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Editorial on the Research Topic

Assessing Bipedal Locomotion: Towards Replicable Benchmarks for Robotic and

Robot-Assisted Locomotion

INTRODUCTION

Human-centered bipedal robots, such as exoskeletons, powered prostheses and humanoids are
demonstrating increasing levels of functionality, reliability, and safety, and are now breaching
the barrier of surviving in a rapidly evolving market. In this crucial process, the lack of
accepted standards to evaluate the different facets of robotic performance is hampering the
efficient introduction of these new technologies into the different application domains, each of
them characterized by the needs, requirements, and regulations of diverse users. A systematic
benchmarking methodology to assess robotic systems on a quantitative and reproducible basis is
eagerly awaited, as demonstrated by the numerous workshops and discussions on this topic in the
most relevant international forums of the last 5–10 years. Benchmarks allow comparing systems
to each other and against accepted references, and are therefore useful not only to end-users in
search for the most suitable solution, but also to developers aiming to identify and solve the critical
shortcomings of their machines. Solid benchmarks usually arise from research results, and are
eventually converted into international standards after an iterative process that can last years. It
can be argued that the more effort is done by the research community in identifying effective
benchmarking methods, the easier it will be to arrive at a complete and relevant set of standards
that will improve and accelerate the introduction of new robots in people’s lives.

In the field of bipedal walking and posture, a huge body of literature focused on understanding
or replicating human performance. Yet, just a few works specifically focused on proposing
reproducible metrics that could be potentially converted into benchmarks for human-centered
robotic devices. This Research Topic is a first step in this direction. We gathered a total of
16 original research articles from the fields of gait analysis, motor control, simulation, robotics
and rehabilitation, covering together most of the aspects of bipedal skills, with a clear focus on
identifying measurable metrics of performance. We believe and hope that the works presented in
this collection can demonstrate how the process of identifying useful benchmarks of human and
human-like robotic motion is possible, and encourage the scientific community to join the efforts
in this ambitious goal.
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ASSESSING, UNDERSTANDING, AND

REPLICATING BIPEDAL LOCOMOTION

In science, quantitative measures are necessary to understand
the basic principles behind behavior and to validate or create
scientific hypotheses. In robotics, performance measures are
mainly used to achieve—and demonstrate—a certain expected
level of performance. With the advent of human-inspired
robotics, which aims to integrate biological principles into
human-like or human-compatible machines, these two facets
become strongly intertwined. Replicating human motion into
real-life machines requires a deep understanding of the
neuromechanical mechanisms at the basis of human behavior
and, at the same time, the achievement of levels of performance
comparable with those of the human counterpart. Assessing
the performance of bipedal systems, being them humans,
robots, or the combination of both (as happens in wearable
robotics), is therefore a necessary component to bridging the two
sides of the same coin: understanding and replicating human-
like locomotion. The articles collected in this Research Topic
provide a remarkable example of how these three aspects are
strongly enlaced, and how they can be translated into domain-
specific metrics.

Three articles of this collection specifically focused on
understanding and quantifying human balance, which is a
crucial aspect for both walking and standing. Vlutters et al.
aim to understand how humans deal with balance perturbations
during walking, by experimentally testing reactions after pushes
with different amplitudes, direction, and timing. Using simple
metrics based on foot placement location, placement timing, and
COM velocity, they demonstrate that human response is highly
dependent on the timing of the perturbation, and potentially
usable as a benchmark of human-like balance reactions. Mergner
and Lippi present a comprehensive framework to test the posture
control of human-like bipedal systems. The framework, based on
a deep knowledge of the sensorimotor mechanisms of human
balance, describes the experimental procedures to replicate the
most relevant physical disturbances, and the metrics to quantify
both performance and human likeness. Liu et al. investigate
the causal relationship between spatiotemporal asymmetries and
impaired reactive control of balance, by using two main metrics,
i.e., whole-body angular momentum and Floquet analysis. These
two metrics may be useful in grasping stability measure in
impaired and robot-assisted gait.

Five articles focused on metrics and criteria aimed to evaluate
or predict the effects of walking with prosthetic devices. Hu
et al., based on the fact that bipedal walking requires interlimb
coordination, demonstrate that neuromechanical information
from both limbs is necessary to improve the prediction of
transitions between level walking and stairs or slopes. This
work, which has potential benefits for the design of more
intuitive and transparent lower limb prostheses, is linked to
a datasets of neuromechanical signals from wearable sensors,
recorded bilaterally, which has been made available to the
community for benchmarking purposes (Hu et al.). Ramasamy
et al. propose a novel and subject-specific modeling tool to
predict the interaction between a residual limb and a prosthetic

device, providing relevant evidence to improve the prediction
the potential sites of deep tissue injury generated by the socket-
stump interaction forces. Ramakrishnan et al. present a new
metric, called combined gait asymmetry metric (CGAM), which
provides a unified index of gait asymmetry that combines 11
spatio-temporal, kinematic, and kinetic parameters. This metric
has promising potential in the prosthetic field to assess and
categorize asymmetries due to different natures, such as leg
length or added mass at the leg. Ho Hoang et al. investigated a
number of benchmarking criteria to assess the subject-specific
strategy of maintaining stability during unimpaired and impaired
(i.e., transfemoral amputees) walking. By using optimal control
to dynamically reconstruct recorded motions, they showed that
human-like stability can be explained by twomain indicators, i.e.,
foot placement and the Residual Orbital Energy.

Five articles proposed metrics and models to estimate
and predict the effects of the interaction between humans
and lower limb exoskeletons. Mummolo et al. propose an
algorithmic framework to evaluate the balance stability of
exoskeletons in crutch-less configurations during flat ground
walking. They propose new metrics based on center of mass
and joint-space dynamics and applied them to the lower-
limb exoskeleton Mina-2, demonstrating how this method
has interesting potential for the assessment of the future
generation of self-balancing exoskeletons. Torricelli et al.
proposes a subject-specific musculoskeletal model able to
infer the relative motion between the exoskeleton and the
human limbs from the kinematic data recorded from the
exoskeleton. This approachmay contribute to improve predictive
control strategies and/or mechanical designs for better human-
robot interaction. Gordon et al. applied a set of metrics
based on dynamic stability and metabolic cost estimations to
exoskeleton-assisted walking under varying conditions (speed,
floor inclination, exoskeleton assistance), selecting some of
them as potential control variables for adaptive exoskeletons.
Gandolla et al. propose an automatic and patient-specific
calibration procedure able to detect the best setting control
parameters of the lower limb exoskeleton Ekso. The method
is based on the maximization of the Gait Metric index, which
quantifies the similarity of muscle activations to a reference
normative set. Sharbafi et al. propose a control algorithm for
exoskeletons based on the virtual pivot point (VPP) concept
and simulate its effects on a detailed neuromuscular model
of human walking. They showed that, with one cable-driven
biarticular actuator, the exoskeleton can reduce subject muscle
activation and metabolic cost, while ensuring balance stability
during walking.

A group of three articles focused on experimental and
theoretical methods for the evaluation of human-like
performance of bipedal machines, in either real or simulated
environments. Stasse et al. investigated the effect of temperatures
variation on the walking performance of the HRP-2 robot,
computing a set performance indicators previously defined by
Torricelli et al. (2015) across different tasks, such as standing
on tilting and horizontally moving surfaces, and walking during
pushes, uneven or inclined surfaces, with the aim of testing
the capability of a humanoid robot in real-life situations.
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Okajima et al. developed a control algorithm able to generate
different human-like bipedal behaviors by adjusting a few signals
in a symbolized control space, with the help of a tacit learning
approach. This work has potential benefit not only in simplifying
the control of a humanoid robot, but also in understanding
the mechanisms at the basis of human-like walking
and standing. Iosa et al. propose the golden ratio as the
trade-off between advancement and equilibrium managed
during walking, providing additional theoretical evidence in
favor of the golden ratio as a descriptor of harmonic gait. This
approach may be extended to assess the harmony in humanoid
robotic walkers or neurorobots for rehabilitation.

CONCLUSIONS AND FUTURE

PERSPECTIVES

The large number of articles collected in this Research Topic
are in itself proof of the substantial interest that different
research communities have in the definition of reliable metrics
of bipedal performance.

In the prosthetic field, we observed a clear need of metrics
able to predict the interaction between the prosthetic device and
human, as well as to measure the functional effects of walking in
a real environment, in presence of transitions between different
terrains. In the exoskeleton field, there is an increasing interest
in identifying strategies for more adjustable/adaptable machines,
under the perspective of control, actuation, or ergonomics. In the
humanoids field, a promising trend is to test the performance in
outdoor-like scenarios under a wide variety of perturbations, e.g.,
moving grounds or pushes.

The high heterogeneity of the approaches even further
highlights the need for a unified framework in which these views
are brought together and can be easily shared across the research
community. Promising efforts in this direction are currently
promoted by two European initiatives: the EUROBENCH
project “European Robotic Framework for Bipedal Locomotion
Benchmarking” (Torricelli and Pons, 2019, www.eurobench2020.
eu) and the COST action CA16116 “Wearable Robots for
Augmentation, Assistance or Substitution of Human Motor
Functions” (https://www.cost.eu/actions/CA16116). Both
initiatives aim to establish common methodologies and promote
the discussion on standardized assessment of robotic systems,
focused but not limited to bipedal locomotion.

This research field needs to address some important
bottlenecks. First, the great majority of methods proposed
in the literature are applied to individual devices or specific
experimental settings. While many works claim a potential
applicability of their metrics across different laboratory
conditions or devices, very few of them actually have
demonstrated such wider applicability. Nevertheless, this
issue is critical for benchmarking, of which the principal goal
is to compare different systems under reproducible conditions.
This is particularly relevant considering the important trade-off
between simplicity and reproducibility, validity of a benchmark
and relevance of the outcome, considering the many subtle

differences in applications, e.g., differences across industrial
environments, or differences in pathologies across subjects.

We also observed an intrinsic difficulty in comparing bipedal
robot performance with human performance. The concept
of “human likeness,” intuitively easy to grasp, becomes hard
to define under a rigorous and systematic way, especially in
robotics systems that have intrinsic differences (e.g., kinematic
configuration) with humans, or when the human is not the
golden standard for performance (similarly to the case of chess
players). New challenges and questions (e.g., is it useful to
compare robots with humans?) may be object of future research.

We believe that reaching an international consensus on these
topics will be extremely beneficial to boost the process of finding
reliable methods to test and compare different systems and
identifying robust metrics to measure the Technology Readiness
Level (TRL) of new robotic solutions.
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Human walking is a complex task which includes hundreds of muscles, bones and joints
working together to deliver harmonic movements with the need of finding equilibrium
between moving forward and maintaining stability. Many different computational
approaches have been used to explain human walking mechanisms, from pendular
model to fractal approaches. A new perspective can be gained from using the principles
developed in the field of Optimization theory and in particularly the branch of Game
Theory. In particular we provide a new insight into human walking showing as the
trade-off between advancement and equilibrium managed during walking has the same
solution of the Ultimatum game, one of the most famous paradigms of game theory,
and this solution is the golden ratio. The golden ratio is an irrational number that was
found in many biological and natural systems self-organized in a harmonic, asymmetric,
and fractal structure. Recently, the golden ratio has also been found as the equilibrium
point between two players involved into the Ultimatum Game. It has been suggested
that this result can be due to the fact that the golden ratio is perceived as the fairest
asymmetric solution by the two players. The golden ratio is also the most common
proportion between stance and swing phase of human walking. This approach may
explain the importance of harmony in human walking, and provide new perspectives
for developing quantitative assessment of human walking, efficient humanoid robotic
walkers, and effective neurorobots for rehabilitation.

Keywords: walking, neuroscience, anthropometry, rehabilitation, divine proportion, golden section, fractal, game
theory

INTRODUCTION

Optimization theory is a branch of mathematics aiming at identifying the best choice, from some
set of available alternatives, that optimizes (maximizes or minimizes) a specific target function
(Asghar Bhatti, 2000). A well-known application of optimization theory to human locomotion
refers to the fact that the comfortable walking speed is, for healthy individuals, that minimizing the
energy consumption (Ralston, 1958; Miller et al., 2012; Oh et al., 2012; Long and Srinivasan, 2013;
Seethapathi and Srinivasan, 2015).

Game Theory is a branch of Optimization Theory in which there is not just one function to
optimize, but there is the need to identify the best compromise among some entities involved into
the problem (Kolokoltsov and Malafeyev, 2010). Game Theory has become a large and powerful
theoretical framework providing mathematical models for predicting the choices of rational entities
(usually called players) in conflict or in cooperation tasks (Rapoport, 1974; Sanfey, 2007). Mainly
used in psychology, economy, political science, logic, computer science, Game Theory has also been
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enlarged to biology (Maynard Smith, 1982). Following this
approach, game theoretical methods have been used in
biochemistry and biophysics (Schuster et al., 2008), with some
studies considering cells (Gatenby and Vincent, 2003) and even
molecules (Bohl et al., 2004) as ‘‘players’’ working together or
being in competition for the same objective.

The idea of applying game theory to human walking proposed
in this article originates by the observation that current advances
in these so different research fields reported the same solution for
two apparently different problems. In fact, the same equilibrium
point was found in human walking and Ultimatum game: this
point coincides with the so-called golden ratio.

The golden ratio (φ) is the solution of the problem already
reported by Euclid in III century B.C. to cut a given straight
line so that the proportion between the shorter part to the
longer one is the same as the longer part to the whole. It is
an irrational number already found in many physical, biological
fractal structures that are self-organized so that the larger-scale
structure resembles the subunit structure (King et al., 2004;
Yamagishi and Shimabukuro, 2008). In fact, it was found in
structures of animal bodies (Livio, 2003) and plants’ leaves
(Okabe, 2011), in the solar systems (Lombardi and Lombardi,
1984), replicated in architecture (Hemenway, 2005) and in
certain musical rhythms (Garland, 1995), as well as in financial
market patterns (Agaian and Gill, 2017). In humans, harmonic
proportions have been found in the physiological activity of the
heart (Yetkin et al., 2013) and in anthropometry (Davis and
Altevogt, 1979), as depicted in figurative arts (Hemenway, 2005).
In general, the golden ratio has been found as the best choice for
many biological processes (Bartl et al., 2010; Yetkin et al., 2013;
Schuster et al., 2017).

GAME THEORY: THE ULTIMATUM GAME
EQUILIBRIUM

The Ultimatum game is a model game developed for analyzing
fairness, and it is one of the most famous paradigms of Game
Theory. In this game, two players must divide a sum of money:
the proposer has to specify this division and the responder
has the option of accepting or rejecting the offer (Sanfey,
2007). If the offer is accepted, the sum is divided as proposed,
otherwise neither player receives anything. A rational intelligence
should accept any offer and, knowing this, the proposer could
offer the smallest nonzero amount (this choice is called Nash
equilibrium). However, most of responders reject small proposals
because judged unfair. Another point of equilibrium predicted
by game theory is an offer split in 50% and 50% proportion
(equipartition).

But most of the studies reported that the two solutions
reported above are not the most common, and the average offer
ranges around 62% for player 1 and 38% for player 2 (Oosterbeek
et al., 2004; Henrich and Silk, 2013).

Some recent researchers (Schuster, 2017; Suleiman, 2017)
noted that this division, chosen by subjects as the fairest one, is
very close to the value of the golden ratio, and it was due to the
fact that responders may tend to accept an amount that is in a
proportion with that taken by proposer when this proportion is

FIGURE 1 | Schematic representation of the Ultimatum Game of Game
Theory. Above the amount taken by player 1 (red line) and that taken by player
2 (blue line). The dash line is the Nash equilibrium (chosen by completely
rational intelligence that accepts each offer higher than zero), the solid line the
equipartition (fifty-fifty), the dot line the golden ratio solution (golden
equilibrium, that observed in experimental data). Below, the offer and gain are
expressed as proportions: red line is the offer ratio (expressed in percentage of
whole amount) and the blue line is the gain of player 2 (with respect to that
taken by player 1). The equilibrium is given by golden ratio solution (partition:
about 38.2% for player 2 and 61.8% for player 1): player 2 tends to accept an
offer of the minor fraction of φ (38.2%) because they accept a proportion of
that taken by player 1 if this latter sum is in the same proportion with the
whole amount.

the same between the latter part remaining at the proposer with
respect to the whole amount.

Figure 1 theoretically depicts the Ultimatum Game. This
‘‘equality of fractions’’ is conceivably perceived by both players
as the fairest asymmetric division (Schuster, 2017).

The Golden Ratio plays a role also in other games analyzed
in game theory (Camerer et al., 2004; Berg et al., 2015) and
in the so-called justice evaluation function (Jasso, 2007). The
Ultimatum Game is even used in economics (Güth and van
Damme, 1998), and as its solution, the golden ratio has been
reported as an example of ‘‘Economic Harmony’’ (Suleiman,
2017).

CURRENT ADVANCES IN HUMAN
WALKING: THE GOLDEN GAIT

Many different computational approaches have been used to
explain human walking mechanisms, from inverted pendulum
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FIGURE 2 | Above: stick diagram of walking obtained linking right (R, black lines) and left (L, red lines) markers of foot toe and ankle (foot), ankle and knee (thigh),
knee and center of mass (lengthened shank). The blue line is the trajectory of the whole body center of mass. FS, foot strike; FO, foot off; DS, Double Support.
Stereophotogrammetric data of an healthy subject walking at comfortable speed (Iosa et al., 2007) were used for depicting this stick diagram. Below: Theoretical
model of the gait ratios DS/Sw (red line) and Sw/St (blue line). Absolute value of Ds/Sw was adopted for Sw > 50%, being this value the transition limit between
walking and running. Experimental data of slow (squares), comfortable (circles) and fast (stars) walking are also shown. Data related to comfortable walking
converged to the Golden Equilibrium.

model (Ivanenko et al., 2007) to fractal approaches (Hausdorff
et al., 1995).

The inverted pendulum model refers to the pendular
trajectory of center of mass and to the relevant transfer from
potential to kinetic energy and its reverse (Ivanenko et al.,
2007; McGrath et al., 2015). This trajectory can be seen in
the above plot of Figure 2 showing the stick diagram, a
typical figure formed linking anatomical points and obtained
using stereophotogrammetric systems (Ivanenko et al., 2007).
At comfortable speed (about 1.4 m/s), locomotor system saves
energy by exchanging forward kinetic energy and gravitational

potential energy of the center of mass during the inverted-
pendulum oscillation of stance (Cavagna and Margaria, 1966),
and by ballistically oscillating the limb as a compound-pendulum
during swing (Mochon and McMahon, 1980). Thus muscle
activity is only required to oppose gravity, maintain postural
configurations in the face of interaction torques, and reintegrate
energy losses during each cycle (Lacquaniti et al., 2012). Inverted
pendulum is a simplified model in which a rigid rod represents
the leg during stance phase, othermore sophisticatedmodels take
into account also the stiffness and the elastic properties of the
lower limbs (Lipfert et al., 2012).
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The fractal approach refers to the idea that gait has a fractal
structure, id est the larger-scale structure resembles the subunit
structure (Hausdorff et al., 1995). The simplest examples of
fractals are the structures based on the golden ratio. Recently,
the Golden ratio has been found in gait cycle (GC) as the
proportion between the stance duration (the longer part of a
stride) and the swing duration (the shorter part). When the
stance and swing are in the golden ratio, gait phases revealed a
fractal structure based on the property of autosimilarity, with the
same proportionality emerging between units and consecutive
subunits of gait, resembling in each part the same whole structure
(Iosa et al., 2016d) as follows:

φ =
1+
√
5

2
=

swing
double support

=
stance
swing

=
stride
stance

=
stride+ stance

stride
=

2strides+ stance
stride+ stance

= . . .

With the expression ‘‘golden gait’’ we refer to a gait in which
the above equations are respected. Recent researches showed as
golden gait can be a bridge between pendular model and fractal
approach of walking (Iosa et al., 2016b). This relationship is
based on the strict intertwine between structure and functioning,
been the anthropometric proportion between the stature and
the distance of center of mass from the ground close to the
golden ratio (Davis and Altevogt, 1979), as also represented in
the ancient Greeks’ sculptures (Di Dio et al., 2007).

However, the golden gait is not only related to the
biomechanics of human body and its anthropometric
proportions. In fact, the pendulum mechanism of walking
should be considered as a forced oscillator for the need of
rhythmic intervention of muscle activity and hence of nervous
system (West and Scafetta, 2003). It has been hypothesized that
a neural network formed by cerebellum, globus pallidum and
central pattern generators of spinal cord is the generator of the
golden ratio harmonic rhythm of walking (Iosa et al., 2016d).
This hypothesis can be supported by clinical data showing as the
golden ratio based rhythm is altered in patients with cerebellar
ataxia (Serrao et al., 2017) and Parkinson’s Disease (Iosa et al.,
2016d), but not directly in presence of a damage of cortical areas
due to stroke (Iosa et al., 2016a).

APPLYING GAME THEORY TO HUMAN
WALKING

During walking there is only one subject, the walking person, but
he/she has to manage between the need of advancing and the
need of maintaining stability without falling.

The relationships between the gait phases, expressed in
percentage of the whole GC (100%), can be written as follows:

St = 100− Sw
DS = St− Sw′

where St = stance phase; Sw = swing phase; Sw′ = controlateral
swing phase; DS = double support phase. For a symmetric
walking Sw = Sw′ and hence:

DS = St− Sw = 100− 2Sw

The advancement depends on the speed of walking, the efficiency
of walking optimized around the speed self-selected by subjects as
the comfortable one (Cotes and Meade, 1960). Walking speed is
linearly proportional to swing duration (Hebenstreit et al., 2015).
So the advancement depends on the ratio swing/stance (Sw/St),
with the limit of Sw/St< 1, otherwise (Sw> St) walking becomes
running, with the absence of any double support phase (Mann
and Hagy, 1980).

Gait stability has been warranted by the fact that stance phase
is longer than swing phase, that generates the presence of a
double support phase (DS), with both feet on the ground (Perry,
1992). In fact, themaintenance of equilibrium is due to a dynamic
stability in which the fall of center of mass has been controlled
by the swinging leg arriving to touch the ground before subject
falls (Mrozowski et al., 2007). This stability can be increased by
prolonged double support phase (Perry, 1992). Hence, upright
stability is strictly related to the duration of the double support
(DS) with respect to swing duration (DS/Sw).

Given the above equations, it is possible to report the two
ratios DS/Sw and Sw/St (related to stability and advancement,
respectively) as function of the only swing phase (Sw) as follows:

DS
Sw
=

100 − 2 · Sw
Sw

Sw
St
=

Sw
100 − Sw

These ratios can be seen as analogous to the offer of player
1 and the gain of player 2, respectively. Below plot of Figure 2
shows the curves described by these two functions. This approach
(as well as this plot) clearly replicates that reported for gain and
offer ratios of the Ultimatum Game curves (Figure 1).

In the range of swing phase values in which DS/Sw > Sw/St,
the stability is favored over advancement. On the contrary, if
DS/Sw < Sw/St, the advancement is favored over stability.

In this subplot of Figure 2 we also superimposed to the
curves the experimental data extracted by a previous study on
walking in healthy adults (Iosa et al., 2016a) and recorded using
an optoelectronic system during comfortable walking (for details
see Iosa et al., 2016a). Data recorded at slow and fast walking were
not reported in that study, but collected in the same experimental
session and reported here as original data that agree with those of
literature (Perry, 1992).

Similarly to the responses observed for the Ultimatum Game,
experimental data converged to this Golden equilibrium between
advancement and stability.

Schuster (2017) suggested also an alternative approach for
explaining the golden solution as the convergent equilibrium
of the Ultimatum Game. This alternative way of explanation
in terms of bargaining corresponds with the convergence of
the following continued fraction that is another property of the
golden ratio:

ϕ = 1+
1

1+ 1
1+ 1

1+...

The results of this progressive division are: 3/2, 5/3, 8/5. . .
All these numbers (1, 2, 3, 5, 8. . .) are consecutive Fibonacci
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numbers and the limit of the ratio between two consecutive
Fibonacci numbers is the golden ratio.

Also this approach can be applied to human walking. In fact,
the two limits are fixed by static posture (maximum stability, no
advancement) and the limit of transition between walking and
running (Sw = St = 50%). The following schema could be hence
derived applying Fibonacci’s numbers (1, 2, 3, 5, 8) to walking,
using the ratio between the gait cycle (GC) and the stance (St):

GC
St
= 1 +

1
1 + 1

1 + 1
1 + ...

Posture :
GC
St
= 1→ (stance = 100%)

Transition to Running :
GC
St
= 1+ 1 = 2

→ (stance = 50%)

Slow walking :
GC
St
= 1+

1
2
=

3
2
→ (stance = 66.6%)

Fast walking :
GC
St
= 1+

1
1+ 1

2
=

5
3
→ (stance = 60%)

Comfortable walking :
GC
St
= 1+

1
1+ 1

1 + 1
2

=
8
5
∼= ϕ

→ (stance = 62.5%)

The foot-off occurring at the minima located at 5/8 of the GC
approximates the golden ratio with a difference of only 0.7% of
stride duration.

The most important similarity between UltimatumGame and
the stance/swing trade-off in GC is that both need an asymmetric
equilibrium point. In fact, in the Ultimatum Game, subjects
usually assume that the proposer has some priority because
he has the whole amount and he is allowed to choose the
offer (Ichinose, 2012). Similarly, walking cycle is characterized
by the presence of a double support phase, existing only if
St > Sw.

FUTURE DIRECTIONS: FROM HOMINIDS
TO HUMANOID WALKING, PASSING
THROUGH ROBOT-ASSISTED WALKING

The experience of million of years of evolution between extreme
solutions (posture and running) in search for optimal bipedal
walking, seems to have achieved the golden compromise between
stability and advancement, muscle work and efficiency (Massaad
et al., 2007). This is confirmed by studies on patients, showing as
the golden gait minimizes the energy cost optimizing the transfer
between potential and kinetic energy (Serrao et al., 2017), and
on virtual model of walking, tested in different initial conditions,
always converging to the golden ratio as an equilibrium point
(Dzelaidini et al., 2014). Surprisingly, even chimpanzee during
bipedal walking showed a proportion between stance and stride
that is about 0.65 (Demes et al., 2015), so that the inverse
proportion is close to the golden ratio. It has been even

hypothesized that humans evolved from hominids in the actual
antrophometric dimensions in golden proportion for favoring
this harmonic golden gait (Iosa et al., 2016b).

It is well known that patients with neurological impairments
have an alteration of the percentage duration of stance and
swing (Perry, 1992), but only recently this alteration was put
in relationship to a deviation from the golden ratio (Iosa et al.,
2016a,d; Serrao et al., 2017).

For years, it has been suggested that rehabilitation should
drive walking patterns of individuals with a gait impairment
at resembling the patterns of healthy individuals as closely
as possible. However more recent results revealed a more
complex scenario. Hak et al. (2014) showed that step length
asymmetry in individuals with a transtibial amputation are
functional in terms of stability: a training aiming at recovering
gait symmetry may affect dynamic balance during gait in these
subjects, as theoretically suggested earlier by Merker et al. (2011).
Our perspective study can contribute in clarifying that the
optimization should take into account more target functions
at the same time, as in Game Theory, not just one. Future
research should focus on a more in-depth understanding of
how gait impairments influence human locomotion and which
target functions should be trained for a better recovery of
gait autonomy finding a favorable trade-off that could even be
different from physiological one.

A clear example is that of humanoid robots, in which
the choice of bioengineers is guided by the cost of these
robots. For most of humanoid robots, walking is quite different
from that of humans because the distance between the
center of mass and ground is usually maintained constant
(Massaad et al., 2007). These humanoid robots use sophisticated
motor control to walk smoothly while demonstrating appalling
inefficiency with excessive energy cost: in this case the
management between stability and advancement has been
achieved favoring the former one for reducing the risk
of fall and hence of damages. In humans, a walk with
a flat trajectory of center of mass need muscles working
in unfavorable conditions, wasting energy (Massaad et al.,
2007). From this point of view, passive-dynamic mechanical
walkers, moving up and down their center of mass, rival with
humans in terms of efficiency (Collins et al., 2005). Recently,
a bipedal robot has been developed using a golden ratio
algorithm for reproducing golden gait obtaining a harmonious
walking patterns similar to those of humans (Tez and Kuşçu,
2017).

Robots for assisting human walking during rehabilitation
have already been made for replicating a ratio between
stance and swing close to the golden ratio: 60% and 40%
(Hesse et al., 2000) or 62% and 38% (Volpini et al., 2017).
However, this proportion was chosen just according to the
principle of driving patients’ gait patterns resembling the
physiological patterns. It is worthy to investigate whether the
golden ratio can be applied in robotic-aided therapy not just
because it is a physiological pattern, but because it is the
best harmonious trade-off between stability and advancement.
The golden gait, in fact, seems to be a key of efficiency for
locomotor control and stimulating the sensori-motor system at
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the frequency of the golden ratio may facilitate the restoring
of the harmonic activity of neural circuits at the basis of
walking.

Neurorobots already have the potential for accurately
assessing motor functioning, therapy progresses and for
providing patients with stimulation and real-time feedback on
movement performance (Iosa et al., 2016c). This approach
should take into account the golden ratio, using this proportion
for stimulating and quantitatively assessing gait harmony
(Torricelli et al., 2014; Saner et al., 2017), as suggested for
assessing electrocardiographic patterns with respect to the
deviation from the golden ratio of the cardiac cycle ratios
(Ciucurel et al., 2018).

CONCLUSION

Despite the golden ratio has often been reported as a ‘‘magic
number’’, it is just the solution of a simple problem of a
geometrical problem already reported by Euclid in III century
B.C. and then also found as solution adopted by many
biological and physical systems, including fractal structures and
human physiology (Iosa, 2016). It has also been judged as
the fairest proportion for geometrical figures (Green, 1995)
and anthropomorphic sculptures (Di Dio et al., 2007) in
psychological studies.

In the Game Theory, the golden ratio was found as the best
equilibrium for the Ultimatum Game because judged as the
fairest solution by the players. Following a similar approach,
we showed that the golden ratio is also the best solution for
managing advancement and stability during human walking
optimizing bipedal efficiency.

As Suleiman (2014) noted and Schuster (2017) reported, the
word ‘‘fair’’ has a double meaning, that of equitable and beautiful.
For human walking, golden gait is also the most efficient. Once
again, we can learn a lesson from Ancient Greek for whom
a beautiful harmonic structure is strictly intertwined with an
efficient virtuous functioning.
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Physical changes such as leg length discrepancy, the addition of a mass at the distal

end of the leg, the use of a prosthetic, and stroke frequently result in an asymmetric

gait. This paper presents a metric that can potentially serve as a benchmark to

categorize and differentiate between multiple asymmetric bipedal gaits. The combined

gait asymmetry metric (CGAM) is based on modified Mahalanobis distances, and it

utilizes the asymmetries of gait parameters obtained from motion capture and force

data recorded during human walking. The gait parameters that were used in this

analysis represent spatio-temporal, kinematic, and kinetic parameters. This form of a

consolidated metric will help researchers identify overall gait asymmetry by showing

them if the overall gait symmetry is improving and avoid the case where one parameter’s

symmetry is improving while another is getting worse. The CGAM metric successfully

served as a measure for overall symmetry with eleven different gait parameters and

successfully showed differences among gait with multiple physical asymmetries. The

results showed that mass at the distal end had a larger magnitude on overall gait

asymmetry compared to leg length discrepancy. It also showed that the combined effects

are varied based on the cancelation effect between gait parameters. The metric was also

successful in delineating the differences of prosthetic gait and able-bodied gait at three

different walking velocities.

Keywords: gait asymmetry, leg length discrepancy, distal mass, knee orthosis, prosthetic gait

1. INTRODUCTION

Human gait is a complex coordinated cyclic neuromuscular process that includes voluntary and
involuntary aspects (Zijlstra et al., 1995). However, this cyclic process is frequently impaired
following central nervous system damage, such as stroke, or physical changes, such as wearing
a prosthetic. Physical and neurological changes often result in an asymmetric gait because the
person’s muscles and/or control actions becomes inherently asymmetric. Typically, human gait is
represented by spatiotemporal, kinematic, and kinetic parameters obtained from analyzing motion
capture and force plate data (Winter, 1995). The purpose of this study is to present a simple but
versatile quantitative asymmetry metric that can be used to characterize the asymmetry of gait
patterns as a whole.

Gait parameters offer quantitative data that can represent a person’s gait. Using a quantitative
data driven analysis offers an unbiased evaluation of the effects of multiple physical asymmetries
that affect human gait. For this experimental study, the physical changes were selected based on
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the dynamic principles related to leg length and mass on a
periodic system. Under appropriate conditions two dissimilar
systems can be made to exhibit synchronized motion (Handzic
et al., 2015). Handzic et al. demonstrated that two double
pendulums with different masses at different locations and
different lengths can exhibit symmetric motion. Human legs can
be modeled as double pendulum systems, which allows for a
simplified explanation of their synchronized dynamics (McGeer,
1990). Discrepancies in leg lengths and lower limb amputation
disrupts natural propagation and dynamics that ultimately lead
to asymmetric gait patterns. Further, asymmetric effects are also
observed with changes in mass, such as the addition of external
mass or a prosthesis. The study presented here also includes the
effect of damping and stiffness at the knee to compare a larger
range of physical changes that are not limited to altering the
length and mass of limbs.

2. BACKGROUND

Previous research about asymmetric physical changes reveal
a range of different effects on a person’s gait. The literature
review for this study looked at various physical changes
such as leg length discrepancy (LLD), the addition of mass
at the distal end of the leg, amputation, and stroke. It is
important to remember that although these physical changes
affect every person differently, they can all be characterized
using the asymmetries of biomechanical gait parameters. It
is not uncommon to find similar effects on gait asymmetry
with different physical changes. To illustrate these differences
and similarities, this literature review also focused on prior
quantitative gait metrics and the algorithms used to discern
between different types of gait.

2.1. Gait Patterns
Approximately 0.001% of people have some form of corrective
gear due to LLD (Guichet et al., 1991). LLD may cause
serious long-term consequences based on several variables
such as the design of corrective devices, age, weight, posture,
and level of activity (Gurney, 2002). An increase of 2 cm
or 3.7% in leg length difference has dramatic overall gait
asymmetry, especially in vertical reaction forces during push
off and initial contact (Kaufman et al., 1996). Further, LLD
causes abnormal changes in foot loading patterns and increases
in joint torques/moments, which could lead to long-term
effects (Perttunen et al., 2004). Finally, studies have also shown
that LLD causes more overall strain on the body and leads to
increased expenditure of energy (Gurney et al., 2001).

Limb mass, like limb length, plays an integral role in the
dynamics of human walking. Adding mass on limbs, especially
toward the distal end, brings about increases in metabolic activity
and disrupts spatiotemporal symmetry (Browning et al., 2007).
Adding mass at the distal end has been shown to force the user
to change their walking posture by moving their arms in order to
maintain balance (Donker et al., 2002). These effects may cause
adverse changes in walking patterns in able-bodied symmetric
individuals, but the addition of weight on the non-paretic limbs
of stroke victims has shown improvement in walking speed, step

length, cadence, and weight bearing in the paretic limb (Regnaux
et al., 2008).

Studies show that prosthetic users exhibit less effcient and
unnatural gait patterns (Gitter et al., 1995; Hoffman et al., 1997).
This inefficiency is more evident in transfemoral amputees than
transtibial amputees, which results in the users exerting a great
deal of effort to compensate for unwanted motions (Huang et al.,
1979). In some cases, simple solutions can correct irregular gait.
When individuals with ataxia wore a 2 lb mass on their chest,
unstable motions significantly decreased and the gait was more
steady and efficient (Gibson-Horn, 2008). Since amputees are
physically asymmetric, bringing about efficient and symmetric
gait depends on multiple factors such as length, weight of
prosthesis, type of socket, length of residual limb, etc. A study
on unilateral transtibial prosthetic users shows that as the mass of
the prosthetic gets closer to their intact shank weight, the subjects
gait becomes more asymmetric (Mattes et al., 2000).

Stroke is one of the leading causes of disability among adults,
affecting ambulation, performance of activities of daily living,
communication, and cognition. Physical independence with
respect to walking is characterized by improvement of walking
function as defined by stroke survivors (Bohannon et al., 1991).
However, only a minority of people (7–22%) are able to regain
sufficient function to be considered independent community
ambulators post stroke (Hill et al., 1997; Lord et al., 2004).

Gait retraining post-stroke typically focuses on two main
outcome measures: velocity and symmetry. Walking velocity is
used as an indicator of overall gait performance and can be
used to differentiate the levels of disability among the stroke
patient population (Perry et al., 1995; Lord et al., 2004). A
gait speed of 0.8m/s is considered the required minimum for
community ambulation (Perry et al., 1995; Bowden et al., 2008),
and typically people ambulate with a mean gait velocity of
1.14m/s (Lord et al., 2004). Gait symmetry, in contrast, is used as
a measure of gait quality (Dewar and Judge, 1990; Patterson et al.,
2008). Normal gait measured among able-bodied individuals was
found to be fairly symmetric in spatiotemporal, kinematic, and
dynamic parameters with a range of up to 4–6% asymmetry
between the limbs (Herzog et al., 1989; Titianova and Tarkka,
1995).

Gait after stroke becomes asymmetric (or hemiparetic) as
a consequence of altered neuromuscular signals affecting leg
motor areas, typically hyper extension at the knee and reduced
flexion at the hip, knee, and ankle (Brandstater et al., 1983;
Wall and Turnbull, 1986; Kelly-Hayes et al., 2003). Hemiparetic
gait is characterized by a significant asymmetry in temporal
(e.g., time spent in double-limb support) and spatial (e.g.,
step length) measures of interlimb coordination (Brandstater
et al., 1983; Titianova and Tarkka, 1995; Balasubramanian
et al., 2007). Propulsive force of the paretic limb is also
reduced compared to the non-paretic limb, as are work and
power of the paretic plantar flexors (Bowden et al., 2006;
Balasubramanian et al., 2007). The significant decrease in
propulsive force results in smaller overall step lengths, which in
turn affects the patient’s gait velocity. Finally, vertical ground
reaction forces (GRFs) are decreased on the paretic limb
relative to the non-paretic limb (Kim and Eng, 2003), reflecting
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diminished weight bearing and balancing capabilities by the
paretic limb.

When an individual with an asymmetric impairment walks
with symmetric step lengths, other aspects of gait become
asymmetric, such as the forces in the joints (Carpes et al., 2010;
Handzic et al., 2015), the amount of time spent on each leg (Kim
and Eng, 2003), and other temporal variables (Sadeghi et al.,
2000; Highsmith et al., 2010), all of which can be detrimental to
efficiency and long-term viability. Understanding how symmetry
affects function could change the fundamental nature of clinical
gait rehabilitation. The results from this research could also help
tailor rehabilitation treatments to target each person’s specific
impairment. An overall analysis of multiple gait parameters can
bring equilibrium to the different, and sometimes conflicting,
requirements of gait. In order to distinguish and characterize
the effects of multiple gait parameters, we use metrics that
consolidate and quantify the overall change in gait. This paper
demonstrates the effectiveness of these quantitative gait metrics
in classifying multiple physical asymmetric changes.

2.2. Gait Metrics
Gait metrics have been in use clinically to evaluate a
subject’s progress throughout their rehabilitation process.
These metrics can be classified based on the type of
information required, which is of two types: qualitative
(Steffen et al., 2002; McConvey and Bennett, 2005) and
quantitative (Schutte et al., 2000; Schwartz and Rozumalski,
2008; Rozumalski and Schwartz, 2011). Most metrics focus either
on kinetics or kinematics in order to categorize various walking
patterns. However, there are some that can perform the analysis
utilizing both kinetic and kinematic parameters (Chester et al.,
2007; Hoerzer et al., 2015). Gait metrics have also employed
statistical techniques such as principle component analysis
(PCA) and singular value decomposition (SVD) to reduce
the dimensionality of the biomechanical parameters (Muniz
and Nadal, 2009). After processing the dataset, either the
Euclidean or Mahalanobis distances (Muniz and Nadal, 2009)
are found, which ultimately results in the score for the metric.
Previous studies used Mahalanobis distances in conjunction
with PCA to analyze kinematic and specific loading at knee
joints. The precursor to this research study showed that the
combined gait asymmetry metric (CGAM) used a symmetry
index in conjunction with Mahalanobis distances. Without the
restrictions of dimensionality reduction, CGAM served as a
versatile gait asymmetry metric (Ramakrishnan et al., 2016).

3. METHODS

In order to analyze multiple asymmetric physical changes using
gait metrics, two distinct datasets were collected from eleven
different types of physical alterations. The physical alterations
include a prosthesis with two different sockets on an amputee,
healthy individuals with eight combinations of leg length and
ankle masses fitted to the non-dominant leg, and a stroke
simulator. The distinct datasets for the alterations were collected
on amputee and non-amputee populations. The amputee data
was collected while walking at three different speeds on two types

TABLE 1 | Participant information.

Parameter Able-bodied Prosthetic user

(10 subjects) (1 subject)

Age (years) Range: 18–28 36

Mean: 22.2 and std: 3.2

Height Range: 155–196 cm 162.5 cm

Mean: 171.2 cm and std: 11.44 cm

Weight Range: 48.08–82.55 kg 46 kg

Mean: 69.2 kg and std: 11.34 kg

Leg length Range: 84–108 cm 84 cm

Mean: 94 cm and std: 6.7 cm

Walking speed Range: 1.1–1.5m/s 0.5–1.3m/s

Mean: 1.27m/s and std: 0.13m/s

Gender 5 male and 5 female 1 female

of sockets. The data collected on able-bodied subjects includes all
of the perturbations.

3.1. Participants
The participants for this experiment consisted of 10 able-bodied
individuals and a transfemoral prosthetic user who walked with
two different sockets. Table 1 describes the subject population.
Both studies were conducted under approved University of South
Florida IRB protocols. The subjects provided both informed
and written consents to take part in the experiments. The
transfemoral amputee was selected because the subject was a
high functioning transfemoral prosthetic user and can walk at
speeds that are comparable to able-bodied subjects. For the data
analysis, we consider the prosthetic user to be two different
subjects because the change in sockets alters the subject’s gait
to a large extent. The study involved the subject walking at 3
different speeds using 2 different sockets: the vacuum assisted
suspension (VAS) brimless socket (Klute et al., 2011) and ischial
ramus containment (IRC) (Kahle, 2013).

The able-bodied individuals had no prior injuries that would
alter their walking patterns. The subject’s walking speeds were
determined by a 10 m walk test after which the height, weight, leg
length, and age of each individual participant were recorded. The
participants were put through a series of randomized increments
of leg lengths, addition of masses at distal end, and a combination
of both effects on the same leg, which was the left leg in
all cases (Muratagic et al., 2017). Table 2 shows the various
perturbations of the experiment. Finally, the stroke simulator
was fitted on their dominant side, which was the right leg for all
participants.

3.2. Experimental Apparatus
The experimental data was collected in two separate trials,
one on a single amputee and one on 10 able-bodied subjects.
The motion capture and force plate data was collected using
the Computer Assisted Rehabilitation Environment (CAREN),
which was developed by Motek Medical, Netherlands, shown in
Figure 1. The CAREN system incorporates a ten-camera Vicon
(Edgewood, NY) motion capture system, 6◦ of freedom motion
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TABLE 2 | Experimental procedure.

Trial type Perturbation Order Side

Prosthetic trial 0.5m/s In order Right

0.9m/s leg

1.3m/s

Able-body 0.5m/s In order N/A

0.9m/s

1.3m/s

Able-body Leg length-non-weight-non Left

Leg length-big-weight-big leg

Leg length-small-weight-small

Leg length-small-weight-non

Leg length-big-weight-non Randomized

Leg length-non-weight-small

Leg length-non-weight-big

Leg length-small-weight-big

Leg length-big-weight-small

Able-body With stroke simulator In order Right

After stroke simulator leg

base developed byMOOG, immersive 180◦ panaromic screen for
virtual reality environment, split belt treadmill, and continuous
force plate systems developed by Bertec.

3.3. Experimental Procedure
The data for the prosthetic trial was collected using 30 reflective
markers, which can be seen in Figure 2. This marker set was
used to collect extensive data on the lower and upper body
dynamics of the amputee as part of another study. In this
study we only use the lower limb markers out of the 30 for
the gait analysis while the others are used in another analysis.
The unilateral right transfemoral amputee used two prostheses,
shown in Figures 3B,C, with different socket types, and all other
components were identical. The amputee walked on both sockets
at three different speeds: 0.5, 0.9, and 1.3m/s. This was done to
have a range of cadences that can represent both prosthetic and
able-bodied users. The able-bodied subjects also walked at these
three speeds for direct comparison. The socket systems used in
the prosthesis were the IRC and VAS (Kahle et al., 2016). The
IRC socket is designed to reduce pistoning and increase stability,
but compromises on comfort while the VAS is designed more for
comfort and aims to be dynamically efficient.

The able-bodied subjects were put through a series of 9
asymmetric changes, shown in Figures 3D–L, and a baseline
symmetric gait, shown in Figure 3A. The subject’s height, weight,
leg length, and walking speed were recorded before beginning
the experiment. The walking speed of the subject is recorded
using a 10 m walk test over ground. This walking speed was the
constant velocity at which the subject walked for the duration of
the trials, except for the three different speeds discussed above.
An 18 marker setup was used to capture the motion capture
data for the able-bodied subjects. The marker setup for the lower
limb is shown in Figure 2. The asymmetric physical changes are
combinations of leg length changes and the addition of mass at

the ankle. There were two levels of leg length alteration: a small
height change of L1 = 27 mm and large increase of L2 = 52 mm.
The small and large mass added at the distal end weighed
M1 = 2.3 kg andM2 = 4.6 kg. The leg length was chosen to reflect
a larger than 2 cm change in leg length which is detrimental
according to literature. We used a linear relationship x and 2x
to select the larger leg length. Similarly the mass was chosen
based on a previous PDW study that used a linear selection
method (Handz̆ić and Reed, 2013). In addition to these changes,
the subject’s normal walking pattern was recorded before and
after all the perturbations. The leg length and mass changes were
added to the non-dominant leg of the subject to compound the
asymmetric effect (Muratagic et al., 2017).

Following this trial the subject was fitted with a variable
stiffness and damping knee orthotic device, which is also known
as the stroke simulator (SS) (Lahiff et al., 2016). The SS is used
to simulate the damping and resistance at the knee joint felt
by stroke patients. The knee joint of the stroke patient has a
damping effect due to the imbalance in control of the anterior
and posterior femoral muscles. Stroke victims also experience
stiffness/resistance to flexion of the knee joint due to the over
excitation of the rectus femoris and lack of control of the
posterior femoral muscles that render the knee in a constant
state of extension. The device is a modified knee orthosis with
a rotary damper of ζ = 8,898 g-cm-s/◦ for the damping effect
and a torsional spring of K = 0.457 kg/mm for the stiffness effect.
The device was fit on the subject’s dominant leg. This is because
the dominant limb is less coordinated and hence, exhibits the
maximum asymmetric change (Sadeghi et al., 2000). The subject
then walked with the SS for 10 min to adapt to the device’s
dynamics. Then the device was removed and the subject walks for
another 2 min to measure any after effects due to the asymmetric
change applied at the subject’s knee.

3.4. Data Analysis
The motion capture and force plate data gathered from the
CAREN system is used to perform the gait analysis. The gait
analysis was performed using a MATLAB script that evaluates
the spatiotemporal, kinematic, and kinetic parameters from the
raw coordinate and force data for each perturbation. Once the
parameters are analyzed, their differences are evaluated for each
step using the symmetric index formula (Herzog et al., 1989).
This asymmetry data is then used to obtain the Combined Gait
Asymmetry Metric (CGAM) (Ramakrishnan et al., 2016), which
is a single number representing an Index/score for the level
of asymmetry. The study further compares the CGAM to the
machine learning grouping metric with the help of LibSVM
library (Chang and Lin, 2011). Figure 4 shows the complete setup
for the development of the metrics.

The CGAM is a simple metric that uses the Mahalanobis
distance from ideal symmetry to the data points obtained from
gait analysis. Mahalanobis distances are calculated in multi
dimensional datasets such as the calculations performed on
the 11 gait parameters, shown in Figure 4. The formula for
calculating the CGAM distance is shown in Equation (1). The
equation presented in this article is modified from the previous
version of CGAM (Ramakrishnan et al., 2016). This formulation
provides more of a weighted means approach to decrease the
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FIGURE 1 | The computer assisted rehabilitation environment (CAREN) was used to collect the datasets for this research. The CAREN is equipped with a 10 Vicon

Bonita infrared motion capture system, Bertec continuous force plates, split belt treadmill, 6 degree of freedom motion platform, and a fully enclosed safety cage. The

subjects are secured to the safety cage of the CAREN for their safety.

FIGURE 2 | Marker setup. (A) 18 marker lower limb human body model (LLHBM) and (B) 30 marker full body model (FBM). R, right; L, left; ASIS, anterior superior iliac

spine; PSIS, posterior superior iliac spine; FEM, femur; TIB, tibia; STRN, sternum; SACR, sacral wand marker; SHO, shoulder.
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FIGURE 3 | Various perturbations. (A) Able-bodied subject, (B) vacuum assisted suspension brimless socket, (C) ischial ramus containment, (D) no leg length and no

weight (LL-N-W-B), (E) no leg length and small weight, (F) small leg length and no weight, (G) big leg length and small weight, (H) small leg length and big weight, (I)

big leg length and big weight, (J) small leg length and small weight, (K) big leg length and small weight, and (L) stroke simulator (Lahiff et al., 2016) with rotational

damper and torsional spring.

variability of results for the same gait parameters. This is achieved
by dividing the original equation with the summation of the
inverse covariance matrix. This method eliminates an extra step
of dimensionality reduction that is carried out by algorithms
such as Principle Component Analysis (PCA). Although PCA
can help reduce the computational burden of multi dimensional
datasets, it does so at the expense of losing information. CGAM’s
procedure analyzes the datasets without any loss in information
and provides an overall perspective of the gait asymmetry based
on biomechanical parameters. Further, the multiplication of the
covariance matrix provides a weighted system that allows the
metric to pick up on important changes in asymmetry among all
the gait parameters.

