34 min but is almost maintained at 9.9 kPa later, while J3 and J4 only show a small change (Figure 13A). At the flow rate of 29.6 L/min, all monitoring points respond quickly under the effect of runoff seepage (Figure 13B). When the flow rate increases to 35.2 L/min (Figure 13C), the matric suction of J1 and J2 starts to decrease sharply in 43 min. The two points are presented with a longer response time in this stage than in the last two stages (22.4 L/min and 29.6 L/min); the possible reason might be that a large flow rate results in a slower seepage process, which lags the response speed. It should be noted that J3 and J4 have already responded in the pre-wetting period, but no surface runoff was observed.
[image: Figure 13]FIGURE 13 | Response of matrix suction under different flushing flows. (A) 22.4 L/min; (B) 29.6 L/min; (C) 35.2 L/min.
5 DISCUSSION
As Jiuzhaigou is located in a high relief area, landslide deposits generally take place at the gradient of 35°–42° in the study area (Figure 3), which meets the gradient for the debris flow (Chen et al., 2011; Ni et al., 2012; Ni et al., 2014; Zhang et al., 2019; Guo et al., 2021). So Jiuzhaigou provided the gradient conditions for developing surface erosion and the debris flow (Ling et al., 2020). The terrain slope leading to the debris flow disaster is mainly 29° ± 6° (Brayshaw and Hassan, 2009; Kang et al., 2017). Similarly, rainfall is an important excitation condition for a debris flow, and Harry (2007) found that heavy rainfall is necessary to generate surface runoff and induce a slope debris flow, with the combination of the debris flow rainfall intensity and cumulative precipitation (Tu et al., 2019) The tests in this study show that scouring is presented as runoff downcutting and surface erosion. As the event develops, large particles on the surface start to migrate first and keep colliding with different types of matter along the path in a high-speed flow, and then stop and accumulate on both sides of the channel under the effect of energy conversion and dissipation. In the mid-to-late stage, the deposit is mainly subject to headward erosion and lateral erosion, accompanied by a small scouring flow only carrying small particles (Figure 10).
In the 3-year flood season after the earthquake, the research area has more than twice the monthly precipitation of over 20 mm/d. However, in July and August 2020, the maximum daily precipitation values are up to 102 and 75.6 mm/d, respectively. Rainfall water infiltration constantly replaces gases in the deposit with water. As the wetting front slowly moves down, the pore water pressure keeps increasing, during which gases in the soil dissipate out from the ground, and matric suction first simultaneously shows a tendency of fluctuating within a narrow range and then dropping sharply at a certain depth. Water infiltration reduces the inner matric suction of the slope. However, with the increasing scouring flow, the decrease in matric suction is delayed, which means that the scouring flow has a negative relationship with the infiltration speed to some degree. From another point of view, it also suggests that the greater the rainfall intensity in a short time, the higher the scouring flow rate of the runoff (Figure 12).
The process of development from the deposit start-up to the slope debris flow is a complex evolution. According to Howard et al. (1988), the essence of developing the debris flow is all about the increasing soil pore water pressure, causing shear strength reduction and shallow layer landslides, in turn leading to the debris flow. The tests in this paper simulate how the deposits develop into the slope debris flow under rainfall runoff erosion. Based on previous studies (Lu et al., 2011; Zhuang et al., 2013; Lyu and Xu, 2019), the initiating process is divided into the early rainfall infiltration stage and the surface runoff erosion start-up stage (Figure 14). In natural conditions, the deposits contain low volumetric water content, so pre-wetting water infiltrates quickly. As pre-wetting develops into an alternation of blockage and strong currents in the short term, large amounts of fine particles are carried away by water, which greatly changes the soil structure and results in the frequent fluctuation of the volumetric water content in the scouring stage. At 3–10 min after runoff infiltration, the wetting front reaches the monitoring point, and the volumetric water content rises sharply and stays at a stable level after reaching the peak (Figure 11). With the increasing scouring flow, surface runoff takes form gradually, the progress of infiltration slows down, and the large-scale migration of matter on the surface of the deposit is easy to be initiated via scouring erosion.
[image: Figure 14]FIGURE 14 | Runoff infiltration process.
The entire instability and evolution process of deposits under runoff erosion conditions could be divided into four stages (Figure 15). The early infiltration stage: the small flow of water quickly infiltrates deep down from the surface of the natural deposit and moistens the soil into an unsaturated state. The pore water pressure increases slowly, and fine particles on the surface migrate a short distance. A rill with mild erosion effects is developed (Figure 15A). Debris flow stage: the soil water content grows gradually under the early seepage effect of water. Fine particle aggregations deep in the wet areas make up a water-resisting layer. The surface soil strength decreases at the same time. In case of strong runoff erosion, water cannot infiltrate quickly and massive amounts of water carry away the loose matter on the surface of deposits. The loose matter keeps colliding and scraping with the others, while the flow in this stage develops into cascade slipstreams (Figure 15B). Depositing stage: the debris flow moving at a high speed under the coupling effect of water and gravity keeps eroding the loose matter on the way and the solid matter content keeps increasing. However, for the distinct property difference between the flow and matter on both sides, the kinetic energy is gradually used up and the matter finally accumulates on both sides of the gully and the foot of the slope (Figure 15C). Local erosion stage: the local soil gets infiltrated with water and reaches a saturated state, the pore water pressure increases to a peak, and matric suction decreases remarkably. The gully is subject to tension and shear deformations, lateral erosion, and headward erosion (Figure 15D). The deposit is now in the alternative mode between locally eroded and stable states.
[image: Figure 15]FIGURE 15 | Start-up process of deposits under runoff erosion. (A) Early infiltration stage; (B) debris flow stage; (C) depositing stage; (D) local erosion stage.
Variations in the volumetric water content, pore water pressure, matric suction, and matter migration distance under different runoff erosion scenarios are shown in Figure 16, which are collected from the surface monitoring points (15 cm from the surface) of the middle-upper part of the slope having the most significant response in the test. Under the scouring rate of 22.4 L/min, the volumetric water content of the deposit gradually increases to 42%. Although the soil is unsaturated now, its start-up force is strengthened by the seepage force of the runoff. Meanwhile, the surge of the pore water pressure and rapid reduction of matric suction weaken the start-up resistance of the deposit. So the deposit loses its stability locally and develops with the erosive gully. However, the matter migration distance is short. When the scouring rate grows to 29.6 L/min, the volumetric water content quickly increases to 62.8%, the pore water pressure increases in waves (Figure 16A), and matric suction has a small reduction (Figure 16B). As water infiltrates the surface soil until it is full, the shear strength decreases sharply; the saturated soil loses its stability and moves to the farthest distance of 17 m as a start-up is much greater than the start-up resistance. When the scouring rate reaches 35.2 L/min, the soil is not saturated at the beginning, and both pore water pressure and matric suction show a small range of changes according to Figure 16. However, the large runoff intensity imposes a large draw force on the surface soil, which is much greater than the start-up resistance, so fine particles on the surface of the deposit initiate soon and move 15 m away.
[image: Figure 16]FIGURE 16 | Changes of the parameters under different runoff erosions. (A) Volumetric water content and pore; (B) matrix suction (kPa) and slope material transport distance (m) water pressure.
6 CONCLUSION
Through scour tests, the initiation conditions and process of the deposit flow are analyzed. The geohazards deposit in the Jiuzhaigou earthquake area has the characteristics of a steep slope, large number of fine grains in soil pores, good permeability, strong hydrodynamic force, and weak scouring resistance. The initiation process of the deposit is divided into four parts: the early infiltration, debris flow, deposition, and locally erosion stage. On account of the large slope angle of the deposit, the particles of the deposit grow larger and coarser from the top to the bottom and from the sides to the middle. Under the effect of rainfall, the deposits which are easily developed into a slope surface debris flow 3 years after the earthquake is a long-term threat to the study area.
The matter on the surface of the slope is subject to downcutting, surface erosion, headward erosion, and lateral erosion during scouring. The volumetric water content increases slowly at first, then increases quickly, changes into waves, and decreases slowly in the end; the pore water pressure shows no change at first. Then, it soon increases quickly, changes into waves, and decreases at last, while matric suction decreases after a period of fluctuation at a certain depth. Simply speaking, the increase in the soil water content, a surge of pore water pressure, a rapid drop of matric suction, and a change in the runoff intensity would lead to the start of a deposit. The results of this study are of great significance for the prediction of long-term effects and for the ecological governance of post-earthquake debris flow activities.
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External causes like changes in reservoir level and intense rainfall can cause reservoir landslides. Exploring the factors that govern landslide deformation and analyzing its stability evolution is essential in mitigating the associated risks. The Sanzhouxi landslide, which has experienced ongoing movements and has been implemented a professional monitoring system, is chosen for analysis in this paper. A combination of geological survey and analysis of monitoring data is utilized to explore landslide deformation characteristics. A data mining method, grey relation analysis (GRA), is subsequently performed to determine the causes of landslide deformation. Furthermore, the stability of the Sanzhouxi landslide in response to reservoir level fluctuation and rainfall for each day over an entire year is assessed using the Morgenstern-Price (MP) approach in 2D GeoStudio software. Such a process illustrates clearly how the landslide stability alters with external triggers changing. The findings reveal that the landslide deforms variably in spatial and temporal. The reservoir level rising contributes to landslide deformation primarily, while rainfall has a secondary impact. The factor of safety (FS) of the Sanzhouxi landslide drops from 1.17 to 1.07 during high reservoir water level periods and remain the same or increase in other periods except for some transitory moments while decreasing only by about 2% under the effect of rainfall. The daily FS results validate the dominant influence of reservoir level fluctuation on the stability of the landslide. The comprehensive understanding of landslide movement based on deformation characteristics, triggering factor identification, and daily stability validation, contributes to realizing nearly real-time prediction and evaluating the risk due to slope movements in similar geological settings worldwide.
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1 Introduction

Landslides are a recurring geological disaster, occurring in various regions across the world and thereby entailing significant catastrophic consequences (AGU, 2017; Mirus et al., 2020; Huang et al., 2021; Dahim et al., 2023; Yan et al., 2023). Several regions of China, particularly the Three Gorges Reservoir area (TGRA), have exhibited a predisposition to landslides (Cojean and Caï, 2011; Zhou et al., 2018; Zhang et al., 2023a). Landslides alongside reservoir banks could threaten ongoing reservoir operations as well as the security of the dam, watercourses, and inhabitants (Chae et al, 2017; Yang et al., 2022). Survey findings have revealed the identification of over 5,000 landslides within the TGRA after the dam was impounded in 2003 (Huang et al., 2020; Luo and Huang, 2020). One notable event was the Qianjiangping landslide, occurring on July 14, 2003, in Zigui County, Hubei Province, induing by the initial impoundment reaching 135 m above sea level. This event led to the unfortunate loss of 24 lives, the destruction of 129 residential structures, and 6.5 million EURO direct economic losses (Wang et al., 2004). Additional instances comprise the Shuping landslide (Wang et al., 2008), the Shanshucao landslide (Xu et al., 2015), and the Jinle landslide (Wu et al., 2017), among numerous other cases.

In-situ monitoring data, including surface displacement, deep displacement, groundwater level, and other relevant parameters, offers valuable insights into hazard assessment and risk control of landslides. Among these in-site data, the surface displacement obtained from the Global positioning system (GPS) is extensively adopted to track the movements of landslides in the TGRA (Wu et al., 2019). The displacement-time curves serve as the foundation for analyzing deformation characteristics, determining failure modes, and forecasting the movement of landslides (Zhang et al., 2023b). A typical displacement-time curve exhibits distinct phases, including primary creep, secondary creep, and tertiary creep (Figure 1) (Saito, 1965; Hu et al., 2021). In practice, it is common for landslides’ displacement-time curves to deviate from the typical three creep phases. These monitored curves in the TGRA can be summarized into six types: steady-type, exponential-type, convergent-type, fallback-type, stepwise-type, and oscillation-type (Figure 2). Numerous landslides undergo stepwise deformation in the TGRA (Wang et al., 2019; Zhang et al., 2021).




Figure 1 | Three stages of slope deformation (modified from Hu et al., 2021).






Figure 2 | Types of landslide displacement-time curves in the TGRA: (A) Linear-type; (B) Exponential-type; (C) Convergent-type; (D) Fallback-type; (E) Stepwise-type; (F) Oscillation type.



Stepwise-type landslides exhibit the behavior of deforming distinctly over a period and uniformly in the rest time of a year. Determining the predominant triggers behind the rapid deformations of landslides is typically a challenging endeavor (Crosta et al., 2016; Strauhal et al., 2016). The presence of excessive or incorrect candidates can have detrimental effects such as reduced calculation efficiency and potentially inaccurate results (Yao et al., 2019). Data mining techniques, such as grey relational analysis (GRA), two-step cluster analysis, and Apriori algorithm analysis, have been employed to investigate external triggers inducing landslide deformation quantitatively (Ma et al., 2018; Naemitabar and Zanganehm, 2021; Yang et al., 2023). Wu et al. (2019) utilized the GRA method to determine the controlling triggers accountable for landslide deformation, while Yao et al. (2019) employed neighborhood rough set theory for the same purpose. Based on data obtained from a dedicated monitoring system established in 2006, Huang et al. (2020) discovered that the reservoir level changing serves as the primary driving factor behind the deformation of the Muyubao landslide. Miao et al. (2021) adopted a data mining approach to determine triggering factors and corresponding thresholds for landslide deformation.

The evaluation methods employed for assessing landslide stability have evolved from qualitative approaches to quantitative ones, having undergone a number of improvements (Cojean and Caï, 2011; Cho, 2017). The quantitative approaches mainly include limit equilibrium methods (e.g., Swedish, Janbu, Bishop, Morgenstern-Price, and Sarma) and numerical simulation methods (e.g., finite element method) (Yang et al., 2017; Kumar et al., 2018). Therein, the Morgenstern-Price (MP) method (Morgenstern and Price, 1965) was proven to be an effective analysis method. It has been used extensively for decades. For these reasons, the MP method was selected for the analyses in this paper.

The Sanzhouxi landslide exhibits stepwise deformation, which is a prevalent deformation pattern observed in landslides within TGRA. In addition to abundant records, a professional monitoring system has been implemented on the landslide including measurements of groundwater level, surface displacement, deep displacement, crack width, etc. A complete monitoring dataset for the Sanzhouxi landslide over several years is available, which is not the case for all the other landslides at the sites. Such information involving the several complex components of the landslide helps analyze the movement of stepwise landslides synthetically and comprehensively. The Sanzhouxi landslide is therefore chosen as an example for this paper.

Utilizing geological surveys and data obtained from the monitoring system, movement characteristics of the Sanzhouxi landslide were analyzed. A data mining method, GRA, was adopted to determine the primary triggers that caused the landslide to deform across various monitoring periods. The change in the factor of safety over one year in the presence of fluctuating reservoir levels and varying rainfall was evaluated with the GeoStudio software. The objective of this paper is to understand landslide development by using several different methods including geotechnical analysis, data mining techniques, and numerical simulations based on abundant information from various aspects influencing the landslide. One novelty of the study on the Sanzhouxi landslide resides in identifying different periods of hydrological factors inducing deformation quantitatively. Furthermore, the study discusses the opportunity of the strategy developed herein for real-time or nearly real-time prediction for stepwise landslides.




2 Main external factors triggering landslide development in the TGRA



2.1 External factors inducing landslide deformation

Reservoir level changes and rainfall are two critical triggers inducing landslide deformation (Gutiérrez et al., 2010; Segoni et al., 2018; Jaboyedoff et al., 2020; Miao et al., 2022). Rainfall significantly diminishes landslide stability and predominantly results in movement through two key mechanisms: 1) Rainfall infiltration causes an increase in pore pressure within the soil, consequently reducing the effective stress of the soil to a critical threshold (Marjanovi´c et al., 2018); 2) The ingress of rainfall increases landslide mass, thereby augmenting the sliding force acting upon it (Yang et al., 2023). Rising and falling reservoir levels induce landslide deformation through distinct mechanisms. Firstly, during reservoir water level drawdown, some landslides experience a lack of rapid dissipation of groundwater. This inadequate dissipation leads to an increase in dynamic pressure, resulting in decreased landslide stability (Zhou et al., 2022). Secondly, as the reservoir water level increases, it exerts buoyancy on some landslides, reducing the effective weight acting on the anti-sliding section in front of landslides (Huang et al., 2020). Additionally, the infiltration of reservoir water into the landslide can cause a reduction in soil strength. In analyzing and predicting landslide deformation, some candidate controlling factors, such as average reservoir level, monthly reservoir level change, and monthly rainfall, have often been considered (Yang et al., 2019; Liu et al., 2020).

The Three Gorges Reservoir impoundment and operation progressed through three phases, as shown in Figure 3. In the initial phase, spanning between April 2003 and September 2006, the water level underwent a significant increase from 69 m to 139 m, followed by relatively minor fluctuations. Moving into the second phase, which extended from September 2006 to September 2008, the reservoir level experienced a rapid increase from 139 m to 156 m within a month and subsequently fluctuated annually between 145 m and 156 m. During the third phase, beginning in 2008, the reservoir level increased to 172 m and thereafter fluctuated between 145 m and 172 m from 2008 to 2010. Since then, the reservoir level fluctuated periodically between 145 m and 175 m. During the annual reservoir level schedule in 2016, one can distinguish six successive periods: slow drawdown (Stage I), rapid drawdown (Stage II), low reservoir conditions (Stage III), rapid rise (Stage IV), slower rise (Stage V) and high reservoir conditions (Stage VI).




Figure 3 | Water level variation in the Three Gorges Reservoir (2003–2017).



At times of fluctuating water levels, varying rainfall also occurs. The Wanzhou District has the second-highest annual rainfall in the TGRA. Between 1960 and 2015, the largest monthly rainfall in the Wanzhou District is 683.2 mm, the largest daily rainfall is 243.3 mm, and the longest string is 16 continuous rainfall days (Yang et al., 2017).




2.2 Identification of triggering factors using GRA

GRA was first proposed by Deng (1989) and had been applied to identifying quantitatively the key factors influencing landslide deformation (Wu et al., 2019; Yang et al., 2019; Guo et al., 2020; Wang et al., 2023). The GRA method, a commonly utilized model within grey system theory, categorizes situations with no information as black and those with perfect information as white. However, in practical real-world problems, these ideal situations rarely exist. Instead, situations with partial information, lying between these extremes, are referred to as grey, hazy, or fuzzy.

The GRA method is adopted in this work to quantitatively pinpoint the primary causes of the Sanzhouxi landslide’s movement. The correlation between each variable is assessed using the grey relational grade (GRG). The process of triggers identification inducing landslide deformation includes the following four steps.

(1) Based on the available monitoring data, which comprises measurements of rainfall, reservoir water level, and surface displacement, an incidence matrix (X) is constructed. Monthly displacement is assigned as the primary sequence (Xdisplacement), while the two causal factors, monthly reservoir level change (Xreservoir level) and monthly rainfall (Xrainfall), are selected as sub-sequences. The matrix X is denoted as X = {Xdisplacement, Xreservoir level, Xrainfall}.

(2) Normalization of the data in matrix X is achieved from:



where  ; ; n and m are the number of data points and influencing factors, respectively.

(3) The grey relational coefficient can be computed from:







where   is the resolution coefficient for adjusting the range of comparison environments, typically assigned a value of 0.5 (Lian et al, 2014; Yang et al., 2019; Guo et al., 2020).

(4) The GRG is obtained from:



The GRG is a measure that ranges from 0 to 1, with a GRG-value of 0.6 or higher indicating a strong correlation. As the value of GRG approaches 1, it signifies a stronger association between the two series under consideration. Within this study, the correlation between landslide displacement and reservoir level fluctuation is represented by r(xdisplacement, xreservoir level), while the correlation between landslide displacement and rainfall is denoted by r(xdisplacement, xrainfall). If r(xdisplacement, xreservoir level) > r(xdisplacement, xrainfall), it suggests that the primary factor contributing to landslide deformation is the fluctuation of the reservoir water level. Conversely, if r(xdisplacement, xreservoir level)< r(xdisplacement, xrainfall), it indicates that rainfall serves as the dominant trigger. By comparing the GRG values, the relative influence of each factor on landslide deformation can be determined.





3 Deformation characteristics and triggers identification of the Sanzhouxi landslide



3.1 Geological setting of the Sanzhouxi landslide

The Sanzhouxi landslide located in the Wanzhou District of Chongqing, China, is situated on the eastern side of the Yangtze River (30°45′08.27″N, 108°25′32.08″E) (Figure 4). The landslide is fan-shaped from a bird’s eye view and exhibits a sliding direction oriented at approximately 245°. The rear portion of the landslide displays a steeper inclination compared to the middle and front sections. The landslide surface is inclined at an angle of 10° to 30°. The frontal section of the landslide stretches towards the Yangtze River bed, with the elevation varying between 160 m and 175 m. The upper landslide boundary is marked by a bedrock cliff at the elevation of 230 m, while the left and right boundaries coincide with the interface between the bedrock and the soil (Figure 5A). The landslide measures 320 m in length and 360 m in width. The thickness of the sliding mass ranges from 5 m to 22 m, covering an area of 13.4 × 104 m2 and having an estimated volume of 135.6 × 104 m3.




Figure 4 | (A) Location of the Sanzhouxi landslide; (B) Panoramic photograph of the Sanzhouxi landslide (red contour delimits the boundary of the landslide with the reservoir water level at 164.52 m).






Figure 5 | (A) Engineering geological map; (B) Transverse cracks in the front right part; (C) A second sliding induced by excavation within the region below 180 m; (D) Scratch traces on the sliding surface with the direction of 245°; (E) Failure of the river bank extending 30 m; (F) Transverse cracks in the front part; (G) Wall cracks on the back part of the landslide.



The sliding masses consisted mainly of quaternary deposits, including silty clay and fragmented rubble. The relative proportions of these two material types were between 8:2 and 7:3. The sliding zone occurs at the interface between bedrock and soil, and primarily consists of silty clay and fragmented sandstone rubble, with the presence of some montmorillonite. The subjacent bedrocks are sandstone and siltstone (Figure 6).




Figure 6 | Geological cross section (A–A′ in Figure 5) of the Sanzhouxi landslide.



The Sanzhouxi area, with the potential for landslides, posed a serious threat to both public and property, including residents, dwellings, roads and infrastructure, and agricultural fields. According to historical records, the residents living on the landslide in 2005, 2009, and 2010 were 123, 217, and 135, respectively. With the development of deformations, some residents were relocated, and only 13 residents lived there in the area of the Sanzhouxi landslide in 2013.




3.2 Deformation history and field observations

The Sanzhouxi landslide began to deform in 1990. Near the trailing edge of the landslide, an observed ground crack measures approximately 100 m in length, 2 cm to 10 cm in width, and has a depth of 10 cm. Intense rainfall occurred in May with a rainfall of 247.4 mm seeming to be mainly responsible for the beginning of the landslide deformation in 1990. In the following years, landslide deformations intensified, and the crack extended from the trailing edge of the landslide into the middle and front parts regions. In June 2003, the landslide deformation caused some resident houses to crack.

In 2007, numerous tension cracks along a road across the landslide were observed. The largest crack had about 4 cm to 6 cm in width and a depth of 60 cm. The road in the landslide area experienced vertical displacement. The majority of the resident houses on or close to the landslide began to deform. In June 2010, multiple tension cracks were observed on the frontal section, in which the subsidence and width of the largest crack were up to 33 cm and 26 cm, respectively.

In 2012, nine cracks on the ground were observed in the landslide area by field investigations. The majority of the cracks were concentrated in the frontal area of the landslide. The largest width of the crack was 12 cm, and the largest depth was 27 cm. Among these nine cracks, six cracks that had developed perpendicular to the sliding direction were monitored continuously since then (Figure 5A).

In 2014, deformations were observed across the entire landslide area, while the front part deformed more than the other parts of the landslide. Transverse cracks were observed in the front right section of the landslide (Figure 5B). A second sliding was induced due to excavation within the part below 180 m of the landslide (Figure 5C). Scratch traces were found on the sliding surface with a direction of 245° (Figure 5D). In addition, a failure on the riverbank extending 30 m occurred along the landslide ‘s toe (Figure 5E). During this time frame, the deformations in the front part were mainly transverse surface cracks, while on the back part of the landslide mainly cracks were observed (Figures 5F, G).




3.3 Multi-source monitoring data

Six GPS monitoring stations (numbered WZ01 to WZ06) and two deep displacement monitoring points (QZK01 and QZK02) were installed on the Sanzhouxi landslide in 2007. Significant deformations developed in the following years. Six ground cracks monitoring points (DL01 to DL06) were installed in 2012, and two groundwater monitoring boreholes (STK01 and STK02) were installed in 2013 (Figure 5A). The monitoring data for groundwater level was collected from January 27th, 2013, to July 26th, 2014. GPS displacement was monitored continuously from March 2007 to July 2014, with measurements recorded on a monthly basis. The crack width was monitored between September 19th, 2012 and July 17th, 2014.



3.3.1 Groundwater level monitoring

The groundwater level monitoring stations named STK01 and STK02 are located at elevations of 177 m and 194 m, respectively. Groundwater level monitoring data are available from January 27th, 2013 to July 26th, 2014 (Figure 7). The groundwater level of STK01 ranges between 173.9 m and 176.9 m, and that of STK02 ranges between 189.8 m and 193 m.




Figure 7 | Groundwater level, daily rainfall, and dam reservoir water level at STK01 and STK02.



The monitoring data from January 27th to March 8th, 2013, was specifically chosen because of the remarkably low total rainfall of only 10.2 mm recorded during this period. This selection allowed the study to focus on a specific timeframe characterized by minimal rainfall, enabling a more direct investigation into the influence of reservoir level fluctuation on groundwater levels without significant interference from rainfall events. During this period, the groundwater level of STK01 declined at the rate of 0.012 m/d, which was much slower than the reservoir level change (0.17 m/d) (Figure 8A). The groundwater level change rate of STK02 was 0.009 m/d, slower than STK01 with the rate of 0.012 m/d, indicating that groundwater level response to reservoir level change decreased with increasing distance from the reservoir (Figure 8B).




Figure 8 | (A, B) Relationship between reservoir water level and groundwater level of STK01 and STK02; (C, D) Relationship between rainfall and groundwater level of STK01 and STK02.



From May 5th to May 14th, 2013, the reservoir level remained unchanged, and the selected monitoring data during this period was utilized to investigate the relationship between groundwater level and rainfall. Figure 8C indicated that the groundwater level of STK01 was influenced by rain and that precipitation of 20 mm led to a rise in groundwater level. The substantial fluctuation of the groundwater level in this site can primarily be attributed to the impact of rainfall, which was the main contributing factor. The total rainfall from May 6th to May 7th, 2013 was 49.1 mm, while the groundwater level reached a peak (175.3 m) on May 10th, 2013, lagging by about three days. However, the increase in the groundwater level of STK01 caused by rainfall was temporary, and it could recede at a faster rate initially and a slower pace later after the rain stops. Upon the occurrence of subsequent precipitation events, a temporary rise in the groundwater level was observed once again. The groundwater level of STK02 increased 1.4 m after rainfall, more than STK01 (1.35 m), suggesting that the response of STK02 was more sensitive to rainfall action than STK01 (Figure 8D). The peak of the groundwater level occurred on May 7th, 2013 without a time lag. The differences in groundwater response to rainfall between the STK01 and STK02 boreholes are believed to be related to material composition (Asch et al., 1999; Tartaglia et al., 2023).




3.3.2 GPS monitoring

The GPS stations offer deformation data for various locations within the landslide. Stations WZ01 and WZ03 are at the forefront of the landslide; WZ02, WZ04, and WZ05 are within the central, whereas WZ06 is in the back part. Displacement data are available from March 2007 to July 2014 for these sites (Figure 9). The cumulative displacements at the GPS station locations decrease as follows: WZ03 (1880.4 mm)> WZ04 (356.9 mm) > WZ06 (280.9 mm) >WZ05 (239.7 mm) > WZ01 (47 mm) >WZ02 (43.5 mm).




Figure 9 | Cumulative displacement, monthly rainfall, and reservoir level at GPS Stations of the Sanzhouxi landslide.



The displacement-time curves shown in Figure 9 differ in different parts of the Sanzhouxi landslide. Station WZ03 shows a step-like type (Figure 2E), while Stations WZ04, WZ05, and WZ06 show a convergent type (displacement curves are illustrated in Figure 2C). For Stations WZ01 and WZ02, the displacements keep growing slowly and uniformly. Station WZ03 with more significant deformation is selected as an example to analyze the relationship between reservoir level, rainfall, and monitored displacement.

Station WZ03 is positioned within the front part of the Sanzhouxi landslide, and its elevation is 177 m. Figure 10 shows the monthly displacement of WZ03, monthly rainfall, and reservoir level change. During the period from March 2007 to July 2007, the water level in the reservoir fluctuated between 145 m and 156 m. An excavation conducted at the leading edge of the Sanzhouxi landslide revealed that the landslide’s toe was positioned between the elevations of 160 m and 175 m (Figure 5D). This excavation finding clearly indicated that the landslide was not submerged in the reservoir water during the aforementioned period and the observed deformation could be attributed to the significant rainfall.




Figure 10 | Monthly displacement, monthly rainfall, and reservoir level at GPS Station WZ03.



In 2008, the reservoir level was raised from 145.5 m to 171.5 m for the first time, which resulted in a significant alteration in the hydrogeological conditions of the TGRA, inducing a maximum monthly displacement of 88 m. Subsequently, in 2009, the reservoir water level surged to 175 m, implying an expansion of the submerged area of the landslide. The maximum monthly displacement increased year after year and reached a peak in 2011. Specifically, it rose from 135 mm in 2009 to 188.9 mm in 2010, ultimately reaching 543.9 mm in 2011. The annual rainfall and maximum monthly rainfall during the years 2009 to 2011 remained consistently around 1100 mm and 220 mm, respectively. The primary factor contributing to the progressive increase in displacement over the years and culminating in a peak in 2011, can be attributed to the following reasons: 1) With the rise in water level due to impoundment, a larger portion of the landslide becomes submerged, leading to increased buoyancy at the front of the landslide. Simultaneously, the infiltration of water into the slope weakens the soil strength within the sliding zone. 2) The successive increments in reservoir water level from 2009 to 2011, measuring 25.1 m, 27.3 m, and 28.4 m, respectively. A larger water level change can exacerbate the deformation of the landslide (Song et al., 2018). 3) Human engineering activities, such as excavation and construction in the front of the landslide, have been demonstrated to intensify the deformation of the landslide (Zhou et al., 2016).

After 2012, the sliding became more uniform with a maximum monthly displacement of 44.6 mm in 2012 and 28.2 mm in 2013. Additionally, in the years from 2008 to 2013, the maximum monthly displacement was recorded in November (2008), October (2009), October (2010), December (2011), October (2012), and December (2013), respectively. This observation suggests that significant deformation of the landslide occurred during reservoir impoundment.




3.3.3 Crack width monitoring

When the six ground crack monitoring was installed in September 2012, the DL01 to DL06 had widths of 5383.5 mm, 2807.3 mm, 3174.5 mm, 1348.4 mm, 2051 mm, and 2825.4 mm, respectively. It should be noted that the values refer to the distance between two fixed stations across the crack rather than the real width of the cracks. Daily data for crack width from September 19th, 2012 to July 17th, 2014 were recorded. Daily reservoir water level was available for the entire period. However, daily rainfall data was incomplete and data between January 1st, 2013, and July 17th, 2014 were collected for analysis. The monitored ground cracks experienced different extensions during the monitoring period. The extensions of DL01 (30 mm) and DL02 (25 mm) were larger than that of the other four cracks (about 10 mm). The relationships between crack width, daily rainfall, and daily reservoir were analyzed according to the monitored data presented in Figure 11.




Figure 11 | (A–F) Relationships between reservoir water level, daily rainfall, and cracks width monitored at DL01 to DL06.



Monitoring points of DL01 and DL02 were in the central area of the landslide’s front section, at elevations 188 m and 194 m, respectively. The displacement trends of these two points were similar and showed sharp increases in crack extension. During the period from September 19th to October 14th, 2012, as the reservoir level increased from 167.1 m to 174.2 m, significant movement appeared with the crack extending by 16 mm. The movement lagged the reservoir raise by about 23 days (grey rectangles in Figures 11A, B). Subsequently, from December 21st, 2012, to June 22nd, 2013, the reservoir level gradually dropped from 175 m to 145 m. It remained at 145 m until August 24th, 2013. The cracks did not expand dramatically and only had frequent small waves in these three periods. During the period from August 25th to November 18th, 2013, the reservoir level experienced an increase from 148.2 m to 175 m. For DL01 and DL02, their movements coincided with the water level rising and increasing by 20 mm and 10 mm, respectively. The appearance of crack extension for the two monitoring points lagged the reservoir level rising for about 43 days and 33 days, respectively (red rectangles in Figures 11A, B). During the period from November 19th, 2013 to June 26th, 2014, the deformation showed a small increase with the reservoir level gradually decreasing. The analysis above revealed that the dam reservoir level rise contributed to the deformation observed at the landslide’s frontal section.

DL03 was located near DL02, and its elevation was 198 m. During the period from August 25th to November 18th, 2013, the crack width of DL03 increased by 18 mm as the reservoir level rose from 148.2 m to 175 m without time lag (red rectangle in Figure 11C). This phenomenon revealed that the site of DL03 exhibited a higher sensitivity to the reservoir level increasing compared to DL01 and DL02. DL04, DL05, and DL06 were located on the landslide’s right edge. Before June 26th, 2014, the variation of crack width at each monitoring point was relatively small, while a significant surge in the crack occurred in the summer of 2014. The monitored curves did not show an apparent relationship between the crack movements and reservoir water level fluctuation (Figures 11D–F).

The relationship between crack width and daily rainfall was examined based on the combined data presented in Figure 11. Although some notable rainfall events occurred, such as 115.6 mm on May 5th, 2013, and 74.1 mm on July 30th, 2013, no significant correlation was observed between these rainfall events and the observed deformation in terms of crack width at the monitoring stations.




3.3.4 Deep displacement

The lateral displacement versus depth from inclinometers QZK01 and QZK02, depicted in Figures 12A, B, respectively, provided insights into the behavior of the Sanzhouxi landslide. In particular, the inclinometer QZK02, positioned at the rear of the landslide, captured the development of a sliding zone at a depth of approximately 8.1 m (Figure 12B). Notably, this sliding zone did not extend to inclinometer QZK01. The displacement of the sliding zone increased by about 100 mm in seven years (between July 2007 and July 2014) (Figure 12C). The monthly displacement of the sliding zone fluctuated with positive (outwards the slope body) and negative (inwards the slope body), while it did not show an apparent relationship with rainfall and reservoir level fluctuation (Figures 12D, E).




Figure 12 | Deep displacement monitoring: (A) Lateral displacement versus depth of QZK01; (B) Lateral displacement versus depth of QZK02; (C) Deep cumulative displacement versus time at the location of QZK02; (D) Monthly displacement of the sliding zone and monthly rainfall at QZK02; (E) Monthly displacement of the sliding zone and monthly change of reservoir level.







3.4 Identification of triggering factors of the Sanzhouxi landslide

Qualitative analysis of monitoring data in the preceding sections has been conducted to examine the relationship between landslide deformation and hydrological factors, namely rainfall and reservoir level rise. A quantitative analysis using grey relational analysis (GRA) is performed here to identify the predominant triggers for inducing landslide deformation during various evolutionary periods. We will use WZ03, which shows the largest displacement among the six GPS monitoring stations, as an example. The calculation process of the GRA method can be found in the section “2.2 Identification of triggering factors using GRA”.

Seven periods of reservoir impoundment were present between 2007 and 2014 (Figure 10). The correlation between monthly displacement and reservoir level rise was quantified as r(xdisplacement, xreservoir level), while the correlation between monthly displacement and rainfall was indicated as r(xdisplacement, xrainfall). GRG of the seven periods was displayed in Figure 13. For all the reservoir raise periods, the calculated GRG was higher for the reservoir level fluctuations, i.e., r(xdisplacement, xreservoir level)>r(xdisplacement, xrainfall), meaning that the movement was primarily induced by reservoir level rising, while rainfall played a subordinate role. This finding aligns with the qualitative analysis obtained in the previous sections.




Figure 13 | Calculated GRG at WZ03 location.



Moreover, the GRG value of r(xdisplacement, xreservoir level) remained at approximately 0.8 in the preceding years but exhibited a decreasing trend starting from 2013, indicating a reduced impact of the reservoir level rising on landslide movement. This conclusion agreed with the research of Zhang et al. (2020) and Yang et al. (2023). Their findings suggest that reservoir-induced landslides generally display more pronounced responses to reservoir water during the initial phase of reservoir impoundment. However, over time, this impact gradually diminishes, eventually leading to a self-adjusted stable state.





4 Stability evolution of the Sanzhouxi landslide

The fluctuations of the reservoir level during 2016 were divided into six successive reservoir level periods, as illustrated in Figure 3. The geotechnical software Geo-Studio (Geo-slope International Ltd, 2019) was adopted to simulate the seepage (SEEP/W program) and calculate the factor of safety (FS) (SLOPE/W program) for the Sanzhouxi landslide. It is essential to acknowledge that the accuracy and reliability of the numerical modeling results obtained from the Geostudio software are significantly controlled by parameter accuracy, boundary setting, and so on. The previous researches contribute to providing references for the establishment of Geo-Studio models designed for analyzing landslides in the TGRA (Miao et al., 2017; Yang et al., 2017).

The FS on each day of an entire year was computed by the MP method. The cross-section (A–A′ in Figure 5), which was consistent with the main sliding direction, was chosen as a typical cross-section for the analysis. The model, shown in Figure 14A, was divided into 866 elements and 987 nodes. The monitored daily rainfall as well as daily reservoir water level were set as boundary conditions. Thereinto, the slope surface above an elevation of 175 m was defined with daily rainfall as the infiltration boundary, while the slope surface below 175 m had the reservoir water level as the variable water head boundary. The interface between soil and bedrock serves as the boundary for water partitioning.




Figure 14 | (A) Calculation model of the Sanzhouxi landslide; (B) Saturation line at the end of each reservoir stage for the Sanzhouxi landslide.



The permeability coefficient was obtained from field infiltration tests and set as 5.01 m/d. The saturated water content of the clay in the slope was taken as 40%. The unit weight, elasticity modulus, and Poisson’s ratio for the sliding body were set to 22 kN/m3, 3×104 kPa, and 0.3 (for drained conditions). The unit weight, elasticity modulus, and Poisson’s ratio for bedrock were 25.3 kN/m3, 1.1×106 kPa, and 0.25. The cohesion and internal friction angle of the sliding material were measured to be 22 kPa and 11°, respectively.



4.1 Seepage simulation

The saturation line at each end of the reservoir stage for the Sanzhouxi landslide was shown in Figure 14B. The groundwater was discharged from the landslide without time lag when the reservoir level decreases (stages I and II). In the following low reservoir stage (stage III), the reservoir level frequently fluctuated at a small range due to the realimentation by the rainfall. The frequent change of reservoir level resulted in the infiltration line of the front part of the landslide being slightly convex, while the infiltration line of the remaining sections was kept the same. As the reservoir level increased (stages IV and V), the infiltration line of the front part rises higher than the middle and rear parts, resulting in the infiltration line within the slope being concave. After a high reservoir level has been kept for about 10 days (stage VI), the infiltration line at the middle part of the landslide gradually rises to the same level as the front edge.




4.2 Variation of the factor of safety of the Sanzhouxi landslide over one year

Figure 15 displayed the factor of safety (FS), daily rainfall, and reservoir level. When rainfall and reservoir level changes were coupled, the two-dimensional (2D) FS computed by Slope/W ranged from 1.07 to 1.17 over one year. The computed FS suggested that the slope was stable, although an FS of 1.07 was not very robust, given that there were many uncertainties in the soil parameters and 2D LEM model. During stage I, the FS kept decreasing for 25 days and subsequently increased. In stage II, the FS was constant at about 1.10 for 20 days and then increased with the reservoir level rising rapidly. In stage III, the FS continued to rise, but the rate of increase slowed down. The reservoir level increased from 146.4 m to 161.1 m in stage IV, resulting in an FS of 1.15 without significant variation. The main reason was that the leading edge of the landslide covered within a range of 160 m to 175 m, and thus only a tiny part of the leading edge can be submerged in the reservoir water during this stage. The computed FS showed a slight increase during stage V and decreased from 1.15 to 1.11 during stage VI. In stage V, the rise of the reservoir water level led to an increase in hydrostatic pressure acting on the landslide, consequently augmenting the FS of the slope. After entering stage VI, the infiltration of reservoir water into the landslide caused a reduction in soil strength, which was evident in a pronounced downward trend of the FS of the landslide.




Figure 15 | Variation of factor of safety (FS) for one year, with daily rainfall and reservoir water level on each day.



The FS under the sole influence of reservoir level changing was also calculated for comparison. The FS was slightly higher than the FS with the coupled effect of reservoir level fluctuations and rainfall. Among stages, I to IV, the smallest difference in the FS for the two conditions occurred in stage I, while the largest difference in the FS appeared in stage IV, although the differences in the FS were not significant.





5 Deformation mechanism of the Sanzhouxi landslide

The Sanzhouxi landslide’s toe is situated within the elevation range of 160 m to 175 m. Prior to September 2008, the reservoir level remained below 156 m, indicating that it was not submerged by water. The deformation of the landslide during this period can primarily be attributed to rainfall. The high permeability of the landslide was attributed to the loose materials present on the slope. Moreover, the gentle gradient of the leading part of the landslide promoted significant infiltration of rainfall into the slope. As the underlying bedrock was impermeable, the infiltrated water accumulated in the zone between the sliding mass and the bedrock. Scanning-electron-microscope images of the sliding zone materials revealed the presence of montmorillonite, which exhibited a softening effect upon contact with water (Zhou et al., 2016). Furthermore, the sliding zone materials exhibited numerous microfissures and microporosity, resulting in their swelling with the absorption of water and shrinkage with the loss of water. These factors can contribute to the reduction in the strength of the landslide (Iqbal et al., 2018).

From October 2008 onwards, the reservoir level displayed periodic fluctuations ranging from 145 m to 175 m, leading to partial submergence of the landslide area in water. The landslide deformed severely in the periods of reservoir impoundment and became more uniform with reservoir lowering according to monitored data. The presence of reservoir water can exert a positive pressure on the slope, which can contribute to landslide stability. However, the groundwater level in the frontal area of the landslide exhibited an increase in response to the rising water level in the reservoir. This groundwater influx had two significant effects on the landslide behavior. Firstly, the buoyancy effect of the groundwater resulted in a reduction in the sliding resistance force of the slope. Secondly, the infiltration of reservoir water into the sliding zone materials can induce its strength. These factors can collectively contribute to the severe deformation observed in the landslide during reservoir impoundment (Luo et al., 2022; Zhou et al., 2022).




6 Discussion and conclusions

A professional monitoring system including measurements of groundwater level, surface and deep displacements, and cracks width, was implemented on the Sanzhouxi landslide. The monitoring data and abundant field observations were used for analyzing in detail the deformation characteristics of the landslide. Triggering factors controlling the Sanzhouxi landslide were identified by using a data mining method-GRA. Subsequently, the 2D GeoStudio software was employed to calculate the variation in slope stability, represented by the factor of safety, in response to the combined effects of fluctuating reservoir water levels and rainfall over a complete annual cycle. The primary findings of this research can be summarized as follows:

Varied parts of the Sanzhouxi landslide exhibit distinct deformation characteristics, with the most significant movement observed in the frontal region. According to deformation types classified by displacement versus time curves, the front part of the landslide showed a stepwise deformation pattern, while other parts displayed a convergent pattern. In addition to the variability of deformation in the longitudinal direction, the variability of deformation also existed in the horizontal. This landslide was shown to have strong and diverse characteristics of spatiotemporal variability.

The front part of the Sanzhouxi landslide was found to be primarily influenced by the reservoir water level rising, as indicated by the results of the GRA analysis. However, it was observed that this effect gradually diminished as the landslide adapted to the increasing water level in the reservoir. The identification of the dominant triggering factor provides useful information to take into consideration when targeting disaster prevention and mitigation measures.

The FS under the combined effect of dam reservoir changing and rainfall, computed for each day during one entire year, was quite low (FS = 1.07). This phenomenon of FS decreasing occurred mainly during high water level periods. With the effect of rainfall alone, the annual maximum reduction of FS for the Sanzhouxi landslide was only about 2%, which verified the identification of reservoir level as a triggering factor by GRA. The method of examining the factor of safety on each day over one year illustrates clearly how slope stability evolves in response to changes in external factors.

The interpretation of the landslide considered abundant information and adopted multiple approaches. The process involves deformation characteristics, triggering factor identification, and annual slope stability. The process adopted herein can be implemented for real-time or nearly real-time prediction for stepwise landslides and can form a promising basis for further risk evaluations. This research has potential applications for the risk assessment of landslides in similar geological settings, with large monitoring datasets available over several years.
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The response surface model has been widely used in slope reliability analysis owing to its efficiency. However, this method still has certain limitations, especially the curse of high dimensionality when considering the spatial variability of geotechnical parameters. The slice inverse regression dimensionality reduction method is efficient to obtaining the dimensionality-reduction variables from the original soil parameters space, before constructing the response surface. However, the dimensionality reduction process may cause accuracy deficiency due to the loss of variable information. An adaptive slope reliability analysis method is proposed to quantify and correct information loss and errors. Additionally, the slope failure probability based on the response surface in the dimensionality reduction space is modified to an unbiased one based on the finite model in the original space. In this study, two soil slopes considering spatial variability are taken as examples. The results illustrate that this method can effectively reduce the loss of accuracy in the dimensionality reduction process, while obtaining unbiased finite-element-based failure probability effectually. The method addresses the limitation whereby the accuracy of the dimensionality reduction process depends on the sample size and the number of dimensionality-reduction variables. Simultaneously, the proposed method significantly improves the computational efficiency of the sliced inverse regression method and realizes a reasonable dimensionality reduction effect, thereby improving the application of the response surface in practical slope reliability high-dimensional issues.
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1 Introduction

The reliability analysis of slope stability is a crucial issue in geotechnical engineering considering the uncertainties of geotechnical parameters (Deng et al., 2017; Xiao et al., 2018; Cao et al., 2019; Liu et al., 2019; Deng et al., 2020; Wang et al., 2020a; Wang et al., 2020b; Zhang et al., 2023a; Zhang et al., 2023b). Many reliability analysis methods have been proposed, such as the Monte Carlo simulation (MCS) (e.g., Griffiths and Fenton, 2004; Cho, 2007; Cho, 2010; Huang et al., 2010; Li et al., 2015b), first-order second moment method (FOSM) (e.g., Christian et al., 1994; Hassan and Wolff, 1999; Xue and Gavin, 2007), first-order reliability method (FORM) (e.g., Low and Tang, 1997; Low and Tang, 2004; Ji, 2014; Low, 2014; Zeng and Jimenez, 2014), second-order reliability method (SORM) (e.g., Cho, 2009; Low, 2014), and advanced Monte Carlo simulation, Subset Simulation method (e.g., Au and Beck, 2001; Wang et al., 2010; Wang et al., 2011; Li et al., 2016b). Among these, the failure probability must be obtained by repeating slope stability analysis, which is computationally expensive. In recent years, the response surface (RS) method has been proven to be an effective method to solve this issue. The principle is to develop an RS with small computational cost to approximate the original complex model; therefore, the slope reliability can be estimated almost negligible costs based on this RS model.

To date, many scholars have proposed various RS models to perform slope reliability analysis, such as the quadratic polynomial (Xu and Low, 2006; Ji and Low, 2012; Ji et al., 2012; Tan et al., 2013), Hermite polynomial chaos expansion (Jiang et al., 2014; Jiang et al., 2015; Li et al., 2016c), support vector machine (Tan et al., 2011; Li et al., 2013; Chang et al., 2020; Huang et al., 2020a), neural network (Cho, 2009; Tan et al., 2011; Piliounis and Lagaros, 2014; Huang et al., 2020c), and Kriging model (Luo et al., 2012a; Luo et al., 2012b; Zhang et al., 2013). Although the RS model has been widely used in reliability problems, several challenges remain to be resolved. The curse of high dimensionality is a major criticism restricting the application of RS in reliability analysis. When the dimensionality increases rapidly, the number of required training samples is dramatically increased to develop more complex RS forms. This computational burden may even be higher than the direct Monte Carlo methods, which is contrary to the original purpose of establishing response surfaces. In slope reliability analysis, as the inherent spatial variability of soil properties is one of the most significant geotechnical uncertainties affecting the slope failure mechanism (Christian et al., 1994; Griffiths and Fenton, 2004; Wang et al., 2011; Huang et al., 2013; Li et al., 2015a; Li et al., 2016a; Li et al., 2016b; Xiao et al., 2016; Xiao et al., 2017; Jiang et al., 2018; Li et al., 2019a; Varkey et al., 2019; Huang et al., 2020b; Deng et al., 2022; Nie et al., 2023; Zhang et al., 2023c), the curse of high dimensionality is particularly when the spatial variability of soil parameters is simulated using random fields.

Two dimensionality reduction techniques are usually used to solve high-dimensional problems: simplifying the RS form and reducing the number of random variables. In the former, different methods are applied to constructing the sparse structure of the polynomial chaos model, such as the stepwise regression technique (Blatman and Sudret, 2010) or the least-angle regression technique (Blatman and Sudret, 2011), the weighted 𝓁1 minimization algorithm with a priori information (Peng et al., 2014), and the Bayesian compressed sensing technique (Zhou et al., 2020), while other researchers constructed the sparse RS based on different basic terms, such as support vector regression (Cheng and Lu, 2018) and the quadratic polynomial (Guimarães et al., 2018). However, the computational costs of developing sparse forms remain still large when considering more time-consuming and complex models with a large number of random variables (Al-Bittar and Soubra, 2014).

The latter reduces the random variables and then develops an RS model with dimensionality-reduced parameters. Al-Bittar and Soubra (2014) applied the Sobol index of global sensitivity analysis to recognize significant input variables. However, it may lose efficiency when the contributions of each variable are similar. Rotation-based linear mapping techniques (Constantine et al., 2014; Yang et al., 2016) required partial derivatives of input variables and output, which may be computationally expensive. Alternatively, the input variables are linearly combined and transformed into a new dimensionality-reduced space, such as principal component analysis (PCA) (Jolliffe, 2002) and sliced inverse regression (SIR) (Li, 2000; Pan and Dias, 2017; Li et al., 2019b; Deng et al., 2021). Specifically, PCA takes the principle of maximizing the variance to linearly combine the original space. The effectiveness of the PCA method depends on the data structure of the input variables, which is not efficient when the input variables are independent or low correlated. The SIR method linearly transforms the original space into the dimensionality-reduced space using the relationship between response values and input variables, which makes it more efficient than the PCA method in independent soil parameters of random fields. However, subsequent studies found that the accuracy of the SIR method depends on the initial training sample size. In addition, both two dimensionality reduction techniques would lose some accuracy due to the loss of variable information in the dimensionality reduction process. There are few reasonable solutions for quantifying and correcting information loss and errors in the dimensionality reduction process.

In this study, an adaptive reliability analysis method is proposed to solve the curse of high dimensionality of the RS method and problem-dependent accuracy of the SIR method, which integrates the dimensionality reduction method, active learning method, and response conditioning method. This method can correct the information deficiency in the process of SIR dimensionality reduction and generate unbiased reliability results with low variability for slope stability in spatially varying soils. The SIR method is firstly introduced to reduce the random variables, and the accuracy-dependent problem of the SIR method is discussed, as described in Section 2. In Section 3, the adaptive reliability analysis corrects the preliminary slope reliability analysis results of the RS model in a dimensionality-reduced space to an unbiased target reliability based on the finite element (FE) model in the original space. The method uses representative samples from the response conditioning method to iteratively update the principal direction of the SIR and the RS model near the failure domain to obtain a stable unbiased target reliability. Furthermore, two slope examples considering the spatial variability are studied in Section 4 and Section 5 to validate the capacity of this method.




2 Brief description of the sliced inverse regression method



2.1 Karhunen–Loève expansion

In slope reliability analysis, the geotechnical parameters with spatial variability are non-negligible indicators that affect the slope failure mode and its stability. When the random field is applied to simulate the spatial variability, a large number of spatially correlated random variables are generated, causing the curse of high dimensionality in slope reliability analysis. Taking the Karhunen–Loève expansion method (Li and Der Kiureghian, 1993; Phoon et al., 2002) as an example, the log-normal random field R can be described as a set of independent standard normal random variables, ξ = [ξ1, ξ2, …, ξr]T:



where μ and σ represent the mean and standard deviation of normal random field ln(R); r is the truncated number of the first largest eigenvalues and the corresponding eigenvectors, λi and φx,i (i = 1, 2,…, r), at locations x, which is determined by the required accuracy of random field discretization, such as 95% (Phoon et al., 2002; Jiang et al., 2014; Xiao et al., 2015). Although the Karhunen–Loève expansion method can reduce the number of random variables by converting the number of coordinate points at different locations into the number of expansion terms, it is affected by the type of the correlation function, the autocorrelation distance, and the scale of the random field. It may require a large number of truncation terms, r, to meet the accuracy requirement.




2.2 Basic theory of sliced inverse regression

To reduce the large number of truncation terms, r, the SIR method is utilized in this study for further dimensionality reduction. The basic idea of the SIR method is to construct a smaller number of linear combinations from the original high-dimensional variables and to develop new variables in low-dimensional space. To ensure that each linear combination component reflects more original information, an eigenvalue decomposition of the covariance matrix V of ξ is applied, as shown in the following equation:



where βj represents the eigenvector and λj represents the eigenvalue of the covariance matrix V of dimension r.

Before the eigenvalue decomposition, the SIR method usually divides the original space according to the relationship between ξ and its response value, Y, and obtains the covariance matrix of conditional expectation E(ξ|Y), which makes it easier to determine the principal direction (see Figure 1). In the following example, N is set as the number of training samples, (ξ,Y). The SIR algorithm is shown in the following steps:




Figure 1 | Schematic diagram of sliced inverse regression.



	(i) Standardize the input variables of ξ and sort the training samples by the value of the response value of Y.

	(ii) Divide the sorted training samples as evenly as possible into H slices, S1, S2,…, SH (see Figure 1A); the number of samples in each slice is approximated as nh = N/H. The previous studies have stated that a certain range of H has no significant influence on the dimensionality-reduced results of SIR (Li, 2000).

	(iii) Calculate the mean of each slice of ξ; the conditional expectation is set as  , h=1, …, H, i=1,…, nh.

	(iv) Calculate the covariance matrix ( ) of the mean   of each slice, with the corresponding weight for each sample set as nh/N.





	where ( ) represents the mean value of the input variables ξ at all sample points; T denotes the matrix transpose.

	(v) Calculate the eigenvalues and eigenvectors of the covariance matrix  to determine the principal direction of the SIR algorithm, as shown in the following equation:




	where eigenvector   represents the respective vector in the jth direction of SIR (i.e., β = (1,1) as the eigenvector between  ξ1 and ξ2; see Figure 1B). Normally, the first d large vectors are regarded as the principal direction (Pan and Dias, 2017).

	(vi) Obtain new variables by conducting a linear combination of the original variables ξ according to the principal directions of SIR. The first d larger direction vectors correspond to d new variables, i.e., 






2.3 Information loss due to dimensionality reduction

The ability to obtain finite and large eigenvalues of λj determines the effectiveness of SIR dimensionality reduction methods. Compared with SIR, the PCA method directly uses the covariance matrix of ξ for the eigenvalue decomposition without preprocessing. However, the PCA method has certain limitations; for instance, the same principal direction may be obtained based on two samples with the same distribution and different response values. In contrast, SIR explores the inverse regression curve of the conditional expectation E(ξ|Y) to investigate how the associated ξ changes with Y. The eigenvalue decomposition according to the covariance matrix of E(ξ|Y) can obtain the principal direction effectively. However, the accuracy of the SIR method is parameter-dependent and information loss will increase with the decrease of the initial training sample size. Taking the arithmetic examples (Rackwitz (2001); Pan and Dias, 2017) as an example to explain the information loss:



where ζi, i = 1, …, r denotes random variables with independent lognormal distributions, where the mean value is 1 and the standard deviation is 0.2; r represents the dimensionality of the random variable. To quantify the information loss and error in the SIR dimensionality reduction process, the root mean square error (ε) and the correlation coefficient (ρ) between the original space and the dimensionality-reduced space are used as indicators. The root mean square error (ε) is calculated as



where Nt denotes the test sample number, GRS is the response value in the dimensionality-reduced space calculated based on the RS, and G is the actual value in the original space calculated by Eq(5).

As shown in Figure 2, the dimensionality reduction of SIR is more effective than the PCA method in random variables. In the SIR method, the first three larger eigenvalues can be selected from 40 random variables and the value of the fourth eigenvalue quickly decays to 10−20, while in the PCA method, the values of eigenvalues of random variables are nearly the same and it is difficult to select the main eigenvalues and directions for constructing new dimension-reduced variables.




Figure 2 | Comparison of dimensionality reduction effect between PCA and SIR.



Then, the accuracy of SIR with different parameters is shown in Figure 3, varying in the number of training samples, number of variables in the original (r = 20, 200, and 1,000), and number of variables in the dimensionality-reduced space (d = 3, 10, and 20). Larger training samples cause a higher accuracy in the dimensionality reduction, which can be proved by the Fisher consistency property (Li, 2000). When the number of training samples increases infinitely, the statistical value of the sample data approximates the true distribution and the principal direction in dimensionality-reduced space can unbiasedly simulate the original space. However, the huge computational cost with larger training samples is impractical, which contradicts the original intention of dimensionality reduction for higher efficiency. In addition, when the number of random variables and training samples (r = 20 N =100) are fixed, different dimensionality-reduced variables (d = 2, 4, 6) will cause different accuracy loss, with the correlation coefficient obtained as 0.912, 0.987, and 0.992, ϵ as 0.370, 0.145, and 0.112, respectively. It can be observed that the accuracy of the SIR method is a parameter-dependent method. Hence, this study proposes an adaptive slope reliability analysis method to quantify and correct errors in the dimensionality reduction process of the SIR method and obtain an unbiased reliability estimation while neglecting the initial error.




Figure 3 | Information loss of SIR due to dimensionality reduction.







3 Adaptive slope reliability analysis

In this section, the adaptive reliability method is used to address the accuracy-dependent problem of the SIR method to reduce the information loss with limited training samples. The principle is to use the response conditioning method (Au, 2007) to improve the accuracy of the result efficiently based on the correlation between the simple and complex models, such that it is consistent with the unbiased complex model. In this study, the RS model in the dimensionality-reduced space is regarded as the simple model and the FE model in the original space is regarded as the complex model. In addition, compared with the traditional response conditioning method, the simple models are gradually iteratively updated, which is similar to the idea of active learning (Echard et al., 2011; Dubourg et al., 2013; Marelli and Sudret, 2018). This mitigates the requirement for a highly correlated and accurate initial dimensionality-reduced space. It consists of three steps (see Figure 4): initial SIR dimensionality reduction and preliminary reliability analysis, which determines the principal directions of SIR based on the limited training samples and then constructs the RS model in the dimensionality-reduced space; target reliability analysis, which selects sample points in the dimensionality-reduced space and transforms them into the original space to recalculated in FE model, and to obtain an unbiased estimate of the reliability with the response conditioning method; and the adaptive update strategy, which appends representative samples in original space to the training samples and updates the SIR principal direction and RS model until convergence is attained.