CGAMDistance =

√

(Data) ∗ inυ(6) ∗ (Data)′
∑

(inυ(6))
(1)

• CGAM Distance = Mahalanobis Distance from Ideal
Symmetry

• Data = Matrix with n columns (11) and m rows (Number of
Steps)

• 6 = Covariance of the Data.

4. RESULTS

4.1. Calculating the CGAM Score
To further describe how the CGAM metric combines the gait
parameters into one measure, the 11 gait parameters are shown
in Figure 5 with their respective CGAM score for four of the gait
alterations. An important aspect for interpreting this metric is
the covariance of the asymmetry matrix, which serves to weight
the measures based on how much variability is present. From
Equation (1) it is clear that the covariance of the data plays a
major role in calculating the Mahalanobis distances from ideal
symmetry. The measures that have more variability get weighted
less and more consistent measures are weighted more heavily.
These weights generally account for the variations in magnitudes
across all the parameters. For example, pushoff and braking
forces tend to show much higher magnitude asymmetry than
other measures, but they also showmore variability; scaling them
based on their variability makes the influence comparable to the
other measures.

Even though the Stroke Simulator in Figure 5B looks to have
low asymmetry onmanymeasures, the variability is high on those
measures. The high variability means that some steps have large
asymmetry. Specifically the stroke simulator data shows a large
increase in the step length and hip moment asymmetry that are
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FIGURE 4 | Procedure to acquire gait metrics.

FIGURE 5 | Comparing variation of mean, standard deviation, and CGAM metric among perturbations. (A) Normal walking without any alterations, (B) walking with

SS or the variable stiffness and damping knee orthosis, (C) walking with big leg length and no weight addition at the ankles, and (D) walking with big leg length and

weight. SL, step length; ST, step time; GRF, ground reaction forces; PF, push off forces; BF, braking forces; KA, knee angle; AA, ankle angle; HA, hip angle; AM, ankle

moment; KM, knee moment, and HM, hip moment.

part of the resultant increase in the CGAM score magnitude.
In contrast a large hip moment asymmetry seen in Figure 5C,
with large leg length increase on the left leg, does not increase
the CGAM score as much since the other parameters are in the
nominal range. It is important to keep in mind that the CGAM
scores are measured from perfect symmetry, so even normal
walking with no alteration has some asymmetry, as shown in
Figure 5A. Figure 5D shows the combined overall effect of a
large mass at the distal end and a large increase in leg length,
which results in a larger score compared to large leg length only.

Thus, the overall CGAM score is higher than the normal walking
shown in Figure 5A, even though some of the normal walking
averages are fairly asymmetric.

4.2. Comparison of Alterations
Figure 6A illustrates the CGAM scores with the alterations
applied to able-bodied subjects, and Figure 6B illustrates the
comparison of the scores between able-bodied individuals and
the transfemoral prosthetic user walking with two different
sockets. It can be seen in Figure 6A that the addition of mass
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at the distal end makes gait overall more asymmetric than an
increase in leg length. The effect of combining mass and LLD
showed that a large mass at the distal end and a small LLD had
the overall highest asymmetry. This demonstrates that the largest
physical asymmetry, which in this case was the large mass at
the distal end combined with a large LLD, may not necessarily
lead to the largest deviation in overall gait asymmetry. On closer
inspection of the individual gait parameters, it was revealed that
there may be a cancellation effect with the large change in leg
length and hence the overall CGAM value was lower. When
the subjects walked with just the larger leg length, the step
lengths were more asymmetric than the step times; however,
the step times were more asymmetric than step lengths when
only wearing a large mass. This kind of behavior is illustrated
with the different perturbations and hence, these opposite effects
tend to cancel each other out which results in a lower CGAM
value. A previous study conducted by Muratagic et al. (2017)
found that there were no significant effects observed due to the
combination of LLD and distal. However, the study also observed
some cancellation effects due to the combination of LLD and
mass which showed that there are potential combinations that
could result in a balanced gait pattern.

The changes related to prosthetics also had significant effects,
as shown in Figure 6B. Wearing the SS affected the gait of all
able-bodied subjects and caused a similar level of asymmetry
in this metric compared to an amputee wearing a prosthetic.
However, speed affected the gait asymmetry, and there was
one speed on each of the prostheses that the subject was not
comfortable with. Another observation from Figure 6B is that
the IRC socket is more consistent in overall gait asymmetry but
the subject felt less pain using the VAS socket, and gait with the
VAS has a better overall gait at a high velocity (Kahle et al., 2016).

4.3. Statistical Analysis
A two-way repeated measures ANOVA analysis was performed
with mass and leg length as independent variables and CGAM as
the dependent variable. Mauchly’s Test indicates that sphericity
was not violated. The results of the ANOVA show that distal
mass, F(2, 18)= 19.15, p< 0.005, and leg length, F(2, 18) = 5.72,
p < 0.05, show statistically significance results in regards to
CGAM. There was not a statistically significant interaction
between the amount of mass added and amount of added
leg length, F(4, 36) = 0.20, p = 0.49. This is similar to the
effects observed in our lab’s previous study (Muratagic et al.,
2017). Further, the post-hoc comparisons for mass revealed
significant difference between no mass and both small and large
mass conditions. There was a statistically significant difference
between no length and the large leg length condition. This
analysis methodmatches our previous study, and the conclusions
are similar. However, this analysis excludes the stroke simulator
and different speeds, so an additional one-way ANOVA was
performed.

A one-way repeated measures ANOVA analysis was
performed with all 14 of the gait patterns shown in Figure 6A

used as independent variables and CGAM as the dependent
variable. This analysis was performed to examine the individual
differences of all the gait patterns, unlike the two-way ANOVA

FIGURE 6 | CGAM scores for all perturbations. (A) Able-bodied subjects with

multiple physical asymmetries. (B) Comparison of Able-body subjects to

prosthetic user at three different speeds (0.5, 0.9, and 1.3 m/s).

describe above that focused only on the added mass and height.
Mauchly’s Test indicates that sphericity was not violated. The
results of the ANOVA show that there were a statistically
significant differences in gait patterns, F(13, 117) = 10.21,
p< 0.0001. The post-hoc test results are shown in Figure 6A. The
normal gait pattern is statistically significant to the perturbation
with large leg length and small mass and the gait pattern with the
stroke simulator. Similarly, gait pattern with the subject walking
at 1.3 m/s showed statistical significant difference between
perturbation with large mass and gait with stroke simulator.
This was to be expected since 1.3 m/s is close to the average self
selected speed of all the subjects.

4.4. Comparison to Machine Learning
Machine learning has been used in data driven industries to find
patterns in large amounts of disparate datasets. The two datasets
that were collected during this study represent gait with multiple
asymmetric changes and hence, can be used to find patterns. For
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this study the LibSVM library (Chang and Lin, 2011) was used
because it is easy to implement and it is widely used for research
data. The machine is trained using labels and a training dataset.
The labels are long vectors with a single number and the training
datasets are ground truths. In the case of this study the labels were
0 and 1. Label 0 was used for the perfect symmetry which is a zero
matrix with 11 columns and multiple rows. Label 1 was used for
training asymmetry data. Figure 7 shows the results of grouping
predictions from 2 different asymmetry training datasets.

The pattern of the LibSVM grouping Index seen in Figure 7A

is very similar to the pattern of the CGAMMahalanobis distance
in Figure 6A. Although the specific values cannot be compared
directly because the modes by which they arrive at the results
are inherently different, the trends highlight the differences
between these two methods. The CGAM metric uses a simple
Mahalanobis distance calculated from ideal symmetry while the
more complex machine learning metric groups the data based
on training datasets. LibSVM is not as reliable at this stage for
being considered as a gait asymmetry metric because, based on
the training datasets, the results vary substantially. This can be
seen by comparing Figure 7A,B where the training datasets were
different and the grouping predictions are completely different.
This can be attributed to the different asymmetries present in the
SS data and the weight/LL datasets. CGAM does not get affected
by these differences and offers a more objective metric that can be
used to classify the asymmetric changes. Another problem with
Machine Learning as a metric is the requirement of large datasets.

5. DISCUSSION

This study demonstrates a simple metric that can help classify
physical changes in human gait using the asymmetries of gait
parameters. The results discussed above show that the metric is
able to successfully categorize the extent of asymmetric changes
caused by different perturbations. For example the CGAM scores
for walking with the SS, which is designed to cause asymmetric
gait, has a significantly larger value compared to the value that
was gathered for gait immediately after the device was taken
off. The after-effects of the SS are also more asymmetric than a
normal gait pattern, which shows that the individuals adapted
to the SS. Classification of gait based on overall symmetry will
help clinicians keep track of a subject’s progress, such as pre-
and post- physical therapy regiments. The SS can be examined
as an impeding exoskeleton. Hence, the gait wearing the SS and
after removing the SS are both asymmetric overall. Conversely,
in robot-assisted locomotion therapy, the outcomes are expected
to be more symmetric (Lo et al., 2010). CGAM could provide
researchers the tools to measure the overall change in gait
asymmetry and modify their rehabilitation techniques to induce
better gait patterns. This approach is different from prior research
practices that limited their study to either spatio-temporal,
kinematic, or kinetic data.

Another approach is analyzing an individual’s gait parameters
separately. This method could reveal insights on specific
comparisons, but the complexity increases with the number
of gait parameters. It is difficult to determine if the gait has

improved when separately examining 11 parameters. The CGAM
could make this evaluation easier since it can be used to
represent a range of gait parameters, and it is not just limited
to the 11 parameters that were used in this study. The subsets
of the gait parameters can be made to fit the requirements
of the clinicians such as reporting on improvements in only
spatiotemporal parameters or only in kinematics. For example,
in a prior study with CGAM, only 5 gait parameters were
used to analyze the data (Ramakrishnan et al., 2016). The
parameters were step length, step time, vertical forces, push off
forces, and braking forces. Using these 5 asymmetry parameters,
the CGAM was able to classify the different perturbations of
leg length and addition of masses on separate legs. Although
this metric used 11 gait parameters, the two-way ANOVA
showed similar results to the analysis performed using five
gait parameters in the study by Muratagic et al. (2017). This
leads to one of the avenues for future research which involves
determining the minimum gait parameters required to represent
a gait pattern. CGAM is designed to be used for any number
of gait parameter asymmetries representing multiple forms of
data. However, many research studies typically do not come
equipped with a CAREN or similar system to gather large
amounts of data. One of the advantages of CGAM is that it
can be potentially used on limited availability of quantitative
asymmetric data. We are exploring the boundaries of this metric
to be able to benchmark it for standard protocols for gait
analysis.

Consolidated metrics such as CGAM and Machine Learning
offer a unique and simplified perspective into categorizing
gait data between multiple asymmetric datasets. CGAM has
the potential of serving as a benchmark in representing
overall gait asymmetry using multiple different parameters. The
multidimensionality that CGAM offers makes it versatile and
as shown in this article we can assess multiple gait patterns
with different causations. These metrics have to be field tested
in clinical trials in order to be formally proposed for clinical
use. It is important to remember that these metrics could direct
researchers to help patients achieve a well rounded gait. A
well rounded gait can be characterized as a sustainable gait
that an individual adopts that has the least overall asymmetry,
not just a decrease in one parameter. Some parameters would
remain asymmetric so that other parameters could become
closer to symmetry. In case of a person who is physically
asymmetric, this would mean adopting a gait and posture
that will have a balance between all the gait parameters.
This adaptation of a well rounded gait will help a physically
impaired person to sustain a long-term gait that may not
necessarily be as symmetric as an able-bodied gait, but it is
subjectively beneficial to their specific physical asymmetry. A
well rounded gait will alleviate long-term problems caused
by asymmetric forces and moments acting on the person’s
body.

In this study the 11 parameters were chosen because they
represent important gait parameter information and have clear
symmetry values between each limb. With both metrics it is
clearly seen that the addition of mass at the distal end has a larger
effect on the overall symmetry than leg length discrepancies.
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FIGURE 7 | Machine learning (LibSVM) grouping metric using two different datasets for training. (A) Uses the asymmetry data for walking with stroke simulator.

(B) Uses the LL-S-W-B data which was found to have the largest CGAM score notice the differences in grouping.

The combined effect of leg lengths and mass addition did
not reveal a clear pattern but the results were as expected in
most cases. For example, the combination of big leg length
and mass had a slightly larger effect than small mass and leg
length. However, the combination of a small leg length and
big mass had a lot more deviation than big leg length and big
mass. This is caused by the cancellation effects between gait
parameters, which in turn resulted in a larger or smaller CGAM
value.

There are some limitations associated with this method
and study. There are many other gait patterns that were not
discussed that arise from other gait impairments that should
also be evaluated. Future studies can easily incorporate this
metric in their analysis to compare the individual metrics to an
overall picture of the gait. This will help in the generalization
of this concept and also help to make the comparisons across
different gait patterns more meaningful. This metric could also
be optimized to find the most salient gait parameters to include;
some of the ones used in this study may not be ideal and there
may be others that are more beneficial to include.

The prosthetic gait at the three different speeds showed that
the overall symmetry improves with increases in speed. It has
been shown in literature that amputees achieve better spatio-
temporal and kinematic symmetry at higher speeds, but at
the expense of kinetic symmetry which can cause long-term
degeneration effects (Nolan et al., 2003). We require a bigger
patient population in order to gather all variations of prosthetic
gait and leave that to future studies. The analysis provided in
this study will improve further and can be more robust if a
larger dataset frommultiple patient population is used. The study
presented in this article provides some proof into the efficacy of
CGAM but it is limited by the small population size.

The CAREN is a versatile device that was used to collect
all the data for this study and has been used in other similar
studies (Ramakrishnan, 2014; Muratagic, 2015). To further
understand the effects and dynamics of physical asymmetries,
the split belt treadmill can be used to exaggerate asymmetries.
Split belt treadmills are used to rehabilitate gait affected by
hemiplegia by having the treads move at different velocities.

This exaggeration of hemiplegic gait temporarily restores the
person’s gait closer to symmetry. However, successfully returning
a person’s gait to spatio-temporal symmetry does not necessarily
guarantee an overall effective gait with a healthy ratio of
symmetry between all gait parameters. To further explore how
physical asymmetries combine, the split belt treadmill could be
used in conjunction with an added mass and/or LLD.

6. CONCLUSION

Analyzing multiple physical asymmetries in one platform
requires a special form of metric. This is because every
perturbation of physical change that impairs an individual’s
gait has to be accounted for and kept track of following
clinical procedures. The consolidated metrics such as CGAM
and Machine learning can be quantitative data analysis tools
that can help researchers keep track of a person’s overall
gait asymmetry. These metrics can be obtained using all gait
asymmetry parameters such as spatio-temporal, kinematic, and
kinetic or by using subsets and combinations of any or all of these
parameters. This versatile platform allows researchers to have
many options for generating metrics to represent the progress
or regression of an individual over a period of training and
time.
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INtRoDUCtIoN

The field of assistive robotics has experienced rapid growth in the number of and capabilities of 
wearable lower limb assistive devices, which include robotic exoskeletons, orthoses, and prostheses. 
These devices have shown promising potential to restore motor function to individuals with gait 
impairments by providing locomotion assistance. Although many devices have already demon-
strated impressive performance in a variety of real-world conditions, comparing their performance 
objectively and improving their controllability remain challenging for several reasons. First, the 
outcome measures (e.g., joint kinematics, metabolic cost, clinical scores, and prediction accuracy) 
used by studies demonstrating improved walking ability with an assistive device are not consistent. 
Second, many studies only use treadmill walking or do not collect data from a variety of locomotor 
activities due to constraints in a device’s mechatronic design and/or control system. Third, many 
devices are in the process of commercialization, so testing data are seldom shared with the research 
community. In addition, many devices implement their own unique control frameworks that are 
not generic enough to conveniently implement on other hardware. Therefore, we expect improving 
access to device-agnostic neuromechanical signals during walking-related activities (from which 
researchers could develop and test novel control strategies before implementation on hardware) will 
be valuable to the field of wearable lower limb assistive devices.

Meanwhile, many benchmarks for the biomechanics of able-bodied human locomotion without 
an assistive device have already been established, some of which are publicly available. The gold 
standard for high-resolution biomechanical gait analysis is marker-based optical motion capture 
with ground reaction force measurement. Decades ago, seminal work from Winter (1983) used these 
techniques to introduce an inter-subject biomechanical analysis of level ground walking (LW) at 
different speeds. Their normative gait dataset includes electromyography (EMG) and joint kinematic 
and kinetic patterns and has since been expanded by other researchers to include more subjects 
and strides (e.g., Kadaba et al., 1990; Kirtley, 2014). The steady-state biomechanics of other com-
mon locomotor activities such as ascending and descending stairs and sloped surfaces of different 
geometries have also been reported in separate studies using similar techniques but these data are 
not as accessible to researchers (e.g., McFadyen and Winter, 1988; Riener et al., 2002; Lay et al., 2006, 
2007; Protopapadaki et al., 2007; Franz et al., 2012).

Human locomotion is most accurately quantified by joint kinematics, kinetics, and EMG using 
traditional laboratory-based instrumentation and techniques developed for biomechanical gait 
analysis. However, the exciting potential of wearable lower limb robotics lies in its promise to bring 
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these devices closer to everyday life, where alternative techniques 
are required to more ubiquitously measure neuromechanical 
signals during walking-related activities. Methods to more freely 
measure human movement have been developed in the field of 
human activity recognition (HAR), which aims to use continu-
ous streams of sensor data to recognize and monitor common 
activities of daily living such as sleeping, walking, exercising, 
and manipulating objects. As a result, HAR has produced an 
abundance of publicly available datasets. These repositories are 
valuable because they contain many different types of activity 
information from many subjects; however, they are not very 
suitable for more systematic characterization of normal loco-
motion. Sometimes, HAR datasets are collected from impaired 
populations or during more natural, but complex combined 
movements for which the ground truth activity is more ambigu-
ous. Some datasets are collected using minimal instrumentation 
(e.g., smartphone only), which is convenient but incomplete. 
By contrast, others rely on non-portable instrumentation (e.g., 
optical motion capture or video), which is highly accurate but not 
representative of biomechanical signals accessible for controlling 
a device in a more ecological setting. Also, many only contain 
single modalities (e.g., kinematics but no EMG) and/or use lower 
sampling rates that may be insufficient for certain online control 
schemes.

To the best of our knowledge, there still does not exist a pub-
licly available database of kinematic and EMG data simultane-
ously recorded from wearable sensors as able-bodied individuals 
freely transition between several distinct locomotor activities. To 
address some of these aforementioned limitations and provide 
relevant reference data for researchers in the field of wearable 
lower limb assistive devices, we introduce a device-agnostic 
benchmark dataset of bilateral neuromechanical signals called 
ENcyclopedia of Able-bodied Bilateral Lower Limb Locomotor 
Signals (ENABL3S). The dataset contains bilateral EMG and 
joint and limb kinematics recorded from wearable sensors for 
10 able-bodied individuals as they freely transitioned between 
sitting, standing, and several walking-related activities [level 
ground, stair ascent (SA)/stair descent (SD), and ramp ascent 
(RA)/ramp descent (RD)]. Although these data are not intended 
to replace existing benchmarks for biomechanical gait analysis, 
we believe they still fill a gap between those benchmarks and 
HAR datasets by providing richer neuromechanical data col-
lected from wearable sensors using a unified protocol for several 
distinct locomotor activities. In this data report, we summarize 
our methods for instrumenting subjects, collecting data, and 
post-processing for artifact removal and gait segmentation. We 
also present a summary of the types of locomotor activities and 
transitions captured by our protocol, validate our results, and 
conclude with suggestions for how other researchers in the field 
may benefit from this dataset.

MateRIaLS aND MetHoDS

Instrumentation Setup
Ten healthy able-bodied subjects (seven male, three female; 
25.5  ±  2  years; 174  ±  12  cm; 70  ±  14  kg) without any gait 

impairments were recruited and completed the following proto-
col between January and February 2017. Before walking, subjects 
were instrumented with wearable sensors to measure bilateral 
lower limb muscle activity and joint and limb kinematics. EMG 
signals were recorded using bipolar surface electrodes (DE2.1; 
Delsys, Boston, MA, USA) from the same seven muscles in each 
leg: tibialis anterior (TA), medial gastrocnemius (MG), soleus 
(SOL), vastus lateralis (VL), rectus femoris (RF), biceps femoris 
(BF), and semitendinosus (ST). These muscles were chosen because 
they are in part responsible for hip and knee flexion/extension 
and ankle plantarflexion/dorsiflexion, movements that are com-
monly assisted by wearable devices. They are also relatively easy 
to target when facing the subject from in front and behind. The 
muscle sites were prepared by removing excess hair, and the skin 
was cleaned by mildly scrubbing with an alcohol wipe. Sensors 
were attached to the skin with a double-sided adhesive. Electrode 
placement was guided by palpation according to the Surface 
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles 
standards and verified by having subjects perform maximum vol-
untary contractions (MVC). Subjects performed three repetitions 
of ankle dorsiflexion/plantarflexion and knee flexion/extension 
for both legs. EMG signals were amplified by 1,000×, hardware 
band-pass filtered between 20 and 450 Hz (Bagnoli 16, Delsys), 
and sampled at 1 kHz.

Joint kinematic signals (sagittal plane only) were recorded 
using electrogoniometers (SG150; Biometrics Ltd., Newport, 
UK) placed on the knee and ankle and sampled at 500 Hz. At 
the beginning of trials, the goniometers were zeroed while the 
subject was in the upright standing position. 6-DOF (tri-axial 
accelerometer and gyroscope) inertial measurement units 
(IMUs) were placed bilaterally on the subjects’ thigh (below RF) 
and shank (adjacent to TA) and sampled at 500 Hz (MPU-9250; 
Invensense, San Jose, CA, USA). Goniometers and IMUs were 
secured to the subject using a combination of double-sided 
adhesive, elastic straps, and Coban self-adherent wrap. Another 
IMU was placed in a custom manufactured holster (tilted 20° 
from vertical) and worn around the waist with a belt. All signals 
were simultaneously recorded with a custom 16-bit data acqui-
sition device that permitted multi-rate sampling. To facilitate 
integration with our custom data acquisition software, all wear-
able sensors were used in a tethered setup; as a drawback, fully 
instrumenting each leg took up to an hour. The full instrumenta-
tion setup with IMU orientations is shown for a representative 
subject in Figure 1.

Data Collection protocol
In an experimental session, each subject was barefoot and 
completed approximately 25 repetitions of a circuit consisting of 
sitting (S), standing (St), LW, ascending/descending a ramp with 
a 10° slope (RA/RD), and ascending/descending a four-step stair-
case (SA/SD) step-over-step. These activities were chosen because 
they encompass the different types of terrain likely encountered 
in community ambulation and were completed as a circuit in a 
20 ft. × 30 ft. room for practicality and for increasing the number 
of repetitions. A platform (30″ tall) joined the staircase (7.75″ rise, 
10″ run) and ramp (14 ft. long) to allow all possible transitions 
between these activities. Data from each circuit were divided into 
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FIgURe 1 | Instrumentation setup showing bilateral sensor placement. The orientations of the shank, thigh, and waist inertial measurement units (IMUs) are shown 
with coordinate axes. The subject provided written informed consent for the publication of this image.
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two segments and recorded as separate trials. Odd-numbered 
trials consisted of S → St → LW → SA → LW → RD → LW → St → S. 
Even-numbered trials consisted of S → St → LW → RA → LW → 
SD → LW → St → S. The total distance walked for each continuous 
segment was approximately 45  ft. Trials during which sensors 
needed to be repositioned or the tether became tangled were 
excluded. Subjects were instructed to freely transition between 
locomotor activities at their self-selected speed, and breaks were 
routinely administered to avoid fatigue. The experimenter labeled 
the true locomotor intent of the subject using a key fob. Data col-
lection took up to 2 h.

post-processing
Heel contact and toe off gait events for each leg were reliably 
identified by finding peaks in the mean-subtracted and low-pass 
filtered (first-order Butterworth, 6  Hz) sagittal plane angular 
velocity (GY) of the shank segment using a threshold-based 
method similar to Maqbool et al. (2016). Briefly, the largest peaks 
in angular velocity were first used to identify mid-swing events. 
Toe off events were identified by searching for peaks before each 
mid-swing event. Heel contact events were identified by searching 
for peaks after each preceding mid-swing event. Event switches 
were initially placed beneath the heel and first metatarsal of each 
foot, but they triggered many false negatives and positives in our 
setup perhaps due to mechanical wear and/or foot placement 
on the staircase. Therefore, they were only used for validating 
the IMU-based segmentation technique. Gait events corrupted 
by motion artifacts (i.e., pauses and trips) were excluded. EMG 
signals were high-pass filtered (sixth-order Butterworth) at 
20 Hz, low-pass filtered (sixth-order Butterworth) at 350 Hz, and 
notch-filtered (sixth-order Butterworth, 6 Hz width) at 60, 180, 
and 300 Hz to attenuate motion artifact and ambient interference. 
Goniometer and IMU signals were low-pass filtered (sixth-order 
Butterworth) at 10 and 25 Hz, respectively. Joint velocities were 
indirectly computed by taking the central-difference numerical 
derivative of the joint position and added to the goniometer 
channels.

All signals were segmented into analysis windows beginning 
300 ms before each identified heel contact or toe off gait event. 
Four additional 300 ms analysis windows near each identified gait 
event (delayed by 30, 60, 90, and 120 ms relative to each event) were 
used. For each window, we extracted features previously used in 
intent recognition for control of a powered knee-ankle prosthesis. 
Features for goniometer and IMU channels included the mean, 
SD, maximum, minimum, initial, and final values (Varol et al., 
2010) (six features/channel). Features for EMG signals included 
the mean absolute value, waveform length, number of zero cross-
ings and slope sign changes, and the coefficients of a sixth-order 
autoregressive model (Huang et al., 2005; Hargrove et al., 2008) 
(10 features/channel). There were a total of 23 sensors (14 EMG, 
4 goniometer, 5 IMU), 52 channels (14 EMG, 8 goniometer, 30 
IMU), and 368 features (140 EMG, 48 goniometer, 180 IMU).

ReSULtS

The data are saved in CSV format in subject-specific folders and 
are available to download from Figshare at https://doi.org/10.

there is a metadata file, which catalogs the filenames, summary 
statistics (mean, SD, minimum, maximum) of each goniometer 
channel, and signal-to-noise ratios [ratio of maximum to baseline 
root-mean-square (RMS) voltage] of each EMG channel for each 
circuit. Subject-specific folders also include folders for the raw 
and processed data from individual circuits, a folder containing 
the processed EMG signals from all muscles during MVC trials, 
and a folder containing the features extracted from the five differ-
ent 300 ms analysis windows (beginning 300, 270, 240, 210, and 
180 ms before the gait events identified for each leg). Data from 
individual circuits also contain columns specifying the label of the 
true locomotor activity, the indices of heel contact and toe off gait 
events, and four-digit triggers denoting the outgoing and incom-
ing locomotor activities and gait phases. The first row of each file 
is a header specifying the column order. The post-processed data 
from all trials are included for completeness although some trials 

6084/m9.figshare.5362627. Within each subject-specific folder, 
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taBLe 1 | Characteristics of ENcyclopedia of Able-bodied Bilateral Lower Limb 
Locomotor Signals.

transition  
to

Heel 
contact

toe off total

Level walking (LW) LW
RA
RD
SA
SD

4,523
240
240
239
248

4,637
245
246
253
243

9,160 (42.96%)
485 (2.27%)
486 (2.28%)
492 (2.31%)
491 (2.30%)

Ramp ascent (RA) RA
LW

1,408
243

1,416
252

2,824 (13.24%)
495 (2.32%)

Ramp descent (RD) RD
LW

1,757
239

1,762
245

3,519 (16.50%)
484 (2.27%)

Stair ascent (SA) SA
LW

489
238

472
245

961 (4.51%)
483 (2.27%)

Stair descent (SD) SD
LW

475
248

478
242

953 (4.47%)
490 (2.30%)

10,587 10,736 21,323 (100%)

The total number and proportion of gait events belonging to each type of locomotor 
activity are aggregated across all subjects.
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include disturbances (e.g., pauses, trips, and missed transitions), 
which are noted in the metadata file. However, only gait events 
from disturbance-free segments of trials are reported and used 
for feature extraction. Feature data also contain columns specify-
ing the corresponding leg-phase (1, right heel contact; 2, right toe 
off; 3, left heel contact; 4, left toe off) and the four-digit trigger. 
The first row of the feature data is a header specifying the column 
order. Ipsilateral refers to the side in which the gait event was 
detected (e.g., the right leg for right heel contact and right toe 
off events).

The overall composition of ENABL3S is shown in Table  1. 
For each subject, there were 530  ±  46 heel contact events and 
536 ± 45 toe off events for each leg (mean ± SD) after excluding 
transitions to or from standing. Additional subject information 
and an explanation of nomenclature and numbering are also 
included on Figshare.

DISCUSSIoN

ENcyclopedia of Able-bodied Bilateral Lower Limb Locomotor 
Signals represents a benchmark of bilateral lower limb neuro-
mechanical signals recorded from able-bodied individuals using 
wearable sensors during unassisted locomotion. The purpose of 
introducing this dataset is not to replace existing benchmarks 
for biomechanical gait analysis of steady-state locomotion but to 
provide a publicly available set of rich biomechanical data from 
wearable sensors, representing a compromise between traditional 
techniques and methods from HAR. ENABL3S includes data 
from several distinct walking-related activities (with transitions), 
which we expect to be helpful for understanding patterns in 
normal locomotion and developing novel control strategies for 
wearable lower limb assistive devices.

In order to assess the validity of this dataset, we chose to 
compare our recordings (averaged across legs and all subjects) 
to previously reported biomechanical measurements of level 

walking because these data are most accessible. Due to movement 
out of the sagittal plane and skin deformation/relative motion of 
the ankle goniometer, our measurements of ankle position were 
not considered biomechanically accurate signals. Nonetheless, 
these signals may still be useful for developing control strategies 
because many devices do not reproduce physiological motion 
and/or use embedded joint encoders to sense relative ankle posi-
tion. However, our measurements of knee position were more 
accurate when compared to previously reported data recorded 
using optical motion capture (Winter, 1983; McClelland et  al., 
2011). The RMS error between ENABL3S and Winter (1983) was 
5.9 and 9.5° for stance and swing phases, respectively. The R2 val-
ues were 0.73 and 0.94 for stance and swing phases, respectively. 
Our reported values for knee range of motion (ROM) during 
stance and swing phases (flexion at initial contact: 10.9 ± 5.6°; 
stance ROM: 6.8 ± 5.2 to 26.9 ± 5.7°; swing ROM: 3.4 ± 5.4 to 
58.0 ± 6.5°) were also comparable to reported values (McClelland 
et al., 2011). Errors in position can be attributed to a combina-
tion of differences in walking speed, minor misalignment of the 
sensor with the axis of rotation, and skin deformation/relative 
motion. The knee position could also be estimated (perhaps 
more accurately) by subtracting the orientations of the shank 
and thigh IMU sensors. The patterns of EMG activation for ankle 
plantarflexor/dorsiflexor and knee flexor/extensor muscles were 
also qualitatively similar to those previously reported for unas-
sisted overground walking at self-selected speed (Winter, 1983; 
Sylos-Labini et al., 2014). Knee position and EMG from TA, MG, 
BF, and VL aggregated across legs for all steady-state level walking 
steps for all subjects can be found in a supplementary document 
on Figshare. By confirming the accuracy of our measured kin-
ematic and EMG signals, we also validate the IMU-based method 
for gait segmentation.

Although these data are not as high resolution as optical 
motion capture, they strike a balance between resolution of sig-
nals, breadth of activities represented, feasibility for online control 
schemes, and contribution to existing publicly available datasets 
for human locomotion. These data can be used for developing 
novel control strategies such as intent recognition (i.e., predicting 
future states based on signals detected before movement comple-
tion) and more specifically investigating sensor fusion techniques 
and machine learning approaches for feature extraction and 
classification (e.g., deep learning). These data can also be inter-
preted as a simulation of able-bodied individuals walking with a 
completely massless and transparent (i.e., perfectly backdrivable) 
device and can be used to derive a device-agnostic upper bound 
on control strategies such as intent recognition. The raw data 
reported here may also be useful for comparing the performance 
of alternative control systems, assessing inter-subject variability, 
and comparing user-based biomechanical signals collected from 
an impaired population or a population walking with an assistive 
device (e.g., knee orthosis and ankle-foot prosthesis) to unas-
sisted normal locomotion.

etHICS StateMeNt

This study was carried out in accordance with the recommenda-
tions of the Northwestern University Institutional Review Board 
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with written informed consent from all the subjects. All subjects 
gave written informed consent in accordance with the Declaration 
of Helsinki. The protocol was approved by the Northwestern 
University Institutional Review Board.
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A Corrigendum on

Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable

Sensors during Unassisted Locomotion in Able-Bodied Individuals

by Hu, B., Rouse, E., and Hargrove, L. (2018) Front. Robot. AI 5:14. doi: 10.3389/frobt.2018.00014

In the original article, there were two errors. In the text, the abbreviation for semitendinosus was
omitted. In the text, the URL to the data repository available on Figshare was also incorrect.

Corrections have been made to Materials and Methods, Sub-section Instrumentation Setup,
Paragraph one and Results, Paragraph one.

EMG signals were recorded using bipolar surface electrodes (DE2.1; Delsys, Boston, MA, USA)
from the same seven muscles in each leg: tibialis anterior (TA), medial gastrocnemius (MG), soleus
(SOL), vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST).

The data are saved in CSV format in subject-specific folders and are available to download from
Figshare at https://doi.org/10.6084/m9.figshare.5362627.

The authors apologize for these errors and state that they do not change the scientific
conclusions of the article in any way. The original article has been updated.
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Stroke-related locomotor impairments are often associated with abnormal timing and

intensity of recruitment of the affected and non-affected lower limb muscles. Restoring

the proper lower limbs muscles activation is a key factor to facilitate recovery of gait

capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable

powered exoskeleton robot able to support over-ground gait training. The user controls

the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of

the exoskeleton control system is crucial—it is set according to the residual functional

abilities of the patient, and it needs to ensure lower limbs powered gait to be the most

physiological as possible. This work focuses on the definition of an automatic calibration

procedure able to detect the best Ekso setting for each patient. EMG activity has been

recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles

in a group of 7 healthy controls and 13 neurological patients. EMG signals have been

processed so to obtain muscles activation patterns. The mean muscular activation

pattern derived from the controls cohort has been set as reference. The developed

automatic calibration procedure requires the patient to perform overground walking

trials supported by the exoskeleton while changing parameters setting. The Gait Metric

index is calculated for each trial, where the closer the performance is to the normative

muscular activation pattern, in terms of both relative amplitude and timing, the higher

the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best

parameters set. It has to be noted that the automatic computational calibration procedure

is based on the same number of overground walking trials, and the same experimental

set-up as in the current manual calibration procedure. The proposed approach allows

supporting the rehabilitation team in the setting procedure. It has been demonstrated to

be robust, and to be in agreement with the current gold standard (i.e., manual calibration

performed by an expert engineer). The use of a graphical user interface is a promising

tool for the effective use of an automatic procedure in a clinical context.

Keywords: lower-limb exoskeleton, electromyography, automatic calibration, neurorehabilitation, therapy

personalization

33

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2018.00010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2018.00010&domain=pdf&date_stamp=2018-03-19
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marta.gandolla@polimi.it
https://doi.org/10.3389/fnbot.2018.00010
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00010/full
http://loop.frontiersin.org/people/144223/overview
http://loop.frontiersin.org/people/495214/overview
http://loop.frontiersin.org/people/132960/overview


Gandolla et al. Exoskeleton Automatic Setting Procedure

INTRODUCTION

Stroke is the leading cause of long-term disability in adults
despite the advances achieved in the management of its
acute phase (Heiss and Kidwell, 2014; Tacchino et al., 2017).
Independent walking in particular has been associated to an
increase in patients’ ability to perform daily life activities and
self-esteem. Although more than half of patients achieve an
independent walking, this achievement may not be functional
to carry out activities of daily living. Locomotion is defined as
a cyclical lower limbs activity that results from intricate dynamic
interactions between a central program (at brain and spinal cord
level) and feedback mechanisms from muscles, tendons, and
skin afferences, as well as vision, audition, and vestibular senses
(Rossignol et al., 2006). The lower limb neuromuscular pattern
should compensate body weight support, provide forward
and lateral stability, and forward progression to ensure intra
and inter-limb multi-joints coordination (Perry and Burnfield,
2010). Common stroke-related locomotor impairments (e.g.,
imbalance, gait asymmetry, poor inter-limb coordination)
are often associated with abnormal timing and intensity of
recruitment of the affected and non-affected lower limb muscles.

Timing and intensity of muscles recruitment influence
kinematic and kinetic pattern of lower limbs and intra and
inter-limb coordination (Mulroy et al., 2003; Den Otter et al.,
2007). Restoring the coordination in muscles activation of lower
limbs is a key factor to facilitate recovery of gait capacity and
performance, and to reduce maladaptive plasticity in stroke
patients. Evidence within the last 20 years has shown that an
injured central nervous system has the ability to reorganize after
damage (Nudo, 2013; Gandolla et al., 2016). The reorganization
is dependent on motor activity executed during rehabilitative
training, and is followed by functional improvements (Edgerton
et al., 2004; Maier and Schwab, 2006; Gandolla et al., 2014,
2016). In order to achieve better outcomes in stroke survivors,
gait rehabilitation should target impairments in coordination
and allow to augment the number of repetitions during walking
practice (Eng and Tang, 2007).

Nowadays, wearable lower limbs powered exoskeletons may
be a valuable adjunctive rehabilitation therapy aiming at
augmenting training dose with repeatable, task-oriented, and
controlled movements, as suggested by the principles of motor
learning (Dietz and Harkema, 2004). In fact, as a common
approach implemented in lower limbs exoskeleton commercial
devices, the devices include actuators that support patient’s legs
through the gait cycle in the sagittal plane (e.g., Lokomat,
Hocoma; ReWalk, ReWalk Robotics). The robotic device guides
the legs through pre-programmed physiological gait patterns—
this kind of therapeutic intervention is fairly new for stroke
patients, however preliminary findings suggest that exoskeletal
gait training is equivalent to traditional therapy for chronic
stroke patients, while sub-acute patients may experience added
benefit from exoskeletal gait training (Louie and Eng, 2016).
Ekso is a wearable powered exoskeleton robot able to support
stroke patients during over-ground gait training. The kinematic
chain of the exoskeleton reproduces the human lower limbs
walking pattern. In addition, Ekso actuators control patient’s legs

through the gait cycle in the sagittal plane. Ekso can be used as
a therapeutic device in patients who must re-learn walking with
a proper step pattern and functional weight shift by moving the
patient’s legs through a customizable predefined patient-tailored
kinematic pattern. Ekso allows different setting for each patient
in terms of swing velocity, step length, lateral shift. In this way, it
is possible to control the walking pattern in terms of gait cycle
timing (i.e., stance vs. swing phase duration), inter-limb and
inter-joint coordination, lateral shift, trunk-lower limb angle, and
timing to achieve appropriate limb loading.

The fine-tuning of the exoskeleton control system is crucial,
and it is set according to the residual functional abilities of the
patient. The interaction between exoskeleton and the patient
can be seen under two different aspects: physical Human–Robot
Interaction and cognitive Human–Robot Interaction (Pons,
2010; Lee et al., 2012). Physical Human–Robot Interaction
includes the generation of supplementary forces to overcome
human physical limits. In the case of the present study, the patient
triggers each step, which however follows a predefined fully
supported physiological trajectory. The interaction is therefore
devoted to the generation of a proper gait cycle. Cognitive
Human–Robot Interaction highlights the possibility to maintain
the control of the robot from the human. In this study, the
patient has the direct control on the trigger of each step though
body lateral shift. Given the use of a commercial device, both
aspects of Human-Robot Interaction depends on robotic device
proper setting—the fine-tuning procedure is necessary to ensure
the best power transfer between subject and robot. Surface
ElectroMyoGraphy (sEMG) of the keymuscles controllingmulti-
joints coordination of lower limbs is an effective way to non-
invasively define motor control during spontaneous over-ground
gait.

This work focuses on the definition of an automatic
calibration procedure able to detect the best Ekso setting for each
patient. Ekso setting has been defined using the neuromuscular
pattern of the lower limbs collected with the superficial EMG
in hemiparetic stroke patients. The proposed approach for an
automatic calibration procedure is based on the hypothesis that
the best Ekso setting yields to be best muscular activation as
detected from superficial EMG electrodes, and that muscular
activation is as better as closer to healthy controls muscular
activation patter, particularly in terms of muscular activation
timing.

MATERIALS AND METHODS

Experimental Set-Up
Patient’s overground locomotion has been supported by Ekso
(Ekso Bionics, Richmond, CA, USA). Ekso is a wearable bionic
suit: it enables individuals with lower limb disabilities and
minimal forearm strength to stand, sit and walk over a flat
hard surface with a full weight-bearing reciprocal gait under the
supervision of a physical therapist. Ekso is intended for non-
ambulatory and ambulatory post-stroke patients, spinal cord
complete, and incomplete injury patients with different etiology,
and traumatic brain injury patients. It weighs 23 kg and can be
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used by individuals who weigh up to 100 kg and range in height
from 160 to 190 cm. Patients must have a standing hip width at
maximum of 43 cm. Ekso is equipped with four battery-powered
motors at the hips and knees: these support or replace deficient
neuromuscular function. There are four types of actuation for
each patient step: (i) FirstStep, by which a physical therapist
actuates steps with a button push; (ii) ActiveStep, by which
the patient takes control of actuating steps via buttons on the
crutches or walker; (iii) ProStep, by which the patient achieves the
next step by moving body weight laterally and then forward; and
(iv) ProStep Plus, by which steps are triggered by the user’s lateral
weight shift. The amount of power contribution to one or both
legs during walking can be tuned with three types of assistance for
each single step: (i) Bilateral Max Assist, in which Ekso provides
full power to both legs and no strength is required from the
patient; (ii) Adaptive Assist, in which patients with any amount of
lower extremity strength contribute to their walking efforts and
Ekso dynamically adjusts to produce a smooth, consistent gait;
and (iii) Fixed Assist, where Ekso legs provide a fixed amount of
pre-specified power to help patients to complete steps in a pre-
defined amount of time. Within the present study, Ekso has been
set with Prostep Plus, and Bilateral Max Assist. Ekso needs to be
adjusted to fit patients’ anthropometric data for a correct use of
the device. In particular, it is necessary to collect hip width, length
of right and left upper legs, and length of right and left lower legs.

The muscle activity has been recorded bilaterally with
the FREEEMG wireless electromyograph (BTS Bioengineering,
Garbagnate Milanese, Milano, Italy). Muscle groups considered
for the analysis and placement of the electrodes has been
selected accordingly to SENIAM guidelines (Hermens, 1999):
tibialis anterior muscle (TA), soleus muscle (SOL), rectus femoris
(RF), and semitendinosus muscle (SM). Lower limbs principal
muscles have been selected for recording, and in particular,
two couples of agonist/antagonist muscles in the proximal and
distal compartment respectively, since they are more directly
responsible for a correct walking-induced muscles activation
profile, and EMG electrodes can be easily positioned without
interfering with Ekso.

Participants
Patients were recruited from the outpatient and inpatient services
at the Villa Beretta Rehabilitation Centre (Costa Masnaga, LC,
Italy). All patients had suffered from first-ever stroke, resulting
in weakness of at least TA [to <4 on the Medical Research
Council (MRC) scale Medical Research Council/Guarantors of
Brain, 1986] and with a level of spasticity <2 as detected by
Modified Ashworth Scale (Ansari et al., 2008) at hip, knee and
ankle. Thirteen post-stroke patients were recruited [range: 29–
74 years, mean (standard deviation): 52 (14)], comprising 10
male and 3 female subjects. Patient’s characteristics along with
the degree of functional recovery at the time of recruitment are
listed in Table 1. The control group was composed of healthy
volunteers with no neurological or orthopedic impairment. The
healthy control group was aged between 21 and 49 years [mean
(standard deviation): 36 (10) years], comprising four male and
three female subjects. Experiments were conducted with approval
from the Villa Beretta Rehabilitation Centre Ethics Committee

and all subjects gave informedwritten consent in accordance with
the Declaration of Helsinki.

Current Procedure for Manual Setting of

Ekso
Current gold standard for Ekso parameters setting in clinical
environment (i.e., manual calibration) consists on the patient
performing a series of overground walking trials with the values
of tunable parameters changed by the rehabilitation team so to
identify the best setting for the current patient and condition.
These parameters are set on the basis of EMG signal derived from
analyzed muscles, and by looking at patient gait. EMG signals
are not processed in this case, and they are displayed on a laptop
screen. The information drawn from raw EMG signals is muscles
activation timing. The best activation timing for both healthy
and paretic muscles is defined according to typical activity of
major muscle groups during the gait cycle. In particular, the
standard procedure includes the setting of the three main setting
parameters, i.e., (i) lateral shift (displacement of body weight
under the patient’s foot); (ii) swing time; and (iii) step length.
Manual calibration starts with the first parameter to be set (i.e.,
lateral shift). A series of overground gait trials are performed,
while setting the parameter to different values. The gait trials are
minimum three, where the default value, and higher and lower
settings are tested. By means of observation of the gait quality,
and EMG signals acquired during walking, the expert Ekso user
along with the rehabilitation team selects the best parameter
setting. The first parameter is then fixed, and the next parameters
are considered in a recursive procedure until Ekso is properly set
(Figure 1).

Computational Calibration Procedure
The proposed approach for automatic computational calibration
procedure is based on the same number of overground
walking trials, and the same experimental set-up as in the
current manual calibration procedure, where the observation
of the gait quality, and EMG signals by the expert Ekso
user is substituted by EMG signal computational analysis
(Figure 1). EMG signal computational analysis is based on
the hypothesis that muscular activation profile is as better
as closer to healthy control population pattern. This is the
reason why data from a representative group of control
subjects were also collected. The computational calibration
procedure is applied to healthy controls, and the non-
paretic side of neurological patients. In fact, it is known
that the more natural is the step of the unimpaired side,
the more physiological is the gait, and the more it is
possible to state that the global ambulation is close to
normative.

Step Identification Procedure

Since it is currently impossible to autonomously extract data
directly from Ekso sensors, it is not possible to synchronize
Ekso with external systems (i.e., EMG). This limitation has
been overcome by using a step identification procedure directly
on the EMG signals. In particular, EMG signals coming from
all muscular channels are pre-processed following a standard
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TABLE 1 | Patients characteristics.

Patient ID Age [years] Sex [M/F] Paretic side [R/L] Stroke type [H/I] FAC Time from acute event [days]

PT01 70 M L H 0 113

PT02 68 M R I 3 45

PT03 37 F R H 3 2,257

PT04 63 M L H 2 760

PT05 36 M L I 1 32

PT06 60 M R I 3 583

PT07 74 M L H 1 195

PT08 29 M L H 2 236

PT09 52 M R I 1 16

PT10 46 F L H 2 45

PT11 47 F L I 1 47

PT12 45 M R I 1 94

PT13 53 M L I 2 86

M, male; F, female; L, left; R, right; H, hemorrhagic stroke; I, ischemic stroke; FAC, functional ambulatory category (Mehrholz et al., 2007).

FIGURE 1 | (A) Flow chart of the current Ekso manual calibration procedure. (B) Flow chart of the automatic Ekso calibration procedure.

approach that includes high-pass filtering with a 6th order
Butterworth filter at 20Hz, rectification, and low-pass filtering
with a 6th order Butterworth filter at 4Hz (Solnik et al., 2008).
Given that the computational calibration procedure should not
include any additional workload to the rehabilitation team or to
the patient, there are no footswitches or similar sensor available
to give information about single steps. The proposed method is
based on the hypothesis that the number of steps is proportional
to the number of muscle activations. In order to satisfy this
hypothesis, a mono-phasic muscle has been considered, so that
only a single activation is expected throughout the step cycle. The
Soleus muscle has been selected since is monophasic during the

step (Pasinetti et al., 2013), i.e., it reaches only once the activation
peak, characteristic which is preserved, as far as we observed, in
our patients cohort. To this aim, Soleus EMG signal is further
preprocessed to limit the bandwidth to frequencies where step
cadence is located, i.e., 0–2Hz (Pachi and Ji, 2005). Soleus de-
activation is then identified through an algorithm based on a
20 samples sliding window and adaptive threshold derived from
the integration of signal-to-noise ratio based adaptive threshold
algorithm proposed by Sedghamiz, and Di Fabio and colleagues
algorithm (Di Fabio, 1987; Sedghamiz, 2014). In particular, the
algorithm is applied on the mean corrected EMG preprocessed
signal, and the four variables—signal level, noise level, threshold,
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and activation (binary on/off variable used to describe muscle
activation/deactivation)—are null at the beginning. Variables
levels are dynamically calculated sample by sample as detailed
in Figure 2, considering the EMG portion included within the
20 samples sliding window. The signal portion included between
two Soleus muscle deactivation corresponds to a step cycle,
starting from the end of the push-off phase. EMG signal of all
considered muscles is segmented accordingly.

Muscular Activation Pattern Definition

Muscular activation pattern for each muscle, both for control
and for patients, is obtained by re-scaling each step to a 0–
100% scale in terms of step duration, and afterwards by averaging
all steps, and by normalizing the muscular step template in
terms of amplitude with respect to the peak value for each
trial. To obtain a healthy controls muscular pattern, all averaged
muscular patterns resulted from five different trials performed
per participant have been averaged. The accuracy of the signal
segmentation technique has been evaluated through qualitative
inspection of the morphology of the muscle activation profiles
and through a quantitative analysis of the inter-step variability
(i.e., coefficient of variation) to verify consistency with the
muscular dynamics reported in literature (Winter and Yack,
1987). Finally, using the same onset/offset detection algorithm
described to detect Soleus muscle deactivation (Figure 2), for
each muscle an activation/deactivation profile is determined,
where the information “the muscle is active or inactive” can
be derived with respect to the percentage of the gait cycle (i.e.,
0–100%).

Performance Index Extraction

So to define the best parameters setting, the Gait Metric index
(GM) has been extracted from the healthy controls, and the
non-paretic side of neurological patients. GM is an analytical
combination of amplitude and activation timing (Ricamato and
Hidler, 2005), and quantifies the deviation of the muscular
activation pattern from normal ranges defined within the healthy
control group.