Figure 4 | Schematic diagram of adaptive slope reliability analysis based on SIR.





3.1 Preliminary reliability analysis in the dimensionality-reduced space

The original and dimensionality-reduced space are defined as Ω and Ω´, respectively. The SIR principal directions are obtained from the original space samples (ξ, Y). Furthermore, the original space samples are transformed into new samples (ω, Y) in the dimensionality-reduced space Ω´. Based on the dimensionality-reduced samples, the simplest commonly used quadratic RS model without cross terms is constructed in this study. The original quadratic RS model is expressed as:



where M(ξ) is the original RS model containing 2r+1 basis terms [1, ξi, ξi2, …]; [a0, a11, …, a1r, a21, …, a2r] are the unknown coefficients; r is the input variable dimension in the original space; ξ are the variables in the original space.

The RS model in dimensionality-reduced space is rewritten as:



where M’(ω) is the RS model in dimensionality-reduced space containing 2d+1 basis terms [1, ωj, ωj2, …] and ω are the dimensionality-reduced variables, obtaining through the linear combination of ξ.

Subset simulations (Au and Beck, 2001; Li et al., 2016b) are then performed to analyze the slope reliability based on the RS model. The principle is that the occurrence of a small failure probability event can be expressed as the product of the larger conditional probabilities of a series of intermediate events. In this process, for an m-level subset simulation, the entire dimensionality-reduced space Ω´ is divided into m+1 mutually exclusive and completely exhaustive subsets of Ωk´, k = 0, 1,…, m, which are divided according to intermediate failure events {fs1, fs2, …, fsm}, as shown in Figure 4. The preliminary slope failure probability of Pf,RS is calculated using the following equation (Au and Beck, 2001; Xiao et al., 2016; Zhou et al., 2021).



where FRS = {FSRS < fs} represents the slope failure event obtained based on the RS in the dimensionality-reduced space and IRS,kj represents the failure indicator function for the jth sample in subset Ωk´ (i.e., IRS,kj = 1 if FSRS,kj < fs; otherwise, IRS,kj = 0). P(Ωk´) represents the occurrence probability of the subset Ωk´(P(Ωk´) = p0k(1−p0), k = 0, 1, …, m−1 or P(Ωk’) = p0k, k = m), where m-level subset simulation contains mNl (1 − p0) + p0Nl samples and Nl is the sample size in each simulation level. As the principal direction of the SIR method directly determines the characteristic of the dimensionality-reduced space, if the direction does not accurately reflect the characteristics of the original space, the RS in the dimensionality-reduced space will cause large accuracy loss compared with the original finite-element model. This accuracy loss caused by the inappropriate dimensionality reduction direction is extremely evident when there are insufficient training samples. Thus, target reliability analysis is applied to quantify and correct this loss.




3.2 Target reliability analysis in the original space

Although the deviation of the SIR principal direction leads to a larger deviation in the RS model, the dimensionality-reduced space still has a certain correlation with the original space. Therefore, the samples in the dimensionality-reduced space can be selected using the response conditioning method (Au, 2007) and transformed into the original space to recalculate in the finite-element model, thereby correcting the preliminary slope failure probability to an unbiased estimate, as shown in Figure 4. This process is based on the sub-binning strategy (Au, 2007), where the main principle is that the samples in the adjacent region share similar properties, i.e., when an interval is sufficiently small, a random sample from that interval can be used to characterize its properties, such as whether the interval fails or not. Only the selected samples are recalculated for reevaluating the failure probability in the FE model so that a large amount of FE analyses can be avoided.

For instance, each subset Ωk´ is further divided into Ns equal sub-bins Ωkj, j = 1, 2, …, Ns. Taking advantage of the correlation between the dimensionality-reduced and original spaces, one sample from each sub-bin is randomly selected as a representative sample to revert to the original space Ω and its response value FSFE is obtained in the FE model. According to the response conditioning method, the target reliability failure probability Pf,FE is calculated as (Li et al., 2016a; Xiao et al., 2016; Zhou et al., 2021):



where FRS = {FSFE< fs} is the slope failure event obtained based on the FE model in the original space Ωk; IFE,kj is the failure indicator function for the representative sample Ωkj in the original space (i.e., IFE,kj = 1 if FSFE,kj < fs; otherwise, IFE,kj = 0). As the representative samples are drawn from the dimensionality-reduced space, the subset Ωk (i.e., P(Wk´) = P(Wk)), occurs with the same probability as the subset Ωk´ [i.e., P(Ωk´) = P(Ωk)]. The accuracy of Pf,FE depends on the correlation of the dimensionality-reduced space with the original space, which is directly determined by whether the SIR principal direction is accurate or not. If the SIR principal direction is inconsistent with the true direction, the Pf,FE will have a relatively high variability. In this case, the principal directions of the SIR and RS coefficients are updated gradually by an adaptive strategy to obtain a stable target reliability estimate.




3.3 Adaptive strategy

This adaptive strategy progressively updates the simple model (the principal direction of the SIR and preliminary RS models), in order to reduce the variability of Pf,FE due to the deviation of SIR principal direction. This process utilizes the representative samples in target reliability analysis, to update the covariance matrix (Vnew), the corresponding eigenvalues (λnew), and eigenvectors (βnew). Therefore, the SIR principal direction and the RS model are updated with special emphasis nearby the failure domain (Bucher and Bourgund, 1990; Ji and Low, 2012). Subsequently, a second round including preliminary and target reliability analysis is performed. The detailed implementation procedures of the adaptive strategy are provided in Figure 5. The SIR directions and the RS model are gradually updated by active learning and a final unbiased reliability estimate with small variability is obtained, until the correlation (ρRS,FE) between RS values in the dimensionality-reduced space and FE values in the original space reaches convergence (ρRS,FE ≤ 5%). Owing to the different sample weights in each subset, the correlation between the two modes can be calculated as (Li et al., 2016a):




Figure 5 | Implementation procedures of adaptive slope reliability analysis based on SIR.





where   and   represent the expectation and variance, respectively; X represents FSRS, FSFE, or FSRS × FSFE, whereas Xk represents samples of X in the subset of Ωk.





4 Example I: undrained homogeneous soil slopes

An undrained homogeneous soil slope (Griffiths and Fenton, 2004; Jiang et al., 2015) is taken as an example to illustrate the effect of the proposed method. With a height of 5 m and angle of 26.6° (see Figure 6), the slope has its undrained shear strength and unit weight as 23 kPa and 20 kN/m3, respectively (see Table 1). In this study, deterministic analysis was performed by the shear strength reduction technique in FE analysis. The soil is modeled by an elastic-perfectly plastic constitutive model with the Mohr–Coulomb failure criterion. The deterministic safety factor is 1.348 through the shear strength reduction technique in FE analysis, which is close to 1.356 using the simplified Bishop method (Cho, 2010; Jiang et al., 2015), similar to Zhou et al. (2021). The slope reliability analysis was then repeated by implementing a non-intrusive stochastic manner (Li et al., 2016b). In the slope reliability analysis considering the spatial variability of slope soil properties, two different cases are conducted: the first is the benchmark case with a coefficient of variation (COV) of 0.15 and an autocorrelation function of squared exponential (QExp); the second is the high-dimensional case with identical parameters, but with a single exponential autocorrelation function (SExp). Considering the non-negativity of the parameters, log-normal random fields are used for the undrained shear strength.




Figure 6 | Deterministic FE analysis of the undrained slope example.




Table 1 | Soil properties for the undrained slope example.





4.1 Case I: benchmark case

In this case, 15 random variables are required to meet the 95% accuracy of K–L random field discretization. A total of 30 training samples (ξ, Y) are required as training samples to compare the dimensionality reduction effect of SIR and PCA. As shown in Figure 7, the first two larger eigenvalues of SIR are 0.937 and 0.427 in the initial iteration, and from the third eigenvalue, its value decays from 10−16 to 10−18. Therefore, the eigenvectors corresponding to these two eigenvalues are selected to determine the SIR principal directions to construct the dimensionality-reduced variables. It shows that the dimensionality reduction of SIR is more effective than the PCA method in slope spatial variables. In addition, these samples are further used as training samples to construct response surfaces.




Figure 7 | Comparison of the dimensionality reduction effect between PCA and SIR.



Figure 8 provides an example of one adaptive reliability analysis with the results of the updating of the cumulative distribution function, which reaches convergence after three iteration steps, with p0 = 0.1, m = 4, Nl = 5,000 in preliminary analysis and Ns = 50 in target analysis, invoking (4 + 1) × 250 + 30 = 780 FE analyses. In the first iteration, taking the first eigenvalue of λ1 and its principal direction β1 as an example, the linear combination of the first variable (ω1 = β1ξ −0.74ξ1 + 0.27ξ2 + 0.25ξ3 − 0.01ξ4 + 0.03ξ5 + 0.17ξ6 + 0.05ξ7 + 0.23ξ8 + 0.02ξ9 + 0.03ξ10 − 0.32ξ11 − 0.13ξ12 + 0.01ξ13 − 0.31ξ14 − 0.10ξ15) is the same as that of ω2. Relative to the original 15-variable RS model, it is possible to construct a more simple (only two variables) quadratic polynomial RS model in dimensionality-reduced space (Y = 0.31 + 0.08ω1 − 0.03ω2 + 0.006ω12 + 0.002ω22). Pf,RS is 0 in the preliminary reliability analysis of the first iteration, which showcases inadequate accuracy of the RS owing to the dimensionality-reduced bias in the principal direction of the SIR, resulting in that the finite number of layers of subset simulation does not reach the failure domain. Additionally, the initial correlation between FSRS and FSFE is 0.801 and the sample dispersion of the first iteration is large, specifically near the failure domain where there is a significant bias, as shown in Figure 8. Nevertheless, the introduction of representative sample points in the original space recalculated in target reliability analysis leading to an unbiased probability of 4.35 × 10−4.




Figure 8 | Updating of cumulative distribution function using adaptive reliability analysis.



Representative samples near the failure domain are appended to the training samples to update the SIR principal directions. As shown in Figure 9, the first principal direction update in iteration 2 is primarily reflected in the reduction of the weights of the 5th, 6th, 7th, and 8th random variables and the increase of the weights of the 11th, 12th, and 14th random variables. The updated RS model is obtained based on the updated principal directions as Y = 0.30 + 0.11ω1 + 0.002ω2 + 0.005ω12 + 0.001ω22 (see Figure 10). Therefore, the preliminary reliability analysis Pf,RS significantly increases to 1.66 × 10−4, which is closer to the target failure probability of this iteration step (i.e., 5.24 × 10−4). Meanwhile, the correlation coefficient increases to 0.932. The update in the principal direction of the SIR in the third iteration of the analysis is majorly reflected in the increase in the weight of first variable from a negative value to a larger positive value of 0.68, as well as the decrease in the weights of second and third variables (see Figure 9), obtaining a higher model correlation coefficient (0.951). The final reliability estimates for Pf,RS and Pf,FE are 4.98 × 10−4 and 6.58 × 10−4, respectively.




Figure 9 | Updating of first SIR direction in adaptive reliability analysis.






Figure 10 | Updating of RS model in adaptive reliability analysis.



In addition, different sampling methods, the Monte Carlo sampling method (MCS) and Latin hypercube sampling method (LHS), are used for comparison in Table 2 and the results are basically found to be the same. The effect on the accuracy loss of the SIR dimensionality reduction process between 3,000 samples and 30 samples is also compared; it can be seen that the principal direction of the SIR obtained based on 3,000 MCS is closer to being unbiased. However, this proposed method can correct the SIR direction with only a sample size of 1/100 to obtain a consistent reliability assessment, which is also close to the subset simulation results of 1,850 FE analyses (p0 = 0.1, m = 4, and Nl = 500). In addition, to fairly compare the computational efficiency among different reliability methods, the unit COV is taken as a measurement to consider the effect of sample size on the variation of reliability estimation, calculated as COV(Pf) × Nt1/2 (Au, 2007), where Nt is the total number of FE analyses. For reference, the unit COV of the Monte Carlo simulation roughly equals to 1/Pf1/2, which is treated as the upper bound of unit COV. As shown in Table 3, the variability of the final iteration of adaptive analysis is reduced by nearly three times that in the subset simulation method, more importantly, with only around one-third computational efforts. In addition, the unit COV of adaptive analysis is 4.94, which is only one-fifth of the subset simulation method (23.66) and one-eighth of the Monte Carlo simulation method (39.99), which demonstrates that the computational efficiency of the adaptive slope reliability analysis method is increased by 25 and 64 times, respectively. Moreover, as the iterations increase, the COV(Pf,FE) in the target reliability analysis decreases from a moderate level of 0.54 to a lower level of 0.19. Furthermore, the unit COV decreases from 9.04 to 4.94, which means the adaptive process wins more variability reduction compared with the computational efforts.


Table 2 | Results of adaptive reliability analysis for the undrained slope example.




Table 3 | Comparison of reliability analyses using different methods.






4.2 Sensitivity analysis of SIR dimensionality reduction parameters

As previously mentioned, an increase in initial training samples N can reduce accuracy loss, and the number of dimensionality-reduced variables d can also affect the accuracy. Taking this benchmark case as an example, a sensitivity analysis is performed to explore the effects of these two parameters on the accuracy loss in the SIR dimensionality reduction process and the error correction effect of the adaptive slope reliability analysis. The effect of different values of N and d on the results of the adaptive reliability analysis method is illustrated in Table 4. Despite the large dimensionality reduction error (lower correlation coefficient of ρ) caused by the smaller number of training samples, this adaptive method can quickly improve the accuracy of failure probability to an unbiased estimation through adaptive iterations. This adaptive reliability analysis method is insensitive to parameters N and d, thereby solving the problem of parameter-dependent accuracy in SIR dimensionality reduction. This is because a large number of samples near the failure domain in the iteration step are added to the initial training samples to gradually update the principal direction of dimensionality reduction and the form of the response surface. As a suggestion for practical choice, N can be approximately taken as double the number of random variables and d can be chosen as suggested by Pan and Dias (2017).


Table 4 | Impact of SIR dimensionality reduction parameters on adaptive reliability analysis.






4.3 Case II: high-dimensional case

As mentioned in the previous section, as the number of variables increases, the number training samples also increases to ensure the accuracy of the dimensionality reduction process. In this section, we investigate the effect of the proposed method in the high-dimensional case. In this case, the correlation function type is single exponential (SExp) and the number of expansion terms of K–L random field discretization is increased from 15 to 200 to achieve 95% accuracy.

Based on these 200 variables, 400 training samples are used for dimensionality reduction and 10 dimensionality-reduced variables are obtained. The adaptive reliability analysis is then performed with p0 = 0.1, m = 4, Nl = 5,000, and Ns = 50. After three iterations, the correlation between the response value of RS in the dimensionality-reduced space and the value of the FE model in the original space increases from 0.732 to 0.881. The final target failure probability is 1.12 × 10−4, which is significantly improved compared with the initial result (i.e., 0) obtained from the RS model. The procedure requires only 400 initial training samples to obtain unbiased results compared with the result of 5,000 training samples (see Table 2). As shown in Figure 11, there are still some errors with the RS model in the three iterations, but its gradual shifting toward a more accurate value and the target reliability estimates all remain within the range of reasonable values. The corresponding unit COV based on this method is one-half that of the subset simulation method and one-seventh that of the Monte Carlo simulation method (see Table 3), which shows the high effectiveness of the proposed method.




Figure 11 | Results of adaptive reliability analysis in the high-dimensional case of the undrained slope example.







5 Example II: soil slope with a weak layer

This adaptive slope reliability analysis method is further investigated in a more complex slope example containing a weak layer (Kim et al., 2002; Xiao et al., 2015). The slope has a height of 12.2 m, an angle of 26.6°, and a weak layer with a thickness of 0.4 m above the bedrock (see Figure 12). The geotechnical parameters of the upper and weak layers are listed in Table 5, where there are three uncertainty parameters (i.e., cohesion and friction angle of upper-layer soil c1, ϕ1, and friction angle of weak-layer soil ϕ2). The deterministic safety factor of slope stability is 1.336 through the shear strength reduction technique in FE analysis, same with Xiao et al. (2015) and between the lower and upper bounds using limit analysis (Kim et al., 2002). The spatial variability is simulated using a lognormal random field, where the type of autocorrelation function is SExp, with horizontal and vertical autocorrelation distances of 20 m and 2 m, respectively. The number of required K–L expansion terms is 910 (i.e., 440 for c1, ϕ1, 30 for ϕ2) to satisfy the accuracy of random field discretization (i.e., 95%).




Figure 12 | Deterministic FE analysis of the weak-layer slope example.




Table 5 | Soil properties for the weak-layer slope example.



Because of the dimension increase of geotechnical parameters, the initial number of required training samples is appropriately increased. Taking the 2,000 training samples and 20 principal directions as an example, the initial RS in the dimensionality-reduced space is constructed. In three iterations with p0 = 0.1, m = 4, Nl = 5,000, and Ns = 50, the preliminary failure probability of RS is updated to the final reliability from 0 to 2.62 × 10−4. The correlation between the response value of RS in the dimensionality-reduced space and the response values of the FE model in the original space increased from 0.734 to 0.835. The SIR dimensionality reduction with 50,000 training samples was considered as a comparison. Although convergence is reached in two rounds with higher correlations of 0.973 and 0.975, only 1/25 of the samples is required in this adaptive analysis to obtain an unbiased reliability assessment consistent with the results of the sufficient sample (see Figure 13), which again illustrates the high effectiveness of the proposed approach.




Figure 13 | Results of adaptive reliability analysis in the weak-layer slope example.






6 Summary and conclusions

In this paper, an adaptive slope reliability analysis method based on SIR dimensionality reduction is proposed. Accordingly, this method addresses the information loss problem of the SIR method through three steps: preliminary reliability analysis based on the subset simulation of the RS model in the dimensionality-reduced space, target reliability analysis based on the finite-element model and response condition method in the original space, and adaptive strategy of the SIR principal direction and RS updating. Two spatial variability slopes were used to verify the effectiveness of the proposed method. The main conclusions are as follows.

	(1) The effects of dimensionality reduction between PCA and SIR methods considering spatially varying soils were compared in slope reliability analysis. Taking advantage of the relationship between input and response variables in the SIR method, it is easier to determine larger direction vectors for dimensionality reduction. In addition, in this paper, the initial training samples can be repeatedly used as response surface training samples to reduce the computational cost. However, the accuracy of SIR dimensionality reduction is affected by the parameters; a large loss of information will be induced specifically when the number of training samples is limited.

	(2) The proposed adaptive reliability analysis method reduces the requirement of determining a highly correlated simple model in the response conditioning method, and the accuracy requirement of the initial principal direction of dimensionality reduction, thus overcoming the information loss of the traditional SIR dimensionality reduction method. The correlation between the dimensionality-reduced space and the original space was also utilized to update the principal direction of SIR dimensionality reduction and the response surface model by adding the original space training samples near the failure domain.

	(3) The adaptive slope reliability analysis method has a suitable correction effect on the SIR dimensionality reduction error in various dimensions for both single-layer slopes and relatively complex slopes containing a weak layer. The proposed method significantly improves the computational efficiency compared with the traditional SIR method, subset simulation method, and Monte Carlo method, it can obtain stable and unbiased slope reliability assessment with a small number of samples, thereby enhancing the application of RS in slope reliability analysis considering the curse of high dimensionality.
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To solve the problem of fracturing due to high water pressure when pumping in the diversion tunnel, the mechanism of hydraulic fracturing (HF) in the tunnel under high internal water pressure is studied. A numerical model of HF considering water-rock interaction is established using the PFC2D discrete element simulation software. The HF mechanism of surrounding rock under high internal water pressure is studied, and the development process of hydraulic cracks is obtained. The influence of surrounding rock parameters on fracturing is analyzed and the law between principal stress and crack development is investigated. The high-pressure water injection test under different tunnel diameters is also carried out. Numerical test research shows that under the action of high internal water pressure, the surrounding rock at the cavity wall splits first, and the water entering the crack generates water pressure on the crack sidewall, which in turn generates tensile stress at the crack tip and further causes the crack expansion. The crack length is exponentially related to the internal water pressure. The high internal water pressure decays gradually with the crack extension distance and stabilizes when the crack extension reaches a certain length because the water pressure is less than the tensile strength of the surrounding rock. The fracturing results indicate that the process of HF damage is tensile types, and the increase of cohesion plays a suppressive role in crack opening, while the internal friction angle has little effect on the HF effect. The influence of principal stress on the HF result shows that the direction of HF is along the direction of major principal stress. The major principal stress promotes the cracking, while the minor principal stress inhibits the crack growth. By simulating the water injection test for different hole diameters of the diversion tunnel, it is found that the fracturing distance of the surrounding rock increases approximately linearly with the increase of the hole diameter. The test results can provide a basis for the design and construction of high-pressure tunnels such as pumped storage power plants.
Keywords: high internal hydraulic pressure, hydraulic fracturing, discrete element method, fluid-solid coupling, field stress
1 INTRODUCTION
Hydraulic fracturing (HF) is a physical phenomenon that causes cracks and expansion in rock or soil due to the elevation of fluid pressure. The hydraulic fracturing is more common in underground engineering. It has been used in gas field extraction as early as the 1940s (Britt, 2012; Damjanac and Cundall, 2016). In the field of geothermal power generation, hydraulic fracturing is an important method to obtain geothermal energy by controlling the direction and degree of fracture development. Creating fractures in the hot rock and injecting low-temperature water along the fractures can obtain thermal energy underground (Legarth et al., 2005; Ghassemi et al., 2007). Through hydraulic fracturing, the injection of fluid can capture geothermal heat over a larger area (Zimmermann et al., 2011). In addition, hydraulic fracturing behavior is important in areas such as environmental protection (Murdoch and Slack, 2002; Goodman et al., 2016) and magma flow (Lister et al., 1991). However, in some areas, hydraulic fracturing can be harmful, such as in water diversion tunnels where hydraulic fracturing can damage the tunnel structure, and in dam foundations where hydraulic fracturing can cause water seepage or instability, with serious engineering consequences (Zhao et al., 2022; Zhu et al., 2022). It has become crucial to understand the mechanism of hydraulic fracturing and find solutions to the risks brought on by hydraulic fracturing as a result of the recent development of large water conservation projects.
At present, the research methods of rock hydraulic fracturing mainly include laboratory model tests (Shearing or compression tests, uniaxial and triaxial compression tests), theoretical analysis (Blanton’s criterion, Warpinski and Teufel’s criterion, Renshaw and Pollard’s criterion, etc.) and numerical simulations (The continuous, discontinuous and hybrid continuum-discrete method) (Lin et al., 2022; Lei et al., 2023; Lin et al., 2023; Guo et al., 2014). studied the effects of stress, flow rate, and fracturing fluid viscosity on fracture extension patterns based on large triaxial tests. (Patel et al., 2017). conducted triaxial tests of hydraulic fracturing to study the effect of cyclic pressure on the destructive force of rock masses. (Tan et al., 2017). conducted true triaxial hydraulic fracturing experiments in layered shales to understand the fracture initiation and vertical extension behavior. He also summarized four typical modes of fracture extension in shale formations from the physical experiment results. (Li et al., 2020). developed a mathematical model for hydraulic fracturing to predict fracture parameters. The results showed that field stress plays a major role in the development of cracks, the fracture toughness of the rock can inhibit the growth of fractures, and the fracture fluid density promotes the expansion of fractures. (Chukwudozie et al., 2019; Lin et al., 2022). derived a unified fracture-porous media hydraulic fracturing model based on the energy criterion of Griffith theory and used the variational phase field method to deal with the interaction of multiple fractures and their evolution along complex paths. Lecampion and Detournay (Lecampion and Detournay, 2007) developed an implicit moving grid algorithm to solve the plane strain propagation problem for hydraulic fracturing. This algorithm is well suited for plane strain hydraulic fracturing problems with hysteresis.
Numerical simulation can better obtain the process of hydraulic fracturing and study the mechanism than model tests. Numerical hydraulic fracturing models are divided into coupled and uncoupled models. The coupled model considers the interaction between water and surrounding rock (Zhang et al., 2017; Huang et al., 2020; Lei et al., 2020; Jia et al., 2021) while the uncoupled model ignore such interaction (Shimizu et al., 2011). studied the effect of fluid viscosity on fracture initiation pressure, and they found that low-viscosity fluids are more likely to penetrate into the fracture and apply fluid pressure to the entire fracture surface. Therefore, the fracture pressure of low-viscosity fluids is lower than that of high-viscosity fluids. (Wang et al., 2009). used realistic failure process analysis (F-RFPA2D) to study the emergence and expansion behavior of fractures in hard soils during injection, and investigated the effect of soil homogeneity on the fractured ground. (Li et al., 2012). developed a parallel finite element program, RFPA3D-Parallel, for stress and seepage field analysis. The program considers the coupled effects of seepage, damage, and stress fields to model progressive damage and associated fluid flow in rocks in three dimensions. The program can be used to study the hydrodynamic response of laboratory-scale rock samples (Ren et al., 2009). use extended finite element method (XFEM) for numerical simulation of hydraulic fracturing. XFEM can overcome the disadvantages of classical finite elements, such as no dense mesh near the fracture and no need to set the path of the fracture. The pre-processing work is greatly simplified. (Zhou and Hou, 2013; Zhao et al., 2021). used fast lagrangian analysis of continua in 3 dimensions (FLAC3D) to study the mechanical behavior of rock formations based on continuous media mechanics. The simulation considers the crack extension in the geometric model and the hydrodynamic coupling effect between the crack and the matrix in the three-dimensional stress state. A finite-discrete element method (FDEM)-based coupled hydrodynamic model is proposed by (Yan et al., 2016), where each complete object is discretized with a mesh consisting of 3-node triangular elements, and joint cells with no initial thickness are inserted at the common edges of the triangular cells for simulating hydraulic fracturing with complex fracture geometries. The proposed hydraulic fracture network update algorithm can accurately update the most complex hydraulic fracture network during the hydraulic fracturing process. However, finite element method (FEM) or XFEM requires huge computational costs, and it is difficult to study fracture extension due to its limitations on grid orientation, numerical discretization, and especially fracture extension direction. The boundary element method can use fewer elements with the same accuracy and high computational efficiency. (Zhou et al., 2016). developed a numerical model using the maximum circumferential (MCS) theory and the boundary element method (BEM) to study the effects of single and combined factors and proposed an evaluation factor to evaluate the direction of fracture extension. The discrete element method can simulate large deformation problems in rock masses more simply and realistically than the frequent mesh division of traditional finite element simulation methods. (Damjanac et al., 2016). developed the 'SRM' model using the bonded particle model (BPM) and synthetic rock mass (SRM) concepts to overcome the limitations of the original discrete element method (DEM) model that required predefined fracture trajectories. (McClure et al., 2016). developed a hydraulic fracturing simulator that describes the expansion of hydraulic fractures as well as simulates the tensioning and shearing of natural fractures based on stress states. (Wang et al., 2014) used the granular flow method to design several parameter combinations to study the effects of macroscopic parameters and initial stresses of the coal seam on the cleavage state, and found that the fracture radius was mainly affected by the deformation parameters. These scholars have made great contributions to the research and application of hydraulic fracturing. The hydraulic fracturing process is accompanied by the interaction between water flow within the fracture and fracture expansion, and it is important to construct a suitable hydraulic coupling model to simulate the real hydraulic splitting process, and it can be found that there are still relatively few studies on the influence parameters of hydraulic splitting in the coupled state. Most of the previous tests have used lower pressures for hydraulic splitting, and there is less research on hydraulic fracturing under high internal water pressure. In recent years, a large number of pumped storage power plants have been built in China, with the highest head reaching 800 m. It is of great practical significance to carry out research on the mechanism of hydraulic fracturing under high internal water pressure.
The paper uses discrete element method (DEM) to establish a hydraulic fracturing model of hydraulic coupling from ameso-scale mechanical approach for the previous situation where the coupling of water-rock interaction is less considered. The mechanism of hydraulic fracturing in the tunnel surrounding rock under high internal water pressure is studied. The influence of major principal stresses in the formation on the direction of fracture development under high internal water pressure is initially explored, and the influence of formation parameters on the development of hydraulic fracturing is investigated. The research results can provide a reference for the design and construction of hydraulic tunnel engineering under consideration of high internal water pressure.
2 BASIC THEORY OF HYDRODYNAMIC COUPLING BASED ON DEM
The calculation between fluid and particle cells are performed in the particle flow code (PFC) by differential methods, and the connection is established by the forces acting on the fluid and the particles. Changes in fluid volume in the pores cause variation of the forces acting on the particles, which in turn affect the volume of fluid between the particles after the forces are applied. The solid-liquid coupling process is shown in Figure 1 (Zimmerman and Bodvarsson, 1996; Al-Busaidi et al., 2005), where the particle medium is studied from the meso-scale using the discrete medium approach, and the pore fluid is considered at the mesoscale level based on the continuous medium approach for its average value.
[image: Figure 1]FIGURE 1 | Schematic diagram of the fluid-solid coupling process in PFC.
In the particle flow simulation, the fluid flow is simulated by introducing fluid “domains” and fluid "ducts” (Itasca’s Particle Flow Code, 2008). As shown in Figure 2, the “domains” are used to store the fluid, each domain is enclosed by a closed particle contact, and the “pipes” are the channels for fluid flow. The mechanical response causes a change of the “pipe” to achieve a change in the flow rate, which in turn causes a change in the pressure in the domain, and then the fluid pressure acts on the particles, thus realizing the hydraulic coupling effect.
[image: Figure 2]FIGURE 2 | Pipe domain model in DEM. (A) Schematic diagram of the percolation model between bonded particles; (B) Particle stress vector calculation diagram.
In the process of hydraulic fracturing, because of its low velocity and conforms to the laminar flow condition, the flow rate q in the pipeline can be calculated according to the cubic theorem of parallel plate seepage.
[image: image]
where, µ is the dynamic viscosity coefficient of the fluid, and Pl, P2 is the pressure in the fluid domain at both ends of the pipe.
Assuming that the fluid flow follows the Poiseuille law, the flow rate can be written as:
[image: image]
[image: image]
where, q is the flow rate (m3/s); a is the hydraulic aperture, which is related to the normal force of the two particles; k is the permeability coefficient; and L is the pipe length; [image: image] is mobility; [image: image] is the pressure difference between the two pore grids.
From Eq. 2, it can be seen that the opening a will affect the flow of the pipeline, that is, the permeability of the model. The influence of the mechanical process on the fluid flow is mainly reflected in that the mechanical process determines the opening of the pore channel, and the change of the opening affects the fluid flow rate. The influence of fluid on mechanical processes is mainly manifested in the fluctuation of pore fluid pressure caused by fluid flow, the pore fluid pressure acting on particles and the viscous force during fluid flow.
At the contact point between particles, it is assumed that there is an initial opening. The existence of the initial opening allows fluid flow in the fluid channel formed by the two particles even when they are in close contact, thus ensuring the matrix permeability of the material. The opening a of the fluid channel depends on the contact force between particles. When the normal contact force between two particles is compressive stress, the opening a of the fluid channel is calculated by the following formula:
[image: image]
where, F is the current compression force between the two particles, and F0 is the compression force when the pipe opening is reduced to half of the initial opening.
From Eq. 4, it can be seen that when the compression force between particles increases, the opening of the pipeline will decrease; when the compression force between particles decreases, the opening of the pipeline will increase. The hydraulic coupling effect is achieved through the relationship between this force and the fluid channel.
When two cemented particles are in tension, or the bond between the two particles has been destroyed, and the particles are disconnected at the contact point, the opening a is calculated by the following formula:
[image: image]
where, d is the distance between the two particles, and R1, R2 are the radii of the two particles respectively, and [image: image] is a dimensionless multiplier. For most models, the particle size is much larger than the actual particle size, and the calculated opening will be too large. Therefore, [image: image] often takes a constant less than 1 to obtain a reasonable opening.
In time steps [image: image], the change in pore fluid pressure due to fluid flow is calculated from the fluid’s bulk compression modulus. Consider a pore with N fluid channels. In the time step [image: image], the total fluid flow is [image: image], and the change in pore fluid pressure is: 
[image: image]
Where, [image: image] is the bulk modulus of the fluid; [image: image] and [image: image] are the volume of the domain and its variation, respectively.
In order to simplify the problem of introducing water pressure into particles, it is assumed that the pressure change due to the flow of fluid in the pipe occurs only within the corresponding contact, that the stress is uniform in each individual domain, and that the push force is connected to other Domain is irrelevant. If around a domain, the path connecting the contacts is polygonal, the stress vector on the particle is:
[image: image]
where, f is the normal unit vector of the line connecting the two contact points; t is the length of the line.
The condition to ensure the stability of the model operation is that the pressure change due to water inflow must be smaller than the disturbance pressure, and the critical time step [image: image] can be derived when both are equal as:
[image: image]
where, N is the number of pipes connected to a “domain”; and r is the average radius of the particles around a “domain”.
All constant parameter values as follows: a0: 8.6e-6, F0: 1e10, λ: 0.1, Kf: 2.18e9. To ensure stability over the entire computational domain, the overall time step must be the minimum of all local time steps, in addition to being multiplied by a safety factor of less than 1.0.
3 ESTABLISHMENT OF HF MODEL AND PARAMETERS
3.1 Numerical model
Considering the engineering geological conditions of a typical tunnel for pumped-storage power station, a discrete element numerical model of circular tunnel is established. Considering the limited computational capability of PFC2D, the surrounding rock within a certain range around the center of the tunnel is selected for establishing the model. As shown in Figure 3, the model size is 30 m × 30 m, the inner model particle (earth yellow) size is between 0.08 m and 0.12 m, and the outer model particle size (light brown) is between 0.12 m and 0.18 m. The tunnel center is located in the center of the model and the tunnel diameter is 6 m. The tunnel is excavated with full section tunnel method. The size of the model is about 6 times of the diameter of the tunnel. It is large enough to ignore the tunnelling on the boundary. Since the acceleration due to gravity is small compared to the overlying pressure, it is not considered in the calculation.
[image: Figure 3]FIGURE 3 | Numerical model with DEM.
In order to simulate the flow of fluid in rock mass, track the process of crack initiation and propagation directly, and study the mechanism of hydraulic fracturing in rock mass, the hydraulic coupling calculation is used. In the hydraulic coupling calculation, it is necessary to establish the fluid pipe domain model of the surrounding rock. Figure 4 shows the fluid pipe domain model after tunnel excavation. The center point of the model is the water filling point of the high-pressure tunnel.
[image: Figure 4]FIGURE 4 | Hydrodynamically coupled fluid pipe domain model.
The pipe-domain model considers the water-rock coupling, which means the relationship between the crack development and the distribution or flow of water in rock mass under the action of water pressure. The model can simulate the flow state of water in rock more truly and can not only describe the fluid phase and the solid phase accurately, but also combine the numerical method of mesh division with the particle discrete element method. It also saves a lot of computing costs. The difference between dynamic and static internal water pressure may indeed have an effect on hydraulic fracturing results. Dynamic internal water pressure refers to the fluctuation of water pressure with time and force during hydraulic fracturing. This dynamically fluctuating internal water pressure may affect the rock’s fracture pattern and splitting effectiveness. On the one hand, higher dynamic internal water pressure may lead to stronger hydraulic shock force, which increases the resistance and damage degree of rock. This can make the rock more difficult to split or achieve the desired splitting effect. On the other hand, fluctuations in dynamic internal water pressure may also cause rocks impacted by water pressure to be acted on by different forces at different times or locations, thus having an uneven impact on the fracture path and the formed cracks. This can lead to changes in the rock’s fracture pattern, with possible additional fractures, offsets, or changes in fracture direction. Therefore, in order to obtain a more stable splitting effect, it is important to keep a relatively stable internal water pressure as much as possible. Minimizing fluctuations in internal water pressure by controlling the parameters and operation of the hydraulic system helps to improve the consistency and predictability of hydraulic splitting.
The fluid-solid coupling is realized by the following ways. 1) The size of the pipe is determined by the contact force between particles and the change of piper size will cause the change of particle contact force, so as to realize the coupling between the seepage of the model and the stress state. 2) The forces acting on the particle change the volume of the domain which in turn influence the pressure inside the domain. 3) The pressure difference between adjacent domains acts on the surrounding particles in the form of seepage volume force. Therefore, the influence of seepage on the stress state of solid particles is considered.
3.2 Initial field stress
Field stress is applied by the action of the 'wall' (the blue border in Figure 3) on the particles. According to the field stress test results obtained by the stress relief method in the field, the high-pressure tunnel construction area is dominated by horizontal stress. Therefore, in the two-dimensional numerical model, the horizontal direction is selected as major principal stress direction, and the vertical direction is selected as the minor principal stress direction. The determined horizontal stress [image: image] is 15.5 MPa, and the vertical stress [image: image] is 8.2 MPa. As the tunnel is deep buried, both the horizontal and vertical stresses are considered as uniform.
3.3 Calibration of rock parameters
According to the regional geological report of the tunnel, the parameters of the surrounding rock are shown in Table 1.
TABLE 1 | Physical and mechanical parameters of surrounding rock.
[image: Table 1]In particle flow code, the macroscopic response of the material is inferred from the interactions of microscopic properties. The purpose of microscale parameter calibration is to obtain unknown parameters of particles and bonds in DEM calculations (Yu et al., 2021). Since the relationship between the input microscale parameters and the target macroscale ones is not directly correlated, a large number of numerical simulations need to be performed by continuously adjusting the input microscale parameters until the desired macroscale behavior is reproduced. During this process, we need to ensure that the numerically simulated stress-strain curves are consistent with the experiments.
By taking a group of initial parameters, changing a single meso-parameter and analyzing the law of macro-parameter change, we can better adjust the meso-parameter and get a reasonable result quickly. Parallel bond modulus (Pb_emod) and parallel bond stiffness ratio (Pb_kratio) are deformation parameters of particles. The influence of Pb_emod and Pb_kratio on the stress-strain curves under uniaxial compression is shown in Figure 5. With the increase of Pb_emod, the stress-strain elastic segment becomes steeper, the macroscopic Young’s modulus increases obviously, and the peak strength changes little. With the increase of Pb_kratio, both peak strength and Young’s modulus decrease slightly.
[image: Figure 5]FIGURE 5 | Deformation parameter calibration stress-strain curve. (A) Pb_emod calibration stress-strain curve; (B) Pb_kratio calibration stress-strain curve.
Parallel bond cohesion (Pb_coh), parallel bond tensile strength (Pb_ten) and parallel bond internal friction angle (Pb_fa) are the three strength parameters of particles. The stress-strain curves obtained from the uniaxial compression simulation is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Strength parameter calibration stress-strain curve. (A) Pb_coh calibration stress-strain curve; (B) Pb_ten calibration stress-strain curve; (C) Pb_fa calibration stress-strain curve.
When the pb_coh increases from 15 MPa to 40 MPa, the peak strength increases from 35 MPa to approximately 46 MPa. The peak strength increases linearly with the increase of the cohesion and the Young’s modulus remains unchanged. When the pb_ten increases from 15 MPa to 35 MPa, the peak strength increases from 35 MPa to 72 MPa and the peak strength increases linearly with the tensile strength. The internal friction angle has little effect on the macroscopic elastic modulus and peak strength.
Uniaxial compression test by numerical simulation of specimens and after a somewhat tedious trial and error calibration process, the simulation results for the macro-mechanical behavior of the rock mass were obtained and the results are show in Figure 7.
[image: Figure 7]FIGURE 7 | Typical mechanical responses and failure patterns of rocks under uniaxial compression tests.
We can see that the stress-strain curves correspond well to experimental observation of the filed rock. Therefore, the results obtained from the numerical tests can basically represent the macroscopic mechanical parameters of the surrounding rock. The determined micro-mechanical parameters are shown in Table 2.
TABLE 2 | Meso-parameters of class II surrounding rock.
[image: Table 2]4 MODEL VALIDATION
In this section, the numerical model is assessed through the comparison with the analytical solutions of redistributed stress after excavation in circle tunnel. For this purpose, numerical simulations of underground cavern excavation were performed. The horizontal field stress of 15.5 MPa and the vertical field stress of 8.2 MPa were selected. According to the elastic mechanics, the tangential and radial stresses along the x-axis path of the tunnel center after excavation can be written as (Jaeger et al., 2009):
[image: image]
[image: image]
where, [image: image] and [image: image] are the tangential and radial stresses after the circular excavation acting along the [image: image] axis of the circular opening; [image: image] is the radius of the circle opening; [image: image] is the distance between the circle center and the interest point on the axis; and [image: image] is the lateral pressure coefficient.
The comparison between the analytical solution and the numerical simulation are shown in Figure 8. The magnitude of the tangential initial stress is equal to the vertical field stress, and the magnitude of the radial initial stress is equal to the horizontal field stress. It is obvious that the redistributed tangential stresses basically coincided with the analytical solution after the numerical simulation of excavation, and the radial stresses had some fluctuations but could also match well. Overall, the model met the expectation and is able to simulate the tunnel excavation well, providing a good simulation environment for the tunnel water-filling tests.
[image: Figure 8]FIGURE 8 | Comparison of numerical and analytical solutions of stresses after tunnel excavation.
5 RESULTS AND DISCUSSIONS
5.1 Progressive hydraulic fracturing process
Based on the simulation results of tunnel filling, the hydraulic fracturing process and failure mechanism of surrounding rock subjected to high internal pressure water can be revealed. In order to understand the hydraulic fracturing process more clearly, [image: image] 15 MPa was taken as an example to record the development of crack length over time. It should be noted that the initial field stress is that the vertical stress [image: image] is 8.2 MPa and the horizontal stress [image: image] is 15.5 MPa. Figure 9 shows the crack propagation process in the surrounding rock during the HF process under the action of high internal water. During the complete HF simulation process, the internal water pressure is kept constant at 15 MPa.
[image: Figure 9]FIGURE 9 | Development process of crack length under the action of high internal water pressure.
It can be seen from Figure 9 that under the action of high internal water pressure, the force on the surrounding rock at the cave wall is the largest, and fracturing occurs first. Once the pore water pressure exceeds the tensile strength of the rock mass, the connection between the rock mass particles is destroyed, and the pressure further causes the crack expansion. At the initial moment of fracturing, mainly horizontal cracks are produced, while the rock mass at other positions of the cave wall is relatively intact. As the crack expands, the water pressure in the expanded crack gradually decays with the increase of the crack length. When the crack extends to a certain distance, the crack propagation tends to be stable because the water pressure at the crack tip is less than the critical water pressure for fracturing of the surrounding rock. At the same time, small cracks are evenly distributed around the wall of the cave. Moreover, the connection between the particles near the induced cracks breaks and it mainly propagates along the HF cracks.
Figure 10 shows the water pressure applied on rock particles. After the hydraulic fracturing of the surrounding rock, the water pressure inside the crack gradually decreases with the increase of the fracturing length, and the pressure applied on the surrounding rock gradually decreases. At the tips of the cracks, the water pressure is not reduced to zero and it is smaller than the critical water pressure value of the surrounding rock. Therefore, the crack expansion tends to be stable.
[image: Figure 10]FIGURE 10 | The water pressure applied on rock particles.
Internal water pressure is an important factor affecting hydraulic fracturing. Therefore, different water pressures are selected for fracturing simulation. Figure 11 shows the relationship curve between cycle steps and splitting crack length, as the number of cycle steps increases, the crack growth rate exhibits a slow-rapid-slow law. Figure 12 shows the relationship between internal water pressure and the maximum fracturing crack length. By simulating tunnel water filling under different high internal water pressures (0–15 MPa), it can be found that there is a critical threshold pressure [image: image] for tunnel fracturing caused by high internal water pressure. When the internal water pressure is less than the critical pressure value, the tunnel will not produce splitting damage. For the working conditions in this paper, when the water-filled pressure exceeds [image: image] = 12.0 MPa, the surrounding rock around the cave wall begins to split and fail, and when the water-filled pressure less than [image: image] = 12.0 MPa, the surrounding rock around the cave wall will not split. Therefore, the critical pressure value of the working conditions in this paper is 12.0 MPa. As the water filling pressure increases, the length of the splitting cracks generated in the tunnel increases rapidly. When the water filling pressure increases to 15 MPa, the splitting distance increases to nearly 10 m. To describe the relationship between internal hydraulic pressure and fracture splitting length, the following equation is proposed:
[image: image]
where, [image: image] is the maximum length of the crack produced by hydraulic fracturing; σ is the internal water pressure in the tunnel; A is a fitting parameter, which is a variable describing the relationship between the length of the splitting crack and the increase of water pressure in the tunnel. It is related to the field stress and the mechanical properties of the rock mass. The determined A is 0.81. The correlation coefficient R2 is 0.97333, indication that this equation can describe the development of crack length with the increase of internal water pressure well.
[image: Figure 11]FIGURE 11 | Relationship curve between cycle steps and splitting crack length.
[image: Figure 12]FIGURE 12 | Relationship curve between internal water pressure and splitting crack length.
As the crack grows, although the water pressure acting on the crack gradually decreases, the larger moment arm also leads to a larger splitting force, which also shows a secondary promotion effect on crack propagation. This secondary promotion makes the increase rate of the fracture length increase with the internal water pressure, and the fitting Eq. 6 also reflects the promotion effect of the internal water pressure on the fracture splitting length.
5.2 Effect of strength of surrounding rock on hydraulic fracturing
As shown in previous study, the development of crack length is significantly related to the mechanical properties of rock mass. The cohesion of rock mass is an important strength index of rock mass. To reveal the influence of rock cohesion on the hydraulic fracturing, five different cohesion value are designed and calculated using an internal water pressure of 14 MPa. The obtained numerical simulation results are shown in Figure 13. In Figure 13, the critical water pressure is defined as the pressure when the rock mass starts to fracture under the action of high internal water pressure.
[image: Figure 13]FIGURE 13 | Influence of cohesion on fracturing results.
Numerical test results show that when the cohesion of rock mass changes from 5 MPa to 6 MPa, the length of the splitting fracture decreases almost linearly. When the cohesion reaches 6.5 MPa, the splitting length decreases sharply, and the crack development is basically inhibited. However, when the cohesive changes from 5 MPa to 7 MPa, the critical water pressure increases monotonously with the increase of cohesive. The cohesive affects the HF results significantly, and high cohesive force results in the inhibiting of the development of splitting cracks. This is because the increase in the cohesion of the rock mass will increase the bonding ability between the rock mass particles, and the connection between the rock mass particles will be less likely to be damaged, which increases the tensile strength of the rock mass in the direction of vertical crack development, thus inhibiting the HF. When the cohesion increases to a certain value, the HF effect of the internal water pressure is less than the anti-splitting ability of the rock mass, and HF does not occur again.
The internal friction angle of the rock is an important strength index. To study the effect of the internal friction angle on HF, only the internal friction angle parameter of the surrounding rock is changed in the numerical tests. The hydraulic fracturing at the internal water pressure of 14.0 MPa and 14.5 MPa is studied respectively. The obtained experimental results are shown in Figure 14.
[image: Figure 14]FIGURE 14 | Influence of Internal Friction Angle on fracturing Results.
The simulation of HF under different internal friction angles reveals that the variation of internal friction angle has no effect on the crack development under both internal hydraulic pressures at a given field stress state. According to the numerical simulation results, the cracks produced between the particles after fracturing are tensile cracks, so the splitting damage under this field stress state is tensile. The internal friction angle reflects the magnitude of the internal frictional resistance of the rock mass. During the HF process, the distance between the particles becomes larger and the contract is destroyed, the frictional resistance is not reflected in this process. It does not play a role for the splitting damage in the tensile form, so the internal friction angle has little effect on the results of the crack length. At the same time, when the friction angle increases from 25° to 30°, the critical water pressure increases slightly. But when the internal friction angle changes from 30° to 50°, the critical water pressure stays constant.
5.3 Effect of field stress on hydraulic fracturing
Wang et al., 2014 found that the axial pressure of rock mass along the coal seam can amplify the fracturing damage capacity of high-pressure water flow. The greater the axial pressure along the coal seam, the easier it is to break. The smaller the axial pressure perpendicular to the coal seam, the easier it is to produce cracks. Through the directional injection hydraulic fracturing test, the fractured joint will deflect to the major horizontal principal stress direction after the fracture initiation. However, previous studies on the effect of principal stress on fracture initiation are rare, and the connection between the state of principal stress and fracture initiation under high internal water pressure is still worth studying.
In previous numerical tests, when the tunnel is filled with water at 12.0 MPa–15.0 MPa waterhead, hydraulic fracturing occurs in the surrounding rock, and the HF of the surrounding rock is along the direction of the major principal stress of the field stress. To further verify that the hydraulic fracturing after tunnel filling is along the direction of the major principal stress of the field stress, three different lateral pressure coefficients are used to simulate the tunnel filling process. The effect of the change in the direction of the principal stress of the ground after filling on the direction of HF of the surrounding rock are analyzed. The test simulation results are shown in Figure 15.
[image: Figure 15]FIGURE 15 | HF tests under different lateral pressure coefficients. (A) Lateral pressure coefficient 0.3; (B) Lateral pressure coefficient 0.5; (C) Lateral pressure coefficient 3.3.
The simulation results show that the major principal stresses in Figures 15A,B are in the vertical direction and the splitting direction is in the vertical direction. In Figure 15C, the major principal stress direction is in the horizontal direction and the splitting direction is also in the horizontal direction. It can be found that under different major principal stress directions, after the tunnel is filled with water, the surrounding rock is hydraulically split along different directions of horizontal and vertical. But the direction of fracturing is consistent with the direction of major principal stress. This reflects that after the tunnel is filled with water, the direction of the major principal stress will determine the direction of HF. This is because HF is rock tensile damage or tensile-shear damage, and the field principal stress will play a compressive role on the stratigraphic rock, making the particles denser, and the soil particles spacing smaller. Therefore, the compressed dense particles are more difficult to be separated, and the connection between the particles requires greater water pressure to pulled off. At this time, if the rock split not only to overcome its tensile properties but also to resist the field stress, which makes the rock mass in the direction of perpendicular to the major principal stress greater than the perpendicular to the minor principal resistance to splitting capacity. Therefore, the crack is more likely to unfold along the direction of the major principal stress.
To further investigate the effect of principal stress on hydraulic fracture, hydraulic fracture tests are conducted under different principal stresses. Five different types of major and minor principal stresses are used for water injection tests to obtain the law between the magnitude of the principal stress and the critical splitting pressure. The simulation results are also compared with the analytical solutions (Scholz, 1968):
[image: image]
[image: image]
where, [image: image] is the water pressure at which the initial cracking of the pore wall occurs; [image: image] is the tangential stress around the borehole; [image: image] is the tensile strength of the rock.
As shown in Figure 16, the critical fracture pressure is negatively correlated with the major principal stress. The critical fracture decreases with the increase of the major principal stress and the major principal stress plays a role in promoting fracture. The critical splitting pressure is positively correlated with the minor principal stress, and as the stress increases, the cracking pressure increases. The minor principal stress plays an inhibitory role in splitting. This also verifies the previous conclusion that the splitting process has to overcome the tension and field stress between the particles, so the larger the minor principal stress is, the larger the water pressure is needed, and the higher the cracking pressure is.
[image: Figure 16]FIGURE 16 | Cracking pressure versus principal stress curve.
5.4 Effect of tunnel diameter on hydraulic fracturing
It is very important to carry out the hydraulic fracturing analysis of different tunnel diameters for the tunnel lining structure design of the pumped storage power station. According to the established numerical model of the high internal water pressure tunnel, a waterhead of 14.0 MPa is applied in the tunnel to carry out the water filling simulation. The hydraulic fracturing of the surrounding rock after the high-pressure tunnel is filled with water under different apertures is analyzed. Figure 17 shows the fracture length of surrounding rock under high internal water pressure with different pore diameters. It can be seen that after the high-pressure tunnel is filled with water, the larger the diameter of the high-pressure tunnel, the longer the hydraulic splitting distance of the surrounding rock under the action of high internal water pressure. This may be due to the fact that the larger the tunnel diameter, the smaller the internal water pressure attenuation caused by the same split crack length, so the tunnel with a larger diameter needs longer split cracks to achieve stress balance. When the tunnel diameter is 4 m, the crack extends about 4.6 m. When the tunnel diameter is 8 m, the crack length increases to 6.5 m. The crack length of the surrounding rock is approximately linear with the tunnel diameter.
[image: Figure 17]FIGURE 17 | Relationship between tunnel diameter and fracturing crack length.
6 CONCLUSION
Discrete element method (DEM) is used to establish a hydraulic fracturing model and the water-rock coupling is considered in this paper. The mechanism of hydraulic fracturing in the tunnel surrounding rock under high internal water pressure is studied. The influence of major principal stresses in the formation on the direction of fracture development under high internal water pressure is initially explored, and the influence of formation parameters on the development of hydraulic fracturing is investigated. The mainly conclusions are as follows.
(1) Under the action of internal water pressure, the cavity wall of the surrounding rock first splits with two parallel cracks. Then water enters the cracks and causes the cracks to expand by squeezing the crack sidewall, and the expansion of the cracks by water pressure gradually decays until it is less than the critical fracturing pressure of surrounding rock. The relationship between internal hydraulic pressure and fracture splitting length can be describe an exponential function.
(2) The hydraulic fracturing is a tensile damage failure model. Cohesion inhibits the development of hydraulic fractures, and an increase in cohesion increases the fracture initiation pressure. The variation of the internal friction angle has little effect on the fractured radius and fracture initiation pressure. The increase in the cohesion of the rock mass will increase the bonding ability between the rock mass particles, and the connection between the rock mass particles will be less likely to be damaged, which increases the tensile strength of the rock mass in the direction of vertical crack development, thus inhibiting the HF.
(3) The direction of hydraulic fracturing under high internal water pressure is related to the ratio of major principal stress to minor principal stress. The surrounding rock splits preferentially along the direction of the major principal stress. The splitting process has to overcome the field stress and the tensile capacity between rock particles. The minor principal stress of the stratum is positively correlated with the critical fracturing pressure, and the major principal stress of the stratum is negatively correlated with the critical fracturing pressure. This conclusion is important for the control of hydraulic fracturing hazards. HF is rock tensile damage or tensile-shear damage, and the field principal stress will play a compressive role on the stratigraphic rock, making the particles denser, and the soil particles spacing smaller. Therefore, the compressed dense particles are more difficult to be separated, and the connection between the particles requires greater water pressure to pulled off. At this time, if the rock split not only to overcome its tensile properties but also to resist the field stress, which makes the rock mass in the direction of perpendicular to the major principal stress greater than the perpendicular to the minor principal resistance to splitting capacity. Therefore, the crack is more likely to unfold along the direction of the major principal stress. The fracturing crack length almost increases linearly with the increase of tunnel diameter. This may be due to the fact that the larger the tunnel diameter, the smaller the internal water pressure attenuation caused by the same split crack length, so the tunnel with a larger diameter needs longer split cracks to achieve stress balance.
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Confining pressure is an important factor affecting the strength and deformation characteristics of rock mass, it is of great significance to study the mechanical and deformation characteristics of jointed rock mass under confining pressure for the construction of deep underground engineering and the prevention of geological disasters. In order to study the mechanical and deformation characteristics of filled jointed rock under confining pressure, based on the laboratory experiment results of static uniaxial compression of filled jointed rock samples, the Particle Flow Code is used to conduct the numerical simulation. The strength characteristics, failure characteristics and micro-cracks development characteristics of filled jointed rock under different confining pressure levels, different joint inclination angles and different sample sizes are analyzed. The results show that the peak stress and peak strain increase with the increase of confining pressure level, and there is a strong linear relationship between peak stress and confining pressure level. The peak stress and initiation stress decrease first and then increase with the increase of joint inclination angle. With the increase of confining pressure level, the change law of initiation stress of filled jointed rock under different joint inclination angles is different. The confining pressure will prolong the development process of micro-cracks in filled jointed rock, which will make the distribution of micro-cracks more dispersed and the total number of micro-cracks increase. The failure mode changes from splitting failure to shear failure with the increase of confining pressure level. The change of joint inclination angle will seriously affect the failure mode and micro-cracks development characteristics of filled jointed rock.
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1 Introduction

With the continuous progress of deep underground engineering construction, geological disasters and engineering accidents occur from time to time. These accidents are often closely related to the mechanical and deformation characteristics of deep rock mass under the in-situ stress environment. The in-situ stress environment of rock mass will have a certain impact on its mechanical behavior and stability (Cai, 2013; Ghorbani et al., 2020; Xiao et al., 2021). However, the rock mass is often composed of intact rock blocks and joints. The existence of joints causes the discontinuity and inhomogeneity of rock mass. The mechanical property and deformation and failure characteristics of rock mass depend on the characteristics of joints to a great extent (Bahaaddini et al., 2013a; Liu et al., 2018; Li et al., 2022; Wang et al., 2022). Therefore, it is of great significance to study the mechanical and deformation characteristics of jointed rock mass under confining pressure for the construction of deep underground engineering and the prevention of geological disasters.

At present, a lot of researches have been conducted on the influence of confining pressure on the mechanical properties of jointed rock (Lu et al., 2012; Ghazvinian and Hadei, 2012; Xiang et al., 2019; Tang et al., 2022). For example, Arzúa et al. (2014) and Alejano et al. (2017) conducted triaxial compression tests on jointed granite samples to study the influence of confining pressure and joint number on the peak strength and elastic modulus of massive jointed rock. Zhu et al. (2021) found that the strength and elastic modulus of columnar jointed rocks increase with the increase of confining pressure through laboratory physical tests, and there are four different failure modes of columnar jointed rocks with the change of joint inclination under confining pressure. Xie et al. (2023) used the improved SHPB device to carry out the dynamic impact test of rock samples with cross joints, and studied the effects of loading rate and confining pressure on the dynamic characteristics and failure characteristics of jointed rock. The results showed that confining pressure had a certain impact on the failure mode and degree of fracture of jointed rock, showing splitting failure under low confining pressure and compression shear failure under high confining pressure, and the fragmentation degree of rock sample gradually decreases with the increase of confining pressure. Through experiments, Chen et al. (2023) found that water-rock interaction, confining pressure effect and joint inclination angle have a great influence on the failure mode of intermittent jointed sandstone, which is mainly manifested in crack length, crack initiation position, radial angle between crack and sample, crack number, failure type and so on. The above studies all adopt the method of laboratory physical test. Due to the high production cost of rock samples, the complexity of internal defects in rocks, and the difficulty of observing and analyzing the development of cracks in jointed rocks from the microscopic level in laboratory tests, there are some shortcomings in using the laboratory test alone.