In particular, GM is composed by the arithmetic mean
between an amplitude, and a phase component determined
through the comparison of each muscle activation pattern,
and the correspondent healthy controls activation pattern. The
amplitude component (AC) is obtained by summing the EMG
values where both the patient and the healthy controls patterns
are over or under threshold. In other words, for each given
sample (i.e., 0–100% of the gait cycle), AC is increased if
patient muscle is active when also healthy controls muscle is,
or is inactive when also healthy controls muscle is inactive
(Equation 1).

AC =

100
∑

p= 1

(HCAP
(

p
)

)(EMG
(

p
)

− threshold) (1)

Where p is the index representing gait cycle progression (i.e., 0–
100%); HCAP is the Healthy Controls Activation Profile which
is 1 for the healthy controls pattern active portions, and −1

for the inactive portions; EMG(p) is the patient EMG profile
sample value; and threshold is the activation threshold defined as
described in section Graphical User Interface (GUI) For Clinical
Use.

AC is then normalized to obtain a value between 0 and 1
(ACnorm) as follows (Equations 2–4).

ACmax =

((

1− threshold
)

∗ #Active
)

+

(

threshold ∗ #Inactive
)

(2)

ACmin = −1 ∗ (100− ACmax) (3)

ACnorm =

AC − ACmin

ACmax − ACmin
(4)

Where #Active is the number of active samples in the healthy
controls activation pattern; and #Inactive is the number of
inactive samples in the healthy controls activation pattern.

The Phase Component (PC) is determined for each given
sample (i.e., 0–100% of the gait cycle) by summing 1 if patient
muscle is active when also healthy controls muscle is, or is
inactive when also healthy controls muscle is, and 0 otherwise.
PC is then normalized dividing the obtained value by 100.

Once the GM has been obtained for each considered muscle,
a Weighted GM (WGM) is obtained by weighting each GM with
the standard deviation of the correspondent muscle obtained in
the healthy control group as follows (Equations 5, 6).

Normalized St. Dev. =
(

[1 1 1 1]−
St. Dev. Healthy Sub.

∑n
i= 1

(

St.Dev. Healthy Sub.
)

i

)

∗

1

n− 1
. (5)

WGM =

n
∑

i= i

GM∗

i

(

Normalized St. Dev.
)

i
. (6)

Where n represents the considered muscles, St.Dev.HealthySub.
is the vector containing GM standard deviation obtained in
the healthy controls group; NormalizedSt.Dev. is the normalized
vector of standard deviations considered for GM weighting (i.e.,
sum equals 1).

The higher the WGM, the closer the performance is to the
normative muscular activation pattern, in terms of both relative
amplitude, and timing. The trial with the best WGM would
correspond to the best parameter set.

Computational Calibration Procedure

Validation
Repeatability of the automatic calibration procedure has been
tested by running twice the algorithm for each participant
(i.e., each neurological patient). The output parameters setting
in the two runs have been compared through the Cohen’s
kappa for agreement between to evaluators (Cohen, 1960).
The test of repeatability was important since the EMG signal
portion selected to run the analysis is of free choice of
the user, and therefore it cannot be taken for granted that
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FIGURE 2 | Flow chart of EMG signal activation/deactivation identification. The four variables in the algorithm, i.e., signal level, noise level, threshold, and activation,

are updated following the equations indicated in figure for each sample t. WL, number of samples in the window; EMG, EMG signal; abs, absolute value.

the same steps are considered for the analysis. Indeed the
computational procedure should be robust with respect to steps
selection.

Manual calibration is performed by means of observation
of the gait quality, and EMG signals acquired during walking.
However, EMG signal analysis is only performed by sight on
a non-processed signal, and it is therefore not reliable. To test
this hypothesis, three different raters selected Ekso parameters
setting only by inspecting non-processed EMG signal, without
seeing the patients. The agreement between the different raters
has been evaluated through Fleiss’ Kappa (Landis and Koch,
1977).

In addition, the agreement between computational calibration
procedure parameters setting, and the gold standard procedure
(i.e., parameters set by the expert clinical engineer and
rehabilitation team during the effective calibration session) has
been evaluated by Cohen’s kappa (Cohen, 1960; Gandolla et al.,
2015).

Graphical User Interface (GUI) for Clinical

Use
The computational calibration procedure has been implemented
in a custom-made and guided software developed in MATLAB
environment (Figure 3) to support the use of the proposed
approach in clinical practice. The interface has three sections:
the “Healthy Subjects” section dedicated to the analysis
of healthy controls and the calculation of the normative
muscular activation pattern; the “Patients” section for
patient data analysis and searching for the best Ekso GT
configuration; the “Common Tools” section where the user can
perform an additional analysis of patients or healthy controls
data.

RESULTS

Muscular Activation Pattern
The healthy controls muscular pattern is shown in Figure 4. The
qualitative inspection of the morphology of the muscle activation
profiles reflects what has been found in literature evidences
(Winter and Yack, 1987; Tao et al., 2012), and in particular:

• Tibialis anterior (TA) muscle is active to prevent contact of
the toes with the ground during the initial and intermediate
swing phase (0–30%); an activation peak happens during the
terminal and load acceptance phases (30–45%GC). TA activity
is reduced during the stance phase.

• Soleus muscle (SOL) activity starts in the load acceptance
phase (35–45% GC), increases in intermediate support phase
(45–65% GC), and then reaches its peak during pre-oscillation
phase (75–85% GC). When the push-off phase is complete, the
soleus muscle remains inactive throughout the swing phase.

• Rectus femoris (RF) muscle has moderate activity in the early
oscillation phases (0–10%), so it reaches an activation peak in
the acceptance phase and intermediate support phase acting
as a stabilizer (30–65% GC). There is a final activation in the
propulsion and lifting phase of the limb (75–100% GC).

• Semitendinosus muscle (ST) has moderate activity in the
early swing phase (0–10% GC), then achieves a peak in the
terminal oscillation and acceptance phases aiming at stopping
the movement of the limb (30–45%). Its activity is slowly
reduced during the intermediate support phase.

The mean value of the coefficient of variation across all subjects
for the considered muscles are 0.230 (TA), 0.167 (SOL), 0.369
(RF), and 0.365 (ST), respectively.

Neurological patients muscular activation pattern is quite
different among subjects, as expected (an example is shown
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FIGURE 3 | Graphical User Interface for clinical use. The “Healthy Subjects” section is dedicated to the analysis of healthy subjects and the calculation of the

normative muscular activation pattern; the “Patients” section is dedicated to patient data analysis and searching for the best Ekso configuration; in the “Common

Tools” section the user can perform an additional analysis of patients or healthy subject’s data.

FIGURE 4 | Healthy controls muscular pattern. Red line, mean; gray shaded area, standard deviation; blue line, activation profile (active/non-active muscle window).
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in Figure 5). For all patients, steps segmentation has been
successfully performed on the non-paretic EMG signal during
robotic-assisted gait trials, and the gait metric index has been
calculated for all trials, and all patients.

Gait Metric Behavior
GM has been calculated for each trial of the healthy controls
cohort, and results are reported in Table 2, and are in accord
with values reported in literature for a walking speed obtained
during spontaneous walking, i.e., 1.3–1.6 m/s (Ricamato and
Hidler, 2005). To check for WGM variability, WGM has been
calculated for each control participant for the five walking trials
obtaining standard deviations equal to 0.007, 0.014, 0.023, 0.031,
0.027, 0.005, and 0.026 respectively. Table 3 shows the detailed
WGM scores obtained by patients in the seven walking trials
with different Ekso parameters settings. As it can be observed,
in some cases, WGM differences between alternative parameters
settings are not crucial (i.e., difference lower that healthy controls
cohort mean WGM standard deviation−0.019). In these cases,
Ekso parameters setting is therefore not crucial in terms of EMG
activations obtained. WGM variability is higher within the first
three trials, correspondent to the selection of first parameter, i.e.,
lateral shift, while decreases in the other trials. As a representative
muscle, Tibialis Anterior EMG mean profile for each trial and
each patient is represented in Figure 6. As it can be observed,
some of the patients present quite substantial differences in
terms of muscles activity, which can be easily detected by sight
(e.g., PT01 or PT13). Other patients (e.g., PT07) shows muscles
activity profiles almost superimposable among trials. Again, Ekso
parameters setting is particularly crucial for patients who present
substantially different muscles activation profiles.

Reproducibility and Validity of

Computational Calibration
The computational calibration procedure is robust with respect
to steps selection, as shown by Cohen’s kappa equals to 0.883,
i.e., strong agreement (Sim andWright, 2005). On the other side,
the agreement between the three different raters who selected
Ekso parameters setting only by inspecting non-processed EMG

TABLE 2 | Gait Metric index values obtained by the healthy subjects cohort.

Subject TA SOL RF ST

S01 0.591 0.799 0.634 0.704

S02 0.772 0.819 0.709 0.717

S03 0.797 0.847 0.738 0.786

S04 0.612 0.784 0.641 0.744

S05 0.747 0.847 0.624 0.763

S06 0.848 0.843 0.741 0.812

S07 0.716 0.843 0.533 0.654

Mean 0.726 0.826 0.660 0.740

Std dev 0.095 0.026 0.075 0.054

TA, tibialis anterior muscle; SOL, soleus muscle; RF, rectus femoris; SM, semitendinosus

muscle; Std dev, standard deviation.

signal is equal to 0.296, i.e., mediocre agreement. Agreement
between computational calibration procedure, and gold standard
(i.e., expert engineer setting) shows substantial agreement, with
Cohen’s kappa equals to 0.648, while agreement between the three
different raters who selected Ekso parameters setting only by
inspecting non-processed EMG signal and gold standard is very
weak with Cohen’s kappa equal, respectively to 0.095, 0.058, and
0.045 (Sim and Wright, 2005). In particular, for the three Ekso
parameters Cohen’s kappa for the agreement between automatic
procedure and gold standard selection are 0.614, 0.591, and 0.780,
respectively.

DISCUSSION

Gait recovery in post-stroke patients is one of the main goals
of post-stroke rehabilitation (Molteni et al., 2017). Literature
evidences demonstrated that central nervous system can
reorganize after injury and that reorganization depends onmotor
activity performed during rehabilitative training (Edgerton et al.,
2004; Maier and Schwab, 2006). Wearable robotic exoskeleton
may be intended like an external environment acting with
the patient—an extension of the body of the patient. Robotic
devices induce patients’ lower limbs to complete a pre-defined
motor pattern according to a pre-programmed kinematic profile
allowing subjects with gait dysfunctions to perform an over-
ground gait training based on the principle of motor relearning.

There is a paucity of published data on powered robotic
exoskeletons for gait rehabilitation in post-stroke patients. In
a recent review (Louie and Eng, 2016) on the use of wearable
powered exoskeletons in stroke patients, authors describe studies
in which different robotic devices were used on a small number
of stroke patients without general consensus on the results.
Molteni et al. (2017) performed a pre-post study to analyse
the effects of a wearable powered exoskeleton on 23 sub-acute
and chronic stroke patients. Authors claimed that it is possible
to modify clinical outcome measures in sub-acute and chronic
post-stroke patients after 12 sessions of gait training with a

TABLE 3 | Weighted Gait Metric index values obtained by the patients cohort.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

PT01 0.5353 0.5435 0.5184 0.5689 0.5807 0.5989 –

PT02 0.6402 0.6263 0.6144 0.6305 0.6774 0.6744 –

PT03 0.5738 0.5796 0.5848 0.5772 0.5868 0.5890 –

PT04 0.5410 0.5565 0.5804 0.5229 0.5275 0.5443 0.5319

PT05 0.5842 0.5854 0.5379 0.5972 0.5372 0.5359 0.5815

PT06 0.5241 0.4980 0.5007 0.5555 0.5044 0.5485 –

PT07 0.5862 0.5927 0.6119 0.6097 0.5658 0.5960 –

PT08 0.4960 0.4983 0.5160 0.5555 0.5013 0.5452 0.5099

PT09 0.4784 0.5048 0.5100 0.5694 0.5241 0.5278 –

PT10 0.5235 0.5187 0.5079 0.4960 0.5007 0.4808 0.5471

PT11 0.5860 0.5538 0.5857 0.5626 0.6214 0.5978 0.6414

PT12 0.5915 0.5984 0.6017 0.6271 0.6268 0.6257 0.6175

PT13 0.6347 0.7117 0.6926 0.6268 0.6523 0.6598 0.6930
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FIGURE 5 | Example of neurological patient muscular pattern (PT11). Red line, mean; gray shaded area, standard deviation; blue line, activation profile

(active/non-active muscle window).

powered wearable robotic exoskeleton after fine-tuning of the
kinematic gait cycle parameters. The fine-tuning of wearable
robotic device parameters is therefore essential to produce the
best neuromuscular pattern of the lower limbs enhancing short-
term neuromodulation. This may be a way to induce long-term
potentiation of the mechanism controlling the gait pattern of
non-affected and affected side (Kwakkel et al., 1999).

For this reason, the use of an automatic calibration procedure
to identify the best settings for each patient is very important.
This approach, which is repeatable, robust, and based on
quantitative measures, may underline aspects hardly detectable
only through direct observation, and may provide a valuable
support to the rehabilitation team.

In this work, an automatic calibration procedure has been
proposed for Ekso. The proposed approach is based on the
hypothesis that the best Ekso setting yields to a muscular
activation as close as possible to healthy controls muscular
activation pattern, given that restoring a correct activation
pattern is a key aspect of the rehabilitation program of
neurological patients (Zhang et al., 2017). Although the sample
size of healthy subjects is limited, the derived muscular activation
patterns for all muscles agree with those reported in literature
(Ricamato and Hidler, 2005). Coefficients of variations show
the same relationship among muscles as described in literature
(Winter and Yack, 1987). Distal muscles (i.e., TA and SOL
muscles) present lower coefficients of variations with respect to
proximal lower limbs muscles (i.e., RF and SM muscles). This is
in line with the role of proximal muscles during gait, which is of
support and equilibrium control. Given in fact the complexity of
their functions, proximal muscles activation profile results to be
more variable among successive steps (Winter and Yack, 1987).
As a clinical recommendation for the computational calibration
procedure everyday use, the authors suggest if possible to acquire

the EMG signal from all four principal leg muscles or, as a
possible alternative, to register distal muscles activity. In fact,
as previously introduced, the function of proximal muscles
during gait might be identified in the maintenance of balance,
which is a complex motor task in post-stroke patient and
the disability due to the paretic limb introduces compensatory
mechanisms that affect its performance. Typically, if excessive co-
contraction of distal muscles occurs, compensation is performed
at the proximal level (Higginson et al., 2006). An analysis only
based on the activity of the semitendinosus and rectus femoris
muscles cannot guarantee the optimum performance of the
motor task because a physiological activation of the proximal
muscles may correspond to an abnormal activation of the distal
muscles. Conversely, an analysis of both the soleus and Tibialis
Anterior muscle seems to be more effective in defining the
Ekso settings because a proper distal activation pattern more
likely corresponds to a non-compensatory activation of proximal
muscles.

The goal of the proposed approach is to equip the clinician
with an instrument that could help clinician to identify the
best Ekso setting, singularly for each patient. As far as we
know, there are any quantitative data published in literature
or indications provided by the fabricant so to evaluate the
correctness of the setting. The gold standard procedure is manual
regulation by expert operators, and, as it can be observed by
the poor agreement revealed by Cohen’s kappa between different
operators in selecting best Ekso parameters, it lays on subjective
evaluation, and it is not repeatable. The automatic procedure
selection has been compared to the setting selection of an expert
operator in the Villa Beretta Rehabilitation Center, as suggested
by Ekso Company itself, and obtained substantial agreement,
being at the same time robust for different steps selections. In
this case, we are not claiming we are obtaining better results
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FIGURE 6 | Tibialis Anterior muscle EMG profiles for all patients and all performed trials. Dashed line: healthy controls activation window.

with respect to manual calibration in terms of best setting, but
we are claiming that the automatic procedure is robust and
repeatable with respect to a gold standard, and can be used by any
operator.

The proposed approach allows supporting the rehabilitation
team in the setting procedure, and it has been demonstrated
to be robust, and to be in agreement with the current gold
standard. The use of a graphical user interface is a promising
tool for the effective use of an automatic procedure in a clinical
context. Indeed, the automatic calibration procedure does not
imply any additional workload for the patient or the therapist
with respect to the manual calibration procedure. The automatic
calibration procedure has been validated with respect to the

current gold standard, which is the selection of the expert Ekso
user. However, the use of the automatic calibration procedure
may allow a correct parameters setting from the very beginning
of Ekso use, also when the rehabilitation team is still not
well trained. The identification of an automatic procedure able
to detect in an objective way the best devices setting, allows
to plan a completely new individual tailored rehabilitation
strategy.
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The relative motion between human and exoskeleton is a crucial factor that has

remarkable consequences on the efficiency, reliability and safety of human-robot

interaction. Unfortunately, its quantitative assessment has been largely overlooked in

the literature. Here, we present a methodology that allows predicting the motion of

the human joints from the knowledge of the angular motion of the exoskeleton frame.

Our method combines a subject-specific skeletal model with a kinematic model of a

lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between

them. To calibrate the model and validate its ability to predict the relative motion in

a subject-specific way, we performed experiments on seven healthy subjects during

treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5◦ globally,

and around 1.5◦ at the hip level, which represent an improvement up to 66% compared

to the traditional approach assuming no relative motion between the user and the

exoskeleton.

Keywords: benchmarking, walking, wearable robot, rehabilitation, lower limb, skeletal modeling

INTRODUCTION

The quantitative assessment of robotic performance is a critical issue in rehabilitation
robotics (Torricelli et al., 2015b). The increasing number of wearable robots available in
the market has triggered the strong need for reliable methods to compare the existing
solutions on a common basis. In the field of lower limb exoskeletons, devices are usually
tested according to self-defined procedures and metrics that cannot be easily replicated
across different laboratories and/or users. The most relevant problems are related to the
intrinsic differences between devices, in terms of degrees of freedom, actuation principles,
mechanisms complexity, and materials, but are also due to the heterogeneous measurement
systems and protocols available worldwide. Besides this, the close interaction between the
user and the robot further challenges the assessment of robotic performance independently
from the user (Torricelli et al., 2015a). As a results, performance indicators normally rely
on global variables such as metabolic consumption (Mooney et al., 2014; Collins et al., 2015;
Galle et al., 2017), joint kinematics (Sawicki et al., 2006; Van Asseldonk et al., 2008), or
spatiotemporal parameters (Buesing et al., 2015; Arazpour et al., 2016). While these approaches
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are effective in grasping the overall behavior of a bipedal system,
they do not provide any clues on the internal mechanisms
that may be relevant to the global performance, e.g., human-
machine interaction (Torricelli et al., 2015a). In this respect, one
aspect that has been particularly disregarded in the literature
is the quantitative evaluation of human-machine kinematic
compatibility. A wearable robot is, by definition, a machine that
operates in constant physical contact with the human body,
supporting its movement by applying forces on the subject’s skin
(Pons, 2008). Due to kinematic, dynamic, and morphological
differences between the exoskeleton and the human body, a
relative motion between them always exists. This motion is
responsible for a number of disadvantages, such as energy losses
during power transmission, inaccurate control of the human
limbs, or discomfort and pain due to skin abrasion. During
mechatronic design, the understanding of these factors is key for
improving the device and its acceptance by the end user.

An accurate way to measure the relative motion between
subject and exoskeleton is by means of marker-based motion
capture (MOCAP) systems, which use reflective markers placed
on both the exoskeleton frame and the subject limbs (Alvarez
et al., 2017). This approach can produce very precise results,
but requires a time-consuming experimental procedure for
marker placement, post-processing, and fitting with human body
models. In addition, current marker-basedmodels are not usually
compatible with the presence of an exoskeleton, leading to the
need of custom-based protocols, which can be hardly replicated
across different systems.

Motivated by these observations, we formulated the following
question: “is it possible to predict human motion from
exoskeleton motion?.” A positive answer to it would support
the feasibility of estimating both exoskeleton and human
motion using only the exoskeleton sensors, overcoming most
of the aforementioned drawbacks. Being independent from any
external measurement system, this approach would also allow
measuring human-exoskeleton interaction in realistic outdoor
environments.

To address this research question, we propose a modeling-
experimental approach that combines personalized skeletal
models of human subject with a kinematic model of the
exoskeleton. We previously addressed a similar problem in the
context of exoskeletons for upper limb rehabilitation (Cortés
et al., 2014, 2016). In that work, we formulated and assessed a
computational method, denominated EIKPE (Extended Inverse
Kinematics Posture Estimation), to estimate the joint angles
of the human subject when the exoskeleton motion is known.
In the original version of the EIKPE, the human limb and
exoskeleton are modeled as a parallel kinematic chain in which
the exoskeleton’s cuff constraints impose motion constraints on
the human limb. Then, for a given pose of the exoskeleton, the
inverse kinematics (IK) of the parallel chain was computed to find
the joint angles of the subject limb during the training of single-
joint (e.g., elbow flexion) or compound motions (e.g., reaching
an object).

Here, we propose an extended version of the EIKPE, which
adds skeletal (SK) modeling in order to improve the subject-
specific prediction ability of human limb motion given the

absolute pose of the exoskeleton limb. To our best knowledge,
no similar approaches have been proposed in the literature.

MATERIALS AND METHODS

The process of creating, applying and estimating the accuracy of
the EIKPE entails the following five steps:

1. Capture of the Ground-Truth (GT) motion of the exoskeleton
and human during gait. This step generates the simultaneous
recording of a set of markers placed on human subjects and
exoskeleton during treadmill walking.

2. Skeletal model personalization. Based on recorded GTmotion
of human and exoskeleton, a generic skeletal model is scaled
to match the size of each test subject.

3. Human-Exoskeleton model generation. The personalized SK
model of each subject is connected with a kinematic model of
the exoskeleton and then the exoskeleton model link lengths
are adjusted.

4. Computation of the exoskeleton and human joint angles.
The GT joint angles of the human, vH(t), and exoskeleton,
vR(t), are calculated using the Human-Exoskeleton model
previously generated.

5. Application of the EIKPE constraints to the Human-
Exoskeleton model and assessment of its accuracy in
estimating human joint angles (ṽH(t)) given the GT joint
angles of the exoskeleton (vR(t)).

Ground-Truth Motion Recording
Seven healthy subjects (5 men, 2 women, age 29.7 ± 4.9)
participated in the study. The experiments were performed
in the Motion Analysis Laboratory of the Centro Superior
de Estudios Universitarios La Salle, Universidad Autónoma de
Madrid, Madrid, Spain. Subjects were asked to perform two
different recording sessions. In the first session, each subject was
asked to walk at 1 Km/h speed during 10 s. An additional trial
was required to measure the subject in a static upright standing
posture. In the second session, the subject repeated the previous
trials while wearing a lower limb exoskeleton. The exoskeleton
used in this experiment was the Exo-H2 (Technaid, Arganda del
Rey, Spain; Bortole et al., 2015). The Exo-H2 has 6 degrees of
freedom (DOFs), including hip, knee and ankle joints. Actuators
are connected to each other bymeans of an aluminum frame with
extensible plates that allow adjusting the inter-joint distance in
order to adapt to a specific subject size. In this experiment, the
exoskeleton was configured in “mechanically-transparent mode,”
i.e., with the motors physically decoupled from the joints. In this
configuration, the exoskeleton was unable to apply any assistive
or resistive force at the joint level. Several belts are used to attach
the exoskeleton to the subject.

Subject and exoskeleton motion were measured by using
a marker-based MOCAP system (BTS, Garbagnate Milanese,
Italy) composed of eight infrared cameras. All walking trials
were performed on a treadmill (LK6000 treadmill, BH fitness,
Spain). A 2 cubic meter volume was previously calibrated
to ensure accurate reconstruction of all markers during the
experiment. Prior to the first experimental session, the subject
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was instrumented with 12 reflective markers of 10mm diameter
placed on different anatomical landmarks (Figure 1): three
markers on the foot, placed on the calcaneus and on the fifth and
first metatarsals; one marker on the malleolous; three markers
on the shank; one marker on center-outside surface of the knee;
three markers on the thigh; one marker on the trochanter.

After the first session, and before donning the exoskeleton,
the markers on ankle, knee, and hip were removed, because
the exoskeleton structure would impede their view from
the cameras. The exoskeleton was equipped with five
markers placed in the center-outside surfaces of the knee,
ankle and hip motors, and in the midpoint of the shank
and thigh bars. Motion data were recorded at 100Hz and
processed offline to obtain the labeled 3D trajectories of all
markers.

Skeletal Model Personalization
We generated a personalized skeletal model for each of the
tested subjects by scaling a generic musculoskeletal lower limb
model [model Gait2392 included in OpenSim (Yamaguchi and
Zajac, 1989; Delp et al., 1990; Anderson and Pandy, 1999, 2001)],
which includes 19 DOFs. Although we used a musculoskeletal
model, in this work we refer to it as a skeletal model because
the muscular components of the model were not used for the
human kinematic estimation. The scaling and adjustment of
markers were performed by using the Scale Tool of OpenSim.
We have configured the Scale Tool to obtain the scaling factors
along the longitudinal axis of the femur using markers Mk11
and Mk7, for the tibia using markers Mk7 and Mk3, and
for the foot using markers Mk2 and Mk1 (Figure 1). For this
scaling stage, we used only the static captures of the subject
without the exoskeleton. Notice that with our marker protocol
we were only able to scale the right lower limb. The rest of
the model parts conserve the size of the original SK generic
model. The results of the scaling were visually inspected. If
the scaling was not coherent (e.g., the markers in the scaled
model appear to be too low or high with respect to the
segment they are attached to), then a manual scaling factor was
applied.

Human-Exoskeleton Model Generation
We modeled the fixation between the subject pelvis and
the exoskeleton corset as rigid, and adjusted their relative
translation such that the coordinates of the hip joint rotation
centers (left and right) of the human and exoskeleton match
along the anterior-posterior direction of the sagittal plane
(Figure 2). Then, we adjusted the length of the exoskeleton
links by using the static captures of the subjects wearing
the exoskeleton, such that the axes of rotation of the joints
of the hip, knee and ankle corresponded to the height
indicated by markers Mk11, Mk7, and Mk3 respectively. Finally,
the joint angles of the human hip (flexion, rotation, and
adduction), knee (flexion) and ankle (flexion) were adjusted,
using inverse kinematics, and manually revised, to match the
leg posture in the static capture of the subject wearing the
exoskeleton.

Computation of the Ground-Truth Joint
Angles
We computed the Ground-Truth (GT) joint angles of the human
and the exoskeleton by using the Inverse Kinematics (IK) Tool of
OpenSim (Figure 3). We have configured the IK tool to estimate
the angles of the hip, knee and ankle for both human and
exoskeleton and also the translations and rotations of the pelvis-
corset junction relative to the MOCAP coordinate system. We
assumed that, during the gait using the exoskeleton, the hip
rotation and ab-adduction angles are like those computed at the
static posture. This assumption is realistic since the exoskeleton
does not include neither adduction or rotation DOFs at the
hip level. To estimate the exoskeleton ankle plantar-dorsiflexion,
we created a new virtual marker (Mk14, see Figure 3) located
in the mid-point between markers Mk0 and Mk1. Then, the
exoskeleton ankle angle can be computed using IK from markers
Mk3 and Mk14.

The GT joint angles computed correspond to the rotation
around the Z axis of the joints. The neutral position of each
joint is defined as the position in which the Y axis of two
adjacent segments match. Figure 4 shows the definition of the
knee flexion-extension for the human and exoskeleton models,
as an example of the mentioned convention. The coordinate
systems of the human pelvis and exoskeleton corset are aligned
between them.

Human Joint Angles Estimation Using
EIKPE
Our method to estimate the joint angles of the human lower
limb during gait is based on a previous formulation of the EIKPE
method (Cortés et al., 2014, 2016). In the EIKPE, the human limb
and the exoskeleton are modeled as a single parallel kinematic
chain connected by the fixations of the exoskeleton (Figure 5,
left). For a given sequence of postures of the exoskeleton,
described by its vector of joint angles vR(t), the human sequence
of joint angles vH(t) is estimated.
Formally, the inputs to the problem are (Figure 5, right):

1) The human lower limb kinematic model, denoted by
H

(

LH , JH
)

[e.g., the Denavit-Hartenberg parameters
(Denavit, 1955)], where LH and JH correspond to sets of links
and joints. The lower limb kinematic model corresponds to
the personalized skeletal model obtained for each test subject.

2) The exoskeleton kinematic model, denoted by R
(

LR, JR
)

. The
values of exoskeleton joint angles vR are known at any instant
t of the gait cycle. The exoskeleton that we used in this work
(H2, Bortole et al., 2015), has 6 DOFs in total, all in the sagittal
plane.

3) A set of kinematic constraints, denoted C(vH(t), vR(t))
imposed by the human-exo fixations M, which are passive
mechanisms that connect the exoskeleton with the human
limbs. In this work, we consider the following set of
constraints:

a. A 6-DOF constraint between the human pelvis and the
exoskeleton corset.
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FIGURE 1 | Marker placement and labeling (written informed consent was obtained from the individual for the publication of this image).

FIGURE 2 | Schematic diagram of the Human-Exoskeleton model generation (left), and the resulting model scaled to one real test subject (right).
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FIGURE 3 | Schematic diagram of the human and exoskeleton ground-truth joint angles estimation (left) and detail of the markers used for the estimation of the

human and exoskeleton ankle flexion (right).

FIGURE 4 | Definition of the knee flexion-extension angles for the human (θh)

and exoskeleton (θe) models.

b. A 2-DOF constraint between the tibia and its fixation
(point-on-line constraint).

c. Three 3-DoF constraints between the human foot and the
exoskeleton sole (point-to-point constraints).

The goal of the implemented algorithm is to find the
approximate angles of the joints of the patient limb ṽH(t), such
that the set of constraints C are met.

The application of the EIKPE to estimate vH(t) entails the
following steps (Figure 6):

I. Application of the set of subject-specific constraints C to the
Human-Exoskeleton model previously determined.

II. Application of the GT joint coordinates of the Exoskeleton in
instant ti (v

R (ti)), i.e., flexion of the hip, knee, and ankle to the
Human-Exoskeleton model obtained in step I.

III. Estimation of the human flexion angles of the hip, knee and
ankle using the geometric constraint solver of OpenSim (Delp
et al., 2007) for instant ti ((ṽ

H(ti) ).
IV. Repetition of steps II and III for all instants ti belonging to the

GT dataset of the test subject.

Assessment of the Accuracy of EIKPE
Estimations
To assess the prediction performance, we compared the joint
profiles estimated by the EIKPE with the angle estimations
obtained by the GT angles from captured data. In order to
determine how the EIKPE compares to the traditional rigid
method, which assumes no misalignment between exoskeleton
and human joint axes and segments, we compared the joint
angles of the rigid method against those of the GT. The similarity
of the angle estimations provided by the EIKPE and the rigid
method against the GT has been assessed in terms of Root Mean
Squared Error (RMSE) and Range of Motion Error (ROME)
according to the following equations:

RMSE =

√

∑n
i=1

(

xi − yi
)2

n

ROME = [max (x) −min (x)]−
[

max
(

y
)

−min
(

y
)]

where x refers to the GT human joint angles and y are the joint
angles obtained by either the EIKPE or the rigid model estimator.
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FIGURE 5 | Schematic diagram of the human and exoskeleton kinematic models and their fixations (left) and Inputs and Outputs of the EIKPE (right).

FIGURE 6 | Schematic diagram of the human joint angles estimation using the EIKPE.

The RMSE captures errors related to differences in the shape
and offset of the estimations, whereas the ROME reflects the
accuracy in the estimation of the maximum amplitude of the
movement. This comparison has been performed on walking
data, whereas static data have been used only for model building
and calibration.

To check for statistical differences between the performance of
the rigidmodel and the EIKPE, we conducted aWilcoxon-Mann-
Whitney test, as an alternative to the t-test given the low numbers
of participants of this study. The test was applied on both metrics

(RMSE and ROME) for each joint, and the significance was set to
p= 0.05.

RESULTS

Figure 7 shows the results on human joint angle estimation from
one representative subject. The three profiles represent human
joint angles as obtained by GT captured data (in blue), the EIKPE
(in red), and the rigid model (in green). Results are given for hip,
knee and ankle DOF in the sagittal plane.
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FIGURE 7 | Ground-Truth (blue) and estimates (rigid model in green and the EIKPE in red) of the hip, knee, and ankle flexion-extension angles for representative gait

cycles of a test subject.

Table 1 reports the RMSE and ROME values from all the
test subjects. In addition, Figure 8 presents the box-plots of
the obtained values for the rigid model and the EIKPE across
subjects, for each of the estimated joint angles.

When compared to the rigid model, the EIKPE showed lower
errors with respect to the GT angles, in terms of both RMSE
and ROME. Regarding the RMSE metric, the improvements
produced by EIKPE vary between 27 and 44% while for the
ROME metric vary between 15 and 66%. In particular, the hip
flexion-extension showed the better estimation accuracy, with
mean errors lower than 2◦ and a dispersion of 0.7◦. For the
knee and ankle, the estimation errors increased, withmean values
below 3.5◦ for both metrics. The ankle estimations present the
larger dispersion for both metrics among the studied joints (up
to 2◦ for ROME metric). This is possibly due to cumulative
errors which are amplified at the end of the human kinematic
chain.

Concerning the estimations of the rigid model, the joint angle
that is better estimated is the hip flexion-extension, as occurred
with EIKPE, with mean errors around 2◦ and a dispersion near
1◦. As opposed to the results obtained by the EIKPE, the knee
angle presented the highest estimation errors. This result suggests
that the larger misalignment between the kinematic models of the
exoskeleton and human lower limb occurs at the level of the knee
during gait.

Table 2 presents the p-values obtained from the Wilcoxon-
Mann-Whitney test for RMSE and ROME. According to this
analysis, in terms of RMSE, the rigid model and the EIKPE result
statistically different (p < 0.05) only at the knee and ankle. In
contrast, in terms of the ROME, statistically relevant differences
are found only at the hip.

Figure 9 presents a qualitative comparison of the
reconstructed poses of the human lower limb, at the knee
level, during a particular phase of the gait cycle. The three figures
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TABLE 1 | Human joint angle estimation errors in terms of the ROME and RMSE

metrics (mean ± sd) provided by the rigid method and the EIKPE with respect to

the Ground-Truth angles.

Joint Metric Method Improvement*

(%)

Rigid Model EIKPE

Hip RMSE 2.2 ± 0.9 1.6 ± 0.7 27

ROME 2.9 ± 1.2 1.0 ± 0.7 66

Knee RMSE 4.1 ± 1.7 2.3 ± 0.7 44

ROME 4.2 ± 3.9 3.3 ± 2.1 22

Ankle RMSE 3.4 ± 1.5 2.2 ± 0.8 36

ROME 2.8 ± 1.6 2.4 ± 2.1 15

*Error reduction in the angle estimates provided by the EIKPE with respect to ones

provided by the rigid model.

TABLE 2 | Results of the Wilcoxon-Mann-Whitney test’s applied to the two

population of errors obtained by the EIKPE and the rigid model.

JOINT RMSE ROME

Hip 0.098 0.004*

Knee 0.004* 0.359

Ankle 0.012* 0.652

The asterisk indicates a p-value lower than 0.05.

correspond to the reconstruction using the GT joint angles (left),
the EIKPE (middle), and rigid model (right) respectively. It
can be observed how the rotation axes of the human (ZHuman

knee) and exoskeleton knee (ZExo knee) differ from each other in
the case of the GT data. With the rigid model, their directions
are parallel, recreating an idealized and inaccurate human—
exoskeleton relative pose. The EIKPE, on the contrary, is able to
reconstruct the direction of ZHuman knee close to those estimated
by the GT.

DISCUSSION

Measuring the relative motion between human and exoskeleton
is a challenging and increasingly relevant issue in wearable
robotics. A recent sensitivity analysis showed that inaccurate
joint angles estimates may led to inaccurate inverse dynamic
estimations up to 232% during gait (Riemer et al., 2008). These
sources of errors are particularly likely to happen in wearable
robotics applications, where it is generally assumed that the
exoskeleton and the human have negligible relative motion. This
can lead to wrong estimates about power and force transmissions
and therefore introduce important biases in the design of both
the mechatronic components and the control paradigms of
these devices. The EIKPE method here proposed showed an
improvement on the accuracy of human motion prediction in
the range of 15–66% over rigid model assumptions, leading to
accuracies below 3◦ (RMSE between 1.6–2.3◦). In the context of
gait analysis, these figures seem to be satisfactory, being close to
those obtained with other motion capture systems. For example,

the method in Seel et al. (2014), based on inertial sensors, reports
a RMSE between 1 and 3◦ for the ankle and knee flexion-
extension movements, in a scenario where no exoskeletons were
involved.

A major advantage of the EIKPE method is that no additional
sensors apart from those embedded in the exoskeleton are
required to obtain accurate estimations of the human joint
angle throughout the gait cycle. This has important practical
applications in clinical, industrial, and consumer domains,
because they allow quick measurements in out-of-the-lab
conditions. For instance, the EIKPE method can be used as a
benchmark of adaptability of the exoskeleton to specific sizes
of the subjects, either healthy or impaired, in the execution
of real tasks. Such information can be even obtained prior to
usability tests, and used to improve the design of the device,
achieving better ergonomics and more efficient transmission of
forces. In clinical diagnostic applications, such as during the
assessment of the increment of the voluntary range of motion, the
EIKPE method would enable the assessment of patient evolution
during robotic intervention, and not by pre-post comparison,
as currently done. The application of a method like the EIKPE
becomes indispensable if the objective is the estimation of
the inverse dynamics of the patient-exoskeleton system (e.g.,
voluntary torque applied by the patient to some joint) during the
therapy. In this respect, real-time predictions of these quantities
will be of invaluable help to those control strategies based
on timely prediction of user intention/contribution, producing
more effective assist-as-needed paradigms. Another advantage
of the proposed method is to rely on purely geometrical
algorithms. This means that the constraints between relative
positions/orientations of exoskeleton and subject limbs are valid
independently from the correct execution of walkingmovements.
Therefore, the method is expected to be robust to different motor
tasks or to the execution of abnormal movement patterns such as
those experience in clinical cases. However, these aspects are still
to be confirmed experimentally.

Themodel here proposed presents a number of simplifications
that need to be considered when assessing the generalization of
the results.

First, the personalization of our skeletal model is currently
based on scaling factors obtained from the lengths of femur,
tibia and foot of the subject. Therefore, the model is not able to
account to subject-specific deformities (e.g., those experienced by
cerebral palsy patients). In addition, this personalization process
is not fully automatic. The intervention of a human operator
is required to check and adjust, if necessary, the results of the
inverse kinematics (IK), after joining the human skeletal model
with the exoskeleton. If this initialization is poor, the EIKPE
will produce estimations that do not match the shape of the
angle vs. time curves of the GT, introducing a constant bias.
This issue is due to the unavoidable absence of markers on the
human hip, knee, and ankle joints when the subject is wearing
the exoskeleton.

The second limitation is related to the kinematic constraints
between the human and the exoskeleton. In the current
implementation, these constraints are constant over time and do
not account for the compliant behavior of soft biological tissues
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FIGURE 8 | Box plots of the RMSE and ROME metrics of the angle estimations provided by the rigid model (blue) and the EIKPE (orange).

FIGURE 9 | Reconstructed poses of the human lower limb at a particular phase of the gait cycle with the joint angles of the MOCAP (left), the EIKPE (middle), and

rigid model (right).

or other non-rigid exoskeletons components, such as braces.
These elements change their shapes under the effect of interaction
forces, e.g., during changes in walking speed or level of robot
assistance. In these cases, the relative movement between the
exoskeleton and the human may diverge from the one estimated
by the EIKPE.

The third limiting factor is represented by the limited sample
size of the experiment performed, which included seven healthy
people, and the motion considered, limited to treadmill walking.
Larger experimental studies with higher number of people,
including patients, and on different tasks are required to validate

the suitability of our methodology for industrial (e.g., human
capability enhancement) and clinical (e.g., neurorehabilitation)
applications.

The aforementioned considerations, while showing the limits
of our approach, also provide clear indications that, even
in presence of strong simplifications, modeling the relative
motion between the human and the robot produce significantly
better results than conventional “rigid” approaches. This, in
our opinion, represents important evidence that supports and
motivates the following next research steps in this complex
and emerging field: (a) the study the sensitivity of EIKPE
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to non-modeled dynamic behaviors, e.g., the elasticity of
exoskeleton braces or soft tissues, (b) the generation of
personalized musculoskeletal models from medical images (e.g.,
computerized tomography) to improve the prediction accuracy
in presence of bone deformities present in specific populations,
e.g., cerebral palsy, (c) the implementation of a real-time version
of the EIKPE with musculoskeletal models that can be used in
the control loop of the exoskeleton, (d) the inclusion and testing
of new predictive models of interaction forces, including models
of soft tissues and robotic compliant elements, (e) testing the
accuracy of the EIKPE across different type of motor tasks, e.g.,
slopes, sit-to-stand, rough terrains.

CONCLUSIONS

In this work, we presented a methodology, called EIKPE, that
allows to generate subject-specific skeletal models to quantify
the human-exoskeleton interaction at kinematic level. We have
implemented a version of the EIKPE for the lower limb with
the objective of testing whether such model allows to predict,
with sufficient precision, the human joint motion starting from
the knowledge of the exoskeleton motion. We have assessed, in
terms of the RMSE and ROME metrics, the estimation errors of
the EIKPE with respect to real motion of seven healthy subjects,
and compared them with a traditional rigid model that assumed
no relative motion between human and exoskeleton. Our results
suggest that EIKPE can be used to predict human motion from
exoskeleton motion, providing estimates close to the real joint
angles calculated from motion capture data. Compared to the
rigid model, the EIKPE demonstrated improvements in range
of 15–66% in the RMSE and ROME, depending on the joint
considered. This method has several potential applications in

real scenarios, e.g., assessing of the adaptability of a particular
exoskeleton to specific subjects, monitoring the human-machine
interaction in real-time, or improving assist-as-needed control
strategies.
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Posture control is indispensable for both humans and humanoid robots, which becomes
especially evident when performing sensorimotor tasks such as moving on compliant
terrain or interacting with the environment. Posture control is therefore targeted in recent
proposals of robot benchmarking in order to advance their development. This Methods
article suggests corresponding robot tests of standing balance, drawing inspirations
from the human sensorimotor system and presenting examples from robot experiments.
To account for a considerable technical and algorithmic diversity among robots, we
focus in our tests on basic posture control mechanisms, which provide humans with an
impressive postural versatility and robustness. Specifically, we focus on the mechanically
challenging balancing of the whole body above the feet in the sagittal plane around
the ankle joints in concert with the upper body balancing around the hip joints. The
suggested tests target three key issues of human balancing, which appear equally
relevant for humanoid bipeds: (1) four basic physical disturbances (support surface
(SS) tilt and translation, field and contact forces) may affect the balancing in any given
degree of freedom (DoF). Targeting these disturbances allows us to abstract from the
manifold of possible behavioral tasks. (2) Posture control interacts in a conflict-free way
with the control of voluntary movements for undisturbed movement execution, both with
“reactive” balancing of external disturbances and “proactive” balancing of self-produced
disturbances from the voluntary movements. Our proposals therefore target both types
of disturbances and their superposition. (3) Relevant for both versatility and robustness
of the control, linkages between the posture control mechanisms across DoFs provide
their functional cooperation and coordination at will and on functional demands. The
suggested tests therefore include ankle-hip coordination. Suggested benchmarking
criteria build on the evoked sway magnitude, normalized to robot weight and Center
of mass (COM) height, in relation to reference ranges that remain to be established. The
references may include human likeness features. The proposed benchmarking concept
may in principle also be applied to wearable robots, where a human user may command
movements, but may not be aware of the additionally required postural control, which
then needs to be implemented into the robot.

Keywords: humanoid robots, sensorimotor system, posture control, human-like versatility and robustness,
benchmarking
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INTRODUCTION

Considerable progress in the sensorimotor skills of humanoid
robots has been made over the recent years, such as in bipedal
walking (Vukobratovic and Borovac, 2004; Clever andMombaur,
2017). Despite this progress, the human sensorimotor abilities
still represent the ‘‘gold standard’’ for the humanoid robots (Nori
et al., 2014; Torricelli et al., 2015, 2016). Currently, the robotics
community is taking an important step towards developing
objective standards for these skills1. An aim is to define
benchmarks which allow for objective comparisons among
robots and to thereby foster their progress. The benchmark tests
may address in some form or other human-likeness of the robot’s
performance (Torricelli et al., 2016). Furthermore, they address
posture control as an issue to be tested in addition to movement
performance. Posture control is typically required, for example,
when a robot tries to maintain balance while walking across
rough terrain or when it needs to compensate the gravitational
ankle torque during a voluntary body lean. Generally, the ability
of posture control can also be tested separately from movement
control by applying external disturbance such as a push against
the body while standing. In this Methods article, we develop
a concept for benchmark tests of posture control in humanoid
robots. The concept addresses the generic principles underlying
the human posture control features versatility and failsafe
robustness. We hold that these features are based on simple basic
mechanisms by which, during phylogenetic development over
millions of years, even primitive animal species have learned
to use and to combine the solutions needed to deal with the
physics of the terrestrial environment. Elaborating on their
functional basis, we try to make them testable in humanoid
robots for benchmarking. Our hypothesis is that providing the
robots with human-like versatility and fail-safe robustness in
their sensorimotor control will help them to perform better in
complex sensorimotor scenarios (compare2).

To introduce our hypothesis, we will describe further
below some basic sensorimotor mechanisms that we think
are underlying the human versatility and fail-safe robustness
abilities. We do not claim that these mechanisms are the only
possible or ultimately best prerequisites for these abilities. Rather,
our aim is to introduce some basic principles that shape the
human sensorimotor and postural control and by this also the
consequent human versatility and fail-safe robustness abilities.
Versatility here is taken to mean that a standing human may
involve in reaching with a hand, for example, also the torso and
leg segments, thus involving either the hips joints or the ankle
joints respectively, or some combination thereof. The choice for
using hip and/or ankle joints provides some robustness in case
that involvement of one or the other of these joints is not possible
or falls short. This example shows one of several interrelations
in the human sensorimotor system, which overall provide not
only conflict-free interactions between its constituents, but also
synergy effects and other benefits. Another example in the
human sensorimotor systems is the causal chain of (a) the need

1http://www.benchmarkinglocomotion.org/workshop-at-humanoids-2017/
2www.bbc.com/news/technology-33045713

to tolerate biological feedback times delays>100 ms, which (b) is
achieved to a large degree by using a low loop gain for controlling
the human actuation that, being force controlled, in turn shows
(c) a soft mechanical compliance and inmany situations (d) a low
energy consumption (see Mergner and Peterka, 2017). Notably,
each of the human solutions a-d taken alone may not reach
optimality in terms of a specific cost function, but in view of
their interrelation may represent ‘‘good enough’’ solutions (see
also Loeb, 2012).

Interrelations also exist between posture control and
voluntary movements in the form that posture control
‘‘proactively’’ compensates the self-produced disturbances
arising from own motor activities such as the gravitational
torque from a body lean in the ankle joints—this in addition
to the ‘‘reactive’’ compensation of external disturbances,
e.g., from an external push against the body that perturbs
standing or walking balance (Mergner, 2010). Both disturbance
compensations are needed to allow execution of poses and
movements in the commanded (i.e., undisturbed) form. They
involve posture control centers in the extrapyramidal system
(EPS; comprising basal ganglia, cerebellum, brainstem centers
and the cortical supplementary motor areas). The functionality
of the EPS is closely linked to that of the movement commanding
‘‘pyramidal system’’ in the cortical centers with projections to
the brainstem and spinal cord. EPS impairments tend to severely
affect sensorimotor control, as witnessed by a variety of motor
impairments in neurological patients (Bastian, 1997; Visser and
Bloem, 2005). Proactive disturbance compensation is predictive
(feed forward) and therefore considered as advantageous
compared to reactive (sensory feedback) compensation in terms
of lower noise and shorter time delays, which is supposed to yield
improved control stability and motor performance (Wolpert and
Flanagan, 2001). The following article addresses for the testing
of humanoid robots both proactive and reactive scenarios as well
as their superposition.

The testing of humanoid robots for human-like versatility
and robustness is eased if the robots use torque-controlled
actuation as humans do. This would facilitate direct robot-
human comparisons. More importantly, torque-controlled
robots represent the current state of the art for ‘‘real world’’
applications. Advantages of the torque control are, for example,
reduced damage when falling or when interacting or colliding
with the environment, and also a better acceptance by humans
when directly (physically) interacting with them. The robot tests
suggested in the following are in principle, however, not specific
for force-controlled actuation in that they address human-like
versatility and fail-safe robustness as a general functional rather
than mechanical property of the human system.

With the focus on human-like versatility and fail-safe
robustness, our approach differs from recent concepts on
benchmarking of robot walking and posture control, which are
more general and list numerous performance tests and metrics
(e.g., Torricelli et al., 2015). Despite similarities in the details
of the suggested tests, a relevant difference here is that we
rest our focus on basic principles of controlling the posture
of a segmented biped under the premise of versatility and
robustness. But we conceive that the tests and metrics first
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have to be discussed in this field, before certain concepts are
finally favored and realized in a form outlined in Torricelli
et al. (2015). We justify our approach with the problems that a
robot benchmarking is facing when it is confronted, as expected,
with many different control methods, mechanical constructions,
and targeted applications of the robots, and with differences
between testing procedures across the performing laboratories.
Addressing basic control issues in our concept will help to
abstract from these diversities. In our approach, we define
as human-like postural versatility and fail-safe robustness the
property and ability of the human sensorimotor system that
enables humans to cope reactively with external disturbances and
proactively with the self-produced disturbances in a flexible, yet
efficient way by exploiting kinematic and kinetic inter-segmental
interaction effects. Specifically, our approach considers the
mechanically highly relevant interaction between whole body
balancing in the ankle joints and upper body balancing in the hip
joints.

With this goal, this article gives next a brief overview on
basic issues of the human postural control system with a focus
on the fundamental principles that are underlying the human
versatility and fail-safe robustness. The following chapter then
explains the basic methods we are suggesting for quantitatively
describing human postural responses, before reporting then
our attempts to implement human control principles in
our bio-inspired humanoids and presenting examples of the
suggested benchmark tests in our robots. In the following we
consider quantification and metrics of benchmark results, before
we finally discuss in the last chapter the usefulness of the
human-inspired experiments and point out that testing human
sensorimotor concepts in robots may provide beneficial impulses
for both the human and robot posture control research.

BASIC ASPECTS OF HUMAN POSTURE
CONTROL

Shaping of Postural Control by the
Terrestrial Force Environment
Under terrestrial conditions, humans and humanoids are in a
force environment where gravity plays an important role; in
general, gravity compensation accounts for most of the joint
torque produced during balancing tasks (see Zebenay et al., 2015
for a comparison in a humanoid biped with human-inspired
posture control between the torques produced by different
external effects). Therefore, it is not surprising that in humans
the vestibular sensory system is one of the first to become
behaviorally evident during human ontogenesis. Based mainly
on vestibular signals, newborns soon learn to first bring the
head and later the trunk upright for perceptual orientation in
space and for interaction and communication with the world.
Humanoids must also take gravity into account in most tasks.
Other field forces need to be detected and counteracted as well,
such as centrifugal forces in passive transport. Such forces must
be compensated for in order to allow undisturbed execution of
voluntary poses and movements of the body and its segments.
This is schematically illustrated in Figure 1 for a human subject

FIGURE 1 | Single inverted pendulum (SIP) scenario of posture control in the
body sagittal plane. Shown are the four basic disturbances (on the left) with
impact on the ankle joints in terms of disturbing torques, as indicated by the
arrows on the right side. TA, total ankle torque; Tact, commanded active
torque; Text, external torque from contact force; Tgrav from field force gravity;
Tin from inertial effect upon foot in space translational acceleration (ẍFS); Tpass,
from passive stiffness of muscles and connective tissues.

who tries to maintain the body upright or to move it into a
desired orientation in space. Here, the subject is controlling the
ankle joint torque in the body’s sagittal plane (biomechanically, a
single inverted pendulum, SIP, scenario) against the four relevant
external disturbances. These are, in addition to the field forces,
the contact forces (e.g., from a push against the body) and
the dynamic joint impacts associated with support surface (SS)
rotation and translation. Posture control refers in the following to
the compensation of these joint impacts, independently of whether
they are self-produced (such as the gravitational ankle torque with
an active body lean) or external, and whether they are occurring
during a held body pose (e.g., upright stance) or a movement.
The disturbance compensation allows humans tomaintain a pose
or to execute a movement as it is commanded in Figure 1 by
the active torque Tact. For compensation, the disturbances are
estimated on the basis of sensory information or by learned
predictions of the sensory disturbance estimates.

Sensory Estimations of the Four Basic
Disturbances and Their Predictions
In addition to the vestibular signals, other sensory signals such
as those for joint angle and angular velocity and joint torque are
used for human posture control (more in Mergner and Peterka,
2017). Visual information may additionally be used to improve
the other sensory signals with respect to noise and accuracy, and
it may partially serve as a substitute for loss in some sensory
functions. The four external disturbances in the SIP scenario of
Figure 1 can be estimated by combining several of these sensory
signals (Mergner, 2010). Humans may learn from repeated
presentations of external disturbances to predict them and to
fuse predicted and sensor-derived disturbance estimates, as has
been successfully mimicked in tests using a human-inspired
robot (Mergner, 2010). In these tests, it was also assumed that
commanding voluntary movements is associated with prediction
of sensory disturbance estimates for the self-produced joint
impacts. Dealing with disturbance estimates rather than with
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the underlying manifold of sensory transducer signals greatly
reduces processing complexity for sensorimotor control, and it
also appears parsimonious for the linkages between sensorimotor
control, perception and cognition.

Analytical Description of the Human
Postural Control
A prominent feature of human postural control is the sensory
re-weighting phenomenon. It consists of a basically stereotype
and continuous adjustments of the postural responses to
the environmental and test conditions (unless stance stability
requires a step). These adjustments can be described as resulting
from changes in the weighting factors of sensory feedback
loops, as it has been analyzed in human data obtained for a
SIP scenario using visual, vestibular, and joint angle sensory
information in a simplified linear model of the human sway
responses to moderate SS tilts in the body’s sagittal plane
(‘‘independent sensory channel,’’ IC, model; Peterka, 2002).
Adjustments to a stepwise increase in surface rotation magnitude
were captured using a family of gain curves in terms of a
describing function. The identified time delays were in the
order of 150–200 ms, and the loop gain was slightly above the
minimum to resist gravity. Comparable system identification
procedures were later applied to the biomechanically more
complex scenario of lower and upper body responses to SS tilt
in the frontal plane (Goodworth and Peterka, 2010). However,
the number of model parameters needed to describe the control
on the basis of the experimental data clearly increased, while
confidence in parameter identification and in the attribution to
specific physiological processes decreased, which limits the use
of a corresponding model for clinical purposes.

Heuristic Model of Human Posture Control
The four disturbances shown in Figure 1 and their estimation
and prediction mechanisms are the basis of the disturbance
estimation and compensation (DEC) model (Mergner, 2010),
which can be viewed as building upon the IC in that it is able to
describe the same set of experimental data. However, the DEC
model describes the data with one set of control parameters.
In addition, it can also describe responses to other stimuli
that are typically used in posture control experiments such as
pushes that impact the body. The overall resulting increase in
versatility comes, however, at the expense of an increase in model
complexity, which includes more sensory signals (e.g., velocity
signals in the disturbance estimation channels) and nonlinear
operators (threshold elements in these channels). This model
entails, in addition, a qualitative step forward in robustness, in
that it allows for a conflict-free superposition of two or more
of the four disturbances at a time, be these external or self-
produced. This improvement is made possible by combining
the compensation of all four disturbances with the control of
movement execution in one control mechanism (see Mergner,
2010). The control is realized as a servo loop controller for
commanding the actuator to produce the force that is required
to execute a desired movement or force. Superimposed on this
force command are commands from the disturbance estimators

for compensating the disturbance forces. Executed action then
corresponds to the desired action to the extent to which
disturbance compensation is complete (note that removing in
Figure 1 the four disturbing torques makes the total ankle torque
TA equal to the commanded torque Tact). This control principle
appears to apply to the majority of the human skeletal joints and
their degrees of freedom (DoFs) and, after implementing it in the
following in modular control architecture, provides the basis for
our concept of human versatility and robustness.

Modular Control Architecture of DEC
Modules
Human-like versatility and robustness profits from combining,
in a flexible way, several joints in a task performance.
A well-known example in posture control research is the
involvement of hip movements when the balancing of stance
in the ankle joints tends to become insufficient (McCollum
et al., 1985). The involved sensory signals are distributed by
coordinate transformations across the joints of the body, as
described for the vestibular signals that arise in the head and
are used to sense motion of the support base (Mergner and
Rosemeier, 1998). Such sensory interrelations between body
segments inspired the concept of a modular control architecture
consisting of a net of interconnected DEC control modules, one
for each DoF in the three planes of the human body (sagittal,
frontal, horizontal; Lippi et al., 2013). Proof-of-principle tests in
human-inspired robots were positive and, in addition, revealed
functional emergencies such as an inter-segmental hip-ankle
coordination (Hettich et al., 2014; Lippi and Mergner, 2017). In
this architecture, a shift of activity from ‘‘ankle strategy’’ to ‘‘hip
strategy’’ (see below) or, for example, from a pain-blocked knee
to the neighboring joints when walking, occurs per default. This
is here thought to represent the basis for the human robustness,
while it is attributed mostly to versatility when performed
proactively.

Mutual Inspirations Between Robotics and
Human Posture Control Research
Modeling and simulating human experimental results per se
may have limited value in face of the high complexity of the
human posture control and the many unknown factors such
as sensor and actuation noise and inaccuracies. Implementing
and testing the DEC model in human-inspired robots were
performed for proof of principle and demonstration of ‘‘real
world’’ robustness of the modeling results (Mergner et al.,
2009; Mergner, 2010; Hettich et al., 2014; Lippi and Mergner,
2017). From this approach, progress for posture control of both
humans and robots can be expected, and the same applies
to testing alternative posture control concepts in the same
robot (Alexandrov et al., 2017) and to testing of a given
control concept on different robots (Ott et al., 2016). Using
here human-derived criteria for robot-human and robot-robot
benchmark comparisons represents a further variant of this
issue. Generally, promising linkages between humanoid robotics
and neuroscience are well recognized in both the robotics and
neuroscience fields (e.g., Cheng et al., 2007).
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CONCEPTUALIZING BENCHMARKS
TESTS FOR POSTURE CONTROL IN
ROBOTS

Many posture control tests used in humans could also potentially
be used in humanoid robots. Posture control in humans is most
often tested under medical perspectives, e.g., for evaluation of
a child’s development or of balance control deficits in diseases
and with aging. These tests range from simple observations of
standing balance with eyes closed vs. eyes open to sophisticated
walking measures on a treadmill, under consideration of age,
disease, etc. As for robots, their diversity with respect to
control method, construction, etc. hampers attempts to globally
apply the human benchmark ratings and the diagnostic criteria
for malfunction. These considerations lead us here to mainly
consider benchmark tests that challenge very basic postural skills
such as the compensation of the four disturbances considered
above (‘‘Heuristic Model of Human Posture Control’’ section
and Figure 1). Testing these skills may provide not only
benchmark ratings, but also ‘‘diagnostic’’ hints in case of
malfunction. As mentioned above, the tests we are suggesting
are not restricted to compensation of external disturbances, but
also cover ‘‘postural adjustments’’ occurring in association with
voluntary movements. In contrast, the postural stabilization by
‘‘rescue steps’’ or by multi-contact body configurations such
as to support the balancing with the hands, for example, are
not considered here. The supportive effect of vision on human
posture control will be considered only briefly and preliminarily.
The robots’ adjustments to changes in body weight as they occur
with lifting and carrying external loads are also left unaccounted
for at present. Generally, we suggest performing all tests with the
same set of control parameters to judge the robots’ automatic
adjustment to the changes in the test condition. Furthermore,
we suggest mainly covering the normal range of posture
disturbances in the tests, which includes supportive use of the
hip joints when balancing in the ankles joints, whereas ‘‘rescue
reactions’’ to extreme challenges should remain unconsidered,
such as how the rapid hip movements that typically occur when
standing on a narrow beam renders the balancing in the ankle
joints ineffective.

The approach we suggest here for posture control
benchmarking aims to finally judge the performance of a
given robot under the viewpoint of versatility and robustness in
the sense that the robot would be able to deal with the relevant
different types of disturbances or even their overlap, be they
external or self-produced. This does not exclude, however,
developing a robot that provides high performance in only one
or a few tasks and less so in the others.

Conceptualized Scenarios and Tests
The test scenarios we are suggesting for reactive balancing
of external disturbances primarily refer to the four basic
disturbances of the human posture control (compare above
‘‘Heuristic Model of Human Posture Control’’ and Figure 1),
which equally apply to humanoid robots. Their applications
are shown schematically in Figures 2A–D for the sagittal body

plane, where balancing tends to be performed mainly in the
ankle and hip joints: (A) SS rotation about the ankle joints.
When using small and slow tilts in humans, disturbance torque
(evoking the passive torque Tpass in Figure 1) and disturbance
compensation occur foremost in the form of whole body rotation
around the ankle joints, drawing on both the SS tilt compensation
and the gravitational torque compensation. Large and fast tilts
tend to evoke additional rotation of the upper body around
the hip joints (see above; for frontal plane, see Goodworth and
Peterka, 2010). These inter-link effects draw on coordination
of the body segments. (B) Support translation (evoking Tin).
Similar as with tilt, responses to moderate translation stimuli
involve mainly ankle joint responses, which are complemented
by additional hip joint responses with rapid stimuli. The response
draws specifically on the estimator of SS translation (and on
the gravitational torque compensation for evoked body lean).
(C) Contact force stimulus (evoking Text), which draws for the
postural response on the contact force estimator. The example
in Figure 2C shows a controlled pull on a body harness,
which typically is compensated foremost in the ankle joints.
(D) Compensation of the field force gravity (evoking Tgrav) is
here tested in a condition called ‘‘body sway referenced platform’’
(BSRP); for this test, spontaneous body sway is measured and
used to tilt the SS along with the body such that the ankle joint
angle (and its proprioception) remains essentially constant and
balancing of upright stance with eyes closed primarily depends
on vestibular input (the hip is typically not involved).

DEC in humans for the four scenarios A–D is typically
performed with eyes closed vs. eyes open. The comparison allows
estimating to which extent visual spatial orientation cues are used
to improve non-ideal vestibular and proprioceptive disturbance
estimates. Note that with vision, the secondary task of stabilizing
gaze (in terms of eye-in-head and head-in-space stabilization)
tends to be added to the balancing task in humans. In future, also
humanoid robots may use visual motion and orientation cues
to improve standing and walking balance (e.g., by using visual-
vestibular fusion to improve the vestibular signals which tend to
be rather noisy; compare Assländer et al., 2015). Then, a relevant
test would be to evaluate standing balancing on stationary and
level support in the presence of a moving scene (E). This test
draws on the perceptual ability to suppress visual self-motion
illusions that may result from visual surround motion (compare
Mergner and Peterka, 2017).

Not depicted in Figure 2 are scenarios of testing proactive
balancing. For these, we suggest ‘‘voluntary’’ (commanded)
whole body leans in the sagittal plane around the ankle joints
(e.g., roughly sinusoidal of about 2–4◦ forward and back) and
of the upper body around the hip joints (≈3–10◦ forward
and back), noting corresponding compensatory counter-leans
for balancing the center of mass (COM) in the hip and ankle
joints, respectively (compare further below, Figure 3F; also
5A). This allows drawing on the human-inspired ability to
deal, in a conflict free way, specifically with superposition of
self-produced and external disturbances. To this end, we suggest
superimposing such voluntary movements on concurrent SS
tilts with different waveforms (Figure 2F; compare example in
Figure 5B). In principle, the suggested tests (Figures 2A–C,E,F)
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FIGURE 2 | (A–F) Suggested posture control disturbance scenarios (inspired by human studies). Examples refer to SIP scenarios that challenge balancing of biped
standing in the sagittal body plane (with moderate stimuli mainly around the ankle joints). (A) Support surface (SS) rotation about the ankle joint axis (using a hexapod
platform; Mergner et al., 2003). (B) Support translation. (C) Contact force stimulus (applied as pull on a body harness using cable winches). (D) “Body sway
referencing of the platform” (BSRP). Spontaneous or evoked body sway is recorded and sway signal is used to tilt the support along with the body such that the
ankle joint angle (and its proprioception) remains fixed and compensation of the field force gravity with eyes closed requires vestibular input. The effect of visual
self-motion and spatial orientation cues are evaluated by comparing in scenarios (A–D) the balancing in “eyes open” and “eyes closed” conditions. (E) Isolated visual
scene motions, to test how successful the postural control system can suppress visually-evoked self-motion illusions (given the robot involves visual motion and
orientation cues in its postural control; see text). (F) Combinations of two or more disturbances and of superimposing voluntary movements on external disturbances
to test conflict-free interaction between proactive and reactive balancing.

can, in addition to the sagittal plane, also be performed in the
frontal plane or some intermediate plane using the same testbed
(compare Lippi and Mergner, 2017). However, interpretation is
more difficult due to several factors such as the more efficient,
yet also more complex body mechanics in these planes and a
strong dependance on the legs’ stand-width, as demonstrated for
humans (Goodworth and Peterka, 2010).

The stimulus parameters such as stimulus magnitude and
waveform may influence the usefulness of the suggested tests
in robot-robot and robot-human comparisons. In human
posture control, researchers nowadays typically use well-defined
kinematic stimuli, most of which can equally be applied in the
tests of the humanoid robot. Sinusoidal stimuli allow collecting
responses that can be used to quantitatively characterize
the response dynamics in the form of Bode diagrams. The
experimental value in humans is somewhat limited, however,
by the predictability of these stimuli (unless one uses sums
of sine stimuli). This limits drawing conclusions about the
involved sensory functions but would not be relevant in robots
without implemented prediction. Humans consider prediction as

difficult in the pseudo-random ternary sequence stimulus (PRTS),
introduced by Peterka (2002; see Figures 3A,B, 4, 5B). It allows
evaluation of gain, phase, and coherence of the disturbance-
evoked body excursions over a defined frequency range (for data
processing, see below). Transient stimuli may be applied with and
without prediction (e.g., by onset announcement). A transient
stimulus with ‘‘raised cosine velocity’’ (RC) profile is similar to
a smoothed ramp and to the profile which humans use in many
targeting movement tasks (the profile in the transient phase is
given by v(t) = –A · f · cos(2πft) + A · f, where t is time, A is
angular displacement, and f is dominant frequency). Applying
this stimulus with standardized parameters may allow for a fast
and simple estimation of static and dynamic postural response
components.

For evaluation of the postural responses in humans it often
suffices for a fast overview to test the SIP scenario, and
to calculate the whole-body COM responses from measures
of leg and trunk excursions (recorded for example using an
optoelectronic device) and the body’s anthropometrics. When
the hip becomes involved, additional calculations are required
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FIGURE 3 | Proof of principle examples from robot experiments (Posturob II) for the disturbance scenarios (A–D) and (F) in Figure 2 (see also Table 1). (A) Center of
mass (COM) sway responses to pseudo-random ternary sequence stimulus (PRTS) SS tilt of peak-to-peak (pp) 4◦ (six successive PRTS cycles). (B) Responses to
horizontal SS translations (otherwise as in A). (C) COM sway responses to sinusoidal pull stimuli. (D) Spontaneous COM sways with “body-sway referenced
platform” (BSRP) and response to a manual push perturbation. (E) Pull responses as in (C) but superimposed on BSRP (no additional push stimulus).
(F) Commanded (“voluntary”) lean of leg segment in space (LS) around ankle joints and return to starting position with “raised cosine velocity” (RC) profiles.
Associated is, as an emerging property of the DEC control, a counter-lean of trunk in space (TS) in the hip joints towards upright (dashed line), which reduces the
COM excursion (TS command was to maintain trunk orientation in hip joints upright).

to obtain the COM of the HAT (head-arms-trunk) segment.
In robots, one may also calculate whole-body and HAT COM
motions using internal sensor signals (e.g., from IMU and joint
angle sensors). Using the PRTS stimulus requires more extensive
calculations, but these have the advantage that one can obtain
frequency response functions (FRFs) over a broad frequency
range for different peak-to-peak (pp) amplitudes and thus can
better appreciate what the hip and ankle joints contribute to the
balancing in terms of dynamics (see Hettich et al., 2014).

The proposed benchmarking tests are listed in Table 1 with
suggestions for stimulus magnitudes and waveforms, which we
took from previous work on human balance control in our
laboratory. A future aim would be to add to the table ranges for
the performance measures, which are still to be established in
human and robot experiments performed with a normalization
for body weight and COM height (compare below). Also,
considerable simplifications of the test performances may be
developed and offered in future as alternatives. For example,

the proposed BSRP test can be viewed as a ‘‘soft terrain’’ test
and quantified by superimposing foam rubber layers. Overall,
the suggested tests can be performed with relatively simple
equipment such as a plate with an axis for tilting and a plate based
on two or more roll axes for translation. Instead of the raised
cosine, RC, velocity function, one may use a low-pass filtered
smoothed ramp. The pull devices can be replaced by manual
pulls, measuring the moment arm around the ankle joints and
the pull force using a force (Newton) meter. Measures of COP
require a force plate, while measures of whole-body and trunk
COM requires recording of body and trunk angles respectively
(for which sticks connected to potentiometers may suffice), given
the body anthropometrics are known (compare Alexandrov et al.,
2017). Changing weight of the body or its parts, which is known
to affect human postural responses (Dietz et al., 1989), will affect
also the robot’s responses, whereas preexisting weight differences
between human and robots hardly affect the responses (see
below).
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TABLE 1 | Suggested posture control benchmark tests.

Magnitude Body plane Wave form Hip fixation Vision

(A) SS Rotation pp 0.5◦ 1◦, 2◦, 4◦ sagittal, frontal PRTS/Sine/RC +/− +/−

(B) SS Translation pp 0.5, 1, 2, 4 cm sagittal, frontal PRTS/Sine/RC +/− +/−

(C) Body pull (on pelvis/trunk) pp 1, 2, 4, 8, 16 Nm sagittal, frontal PRTS/Sine/RC −

(D) BSRP (Spontaneous sway) − − − +/−

(E) Visual disturbances (scene motions) see A, B sagittal, frontal Sine/RC − −

(F) Voluntary body or trunk movements (may pp 2, 4, 8◦ (COM) sagittal, frontal Sine/RC − +/−

invoke/require inter-segmental coordination) (Rotations in ankle joints/hip joints)

(G) Recommended combinations A & D; C & F; C & D

Compare Figure 2 (SS, support surface; pp, peak-to-peak; COM, center of mass; PRTS, pseudorandom ternary sequence stimulus; RC, raised cosine velocity stimulus).
The following “short list” likely suffices to estimate the potential value of a more comprehensive testing: (1) RC (0.2 Hz dominant frequency) rotation of SS (compare A)
with 1◦ and, to estimate hip cooperation, 4◦. (2) 0.2 Hz RC SS translation with pp 2 cm or 4 cm displacement (see B). (3) Manual pushes against front and back of
robot (compare C). (4) Instead of BSRP (D) standing on compliant support (e.g. foam rubber layers) with and without moderate pushes. (5) Commanded 2◦ whole body
forward and backward leans in the ankle joint with RC profile. (6) Repeated 4◦ RC trunk forward leans (should not lead to a considerable forward lean of the leg segment).
(7) Repetition of previous test 6 on SS tilting with pp 2◦. The tests are restricted to the sagittal plane (no hip fixation and vision absent) and evaluation is restricted to
angular motion of trunk and leg segments. Successful smooth performance with one and the same set of control parameters may be taken as human-like criterion.
A corresponding long list remains to be worked out in collaboration with several robotic labs. Concerning last column, Vision, compare Figure 2 and text.

FIGURE 4 | Frequency response functions (FRF) of sagittal COM sway responses for peak-peak 1◦ and peak-peak 4◦ PRTS stimuli of a human subject (A) and
Posturob II (B). Gain, phase and coherence functions across frequency characterize the tilt-evoked sway. Gain gives the amplitude ratio between sway response
amplitudes and tilt stimulus amplitudes, with a gain of unity indicating that the sway response amplitude equals the stimulus sway, while a gain of zero indicates that
the stimulus did not evoke any sway. Phase characterizes the temporal relation between tilt stimulus and sway response. Coherence is a measure of the signal to
noise ratio of the stimulus evoked sway. Responses to this stimulus lend themselves to evaluation of human-likeness (see text).

The suggested tests draw strongly on findings for human
postural responses and in robots are testing thus implicitly
human-like performance. As already pointed out, presented

with moderate external stimuli in the body’s sagittal plane,
humans tend to primarily use the ankle joints for balancing
stance, as if controlling an inverted pendulum (intrinsically
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FIGURE 5 | Commanded (“voluntary”) sinusoidal movements of TS of pp 3◦ at 0.1 Hz while standing on SS maintained level (A) and on SS tilting with PRTS profile
(B). The trunk lean movements are associated with counter leans of the LS and less so of the body COM. Command for the ankle joints was to maintain the body
COM vertical.

unstable; SIP scenario). When increasing stimulus amplitude,
especially with SS tilt stimuli, humans tend to also involve
the hip joints for COM stabilization in a gradual transition
from a SIP into a double inverted pendulum (DIP) balancing
that uses the hip in addition. The hip contribution is known
to depend on a variety of factors such as the stability of
the support base or the stimulus amplitude. If insufficient
disturbance compensation by the ankle joints is predicted,
posture control may even primarily use the hips (McCollum
et al., 1985; compare Atkeson and Stephens, 2007). In the
context of reactive balancing in robot benchmarking, we
consider the volitional or task/situation-dependent involvement
of the hip as a human-like versatility feature and its use
as fail-safe backup as the robustness feature. Interestingly, a
hip-ankle coordination planning is not always required. For
example, commanding the ankle joints to maintain the body
COM above the ankles in a robot automatically led during
‘‘voluntary’’ hip bending to the ‘‘emergence’’ of compensatory

counter-leans of the legs segment (compare Hettich et al., 2014
and below).

An important question is how to normalize the suggested
balancing tests in face of the considerable differences in height,
weight, and number of DoFs of the robots. Similar as in modeling
approaches of human standing balance (see ‘‘Basic Aspects of
Human Posture Control’’ section) one may treat the robot as
an inverted pendulum and measure the stimulus response in
terms of angular body sway. In this approach, the control of the
balancing is related to the mass of the whole body COM and its
height above the actuating joints (here the ankle joints, but the
approach is in principle applicable also to each body segment
that is held upright such as the trunk and the head with respect
to its supporting joints). A further advantage is that the envisage
normalization would allow to standardize the parameters used
for stimulation such as the amplitude of SS tilt, for example. An
example of the suggested approach is given in the ‘‘Examples of
Robot Tests’’ section and Figure 6.
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FIGURE 6 | Sway responses of body COM of Posturob II (A) and of Lucy (B) to sinusoidal tilts of the SS at 0.2 Hz around the ankle joints. Note that COM response
amplitudes are similar in the two experiments despite considerable differences in the robots’ anthropometrics (see text). Lower case letters in (A) refer to the two
degree of freedom (DoF) Posturob II’s human-inspired anthropometrics, actuation, and sensors, and to the hexapod platform in the posture control laboratory:
(a) artificial vestibular sensor, see Mergner et al. (2009); (b and e) hip joints with angle/angular velocity sensors; c, pneumatic muscle and f, force sensors for actuation
control; (d,e) ankle joints with angle/angular velocity sensors; (g) ground reaction force sensors under heels and forefeet; (h) hexapod platform for tilt, translation, and
BSRP). In the 14 DoF Lucy Posturob (B), force-controlled actuation is using spindle drives; other technical features are analogous to those in Posturob II.

For addressing the versatility and robustness issue directly,
one may inactivate the hip postural control in ankle joint tests
(e.g., in the test shown in Figure 3F) and the ankle postural
control in hip joint tests (test in Figures 5A,B). Finally, poor
results for the here described benchmark tests may possibly
predict failure in the balancing of walking, since this also
involves postural control in the ankle and hip joints that respond
proactively to the self-produced and reactively to unforeseen
external disturbances. However, stabilizing walking balance is
overall clearlymore complex, involving control of body dynamics
with foot placement adjustments.

EXAMPLES OF ROBOT TESTS

Considering benchmarking of human-like versatility and
robustness for humanoid robots meets already existing fruitful
interrelations between the respective human and robotics

research fields. For example, while robotics seeks inspiration
from humans for robots (e.g., Pfeifer et al., 2007), researchers of
human postural control have tested their concepts in robots for
proof of principle and ‘‘real world’’ robustness in face of noisy
and inaccurate sensors and actuation (e.g., Mergner et al., 2009;
Mergner, 2010; Hettich et al., 2014; Lippi and Mergner, 2017).
The tests suggested for benchmarking in Figure 2 and Table 1
have all been used in human posture control experiments and
some of them also in robot experiments (see Appendix). For
the envisioned benchmarking of robots, robust protocols must
still be worked out to deal with the complex benchmarking issue
and the large diversity of software and hardware of the robotics
solutions (compare above and ‘‘Discussion’’ section). In the
following, we present proof-of-principle examples of some of the
envisioned tests. The tests were performed mainly in Posturob II,
a human-inspired robot that has human-like anthropometrics,
uses force controlled actuation and the DEC model (in a slightly
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modified form compared to Hettich et al., 2014) for postural
control in two DoF (hip and ankle joints in the sagittal plane;
Figures 3A–F, 4B, 5A,B, 6A; see Hettich et al., 2014, for details
of the robot and its control, the optoelectronic recording of its
trunk and leg motions, calculation of the body COM excursions,
and the testbed, a human posture control laboratory). In all of
these tests, the same set of control parameters and adjustments
were used for Posturob II, and visual input was not implemented.
In Figures 6A,B, tilt responses of Posturob II were compared to
those of another robot, the 14 DoF robot called Lucy Posturob
(anthropometrics and technical solutions are different; also Lippi
and Mergner, 2017). The main results of the robot tests are listed
in the following text.

Figure 3 presents responses of Posturob II as time series
data for the disturbance scenarios suggested in Figures 2A–D,F.
Shown are postural responses in terms of stimulus-evoked body
COM sway. The examples also serve to show the three suggested
stimulus waveforms (PRTS in A and B; sine waves in C and E;
BSRP in D and RC for body lean in ankle joint in F). Notably,
panel E shows a superposition of the pull responses (panel C) and
the BSRP condition (D; push omitted in E). Note from this figure
and those which follow that disturbance compensation tends to
be suboptimal (considerably undershooting), which represents
a typical human-likeness feature (compare ‘‘Discussion and Is
Human-Likeliness an Advantage?’’ section).

Figure 4 shows frequency response functions (FRFs) for body
COM responses to SS tilt in terms of gain, phase and coherence
plots of a human subject (panel A; unpublished material from
previous experiments conducted with written informed consent
and the study was approved by the Ethics Committee of the
Freiburg University Clinics and was in accordance with the 1964
Helsinki Declaration). Panel B shows corresponding responses
of PostuRob II (compare the responses to the six consecutive
PRTS stimuli in Figure 3A). Coherence in Figure 4 is a measure
of the frequency-dependent signal-to-noise ratio (calculated by
dividing the squared, absolute value of the averaged cross power
spectrum by the product of the averaged input and output
power spectra). Coherence is lower in the human responses
than in the robot’s responses, similarly as previously reported
(e.g., Hettich et al., 2011), which may suggest that humans
tend to show larger response variability, attributable to larger
sensor and motor noise. Otherwise the main features of the
robot’s responses resemble those of the human subject. In
particular, common to both is an ‘‘amplitude non-linearity’’ in
terms of clearly larger gains of the evoked sway for the peak-
to-peak (pp) 1◦ PRTS stimulus than for the pp = 4◦ stimulus
(attributed to detection thresholds in the disturbance estimates;
see Maurer et al., 2006; Mergner, 2010). This similarity and those
for the gain and coherence curves may be used to consider a
robot’s FRF more or less human-like (see below ‘‘Discussion’’
section).

Figure 5 shows commanded (‘‘voluntary’’) sinusoidal forward
lean movements of the trunk in the sagittal body plane of
Posturob II. The leg segment shows corresponding counter leans,
which support the balancing of the COM over the base of
support, i.e. the area under and between the feet. The counter
leans emerged from the intrinsic interaction between hip and

ankle DEC control modules (the command for the ankle joints
was to maintain the body COM vertical above the ankles;
compare Hettich et al., 2014).

Figure 6 shows a comparison between the postural responses
of the robots Posturob II (A) and Lucy (B) to sinusoidal SS tilts.
Body weight without feet (BW) and COM height (H) above the
ankle joints of the two robots differed considerably (Posturob II:
BW = 67 Kg, H = 167 cm; Lucy: BW = 17.5 kg, H = 139 cm).
Note that their COM responses in terms of sway angle are,
nevertheless, of similar magnitude. This owes to the fact that
COM and it height are taken into account as parameters in
the ankle and hip joint controllers in both robots in terms of
mgh (where m gives the mass of the robot above the feet, h the
COM height, and g is acceleration due to gravity; compare above,
normalization across robots).

DISCUSSION

Empirical Benchmarking: Quantification of
Experimental Results, Metrics and Human
Likeliness Measure
The experiments discussed in this article provide several
possibilities to characterize the robot responses to external and
self-produced disturbances. Assessing and comparing a robot’s
performance require the definition of ‘‘performance metrics’’
on the basis of the experimental data. The first and most
straightforward quantification consists in the ability to stand the
imposed disturbances: for each scenario the maximum stimulus
amplitude successfully tested may be used as a score. In general,
however, it is not advisable to push the robots to failure. Rather,
it would be desirable to obtain performance measures using
basically ‘‘safe’’ moderate disturbances. The experiments may
be then interpreted in terms of the sensitivity to the applied
disturbances. For a sinusoidal stimulus, for example, gain as
the ratio between the amplitude of the disturbance and the
amplitude of the evoked body COM sway can be used; and,
this in relation to a corresponding gain range in a human data
set (to be established) may further be used as a measure of
human likeness. However, this solution faces for the sinusoidal
stimuli the aforementioned problem of their predictability. An
alternative would be to use unpredicted ‘‘transient’’ stimuli with
RC profile, where the uncompensated response of the system
may be measured in terms of static gain (residual static lean
response), overshoot and settling time. Such indices can be
computed similarly for both commanded voluntary movements
and external disturbances. The third possibility we consider is
the PRTS stimulus. Its advantages are that humans consider
it as unpredictable and that it allows for a description of the
response in terms of a FRF. The total power of the FRF gives a
measure of the sensitivity of the robot’s response to the applied
disturbance, which can be directly compared across robots. As
mentioned above, it is notable that healthy human subjects
typically do not show perfect compensation of the external
stimuli, but always some sway, which has been explained by
some threshold mechanisms in the control. This suggests that
a total disturbance rejection may overall not be an optimal
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solution and it certainly does not represent a human-like
feature. In fact, trying to stand for some time absolutely
motionless is for humans extremely difficult and soon starts to
be painful.

The FRF description contains further features that may be
used to quantify the human-likeness of the robot response
in comparison with human data. Experiments performed with
human subjects provide a behavior description that can be used
for comparison with robot responses. Human behavior can be
defined in terms of several features of the gain values across
each represented frequency, and also by the phase and coherence.
As mentioned above in the description of Figures 4A,B, such
features may reveal a human-like amplitude non-linearity or,
on the basis of the phase characteristics, a robustness of the
control’s dynamics or, on the basis of a sufficiently high
coherence, a hint on response reproducibility. It remains to be
shown that such features of a robot’s FRFs can be compared
with the ones observed in humans using multivariate statistical
techniques. Roboticistsmay find it more familiar, though, to train
models such as neural networks or support vector machines on
the available human response datasets and classify the robots’
responses as belonging to the distributions of human responses
(healthy or some particular class of patients). In both cases the
idea would be to base themeasure of human-likeness to reference
sets of human data.

In general, we propose a set of test scenarios that relate to
basic mechanisms of the human posture control system but are
otherwise empirical and to a large extent independent from the
particular robotic platform tested, in that the evaluation is based
on measurable physical variables such as body sway and on
normalizing across anthropometrics. While posture control can
be considered a basic sensorimotor control skill, its efficiency
also builds on lower level elements such as energy efficiency,
compliance, and the actuators’ dynamic performance. These
aspects can also be tested, e.g., by measuring energy consumption
directly. However, such low-level issues may be too specific for
the hardware used and not easily relatable to human-inspired
concepts. Nevertheless, the outcomes of such tests may provide
useful insights about the implemented properties. For example,
in Ott et al. (2016) it is shown how including passive stiffness and
delays affect posture control and balance performance. Details
of the performance of the suggested tests and the evaluation
protocols as well as human reference data must still be worked
out.

General Robot Evaluation Issues
In the robotics literature, different robot evaluation principles
have been proposed for different tasks. In general, robots may
be compared with each other with respect to their ability to
solve given problems or to perform given tasks. In O’Kane and
LaValle (2008), for example, evaluation of robot capabilities
is inspired by the principles used in computational theory to
evaluate algorithms, i.e., by evaluating whether the robot can
solve a problem or not and assessing how efficiently the problem
is solved. In order to perform such an evaluation, it is crucial to
formally define the problem and to find measures to evaluate the
efficiency of its solution. From this, one should not be misled to

postulate that a benchmark framework should be specific for each
robot type and task. Rather, although particular with respect to
the general case (i.e., not applicable for fixed-base and wheeled
robots), biped balancing is a challenge to all humanoids, and its
benchmarking can be based on a set of well-defined motor tasks.
Furthermore, the benchmarking can use human postural skills
as a reference, which is occasionally done in human-inspired
robotics, typically by evaluating a set of human skills with various
levels of difficulty. For example, in the field of developmental
robotics (see Guerin and Rat-Fischer, 2014) a benchmarking
framework based on the skills that are progressively acquired by
humans in the period from birth to early childhood is applied.
Correspondingly, one may evaluate to which extent the postural
responses of a humanoid resemble those of humans. Generally,
the assessment of selected challenges, which are often artificial
and chosen to be easily replicable, should be empirical and
independent of the specific hardware implementation. Such a
premise is behind the design of the Turing test in the field
of artificial intelligence and its variants. Furthermore, in view
that artificial agents are not (yet) able to pass the Turing test
in the general sense, it has been proposed to address sub-skills
that must be solved in the context and may be tested separately
in order to provide at least an insight into what may be still
missing (Cohen, 2005). The tests described in this article for
humanoid posture control can be seen as the implementation
of these principles, i.e., (1) empirical evaluation; (2) applicability
to different hardware; and (3) testing sub-skills that relate to the
issue of robot interaction with the real world.

From Human Experiments to Robot
Evaluation Principles
Addressing here human-like versatility and robustness for
benchmarking of posture control in robots, we focused on basic
components of the human posture control that are neither
task-specific nor hardware-specific. These components may
therefore be used to rate, predict and possibly explain the
shortcomings of the sensorimotor performance of robots, or
they may identify limiting amplitude and frequency margins.
We conceive that apparent discrepancies between impressive
task performances in internet videos and failures in robot
competitions with complex ‘‘real world’’ scenarios owe mainly
to the problems of how to cope with superposition of two
or several disturbances or of active movements with external
disturbances. Also, we attribute versatility and robustness of
sensorimotor control to the ability of humans to exploit the
multi-segment body kinematics for distributing a demanding
performance across two or more joints and to use the
same ability for compensating for local flaws. These features
of the human posture control have basically the same
importance for humanoid robots. In addition to making task
performance of robots more versatile and robust, they may
facilitate human-robot collaborative interactions. Our focus
on human-like posture control as a crucial precondition for
many movement performances is supported by a recent outline
concept on benchmarking humanoid locomotion, where a
considerable part is devoted to posture control (Torricelli et al.,
2015).
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Posture control benchmarks may improve the interpretation
of general sensorimotor performance benchmarks. Low ratings
for such performances may be due to either insufficient postural
disturbance compensation or to suboptimal action planning,
commanding, and execution control. Furthermore, postural
control tests may reveal and define restrictions for one or the
other external disturbance, which can then be taken into account
when planning performance tasks for a robot. The overall effort
and time expense for the benchmarking is larger when posture
control is separately tested, but this appears acceptable when
one restricts the posture control benchmarking to the very basic
aspects and to a relatively small number of meaningful tests.

One may object that the described external disturbances
challenge a robot’s performance especially during passive
transport in a vehicle, for example. This challenge may represent
an exceptional situation for which one could conceive some form
of special solution, for example in terms of a passive fixation or
by having the robot actively stabilizing its stance by holding with
the hands. We contend, however, that challenging disturbances
may have many reasons, mostly from mechanical interactions
with the environment (e.g., collisions, work requiring interaction
with machines or other robot agents). Furthermore, these
disturbances tend also to occur during proactive movements
such as walking, when body acceleration (or slowing, change
in direction, etc.) produces force impacts on its buttress. The
same applies to each moving body segment that is buttressing
on a supporting body segment. Conceivably, focusing the
suggested benchmarking tests on movements of the relatively
heavy COM of the trunk and on the whole-body COM above
the feet is clearly more relevant than considering head or arm
movements.

The examples of robot tests shown above demonstrate
that the robots’ posture control can be characterized and
evaluated in terms of both body COM dynamics and inter-
segmental coordination. The way in which humans exploit
inter-segmental coordination depends on the functional context.
For example, when a limited contact area with the SS does
not allow for a sufficiently safe balancing of the body COM
based on ankle torque, humans typically use additional hip
movements to support the balancing, which can eventually
fully take over the task. Such a ‘‘hip-strategy’’ emerges
mainly in the presence of very intensive external perturbations
(Atkeson and Stephens, 2007). In the scenarios described
above, the balance behavior has not been pushed to such
limits, however. In the extreme case, the hip strategy would
require very forceful rapid movements that, at the current
state of the art, are not implemented in robots. Such very
strong perturbations may not safely be covered even by
humans.

Our definition of human-like versatility and robustness
and their interrelation refers in the present context to the
human ability to distribute the performance of a sensorimotor
task across two or more joints or to variably shift the
performance from one joint to another. In the DEC concept,
these mechanisms have a basis in the modular architecture of the
control, including the emergence of inter-segmental movement
coordination and a reduction of inter-segmental coupling forces

(Hettich et al., 2014; Lippi and Mergner, 2015). Ultimately,
however, the posture control mechanism as a whole builds
on the ability to produce in each DoF of the skeletal system
the compensation for the basic four disturbances (compare
Figure 1) in a context-adequate way with respect to their overlap
and timing. As already mentioned above, these responses are
produced with one and the same set of control parameters
and in conflict-free superposition with the movement execution
control. Demonstrating this in the above robot experiments
leads us to the suggestion to try the same in future robot
benchmarking.

Is Human-Likeliness an Advantage?
Referring robot benchmarking to human sensorimotor behavior
and suggesting that robot performance be evaluated in terms
of human-likeliness poses the general question about the value
of the human-likeliness criterion. As already pointed out in
‘‘Introduction’’ section, human performance is still superior
to that of robots and several human sensorimotor features
are currently desirable for humanoids. Following this idea we
proposed the evaluation of basic posture control features that
allow humans to move and balance in a variety of different
scenarios. Previous work (Ott et al., 2016) provides an example
that using a human-inspired sensorimotor control, which
includes passive joint stiffness and some form of feed-forward
disturbance compensation, increases the tolerance for time
delays in the control loop. Principally, the power of such
a design lies in the option to use a relatively low gain in
the active control; a safe choice considering the limited time
margins imposed by the delay in the loop. The compliant
behavior produced by the low gain, in turn, can be considered
advantageous by itself for the interaction with the environment.
This suggests that biological solutions may tend to address
more than one problem and provide tradeoffs between different
issues. On the other hand, humanoids and technical system
may in principle face specific problems that are not relevant
for humans (e.g., joint angles that should not hit their limits
or actuators that are optimized for narrower ranges of torques
and velocities compared to those of human muscles). Or,
they may not be affected by the same limitations as humans
(such as the long neural delays mentioned above). Because
of this, the technological value of bio-inspired mechanisms
depend on the specific features of the hardware involved.
Nevertheless, the human-likeness feature may be of intrinsic
value in human-robot interactions. Conceivably, humans would
more likely perceive the motor behavior of a robot as intelligible
and predictable when it is based on human-inspired control
principles, which would offer safety benefits in tasks that
require humans to directly collaborate with robots. This is
especially important in the case of wearable robots that can
partially impose motion pattern and posture control strategies to
humans.

Wearable robot devices would be perceived as more
transparent and reliable if they behaved in a way that reflects
the natural motor schemas of the user. For this reason, we
imagine that human-likeness should be evaluated specifically
as one of the measures to be taken into account in a
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benchmarking framework for humanoids. Furthermore, several
of the posture control mechanisms identified in humans may
be of considerable relevance to robotic engineers. One example
is given by the aforementioned solutions used by humans to
deal with the relatively long sensory feedback time delays for
disturbance estimates and the resulting challenges for control
stability (compare above in ‘‘Introduction’’ section the inter-
relation of low loop gain with low mechanical resistance and
low energy consumption). Another related example, which
may be potentially interesting for robotics where processing
time delays are considerable, is that the human responses
to the postural disturbances occur in a cascade of three
steps, the first being an instant resistance from passive
muscle and connective tissue properties, which is followed
by an automatic and stereotype short-latency proprioceptive
reflex (latency 20–40 ms), after which the context-specific
multisensory and voluntarily adjustable long-latency disturbance
compensation develops (often referred to as ‘‘long latency
reflex’’). It has been demonstrated in robots (Ott et al., 2016)
that preceding the disturbance-specific counteraction by some
early and fast response in equivalence to the human passive
stiffness may improve control stability. A further means by
which humans cope with the sensory feedback time delays
is to learn external disturbances and then to predict the
corresponding sensory estimates, and to also use prediction
for self-produced disturbances (see ‘‘Sensory Estimations of
the Four Basic Disturbances and Their Predictions’’ section).
Preliminary robot experiments demonstrate an improvement
in postural control when this includes prediction (Mergner,
2010).

Another and already previously considered point for human-
likeness benchmarking is the improvement of postural control,
and of sensorimotor control in general, when humans can
involve visual spatial orientation and motion cues (Torricelli
et al., 2016). In the absence of vision, human arm-reaches
fall short, and walking slows down and becomes insecure
with an increased risk of falling. Particularly strong is the

beneficial effect of vision in humans with degraded vestibular
function, which is consistent with the notion of a strong visual-
vestibular co-operation in sensorimotor control, self-motion
perception, and spatial orientation. The improvement by vision
in vestibular-able subjects is mainly attributed to a reduction
of high vestibular noise by the visual-vestibular signal fusion
(Mergner et al., 2009; van der Kooij and Peterka, 2011; Assländer
et al., 2015). A basic problem in the use of visual cues is
in the evaluation of whether optic flow is stemming from
self-motion or from visual surround motion. Its solution in
humans involves the interpretation of a manifold of vision-
derived motion and orientation cues, using cognition and
learning, and it includes visual-vestibular fusion mechanisms
that are still not completely understood to date (see, e.g., Mergner
and Peterka, 2017). Overall, current knowledge of the human
perception and sensorimotor systems is still rather limited.
Studies on sensorimotor control in humans and humanoid
robots will likely profit from each other and to some extent
may proceed in parallel by using mutual inspirations from
each other. Drawing on human-likeness inspirations for robot
benchmarking to better understand, for example, the role of
vision for sensorimotor skills remains a task for the future in both
research fields.
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APPENDIX

An important further step towards benchmarking humanoids
would be experiments that compare across different posture
control methods in the same robot, or using the same control
method across different robots (as in Figure 6). This important
and necessary next step may start when a consensus is reached
on the targets in the benchmarking approach. Qualitative and
preliminary experiments in this direction have been performed
in our laboratory. Corresponding films on posture control from
our robots can be found in the internet:

(A) For Posturob I (see Mergner, 2010) under
https://www.youtube.com/user/NeurologieFreiburg showing
(1) Voluntary lean; (2) Balancing in response to pull stimuli
when standing on foam rubber; (3) BSRP (body sway referenced
platform); (4) Voluntary leans superimposed on support surface
tilt (both with different frequencies); and (5) Pull stimuli applied
during stance on BSRP.

(B) For similar tests using Posturob II, see https://www.
youtube.com/user/neurozentrumukl Part 1: Containing

balancing of tilts with (a) PRTS and (b) superimposed
pushes, Part 2: Demonstrating and explaining control
of voluntary movement superimposed on balancing
sinusoidal tilts, Part 3: Demonstrating and explaining
balancing on fixed support surface and BSRP during
manual applied pushes, and Film 2: Superposition of robot
and human trunk lean movements on support surface
rotations.

(C) For tests in Lucy Posturob, see https://www.
uniklinik-freiburg.de/neurologie/forschung/neurologische-
arbeitsgruppen/postural-control/video.html demonstrating
balancing of stance while performingmovements simultaneously
in the frontal and sagittal planes and compensating
superimposed pushes.

(D) For the robot Toro from DLR using the DEC control
under https://www.youtube.com/watch?v=3ALCTMW3Ei4 (see
also: films referred to in Ott et al., 2016).

(E) For balancing stance of Posturob II when it used instead
of the DEC an Eigenmovement control method (complementary
material in Alexandrov et al., 2017).
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Foot Placement Modulation
Diminishes for Perturbations Near
Foot Contact

Mark Vlutters*, Edwin H. F. Van Asseldonk* and Herman van der Kooij

Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands

Whenever a perturbation occurs during walking we have to maintain our balance using

the recovery strategies that are available to us. Foot placement adjustment is often

considered an important recovery strategy. However, because this strategy takes time it

is likely a poor option if the foot is close to contact at the instant a perturbation occurs.

The main goal of this study is to gain a better understanding of how humans deal with

balance perturbations during walking if foot placement adjustments are constrained by

time. Ten healthy subjects walked on an instrumented treadmill and received mediolateral

and anteroposterior pelvis perturbations at various instances during the single support

phase. The results show that foot placement modulation in the first recovery step

following anteroposterior perturbations is fairly invariant of the perturbation magnitude

and direction, regardless of the onset instance. For mediolateral perturbations, foot

placement adjustments strongly modulate with the perturbation magnitude and direction,

but these effects diminish when the perturbation onset is closer to the instant of foot

contact. For most perturbations the first recovery step was consistent across subjects

for all onset instances. However, in the second step various strategies arose that were

not consistent across subjects, nor within subjects, especially for perturbations applied

close to foot contact. Despite these different strategies, the COP location following foot

contact strongly related to the COM velocity throughout these strategies. The results

show that humans have various ways to compensate for limited availability of a foot

placement strategy, with strategy selection highly dependent on the instant during the

gait phase at which the perturbation is applied.

Keywords: perturbed human walking, balance control, foot placement, extrapolated center of mass, capture point

INTRODUCTION

Human balance control is highly flexible, with a multitude of strategies that can be addressed
to reject disturbances and allow continuation of walking. One example is the modulation of
ankle joint moments to affect the movement of the body. Another are inertia-based strategies
such as the hip strategy, in which changes in angular momentum are used to affect linear body
motion. Furthermore, foot placement modulation can change the base of support area, allowing
adjustments to be made to the walking cycle. This might be achieved by adjusting both the location
and timing of foot placement. To gain more insight in human balance control and the preferred
ways of balance recovery, it is helpful to understand how humans maintain balance when one or
multiple strategies are restricted.
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https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2018.00048
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2018.00048&domain=pdf&date_stamp=2018-05-08
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.vlutters@utwente.nl
mailto:e.h.f.vanasseldonk@utwente.nl
https://doi.org/10.3389/fbioe.2018.00048
https://www.frontiersin.org/articles/10.3389/fbioe.2018.00048/full
http://loop.frontiersin.org/people/516742/overview
http://loop.frontiersin.org/people/165476/overview
http://loop.frontiersin.org/people/2827/overview


Vlutters et al. Diminished Foot Modulation Following Perturbations

The way balance is controlled depends on physical capabilities
and constraints. For example, experiments in standing balance
show that humans no longer utilize an ankle strategy if the
size of the support surface is decreased (Horak and Nashner,
1986). This makes the ankle strategy ineffective, and possibly
even threatening to balance. In walking, we have previously
shown that foot placement adjustments are elicited in response to
anteroposterior (AP) perturbations after physically blocking the
ankle joints to make an ankle strategy ineffective (Vlutters et al.,
2018). Such adjustments in foot placement were not observed
following AP perturbations in normal walking (Vlutters et al.,
2016). Other changes to the physical capabilities of the body
also modify balance control, such as increased body sway in
unilateral amputees (Geurts et al., 1992), or enhanced lateral
balance performance through the use of a powered ankle device
(Kim and Collins, 2015).