In recent years, with the continuous development of computer technology, numerical simulation methods have become an important research tool for solving scientific and engineering problems. The commonly used numerical simulation methods include Finite Element Method, Finite Difference Method, Boundary Element Method, Discrete Element Method, etc. For studying and analyzing the deformation and failure behavior of rock and soil engineering, the Discrete Element Method has great advantages and has been widely applied. In particular, the Particle Flow Code (short for PFC) program based on particle discrete element method can effectively simulate the mechanical behavior and crack propagation of discontinuous media such as jointed rock mass, which has been favored by many researchers (Ghazvinian et al., 2012; Bahaaddini et al., 2013b; Bahaaddini et al., 2016; Jin et al., 2017; Zhang et al., 2022). For example, Zhang and Wong (2012; 2013)  used the PFC2D program to study the influence of fracture inclination angle on crack propagation in single and double fractured rocks during uniaxial compression. Yang et al. (2014) conducted PFC simulation of sandstone with two non-parallel fractures under uniaxial compression to investigate the strength, deformation and crack propagation behavior of fractured sandstone. The influence of confining pressure on the strength, deformation and failure mode of double fractured sandstone was further studied (Huang et al., 2016; Huang et al., 2019; Li et al., 2022; Yuan et al., 2023a; Yuan et al., 2023b). The research showed that the development process and failure mode of microcracks in sandstone with two non-parallel fractures ware related to the fracture inclination angle and confining pressure. Under low confining pressure, the failure mode is mainly affected by the fracture inclination angle, while under high confining pressure, the failure mode is mainly affected by confining pressure. Chen et al. (2022) established a numerical model of rock with three groups of parallel intermittent joints and studied the influence of confining pressure on stress-strain curve, fracture mode and contact force distribution. Gao and Meguid (2022)  carried out the PFC numerical simulation of jointed rock under confining pressure and analyzed the mechanical and deformation behavior of jointed rock with the help of acoustic emission.

The jointed rocks in the above research objects are all set as non-filling jointed rocks, but the joints in engineering rock masses often contain certain filling materials. Compared with non filled joints, filled joints have worse mechanical strength and deformation characteristics due to their good fracture connectivity and low strength of filling materials. Under the action of external load, the filled joint layer is easy to produce normal and tangential deformation, which is easy to cause geological disasters and instability and failure of underground cavern engineering (Jiang et al., 2018; Chang et al., 2020; Huang et al., 2020a; Huang et al., 2020b; Huang et al., 2020c). In recent years, the researches on the mechanical behavior of filled jointed rock have been increasing (Li and Ma, 2009; Li et al., 2010; Tang and Wong, 2016; Han et al., 2020), the effects of joint filling materials characteristics and environmental degradation on the static, dynamic, shear and other mechanical properties of filled jointed rock are mainly studied (Chai et al., 2020; Su et al., 2021; Chai et al., 2022a; Chai et al., 2023; Luo et al., 2023). However, there are relatively few studies on filled jointed rock under confining pressure. In particular, there are few reports on PFC simulation of filled jointed rock under confining pressure.

Based on this, the PFC2D program is used to study the mechanical and deformation characteristics of filled jointed rock under confining pressure. Firstly, the numerical model of filled jointed rock is constructed in PFC2D program, according to the laboratory physical static uniaxial compression test results of filled jointed rock, the micro-mechanical parameters calibration and rationality verification are carried out, and the strength characteristics, deformation failure characteristics and micro-cracks development characteristics of filled jointed rock under different confining pressure levels, joint inclination angles and size effects are further studied. This study can deepen the understanding of mechanical properties of jointed rock and provide reference for engineering stability analysis of jointed rock under confining pressure.




2 Laboratory test of filled jointed rocks

Considering the difficulty and high cost of sampling filled jointed rock mass in practical engineering, this experiment used filling mortar to simulate the filling of jointed layer in practical engineering according to the similarity principle. The rock sample used in the test is selected from a granite with good texture in Weinan City, Shaanxi Province, and the filling mortar is composed of lime, sand and water in proportion. In actual engineering rock masses, the filled jointed layer is a mixture of rock debris and minerals with certain viscosity, which is formed by differentiation and bonding during the sedimentation process. Its physical and mechanical properties such as density and strength are between the original rock and clay. In previous research work (Chai et al., 2020a; Chai et al., 2020b), four different filling materials were used to prepare filled jointed rock samples. They can approximate the simulation of different characteristics of filled jointed layer in actual practice. Although there are differences in mineral composition from the actual filled joints, the mechanical properties of the filled joints are similar. Therefore, this method of artificially preparing filled jointed rock has a certain feasibility. This paper only focuses on studying one type of filled jointed rock. The preparation of filled jointed rock sample is carried out according to these references (Chai et al., 2020; Chai et al., 2022b). The filled jointed rock sample is composed of granite on both sides and the filling joint layer in the middle. The basic mechanical and deformation parameters of granite and filling mortar are shown in Table 1. Three types of samples with different sizes are prepared. Though the thickness of the filled jointed layer is one of the main factors affecting the mechanical properties of jointed rocks, in this study the thickness of the filling joint layer is 5 mm, and the diameter of the granite on both sides is 50 mm, and the thickness is 15, 25 and 35 mm, respectively, as shown in Figure 1. During the preparation process, the outer surfaces of granite on both sides are polished and leveled (the flatness error is within 0.02 mm), and the inner surfaces of granite samples on both sides are grooved with equal spacing and depth, so as to ensure the consistency of joint roughness coefficient and joint matching coefficient. The WAW31000 universal testing machine was used to carry out the static uniaxial compression test. Before each compression test, the filled jointed rock sample is placed in the center of the pressure plate of the testing machine, and the ball joint base of the testing machine is adjusted to ensure that the rock sample is compressed vertically. The GTC350 electro-hydraulic servo control system is then used to apply a constant pressure to ensure the accuracy of the test. During the uniaxial compression test, the test force loading was used to control the loading rate of 50 N/s. The stress-strain curve and deformation failure characteristics of filled jointed rock samples during the uniaxial compression process were recorded. In order to improve the reliability of the test results, parallel tests were conducted, with three samples being repeated in one group.


Table 1 | The basic mechanical and deformation parameters of granite and filling mortar.






Figure 1 | Uniaxial compression test.



The failure process of filled jointed rock with different sample sizes is similar, as shown in Figure 2, which shows the deformation and failure characteristics of samples with dimensions of 50 mm × 35 mm in the process of uniaxial compression. Through the experimental phenomenon, it can be found the filled joint layer is compressed first in the process of uniaxial compression of filled jointed rock, and some small cracks appear in the filled joint layer, and the edges of the filled jointed rock bulge outward with debris falling off. With the application of load, the cracks in the filled joint layer continue to develop and the filling joint layer reaches the compaction state. The rocks on both sides begin to be compressed and cracks appear. After continuous loading, the cracks on both sides of the rock will continue to expand and connect, ultimately leading to the instability and failure of the filled jointed rock.




Figure 2 | Failure of filled jointed rock in the whole process of uniaxial compression.






3 Establishment and verification of PFC numerical model

The numerical model built in PFC2D program is composed of a series of two-dimensional circles, which simulate the mechanical properties of granular media through the motion and interaction of circular granular media. In order to compare and verify with the laboratory test results, three numerical models of filled jointed rock consistent with the same sizes as the actual samples are established in the PFC2D program, as shown in Figure 3. Considering the calculation efficiency and the selection of particle size in the references (Lee and Jeon, 2011; Yang et al., 2014; Chen et al., 2022), Rmin is set to 0.3mm, Rmax is set to 0.5 mm, porosity is 1.2%, and particle density is 2700 kg/m3. The numerical models with sizes of 50 mm × 35 mm, 50 mm × 55 mm and 50 mm × 75 mm generate 3370, 5288 and 7232 particles, and the number of contacts is 7675, 12084 and 16471, respectively. In the PFC program, the contact model is used to describe the physical characteristics of the contact between particles. There are several built-in contact models in the PFC program, among which the parallel bond model has been proven to better simulate the mechanical behavior of rock materials (Lee et al., 2011). Therefore, this numerical model adopts the parallel bond model.




Figure 3 | Particle flow numerical model of filled jointed rock.



The parameters that determine the contact characteristics of particles in the PFC software are called micro-mechanical parameters. Micro-mechanical parameters calibration is the key to establish an accurate particle flow numerical model. The “trial-and-error method” (Yoon, 2007; Lee and Jeon, 2011) is used to calibrate the micro-mechanical parameters. The idea of “trial-and-error method” is to calibrate the elastic modulus by adjusting the pb_emod and the emod of micro-mechanical parameters, and then calibrate the Poisson’s ratio by adjusting the pb_krat and the krat of micro-mechanical parameters and calibrate the peak stress by adjusting the pb_coh and the pb_ten of micro-mechanical parameters. Through extensive trial calculations and repeated adjustments to the micro-mechanical parameters, the stress-strain curves and failure mode results of numerical simulation test and laboratory physical test are close to each other.

In the process of establishing the numerical model, micro-mechanical parameters calibration considered the mechanical properties of the filled jointed layer and the rock layer, as well as their interactions. In addition, there is a certain bonding force between the filled jointed layer and the rock layer, and the magnitude of the bonding force is basically the same as the internal bonding force in the filled jointed layer. In order to more accurately simulate the real engineering rock masses, the micro-mechanical parameters between the rock layer and the filled jointed layer are consistent with the micro-mechanical parameters of the contact between particles within the filled jointed layer.

Taking the filled jointed rock with dimensions of 50 mm × 35 mm as an example, the comparison results of stress-strain curves between numerical simulation and laboratory physical tests are shown in Figure 4. It can be seen that the uniaxial compression stress-strain curves of numerical simulation and laboratory test are highly similar in the later stage, except for the difference in the early stage. This is because the numerical model in PFC2D program has reached the dense state through the servo mechanism in the initial state, it is unable to simulate the initial compaction stage of rock sample in the compression process (Yang et al., 2016). Therefore, when comparing and analyzing the numerical simulation results and the laboratory test results, the compression deformation generated by the filled joint layer in the laboratory test compaction stage is ignored, while the difference between the peak stress and the elastic modulus in the elastic stage as well as the final failure mode are mainly compared. The comparison of numerical simulation and laboratory physical test compression failure mode results are shown in Figure 4. It is found that the final failure mode of the numerical model is relatively consistent with that of the actual physical test filled jointed rock. The micro-mechanical parameters of the numerical model calibrated through the “trial-and-error method” are shown in Table 2. Further comparing the peak stress and elastic modulus values of the numerical simulation and laboratory physical test results in Table 3, it can be found that the relative error range of the peak stress is within 4.5%, and the relative error range of the elastic modulus is within 1.5%. The numerical results show a good agreement, indicating that the numerical model can more accurately simulate the actual filled jointed rock. Thus, the correctness and reliability of the numerical model and the selection of micro-mechanical parameters are also verified.




Figure 4 | Comparison of numerical simulation and laboratory test results.




Table 2 | Micro-mechanical parameters table of numerical model of filled jointed rock.




Table 3 | Comparison of mechanical parameters between physical test and numerical simulation results.



The development of micro-cracks in the numerical model of filled jointed rock during uniaxial compression are recorded at equal intervals, as shown in Figure 5. It can be seen that there are a few micro-cracks in the filled joint layer in the first stage of compression process. Afterwards, micro-cracks continue to occur and mostly appear in the outer region of the filled joint layer. With the increase of time step, the micro-cracks in the filled joint layer continue to expand towards the central region. At the same time, it can be seen that the particles outside the filled joint layer are squeezed and displaced, leading to the phenomenon of “escape”. With the continuous compression process, the filled joint layer is filled with micro-cracks, and micro-cracks begin to appear on both sides of the rock. The micro-cracks on both sides of the rock continue to expand and converge, and then the cracks continue to develop along the radial direction, ultimately forming through cracks that cause damage to the filled jointed rock. By comparing Figure 2, it can be seen that PFC2D program can accurately simulate the entire failure process of filled jointed rock, which is consistent with the observation results of laboratory physical test, further verifying the feasibility and accuracy of PFC2D program simulating filled jointed rock.




Figure 5 | Crack development in numerical model of uniaxial compression process.






4 Analysis of results



4.1 Analysis of strength characteristic

The confining pressure levels are respectively set as 2, 4, 6 and 8 MPa to simulate the biaxial compression of filled jointed rock under different confining pressures. Then the influence of confining pressure on the strength characteristics of filled jointed rock are accordingly explored. Figure 6 shows the stress-strain curves of filled jointed rock with different sample sizes.




Figure 6 | Stress-strain curves of filled jointed rock under different sample sizes.



It can be seen from Figure 6 that the shape of stress-strain curves under different confining pressure levels are basically the same. Compared to the uniaxial compression test, when the confining pressure level is increased to 2 MPa, the slope of the stress-strain curve increases to a certain extent. This is because the lateral wall of the numerical model provides a restraining effect, which limits the lateral deformation of filled jointed rock, resulting in an increase in the elastic modulus of the numerical model, manifested as an increase in the slope of the stress-strain curve. As the confining pressure level continues to increase, the slope of the stress-strain curve remains basically unchanged, indicating that the continuous increase in confining pressure level has little effect on the elastic modulus of the filled jointed rock. It is also found that the peak stress and peak strain of filled jointed rock with different sizes continuously increase with the increase of confining pressure. Taking the sample with the dimension of 50 mm × 35 mm as an example, the peak stress of filled jointed rock under uniaxial compression is 44.51 MPa. When the confining pressure is 2, 4, 6 and 8 MPa, the peak stress of filled jointed rock increased by 11.78%, 21.65%, 31.25% and 39.73%, respectively, while the peak strain increased by 7.77%, 20.20%, 26.63% and 34.46%, respectively. Comparing the peak stress of samples with different sizes under the same confining pressure level, as shown in Figure 7, it can be seen that the peak stress of filled jointed rock increases with the increase of sample size.




Figure 7 | Peak stress under different sample sizes.



In addition, taking the sample with the dimension of 50 mm × 35 mm as an example, biaxial compression simulation is carried out for filled jointed rocks with different joint inclination angles (0°, 15°, 30°, 45°, 60°, 75° and 90°) under different confining pressure levels. The stress-strain curve is shown in Figure 8. It can be found that the change of joint inclination angle has a significant influence on the shape of stress-strain curve, and the slope of stress-strain curve decreases first and then increases with the increase of joint inclination angle. The variation curves of peak stress of filled jointed rock with joint inclination angle under different confining pressure levels are shown in Figure 9. It can be seen that under the same confining pressure level, the peak stress shows a trend of first decreasing and then increasing with the increase of joint inclination angle. Under the same confining pressure level, when the joint inclination angle is 30°, the peak stress value is the smallest, while when the joint inclination angle is 90°, the peak stress value is the largest. It can be seen that when the joint inclination angle is 30°, the filled jointed rock has the weakest resistance to load.




Figure 8 | Stress-strain curves of numerical models under different joint inclination angles.






Figure 9 | Curve of peak stress under different joint inclination angles.



Further analyze the variation pattern of peak stress with the change of confining pressure level under different joint inclination angles, as shown in Figure 10. Through the data fitting, it can be found that there is a strong linear relationship between peak stress and confining pressure level under different joint inclination angles, and the peak stress continuously increases with the increase of confining pressure level. It can also be seen from Figure 10 that with the increase of confining pressure level, the slope of fitting curve of peak stress varies under different joint inclination angles, it means that the growth rate of peak stress is different. When the joint inclination angle is 0°, 15°, 30°, 45°, 60°, 75° and 90°, the slope of the fitting curve for the peak stress of filled jointed rock is 2.245, 1.901, 1.036, 3.090, 3.054, 2.812 and 2.964, respectively. Obviously, when the joint angle inclination angle is 30°, the slope of the fitting curve is the smallest. when the joint inclination angle is larger (joint inclination angle >30°), the slope of the fitting curve is higher, and the slope values are all greater than 2.80. This indicates that the peak stress growth rate is higher when the joint inclination angle is larger, it means that the confining pressure effect of peak stress is more obvious when the joint inclination angle is larger.




Figure 10 | Curve of peak stress under different confining pressure levels.



The initiation stress is introduced for in-depth analysis, and the axial stress corresponding to 1% of the number of micro-cracks when the number of micro-cracks is the peak stress during uniaxial compression is defined as the initiation stress (Potyondy and Cundall, 2004). The initiation stress of filled jointed rock under different confining pressure levels is listed in Table 4.


Table 4 | Initiation stress of filled jointed rock under confining pressure.



It can be seen from Table 4 that with the increase of confining pressure level under different joint inclination angles, the variation laws of initiation stress of filled jointed rock is different. When the joint inclination angle is less than 30°, the initiation stress decreases with the increase of confining pressure level. When the joint inclination angle is 30°, the initiation stress is basically unchanged with the increase of confining pressure level. When the joint inclination angle is greater than 30°, the initiation stress increases with the increase of confining pressure level. This is because when the joint inclination angle is small, the existence of confining pressure improves the stiffness of the upper and lower rock layers, making the filled joint layer more prone to failure in the compression process. When the joint inclination angle is large, the confining pressure restricts the lateral deformation of the filled jointed rock, so that the vertical pressure is mainly borne by the left and right rock layers, which reduce the stress concentration in the filled jointed layer and delays the failure of the filled jointed layer. It can be seen that the high confining pressure environment can inhibit the cracking behavior of filled jointed rock when the joint inclination is large, and the initiation stress under confining pressure depends on the angle between the loading direction and the joint surface. In addition, at the same confining pressure level, the initiation stress of filled jointed rock decreases first and then increases with the increase of joint inclination, initiation stress follows the same variation pattern as the peak stress. The increase of confining pressure level has the greatest influence on filled jointed rock with the joint inclination of 0° and 45°. When the confining pressure level is increased to 8 MPa, the initiation stress of the filled jointed rock decreases by 57.89% for a joint inclination angle of 0°, while it increases by 142.75% for joint inclination angle of 90°. At any confining pressure level, the initiation stress is the largest when the joint inclination is 90°, which indicates that the filled joined rock is the least prone to crack when the joint inclination is 90°.




4.2 Analysis of deformation and failure form

The final failure morphology of filled jointed rock with different sample sizes under confining pressure is shown in Table 5. It can be observed that under uniaxial compression, all the filled jointed rocks with different sample sizes have macro cracks. With the increase of confining pressure level, the width of macro cracks decreases continuously and the distribution of micro-cracks becomes more dispersed. Obviously, the confining pressure can suppress the generation of macro fracture surface. It can also be seen that the failure mode of filled jointed rock under uniaxial compression is mostly splitting failure. With the increase of confining pressure level, the failure mode changes from splitting failure to shear failure, indicating that the increase in confining pressure level causes the failure of filled jointed rock to transition from brittleness to ductility, while the change of sample size has little effect on the failure mode of filled jointed rock.


Table 5 | Final failure patterns of filled jointed rock with different dimensions under confining pressure.



The final failure modes of filled jointed rock with different joint inclination angles under confining pressure are shown in Table 6 (only the final failure modes with joint inclination angles of 30°, 60° and 90° are listed, and the final failure modes with joint inclination angles of 0° are shown in the first row of Table 5). Through observation, it can be seen that the joint inclination angle will significantly affect the final failure mode of the filled jointed rock. Taking the confining pressure of 0 MPa as an example, when the filled joint layer is in the horizontal position, the final failure mode is characterized by significant vertical compression of the filled joint layer and the occurrence of through cracks in the rocks on both sides. When the joint inclination angle is 30°, the micro-cracks are concentrated in the filled joint layer while the rock layer is undamaged. As the joint inclination angle increases, the compression magnitude of the filled joint layer decreases. When the joint inclination angle is 60°, the total number of micro-cracks in the filled jointed rock significantly decreases, and the filled joint layer is separated from the rock layer to a certain extent. A macro connected large crack appears in the rock layer, finally leading to the failure of the sample. As the joint inclination angle continues to increase, the number of micro-cracks in the rock layer continues to increase. When the joint inclination angle is 90°, it can be seen that the damage of the rock layer is the most serious. From the above, it can be inferred that when the joint inclination angle is 90°, the peak stress and initiation stress of the filled jointed rock are the largest. Therefore, it can be inferred that when the joint inclination angle is small, the vertical pressure is mainly borne by the filled joint layer and the rock layers. When the joint inclination angle is large, the vertical pressure is mainly borne by the rock layers on both sides. At the same joint inclination, the total number of micro-cracks increases continuously with the increase of confining pressure level, and the distribution of micro-cracks becomes more dispersed.


Table 6 | Final failure patterns of filled jointed rock with different joint inclination angle s under confining pressure.






4.3 Analysis of micro-cracks development characteristics

In PFC program, the change of micro-cracks can be monitored by compiling the command flow code. Studying the variation rule of micro-cracks is helpful to reveal the deformation and failure mechanism of filled jointed rock. In order to visually display the change of the number of micro-cracks in filled jointed rock under confining pressure, the data points of the number of micro-cracks and strain during compression are extracted, as shown in Figure 11. Only the variation curves of microcrack quantities are listed for joint inclination angles of 0°, 30°, 60°, and 90°.




Figure 11 | Crack variation curves of filled jointed rock under different confining pressures.



Figure 11 shows that as the confining pressure level increases, the curve of micro-crack development gradually becomes longer and shifts towards the right. It can be seen that confining pressure prolongs the development process of micro-cracks in filled jointed rock but has little effect on the development shape of micro-cracks. However, the morphology of the micro-cracks development curve is significantly different when the joint inclination changes. From Figure 11A, it can be seen that when the joint inclination is 0°, the development curve of micro-cracks is mainly divided into three stages, showing a characteristic of rapid growth in the early stage, slow growth in the middle stage, and rapid growth in the later stage. Combined with Figure 5, the characteristics of the three stages can be explained as follows. Because the strength and modulus of the filled joint layer are low and the joint surface is perpendicular to the loading direction, under pressure, the cracks are more likely to occur and crack propagation is faster in low strength materials. Thus, the growth of cracks is relatively rapid in the early stage. The main reason for the slow growth of cracks in the middle stage is that the cracks in the filled joint layer no longer increase, and the crack generation location gradually shifts to the rock layer on both sides. The main reason for the rapid growth in the later stage is that the cracks in both sides of the rock layer continuously converge and expand under the action of pressure until the sample ultimately destroyed. The variation of micro-cracks in the filled jointed rock is obviously different from that in the intact rock sample in Figure 11A. The development of micro-cracks in the intact rock sample shows a trend of slow growth in the early stage and rapid growth in the late stage. Meanwhile, the strain corresponding to the initial micro-cracks is significantly higher than that of the filled jointed rock sample, indicating that the filled jointed rock sample is more likely to initiate micro-cracks in the early stage under compression. In addition, it can be seen that the total number of micro-cracks in the filled jointed rock is significantly higher than that in the intact rock due to the existence of low-strength filled joint layer.

When the joint inclination angle increases, the shape of the micro-cracks development curve changes obviously. In Figure 11B, when the joint inclination angle is 30°, the micro-cracks development speed is rapid in the early stage, and gradually slows down with the compression. The explanation for this is as follows. Based on the displacement field and velocity field of the particles in the numerical model in Figure 12 and the final failure morphology shown in Table 6, it can be seen that during compression progress, the particles in the rock layers on both sides move in reverse along the joint plane, causing sliding phenomena in the rock layers on both sides, resulting in shear failure of the filled joint layer. The vertical force required for shear failure is relatively small, so in the early stage of the compression process, obvious structural damage will occur in the filled joint layer, accompanied by the rapid development of micro-cracks. With the continuous compression, the shear failure of the filled joint layer is approaching completion, so the development speed of micro-cracks gradually slows down. With the continuous increase of joint inclination angle, the development of micro-cracks shows the characteristics of slow growth in the early stage and rapid growth in the late stage, which is similar to the development of micro-cracks in intact rock samples. This phenomenon can be explained in combination with the force chain diagram and contact force distribution diagram between particles of the numerical model when the joint inclination is 90° as shown in Figure 13. It can be seen from Figure 13A that the contact force chain between particles of the rock layer is relatively dense and contact force chain approximately parallel to the vertical loading direction when the joint inclination angle is large. In addition, from Figure 13B, it can be seen that the contact force value of the rock layer is large and the contact force value of the filled joint layer is relatively small, indicating that the stress concentration degree of the filled joint layer is weakened and the load bearing proportion is relatively small during the compression process. The rock layer serves as the main load-bearing framework, but a significant vertical force is required to generate micro-cracks in the contact between the particles in the rock layer, so the development of micro-cracks in the early stage of the compression process is relatively slow. From the above, it can be seen that the change in joint inclination angle will seriously affect the development characteristics of micro-cracks in filled jointed rock.




Figure 12 | Displacement field and velocity field of numerical model particles when the joint inclination angle is 30°.






Figure 13 | Force chain and contact force distribution between particles of numerical model when the joint inclination angle is 90°.



The relationship between the total number of micro-cracks in filled jointed rock and the confining pressure level during final failure is shown in Figure 14. It can be seen that under the same confining pressure level, the total number of micro-cracks is the highest when the joint inclination angle is 0°, while the total number of micro-cracks is the least when the joint inclination angle is 30°. At the same joint inclination, as the confining pressure level increases, the total number of micro-cracks in the final failure of filled jointed rock continues to increase. Through fitting, it is found that there is a good linear relationship between the total number of micro-cracks and confining pressure level. When the joint inclination angles are 0°, 30°, 60° and 90°, the slopes of the fitting curve of the total number of micro-cracks are 29.65, 28.00, 34.10 and 30.25, respectively, with values ranging from 29.5 to 30.5, which shows that the slope of the fitting curve of the total number of micro-cracks has little change with the change of joint inclination angle.




Figure 14 | The total number of microcracks of filled jointed rock under different confining pressures.







5 Conclusions

Based on the previous uniaxial compression test of filled jointed rock, a series of numerical simulations are carried out by using PFC2D program to verify the feasibility and accuracy of the simulation of the filled jointed rock. Then, through the PFC numerical simulation, the strength characteristics, deformation and failure characteristics and micro-cracks development characteristics of filled jointed rock with different confining pressure levels, joint inclination angles and sample sizes are analyzed. The main conclusions are as follows:

	(1) The peak stress and peak strain continuously increase with the increase of confining pressure level, and there is a strong linear relationship between the peak stress and confining pressure level. However, the continuous increase of confining pressure level has little effect on the elastic modulus of filled jointed rock. In addition, the peak stress increases with the increase of sample size.

	(2) The change in joint inclination angle has a great influence on the shape of stress-strain curve. The peak stress and initiation stress show a trend of first decreasing and then increasing with the increase of joint inclination angle. The peak stress value is the smallest when the joint inclination angle is 30°, and the peak stress value is the largest when the joint inclination angle is 90°. With the increase of confining pressure level, the variation pattern of initiation stress of filled jointed rock under different joint inclination angles is different. When the joint inclination angle is large, the high confining pressure environment can inhibit the crack behavior of filled jointed rock, and the initiation stress under confining pressure depends on the angle between the loading direction and the joint surface.

	(3) As the level of confining pressure increases, the width of macro cracks decreases and the distribution of micro-cracks becomes more dispersed during the final failure of filled jointed rocks, indicating that the effect of confining pressure can suppress the generation of macroscopic fracture surfaces. The failure mode changed from splitting failure to shear failure with the increase of confining pressure. In addition, the change in sample size has little effect on the failure mode of filled jointed rock, while the joint inclination angle significantly influences the final failure mode of the filled jointed rock.

	(4) The effect of confining pressure will prolong the development process of micro-cracks in filled jointed rocks. As the level of confining pressure increases, the total number of micro-cracks in the final failure of filled jointed rocks continues to increase. However, the effect of confining pressure has little effect on the development morphology of micro-cracks. The development curves of micro-cracks vary significantly under different joint inclination angles, indicating that changes in joint inclination angles can seriously affect the development characteristics of micro-cracks in filled jointed rock.
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The construction of city intersection tunnels cause multiple redistribution of surrounding rock stress, resulting in the engineering disasters such as instability in existing tunnels and collapses of ground buildings. To mitigate formation disturbances effectively, the Center Cross Diagram (CRD) method is employed in city tunnel construction. In this study, a numerical model for a city intersection tunnel is developed based on an underground circular roads project in Chongqing, China, to analyze the safety of the tunnel structure and the stability of ground buildings under the CRD method. The numerical simulation results obtain that the excavation of pilot-tunnel ➃ will reduce the surrounding rock stress and control the rock strata subsidence, and reveal that the excavation of pilot-tunnel ➃ is the key step of CRD method. The maximum compressive stress and tensile stress of surrounding rock first increase and then decrease during the excavation of pilot-tunnels ➀, ➁, ➂, and ➃. Simultaneously, the deformation of the ground building experiences a slow initial increase followed by a rapid rise before stabilizing. Furthermore, the excavation of the main tunnel leads to an increase of 0.73, 0.35, and 0.52 times in the vault subsidence value, left haunch convergence value, and right haunch convergence value of branch tunnel #1, respectively. Finally, the convergence process of branch tunnel #1 is discussed through the in-situ monitoring, which is divided into three stages: rapid deformation, deceleration deformation, and stable deformation. The final horizontal convergence value and subsidence value of cross-section K0+360 are respectively 84% and 78% of those at cross-section K0+395.
Keywords: city intersection tunnel, CRD method, engineering disasters, numerical simulation, in-situ monitoring
1 INTRODUCTION
Since the 21st century, China has experienced remarkable growth in underground engineering construction, solidifying its position as a global leader in terms of scale, quantity, complexity of geological conditions, and the rapid advancement of construction technologies in the field of underground engineering (Xu et al., 2022). Major cities like Beijing, Shanghai, and Chongqing are actively undertaking large-scale city underground projects, including subway systems and underground passages, as shown in Figure 1. In this pursuit, maximizing the utilization of underground space resources within the constraints of complex urban environments and limited space is crucial. Consequently, the coexistence of multiple tunnels in the same narrow area has led to the emergence of a new tunnel structure known as the intersection tunnel.
[image: Figure 1]FIGURE 1 | The distribution of city tunnels in China by 2021.
In contrast to single-hole tunnels, intersection tunnels possess unique characteristics, including complex structures, larger excavation sizes, and intricate spatial relationships (Lai et al., 2016; Chang et al., 2020; Yuan et al., 2022). Moreover, the complexities of city environments, such as intricate geological conditions, dense ground surface structures, and a network of criss-cross pipelines, expose intersection tunnel construction to significant safety risks (Huang et al., 2020a; Ma et al., 2021; Zhang et al., 2022). The process of constructing intersection tunnels inevitably involves repeated stress redistributions in the surrounding rock, exacerbating the instability of the rock and supporting structures. Consequently, this poses potential engineering disasters, such as the instability of existing tunnels and the collapse of ground buildings, thereby posing serious threats to urban safety. In response, scholars have undertaken research to ensure the safety and stability of intersection tunnel construction in cities, aiming to prevent engineering disasters and foster sustainable urban development.
To mitigate the engineering disaster risks associated with tunnel instability due to repeated disturbances in surrounding rock, scholars have diligently researched various aspects of tunnel excavation through theoretical analysis, numerical simulation, and on-site measurements (Ng et al., 2018; Yang et al., 2018; Xue et al., 2021). Some notable studies have focused on the mechanical behavior of surrounding rock, excavation methods, intersection angles, and spatial position relationships.
Wang et al. (Wang et al., 2020a; Wang et al., 2020b) delved into the mechanical behavior of surrounding rock during the excavation of branch tunnels. Their analysis led to the conclusion that the intersecting section represented the weakest part of the entire project, with its influence extending up to 40 m on the acute angle side and 20 m on the obtuse angle side from the intersection. Jin et al. (2018) conducted simulations on the construction process of deep buried intersection tunnels in areas with high ground stress, and discussed the mechanical behavior of surrounding rock and primary support structures under two distinct construction schemes. Additionally, Jin et al. (2009) compared and analyzed the mechanical characteristics of surrounding rock in intersecting and non-intersecting sections before and after transverse tunnel excavation, drawing insights from the Yangjiao tunnel project and establishing stress distribution patterns in cross-sections. Chen et al. (2015) performed dynamic monitoring measurements on both the excavating tunnel and existing tunnel during cross-section tunnel construction. Their findings provided valuable information on the mechanical behavior of surrounding rock and the stability of supporting structures in the tunnels. In another study, Liu et al. (2011) utilized the Juyunshan tunnel project as a case study for three-dimensional numerical simulations. They emphasized that ground stress and structural stress concentration were key factors influencing the stability of the crossing section.
By leveraging these research efforts, scholars aim to enhance the understanding of intersection tunnel construction, minimize risks of engineering disasters, and ensure the overall safety and stability of such complex projects.
To prevent the engineering disaster of ground buildings collapsing, researchers have thoroughly analyzed the deformation characteristics of structures through a combination of numerical simulation, on-site measurement, and monitoring techniques (Wang et al., 2018; Ayasrah et al., 2021; Ren et al., 2022; Wang et al., 2023). Fu (2021) utilized MIDAS/GTS software to assess the impact of shield tunneling on overlying buildings. Through this analysis, they obtained positive distribution curves of sedimentation tanks, providing valuable insights into potential settlement effects. Ding et al. (2019) developed a series of finite element models that considered the interaction between buildings, soil, and tunnels during the tunneling process. They analyzed the influence of structural stiffness and layout on the 3D deformation characteristics, providing a comprehensive understanding of how these factors affect structures. Lueprasert et al. (2017) focused on the evaluation of tunnel diameter and radial shrinkage as key indexes. They investigated the impacts of an adjacent loaded pile on an existing tunnel by varying the pile tip positions concerning the tunnel and soil stratum through three-dimensional elastic-plastic numerical analyses. Son (2015) conducted research using the discrete element method to study the influence of upper and adjacent buildings during tunnel construction, considering tunnel dimensions and construction conditions at various buried depths. They established relationships between these variables and the degree of building damage. Kuan et al. (Kuan et al., 2007; Kuan and Yang, 2008) established a numerical calculation model of shallow-buried tunnels using FLAC3D analysis software. They studied the effects of different factors on the characteristics of shallow-buried tunnels and surface settlement. Additionally, they explored the interactions between tunnels and surface structures under varying conditions.
These studies collectively contribute to the understanding of potential risks to ground buildings during tunnel construction, allowing for better-informed engineering decisions to mitigate the risk of collapse and enhance the safety of urban environments.
Numerous research studies have demonstrated that the center cross diagram (CRD) construction method offers several advantages, including uniform structure stress, minimal deformation, and high support stiffness (Jiang et al., 2018; Huang et al., 2020b; Huang et al., 2020c). These characteristics effectively reduce the degree of repeated disturbance to the surrounding rock during the construction of city intersection tunnels, thereby mitigating potential engineering disasters. Huo et al. (2019) focused on the selection of the construction method for urban tunnel and conducted numerical simulation and on-site monitoring on the construction of Shenyang Metro Line 9. They compared the settlement laws of the station baseplate under four construction methods (the full-face excavation method, the benching tunneling method, the side heading method and the center diaphragm method). It was concluded that the center diaphragm method is more suitable for urban tunnel engineering. Wang et al. (2020c) analyzed the stress characteristics of each excavation step and temporary supporting structure in the construction process of Re Shuitang No. 3 tunnel with CRD method, and put forward the key construction steps to control CRD method well. Strengthening the surrounding rock of the vault in advance is beneficial to ensure the construction safety. Zhang et al. (2023) analyzed the variation law of surface settlement during four excavation processes of CRD excavation method based on Yüan 1 railroad tunnel project, and believed that advance grouting could control the influence of CRD excavation method on surface settlement.
To assess the safety of tunnel structures and the stability of ground surface buildings during the construction process of city intersection tunnels using the CRD method, this paper presents a case study based on an underground circular roads project in the central business district (CBD) of Chongqing, China. The research investigates the variations of surrounding rock, the deformation of ground-affected buildings and the effects of the late excavation on the intersection tunnel through numerical simulation and on-site monitoring. By gaining insights from this study, it becomes possible to make informed decisions regarding the construction method selection for city intersection tunnels.
2 THE CRD METHOD
The CRD method adheres to the principle of “small blocks, short steps, multiple cycles, and quick closure,” making it particularly suitable for soft surrounding rock or long-span tunnels. The construction process involves step-by-step excavation on one side of the tunnel, followed by the implementation of the median lamella and diaphragm. Subsequently, the same procedure is applied to the other side of the tunnel, and the diaphragm is finalized (Jing et al., 2011; Wang et al., 2020c; Song et al., 2020). The detailed construction process of the CRD method can be divided into four steps, as illustrated in Figure 2. First step, the construction commences with the excavation of pilot-tunnel ➀, which is preceded by the reinforcement of the surrounding rock using advanced small pipes. Once the excavation is complete, the initial support is established. Second step, the pilot-tunnel ➁ is excavated and the corresponding initial support is put in place. Third step, the pilot-tunnel ➂ is excavated after reinforcing the surrounding rock, and the initial support is then completed. Fourth step, the construction advances to pilot-tunnel ➃, and the corresponding initial support is installed.
[image: Figure 2]FIGURE 2 | CRD method construction process. The ➀, ➁, ➂and ➃ represent the pilot-tunnel numbers.
The construction process of CRD method has the characteristics of short time for each pilot-tunnel to close and form a ring, uniform structure stress, small deformation and large support stiffness. Therefore, the tunnel overall deformation, the strata settlement and the influence on the ground building all are small during construction. Meanwhile, CRD method adopts small span construction making the disturbance range of each excavation step to the strata small, and the influence on the existing tunnel is reduced. Besides, temporary invert and median lamella wall not only increase the stiffness of tunnel structure, but also effectively restrain the deformation of the intersecting section. In summary, the CRD method’s construction process is well-designed to minimize disturbances to the surrounding environment, promote tunnel stability, and ensure the safety of adjacent structures during the building of city intersection tunnels.
3 PROJECT OVERVIEW
A significant underground circular roads project was undertaken in a CBD of Chongqing, China, aimed at resolving issues of traffic congestion and inadequate parking spaces. The project encompassed a total tunnel length of 2,580 m, comprising the main tunnel, as well as branch tunnels #1, #2, #3, #4, and #5. Notably, mileage segment K0+380 ∼ K0+420 of branch tunnel #1 and mileage segment K1+000 ∼ K1+160 of the main tunnel were buried at a depth of 40 m and intersected vertically at an angle close to 90°, as shown in Figure 3.
[image: Figure 3]FIGURE 3 | Intersection tunnel in the underground circular roads project.
The main tunnel was 9.5 m in width and 5.5 m in height, while the branch tunnel #1 was 7 m in width and 5.5 m in height. There was a ground building with 7 floors on the ground and 2 floors underground, and the minimum distance between it and the ground projection of intersecting section was 5 m. The hydrogeological conditions in the project area were relatively straightforward, with groundwater primarily comprising bedrock fissure water. The surrounding rock of the intersection tunnel primarily consisted of sandstone with two groups of fractures, categorized as soft rock of grade IV. Additionally, there was a 4 m-thick surface plain fill. The physical and mechanical parameters of each soil layer were shown in Table 1.
TABLE 1 | Stratigraphic physical and mechanical parameters.
[image: Table 1]To avoid engineering disasters, the CRD method was employed for the construction of the intersecting section. The tunnel excavation sequence followed an order of upper left → lower left → upper right → lower right. The main tunnel would be excavated after the branch tunnel #1 was completed. The excavation interval of the pilot-tunnels is 7 m, for instance, the construction of the next pilot-tunnel begins when the previous pilot-tunnel is excavated 7 m. The excavated length of the pilot tunnel is 0.6 m each time. In the process of construction, some measures such as setting up anchor bolt, laying steel mesh, installing steel frame and spraying concrete are taken to strengthen the stability of surrounding rock.
4 NUMERICAL SIMULATION OF CITY INTERSECTION TUNNEL
4.1 Numerical model creation
To conduct numerical simulations, a physical model representing the intersection tunnel was established using ANSYS simulation software, as shown in Figure 4. The model covered mileage segment K1+000 ∼ K1+160 of the main tunnel and mileage segment K0+380 ∼ K0+420 of branch tunnel #1. The dimensions of the model were 240 m in length, 160 m in width, and 70 m in height. The intersection tunnel had a depth of 40 m, and its cross-section shape was a semicircular arch. The main tunnel and branch tunnel #1 intersected vertically, forming a “T” shape. An affected building was located at a minimum distance of 5 m from the ground projection of the main tunnel on the ground surface. The building was simplified as a double-layer sheet structure. According to the geological survey report, the ground structure load of the affected ground building was 30 kN/m2 per floor, and the building had 7 floors on the ground. Therefore, its load-bearing capacity on the ground was represented by a uniformly distributed load of 210 kN/m2.
[image: Figure 4]FIGURE 4 | Numerical model of the city intersection tunnel.
In the model, the X-axis direction was perpendicular to the centerline of the main tunnel and pointed towards branch tunnel #1. The Y-axis direction was opposite to gravity, and the Z-axis direction was aligned with the centerline of the main tunnel. The upper boundary of the model was set to the ground surface.
The materials used in the model, such as rock, concrete, and soil, were considered granular materials with compressive strengths significantly higher than their tensile strengths. Additionally, when subjected to tensile forces, these materials exhibited expansion of their particles. To capture these characteristics, the Drucker-Prager yield criterion (Öztekin et al., 2016) was adopted as the constitutive relationship of materials in the numerical model. Given that the thickness of the plain fill was much smaller than the depth of the tunnels, it was disregarded in the model. The initial support structure was represented using a shell structure approach, and the materials for the surrounding rock and initial support were sandstone and C30 concrete, respectively, as shown in Table 2. The CRD method was adopted as the construction method, with an excavation sequence of upper left → lower left → upper right → lower right.
TABLE 2 | Physical and mechanical parameters of surrounding rock and initial support material.
[image: Table 2]To ensure reality during the simulation, displacement constraints were applied. Specifically, a displacement constraint in the Z-direction was enforced on the boundary surface around the model, while a displacement constraint in the negative Y-direction was applied to the bottom surface of the model.
4.2 Results analysis
4.2.1 Influence of the main tunnel excavation on the ground building
After the completion of branch tunnel #1, the main tunnel construction commenced. After excavation of pilot-tunnel ➀, the maximum compressive stress and the maximum tensile stress of surrounding rock respectively were 2.80 MPa and 0.93 MPa. Besides, surrounding rock sank, resulting in the ground building to tilt 0.00123‰ to the right side. The maximum settlement value of the ground building was 0.193 mm, as shown in Figure 5. After the excavation of pilot-tunnel ➁, the maximum compressive stress and the maximum tensile stress of surrounding rock were both increased, which were 2.86 MPa and 0.97 MPa, respectively. The maximum settlement value of the ground building increased to 0.214 mm, and the slope to the right increased to 0.00136‰, as shown in Figure 6. After the excavation of pilot-tunnel ➂, the maximum compressive stress and the maximum tensile stress of surrounding rock increased to 3.81 MPa and 0.99 MPa. The maximum settlement value of the ground building increased to 0.552 mm, and the slope increased to 0.00351‰, as shown in Figure 7. After the excavation of pilot-tunnel ➃, the maximum compressive stress and the maximum tensile stress of surrounding rock suddenly decreased, which were 3.56 MPa and 0.76 MPa. The maximum settlement value of the ground building altered little, which was 0.556 mm. While the slope degree remained stable at 0.00354‰, as shown in Figure 8.
[image: Figure 5]FIGURE 5 | Influence of pilot-tunnel ➀ on surrounding rock and ground building. (A) The maximum principal stress of surrounding rock, (B) the minimum principal stress of surrounding rock, (C) displacement of ground building in Y-axis.
[image: Figure 6]FIGURE 6 | Influence of pilot-tunnel ➁ on surrounding rock and ground building. (A) The maximum principal stress of surrounding rock, (B) the minimum principal stress of surrounding rock, (C) displacement of ground building in Y-axis.
[image: Figure 7]FIGURE 7 | Influence of pilot-tunnel ➂ on surrounding rock and ground building. (A) The maximum principal stress of surrounding rock, (B) the minimum principal stress of surrounding rock, (C) displacement of ground building in Y-axis.
[image: Figure 8]FIGURE 8 | Influence of pilot-tunnel ➃ on surrounding rock and ground building. (A) The maximum principal stress of surrounding rock, (B) the minimum principal stress of surrounding rock, (C) displacement of ground building in Y-axis.
On the other hand, the deformation variation of the ground building showed a tendency of slow increase, sharp increase, and eventual stability during the excavation process of the main tunnel, as shown in Figure 9. This characteristic could be attributed to the structure form of the main tunnel in the construction process with CRD method. In the excavation process of the pilot-tunnel from ➀ to ➁, the main tunnel presented an incomplete semicircular arch and remained in a relatively stable structure, resulting in a slow settlement of the strata and ground building. However, in the excavation process of the pilot-tunnel from ➁ to ➂, the semicircular arch form was destroyed, and the tunnel structure became unstable, leading to a rapid settlement of the rock strata and ground building. After the completion of pilot-tunnel ➃, the main tunnel restored to a stable, complete semicircular arch structure, causing the strata and ground affected building to stabilize as well.
[image: Figure 9]FIGURE 9 | Influence of the main tunnel excavation process on surrounding rock and ground building under CRD method. (A) Compressive stress and tension stress of surrounding rock, (B) displacement and gradient of ground building.
4.2.2 Influence of the main tunnel excavation on the branch tunnel #1
The excavation of the main tunnel had significant effects on the stability of branch tunnel #1, leading to vault subsidence and arch haunch convergence, as shown in Figure 10. Before the excavation of the main tunnel, the vault subsidence of branch tunnel #1 gradually increased with the distance from the intersecting section and eventually stabilized at 1.449 mm at a distance of 14 m from the intersecting section.
[image: Figure 10]FIGURE 10 | Deformation of the branch tunnel #1 before and after the main tunnel excavation. (A) Vault subsidence, (B) the horizontal convergence of the left and right arch haunches.
The vault subsidence value at the intersecting section was the smallest, which was 1.025 mm, as shown in Figure 10A. However, the excavation of the main tunnel altered the vault subsidence tendency of branch tunnel #1. After excavation, the vault subsidence gradually decreased with the distance from the intersecting section and stabilized at 14 m from the intersecting section. The vault subsidence value at the intersecting section was the maximum, which was 2.514 mm.
Regarding the horizontal convergence of the left and right arch haunches of branch tunnel #1, the main tunnel excavation did not change the convergence tendency, but it increased the maximum convergence values by 0.35 and 0.52 times, respectively. The horizontal convergence values of the left and right arch haunches increased first, then decreased, and eventually stabilized with an increase in distance from the intersecting section. The maximum values of horizontal convergence occurred at 6 m from the intersecting section, measuring 0.954 mm for the left arch haunch and 0.928 mm for the right arch haunch, as shown in Figure 10B.
These changes were primarily attributed to the alterations in the supporting structure of branch tunnel #1 at the intersection section. Before the excavation of the main tunnel, the intersecting section (K0+420) consisted of surrounding rock, which had a robust ability to limit deformation. However, after the main tunnel excavation, the intersecting section (K0+420) became a cavity with support materials, which had a relatively weaker ability to limit deformation.
The excavation of the main tunnel had significant effects on the rock strata stress situation of the branch tunnel #1, as shown in Figure 11. The rock strata near the vault of the branch tunnel #1 was mainly in compression state while the rock strata near the floor of the branch tunnel #1 was mainly in tension state. Although the excavation of the main tunnel did not affect the stress characteristics, it intensified the stress concentration. Before excavation of the main tunnel, the maximum compressive stress and tensile stress of rock strata were 2.50 MPa and 0.73 MPa, respectively. The maximum compressive stress and tensile stress of rock strata increased to 3.56 MPa and 0.76 MPa under the influence of the main tunnel excavation.
[image: Figure 11]FIGURE 11 | The rock strata stress of the branch tunnel #1 before and after the main tunnel excavation. (A) The maximum principal stress before the main tunnel excavation, (B) the minimum principal stress before the main tunnel excavation, (C) the maximum principal stress after the main tunnel excavation, (D) the minimum principal stress after the main tunnel excavation.
5 FIELD MONITORING
The occurrence of existing tunnel instability is a unique engineering disaster in intersection tunnel projects. To analyze the influence of main tunnel construction under the CRD method on the stability of branch tunnel #1, the horizontal convergence and vault subsidence of the branch tunnel #1 were monitored through electronic total station, as shown in Figure 12. A continuous monitoring was conducted on cross-sections K0+395 and K0+360 when the main tunnel excavation reached the intersecting section (K1+120 section). Cross-sections K0+395 and K0+360 were located 25 m and 60 m away from the intersecting end face, respectively.
[image: Figure 12]FIGURE 12 | Monitoring measurement of the branch tunnel 1#. (A) Situation on site, (B) monitoring points.
The cumulative deformation characteristics of both cross-sections exhibited similar patterns, which could be categorized into three stages: rapid deformation stage, deceleration deformation stage and stable deformation stage, as shown in Figure 13.
[image: Figure 13]FIGURE 13 | Monitoring deformation of K0+395 and K0+360 cross-sections. (A) Arch haunch horizontal convergence value, (B) arch haunch horizontal convergence rate, (C) vault subsidence value, (D) vault subsidence rate.
Rapid deformation stage: During the initial monitoring period of 0–5 days, the cumulative deformation curves (horizontal convergence and vault subsidence) of the two cross-sections showed a steep upward trend with a large daily deformation rate. The deformation during this stage accounted for approximately 57% of the total deformation. Deceleration deformation stage: From day 6 to day 16 of monitoring, the cumulative deformation curves of the two cross-sections displayed a gradual upward trend with a reduced daily deformation rate. The deformation during this stage accounted for about 32% of the total deformation. Stable deformation stage: After 17 days of monitoring, the cumulative deformation curves of the two cross-sections reached a stable state, with a daily deformation rate remaining at a small value (daily horizontal convergence rate of 0.04 mm/d and daily subsidence rate of 0.05 mm/d). The deformation during this stage accounted for approximately 11% of the total deformation. The maximum arch subsidence value of branch tunnel #1 monitored through electronic total station was 2.39 mm while the value calculated by numerical simulation was 2.51 mm. The difference of results is 4.7%, which is within the margin of error. It could be proved that the numerical simulation results were reliable.
The deformation characteristic of the three stages was inferred to be related to the dynamic distance between the construction face and the monitoring cross-sections. During the rapid deformation stage, the construction face was in close proximity to the monitoring cross-section, resulting in significant rock mass breakage and crumpling due to construction disturbance. As a result, the deformation at the monitoring sections was substantial. As the construction face moved away from the monitoring cross-section during the deceleration deformation stage, the construction disturbance effect on the monitoring cross-section gradually decreased. In the stable deformation stage, the construction face was far away from the monitoring cross-section, and the construction disturbance had no significant impact on the monitoring cross-section.
Additionally, it was observed that both the deformation convergence value and convergence rate of cross-section K0+360 were consistently smaller than those of cross-section K0+395 at each stage of monitoring. The final horizontal convergence value and subsidence value of cross-section K0+360 were measured at 2.25 mm and 1.92 mm, respectively. These values were approximately 84% and 78% of those observed at cross-section K0+395, which had a final horizontal convergence value of 2.68 mm and a final subsidence value of 2.45 mm, as shown in Figures 13A, C. The characteristic accorded with the regulation obtained in Section 4.2.3 that the horizontal convergence value and vault subsidence value decreased with an increase in distance from the intersecting section. This characteristic was inferred to be related to the absolute distance between the construction face and the monitoring cross-section. Cross-section K0+360, being further away from the construction face, experienced less disturbance and was thus less affected by the construction activities. In contrast, cross-section K0+395, being closer to the construction face, experienced a higher degree of disturbance, resulting in more significant deformation.
6 CONCLUSION
This paper analyzed the influences of CRD construction processes on the stress and displacement of surrounding rock based on an underground circular roads project in Chongqing, China. It was revealed that the excavation of pilot-tunnel ➃ would reduce the surrounding rock stress and control the rock strata subsidence. The excavation of pilot-tunnel ➃ was the key step of CRD method.
(1) The stress variation in the surrounding rock during the CRD method excavation exhibited a trend of increasing and then decreasing due to the structural form of the tunnel after excavation. The maximum compressive stress and maximum tensile stress increased gradually with the excavation of the pilot-tunnels ➀ to ➂, but decreased after the excavation of the pilot-tunnel ➃.
(2) The deformation of the ground building during the CRD method excavation showed a progression from slow increase to sharp increase and finally to stability. The ground building experienced slow sinking and tilting to the right during the excavation of the pilot-tunnels ➀ to ➁, followed by rapid sinking and sharp tilting during the excavation of the pilot-tunnels ➁ to ➂, and eventually stabilized after the excavation of the pilot-tunnel ➃.
(3) The excavation of the main tunnel had significant effects on the vault subsidence and arch haunch convergence of branch tunnel #1. The main tunnel excavation resulted in an increase of 0.73 times in the maximum vault subsidence value, 0.35 times in the maximum left arch haunch convergence value, and 0.52 times in the maximum right arch haunch convergence value of branch tunnel #1.
(4) The cumulative deformation the cross-sections K0+395 and K0+360 was divided into three stages of rapid deformation, deceleration deformation, and stable deformation, which was attributed to the dynamic distance between the construction face and the monitoring cross-section. Additionally, the final horizontal convergence value and subsidence value of cross-section K0+360 were approximately 84% and 78% of those observed at cross-section K0+395, respectively, due to the absolute distance between the construction face and the monitoring cross-section.
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Introduction

The primary focus of this paper is to assess urban ecological environments by employing object detection on spatial-temporal data images within a city, in conjunction with other relevant information through data mining.





Methods

Firstly, an improved YOLOv7 algorithm is applied to conduct object detection, particularly counting vehicles and pedestrians within the urban spatial-temporal data. Subsequently, the k-means superpixel segmentation algorithm is utilized to calculate vegetation coverage within the urban spatial-temporal data, allowing for the quantification of vegetation area. This approach involves the segmentation of vegetation areas based on color characteristics, providing the vegetation area’s measurements. Lastly, an ecological assessment of the current urban environment is conducted based on the gathered data on human and vehicle density, along with vegetation coverage.





Results

The enhanced YOLOv7 algorithm employed in this study yields a one-percent improvement in mean AP (average precision) compared to the original YOLOv7 algorithm. Furthermore, the AP values for key categories of interest, namely, individuals and vehicles, have also improved in this ecological assessment.





Discussion

Specifically, the AP values for the ‘person’ and ‘pedestrian’ categories have increased by 13.9% and 9.3%, respectively, while ‘car’ and ‘van’ categories have seen AP improvements of 6.7% and 4.9%. The enhanced YOLOv7 algorithm contributes to more accurate data collection regarding individuals and vehicles in subsequent research. In the conclusion of this paper, we further validate the reliability of the urban environmental assessment results by employing the Recall-Precision curve.





Keywords: YOLO, average precision, vehicles, pedestrians, vegetation coverage




1 Introduction

In the last two decades, ecological and environmental issues have steadily intensified, giving rise to various ecological disasters, including extreme weather events (Schipper, 2020; Sippel et al., 2020) and various natural calamities (Karn and Sharma, 2021). According to statistical data, the period from 2000 to 2019 witnessed a significant deterioration in soil and water quality due to climate change, resulting in a probability increase of over 75% for extreme weather events such as droughts and floods compared to the period from 1980 to 1999 (Kumar et al., 2022). Simultaneously, the data indicates that from 2000 to 2020, globally, the direct deaths attributed to extreme cold and severe winter weather were approximately 14,900 people, with around 96.1 million people directly affected, leading to a total economic loss of 31.3 billion USD. The direct deaths caused by extreme heatwaves were approximately 157,000 people, with around 320,000 people directly affected, resulting in a total economic loss of 13.4 billion USD. Additionally, natural disasters such as storms and droughts have had a significant adverse impact on human life. Between 2000 and 2020, storms led to 201,000 direct deaths globally, with approximately 773 million people directly affected. Drought-related natural disasters caused 21,300 direct deaths, affecting approximately 1.44 billion people. The total economic losses incurred separately from storm and drought disasters were 1.3 trillion USD and 119 billion USD (Clarke et al., 2022). These disasters have had severe adverse impacts on both human society and urban ecological systems (Fischer et al., 2021).Therefore, it is imperative that we continually monitor the changes in urban ecological environments, harnessing the information embedded in urban spatial-temporal data (Guanqiu, 2021), and utilizing environmental assessments (Oláh et al., 2020; Sarkodie and Owusu, 2021) as a crucial tool to promptly identify environmental problems (Li et al., 2020), thus providing a solid foundation for crafting effective mitigation strategies.

Early ecological assessment methods traditionally relied on manual data collection and subjective evaluations, involving the establishment of environmental monitoring stations for periodic checks on air quality (Han and Ruan, 2020; Gu et al., 2021), soil quality (Kiani et al., 2020), and vegetation coverage (Feng et al., 2021; Shi et al., 2022). Based on data obtained from air monitoring stations, some scholars have employed modeling approaches to predict and assess the concentration of nitrogen dioxide in the air within urban areas. The average error in their predictions is reported to be −0.03 μg/m³ (van Zoest et al., 2020). Additionally, other researchers have utilized data from monitoring stations to quantify the concentration of pollutants in the air. They have identified ozone and nitrogen dioxide, along with various particulate matter in urban areas, as secondary pollutants contributing to serious health issues (Isaifan, 2020; Shi and Brasseur, 2020). Furthermore, they have conducted regular soil sampling and analyzed the impact of crop residues on the soil. Around 3.5–4 × 109 Mg of plant, residues are produced each year globally, among which 75% come from cereals (Mirzaei et al., 2021). A survey of a wide range of vegetation in different regions revealed that forests, grasslands and scrublands were most efficient in soil erosion control on 20°–30°, 0°–25° and 10°–25° slopes respectively (Wu et al., 2020).With the development of image processing technology, researchers have employed manual techniques to interpret satellite and aerial imagery for assessing alterations in land cover and land use (Hussein et al., 2020; Talukdar et al., 2020; Rousset et al., 2021; Srivastava and Chinnasamy, 2021; Aljenaid et al., 2022; Arshad et al., 2022; Baltodano et al., 2022; Sumangala and Kini, 2022; Nath et al., 2023), some scholars have conducted accuracy analysis of geographical spatial remote sensing images using the Kappa coefficient, achieving an overall accuracy of 80% or higher for all image classifications. Furthermore, other researchers have adjusted decisions on land use and land cover change (LULC) categories obtained from remote sensing images using diverse auxiliary data. They have employed a maximum likelihood classifier to generate seven LULC maps, and the overall accuracy of these seven raster classification maps has exceeded 85%. In the early stages of ecological environment assessment, the majority of methods heavily relied on manual sampling to acquire environmental information within the current region. Additionally, mathematical models and simulation tools are frequently employed for predicting changes and responses within ecosystems, often necessitating considerable manual input and parameter configuration (Aguzzi et al., 2020; Lucas and Deleersnijder, 2020; Ejigu, 2021). As researchers gradually adopted remote sensing imagery for ecological environment assessment, this method involved mining data from the images to evaluate the current ecological environment based on the obtained information. Nevertheless, this process necessitated a significant investment of both specialized knowledge and time.

In order to reduce the problem of manually setting a large number of parameters and relying on a large amount of expertise to assess the ecological environment, and to improve the immediacy of monitoring. We plan to obtain real-time image information of the current urban area through drones, and use deep learning-based object detection algorithms to detect the urban area in the current image. Based on the detection results of different categories in the image, we will make an intelligent and comprehensive evaluation of the urban ecological environment. With the advancement of machine learning, computer vision, and remote sensing technologies, intelligent and automated methods have begun to transform the way urban ecological assessments are conducted, rendering them more efficient and precise (Mirmozaffari et al., 2020; Shao et al., 2020; Frühe et al., 2021; Onyango et al., 2021; Yousefi et al., 2021; Meyer and Pebesma, 2022; Zeng et al., 2022). Some researchers are leveraging machine learning and data mining techniques to extract valuable information, patterns, and trends from urban spatial-temporal data, thereby achieving intelligent environmental assessments. As hardware performance continues to improve, accompanied by the accumulation of substantial urban spatial-temporal data, deep learning, with its outstanding data modeling capabilities, outperforms traditional machine learning methods in environmental assessment tasks (Choi et al., 2020; Sarker, 2021). However, challenges persist when evaluating ecological systems through intelligent means.

The efficient extraction of spatial information poses a significant challenge in intelligent ecological environment assessment. To tackle this challenge, it is imperative to overcome the intricacies of ecosystem distribution, enabling the efficient extraction and analysis of spatial information (Rasti et al., 2020).Urban ecological environment assessment encompasses various aspects, including atmospheric conditions, soil quality, and vegetation coverage (da Silva et al., 2020). In contemporary urban settings, the substantial increase in the number of motor vehicles has led to a significant rise in exhaust emissions, resulting in severe environmental issues such as elevated temperatures. To safeguard the ecological environment, a common approach involves expanding vegetation coverage to enhance carbon dioxide absorption for air purification, thereby improving air quality and mitigating the adverse effects of exhaust emissions, effectively alleviating the greenhouse effect (Lee et al., 2020; WMikhaylov et al., 2020). Hence, the efficient detection of vehicular targets and vegetation coverage from urban spatial-temporal data becomes a crucial aspect of urban ecological environment assessment. When deep learning is applied to the field of target detection, end-to-end training streamlines the process, eliminating the tedious manual feature design. Moreover, training on large-scale datasets ensures that the model possesses robust generalization capabilities. Specifically, algorithms like the YOLO (You Only Look Once) series for target detection have become widely adopted due to their optimization of network structure and inference processes, making them adaptable to various scenarios and target categories in practical environments (Adibhatla et al., 2020; Parico and Ahamed, 2020; Deng et al., 2021; Kusuma et al., 2021; Tan et al., 2021; Gai et al., 2023; Majumder and Wilmot, 2023). Therefore, we can tailor YOLO network models to the characteristics of the dataset, allowing for precise detection of vehicular targets in urban spatial data. This targeted optimization strategy aims to enhance the performance of target detection models in specific scenarios, supporting efficient computer vision solutions for accurate detection and extraction of vehicular targets within urban spatial information. Building upon this, it becomes feasible to comprehensively analyze vehicular density and regional vegetation coverage, establishing a target detection-based model for urban environmental assessment.

The rest of this paper is organized as follows. The second chapter provides a detailed exposition of the YOLOv7 object detection algorithm and the K-means superpixel segmentation algorithm. In the third chapter, we delve into the improvements made to the YOLOv7 object detection algorithm, presenting these changes through the demonstration of enhanced results. The fourth chapter is dedicated to elucidating the details of various indicators in urban environmental scoring, along with the methodology employed for calculating urban environmental scores. Simultaneously, experimental comparisons were conducted on the modified YOLOv7 algorithm introduced in this paper, and the results of these experiments are thoroughly discussed. In Chapter 5, we review the methods used in previous studies, focusing on the application of the YOLOv7 algorithm to ecological environments. We also analyze some of the limitations of the assessment approach in this paper and suggest directions for future research. Finally, in Chapter 6 the whole study is summarized, conclusions are presented and a comprehensive summary of our work is given.




2 Problem formulation

As stated in Section 1, YOLO network models will be improved for the characteristics of the dataset to allow precise detection of vehicular targets in urban spatial data. In the field of deep learning, YOLOv7 stands as a significant advancement in the YOLO series of object detection algorithms, demonstrating higher accuracy and faster processing speed (Fu et al., 2023). By introducing model reparameterization and the novel ELAN module (Liu et al., 2023), it notably enhances the detection performance, especially for fine-grained objects, resulting in a significant improvement in object detection tasks.

YOLOv7 employs a comprehensive set of CBS (Convolutional, Batch Normalization, Silu activation) modules during the feature extraction stage in the network backbone, effectively extracting features from input images. The CBS module, formed by concatenating convolutional layers, batch normalization operations, and Silu activation functions (Yang, 2021), robustly shapes the feature maps. When dealing with aerial data, where vehicles and people showcase diverse models and perspectives in terms of size and distance, YOLOv7 adapts to this diversity. The varied sizes and dimensions of vehicles and people, particularly ranging from small to large cars, are effectively learned by the algorithm, demonstrating its ability for generalization. The combined use of convolution, batch normalization, and Silu activation functions allows the algorithm to better understand vehicles and people of different sizes and shapes. This strategy, incorporating convolutional operations, proves particularly effective when dealing with complex aerial datasets.

Vehicle targets typically exhibit distinctive textural characteristics, including reflections on windows and the glossiness of their body surfaces. Additionally, the overall shape and contours of vehicles are key features, encompassing the overall appearance of the body and the relative positions of its various components. Notably, vehicle wheels often present circular or elliptical contours, a feature that plays a crucial role in distinguishing vehicles from other objects. Therefore, both the contour and texture features of vehicles are vital information for algorithms to accurately identify targets as vehicles. The YOLOv7 algorithm introduces max-pooling layers after certain convolutional layers to retain contour and texture features, capturing essential information in the images. The use of max-pooling layers reduces the spatial dimensions of feature maps while alleviating computational load and preserving image significance. This process also imparts some degree of position invariance to the algorithm, enabling it to correctly recognize features even if the objects have slightly shifted positions. This contributes to the accurate identification of vehicle targets by the algorithm.

In the feature extraction phase of YOLOv7, a series of convolution, activation, and pooling operations are iteratively applied within the network. These operations progressively reduce the spatial dimensions of the feature maps while simultaneously increasing their depth. This iterative process systematically extracts feature maps with diverse levels of hierarchy and semantic information from the input image. The iterative nature of this process enables the network to gradually abstract and comprehend information within the input image, providing a richer feature representation for subsequent predictions of target bounding boxes and class probabilities. Based on the key feature information extracted from the images, YOLOv7 predicts the coordinates of bounding boxes for each grid cell and anchor box. YOLOv7 also predicts a confidence score, indicating whether an object is present within the bounding box. The confidence score (Yunus, 2023) is usually treated with an   function to ensure that it is between 0 and 1. After the model generates prediction results, it compares these predictions with the actual labels, calculates relative losses, and adjusts the model’s weights through gradient descent to minimize these losses, thus improving the model’s ability to predict targets. Subsequently, a non-maximum suppression (NMS) technique is applied for filtering (Zaghari et al., 2021). All detection boxes are sorted based on their confidence scores in descending order, resulting in a sorted list of detection boxes. The detection box with the highest confidence score is selected from the list as the network prediction result.

Classification is done based on the number of vehicles and people detected in the input image by applying a target detection algorithm. Subsequently, we define the regions of green vegetation in the images with precise pixel boundaries and employ the K-means superpixel segmentation algorithm (Zhang J. et al., 2023) for preprocessing. Firstly, we transform the images from the RGB color space to the LAB color space, which provides a more comprehensive representation of colors. The input M*N image is segmented into K superpixel blocks, with each superpixel block having a size of  . The dimensions of each superpixel block are defined as S. The calculation formula for S is Equation 1:

 

By traversing the eight neighboring pixels around the center point   of each superpixel block and calculating the gradient using a difference-based method, we determine the pixel with the minimum gradient value as the new center point for the pixel block. The pixel gradient is calculated as in Equation 2:

 

where   and   are calculated by Equations 3, 4:

 

 

where  ,   and   denote the pixel values at,  ,   and   respectively.

Subsequently, we perform clustering on the newly obtained K superpixel block centers using the K-means algorithm. Initially, we use the K superpixel block centers as the initial cluster centers. Then, we assign data points by assigning each data point to the nearest cluster center, thus forming K clusters, which is calculated as shown in Equation 5.

 

where data points are represented as  ,   stands for cluster centers, and   is an indicator variable for each data point belonging to the K-th cluster. It takes the value 1 if the data point belongs to cluster  , and 0 otherwise.

Finally, the new center of each cluster is computed, i.e., the mean   of all data points in that cluster, is calculated as shown in Equation 6.

 

where   is the number of data points in the K-th cluster. Repeat the above steps until the cluster centers no longer undergo significant changes. Based on the continuously updated   and   through iterations, achieve the minimum intra-cluster sum of squares, thereby achieving the effectiveness of the K-means clustering algorithm.

Accordingly, the calculation of the area share of the corresponding pixel range of the green vegetation is completed. From the obtained area share data, the percentage of green vegetation coverage can be determined and used as part of the ecological environment evaluation index.




3 Theoretical analyses



3.1 Understanding the sensitive objects

As technology continues to advance, unmanned aerial vehicle (UAV) technology has become increasingly mature, and the use of UAVs for city data acquisition has become a popular method for environmental assessment. However, UAV aerial images often exhibit characteristics such as small and densely distributed targets in large quantities. To address this, we have modified the original YOLOv7 algorithm to make it suitable for the task of environmental assessment using UAV aerial images. In the original YOLOv7 backbone, after inputting the image, there are four CBS modules used for channel modification, feature extraction, and down sampling. In order to retain image features and prioritize coarse-grained filtering, we introduced the proposed Biff module after the four CBS modules to replace the ELANB module in the original network. The Biff module applies Biformer to the gradient flow main branch. Biformer is a Transformer architecture designed to address visual tasks in dense scenes. In urban environments, UAVs detect a large number and variety of targets, which can lead to interference when sampling shared query-key pairs within the image, making it challenging for the model to correctly distinguish between targets in different semantic regions. This issue is also present in Vision Transformers (Bazi et al., 2021) (VIT) and Swin Transformers (Tummala et al., 2022) (Hierarchical Vision Transformer using Shifted Windows, SwinT). In dense scenes, due to the multitude of targets, Transformer models need to focus on different regions of the image to capture relevant features. Typically, Transformer models use self-attention mechanisms to achieve this goal. However, due to the presence of shared query-key pairs, the model can introduce interference between different regions, thus reducing performance. The design goal of Biformer is to address this issue by employing a Bi-level Routing Attention (BRA) mechanism, ensuring that the model can correctly focus on different regions or features in dense scenes.

The core module of Biformer, known as Bi-Level Routing Attention, initially employs a Patchify operation to partition the input features from their original format of (H, W, C) into smaller segments of dimensions ( ,  ,  ). The Patchify operation involves the subdivision of a larger image into smaller blocks, often referred to as patches, the Patchify operation is shown in Equation 7. This enables the analysis, processing, or feeding into a neural network for predictive purposes of each individual patch.

This approach is instrumental for the comprehensive examination, manipulation, or neural network training with large-scale images. Neural networks are often better suited to handle inputs of fixed dimensions, making this partitioning process essential. In this context,   denotes the input feature map, and   represents the desired dimensions for splitting the input into smaller blocks.

 

Subsequently, the linear projection of query, key, value and the region query and key are generated by Equations 8, 9.

 

 

The   operation involves linearly projecting and mapping the input features. The purpose of the   operation is to partition a tensor along a specified dimension and return these partitions as a tuple. In this context, when dim=−1 is used, it signifies that the tensor is divided along its last dimension, with each partition containing three elements. The variable   is utilized to compute the mean of query and key vectors along the second dimension (dim=1). The resultant regional   and   vectors are then employed to generate the adjacency matrix   for the region graph, and the adjacency matrix Ar is calculated as shown in Equation 10.

 

Subsequently, the routing index matrix   is computed, where   is an indexing operation on the adjacency matrix to obtain the indexes where its first k maxima are located, pruning the adjacency matrix by reserving only top-k connections for each region, RIM is computed as shown in Equation 11.

 

The new   and   vectors are obtained by aggregating key with the routing index matrix and value with the routing index matrix by the   operation. The   operation obtains the specified specified elements from   and   according to the indexes in the routing index matrix   and composes a new tensor, which is computed as shown in Equation 12 and Equation 13, respectively.

 

 

The BRA attention mechanism is calculated as shown in Equation 14:

 

where bmm is the batch matrix multiplication and A is calculated as shown in Equation 15:

 

The   operation for local context enhancement employs Depthwise Convolution (Zhao et al., 2021) (DWConv). Depthwise convolution represents a convolutional operation within convolutional neural networks, specifically designed to process convolutions among different channels, also referred to as feature maps, within input data. The computation of depthwise convolution unfolds as follows:

Firstly, it computes Depthwise Convolution, which is calculated by Equation 16.

 

where   is a convolution kernel of size K×K,   is the intermediate feature map,   is the input feature map, and   denotes the convolution operation.

Then, a channel-by-channel convolution operation is applied to the intermediate feature map   using a convolution kernel of size 1×1,   to combine the results from different channels to generate the final output feature map  . This process can be represented by Equation 17.

 

where   denotes the convolution kernel used for the ith channel and   denotes the channel convolution operation.

The specific design of the Biformer module comprises the following steps: Initially, it employs a 3x3 Depthwise Separable Convolution (DWConv) to encode relative position information. Subsequently, it utilizes the BRA (Bi-Level Routing Attention) attention mechanism along with an MLP (Multi-Layer Perceptron) module with two layers, having an expansion rate of  , for modeling cross-position relationships and embedding on a per-position basis. The BRA attention mechanism prioritizes the filtering of the least relevant key-value pairs at a coarser-grained region level before computing token-level attention for the remaining regions. This operation is performed using sparse sampling instead of down sampling, thereby preserving fine-grained details, which is particularly crucial for small target objects in dense scenarios.

Building upon this foundation, we introduce the Biff module. Initially, it calculates the product of   and   and converts the resulting product into an integer through the   operation. This yields the hidden feature channel count, where   represents the output channel count. The symbol c denotes the number of channels and is calculated as shown in Equation 18. The symbol   is the base of the natural logarithm in mathematics.

 

Subsequently, the input feature x is processed by the CBS module for feature extraction to improve the perceptual field and feature representation of the network as shown in Equation 19.

 

Then, as shown in Equation 20 we split y into two parts y1, y2 along dimension 1 by   operation. The symbol c is the split point of the split operation.

 

And y2 as input, as shown in Equation 21, we process y2 through BiFormer module operations:

 

Subsequently, as shown in Equation 22, we join y1 with the processed y2 and pass the result through a second CBS.

 

where   denotes the concatenate operation is used to join   together to generate a new tensor and   is the final output.

The rich gradient flow is preserved by connecting two different feature branches and an additional   operation. Finally, the multi-layer feature information is spliced and a Biformer module with state sparse attention is added to the backbone of the module, aiming to enhance the detailed information and fine-grained features of the image.

We replaced the first ELANB module in the YOLOv7 model with a Biff module of our design and compared it in terms of parametric network performance and parameters. As shown in Table 1, the network model parameters are listed in the table, including the coefficients controlling the depth of the channel, the coefficients controlling the width of the network, the number of layers of the network model, the number of parameters of the network, and the floating-point computational power of the network, and other important information.


Table 1 | Comparison of network model parameters.



As can be seen from the data in the table, we keep the original network width coefficient in the improved network, reduce the depth coefficient of the network to realize the scaling of the network channel, and substantially enhance the computational ability of the model under the condition of small increase in the number of network layers and parameters. Therefore, it can be demonstrated that the improved Biff module can substantially enhance the computational power of the network at the cost of a small increase in parameters. Subsequently, the effectiveness of the Biff module in target detection will be verified for enhancement.

To assess the effectiveness of the Biff module, this study conducted experiments using the Visdrone2019 aerial dataset. The Visdrone2019 dataset was meticulously curated by the AISKYEYE team from the Machine Learning and Data Mining Laboratory at Tianjin University in China. This dataset encompasses information from multiple sampling points in urban and rural areas within 14 different cities across China, spanning thousands of kilometers. The dataset’s information was captured by various models of unmanned aerial vehicle (UAV) cameras and includes ten predefined categories: pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle. These data were collected using different UAV models under diverse scenarios, weather conditions, and lighting conditions. In total, the dataset comprises 10,209 static images, with 6,471 images used for model training, 548 for validation, and 3,190 for testing. The images typically exhibit high resolutions ranging from 1080p to 4k, boasting a high level of detail. Notably, the detection targets within the images tend to be small in scale, set against complex backgrounds, and often occluded by other objects, leading to relatively low mAP scores. It is precisely due to these challenges that this dataset holds immense research value, enabling researchers to explore and enhance object detection algorithms to address a variety of complex real-world application scenarios.

As shown in Figure 1, the heat map is generated after passing the input image through four CBS modules and one ELANB module in the original YOLOv7 network. In contrast, Figure 2 presents the heat map obtained after the input image passed through four CBS modules and the Biff module designed in this study. A clear comparison reveals that after processing with the Biff module, irrelevant information, such as anti-overturning barriers on the motor vehicle lanes and dividing lines on sidewalks, has been filtered out. Additionally, it is evident that the attention on distant vehicles has significantly improved through comparison.




Figure 1 | Heat map of YOLOv7 after four CBS modules and one ELANB module.






Figure 2 | Heat map after 4 CBS modules and replacing ELANB module with Biff module.






3.2 Improving the YOLOv7 heat map

In urban UAV (Unmanned Aerial Vehicle) aerial images, a prevalent scenario involves a multitude of vehicle targets, often characterized by their small scale and high abundance. Accurate detection of these small targets necessitates a more precise assessment of the overlap between predicted bounding boxes and the ground truth boxes. To address this challenge, we have undertaken improvements to the original YOLOv7 algorithm by enhancing the IOU (Intersection over Union) loss function. This enhancement aims to reduce false positives and false negatives by ensuring correct matching. The original YOLOv7 algorithm utilizes the CIOU (Ni et al., 2021) (Complete Intersection over Union) loss function for IOU calculation. The CIOU is calculated as shown in Equation 23:

 

where   is a balancing parameter that is not involved in the gradient calculation and is calculated as shown in Equation 24.   is the computed Euclidean distance.   is the diagonal distance of the smallest enclosure that covers both the target and the predicted bounding box.   are the center coordinates of the bounding box,   are the center coordinates of the prediction box.

 

  is used to calculate the consistency of the target bounding box and predicted bounding box aspect ratios, which is calculated as in Equation 25:

 

Where   and   are the width and height of the bounding box respectively.   and   are the width and height of the prediction box respectively.

While the CIoU (Complete Intersection over Union) loss function takes into account the overlap area, center point distance, and aspect ratio in bounding box regression, it uses the relative proportion of width and height to represent aspect ratio differences, rather than employing the absolute values of width and height. Consequently, this approach can hinder the model’s effective optimization of similarity. To address this limitation, we have replaced the original CIoU loss function in YOLOv7 with the EIoU (Wu et al., 2023) (Enhanced Intersection over Union) loss function. The calculation formula for EIOU is Equation 26.

 

In this context,   and   refer to the width and height of the smallest bounding box that can simultaneously encompass both the target and predicted bounding boxes. The EIoU (Enhanced Intersection over Union) loss function extends the CIOU (Complete Intersection over Union) loss function by separately calculating the influence of aspect ratios on the length and width of both the target and predicted bounding boxes. This direct minimization of the disparity in width and height between the target and predicted bounding boxes aids in achieving higher localization precision in UAV aerial image detection tasks. Furthermore, it enhances convergence speed, facilitating efficient and accurate detection of small-sized vehicle targets in aerial images.

A comparison of the visualized heatmap of the original YOLOv7 version with the enhanced YOLOv7 algorithm proposed in this study is illustrated in Figures 3, 4. Our algorithm incorporates specific optimizations in the network’s backbone to better accommodate densely distributed detection targets and increase the focus on relevant objects. This contribution leads to improved predictions of detection boxes and consequently enhances the overall detection accuracy. By introducing the EIoU (Enhanced Intersection over Union) loss function to fine-tune the model training weights, we have bolstered the detection performance, particularly for small-sized targets. These heat map visualizations clearly illustrate that the enhanced algorithm, in the context of handling densely distributed small target detection tasks, has achieved significant improvements over the original YOLOv7 network.




Figure 3 | Original YOLOv7 heat map.






Figure 4 | Improved YOLOv7 heat map.



Shown in Figure 5 is the original image from the VisDrone2019 dataset. In Figure 6 shows the performance of our enhanced YOLOv7 network in the detection task. It is clear from these figures that the algorithm proposed in this paper has the ability to accurately detect distant vehicle targets.




Figure 5 | Original image.






Figure 6 | Improved YOLOv7 detection effect diagram.



The improved YOLOv7 network structure of this paper is shown in Figure 7, and both the Biff module and the original Biformer module are also shown in the figure. In our design, the custom-developed Biff module is indicated in red, highlighting its position within the network. The Biff module’s structural diagram is represented in blue, while the Biformer module within the Biff module is distinguished by its purple color.




Figure 7 | Improved YOLOv7 network structure diagram.







4 Evaluation of the city environmental quality



4.1 Detected vehicles and persons

We selected 600 images from the Visdrone2019 dataset for our subsequent environmental assessment research. These 600 images are categorized into four categories:

	Category 1. High vegetation coverage, low human and vehicle density;

	Category 2. High vegetation coverage, high human and vehicle density;

	Category 3. Low vegetation coverage, low human and vehicle density;

	Category 4. Low vegetation coverage, high human and vehicle density.



Each category consists of 150 images and we have selected some of the detection results to be presented in Figure 8.




Figure 8 | Effectiveness demonstration of the four categories.



The detection results shown within the blue box depict the target detection performance under conditions of high vegetation coverage and low human and vehicle density. The detection results in the red box exemplify the target detection performance under conditions of high vegetation coverage and high human and vehicle density. The green box illustrates the detection results in conditions of low vegetation coverage and low human and vehicle density, while the yellow box demonstrates the detection results in conditions of low vegetation coverage and high human and vehicle density. In the presented results, it is evident that vehicles of different scales, such as cars, buses, and motorcycles, are accurately detected.




4.2 Calculated vegetation coverage

In Figure 9 the preprocessing results of color superpixel segmentation achieved by K-means clustering algorithm are shown. In Scenes 1–2, precise segmentation of vegetation within the images has been successfully accomplished, distinguishing between buildings and barren land within green areas and isolating them from the images. In Scene 3, accurate identification of vegetation occluded by buildings is also achieved. In Scene 6, not only is extensive vegetation accurately identified, but also the fine linear green spaces between urban roads are precisely segmented. In Scenes 5–8, we observe clear segmentation results of vast and continuous vegetation areas. The green vegetation regions in the images have been accurately delineated, providing a robust foundation for subsequent vegetation coverage statistics.




Figure 9 | Segmentation effect in different scenes.



After successfully segmenting the targeted vegetation objects within the images, their areas are computed, followed by the calculation of their proportion within the images to assess vegetation coverage. VC1 to VC8 in the figure represent different levels of vegetation coverage. When evaluating vegetation coverage, the following criteria are employed:

(1) If the percentage of vegetation objects in the image area exceeds 30%, it is categorized as high coverage, indicating a high level of urban greening.

(2) If the percentage of vegetation objects in the image area falls between 10% and 20%, it is categorized as moderate coverage, indicating a moderate level of urban greening.

If the percentage of vegetation objects in the image area is below 10%, it is categorized as low coverage, indicating a relatively low level of urban greening.

(3) This assessment method helps us gain a comprehensive understanding of urban greening and provides quantitative information regarding vegetation coverage, which is of significant importance for ecological and evolutionary research.




4.3 Number of sensitive objects

The Figure 10 demonstrates the process of utilizing the ‘detect.py’ file within the YOLOv7 model to load pre-trained model weights and perform inference on test images. The results of this inference are visually presented on the images, including detected bounding boxes, categories, and confidence scores. Additionally, in the development environment, real-time printing of the detection count for each category is provided. Through the calculation of the number of targets belonging to the ‘person’ and ‘motor vehicle’ categories, an assessment of vehicle density is conducted. This methodology aids in a deeper understanding of the distribution of vehicles within the urban environment. From Figure 10, it is apparent that we have conducted population counts for both vehicles and pedestrians in Regions 1–6 and Region 8. In Region 7, motorcycles have also been included in the count. In Region 9, we have specifically tallied motor vehicles and a modest number of pedestrians, with non-motorized vehicle categories such as bicycles excluded from the calculation. In Regions 10–16, it is evident that the population counts for different vehicle categories maintain a high level of precision. This precision plays a pivotal role in establishing a robust foundation for our subsequent ecological and environmental assessments.




Figure 10 | Statistics on the number of people and vehicles in different scenarios.



In Figure 10, we present the results of the improved YOLOv7 algorithm on test images, where it accurately detects corresponding targets based on the classification from the Visdrone2019 dataset. Subsequently, we focus on the categories of motor vehicles and humans, calculating their cumulative counts, which are prominently displayed at the bottom of the image. VP1 to VP16 respectively represent the cumulative counts for motor vehicles and humans in images 1 to 16.




4.4 Calculating the Air Quality Index

The air quality in urban areas is one of the key factors in assessing the ecological environment of cities. In order to comprehensively evaluate the urban ecological environment, data on air quality is collected from various monitoring points to assess the changes in urban air quality over a specific period. The evaluation is carried out by calculating the Air Quality Index for the urban air quality. The AQI is determined based on-air quality standards and the impact of pollutants such as particulate matter (PM10, PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) on human health, ecology, and the environment. The conventional concentrations of monitored pollutants are simplified into a single conceptual index, representing the degree of air pollution and the graded condition of air quality. The calculation method for the Air Quality Index varies by region, and different countries may adjust and modify the calculation methods based on their national circumstances. In this study, we adhere to the air quality index calculation standards of China. The AQI is calculated by Equations 27, 28:

 

where   is the air quality sub-index and C is the pollutant concentration limit value when the actual test is conducted.   and   are obtained from Table 2 based on the values of C.   is the pollutant concentration limit for pollutants greater than or equal to C, and   is the pollutant concentration limit for pollutants less than or equal to C.   is the air quality sub-index limit for  , and   is the air quality sub-index limit for  .


Table 2 | Thresholds for pollutant concentrations corresponding to air pollution indices (Dionova et al., 2020; Popov et al., 2020), the yellow, grey and blue areas are the corresponding pollutant concentration limits and AQSIs when the 24-hour average concentration values of PM2.5, NO2 and PM10 are 157, 150 and 40, respectively.



In Table 2, C is the current measured pollutant concentration. The limits of PM2.5, NO2, PM10 are calculated as follows, employing 24 hours as an example. When the current measured PM2.5 concentration value C is 157, its corresponding pollutant concentration limit and air quality sub-index limit correspond to the yellow area in the table. If the current measured concentration value C of NO2 is 150, the corresponding pollutant concentration limits and air quality sub-index limits correspond to the gray area in the table. When the current measured PM10 concentration C is 40, the corresponding pollutant concentration limits and air quality sub-index limits correspond to the blue area in the table. The limits of other pollutants can also be calculated similarly in this way.

The calculated value of AQI is usually a quantitative characterization of the pollution level of the main pollutants, which is calculated by Equation 28:

 

According to the calculated Air Quality Index, we are able to comprehensively assess the current air quality. A lower numerical value of the Air Quality Index indicates a better current air quality, while a higher value signifies poorer air quality. This index is computed based on a comprehensive evaluation of various pollutant concentrations in the air, providing us with an effective means to objectively measure and compare air quality conditions in different regions and at different time points.

In the first two weeks of November 2023, we selected Shenyang City in Liaoning Province, China, as the monitoring site to measure the concentrations of six different pollutants in the air. In Figure 11, the distribution of concentrations for six pollutants during the first two weeks of November is presented in the form of box plots. These box plots are constructed using data information such as upper and lower bounds, median, upper and lower quartiles, and outliers. From the box plots, it is evident that concentrations of PM2.5, PM10, SO2 and O3 exhibited outlier values during the first two weeks of November, indicating data points that surpassed the normal range. This implies that on certain dates, pollutant concentrations exceeded the anticipated levels.




Figure 11 | Box-plot of air pollutant concentration index for November 2023 in Shenyang, China. Because the concentration of CO is much higher than that of other pollutant units (left), we show a separate boxplot of CO concentration (right).



In Figure 11, the red solid line represents the median concentration of pollutants during this period, while the blue dashed line indicates the mean concentration of pollutants. Comparing the calculated median and mean values facilitates a more comprehensive analysis of the central tendencies and distribution of the overall data. The use of box plots vividly presents the dispersion of pollutant concentration data, allowing for a clear understanding of the changing trends of different pollutants during this period and identifying potential anomalies.

The assessment method of Air Quality Index is of paramount importance for maintaining the living environment of urban residents. By adopting corresponding protective measures based on different levels of air quality, the aim is to ensure the health and well-being of citizens. Utilizing the Air Quality Index to evaluate urban air quality provides an accurate depiction of the extent of atmospheric pollution. Its simplicity and clarity in calculation make it easily understandable for both urban residents and relevant authorities. This enables timely implementation of appropriate protective measures in response to diverse air quality conditions, contributing to the provision of a healthy living environment for city dwellers. Therefore, the calculation of the Air Quality Index stands as an effective tool for assessing and monitoring the ecological environment of urban areas.




4.5 Calculating the noise index

With the improvement of urban residents’ living standards and the advancement of science and technology, the number of vehicles in cities has significantly increased. Traffic noise has become one of the primary factors detrimental to the urban ecological environment. Traffic noise refers to the noise generated by various modes of transportation during their movement, primarily composed of engine noise, intake, and exhaust noise, among others. Accurate calculation and assessment of traffic noise are beneficial for evaluating the urban environment and safeguarding the health of city residents.

Currently, smartphones have become indispensable in people’s lives. Simultaneously, smartphones are equipped with rich sensors and computing capabilities that can be utilized for environmental noise monitoring (Nuryantini et al., 2021). Noise pollution in urban areas was assessed by collecting noise information using smartphone devices at selected sampling points in the Vidrone2019 aerial dataset. The chosen noise sampling locations are mainly distributed along major roads with heavy traffic flow in urban areas and near residential areas with lower vehicular density. To ensure the reliability of experimental data, noise information measurements were conducted continuously for ten minutes from different angles at each sampling point. The noise level (NL) is expressed in decibels (dB).

According to environmental noise standards, urban noise standards can be classified into five categories, with their standard values shown in Table 3.


Table 3 | Urban Class 5 Ambient Noise Standards.



When the noise level exceeds 65dB, the environmental noise is defined as severe noise pollution. When the noise level is within the range of 60–65dB, the environmental noise is classified as moderate noise pollution. In the case of noise levels ranging from 55–60dB, the environmental noise is designated as mild noise pollution. Class 0 and Class 1 standards are suitable for areas primarily dedicated to residential living and educational institutions. Class 2 standards are appropriate for mixed-use areas with a combination of residential, commercial, and industrial activities. Class 3 and Class 4 standards are suitable for major traffic arteries and industrial zones within urban areas. The noise levels measured from various angles in both main roads and residential areas in the city are presented in part in Figure 12.




Figure 12 | Measurement results of some urban trunk roads and residential areas.



In urban life, traffic noise is still primarily attributed to vehicular noise. Based on long-term measurements of noise levels, areas with significant noise pollution are identified. Strategies to mitigate noise impact in these identified areas include implementing real-time road traffic control and planting noise-reducing green belts along roadsides. These measures aim to enhance the quality of the urban ecological environment.




4.6 Score of the regional environment

Calculate the current ecological score for the urban area based on statistical data such as vegetation cover, human and vehicle density, air quality and noise levels. Calculated as shown in Equation 29:

 

where VC denotes the vegetation coverage and VP denotes the cumulative sum of the counted personnel categories and vehicle categories. The paraments  ,  ,    are the weight values corresponding to the different impact indicators in the environmental assessment, which are all non-negative and the sum of the three weight values is one.

When the computed result exceeds a certain threshold, it indicates that the self-optimization of the urban environment is insufficient, necessitating the strengthening of environmental protection measures. When the computed result falls within the range between two thresholds, the urban vegetation environment may contribute to a slight mitigation of the greenhouse effect, providing a pleasant living environment. When the computed result is below the minimum threshold, the urban vegetation environment significantly reduces the greenhouse effect, resulting in a relatively pleasant living environment. The scores calculated according to the urban condition assessment formula are shown in Figure 13, where the values of β and   are set to 0 and the value of α is set to 1. Only the density of people and vehicles and the vegetation cover are taken into account.




Figure 13 | Environmental score assessment:  ,  .



In Figure 13, in Regions 1–2, 5–8, 10–11, and 15, despite abundant vegetation coverage, the presence of a significant number of individuals and vehicles within the area results in a lower environmental rating. In contrast, Regions 3–4, 13, and 15 exhibit extensive vegetation coverage with fewer individuals and vehicles in the images, leading to higher environmental ratings. In Regions 9, 14, and 16, the vegetation coverage is relatively sparse, and some vehicles are still present within the area, resulting in lower environmental ratings.

In Figure 14, we utilized multiple ecological evaluation indicators to calculate the urban ecological environment scores for the current sampling points over a specific period. The ecological assessment scores according to the four different scenario categories mentioned in Section 4.1 of this paper are presented in Figure 14. As the displayed images were randomly captured at monitoring points on November 7, 2023, the AQI values for that day were employed for the air quality assessment.




Figure 14 | Environmental score assessment:  ,  .



In this assessment, aiming for a comprehensive evaluation of urban ecological quality, we introduced information on noise levels and the Air Quality Index within the current time frame. Adjustments were made to the weight parameters in the urban environment assessment. Specifically, for this assessment, we set the value of α to 0.4, and the values of λ and β were set to 0.3 each. The use of this comprehensive assessment method aims to consider various factors affecting the urban ecological environment more comprehensively, providing more accurate results for urban ecological assessments. This approach not only takes into account factors such as vegetation coverage but also adequately considers crucial elements like noise and air quality, enhancing the effectiveness and practicality of the assessment. The careful selection of these weight parameters aims to balance the relative importance of each indicator to better reflect the overall urban ecological quality.

Observing Figure 14 it is evident that in monitoring points with higher vegetation coverage on the given day, the urban ecological environment assessment scores show a significant improvement. In the first category, due to the higher vegetation coverage in the current area, there is a relatively lower number of vehicles and pedestrians, and the air quality level on that day is considered good. Therefore, the environmental score for the first category is relatively high. In the second category, although the vegetation coverage exceeds that of the first category, the presence of a large number of moving vehicles in the current area leads to elevated noise levels. Additionally, the emission of exhaust fumes from vehicles surpasses that of the first category. Consequently, the second category, characterized by more vegetation coverage and a higher presence of vehicles and pedestrians, receives a lower score than the first category, which has more vegetation coverage and fewer vehicles and pedestrians. In the third and fourth categories, it is evident that the current area’s vegetation coverage is significantly lower than that of the first and second categories. While the noise level test may not visually depict the noise caused by construction sites around the current area, the statistical data on noise levels indicate an increasing trend in the indices. Therefore, the third category, representing cities with less vegetation and fewer vehicles and pedestrians, as well as the fourth category, denoting cities with less vegetation and more vehicles and pedestrians, exhibit urban ecological scores significantly lower than the first two categories.

In the calculation of ecological environment scores, we determined the weight values α, λ, β based on surveys conducted in different types of regions. The research results indicate that in cities with a higher concentration of industrial zones, urban residents exhibit a heightened concern for air quality. Conversely, in residential areas situated farther away from industrial zones, residents are more attentive to both current air quality and vegetation coverage in their vicinity. Consequently, we established the weight values according to the primary concerns of urban residents regarding the ecological environment, enabling the computation of the current ecological environment assessment scores. When α=1, λ=β=0, the calculated daily data yields environmental scores for four different categories, namely 22.63, 2.14, 0.84, and 1.15. In the case of α=0.5, λ=0.3, β=0.2, the computed scores for the same four categories are 1.46, 1.29, 0.11, and 0.58, respectively. This indicates that varying weight values result in distinct environmental score outcomes, thereby facilitating a differentiated assessment of the ecological environment in different regions. The judicious setting of weight values in environmental scoring allows us to more accurately reflect the concerns of residents in different areas. Furthermore, it provides robust support for the formulation of targeted measures for ecological conservation and improvement.




4.7 Comparisons with the other YOLOs

In practical applications, multi-class object detection is common, making mAP (Mean Average Precision) highly valuable for the holistic evaluation of model performance. where mAP is calculated as shown in Equation 30:

 

where precision   and recall   are calculated as shown in Equation 31 and Equation 32, respectively.

 

 

In the formula, TP stands for True Positives, which denotes cases where the detected object is a true positive, meaning it is a real target and is correctly detected as such. FP represents False Positives, indicating instances where the detected object is a false positive, meaning it is not a real target, but the detection falsely identifies it as one. FN represents False Negatives, signifying situations where the detected object is a false negative, meaning it is a real target but is not correctly identified by the detection algorithm. P(R) represents the non-linear equation of the PR curve. mAP stands for mean Average Precision, a comprehensive performance metric. P stands for Precision, and R stands for Recall. The individual mAP curves and corresponding values for the improved YOLOv7 algorithm for the 10 different categories in the Visdrone2019 dataset are shown in Figure 15. mAP is a comprehensive performance evaluation metric that considers precision-recall curves for different categories and computes their average. mAP offers a comprehensive assessment of multi-class object detection performance.




Figure 15 | Map curve of the improved YOLOv7 algorithm map.



As shown in Table 4, to further validate the detection performance of our improved algorithm in this study, we conducted a comprehensive evaluation on the VisDrone2019 dataset and compared it with mainstream deep learning-based object detection algorithms. We used the mAP (Mean Average Precision) metric for comparative analysis. It can be observed that our improved algorithm achieved a relative increase of 17.6% in mAP0.5 compared to YOLOv4, an 11% improvement compared to TPH-YOLOv5, and an 8.1% enhancement compared to YOLOv8. Specifically, we noted a significant improvement in the detection accuracy of categories such as pedestrians and people within the dataset. Compared to YOLOv4, the average precision of the pedestrian category increased by 32.7%, and the average precision of the people category increased by 34.8%. For larger targets such as trucks and buses, there was also a notable improvement in detection average precision, with increases of 21.7% and 19.4%, respectively. These experimental results confirm the effective detection performance of our improved algorithm for densely populated small objects in UAV aerial imagery.


Table 4 | Comparison experiments with different detection algorithms.







5 Discussion

With the rapid development of deep learning technology, the YOLOv7 algorithm, as the next-generation efficient object detection tool in the YOLO series, has found extensive applications in various ecological assessment domains. In the field of greenhouse gas assessment, the improved YOLOv7 object detection algorithm is applied for real-time detection, tracking, and counting of vehicles in urban areas. The calculated number of vehicles is then used to assess the current air quality. When there is an excess of vehicles, timely traffic flow management is implemented to reduce carbon emissions and improve urban air quality (Chung et al., 2023; Rouf et al., 2023; Zhang et al., 2023). In the domain of air pollution ecological assessment, the YOLOv7 object detection algorithm is employed to detect emission sources in low-rise suburban areas and assess the current air quality (Szczepański, 2023). In the field of vegetation ecological assessment, the YOLOv7 object detection algorithm is utilized to identify harmful plants such as weeds that may pose a threat to other vegetation. Based on the assessment results, prompt measures are taken to address areas with severe ecological damage (Gallo et al., 2023; Peng et al., 2023). Additionally, the YOLOv7 object detection algorithm is applied to extract features from trees, analyze them based on the extracted key features, and assess their health status to ensure the healthy growth of trees (Dong et al., 2023). Despite the widespread applications of the YOLOv7 algorithm in various ecological assessment domains, its application in the field of urban ecological environment assessment remains relatively limited. This presents a promising avenue for future research. By combining the YOLOv7 algorithm with urban spatial-temporal data, it becomes feasible to achieve real-time monitoring and assessment of urban ecological environments, thus promoting the preservation and sustainable development of urban ecosystems.

In the current field of ecological research, urban ecological assessment is a critically important task. Some scholars utilize fish DNA damage and physiological response biomarkers to assess the ecology of urban streams (Bae et al., 2020). Simultaneously, to gain a more comprehensive understanding of ecosystem status, other scholars employ Bayesian networks to integrate various types of knowledge, analyze the probabilities of different scenarios, and conduct risk assessments for urban ecological environments (Kaikkonen et al., 2021). Furthermore, soil cover change is a key factor in assessing ecological environments; some scholars, through spatial autocorrelation analysis, interpret risk aggregation patterns to achieve more precise ecological assessments (Ji et al., 2021). Air quality is also a crucial factor assessed by many researchers in urban ecological environments. Some researchers analyze the water-soluble concentrations of harmful heavy metals in urban roads, quantify their health risks in the urban ecology, and use this information to assess the urban ecological environment (Faisal et al., 2022). Additionally, some scholars collect dust samples along urban traffic routes, calculate the average concentrations of toxic pollutants such as lead, copper, and chromium, and use the results to evaluate the current urban air quality (Kabir et al., 2022). Some researchers construct comprehensive ecological security assessment systems for ecosystems by considering the importance of ecosystem services, ecological sensitivity, and landscape connectivity (Xu et al., 2023). Remote sensing satellite technology is commonly used to acquire ecological environment data, enabling the detection and analysis of dynamic changes in the ecological environment in urban ecological assessments. Urban ecological environments can be assessed spatially and temporally based on remote sensing surface temperature data and urban surface ecological conditions (Estoque et al., 2020; Firozjaei et al., 2020). Some scholars extract past climate change rates and extreme weather information from tree rings using new statistical tools, applying them in urban vegetation ecological assessments (Wilmking et al., 2020). Mathematical modeling and computer simulations are also employed to simulate ecosystem dynamics and responses to different pollution and management scenarios. High-resolution modeling methods and soil-crop models quantify factors such as greenhouse gas balance, allowing for the calculation of greenhouse gas emissions and the assessment of the impacts of the greenhouse effect (Launay et al., 2021). These studies have provided valuable insights for our work, emphasizing the significance of air quality and vegetation coverage as crucial factors in ecological assessment. In urban environments, vehicle exhaust emissions and the dense distribution of the population are two primary contributors to urban greenhouse gas effects. The density of people and vehicles in urban areas is a key environmental factor, second only to vegetation coverage. Consequently, we have chosen to conduct a comprehensive assessment of urban ecological environments based on combined metrics of population density, vehicle density, and vegetation coverage. This approach aims to assist governmental authorities in formulating environmental policies and facilitating more effective urban planning to enhance the quality of urban ecological environments. Past research has primarily focused on direct exploration of acquired spatiotemporal data or, based on this foundation, utilized mathematical modeling and statistical tools for analysis. During data sample collection, significant manpower and equipment are typically required. Upon completing the data collection process, mathematical models are established based on the obtained data, involving a large number of parameters that need manual design, resulting in substantial computational complexity. There has not been sufficient utilization of deep learning algorithms capable of uncovering latent features in data without the need for manual rule design. Simultaneously, there has been a lack of comprehensive analysis and research based on information detected from images. In this context, the ecological factors related to visual information have not been fully utilized. Therefore, it is a meaningful attempt for us to apply the deep learning-based YOLO target detection theory to urban ecological assessment in this paper.

The introduction of the YOLOv7 object detection algorithm offers us a novel approach to emphasize crucial visual information in ecological environment assessment. By initially conducting object detection through image data, we can recognize and highlight key elements in the environment, such as population density, vegetation coverage, and others. Subsequently, we employ the detected object information to acquire relevant data, enabling further analysis and evaluation of the ecological environment. The potential advantage of this method lies in its ability to intuitively capture visual information within the ecological environment and integrate it with traditional data, thereby providing a more comprehensive ecological assessment. To this end, we have enhanced the YOLOv7 algorithm by introducing a custom-designed Biff module in the backbone of the network model. This module serves to reduce interference from irrelevant information in the images, enhancing the focus on specific targets, and providing a solid foundation for coordinate prediction and inference stages. Furthermore, we have modified the IoU calculation section of the original network model’s loss function, replacing the original CIoU loss function with the EIoU loss function, and adjusted the training weights of the model. These adjustments have strengthened the detection performance for small-sized targets. Following 400 epochs of training and ensuring consistency between network parameters and image input sizes, we compared our improved algorithm with the original YOLOv7 and other YOLO-series-based algorithms proposed by other researchers, using the Visdrone2019 datasets. Experimental results show that, compared to the original YOLOv7, our improved algorithm achieves a one-point increase in the mAP (average precision) evaluation metric and demonstrates significant improvements in the AP values for the person, pedestrian, car, and van categories. Specifically, the AP values for the people and pedestrian categories have increased by 13.9% and 9.3%, while those for the car and van categories have improved by 6.7% and 4.9%. These results robustly affirm the effectiveness of our improved algorithm.

However, some limitations still persist in the improved algorithm. Firstly, the Visdrone2019 dataset commonly contains small-scale, densely distributed, and indistinct target instances, leading to occasional instances of missed detections. Consequently, when utilizing the improved YOLOv7 algorithm for object counting, certain biases may arise. To address this concern, we have implemented manual corrections to statistically adjust the counts of persons and vehicles. Secondly, in the context of vegetation coverage statistics, complex background scenes pose a challenge. While superpixel segmentation techniques can accurately detect and distinguish regions resembling vegetation coverage, setting uniform color thresholds for segmentation across different scenes remains problematic. Lastly, our improved YOLO object detection algorithm has yet to consider other factors affecting environmental assessment, including waste disposal, air pollution, sewage discharge, and more. In future research, we will expand the ecological and environmental image dataset to cover various situations, such as images of skies and urban rivers with different pollution levels. By applying target detection algorithms, we will identify pollution areas in the images and calculate corresponding color thresholds. Based on these color thresholds, we will compare the pollution situation in the ecological and environmental dataset to assess the current pollution level and further determine the degree of urban air and water pollution. Meanwhile, we will refine the noise data generated by factors such as pedestrian conversations, driving cars, and construction sites. By analyzing the movement status and quantity of different objects and people in the images, we will calculate the noise generated and thus evaluate the noise level at the current location. To obtain rich information using a single collection device, we plan to equip drones with sound sensors and air quality detection sensors to collect multiple urban ecological information in real-time from specific areas, thus achieving a comprehensive assessment of the current urban region’s ecological environment. Utilizing drone equipment for comprehensive urban ecological assessment will be a major direction in our future research.




6 Conclusions

The rapid development of deep learning technology has facilitated the widespread adoption of the YOLOv7 algorithm in various domains, including healthcare, industry, agriculture, and transportation, leading to a significant enhancement in the efficiency and precision of object detection. However, despite its extensive application in diverse fields, its potential utility in the realm of ecological environment assessment remains relatively unexplored. This paper presents an innovative approach that combines the improved YOLOv7 object detection algorithm with urban spatial-temporal data to enable real-time monitoring and evaluation of urban ecological environments, thereby promoting ecosystem conservation and sustainable development. This methodology holds potential significance in urban planning and environmental policy formulation, particularly in enhancing the quality of urban ecological environments. In comparison to traditional ecological assessment methods, this approach makes full use of visual information, providing fresh perspectives and directions for future research.

Nevertheless, there are still some unresolved issues associated with this objection theory for ecological environment assessment, which we intend to address in our subsequent work:

	Addressing the issue of small-scale, densely distributed, and indistinct features in unmanned aerial vehicle (UAV) aerial datasets. This will involve making targeted improvements to the YOLOv7 network model and augmenting the existing dataset with high-quality images containing rich information to reduce biases in small object detection tasks, thereby enhancing data accuracy.

	Tackling the complexity of background scenery in vegetation coverage statistics. The current reliance on a single threshold for precise vegetation area detection is challenging. We plan to explore updated classification algorithms, as deep learning technology continues to mature, with the expectation of achieving superior performance compared to the k-means superpixel segmentation algorithm.

	The current paper assesses urban ecological environments solely based on the density of individuals, vehicles, and vegetation coverage, without incorporating other environmental impact factors. Our future work will involve enriching the dataset to include categories such as water quality, urban waste, and air visibility, enabling comprehensive and accurate assessments of urban environments from multiple perspectives.
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Conducting quantitative research on the microstructure of soft clay can reveal the essence of its soil mechanical behavior, which is of important practical significance for geological disaster risk assessment and prevention. To quantitatively investigate the microscopic properties of natural structured clay, soft clay soils from various sedimentary environments in the Hangzhou Estuarine Bay area were chosen as the research subject in this study. Subsequently, a comprehensive investigation into the microstructure of clay was conducted, involving X-ray phase analysis and SEM imaging analysis. The results revealed the following: (1) In comparison to the deep clay deposited in fluvial-lacustrine environments, the shallow mucky clay in marine sediments had a higher clay mineral content, accounting for 48%. Illite makes up the majority of it, with minor levels of kaolinite and montmorillonite being present. (2) The shallow mucky clay in the Hangzhou Estuarine Bay area had a typical agglomerate-flocculated structure. In contrast, the deeper clay showed a flocculated structure with less uniform particle sizes, strong stacking randomness, poor directional alignment of soil pores, and tends to form arrangements where edges are adjacent to faces or edges are adjacent to other edges. (3) Compared to the deep clay deposited in fluvial-lacustrine environments, the marine-deposited shallow mucky clay displayed orderly pore arrangements, strong directional alignment, significant pore shape variability, and minimal pore size changes between adjacent pores. The microstructure of soil plays a crucial role in determining the physical, mechanical, and other engineering properties of the soil. This study provides insightful information about the relationship between clay microstructure and geotechnical characteristics in Hangzhou and the surrounding areas.
Keywords: microstructure, quantitative analysis, X-ray testing, SEM testing, soft clay
1 INTRODUCTION
Soft soil strata are widely distributed in the Yangtze River Delta region, which is represented by Hangzhou and Shanghai, and range in thickness from a few meters to several tens of meters. These soil layers are characterized by complexity, high moisture content, low strength, poor permeability, and high compressibility. In recent years, due to the sustained rapid economic growth in the Yangtze River Delta area, a large number of infrastructure projects, including highways, railways, bridges, airports, and more, need to be built on such soft soil foundations. In the construction process, issues related to low soil strength and excessive deformation of soft soils often lead to significant engineering problems such as ground settlement and instability (Ma et al., 2012; Shen et al., 2017; Xu et al., 2018; Chen et al., 2019; Yong et al., 2022). Numerous study results have indicated that the characteristics and distribution of pores within the soil mass are intrinsic factors that influence the changes in soil microstructure. And they also play a primary role in determining the physical and mechanical properties of the soil (Schmitz et al., 2005; Jiang et al., 2017; Gu et al., 2018; Huang et al., 2020; Huang et al., 2023). In these studies, various methods, including geotechnical tests, MIP, SEM, XRD and others, were employed to reveal how soil structure impacts its macroscopic mechanical properties. Characterization of soil microstructure makes great benefits to the improved understanding of overall soil behaviors (Sivakumar et al., 2002; Liu et al., 2011).
Due to the uneven particle size massive quantity, and irregular distribution of pore spaces within soil, traditional geometric analysis methods have encountered significant limitations in exploring the microstructure of soils. Early research on soil microstructure was primarily qualitative in nature. However, in recent years, the increasing richness of observation methods and the continuous development of computer science have provided a solid foundation for quantitative research on soil microstructure. This has collectively driven the quantitative study of soil microstructures (Tovey and Krinsley, 1992; Smart and Leng, 1993; Tovey et al., 1995; Dathe et al., 2001; Rouse et al., 2008; Calero and Delgado, 2009; Ahmed, 2015; Latifi et al., 2016). Shi et al. (1995) explored a simple quantitative analysis method for the microstructure of cohesive soils based on the fundamental principles of computer image processing. Bai and Zhou. (2001) provided a comprehensive overview of the advances in scanning electron microscopy (SEM) testing technology in geotechnical engineering, covering aspects like sample preparation and testing methods, dynamic monitoring of microstructural changes, and quantitative analysis techniques of SEM. Yang and Gong (2010) conducted analyses on the components of particles and aggregates, pore size distribution, microstructure, and pore solution and cation exchange properties of Shanghai soft clay. He discussed the possible impacts of pore size changes and artificial recharge on soil properties before and after consolidation. Xu et al. (2015) conducted SEM image scanning on soft clays in the Hangzhou area. They established a three-dimensional pore calculation model and analyzed the impact of factors such as magnification, calculation step size, and threshold size on the calculation results of three dimensional pore volume using Image-pro plus software. Tang et al. (2020) developed an analysis program called SMAS based on digital image processing technology. It enables the quantitative determination of various geometric and morphological indicators of soil particles/pores at the microscale. The program improves the reliability of quantitatively characterizing soil microstructures based on SEM images.
Despite a series of breakthroughs achieved by scholars both domestically and internationally in the quantitative study of soil structure, the diversity of cohesive soils, variations in their physical properties, and the inherent complexity of their true internal structures pose significant challenges. These challenges are further compounded by limitations in measurement techniques and the lack of unified standards for describing microstructures. Consequently, a systematic quantitative analysis of the microstructure of cohesive soils remains a formidable task. Given these challenges, this study focuses on the soft clay soils in the Hangzhou Estuarine Bay area. It aims to investigate the microstructure of clay from two perspectives: X-ray-based phase analysis and SEM-based imaging analysis. The study reveals the essence of its soil mechanical behavior and provides insights into the relationship between the microstructure of clay and its geotechnical properties, which has important practical significance for geological disaster risk assessment and prevention in Hangzhou and the surrounding areas.
2 MATERIALS AND METHODS
2.1 Sampling and sample preparation
Hangzhou is situated in the southern edge of the Yangtze River Delta coastal plain. Influenced by dramatic climate changes, fluctuations in sea levels, and tectonic movements since the Quaternary period, the region’s Quaternary sediments have undergone several cycles of deposition and erosion. As a result, complex sedimentary strata that interact with both terrestrial and marine environments have formed (Li and Wang, 1998; Wang et al., 2014). All things considered, these layers show traits like intricate lithological changes, notable thickness fluctuations, vertical alternations between hard and soft soil layers, and the existence of numerous layers in the vertical sequence.
The sample borehole, GX01, is located in the Hangzhou Estuarine Bay area, with a total Quaternary sediment thickness of approximately 69.5 m. Lithological analysis of the strata indicates the presence of two soft clay layers within this borehole. Between 9.6 and 34.1 m below the surface, there is a layer of soft clay that is mostly made up of marine sedimentary elements like mucky silty clay and mucky clay. The second soft clay layer is found between depths of 55.8 and 58.4 m, which is composed of deposits of soft, pliable clay that were formed in a fluvial-lacustrine environment. As representative specimens for further research, samples were taken from the first layer of mucky clay (Sample 1, abbreviated as SP1) and the second layer of soft clay (Sample 2, abbreviated as SP2) (Figure 1). The basic physical and mechanics parameters of samples are shown in Table 1.
[image: Figure 1]FIGURE 1 | Sampling hole location, stratigraphic column and sampling point in the study area.
TABLE 1 | Physical and mechanics parameters of samples.
[image: Table 1]The undisturbed soil samples were preserved by tightly sealing them with plastic wrap to prevent exposure to sunlight and rain during storage. Efforts were made to minimize moisture loss from the soil. During transportation, the soil samples were secured and cushioned with materials like bubble wrap and sponge to prevent vibrations and maintain the soil samples in their original state. The dimensions of the collected soil samples were 300 mm in height and 89 mm in diameter. The photos of the collected samples are presented in Figure 2.
[image: Figure 2]FIGURE 2 | The photos of the collected samples: (A) mucky clay (SP 1); (B) clay (SP 2).
2.2 Mineralogical investigation
The clay minerals present in the clay samples were identified using the X-ray power diffraction (XRD) method. X-ray diffraction method is suitable for identifying and quantifying the clay minerals present in soils. It is a rapid analytical technique primarily used for phase identification of a crystalline material. It is also based on constructive interference of X-rays and a crystalline sample. The analysis was conducted using a GBC Enhanced Mini Material Analyzer (EMMA) X-ray diffractometer equipped with Cu-Kα radiation source and operated at 40 kV and 100 mA. The representative clay samples were step-scanned from 2.5°–65° at scan speed of 0.02° 2θ/s. The interpretation of the diffractograms of clay samples was based on the comparison of the peaks obtained with those of the standard minerals established by Ademila and Adebanjo. (2017).
2.3 SEM tests
SEM analysis was performed to investigate the morphology of undisturbed red clay using an electron microscope scanner Phenom pro-x. The test soil sample was cut into small pieces (1 cm3) with a thin steel wire with a 0.5 mm deep groove cut in the middle of the sample, then freeze-dried for 24 h. The observed surface was a horizontal profile of soil samples, with samples cut along the direction of soil deposition. Before scanning, the soil sample was gently forced apart from the groove position, and a relatively flat and fresh section selected for testing. The broken soil sample was sprayed with gold to improve conductivity, then placed in the specimen holder and SEM images were collected at different magnifications using a secondary electronic SE probe and backscatter BSE detector (Zhang et al., 2020).
3 RESULTS AND DISCUSSION
3.1 Mineralogical composition
Soil is an open system made up of numerous elements and mineral particles of varied sizes, the majority of which are solid. Minerals can be categorized as either primary or secondary minerals based on their origin and composition. Primary minerals are those that, despite weathering, retain their initial chemical composition. These minerals are the byproducts of the parent rock’s weathering that were left behind. On the other hand, secondary minerals are those that are subjected to further chemical weathering both during the weathering of the parent rock and during the transit operations. The original minerals eventually disintegrate due to chemical weathering processes such as oxidation, hydrolysis, hydration, and dissolution. As a result, new minerals are formed, and the particle size may become finer. Generally speaking, the minerals in the coarse fractions are mainly primary minerals (such as feldspar, calcite, muscovite, etc.), and in the fine fractions they are mainly clay minerals (such as kaolinite, montmorillonite, etc.) (Ruehlmann and Korschens, 2020).
X-ray diffraction (XRD) is used for semi-quantitative investigation and assessment of mineral components. The principle is as follows: When X-rays pass through clay minerals with different surface structures, they exhibit diffraction patterns that vary with the type of clay, each displaying distinctive characteristics. By recording these diffraction patterns, mineral components can be determined based on the patterns. The mineral content is positively correlated with the intensity of the diffraction (Kahle et al., 2002; Zhou et al., 2018). The spectra and main diagnostic peaks used for their identification are shown in the respective figures. The names of the minerals, their chemical formula, d-space, counts, relative intensity, and glancing angle are given in Table 2.
TABLE 2 | Structural parameters of SP 1 and SP 2.
[image: Table 2]X-ray powder diffraction analysis for SP 1 and SP 2 detected dominantly the presence of quartz (SiO2) and albite (Na (AlSi3O8)) (Figure 3). For SP1, the occurrence of montmorillonite in the sample is attributed to a swelling clay group with high plasticity which is a characteristic of Ball clays. Swelling clays such as vermiculites and montmorillonites are formed in areas of poor drainage and alkali conditions (Moore and Reynolds, 1989).
[image: Figure 3]FIGURE 3 | XRD diffractogram of representative samples: (A) mucky clay (SP 1); (B) clay (SP 2).
The results of mineral analysis are shown in Figure 4. It can be seen in Figure 4A, the content of primary minerals in both samples of mucky clay and clay (over 52%) is higher than that of secondary clay minerals (over 40%). Among these, quartz is a representative primary mineral, dominating with a content exceeding 25%, while the content of other primary minerals generally remains below 10%. Typically, primary mineral particles are coarser, and their size distribution falls mainly within the sand and silt fractions. Secondary minerals, represented by clay minerals, belong to the clay-size category (Figure 4B) (Tang and Sun, 1987). In the clay sample, the content of primary minerals is slightly higher, with quartz being the primary constituent, while the clay mineral content is relatively lower, and the particle size is larger. The content of quartz and clay minerals is 37% and 40%, respectively. In mucky clay, the content of quartz among primary minerals is 25%, while the content of clay minerals significantly increases, reaching up to 48%. Secondary clay minerals in both cases have relatively finer particles (Figure 4C), with Illite being the dominant mineral, constituting more than 50% of the content (60% in mucky clay). No montmorillonite is observed in the secondary clay minerals of clay samples, while mucky clay’s secondary clay minerals contain small amounts of montmorillonite, kaolinite, and clinochlore. The widespread deposition of clinochlore also indicates a marine depositional environment.
[image: Figure 4]FIGURE 4 | Soil mineral analysis: (A) relative mineral composition of the entire soil; (B) correspondence between major minerals and particle sizes from Tang and Sun. (1987); (C) relative content of clay minerals.
3.2 Micro-scale analysis
Quantitative analysis of microstructures involves the study of structural units and pores, utilizing statistical methods, nonlinear theories, and computer technology to extract quantitative data from SEM images for the analysis and evaluation of the morphology, orientation, and pore characteristics of structural units (Chen et al., 2019). In this study, the PCAS image recognition and analysis system was employed to separate structural units and pores based on the grayscale differences observed in SEM images. This approach provides quantitative data that can mechanistically explain the macroscopic geological characteristics of the soil.
3.2.1 Qualitative description of microstructure
Figure 5 displays SEM images of representative soil layers in the study area. From Figure 5A, it can be observed that particles are clustered together to form aggregates or agglomerates, and the microstructure of the shallow layer mucky clay exhibits a typical floccule aggregate structure. In contrast to single grain or honeycomb structures, the arrangement is more complex, and there are no distinct boundaries between aggregates. The soil particles are fine, making it difficult to distinguish individual grains, and there is a lower content of larger particles. The pore distribution is uneven and lacks apparent orientation, with the presence of larger pore channels that promote soil connectivity. With increasing depth, deep clay undergoes fragmentation and reorganization of its soil structure due to self-weight stress and soil interactions, resulting in the formation of smaller particle units. The stacking arrangement of these micro units becomes highly random, exhibiting limited directional alignment and low overall orderliness. Numerous occurrences of “edge-face” overlap between the frames are observed, with the prevailing microstructure being a classic flocculated (frame) structure (Figure 5B).
[image: Figure 5]FIGURE 5 | SEM images of representative soil samples: (A) mucky clay and (B) clay.
3.2.2 Analysis of microstructure parameters
The PCAS micro-quantitative testing technique was utilized for pore quantification analysis using SEM images at a 1000× magnification. This analysis involves two main steps: binarization processing to identify pores and particles, followed by vectorization processing. The extraction of microstructural parameters is illustrated in Figure 6.
[image: Figure 6]FIGURE 6 | The process of the extraction and analysis of the microstructural parameters (the above is mucky clay and clay below): (A) image preprocessing; (B) threshold segmentation; (C) morphologic.
The extracted pore parameters of SP1 and SP2 are shown in Table 3. It includes basic microstructural parameters such as average region area, average perimeter, along with quantitative parameters like pore fractal dimension, probability entropy, average shape factor, and fractal dimension. The parameters of probability entropy, probability distribution index and fractal dimension describe the direction, area distribution and shape factor change of pore system. In terms of the soil pore shape, which is represented by the average shape factor, also called roundness, the parameter ranged from 0 to 1. As the shape factor increased, the particle or pore gets closer to a circle. Conversely, with the decrease in the average shape factor, the pore shape becomes longer and narrower, thus the arrangement and combination of pores become more complex.
TABLE 3 | Pore parameters of SP1 (shallow mucky clay) and SP2 (deep clay).
[image: Table 3]3.2.2.1 Pore arrangement characteristics
The directional frequency is a parameter that can reflect the directional arrangement of structural units. With a directional angular density of [image: image] = 10°, 180° can be divided into 18 directional angle intervals [image: image]. [image: image] represents the number of the orientation angle which is in the range [[image: image], [image: image]] (1 ≤ [image: image] ≤ 18). Moreover, the standard deviation of [image: image] ([image: image]) was calculated to quantitatively measure the directionality. The greater the [image: image] is, the higher the fluctuation degree of the [image: image] distribution is, which means that more structural units are concentrated in one or several angle intervals, resulting in better directionality (Yu et al., 2021).
Figure 7 presents the statistical results of the orientation frequency of representative sample structural unit. The figure shows that there were little differences in the hydrodynamic circumstances during deposition for both mucky clay and clay, both of which were deposited in quiescent aquatic conditions. Therefore, the arrangement of particles in both cases lacks pronounced orientation, and the peaks in the orientation frequency are not prominent. In the case of clay, the arrangement of structural units is relatively scattered, with only a small portion of structural units having orientation angles falling within the range of 75° ± 5°. Conversely, in the case of mucky clay, the majority of structural units exhibit orientation angles within four groups: 35° ± 5°, 75° ± 5°, 95° ± 5°, and 125° ± 5°, demonstrating better orientation. This may be explained by the fact that mucky clay’s smaller particles are more susceptible to being disturbed by water flow during deposition, which makes it simpler for them to form multi-oriented structural units rather than a disorganized arrangement of particles.
[image: Figure 7]FIGURE 7 | The statistical results of the directional frequency of structural units in shallow mucky clay and deep clay.
From the perspective of probability entropy, both mucky clay and clay demonstrate probabilities close to 1, suggesting disordered and low regularity in pore arrangements. Moreover, the probability entropy of mucky clay, at 0.95, is slightly lower than that of clay, which is 0.973. This indicates that the pore arrangement in mucky clay exhibits relatively better orderliness.
3.2.2.2 Pore shape characteristics
The shape factor (F) is a parameter used to quantify the complexity of the shape of structural units. The individual pore’s shape factor has a significant margin of error, so the average shape factor is employed to statistically analyze pore shape characteristics. F values range from 0 to 1, with higher values indicating more rounded pore shapes, while lower values suggest more elongated shapes. As shown in the Table 3, the average shape factor for mucky clay is 0.487, while for clay, it is 0.516. This suggests that, compared to clay, mucky clay has elongated pore shapes and slightly more complex structural unit shapes. This is because, as the clay content increases, the combination and connectivity with coarse particles become more diverse. Simultaneously, the bonding effect on coarse particles is enhanced, resulting in rougher particle surfaces and an increase in pore complexity.
The pore distribution fractal dimension is a metric proposed to address the uneven distribution of pores in porous media profiles, and these fractal dimensions reflect the static structural parameters of porous media. The analysis process involves calculating the equivalent area (A) and perimeter (P) of each pore and plotting this data on a double-logarithmic coordinate system (lgP∼lgA). If the data points can be fitted into a straight line, it indicates that the morphology of pores in the microstructure is fractal, and the double of the slope of this line represents the fractal dimension of pore morphology.
The linear fit lines of the lgP∼lgA double-logarithmic points for the samples are shown in Figure 8. It can be observed that the lgP∼lgA relationships for the samples are either completely or nearly linear, with absolute values of the fitting coefficient R exceeding 0.97 for all cases. The fractal dimensions of pore structures for the mucky clay and clay are 1.304 and 1.264, respectively. Comparatively, the mucky clay, with its lower content of primary minerals and the ability of clay particles to disperse as well as aggregate to varying degrees, exhibits more complex microstructural changes as the clay content increases. This complexity is characterized by the presence of both aggregation and flocculation, leading to a greater degree of non-uniformity in pore morphology.
[image: Figure 8]FIGURE 8 | Fitting diagram of lgP ∼ lgA curve of samples: (A) shallow mucky clay; (B) deep clay.
3.2.2.3 Pore size characteristics
The pore size distribution characteristics are depicted in Figure 9. It can be observed that both shallow mucky clay and deep clay exhibit large and very large pore features, with pore diameters primarily concentrated within the 30 µm range. Specifically, the pore content of mucky clay and clay within the pore diameter range of (10 µm–15 µm) is 37.7% and 40%, respectively, which is relatively high, indicating the dominance of pore sizes in this range. Furthermore, when compared to deep clay, shallow mucky clay exhibits higher pore content within the pore diameter ranges of (<10 µm), (15 µm–30 µm), (30 µm–50 µm), and (>50 µm). Moreover, the pore content within each pore size range shows less variability. This suggests that, unlike clay, shallow mucky clay has a more uniform pore size distribution.
[image: Figure 9]FIGURE 9 | The statistical results of pore interval division for mucky clay and clay.
The size of pore fractal dimension reflects the variation in the distribution of the number of pores of different sizes. For a given image, assuming a constant total number of pores, the characteristics of the distribution of the cumulative number of pores smaller than a certain pore size “r” (where “r” represents pore diameter) are often used to describe the variation in the number of pores. In other words, the form of the curve representing “r∼N (<r)” is used to characterize this change.
The linear regression lines for the double logarithmic points of the lg(r)∼lgN(r) relationship are displayed in Figure 10. From the figure, it is evident that the results show a close fit between the regression lines and the actual data points, with all R-squared values exceeding 0.99. This suggests that they effectively represent the characteristics of the pore structure. The pore fractal dimension of clay (1.506) is higher than that of mucky clay (1.378), indicating that mucky clay displays less variation in pore sizes, resulting in a more uniform pore size distribution. This variation is attributed to the influence of depth, self-weight stress, and interactions between soil particles, which lead to the fragmentation and reorganization of the clay soil structure. Larger pores are compressed, while smaller ones are compacted, resulting in increased heterogeneity in pore size distribution.
[image: Figure 10]FIGURE 10 | Fitting diagram of lgN(r)–lgr curve of samples: (A) shallow mucky clay; (B) deep clay.
4 CONCLUSION