Constraints on balance control can also be in the form of time.
Especially for foot placement modulation, time is required to
make adjustments to the swing leg (Hof et al., 2010). The instance
of the gait cycle at which a disturbance occurs is therefore an
important factor in determining how balance will be maintained.
If a disturbance occurs shortly before foot contact, there is
little time to make foot placement adjustments. As a result,
adjustments might have to be postponed to the subsequent step,
or other balance strategies have to be addressed to compensate.
Especially mediolateral (ML) disturbances given briefly before
foot contact are expected to be challenging, given the already
limited availability of other strategies, such as ML ankle
control.

In an attempt tomake predictions of balance control strategies
during gait, the center of mass (COM) velocity has previously
been shown to relate to the center of pressure (COP) location
following foot contact, in the first recovery step following both
ML (Hof et al., 2007, 2010; Vlutters et al., 2016) and AP (Vlutters
et al., 2016) perturbations. For AP perturbations, this COP shift
was realized during the double support phase without the need
to strongly adjust the location of the leading foot as compared
to the unperturbed condition. For ML perturbations however,
this COP shift was made possible mainly through foot placement
adjustments. In addition, this COP shift was in line with the
velocity-dependent extrapolated center of mass (XCOM) concept
(Hof et al., 2005). This concept is also known as the capture
point (Pratt et al., 2006), which can be derived from a linear
inverted pendulum model. The XCOM can be represented as
a point on the floor at a horizontal distance from the COM,
equal to the COM velocity times a proportionality constant ω

−1
0 .

If the model’s COM moves toward the COP while the COP
coincides with the XCOM, the model will come to an upright
movement stop. If human walking has similarities to the motion
of an inverted pendulum, the ability to balance and to steer the
COM might be reflected by the ability to locate the COP relative
to the XCOM. If there would be insufficient time to adjust the
base of support through foot placement adjustments, it might
not be possible to displace the COP in accordance with the
XCOM, because the COP is constrained to the base of support.
The COM could move in an undesired direction as a result, and
the COM velocity would lose its predictive value for the COP

in that step. It is unclear if such predictions would hold for the
subsequent second step, especially if subjects cannot counteract
the disturbances during the double support phase after the first
step.

The main goal of this study is to gain a better understanding
of how humans deal with balance perturbations during walking if
foot placement adjustments are constrained by time. Specifically,
for perturbations with an onset increasingly close to the instant of
foot contact we question (1) whether foot placement adjustments
diminish when there is little time to use such adjustments as
a recovery strategy, and (2) whether the COP will continue
to modulate with the COM velocity, in line with the XCOM?
Foot placement adjustments are expected to diminish in the first
recovery step given the time required to move the foot. However,
strategies other than foot placement adjustments might still
facilitate COP modulation with the COM velocity. Furthermore,
there will be more time to make foot placement adjustments in
the second recovery step, whichmight allow for suchmodulation.
We investigate these questions by applying both ML and AP
perturbations to the pelvis of human subjects walking on a
treadmill, at various instances within the single support phase,
and capturing their kinematics. We analyze the foot placement
locations and COP positions relative to the COM at specific
instances following perturbation onset.

MATERIALS AND METHODS

Participants
Ten healthy young adults without known history of neurological,
muscular, or orthopedic problems participated in the study (3
male, age: 21 ± 2 year, height: 1.76 ± 0.1m, weight: 65 ±

9 kg). The local medical ethics committee (Medisch Ethische
Toetsingscommissie Twente) approved the experimental setup
and protocol. All participants gave written informed consent
prior to the experiment, in accordance with the Declaration of
Helsinki.

Apparatus
Here only a brief description of the experimental setup is given.
A more detailed description is provided elsewhere (Vlutters
et al., 2016). A dual-belt instrumented treadmill (custom Y-mill,
Motekforce Link, Culemborg, The Netherlands) and two motors
(SMH60, Moog, Nieuw-Vennep, The Netherlands) adjacent
to the treadmill were used to deliver ML and AP pelvis
perturbations during walking in a controlled way, see Figure 1.
Attached to each motor was a vertical lever arm, which in turn
was connected to a horizontal rod through a ball-joint. The rod
was connected to a hip brace (universal hip abduction brace,
Distrac Wellcare, Hoegaarden, Belgium), also using a ball joint.
The brace was worn by the subject. Control signals for the
motors were generated using xPC-target (MathWorks, Natick,
MA, USA) at 1,000Hz.

Data Collection
Subject kinematic data of the feet, lower legs, upper legs, pelvis,
upper body, and head were captured using a 9-camera motion
capture system (Visualeyez II, Phoenix Technologies, Burnaby,
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FIGURE 1 | Experimental setup. Two motors were fixated on a support frame,

which in turn was attached to a dual-belt instrumented treadmill. Each motor

could be connected to the subject through a vertical lever arm, a horizontal

rod, and a hip brace. The two motors were never attached to the subject at

the same time.

Canada). To this purpose a three-LED cluster was attached to
each of those body segments. Additional single LEDs were placed
on both lateral malleoli, and both lateral epicondyle of the femur.
The torque and angle of each motor in the perturbation device
were collected over UDP using an Ethernet card (82558 Ethernet
card, Intel, Santa Clara, CA, USA). Ground reaction force data
of the treadmill were also collected at 1,000Hz using an AD card
(PCI-6229, National Instruments, Austin, TX, USA). Both cards
were part of the xPC-target hardware. The AD card was also used
to generate an analog signal to synchronize the motion captures
system with the xPC-target hardware.

Protocol
Before the start of the experiment, several kinematic
measurements were performed during which the locations
of the bilateral first and fifth metatarsal heads, calcaneus, medial
and lateral malleoli, fibula heads, medial and lateral epicondyles
of the femur, greater trochanter, anterior and posterior superior
iliac spines, xiphoid process, jugular notch, 7th cervical vertebra,
occiput, head vertex, and nasal sellion were indicated using an
LED-based probe (Cappozzo et al., 1995), relative to the LED
clusters on each body segment. Using these measurements and
the measured global positions of the LED clusters, the indicated
points can be reconstructed in global space throughout all
measurements.

During the experiment, subjects walked on the treadmill with
their arms crossed over the abdomen, to prevent balancing using

the arms. The walking speed was 0.63m s−1 multiplied with
the square root of the subject’s leg length (Hof, 1996). Subjects
walked two blocks of five trials each. The first trial of each
block was a 2-min baseline trial in which no perturbations
were applied. The first baseline trial was furthermore used
to determine the single support duration during unperturbed
walking. The remaining four trials were perturbation trials. A
perturbation consisted of a sudden square-wave pulse with a
duration of 150ms. Perturbation onset occurred at right toe-
off, at the start of the left single support phase (SS0), at one
third of the left single support phase (SS1/3), and at two thirds
of the left single support phase (SS2/3). The interval between
subsequent perturbations was random, between 6 and 12 s. The
delivered force magnitudes were equal to 8 and 16 percent of the
subject’s body weight. Perturbations were directed either inward
(negative sign, leftward for right swing) and outward (positive
sign, rightward for right swing), or forward (positive sign) and
backward (negative sign). In one block only ML perturbations
were applied, in the other block only AP perturbations. Block
order was randomized across subjects. Within a block, all
perturbations were randomized over onset instance, magnitude,
and direction. Each condition was repeated 8 times, yielding 196
perturbations in total per subject. When no perturbation force
was being delivered, the interaction force between subject and
motor was regulated to (near) zero using admittance control,
which allowed the subject to move freely. Subjects wore a safety
harness at all times to prevent the body from hitting the treadmill
in case of a fall.

Data Processing
Data were processed using Matlab (R2016b, MathWorks, Natick,
MA, USA). Marker data were filtered with a 4th order zero-
phase 20Hz low-pass Butterworth filter. Landmark positions
were subsequently reconstructed using the probe measurements
through least squares estimation (Söderkvist and Wedin, 1993).
Using a method comparable to that in Zeni et al. (2008), the
calcaneus and first metatarsal head landmarks on both feet were
used to detect gait phase events of toe-off right (TOR), heel strike
right (HSR), toe-off left (TOL), and heel strike left (HSL). All
landmark data was used to estimate the location of the COM of
each segment, as well as that of the whole body COM (Dumas
et al., 2007). The COM position was differentiated to find COM
velocities.

The unperturbed walking data from the baseline trials was
used to find the average Euclidean distance between the COM of
the feet at heel strike. This value was used as a scaling factor (l0)
to make all position and velocity data dimensionless following
(Hof, 1996). Next, all position and velocity data were expressed
relative to those of the whole body COM. The velocity of the
whole-body COM itself was expressed relative to the treadmill
belt. All data were sorted on perturbation magnitude, direction,
and onset. The COM velocity data was cut into sequences using
the gait phase events. Each sequence was resampled to 50 samples
to allow averaging across repetitions and subjects. All data at gait
events were averaged over repetitions to obtain average data per
subject. These were used to obtain subject averages and standard
deviations.
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To investigate the predictive power of the COM velocity on
the COP location, linear least squares fits were made to the
distance between the COP and the COM at TOL as a function
of the COM velocity at the preceding HSR, in line with our
previous analysis (Vlutters et al., 2016). Such fits have previously
shown to correspond well to the XCOM concept, with the COP-
COM distance proportional to the COM velocity times a factor
ω
−1
0 =

√

(l/g), in which l is the subject’s leg length, and g is
the Earth’s gravitational acceleration. A dimensionless XCOM
proportionality constant (ω−1

0 ) was calculated for each subject,
and averaged over all subjects for comparison with the fits. This
constant was compared to the slope of the linear fits to the data.
If both are similar, the COP modulates in a comparable way with
the COM velocity as the XCOM does, for specific instances in the
gait cycle.

Linear mixed models were used to assess the effect of the
perturbation (fixed factor, with intercept) and the onset timing
(fixed factor, with intercept) on the ML and AP distance between
the COM and the COP at TOL, as well as on the duration
of the single and double support phases during and after the
perturbation. Subject effects were included as a random factor
(intercept) to account for correlation effects from repeated
measures within the same subject. A significance level of α= 0.05
was used and a Bonferroni correction was applied to correct for
multiple comparisons during post hoc analysis. The perturbed
conditions were only compared to the unperturbed condition
and not mutually to reduce the number of comparisons.
Finally, the analysis was performed separately for ML and AP
perturbations. SPSS statistics 21 (IBMCorporation, Armonk, NY,
USA) was used for the statistical analysis.

RESULTS

Foot placement adjustments in terms of location and time were
assessed following both ML and AP perturbations in walking
subjects. All data are shown dimensionless. Subject-average
scaling factors to make the data dimensionless were l0 = 0.41 ±

0.03m for distances,
√

(g ∗ l0)= 2.02± 0.07m s−1 for velocities,
and

√

(l0 / g)= 0.21± 0.01 s for durations, where l0 is the average
Euclidean distance between the COM of both feet at unperturbed
heel strike.

For various ML perturbations one subject showed stepping
strategies that were not consistent with the other subjects. These
special cases are shown separately in Figures 4–6, and were
removed from the statistical analysis. For the 0.16 magnitude
outward perturbation applied at SS2/3 the responses were not
consistent across subjects, nor within several subjects. As a result,
the data cannot be pooled subject-wise to represent a specific
strategy. Corresponding data were omitted from Figures 4, 6
to prevent image cluttering, and were also removed from
the statistical analysis. However, all data were included when
determining the relations of the COP data with the COM
velocity. As we have previously demonstrated in Vlutters et al.
(2016), the underlying COP might still modulate with the COM
velocity, in line with the XCOM concept, throughout different
balance strategies.

Perturbation Effects on COM Velocity
Both the ML and AP perturbations affected the subject’s COM
velocity, see Figures 2, 3. The velocity profiles following ML
perturbations appear dependent on the onset timing. Deviations
from the unperturbed case obviously start later for later
perturbation onset, but the way the velocity progresses changes
with the onset timing as well. The effects of various AP
perturbations on the COM velocity appear less dependent on the
onset timing. Though later onset leads to later deviations from
the unperturbed case, the velocity profiles between the different
onset conditions start to appear similar again at HSL, at the start
of the second step.

The disturbances move the subjects in the direction of the
perturbation, such that subjects had to return to the center of the
treadmill during their recovery. This return to the center can be
derived from the velocity data, corresponding to the instances
where the perturbed velocity data crossed the unperturbed
velocity data, see Figure 2A. The point at which this return
occurs following ML perturbations shifts with the perturbation
onset, becoming later for perturbations that are applied later.
This is less the case for AP perturbations, see Figure 3B. Finally,
the COM velocity perpendicular to the perturbation direction
remains relatively unaffected by the perturbation itself, but
may change through subject actions following HSR. This is
mainly the case for ML perturbations, especially for those with
SS2/3 onset, see Figure 2B. Subjects speed up in the walking
direction for inward perturbations, and slow down for outward
perturbations.

Foot Placement Location Following ML

Perturbations
Subjects modulated their foot placement in terms of location
and/or timing following the perturbations. Especially ML
perturbations with SS0 onset lead to adjustments in foot
placement location in the first recovery step, see Figure 4.
This might be expected given that these perturbations are
perpendicular to the walking direction, while there is sufficient
time to adjust the foot. Note that the locations of the feet
in Figure 4 are represented relative to the COM. The location
of the leading foot relative to the COM results from the
step. The location of the (mostly stationary) trailing foot can
change relative to the COM because the COM itself moves as
a result of the perturbation. In the first step, at HSR, subjects
generally placed their foot in the direction of the perturbation
at an increased ML distance from the COM with increasing
ML perturbation magnitude. The ML distance between the
COM and the leading foot was significantly affected by the
ML perturbations [F(4, 126) = 114.410, p < 0.001], the onset
timing [F(2, 126) = 7.605, p = 0.001], and their interaction
[F(8, 126) = 126.000, p < 0.001]. However, the post-hoc analysis
revealed that the leading foot was not placed significantly
different from the unperturbed case for any ML perturbation
with SS2/3 onset (p = 1.000). The main effect of perturbation
on the ML distance between leading foot and COM is therefore
mainly caused by the SS0 and SS1/3 onset perturbations. Other
exceptions were the −0.08 inward perturbations with SS0 and
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FIGURE 2 | COM velocity profiles following ML perturbation. (A) ML COM velocity in response to ML perturbations. (B) AP COM velocity in response to ML

perturbations. Top, middle, and bottom rows correspond with perturbation onset instances of SS0, SS1/3, and SS2/3, respectively. Data is shown as a function of the

gait phase. Colors indicate the various perturbation magnitudes. Shaded areas indicates the subject-standard deviation for the unperturbed condition. It is not shown

for perturbed conditions to prevent image cluttering. Data is shown dimensionless.

SS1/3 onset, which also did not lead to significant changes in this
distance (p ≥ 0.589).

For the second step, at HSL, modulation of the foot location
occurred, but the changes in ML distance between the leading
foot and the COM tend to diminish for perturbations with a
later onset. A possible explanation is that part of the recovery
occurred during the double support phase between the first and
second step, and the single support phase prior to foot contact of
the second step. This way, there is less need for adjustments in
the location of the foot. Note that the 0.16 magnitude outward
perturbations with SS2/3 onset are disregarded here, for which
lateral foot adjustments did occur. For perturbations with SS0
and SS1/3 onset, the ML distance to the leading foot in the second
step deviates from the unperturbed condition for various reasons,
such as uncrossing the legs following a cross-step, or to return
to the center of the treadmill. The ML distance between the
COM and the leading foot in the second step was significantly
affected by the perturbations [F(4, 114.101) = 23.251, p < 0.001],
the onset timing [F(2, 114.068) = 9.262, p < 0.001], and their
interaction [F(7, 114.058) = 2.825, p = 0.009]. Visual inspection
of Figure 4 suggests that the modulation pattern as seen in the
first step in response to ML perturbations with SS0 onset do not
clearly re-appear in the second step for ML perturbations with
SS2/3 onset, which suggests recovery occurs before foot contact

of the second step, even if there was no foot adjustment in the
first.

Alternative Foot Locations Following ML

Perturbations
The aforementioned statistical results do not include the
alternative strategies performed by some subjects in the second
step, deviating from the rest of the population, see Figure 5.
For perturbations with SS0 and SS1/3 onset, one subject showed
alternative stepping responses for a specific perturbation. Subject
4 consistently performed a double right step following the−0.16
inward perturbations with SS0 onset, first crossing the legs in the
first step like all other subjects, but then uncrossing the legs with
a second right step (Figure 5A). Furthermore, subject 4 made
a consistent short compensatory step with the left leg during
the second step after the −0.16 inward perturbations with SS1/3
onset, to further counteract the induced inward COM velocity
(Figure 5B). This short step was also of shorter duration than that
of the other subjects (Figure 6).

For perturbations with SS2/3 onset more varying responses
occurred, especially for the 0.16 outward perturbations. Subjects
1, 3, 4, and 10 performed left leg abduction, opposite of the
perturbation direction, as well as foot pivoting. Moving the heel
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FIGURE 3 | COM velocity profiles following AP perturbation. (A) ML COM velocity in response to AP perturbations. (B) AP COM velocity in response to AP

perturbations. Top, middle, and bottom rows correspond with perturbation onset instances of SS0, SS1/3, and SS2/3, respectively. Data is shown as a function of the

gait phase. Colors indicate the various perturbation magnitudes. Shaded areas indicates the subject-standard deviation for the unperturbed condition. It is not shown

for perturbed conditions to prevent image cluttering. Data is shown dimensionless.

laterally by pivoting on the forefoot, and subsequently moving
the forefoot laterally by pivoting on the heel allows changes
in the base of support using only a single foot, without actual
stepping (Figure 5E). Subjects 7 and 9 performed a rear cross-
step (Figure 5D), stepping behind the leading leg without the
body fully toppling over the leading foot in the sagittal plane.
Subjects 2, 5, and 8 performed both of these strategies, and
subject 6 even performed three different strategies, including a
cross-step using the left leg (Figure 5C). Furthermore, subject 6
was the only subject to perform such a cross-step for the 0.08
outward perturbations with SS2/3 onset. Other subjects dealt with
this perturbation through a relatively long lasting right single
support phase during which the left leg was abducted, sometimes
combined with foot pivoting as in Figure 5E. The leg abduction
is not directly clear from the foot placement locations, but is in
line with the long lasting single support duration of the second
step following 0.08 outward perturbations with SS2/3 onset in
Figure 6.

Foot Placement Timing Following ML

Perturbations
Aside from adjustments in foot placement location, the gait
phase durations following the perturbations were affected as
well, see Figure 6A. For the first step, inward perturbations

tend to increase the single support duration, whereas outward
perturbations tend to decrease it. These effects diminish with
later perturbation onset. In contrast, for the second step inward
perturbations tend to decrease the single support duration,
whereas outward perturbations tend to increase it. These effects
become stronger with later perturbation onset. Specifically,
major deviations occur for the −0.16 inward and the 0.08
outward perturbations with SS2/3 onset. For the −0.16 inward
perturbation a fast step with the left leg is used to correct in
the second step. For the 0.08 outward perturbation the duration
increases because of the earlier mentioned leg abduction strategy
that occurs during this single support phase.

All gait phase durations were affected by theML perturbations
[F(4, 144.053) ≥ 5.248, p ≤ 0.001], but there was no main effect of
the onset timing on any of the gait phases [F(2, 114.032) ≤ 1.585,
p ≥ 0.209]. This is likely because the effects of inward and
outward perturbations tend to cancel out in the average duration
over all perturbations. A significant interaction effect was found
only for the single support phases of the first and second step
[F(7, 114.025) ≥ 9.069, p ≤ 0.001], but not for any of the double
support phases [F(7, 114.127) ≤ 1.269, p ≥ 0.166]. For the single
support phase of the first step, deviations in duration from the
unperturbed case diminish with increasing perturbation onset
delay. For the ML perturbations with SS2/3 onset there were
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FIGURE 4 | Foot locations following ML perturbations. (A) Top-down view of the locations of the COM of the leading and trailing feet relative to the whole body COM

at (0,0). Perturbation onset was at SS0. Bottom plot corresponds to the first step (HSR), top plot corresponds to the second step (HSL) after the perturbation. For the

second step, one subject deviated from the other subjects. The repetition-average data of this subject is given by a cross. (B) Same as (A), but for perturbation onset

at SS1/3. (C) Same as (A), but for perturbation onset at SS2/3. The subject averages for the 0.16 magnitude SS2/3 perturbation are not shown as it is not

representative of any specific stepping strategy, but contains a mixture of three different strategies. Triangles show subject-averages and correspond to the

perturbation direction. Ellipses represent the subject-standard deviation. Colors indicate the different perturbation magnitudes. Data is shown dimensionless.

no significant differences from the unperturbed case (p > 421).
This is consistent with the findings for the foot locations in the
first step following SS2/3 onset perturbations (Figure 4C). It is
likely that subjects cannot make major adjustments to their foot
placement if the remaining time to the intended (unperturbed)
foot contact is short.

Foot Placement Location Following AP

Perturbations
Changes in the AP distance between the COM and the leading
foot during both the first and second step after the AP
perturbations are generally small, see Figure 7. For forward
perturbations there is a tendency for the first step to be
longer and the second to be shorter, while the opposite is
the case for backward perturbations. The leading-foot AP
distance from the COM was significantly affected by the AP
perturbations [F(4, 126) ≥ 9.252, p < 0.001] and the onset timing
[F(2, 126) ≥ 7.432, p = 0.001], but not by their interaction
[F(8, 126) ≤ 1.600, p ≥ 0.131], for both at HSR (step 1) and
HSL (step 2). Unlike the results in Vlutters et al. (2016), here
this AP distance was significantly affected by the perturbations.
However the differences are generally small, with a typical mean
difference of 1 cm between the various onset conditions, as well

as between the various AP perturbations and the unperturbed
condition. The foot locations in step 2 appear similar regardless
of the onset timing. This suggest that the AP perturbations are
mostly rejected during the double support phase following the
disturbance. No alternative strategies were observed in response
to AP perturbations.

Foot Placement Timing Following AP

Perturbations
For AP perturbations of any onset timing, the most prominent
changes in gait phase duration seem to occur in the double
support phases rather than in the single support phases,
see Figure 6B. All gait phase durations were affected by the
AP perturbations [F(4, 126) ≥ 5.168, p ≤ 0.001]. For the
first double support phase, backward perturbation leads to
increases in duration, and forward perturbations to decreases.
The second double support phase has the tendency to show
opposite effects. This is possibly related to the distance
between the COM and the trailing foot at heel strike. If this
distance is larger, the trailing foot will have to leave the floor
earlier during the subsequent double support phase, making
it of shorter duration. When considering the perturbation
onset timing, only the single support durations were affected
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FIGURE 5 | Alternative stepping strategies. Alternative strategies used by one or multiple subjects for specific perturbations. The number (1, 2) corresponds to the

step number in Figure 4. (A) Cross-uncross, making a double step with the right leg. (B) Near-cross step with the right leg, followed by a short left step to prevent the

body from falling leftward. (C) Left cross-step. (D) Rear cross-step. (E) Foot pivoting, by first rotating about the toes, then shifting the COP back toward the heel and

rotating about the heel. Accompanied by left leg abduction during the swing to prevent toppling over the right stance leg. Several subjects showed both (D,E)

throughout the repetitions of the 0.16 perturbations at SS2/3.

[F(2, 126) ≥ 4.827, p ≤ 0.010] but not the double support
durations [F(2, 126) ≤ 0.310, p≥ 0.712]. Most gait phase durations
were also affected by the interaction effect [F(8, 126) ≥ 2.112,

p ≤ 0.039], with exception of the double support phase of step
2 (HSL-TOR). This indicates that the perturbation responses
in this double support phase are independent of the onset
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FIGURE 6 | Gait phase durations. (A) Gait phase durations following ML perturbations. (B) Gait phase durations following AP perturbations. The individual subjects

with an alternative strategy for step 2 are shown separately with a cross. Triangles show subject-averages and indicate the perturbation direction. Larger marker size

corresponds with later perturbation onset. Error bars represent the subject-standard deviation. Open and filled markers correspond to the single and double support

phases, respectively. Colors indicate the different perturbation magnitudes. Data is shown dimensionless.

timing of the perturbation. The effects of the perturbation
onset must therefore have been negated in an earlier gait
phase.

Relations With the COM Velocity
In line with previous studies (Hof et al., 2010; Vlutters et al., 2016)
we investigated the predictive value of the COM velocity for the
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FIGURE 7 | Foot locations following AP perturbations. (A) Top-down view of the locations of the COM of the leading and trailing foot relative to the whole body COM

at (0,0). Perturbation onset was at SS0. Bottom plot corresponds to the first step (HSR), top plot corresponds to the second step (HSL) after the perturbation.

(B) Same as (A), but for perturbation onset at SS1/3. (C) Same as (A), but for perturbation onset at SS2/3. Triangles show subject-averages and correspond to the

perturbation direction. Ellipses represent the subject-standard deviation. Colors indicate the different perturbation magnitudes. Data is shown dimensionless.

location of the COP after foot contact. Note that the relations
presented here span two instances of the gait cycle: heel strike
for the velocity, and the subsequent toe-off for the COP. We
have previously found this to provide the best correspondence
with the XCOM concept (Vlutters et al., 2016), which is also
dependent on the COM velocity. The slopes, intercepts, and
coefficients of determination of the fits to the data are presented
in Table 1. If the data modulates with the same slope (ω−1

0 )
as that of the pink XCOM line in Figures 8, 9, then the COP
shifts to a constant offset from the XCOM on average over all
perturbation magnitudes. If this is the case, the XCOM plus an
offset might be used as predictor for the COP location. The
subject-average dimensionless XCOM proportionality constant
ω
−1
0 was 1.49 ± 0.05, for comparison with the slopes in

Table 1.
For ML perturbations, both COP and XCOM modulate in

a similar way with the COM velocity within the first recovery
step if the perturbation is given early, at SS0, see Figure 8
and Table 1. Perturbations with a later onset diminish the
similarities, in line with the reduced foot location modulation
(Figure 4). The limited base of support adjustment prevents such
COP modulation. In contrast, for the second step, similarities
are highest if the perturbation is given late, at SS2/3. If the
perturbation is given early instead (SS0), most of the balance
recovery can occur in the first step, such that the second step
can be used to return to the center of the treadmill. This might
diminish the similarities with the XCOM. Furthermore, a major

contributor to the fit to the data in the second step is the mixture
of strategies for the 0.16 outward perturbations at SS2/3, see
Figure 5B. Even though the standard deviation is large due to the
various strategies, its variation is aligned with the XCOM line.
Note that for the second step the data is located on the other side
of the XCOM line, as the step is made with the other leg. For AP
perturbations, both COP and XCOM modulate in a comparable
way with the COM velocity within the first step for perturbations
with SS0 or SS2/3 onset, see Figure 9. The similarity is less for
perturbations with SS1/3 onset (see Table 1). For the second step,
too, the modulation in COP and XCOM is less similar compared
to step 1, irrespective of the perturbation onset.

DISCUSSION

The study aim was to investigate how healthy humans deal
with balance perturbations if foot placement adjustments are
increasingly constrained by time. Walking subjects received both
AP and ML pelvis perturbations at various onset instances
throughout the single support phase. For AP perturbations the
first step is relatively insensitive to the onset timing. For ML
perturbations, adjustments in foot placement location and time
in the first recovery step clearly diminished with increasing
perturbation onset delay. Most adjustments in foot placement
were consistent across subjects, with several exceptions in
the second step. Mainly the largest magnitude (0.16) outward
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TABLE 1 | Slope, intercept, and coefficient of determination of the linear least squares (LLSQ) fit made to the subject-average data at specific instances of the gait cycle

after the perturbation.

ML PERTURBATIONS

ML COM velocity, at HSR (step 1)

ML distance COP-COM at TOL (step 1) Slope Intercept R2

SS0 onset 1.425 0.055 0.994

SS1/3 onset 1.284 0.079 0.986

SS2/3 onset 0.090 0.159 0.974

ML COM velocity, at HSL (step 2)

ML distance COP-COM at TOR (step 2) Slope Intercept R2

SS0 onset 1.081 −0.146 0.962

SS1/3 onset 0.853 −0.165 0.896

SS2/3 onset 1.444 −0.110 0.931

AP PERTURBATIONS

AP COM velocity, at HSR (step 1)

AP distance COP-COM at TOL (step 1) Slope Intercept R2

SS0 onset 1.348 −0.314 0.959

SS1/3 onset 1.020 −0.212 0.966

SS2/3 onset 1.268 −0.255 0.998

AP COM velocity, at HSL (step 2)

AP distance COP-COM at TOR (step 2) Slope Intercept R2

SS0 onset 1.058 −0.204 0.979

SS1/3 onset 1.000 −0.192 0.885

SS2/3 onset 0.960 −0.162 0.632

Distance COP-COM is the independent variable, COM velocity the dependent variable. Underlined values correspond with fits of which the root mean square error is less than 5% of

the range of the dependent variable.

perturbations with an onset at two-thirds of the left single
support phase (SS2/3 onset) resulted in inconsistent and varying
responses across and within subjects during this second step.

Balance Responses Are Gait Phase

Dependent
Gait-phase-dependent responses arise because foot placement
modulation takes time. Hof and colleagues (Hof et al., 2010)
reported at least 0.28 s to be required for a “correct” lateral
positioning of the foot to occur, though it is unclear how “correct”
was defined. Here, the foot placement location relative to the
COM did not significantly alter if ML perturbations were given at
SS2/3, but did alter if the onset was at SS1/3 or earlier. As a result,
more than 0.15 s (0.73 dimensionless time units) are required for
significant adjustments to be made, but less than 0.3 s.

Adjustments might also occur mechanically without active
involvement of the subject. For−0.16 backward perturbations at
SS2/3 onset, the single support duration was significantly longer
than that for the unperturbed condition. For these perturbations,
the single support duration during the first step might increase
because the body is pulled backward, which could postpone foot
contact resulting from a forward fall due to gravity.

Because of the gait-phase dependency, balance responses
should be carefully evaluated with respect to the gait and

perturbation characteristics at hand. For example, the 0.16
outward perturbation might be additionally challenging if it is
applied shortly before the weight transfers to the leading foot,
near the end of the swing phase or start of the double support
phase. As loading of the leading foot takes more time in slow
walking compared to fast walking (Hebenstreit et al., 2015),
it is possible that slow walking is more prone to this specific
perturbation. This would contrast with previous indications
that slow walking is generally more stable than fast walking,
based on the analysis of kinematic variability in unperturbed
gait (Dingwell and Marin, 2006; England and Granata, 2007).
Because the onset instance within the gait phase can affect how
threatening a specific perturbation is, and because the occurrence
of gait phases alters with walking speed, one walking speed
cannot be declared strictly more stable than another.

Lack of Foot Placement Adjustments in the

First Recovery Step Elicits Other Strategies
It is not always straightforward to group the balance responses
into specific strategies. Though balance control is sometimes
divided in ankle, hip, and foot placement strategies (Horak
and Nashner, 1986; Maki and McIlroy, 1997), it is certainly
not limited to these. For example, when adjustments to the
foot location are not possible, foot pivoting allows one-legged
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FIGURE 8 | Relation COM velocity and COP location in comparison with the

XCOM, following ML perturbations. (A) The ML COP location relative to the

COM, at TOL (step 1) and TOR (step 2) as a function of the ML COM velocity

at the preceding heel strike. Perturbation onset was at SS0. (B) Same as (A),

but for perturbation onset at SS2/3. The pink line corresponds to the XCOM

position relative to the COM, as a function of the COM velocity. It has slope

ω
−1
0 and zero intercept. The pink dashed lines indicate the between-subject

standard deviation of the XCOM, based on the differences in leg length

between subjects. The black dashed line is a linear least squares fit to the

data. Triangles show subject-averages and indicate the perturbation direction.

Ellipses represent the subject-standard deviation. Colors indicate the different

perturbation magnitudes. Data is shown dimensionless.

base of support corrections without making an actual step.
Furthermore, changes in foot placement location and/or time
are not necessarily the result of a foot placement strategy.
Changes can also be the result of another strategy that occurred
before foot contact. The increased single support duration
in the second step following the 0.08 magnitude outward
perturbations with SS2/3 onset is an example of this. Subjects
abducted their left swing leg possibly as an inertial strategy,
or to provide a counter-weight and shift the whole-body COM
in the direction of the perturbation. Because subjects spend
time abducting their leg, the change in step time is not strictly
because it was required for a specific foot placement adjustment.
Hence, possible interaction with other strategies must not be
disregarded.

It remains unclear why some subjects prefer one recovery
strategy over another, and why alternative strategies mainly occur
at higher magnitudes. In Hof et al. (2010) no different strategy
uses between or within subjects were reported for a given instant
of perturbation within the gait cycle. This is possibly due to
the lower perturbation magnitudes. In general, subjects might
have less experience dealing with large magnitude disturbances

FIGURE 9 | Relation COM velocity and COP location in comparison with the

XCOM, following AP perturbations. (A) The AP COP location relative to the

COM, at TOL (step 1) and TOR (step 2) as a function of the AP COM velocity

at the preceding heel strike. Perturbation onset was at SS0. (B) Same as

(A), but for perturbation onset at SS2/3. The pink line corresponds to the

XCOM position relative to the COM, as a function of the COM velocity. It has

slope ω
−1
0 and zero intercept. The pink dashed lines indicate the

between-subject standard deviation of the XCOM, based on the differences in

leg length between subjects. The black dashed line is a linear least squares fit

to the data. Triangles show subject-averages and indicate the perturbation

direction. Ellipses represent the subject-standard deviation. Colors indicate the

different perturbation magnitudes. Data is shown dimensionless.

compared to lower ones. Large magnitude perturbations occur
less in daily life, such that differences are more likely to arise
when the perturbation magnitude is high. The fact that different
strategies occurred not only across subjects but also within
subjects suggests it is not simply a matter of subject preference.
Still, biomechanical constraints could provide some insight on
the underlying causes. Whether a cross-step occurs behind or
in front of the other leg following outward perturbations at
SS2/3 likely relates to the AP velocity relative to the ML velocity.
That is, if the ML disturbance is so large that it would take
too long to traverse over the stance foot in the AP direction to
make a corrective cross-step, a backward cross-step might be a
preferred option instead. Future experiments might point out if
this is indeed the case, for example by combining ML and AP
perturbations.

Various Responses Contribute to the Same

Relation
The relations between the COM velocity at heel strike and
the COP distance from the COM at the subsequent toe-off,
previously described in Vlutters et al. (2016), remained intact
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throughout various conditions. If the perturbations are given
early, at SS0, the results are comparable with those in our previous
study. However, the relation tend to diminish in the second
step, possibly because the return to the center of the treadmill
begins to play a role. If the perturbation is given late, at SS2/3,
the relation did not occur in the first step for ML perturbations
due to the lack of foot placement adjustments, but re-appeared
in the second step, even throughout the varying strategies for
the 0.16 outward perturbation. Only for the SS1/3 perturbations
the relation appears less in both the first and the second
step. For these perturbations there might have been insufficient
time to expand the base of support to realize the COP—COM
velocity relation in the first step, and it might no longer be
required for the second step, because recovery actions occur
during single and double support phases before the foot contact
as well.

Effects of Treadmill Walking
Treadmill walking imposes various constraints on the subject
that are not present during overground walking. The treadmill
requires the subject to continue walking, the treadmill width is
limited (∼1m), and there is little optic flow. A comparison of
joint kinematics and ground reaction forces between treadmill
and overground walking conditions suggests that differences
between the two conditions are within the normal variability
of gait at a given speed (Riley et al., 2007). Furthermore, in a
study by Zadravec et al. (2017), two similar perturbation devices
were used to compare human stepping in response to pelvis
perturbations during both treadmill and overground walking
conditions. They concluded that the responses in both conditions
were similar, such that a treadmill condition is generally preferred
given the possibility to continuously measure ground reaction
forces. We therefore expect the initial stepping responses to
generalize to overground walking. However, the treadmill does
impose an implicit “center of the road” on the subject, making
them eventually return to the center of the treadmill. We expect
this to have little effect on the first recovery step, but subsequent
steps might generalize less well due to these effects. In addition,
the result might not generalize to different walking velocities.
Though responses to perturbations with SS0 onset were mostly
similar for walking speeds of 0.63 and 1.25m s−1 (Vlutters et al.,
2016), slower speeds might show reduced effects of the onset
timing. Due to lower limb excursion at lower speeds, the body
configuration at perturbation onset would be more similar across
the different onsets.

CONCLUSIONS

First, we questioned whether foot placement adjustments
diminish when there is little time to use such adjustments
as a recovery strategy? Foot placement modulation takes time
and therefore diminishes in the first recovery step if little
adjustment time is available after a perturbation. Foot placement
adjustments do occur for the second step, but the degree

of modulation is dependent on the perturbation magnitude,
direction, onset timing, and preceding actions. If foot placement
modulation is not an option in the first step, actions during
subsequent gait phases are addressed as an alternative. This
can lead to peculiar balance strategies such as foot pivoting.
These strategies can be inconsistent both across and within
subjects. Though it remains unclear what causes the use of the
various strategies, subject preferences are unlikely given that
differences also occur within subjects. Second, we questioned
whether the COP will continue to modulate with the COM
velocity, in line with the XCOM? Despite the varying strategies,
previously observed relations between the COM velocity and
the COP location relative to the COM persist. This relation is
in line with the XCOM concept (capture point), supporting its
use in balance controllers for humanoid robotics. The relation
might disappear in the first step and re-appear to the second
step if the perturbation is given late in the preceding single
support phase. These results suggest that foot placement, like any
other balance strategy, is a way of achieving some underlying
objective, possibly reflected in the COP location. Further probing
human balance through perturbations might help reveal these
objectives.
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Wearable lower-limb assistive devices have the potential to dramatically improve the

walking ability of millions of individuals with gait impairments. However, most control

systems for these devices do not enable smooth transitions between locomotor

activities because they cannot continuously predict the user’s intended movements.

Intent recognition is an alternative control strategy that uses patterns of signals

detected before movement completion to predict future states. This strategy has

already enabled amputees to walk and transition seamlessly and intuitively between

activities (e.g., level ground, stairs, ramps) using control signals from mechanical sensors

embedded in the prosthesis and muscles of their residual limb. Walking requires interlimb

coordination because the leading and trailing legs have distinct biomechanical functions.

For unilaterally-impaired individuals, these differences tend to be amplified because

they develop asymmetric gait patterns; however, state-of-the-art intent recognition

approaches have not been systematically applied to bilateral neuromechanical control

signals. The purpose of this study was to determine the effect of including contralateral

side signals for control in an intent recognition framework. First, we conducted an

offline analysis using signals from bilateral lower-limb electromyography (EMG) and joint

and limb kinematics recorded from 10 able-bodied subjects as they freely transitioned

between level ground, stairs, and ramps without an assistive device. We hypothesized

that including information from the contralateral side would reduce classification errors.

Compared to ipsilateral sensors only, bilateral sensor fusion significantly reduced error

rates; moreover, only one additional sensor from the contralateral side was needed to

achieve a significant reduction in error rates. To the best of our knowledge, this is the

first study to systematically investigate using simultaneously recorded bilateral lower-limb

neuromechanical signals for intent recognition. These results provide a device-agnostic

benchmark for intent recognition with bilateral neuromechanical signals and suggest that

bilateral sensor fusion can be a simple but effective modular strategy for enhancing the

control of lower-limb assistive devices. Finally, we provide preliminary offline results from

one above-knee amputee walking with a powered leg prosthesis as a proof-of-concept

for the generalizability and benefit of using bilateral sensor fusion to control an assistive

device for an impaired population.
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INTRODUCTION

Worldwide, millions of individuals experience conditions such as
stroke, spinal cord injury, and limb loss, which can cause severe
and lasting gait impairments that limit functional independence
and reduce quality of life (Verghese et al., 2006). Recent
advances in mechatronic design and embedded systems have also
led to the proliferation of wearable assistive devices that can
provide locomotion assistance by actuating lower-limb joints.
Such devices include robotic lower-limb prostheses, orthoses,
and exoskeletons (e.g., Varol et al., 2010; Quintero et al., 2012;
Mooney et al., 2014; Ottobock, 2015, 2016; Panizzolo et al.,
2016; Young and Ferris, 2017). Compared to their mechanically
passive counterparts, powered devices can be controlled to
actively change their mechanical properties between different
locomotor activities (e.g., level ground, stairs) and to inject
energy into the system (e.g., powered plantarflexion in late
stance). However, to maximize the potential benefits of powered
assistance and to avoid disrupting the gait cycle, these devices
must predict state changes before they occur. Currently, though,
most control systems for these assistive devices require the
user to explicitly indicate an intended transition with a key
fob or an unnatural pre-programmed motion pattern (e.g.,
bouncing up and down on the Ottobock C-Leg) (Ottobock,
2015). Although the human-machine control interface varies
among lower-limb assistive devices, their control systems share
similar ideals. To restore normal walking ability, they should
accurately infer and execute the user’s locomotor intent in
a manner that is automatic, seamless, and intuitive to the
user.

To more intuitively infer the user’s locomotor intent for
control, intent recognition has been successfully developed for
and primarily applied to powered lower-limb prostheses as an
alternative strategy for predicting the appropriate assistance to
provide. We define the intent recognition control framework
as using information from the human, assistive device, and/or
environment detected before movement completion (e.g.,
windows extracted before heel contact or toe off events) to predict
the user’s upcoming locomotor activity on a step-by-step basis
(Varol et al., 2010). Several studies have already demonstrated
the benefits of unilateral sensor fusion for controlling a prosthesis
with intent recognition strategies which can operate in real-time on
embedded systems. For example, neuromechanical sensor fusion
of EMG from the residual limb and prosthesis load information
from five above-knee amputees walking with a passive device
significantly reduced error rates compared to either sensor set
alone (Huang et al., 2011). Fusing above-knee EMGwith a diverse
set of mechanical sensors embedded in a powered knee-ankle
prosthesis comprised of potentiometers and encoders at the knee
and ankle, an axial load cell, and 6-degree-of-freedom (DOF)
inertial measurement unit (IMU) on the shank also significantly
reduced error rates (Young et al., 2014a). In subsequent work,
the addition of a 6-DOF load cell and calculated thigh and
shank inclination angles to the existing set of mechanical sensor
information further reduced error rates; the control system also
continued to benefit from fusion with EMG (Spanias et al., 2015).
As an alternative to EMG, capacitive sensing has also been used

for intent recognition with below-knee amputees (Zheng et al.,
2014).

In addition to these unilateral sensor fusion strategies, other
powered prosthesis-specific control system modifications (e.g.,
merging ramp ascent and level walking classes, using mode-
specific classifiers, and delaying predictions by 90ms) have
further reduced error rates (Hargrove et al., 2015; Simon et al.,
2017; Spanias et al., 2018). Error rates during online sessions (i.e.,
the user interacts dynamically with the control system) using
state-of-the-art intent recognition strategies have approached
approximately 4% (Spanias et al., 2018); although impressive,
they must be further reduced before intent recognition can be
used to control a powered assistive device safely and reliably over
long periods of time. Despite promising potential for controlling
powered prostheses, intent recognition is still not commonly
applied to controlling devices for individuals with impaired but
intact limbs. Notably, powered orthoses and exoskeletons differ
from prostheses because they assist by supplementing instead
of substituting the movement of the instrumented limb(s). A
few devices have used multimodal sensor fusion for control but
they typically rely on pre-defined thresholds to switch between
locomotor activities and are mostly limited to identifying
transitions between sitting, standing, and level ground walking.
For instance, the estimated location of the center of pressure
controls switching between sitting, standing, and walking modes
of a powered hip-knee orthosis for paraplegic individuals
(Quintero et al., 2011, 2012). Ground reaction forces, posture,
EMG, and electroencephalography (EEG) have also been used to
infer user intent in order to synchronize robotic assistance with
paraplegic subjects’ movement during gait initiation/termination
and level ground walking (Suzuki et al., 2007; Kilicarslan et al.,
2013). Bilateral lower-limb neuromechanical signals have also
been used to predict sitting, standing, and walking in one
patient with multiple sclerosis using intent recognition (Zhang
and Huang, 2013). Yet regardless of the devices or control
signals used, incorrectly predicting locomotor activities still
presents challenges for the long-term clinical viability of intent
recognition.

Prediction errors can be categorized as steady-state or
transitional, depending on whether the true locomotor activities
before and after each gait event are the same (i.e., steady-state)
or different (i.e., transitional). Whereas transitional errors can be
especially destabilizing and more likely to result in injury (e.g.,
at the top of the stairs when descending) steady-state errors are
harder to anticipate and more frustrating for users. Although
intent recognition algorithms can produce seamless transitions
during online use, transitional error rates for prosthesis control
are still much higher than for steady-state steps (Hargrove
et al., 2015; Spanias et al., 2015, 2018; Simon et al., 2017).
Walking, especially transitions, requires bilateral coordination of
the lower body. For example, the anticipatory lower-limb joint
mechanics and EMG signals for able-bodied subjects differed
for transitions from level ground walking to stair ascent and
descent and for leading and trailing legs (Peng et al., 2016).
The mechanical work performed by each leg also differs for
both uphill and downhill walking (Franz et al., 2011). Although
individuals with unilateral gait impairment typically develop
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new patterns of interlimb coordination, their non-affected
limb generally remains anatomically and biomechanically intact
(Chen et al., 2005; Segal et al., 2006; Ingraham et al., 2016).
Yet, nearly all assistive devices that are commercially available
and/or used in research settings do not incorporate information
from both legs and it remains unknown whether contralateral
side signals contain rich and robust enough information about
the user’s intent to justify their inclusion. For example, the
powered Vanderbilt knee-ankle prosthesis (Varol et al., 2010)
and hydraulic C-Leg knee prosthesis (Ottobock, 2015) and
C-Brace knee ankle foot orthosis (Ottobock, 2016) are all
controlled using only signals from the affected side; however,
we hypothesized that information from the unaffected leg could
improve controllability.

Previously, instrumenting the unaffected leg was impractical
and considered a major barrier to clinical feasibility. Also,
approaches for incorporating information from the contralateral
limb have been limited beyond echo control (Grimes et al.,
1977; Grimes, 1979; Joshi et al., 2010) and complementary
limb motion estimation (Vallery et al., 2011). Echo control
required cyclical activities, for which movement had to be
initiated by the unaffected side, because the kinematic trajectory
of the intact limb was simply “replayed” on the prosthesis side
with a half-step delay. Complementary limb motion estimation,
which uses residual body motion and interjoint couplings
to infer an appropriate reference trajectory for the impaired
limb(s), is a more intuitive and cooperative control strategy
but has only been implemented for position control. Now,
minimally invasive wearable sensors capturing neuromechanical
signals are becoming more ubiquitous and can be more
easily placed on the contralateral limb to supplement control
information from sensors embedded in an assistive device. For
instance, soft bio-electronics for physiological recording are
already clinically viable (Liu et al., 2016). With these recent
developments, minimally invasive bilateral instrumentation of
the lower extremities is becoming more feasible. But to our
knowledge, only a few studies have investigated bilateral sensor
fusion for intent recognition. For example, able-bodied subjects
wore bilateral pressure insoles and unilateral IMU sensors on
the thigh, shank, and foot (Chen et al., 2014) or walked in
a lower-limb exoskeleton with embedded sensors measuring
bilateral ground reaction forces and shank/foot orientation to
control knee assistance (Long et al., 2016). Although both studies
achieved low error rates, their findings may not translate well
to seamless, online control because they used prediction periods
spanning the entire upcoming step instead of only the instant
when the upcoming step begins.

Therefore, we still lack a clear understanding of both how
bilateral sensor fusion across different modalities systematically
affects intent recognition error rates and whether prosthesis-
derived intent recognition strategies perform well when
generalized to non-prosthesis applications. In this study we
present a proof-of-concept for an intent recognition control
system using a broad set of bilateral lower-limb neuromechanical
signals recorded from wearable sensors instrumented on
able-bodied subjects freely walking without an assistive device.
Our overall objective was to conduct an offline analysis to

systematically compare and benchmark the performance of
unilaterally and bilaterally -informed intent recognition control
systems and to identify the most critical sensors. We confirmed
our hypothesis that sensor fusion across different modalities
and across legs would reduce steady-state and transitional
error rates. We also report preliminary results from a separate
offline analysis on one unilateral above-knee amputee walking
with a powered knee-ankle prosthesis to demonstrate the
benefit of incorporating kinematic information from the
unimpaired leg to improve control of an assistive device with
intent recognition. We expect our positive results to further
the ongoing development of and broaden the scope of intent
recognition strategies for controlling wearable lower-limb
assistive devices.

MATERIALS AND METHODS

Experimental Protocol
This study was carried out in accordance with the
recommendations of the Northwestern University Institutional
Review Board with written informed consent from all subjects.
Following IRB approval, 10 able-bodied subjects (7 male,
3 female; 23–29 years, 160–193 cm, 54–95 kg) completed
the experiment. Before walking, subjects were instrumented
bilaterally with wearable sensors to measure lower limb muscle
activity and joint and limb kinematics. EMG signals were
recorded using bipolar surface electrodes (DE2.1; Delsys, Boston,
MA, USA) from the same seven muscles in each leg: tibialis
anterior (TA), medial gastrocnemius (MG), soleus (SOL), vastus
lateralis (VL), rectus femoris (RF), biceps femoris (BF), and
semitendinosus (ST). These muscles were chosen because they
are in part responsible for hip and knee flexion/extension
and ankle plantarflexion/dorsiflexion, movements that are
commonly assisted by wearable devices. They are also relatively
easy to target when facing the subject from in front and
behind and are similar to muscle sites used by Sylos-Labini
et al. (2014). Electrode placement was guided by the Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles
(SENIAM, seniam.org) standards. We palpated to locate the
muscle belly and oriented the electrode along the primary fiber
direction (Kendall et al., 2005), and verified placement by having
subjects perform maximum voluntary contractions. The muscle
sites were prepared by removing excess hair and the skin was
cleaned by mildly scrubbing with an alcohol wipe. Sensors were
attached to the skin with a double-sided adhesive. Signals were
amplified by 1000x, hardware band-pass filtered between 20 and
450Hz (Bagnoli 16, Delsys), and sampled at 1 kHz.