(1) The content of primary minerals in both mucky clay and clay samples (over 52%) exceeds that of secondary clay minerals (over 40%). Among these, quartz serves as a representative primary mineral. Furthermore, the shallow mucky clay in marine deposits exhibits a higher clay mineral concentration than the deep clay deposited in fluvial-lacustrine settings, accounting for 48% of the composition, with Illite as the predominant clay mineral. It also contains various levels of kaolinite and montmorillonite. Montmorillonite, with its strong hydrophilic properties and significant volumetric expansion upon water absorption, is one of the reasons for the poor engineering properties of the soil.
(2) From a qualitative perspective of microstructure, shallow mucky clay microstructural investigation indicates a typical agglomerate-flocculated structure. The arrangement is more complicated than single grain and honeycomb structure types, and aggregate boundaries are not well defined. In contrast, deep clay exhibits a flocculated structure at the microstructural level, with poor uniformity in particle size, strong stacking randomness, and a tendency to form arrangements with edges overlapping faces or edges.
(3) Although the test results of shallow and deep soil samples are generally similar, there are also certain differences in microstructure parameters due to different sedimentary environments. Compared to the deep clay deposited in fluvial-lacustrine environments, the marine-deposited shallow mucky clay presents orderly pore arrangements, strong directional alignment, significant pore shape variability, and minimal pore size changes between adjacent pores.
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The shale gas well station plays a critical role in the extraction of shale gas, and its safety status exerts significant influence not only on shale gas production but also on the ecological balance of the surrounding environment. To investigate the response characteristics of the shale gas well station under the impact of tailings dam failure debris flow, a comprehensive analysis was conducted using a combination of physical modeling and numerical simulation. The analysis focused on the dynamic inundation process and the impact siltation law caused by the downstream flow of tailings dam failure debris at the shale gas well station. The depth of inundation and the extent of siltation damage were employed as key parameters for characterization. Experimental findings revealed that the downstream mudflow inundation process could be divided into three distinct stages: rapid increase (0–60 s), steady increase (60–106 s), and slow advance (106–250 s). The pattern of mudflow siltation height variation at the well station exhibited an initial rise, followed by a subsequent decline and eventual stabilization. The highest siltation volumes recorded at measurement points A to D were 4.4, 4, 5.2, and 6 m, respectively. Additionally, by employing computational fluid dynamics, numerical calculations were performed under unprotected conditions, with the error between the calculated conclusions and the test results not exceeding 15%. Furthermore, the blocking effect of 8 and 16 m debris flow blocking dam on the debris flow was thoroughly investigated. The study demonstrated that the check dam with a height of 16 m yielded the most effective blockage, resulting in the highest sediment siltation height of 0.4 m. The research results provide some reference for the prevention and control of debris flow disasters.
Keywords: shale gas well station, tailings dam break, debris flow, dynamic submerged process, shock response law
1 INTRODUCTION
Shale gas, as a distinct energy source characterized by properties such as low density, high pressure, volatility, flammability, and explosiveness, presents unique characteristics that set it apart from petroleum. The establishment and safe operation of shale gas well stations, serving as extraction platforms, are frequently accompanied by intricate mudslide disasters. These disasters pose a severe threat to both the operational integrity of the extraction platforms and the safety of personnel involved (Dong et al., 2012). The formidable impact inflicted by the mud-slide leads to extensive destruction of the wellsite’s infrastructure, resulting in significant casualties and imposing immense pressure on both the safety and production of the wellsite (Cristo et al., 2022). In 2015, a catastrophic dam failure occurred at the Fundão tailings pond in Brazil. This event resulted in a massive mudslide triggered by approximately 80% of the stored tailings being released. The mudslide directly impacted 806 downstream buildings, causing irreparable damage to these structures and the surrounding towns (Carmo et al., 2017). Moreover, the infiltration of mudflow and subsequent flooding of a shale gas well station would result in significant losses for the operating company. Therefore, investigating the mechanical response characteristics of shale gas well stations to mudslide disasters becomes an urgent and imperative task that demands immediate attention.
Scholars around the world have conducted extensive research on debris flow hazards formed after tailings dam breaches and have achieved many excellent results. Yu et al. (2020) introduced a novel approach to investigate the flow characteristics of outburst debris flow. They proposed a new method that combines 3D modeling with computational fluid dynamics (CFD) and applied it to a real-life scenario of dam-breaking debris flow. Wang et al. (2022) conducted a model test under intense rainfall conditions to investigate the formation conditions of tailings dam outburst debris flow. Through their study, they concluded that different rainfall amounts result in varying degrees of roof damage in tailings dams. Concha and Lall (2018) introduced a statistical model capable of predicting the distance of mudflow propagation based on the discharged volume of mudflow. This model serves as a theoretical reference for implementing downstream safety protection measures. Wang et al. (2018) conducted a study where they utilized satellite remote sensing Digital Surface Model (DSM) in combination with the meshless Smoothed Particle Hydrodynamics (SPH) method. They employed 3D spatially realistic numerical modeling tools to compare the computational findings with the observed evolutionary paths of mudslide downdrafts from physical modeling experiments and a real case of dam breakage. Jing et al. (2019a) performed a detailed analysis of dam failure through a model test, focusing on the failure width. They developed a prediction model for the width of tailings dam failure, considering the number of reinforcing layers. This model accurately predicted the discharge flow rate based on variations in the failure width. Wang et al. (2017) conducted a flood simulation test to predict underflow and investigate the impact of rainfall on the infiltration line. They also summarized the relationship between the infiltration line and dam failure, establishing its governing laws. Chen et al. (2022; 2023) conducted research on the reinforcement methods of tailings dams. They studied the changes in underflow flow patterns when the dam body breached and summarized the evolution process of the breach. Additionally, they derived a model to describe the changes in underflow mud and rock flow. Wu and Qin, (2018) conducted a comparative study on the effectiveness of protective measures by incorporating coarse particles into the downstream dam body. The results demonstrated that the addition of coarse particles to the downstream dam face effectively reduced the flow rate, size, inundation area, and tailings settlement associated with downstream debris flow. Jing et al. (2019b) analyzed and summarized the correlation between mud depth and tailings particle size at the breach section, considering tailings particle size as a variable. They predicted and derived the changes in the quantity of underflow mud and rock flow based on their findings. Pirulli et al. (2017) integrated the flow characteristics and rheo-logical properties of tailings dam outburst debris flows. They utilized novel rheological combinations to predict the evolution pattern of underflow debris flow. Li et al. (2022) employed a finite element coupled discrete element approach to predict the movement and downstream inundation range of mudflow following a tailings dam failure. Wei et al. (2017) conducted a study in which they considered the tailings slurry concentration, downstream slope, and breach morphology as variables. They investigated the flow characteristics of the debris flow formed after the breach on a square flat plate and summarized the governing flow patterns of the debris flow. Zhang et al. (2014) conducted a mechanical study on the causes of tailings dam damage at both the macro and fine scales by employing a coupling method of finite element and discrete element phases. Their research provided significant theoretical support for predicting outburst mudflow events. Wang et al. (2019) conducted experiments with different debris flow check dams and channel slope drop conditions. They investigated the blocking effects of various check dams and slope drops on the evolution of debris flow, as well as the patterns of energy loss associated with these factors. Li et al. (2020) summarized the three-dimensional spatial variation process of debris flow following a tailings pond failure. They also made predictions regarding the downstream impacts of debris flow resulting from dam failure. Yuan et al. (2016) conducted a study focusing on the composition of outburst mudflow. They analyzed the composition and, based on their findings, established a three-dimensional fluid model using Fluent software. With this model, they investigated the motion and pressure distribution characteristics of the outburst mudflow. Wang et al. (2021) developed an evaluation index for classifying the hazard level of downstream buildings in the event of a dam failure debris flow disaster. The evaluation conclusions derived from their study exhibited a strong alignment with the conclusions drawn from physical and numerical models. Yu et al. (2021) developed a method by integrating a hydrodynamic model into a virtual geographic environment system. This approach aimed to establish a more accurate simulation of the flow field of mud and rock during tailings pond breaches, particularly in complex landscapes. The authors conducted simulations of actual dam breach cases using this method. Ghahramani et al. (2020) developed a novel diversion system to redirect the evolution path of downstream debris flow resulting from tailings dam failure. They independently calculated the inundation area downstream of the tailings dam failure debris flow using remote sensing data. Additionally, they introduced a new database comprising 33 instances of dam failure.
The previous research primarily focused on analyzing the evolution process of individual tailing pond outburst mudflows, with limited studies on the mechanical response of downstream structures like shale gas well stations. To address this gap, this study takes a small-scale model based on a shale gas well station in Nanchuan, Chongqing, and investigates the extent of the disaster caused by the outburst mudflow on the shale gas well station. Additionally, the study aims to explore the mechanical response characteristics of the shale gas well station to the mudflow and examine the effectiveness of barricade dams in blocking the mudflow. The research findings presented in this study provide valuable insights for the prevention and mitigation of mudflow disasters impacting shale gas well stations and other structures. These findings serve as a valuable reference for the development and implementation of future mitigation measures.
2 CONTENT AND METHODS OF TESTING
2.1 Similarity theory
The surrounding topography of the shale gas well station is replicated in a reduced scale within a physical model, ensuring a specified scale relationship. By employing the principles of similarity theory, adherence to the prescribed scale relationship between the prototype and physical model, in terms of their components and physical quantities, enables accurate representation of the prototype’s phenomena and essential characteristics during testing. Table 1 provides an overview of the selected similarity scale for the conducted experiments.
TABLE 1 | Summary of similarity scales.
[image: Table 1]2.2 Testing of tailing sand samples
The test samples of tailing sand were obtained from a tailing pond located in Nanchuan, Chongqing, China. To analyze the particle size of the samples, a Winner 2008 laser particle sizer was utilized. Figure 1 presents the results of the grading analysis conducted on the tailings sand samples. In this test, the red mud exhibited a median particle size (d50) of 5.1 μm. Other characteristic particle sizes included 2.9 μm for d10, 3.6 μm for d30, 7.0 μm for d90, and 5.6 μm for d60. The coefficient of inhomogeneity (Cu) was measured as 1.76, while the coefficient of curvature (Cc) was found to be 0.79. In order to select the appropriate model sand, a final particle size analysis was performed to determine the average particle size (d50) as a reference.
[image: Figure 1]FIGURE 1 | Tailings particle gradation curve.
2.3 Physical model building
The tailings reservoir in the study area, as shown in Figures 2A, B, is situated in a denuded valley within a medium-low mountainous region, exhibiting a relative height difference of 295 m between its highest and lowest points. The geographic location benefits from abundant precipitation, particularly during the rainy season from May to September, which accounts for approximately 78% of the annual rainfall. In the event of intense heavy rainfall, the tailings dam is highly vulnerable to overtopping, dam bursting disasters, and the consequent formation of mudslides that cascade downstream. The prototype well station platform and the model of the upstream tailings storage pile are depicted in Figure 2C. The actual dimensions of the terrain encompass an area of 800 m × 536 m (length × width). Scale modeling at 400:1 scale. The simulated test area takes the form of an ‘L’ shape, with the tailings storage area situated in the southeastern high-altitude region. The shale gas well station platform is positioned approximately 300 m north of the tailings storage area. In this test, the mudflow direction at the well station is southward. To facilitate measurements, four mud depth measuring scales are pre-buried vertically at the southern edge of the well station platform, as shown in Figure 2D. To ensure a com-parable surface roughness in the physical model, a layer of cement mortar, approximately 1–2 cm thick, is applied. Furthermore, anti-cracking agents are incorporated into the concrete mixture to prevent cracks. Following the application of the mortar, a maintenance period of 7 days is observed. This allows the cement mortar on the model’s surface to attain optimal strength properties and controls the occurrence of cracks.
[image: Figure 2]FIGURE 2 | Physical Model Building. (A) Tailings liquefaction site within the tailings storage area in the study area, (B) Actual site topography of the tailings pond, (C) Tailings dam and schematic physical model of shale gas well station location, (D) Schematic of the mud depth measurement scale on the south side of the well station.
2.4 Preparation of model sand
The test utilized fine fly ash as the chosen simulated sand due to its numerous advantages, including a wide range of raw material sources, stable physical and chemical properties, and the absence of particle suspension during the flow process. The dry bulk weight of the deposited ash samples varied between 7.1 and 9.9 kN/m3, remaining within the range of 6.2 kN/m3 to 11.8 kN/m3. Notably, the permeability coefficients of the majority of domestic fly ash and tailing sand were similar, with the fine fly ash exhibiting a permeability coefficient (k) of 10–4 cm/s (Jiang et al., 2007). The particle size gradation of the fine fly ash is illustrated in Figure 3. From the figure, it is evident that the median particle size of the fine fly ash in this test ranges from approximately 0.065 to 0.005 mm.
[image: Figure 3]FIGURE 3 | Fine fly ash particle gradation curve.
2.5 Numerical simulation
To facilitate a comprehensive comparison and validation of the experimental results, numerical computations utilizing computational fluid dynamics (CFD) methods were conducted to analyze the mudflows originating from tailing ponds and their subsequent impacts on downstream shale gas well stations. This approach aimed to enhance the accuracy of the conclusions drawn from the study. The numerical model consists of a total of 8.45 million grids, and the computational time is set to 240 s. As the experiment involves the coupling of water flow and sediment, four computational models, namely, gravity, scouring, viscous, and turbulence, are selected for the calculations. The average particle size of the tailing sand is determined through indoor testing, and the particle size analysis reveals that the median particle size (d50) of the red mud in this experiment is 0.0051 mm. According to the Design Code for Tailings Facilities (GB50863-2013), when the particle size of tailing sand exceeds 0.074 mm and constitutes more than 85% of the total weight, it is classified as tailing fine sand. The average accumulation dry density of the tailings is considered to be 1,450 kg/m3.
3 ANALYSIS OF TEST RESULTS
3.1 The law of submerged range of debris flow
In this test, the primary objective is to analyze the trend of the inundation range of the debris flow as it reaches the well station. To facilitate this analysis, the inundation area of the well station in the model test is converted to a similar scale using ImageJ software. This conversion process involves repeated observations of the mudflow movement process within the model test well station. Meanwhile, For the modeling tests, the slurry concentration was referenced to the concentration of tailings slurry discharged from mining companies, and the slurry concentration was set at 50%.
As depicted in Figure 4 (see below), when the time (T) reaches 20 s, the entire downstream area becomes flooded, covering an area of 51,040 m2. As T reaches 35 s, the discharged mudflow rapidly descends and splits into three tributaries due to the low-lying terrain at the valley mouth in the southwest direction of the tailing pond. The mudflow in this direction exhibits the fastest evolution, and the first tributary to reach the shale gas well station is in the southeast direction. By the time T reaches 50 s, the mudflow in the northeast direction commences flooding the well station, engulfing most of its facilities and equipment. The total flooded area expands to 84,640 m2, with the well station alone covering 2,720 m2. At T=60 s, the mudflow at the well station merges with the river mudflow, causing a sudden increase in inundation. The flooded area in the downstream region reaches 89,920 m2, with the well station accounting for 4,320 m2. Continuing the progression, at T=106 s, the flooded area in the downstream region continues to expand, encompassing 108,000 m2, while the well station is inundated by 5,600 m2. The flow of mud ceases at T=250 s, resulting in a final inundation area of 112,042 m2, with the well station being submerged by 5,780 m2.
[image: Figure 4]FIGURE 4 | Experimental effects of inundation of well stations by outburst mudslides. (A) 20 s into the experiment, (B) 35 s into the experiment, (C) 40 s into the experiment, (D) 50 s into the experiment, (E) 60 s into the experiment, (F) 106 s into the experiment, (G) 250 s into the experiment.
As illustrated in Figure 5 (refer to the figure below), the process of mudflow scouring the well station downstream can be divided into three stages. During the initial stage (0–60 s), the inundation range of the mudflow experiences a rapid increase. This can be attributed to the high potential energy of the mudflow itself, which quickly transforms into a destructive force. Additionally, the unique geomorphological features of the region contribute to the mudflow’s strong discharge capacity. The second stage (60–106 s) is characterized by a steady increase in the inundation range of the mudflow. This can be attributed to the relatively flat topography of the shale gas well station, allowing for greater flow through the cross-section and resulting in the spread of the mudflow. Factors such as internal resistance and energy loss within the mudflow, coupled with reduced discharge from the reservoir during the first wave of the flood peak, contribute to insufficient energy replenishment. The third stage (106–250 s) is the slow flow stage of the mudflow inundation area. During this stage, the presence of the drilling platform and well station impedes the evolution of the mudflow, causing the downstream tailings to accumulate around the well station, thereby reducing the movement speed of the mudflow. Additionally, the depletion of mudflow sources in the upstream tailings reservoir leads to a cessation of impact from the majority of the mudflow downstream, resulting in a stabilized inundation area and ultimately bringing the impact to a halt. By comparing and verifying the numerical calculation results at various time points, the obtained conclusions align more closely with the model test.
[image: Figure 5]FIGURE 5 | Time-varying curves of inundation extent of outburst mudslides.
3.2 Debris flow deposition height law
The test involved the measurement of the variation in inundation depth caused by the debris flow reaching the well station. This was achieved through the utilization of a pre-embedded mud depth collection column and a high-speed camera. Figure 6 presents the recorded data of the inundation depth (it should be noted that the data in the figure were not converted using the similarity ratio). The initial measurement point, corresponding to the arrival of the mudflow at the well station, was observed at the 35th second following the failure of the tailing dam.
[image: Figure 6]FIGURE 6 | Mudslide siltation height test at well station gauging points. (A) 35 s into the experiment, (B) 85 s into the experiment, (C) 135 s into the experiment.
As depicted in Figure 7, significant fluctuations in the mudflow sediment depth over time were observed at four measuring points (A, B, C, and D) near the downstream shale gas well station.
[image: Figure 7]FIGURE 7 | Mud depth variation curves at well station monitoring points.
Measuring Point A: Located in the direction of the well station leaning against the mountain and closest to the reservoir area, this point has a steeper slope. When the mudflow reaches measuring point A at the 67th second, the siltation rapidly rises, reaching a maximum depth of 4.4 m at the 84th second. Subsequently, the mudflow at measuring point A maintains a peak flow rate until approximately the 146th second. Afterward, the siltation height gradually decreases but maintains a slow downward trend.
Measuring Point B: The mud and gravel flow reaches its first peak at the 46th second, resulting in an instant increase in sediment siltation height at measuring point B. The siltation depth reaches 4 m by the 53rd second. Following this, the siltation height stabilizes to some extent. However, due to the well station’s obstruction of the mud and gravel flow, continuous accumulation occurs, leading to a second peak of 4.8 m at the 74th second.
Measuring Points C and D: These points exhibit a similar pattern of water level distribution as measuring point B. At the 40th second, both measuring points reach a maximum value of 5.2 m and 6 m, respectively. Afterwards, the water levels rapidly decrease to 2.8 m and 3 m and continue to gradually decrease until they stabilize.
The variation in mud depth at the measurement point of the well station can be divided into two distinct phases. The first phase is characterized by a rapid increase in the siltation height, primarily attributed to the substantial volume of discharged mudflow and its high flow velocity. The second phase represents a gradual decline in the discharged mudflow volume over time. The topography and presence of the well station act as obstacles, resulting in a gradual reduction in sediment deposition. The final submerged depth of the debris flow at each measuring point following the collapse exhibits considerable randomness and non-uniformity. This can be attributed to variations in terrain features, valley morphology, slope characteristics, and cross-sectional area along the path of mudflow discharge. These factors contribute to variations in the velocity and direction of the mudflow, which continues to descend after passing the well station situated on the hillside. Furthermore, the sediment-carrying nature of the mudflow and its discharge velocity play crucial roles in determining the distribution of tailing sand. The distribution of tailing sand significantly impacts the overall scenario and its implications in the study.
The test was conducted using an instantaneous routing mode, wherein the flow of the mudflow is constrained by the total volume of mudflow after routing. As a result, as the flow velocity decreases, the mudflow gradually dissipates its kinetic energy, resulting in a reduction of its potential impact energy. This phenomenon subsequently leads to the deposition of sediment particles within the river channel.
Table 2, provided below, demonstrates the validation effect by comparing the results of the model test with the conclusions drawn from numerical simulation calculations. The errors at measuring points A, B, C, and D are 2%, 6%, 15%, and 11%, respectively. These results indicate a good similarity between the numerical simulation and the model test.
TABLE 2 | Comparison of maximum inundation depth results for numerical simulations and model tests at characteristic moments.
[image: Table 2]Given the comprehensive coverage and significant impact of the debris flow on the well station, as revealed through the analysis conducted, it becomes imperative to implement preventive measures aimed at mitigating the effects of debris flow on the well station.
4 BLOCKING EFFECT OF DAM ON DEBRIS FLOW
To mitigate the impact and inundation effects of mudflow on the well station, gravity check dams were implemented in conjunction with the actual engineering site. These dams were designed to intercept the discharged mudflow and allow the settling of tailing sand, thereby reducing the damage caused by the mudflow to the well station. Based on investigations, it was found that setting a debris flow blocking dam at the entrance of the downstream canyon can attenuate the potential energy impact of the mudflow to a certain extent (Banihabib and Forghani, 2017).
In the test area, the valley takes the form of a U-shaped open area. In consideration of safety, effectiveness, and construction costs, the design of the debris flow blocking dam incorporated two specific heights, namely, 8 and 16 m. In the absence of a dam, the well station experienced flooding from mudslides in the southeast and southwest directions. As a result, the No.1 dam was positioned 160 m southeast of the well station, and the No.2 dam was situated 200 m southwest of the reservoir at the valley mouth.
Two sets of working conditions were established for the test. In Working Condition 1, the first barrier dam had a height of 2 cm and a width of 6 cm (equivalent to an on-site height of 8 m and a width of 24 m), while the second barrier dam had a height of 2 cm and a width of 8 cm (equivalent to an on-site height of 8 m and a width of 32 m). In Case 2, the height of the barrier dams was increased to 4 cm (equivalent to an on-site height of 16 m). The barrier moldings were constructed using cement and secured to the ground with expansion bolts.
4.1 8-M debris flow blocking dam
Table 3 provides information regarding the time delay observed at the well station’s measurement point after implementing the 8-m debris flow blocking dam. The presence of the blocking dam causes varying degrees of delay in the mudflow reaching the measurement point. A comparison between the no dam mode and the 8-m debris flow blocking dam mode reveals time differences in mudflow inundation at the well station. These time differences are 13, 4, 20, and 20 s for each respective measurement point. Furthermore, there is a 4-s time difference between the two modes in terms of mudflow movement to measurement point B. This time difference gradually increases, indicating that the dam not only slows down the mudflow from the tailing dam failure, but also delays its arrival at the measurement points.
TABLE 3 | Comparison of the time for the mudflow to reach the key measurement point at the well station in the two models.
[image: Table 3]The time of arrival at different measurement points is correspondingly slowed down in the presence of the debris flow blocking dam. Moreover, there is a significant difference in the time it takes for the mudflow to reach the highest inundation depth between the two modes. This difference amounts to 16, 46, 56, and 16 s for the respective measurement points. These findings demonstrate that the presence of the debris flow blocking dam significantly prolongs the time it takes for the mudflow to reach its peak depth.
Figure 8 illustrates the relationship between mud depth and time at the monitoring point of the 8-m debris flow blocking dam. The following observations can be made:
[image: Figure 8]FIGURE 8 | Mud depth at 8 m dam well station monitoring point and clogging effect. (A) Curve of mud depth change at monitoring point of well station under the action of 8m dam, (B) Sediment retention effect of 8 m dams.
At measuring point A, the mudflow reached the location at the 80th second. The water level rose rapidly, and the siltation height peaked at 0.72 m by the 100th second. Subsequently, the sediment siltation height gradually decreased and stabilized at 0.4 m.
Measuring point B experienced mudflow scouring starting from the 50th second. The sediment siltation height reached 4 m by the 120th second. Afterward, the mudflow depth slowly decreased and remained steady at 0.6 m by the 185th second.
Measuring point C reached its maximum sediment accumulation height of 2.6 m in the 130s. It then experienced a slight decrease in depth, rapidly dropping to 0.4 m by the 150th second. The depth remained stable thereafter.
Measuring point D exhibited a similar sediment distribution pattern to point C. The sediment depth reached a maximum of 1.6 m by the 90th second. It then rapidly decreased for a certain period of time, eventually stabilizing and decreasing slowly without further significant changes.
After the aforementioned stabilization periods, the mudflow depth continued to decrease gradually until no further changes were observed.
The numerical simulation of the mudflow inundation depth at the well station of the 8-m debris flow blocking dam was analyzed by considering the time as the zero moment from the occurrence of the tailings pond failure (T = 0 s). The results of the analysis are presented in Table 4.
TABLE 4 | Comparison of maximum inundation depth results for numerical simulations and model tests at characteristic moments.
[image: Table 4]The table shows the errors in the numerical simulation of the highest inundation depths, expressed as percentages. The errors were found to be 37%, 3%, 13%, and 2% for each respective measurement point. These errors indicate the deviation between the experimental and simulated results. However, overall, the similarity between the experimental and simulation results was good.
4.2 16-M debris flow blocking dam
Table 5 presents a comparison of the time taken for the mudflow to reach the measurement point of the well station in two scenarios: without a debris flow blocking dam (no dam) and with a 16-m debris flow blocking dam. However, no data were collected at measurement point D because no mudflow overflow was observed at that location after increasing the height of the debris flow blocking dam.
TABLE 5 | Comparison of the time for the mudflow to reach the key measurement point at the well station in the two models.
[image: Table 5]After raising the dam height to 16 m, the dam’s effect becomes more significant. In terms of the time taken for the mudflow to reach the downstream well station, there is a difference between the no dam mode and the 16-m dam mode. The time differences between these two modes are 68, 34, and 45 s for each respective measurement point.
It can be observed that as the dam height increases, the time required for the mudflow to reach the same measuring point at the downstream well station and the maximum inundation depth at that point also increase. Additionally, the maximum siltation height decreases.
This phenomenon can be attributed to several factors. After the mudflow passes through the debris flow blocking dam, the velocity of the flow decreases, resulting in a reduction in mud content and sediment volume. Consequently, at the same measurement point downstream, the volume of sediment decreases.
Figure 9 illustrates the relationship between mud depth and time at the monitoring point of the well station with a 16-m debris flow blocking dam. The following observations can be made based on the figure:
[image: Figure 9]FIGURE 9 | Mud depth at 16 m dam well station monitoring point and clogging effect. (A) Curve of mud depth change at monitoring point of well station under the action of 16 m dam, (B) Sediment retention effect of 16 m dams.
The mudflow reached the A measuring point at the 135th second after the initiation of mudflow discharge. Subsequently, the height of sediment deposition remained constant at 0.4 m until the movement ceased.
In comparison to the scenario without a dam, the mud depth at the well station measuring point exhibits a smoother trend after the 16-m debris flow blocking dam is set. This can be attributed to the longer and more gradual movement of the mudflow after it reaches the well station. The presence of the debris flow blocking dam slows down the forward motion of the mudflow, causing a delay in the peak sediment depth. As the mudflow progresses, the sediment depth gradually decreases and eventually stabilizes.
The arrangement of a barrier dam downstream of the tailings storage in the canyon has a significant protective effect on the well station area. By implementing an appropriate blocking method, the damage caused by the mudflow to the well station area can be effectively prevented. This approach maximizes the protection of well station facilities and equipment.
The numerical simulation analysis of the debris flow inundation depth at the well station of the 16-m debris flow blocking dam was performed with the time recorded as 0 s from the start of the downward discharge of the outburst debris flow (T = 0 s).
Table 6 presents the results of the numerical simulation, indicating the errors in the highest inundation depth as a percentage for each measurement point. The errors are found to be 25%, 26%, 34%, and 2% for the respective measurement points. These error values help validate the conclusions drawn from the model test, demonstrating the effectiveness of the numerical simulation.
TABLE 6 | Comparison of maximum inundation depth results for numerical simulations and model tests at characteristic moments.
[image: Table 6]5 CONCLUSION
This study centers on a shale gas well station situated in Chongqing, with the primary objective of investigating the effects of mudflow on the well station during a transient full depression event in an upstream tailings pond. To achieve this objective, a series of mudflow impact tests were conducted on the well station. Furthermore, computational fluid dynamics (CFD) methods were employed to perform numerical calculations at a 1:1 scale, simulating the scenario. The simulation results were subsequently validated by comparing them with the results obtained from the physical model tests. The key findings derived from this study are as follows.
(1) The scouring process induced by mudslides can be classified into three distinct phases: a rapid growth phase (0–60 s), a steady growth phase (60–106 s), and a slow advance phase (106–250 s). The variation in mud depth at the shale gas well station exhibited an initial rapid increase, followed by a gradual decrease, ultimately reaching a stabilized state. The highest recorded siltation heights at the four measuring points (A, B, C, and D) were 4.4, 4, 5.2, and 6 m, respectively.
(2) Gravity debris flow dam exhibit notable effectiveness in reducing the scouring depth and inundation range caused by mudslides on the platform of the well station. Consequently, the effects of an 8 m debris flow blocking dam and a 16 m blocking dam were examined and compared. The experimental findings clearly demonstrated that, at measurement point A, the 16 m blocking dam effectively prolonged the mudflow scouring by 53 s in comparison to the 8 m blocking dam. Moreover, the peak sediment siltation height at this particular point was reduced by 0.32 m. These results highlight the superior performance of the 16 m blocking dam compared to the 8 m blocking dam in terms of delaying mudflow scouring.
(3) Through a comparative analysis of the model test and numerical simulation, conclusions regarding the evolution pattern, inundation range, and depth of the mudflow impact on the oil and gas well station were drawn. The study reveals that the numerical simulation results for the highest sediment deposition height of the 8 m check dam deviated by 0.07 m from the test conclusion, while the highest sediment deposition height of the 16 m check dam differed by 0.29 m from the test conclusion. The calculated error falls within an acceptable range, indicating that both testing methods effectively capture the response characteristics of the shale gas well station to the mudflow impact.
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High-altitude rockfalls, as one of the major geological disasters in mountains, is highly concerned about the study of failure mechanisms and disaster prevention and mitigation. In August 2020, the Babaoshan cliff in Yanhe County, Guizhou collapsed and falling rocks hit agricultural vehicles on the road and damaged residents’ houses below. Based on on-site investigation, three rockfall types of tension-rotating, tension-shear-falling, compression-shear exist in the study area, and the compression-shear rockfall can conform to the chain law of rockfall. The paper used the dynamic analysis software Rocpro-3D to simulate and invert the movement characteristics and impact range of rockfall at Babaoshan cliff. The results show that: 1) the hazardous zone, which is about 95 m wide and 175 m long, was formed by the rockfall at R1 and covered localized roads and houses below, with the covered probability of 20%, 17% respectively; 2) the terrains on the rockfall paths in two rockfall disaster events are mainly characterized by stepped shape and overall flat angle respectively, and the behaviors are mainly characterized by ejection and rolling respectively, meanwhile, the times to reach the road and houses were 17 s and 24.3 s, respectively, in addition, the protruding rock mass below the rockfall location gives the falling rock horizontal velocity and good movement space, which will make the falling rock move further away; 3) the different rockfall directions reflect different terrain combinations, simulation inversions reveal that different terrain combinations have significant control over the distance and shape of the rockfall trajectories. And, it was found that the more times a falling rock is rebounded, the greater the energy obtained; 4) the probabilities of falling rocks at H1, H2, H3 invading residential areas are respectively 8.67%, 20%, 19.33%, meanwhile invading road zone are respectively 10.67%, 15.33%, 9.33%. At least one point or several points stopped within the zone of the affected houses in the rockfall disaster event 2 in three prediction of the rockfall impact range, which indicates that there is a great risk that this house will continue to be affected by disasters after rockfalls occur within the steep cliff area above.
Keywords: high-altitude rockfalls, rocpro-3D, movement characteristics, numerical simulation, terrain correlation
1 INTRODUCTION
High-altitude rockfalls are common geo-hazards in canyon areas. It is a dynamic geological process in which high-altitude unstable rock masses suddenly detach from cliff through sliding, toppling, falling, or other failure modes due to gravity, earthquake or construction, and then rolling, jumping, sliding along the slope, finally stoping and accumulating at the slope toe (Hungr et al., 2014; Shen et al., 2020). Due to its wide distribution, high burstiness and serious destructiveness, it has become another major mountain geological hazard after landslide, debris flow, etc. (Zhang and Yang, 2004; Pei et al., 2011; Crosta et al., 2015; Asteriou and Tsiambaos, 2016; Han et al., 2017; Feng et al., 2023). The canyon areas in southwest China (include Yunnan Province, Guizhou Province, Sichuan Province, Tibet and Chongqing City) are characterized by high-steep terrains, complex rockmass structures, intense seismotectonics activities, frequent rainfalls and seasonal freezing-thawings, which lead to frequent occurrence of rockfalls (Chen et al., 2016; Luo et al., 2022). Falling rocks can destroy roads, houses, and other structures through impacting, smashing and burialing, which causing significant casualties and economic losses. For example, on 25 July 2009, the 8# pier of Chediguan bridge in the Dujiangyan-Wenchuan Highway was smashed and broken by a boulder, resulting in 3 deaths, 12 injuries, and 7 vehicle damage (He et al., 2013). Another example, on 7 September 2012, a 5.7 magnitude earthquake occurred in Yiliang County, Yunnan Province, which triggering multiple and multi-scale rockfall disasters, resulting in many residents being hit and killed by rolling stones (Wang et al., 2013). Extensive researches have been conducted on the rockfall hazards prevention and mitigation. These researches mainly focus on the early identification (Li et al., 2019; Xu et al., 2019; Dong et al., 2020; Xu, 2020), influencing factors and failure mechanisms (Zheng et al., 2016; Pan et al., 2017; Chen and Qin, 2020), movement trajectory simulation (Li et al., 2022), collision and disintegration theory (Hu et al., 2019), structure dynamic response (Shen et al., 2020), stability and risk assessment (Pappalardo et al., 2014), and disaster prevention and mitigation measures (Zhang et al., 2017). Xu et al. (2019) believe that the evolution processes of rockfalls in the canyon areas are most closely related to geological structures. Firstly, the formation and evolution of terrains are strictly constrained by geological structures, on the other hand, the degree of weathering, unloading and failure modes of rockmass depend on the discontinuous planes formed by geological structure and gravity deformation (Wang et al., 2020). In recent years, scholars have revealed the failure mechanisms from the perspectives of damage mechanics and fracture mechanics, believing that it is a mechanical process about rock damage, deformation and failure, consisting of secondary crack propagation, primary discontinuities shearing, and rock bridge brittle shearing. Moreover, the existence of rock bridges has significantly changed the stress and failure characteristics of the rockmass, leading to stress concentration at the end of the structural plane (Liang et al., 2014). The movement trajectories of rockfalls are extremely important for predicting the hazard range caused by collapse and selecting the location and layout of blocking engineering. Huang et al. (2009a), Ye et al. (2011) conducted experiments to simulate the influence of terrain on the movement of falling rocks, and found that micro landforms (slopes, platforms, ridges, valleys, and scarps) significantly affect the movement modes of falling rocks, the distribution of translational and rotational energy during motion, and the trajectory deviation after collision with the ground.
In August 2020, the Babaoshan cliff in Yanhe County, Guizhou, collapsed and falling rocks invaded residential areas, seriously affecting residents and buildings, but the movement characteristics and hazardous zone of the high-altitude rockfall in Babao mountain is unclear. In order to carry out disaster prevention and mitigation more accurately, the kinetic behaviors and characteristics of rockfall in the study area need to be revealed. At present, in the studies of rockfall kinematic, Rocfall software is mostly used for kinematic calculation. However, only two-dimensional section in a certain direction can be selected as the specific rockfall path, and the rockfall direction is artificially controlled (Li et al., 2022). 3-D simulation software, such as Rocpro 3D, can simulate the kinematic characteristics of rockfalls in 3D space, and based on high-precision DEM models, the results are more in line with reality. Rocpro-3D considered the variations in the shape of falling block, soil characteristics and terrain irregularities by probabilistic approach (RocPro3D, 2014), as a very user-friendly and robust tool to simulate and invert rockfall events (Akin et al., 2021). Therefore, on the basis of on-site investigation, the paper used the dynamic analysis software Rocpro 3D to invert the movement characteristics of rockfall in Babaoshan, and carried out disaster prediction of hidden huzard points, providing a basis for geological hazard risk assessment in the Babaoshan area.
2 ROCKFALL GEOLOGICAL DISASTER CONDITIONS IN THE STUDY AREA
2.1 Terrain conditions of rockfall
Babaoshan mountain is located on the west bank of the Wujiang River, the west side of the Yanhe county urban area. The steep cliff connects to the rocky slope. Based on on-site investigation, the gradient of cliff ranges from 70° to 80°, making it the best terrain for rockfall. The rocky slope provides convenient rolling and ejection conditions for rockfalls. In addition, the subtropical monsoon climate prevails in the area, with simultaneous rainfall and heat, abundant rainfalls, dense vegetation, and unstable rocks are very easy to collapse and cause disasters due to rainfall and root splitting. There are three potential collapse points (H1, H2, H3) and a rockfall point on the steep cliff, and there is a cement road on the slope and much of residential buildings in the valley below the slope (Figure 1B). Once a rockfall occurs, falling rocks invade residential areas, seriously affecting residents and buildings.
[image: Figure 1]FIGURE 1 | Terrain conditions in the study area, (A) administrative map of China, (B) image map of the study area, (C) the digital surface model of the study area.
2.2 Unstable rockmass characteristics
The lithology in the area is Ordovician middle-upper series (O2-3) hard limestone, and the rockmass has poor integrity due to early compression, tension, fault and other tectonic movements, intense rainfall and weathering. There are four groups of joints in the rock masses: joint one (J1): 253°∠70°, joint two (J2): 120° ∠75°, and joint three (J3): 150° ∠80°; joint four (J4): 323°∠15° (Figure 2A). The joint J1 and joint J2 intersect to form an “X” shape, and when combined with the gentle bedding joint J4, the unstable rock can detach from the cliff and form a rockfall disaster. Once subjected to earthquakes, rainfall, or engineering disturbances, the original static equilibrium is broken, and rockfalls are imminent.
[image: Figure 2]FIGURE 2 | Structural characteristics of unstable rockmass in the study area, (A) stereographic projection of the discontinuous surface of the unstable rocks, (B) tension-rotating modal unstable rocks (upper part) and compression-shear modal unstable rocks (lower part) at H1, (C) tension-shear-falling modal unstable rocks at H3, (D) dissolution cracks form independent unstable rocks, and there is rock cavity under large unstable rocks at H2, (E) collapse accumulation zone of falling rocks, (F) normal faults near the study area.
2.3 Rockfall tpyes on the steep cliff
There are three rockfall types on the steep cliff in the study area: tension-rotating, tension-shear-falling, compression-shear. The tension-toppling modal rockfall is characterized by unstable rock and stable mountain is separated by vertical structural plane, and there is grooves at the root of the unstable rock, and unstable rock is creeps, tensions, rotates and falls under their own weight (Figure 2B; Figure 3A). The tension-shear-falling modal rockfall is characterized by that its rear generally have a large angle structural plane, and its top have a nearly horizontal structural plane, and the unstabe rock will fall after breaking contact with the upper and lateral mountain by gravity (Figure 2C; Figure 3B). The compression-shear modal rockfall refers to a type where the lowest rockmass first collapses and causes independent rock blocks stacked solely by gravity above it to collapse gradually after losing their lower support. The prominent feature of this mode is the existence of vertical through joints between the unstable rock masses and the mountain, which cut the outer rock masses from the mountain to form unstable rocks (Figure 2B; Figure 2D; Figure 3C). The unstable rock masses are cut into multiple blocks by horizontal and vertical joints, and the blocks lose contact with each other or have low bonding strength. Stacked together solely by gravity, supported by the rock bridge has not yet been sheared at the root of the rock mass in the lowest layer. Once the rock bridge at the root of the rock masses in the lowest layer undergoes brittle shear failure under the action of gravity on the upper layer, rainwater erosion, seismic force, and unloading fissure water pressure stacked, resulting in the rockfall, the rock masses on the upper layer stacked solely by gravity will gradually collapse after losing its lower support (Figures 3D, E). This type conforms to the chain law of rockfall, and the rockfall at R1 is in this type.
[image: Figure 3]FIGURE 3 | Rockfall modes in the study area, (A) tension-rotating mode, (B) tension-shear-falling mode, (C–E) compression-shear mode.
3 SIMULATION AND INVERSION OF ROCKFALL
3.1 Rocpro-3D ballistics theories
The rockfall trajectory is a sequence of oblique throws. The lumped mass theories must know this the position of the rock’s center of mass for a series of successive impacts. Most problems related to the single-point methods due to incorrect path lengths are minimized by offsetting the points to the center mass of the rock projectiles. The velocities of an impact point b are preceded by an impact point a and followed by an impact point c as in Figure 4, which is given by Eqs. 1, 2 as follows:
[image: image]
[image: image]
[image: Figure 4]FIGURE 4 | Impact configurations for the mass center parabolas.
The total kinetic energy is given by Eq. 3 as follows:
[image: image]
where, m is the mass of the falling rock, v is the velocity of the falling rock, I is the rotational inertia of the falling rock, and [image: image] is the angular velocity of the falling rock.
The movement of falling rocks in three-dimensional space may have lateral deviation (Figure 5). Here, the lateral deviation [image: image] is defined as a angle around N, making [image: image] deviate from the previous coplanar with N and [image: image]. The total deviation [image: image] is simply defined as a angle between [image: image] and [image: image]. It is close to sum of the incident and returned angles ([image: image] and [image: image]) when [image: image] is small (Noël F et al., 2022). The rock-ground geometric configuration at impact can be analyzed simply with vector dot products. The incident and the returned impact angles with the ground are given by Eqs. 4, 5 as follows:
[image: image]
[image: image]
[image: Figure 5]FIGURE 5 | Geometric configuration at impact of the velocity vectors and the related angles.
The lateral deviation making [image: image] deviate from being coplanar with [image: image] and N can measured by a rotation around the normal vector axis and is given by Eq. 6 as follows:
[image: image]
where [image: image] is set to negative if this deviation brings the azimuth of [image: image] closer to that of N or to positive if this deviation brings the azimuth of [image: image] away, as shown in Figure 8. The rock’s total deviation due to the impact is given by Eq. 7 as follows:
[image: image]
3.2 Simulation and inversion of R1 rockfall
3.2.1 3-D rockfall modeling
Rocpro-3D allows the choice of a rigid block to integrate the block mass and rotation in the computation or a lumped-mass formulation. All rockfall computations in this study were executed using the rigid body model. 3-D probabilistic rockfall analyses were carried out using Rocpro-3D on a triangulated irregular network (TIN) constructed by a simplified point cloud data having a resolution of 100 cm due to the triangulation capacity of the rockfall code. The digital surface model of the study area constructed in Rocpro 3D utilizing triangulated irregular network (TIN) is presented in Figure 1C.
The altitude in the study area varies between 256 m and 482 m. The altitude of the unstable hard limestone rockmasses, which constitutes the rockfall source zone and presents a steep topography (>80°), is between 395 m and 482 m. The unstable rocks mostly fall from the upper section of the cliff as seen in Figures 2B–D. It is possible to define different geological units on the digital surface model where rockfall is modeled and dissimilar restitution and friction coefficients can be assigned to different lithological units. In the study area, a total of four main geological units with distinct characteristics were differentiated during field observations. Accordingly, rockfall source zone spreads over between 395 m and 482 m, and the slope surface in this area is mainly manifested as wide unstable hard rocks (zone I). Rockfall movement zone spreads over between 325 m and 395 m, and this area is mainly manifested as highly weathered slope covered with thin soil, excepting for road (zone II). Rockfall accumulation zone spreads over between 256 m and 325 m, and the this area is mainly manifested as brick-concrete structure buildings (zone III). The road zone is made of cement pavement (zone IV). As shown in Figure 6.
[image: Figure 6]FIGURE 6 | Terrain modeling and parameter assignment.
Determine the physical parameters of the unstable rocks in the study area based on the collapse rocks and their shape on site, and take the average value to assign parameters. Falling rocks are defined as a cylinder with a diameter of 1 m and a height of 1m, with the density of 2700 kg/m3. Restitution and friction coefficients considered in 3D rockfall analyses were selected with respect to the back analyses of previously fallen rocks in a close site with similar characteristics (Dinçer et al., 2016). According to the “Specification for Engineering Investigation of Rock Falls and Collapses” (T/CAGHP 011–2020), the range of slope parameters in four zones is determined, and the final slope parameters need to be determined by trial calculation. The results of trial calculation need to be compared with the accumulation and distribution of falling rocks. Eventually, slope parameter values are summarized in Table 1.
TABLE 1 | Physical parameters of slope surface.
[image: Table 1]3.2.2 Simulation inversion results of R1 rockfall
According to Figure 4, the vertical distance from the center of the falling rock to the slope surface is at least 0.5 m. Based on the above dynamic theories, the simulation results of R1 are shown in Figure 7. The minimum movement distance of the falling rock is 33.14 m, and it stops on the platform under the cliff. The farthest movement distance reaches 174.5 m, and it has already invaded the roads and residential areas (Figure 7A). According to the density map of falling points, the probability of falling rocks stopping in residential areas is about 17%, and the probability of stopping on roads is about 20% (Figure 7B). Although the probability of invading roads and residential areas is not high, it can be fatal if it occurs. The formation of these motion trajectories is the result of a combination of X direction and Y direction motion of the falling rock. Based on simulation inversion, the hazardous zone, which is about 95 m wide and 175 m long, was formed by the R1 rockfall and covered localized roads and houses below (Figure 7A). Based on on-site investigation, the simulation results are relatively close to the actual situation. In a recent on-site investigation, placoid falling stones on the road side and in the drainage ditch in front of residential houses can be discovered, which indicates that after the collapse of the unstable rocks, the roads and residential houses below the cliff inevitably become the targets of attack (Figures 7C, G). The more favorable evidence for the simulation results is that two rockfall disaster events that occurred in the study area in 2020, once was falling rocks hit passing agricultural vehicles, another time is falling rocks damaged residents’ houses (Figures 7D–F). Although two rockfalls did not cause any fatalities, it was sufficient to indicate that the unstable rocks in the study area pose a serious threat to the residents’ lives and travel safety.
[image: Figure 7]FIGURE 7 | Comparison between simulated inversion and actual rockfall events. (A) simulated inversion results by Rocpro 3D; (B) the density map of falling points; (C) placoid falling stones on the roadside; (D), (E) rockfall disaster event 1 that occurred in the study area in 2020: falling rocks hit passing agricultural vehicles on the road; (F) rockfall disaster event 2 that occurred in the study area in 2020: falling rocks damaged residents’ houses; (G) falling rocks in the drainage ditch in front of residential houses.
Based on the energy map, it reflects the movement characteristics of falling rocks in two collapse disasters that occurred in the study area in 2020. Based on observation, it can be observed that the terrain of falling rock in event 1 is mainly characterized by stepped shape, while in event 2, the terrain of falling rock is mainly characterized by overall flat angle (Figure 8). And the behavior of falling rock in event 1 is mainly characterized by ejection, while in event 2, the behavior of falling rock is mainly characterized by rolling. In rockfall event 1, the movement distance of the falling rock was 107.7 m, the time to reach the road was 17 s, and the maximum height from the ground was 23.2 m. In rockfall event 2, the movement distance of the falling rock was 139.2 m, the time to reach the road was 24.3 s, and the maximum height from the ground was 18.3 m.
[image: Figure 8]FIGURE 8 | Movement trajectories inversion of two rockfall disaster events that occurred in the study area in 2020, (A) rockfall disaster event 1 that occurred in the study area in 2020: falling rocks hit passing agricultural vehicles on the road, (B) rockfall disaster event 2 that occurred in the study area in 2020: falling rocks damaged residents’ houses.
It is also worth mentioning that the protruding rock mass below the rockfall location gives the falling rock horizontal velocity and good movement space, which will make the falling rock move further away. This phenomenon can be explained by using rocfall 2D to perform rockfall calculations on simple terrain. When there is a smooth cliff below the rockfall location and do not have protruding rock mass, falling rocks reach the ground through free fall, as shown in A-type trajectories in Figure 9. But when there is a protruding rock mass below the falling rock, the falling rock rebounds after hitting the protruding rock mass and obtains horizontal acceleration, resulting in a longer movement distance, as shown in the B-type trajectories in Figure 9.
[image: Figure 9]FIGURE 9 | The influence of protruding rock mass below the collapse location on the collapse trajectories.
4 ANALYSIS OF TERRAIN AND ROCKFALL TRAJECTORIES
From the above analysis, it can be seen that the shape of the trajectory varies depending on the terrain that the rockfall path passes through. The different rockfall directions reflects different terrain combinations, and different terrain combinations form different types of rockfall trajectories. The continuous changes in slope result in different combinations of rolling and ejection. Simulation inversions reveal that different terrain combinations have significant control over the distance and shape of the rockfall trajectories. Several typical rockfall paths are selected for elaboration as follow:
4.1 10#, 11# trajectories and obtuse angle terrain
The 10# trajectory reveals a type of terrain that a steep cliff connects horizontal or approximately horizontal ground with obtuse angle (Figure 10A). The 11# trajectory reveals a type of terrain that a steep cliff connects gentle slope ground with obtuse angle (Figure 10B). The rock in 10# trajectory falls about 37 m from the cliff to the first bounce point and obtains about 625 kJ of kinetic energy. After touching the platform, the kinetic energy is instantly released and lost, with a loss rate of approximately 50%. The severe loss of kinetic energy leads to a decrease in the falling rock speed of forward movement (Figure 10C). The rock in 11# trajectory falls about 35 m from the cliff to the first bounce point, obtaining approximately 620 kJ of kinetic energy, after touching the ground, the falling rock rebounds and is thrown upwards diagonally, with a kinetic energy of approximately 240 kJ (Figure 10D). 10# trajectory indicates that controlled by this cliff connects to platform terrain, there is a relatively high vertical distance from the collapse location to the first bounce point and the relatively large kinetic energy. Affected by the kinetic energy of falling rock and terrain change, the vertical distance from the starting location to the first bounce point (the first bounce distance) is the longest, and the horizontal motion distance from the first bounce point to the second bounce point (the second bounce distance) is the longest (Figure 10C). The terrain overall flat but locally concave and convex is not only cannot continuously supply the kinetic energy of the falling rock, but also hinders their progress, resulting in a shortest movement distance. Huang et al. (2009b) designed a platform resistent effect test, Based on stopping and accumulation effects of experiments of platform on rolling rock blocks, the stopping location and the average resistance coefficient of rock blocks on platform are analyzed by using the multivariate nonlinear regression model. It indicates that platform has a good function to baffle dangerous rock masses movement after falling. Unlike 10# trajectory, although there is a significant loss of kinetic energy, the gentle slope ahead can provide a new drop for the bouncing stone, thereby increasing kinetic energy in 11# trajectory. The increase in kinetic energy and the improvement of spatial conditions make the distance of rockfall longer than that of near right angle terrain. Affected by the kinetic energy of rockfall and terrain changes, there is a longer vertical distance from the collapse location to the first bounce point. From the first bounce point to the second bounce point, and from the second to the third bounce point [image: image] the spans on a gentle slope gradually shorten until the rolling stones finally stoping and accumulating due to friction (Figure 10D).
[image: Figure 10]FIGURE 10 | 10#, 11# trajectoris and obtuse angles terrain, (A) 10# trajectory, (B) 11# trajectory, (C) kinematic parameters in 10# trajectory, (D) kinematic parameters in 11# trajectory.
4.2 14#, 38# trajectories and overall flat angle terrain
Some terrains can be considered as overall flat angle terrains (Figures 11A, B). These terrain is characterized by low cliffs and little fluctuation in slope surface. Controlled by such nearly flat angle terrain, the kinetic energy after rockfall from a low cliff is not sufficient to cause it to bounce after the first contact with the slope surface. The kinetic energy obtained by the rockfall in 14# and 38# trajectories falling about 20 m from the rockfall location to the first bounce point (low cliff) cannot allow the rockfall to be bounced far enough, resulting in a smaller span between two adjacent bounce points or causing the fall rock to roll directly along the slope (Figures 11C, D). The kinetic energy of a rolling stone can only be provided by the difference between its gravitational component and frictional resistance of the slope surface. Although these terrains can be considered as an overall flat angle terrain, the actual slope surfaces are uneven. In such terrain, if the slope surface is not undulating, the falling stone moves in a rolling manner, and if there are undulations on the slope, the falling rocks move in a span jumping rolling manner, until it stops due to obstruction.
[image: Figure 11]FIGURE 11 | 14#, 38# trajectoris and obtuse angles terrain, (A) 14# trajectory, (B) 38# trajectory, (C) kinematic parameters in 14# trajectory, (D) kinematic parameters in 38# trajectory.
4.3 18# trajectory and stepped terrain
There are one or several platforms on the slopes connected by cliff, and the slope toe is a flat, forming a stepped terrain, as shown in Figure 12A. Controlled by such terrain, The form of motion of a rolling stone depends on its collision location: If it falls on a sloping surface, it moves forward with rolling or indefinite span bounce, and If it falls on the platform, it will experience flat or upward oblique throwing motion due to inertia (Figure 12B). Through longitudinal comparison, it was found that the more times a falling stone is rebounded, the greater the energy obtained.
[image: Figure 12]FIGURE 12 | 18# trajectoris and obtuse angles terrain, (A) 18# trajectory, (B) kinematic parameters in 18# trajectory.
5 COVERAGE PREDICTION OF HIDDEN HUZARD POINTS
Apart from R1, there are still three hidden huzard points (H1, H2, H3) that may collapse in the future. Based on the above parameters, the impact range and hazard coefficient of these three hidden huzard points after collapse are predicted, as shown in Figure 13. Set 150 falling points, hidden huzard point 1(H1) after rockfall, the impact range is the widest (Figures 13A–C). Hidden huzard point 1 (H1) after rockfall, there are 13 points stop in the residential area, meanwhile 16 points stop on the road. The probability of falling rocks invading residential areas is 8.67%, meanwhile invading road zone is 10.67%. Hidden huzard point 2 (H2) after rockfall, there are 30 points stop in the residential area, meanwhile 23 points stop on the road. The probability of falling rocks invading residential areas is 20%, meanwhile invading road zone is 15.33%. Hidden huzard point 3 (H3) after rockfall, there are 29 points stop in the residential area, meanwhile 14 points stop on the road. The probability of falling rocks invading residential areas is 19.33%, meanwhile invading road zone is 9.33% (Figures 13D–F). It is worth noting that in the prediction of the rockfall impact range of the three hidden huzard points, at least one point or several points stopped within the zone of the affected houses in the rockfall disaster event 2. This indicates that there is a great risk that this house will continue to be affected by disasters after rockfalls occur within the steep cliff area above. Therefore, it is recommended that in the new round of urban planning and shantytown renovation projects in Yanhe County, the residents in the areas delineated in the figure should be relocated in a timely manner.
[image: Figure 13]FIGURE 13 | A prediction of impact range stopping point location about hidden huzard points, (A) impact range of H1, (B) impact range of H2, (C) impact range of H3, (D) stopping point location of H1, (E) stopping point location of H2, (F) stopping point location of H3.
6 CONCLUSION
On the basis of on-site investigation, the paper used the dynamic analysis software Rocpro 3D to invert the movement characteristics of falling rocks at the R1 and predict in impact range of hidden huzard points after rockfall in Babaoshan cliff, the main conclusions are as follow:
1) There are three rockfall types in the study area: tension-rotating, tension-shear-falling, compression-shear. Wherein, the compression-shear rockfall refers to a type where the lowest rockmass first collapses and causes independent rock blocks stacked solely by gravity above it to collapse gradually after losing their lower support. This type conforms to the chain law of rockfall, and the rockfall at R1 is in this type. And the collapse geological hazards conditions are very complete, residential areas at the slope toe are dangerous. There were two rockfall disaster events that occurred in the study area in 2020.
2) Based on simulation inversion results, the minimum movement distance of the falling rock is 33.14 m, and it stops on the platform under the cliff. The farthest movement distance reaches 174.5 m The hazardous zone, which is about 95 m wide and 175 m long, was formed by the R1 rockfall and covered localized roads and houses below. The probability of falling rocks stopping in residential areas is about 17%, and the probability of stopping on roads is about 20%. Although the probability of invading roads and residential areas is not high, it can be fatal if it occurs.
3) The terrain of falling rock in event 1 is mainly characterized by stepped shape, while in event 2, overall flat angle. And the behavior of falling rock in event 1 is mainly characterized by ejection, while in event 2, rolling. In rockfall event 1, the movement distance of the falling rock was 107.7 m, the time to reach the road was 17s, and the maximum height from the ground was 23.2 m. In rockfall event 2, the movement distance of the falling rock was 139.2 m, the time to reach the road was 24.3s, and the maximum height from the ground was 18.3 m. It is also worth mentioning that the protruding rock mass below the rockfall location gives the falling rock horizontal velocity and good movement space, which will make the falling rock move further away.
4) The shape of the trajectory varies depending on the terrain that the rockfall path passes through. The different rockfall directions reflects different terrain combinations, and different terrain combinations form different types of rockfall trajectories. The continuous changes in slope result in different combinations of rolling and ejection. Simulation inversions reveal that different terrain combinations have significant control over the distance and shape of the rockfall trajectories. And, it was found that the more times a falling stone is rebounded, the greater the energy obtained.
5) The probability of falling rocks at H1, H2, H3 invading residential areas is respectively 8.67%, 20%, 19.33%, meanwhile invading road zone is respectively 10.67%, 15.33%, 9.33%. It is worth noting that in the prediction of the rockfall impact range of the three hidden huzard points, at least one point or several points stopped within the zone of the affected houses in the rockfall disaster event 2. This indicates that there is a great risk that this house will continue to be affected by disasters after rockfalls occur within the steep cliff area above. Therefore, it is recommended that in the new round of urban planning and shantytown renovation projects in Yanhe County, the residents in the areas delineated in the figure should be relocated in a timely manner.
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As the length of the tunnel continues to increase, it will be common for a single fan to undertake the ventilation of two or more tunnel faces. However, the construction of multiple faces in a single tunnel will lead to a complex construction environment in the tunnel, the mutual interference of ventilation, and difficulty in discharging pollutants. Based on the simultaneous construction of multiple tunnel faces in a single tunnel, this study analyzed the transport law of pollutants. The diffusion laws of carbon monoxide and dust in multiple-face tunnels under different working conditions were obtained by numerical simulation. It was found that when both sides of the tunnel are ventilated at the same time, the airflow in the tunnel is spiral, the vortex zone will appear near both sides of the face, and the vortex and unstable airflow will appear at the intersection with the inclined shaft. The airflow in the non-equal-length tunnel at both sides is more disordered than that in the equal-length tunnel, and there will be a wider range of eddy currents at the intersection. The change of dust diffusion in the non-equal-length tunnel at both sides is not obvious, and the length of the multiple-face tunnel has little effect on dust settlement and diffusion. The research results are of great significance for improving the construction environment of tunnel faces and improving the working conditions of personnel.
Keywords: tunnel during construction, multiple faces, transport law of pollutants, mutual interference, environmental improvement
1 INTRODUCTION
The tunnel plays an important role in the highway, which can shorten the driving distance, improve transportation capacity, and reduce accidents (Ma et al., 2021; Fang et al., 2022; Liu et al., 2023). With the continuous development of tunnel construction, the tunnel length has become increasingly longer (Liu et al., 2020). In order to shorten the construction period, inclined shafts are often used to increase the construction face, which will increase the number of working faces (Zhao et al., 2023). However, each face needs enough fresh air during the working period, which leads to higher requirements for the ventilation system. Due to the area of the inclined shafts, the situation in which a fan provides air to two or three tunnel faces at the same time will become more common. In the case of no restrictions, the airflow will flow to the side with less resistance, resulting in very little air volume on the other side. Therefore, when a fan supplies air to multiple faces, it is necessary to artificially interfere with the airflow to make it reach the required face.
In the process of tunnel construction, blasting, excavation, and transportation of slag, shotcrete, a lot of harmful gases, and dust will be produced (Rodriguez and Lombardia, 2010; Liu et al., 2012; Rodriguez et al., 2012; Shao et al., 2016). In some specific geological conditions, combustible gases may be produced. In a tunnel constructed by the drilling and blasting method, a lot of poisonous and harmful gases will be released after the explosion (Fang et al., 2016). In addition, the exhaust gas produced by the internal combustion engine of the mechanical equipment and the working vehicle will also be discharged into the tunnel (Lang et al., 2016; Lin et al., 2017; He and Jiang, 2018; Li et al., 2018). Because the tunnel is semi-closed during construction, it is difficult to remove pollutants from it. When one fan supplies air to multiple faces, the pollutants from multiple faces will also gather and discharge from the same auxiliary construction tunnel, further increasing the difficulty of ventilation and sewage.
In order to guarantee the physical and mental health of tunnel construction workers and to ensure the smooth development of tunnel construction, scholars have carried out plenty of research. Hargreaves DM et al. simulated an airflow field in a roadway to provide theoretical guidance for design (Hargreaves and Lowndes, 2007). Haas A and RAO Am built a three-dimensional mathematical model of a tunneling construction tunnel and studied the wind flow characteristics near the face by using the CFD method, providing a basis for tunnel construction design (Haas et al., 2002; Rao et al., 2015).
For the problem of a single fan with multiple faces, many scholars have focused on the ventilation mode of the air-box. Many scholars have carried out optimization research on the length, width, and partition length of the air-box. Tao et al. used field tests and three-dimensional numerical models to study the effects of box length, partition length, and fan arrangement on ventilation efficiency (Tao et al., 2022). Cao (2016) obtained the calculation formulas of the influence coefficient of the length, width, and height of an air-box through numerical simulation, concluding that the air-box increased the air volume by 19.9%. Luo Gang obtained the optimal length and height of an ordinary air-box (Luo et al., 2020). Luo Yanping adopted a three-dimensional numerical model and concluded that the air-box can better control the air volume at the outlet of the air duct of the working face and reduce the length and angle of the air duct, thus reducing air leakage and wind pressure loss (Luo et al., 2019). Song Junxiu adopted the control variable method and determined the optimal air-box size based on the efficiency of the fan, the total wind pressure, and the smoothness of the airflow (Song et al., 2020). Yang Shanshi concluded that the ventilation efficiency of the fan connection type is the best, the blowdown capacity in the tunnel is good, followed by the airbox connection type, and the press-in type is the worst (Shan-shi et al., 2022). Zhou Shuiqiang analyzed the CO concentration distribution in tunnels under the two modes of press-in ventilation and air-box ventilation by numerical simulation, concluding that the air-box can greatly extend ventilation distance, improve ventilation efficiency, and effectively improve CO concentration distribution in tunnels, which is of great significance for multiple-face ventilation in long tunnels (Zhou, 2018). The influence of factors such as the spacing position of the air-box, the length of the air-box, and the relative position between the air-box and the air duct in relation to the air volume and pressure is also studied. Through comparison and analysis, the most reasonable air duct layout can be obtained so as to effectively improve the CO concentration distribution in the tunnel. Taking Jingguashan Tunnel as the research background, Li Yong considered three different ventilation modes to provide a reference for the long tunnel with multiple-face air supply (Li et al., 2013). Based on the research background of the West Qinling Tunnel, Dou Xiaotian explored the ventilation scheme under the condition of two hand ways of air supply in the inclined shaft and focused on the relay ventilation method of the air chamber, which economically and efficiently improved the working environment in the construction tunnel (Dou and Chen, 2011). Chen Haifeng took Changhongling Tunnel as the research object and conducted a detailed study on the variation rule of the flow field in the air-box used in the tunnel, the reasonable disposition position of the fans, and its influence on the flow in the box (Chen, 2022). Xin Guoping also took Changhongling Tunnel as an example, focusing on the ventilation scheme of the combined ventilation of the divided roadway and air duct, studying several key parameters, and designing three dynamic schemes with good ventilation effect (Guoping, 2015). Liu Guoping proposed a new ventilation scheme of small air-box relay ventilation, aiming at the ventilation scheme under the condition that the air supply of the inclined shaft is driven into two faces in both directions and the tunnel section is small, making the ventilation distance reach 6,386 m at its longest (Liu, 2013). Li Xiuchun put forward the ventilation method of “shaft + air box + air duct” based on the research background of complex underground air storage tunnels and explored the airflow characteristics and ventilation efficiency of the air bin under different parameter sizes and the optimal fan placement situation (Li et al., 2015).
The aim of this study is to master the migration and distribution of pollutants when facing multiple faces during tunnel construction, to master the laws of ventilation and drainage in the construction of tunnels with multiple faces, and to provide solid theoretical support for the ventilation methods and technologies employed in the construction of these tunnels. The numerical simulation method is used to analyze and study the characteristics of airflow field and pollutant migration and discharge in tunnels during construction and to explore the characteristics of airflow and the law of pollutant diffusion and migration under different construction conditions.
2 GOVERNING EQUATION OF TUNNEL AIRFLOW
The airflow in the tunnel follows the basic conservation laws of mass conservation, momentum conservation, and energy conservation. The following are the basic equations of motion for three-dimensional unsteady viscous fluids:
(1) Mass conservation equation: According to the law of conservation of mass, in fluid mechanics, the net mass per unit time flowing into the fluid cell is equal to the increase in mass in the fluid cell, and the equation is as follows:
[image: image]
where ρ is density, kg/m3; t is time, s; and u, v, and w are the components of the velocity vector u in the x, y, and z directions, respectively.
(2) Momentum conservation equation: According to the law of conservation of momentum, the sum of all external forces acting on the microelement is equal to the change rate of the momentum of the fluid in the microelement with respect to time, and the equation is as follows:
[image: image]
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where fx, fy, and fz are the components of the volume force acting on a unit mass gas in the x, y, and z directions, respectively, N/kg; μ is aerodynamic viscosity coefficient, kg⋅s/m2.
(3) Energy conservation equation: The net heat flow into the cell plus the work done by the physical and surface forces on the cell is equal to the increase rate of energy in the cell; the equation is:
[image: image]
where e is internal energy per unit mass of gas, J/kg; k is coefficient of heat conduction, W/m⋅K; [image: image] is, in addition to heat conduction, the applied heat to a unit mass gas per unit time, J/kg⋅s; and T is temperature, K.
During tunnel excavation blasting, a large amount of smoke will be formed in front of the tunnel face, which is called the smoke throwing area. In the case of ventilation, the diffuse smoke in the tunnel will gradually move along the direction of fresh air to the inclined shaft, which is a dynamic change process. The displacement process of blast smoke pollutants satisfies the law of conservation of mass, Fick’s first law, and Boshenick’s hypothesis. The diffusion equation during its migration can be expressed as:
[image: image]
where ϕ is particle CO mass concentration, mg/m3.
According to Boshenick’s hypothesis:
[image: image]
where [image: image] is the average CO concentration, mg/m3; ϕ′ is the pulsating value of CO concentration, mg/m3.
The instantaneous value of CO mass concentration in blast smoke is the sum of the average value of CO concentration and the fluctuation value of concentration. Because the smoke pulsation is usually random, its value is approximately zero, and the disturbance to the mass concentration of carbon monoxide is small, so it can be ignored in the actual calculation. Similarly, the instantaneous wind speed in the x, y, and z-axes can also be ignored because of the pulsation value. In summary, the following formula can be obtained:
[image: image]
This equation is the differential equation of CO migration in a single-head roadway.
The movement of dust in the tunnel belongs to a kind of gas–solid two-phase flow, and the mathematical models describing the gas–solid two-phase flow can be divided into two categories, namely, a continuum model and particle orbit model. For the convenience of the study, dust transport in the tunnel is regarded as a continuous medium.
In the tunnel, the main factors of dust diffusion are airflow convection, diffusion movement, and turbulent pulsation diffusion. The causes of dust deposition along the height direction are gravity deposition, diffusion deposition, turbulent diffusion, and deposition, among others.
3 TYPICAL MULTIPLE-FACE TUNNEL CONSTRUCTION
Due to the increasing length of tunnels, the proportion of multiple-face tunnel construction is increasing. Whether in the excavation of a highway tunnel or the construction of an underground tunnel group for a hydropower station, multiple-face tunnel construction will occur. The so-called multiple-face tunnel construction refers to the simultaneous construction of multiple faces in a single tunnel. Considering the problem of the section area of the inclined shaft, it is often impossible to provide a dedicated ventilation system for each face, and only the fresh air in one air duct can be transported to different faces by shunt. After cleaning each face, the air is finally collected and discharged in the auxiliary construction tunnel (inclined shaft or special ventilation tunnel). At present, tunnels forming multiple working faces can be divided into two cases: the auxiliary construction of a ventilation shaft leads to the increase of the working face, and the special auxiliary tunnel construction leads to the increase of the working face. The following three typical multi-face construction situations are introduced through actual construction cases.
Tianshan Shengli Tunnel is 22.035 km long and belongs to the extra-long tunnel. The tunneling distance is up to 11 km. Using TBM to excavate the middle drift, the advantage of the lead of the middle drift was used to enter the main tunnel through the transverse tunnel to open up the working face. In this way, the speed of tunnel penetration could be achieved. During the construction period, due to the space limitation of the middle drift, only four fans could be arranged. However, seven faces were constructed at the same time. The ventilation of the tunnel is shown in Figure 1A, where the 1# fan supplies air to three faces, and the 2# fan supplies air to two faces.
[image: Figure 1]FIGURE 1 | Ventilation organization diagram of typical multiple-face construction tunnel.
Wulaofeng extra-long tunnel is a double-line separated tunnel with the length of 8.340 km. Wulaofeng Tunnel has two ventilation inclined shafts. Ventilation incline can be used as an auxiliary passageway during construction. During the construction period, after the inclined shaft entered the main hole, there were four faces working at the same time in the shafts, and the ventilation mode is shown in Figure 1B. Due to the small section of the inclined shaft, only two fans could be arranged to provide fresh air for the four faces.
Xisujiao 2# Tunnel is 1823.5 m long. The tunnel structure is multi-arch–small clear distance–separate type–small clear distance–multi-arch. Because the entrance and exit of the Xisujiao 2# tunnel is steep, it is impossible to enter the main tunnel. Therefore, on the northwest side near the exit portal, a construction adit was excavated to enter the main tunnel. The length of the construction adit is 763.5 m. During the construction period, two fans were arranged at the portal of the construction adit to provide fresh air to the four faces of the main tunnel. The ventilation mode is shown in Figure 1C.
With the deepening of construction in the west of China, there will be more and more multiple-face construction situations, and the migration characteristics of pollutants in multiple-face construction tunnels also need further in-depth study. Through the actual investigation of the ventilation conditions of the above tunnels, it is found that the construction of multiple faces will not only occur in long tunnels but also in short tunnels. Once one fan provides fresh air to multiple faces at the same time, the environmental state of the tunnel will be very bad, and the connection mode of the duct will also affect the airflow, which will then affect the air supply of the face. Therefore, the characteristics of airflow and the transport characteristics of pollutants during the construction of multiple palm surfaces are required to be examined first.
4 STUDY ON THE LAW OF POLLUTANT DIFFUSION IN AN EQUAL-LENGTH TUNNEL AT BOTH SIDES
4.1 Geometric model and boundary condition setting
It is generally believed that if the two sides are equal in length, the airflow will be more uniform, so the situation of equal length at both sides must first be studied. In this case, if the ventilation effect is indeed very good, which can be achieved through the adjustment of the construction organization, the geometric model in this study is set as follows: the tunnel section has a radius of 5.9m, the excavation construction tunnel is divided into left and right parts, each side is 200 m long (equal length on both sides), and the ventilation inclined shaft perpendicular to the construction tunnel is 75 m long, which is especially excavated for the ventilation of the multiple-face tunnel construction. The ventilation modes of the two tunnel tunnels are compressed ventilation, and the tunnel of the two palm faces is used for air supply and pressure regulation. The air duct is arranged in the center of the inclined ventilation shaft at a height of 3.5 m from the tunnel ground and in the construction tunnel at a side arch at 3.5 m from the tunnel ground. SCDM software has been used to model the geometric model and the Meshing module in Ansys Workbench for meshing. The tunnel geometry model and mesh division are shown in Figure 2, and local encryption is carried out near the palm surface and the wind duct, which not only improves the calculation accuracy but also saves computing resources.
[image: Figure 2]FIGURE 2 | Tunnel geometry model and meshing.
The CO produced by simulated blasting and dust produced by shotcrete has been studied. The boundary conditions are set in Tables 1–3.
TABLE 1 | Setting of boundary conditions for simulating carbon monoxide diffusion.
[image: Table 1]TABLE 2 | Calculation model for simulating carbon monoxide diffusion.
[image: Table 2]TABLE 3 | Discrete phase model parameter settings.
[image: Table 3]4.2 Study on CO diffusion law in construction of equal-length tunnel at both sides
In tunnel construction, the blasting process is an instantaneous process. It is generally believed that CO is an instantaneous pollution source and will evenly fill the space near the tunnel face. In this study, blasting operations carried out at both sides of the face are considered. Figure 3 shows the CO diffusion law after blasting. It can be seen from the figure that the produced carbon monoxide gathers near the tunnel face after blasting for 10 s. With the continuous action of fresh airflow and the molecular diffusion of CO molecules from high concentration to low concentration, it gradually migrates to the tunnel exit. At 50 s, the CO migrates to half of the tunnel at both sides. When approaching 200 s, the carbon monoxide produced by both sides of the tunnel reaches the intersection of the tunnel and the inclined shaft and moves toward the portal of inclined shaft. It can be seen that the concentration of carbon monoxide near the tunnel face is always high before 200 s, and the distribution range of high-concentration carbon monoxide gradually expands. Meanwhile, carbon monoxide fills almost the entire tunnel, while the concentration near the tunnel face continues to decrease. After 300 s, part of the carbon monoxide is discharged out of the tunnel, and the concentration around the tunnel face further decreases with continuous ventilation. The carbon monoxide diffusion of both sides of the tunnel face is symmetrical in distribution, and carbon monoxide is basically discharged out of the hole at 800 s.
[image: Figure 3]FIGURE 3 | The distribution of CO mass fraction at different moments of the equal-length tunnel.
The CO distribution cloud images of tunnel sections with different distances from the tunnel face were captured, as shown in Figure 4. It was found that the distribution of CO in the tunnel is opposite at 20 m and 30 m away from the face. At 20 m, CO gathers at the side near duct, and it gathers at the side far of duct at 30 m. A large range of the eddy current region will be generated near the tunnel face, and the airflow is relatively unstable, so carbon monoxide forms a spiral movement in the eddy current. Therefore, the distribution of CO concentration varies greatly at different locations. At the same time, it can be clearly seen that the CO concentration in the tunnel section presents a distribution of high in the middle and low in the periphery. The closer the tunnel wall is, the lower the CO concentration is, which indicates that the resistance along the tunnel wall will have a greater impact on the diffusion and migration of CO, so carbon monoxide will accumulate in the space with low resistance in the middle of the tunnel.
[image: Figure 4]FIGURE 4 | CO distribution cloud map at different distances from the palm surface at 300s.
Figure 5 describes the changes of carbon monoxide concentration in sections at different locations of the main tunnel and ventilation inclined shaft. The measuring points at 20 m and 40 m away from the outlet are 20 m and 40 m away from the portal of the ventilation inclined shaft. It can be seen from the figure that the change of carbon monoxide concentration on both sides is basically the same. With the exception of the carbon monoxide concentration at 50 m away from the face at both sides, other positions show a trend of increasing first and then decreasing.
[image: Figure 5]FIGURE 5 | Distribution of the average carbon monoxide concentration at different locations in the equal-length tunnel.
However, the scenario of pollution and the required air volume at both sides of the tunnel being the same is very rare in the actual construction. Therefore, the CO produced by blasting at only one side is studied. When calculating, the supply wind speed of one side to must be set 10 m/s and the other side to 25 m/s. The CO diffusion law at both sides of the tunnel was investigated.
Figure 6 shows the flow field vector diagram and flow diagram in the tunnel. It can be clearly seen from the figure that the average wind speed of the main tunnel on the side with large air supply volume is larger than that on the side with small air supply volume. In addition to the eddy current near the tunnel face, there are a local eddy current region and unstable flow fields in the main tunnels on both sides. This is because of the “collision and extrusion” of airflow on both sides of the main tunnels, creating a larger range of the eddy current region. In addition, the different air supply volume also makes the range of the eddy current disturbance region on both sides of the main tunnels different.
[image: Figure 6]FIGURE 6 | Flow field diagram of equal-length tunnel with different ventilation speeds.
The supply wind speed of one side must be reset to 20 m/s and the other side kept at 10 m/s. The CO diffusion is shown in Figure 7. It can be found that when the air supply volume of one side of the tunnel decreases, the influence of the airflow on the other side decreases, and CO can also be diffused and diluted faster. From the CO concentration cloud map, it can be seen that no serious carbon monoxide cross-flow occurs during the whole process of carbon monoxide diffusion in the right tunnel, and only a small amount of CO accumulation occurs at the intersection near the left tunnel after 125 s. The carbon monoxide in the tunnel is basically discharged at 325 s.
[image: Figure 7]FIGURE 7 | CO diffusion during single-end blasting in equal-length tunnels.
4.3 Study on dust diffusion law in construction of equal-length tunnel at both sides
Figure 8 shows tunnel dust dispersion and transport at different moments of slurry spraying. It can be seen that with the continuous progress of the slurry spraying process, the dust concentration in the tunnel gradually increases and gradually diffuses outside the tunnel following the airflow direction. The dust distribution of the palm surface of the two tunnels is relatively symmetrical. The dust produced by both sides of the palm faces reaches the intersection at 200 s and migrates together to the ventilation inclined shaft. There is a high concentration of dust accumulations at several time points at 30 m–60 m away from both sides of the palm surface, which is due to the existence of the eddy current region and low wind speed, resulting in the accumulation of dust particles nearby. The dust concentration in the tunnel tends to be stable, and the dust concentration distribution does not change much after 400 s, showing the distribution law that the dust concentration near the palm surface is large, and the concentration closer to the tunnel exit is smaller.
[image: Figure 8]FIGURE 8 | Three-dimensional cloud map of tunnel dust dispersion and transport at different moments of slurry spraying.
It can be seen intuitively in the dust concentration distribution near the palm surface (Figure 9) that a large amount of dust near the palm surface gradually settles to the tunnel floor, and the concentration distribution shows a stepped distribution. However, the dust farther away from the palm surface does not settle more significantly. This is because the dust that can move with the airflow has less mass and is difficult to settle, resulting in most of it being carried out of the tunnel with the fresh airflow. Figure 10 shows the dust concentration distribution of 10 m, 30 m, 50 m, and 100 m from the palm surface on both sides of the tunnel. It can be seen that the dust distribution law in the tunnel is roughly similar. The farther the distance from the palm surface, the lower the dust concentration, and this shows the characteristics of higher dust concentration at the bottom. This is also because the dust produced by the slurry spraying contains a large amount of large particle dust, which naturally settles to the bottom of the tunnel under the action of gravity. A small amount of dust moves with the flow direction of the wind, so the dust distribution concentration is higher near the wind duct, while the dust concentration is lower in the part away from the wind duct. That is to say, where the wind speed is higher, the dust concentration is lower.
[image: Figure 9]FIGURE 9 | Dust concentration distribution near the palm surface on both sides.
[image: Figure 10]FIGURE 10 | Distribution of dust concentration in the two tunnels at different distances from the palm face at 600 s.
When the tunnel length at both sides of the main tunnel is equal, the dust diffusion law at both sides is basically similar, and the dust concentration near the palm surface is always about 200 mg/m3, which exceeds the standard concentration stipulated by the state. Therefore, in the actual construction, it can not only rely on the ventilation system but through spraying water, air curtain dust removal, and other ways of reducing the dust concentration around the staff.
5 STUDY ON THE LAW OF POLLUTANT DIFFUSION IN A NON-EQUAL-LENGTH TUNNEL AT BOTH SIDES
During the construction period, it is very rare that the tunnel lengths at both sides of the tunnel are equal. The change of length directly affects the change of ventilation resistance and the airflow at both sides of the tunnel. This section investigates the migration and diffusion law of dust and CO when the two sides of the main tunnel are of different lengths.
5.1 Study on CO diffusion law in a non-equal-length tunnel at both sides
In order to study the influence of different lengths of the main tunnel on the ventilation efficiency of the tunnel under construction, two working conditions must be set, as shown in Tables 4, where the right tunnel is 100 m and the left tunnel is 200 m, and the carbon monoxide emission efficiency of the right tunnel must be compared when the length of the left tunnel is different.
TABLE 4 | Non-equal length tunnel carbon monoxide diffusion conditions.
[image: Table 4]Figure 11 describes the variation curve of carbon monoxide concentration in the central axis of human breathing height at 50 s–700 s. Comparing the concentration changes of the right tunnel under the two working conditions, it can be seen that when the length of the left tunnel and right tunnel are equal, the peak concentration at 50 s is located 38 m away from the palm surface of the right tunnel, and the peak mass fraction is 0.00339, and when the length of the left tunnel is twice that of the right tunnel, the peak concentration at 50 s is 0.00359, which is 25 m away from the palm surface of the right tunnel, showing that the diffusion speed of carbon monoxide is slower when the length of the left tunnel is lengthened. Compared with the mass fraction of carbon monoxide at other times, the CO concentration in the right tunnel is higher when the length of the left tunnel is longer. According to the analysis of the working condition in Figure 11A the distribution of CO after 200 s is relatively uniform, and there is no obvious peak value, as shown in Figure 11B. In other words, when the tunnel is longer, the CO diffusion speed at both sides of tunnel and the ventilation efficiency will be reduced.
[image: Figure 11]FIGURE 11 | Variation of carbon monoxide concentration in the central axis of human breathing height in multi-palm surface tunnels at different moments.
5.2 Study on dust diffusion law in a non-equal-length tunnel at both sides
When both sides of the non-equal length tunnel spray dust at the same time, the dust distribution and diffusion situation is similar to that of the equal-length tunnel analyzed above, and the distribution situation at different times is shown in Figure 12. Under the action of gravity, dust with large particles and heavy mass gradually settles to the bottom of the tunnel. At the same time, the dust with a small particle size is not uniformly diffused with the airflow, but under the action of adsorption between the dust, it gathers and attracts each other to form a larger “dust mass” that also settles under gravity, and only a small part of the small particle dust diffuses with the airflow. It can be seen from the figures of 500 and 600 s that there is more dust mass near the tunnel wall and the wind duct outer wall, indicating that dust moves close to the wall when it migrates in the tunnel. There is less dust mass in the ventilation inclined shaft. The closer to the palm surface, the higher the dust concentration is, and the closer to the ventilation incline, the lower the dust concentration and the less large dust.
[image: Figure 12]FIGURE 12 | Three-dimensional dispersion distribution of dust in non-equal-length tunnels at different moments.
The region that is within 25 m of the palm surface at both sides of the tunnel is called the rapid settling region of dust, where a large number of large dust particles settle to the ground and no longer raise. From the whole process of slurry spraying, the diffusion situation of the non-equal-length tunnel is basically the same as that of the equal-length tunnel. Although the airflow in the non-equal-length tunnel becomes more unstable due to the difference in distance, the dust is less affected by the airflow during the diffusion process, resulting in the tunnel length having less influence on the dust diffusion. In addition, there is a case of one side of the pollutant flowing to the other palm surface, but overall, the impact is small.
6 CONCLUSION
It is more and more common to excavate multiple faces at the same time in tunnel construction. When multiple different processes are carried out at the same time, the construction environment in the tunnel is more complicated, and the ventilation systems interfere more greatly with each other, which is not conducive to tunnel ventilation. At the same time, there may be channeling to other branch tunnels, polluting the working environment of other branch tunnels and increasing difficulties for the working environment in the tunnel. Therefore, this study focuses on the construction ventilation of multiple-face tunnels, and the main conclusions are as follows:
It is found that the concentration of carbon monoxide and dust is symmetrical when the tunnel length and ventilation condition are the same. In the process of carbon monoxide migration, carbon monoxide is gradually discharged to the inclined shaft in the form of high-concentration “air mass,” and the influence of tunnel wall resistance on its diffusion is significant. The influence of concentrations of carbon monoxide on each other is not obvious during a situation of single-end blasting and different air supplies at both sides.
In the non-equal-length tunnel, the dust diffusion change is not obvious, the tunnel length has little influence on the dust settlement and diffusion, and the dust concentration cannot be effectively reduced by simple ventilation. In addition, increasing the length of the tunnel at one side will reduce the diffusion rate of carbon monoxide at the other end, reducing the rate of discharge of gaseous pollutants.
In view of the increasing employment of multiple-face tunnel construction, future research should maintain an eye on the shunt of airflow and the traction of pollutants. There are many ways to control the airflow in the duct, including the air-box and damper methods. Fresh airflow can enter the face according to demand, and dirty air can also quickly enter the ventilation branch tunnel.
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Fires formed by the high gas protrusion in coal mines are difficult and risky to extinguish during the mine closure process due to the mine’s large closed range and underground gas stock. To achieve efficient and safe unsealing, reduce the risk of re-ignition and gas explosion, and accurately determine the fire extinguishing effect, a dual-drive rapid fire extinguishing technology is proposed. This technology involves ground precise positioning of drilling holes, rapid and large flow of liquid nitrogen injection, and curtain grouting to block fires in ultra-large high-gas mines. The practical results demonstrate that the implementation of surface injection of liquid nitrogen for fire extinguishing and cooling, and plugging effectively reduces the concentration of CO in the underground space from 230 PPm to 0 PPm, and decreases the CH4 concentration content from 90% to less than 0.75%. The fire extinguishing and cooling effect is fast and significant. A technical scheme for unsealing the fire area of the whole mine is formulated on a large scale based on the state of pumping and releasing pressure in the closed space of the mine. This scheme has important guiding significance for safety rescue and rescue operations after serious fire accidents occur in similar high-gas prominent mines.
Keywords: high gas outburst coal mines, super large fire, dual-drive, unsealing the whole mine, grouting sealing
1 INTRODUCTION
Mine fires are a significant hazard for coal mining operations, posing a direct threat to the safety and wellbeing of production personnel while also causing major losses of national resources and property (Hu et al., 2015). In addition, mine fires generate toxic and harmful gases and inflict severe damage on the ecological environment, making them a serious environmental concern. Furthermore, mine fires can lead to gas explosions and other catastrophic disasters, compounding the damage and loss caused by the initial fire (Shekharsharan, 2009; Cloves, 2014; Yang et al., 2022). To extinguish a mine fire, the complex combustion state and environmental conditions pose significant challenges (Shen and Guo, 2009). In addition, the limitations of gas analysis time, equipment, and technical conditions further complicate the process (Sun et al., 2011; Xue et al., 2012).
Liquid nitrogen is an effective and promising extinguishing agent. When used to put out fires, it produces an inert gas as vapor (Shi et al., 2015; Hiroyuki et al., 2016). This gas is non-flammable, stable, and non-corrosive. Liquid nitrogen remains in a liquid state at low temperatures and absorbs a significant amount of heat during the process of changing from liquid to gas. As a result, it lowers the temperature in the mining area rapidly, which can delay or even prevent the spontaneous combustion of coal in the mining area (Mohalik et al., 2005). The gasification of 1 cubic meter of liquid nitrogen at normal temperature can produce approximately 700 cubic meters of nitrogen gas, which expands the volume by about 700 times. This process fills the effective space of nitrogen in a short amount of time, rapidly reducing the oxygen concentration in the goaf and cutting off the oxygen supply channel for the spontaneous combustion of remaining coal. This technique is beneficial not only for preventing the spontaneous combustion of leftover coal, but also for reducing air leakage in the goaf. In 1949, liquid nitrogen fire extinguishing technology was first applied at the Doubrave coal mine in the Czech Republic and successfully stopped the spread of coal mine fires (Vaughan-Thomas, 1964). Since then, this technology has been utilized at various mines worldwide, including Fernhilly and Fryston mines in the United Kingdom, Osterfeld, Schlagel, and Eisen mines in Germany, Rozelay mine in France, and Springfield mine in South Africa (Wastell and Walker, 1983; Bacharach et al., 1986; Fauconnier and Meyer, 1986; Banerjee, 1987; Ray and Singh, 2007). Liquid nitrogen is commonly used in coal mine fire extinguishing technology as vaporized nitrogen, but its full potential has not been realized (Xue et al., 2008). However, when liquid nitrogen is directly transmitted through pipelines, it can lead to pipeline blockages and pose safety hazards to the system. To mitigate these risks, accurate detection and location technology for underground fires in coal mines is necessary. Xue et al. conducted two underground coal fire field trials in Australia using 222Rn technology, while some domestic coal mining enterprises have started to use directional drilling technology for accurate detection and treatment of hidden water hazards at the coal seam floor (Li, 2014; Yan, 2016; Zhao et al., 2016). This technology allows for precise positioning at the surface to target fire sources for rapid suppression operations. In the process of blocking, the seepage property is also very important to the fire extinguishing (Ma et al., 2022a). The seepage mechanism of rock mass is the key of plugging effect (Ma et al., 2022b). Dan Ma proposed a new concept of pore tortuosity index of broken rock mass. This index can reflect the spatial distribution and particle size distribution characteristics of broken rock particles, and is not affected by water flow behavior (Geng et al., 2023; Ma et al., 2023).
This research proposes a novel “dual-drive” closed fire extinguishing technology for the efficient suppression and cooling of super large fires in mines, as well as for curtain grouting sealing. This technology combines the methods of ground precise positioning of drilling holes and rapid and large flow liquid nitrogen injection with curtain grouting sealing, to achieve rapid fire suppression and cooling, and fire source isolation through curtain grouting sealing. The “dual-drive” rapid fire extinguishing method not only enhances the efficiency of fire extinguishing, but also minimizes the risk of fire to mine facilities and personnel, providing an efficient and safe technical means of mine fire prevention and control. This technology is a crucial guideline for the safe and rapid extinguishing of fires in similar mines with high gas prominence.
2 GENERAL
2.1 Overview of the mine and face
Yanjing No. 1 Coal Mine is located in Hechuan District, Chongqing, China. It was built in December 2005 and put into operation in January of the following year. The coal seam K2 mined by the 10,201 coal mining face is a spontaneous combustion coal seam. Working face roadway side encounter reverse fault, coal seam superposition thickness of 9 m, in the direction of the exposed fault length of 20 m, then advance 139 m. CO gas appeared in the upper corner during the propulsion process, and measures such as injecting lime water, inhibitor and liquid nitrogen 50 tons were adopted to reduce the hidden danger.
2.2 Overview of fire accidents
Coal spontaneous combustion fire is a common phenomenon that occurs due to various factors such as the slow advance speed of the working face, loose and broken coal, and self-heating of the top coal. The ignition can happen when low-ignition point materials such as bamboo and wood cribs are used for the thickening of coal seam burn. Coal mine accident data indicate that any fuel can become the fuel of fire due to the underground airflow through the route (Mykola et al., 2019). The CO content of the mine return air shaft is an important indicator of the potential for a spontaneous combustion fire, and it can reach high levels (Sun and Yin, 2006; Xu et al., 2014; Rakesh et al., 2018; Dudley et al., 2019). For instance, the total air volume of the air shaft is 11,500 m3/min, and the maximum CO content is 180 × 10−6 m3/min, as illustrated in Figure 1. When a fire occurs, prompt action such as watering measures and timely evacuation can be effective in mitigating the damage.
[image: Figure 1]FIGURE 1 | CO monitoring data chart of mine return air shaft.
3 WELLBORE CLOSURE DISASTER RELIEF ANALYSIS
3.1 Wellbore closure disaster relief process
Following the accident, the mine was closed to deal with the disaster. During the process of sealing the mine shafts, several critical steps were taken, including sealing the man-vehicle and main inclined shafts, auxiliary inclined shafts, and return air inclined shafts. The sealing work was carried out sequentially, starting with the man-vehicle inclined shaft, followed by the main slope and masonry pouring concrete sealing. These measures helped to contain the disaster and prevent further harm to the mine workers and the surrounding environment. The successful sealing of the mine shafts also created a controlled environment that facilitated subsequent rescue and recovery operations.
Following the ‘Coal Mine Safety Regulations’ (2022 Edition) (Yin, 2017) fire zone closure requirements, first, close the side branch, and then close the main wind path. Before closing the main air path. To close the main air path, a gradual reduction of ventilation air volume is carried out by reducing the section of the inlet and return airway, and utilizing fan frequency conversion. After the main fan stops ventilation, the air inlet is sealed. After a certain period, stability is achieved, and the gas drainage pump is closed, followed by disconnecting of the drainage pipeline. Figures 2A–D illustrates the closed wall profile, closed wall, and reserved pipeline diagram of the main inclined shaft and the man-vehicle inclined shaft.
[image: Figure 2]FIGURE 2 | The closed wall profile, closed wall and reserved pipeline diagram of the main inclined shaft and the man-vehicle inclined shaft.
The closed wall and reserved pipeline section of the auxiliary inclined shaft and the return air shaft can be observed in Figures 3A, B. During the closure of the auxiliary inclined shaft and return air inclined shaft, the ventilation section frame and door are initially reserved, followed by the construction of a surrounding sandbag wall. The pipeline is then reserved for pouring concrete, which is ultimately poured by masonry.
[image: Figure 3]FIGURE 3 | The closed wall and reserved pipeline section diagram of auxiliary inclined shaft and upcast shaft.
To ensure maximum safety during the disaster relief process, a closed wall with a thickness of 4 m at the bottom and 2 m at the top is adopted for the main inclined shaft, auxiliary inclined shaft, pedestrian inclined shaft, and return air inclined shaft. Additionally, sampling pipelines are reserved to facilitate post-accident analysis and further enhance safety measures.
3.2 Investigation of the effect of wellbore closure disaster relief
After a month of gas emission, the concentration of CH4 increased, and the oxygen concentration decreased to less than 5%. The changing trend of sampling and analysis data of closed wall in the return air shaft, auxiliary inclined shaft, main inclined shaft and man-vehicle inclined shaft was consistent, and the concentration of O2 and CO continued to decrease (see Figures 4A,B). CH4 gushed out of the mine, O2 decreased, and the CO2 fluctuation of combustion products increased; after nitrogen injection, CO2 of combustion gas products showed a continuous downward trend. As can be seen from Figures 4B,C, return air shaft closed detection pipeline sampling chromatography analysis, CO concentration from a maximum of more than 3000 PPm continued to fall below 100 PPm, CO2 concentration to maintain a stable trend of fluctuations, the development of fire has been effectively controlled.
[image: Figure 4]FIGURE 4 | The concentration curves of O2, CH4, CO and CO2 in the return air shaft.
The complete closure of the mine has successfully prevented the expansion of damage and secondary accidents during the underground rescue operation of the protruding mine. However, it has also presented challenges for extinguishing the fire and reopening the mine.
4 GROUND PRECISE POSITIONING DRILLING HOLE INJECTION LIQUID NITROGEN FIRE EXTINGUISHING ANALYSIS
4.1 Mechanism of liquid nitrogen injection for fire prevention
To prevent and extinguish fires using nitrogen injection, non-combustible nitrogen is injected into spaces that may cause coal spontaneous combustion or that have already caught fire. This reduces the oxygen content in the space and stops the combustion of combustibles, thus preventing and extinguishing the fire. The mechanism of nitrogen fire prevention and extinguishing is mainly based on oxidation (Bobo and Fubao, 2014), spontaneous combustion, and combustion of combustibles in coal, which can create an inert and flame-retardant effect (Zhao and Wang, 2007; Dong et al., 2011; Lin et al., 2022), suppressing explosions. Injecting inert gas has several advantages, such as permeating the entire fire area to eliminate potential ignition sources, preventing re-ignition, and reducing the oxygen concentration in the fire area to suppress gas explosions (Zhao and Xue, 2012; Christopher, 2013; Deming et al., 2014; Wang et al., 2017).
Nitrogen forms liquid nitrogen at high pressure and lowers its temperature to −195.8°C. Liquid nitrogen is heated at 760 mm mmHg with a bulk weight of 0.808 kg/L, where the volume of liquid nitrogen into 0°C gaseous nitrogen expands by 643 times. One liter of liquid nitrogen can be vaporized into 25°C of nitrogen for 700 L (usually 700 times of volume expansion).1 kg of liquid nitrogen can form 780L of gaseous nitrogen by weight.424 KJ in 1 kg of liquid nitrogen into 20°C of gaseous nitrogen. The vaporization heat of the liquid nitrogen Q1 = 199kj/kg, Q2 is the absorption heat, and the Q2 formula is:
[image: image]
C- specific heat, kj/kg;
m- The quality of nitrogen, kg;
T1- Initial state temperature, °C;
T2- Final state temperature, °C;
According to the above formula, the heat absorption caused by nitrogen reduces the temperature, and weakens the combustion reaction to a certain extent to achieve the fire extinguishing effect. Secondly, coal combustion requires sufficient oxygen content. The essence of nitrogen injection fire protection is to use non-combustible nitrogen gas, which is injected into the areas where the coal may be spontaneously burned or has already caught fire, to prevent and extinguish the fire. The goal is to reduce the content of oxygen in these spaces, thereby preventing combustible material from further burning. The mechanism of nitrogen fire prevention and fire extinguishing mainly lies in its ability to inhibit coal oxidation, spontaneous combustion and combustion. Nitrogen plays the role of flame retardant and explosion-proof by inserting into the space (Pandey et al., 2015). Injection of an inert gas has many advantages, including the ability to penetrate the entire fire area and eliminate potential ignition sources. It can also prevent the fire areas from catching fire again, reduce the oxygen concentration, and inhibit the gas explosion. In addition, injecting nitrogen into the goaf will increase the internal static pressure, reduce air leakage, and is conducive to reducing the oxidation, spontaneous combustion or fire extinguishing of floating coal.
4.2 Analysis of fire extinguishing schemes
In surface construction with large-diameter drilling, the direct injection of a large amount of liquid nitrogen into the high-temperature area can effectively extinguish the fire. In the case of mine shaft closure, this method allows for the direct injection of liquid nitrogen from the ground into the high-temperature area, resulting in rapid and complete fire extinguishing and facilitating safe unsealing in a short period. This method is widely used in high-gas mines during underground fire rescue and disaster relief and is considered the most efficient and safest technical approach due to its speed and directness. Even in situations where a large amount of coal and gas are involved in the combustion and heat accumulation is substantial, complete fire extinguishing can be achieved simply by increasing the amount of liquid nitrogen injected.
According to the actual situation of the mine and the requirements of safe and rapid opening and closing, the feasibility of fire extinguishing was fully discussed. In the case of mine shaft closure, the fire extinguishing and blocking solution of direct injection of liquid nitrogen into the high temperature area by means of a ground accurate positioning borehole, and the implementation of ground blocking borehole at the inlet end to seal the inlet end of the coal mining face, forming a “dual-drive” rapid fire extinguishing technology application.
The field confirmed that the ground terrain can be a new road length of about 500 m, flat width of 30 m, 40 m long as the ground rig construction site, construction of precise positioning drilling about 560 m directly to the fire zone. Confirm that the construction’s precise positioning drilling can pass through the underground goaf. The corresponding downhole positions of nitrogen-injected drilling and plugging drilling holes are shown in Figure 5. It was determined that the ground sealing of the intake and return air roadways in the fire zone was necessary to achieve rapid unsealing of the mine while reducing the difficulty and complexity of the unsealing process. After plugging the inlet and return air roadways in the fire area, the fire extinguishing and cooling effect of liquid nitrogen injection can be improved, and the amount of liquid nitrogen can be saved. Once the fire is extinguished, the ground sealing section acts as a flameproof wall and isolates the fire area. This provides favorable conditions for safe and rapid unsealing during the process of underground gas drainage, which maintains a high concentration of nitrogen and a low-temperature state at the working face.
[image: Figure 5]FIGURE 5 | The location of nitrogen-injected drilling and plugging drilling corresponds to the downhole working surface.
4.3 Liquid nitrogen injection drilling arrangement
The direct injection of liquid nitrogen into the ground borehole has proven to be an efficient and rapid method for extinguishing high-temperature fires in the salt well area. In recent years, there have been several instances of large-scale liquid nitrogen fire-fighting using ground drilling during gas combustion fires and disaster relief events in China. Each liquid nitrogen fire extinguishing situation is unique, and some mines may face challenges with open area fire-fighting that require a larger amount of liquid nitrogen. To address these challenges, plugging measures such as the injection of polymer materials, water sealing into the air inlet section of the roadway, and other methods are combined with ground drilling injection to achieve fire extinguishing and rescue in the gas combustion explosion fire area.
Drilling in the roof of the coal seam, strengthening the measures such as mud displacement flow and drilling fluid performance system, geological logging, geological guidance, real-time fine drill bit regulation, real-time optimization control of borehole trajectory and other measures to control the wellbore trajectory in sandstone 2 m above the roof of the lower 10 coal seam.
The equipment of this project adopts the American schramminc T450 drilling rig, TZJ100 drilling rig, etc., to complete the major accident rescue tasks such as coal mine flood drainage and drilling, and participate in the ground drilling liquid nitrogen fire-fighting and rescue many times. The low temperature resistant drilling pipeline is used as the nitrogen injection casing, which is connected by pipe thread and matched with the drilling construction. It is connected to the liquid nitrogen tank truck, and the nitrogen injection flow rate can reach 10 t/h. A small amount of liquid nitrogen perfusion or vaporization of a small amount of liquid nitrogen vaporizer, to achieve the nitrogen injection pipeline cooling, to prevent the casing pipe heating uneven cracks. The material of P110 casing is mainly carbon steel. The temperature in the pipe is −196°C, and the linear expansion coefficient is 9.1 × 10−6. After calculation, the length of the assembly is 560 m, and the length is about 1.05 m due to low temperature shrinkage. Site construction layout of drilling rig is shown in Figure 6.
[image: Figure 6]FIGURE 6 | Drilling rig site construction.
4.4 Determination of liquid nitrogen flow
4.4.1 Determination of liquid nitrogen dosage