Joint kinematic signals (sagittal plane only) were recorded
using electrogoniometers (SG150; Biometrics Ltd, Newport, UK)
placed along the knee and ankle and sampled at 500Hz. 6-
DOF (tri-axial accelerometer and gyroscope) IMU’s were placed
bilaterally on the subjects’ thigh (below RF EMG electrode)
and shank (adjacent to TA EMG electrode) and sampled
at 500Hz (MPU-9250; Invensense, San Jose, CA, USA). All
signals were simultaneously recorded with a custom 16-bit data
acquisition device that permits multi-rate sampling. We chose
these wearable sensors because they are analogous to sensors
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commonly embedded in prostheses, orthoses, and exoskeletons
(such as joint position encoders and shank/thigh IMU’s) and are
more easily integrated with existing device-based sensorization in
a hypothetical hybrid system. Other force and interaction torque
sensors such as load cells and strain gauges were excluded because
they are not as relevant for our device-agnostic approach and are
more difficult to integrate if not already embedded in the device.

To facilitate integration with our data acquisition software,
all wearable sensors were used in a tethered setup; as a
drawback, fully instrumenting one leg took up to an hour.
The full instrumentation setup is shown for a representative
subject in (Figure 1 top, middle). Prior to data collection, the
goniometers were calibrated while the subject was in the upright
standing position. In an experimental session, each subject
completed approximately 25 repetitions of a circuit consisting
of walking on level ground (LW), ascending/descending a ramp
with a 10◦ slope (RA/RD), and ascending/descending a four-
step staircase (SA/SD) step-over-step using a data collection
procedure previously described in Young et al. (2014b). These
activities were chosen because they encompass the main types
of terrain likely encountered in community ambulation. Subjects
were instructed to freely transition between activity modes at
their self-selected speed while the experimenter labeled the true
locomotor intent of the subject using a key fob.

Signal Processing
Heel contact and toe off gait events for each leg were reliably
identified by finding peaks in the low-pass filtered (1st order
Butterworth, 6Hz) sagittal plane angular velocity of the shank
segment using a dual-minima method similar to (Jasiewicz
et al., 2006; Maqbool et al., 2016). Briefly, the largest peaks in
angular velocity were first used to identify mid-swing events.
Toe off and heel contact events were identified by searching for
peaks before and after each mid-swing event, respectively. Gait
initiation and termination strides and trials during which the
subject paused, stumbled, or tripped were excluded. For each
subject, there were 530 ± 46 heel contact events and 536 ±

45 toe off events for each leg (mean ± standard deviation).
EMG signals were first high-pass filtered (6th order Butterworth)
at 20Hz to attenuate motion artifact (De Luca et al., 2010).
EMG signals were then notch-filtered (6th order Butterworth,
6Hz width) at 60, 180, and 300Hz (based on spectral analysis)
to remove ambient interference. Goniometer and IMU signals
were low-pass filtered (6th order Butterworth) at 10 and 25Hz,
respectively. Because we did not use foot-mounted IMU’s, joint
velocities could not be estimated using inertial signals only for
the ankle. For consistency, we indirectly estimated joint velocities
for both the knee and ankle by taking the centered-difference
numerical derivative of the low-pass filtered joint position signals
instead and added these velocities to the goniometer channels.

All signals were segmented into 300ms analysis windows
before each identified heel contact or toe off gait event (one
window/event). For each window, we extracted features
previously used in intent recognition for online control of a
powered knee-ankle prosthesis. Features for goniometer and
IMU signals included the mean, standard deviation, maximum,
minimum, initial, and final values (6 features/channel)

FIGURE 1 | Instrumentation setup showing EMG, goniometer, and IMU

sensor placement [adapted from Hu et al. (2018)]. (Top) 11 total sensors

(Continued)

Frontiers in Robotics and AI | www.frontiersin.org 4 June 2018 | Volume 5 | Article 7888

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hu et al. Bilateral Intent Recognition Improves Prediction

FIGURE 1 | (labeled) were placed on each leg. The coordinate frame of IMU

sensors is also shown. (Middle) A representative subject instrumented with all

bilateral sensors in a tethered setup. The subject provided written informed

consent for the publication of this image. (Bottom) Classifier comparisons for

four modality groups and three laterality groups: EMG, goniometer (GONIO),

IMU, fused (ALL), ipsilateral (I), contralateral (C), and bilateral (B). The number

of sensors and extracted features (in parentheses) are shown next to each

classifier configuration.

(Varol et al., 2010). Features for EMG signals included the
mean absolute value (MAV), waveform length, number of
zero crossings and slope sign changes, and the coefficients of a
sixth-order autoregressive model (10 features/channel) (Huang
et al., 2005; Hargrove et al., 2008). These heuristic features were
chosen because they can be computed efficiently on an embedded
system and concisely capture the general shape of mechanical
signals and the frequency content of EMG signals. Bilaterally,
there were a total of 22 sensors (14 EMG, 4 goniometer, 4 IMU)
and 46 channels (14 EMG, 8 goniometer, 24 IMU). The feature
dimensionality for all ipsilateral and bilateral signals was 166 and
332, respectively (Figure 1, bottom).

Offline Classifier Evaluation
For each subject, we evaluated leg- and mode/phase-specific
classifiers (e.g., right heel contact, left toe off) for several sensor
sets to compare their offline error rates (Figure 2). We used
a mode-specific classification scheme previously developed for
powered leg prosthesis control (Young and Hargrove, 2016),
which achieves lower error rates by encoding domain knowledge
about the allowable transition(s) from each mode. Briefly, 20
total classifiers were trained to encompass all combinations of
the four gait events (right/left heel contact or toe off) and five
locomotor activities (level ground, ramp ascent/descent, stair
ascent/descent). The total number of steps used to train each
classifier (combined between legs for all subjects) is reported
in Table 1. The appropriate classifier for each prediction was

selected based on the activity just before the gait event (i.e.,
incoming activity based on the key fob label). The possible

outputs for each classifier (i.e., predicted activities) only included
remaining in the current locomotor activity or transitioning to

another allowable mode (e.g., in stair ascent mode, remaining in

stair ascent or transitioning back to level walking but excluding
stair descent and ramp ascent/descent). The error rate was
defined as the proportion of incorrectly classified gait events in
the testing set and was computed by averaging across legs and gait
events for each subject. Errors were also categorized as steady-
state or transitional. We performed randomized 10-fold cross-
validation for each subject for 12 different sensor sets (Figure 1,
bottom) using the steps collected from all circuits completed
during the experimental session. The ipsilateral side was defined
as the side on which the gait event was identified, which could
have been either the leading or trailing leg. Sensors were divided
into four modality groups: EMG only (EMG), goniometer only
(GONIO), IMU only (IMU), or all combined (ALL). Sensors
were also divided into three laterality groups: ipsilateral (I),
contralateral (C), or bilateral (B).

FIGURE 2 | Mode-specific classification scheme. Ten classifiers were trained

for each leg corresponding to all combinations of incoming activity [level

walking (LW), ramp ascent (RA), ramp descent (RD), stair ascent (SA), and stair

descent (SD)] and gait event [heel contact (HC) and toe off (TO)]. The possible

predictions for each classifier are listed as steady-state (SS) or transitional (T)

activities.

TABLE 1 | Number of training examples for each mode-specific classifier.

Classifier LW RA RD SA SD Total

HCLW 4,523 240 240 239 248 5,490

TOLW 4,637 245 246 253 243 5,624

HCRA 243 1,408 1,651

TORA 252 1,416 1,668

HCRD 239 1,757 1,996

TORD 245 1,762 2,007

HCSA 238 489 727

TOSA 245 472 717

HCSD 248 475 723

TOSD 242 478 720

The correct labels are listed in the header and instances are aggregated across subjects

and between legs.

Linear discriminant analysis (LDA) has emerged as a
convenient a priori choice of classifier for intent recognition
for the control of upper- and lower-limb prostheses because
it provides a good compromise between classification accuracy
and computational efficiency (Hargrove et al., 2007; Scheme
and Englehart, 2011). Other commonly used classifiers include
support vector machines (SVM) and artificial neural networks
(ANN), which can represent more complex, non-linear decision
boundaries and may be more appropriate for modeling
transitions. The sensor set containing all bilateral signals contains
more features than previously used in intent recognition for
lower-limb prostheses so we also assessed the effect of classifier
type on error rates for ipsilateral and bilateral sensor sets
containing all modalities. For all classifiers, the feature data
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were normalized to have zero mean and unit variance. For
LDA, the input dimensionality was further reduced using
principal components analysis (PCA) to preserve 95% of the
total variance and the prior for each classifier was set to be
equiprobable. Hyperparameters for SVM (one-vs-one, linear
kernel, C = 10 using the scikit-learn Python package) and
ANN (one hidden layer with 10 units, hyperbolic tan activation
function, stochastic gradient descent with momentum, adaptive
learning rate initialized to 0.1 using the scikit-learn Python
package) were chosen based on pilot data.

We performed repeated measures ANOVA for LDA classifiers
with error rate as the response variable, modality and laterality
(ipsilateral and bilateral only) as fixed within-subject factors,
and subject as a random factor. We expected some modalities
would benefit more from bilateral information so we included
an interaction term. Post-hoc comparisons (paired t-test) with
Bonferroni correction were conducted on statistically significant
factors. We also used paired t-tests to compare ipsilateral and
contralateral sensor sets. We performed repeated measures
ANOVA for the combined sensor set with error rate as the
response variable, laterality and classifier as fixed within-subject
factors, and subject as a random factor. We expected more
complex classifiers to perform worse for higher dimensionality
data so we included an interaction term. Post-hoc comparisons
(paired t-test) with Bonferroni correction were conducted on
statistically significant factors.

Optimal Sensor Selection
To determine the optimal number and type of sensors to
instrument on the contralateral leg, we performed sequential
forward selection for each subject to choose the sensors which
minimized overall error rate with LDA classification (10-fold
cross-validation), beginning with all ipsilateral sensors as the
baseline and ending with all bilateral sensors. We chose not
to identify the bilaterally optimal sensor combination (i.e.,
beginning with the empty set) because we were primarily
interested in the effect of adding contralateral sensors. After each
iteration, all features associated with the selected sensor were
added to the existing feature set and the selected sensor was
removed from the set of remaining sensors. The composition of
the sensor set after each iteration was recorded. We performed
repeated measures ANOVA with error rate as the response
variable, iteration as a fixed within-subject factor, and subject as a
random factor.We also performed post-hoc comparisons (paired
t-test) between iterations using a Bonferroni correction.

Preliminary Application to Controlling a
Powered Leg Prosthesis
Experimental Protocol

One individual with a left traumatic above-knee amputation (59
years, 48 years post-amputation, 83.9 kg, Medicare K3 functional
level) gave written informed consent to participate in this
study. The user was fitted to the Vanderbilt powered knee-ankle
prosthesis (Varol et al., 2010) by a certified prosthetist and was
experienced walking with the device (minimum of 5 h) (Simon
et al., 2014). During data collection, the experimenter manually
triggered the powered prosthesis into the correct mode as the

user performed tasks including shuffling while standing and
walking on level ground and ascending/descending stairs and
ramps. To add variability to these movements, the subject was
instructed to vary walking speed, include pauses, modify step
length, use different angles of approach, and limit upper body
support (e.g., only one hand on railing). The user always led with
the sound side for stair ascent approaches, with the prosthesis
side for stair descent approaches, and either side for ramp
ascent and descent approaches. Data from 17 mechanical sensors
embedded in the prosthesis were recorded at 500Hz including
knee and ankle joint position and velocity, motor currents,
prosthesis acceleration and angular velocity, calculated thigh and
shank inclination angles, and axial load. Two additional 6-DOF
(tri-axial accelerometer and gyroscope) IMU’s were worn by the
subject on the non-prosthesis side thigh and shank (Figure 3)
and sampled at 250Hz (MPU-9250; Invensense, San Jose, CA,
USA). The locomotor activity and state (i.e., phase of the gait
cycle) of the prosthesis were also recorded to label the data.

Signal Processing

The inclination angles of the non-prosthesis side shank and
thigh were calculated using a complementary filter and added
to the set of recorded signals to match inertial signals from the
prosthesis side. All signals were segmented into 300ms analysis
windows around gait events (i.e., heel contact, mid-stance, toe
off, mid-swing). Features including themean, standard deviation,
maximum, minimum, initial, and final values were extracted
from each window (6 features/channel) (Varol et al., 2010).

FIGURE 3 | Bilateral sensorization for powered leg prosthesis control. Inertial

measurement units were placed on the above-knee amputee subject’s

non-prosthesis side shank and thigh during offline data collection.
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With the addition of both non-prosthesis side shank and thigh
IMU’s, the total number of channels was 31 and the feature
dimensionality was 186. Feature data were normalized to have
zero mean and unit variance. Consistent with previous studies
(e.g., Simon et al., 2017), the dimensionality of the feature data
was reduced to 50 using PCA to prevent overfitting.

Offline Classifier Evaluation

To assess the offline classification accuracy, we implemented a
state-of-the-art mode-specific classification scheme which uses
delayed transitions (i.e., windows started 210ms before the gait
event and ended 90ms after the gait event) to control a powered
leg prosthesis using intent recognition (same as Simon et al.,
2017). This baseline classifier also merged the level ground
and ramp ascent data because those activities have similar
device assistance settings and previous studies have shown that
combining those activities is appropriate. We compared the
baseline classifier to a more generic one which neither delays
transitions nor merges level walking and ramp ascent activities.

We used LDA for all eight mode-specific classifiers (Simon et al.,
2017). Errors were categorized as steady-state or transitional
and error rate was defined as the proportion of incorrectly
classified gait events in the testing set after averaging across
all classifiers. We performed leave-one-out cross-validation on
all the steps recorded during the experimental session for four
different sensor sets: prosthesis sensors only, prosthesis with
contralateral shank or thigh IMU, and prosthesis with both
contralateral IMU’s.

RESULTS

Bilateral Neuromechanical Signals and
Features
Subjects’ bilateral neuromechanical signals were distinguishable
based on locomotor activity and mostly consistent between legs
and trials throughout the experimental session. Representative
data depicting all sensors except SOL, RF, and BF (similar to MG,

FIGURE 4 | Representative bilateral post-processed EMG signals. Bilateral filtered EMG (in volts) from upper and lower leg muscles for one subject for a complete

circuit consisting of level walking (LW), ramp ascent/descent (RA/RD), and stair ascent/descent (SA/SD). Turquoise traces represent the right leg and purple traces

represent the left leg. Circuits were recorded as two discontinuous trials (LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.
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VL, and ST, respectively) are shown in Figure 4 (EMG), Figure 5
(goniometer), and Figure 6 (IMU) for one representative circuit.
Qualitatively, unique patterns of activation in the feature space
(Figure 7) of certain channels aligned closely with different
activities and their associated transitions (only mean value
features shown for overlapping 300ms windows).

Offline Classifier Evaluation
There was a significant interaction effect between modality and
laterality (p= 5.53× 10−7). Simple main effects analysis showed
that overall error rates for classifiers using bilateral sensors were
significantly reduced compared to their unilateral counterparts
for almost all modality groups and machine learning algorithms
(Figure 8, Table 2). There was a significant effect of classifier
(p = 2.22 × 10−16) for the combined sensor sets without

interaction between classifier and laterality (p = 0.32). Steady-
state and transitional error rates were also significantly reduced
when using bilateral sensors for all modality groups and machine
learning algorithms with the exception of steady-state errors
with SVM and ANN for the fused sensor set (ALL) (Table 2).
There was generally no significant difference between unilateral
(ipsilateral versus contralateral) single modality sensor sets
for overall, steady-state, or transitional error rates; however,
contralateral sensors had significantly higher transitional error
rates with LDA and overall and transitional error rates with
ANN for the fused sensor set (Table 2). For unilateral sensor
sets, the error rate of IMU was lower than EMG or GONIO and
decreased with sensor fusion; the lowest average overall error
rate (1.43 ± 0.24%) was achieved by the LDA classifier using
all bilateral sensors. The random effect of subject was significant
(p < 10−10) and the overall error rate using all bilateral sensors

FIGURE 5 | Representative bilateral post-processed joint kinematic signals. Filtered joint position (and estimated velocities) recorded from knee and ankle

goniometers. Turquoise traces represent the right leg and purple traces represent the left leg. Circuits were recorded as two discontinuous trials

(LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.
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FIGURE 6 | Representative bilateral post-processed limb kinematic signals. Filtered limb kinematics recorded from shank and thigh IMU’s. Accelerometer (AX, AY, AZ,
units in g’s) and gyroscope (GX, GY, GZ, units in deg/s). Sagittal plane limb movement is represented in GY. Turquoise traces represent the right leg and purple traces

represent the left leg. Circuits were recorded as two discontinuous trials (LW→SA→LA→RD→LW and LW→RA→LW→SD→LW) but are represented as continuous.

Frontiers in Robotics and AI | www.frontiersin.org 9 June 2018 | Volume 5 | Article 7893

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hu et al. Bilateral Intent Recognition Improves Prediction

FIGURE 7 | Representative raster plot of bilateral features. The mean value of each channel (row) for each leg (right, R; left, L) was extracted from sliding windows

(length 300ms, increment 30ms) for one subject for a complete circuit consisting of level walking (LW), ramp ascent/descent (RA/RD), and stair ascent/descent

(SA/SD). Z-scores (represented by the color bar) were computed along each row. Distinct patterns could be visually identified for many additional features (not shown).

with LDA ranged from 0.52 to 2.78%. Interestingly, there was
no significant difference between overall error rates for either
GONIO(B) and ALL(I) (p = 0.08) or IMU(B) and ALL(I) sensor
sets (p = 0.26). For ALL(I), there was no significant difference
between classifiers; however for ALL(B), the overall error rate of
LDAwas significantly lower than ANN (p= 3.02× 10−5) but not
different from SVM (p= 0.11).

Contralateral Sensor Selection
The optimal collection of additional contralateral sensors after
each iteration varied between subjects but on average goniometer
and IMU sensors were preferentially selected before EMG sensors
(Figure 9, top). One contralateral lower leg kinematic sensor
(i.e., ankle goniometer or shank IMU) was selected within the
first two iterations for every subject; additionally, at least one
goniometer sensor (i.e., ankle or knee) was selected within the
first two iterations for all but two subjects. Overall (p = 1.27 ×

10−4), steady-state (p= 2.35× 10−3), and transitional (p= 2.54
× 10−3) error rates were significantly reduced from baseline
after only one additional contralateral sensor (Figure 9, bottom).
After four iterations, the error rate plateaued and even increased
slightly when approaching all bilateral sensors.

Preliminary Application to Controlling a
Powered Leg Prosthesis
Adding kinematic information from the non-prosthesis side
modularly and consistently reduced offline steady-state and

transitional error rates for both the baseline delayed/merged
classifier and the more generic classifier (dagger symbol)
(Table 3). Sensor fusion with non-prosthesis side sensors yielded
the greatest relative improvement for the heel contact level
walking and ramp/stair descent classifiers. For the more generic
classifier which used both additional IMU’s (Row 7), transitional
error rates were slightly better than baseline (Row 1) but
overall error rates were still higher because the toe off classifier
performed worse. By using prosthesis signals only for the toe
off classifier only (Row 8), the performance of the more generic
classifier improves and matches the baseline classifier (Row 1).

DISCUSSION

In this study, we simultaneously recorded bilateral lower-limb
neuromechanical (EMG, goniometer, IMU) signals from able-
bodied subjects as they spontaneously transitioned between
locomotor activities without wearing an assistive device.
We applied a previously implemented mode-specific intent
recognition framework (Young and Hargrove, 2016) to these
signals for offline classification. Our primary objective was to
determine the effect of including control information from
the contralateral limb on offline classification accuracy. We
found that using all bilateral signals achieved significantly lower
overall (1.43 ± 0.24%, 32% reduction), steady-state (0.76 ±

0.14%, 39% reduction) and transitional (4.50 ± 0.76%, 24%
reduction) error rates compared to all ipsilateral signals, which
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FIGURE 8 | Bilateral sensor fusion reduces intent recognition errors. (Top)

Overall error rates (mean ± SEM) for single modality sensor sets. (Bottom)

Overall error rates (mean ± SEM) for fused sensor set for linear discriminant

analysis (LDA), support vector machine (SVM), and artificial neural network

(ANN) classifiers. Data are averaged across 10 subjects and each set of bars

preserves the order of laterality (ipsilateral, left; contralateral, middle; bilateral,

right). Asterisks denote statistically significant differences.

were generally not different from contralateral signals. There was
a large inter-subject range for the lowest achievable error rates
but using bilateral information consistently and significantly
reduced offline error rates even for single modality sensor sets.
Sequential forward selection identified an optimal subset of
contralateral sensors that performed as well as, if not better
than all bilateral sensors. When compared to all ipsilateral
sensors as the baseline, adding only one contralateral sensor
(preferentially goniometer or IMU) significantly reduced overall,
steady-state, and transitional error rates. We also demonstrated
in a proof-of-concept offline analysis the potential for modularly
incorporating kinematic information from the non-prosthesis
side to improve an amputee’s control of a powered leg prosthesis
with intent recognition. Placing two additional IMU sensors on

the non-prosthesis side shank and thigh reduced overall, steady-
state, and transitional error rates for the state-of-the-art classifier
to 0.20% (62% reduction), 1.50% (60% reduction), and 0.35%
(61% reduction), respectively. With bilateral sensor fusion, a
more generic classifier (i.e., fewer control restrictions) can match
the state-of-the-art.

Related Work
Our protocol was nearly identical to Young et al. (2014a) and
Spanias et al. (2015) but involved able-bodied subjects, no
device, and wearable sensors. Using all ipsilateral sensors in
this setup, we achieved average transitional error rates (5.94 ±

0.84%) that were roughly half those reported by Spanias et al.
(2015) and Young et al. (2014a); steady-state error rates (1.25
± 0.19%) were comparable. As expected, error rates were higher
for transitions, which had fewer training examples and generally
more variability. Although we used a more generic mode-
specific classification scheme compared to Simon et al. (2017)
by neither merging level walking and ramp ascent classes nor
adding special classifier configurations (e.g., predict transitions
between stairs and level ground during mid-swing or mid-
stance), we achieved error rates approaching the state-of-the-art
for unilateral-informed intent recognition control of a powered
leg prosthesis. Because the addition of only one contralateral
sensor (preferentially kinematic) significantly reduced error
rates, our results suggest that substantial improvements in
controllability may be achievable with minimal instrumentation
of the contralateral limb. Unexpectedly, the error rate increased
slightly instead of plateauing after the addition of four
sensors. Although these consistent increases were not statistically
significant, they suggest that the extraneous sensors may not
only be redundant but also detrimental for intent recognition
because they contribute to model overfitting and/or introduce
undesirable sensor drift. From a practical standpoint, the total
time required for instrumenting the subject would also be
substantially reduced by using an optimized subset of sensors
instead of all sensors. Using delayed transitions (i.e., windows
starting 210ms before the gait event and ending 90ms after the
gait event) has significantly reduced intent recognition errors for
prosthesis control because delayed windows span both the onset
of and continuation of movement (Simon et al., 2017). However,
although offline error rates would likely have decreased further
we chose not to implement this delay for the sake of clarity and
generalizability to non-prosthesis applications for which such
delays may not be a desirable tradeoff for accuracy.

We showed that unilateral (ipsilateral or contralateral) sensor
sets performed comparably for single modalities, which had
previously never been demonstrated for intent recognition
control strategies. Thus, our results suggest that using signals
from the non-affected leg (which alternates between serving as
the leading and the trailing leg) for control and perhaps signals
from the affected side for gait segmentation could be suitable
for assisting individuals with severe unilateral impairment given
proper training on how to perform transitions. Therefore, we
believe high performance intent recognition control systems
could still be realizable for a range of assistive devices with
simple sensorization by integrating with wearable sensors and
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TABLE 2 | Complete offline classifier comparison.

Ipsi. (I) Contra. (C) Bilat. (B)

OVERALL (%)

EMG 8.66 [0.44] 8.83 [0.41] (0.51) 5.01 [0.29]* (2.57 × 10−7)

GONIO 7.13 [0.79] 7.69 [0.74] (0.35) 2.80 [0.41]* (2.89 × 10−6)

IMU 3.63 [0.35] 3.98 [0.31] (0.09) 2.26 [0.23]* (3.43 × 10−5)

ALL-LDA 2.09 [0.27] 2.48 [0.27] (7.19 × 10−3) 1.43 [0.24]* (2.91 × 10−6)

ALL-SVM 2.33 [0.30] 2.62 [0.32] (0.20) 1.64 [0.26]* (1.12 × 10−4)

ALL-ANN 3.07 [0.28] 3.77 [0.29]* (1.52 × 10−3) 2.63 [0.26] (6.26 × 10−3)

*α = 0.05/16 p-value p-value

STEADY-STATE (%)

EMG 6.61 [0.41] 6.76 [0.32] (0.55) 3.26 [0.22]* (1.89 × 10−6)

GONIO 6.59 [0.85] 7.16 [0.75] (0.38) 2.26 [0.38]* (1.21 × 10−5)

IMU 2.60 [0.31] 2.92 [0.28] (0.13) 1.33 [0.19]* (3.34 × 10−5)

ALL-LDA 1.25 [0.19] 1.38 [0.17] (0.24) 0.76 [0.14]* (6.27 × 10−5)

ALL-SVM 1.00 [0.17] 1.14 [0.16] (0.30) 0.71 [0.14] (8.95 × 10−3)

ALL-ANN 1.71 [0.16] 2.04 [0.21] (0.02) 1.55 [0.14] (0.15)

*α = 0.05/12 p-value p-value

TRANSITIONAL (%)

EMG 17.83 [0.78] 18.18 [1.22] (0.67) 12.91[0.85]* (3.02 × 10−7)

GONIO 9.51 [0.82] 10.06 [0.94] (0.46) 5.18 [0.63]* (2.79 × 10−6)

IMU 8.31 [0.74] 8.70 [0.64] (0.36) 6.40 [0.56]* (6.08 × 10−4)

ALL-LDA 5.94 [0.84] 7.42 [0.82]* (9.70 × 10−4) 4.50 [0.76]* (5.19 × 10−4)

ALL-SVM 8.37 [1.04] 9.30 [1.22] (0.19) 5.84 [0.89]* (6.18 × 10−5)

ALL-ANN 9.16 [0.93] 11.52 [0.97]* (6.94 × 10−4) 7.46 [1.00]* (3.91 × 10−3)

*α = 0.05/12 p-value p-value

Error rates (mean [SEM]) are shown for all evaluated classifiers. Asterisks under contralateral denote statistically significant differences between contralateral and ipsilateral sensor sets

(p-value). Asterisks under bilateral denote statistically significant differences between bilateral and ipsilateral sensor sets (p-value). The best-performing classifier for each type of error is

bolded.

modifying a generic intent recognition control architecture. Our
findings also showed that linear discriminant analysis (LDA) can
perform as well as, if not better than, more complex algorithms
such as support vector machines (SVM) and artificial neural
networks (ANN) on a feature set with higher dimensionality
(up to 22 sensors, 332 features) than we have previously used
in an intent recognition framework for lower-limb prosthesis
control (Spanias et al., 2015). To our knowledge, no other
studies have used simultaneously recorded bilateral lower-limb
neuromechanical signals from able-bodied individuals in an
intent recognition control framework; therefore, these results
for predicting locomotor activities for unimpaired individuals
freely walking without a device also help to establish classification
accuracy benchmarks for this framework.

Our offline study with an above-knee amputee subject also
lays a foundation for hybrid setups combining device-embedded
and wearable sensors by demonstrating the feasibility and success
of using bilateral sensor fusion for intent recognition control of
an assistive device for a clinical population. Although bilateral
sensor fusion achieved modest reductions in offline error rate
for the state-of-the-art classifier, the clinical significance of these
improvements remains unknown without an online analysis with

more subjects walking in settings more representative of home
use (longer sessions, more variability in terrain, no clinician to
check alignment or supervise, etc.). We also demonstrated that a
more generic classifier using bilateral sensor fusion could match
the state-of-the-art classifier, thus showing that bilateral sensor
fusion presents an alternative set of tradeoffs (instrumenting the
non-prosthesis side versus delayed transitions and no unique
assistance mode for ramp ascent) for reducing error rates
which may be preferable for some subjects. Aside from intent
recognition, other applications of neuromechanical sensor fusion
have included volitional control of ankle position for below-knee
amputees (Au et al., 2005, 2008; Kannape and Herr, 2014) and
stumble detection and classification (Zhang et al., 2011a). Beside
neuromechanical sensor fusion, vision-based environmental
sensing has also shown potential to improve control in an intent
recognition framework (Zhang et al., 2011b; Krausz et al., 2015).
Although we have focused on bilateral neuromechanical sensor
fusion for intent recognition, there are many other potential
applications of bilateral sensor fusion including measuring
balance, controlling stumble recovery mechanisms, modulating
a reference trajectory (e.g., estimating slope of an incline based
on the leading leg), and estimating walking speed. There is also
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FIGURE 9 | Sequential addition of contralateral sensors reduces error rates. (Top) The composition of the feature set was expressed as the average cumulative

proportion of the total features from each modality after each iteration (displayed from left to right, most to least beneficial). (Bottom) The overall error rate (mean ±

SEM) after each iteration. The steady-state and transitional error rates are shown after the addition of one and four contralateral sensor(s). Asterisk denotes a

statistically significant difference (p = 1.27 × 10−4). Data were averaged across 10 subjects.

TABLE 3 | Offline error rates using bilateral sensor information to control a powered leg prosthesis with an intent recognition framework.

Steady-state (%) Transitional (%) Overall (%)

1. Prosthesis only 0.53 3.75 0.90

2. Prosthesis, Contra Shank 0.36 3.00 0.67

3. Prosthesis, Contra Shank† 1.26 4.99 1.69

4. Prosthesis, Contra Thigh 0.30 2.50 0.55

5. Prosthesis, Contra Thigh† 1.42 3.99 1.72

6. Prosthesis, Contra Thigh/Shank 0.20 1.50 0.35

7. Prosthesis, Contra Thigh/Shank† 1.02 3.49 1.31

8. Prosthesis, Contra Thigh/Shank H 0.53 3.74 0.90

Total decisions 3,027 400 3,427

Error rates are shown for different mode-specific classifier configurations with varying amounts of kinematic information from the non-prosthesis side. The total number of classifier

decisions for each step type is also shown in the bottom row.
†
Control system neither merges LW and RA classes nor includes 90ms delay.

HControl system neither merges LW and RA classes nor includes 90ms delay; toe off classifier uses prosthesis signals only.

potential to use other modalities such as soft capacitive stretch
sensors and vision in bilateral intent recognition systems.

LIMITATIONS

The primary limitation of this study is that able-bodied subjects
walked without an assistive device. Our setup represents the

best case scenario of walking with a completely massless and
transparent device; however, we believe this scenario is still
valuable for establishing a device-agnostic upper bound for intent
recognition. After showing the feasibility of intent recognition
for a range spanning no gait impairment (able-bodied subjects
without a device) to full impairment (amputee with a prosthesis),
we believe that these strategies will reasonably generalize to
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individuals with an intermediate level of impairment who
need some assistance from a powered orthosis or exoskeleton.
The neuromechanical signals we collected came from wearable
sensors only but capture information that aligns closely with
control signals commonly accessible to wearable assistive devices.
For example, the C-Leg and C-Brace typically use joint and/or
limb kinematic information from sensors embedded in the device
for control (Ottobock, 2015, 2016); in addition to these sources of
information, the Vanderbilt leg has been controlled using signals
from joint torque, load cell, and EMG sensors (Varol et al., 2010).
Compared to sensors embedded in a device, wearable sensors are
more susceptible to drift because they are not rigidly attached
to the user; therefore, error rates are expected to decrease if the
corresponding signals came from embedded sensors.

To be consistent with previous studies, our data collection
used circuits consisting of level walking, ramps, and stairs
only. This protocol is efficient but leads to the known issue
of sparsity of transition examples, which were sometimes an
order of magnitude less than steady-state steps for a given mode;
however, we expect accuracy to increase with more data. Without
load cell information, we chose an IMU-based segmentation
approach which was not tuned for each subject’s self-selected
speed. Because the classifier relies on accurate and consistent
detection of gait events, we confirmed that the segmentation
algorithm’s detection of gait events produced results that would
have been similar to a thresholding approach based on axial load
and joint kinematics as previously implemented on a powered
knee-ankle prosthesis (Simon et al., 2014).

Another experimental limitation is that only relatively young,
able-bodied subjects without any gait impairments participated
in this study. We have included preliminary results from one
above-knee amputee walking on a powered leg prosthesis but
additional subjects (from different clinical populations and using
different devices) are needed to establish the generalizability of a
bilateral sensor fusion approach for intent recognition. Although
the within-subject variability of control signals from an impaired
population is expected to be higher, we still expect bilateral sensor
sets to outperform their unilateral counterparts for individuals
with unilateral impairment because the contralateral limb usually
remains functional and likely a beneficial source of control
information. Also, the results of evaluations done offline and
with able-bodied subjects have generally been consistent with
those from online testing (i.e., the user interacts with the device
to control every step and can respond to errors) with amputee
populations. Therefore, our promising results suggest that future

efforts should be directed toward online testing with unilaterally-
impaired individuals walking with an assistive device with some
sensorization of the non-affected side to determine whether
these significant improvements in offline accuracy translate to
meaningful clinical benefit.

CONCLUSION

We systematically demonstrated that using bilateral control
signals consistently and significantly enhances offline accuracy
for an intent recognition control system predicting locomotor
activities. In particular, only one additional contralateral
sensor was needed to provide significant benefit. Our work
also establishes a benchmark for using bilateral lower-
limb neuromechanical signals in a device-agnostic intent
recognition control framework. We also provided preliminary
evidence from an offline analysis with one above-knee
amputee subject walking with a powered leg prosthesis
to demonstrate the feasibility and benefit of integrating
wearable sensors on the non-affected side to improve
control using intent recognition. Together, these promising
results also suggest that the intent recognition framework is
compatible with a wide variety of sensor configurations and
has potential to improve the control of many types of assistive
devices.
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The ability to maintain dynamic balance in response to unexpected perturbations
during walking is largely mediated by reactive control strategies. Reactive control during
perturbed walking can be characterized by multiple metrics such as measures of whole-
body angular momentum (WBAM), which capture the rotational dynamics of the body,
and through Floquet analysis which captures the orbital stability of a limit cycle attractor.
Recent studies have demonstrated that people with spatiotemporal asymmetries during
gait have impaired control of whole-body dynamics as evidenced by higher peak-to-
peak ranges of WBAM over the gait cycle. While this may suggest that spatiotemporal
asymmetries could impair stability, no studies have quantified how direct modification of
asymmetry influences reactive balance control. Here, we used a biofeedback paradigm
that allows participants to systematically adopt different levels of step length asymmetry
to test the hypothesis that walking asymmetrically impairs the reactive control of balance.
In addition, we tested the hypothesis that perturbations to the non-dominant leg would
cause less whole-body rotation due to its hypothesized role in weight support during
walking. We characterized reactive control strategies in two ways. We first computed
integrated angular momentum to characterize changes in whole-body configuration
during multi-step responses to perturbations. We also computed the maximum Floquet
multipliers (FMs) across the gait cycle, which represent the rate of convergence back
to limit cycle behavior. Our results show that integrated angular momentum during the
perturbation step and subsequent recovery steps, as well as the magnitude of maximum
FMs over the gait cycle, do not change across levels of asymmetry. However, our
results showed both limb-dependent and limb-independent responses to unexpected
perturbations. Overall, our findings suggest that there is no causal relationship between
step length asymmetry and impaired reactive control of balance in the absence of
neuromotor impairments. Our approach could be used in future studies to determine
if reducing asymmetries in populations with neuromotor impairments, such people
post-stroke or amputees improves dynamic stability.
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INTRODUCTION

One of the primary challenges for human locomotion is
to maintain balance when faced with internally generated
or externally imposed perturbations. Two balance control
strategies are generally used during locomotion: proactive and
reactive control of balance (Patla, 1993). While proactive or
feedforward control involves the use of predictions of impending
perturbations to avoid falling, reactive control of balance involves
the use of feedback about the body’s state to generate balance
correcting responses (Patla, 1993; Tang et al., 1998). One of the
primary ways in which the reactive control of balance is studied
is by applying perturbations during walking and characterizing
the resulting perturbation recovery strategies.

Several metrics have been used to quantify balance during
locomotion including measures of variability (Stergiou and
Decker, 2011), measures derived from nonlinear dynamics such
as the maximum Lyapunov exponent (Dingwell and Cusumano,
2000; Dingwell et al., 2001) and long-range correlations
(Hausdorff et al., 1996), and biomechanical measures such as
dynamic margins of stability (Hof et al., 2005; Hof, 2008). For
a detailed review of metrics used to assess dynamic stability
during gait, see Bruijn et al. (2013). While each of these
methods is useful for characterizing features of control in the
presence of instability, we are particularly interested in measures
that directly capture whole-body dynamics. One such measure,
whole-body angular momentum (WBAM), can be used to
capture the body’s response to perturbations and reflects the
net contribution of all body segments to the body’s rotation
about a given axis. WBAM is highly regulated during normal
human locomotion (Popovic et al., 2004; Herr and Popovic,
2008) as the peak-to-peak range of WBAM about the body’s
center of mass is much smaller than the angular momentum
of single segments due to momentum cancellation between the
limbs (Herr and Popovic, 2008). In a recent study, Martelli
et al. (2013) used WBAM to characterize recovery strategies
in response to multidirectional perturbations during walking
in healthy individuals. They found that perturbations resulted
in increased angular momentum and subsequent compensatory
reactions.

Another metric used to characterize dynamic stability is
the maximum Floquet multiplier (FM) which is commonly
used to assess the rate of divergence/convergence from a
fixed point, characterized by a kinematic state vector, in
response to small perturbations (Hurmuzlu and Basdogan,
1994; Kuo, 1999; Dingwell and Kang, 2007). This measure is
based on the fact that human walking is strongly periodic
and can be characterized as a limit cycle attractor. Previous
studies have established that the maximum FM remains below
one during unperturbed walking (Hurmuzlu and Basdogan,
1994; Dingwell and Kang, 2007; Granata and Lockhart, 2008;
Bruijn et al., 2009) which indicates that small perturbations
always converge toward a limit cycle. The maximum FM
increases when walking in destabilizing environments, but
still remains below one as people are able to use proactive
and reactive control to maintain balance (McAndrew et al.,
2012). Both WBAM and the maximum FM capture a

different aspect of reactive control during walking and together
provide a detailed description of the control of dynamic
balance.

The ability to successfully restore balance is vital for
populations with gait asymmetries such as people post-stroke
(Chen et al., 2005; Balasubramanian et al., 2007; Allen et al.,
2011), unilateral amputees (Barth et al., 1992; Underwood
et al., 2004; Zmitrewicz et al., 2006) and patients with
ACL reconstruction (Winiarski and Czamara, 2012). However,
these populations are known to have balance deficits during
walking. For example, Lewek et al. (2014) examined the
relationship between spatiotemporal gait asymmetry and balance
in people post-stroke and showed that step length asymmetries
were correlated with scores on the Berg Balance Scale,
suggesting that gait asymmetries are associated with fall
risk in these individuals. In addition, recent studies have
demonstrated that people post-stroke have impaired control
of whole-body dynamics as captured by higher peak-to-
peak ranges of WBAM (Nott et al., 2014; Vistamehr et al.,
2016) and reductions in local and orbital stability (Kao
et al., 2014). Likewise, unilateral amputees demonstrate a
greater range of angular momentum during the half of
the gait cycle from foot contact of the residual limb to
contact of the intact limb and a smaller range of angular
momentum during the second half of the gait cycle due to
reduced leg propulsion in the sagittal plane (Silverman and
Neptune, 2011). Although these studies have demonstrated
an association between asymmetry and measures of stability,
it remains to be seen if spatiotemporal asymmetry alone is
causally associated with stability in the absence of neuromotor
impairments.

In addition to an effect of asymmetry, the reactive control
of stability may also be impacted by limb dominance.
There is evidence suggesting that the dominant leg generates
more propulsion during walking while the non-dominant
leg preferentially provides support (Sadeghi et al., 1997).
Õunpuu and Winter (1989) found that the normalized
EMG amplitude of most plantar flexor muscles was greater
in the dominant limb, which may reflect its preferential
role in propulsion generation. Also, Martelli et al. (2013)
demonstrated that recovery of WBAM about the roll-axis
in response to a perturbation depends on the side of the
perturbation. Specifically, the reactive responses to perturbations
on the non-dominant side, as captured by the principal
components of the segmental angular momenta, were more
similar to pre-perturbation behavior than responses following
perturbations to the dominant side. Thus, the nondominant leg
may be better suited for maintaining stability in response to
perturbations.

The objectives of this study are to quantify how direct
modification of spatiotemporal asymmetry influences the
reactive control of balance during walking and to determine
whether the reactive control of balance is influenced by
limb dominance. We hypothesized that: (1) modifications of
step length asymmetry will impair the control of whole-body
rotation and increase the maximum FM during unexpected
perturbations which, together, would indicate that the reactive
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control of balance is compromised by asymmetry; and (2)
that perturbations of the non-dominant leg would produce
less whole-body rotation due to this limb’s proposed role in
providing stability during locomotion (Sadeghi et al., 1997).
Here, we chose to use the maximum FM to quantify orbital
stability because it allowed us to capture differences in stability
throughout the gait cycle. These hypotheses were tested by using
visual feedback to induce changes in step length asymmetry
during walking and imposing slip-like perturbations on a
dual-belt treadmill. Our findings may inform our understanding
of how interventions aimed at improving symmetry in
populations with neuromotor impairments may impact balance
control.

MATERIALS AND METHODS

Participant Characteristics
A total of 19 healthy young individuals (10 M, 24 ± 4 years
old) with no musculoskeletal or gait impairments participated
in this study. Lower limb dominance was determined by
asking participants which leg they would use to kick a
ball. This study was carried out in accordance with the
recommendations of the Declaration of Helsinki with written
informed consent from all subjects. The protocol was approved
by the Institutional Review Board of the University of Southern
California.

Experiment Protocol
The purpose of this study was to assess whether changes
in step length asymmetry affect the reactive control of
balance during walking. Participants completed six separate

trials walking on an instrumented, dual-belt treadmill at
1.0 m/s (Bertec, Columbus, OH, USA) and reacted to
unexpected accelerations of the treadmill belts throughout
the experiment (Figure 1A). For the first trial, participants
walked on the treadmill for 3-min (Baseline) to obtain their
natural level of step length asymmetry. Then, for subsequent
trials, visual feedback indicating the desired step lengths was
provided to assist participants in actively modifying their
asymmetry relative to their natural step length asymmetry.
Participants completed a randomized sequence of five 6-min
trials with target step length asymmetries (SLA, Eq. 1) of
0%, ±10% and ±15% where 0% represents each participant’s
baseline SLA.

SLA = 100 ∗
SLleft − SLright
SLleft + SLright

(1)

Participants viewed the step length targets on a computer
monitor attached to the treadmill post (Figure 1B). During each
trial, participants first practiced walking at a given SLA with
visual feedback for 1 min before experiencing any perturbations
(Figure 1C). A ‘‘success’’ message would appear on the screen
when the achieved step length was within the three standard
deviations of the desired target length. The standard deviation
for each target was determined on an individual basis from each
participant’s Baseline step length variability. Participants were
encouraged to maintain the desired SLA and get as many success
messages as possible.

Step length was estimated during the experiment as the
anterior/posterior distance between the center of pressure on
the left and right force plates at foot strike. Foot strike was
defined as the point when the vertical ground reaction force
became greater than 150 N. For the trials with visual feedback,

FIGURE 1 | (A) Experiment protocol. Participants completed a total of six trials. Participant’s Baseline step length asymmetry was collected during the first 3-min
baseline trial without visual feedback. Then, they were instructed to complete a randomized sequence of five 6-min trials with target step length asymmetries of 0%,
±10% and ±15%. During each visual feedback trial, the participant first practiced with feedback for 1 min, then 10 perturbations were randomly applied at foot
strike on each side. (B) Visual feedback for three of the five trials of step length asymmetry are shown. (C) Experimental setup. Participant were instructed to walk on
the split-belt treadmill. A “success” message would appear on the screen when step length was within the three standard deviations of the desired target.
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10 unexpected perturbations, where the treadmill accelerated to
1.5 m/s, were randomly applied to each side (right or left). Each
perturbation was remotely triggered by preprogrammed Python
code such that the participants could not anticipate when the
perturbation would occur. During pilot testing, we found that
there was approximately a 200 ms time delay between when
the perturbation signal was sent to the treadmill and when the
treadmill began accelerating. Thus, during the first minute of
practice for each trial, we calculated each individual’s average
right and left step times. We then triggered the perturbations
200 ms before the predicted foot strike of the perturbed leg
so that the acceleration of treadmill would coincide with foot
strike. All perturbations were characterized by a trapezoidal
speed profile in which the speed increased at foot strike to
1.5 m/s at an acceleration of 1.6 m/s2, was held for 0.3 s, and
then decelerated back to 1.0 m/s at 1.6 m/s2 during swing
phase of the perturbed leg (Figure 2A). These parameters were
selected based on results from a series of pilot tests which
demonstrated that these perturbations were sufficient to elicit
both changes in step length asymmetry and changes in WBAM.
The belt speed was held for 0.3 s to ensure that the belt speed
did not decelerate before the toe-off of the perturbed leg. The
perturbations randomly occurred within a range of 20–30 steps
after the previous perturbation to provide participants with
enough time to reestablish their normal walking pattern.

Data Acquisition
A 10-camera Qualysis motion capture system (Qualysis
AB, Gothenburg, Sweden) recorded 3D marker kinematics
at 100 Hz and ground reaction forces (Figure 2B) at
1000 Hz. A set of 19 mm spherical markers were placed
on anatomical landmarks to create a 13-segment, full-body
model (Song et al., 2012; Havens et al., 2018). Marker
clusters were placed on the upper arms, forearms, thighs,
shanks, and the back of heels. At the beginning of each
trial, marker positions were calibrated during a 5-s
standing trial. All joint markers were removed after the
calibration.

Data Processing
Kinematic and kinetic data were post-processed in Visual3D
(C-Motion, Rockville, MD, USA) andMatlab 2017a (Mathworks,
Natick, MA, USA) to compute variables of interest. Marker
position data and ground reaction forces were low-pass filtered
by 4th order Butterworth filters with cutoff frequencies of
6 Hz and 20 Hz respectively. The type of filter and cutoff
frequency were selected based on previous literature (Reisman
et al., 2009; Winter, 2009; Kurz et al., 2012). The timing of each
perturbation relative to foot strike was reexamined in Matlab. If
the treadmill belt did not accelerate during the 300 ms window
around foot strike (from 150 ms before to 150 ms after foot
strike), the perturbation was excluded from analysis. On average,
approximately 4 of 20 perturbations were excluded for each
trial.

In order to account for differences between the target and
achieved SLA, we calculated achieved SLA as follows: first, we
calculated the mean SLA of four strides before each perturbation
and then distributed them into five equally spaced bins centered
at −15%, −10%, 0, 10%, 15% with a bin width equal to 5%. We
used this re-categorized SLA as the independent variable in our
statistical analyses instead of target SLA.

Whole-Body Angular Momentum
WBAMwas computed to determine how the rotational behavior
of the body changed in response to the treadmill perturbations.
In order to calculate WBAM, a 13-segment full-body model
was first created using Visual 3D (C-Motion, Rockville, MD,
USA). The segments of the model included the head, trunk,
pelvis, upper arms, forearms, thighs, shanks and feet. Each
limb segment’s mass was modeled based on anthropometric
tables (Dempster, 1955). Segment geometry was modeled based
on the description in (Hanavan, 1964). The trunk and pelvis
were modeled as elliptical cylinders, the head was modeled
as an ellipsoid, and all the other segments were modeled
as circular cones. All segments had six degrees of freedom,
and no connecting joints (i.e., constraints between segments)
were defined. Segmental linear and angular velocity were

FIGURE 2 | Example of time series data from an unperturbed and perturbed step. (A) Treadmill belt velocity, (B) vertical ground reaction force and (C–E) whole-body
angular momentum (WBAM) for a representative perturbation step and recovery stride. The gray traces indicate the time series data for an unperturbed stride while
the black traces indicate a perturbation stride. Each stride begins at heel strike. Black vertical lines correspond to the time of foot strike and gray vertical lines
correspond to time of toe-off. Solid lines and dashed lines represent contralateral legs.
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computed in Visual 3D using the filtered marker position
data. WBAM (L) was then computed as the sum of all
segmental angular momenta which were composed of segmental
rotation about the body’s center of mass and rotation of
each segment about its own center of mass (Silverman and
Neptune, 2011). Then, L was normalized by the participant’s
mass (M), treadmill velocity (V), and the participant’s height (H)
(Eq. 2).

EL =
∑

i
[
mi
(
EriCM−i × Ev

i
CM−i

)
+ Iiωi]

MVH
(2)

Here, m is segmental mass, r is the distance from segment
to the body COM, I is the segmental moment of inertia, ω
is segmental angular velocity, and the index i corresponds to
individual limb segments. The coordinate system for analysis
of angular momentum was defined as follows: the x-axis
was the pitch axis and positive to the right, the y-axis was
the roll axis and positive in the anterior direction, and the
z-axis was the yaw axis and positive in the vertical direction.
WBAM for each stride cycle (from the foot strike on one
side to the subsequent foot strike on the same side) was
normalized to 100 points. In addition, integrated WBAM (Lint)
was computed as the area under the curve of the WBAM
trajectory for each step cycle to quantify the degree to which
the body rotates about its center of mass across a step
cycle.