(1) Extinguishing and cooling the fire point directly by drilling precise positioning.
(2) To estimate the required amount of nitrogen injection, the residual combustion scale must be determined. This can be achieved by using a calculation model that considers the outlet air volume, temperature, O2 and CO concentration value of each wellhead reserved pipeline after liquid nitrogen injection. Once the residual combustion scale has been calculated, the remaining nitrogen injection amount can be estimated.
(3) To determine the amount of cooling nitrogen injection, the closed wall of the air shaft is subjected to pressure relief, and the change in outlet gas temperature is used to determine the nitrogen injection rate. A curve of the temperature change is then drawn, and when significant changes in temperature, CO, and O2 concentrations are observed, the nitrogen injection flow rate is reduced and controlled accordingly.
(4) Intermittent injection of nitrogen surplus can achieve the anticipated cooling and fire extinguishing effect if required.
Accurately measuring the amount of liquid nitrogen needed for fire extinguishing is challenging due to the heat exchange between underground space gas and surrounding rock. So employing empirical formula calculated by the inert index of oxygen content.
[image: image]
QN- The amount of nitrogen injection for fire extinguishing, m3;
V- Closed fire area volume, m3;
C1- Raw oxygen content before nitrogen injection in the fire zone (measured or averaged), %;
C2- Oxygen index after nitrogen injection for fire extinguishing (5%)
A preliminary estimate shows that 1000t of liquid nitrogen is required to cool completely burning wood cribs and fences. The nitrogen injection process is designed for 10 tons per hour, and it takes approximately 20–25 days to achieve fire extinguishing and cooling. During liquid nitrogen injection, the flow rate should be controlled when the downhole air temperature drops rapidly. After the air temperature reduces to 0°C, intermittent nitrogen injection is preferred. At this stage, the air and surrounding rock adequately exchange heat, preventing too rapid temperature reduction that can damage underground equipment and avoid unnecessary waste of nitrogen injection.
4.4.2 Liquid nitrogen flow determination process
1) The amount of underground fuel combustion is not clear, resulting in the amount of fire extinguishing liquid nitrogen is difficult to accurately measure.
The nitrogen is a low-temperature liquefied gas with a boiling point of-195.65°C at a pressure of 101.325 kPa. The temperature rises from −196°C to 0°C, and the heat absorption of nitrogen is 203 kJ/kg; The calorific value of 1 kg standard coal is 7000 kCal, the combustion calorific value of 1 kg pine is about 1700 kCal, about 0.5t of 1 m3 dry pine and about 0.8t of 1 m3 wet pine; the K2 coal seam is lean coal, Carbon content is 89%, hydrogen content is generally 4.2%, and the combustion calorific value is 24.41 MJ/kg. According to the complete combustion of wood stack and fence sheet, 1000t liquid nitrogen is needed to achieve fire cooling, In order to achieve safe and smooth unsealing, after the realization of fire suppression and cooling, the continuous intermittent supplement of temporary estimated injection is 2 times the surplus coefficient.
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In the formula - the total nitrogen injection [image: image];
[image: image]- Flow rate of liquid nitrogen, m3/h;
[image: image]- Air volume per hour, m3/h,;
[image: image]- normal oxygen concentration,;
[image: image]- Minimum oxygen concentration,
The total volume of the mine roadway and goaf is estimated to be 1839000 m3. The mine is flooded at the level of −230 m, and the space of roadways and goafs of −150 m and above is 179.2 × 104 m3, take [image: image] =179.2 × 104 m3. The oxygen concentration in the coal mine shall not be less than 20%, so take [image: image] =20%. The unsealing condition of the fire area is that the oxygen concentration in the air decreases to less than 5.0%, so take [image: image] =5%.
4.5 Precise positioning injection of nitrogen to extinguish fires
After a fire accident occurred at an underground coal face in a high gas outburst mine, all four shafts were closed for disaster relief. We first analyzed the development and spread trend of fire according to the fire occurrence location, combustion storage location and CO concentration, so as to determine the high temperature area, and finally determined the best drilling location in the high temperature area combined with the design drawings. It is determined that the construction 1 # nitrogen injection fire extinguishing hole is the underground end hole 15 m behind the coal side position and 15 m in the inclined upward back wind direction. To efficiently and rapidly extinguish the fire and ensure safe reopening, two boreholes were precisely constructed using a Sherm drill. These boreholes penetrated the goaf at the upper part of the coal face, facilitating the accurate positioning and large flow liquid nitrogen perfusion process.
The directional drilling method is a significant improvement over conventional techniques as it allows for multiple drilling into abandoned mine wellheads and processing the underground area from a surface location (Ozment and Trevits, 2018). It is important to maintain continuous ventilation during a mine fire, therefore, promptly plugging the fire zone into the return airway is not recommended as it will significantly increase the amount of liquid nitrogen required. Construction of the ground drilling platform and road in the return airway of the working face is difficult while sealing drilling construction in the intake airway of the working face requires ground platform conditions. Deviated drilling to the return airway for precise positioning of construction is costlier and not conducive to the implementation of casing plugging. Taking into account the implementation conditions of the construction platform, it has been determined that ground sealing drilling will be implemented at the air inlet end to ensure the safe and rapid unsealing of the salt well mine.
5 ANALYSIS OF FIRE EXTINGUISHING EFFECT
5.1 Sampling analysis
5.1.1 Analysis of gas sampling in closed wall
This experiment during the ground drilling liquid nitrogen injection, shaft closed wall for methane, O2, CO, carbon 2 gas manual detection, monitoring equipment is mining gas detector, micro-GC is using gas chromatography principle mining portable instrument, capillary column and special micro thermal conductivity element, can meet the needs of mine daily measurement, and single chip machine control, storage data, and forecast natural ignition function. In order to ensure the comprehensive authenticity of the data, the sampling analysis of the wellbore closed wall detection pipeline is conducted every 4 h, and the sampling is sent for chromatographic analysis. The detection instrument is gas chromatography analyzer, which has many kinds of detectors, which can complete the analysis of all gases in the coal mine.
To analyze the changes in CO concentration, wellhead samples were collected before and after nitrogen injection. The following observations were made: 1) Before penetration of the 1# borehole, CH4 was emitted and O2 levels decreased, resulting in suffocation underground and a continuous decline in CO. 2) Following nitrogen injection, the gas pressure within the fire zone increased, causing the gas to flow from the center of the fire zone to the wellbore. 3) Due to a sustained increase in pressure within the enclosed underground space after the injection of liquid nitrogen, the maximum pressure difference exceeded 8000 Pa.The field headquarters decided to seal and relieve the wellhead.
After the pressure relief operation, nitrogen is injected into the underground space, which gradually replaces the other gases present. Monitoring sensors and analysis of gas samples taken from outside the sealed wellhead show a general decrease in CO concentration. After drilling hole 2#, a significant amount of gas pressure relief occurred, causing the CH4 concentration to reach up to 90% in the upper part of the fire zone and nearby areas. The monitoring data for pressure differences among the sealed wellheads decreased significantly to below 1,000 Pa. However, the CO accumulated in the underground space entered the air leakage line, causing the CO concentration of each closed wellhead to increase noticeably and the pressure difference to fluctuate markedly. Ground sealing was implemented in 2# drilling, and after a large amount of liquid nitrogen was injected and cooled the area, the CO concentration decreased to 0 PPm within 3 days, as shown in Figures 7A,B. These results indicate that the desired cooling effect was achieved for the fire zone, and the liquid nitrogen injection was stopped at the site.
[image: Figure 7]FIGURE 7 | Variation of CO and CO2 concentration in return air shaft and man-vehicle inclined shaft.
After 1# and 2# drilling holes, the gas chromatograph was used to detect the gas in the wellhead closed wall. The results showed that CO, C2H4 and C2H2 continued to be 0 PPm, and the O2 concentration was less than 3%. It can be seen from Figure 7, Figure 8 that the concentrations of CO, CO2, N2, CH4 and O2 in each wellhead closed wall change.
[image: Figure 8]FIGURE 8 | Variation of N2, CH4 and O2 concentration in return air shaft and man-vehicle inclined shaft.
5.1.2 Drilling hole sampling and analysis data
On October 26, Hole 1# was completed and confirmed to achieve precise positioning (offset 0.84 m).
The detection data indicated a significant presence of CH4 with a concentration of 90% and a maximum CO concentration of 230 PPm, which suggested the presence of a substantial amount of high concentration CO in the fire zone and the upper goaf. A large amount of incomplete combustion is occurring in the goaf, generating a large amount of CO, leading to the rise of CO content. A graphical representation of the results is provided in Figure 9A.
[image: Figure 9]FIGURE 9 | Gas concentration detection data in 1 # and 2 # boreholes.
On November 5, the 2# drilling completed the lower casing, and on November 6, it was repeatedly confirmed by inclination measurement and video peeping that the drilling hole was accurate in place (offset 0.99 m). The roof of the hole bottom fell to a certain extent, forming a certain amount of crushed coal rock accumulated around the bottom of the borehole casing of borehole No. 2, and the casing orifice was about 1.4 m away from the floor of the 2# coal seam.
After the 2# borehole penetrated the caving zone, gas detection data was collected from the borehole. The results showed that the concentration of CH4 was as high as 90%, and the highest concentration of CO was 24 PPm. During the continuous injection of nitrogen, the CO concentration and temperature in the 2# hole showed a significant decrease. It can be seen from Figure 9B that the CO concentration decreased from 24 PPm to 0 PPm, and the bottom temperature of 2 # borehole decreased from 30 C to 26 C. It shows that the fire extinguishing and cooling effect of liquid nitrogen injection was very obvious to the center of the fire area. Liquid nitrogen vaporizes by absorbing heat and lowering the temperature. At the same time, the volume expansion after gasification relatively reduces the content of CO, CH4 and other gas, but the heat exchange is still in the whole fire area, each gas is in a chaotic state, and CH4 is still incomplete combustion, leading to the rise of CO content in the later stage.
5.2 Effect analysis of fire extinguishing cooling and formation sealing
To ensure safe and effective liquid nitrogen injection for fire extinguishing, several measures must be taken during the ground drilling process. First, the air pressure in the closed well area should be maintained at 1.5 atmospheres, and the air outlet temperature should be kept above 0°C. Secondly, the nitrogen injection flow control should be adjusted based on the actual fire extinguishing effect and cooling situation on-site. Once the CO concentration is reduced to 0 PPm, and the air pressure is maintained at 1.5 atmospheres with an air outlet temperature around 0°C, it is recommended to switch from large-flow liquid nitrogen injection to controlled flow or intermittent liquid nitrogen injection for cooling before unsealing the shaft. This will ensure that there is full heat exchange between the underground gas and surrounding rock, creating favorable conditions for the safe and smooth opening of the seal. During the process of nitrogen injection, it is essential to manually test the wellbore sealing wall every hour and sample and analyze the testing pipeline every 4 hours to ensure the sealing wall’s integrity. After nitrogen injection has been stopped, manual inspections should be conducted at least once per shift, and sampling and analysis should be performed once a day before opening. All data should be collected and analyzed to track downhole changes promptly. These measures will help to ensure that the liquid nitrogen injection process is conducted safely and effectively. A comparative plot of ground plugging drill holes and stratigraphies is shown in Figure 10.
[image: Figure 10]FIGURE 10 | Ground plugging drill hole and stratigraphic comparison map.
The effect of fire extinguishing and cooling plugging was evaluated, and the three processes of field monitoring, sampling analysis and data detection were obtained.
(1) The results of borehole orifice detection data show that the CO concentration in the fire area decreases rapidly after liquid nitrogen injection. By injecting nitrogen into the goaf, it is necessary to dilute the oxygen in the original air. The lower the oxygen concentration in the goaf area, the slower the oxidation rate of floating coal is. The process of nitrogen injection is the process of reducing the oxygen content, that is, the process of slowing down the oxidation rate of coal, which is the process of nitrogen inertia and flame retardant. It indicates that nitrogen has begun to hinder the combustion reaction in local areas, resulting in the gradual reduction of CO generated, but the nitrogen in the goaf does not spread to the whole area, and its content is not enough to be completely flame retardant. Therefore, the combustion reaction still occurs at this stage.
(2) Ground drilling was conducted on 1# and more than 2,300 tons of liquid nitrogen were perfused with a large flow rate. Gas detection data analyzed at the wellhead’s closed wall revealed that liquid nitrogen injection was successful in extinguishing the fire in the area, achieving the desired outcome of fire cooling. The CO concentration at the wellhead has decreased to 0 PPm and has remained stable for three consecutive days.
(3) After blocking the ground, 308 cubic meters of cement fly ash slurry are poured into the borehole until the ground pipe mouth is filled to the expected level.
The ground drilling technique was utilized to precisely locate the fire zone, and the use of liquid nitrogen effectively extinguished and cooled the high-temperature fire. Compared to conventional fire extinguishing methods, this technique presents unparalleled advantages. The fire extinguishing and cooling targets were achieved, as well as ground drilling plugging, with no occurrences of repetition or fluctuation. This achievement has created a favorable environment for safe and unobstructed unsealing.
6 CLOSED FIRE AREA UNSEALED
6.1 Overall plan for unsealing
Based on the increasing gas concentration in the enclosed underground space after mine closure, an estimated amount of 40 m3/min of gas is expected to gush out from underground. However, the temporary ventilation system and the pressed-in fans of the underground ventilation line can only handle 500–800 m3/min of air volume. The gas discharge process takes a long time, making it challenging to maintain the gas concentration in the tunnel and return side below the limit. To address this, the overall unsealing plan of the project is divided into three stages.
The first stage involves preparing for the unsealing operation, which includes confirming the unsealing operation conditions and obtaining approval from experts. In the second stage, closed demolition is implemented using the main fan gas to create underground negative pressure, which minimizes air leakage in the return air shaft and auxiliary inclined shaft. This stage is comprised of several steps: 1) forming underground negative pressure; 2) blasting and demolishing the closed return air shaft; 3) closing the explosion-proof door, butterfly valve, and pedestrian door to establish a downhole negative pressure, and dismantling the auxiliary inclined shaft; 4) returning the air shaft and auxiliary inclined shaft and controlling air volume and negative pressure ventilation once the CH4 concentration has decreased to 0.75%.; 5)At this point, the temporary base of the depot is established 50 m below the well’s bottom, and the ambulance team investigates and temporarily closes the intake and return air roadway of the working face; 6) The final step in this stage is closing the intake and returning air roadway of the working face once the mine’s temporary recovery system and conditions are available. In the third stage, the closed walls of the main inclined shaft and car inclined shaft are unsealed, and full negative pressure ventilation is restored.
6.2 Pressure relief in the underground space before unsealing
The gas drainage pump station’s gas drainage pump is utilized to alleviate pressure in the enclosed space. Before starting the pump to relieve pressure, safety measures are confirmed throughout the underground space pressure relief process to ensure that the pressure remains below 1 standard atmosphere. As pressure is relieved, the concentration of CH4 in the underground gas decreases continuously until it falls within the explosion limit concentration range. Gas chromatography is used to analyze samples taken during each shift from the reserved pipeline of the sealed wall, the drilling pipeline of the ground, and the extraction pipeline to confirm that CO, C2H4, and C2H2 remain at 0 PPm without abnormal changes. The precise drilling of a small amount of liquid nitrogen at ground level has created an outward wind from the area of the 10,201 working face.
To ensure safety during the pressure relief process in the underground space, safety confirmation is carried out when the gas drainage pump is activated. The concentration of CH4 in the underground gas is gradually reduced to the explosive limit concentration range. Gas samples are taken from the underground gas via the reserved closed wall, ground drilling, and drainage pipelines, and are analyzed using a gas chromatograph every shift to confirm that the concentration of CO, C2H4, and C2H2 remains within normal ranges without any abnormal changes, and is maintained at 0 PPm. Figure 11 illustrates the concentration curve of CH4 over time.
[image: Figure 11]FIGURE 11 | Detection data of CH4 concentration in the closed wall of man-vehicle inclined shaft and main inclined shaft.
6.3 Return air shaft closed wall blasting demolition
Yanjing No. 1 Mine organized and implemented the protection of explosion-proof doors and butterfly doors, monitoring sensor installation, main fan testing, firing busbar installation, press-in fan installation, compressor installation, sprinkler spray pipeline and slag belt preparation before the concrete closed wall blasting and demolition, and organized the acceptance confirmation item by item. And the gun hole construction was carried out in advance, and then the concrete closed wall blasting and demolition of the return air well began, the specific process is as follows: 1) Open the pipeline on the closed wall of the return air shaft in advance as the inlet air, and confirm that the closed wall of the return air shaft is in a negative pressure state; 2) Strict implementation of the ‘one gun three inspection’, CH4 concentration is less than 1%; 3) Site Management According to Safety Standardization of Tunneling Face; 4) Multi-cycle tunneling, drilling once in each cycle, fractional charging, fractional blasting; 5) Strictly implement the prohibition of firing artillery; 6) Strict management of explosive detonators and other fireworks; 7) On-site inspection and confirmation of the charge.
6.4 Demolition of the closed wall of the secondary inclined shaft
After the blasting demolition of the concrete closed wall of the return air shaft and the cleaning of the sandbag wall, the explosion-proof door, butterfly door and pedestrian door of the return air shaft are closed, and the underground negative pressure is formed by extraction, and the closed wall pipeline of the auxiliary inclined shaft enters the air. Then began the auxiliary inclined shaft concrete closed wall demolition, and completed the auxiliary inclined shaft closed wall demolition and sandbag cleaning. In the process of removing the closed wall, through the reserved pipeline, ground drilling pipeline and drainage pipeline of the closed wall of the main inclined shaft and the man-vehicle inclined shaft, the underground gas sampling and analysis were carried out to confirm that the concentrations of CO, C2H4 and C2H2 did not change abnormally and continued to be 0 PPm.
6.5 Main fan drains underground gas
During the process of underground anti-air and negative pressure gas drainage, the maximum concentration of CH4 was 13.7% when discharged by the main fan. However, it remained within the explosion limit for a prolonged period. The concentrations of CO, C2H4, and C2H2 remained at 0 PPm without any abnormal changes, as confirmed by underground gas sampling analysis through the reserved pipeline of the main inclined shaft, the vehicle inclined shaft closed wall, ground drilling pipeline, and drainage pipeline. Afterward, negative pressure gas was initiated. Figures 12–15 illustrates the changes in CH4 concentration and wind speed in the return air shaft, the front, and rear auxiliary inclined shafts during the process of main fan reverse air exhaust gas and negative pressure ventilation exhaust gas.
[image: Figure 12]FIGURE 12 | Changes in the concentration of CH4 in the return air well during the reverse wind gas discharge and negative pressure ventilation gas discharge of the main fan.
[image: Figure 13]FIGURE 13 | Changes in the wind speed of the return air shaft during the reverse wind gas discharge and negative pressure ventilation gas discharge of the main fan.
[image: Figure 14]FIGURE 14 | Changes in the wind speed of the auxiliary inclined shaft before and after the reverse wind gas discharge and negative pressure ventilation gas discharge of the main fan.
[image: Figure 15]FIGURE 15 | Variation of CH4 concentration inside and outside the auxiliary inclined shaft during the main fan reverse ventilation and negative pressure ventilation.
The press-in ventilation backwind effectively reduced the CH4 concentration at the outlet of the sub-inclined shaft to less than 0.75% for a longer duration than what was initially estimated. An analysis revealed that this was due to higher CH4 concentration accumulated in the goaf and roadway space than that in the main line. Similarly, during negative pressure ventilation and gas drainage, the time for the CH4 concentration in the return air shaft to decrease to 0.75% was longer than expected. This was because the CH4 stored in the underground excavation area was discharged through the hard air duct set on the damper in the mine, under the condition of negative pressure ventilation. It was calculated that the total gas storage space in the underground boring area was 19,637 m3.
6.6 The ambulance team undergoes reconnaissance and closes the working surface
Before the ambulance team descended into the mine, the closed wall was fitted with a pipeline and an extraction pipeline to sample and analyze the downhole gas, which confirmed that CO, C2H4, and C2H2 concentrations were continuously at 0 PPm with no abnormal fluctuations. The return air roadway of the 10,201 working face was investigated for gas temperature, blockage, and air leakage. The results showed that the inlet end was well-blocked with no obvious air leakage, the local maximum temperature of the roadway roof was 44°C, and the maximum CO concentration detected in the return air lane was 110 PPm. Air leakage volume detection was carried out, and the results showed that the air leakage rate was 20 m3/min, confirming the safety of the plugging process. The sealing work of the two alleys of the working face was immediately initiated, using fire doors to construct the brick wall sealing.
The research project was conducted between October 26 and 15 November 2019. During this period, ground fire extinguishing and cooling nitrogen injection, ground sealing construction, monitoring analysis, and opening plan preparation were completed. From October 26 to December 15, intermittent liquid nitrogen injection was carried out, and program discussions were held to refine the plan for unsealing. Preparations for unsealing were made from 16 December 2019, to 15 January 2019. The results show that sealing can be implemented 30 days after the CO concentration of the mine reaches the standard and stabilizes. The shaft opening time can meet the requirement of being 50 m free from water gusher, and the technical time, progress, and risk of fire extinguishing can be controlled.
7 SUMMARY
After an open fire occurred in the mine with high gas outburst, the " dual-drive " super large fire strategy can achieve efficient fire extinguishing and cooling, and curtain grouting to seal the entire mine. This method determines a reasonable sealing sequence for the large fire area, safely accomplishing the sealing of the large fire area, and effectively preventing secondary accidents such as gas explosions and the spread of the fire’s influence area during the sealing process.
(1) The mine experienced high gas outbursts and an underground fire, which were promptly addressed using the rapid injection of a large flow rate of liquid nitrogen and ground precise positioning of drilling holes to achieve efficient fire cooling and curtain grouting sealing. The reasonable closure sequence of the large-scale fire area was determined to ensure its safe closure, and the process of sealing effectively prevented the risk of secondary accidents such as gas explosions and the spread of fire influence. To effectively block the air inlet end of the coal mining face, cement fly ash slurry curtain grouting was used, and accurate positioning was achieved by drilling on the ground and monitoring the collapse of coal and rock at the bottom of the hole via video. The cement fly ash slurry passed through the borehole casing, the lower sieve tube, and curtain grouting was carried out to achieve effective sealing of the inlet end and the inlet lane. The plugging time was determined to effectively extinguish the fire after nitrogen injection, and the CO concentration was reduced to 0 PPm in the downhole space to plug the high-temperature area on the inlet side of the plugging section. This approach effectively prevented the rapid re-ignition of the high-temperature area during gas drainage, facilitated efficient fire extinguishing, cooling, and curtain grouting sealing, and created favorable conditions for the safe unsealing of the mine.
(2) The fire extinguishing effect of a large-scale closed fire area was accurately identified by conducting underground space pressure relief and gas sampling analysis. The effectiveness of fire extinguishing, cooling, and plugging in the underground fire area was determined through drilling construction, nitrogen injection, and plugging, as well as continuous sampling and analysis of the ground drilling and mine shaft sealing process wall. The reduction of CO concentration to 0 PPm and O2 concentration to less than 3% in the downhole space was attributed to the completion of liquid nitrogen injection for fire cooling and sealing on the ground. These results demonstrate the remarkable sealing effect of the dual-drive rapid fire extinguishing technology for ultra-large high gas mines, with no observed repetition or fluctuation. This creates favorable conditions for the safe and smooth unsealing of the mine. After the completion of surface liquid nitrogen injection extinguishing, cooling and sealing, the concentration of CO in underground space decreased from 230 PPm to 0 PPm, and the concentration of CH4 decreased from 90% to less than 3%. These results indicate that the ‘dual drive’ fire system employed in this project had a remarkable effect on rapidly extinguishing the fully closed mine without any repetition or fluctuations, creating favorable conditions for the safe and smooth opening of the mine.
(3) The technical scheme for safe and efficient unsealing of the large-scale closed fire area was scientifically determined. Ground-fixed gas drainage pumps were utilized to remove high-concentration gas accumulated in the underground space. Ground fixed gas drainage pump is used to drain high concentration gas accumulated in underground space. When the negative pressure state is formed in the drainage space and the CH4 concentration near the closed wall is confirmed to be less than 1%, the concrete closed wall is demolished by blasting. The formation of a return ventilation system, using the main fan pressure ventilation, drainage of underground space accumulation of high concentration gas. After confirming that the outlet CH4 concentration is lower than 0.75%, the main fan extraction ventilation is used to discharge the gas accumulated in the underground space.
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The continuous development of coal science and technology has made gas and coal dust explosion disasters an important factor that restricts efficient and intelligent coal mining, which seriously threatens the safe production process of coal mines. To explore the gas and coal dust explosive overpressure and flame propagation characteristics in an actual roadway, the dynamic characteristics of gas and coal dust mixed explosion propagation and evolution laws of explosion flames were investigated using an integrated explosion test system and a high-speed image acquisition system in an engineering-level test roadway with a length of about 700 m and a cross-sectional area of 7.2 m2. Experimental results showed that the peak overpressure measured at each measuring point during the propagation process of explosion shock wave in the roadway did not rise or fall monotonously but fluctuated. The power of explosion shock wave was significantly strengthened by adding coal dust, while the flame propagation speed sharply increased in a certain zone, which generally showed a first increasing and then declining trend. In addition, the flame was blue white after the gas in the roadway was ignited, developed in an irregular shape, and ignited the surrounding combustible gas soon, which further ignited the coal dust under the combined action of pressure wave and flame front. In this case, the flame was deep yellow on the whole. The gas and coal dust explosion flame propagated along the longitudinal section above the roadway, and the flame propagated at an accelerated speed on the transverse section due to the disturbance of obstacles. The study results will provide an important theoretical basis for the R&D of technical active explosion suppression equipment in coal mines and the improvement in their installation technologies.
Keywords: mine gas, gas and coal dust explosion, explosion flame, propagation characteristics, explosion pressure
1 INTRODUCTION
Gas and coal dust, which run through the whole coal mine production activity, are one of the main natural disasters in coal mines. When the gas concentration (or the concentration of coal dust suspended in the air) and oxygen concentration reach a certain limit and a high-temperature heat source is encountered, gas or coal dust explosion occurs, which not only destroys the underground ventilation network and endangers the safety of life and property but also causes a secondary explosion and brings devastating disasters to the mine. (Wang D M et al., 2021; Jia et al., 2023; Li et al., 2023). Gas and coal dust explosion includes complex physical and chemical reaction processes, and the propagation process of shock wave is a complex dynamic process of gas–solid two-phase flow coupling development. (Tousif et al., 2020). In actual coal mine production activities, gas explosion and coal dust explosion are interactive, and the mechanism of fire explosion is also complex and changeable. (Li H T et al., 2020). The generation and evolution laws of explosion flames in real roadways have not been accurately revealed to date. Therefore, exploring the gas–coal dust mixed explosive overpressure and flame propagation dynamic characteristics in engineering-level test roadways and further revealing the propagation mechanism of gas and coal dust explosion in coal mines are necessary.
As for the dust-raising mechanism of gas explosion-induced shock wave, gas explosion-induced deposited coal dust explosion has been investigated by most scholars through the explosion of experimental pipelines and numerical simulations, and gas-induced deposited coal dust explosion has been thought to belong to a gas–solid two-phase flow with a quite complicated formation process. Moreover, the motion trajectory of coal dust particles and the mechanism of gas-induced coal dust combustion explosion have been further determined through experiments and numerical simulations. (Cheng et al., 2020; Sha et al., 2021; Wang X T et al., 2021). Li J L et al. (2020), Li et al. (2022) discussed the diffusion characteristics of methane–coal dust in the pipeline. They found that the diffusion of coal dust particles in the vertical pipeline could be divided into four continuous stages: rapid injection, decelerated dispersion, stability, and settlement. The temporal and spatial evolution characteristics of the flow field in the process of dust diffusion were obtained, and the formation mechanism of coal dust clouds in the pipeline and the dynamic behavioral evolution characteristics of explosion flames were revealed. Liu et al. (2007) found that the combustion process of the methane–coal dust composite system could be divided into three stages: gaseous combustion reaction, multiphase combustion reaction, and carbon combustion reaction. They found that different kinds of coal samples and pulverized coal particle sizes greatly influenced the composite combustion reaction. Guo et al. (2020) argued that the gas explosion involving low-concentration coal dust was affected by many factors, among which the most important ones were the volatile fractions of coal dust and the gas concentration.
In the research on the visualization of gas and coal dust explosion flames, the formation process, flame shape characteristics, and flame propagation laws of gas and coal dust explosion flames in small-scale pipe network space have been comprehensively and deeply expounded through numerical simulations. (Nie et al., 2014; Ajrash et al., 2017a; Ajrash et al., 2017b; Zhang et al., 2021). Nie et al. (2015) established a pipeline experimental system with a length of 20 m and a cross section of 80 mm × 80 mm. They used a high-speed camera to shoot and record the propagation process of the explosion flame, and the image correlation coefficient method was adopted to calculate and analyze the dynamic variation characteristics of the flame velocity during the gas explosion. Sun and Lu. (2020) studied the dynamic behavior of gas explosion flames in pipelines and the change laws of the flame front structure. They found that the local velocity change of the flame was the direct factor that induced the change in the flame structure, and the interaction between flow and flame front was the internal reason. Song et al. (2018) numerically simulated the ignition of coal dust layers by gas explosion and discovered that the flame front showed a regular hemispherical shape in case of gas explosion with a low temperature. Subsequently, the dust cloud was ignited by explosion flames to form complex flames such that the flame temperature rose and the flame front wrinkled.
In the study on the propagation law of gas and coal dust explosion, factors such as gas volume dose, coal dust concentration, pipeline cross-sectional area, and obstacle distribution greatly influence on the overpressure evolution laws and flame propagation characteristics of shock wave (Wang et al., 2018; Niu et al., 2019; Niu et al., 2021; Jia et al., 2023). Ma et al. (2020) studied the influence of coal dust on methane–air explosion characteristics at low temperature. They found that the low-temperature environment would reduce the volatile matter in coal dust, which inhibited the flame propagation of methane–air/coal dust mixture, but the formed cracks and pores promoted the combustion of coke in coal dust. Niu et al. (2020) established a set of gas–coal dust mixed explosion experiment system in straight pipes and explored the overpressure evolution and flame propagation laws of coal dust explosion at different moisture contents. The experimental results showed that the coal dust deposited in the pipeline exploded under the induction of gas explosion when the moisture content was lower than 15.12%, and the underground environmental conditions were complex and changeable. The pipeline characteristics such as turning, bifurcation, and sudden change in the cross-sectional area would evidently influence the propagation of gas and coal dust explosion. Jing et al. (2021) comprehensively and deeply probed into the overpressure variation and distribution of the gas–coal dust coupling explosive shock wave in bifurcated pipes. They concluded that the larger bifurcation angle of the pipe resulted in the greater overpressure of the explosion shock wave, and the maximum overpressure of the explosive shock wave appeared in front of the bifurcation point.
Experiments in previous studies were usually conducted using small-scale pipe networks or through numerical simulations. The results cannot reflect the flame propagation laws and combustion forms of gas and coal dust explosion in actual roadways and also fail to visualize the meso-structural evolution of explosion flames inside actual roadways. In addition, an obvious size effect is observed in explosion, and the explosion characteristics do not simply follow the geometrical similarity law, which causes difficulty in quantitatively deducing the large-scale situation through small-scale experiments. In this study, a testing technique and the testing method were used in an engineering-level test roadway with a cross-sectional area of 7.2 m2 and a total length of about 700 m which is the largest underground engineering level tunnel test system in the Asia Pacific region and the only one in China, to explore the gas and coal dust explosive overpressure and flame propagation characteristics and their variation laws.
2 EXPERIMENTAL
2.1 Experimental system
The experimental system (Figure 1) mainly consisted of five parts: large-scale test roadway, comprehensive explosion test system, gas distribution circulation system, ignition system, and ventilation system. It could realize the simulation test of gas and coal dust explosion propagation with an actual scale under different conditions. The total length of the explosion test roadway was about 700 m, which was composed of drift and inclined roadway. The front drift was 400 m long, and the end of the drift was connected to an inclined roadway with a length of 300 m and an inclination angle of 24°. The cross section of the roadway was a semicircular arch with an area of 7.2 m2. Niche boxes were arranged in the walls on both sides of the roadway, and sensors (e.g., pressure and flame sensors) for testing explosion information could be installed in the niche boxes. The high-speed image acquisition system was mainly composed of explosion-proof high-speed camera, explosion-proof camera, signal receiving equipment, and display components. Among them, the high-speed camera was the main component to collect the explosion flame image, which was characterized by high definition and speed. The full-frame resolution was ≥1,280×800 pixels, the full-frame shooting rate was ≥5,000 frames per second, and the highest shooting rate was ≥600,000 frames per second. The explosion-proof camera was designed to bear pressure of 2.0 MPa with the maximum resolution of 1,280×960, which could realize 20 × optical zoom, and the focal length was 4.3–86 mm. In addition, the installation position of the high-speed camera in the roadway corresponded to the installation positions of sensors such as explosion pressure and flame sensors, which were located 0, 10, 20, 40, 60, 80, 100, and 120 m at the closed end of the roadway.
[image: Figure 1]FIGURE 1 | Schematic of engineering-level test roadway.
From the starting end of tunnel explosion (the position of the explosion door), a niche box was arranged at intervals of 0 m within 40 m; beyond 40 m, a niche box was arranged every 20 m. During the experiment, the sensors were arranged from 10 m to 160 m, and the position of the sensor from the ignition source is shown in Figure 2. In the experiment, three ignition heads of No.8 industrial electric detonators were used as trigger sources to detonate the gas mixture, and the gas explosive shock wave lifted coal dust up, which formed a secondary explosion of gas and coal dust.
[image: Figure 2]FIGURE 2 | Schematic of the layout of niches.
2.2 Experimental materials
Coal dust was provided by Wulunshan Coal Mine in Guizhou, China. The approximate analysis of coal dust is listed in Table 1. Test coal dust was evenly arranged in the coal dust explosion propagation interval of the roadway at 15–120 m away from the explosion door by a length of 105 m. The volatile matter content in the used coal dust was >40%, the particle size was 85%≤0.075 mm, and the dose of coal dust was about 150 g/m3 according to the roadway space.
TABLE 1 | Proximate analysis of the coal dust (on the dry basis).
[image: Table 1]2.3 Experimental procedure
Before the test, the test sensors were first arranged in the niche boxes at different measuring points in the test roadway, and the communication lines were ensured to be smooth through the test. The high-speed camera was installed in the corresponding position of the roadway, the shooting angle was adjusted, and the smooth video transmission was guaranteed through the test. The ignition head was laid in the ignition position. Second, the roadway was sealed with plastic film, and the hydraulic explosion door was closed such that a sealed initiation chamber was formed between the sealing film and the explosion door. A certain amount of gas was filled into the initiation chamber through the gas distribution circulation system, and the gas and air were circulated and stirred such that they were fully and evenly mixed. The gas concentration was accurately measured with a gas detector, and the gas concentration in the initiation chamber was appropriately adjusted through the gas distribution circulation system. Then, the gas and coal dust were ignited by the ignition system. In this way, the gas and coal dust exploded and spread in the roadway. At the same time of ignition, the comprehensive explosion test system and the high-speed image acquisition system were triggered, and the explosion pressure and flame information of each measuring point in the propagation direction of the roadway were collected by the comprehensive explosion test system. The high-speed image acquisition system was used to collect the explosion propagation image. After the experiment was completed, the test roadway was finally ventilated by the ventilation system for at least 20 min. Thereafter, the tester could enter the test roadway to prepare for the next experiment.
The gas explosion propagation test was performed via the engineering-level roadway test system, and the high-definition flame images in the process of gas ignition, detonation, and propagation were captured with the help of the image acquisition system. The volume of gas–air mixture was set to 100 m3, and the volume fraction was controlled between 8.5% and 10.0%. During the gas-induced explosion test of deposited coal dust, moreover, coal dust racks had to be hung at different positions in the roadway before sealing with the film, and coal dust had to be laid on the roadway floor and coal dust racks. Then, the high-definition flame images of deposited coal dust in the process of winding, ignition, detonation, and propagation were captured using the image acquisition system.
3 RESULTS AND DISCUSSION
3.1 Flame generation characteristics
Figure 3 is the gas was ignited using the ignition head of an industrial detonator as the trigger. The gas flame was blue white in the initiation zone within 0–1 ms, developed in an irregular state, and quickly ignited the surrounding combustible gas. When the explosive pressure wave propagation along the roadway, the wave front surface pressure rises sharply and produces rapid flow, and the pressure wave passed through the coal dust deposition zone before the flame front. At this time, the airflow would generate a large velocity along the transverse direction of the roadway and a velocity gradient along the longitudinal direction of the roadway, and the coal dust deposited on the coal dust rack would fluctuate. Once the lifting power of the coal dust was greater than the required minimum power, the coal dust would float away from the bottom of the coal dust rack. (Liu et al., 2021).
[image: Figure 3]FIGURE 3 | Detonation diagram.
Figure 4 is a high-definition flame image captured from the place where the laid coal dust (10 m) was ignited by explosion from the initiation point (0 m) in the roadway. After the gas explosion, the shock wave propagated forward and ignited the deposited coal dust on the coal dust rack. After the coal dust particles were raised, the trajectories became different, and a certain concentration of coal dust cloud was formed under the action of pressure wave. Then, the turbulent flame reached the dusty zone and ignited the coal dust cloud such that the coal dust participated in the deflagration reaction and the flame front is beginning to extend above the roadway, while the flame is slowly increasing in luminous intensity. Under the action of pressure wave and flame front, the flame was obviously layered, where the outer flame was dark yellow and the inner flame was bright yellow. Compared with the single-gas deflagration reaction, the coal dust-ignited flame was dark yellow. In addition, some of the coal dust clouds lifted outward were ignited by gas and then spread along the propagation direction of deflagration wave.
[image: Figure 4]FIGURE 4 | High-definition flame images.
3.2 Flame evolution characteristics
Figure 5 shows the flame propagation of gas and coal dust explosion in the early-medium stage. In the early stage (t=2.6 m), due to the uneven concentration distribution of gas in the roadway and the nature of the fire source, (Wu et al., 2022; Zheng et al., 2022), some methane volume fractions were too high or too low to form bright premixed combustion, which led to the darkening of the flame with a “V” structure, and the tip of the “V” pointed to the source of the flame. In the medium stage (t=55 m), a thin flame surface was formed after the ignition head above the roadway was detonated, and the generated heat heated the adjacent gas, which resulted in gas ignition and burning. At the same time the tendency of flame propagation in the transverse section of the roadway is obvious, and it is found that the effect of turbulence is enhanced in the transverse section by the presence of pedestrian handrails, frames and other facilities in the actual roadway itself, which stretches the flame front and enlarges the burning area. The fold degree of the flame front was enhanced and the shape of flames are extremely irregular due to the participation of the coal dust in the reaction (t=112 m), and oxygen was continuously added in the roadway, which led to more violent diffusion combustion. The explosion flame continued to spread in a more violent turbulent state, which caused the flame to fill the whole roadway. At t=156 m, a bright yellow flame fills the entire alleyway, and the flame is bright and blinding.
[image: Figure 5]FIGURE 5 | Flame propagation of gas and coal dust explosion in the early-medium stage.
Figure 6 shows the flame propagation of gas and coal dust explosion in the later-last stage. In the later stage (t=209 m), the fire has begun to decay due to the exhaustion of combustible gases in the roadway. In the last stage (t=367 m), the entire tunnel space is filled with dark red flames, and the explosion flame structure was irregular due to the exhaustion of combustible gas in the roadway until the flame was gradually extinguished in t=662 m.
[image: Figure 6]FIGURE 6 | Flame propagation of gas and coal dust explosion in the later-last stage.
3.3 Flame propagation behavior
Figure 7 shows the flame propagation velocity measured at each measuring point in the process of gas and coal dust explosion propagation. In the forward propagation process of explosion shock wave in the roadway, the explosion flame was detected within 0–140 m of the roadway with gas and coal dust explosion, while the length of the gas explosion flame zone was only 70 m. With the increase in the propagation distance, the flame propagation speed rose first and then decreased. The gas and coal dust explosion flame showed a uniform rising trend in the first 70 m, and the flame propagation speed increased suddenly after 70 m, reached the maximum at 90 m, and then decreased slowly in the interval of 100–120 m. However, the flame propagation speed of gas explosion was relatively small, and the decline rate was faster after 50 m. The reason is that the pressure starting time in the process of coal dust explosion induced by gas explosion was always longer than the flame starting time. Therefore, at the front end of the explosion, the flame front was ahead of the pressure propagation, and the flame propagation speed rose slowly. When coal dust participated in the explosion, the pressure wave caught up with and exceeded the flame front at 70 m in the roadway, the flame front was affected by the reflected pressure wave, and a large amount of unburnt gas and coal dust mixture reacts with the high temperature burning mixture, which results in a significant increase in the reaction rate, leading to an accelerated forward propagation of the flame. The accelerated flame speed further increases the degree of turbulence, which in turn increases the travelling speed of the gas and coal dust mixture, leading to stronger folding of the flame front, creating positive feedback between the gas flow and the propagation of the flaming combustion, which dramatically increases the propagation speed of the flame front.
[image: Figure 7]FIGURE 7 | Flame propagation velocity of gas and coal dust explosion.
3.4 Overpressure propagation characteristics
Figure 8 exhibits the maximum explosive overpressure measured at each measuring point in the propagation process of gas and coal dust explosion. The peak overpressure of each measuring point did not rise or fall monotonously but fluctuated, which could be roughly divided into three stages. In the initial stage of explosion (0–40 m), the gas was ignited near the ignition source and then impacted outward at high speed, the gas expanded rapidly to do work, and the explosion overpressure decreased after reaching a certain peak. In the development stage of explosion (40–120 m), the pressure would fluctuate in case of single-gas explosion with the continuous explosion reaction which is due to the combustible gas is compressed, a large amount of gas is involved in the reaction, combustion is accelerated, and the shockwave pressure value starts to rise with the propagation distance. As the explosion reaction continues, the constraint of the roadway space and the returning of pressure wave, the explosion of rapid reaction generated by the heat and consumption tends to balance, the explosion of the overpressure shows a trend of decreasing and then increasing, and finally due to the gradual consumption of combustible gases, the explosion energy and intensity of the final and gradually reduced. When coal dust participated in the explosion reaction, the coal dust cloud was ignited by a high-temperature flame and violently exploded, and the pressure in the roadway grew rapidly, so that the original weak explosion developed into a strong explosion. The pressure reached the highest at 120 m, which greatly enhanced the destructive power of the explosion. In the later stage of explosion (120–140 m), the overpressure gradually decreased when the combustible gas was exhausted without the influence of other conditions.
[image: Figure 8]FIGURE 8 | Overpressure propagation of gas and coal dust explosion.
4 CONCLUSION
In this study, the gas and coal dust explosion test was performed in an engineering-level roadway, and the generation and evolution laws of the explosion flame and the overpressure and flame characteristics during explosion propagation were studied. The research results will provide an important theoretical basis for the development and installation of coal mine active explosion suppression technology and equipment. The main results are summarized as follows.
1. The flame was evidently layered when coal dust explosion was triggered by gas explosive shock wave, and the inner flame showed a bright yellow combustion state while the outer flame exhibited a dark yellow combustion state after the coal dust on coal dust racks was ignited.
2. The explosion flame of gas propagated forward along the upper part of the longitudinal section of the roadway. The combined effect of the pressure wave and the flame front ignites the coal dust, causing the surface of the explosion flame was rapidly stretched, and dramatically increasing the propagation speed of the flame front.
3. The propagation of explosive overpressure in the roadway was divided into three stages. The explosive overpressure fluctuated somehow in each stage, and it peaked at 120 m of the roadway. The destructive power of explosion was considerably enhanced by the participation of coal dust. The evolution of the explosion flame in the roadway was largely divided into four stages. A sharp increase zone of flame propagation velocity was observed due to the participation of coal dust, and it even reached the maximum value at 90 m.
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The physical arch and the arch effect are related to many geotechnical problems, such as the stability of mine openings, a tunnel’s shape, and disaster prevention. However, observing the arch in geo-material is challenging due to Earth’s invisible force network distribution. The arch shape is a critical parameter related to the arching effect, which is still an open question. Specifically, the force network evolution after local excavation in granular material is revealed using the photo-elastic technique, and the system pressure variation is calculated qualitatively in particle scale according to the G2 algorithm. Besides, the force chain arch is formed by strong force chains, which are important in redistributing the stress field. The principal direction of the spatial correlation colormap represents the direction of the strong force chains in the network. Based on this preferred angle between the strong force chain and the horizontal direction, a simplified force chain arch trajectory is iteratively rebuilt. Then, the total force chain distribution is studied considering both G2 and the total length of strong force chains, with the corresponding results demonstrating a relationship between the changes in these characteristics and the force chain arch formation.
Keywords: force chain network, spatial correlation, arch trajectory, photo-elastic, granular material
1 INTRODUCTION
Arch plays an important role in the stability of geo-granular materials, which is directly related to civil and geotechnical engineering. For instance, in ancient times, a physical arch-shaped structure was used in bridge construction to transfer the vertical loads into the horizontal direction in ancient time while there was lack of modern bridge construction techniques. At the same time, in mining excavation or tunnel boring processes, a physical arch-shaped structure was used to reduce the overburden pressure (Aubertin et al., 2003; Xie, 2005; Lee et al., 2006), as well as to predict their stability. However, an invisible arch (force network arch) in geo-granular materials stabilizes geo-granular piles like embankments and natural slopes (Low et al., 1994; Chen and Martin, 2002). The arch effect has been noticed since the 19th century, with Janssen (Janssen, 1895; Sperl, 2006) explaining the pressure saturation with height at the bottom of a vertical cylinder. Besides, Terzaghi (Terzaghi, 1943) described the arching effect in the soil as a transfer of pressure from a yielding soil mass onto adjoining stationary parts. Based on Terzaghi’s theory, many research works focused on theoretically explaining and experimentally observing the shape of the force network arch. Handy (Handy, 1985) theoretically calculated the varying stress in the arch as the boundary friction and proposed a catenary arch to describe the trajectory of minor principal stresses. However, the catenary arch theory is still under debate. Harrop-Williams (Harrop-Williams, 1989) highlighted that the arch was close to circular compared to the catenary, while Quinlan (Quinlan, 1987) disputed the choice of catenary shape, arguing that cohesion should be considered. Iglesia (Iglesia et al., 2013) conducted a trapdoor test in a geotechnical centrifuge, presumed that the arch should be the failure surface, and transformed the arch’s cross-section from a curved shape to a rectangular one.
An important reason for the complexity of studying the force network arches in geo-granular materials is that the force network arch in geo-granular materials (e.g., sand, soil) is usually impossible to be defined mathematically. However, using DEM (Cui et al., 2020; Gao et al., 2024) or photo-elastic experimental techniques (Howell et al., 1999; Vanel et al., 1999; Geng et al., 2001; Theocaris and Gdoutos, 2013; Wang et al., 2020) allows visualization of the stress-based arch in granular materials and thus has been widely used in recent granular materials research (Majmudar and Behringer, 2005; Bi et al., 2011; Sun et al., 2013; Zheng et al., 2014; Tang and Behringer, 2016; Wang et al., 2018; Zheng et al., 2018; Zheng et al., 2018). The photo-elastic model made of transparent and birefringent plastic, is placed in the polarized light field. The stress distribution characteristics can be determined by measuring the different interference fringes produced on the model when the load is applied. Based on stress-optical theorem, the photo-elastic experiment of particle materials can measure the force state of each particle on the particle scale and the force chain structure on the microscale without disturbance.
This work obtains the force distribution in the granular system and investigates the force network evolution on a particle scale using the photo-elastic experimental technique. With constraints in both the left and right boundaries and servo compression on the top, the particles are locally excavated step by step from the bottom gates. This strategy reveals that the force chain arch evolves while the force chain network in the system is redistributed. Ultimately, this study provides a force chain arch that is mathematically based on the space-correlated iteration of the force chain network.
2 EXPERIMENTAL TECHNIQUES
2.1 Experimental apparatus and protocol
A typical photo-elastic experiment apparatus includes a stable light source, which provides homogeneous light, a pair of circular polarizers to create the polarized light field, experimental samples made of photo-elastic particles, and a digital camera to collect the photo-elastic response and particle position information (Figure 1A). The loading system of the photo-elastic apparatus (Wu et al., 2019) used in this work (Figure 1B) comprises two servo cylinders mounted at the top and one side of the frame, respectively. The vertical loading was studied in detail, with the horizontal servo cylinder shut down as the boundary wall.
[image: Figure 1]FIGURE 1 | (A) Photo-elastic setup, where: 1-homogeneous light source, 2-circular polarizers, 3-container made of transplant glass (photo-elastic particles included), 4- high-resolution camera, (B) Experimental apparatus, where 5-holders for horizontal sliding, 6-cylinder to provide horizontal load, 7 individual trapdoors on the bottom, 8-cylinder to provide vertical load, 9-rails for moving the lens.
The particles, made from polycarbonate sheets, are placed in a container of two pieces of transparent glass. The gap between the two glasses is slightly bigger than the thickness of the disks. The bottom and right sides of the container (Figures 2A,B) have 11 independent trapdoors, allowing particles to flow from the bottom or right side, correspondingly (Wang et al., 2015).
[image: Figure 2]FIGURE 2 | (A) Container measurements, (B) trapdoors allowing particles to flow out, and (C) measurements of the particles.
A 760 mm square-shaped view of the granular position and photo-elastic response were recorded during the experiments. Three different disk diameters (10mm, 8mm, and 6 mm) were used to fill the container and avoid the crystal packing state so that a chaotic granular system could be created to represent a more general situation. The ratio of three different particles (Figure 2C) is 1 (big): 5 (medium): 3(small), with approximately 5,000 particles in the container. All the particles used here have the same elastic modulus and Poisson ratio, which are 2.4 GPa and 0.36, respectively. The friction coefficient between the particles is 0.5.
In order to mimic the high-pressure environment, the granular sample is compressed from the top at a constant force (F = 200N). A steel bar is placed between the two glasses to transfer the constant loading from the servo cylinder to the granular samples. The 11 independent trapdoors at the bottom were opened one by one from the right to the left side to allow the particles to flow out. The opening trapdoor would be closed before the next trapdoor is opened. Since the trapdoor size is approximately 6 particles in diameter, a jammed state occurred above the opening (Tang and Behringer, 2016). The process from opening the trapdoor to the jammed state is called one experimental step, and the loading on the top of the granular system decreases when the bottom trapdoor is opened. The servo cylinder would add extra loading to ensure the loading from the top of the granular system is constant before each flow. Besides, a high-resolution camera (EOS 5D Mark II) is applied to acquire two image types, illuminated by normal and polarized light, ensuring each particle has enough pixels (approximately 66 pixels for the big particle) to extract the pressure and position details from the image (Wang et al., 2016; Behringer and Chakraborty, 2019).
2.2 Photo-elastic calibration of individual particle
One of the most important advantages of the photo-elastic technique is that the pressure of the particle bearing can be quantitatively calculated based on the intensity gradient squared (G2) (Vanel et al., 1999) using the image of the particle photo-elastic response.
[image: image]
where F is the applied force, and a and b are fitting parameters. Figure 3A illustrates the photo-elastic patterns when an individual particle is compressed diametrically (from 5N to 55N), with a diameter of 10 mm. Although the number of fringe numbers can be used to calculate each particle’s stress tensor (Vanel et al., 1999), only the G2 method calculates the particle/system pressure quantitatively. The G2 value has a linear relationship with the particle pressure in a certain force range up to 55N. Figure 3B depicts the calibration plot from the photo-elastic patterns of an individual particle, which presents a clear linear fitting with R2 = 99.72%. In this particular experiment, a = 0.5, which indicates the speed of the G2 increases with the applied force, and b = 4.3, which shows the background G2 information.
[image: Figure 3]FIGURE 3 | Photo-elastic response of single particle: (A) force patterns of particle tests, and (B) calibration of photo-elastic materials showing a linear relationship between average G2 and the loading force.
3 CHARACTERISTICS OF FORCE CHAIN NETWORK
In the following section, two kinds of images are post processed to analyze the force chain network. Only particle positions can be detected when illuminating the image with normal light (Figure 4A). The advantage of the photo-elastic technique is that the force chain network in the granular system can be revealed without any disturbance in the polarized image (Figure 4B). By combining the particle positions from the normal light image and the force chain network from the polarized image, the pressure of each particle can be quantitatively calculated using the G2 method. Moreover, the importance of particles in the force chain network is presented in the combined image (Figure 4C). The local zoom-in view of Figure 4C is depicted in Figure 4D, where each particle position is precisely detected on the polarized image. The different colors of the circles indicate the particles’ sizes, while the red indicates the big particle, green indicates medium size particle, and blue indicates the small particle.
[image: Figure 4]FIGURE 4 | Three kinds of images from the experiments and postprocessing: (A) normal image, (B) polarized image, (C) polarized image with particle contours, whose position and centers are tracked from the normal image, (D) zoomed-in part of the overlapped image of force chains and particle position.
The particle pressure in the force chain network can be calculated individually on a granular scale. Figure 5 depicts the probability distribution function (PDF) of the particle pressure in the seventh step, normalized by the average particle pressure. Most particles have relatively low pressure, while only a few have twice the average particle pressure. The experimental results infer that the extremely high-pressure bearing particles were always located as the skeletons of the force chain network.
[image: Figure 5]FIGURE 5 | Distribution of particle stress for different diameters. Different colors refer to different diameters, including ‘ALL’, which indicates PDF for all particles.
Figure 6 illustrates the global force chain network patterns at the jammed states of each experimental step, where the opening locations are indicated with a red arrow. The force chain network looks very isotropic in its initial state. However, the force chain arch is generated due to the particles flowing out from the trapdoor. Normally, instead of a single force chain arch comprising one layer of particles, the force chain arch is more like a couple of layers of particle clusters. The force chain arches are typically just above the opening trapdoor, which would shift from the right side to the left as the trapdoors open one by one. Many theories have been proposed to predict the shape and position of the force chain arch (Handy, 1985; Quinlan, 1987; Harrop-Williams, 1989; Iglesia et al., 2013), with the following section applying a novel method to detect the force chain arch shape experimentally based on the spatial correlation of the force chain network.
[image: Figure 6]FIGURE 6 | Force chain network evolution in different steps.
4 FORCE CHAIN ARCH IN THE EXCAVATED GRANULAR MATERIAL
4.1 Distribution of force chains based on statistics
A network of strong force chains is extracted from the system to get a macroscopic magnitude of force chains (e.g., Figure 7A). The accumulative number of particles that G2 exceeds the mean value, represents the total length of a strong force chain, and the average particle stress normalizes the strong force chain network. Figure 7B presents the length changes of the strong force chain L due to the force network reconstruction after each local excavation step.
[image: Figure 7]FIGURE 7 | (A) Skeleton of the strong force chain network at step 7, (B) Total length of strong force chains L versus the excavation steps.
In general, the length of a strong force chain decreases with the local excavation steps, indicating fewer particles in this force chain network. Since the total loading on the top of the particles is constant, the force distributed is less homogenous than in the initial state. This is especially true when a clear force chain arch is built (e.g., from step 4 to step 7).
4.2 Arch reconstruction using spatial correlation
This paper applies the spatial correlation function to calculate the principal direction of the force chain network. The calculation area A is a square window size of 300 pixels *300 pixels from the force chain network figure, centered by the point on the arch trajectory. For any point (x,y) in A, the autocorrelation C(x,y) is calculated using Eq. 2, which is a two-dimensional summation.
[image: image]
where m and n indicate that the summation includes all the combinations of A(m,n) and [image: image] (m-x, n-y) that are real, where m and n vary from 0 to 299 (window size 300 minus 1). C(x, y) has negative and positive row and column indices.
The spatial correlation coefficients of each selected force chain network are calculated using Eq. 2, with Figure 8A presenting the spatial correlation coefficients distribution of the local region around the force chain arch. A high value indicates the direction of the force chain arch. The spatial correlation coefficients along and perpendicular to the arch direction are presented in Figure 8B, highlighting that the spatial correlation coefficients perpendicular to the force arch decay much faster than those along the force arch. The inset of Figure 8B shows the zoom-in version of Figure 8B in a log-log plot. Hence, the whole force chain arch can be detected based on this iteration. By defining a start point (x0, y0), where y0=0 and x0 is the first point from the left boundary that a preferred angle can be seen in the spatial correlation colormap, the coordinates of any point (xi+1, yi+1) on the force chain arch is computed using Eq. 3.
[image: image]
where 0<i≤n, l is the width of the force chain arch, n is the number of iterations, and θi indicates the direction of the principal direction in the spatial correlation colormap (Figure 8A).
[image: Figure 8]FIGURE 8 | (A) Colormap of the autocorrelation coefficient at the seventh step. θi is the angle between the x-axis and the principal direction of the spatial correlation map. (B) Spatial correlations in the directions of the arch axis and perpendicular to it (the seventh step). The average diameter dm of the disks normalizes the distance (D).
The trajectory of the force chain arch is reconstructed, as shown in Figure 9A. The insets are the spatial correlation colormaps corresponding to different positions around the force chain arch. Meanwhile, three widely used force chain arch prediction theories (Handy, 1985; Quinlan, 1987; Harrop-Williams, 1989; Iglesia et al., 2013) are applied to calculate the force arch geometry. The force arch detected in this work generally agrees well with theoretical predictions, even though they do not have the same geometry. Indeed, the experimentally detected force arch has an asymmetric geometry, while all theories give symmetric predictions. This is because the excavation is applied one by one from right to left, and the granular materials are highly memory-dependent materials. They will probably not provide a symmetric force arch if not excavated symmetrically. However, this property cannot be revealed by the current theoretical predictions.
[image: Figure 9]FIGURE 9 | (A) Force chain arch calculated using the spatial correlation in the force chain network at the seventh state. The insets are colormaps of autocorrelation coefficients from different positions of the force chain arch at the seventh step. (B) Force chain arch trajectories of calculation using spatial correlation and theoretical assumptions. Catenary, semicircle, and triangle-shaped arches are represented by green, blue, and cyan curves, respectively.
5 CONCLUSION
The force chain network and arch are essential properties stabilizing granular materials and are directly related to many applications, such as mining and tunnel engineering. This work conducts local excavation experiments in photo-elastic granular materials, presenting the force chain network without disturbance. The following conclusions can be drawn from the analysis of the experimental results.
(1) The particles are excavated locally in a granular system with constant pressure. The force chain arch appears after certain flowing steps, under which the force chains tend to be fewer and weaker compared to those on the other side of the force chain arch.
(2) The force chain arch caused by local particle excavation comprises strong force chains. The skeleton of the force chain network indicates that fewer particles are involved in the stronger force chain network as more local excavation steps were conducted, meaning these particles bear more force from the top.
(3) The force chain arch is calculated from the spatial correlation of the force chain network structure, revealing that the principal direction is in good agreement with the direction of the arch.
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A gas explosion experimental system based on a piece of 15 m-long and φ180 semi-closed wide open steel pipe was constructed. An explosion experimental study on straight pipelines and pipeline structures with different angles (45°, 90°, and 135°) was conducted. Research results demonstrated that before the turn, flame propagation speed and flame sustaining time in different pipeline structures were consistent. With the increase of the distance away from the ignition source, the flame propagation velocity increases and the flame sustaining time decreases; at the turning point, the flame velocity suddenly decreases and the flame duration increases obviously. Meanwhile, the peak value of overpressure on the lateral wall of the turning corner is greater than that on the inner wall. Among the three different angles, the peak value of overpressure on the lateral wall of 135° bend is the highest. Different pipeline structures have great influence on gas explosion overpressure and flame propagation speed. These research conclusions provide theoretical references for gas explosion resistance in coal mines.
Keywords: pipeline structure, gas explosion, flame propagation, flame sustaining time, explosion overpressure
1 INTRODUCTION
Gas and coal dust, which run through the whole coal mine production activity, are one of the main natural disasters in coal mines. When the gas concentration and oxygen concentration reach a certain limit and a high-temperature heat source is encountered, gas or coal dust explosion occurs, which not only destroys the underground ventilation network and endangers the safety of life and property but also causes a secondary explosion and brings devastating disasters to the mine (Huang et al., 2023). Therefore, it is significant to understand the mechanism of shock wave propagation after methane explosion in order to reduce the damage of gas explosion in coal mine roadway.