Orbital Stability
We used Floquet analysis (Hurmuzlu and Basdogan, 1994;
Hurmuzlu et al., 1996; Kuo, 1999; Dingwell and Kang, 2007;
Hobbelen and Wisse, 2007; Kurz et al., 2012; Bruijn et al., 2013)
to determine how orbital stability was affected by walking with
different levels of SLA. Two participants were excluded from
this analysis as there was a break in one of their trials and
therefore, we did not have continuous data for the analysis. For
this analysis, we used WBAM data as computed in the ‘‘Whole-
Body Angular Momentum’’ section. First, state vectors (S) at
each time point in the normalized gait cycle were constructed
from the WBAM signal and its first derivative (Eq. 3). Then,

Poincare maps (Eq. 4) were defined at each section of the gait
cycle.

S = [Lx Ly Lz L̇x L̇y L̇z]T (3)

Sk+1 = F (Sk) (4)

Here, k is the stride number and Sk are the state vectors of the
system.

For each trial, we defined the fixed points (S∗)
(Eq. 5) at each Poincare section by averaging all sets of
angular momentum trajectory during the four strides
before each perturbation occurred (Figure 3). Stride-
to-stride fluctuations about the fixed point allowed us
to examine the persistence of deviations from the mean
trajectory.

S∗ = F
(
S∗
)

(5)

Orbital stability at each Poincare section was assessed by
linearly approximating the effects of perturbations that caused
deviations from the fixed point (Eq. 6). For all trials, we used
250 strides to compute FMs based on previous literature which
established that at least 150 strides were necessary to precisely
measure FM (Bruijn et al., 2009).[

Sk+1 − S∗
]
≈ J

(
S∗
) [
Sk − S∗

]
(6)

Here, J is the Jacobian matrix estimated using the pseudo
inverse at each Poincare section (Kurz et al., 2012). Sk −
S∗ represents deviations from the fixed point. FM were
calculated as the eigenvalues of Jacobian matrix (J(S∗)), and
we selected the maximum value of the FM (FMmax) to
assess orbital stability (Dingwell and Kang, 2007). If the
magnitude of FMmax < 1, the system is orbitally stable,
otherwise, the system is unstable (Hurmuzlu and Basdogan,
1994; Dingwell and Kang, 2007; Bruijn et al., 2013). We
computed FMmax for each Poincare section (each % gait
cycle) to determine how stability changes over a stride cycle.
We also determined FMmax across the entire gait cycle for
further statistical analysis as this value represents the most

FIGURE 3 | (A) Example of a 3D projection of the angular momentum trajectory recorded during baseline walking for one representative participant. (B) Illustration of
a hypothetical perpendicular slice of the angular momentum trajectory as a Poincare section. S∗ represents the fixed point which is the average of pre-perturbation
strides.
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unstable point during the gait cycle (Dingwell and Kang,
2007).

Statistical Analysis
All statistical analyses were performed in Matlab R2017a
(Mathworks, Natick, MA, USA). Repeated measures analysis
of variance (RM-ANOVA) was used to determine if values of
integrated angular momentum about each axis for the steps
after the perturbation differed from values during baseline steps.
Post hoc comparisons used the Tukey-Kramer correction for
multiple comparisons.

Linear mixed-effect models were fit to examine the
relationship between independent variables achieved SLA
(Asym) and side of perturbation (Side) and dependent variables
Lint about each axis to determine how the effect of perturbations
varied with asymmetry and between limbs. This model included
main effects for Asym and Side as well as an interaction between
Asym and Side to determine whether the effect of asymmetry
depended on the side of the perturbation. The linear mixed-
effect models were fit for four consecutive steps (Baseline,
Perturbation, Recovery 1 and Recovery 2) for each axis. The
integrated angular momentum for the trial with an SLA of
zero was selected as the reference level. We used a mixed effect
model instead of a RM-ANOVA for this analysis because the
number of observations at each level of achieved asymmetry was
unequal.

Similarly, a linear mixed effect model was fit to represent the
relationship between target asymmetry (independent variable)
and the FMmax (dependent variable) in order to see if the orbital
stability was associated with target asymmetry. For both sets
of analyses, models including random intercepts and/or slopes
were compared against a model with only fixed effects and the
most parsimonious model was chosen based on the results of a
likelihood ratio test.

RESULTS

Participants were able to update and maintain their SLA for the
full duration of each trial (∼6 min) using visual feedback and

recover from deviations in SLA resulting from the perturbations
(Figure 4A). If the perturbation occurred on the right leg, the left
leg would step further forward to recover from the perturbation
and SLA would increase based on Equation 1. On the other
hand, if the perturbation was occurred on the left leg, SLA for
the perturbation stride became more negative. The achieved SLA
(Figure 4B) was calculated relative to baseline asymmetry of
1.7 ± 3%. There was considerable variability in the achieved
asymmetry across participants, especially when the target SLA
was large. The average residual between achieved SLA and
target SLA (|SLAtarget − SLAachieved|) across all participants was
4.7 ± 2.9%, 2.9 ± 1.7%, 2.4 ± 1.6%, 4.3 ± 2.8%, 7.7 ± 3.5%
for −15%, −10%, 0, 10%, 15% target SLA respectively. Our
analysis used participants’ achieved asymmetry rather than target
asymmetry to better reflect their actual performance. The total
number of perturbations in each step length asymmetry bin
were as follows: 110 perturbations for −15%, 314 perturbations
for −10%, 265 perturbations for −5%, 294 perturbations for
0%, 285 perturbations for 5%, 191 perturbations for 10% and
69 perturbations for 15% SLA.

Modulation of Whole-Body Angular
Momentum in Response to Treadmill
Perturbations
Measures of WBAM varied systematically across trials. We
measured the WBAM about three axes to better understand
how participants react to the perturbations. The rapid
acceleration of the belts caused consistent, immediate
effects on WBAM and triggered multi-step balance recovery
responses. The immediate effect was most obvious along
the direction of perturbation (pitch axis, Figure 2C).
During the perturbation step, angular momentum became
more negative as the body rotated forward (−pitch). In
order to compensate for the perturbation, participants
increased the length of the subsequent step to generate
positive angular momentum and initiate backward rotation
(+pitch). Deviations in body rotation about the roll and yaw
axes relative to unperturbed walking were less prominent
(Figures 2D,E).

FIGURE 4 | (A) Raw step length asymmetry data for one representative participant. Each data point represents the step length asymmetry. The target asymmetries
for this example followed the order of 10%, −10%, 0, 15%, −15%. Each target asymmetry is represented by a different color. BSL: baseline step; PTB: perturbation
step; REC: recovery step. (B) Achieved step length asymmetry vs. target step length asymmetry for all participants (N = 19). Achieved step length asymmetry is
calculated as the average of all pre-perturbation strides and tends to undershoot the target at 15% and −15%. The green dots represent individual data. Horizontal
bars indicate the median across all participants.
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FIGURE 5 | Averaged integrated angular momentum over the step cycle for all participants about the (A) pitch, (B) roll and (C) yaw axes for perturbations that
occurred on the non-dominant (left column) and dominant side (right column). These results represent the 0% asymmetry condition (N = 19). The first step (B1)
corresponds to the non-dominant limb for the left column and the dominant limb for the right column. Subsequent steps alternate between non-dominant and
dominant. B: Baseline; PTB: Perturbation; R: Recovery. The horizontal bars and corresponding stars indicated whether the difference in integrated angular
momentum between two steps was significant (∗∗p < 0.001, ∗p < 0.05). The data are represented as boxplots such that the lower and upper edges of the box
indicate the 25th and 75th percentile of the data, respectively. The horizontal line within each box indicates the median. The whiskers extend to the furthest data
point beyond the lower or upper edges of the box that is within a distance of 1.5 times the middle 50th percentile of the data. Points that lie beyond the whiskers
denote outliers.

To quantify the effects of the perturbations on whole-body
configuration, we computed the integrated angular momentum
across the step cycle (Figure 5). When walking symmetrically,
the integrated angular momentum was relatively small during
baseline walking and showed little step-to-step variability about
the pitch axis. For the roll axis, positive and negative values
of Lint correspond to transitions from the right to left leg
and from the left to right leg, respectively. For the yaw axis,
positive and negative values of Lint correspond to transitions
from the left to the right leg and from the right to left leg,
respectively. During the perturbation step, there was a significant
increase in integrated angular momentum about the pitch axis
which reflected the increase in the body’s forward rotation.
A repeated measures ANOVA was used to determine when
the participants recovered from the perturbation when walking
symmetrically. We found a main effect of step number on
integrated angular momentum for the pitch axis (RM-ANOVA,
F = 185.5, p < 0.001), and a significant interaction between
step number and perturbation side for roll axis (F = 58.7,
p < 0.001), and yaw axis (F = 434.76, p < 0.001). For the

pitch axis, post hoc analysis revealed that Lint differed from
baseline during the perturbation (PTB) step (p < 0.001 both
sides), recovery (R) steps R1 (p < 0.001 both sides), R4
(p = 0.006 Dominant side, p = 0.002 Non-dominant side) and
R6 (p = 0.013 Dominant side, p = 0.001 Non-dominant side).
About the roll axis, significant differences in Lint were found
during the PTB step (p = 0.001) and R3 (p = 0.001), but only
on the dominant side. Lastly, about the yaw axis, a significant
difference was found at perturbation step (p < 0.001) for both
sides.

Effects of Asymmetry on the Reactive
Control of Whole-Body Angular Momentum
Next, we asked whether walking with asymmetric step lengths
would have negative effects on participant’s reactive control
of balance (Figure 6). We fit a linear mixed effect model
relating asymmetry to the integrated angular momentum at
each step (Final Baseline step (B2), PTB, R1 and R2) and
selected the simplest model based on a likelihood ratio test.
An SLA of zero was selected as the reference level. The model
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FIGURE 6 | Box plot of integrated angular momentum about the (A) pitch, (B) roll and (C) yaw axes at baseline step (B2), perturbation step (PTB) and recovery steps
(R1 and R2) across each level of achieved asymmetry (N = 19) for perturbations on the non-dominant (left column) and dominant (right column) sides.

indicated that a random intercept was necessary to account for
individual differences between participants (p < 0.001). There
were no significant main effects found for Asymmetry, Side
(pitch axis) or the interaction between Asymmetry and Side
during baseline (B2) steps (Table 1). Similarly, we examined
whether asymmetry influenced measures of integrated angular
momentum at the PTB step and found no significant main effects
for Asymmetry, Side or the interaction between Asymmetry and
Side during any of these steps (Table 1). Lastly, we examined
whether asymmetry influenced integrated angular momentum
during the first or second recovery steps (R1 and R2). There
were no significant main effects found for Asymmetry, Side
or the interaction between Asymmetry and Side during first
or second recovery steps (Table 1). The significance found
for Side in roll and yaw axis was due to differences in the
direction of body rotation at each step. Overall, these results
indicate that imposed asymmetry does not have a systematic
effect on the reactive control of balance as assessed by measures
of WBAM.

Orbital Stability
To further investigate how asymmetry impacts dynamic stability,
we performed Floquet analysis to determine if asymmetry
influenced measures of orbital stability during perturbed
walking. Our results show that the FMMax from all five trials
was less than one indicating that participants remained orbitally
stable in spite of the perturbations that occurred while walking

(Figure 7). The range of the FM computed across the stride
cycle at 0% SLA was 0.41 ± 0.09 across all participants,
which is similar, but slightly smaller than that reported by
Dingwell and Kang (2007) (∼0.5) when participants walked
on the treadmill in the absence of perturbations. Similar to
our results for integrated angular momentum, there was no
association between the SLA and measures of orbital stability
(F(4,80) = 0.86, p = 0.5). The FMMax across all asymmetries
were 0.61 ± 0.09, 0.63 ± 0.13, 0.57 ± 0.11, 0.62 ± 0.13 and
0.59 ± 0.09 for target asymmetries of −15%, −10%, 0, 10% and
15%, respectively.

DISCUSSION

Conservation of Reactive Response
This study asked the question of how step length asymmetry
affects the reactive control of balance during walking. Previous
studies have demonstrated that people with gait asymmetries
have impairments in dynamic balance leading to the possibility
that asymmetry itself is sub-optimal for balance control. Here,
we hypothesized that asymmetry would impair the reactive
control of balance, and we tested this hypothesis by imposing
different levels of step length asymmetry and characterizing
participants’ response to perturbations. Although we consistently
elicited reactive responses to regain balance, we rejected our
primary hypothesis that asymmetry impairs the reactive control
of balance as no significant difference in WBAM was found
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TABLE 1 | Statistical results from the ANOVA examining the effects of asymmetry and perturbation side on integrated whole-body angular momentum (WBAM) for each
step type.

Step type Axis Factor DF1 DF2 F value p value

B2 Pitch Asymmetry 6 210 0.10 0.99
Side 1 210 2.84 0.09

Asymmetry:Side 6 210 0.18 0.98

Roll Asymmetry 6 210 0.31 0.93
Side 1 210 76.10 <0.001

Asymmetry:Side 6 210 0.24 0.96

Yaw Asymmetry 6 210 0.72 0.63
Side 1 210 397.00 <0.001

Asymmetry:Side 6 210 0.96 0.45

PTB Pitch Asymmetry 6 211 0.25 0.96
Side 1 211 0.30 0.59

Asymmetry:Side 6 211 0.59 0.77

Roll Asymmetry 6 211 0.39 0.89
Side 1 211 85.00 <0.001

Asymmetry:Side 6 211 0.41 0.87

Yaw Asymmetry 6 211 0.38 0.89
Side 1 211 577.00 <0.001

Asymmetry:Side 6 211 1.33 0.25

R1 Pitch Asymmetry 6 211 0.51 0.80
Side 1 211 0.31 0.60

Asymmetry:Side 6 211 0.76 0.60

Roll Asymmetry 6 211 0.36 0.90
Side 1 211 2.85 0.09

Asymmetry:Side 6 211 0.39 0.89

Yaw Asymmetry 6 211 1.00 0.42
Side 1 211 491.00 <0.001

Asymmetry:Side 6 211 1.57 0.16

R2 Pitch Asymmetry 6 211 0.90 0.5
Side 1 211 2.70 0.1

Asymmetry:Side 6 211 0.21 0.97

Roll Asymmetry 6 211 0.65 0.69
Side 1 211 6.39 0.01

Asymmetry:Side 6 211 0.00 0.98

Yaw Asymmetry 6 211 0.47 0.83
Side 1 211 386.00 <0.001

Asymmetry:Side 6 211 0.92 0.48

B2, Baseline step; PTB, Perturbation Step; R1, First Recovery Step; R2, Second Recovery Step.

across levels of asymmetry. In addition, Floquet analysis revealed
that orbital stability was well maintained and did not vary
systematically with different levels of asymmetry. These results
indicate that reactive control of stability may be well controlled
by healthy people even when they change their preferred walking
pattern to walk asymmetrically.

A potential explanation for the discrepancy between our
hypothesis and the observed results is that participants may
have chosen a more conservative strategy due to the novel
study demands. In other words, participants may have taken
more cautious, wider steps to increase their base of support
(Woollacott and Tang, 1997) when asked to walk asymmetrically
and subsequently improved the proactive control of stability
during the task. However, we found no difference in step width
between levels of target asymmetry. Thus, there does not seem
to be strong evidence that participants’ recovery strategies were
biased by use of a more conservative pattern of movement.

Another possible reason why we did not observe an effect of
asymmetry on the reactive control of stability is that reactive
responses to unexpected perturbations may be mediated by
neural pathways that generate stereotypical reactive responses
that remain invariant across tasks. Previous work by Aprigliano
et al. (2017) used principal component analysis (PCA) to analyze
coordination between the shank, foot and thigh in response to
slip-like perturbations and found that there was no difference
in coordination between fall-prone elderly people and healthy
young adults. Similarly, Martelli et al. (2013) used PCA of
segmental angular momentum to show that the intersegmental
coordination patterns observed during compensatory steps are
highly correlated with the patterns observed during unperturbed
walking. This conservation of whole-body momentum across
asymmetries suggests that reactive responses may result from
pre-programmed, stereotypical actions that are sufficient to
restore the stability (Martelli et al., 2013).
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FIGURE 7 | (A) Variation in the magnitude of the maximum Floquet multiplier (FM) across the gait cycle for five levels of target asymmetry (N = 17). The shaded area
indicates the 95% confidence interval. (B) FMMax across all levels of asymmetry for (N = 17) participants.

Effects of Limb-Dominance on Reactive
Control of Balance
We also hypothesized that perturbations of the non-dominant
leg would produce less whole-body rotation due to the
non-dominant limb’s role in maintaining balance. Previous work
has shown that the non-dominant leg may preferentially be used
to support body weight while the dominant leg may generate
more propulsion (Sadeghi et al., 1997). Consistent with this idea,
WBAM about the roll axis did not differ across strides for the
non-dominant leg while, in contrast, we observed significant
differences in Lint about the roll axis between unperturbed,
perturbed, and recovery strides for the dominant leg. This
suggests that the non-dominant leg may be better at maintaining
medial-lateral balance. However, we also found that there was
no significant effect of the side of the perturbation on our
measures of integrated angular momentum. This presence of
both limb-specific and limb-independent recovery responses
requires further investigation to establish the effect of limb
dominance on balance recovery.

Orbital Stability During Asymmetric
Walking
In general, populations with a high incidence of falls are shown
to have increased orbital instability relative to unimpaired
controls as characterized by a larger maximum FM (Hurmuzlu
et al., 1996; Granata and Lockhart, 2008; Kurz et al., 2012).

In our study, we were interested in determining whether
walking with spatiotemporal asymmetry would modulate orbital
stability. As the results demonstrated, all participants in our
study had orbitally stable walking patterns, regardless of
the level of SLA. Also, no difference in FMMax was found
during asymmetrical walking compared with symmetric walking.
This is in contrast to previous work which shown that
voluntarily changing step length reduces orbital stability of
human walking (McAndrew Young and Dingwell, 2012). One
possible explanation for the discrepancy between the current
study and previous work is that our study provided visual
feedback for regulating SLA, which may decrease the step
length variability compared to (McAndrew Young and Dingwell,
2012). In addition, we chose to maintain a consistent stride
length while varying asymmetry whereas the McAndrew Young
and Dingwell’s (2012) study involved significant increases
in stride length. As a result, Floquet analysis may not be
sensitive enough to detect the destabilizing effects of SLA in
the absence of changes in stride length. Our findings also
contrast previous studies which showed that walking on a
pseudo-randomly oscillating treadmill reduced orbital stability
(McAndrew et al., 2010; Beurskens et al., 2014). A potential
reason for this difference is that our study perturbed the
participants with discrete mechanical perturbations at foot
contact whereas previous work used continuous perturbations
throughout the gait cycle. It is possible that the effect of these
discrete perturbations dissipates quickly for healthy participants
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resulting in negligible changes in orbital stability due to
imposed SLA.

Although this study showed that the whole-body reactive
response was not affected by the presence of step length
asymmetry in healthy participants, it is possible that this result
was influenced by the fact that participants were instructed to
walk on the treadmill with a fixed speed, which might alter the
strategies participants use to generate the desired asymmetries.
While Nagano et al. (2011) showed that there were no differences
in step lengths when young adults walked on a treadmill or
over ground at a given speed, temporal parameters such as
double stance time and swing time did differ. In addition, people
produce reduced dorsiflexor moments, reduced knee extensor
moments, and greater hip extensor moments in the sagittal
plane during treadmill walking (Lee and Hidler, 2008), which
could also affect the strategies used to modify symmetry on the
treadmill. As a result, it would be interesting for future studies
to compare the effects of asymmetry on reactive control balance
during over ground vs. treadmill walking.

Aside from reactive responses, proactive control also plays
a part in maintaining balance on the treadmill in the
presence of slip perturbations. Although participants voluntarily
changed their SLA to match the visual feedback, modification
of SLA did not impair their whole-body balance during
unperturbed steps (Figure 6). This might reflect the fact
that healthy individuals used novel proactive strategies to
maintain a consistent range of WBAM in the presence of
step length asymmetry. Another possibility is that after the
initial exposure to the treadmill perturbations, participants may
have adopted strategies to improve stability and to prepare
themselves for the perturbations. Previous work has shown
that the central nervous system can adjust its control strategy
based on the prior experience to produce a more cautious
gait and reduce the risk of balance loss by altering muscle
activation and the resulting interaction between the foot
and the surface (Heiden et al., 2006). In addition, previous
studies have showed that people were able to reduce backward
balance loss with exposure to multiple slip perturbations using
proactive adjustments during sit-to-stance task and over ground
walking (Pai et al., 2003; Bhatt et al., 2006). Analysis of
interlimb coordination during baseline trials could be useful
to reveal how participants were able to adopt an invariant
control of WBAM despite the presence of marked step length
asymmetries.

Lastly, although we found that symmetric walking did not
necessarily bring benefits for reactive control of balance for
healthy subjects, this does not necessarily mean it holds true
for fall-prone populations with sensory or motor impairments.
These impairments may significantly affect one’s ability to
recover from unexpected perturbation. Fall-prone populations
such as people post-stroke may suffer from sensorimotor deficits,

which prevent them from appropriately sensing perturbations
and planning and executing effective responses to regain balance.
Although a number of recent studies have shown that it
is possible to improve spatiotemporal symmetry in people
post-stroke (Reisman et al., 2009; Awad et al., 2016), it remains
to be seen if reductions in symmetry improve dynamic balance.
The approaches used in this study may help separate the effects
of asymmetry on balance from the effects of neuromotor deficits
and lead to better informed locomotor training for people post-
stroke.

Limitations
This study had a few limitations. First, there was inconsistency
in performance such that the achieved step length tended to
undershoot the target at the larger SLA. This is likely because
larger asymmetries are energetically costly and may also reflect
biomechanical constraints that prevent substantial extension of
the hip beyond that observed during normal walking (Sánchez
et al., 2017). Another factor that could have affected our analysis
of reactive control is that participants were protected by a
harness, which may have restricted forward trunk rotation.
However, since the harness was slack during the full experiment,
we think this is unlikely. Lastly, calculation of FMs requires a
linear approximation to compute the effects of perturbations
from stride to stride, but the large perturbations in our studymay
introduce some non-linearity. We think this effect is likely to be
negligible as the FMs we computed were consistent with previous
work that assessed stability during walking in destabilizing
environments (McAndrew et al., 2012).
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effectively Quantifying the 
Performance of lower-limb 
exoskeletons Over a range of 
Walking conditions
Daniel F. N. Gordon*, Graham Henderson and Sethu Vijayakumar

Institute of Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, 

United Kingdom

Exoskeletons and other wearable robotic devices have a wide range of potential 
applications, including assisting patients with walking pathologies, acting as tools for 
rehabilitation, and enhancing the capabilities of healthy humans. However, applying 
these devices effectively in a real-world setting can be challenging, as the optimal 
design features and control commands for an exoskeleton are highly dependent on 
the current user, task and environment. Consequently, robust metrics and methods for 
quantifying exoskeleton performance are required. This work presents an analysis of 
walking data collected for healthy subjects walking with an active pelvis exoskeleton over 
three assistance scenarios and five walking contexts. Spatial and temporal, kinematic, 
kinetic and other novel dynamic gait metrics were compared to identify which metrics 
exhibit desirable invariance properties, and so are good candidates for use as a stability 
metric over varying walking conditions. Additionally, using a model-based approach, the 
average metabolic power consumption was calculated for a subset of muscles crossing 
the hip, knee and ankle joints, and used to analyse how the energy-reducing properties 
of an exoskeleton are affected by changes in walking context. The results demonstrated 
that medio-lateral centre of pressure displacement and medio-lateral margin of stability 
exhibit strong invariance to changes in walking conditions. This suggests that  these 
dynamic gait metrics are optimised in human gait and are potentially suitable metrics 
for optimising in an exoskeleton control paradigm. The effectiveness of the exoskeleton 
at reducing human energy expenditure was observed to increase when walking on an 
incline, where muscles aiding in hip flexion were assisted, but decrease when walking 
at a slow speed. These results underline the need for adaptive control algorithms for 
exoskeletons if they are to be used in varied environments.

Keywords: exoskeletons, gait metrics, stability, metabolic energy, control, musculoskeletal modelling

1. intrOductiOn

Increasingly, exoskeletons are being used to great effect for the rehabilitation of people with lower-
limb pathologies (Dollar and Herr, 2008). Additionally, exoskeletons are being developed as assistive 
tools to reduce the metabolic cost of walking, with some recent advances in state-of-the-art soft 
exosuits (Panizzolo et al., 2016) demonstrating energy savings of more than  20%  (Quinlivan et al., 
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2017). However, exoskeletons used for these purposes are largely 
restricted to supervised clinical or research settings, where time 
and care is taken to ensure that the behaviour of the exoskeleton 
and the nature of the rehabilitation or assistive regime is well-
suited to the subject in question (Wolff et al., 2014). The use of 
exoskeletons in a real-world setting, e.g. to assist the elderly in 
everyday life, is made difficult by the number of variables to 
consider as a human walks in an uncontrolled environment — 
for example, walking speed, or whether the subject is walking 
on an incline. Each of these variables can affect the gait pattern 
of an individual, and therefore the optimal torques to be applied 
by an assistive device. If exoskeletons are to become widely used 
devices outside of a clinical setting it is important that a suitable 
control paradigm is developed that, either implicitly or explicitly, 
applies assistance that accounts for these variables.

Current control paradigms frequently use normalised kinematic 
trajectories (Riener et al., 2010), muscle amplification (Ferris and 
Lewis, 2009), or finite state controllers (Blaya and Herr, 2004). 
The respective issues with these paradigms are that the kinematic 
trajectory might not be appropriate for the user’s task or their 
environment, the muscle firing patterns may be abnormal, and 
there are a large number of parameters to tune.

It is known that the human neuromuscular system optimises 
stability (Kuo and Donelan, 2010). By studying the effect of 
different walking contexts and constant perturbations (applied 
via an exoskeleton) on healthy walking, it is posited that 
there will be an underlying invariant metric that reflects the 
optimisation of the stability of human gait. Once identified, this 
metric can then be optimised as part of an exoskeleton control 
paradigm which provides assistance while maintaining balance, 
implicitly accounting for the effects of changing walking context 
and varying exoskeleton assistance. Previous work has been 
carried out to determine what effect walking speed (Winter, 1984; 
Stansfield et al., 2001; Orendurff et al., 2004), the environment 
(Lay et al., 2006; Franz and Kram, 2012), and exoskeleton forces 
have (Lewis and Ferris, 2011; Lenzi et al., 2012; Martelli et al., 
2014) on a user’s gait but these are constrained by using limited 
metrics and, for the work done on exoskeletons, limited walking 
contexts.

The human neuromuscular system also optimises energy 
efficiency (Kuo and Donelan, 2010). In a similar analysis to 
what is outlined above, the effect of different walking contexts 
and exoskeleton forces on healthy walking can be measured 
in terms of the metabolic energy consumed by the muscles 
of the subject. This relationship could be optimised as part 
of a model-based exoskeleton control paradigm, alongside a 
stability metric, where the aim is to reduce total human energy 
expenditure or, alternatively, target specific groups of muscles for 
rehabilitation or assistance. Once known, this relationship can 
be used to inform how exoskeleton controllers are implemented 
for use in real-world settings where steady, flat walking is not  
guaranteed.

In this study, a neuromuscular human and exoskeleton model 
is presented. Experimental data was collected using a unique 
setup, combining kinematic, kinetic, and exoskeleton angular 
and torque data. Using this data, stability metrics and metabolic 
energy  consumption were compared between three walking 

scenarios: walking without an exoskeleton, walking with an 
exoskeleton in transparent mode, and walking with an exoskeleton 
in assistive mode. For each of these scenarios five different walking 
contexts were investigated: walking at baseline speed, walking 
up an incline, walking down an incline, fast walking, and slow 
walking. To carry out the analysis a range of spatial and temporal, 
kinematic, kinetic, and dynamic gait metrics (such as centre of mass 
displacement) were selected.. The selected metrics were compared 
to identify those which demonstrated the most invariance and 
therefore would be suitable for optimising in an exoskeleton 
control paradigm. In addition, metabolic energy consumption was 
calculated and is  reported for a subset of muscles crossing the 
hip, knee and ankle joints, and the effect of variations in walking 
context and exoskeleton assistance level on these representative 
muscles is discussed.

2. Material and MethOds

2.1. Model development
The exoskeleton which we use to provide assistance is the Active 
Pelvis Orthosis (APO), a revised version of the device presented by 
Giovacchini et al. (Giovacchini et al., 2015) (see Figure 1A). This 
exoskeleton was developed at The BioRobotics Institute of Scuola 
Superiore Sant'Anna (Pisa, Italy); the technology is currently 
licensed to IUVO Srl (http://www. iuvo. company, Pontdera, 
Italy). The APO provides a force applied to the thighs of the 
user transmitted via two carbon fibre lateral arms which are 
actuated by series elastic actuation units.

The APO developers adapted work by Ronsse et al. (Ronsse 
et al., 2011) to construct a high-level assistive controller, which 
generates a zero-delay estimate of the hip angles during gait and 
calculates a desired torque which is proportional to the estimated 
change in hip angle. A constant virtual stiffness parameter is 
used to calculate the torque necessary to drive the user’s joint 
positions towards their expected future values. The APO can also 
be operated in “transparent mode”, where the system provides 
no assistance to the user and the joints are free of resistance.

We developed a unique model of a human subject wearing 
the APO (see Figure  1B) using the software OpenSim (Delp 
et al., 2007). We took a pre-existing OpenSim human model with 
92 muscles and 23 degrees of freedom, known as the gait2392 
model (Yamaguchi and Zajac, 1989; Delp et al., 1990a; Anderson 
and Pandy, 1999a; Anderson and Pandy, 2001), and constrained 
the APO to it with three weld constraints, located between the 
backpack and the pelvis and between the two links and the femur. 
The APO mass and inertia properties were imported from a CAD 
model provided by IUVO.

2.2. experimental Protocol
Data was collected for each subject while they walked on a 
treadmill in a variety of walking contexts and exoskeleton 
assistance scenarios. Reflective markers were attached to each 
subject to accurately track their movements using a six camera 
motion capture system (Vicon, Oxford, UK). The marker set used 
was adapted from the Cleveland marker set and consisted of 33 

115

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org


Gordon et al.

3 June  2018 | Volume 5 | Article 61Frontiers in Robotics and AI | www. frontiersin. org

Quantifying Exoskeleton Performance

markers, 8 of which were solely used for the purpose of scaling 
the dynamic model. Ground reaction forces and moments were 
collected using a  six axis, split belt instrumented treadmill 
(Motekforce Link, Amsterdam, Netherlands). The torques 
applied by the APO were measured directly from the device. 
Figure 1C demonstrates the experimental set up.

To capture data in different walking contexts, a script was 
implemented in the Motek D-Flow software to programmatically 
change the speed or incline of the treadmill appropriately. Each 
subject was made to walk in five different walking contexts, 
as follows: at baseline walking speed with no incline (BW), at 
baseline walking speed with an incline of 5 degrees (UW), at 
baseline walking speed with an incline of −5 degrees (DW), at a 
fast walking speed with no incline (FW), and at a slow walking 
speed with no incline (SW). The baseline walking speed used for 
the BW context was calculated using the principle of dynamic 
similarity as described by the Froude number (Vaughan and 
O'Malley, 2005):

 v =
√

Fr · g · L,  (1)

where  v  is the baseline speed,  Fr   is the Froude number (chosen 
to be 0.1),  g   is gravitational acceleration ( 9.81 m/s2 ), and L  is leg 
length (as measured from the greater trochanter to the medial 
malleolus). The speeds for FW and SW were calculated by adding 
and subtracting 20% to the baseline speed respectively. Each 
context was timed to last 135 s, with data collection triggered 
to happen after 120 s to allow for the participant to become 
accustomed to the context. For time synchronisation, the D-flow 
script sent a command to a relay box which simultaneously 
triggered the Vicon system, Motek treadmill and APO to 

begin recording data while accounting for internal delays. The 
kinematics, ground reaction forces and moments, and APO data 
were captured at 100 Hz, 600 Hz, and 100 Hz respectively.

The contexts were repeated for 3 different assistance scenarios: 
one without wearing the APO (NE), one wearing the APO set 
in transparent mode (ET) and one wearing the APO set in 
assistive mode (EA) with the virtual stiffness set to 15 Nm/rad. 
For each subject, a static pose was collected in both the NE and 
ET assistance scenarios.

2.3. Post-Processing
Before the data could be analysed, several post-processing 
steps had to be undertaken. Any gaps in the raw recorded 
motion capture data were filled using Vicon’s software Nexus. 
A combination of the built in algorithms were used including 
the spline fill, the pattern fill, and the cyclic fill. The MoNMS 
toolbox (Mantoan et al., 2015) was used for the remainder of the 
motion capture data processing. The marker trajectories were 
first low-pass filtered with a zero-lag 4th order Butterworth 
filter and then transformed from the Vicon axis system into the 
OpenSim axis system.

For the ground reaction forces and moments, custom scripts 
were written in MATLAB. The first step was to compensate for 
data collected when the treadmill was tilted, and therefore 
causing gravity to work in a different direction to the force plate 
sensors. The ground reaction forces were then filtered using a 
zero-lag 4th order Butterworth filter with a 6 Hz cut-off. For the 
next step a threshold filter was applied to the ground reaction 
forces and moments that set all values equal to zero when the 
vertical force was less than 40 N. This was implemented because 

Figure 1 |  (a) The Active Pelvis Orthosis (APO). (B) An overview of the APO OpenSim model’s constraints, bodies, and degrees of freedom: (1) APO backpack, 
(2) Weld constraint between APO backpack and pelvis, (3) right APO group body (houses the actuators), (4) APO free joint (6 DOF), (5) right APO link, (6) weld 
constraint between APO link and femur. (c) The experimental setup. This image is published with the written informed consent of the depicted individual. ©IEEE 
2017
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the CoP values were noisy when the vertical ground reaction 
forces were low. Additionally, it filtered out any noise in the force 
measurements during the swing phase of the gait cycle when 
there should be no forces applied to the foot. After applying the 
threshold, the CoPs were calculated and the global force plate 
moments were converted into free moments around the foot. 
Finally, the D-flow axis system was transformed to the OpenSim 
axis system.

2.4. aPO Joint Misalignment
The problem of joint misalignment is well known when dealing 
with physically coupled systems, e.g. humans wearing exoskeletons 
(Malosio et  al., 2011; Jarrassé and Morel, 2012; Zanotto et  al., 
2015). If joints are perfectly aligned, exoskeleton forces can be 
modelled as equal and opposite torques applied to the relevant 
exoskeleton and human bodies. However, the presence of joint 
misalignment results in imperfect transmission of torque from 
the exoskeleton to the human user (Schiele and van der Helm, 
2006), ultimately resulting in reduced torque about the human joint 
and the introduction of undesirable forces parallel to the human 
limb, which can cause discomfort or unintended changes to muscle 
activation patterns (Hidler and Wall, 2005). The design of the APO 
is such that the exoskeleton joints should closely align with those of 
the human (Giovacchini et al., 2015), however it is not realistic to 
expect perfect alignment. By fixing a reflective marker on the rear 
of the exoskeleton, it was possible to identify the offsets between 
the human and exoskeleton joints for each subject. The protocol 
for calculating the offsets is outlined below.

1. Measure the distance from a fixed reflective marker on the back 
of the APO to the left and right exoskeleton joint centres.

2. Using the static pose data from this fixed marker, calculate the 
position in the ground frame of the left and right exoskeleton joint 
centres for each subject.

3. Using the reflective markers situated on the pelvis, coupled with 
a variation of the Harrington method (Harrington et al., 2007) for 
estimating the hip joint centre, calculate the locations of the left 
and right human hip joint centres in the ground frame.

4. Calculate the offset between the exoskeleton and human joint 
centres.

The above steps were undertaken for all subjects using the 
corresponding static pose data. The offsets for each subject are 
summarised in Table 1. Once the offsets between the subjects and 
the APO were known, a model was derived following a similar 
strategy to previous works to decompose the torque generated 
by the APO in to an assistive torque applied to the human hip 
joint and an undesired interaction force which is applied parallel 
to the thigh (Schiele, 2008; Malosio et al., 2011). A sample APO 
torque trajectory is provided in Figure  2 which displays this 
decomposition for a single gait cycle.

2.5. aPO torque transmission Models
Due to the presence of compliance in human-exoskeleton systems, 
largely due to flexible straps and soft biological tissues, power loss 
occurs between the torques generated by the exoskeleton and the 

torques experienced by the human subject. A relatively limited 
number of previous studies have investigated these interface 
dynamics in more detail, using a mix of kinematic and load sensing 
measurement devices to estimate the visco-elastic properties of the 
human-exoskeleton system (Schiele, 2008) or the relative timing 
and magnitude of power loss (Yandell et al., 2017).

In subsequent metabolic analyses of the APO in assistive 
mode, two models were used for the transmission of exoskeleton 
torques. Both models account for human-exoskeleton joint 
misalignment. The first model, hereafter referred to as the ideal 
torque transmission model, assumes  100%  transfer of torque from 
the exoskeleton to the human. The second model, referred to as 
the compliant torque transmission model, assumes that the torque 
transmission is subject to absorption-return dynamics as observed 
by a recent study in to the interface dynamics of a soft exosuit 
(Yandell et al., 2017).

The compliant torque transmission model partitions the APO 
torque signal in to phases categorised as loading while the APO 
torques are increasing in magnitude and unloading while the 
torques are decreasing in magnitude. A percentage A  of the power 
generated by the APO during loading phases is absorbed by the 
soft tissue in the system, and a percentage of this absorbed power, 
 R , is returned during the next unloading phase. This results in a 
temporal offset between the peak applied torque of the ideal and 
compliant models. In Figure 2, a comparison between the ideal 
and compliant torque models is displayed for a single gait cycle. 
The absorption and return rates were chosen to be  A = 0.55  and 
 R = 0.75 , respectively, to match the observations of Yandell et al. 
and allow for qualitative discussion on the compliant human-APO 
interface.

2.6. Opensim analyses
The processed data for each subject was divided in to 10 gait cycles 
per combination of walking context and assistance scenario. A 
range of analyses were then carried out using OpenSim tools in 
combination with the gait2392 and human/APO musculoskeletal 
models.

The first step was to scale the generic versions of these models to 
fit each subject using the static pose data and the Scaling Tool, 
which matched experimental markers placed on bony landmarks 
to the corresponding virtual markers placed on the model. The 

taBle 1 |  The static joint offsets between the hip joints of each subject and the 
APO joint centres.

subject right hip offset (m) left hip offset (m)

 x  y  x  y 

S1 0.0818 0.0158 0.0817 0.0097
S2 0.0546 −0.0222 0.0621 −0.0288
S3 0.0847 0.0127 0.0843 0.0141
S4 0.0770 0.0057 0.0636 0.0105
S5 0.0929 0.0067 0.0648 0.0017
S6 0.0615 −0.0017 0.0584 0.0006
S7 0.0881 0.0209 0.1081 0.0213
S8 0.0753 0.0024 0.0580 0.0022

Note that the  x  axis is directed forward from the pelvis and the  y  axis is directed 
upwards.
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gait2392 model was scaled using static pose data from the NE 
assistance scenario, while the human/APO model was scaled using 
data from the ET assistance scenario. After scaling, the following 
sequence of analyses was carried out for each gait cycle:

•  The Inverse Kinematics Tool was used to calculate joint angles 
given the marker trajectories.

•  The RRA Tool, which accounts for dynamic inconsistency between 
the musculoskeletal model and the measured data (Delp et al., 
2007), was used to produce dynamically consistent joint angles 
and a corrected model file from joint angles and ground reaction 
forces.

•  The Inverse Dynamics Tool was used to calculate joint torques 
given the RRA-corrected joint angles and ground reaction forces.

•  The Analysis Tool was used to calculate the position and velocity 
trajectory of the centre of mass of the model given the RRA-
corrected kinematics.

Each of the dynamic analyses was performed twice for the EA 
assistance scenario; once using the ideal APO torque transmission 
model and again using the compliant model. The outputs of these 
analyses were used in the calculation of the stability metrics and 
metabolic energy consumption. A schematic of the overall data 
processing and analysis pipeline is provided in Figure 3.

2.7. candidate stability Metrics
A set of candidate stability metrics were chosen so as to cover a 
range of spatial, temporal and derived metrics. It is posited that 
those gait metrics which exhibit a strong invariance to changes 
in walking context or exoskeleton assistance scenario are good 
candidates for use as a measure of gait stability  in variable 
walking conditions. The metrics and corresponding definitions 
were as follows:

•  Step width was determined as the medial-lateral distance between 
the lateral malleolus markers at the heel strikes of consecutive 
steps.

•  Step frequency was calculated as the inverse of the time between 
the heel strikes of consecutive steps.

•  The hip range of motion ( θhip-RoM ) was calculated by subtracting 
the maximum hip flexion joint angle from the minimum over the 
gait cycle.

•  Hip peak to peak torques ( τhip-pp ) were calculated by subtracting 
the maximum hip flexion joint torque from the minimum over 
the gait cycle.

•  The CoM displacement was calculated by subtracting the 
maximum CoM position from the minimum over the gait cycle. 
This was calculated in both the vertical and medio-lateral 
directions, resulting in two distinct metrics:  CoM-Vdisp  and 

 CoM-MLdisp , respectively.
•  The CoP displacement was calculated by subtracting the maximum 

CoP position from the minimum over the stance phase period. 
This was calculated in both the anterior-posterior and medio-
lateral directions, resulting in two distinct metrics:  CoP-APdisp  
and  CoP-MLdisp , respectively.

•  The margin of stability was calculated as specified by Hof (Hof 
et al., 2005):

 
MoS = |umax −

(
x + v

ω0

)
|,

  
(2)

where  umax   is the boundary of the base of support,  x   is the 
centre of mass position,  v  is the centre of mass velocity, and  ω0  
is equal to:

 
ω0 =

√
g
l ,  

(3)

Figure 2 |  A graphical representation of the APO force models for a single gait cycle. The ideal force model (With Offsets) and compliant force model (Compliant) 
are shown relative to the measured APO torques (No Offsets). Left: the torque applied to the human femur body. Note the delayed onset of the peaks in the 
compliant force model. Right: the introduction of undesired interaction forces directed parallel to the thigh. These forces are introduced due to the presence of joint 
offsets.
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with  g   denoting acceleration due to gravity and  l   being the 
distance from the pelvis ASIS to the lateral malleolus. The 
MoS was calculated in both the anterior-posterior and medio-
laterial directions, resulting in two distinct metrics:  MoS-AP  
and  MoS-ML , respectively.

These metrics are summarised for reference in Table 2, which 
gives the names, units and notation for each metric.

Note that stability was considered for the system as a whole, 
and therefore the net kinematic and ground reaction force 
data was used for metric calculations within the EA assistance 
scenario. The APO force models were not used to distinguish 

between the human and exoskeleton torque contributions in 
this case.

2.8. Modelling Metabolic Power 
consumption
The calculation of metabolic power consumption followed a 
strategy used in other works (Uchida et al., 2016b; Dembia et al., 
2017). The CMC algorithm (Thelen and Anderson, 2006) was run 
for each gait cycle, with a concurrent metabolics probe used to 
compute the instantaneous metabolic power consumption,  E

(
t
)
 , 

for each muscle in the model. This probe computes the metabolic 
power consumption according to a muscle energetics model 
implemented by the OpenSim developers (Uchida et al., 2016a), 
which in turn is based on a previous model (Umberger et al., 2003).

The gait2392 model and our adapted human/APO 
musculoskeletal model both use Hill-type muscle models 
implemented by the OpenSim developers, which represent 
muscles as musculo-tendon units (MTUs) consisting of a tendon 
in series with a contractile muscle (Thelen, 2003). Each muscle is 
characterised by its maximum isometric force, optimal muscle fiber 
length, tendon slack length, maximum contraction velocity, and 
pennation angle. The values of these parameters are informed by 
previous studies (Wickiewicz et al., 1983; Friederich and Brand, 
1990; Delp et al., 1990b; Anderson and Pandy, 1999b).

Once calculated, the instantaneous metabolic power 
consumption of each muscle was integrated over the gait cycle 
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Figure 3 |  A schematic outlining the data collection and analysis pipeline.

taBle 2 |  The direction, notation, and units of each metric.

Metric direction notation unit

Step width N/A N/A cm
Step frequency N/A N/A steps/min
Sagittal hip angle range of 
motion

N/A
 θhip-RoM 

degrees

Sagittal peak to peak hip 
torque

N/A  τhip-pp Nm/kg

CoM displacement Vertical
 CoM-Vdisp 

mm

CoM displacement Medio-lateral
 CoM-MLdisp 

mm

CoP displacement Medio-lateral
 CoP-MLdisp 

mm

CoP displacement Anterior-posterior
 CoP-APdisp 

mm

Margin of stability Medio-lateral  MoS-ML mm
Margin of stability Anterior-posterior  MoS-AP mm
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and divided by total subject mass ( m ) and gait cycle length (in 
seconds) to produce the normalised, average metabolic power 
consumption, as follows:

 
P̄avg =

1
m
(
t1 − t0

) ∫ t1
t0 E

(
t
)
dt.

  
(4)

Normalised averaged metabolic power consumption was calculated 
both using the ideal APO torque transmission model and, 
separately, the compliant model.

2.9. statistical analysis
The mean and SD of each stability metric was averaged over all 
recorded gait cycles and all subjects, for each combination of 
walking context and assistance scenario. Therefore, the number 
of samples for each combination of stability metric, walking 
context and assistance scenario was  70  for most metrics ( 10  gait 
cycles  ×   7  subjects1). An exception was the step width metric, 
which relies on pairs of adjacent gait cycles for its computation, 
and therefore had a sample size of  63  ( 9  pairs of adjacent gait 
cycles  ×   7  subjects).

The mean and SD of the normalised average metabolic power 
consumption was calculated in the same way as outlined above 
for each muscle in the musculoskeletal model, however only half 
of the recorded gait cycles were used for each subject to reduce 
the time taken to perform the simulations. Consequently, the 
number of samples for each combination of muscle, walking 
context and assistance scenario was  35  ( 5  gait cycles  ×   7  subjects).

To investigate the effects of the exoskeleton assistance and the 
walking context on the stability metrics, a two-way ANOVA was 
used. For the post-hoc analysis, the MATLAB multiple comparison 
procedure “multcompare” was used with the comparison type 
based  on Tukey’s honestly significant difference criterion. The 
statistical significance level was set at  α = 0.05 .

For combinations of walking context and assistance scenario 
which demonstrated a significant difference in the mean of a metric, 
the effect size was measured by computing the absolute value2 of 
Cohen’s  d . These values were then averaged to produce a quantitative 
measure of invariance for each metric relative to changes in assistance 
level, changes in walking context, and overall. Qualitative analysis 
of the effect size of each metric was undertaken according to typical 

1 The data from one subject had to be discarded due to an issue with the force 
plate calibration.
2 The decision to take the absolute value was motivated by an interest in the 
magnitude of an effect rather than its direction.

cutoffs for the value of Cohen’s  d  (Cohen, 1988; Sawilowsky, 2009), 
which are provided for reference in Table 3.

The two-way ANOVA and multiple comparison procedure was 
repeated with the same statistical significance level to investigate 
changes in normalised average metabolic power consumption for 
a subset of muscles crossing the hip, knee and ankle joints. The 
included muscles were as follows: the adductor brevis, adductor 
longus, adductor magnus, psoas, gluteus maximus, biceps femoris, 
rectus femoris, vastus medialis, medial gastrocnemius and soleus. For 
reference these muscles and their main actions are listed in Table 4.

In order to directly compare the effect of active exoskeleton 
assistance between different contexts, a one-way ANOVA was 
performed for each context over all assistance levels and for each 
muscle. Within each context, the muscles which had significantly 
different average metabolic power consumption when in active-ideal 
assistance mode (EA-I) or active-compliant assistive mode (EA-C) 
compared to transparent mode (ET) were identified. The relative 
change in metabolic power consumption going from transparent 
mode to active mode was then calculated as a percentage in order to 
quantify the effectiveness of the exoskeleton assistance.

3. results

The anthropometric measurements and calculated walking 
velocities for each subject are presented in Table 5.

Running the RRA tool for all the data sets generated residual 
forces and moments, which are applied to the pelvis in simulation to 
account for the dynamic inconsistency between the dynamic model 

taBle 3 |  A mapping from qualitative descriptions of effect size to the 
corresponding range of Cohen’s d  .

effect size cohen’s d   range

Very small 0.01 ≤ d < 0.20
Small 0.20 ≤ d < 0.50
Medium 0.50 ≤ d < 0.80
Large 0.80 ≤ d < 1.20
Very large 1.20 ≤ d < 2.00
Huge             d ≥ 2.00

taBle 4 |  The muscles for which a two-way ANOVA analysis was carried out, 
along with their main actions.

Muscle actions

Adductor brevis Hip adduction
Adductor longus Hip adduction, hip flexion
Adductor magnus Hip adduction, hip flexion, hip extension
Psoas Hip flexion
Gluteus maximus Hip extension, hip rotation
Biceps femoris long head Knee flexion, hip extension
Rectus femoris Knee extension, hip flexion
Vastus medialis Knee extension
Medial gastrocnemius Ankle plantarflexion, knee flexion
Soleus Ankle plantarflexion

taBle 5 |  The subjects’ anthropometric features and walking velocities. ©IEEE 
2017

subject height (m) Weight (kg) Walking velocity (m/s)

BW FW sW

S1  1.84  76.4  0.95  1.14  0.76 
S2  1.79  67.1  0.95  1.14  0.76 
S3  1.74  58.8  0.94  1.13  0.75 
S4  1.76  77.2  0.94  1.13  0.75 
S5  1.88  83.0  0.97  1.18  0.78 
S6  1.80  61.4  0.96  1.15  0.77 
S7  1.77  66.6  0.97  1.16  0.78 
S8  1.80  75.8  0.95  1.14  0.76 
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and the recorded data. These residuals should be low to ensure 
accurate simulations. All of the average residual forces measured 
during our simulations were less than the thresholds specified by 
the OpenSim developers (see Table 6).