Due to the limited conditions of gas explosion test conducted in coal mine roadway, many researchers have conducted pipeline and small-scale container tests either through numerical simulation or in the laboratory. The laminar deflagration of CH4-air mixture at various initial pressures of 50–200 kPa was studied by Mitu in two closed concentrated igniting vessels (Mitu et al., 2017). Cui et al. (2018) analyzed the effects of pressure and temperature on the duration of combustion in the initial temperature range of 123–273K. Zhai et al., 2008 found in square straight tubes that turbulent combustion and flame propagation acceleration occur when the cross section of the pipe suddenly expands or shrinks. Ajrash et al. (2017) studied the effects of different concentrations of methane and reaction length on pressure wave and flame characteristics in a 30-m long, straight and large-scale detonation tube. Jiang and Su, 2016 found that the peak value of shock wave overpressure and the velocity of flame propagation increased with the increase of distance in a semi-closed straight tube, and the results were verified by numerical simulation. Zhu et al. (2017) have studied the flame propagation velocity in the bifurcated pipeline. It is found that the velocity of the flame decreases obviously in the bifurcation part, but the flame velocity is higher after the bifurcation. Sulaiman et al. (2014) has found that the existence of a 90° turning pipe can elevate flame propagation velocity by approximately twice by using the FLACS numerical simulation software. Frolov et al. (2007) has studied the process of deflagration to detonation in U-shaped structural pipe. However, there is a lack of research on the intensity of the gas explosion and flame acceleration mechanism in the different structures of the pipeline at the turn or bifurcation.
In the study on the propagation law of gas explosion, factors such as gas volume dose, pipeline cross-sectional area, and obstacle distribution greatly influence on the overpressure evolution laws and flame propagation characteristics of shock wave (Huang et al., 2020; Niu et al., 2021; Yan et al., 2022; Jia et al., 2023; Niu et al., 2020) established a set of experimental system in pipeline network to test the propagation characteristics of shock waves in complex areas and found that there is a pressure increasing area in the corner branch of the shock wave, but it is not affected by the flame. Zhu et al. (2021) investigated the overpressure evolution law and the flame propagation process when a gas explosion occurs in U- shaped longwall coalface and H-shaped crosscut by numerical simulation, and found that a very high reflected pressure exists close to the corner but decays very fast in the free spaces. Zhang et al. (2021) conducted pipeline gas explosion experiments at different turning angles and found that the peak overpressure attenuation rate of the shock wave increased with the increase of the pipeline turning angle. The flame propagation speed first increased and then decreased, and rapidly increased after passing through the curved pipeline. Wang et al. (2018) studied the attenuation law of gas explosion in experimental tunnel with a length of 800 m and an inclination angle of 24°, and found that as the propagation distance increased, the explosion pressure did not decay linearly, but fluctuated along the tunnel, and the flame propagation speed first increased and then decreased throughout the entire explosion process. The current research is mainly focused on the explosion pressure and flame propagation speed, while relatively little research on flame sustainable time.
There are differences in the propagation characteristics of gas explosions in pipelines with different structures. Previous work focused on the use of straight or 90° curved tubes, and less research on sharp or obtuse angles. In particular, their results do not involve the investigation of the flame velocity, flame duration and the peak value of overpressure of the inner and outer wall of the explosion shock wave in the turning region under the condition of partial filling of gas in the pipeline. However, the structure of the mine roadway is complex and the different angle of turning will interfere with the propagation of shock wave, which may occur in different situations. If the underground gas is still treated according to the propagation characteristics of gas explosions in straight or 90° curved pipelines, selecting explosion prevention measures will make these explosion prevention devices ineffective. Therefore, an experimental system for gas explosion of open steel pipe is constructed, which focuses on the flame propagation law and pressure development characteristics of shock wave in different pipe structures at the bend.
2 ESTABLISHMENT OF THE EXPERIMENTAL SYSTEM
Figure 1 shows the gas explosion experimental apparatus. This equipment was composed of four subsystems: pipeline, ignition, distribution, and data collection. The pipeline subsystem used the 15 m-long and φ180-wide pipeline. The ignition end was closed and the other end was open. A plastic film is placed 10.5 m from the ignition source to seal the 10.5 m long pipe so that the gas is filled at this distance. The ignition subsystem controlled the ignition electrode in the middle of the flange at the front end of the pipeline through the ignition device. The electric spark with a 10 J ignition energy was applied for ignition. The distribution subsystem consisted of an air compressor, vacuum pump, and air and gas cylinder. The air compressor offered at least 30 min of high-pressure ventilation to the pipeline subsystem. The vacuum pump vacuumed the premixed methane–air region. The methane gas concentration was calculated in accordance with Dalton’s law of partial pressure. The inlet quantities of methane and air were controlled accurately by the precise vacuum pressure meter to assure that the methane concentration in each experiment was approximately 10%. Subsequently, at least 20 min of gas circulation was implemented through the circulating pump to ensure a uniform and complete mixture of methane and air. Data acquisition subsystem includes flame and pressure sensor, high-frequency data collector, and working machine. The pressure sensor model is CYG1401, with a measuring range of 0 ∼ 3Mpa and the accuracy is 0.5% FS, the flame sensor is a CKG100 photoelectric type and an accuracy of 0.1% FS. The collected signals were transmitted to the working machine through a 32-path high-frequency data collector.
[image: Figure 1]FIGURE 1 | Schematic of experimental apparatus.
Figure 2 displays the flame and pressure sensor distributions in straight and turning pipelines. Eight flame sensors (F1-F8) and eight pressure sensors (P1-P8) are respectively arranged along the center line above the pipe. For the turning piping, the pressure sensor P4 is arranged outside the corner, and the pressure sensor P5 is arranged inside the corner. Table 1 and Table 2 presents the distances of different flame and pressure sensors to the ignition source. Three tests were conducted under each experimental condition, and the mean was used as the experimental result.
[image: Figure 2]FIGURE 2 | Layout of fiame transducers in the pipe. (A) Straight pipe; (B) 45° pipe; (C) 90° pipe; (D) 135° pipe.
TABLE 1 | Distance of each flame sensor from the ignition source (m).
[image: Table 1]TABLE 2 | Distance of each pressure sensor from the ignition source (m).
[image: Table 2]3 EXPERIMENTAL RESULTS AND DISCUSSIONS
3.1 Analysis of flame propagation speed in different pipeline structures
Figure 3 shows the variation trend of flame arrive time in different pipelines. As the increase of distance away from the ignition source, the flame arrival time tends to increase gradually.
[image: Figure 3]FIGURE 3 | Flame arrive time of different pipeline structures.
In this experiment, the flame propagation speed was calculated by using Eq. 1:
[image: image]
where v is the flame propagation speed and xn denotes the distance between the flame sensors n + 1 and n. Tn+1 and tn represent the moments when the flame front ends n + 1 and n arrive at the flame sensor, respectively.
Figure 4 shows the variation trend of flame speeds in different pipelines. Table 3 shows the test results of flame propagation speed after the calculation. We can see the explosive shock wave propagated forward continuously after the premixed methane–air explosion in the 10.5 m-long open steel pipe, and additional premixed gases were involved into the chemical reaction. As a result, the chemical reaction of methane explosion intensified continuously, and the flame propagation speed increased with the increase of distance to the ignition source. Before turning, the trend of flame propagation speed is roughly the same. Due to the constant consumption of combustible gas and the influence of pipe opening and heat dissipation on the wall, the rising rate of flame velocity decreases continuously, resulting in the maximum flame velocity near the location of the breaking film. Then the velocity of flame propagation decreases. However, at the bend of different structures, the flame speed decreases significantly due to the sudden enlargement of the pipeline area and the reverse propagation of the flame.
[image: Figure 4]FIGURE 4 | Flame velocity of different pipeline structures.
TABLE 3 | Flame speeds at different measuring points in pipelines of different structures (A, straight pipeline flame propagation velocity/m∙s-1; B, 45° pipeline flame propagation velocity/m∙s-1; C, 90° pipeline flame propagation velocity/m∙s-1; D, 135° pipeline flame propagation velocity/m∙s-1).
[image: Table 3]When the shock wave propagates to the corner, it will be disturbed by turbulence, and the flame front will deform, expand and stretch. The surface area of the original spherical flame front increases rapidly, the interface between methane and air is larger, the gas diffusion is more uniform, the combustion is more intense, and the high speed heat release will accelerate the flame propagation. After turning, the flame propagation velocity increases briefly with the increase of propagation distance, and the acceleration of this process is higher than that of the straight tube section under the same conditions, and the trend of flame velocity does not change obviously when the angle of turning is different. Under different turning angles, the increment of flame propagation speed is different, reaching the maximum in the 45° pipeline, followed by the 90° and 135° pipelines. As a result, the existence of the bend accelerates the flame wave obviously, and when the flame wave passes through the bend, the velocity of the flame wave increases significantly.
3.2 Analysis of flame sustainable time in different pipeline structures
The study of flame duration in the process of flame wave propagation plays an important role in ignition of combustible matter in roadway during gas explosion and the time when inhibitor release covers the whole flame zone.
The flame sustaining time at a certain point can be measured by the time differences between vanishing moment and initial rising time of the optical signal at this point (Lv and Wu, 2017). According to this method, the flame sustaining time of different pipe structures are shown in Figure 5. In the straight pipeline, the flame sustaining time decreases continuously with the increase of distance to the ignition source, in 45°, 90°, and 135° pipelines, the variation trend of flame sustaining time is consistent. However, the stay time of the flame leading edge at different measuring points increases gradually, which is attributed to the sudden reduction of flame speed, resulting in a sudden increase in the duration of the flame, the increment of flame sustaining time in the 45° pipeline is significantly higher than those in the 90° and 135° pipelines. Then, the flame sustaining time decreases in all pipeline structures at a slow rate. The reason is that the heat dissipation on the wall surface and the energy consumption may gradually narrow the flame surface. At the same time, combustible gas explosion at the closed end may gradually reduce the pressure intensity in the explosion process. Sparse wave is produced, thereby slowing down the movement speed behind the flame surface and indirectly widening the flame surface. Nevertheless, the widening speed of the flame surface is lower than the narrowing speed. This result reflects that the bend existence will increase the flame surface and cause serious burning damages to the wall surface of pipelines.
[image: Figure 5]FIGURE 5 | Flame sustaining time of different pipeline structures.
3.3 Analysis of overpressure at turn corner in different pipeline structures
Figure 6 presents the peak value of overpressure changes with time before and after the turn of 90 °structural pipeline. The pressure of T3 measurement point before turning first increased and reached the peak rapidly, about 0.48 MPa. During the 22 ms–30 ms period, the pressure of the T3 measurement point increased briefly, which was caused by the shock wave reflected around the corner. The T4 was located on the outside of the corner, and the overpressure peak was the largest, about 0.86 MPa, which was 79.2% higher than that of T3, and the duration was the longest. This is due to the obvious turbulence in the blast flow field, which increases the rate of gas combustion and releases more heat of combustion, resulting in a significant increase in the maximum explosion overpressure. The T5 measurement point is located on the inner side of the corner, and its overpressure peak is 0.43 MPa, which is 10.4% lower than that of T3. After turning, the peak value of overpressure at T6 continues to increase, which is about 16.7%.
[image: Figure 6]FIGURE 6 | Pressure-time curve of 90° structures pipeline.
Figure 7 shows the variation law of the overpressure peaks in different pipeline structures. At the beginning of the explosion (less than 8.55 m distance from ignition source), the development trend of the peak value of explosion overpressure in straight pipelines and turning pipelines is similar, and the peak value of overpressure is gradually increasing. At the corner, the peak value of overpressure at the measuring point outside the corner suddenly increases, while the peak value of overpressure at the inside point decreases. This is due to the occurrence of incident shock waves, reflected shock waves, secondary reflected shock waves, and vortex clusters in the bent pipe, which can easily lead to an increase in shock wave pressure at the turning point, causing particularly severe damage to the wall surface at the turning point. The lateral wall of the corner is more damaged by shock wave than the inner wall. After turning, the peak value of overpressure at different angle measuring points is smaller than that of the same measuring point in the straight pipe, which indicates that the energy of shock wave decreases after turning, and the turning structure plays an inhibiting role on the shock wave propagation. Subsequently, under the influence of opening condition, the explosion overpressure of shock wave decreases gradually.
[image: Figure 7]FIGURE 7 | Maximum explosion overpressure of different pipeline structures.
4 CONCLUSION
In this study, the gas explosion test was performed in straight pipelines and pipeline structures with different angles, and the evolution laws of the explosion flame and pressure development during explosion propagation were studied. The research results will provide an important theoretical basis for the development of coal mine explosion suppression technology. The main results are summarized as follows.
1. Different pipeline structures have a greater influence on the law of flame propagation and pressure development. Before turning, with the increase of the distance away from the ignition source, the overpressure peak value and flame velocity gradually increased, and the flame duration gradually decreased. At the corner, the flame propagation speed decreases rapidly, the explosion overpressure and flame duration increase dramatically.
2. The damage caused by the shock wave on the outer wall of the turning corner is the most serious. The bend existence will increase the flame surface and cause serious burning damages to the wall surface of pipelines. The peak overpressure, flame propagation speed, and flame sustaining time in 45° pipelines are higher than in 90° pipelines and 135° pipelines.
3. In order to reduce the intensity of gas explosion and reduce the loss caused by gas explosion, some protective measures should be taken when the tunnel is designed to avoid turning. When it is necessary to set up a turning, corresponding explosion blocking devices should be adopted according to the propagation characteristics of gas explosions inside the turning to reduce the intensity of gas explosions and minimize their losses.
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The cumulative deformation properties of subgrade soil under cyclic traffic loads are critical for optimizing pavement structure design and ensuring long-term highway structural performance. This study aims to investigate the coupling effect of freeze-thaw cycles and cyclic loads on the cumulative deformation behaviors and meso-structure of coarse-grained saline soil (CGSS) subgrade filling in high-cold areas. Dynamic triaxial tests and computed tomography (CT) scanning were conducted to analyze the CGSS under different working conditions. The research focused on the dynamic deformation development and damage evolution under varying freeze-thaw cycles and load amplitudes. The research results show that the cumulative deformation behavior of CGSS under cyclic loading is relatively sensitive to the freeze-thaw process. The cumulative dynamic strain increases as the freeze-thaw cycles, with a critical freeze-thaw cycle number of five. The stable cumulative dynamic strain curve exhibits clear three-stage characteristics when plotted in semi-log coordination, with critical loading cycles at 20 and 1,000. After 10–100 loading cycles, the cumulative strain curve quickly shows failure. The CGSS’s low density and pore regions greatly increase after a freeze-thaw cycle. The rise in dynamic stress amplitude notably affects the bonding between soil particles and crystalline salts. The coupling effect of the freeze-thaw cycle and dynamic activity exacerbates the deterioration of soil structure, resulting in variations in CT values within the scanning layer in the final state.
Keywords: subgrade, dynamic triaxial test, freeze-thaw cycle, accumulated deformation, coarse-grained saline soil, meso-structure
1 INTRODUCTION
The Qarhan Salt Lake, situated in the southern Qaidam Basin of the Qinghai-Tibet Plateau, is the largest inland salt lake in China. With the promotion of China’s Belt and Road Initiative in the alpine region, coarse-grained saline soil (CGSS) has been widely used as subgrade and structural materials in highway construction (Yang et al., 2020; Ran et al., 2022). Many studies and empirical cases have shown that the strength and deformation parameters of subgrade soil differsignificantly under cyclic loading conditions compared to static loading (Shahu et al., 2000; Guo et al., 2013a; Wang et al., 2022; Zheng et al., 2022). Soil failure strength under dynamic loading conditions is significantly reduced compared to static strength. Xie (2011) demonstrated through research that soils, especially those with unique engineering characteristics, show deformation induced by vibrations when exposed to long-term dynamic loads with small amplitudes. In subgrade saline soil, the presence of salt and water phases can significantly alter the internal soil structure. Under cyclic dynamic stress, soil particles experience significant displacement, rotation, and deformation, leading to catastrophic failure in engineering applications, which significantly affects subgrade stability. The freeze-thaw cycle alters the physical and mechanical properties of saline soil by continuously converting between liquid and salt phases (Sun et al., 1980; Wang et al., 2018; Wang et al., 2020). As a result, the subgrade saline soil has always been affected by freeze-thaw cycles due to the temperature differential between day and night, which varies depending on the season (Xu et al., 2021). Highway construction in the Qarhan salt lake area is impacted by freeze-thaw cycles, leading to varying degrees of strength damage and performance degradation in the subgrade. This poses a serious threat to the security of highway operations. Worldwide climate warming has exacerbated the significant temperature differences in high-cold salt lake areas. The saline soil subgrade structure will be more vulnerable to uneven settlement, pavement structure damage, and other issues due to the combination of long-term dynamic loads and freeze-thaw cycles. Therefore, it is crucial to have a comprehensive understanding of the dynamic response of coarse-grained saline soil (CGSS) concerning the coupling effect of freeze-thaw cycles and cyclic traffic loads.
Currently, research on the dynamic response characteristics of soil during freeze-thaw cycles is mostly centered on multi-year and seasonal frozen soil regions. Xu et al. (2021) conducted dynamic triaxial tests on the frozen soil of the Qinghai Tibet highway under different freeze-thaw cycles and proposed a plastic cumulative strain prediction model. Fan et al. (2021) investigated the effects of freeze-thaw cycles and dynamic loads on dynamic mechanical characteristics and cumulative permanent strain of frozen soil through dynamic triaxial tests. Zhang et al. (2019) studied the effect of different coarse particle contents on dynamic modulus and damping ratio of frozen soil in cold regions, and modified the Monismith model by studying the development law of cumulative plastic strain. Yang et al. (2019) studied the changes in dynamic shear modulus and damping ratio of expansive soil under freeze-thaw cycling conditions through temperature controlled dynamic triaxial tests. Wang et al. (2017) studied the dynamic stress-strain curves and strain rates of red sandstone samples in high-cold regions under different freeze-thaw cycles, and analyzed deformation and failure processes under freeze-thaw cycles and impact loads using energy loss ratios. Zhu et al. (2010) studied the changes in residual strain of frozen soil of the Qinghai Tibet Railway under the influence of temperature, water content, and confining pressure based on low-temperature dynamic triaxial tests, and established a settlement prediction model under long-term traffic loads. Xiao et al. (2018) tested the effects of thawed frozen soil on the dynamic performance of pile structures and analyzed the vibration properties of the system using the frequency spectrum.
It can be seen that a lot of research has been done on the dynamic characteristics of frozen soil under the coupling effect of the freeze-thaw cycle process and cyclic load. However, the development of dynamic deformation and damage evolution of CGSS subgrade fillers is a subject that has received limited research attention. Meanwhile, studies on saline soils mostly focus on the frost heave and the salt heave deformation mechanism of sulfate saline soils (Yang et al., 2017; Yu et al., 2019), the dissolution deformation characteristics of chloride saline soils (Wei et al., 2014; Yu et al., 2019), and the basic properties of carbonate saline soils (Wang et al., 2011). Zhang et al. (2019) utilized a hollow cylindrical torsion shear apparatus to investigate the dynamic cumulative strain development law of sulfuric acid saline soil in heavy-haul railway subgrade under coupled loads of positive and horizontal cyclic stresses in terms of dynamic characteristics. Zhao et al. (2020) studied the pore distribution characteristics and micro-mechanisms of saline soil under traffic loads. However, the dynamic behavior of saline soil in high-cold regions under traffic loads during freeze-thaw cycles is not taken into account.
The primary objective of this study is to investigate the freeze-thaw effect on the dynamic deformation behaviors of the CGSS subgrade fillers obtained from the Sebei-Qarhan Highway in the Qarhan Salt Lake area. Dynamic triaxial tests were performed on the CGSS subgrade fillers that had undergone multiple freezing and thawing cycles (0–7 times). Firstly, in light of the test results, the dynamic response of the CGSS subgrade fillers that underwent different freeze-thaw cycles was investigated, and the critical freeze-thaw cycle number for achieving the steady state of the dynamic properties of the CGSS subgrade fillers was determined. Secondly, the cumulative dynamic strain characteristics under long-term traffic loading were analyzed, and an accumulative model was proposed to describe the accumulated deformation of CGSS subgrade fillers under the influence of freeze-thaw cycles. Finally, CT scanning tests were conducted to reveal the mechanism of strength degradation of CGSS subgrade fillers under the combined influence of freeze-thaw cycles and traffic loads from a microscopic perspective.
2 MATERIALS AND METHODS
2.1 Test soil sample
The Qarhan Salt Lake area is situated in the hinterland of the Qinghai-Tibet Plateau in Qinghai Province. It belongs to the typical plateau continental climate. Due to the high-cold environmental conditions, rich salt-bearing host rocks, and strong weathering, the chlorine saline soil is well-developed in the Qarhan Salt Lake area, with an occurrence thickness of more than 20 m. The tested soil samples studied in this experiment were taken from the construction site of the K119 + 600 section of the Sebei-Qarhan Highway (G215), which is one of the first highways built in the Qarhan Salt Lake area (refer to Figures 1, 2). The maximum particle size of the original soil does not exceed 40.0 mm, and the non-uniformity coefficient (Cu) and curvature coefficient (Cc) are 23.3 and 1.58, respectively.
[image: Figure 1]FIGURE 1 | Geographic location of the Sebei-Qarhan Highway (G215) project and sampling site.
[image: Figure 2]FIGURE 2 | Subgrade filling. (A) subgrade compaction (B) saline soil road section.
In order to ensure consistency between the tested soil sample and subgrade filling, a triaxial sample was prepared following the Test Methods of Soils for Highway Engineering (Ministry of Communications of the People’s Republic of China, 2020). A standard cylinder with a diameter of 50 mm and a height of 100 mm was utilized for this purpose. The maximum particle size of the sample was 10 mm. To prevent the influence of oversized particles on the test results, groups of particles with equal mass (particle size range 5–10 mm) were utilized to substitute for oversized particles (larger than 10 mm) in proportion. This not only ensures the skeletal structure of coarse particles in the soil but also maintains the content of other particle groups unchanged, preserving the continuity of the original soil grading. The particle grading curves of the soil samples before and after replacement are illustrated in Figure 3. According to the laboratory tests, the maximum dry density and optimal moisture content of the soil sample are 2.17 g/cm³ and 6.8%, respectively, with a salt content of 3.0%. It belongs to the chloride type of moderately saline soil.
[image: Figure 3]FIGURE 3 | Particle size distribution. (A) grading curve (B) soil samples before and after replacement.
2.2 Test instruments
The equipment used in this dynamic triaxial test is the temperature-controlled bidirectional vibration triaxial test system (DYNTTS) produced by GDS company in the United Kingdom. It mainly includes a power drive device, back pressure and confining pressure controller, temperature control system, and data acquisition device, as shown in Figure 4. The main technical indicators and parameters are as follows: the axial load range is 0–60 kN, the confining pressure control range is 0–20 MPa, the loading frequency range is 0–10 Hz, the axial displacement limit is ±100 mm, and the temperature range is N.T.P. (Normal Temperature and Pressure) to −30°C. The temperature is controlled by a refrigeration compression circulator, and the freeze-thaw cycle process of saline soil is achieved by continuously regulating the temperature of the frozen liquid within the pressure chamber through it.
[image: Figure 4]FIGURE 4 | GDS dynamic triaxial test system.
The computed tomography (CT) is a highly accurate non-destructive testing technique. Its principle is to reflect the internal structure of an object by comparing the intensity before and after X-ray incidence, without damaging or changing the tested object. Generally, the higher the material density, the stronger the absorption ability of X-rays, and the greater the brightness displayed on CT images (Zhu et al., 2015; Hu et al., 2018). The CT scanning tests were performed using the YXLON FF85 CT, an innovative and versatile high-resolution CT system, as depicted in Figure 5. The sample scanning accuracy used in this detection test is 39 μm.
[image: Figure 5]FIGURE 5 | High resolution industrial CT System. (A) YXLON FF85 CT (B) Inside X-ray protection cabinet.
2.3 Experiment scheme
This research area features a typical plateau continental climate, with an altitude ranging from 2,680 to 2,800 m. The average temperature from January to April and September to December is below zero, with a historical minimum temperature of −36°C. The temperature from May to August ranges from 5°C to 15°C, with the highest temperature reaching 25°C. The temperature at night in summer ranges from −3°C to −5°C, with a significant difference in temperature between day and night. To simulate the freeze-thaw cycle caused by large temperature differences in the context of global warming and humidifying climate trends in high-altitude salt lake regions, this experiment controlled the minimum temperature at −25°C and the maximum temperature at 25°C, with a temperature reduction and heating rate of 0.1°C per minute. A significant body of literature suggests that for specific types of soil, when the freeze-thaw cycle surpasses 10 times, the trend of soil strength attenuation decreases significantly and stabilizes (Wang et al., 2017; Wang et al., 2020; Fan et al., 2021; Xu et al., 2021). Due to the excessively long freeze-thaw cycle test, conducting each cycle test from 0 to 10 times will span different seasons, leading to significant temperature variations in the indoor test environment and causing substantial errors in the test results. Therefore, to ensure the comprehensiveness of the test plan and the timeliness of the test results, the numbers of freeze-thaw cycles in this test have been set to 0, 1, 3, 5, and 7, based on the initial stage test results and conclusions drawn from numerous references, and the freezing and melting processes each continued for 12 h, simulating one freeze-thaw cycle.
Considering the impact on the natural ecological environment of the salt lake area, the entire route of the Sebei-Qarhan Highway is designed based on the principle of low embankment and gentle slope, with a height range of 1.0–1.5 m. When the volume-weight of the fill is 20 kN/m³, the soil confining pressure ranges from 10 to 30 kPa. Therefore, the confining pressure in the dynamic triaxial test is 20 kPa. Considering the limitations posed by complex geological and construction conditions, the compaction degree of CGSS is controlled at 0.92. As shown in Figure 6, the sinusoidal loading waveform is applied to the unidirectional pulse and continuous stress of the soil within the subgrade under vehicle load. Here, σc represents the confining pressure, σs denotes the static deviator stress, and σd indicates the cyclic stress amplitude. In order to simulate the long-term effect of vehicle load on the subgrade soil, the test is completed when the loading number reaches 10,000 times or the axial strain reaches 12%, with a load frequency of 1.0 Hz and a dynamic stress amplitude of 20–200 kPa, as listed in Table 1.
[image: Figure 6]FIGURE 6 | Schematic of sinusoidal axial loading process.
TABLE 1 | Loading conditions.
[image: Table 1]In order to clearly describe the mechanism of long-term performance degradation of the CGSS subgrade under the coupling effect of climate change and traffic loading, the typical samples of triaxial tests were analyzed by selecting the CT images from both transversal and longitudinal sections, as shown in Figure 7. The changes in micro parameters of the internal soil structure under freeze-thaw cycles and cyclic loads are primarily studied. In consideration of the integrity of soil structure, samples subjected to dynamic stress amplitudes of 30 kPa, 60 kPa, and 90 kPa are being analyzed.
[image: Figure 7]FIGURE 7 | Scanning position.
3 ANALYSIS OF TEST RESULTS
3.1 The effect of freeze-thaw cycles on initial strain
The results indicate that the sample undergoes a significant initial strain after the first cyclic loading (N = 1), and the consistency of this strain is low, which is much smaller than the strain generated by subsequent cyclic loading (N > 1), as shown in Figure 8. Therefore, when analyzing the cumulative strain law of CGSS, the development of strain is divided into two stages based on the loading number: first, the initial strain (εini) generated under the first load; second, the regular cumulative strain (εreg) generated by subsequent loads. Thus, the cumulative plastic strain can be expressed as the sum of [image: image] and [image: image], as follows:
[image: image]
[image: Figure 8]FIGURE 8 | Schematic diagram of cumulative strain calculation in dynamic cyclic tests.
Figure 9 shows the variation of initial strain with dynamic stress amplitude for different freeze-thaw cycles (F). Previous studies have shown that freeze-thaw cycles have a significant impact on soil structure (Liu et al., 2016; Lu et al., 2016; Wang et al., 2020; Xu et al., 2021; Yang et al., 2021). From the figure, it can be seen that the initial strain increases non-linearly with dynamic stress. After the first freeze-thaw cycle, the initial strain increases by 1.16–1.33 times. When the number of freeze-thaw cycles is 5 and 7, the difference in initial strain between the two is very small. Using a power function to fit the initial strain under different freeze-thaw cycles, the parameters “a” and “b” exhibit a linear relationship with F (Figure 10), as depicted in fitting Eq. 2.
[image: image]
[image: image]
[image: Figure 9]FIGURE 9 | Changes in initial strain under different freeze-thaw cycles.
[image: Figure 10]FIGURE 10 | The variation of parameters a and b with the number of freeze-thaw cycles.
3.2 The effect of freeze-thaw cycles on cumulative strain
Figure 11 illustrates the variation of cumulative strain with dynamic stress amplitude for different freeze-thaw cycles (F). It can be seen that both dynamic stress amplitude and temperature (freeze-thaw cycle) have a significant impact on the cumulative plastic strain (Zhang et al., 2016). The cumulative strain curve of the failure mode sharply increases within 100 loading cycles, leading to rapid failure. When the freeze-thaw cycle ranges from 0 to 1, the critical dynamic stress for sample failure is between 150 kPa and 200 kPa. When the freeze-thaw cycle ranges from 3 to 7, the critical dynamic stress ranges from 90 kPa to 120 kPa. When the number of freeze-thaw cycles is 5 and 7, the cumulative deformation curves under the same dynamic stress amplitude are very close, which is consistent with the experimental results of the initial strain. Meanwhile, the critical dynamic stress varies greatly under different freeze-thaw cycles. When the freeze-thaw cycle in the initial phase (0–1 times), The critical dynamic stress range for specimen failure is 150–200 kPa. When the freeze-thaw cycle reaches 3–7 times, the critical dynamic stress range for specimen failure is 90–120 kPa.
[image: Figure 11]FIGURE 11 | The cumulative strain variation with different freeze-thaw cycles. (A) Freeze-thaw cycle F = 0 (B) Freeze-thaw cycle F = 1 (C) Freeze-thaw cycle F = 5 (D) Freeze-thaw cycle F=7.
Figure 12 illustrates the variation of cumulative strain of CGSS with different freeze-thaw cycles under semi-logarithmic coordinates. It can be observed that the stable cumulative strain curve under different freeze-thaw cycles exhibits a three-stage characteristic. The cumulative strain at different stages is fitted using a logarithmic function, as shown in Eq. 3.
[image: image]
[image: Figure 12]FIGURE 12 | Cumulative strain variation in semi logarithmic coordinates. (A) Freeze-thaw cycle F = 1 (B) Freeze-thaw cycle F = 3 (C) Freeze-thaw cycle F = 5 (D) Freeze-thaw cycle F=7.
Based on the triaxial cyclic test of compacted loess conducted by Wang (2019), it was observed that the cumulative strain under long-term, low-intensity cyclic loading shows an increasing trend when plotted on a semi-logarithmic coordinate system. This observation implies a significant difference in the evolution of strength properties between fine-grained and coarse-grained soils when exposed to long-term cyclic traffic loads. This difference can be attributed to the varying mechanical properties resulting from the distinct soil structures. In saline soil, the freeze-thaw cycle process significantly alters the original internal soil structure. Therefore, the subgrade soils endure not only numerous cyclic loads that are below the shear strength but also the detrimental effects of freeze-thaw cycles, ultimately leading to significant deformations in the subgrade (Zhou et al., 2016; Xu et al., 2020; Xu et al., 2021).
3.3 Analysis of damage evolution based on CT scanning
The principles of CT scanning imaging and the CGSS samples after the triaxial test are shown in Figures 13, 14. After passing through the material, variances in X-ray intensity are produced due to differences in attenuation, which are then captured at the receiving terminal. Then, the changes in radiation intensity are converted into CT value variations through detectors, computers, etc., and represented in grayscale values on the image. The attenuation law they proposed satisfies Eq. 4 (Yao et al., 2021).
[image: image]
[image: image]
[image: Figure 13]FIGURE 13 | CGSS samples of triaxial tests.
[image: Figure 14]FIGURE 14 | Principles of CT scanning imaging.
Where I and I0 are the light intensity before and after X-ray irradiation; um is the unit mass absorption coefficient of the tested sample, ρ is the density of the tested sample; X is the length of ray penetration; u is the attenuation coefficient of a line passing through a tested sample of 1 cm.
Due to the differences in X-ray absorption among different materials, the CT value represents the material’s ability to absorb X-rays, which can determine the density status of the material. Hounsfield proposed the following definition for the CT value (Hounsfield, 1973):
[image: image]
Where Hρ is the CT value of the scanned sample; uw is the absorption coefficient of water (uw = uw, Hρ=0, i.e. uw can be used as the CT standard value).
Figure 15 displays scanning images of CGSS samples under various sections and test conditions, illustrating the soil structure’s condition under different freeze-thaw cycles and cyclic loads. Figures 15A,B show the CT images without undergoing freeze-thaw cycles (F = 0) and with dynamic stress amplitudes of 30 kPa and 60 kPa. After 10,000 loading cycles, numerous pores and small internal cavities appear on various sections of the CGSS samples, with no cracks, and the initial damage is not readily apparent. When the number of freeze-thaw cycles is 1, and the dynamic stress amplitude remains at 60 kPa, the number of pores in the section increases, and local transverse cracks appear. When the number of freeze-thaw cycles increases to 3 and 5, the cracks in the central area of sample sections develop significantly. Additionally, when the dynamic stress amplitude increases to 90 kPa, the sample exhibits significant lateral deformation, with the central part showing a drum shape. When the number of freeze-thaw cycles reaches 7, the crack width rapidly expands, forming a Y-shaped crack throughout the sample. When the number of freeze-thaw cycles is 5 and 7, the damaged area is very similar, which aligns with the findings of the dynamic triaxial test. 
[image: Figure 15]FIGURE 15 | Effects of freeze-thaw cycles and cyclic loads on pore development in specimens. (A) F = 0, σd = 30 kPa (B) F = 0, σd = 60 kPa (C) F = 1, σd = 30 kPa (D) F = 1, σd = 60 kPa (E) F = 3, σd = 60 kPa (F) F = 5, σd = 60 kPa (G) F = 5, σd = 90 kPa (H) F = 7, σd = 90 kPa.
The CT value can reflect the average density of geotechnical materials, and its variation reflects the damage to the internal structure. As the degree of internal defect development increases, the average CT value decreases. The CT values of the central (cross-sectional) and axial (vertical-sectional) surfaces of samples under different working conditions were obtained from the scanning test. From Figure 16, it can be seen that there is a significant difference in CT values among different scanning sections under various working conditions. The CT value without freeze-thaw cycles is around 120 Hounsfield units (Hu), and the CT value is highest when the dynamic stress amplitude is 60 kPa.
[image: Figure 16]FIGURE 16 | CT values of each scanning section under different working conditions. (A) Sample central part (cross-section) (B) Sample axial plane (vertical-section). (Unit: Hu).
This indicates that without freeze-thaw cycles, the soil continues to be compacted under dynamic loads, and the compaction deformation between soil particles is much greater than the lateral deformation. When the number of freeze-thaw cycles is 1, the CT value rapidly decreases. With a dynamic stress amplitude of 30 kPa, the CT value decreases by 18.55%, and with a dynamic stress amplitude of 90 kPa, the CT value decreases by 29.27%. It can be observed that the CT value of the cross-section is typically sensitive to freeze-thaw cycles. This sensitivity suggests that the freeze-thaw cycle process can notably decrease the soil’s compactness, resulting in deformation and failure under dynamic loads. Under the same number of freeze-thaw cycles, when the amplitude of dynamic stress increases from 60 kPa to 90 kPa, the CT value of the cross-section decreases by 16.35%–21.84%, and the CT value of the vertical section decreases by 17.86%–26.47%. Under the same dynamic stress amplitude, as the dynamic stress amplitude increases, the CT value on the scanning section continues to decrease. The degree of decrease in the cross-section is greater than that in the vertical section. When the number of freeze-thaw cycles is 5 and 7, the CT values of the transverse and vertical sections are relatively close, which is consistent with the results of the cyclic dynamic triaxial test. This indicates that during the dynamic triaxial test, the CT value on the vertical section of the sample is more sensitive to the increase in dynamic load, while the CT value on the cross-section is more sensitive to the early freeze-thaw effect.
To quantify the coupling effect of freeze-thaw cycles and dynamic load on CGSS performance, the CT damage variable D can be used for analysis, as shown in Eq. 6 (Hu et al., 2018).
[image: image]
Where m0 is the spatial resolution; Δρ is the density change value of the scanning layer; ρ0 is the initial density value of the material.
According to Table 2, under the same freeze-thaw cycle, the dynamic stress amplitude increases from 60 kPa to 90 kPa, and the damage variable value D increases by 9.3%–27.3%. When the dynamic stress amplitude is 60 kPa, the number of freeze-thaw cycles F increases from 0 to 7, and the damage variable value D increases by 1.02 times. This indicates that cyclic loading continuously enhances the expansion and connectivity of cracks between soil particles after freeze-thaw cycles, which is also the main reason for the possible cracking of the subgrade during long-term service.
TABLE 2 | CT damage variable values.
[image: Table 2]4 CONCLUSION
This paper analyzes the impact of different freeze-thaw cycles on the long-term performance of coarse-grained saline soil in high-cold salt lake areas under cyclic loading, focusing on both macro and meso aspects. The main conclusions are as follows.
(1) The freeze-thaw cycle process has a significant impact on the long-term deformation of CGSS under cyclic loading. The axial cumulative dynamic strain of the sample increases notably with the rise in freeze-thaw cycles, with the critical freeze-thaw cycle number being 5.
(2) The cumulative dynamic strain of CGSS under semi-logarithmic coordinates exhibits a three-stage characteristic as cyclic loading times increase. Two critical loading times are identified at N = 20 and N = 1,000. A three-fold line can be employed to establish a prediction model for the cumulative strain of CGSS subgrade fillers influenced by freeze-thaw cycles.
(3) The variation pattern of CT values can reflect the internal damage situation. A lower CT value corresponds to a more advanced degree of defect development. During the dynamic triaxial test process, the CT value on the vertical section is more sensitive to the increase in dynamic load, while the CT value on the cross-section is more responsive to the early freeze-thaw cycle effect.
(4) With the same freeze-thaw cycle, an elevation in dynamic stress amplitude leads to a 9.3%–27.3% escalation in the damage variable value D. Specifically, when the dynamic stress amplitude is 60 kPa, and the number of freeze-thaw cycles increases from 0 to 7, the damage variable value D, increases by a factor of 1.02.
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In order to quantitatively analyze the roughness of the bench floor during open-pit mine blasting, this study proposes a real-time measuring method for the three-dimensional terrain of the bench floor during the excavation process. Real-time monitoring is conducted at the boundary and discrete internal points of the workbench floor during electric shovel operation, utilizing real-time kinematic global navigation satellite system (RTK-GNSS) positioning technology. An improved convex hull algorithm is introduced to automatically extract the optimal boundary of discrete point clouds based on their spatial distribution characteristics. This study establishes a digital elevation model (DEM) using five interpolation algorithms for 3D terrain visualization simulation. Through cross-validation, a comparative analysis of the DEM accuracy, the simulation results of the ordinary kriging interpolation algorithm were found to be optimized. The optimized interpolation algorithm is applied to simulate the 3D terrain in the Dexing open-pit copper mine, and the relevant terrain parameters were calculated. This dataset can serve as a precise foundation for the real-time path planning of elevation blasting design and ground leveling operations.
Keywords: open-pit mine, bench floor, terrain, interpolation algorithm, digital elevation model
1 INTRODUCTION
The effectiveness of blasting techniques in open-pit mining significantly influences economic outcomes and project timelines (Wei et al., 2022). For example, an unavoidable rock bank after a blast can affect the efficiency of shoveling and transportation and the location and depth of subsequent precise drilling. Mining technicians depend on their experience to survey the terrain of the bench surface after blasting and determine the reference height and smooth operation path; this leads to low operational efficiency and difficulty in providing digital support for subsequent bench blasting designs. Consequently, a rapid measurement technology for open pit bench floor terrain is here studied. In recent years, the global navigation satellite system (GNSS) has been widely used in the terrain measurement of open-pit mines for terrain mapping, mining area deformation monitoring, control measurement, and laying out drilling holes (Duan et al., 2015; Fang, 2019; Wang, 2020; Zhang et al., 2022a). A digital elevation model (DEM) for the bench floor is established here by collecting GNSS data. Digital information on the bench floor DEM is used for subsequent leveling operations and blasting design.
The measurement technology for bench terrain is mainly divided into vehicle carrying and unmanned aerial vehicle carrying methods. The latter requires data acquisition after excavation of the rocks that cover the surface of the bench by electric shovel. Due to limitations in battery life, unmanned aerial vehicles are unable to continuously conduct real-time measurements. Therefore, many research institutions have developed vehicle carrying GNSS rapid terrain survey methods. For example, Hokkaido University in Japan developed a laser range finder and GNSS to measure a 3D terrain map by autonomous vehicles (Yokota et al., 2004; Huang et al., 2017). Meng developed an airborne 3D terrain survey system based on real-time kinematic (RTK)-GNSS, verifying that the system had higher measurement accuracy when the vehicle runs at low speed (Meng et al., 2009). Li H.P. developed a GNSS rapid terrain measurement system for farmland to obtain static elevation measurement accuracy of less than 1 cm (Li et al., 2014). Fan et al. (2019) and Jing et al. (2019) adopted a terrain survey method based on the combination of a GNSS double antenna, an attitude heading reference system, and the RTK positioning algorithm with double antenna configuration; this effectively reduced measurement error by 10% compared to single antenna measurement. RTK technology can be employed to further improve GNSS positioning accuracy with reasonable environmental adaptability and stability (Wang et al., 2023).
The original positioning data obtained by airborne GNSS have the problems of voids, non-uniformity, and high degree of dispersion, which need to undergo filtering, classification, and interpolation to obtain high-precision DEM. The accuracy of DEM is directly affected by the interpolation algorithm, which makes the application of airborne GNSS in the study of terrain process difficult. Ordinary kriging (OK), radial basis function (RBF), inverse distance weighting (IDW), irregular network triangulated mesh (TIN), and natural neighbor (NN) interpolation algorithms can be used to simulate DEM and address the problems of voids (Bater and Coops, 2009; Erdogan, 2009; Guo et al., 2010; Shen et al., 2012; Chu et al., 2014; Lv et al., 2015; Montealegre et al., 2015; Montealegre et al., 2015; Viswanathan et al., 2015; Chen et al., 2018; Hekmatnejad et al., 2019; Gao et al., 2021). Previous studies have shown that DEM accuracy is significantly affected by factors such as interpolation methods, sampling density, spatial resolution, and terrain changes. Anderson discussed the influence of data density simplification on DEM accuracy (Anderson et al., 2006). Aguilar compared the effects of different interpolation methods and resolutions on DEM accuracy (Aguilar et al., 2003; Aguilar et al., 2005; Huang et al., 2020). However, few studies have applied different interpolation algorithms to airborne GNSS point clouds and explored the errors of the DEM obtained.
It is a challenge to simulate the whole flat and local roughness of the bench floor in an open-pit mine. The unknown accuracy error of DEM is one of the main reasons limiting the application of airborne GNSS in the 3D terrain research of bench floors.
In this paper, the real-time acquisition of coordinate data is based on the RTK-GNSS positioning acquisition system installed with an electric shovel. Five interpolation algorithms were used to simulate the bench floor DEM. The influencing factors and errors of DEM accuracy are compared and analyzed A three-dimensional terrain model of the bench floor is developed by Python. The model allows further analysis of the terrain parameters related to the bench floor and provides an assessment of the flatness of the bench floor during the electric shovel’s digging process after blasting. The critical analysis enables mining engineers a timely understanding of the changes in bench floor height, ensuring efficient and safer operations.
2 DATA ACQUISITION AND RESEARCH METHODS
2.1 Data acquisition
During the loading operation of the electric shovel, real-time measurement of the bench floor terrain is achieved by tracking the coordinates of the moving point of the shovel. As Figure 1 shows, the shovel is equipped with a RTK-GNSS positioning device as the research platform of terrain real-time measurement, and the vehicle body coordinate system is established with the ground projection of the positioning antenna phase center as the origin. The 3D surface coordinates of the walking path of the electric shovel were accurately measured according to the fixed elevation difference between the GNSS antenna and the ground. The Trimble BD982 GNSS dual antenna satellite board was chosen as the positioning system, offering an RTK positioning accuracy of approximately 0.015 m and 0.008 m vertically and horizontally.
[image: Figure 1]FIGURE 1 | Position measurement during movement of the electric shovel.
As shown in Figure 2, the data acquisition system was installed on an electric shovel in an open-pit mine to monitor the coordinate data of the bench floor, including four feature vectors: longitude (X), dimension (Y), elevation (Z), and time (T). In order to quantitatively evaluate the terrain of the bench floor, it was difficult to construct the global bench floor DEM at the one time. In this study, according to the continuity and spatial distribution characteristics of data acquisition over time, six groups of representative regions with varying terrains were selected for research during the operational period of the electric shovel. Table 1 presents the statistical information of the data, including the number of points, elevation range and standard deviation, and the average distance between the discrete points.
[image: Figure 2]FIGURE 2 | Data acquisition system based on RTK-GNSS positioning. (A) Positioning base station. (B) GNSS and radio antenna. (C) Acquisition terminal equipment.
TABLE 1 | Collection information on the datasets.
[image: Table 1]2.2 Materials and methods
The Python programming language was utilized for analysis of the monitoring data, incorporating algorithms such as discrete points boundary identification, interpolation, and terrain factor calculation. Figure 3 shows the DEM modeling analysis process of the bench floor. First, the discrete points identification boundary algorithm is introduced to delineate the research area of the bench floor. Second, the discrete points in the effective region are randomly divided into two parts: 80% training sets and 20% test sets. Third, various algorithms are employed to interpolate the training sets within the study area, leading to a discussion on the errors in the DEM generated by different algorithms. Furthermore, an analysis is conducted on the impact of interpolation parameters, data density, the terrain characteristics of the interpolation methods, ultimately culminating in the selection of the optimal interpolation algorithm. Finally, the relevant parameters and indices of describing the bench floor are calculated based on DEM model.
[image: Figure 3]FIGURE 3 | DEM modeling analysis process of the bench floor.
2.2.1 Discrete point boundary extraction algorithm
This study proposes an improved algorithm that can automatically extract the optimal boundary of an arbitrary point distribution based on the convex hull model algorithm (Qian and Liu, 2007; Liu et al., 2011; Yang, 2021). In the improved algorithm, the α-shape algorithm which automatically adjusts the 2α value is used to extract the boundary in the two-dimensional mesh. Figure 4 shows the process of extracting the boundary.
[image: Figure 4]FIGURE 4 | Flowchart of the point cloud boundary extraction algorithm.
Coordinate points are projected onto a two-dimensional plane along the Z-axis, maintaining the X and Y values. The neighborhood grid point detection method determines the internal and boundary grids. Hengl demonstrated that the optimal DEM grid resolution should be half the average point distance (Heng, 2006). Therefore, the size of the grid should be set to half the average distance of the points.
The vertical lines of the x and y-axes were drawn according to the boundary grid points to generate rectangular bounding boxes. The discrete points in the non-boundary grid were excluded by triangular meshing in the inner point cloud of the rectangular region, and the discrete points in the boundary grid were identified using the convex hull algorithm (He et al., 2023). Figure 5A shows an example of a minimum convex algorithm. The minimum rectangular bounding box (A-B-C-D) is first determined; subsequently, the uppermost point [image: image] and the lowest point [image: image] are connected. The rectangular bounding box is divided into left and right parts. On the left side of the data, the top, bottom, and leftmost points are connected to each line segment; points a and b are furthest from the outside of the line segment and connect a to [image: image], a to [image: image], b to [image: image], and b to [image: image], respectively. The same method was applied to the four lines formed by points a and b, and all boundary points of the left half were found in turn. The right half of the data is processed according to the same method. The algorithm is capable of effectively extracting the minimum convex deformation boundary; however, it cannot concave the boundary.
[image: Figure 5]FIGURE 5 | Simulated point cloud and its boundary extraction. (A) Convex hull boundary extraction. (B) Improved algorithm for concave boundary extraction.
The proposed improved algorithm was used to extract the point cloud concave boundary. It sets 2α based on the convex boundary segment lengths. Shorter lengths indicate adjacent points, while longer lengths suggest non-adjacent points. Therefore, the quartile of each length value of the convex boundary line is counted. The value of 2α is determined as the highest quartile. Subsequently, the concave boundary points are extracted. Concave boundaries are then found where convex boundary lengths exceed 2α, using the α-shape algorithm.
As shown in Figure 5B, First, the α-shape algorithm is used when line segment [image: image]. A circle with [image: image] as its diameter is rolled counterclockwise from P to Q ([image: image], [image: image]). When the first point is P1 in the 2α neighborhood, calculate the modulus of P1Q. If [image: image] is still true, the next point P2 is found according to the above method. Repeat the process until Pn is found where [image: image] at which point the process stops. Finally, the optimal boundary is found by connecting all the boundary points in turn.
2.2.2 Interpolation method
Spatial interpolation transforms spatially continuous points into continuous data surfaces (Mao, 2007; Tang, 2014; Huang et al., 2023). Five interpolation methods (IDW, RBF, TIN, NN, and OK) were selected for DEM construction, with a comparative analysis conducted to evaluate accuracy and factors affecting interpolation errors.
(1) Interpolation method
The IDW calculated the weighted average using the distance between the sampling point and the interpolation point as the weight. The IDW interpolation is expressed as Eq. 1 (Achilleos, 2008):
[image: image]
where [image: image] is the elevation value of the point to be measured, [image: image] is the number of sample points, [image: image] is the elevation value of the [image: image] sample point, [image: image] is the Euclidean distance from the measured to the sample point, and [image: image] is a power with a value in the range of 1–3.
The RBF is more appropriate for computing homologous spatial interpolations. RBF established in Eq. 2:
[image: image]
where [image: image] is the radial basis function, [image: image] is the Euclidean distance from the point to be interpolated to the sampling point, [image: image] is the interpolation coefficient, and n neighborhood points are searched by reference to a kd-tree (Zhou et al., 2008).
The TIN builds triangles using a sequence of points (Cao et al., 2014). However, it has the disadvantage that there may be sudden changes in the edge gradient (Li and Heap, 2014).
The NN is based on the mesh division within the sample region, and attribute values of the mesh vertices and interior are obtained using the linear interpolation method (Mao, 2007).
The OK is a geostatistical method that uses the variance function as weights to unbiased optimal estimation. The OK interpolation method uses the variation function to express the spatial variation (Anderson et al., 2006; Viswanathan et al., 2015; Hekmatnejad et al., 2019), according to Eq. 3:
[image: image]
where [image: image] is the weight coefficient. The weight coefficients can be obtained by the theoretical variogram model. The variogram model and its related parameters (nugget value, variation range, and partial base value) are key factors that affect the interpolation accuracy (Zhang, 2014). Variogram function models include spherical, Gaussian, and exponential model (Zhang et al., 2022b). It is crucial to select a reasonable theoretical variogram function model and parameters for simulation accuracy. First, semi-variance values for different lag distances are calculated using the sample data, leading to the construction of an experimental variogram. The chart illustrates the spatial correlation of the sample data as distance varies. Second, the best model describing the spatial structure of data is selected based on the experimental value. Third, the nugget, range, and sill of the theoretical variogram model are estimated using the nonlinear least squares fitting method. It is necessary to evaluate the degree of fit by observing the residual, calculating the fitting coefficient, or comparing graphs.
(2)Data density
Due to the presence of duplicate and null values in the original data, the study area is divided into grids of equal spacing. Duplicate data points within each grid were filtered to retain the mean value. The maximum sampling rate is defined as the ratio of the number of original samples to the total number of grids.
The error of DEM is constructed by different density point clouds. The training data is set down to the grid resolution under densities of 70%, 60%, 50%, 40%, 30%, 20%, and 10%. The amount of extracted data is shown in Table 2.
(3) Error evaluation
TABLE 2 | Number of sample points after data reduction.
[image: Table 2]Some test data are used to verify DEM accuracy. Grid elevation values from the DEM are extracted at verification point locations. Based on the extracted grid elevation values and the corresponding verification point’s elevation values, the error index is calculated, and the error of the interpolation algorithm is evaluated.
The root mean square error (RMSE), calculated as Eq. 4, and goodness of fit (R2), calculated as Eq. 5, methods are selected as error evaluation indices. When the RMSE value is smaller or R2 is closer to 1, the error of the DEM simulation is optimal.
[image: image]
[image: image]
where [image: image] is the predicted value, [image: image] is the truth value, n is the number of samples used to validate the test sets, and [image: image] is the average elevation.
2.2.3 Terrain parameters
In order to quantitatively analyze the roughness of the bench floor, three evaluation indexes are defined as regional area, surface slope, and roughness.
(1) Regional area
The set boundary coordinates are [[image: image]], and [image: image] is the number of boundary points. The regional area is expressed as:
[image: image]
(2) Surface slope
Assuming that the fitting slope equation could be written as [image: image], the coefficients A, B, and D were obtained by using the least-squares method to fit the interpolated data. The surface slope ([image: image]) is calculated thus:
[image: image]
(3) Surface roughness
Surface roughness refers to the degree of deviation between real and ideal surfaces in the vertical direction. The standard deviation of the vertical distance from each point to the fitting surface is calculated as [image: image]. If [image: image] is smaller, the roughness is smaller.
The vertical distance from each point [image: image] to the fitting surface after interpolation is expressed as follows:
[image: image]
All points on the fitting surface [image: image] have a vertical distance average and standard deviation [image: image] such that
[image: image]
[image: image]
The overcut or undercut areas can be used for terrain indexes. These areas are determined by judging whether the distance ([image: image]) from each point to the fitting surface exceeds the threshold range ∆d (∆d=0.3 m). sgrid is the size of the model grid.
[image: image]
3 RESULTS AND DISCUSSION
3.1 Interpolation algorithm parameters
Parameters of the interpolation algorithms were considered as follows: the power of the IDW was set to 2, and 30 adjacent points were searched. The RBF used a Gaussian RBF to search for 30 adjacent points. The TIN constructed triangular mesh for linear interpolation. Parameters of the OK were obtained through fitting the experiment and theoretical variance functions from each sample data. The fitting process utilized the nonlinear least squares method, iteratively adjusting the model parameters to minimize the differences between the theoretical and experimental variograms. Consequently, the range, sill, and nugget of the theoretical variograms were determined through this iterative refinement process.
Theoretical variogram models such as the Gaussian, exponential, and spherical models are selected based on the experimental variogram graph. As shown in Figure 6, the scatter of the experimental variation function and the curve of the theoretical variation function were fitted. The fitting coefficients (R2) for the spherical, Gaussian, and exponential models are 0.968, 0.937, and 0.899, respectively. The optimal variogram model is the spherical model, its range β, nugget value [image: image], and range value [image: image] being 106, 0.02, and 0.192, respectively.
[image: Figure 6]FIGURE 6 | Experimental and theoretical variogram models of Tb.175-1.
3.2 DEM of the bench floor
Taking the Tb.175-1 as a case (Figure 7), the visualization effects of different interpolation algorithms to simulate bench floor DEM are compared. The DEMs from five interpolation algorithms fill gaps and capture terrain trends yet differ markedly in visual quality. In Figure 8A, the IDW is easily affected by the density of extreme points. Enhancing the sample count improves terrain detail retention. In the cavity regions, the interpolation outcomes were similar, resulting in a smooth surface influenced by neighboring points. In Figure 8B, the surface is not continuous and smooth, and the fluctuation phenomenon at the boundary position is especially significant. In Figure 8C, TIN adopts linear interpolation to generate multiple abnormal “step” surfaces in the dotted cavity area, which is completely different from the real bench floor terrain. The NN (Figure 8D) offers smoothness in uniformly sampled areas but generates a “sawtooth” edge effect where samples are lacking. The OK (Figure 8E) considers global points distribution in the interpolation calculation of terrain in the void and nonuniform scattered areas, delivering a smooth DEM that accurately delineates terrain undulations and effectively reflects local variations.
[image: Figure 7]FIGURE 7 | Distribution of original discrete points.
[image: Figure 8]FIGURE 8 | DEM results of different interpolation methods. (A) IDW interpolation result. (B) RBF interpolation result. (C) TIN interpolation result. (D) NN interpolation result. (E) OK interpolation result.
After comparing the DEM results, the accuracy of each interpolation method is verified by using the truth value on the simulated elevation data. As shown in Figure 9, the desired value (black line) indicates that the estimated value is the same as the truth value. The distance between the estimated value of each algorithm and the black line segment indicates the error value.
[image: Figure 9]FIGURE 9 | Verification of the truth and estimated values of Tb.175-1 elevation.
The weight value of the OK interpolation optimizes continuity and smoothness by considering the distance between the interpolation and sampling points and their spatial distribution relationship. Conversely, other algorithms have limited weights, resulting in poor simulation results in blind areas and edges.
3.3 DEM error of different interpolation methods
3.3.1 Data density factor
By studying the variations in RMSE values at different data densities, we aim to uncover the performance of DEM interpolation methods in the Tb.175-1 area and understand the impact of data density on DEM error.
Figure 10 shows the RMSE of five interpolation methods as influenced by data density. Increasing data density leads to a gradual RMSE reduction before stabilization. Notably, RBF is less affected by lower data density (<40%). However, RMSE values exceed 0.2 m for all algorithms between 10% and 40% density. IDW is notably sensitive to sampling density in terrain fluctuating areas. Between 40% and 60% density, errors decrease notably, with NN showing the largest reduction (0.27 m–0.154 m) and TIN the smallest (0.24m–0.15 m). Above 60% density, errors plateau below 0.2 m, indicating minimal impact on DEM accuracy. This shows that the interpolation methods have less influence on DEM accuracy when data density is larger. The maximum sampling rate of TB175-1 is 74% of the whole grid due to the reduction of sampling data and sampling blind area. At the maximum sampling rate, the RMSE values for OK, RBF, IDW, TIN and NN are 0.101 m, 0.13 m, 0.144 m, 0.152 m, and 0.156 m, respectively.
[image: Figure 10]FIGURE 10 | RMSE of the algorithm for different data densities.
3.3.2 Regional terrain factor
The DEM errors of six test areas were compared and analyzed under the maximum sampling rate. As shown in Figure 11, OK interpolation demonstrates the highest accuracy, with an RMSE below 0.22 m and R2 exceeding 0.909 for the same sample data. Conversely, IDW exhibits the largest RMSE, with three test areas (Tb.218-1, Tb.218-2, and Tb.230-2) exceeding 0.32 m and R2 below 0.853. Based on the algorithm’s principle, IDW estimates cannot surpass the elevation range of sampling points, leading to significant errors in terrain with limited sampling. RBF, TIN, and NN algorithms show similar RMSE values, with consistent trends across all samples.
[image: Figure 11]FIGURE 11 | RMSE of DEM-generated different interpolation algorithms.
The overall variation trend of DEM error is positively correlated with surface roughness. For example, the RMSE of the DEM errors in Tb.218-1 considering roughness are highly significant. Therefore, when the floor is very rough, the number of samples should be increased to the highest possible extent to enhance the terrain detail retention ability and reduce interpolation errors.
The above analysis shows the following. 1) The interpolation algorithms can be ranked according to RMSE values, from smallest to largest: OK, TIN, RBF, NN, and IDW. 2) When the sampling density is low, IDW shows the highest error while RBF exhibits the lowest. For sampling rates exceeding 60%, all five interpolation methods demonstrate minimal errors, showcasing good robustness. 3) OK is least impacted by terrain features when sampling density requirements are met. Therefore, the optimal OK interpolation yields the minimum accuracy error RMSE, which is close to that of the real surface.
3.4 Analysis of bench floor terrain
The DEMs were established using the OK interpolation algorithm. As shown in Figure 12A−F, contour maps are visualized for the floor terrain.
[image: Figure 12]FIGURE 12 | Simulation results of the bench floor contour map. (A) Tb175-1 contour map. (B) Tb218-1 contour map. (C) Tb218-2 contour map. (D) Tb230-1 contour map. (E) Tb230-2 contour map. (F) Tb232-1 contour map.(a)(b)
According to Eqs (6–11), the bench floor terrain parameters are calculated as shown in Table 3. The average slope of the bench floor in six test areas is 1.34%, with an average roughness of 0.21 m and average undercut rate approximately three-times higher than the overcut rate. The presence of concave and convex terrain on the bench floor locally obstructs the digging operation of the electric shovel bucket, impacting efficiency of transportation by electric wheels. In particular, the undercut rates of Tb175-1 and Tb218-2 exceed the average, reaching 20.61%, 24.68%, and 18.86%, respectively. This higher undercut rate post-blasting may be the underlying cause of the challenges faced during shovel digging operations. Moreover, the overall slope of Tb230-1 exceeds the average value by 3.41%, and Figure 12D depicts a significant elevation difference between the highest and lowest points of the bench floor DEM; the standard deviation of the actual elevation at 0.88 indicates unfavorable conditions for subsequent vertical drilling activities. The local roughness of the Tb.218-1 is 0.39 m, highlighting the undulating terrain.
TABLE 3 | Calculation results of terrain parameters of the bench floor.
[image: Table 3]4 CONCLUSION
To meet the practical demands of production management in open-pit mines, this study proposes a method for assessing the terrain of the bench floor. The conclusions as follows:
(1) An optimized convex hull boundary recognition algorithm is proposed. The algorithm automatically determines the boundary of discrete points and determines the valid interpolation region for the DEM.
(2) Considering the influence of sampling data density and terrain features on the accuracy of different interpolation algorithms, the results show that DEM errors decrease gradually and tend to be stable with increased sampling density. For complex terrain features, the accuracy of DEM can be improved by increasing the sampling density to more than 60%. The general terrain features can reduce the number of samples appropriately to improve calculation efficiency.
(3) By comparing the terrain quality on the bench floor achieved by five interpolation algorithms, it is observed that the OK interpolation algorithm can fill the holes of the original points. This resulted in smoother DEMs with enhanced visualization effects. In this study, the theoretical variogram and related parameters of OK interpolation were determined by the algorithm fitting. It improved the accuracy of the DEM, minimizing fluctuations in RMSE values.
(4) The digital quantification index of the roughness of the bench floor is established. These parameters offer essential data for mining technologists, enabling them to assess the blasting effects and implement refined management practices for bench floor leveling operations.
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(1) The 1-hour average concentration limits for sulphur dioxide (SO,), nitrogen dioxide (NO,) and carbon monoxide (CO) are for real-time reporting
only, and the 24-hour average concentration limits for the respective pollutants are to be used in daily reports.

(2) Sulfur dioxide (SO,) with a 1-hour average concentration limit higher than 800pg/m” is no longer subject to its air quality sub-index calculation, and
the sulfur dioxide (SO,) air quality sub-index is reported as a sub-index calculated from the 24-hour average concentration.

(3) Ozone (Os) 8-hour average concentration values above 800ug/m® are no longer subjected to their air quality sub-index calculations, and the ozone
(O3) air quality sub-index is reported as a sub-index calculated from the 1-hour average concentration.
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coeffcient(k)
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