3.1. gait Metric invariance
For each metric and for every context and assistance scenario 
the percentage difference from the baseline condition (no 
exoskeleton assistance and walking at baseline speed) is shown 

in Figures 4 and 5. Additionally, the mean and SD values for 
every context and assistance scenario combination are detailed 
in the Table S1 (Data Sheet S1).

The effect sizes for each metric, averaged separately by walking 
context and by assistance scenario, are displayed in Figure 6. 
Comparing the effect sizes averaged over walking contexts, it 
is demonstrated that step width,  CoP-MLdisp , and  MoS-ML  
have the lowest average effect size. These metrics have Cohen’s 
 d  values that indicate between small and medium effect sizes. The 

 θhip-RoM  metric exhibits a Cohen’s  d   of greater than 2.0, which 
implies a huge effect size. All other metrics show effect sizes of 
large or very large. This analysis implies that, relative to changes 
in walking context, the step width,  CoP-MLdisp , and  MoS-ML  
metrics demonstrate the highest level of invariance.

Comparing the effect sizes averaged over assistance scenario, 
the metrics which exhibit the lowest average effect size are 

 CoP-APdisp ,  CoM-MLdisp  and, similarly to the context results, 

taBle 6 |  RRA residuals in OpenSim. ©IEEE 2017

Quantity Value Opensim Benchmark

RMS Residual force (N)  7.1 ± 3.4  < 10 
Peak Residual force (N)  17.9 ± 7.6  < 25 
RMS Residual moment (Nm)  7.3 ± 4.0  < 50 
Peak Residual moment (Nm)  16.9 ± 8.7  < 75 

Figure 4 |  Percentage difference from baseline, categorised by walking context and assistance scenario, for (a) step width, (B) step frequency, (c)  θhip-RoM , (d) 

 τhip-pp , (e)  CoP-APdisp  and (F)  CoP-MLdisp . Black lines represent significant differences. ©IEEE 2017
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 MoS-ML . These metrics exhibit a Cohen’s  d   of below 0.2, which 
indicates a very small effect size. All other metrics exhibit a 
small effect size. Compared to the results for walking context, 
the effect of changing assistance scenario is in general less than 

for changing walking context. This analysis implies that the 

 CoP-APdisp ,  CoM-MLdisp  and  MoS-ML  metrics demonstrate the 
highest level of invariance relative to changes in the assistance 
scenario.

Figure 5 |  Percentage difference from baseline, categorised by walking context and assistance scenario, for (a)  CoM-Vdisp , (B)  CoM-MLdisp , (c)  MoS-AP  and 
(d)  MoS-ML . Black lines represent significant differences. ©IEEE 2017

Figure 6 |  The effect sizes for each gait metric, averaged over (a) context and (B) assistance. Note that no significant differences due to changes in assistance 
level were observed for the  MoS-ML  metric. ©IEEE 2017
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In Figure 7, the effect size is shown for each metric, averaged 
over both walking context and assistance level simultaneously. 
From these results, we see that step width,  CoP-MLdisp  and 
 MoS-ML  are the metrics which exhibit the lowest effect size, 
with values of Cohen’s  d   between  0.2  and  0.5  corresponding to a 
medium effect. Analysing the remaining metrics, we see that the 

 CoM-MLdisp  metric exhibits a medium effect size, the  θhip-RoM  
metric exhibits a very large effect size, and all remaining metrics 
exhibit large effect sizes. From this analysis we conclude that 
overall, taking in to account both changes in walking context 
and assistance scenario, the three metrics which exhibit the most 
invariance are step width,  CoP-MLdisp  and  MoS-ML .

3.2. Metabolic Power consumption
For each muscle in Table 4 the percentage difference in average 
metabolic power consumption from the baseline condition (no 
exoskeleton assistance and walking at baseline speed) as a function 
of walking context and assistance level is demonstrated in Figures 8 
and 9. Additionally, the raw mean and SD values for every context 
and assistance scenario combination are detailed in Table S2 (Data 
Sheet S1). For analysis purposes the data from the two APO force 
models are presented as distinct assistance levels.

Given the cases where significant differences in the average 
metabolic power consumption were observed, the effect size was 
averaged along assistance and context. The results are presented 
in Figure 10. Notably, the change in assistance had no significant 
effect on four of the muscles, namely: the adductor longus, 
adductor magnus, gluteus maximus or biceps femoris long head. 
Changes in walking context introduced at least some significant 
differences to all muscles in the subset.

In general, the observed effect of assistance level on the average 
metabolic power consumption of the muscles was small, with all 
effect sizes lying within the range  0.2 ≤ 0.5  regardless of whether 
the ideal or compliant APO force model was used. In each of the 
muscles which demonstrated a significant effect, the compliant 
APO force model resulted in a slightly more pronounced or 
equivalent effect size when compared to the ideal force model.

In contrast, the muscles we considered experienced a wider 
range of effect sizes due to changing walking context. The 
psoas, gluteus maximus, biceps femoris long head,  medial 
gastrocnemius and soleus muscles all exhibited large effect sizes, 
with a Cohen’s  d   of greater than  0.8  but less than  1.2 . The vastus 
medialis was the muscle which was most affected by changes in 
walking context, exhibiting a very large effect size. The adductor 
longus experienced a medium effect size and the adductor brevis, 
adductor magnus, and rectus femoris all experienced small effect 
sizes. Similar to the assistance-averaged case, use of the ideal 
or compliant force models did not alter the classification of the 
effect size for any muscle.

From Figures 8 and 9 we can see that only one muscle from 
our subset shows a significant difference in metabolic energy 
consumption on average over all contexts due to the transition from 
transparent mode to active assistance, namely the adductor brevis 
muscle. Five muscles, the psoas, rectus femoris, vastus medialis, 
medial gastrocnmeius and soleus show significant differences 
between the NE and ET assistance levels, which implies the change 
in metabolic energy consumption of these muscles is attributable 
to the increased physical load of wearing the exoskeleton rather 
than the presence of active assistance itself. One muscle, the psoas, 
shows a significant difference between the APO force models.

The muscles from the full set which were identified via the 
context-specific one-way ANOVAS to experience a significant 
change in metabolic energy consumption between the ET and 
EA assistance levels are listed by context in Table  7. Note that 
significant differences were seen for the uphill walking, downhill 
walking and slow walking contexts for both force models. Significant 
differences were seen in the flat walking context, but only when 
the compliant model was used. No significant differences were 
seen in the fast walking context. The relative change in metabolic 
power consumption is shown for the muscles in these contexts 
in Figure 11. The overall effect, calculated from total significant 
metabolic energy change in each context, is presented in Figure 12. 
We see from these results that the active exoskeleton assistance has 
a positive effect in the BW scenario, but only when the compliant 
APO force model is used. There is a disagreement in the UW 
context, where the ideal APO force model predicts a net assistance 
of approximately  8% , whereas the compliant force model predicts 
that human metabolic energy consumption is increased. The ideal 
force model predicts that the iliacus and psoas muscles are assisted; 
the main actions of these muscles is to assist hip flexion. Meanwhile, 
both force models agree that the active exoskeleton assistance is 
detrimental in the SW and DW scenarios, where human metabolic 
energy consumption is seen to increase by between approximately 
 5%  and  12%  depending on the walking context and which force 
model is used.

4. discussiOn

4.1. stability Metrics
It is well known that walking speed is a cause of gait variability 
for kinematic, kinetic, and  CoMdisp  metrics (Winter, 1984; 
Stansfield et  al., 2001; Orendurff et  al., 2004) and the results 
from this study also demonstrate the same findings. This study 

Figure 7 |  The effect sizes for each gait metric, averaged over all 
combinations of walking context and assistance scenarios. ©IEEE 2017
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demonstrates that step frequency increases due to speed and 
anecdotally suggests that step length increases as well (step 
length was not included in the analysis due to unavailability 
of complete consecutive step data for some of the participants 
due to cross-talk on the force plates). The step width metric was 
demonstrated to be invariant with only one significant difference 
with a small effect size between walking downhill and walking at 
a fast speed. Walking speed causes variation for the  CoP-APdisp  
and the  CoP-MLdisp  metrics, however, the effect on  CoP-MLdisp  
is small and only between the fast and baseline walking speed 
contexts. In addition, walking speed affects the  MoS-AP  and 

 MoS-ML   metrics, however there is only a small effect in the 
medio-lateral direction between the slow and baseline walking 
speed contexts. It is a logical result that walking speed has a 
greater effect on the metrics measured in the anterior posterior 
direction compared to the medial lateral direction because 
walking speed is a change of direction mainly in the anterior 
posterior direction.

The effect of walking up and down an incline has previously 
been demonstrated to have significant kinematic and kinetic 
changes (Lay et  al., 2006) and the results from this study 
support this result. In addition to the effects on kinematics and 

Figure 8 |  The % difference in average metabolic power consumption of the (a) adductor brevis, (B) adductor longus, (c) adductor magnus, (d) psoas, (e) 
gluteus maximus and (F) biceps femoris long head muscles.
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kinetics, the results from this study indicate that walking on an 
incline affects the  CoM-Vdisp  metric  and that walking down 
an incline affects the step frequency,  CoM-Vdisp ,  CoM-MLdisp
 , and  MoS-AP   metrics. The increase in step frequency is 
expected due to a shorter step length being taken. The effects 

on the CoM vertical displacement are also expected due to 
the change in height caused by the slope. The effect on the 
 MoS-AP  metric is expected because this measures the stability 
in the backwards direction and it is clear that when the torso 
is tilted forwards the  MoS-AP  values will increase. Neither 

Figure 9 |  The % difference in average metabolic power consumption of the (a) rectus femoris, (B) vastus medialis, (c) medial gastrocnemius and (d) soleus 
muscles.

Figure 10 |  The values of Cohen‘s  d  for each muscle in our subset averaged by (a) assistance and (B) context. Note that absence of a muscle denotes that no 
significant differences were observed.
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walking up or down an incline had a  significant effect on  
the  MoS-ML  .

This study demonstrates there are significant differences 
between the  θhip-RoM  metric caused by context and assistance 
scenario changes. This result aligns with the work by d’Elia et al. 
(d'Elia et al., 2017), and similarly their claim that the differences 
between the assistance scenario  θhip-RoM  results are within the 
natural variation of gait is also applicable. There was a significant 
increase in the  τhip-pp  metric from the ET to the EA scenario. 
This result suggests a disagreement with a study by Lewis and 

Ferris (Lewis and Ferris, 2011), which found that the net torques 
did not change between walking with an exoskeleton in passive 
mode and with it in assistive mode. The result from our study 

taBle 7 |  The muscles which are significantly affected by exoskeleton 
assistance for each context.

Baseline walking uphill walking downhill 
walking

slow walking

Adductor brevis Iliacus Adductor longus Adductor brevis
Rectus femoris Psoas Tibialis posterior Adductor brevis

Quadratus  
femoris

Biceps femoris long 
head

Medial  
gastrocnemius

Lateral 
gastrocnemius
Flexor hallucis longus
Peroneus brevis
Peroneus longus

Figure 11 |  The percentage change in average normalised metabolic energy consumption of muscles which show a significant change between the ET and EA 
assistance modes during (a) flat walking, (B) uphill walking, (c) downhill walking and (d) slow walking. Note that red bars correspond to the compliant force model 
whereas blue bars correspond to the ideal force model. Absence of data denotes that no significant differences were observed in this case.

Figure 12 |  The overall metabolic effect of exoskeleton assistance in each 
walking condition, for both the ideal APO force model (blue) and the 
compliant APO force model (red). Absence of data denotes that no significant 
differences were observed in this case.
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suggests that torque from the exoskeleton is not entirely being 
transferred to the individual, which is quite probable due to the 
non-rigid attachments of the exoskeleton. There is a significant 
increase in the  CoP-MLdisp  metric from the NE and the ET and 
EA scenarios, which can be attributed to the extra weight of the 
exoskeleton laterally located to the participant. One consideration 
for the above findings is that the effect sizes for all the metrics 
for the assistance scenarios were between small and medium, 
which suggests the differences are small between the assistance 
scenarios. This is in contrast to the context effect sizes, where 6 
out of the 10 metrics had large or greater effect sizes.

All gait metrics exhibited some significant differences due to 
the changes in walking context and assistance scenario. After 
factoring in the effect sizes the most invariant metrics were 
shown to be step width,  CoP-MLdisp , and  MoS-ML . All three 
metrics have been demonstrated to be associated with stability 
(Hof et al., 2005; Kuo and Donelan, 2010; Svoboda et al., 2016), 
and therefore it is intuitive that they remain fairly constant 
despite changes in walking context and the application of small 
constant perturbations. The MoS metric is most suitable for use 
in a control paradigm because it can be calculated at any given 
time during a gait cycle and therefore enables a significantly 
more responsive controller. As a source of further work, our 
investigation of stability metrics could be repeated with patients 
to determine how the invariance properties of the metrics are 
affected by gait pathologies.

4.2. Metabolic Power consumption
In general, we observed that applying exoskeleton assistance had 
significantly less effect on metabolic energy consumption than 
changes in walking context. However, this analysis was limited 
by the fact that while there were three assistance scenarios, only 
one of these scenarios explored active assistance, and therefore 
comparison between different magnitudes of active assistance 
was not explored. A source of further work could be to collect 
data using a wider range of virtual stiffness levels, which would 
allow for an analysis of how the metabolic effect of active 
assistance varies with assistance magnitude. It should be noted 
that the motor torques commanded to the APO during active 
assistance trials were already close to the torque limitations in 
place on the device.

The relative effect of applying exoskeleton assistance was 
most pronounced in the flat walking, uphill walking, downhill 
walking and slow walking scenarios. In the latter two of these 
scenarios, both the ideal and compliant APO force models 
predicted increased metabolic cost. The compliant model 
predicted that flat walking benefited from assistance, while 
the ideal model predicted that uphill walking benefited from 
assistance. Anecdotally, this result agrees with feedback 
from subjects following data collection (e.g., the exoskeleton 
assistance was most beneficial when walking uphill). The 
negative effect of the exoskeleton when walking at slow 
speed may be a result of the choice of control algorithm. As 
discussed in Section 2.1, the control algorithm used is based 
on adaptive oscillators, which requires synchronisation to 
input joint angles. Therefore, the decrease in performance in 

the slow walking context may have been due to a suboptimal 
synchronisation. However, during walking trials, time was 
allowed both for subject familiarisation with the new context 
and for APO controller synchronisation.

A limiting factor of our study is that the adaptive oscillator 
control sceheme was the only exoskeleton controller tested. A 
source of further work could be to apply or develop additional 
control paradigms, so that their relative performance over 
different contexts can be analysed. Additionally, external 
measurement devices such as calorimetry systems, which 
have recently been used for investigations in to metabolic cost 
reductions of soft exosuits (Quinlivan et  al., 2017), could be 
helpful in directly quantifying changes in net metabolic activity 
in future experiments, reinforcing our simulation framework.

It should be noted that the implementation of a compliant 
APO force model was intended largely as a point of qualitative 
comparison between the results from the ideal APO force 
model. Indeed, several differences between the experimental 
setup used  for this work and the work on interface dynamics 
(Yandell et al., 2017) could lead to differing compliant behaviour 
in our case. However, these results do suggest qualitatively that 
including compliance in the system, as certainly is the case 
for contact between exoskeletons and soft straps or human 
tissue, can cause marked differences in the effectiveness of 
exoskeleton assistance. Further work is needed to implement 
control algorithms which can account for human-exoskeleton 
interface dynamics in real-time.

Overall, our results quantify the effect that varying walking 
context has on the effectiveness of active exoskeleton assistance. 
If exoskeletons are to be applied in real-world settings where 
subjects may frequently adapt their walking speed or incline, 
they must be able to rely on adaptive control algorithms which 
can account for these changes in walking context. Failure to 
do so can result in increased, rather than decreased, metabolic 
energy costs, as shown by our analysis. Techniques based on 
musculoskeletal modelling over various walking conditions can 
be useful and non-invasive tools for testing how well exoskeleton 
control algorithms perform in this regard.
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Assistive devices can be considered as one of themain applications of legged locomotion

research in daily life. In order to develop an efficient and comfortable prosthesis or

exoskeleton, biomechanical studies on human locomotion are very useful. In this paper,

the applicability of the FMCH (force modulated compliant hip) model is investigated for

control of lower limb wearable exoskeletons. This is a bioinspired method for posture

control, which is based on the virtual pivot point (VPP) concept, found in human walking.

By implementing the proposed method on a detailed neuromuscular model of human

walking, we showed that using a biarticular actuator parallel to the hamstring muscle,

activation in most of the leg muscles can be reduced. In addition, the total metabolic

cost of motion is decreased up to 12%. The simple control rule of assistance is based

on leg force feedback which is the only required sensory information.

Keywords: exosuit, reflex-based control, neuromuscular models, walking assistance, biarticular actuation

INTRODUCTION

Legged locomotion is a complex nonlinear hybrid problem. There are abstract models which
simplify understanding such a complex problem that can explain basic characteristics of human
walking to be used for design and control of the artificial legged systems. One of the most popular
concepts for abstraction is the “Template and Anchor” concept (Full and Koditschek, 1999). In
this method, simple conceptual (template) models are used to describe some basic features of
legged locomotion than can be extended to more detailed (anchor) models to implement on robots.
Another approach is using the locomotor sub-function concept (Sharbafi and Seyfarth, 2017a)
which explains legged locomotion based on three locomotor sub-functions, which are intrinsically
interrelated. As shown in Figure 1, these three sub-functions are “Stance” for redirecting the center
of mass by exerting forces on the ground; “Swing” as rotational movement of the free leg (no
contact with the ground) around hip joint and “Balance” formaintaining body posture. Splitting the
legged locomotion as a complex problem to three sub-problems helps us simplify understanding
human locomotion (Sharbafi and Seyfarth, 2017b) and improve design, and control of legged
locomotor systems (Raibert, 1986). As a result, combination of the template-anchor and locomotor
sub-function concepts provide a practical tool to benefit from biological locomotor systems in
design and control of robots and assistive devices (Ahmad Sharbafi et al., 2017).
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There is a variety of methods to control exoskeletons inspired
by human locomotion and motor control such as a force
controller that behaves similar to a biological hip torque profile
(Yu et al., 2014), a proportional myoelectric controller (Ferris
et al., 2006), impedance control (Sharbafi and Seyfarth, 2017a),
central pattern generators (CPGs) (Sobrade et al., 2017) and
recently, Hybrid Zero Dynamics (HZD) method (Agrawal et al.,
2017). In order to produce a proportional control signal, the
myoelectric controller makes use of electromyography (EMG)
of the muscles of the lower limbs for the hip exoskeleton
(Ferris et al., 2006). Impedance control regarding the dynamic
interactions between the leg and the ground is also very popular
in exoskeletons with rigid structure like LOPES (Veneman et al.,
2007).

In this paper, we focus on balance control (the third locomotor
sub-function), as it might be more challenging in assisting
healthy humans via exoskeletons (Full and Koditschek, 1999),
in which reducing cost of transport and robustness against
perturbations are addressed. Postural control consists of complex
interactions between a number of systems in the human body
such as musculoskeletal components, neuro-muscular synergies
and adaptive mechanisms to achieve gait stability.

In Maus et al. (2010), by analyzing human and animals
locomotion experiments Maus et al. showed a pattern in ground
reaction forces, introducing VPP (standing for virtual pivot
point) for posture control. The VPP is a point on the upper
body above the center of mass at which the GRFs are intersecting
during the stance phase. This observation in human walking (and
animal walking and running) can be also used for posture control
in models and robots (Maus et al., 2010; Sharbafi et al., 2013).
A new mechanical template model was developed in Sharbafi
and Seyfarth (2015) to generate VPP using an adjustable hip
spring. This model which is called FMCH (force modulated
compliant hip) employs the leg force to adjust hip compliance.
Here, this bioinspired control approach for balancing is utilized
to design and control of an exoskeleton with one biarticular
actuator. This method was inspired by neuromuscular models
and reflex control while it benefits from biological feedback
signal. For example, Geyer et al. demonstrated that reflex-based
motor control (e.g., positive feedback of muscle) can generate
efficient and reliable bouncing gaits instead of using central
motor commands (Geyer et al., 2003). Other studies on reflex
control show the important potential of this bioinspired method
for developing human gait models (Geyer and Herr, 2010; Song
and Geyer, 2015) and understanding human motor control
(Haeufle et al., 2012). The neuromuscular model of Geyer and
Herr (Geyer and Herr, 2010) is a well-accepted human walking
model, which is extended to 3d in Song and Geyer (2015) and
also for analyzing performance of prosthesis and exoskeletons in
Thatte andGeyer (2016). Thismodel can be utilized as a reference
neuromuscular model for assessing human (bipedal) locomotion.
We use it in our simulation studies to investigate the performance
of the proposed design and control approach of exoskeletons in
assisting human walking.

Exoskeletons are developed to enhance human’s movement
capabilities, e.g., to carry heavy loads or make up for physical
disorders caused by deficiencies in the muscular nervous system.

FIGURE 1 | Locomotor sub-functions: Stance, Swing and Balance.

Interaction between the robots and human beings can be
improved if human body properties and motor control are better
understood. Exoskeletons can be divided to rigid (Veneman
et al., 2007; Esquenazi et al., 2012) and soft exoskeletons (Asbeck
et al., 2014; Ding et al., 2017). The second group, namely
exosuit, is matching better to human body properties while the
rigid exoskeletons are more powerful and practical for impaired
people. In exosuits, similar to the human body, the transfer
of torques to the joints is performed through tensile forces
parallel to the body muscles. The main application of exosuits is
enhancement in performance of healthy subject needless to have
powerful actuators to carry body weight. Applicability of FMCH
for assisting a rigid exoskeleton (LOPES II) was shown in our
previous study (Zhao et al., 2017). Here, we present advantages of
implementing thismethod using a biarticular actuator (parallel to
hamstrings, shown in Figure 2A) that can be easily implemented
on soft exoskeletons.

METHODS

One of the most useful applications of studying biomechanics of
legged locomotion is design and development of assistive devices.
The goal of this study is to investigate the applicability (assistance
level) of a bioinspired template-basedmethod for posture control
regarding reduction in metabolic cost and muscle activation.
In this paper, we use the reflex-based neuromuscular model of
Geyer and Herr (2010) for human-like walking. In the following,

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 39131

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sharbafi et al. Leg-Force Control for Walking Assistance

FIGURE 2 | The concept of FMCH-based assistance. (A) The leg architecture

including different muscle groups used in Geyer model (Geyer and Herr, 2010);

HAM, Hamstrings; GAS, Gastrocnemius; VAS, Vastus; SOL, Soleus; GLU,

Gluteus Maximus; HFL, Hip flexor; TA, Tibialis Anterior and posture control

assistance with an SEA. (B) Implementation of FMCH-based assistance using

biarticular thigh muscle.

first we explain bipedal walking models and then the proposed
FMCH-based control approach and its implementation as a soft
exoskeleton in the aforementioned neuromuscular model.

Conceptual Modeling of Bipedal Walking
Bipedal walking can be described by repetition of two sequential
phases: double support (DS) and single support (SS). In DS, both
legs are in contact with the ground and the center of pressure
(CoP) moves from hind foot to the front foot. When the hind leg
leaves the ground (takeoff), SS starts and continues until its next
contact with the ground (touchdown). In SS, one leg is in contact
with the ground (called stance leg), while the swing leg moves to
complete the step by touching the ground with a desired angle of
attack.

In order to explain our control concept, a minimal model
is required. To analyze and describe animal or human
locomotion, simple conceptual models, called “templates,” are
useful. Templates provide a great deal of information, which
can help explain the features of locomotion. Templates are also
used as explicit control models. One of the most useful template
models for walking and running is the SLIP (Spring-Loaded
Inverted Pendulum) (Blickhan, 1989; Seyfarth et al., 2002; Geyer
et al., 2006). In the SLIP model, the body mass is concentrated at
the center of mass (CoM) on top of amassless spring representing
the stance leg.

In order to address posture control, an upper body should
be added to the SLIP model. The common way is extending
the model by an additional rigid trunk, resulting in TSLIP
(Trunk+SLIP) model (Sharbafi et al., 2013). The basic SLIP
model was developed for hopping (Blickhan, 1989) and running

(Seyfarth et al., 2002). For walking a second leg is required which
together with the trunk results in BTSLIP (Bipedal + TSLIP)
model (Sharbafi and Seyfarth, 2015). Thismodel is used in section
Control Method Description to describe the VPP and FMCH
control concepts. In the next section, a brief overview of the
neuromuscular model of walking is presented.

Human Walking Model
All simulations are implemented on top of a basic 2D model
named muscle-reflex model (Geyer and Herr, 2010) including
7 segments (1 upper body, 2 thighs, 2 shanks and 2 feet) and 7
muscle groups for each leg. Figure 2A shows the segmentation of
one leg and different muscles, implemented in this leg. Themodel
includes muscle dynamics and hypothesized reflex pathways
to generate joint torques, to mimic human walking patterns
regarding kinematics, kinetics, and muscle activation. With this
model, a network of muscle reflexes is utilized as a practical tool
to link complex, neural circuits of biological locomotor systems
and abstraction in conceptual models. By dynamic interplay of
the body and the ground besides internal neural circuitry, this
model can generate human-like walking which is also robust
against perturbations. Furthermore, this model can be employed
for assessing robots’ performance in assisting human locomotion
(Thatte and Geyer, 2016).

The description of the human walking model in the following
is basically borrowed from Geyer et al. (2003) and Geyer and
Herr (2010), where the segmented model and the reflex-based
neuromuscular control are presented.

In this model, MTC (muscle-tendon-complex) consists of
a contractile element (CE) and a series elastic element (SEE)
(Figure 3). The serial elastic element (SEE) which plays the
tendon role in this model follows the nonlinear unidirectional
spring, inspired by the model of van Ingen Schenau (1984):

FSEE(lSEE) =

{

( lSEE−lrest
lref−lrest

)
2
if lSEE > lrest

0 if lSEE ≤ lrest
(1)

where lrest is the tendon’s resting length and lref is the reference
length.

The developed force of the CE is a function of the muscle
activation level A(t), the maximum isometric force Fmax, the
force-length function fl(lCE) (and the force-velocity relationship
fv(vCE),

FCE = A(t)Fmaxfl(lCE)fv(vCE) (2)

in which lCE and vCE are themuscle length and contraction speed,
respectively. The force-length function is given by the following
equation (Aubert, 1956):

fl(lCE) = e
(c

∣

∣

∣

∣

lCE−lopt
wlopt

∣

∣

∣

∣

3

)
(3)

Where lopt , w and c are the optimum CE length, the width of the
bell-shaped fl(lCE) curve and a constant value, respectively. The
force-velocity relation is composed of the Hill model (Hill, 1938)
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FIGURE 3 | Neuromuscular reflex-based model of MTC used in walking model. The figure is adopted from Geyer et al. (2003).

and Auber model (Aubert, 1956) for contraction and protraction,
respectively (see Geyer et al., 2003, for details):

fv (vCE) =

{

vmax−vCE
vmax+KvCE

, vCE < 0

N + (N − 1) vmax+vCE
7.56KvCE−vmax

, vCE ≥ 0
(4)

in which vmax and N denote maximum contraction velocity
and a constant value, respectively. The activation is resulted
from stimulation signal, which uses reflex pathway as shown in
Figure 3.

τA (t) = STIM (t)−
d(A (t))

dt
(5)

STIM(t) =

{

STIM0, t < 1p

STIM0 ± GP
(

t −1p

)

, t ≥ 1p
(6)

where STIM(t), A(t) , STIM0 and are stimulation signal,
activation signal, stimulation bias and signal propagation delay,
respectively.

The feedback sensory signals P is given by a combination of
three reflex pathways CE length (lCE), velocity (vCE), and the
muscle force (FCE) which is equal to the MTC force and the
FSEE. In this model, different combinations of reflex pathways
are considered for different muscles and the gain values are
optimized to achieve stable human-like walking.

In order to show the assistance level of the exosuit, we
compare the metabolic cost (see section Optimization) for three
different models. First, we consider the human walking model
without assistance, borrowed fromGeyer and Herr (2010). In our
simulations, all the parameters of the neuromuscular model are
set to values defined in Geyer and Herr (2010). Table 1 shows the
muscle properties and reflex gain factors and the model can be
downloaded here.

In the second model, we added exosuit for assistance,
neglecting the additional weight of the exo. The parameters of the
exo are found using optimization techniques explained in section
Optimization. This model can represent the level of assistance
compared to the transparent mode. Another application of this

TABLE 1 | Muscle properties and reflex gains in the neuromuscular model of

human walking, from Geyer and Herr (2010).

Muscle Gain factor Fmax (N) vmax

(

lopts
−1

)

lopt (cm)

HFL 0.35 2,000 12 11

GLU 0.4 1,500 12 11

HAM 0.65 3,000 12 10

GAS 1.1 1,500 12 8

VAS 1.15 6,000 12 5

SOL 1.2 4,000 6 6

TA 1.1 800 12 4

model is to represent walking of a human subject wearing a
passive version of the assistive device (under construction) with
low weigth to compare with normal walking. In addition, in
most of the studies on exosuits, the weight of the actuation
setup is neglected using the tethered actuation system in which
the actuators and the corresponding electronics are mounted
separately on a fixed frame and forces are transferred through
cables connected to human body by ligth wearable parts (Asbeck
et al., 2014; Ding et al., 2017). However, in the third model, we
consider additional weight of the active exosuit including the
motors, sensors, electronics and the box placed in the backpack
besides the passive elements such as the cables, springs, wearable
parts. In this model, we have added 4 kg to the mass of the upper
body based on the parameters of our recently developed exosuit
shown in section Discussion.

Control Method Description
As the focus of this study is on assistance of healthy subjects to
enhance their motion performance by exosuits, balance control
is more crucial. For impaired people or elderly people who use
crutches, stance and swing sub-functions have more importance.
In this section, we explain the VPP and FMCH concepts for
balance control and how to benefit from biarticular actuation
to employ the FMCH on muscle-reflex model for walking
assistance. Thus, first we explain VPP and FMCH concepts based
on BTSLIP model that include prismatic (one-segment) leg, and
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then show how FMCH method can be implemented on muscle-
reflex model that include segmented leg.

Balance Control, VPP and FMCH
Humans walk with upright upper body as one of the main
differences with other animals (Maus et al., 2010). Because of
inherently unstable dynamics of the inverted pendulum, which is
a popular model of balancing in bipeds, keeping upright posture
is more challenging than body posture in multi-legged models.
However, using external support, postural stability becomes less
critical. Therefore, vertical body alignment, which has a key role
in stabilizing human locomotion can be handled in an easy way.
This external support can be considered as the core idea of virtual
pivot point (VPP) concept (Maus et al., 2010).

As mentioned in section Introduction, it is observed that
the ground reaction force (GRF) vectors of the stance leg in
humans (and animals) walking intersect at a point on the upper
body above CoM (Maus et al., 2010). This intersection point,
which is called VPP can translate the balancing from an inverted
pendulum model to a virtual pendulum (VP) as a point mass at
CoMhanging from theVPP. This concept can be used for posture
control of bipedal gaits (see Figure 2B). Using the BTSLIPmodel,
a hip torque (τ ) between upper body and the virtual leg
(connecting the hip to the CoP) can be found to redirect the GRF
going through a determined VPP (Sharbafi and Seyfarth, 2015).

τ = Fsl
rhsinψ + rVPPsin(ψ − γ )

l+ rhcosψ + rVPPcos(ψ − γ )
(7)

where τ , Fs, l, ψ , rVPPand rh are the hip torque, leg force, leg
length, hip angle, the distance from CoM to VPP and from VPP
to hip joint, respectively. The VPP angle is defined by γ as the
angle between body axis and the vector from CoM to VPP as
shown in Figure 2B. It is important that for posture control using
VPP concept we do not need to measure the trunk angle with
respect to ground and just the internal angle between upper body
and the virtual leg is sufficient. Therefore, a hip spring between
upper body and the leg in BTSLIP model can be used to measure
this angle. In the next section, we depict how biarticular thigh
muscles can be used to measure this angle. The second significant
point is about modulation of the mentioned hip spring by the
leg force (Fs) in Equation (7). Based on these two concepts the
FMCHmodel was developed (Geyer et al., 2003) which simplifies
the posture control as follows.

τ = khFs(ψ0 − ψ) (8)

In which kh and ψ0 are the normalized stiffness and the rest
angle of the adjustable hip spring, respectively. It was shown that
for a range of joint angles variations, used for human normal
walking, FMCH presents a very precise approximation of VPP
(Sharbafi and Seyfarth, 2015). As it is shown in Figure 2, the
GRF vector can be decomposed to the perpendicular and axial
directions. To control upper body posture using VPP method
we can adjust Perpendicular GRF by hip torque, such that GRF
direction crosses VPP. However, when we use neuromuscular
model of Geyer and Herr (Geyer and Herr, 2010) with segmented
legs, themodel needs to be extended. For this we define the virtual

leg from hip to ankle and the virtual hip torque between the
upper body and the virtual leg. To control this virtual hip torque
both hip and knee joints should be controlled in coordination.
In the following, we demonstrate how biarticular muscles with
appropriate lever arm ratios can be employed to provide access
to control the virtual hip torque and then, the perpendicular term
of the GRF with respect to the virtual leg.

Segmentation and Biarticular Actuation
One of the important characteristics of the human body, which
is beneficial for efficient locomotion, is the leg morphology. The
zigzag configuration of the human leg is opposite to birds’ leg
curvature. Each of these configurations is optimized due to the
body properties (e.g., position of CoM with respect to the hip,
the ratio between different leg segments’ lengths) during million
years of evolution. For example, the segment lengths ratio in
human leg correspond to the required highly loaded MTC in
the human leg, determined by the stress-strain properties of the
tendons (Seyfarth et al., 2000).

One of the most important properties of muscular systems
in animals (including humans) is using biarticular muscles.
The neuromuscular model of Geyer includes two biarticular
muscles (HAM and GAS) and five monoarticular muscles
GLU, HFL, VAS, TA and SOL as shown in Figure 2A. Several
advantages of using biarticular muscles beside monoarticular
ones were depicted such as coupling of joint movements, velocity
contraction, passive energy transfer between and homogenous
bending of the adjacent joints (van Ingen Schenau et al., 1990;
Seyfarth et al., 2001). In our previous studies, we have shown
the significant contributions of biarticular muscles to different
locomotion sub-functions control (Sharbafi et al., 2016a). It
was shown that with appropriate design of the thigh biarticular
actuators in BioBiped3 robot, GRF direction can be controlled
with minimum interference to GRF magnitude. In addition,
minimizing the influence of GRF direction control on the axial
leg function results in a decoupled control of stance and balance
locomotor sub-functions. As posture control using the VPP
concept is based on GRF direction control, we design our soft
exo by a compliant adjustable biarticular actuator parallel to the
human HAMmuscle.

The ratio between lever arms of the two connected joints is
a key design parameter in biarticular actuation. Due to similar
size of shank and thigh in human leg, setting hip to knee lever
arm ratio to 2:1 minimizes the crosstalk between changes in axial
and perpendicular GRF (Sharbafi et al., 2016a). Therefore, here
we attach a compliant actuator connecting the upper body to
the shank, while the moment arm at hip is twice the moment
arm at knee joint (see Figure 2B). Then, the FMCH control
approach is employed to adjust stiffness in which the actuator is
modeled by an adjustable spring with lengthlexo, rest length lexo0
and normalized stiffnessch. Therefore, the actuator force Fexois
calculated as follows

Fexo = chFsmax
(

lexo0 − lexo, 0
)

= chFsmax
(

1lexo, 0
)

. (9)

The max function in this equation shows that the actuator is
unidirectional. Therefore, the actuator can pull the segments (like
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biological muscles or the SEA, shown in Figure 2). Considering
the hip to knee muscle lever arm ratios of 2:1, the actuator length
change will be proportional to the variation in the angle between
the upper body and the virtual leg (ψ in Figure 2B).

1lexo = rexohip1ψ . (10)

in which rexo
hip

is the actuator lever arm at hip joint and . Derivation

of this equation is presented in the Appendix.
As a result, the muscle force is given by

Fexo = chFsr
exo
hipmax (1ψ , 0) = khFsmax (ψ0 − ψ , 0) (11)

This equation is similar to the FMCH control for BTSLIP
model, explained in Equation (8). This shows that using
biarticular actuator with hip to knee lever arm ratio 2:1, precise
implementation of VPP is achieved through FMCHmodel. Based
on this argumentation, we suggest designing an assistive device
(e.g., in soft-exo) to generate forces almost parallel to the HAM
muscle. This exo generates the following hip (τ exo

hip
)and knee

(τ exo
knee

) torques

τ exohip = 2τ exoknee = rexohipF
exo. (12)

This method was implemented on LOPES II robot by emulating
biarticular actuator using two monoarticular hip and knee
actuators (Zhao et al., 2017).

Optimization
In the proposed control approach (11), kh and ψ0 are the two
tuning parameters of the controller. First of all we need to define
stable walking. Here we use step-to-fall approach to detect stable
gaits. The model is initiated with a specific initial condition
adopted fromGeyer and Herr (2010) for normal walking without
assistance. Then, the stability is verified if the model can take
50 steps. In order to minimize energy consumption in human
body (metabolic cost), we define the following cost function (J)
for optimization.

J =
1

M

∑N

i=N−M+1

Etotalmet

d
. (13)

This metric shows the average of consumed energy for traveling
1 meter in the lastM steps. In our simulations,Mand N are set to
30 and 50 determining the mean value of the metabolic cost for
the last 30 steps of 50 steps defined for a stable solution. Here, we
considered 20 steps to pass the transient behavior and to reach the
steady state. In this equation, dis the travelled distance and Etotalmet

denotes total metabolic cost of humanwalking (Etotalmet =

7
∑

i=1
Eimet),

consumed by the seven different muscle groups defined in the
neuromuscular model (Geyer and Herr, 2010; see Figure 2). For
each muscle the metabolic cost is calculated as follows

Emet =

∫ t2

t1
Pmet (14)

where Pmet(t) is instantaneous metabolic power (Krishnaswamy
et al., 2011). This value is computed for each muscle and their
summation gives the total metabolic cost of the whole body
motion (Etotalmet ). At any time t, Pmet(t) is obtained as follows

Pmet(t) = p(vCE/vmax)× A(t)× |Fmax × vmax| (15)

in which p(x) is a function approximated based on empirical data
(Alexander, 1997) by

p(x)=

{

0.01− 0.11 (x)+ 0.06exp (23x), x < 0
0.23− 0.16 exp (−8x) , x ≥ 0

(16)

For this, we implemented an optimization procedure in the
neuromuscular model (presented in section Human Walking
Model). To find the optimal values of kh and ψ0 that minimize
the normalized metabolic cost [defined by (13], we searched
in definable ranges of these parameters. These ranges are 0 to
10 for the normalized stiffness kh and −25 to 25◦ for the rest
angleψ0. Out of these ranges is not obtainable due to limitations
in actuation mechanism. Here, we assume that the body control
parameters including the reflex gains are fixed as presented in
Geyer and Herr (2010). Hence, addition of the biarticular soft-
exo can only affect the muscle force generation though changing
the reflex signal (e.g., muscle forces). It is clear that optimizing the
parameters of both soft-exo and reflex gains will result in higher
reduction in metabolic cost as the fixed gains are one parameter
set in the gain parameter space that may have other minima with
lower metabolic costs. Hence, our method can result in higher
assistance if we consider human adaptation to the assistive device.

RESULTS

In this section, we explain the simulation results of applying
the FMCH controller on a biarticular thigh actuator to assist
human walking at normal walking speed (1.3 m/s). We compare
muscle forces, activations and metabolic costs in the different 3
models. The first one is for human walking without assistance;
the second one is with assistance in an ideal case without addition
of the exoskeleton mass. This demonstrates the quality of the
proposed method regardless the implementation issues. Finally,
a 4 kg package is considered on the upper body to contain
two actuators, electronics and processor. The force is transferred
through a cable drive mechanism similar to the soft-exos (Ding
et al., 2017). The kinematic behavior of the gait and the motion
speed are not significantly different (less than 5%) in the three
models (not shown).

The optimal control parameters for the stiffness and the rest
angle of the exo based on Equation (11) are kh = 5.65 and
ψ0 = −7◦ . These numbers show that during the stance phase,
the exosuit starts to pull after touchdown until ψ reaches −7◦

which is slightly after mid-stance. In the swing phase, the exo
does not produce any force because the leg force is zero.

In the following the muscle force, activation and metabolic
power are compared to demonstrate the advantages of the
proposed method for design and control of the exoskeleton.
Similar to previously explained approach for the cost function
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(section Optimization), here we consider the last 30 steps and
the mean and standard deviation are shown in the following
figures. First, in Figures 4, 5 we show the values for the
Ham muscle, as it is parallel to the actuator. Then the mean
values for one stride are shown for different muscles. In
sectiion Energy Economy, the total metabolic power is used to
realize the effectiveness of the proposed technique. Finally, the
contribution of the exosuit design on posture control is analyzed
using VPP.

Effects on HAM Muscle
In this section, we show the activation and the force produced
by HAM muscle in the three different cases. Figure 4. Illustrates
the mean and standard deviation of the HAM muscle force in
30 steps, without assistance compared with these values with
assistance. As expected, the force modulated compliant hip
controller produces a significant part of the required force of

HAM during stance phase. As a result, considerable decrease in
HAM force is observed in the first 30% of the gait cycle. In spite of
zero contribution of the exo in the swing phase, forces differ due
to the effects from the stance phase and also the second leg, which
is in stance phase. In the original model (without assistance) the
variance among 30 steps is close to zero. Although, addition of
the exosuit changes the force patterns slightly from step to step,
the variance is still negligible.

Figure 5 shows the activation signals for the HAM muscle.
The activation patterns are similar except in the first 30% of the
gait. In this period, the exosuit generates most of the required
efforts resulting in activation reduction in HAM muscle. These
results are in line with the observations in Figure 4 for developed
force. Addition of the exo mass does not have significant effects
on the HAM muscle activation and force. This means that most
of the required force in HAM to compensate the exo mass is
provided by the actuator. Therefore, the person who wears the

FIGURE 4 | HAM muscle mean force (thick curves) and standard deviation (shaded areas) with and without assistance in 30 steps.

FIGURE 5 | HAM muscle activation mean (thick curves) and standard deviation (shaded areas) with and without assistance in 30 steps.
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exosuit will not suffer from the additional mass of the robot. In
addition, variance in the activation signal increases by adding the
exo, which is similar to the previous observations in Figure 4.
The only difference appears in the beginning of the second step
when the variance is larger in contrast to the force patterns.
This might relate to pushoff in which HAM muscle activation
is influenced by variations in other muscles at each step, but
this is not significantly reflected in muscle force. Generally
speaking, reduction in HAM muscle force and activation in the
first 30% of the stride can be considered as the main effect of
exosuit contribution to the stance leg assistance and even without
adaptation of the reflex gains, a periodic motion (with low
variance) can be obtained after addition of the assistive device.
This second outcome might relate to the bioinspired control
principle employed in design and control of our exosuit.

Effects on the Whole Leg Neuromuscular
Control
Based on the reflex control in the neuromuscular model, assisting
hip biarticular muscles influences activation and force generation
in the othermuscles. In this section, we analyze these effects using
the grand mean as the average of the mean values of the last
30 steps (gait cycles). Accordingly, Figures 6, 7 depict the grand
mean of force (FGM) and activation signals (AGM) for different
muscles during 30 steps. In addition, the standard deviations
among different steps are shown in the same figures. The grand
mean and standard deviation of the muscle forces are calculated
as follows.

FGM =

1

30

∑50

i=21

︷ ︸︸ ︷

1

Ti
∫
Ti
0 Fi(t)dt

Fi

(17)

FStd =

√

1

30

∑50

i=21
(Fi − FGM)

2
(18)

in which subindex i denotes the ith step. Similar equations are
utilized to calculate the grand mean and standard deviation for
activation signal of each muscle.

As expected, both force and activation are reduced in hip
extensor muscles (HAM and GLU). Activation reduction in the
other three muscles (GAS, HFL, and TA) does not significantly
change the muscle force. This results in lower metabolic cost
in these muscles while generating similar forces. Therefore,
assisting the HAM muscle can reduce energy consumption in
these muscles without significantly changing their developed
forces. Although these muscles are more responsible for
balancing, they also contribute to axial leg function. As a
result, increases in monoarticular knee and ankle extensors
(VAS and SOL) are observed. The additional mass of the
exo-suit should be also handled by growth in SOL and
VAS forces. As shown in these figures, the results are quite
consistent for all muscles, as the standard deviations during
30 steps are very small. Adapting reflex gains after adding
the exo (not performed in this study) may result in even
smaller variance similar to the first case (blue bar) without
assistance.

Energy Economy
To investigate the effect of variations in activation and force of
different muscles on the energy consumption, the normalized
metabolic cost [calculated by (13)] of individual muscles
are compared in Figure 8. In comparison between unassisted
walking and the ideal assisted model (without additional mass),
metabolic effort is just increased in one (VAS) muscle. In
addition, the reduction in energy consumption of HAM, HFL,
and GLU dominate the increment in VAS. Similar to the force
and activation behavior, additional mass is mainly reflected in the
growth of energy consumption in SOL and VAS. Still, decreased
metabolic cost in other muscles is significantly higher than extra
energy, required to support the additional mass.

To investigate the level of assistance at different moments
of the gait cycle, the total metabolic power during a complete
stride is drawn in Figure 9. This graph shows the mean and
the total metabolic power of both legs, in a complete stride
among 30 last steps. Considerable reduction in metabolic power
is observed in the first 20% of the gait cycle meaning that the
exosuit supports walking until shortly before the midstance. This
is coincident with the time slot that the HAMmuscle contributes
the most. As the exo actuator is parallel to the HAM muscle,
its contribution is low (or even zero) after midstance (more
precisely when ψ < ψ0 = −7◦). It is also observed that the
three-hump pattern of the metabolic power in the unassisted case
is changed to a single-hump resulting in significant reduction
in metabolic power. Although an increase in metabolic power
consumption is observed around midstance, it is compensated
afterward (about 33% of the gait cycle). Roughly speaking, the
total energy from midstance to touch down of the next leg is
almost constant with and without assistance. Hence, after the exo
contribution in first 20% of the gait cycle the metabolic power
does not change significantly in the ideal model of assisted case,
compared to the unassisted case while addition of the exo mass
increases the metabolic power in this period. Interestingly, the
human power consumption is barely affected by additional mass
in the first 20% of the gait cycle (before midstance). It means that
the exo compensate the required energy to support the additional
mass. However, this cannot continue until the end of the gait
cycle, because of the reduction in assistive device contribution.
Therefore, the total reduction in metabolic cost will be lowered.
Similar pattern is observed in the second step and the total
metabolic energy is reduced with assistance.

Comparing the total energy consumption per stride,
demonstrate advantages of walking assistance. As a result, the
reductions in the model with and without exo mass are 6 and
12%, respectively. These numbers are 48 and 45% for the HAM
muscle. After assistance, the motion performance is kept, except
negligible reduction in the walking speed. Reduction in total
metabolic cost using an exosuit with just one actuator for each leg
that supports the body only in stance phase of the corresponding
leg is considerable.

In order to validate the effectiveness of the proposed method,
in Figure 10, we show the power consumption in the exosuit
during one stride. Here, we have assumed that the FMCH is
implemented by a rigid actuator, which mimics the adjustable
compliance. Therefore, this is the maximum power required for
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FIGURE 6 | Grand mean muscles forces during one stride with and without assistance. Error bars represent ±1 standard deviation in 30 steps.

FIGURE 7 | Grand mean muscles activation during one stride with and without assistance. Error bars represent ±1 standard deviation in 30 steps.

FIGURE 8 | Grand mean muscles Metabolic cost during one stride with and without assistance. Error bars represent ±1 standard deviation in 30 steps.
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FIGURE 9 | Total metabolic power mean (thick curves) and standard deviation (shaded areas) with and without assistance in 30 steps.

FIGURE 10 | The actuator power mean (thick curves) and standard deviation (shaded areas) with and without assistance in 30 steps.

implementing the control concept. Obviously, benefitting from
compliant structure (e.g., by designing a variable impedance
actuator with parallel compliance) can significantly reduce the
required power of the actuator. Nevertheless, it can be shown that
there is a big advantage in the proposed design and control. The
results shown in Figure 10 support the previous observations
in Figure 9. Note that in the proposed exo design and control,
the assistive device contributes in half of the gait cycle in
which the leg is in stance phase and the so called biarticular
compliant element is stretched. Interestingly, the variance in
power generation among 30 steps is reduced by adding the exo
mass.

Balance Control
As the core control concept of FMCH is the VPP model that
is introduced regarding posture control, here we demonstrate
the effects of walking assistance on balancing. In Figure 11, the
GRF (ground reaction forces) are demonstrated in the coordinate

frame centered at CoM (center of mass) with vertical coordinate
aligned with upper body orientation. For regular walking without
assistance, the VPP exists about 40 cm above CoMwhich is in line
with finding in human walking at moderate speeds (Maus et al.,
2010). By assistance of the exo, the GRF vectors are more focused
which support balance control throughVPP concept. In addition,
the VPP becomes closer to CoM [smaller rVPP in Equation
(7)] while the VPP angle (γ ) increases. This means more less
oscillations in upper body and more performant posture control.
This behavior is slightly deformed by adding the exo mass. In
general, addition of the exosuit clearly improves posture control
as expected.

DISCUSSION

The bioinspired design and control of a soft exoskeleton
was proposed in this paper. Concentrating on balancing as
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FIGURE 11 | Ground reaction forces in body coordinate frame (dashed black lines) and the VPP (red circle) with and without assistance. The body coordinate frame is

centered at CoM (green circle) with vertical axis aligned with the upper body orientation.

FIGURE 12 | Further implementation of the proposed approach on exosuit. (A) OpenSim model with and without assistive device. Red lines show unassisted

muscles and blue lines show the assisted ones. (B) Design of the exosuit in Catia including 4 motors to actuate biarticular thigh muscles. (C) Picture of the

manufactured exosuit, the subject gave permission for the publication of this image.

one locomotor sub-function, two basic design principles were
employed: (i) As a control design principle, leg force is used
as a sensory feedback signal to adjust hip compliance (FMCH)
(Sharbafi and Seyfarth, 2015). This approach is motivated by
the VPP concept for posture control (Maus et al., 2010). (ii)
A second design principle is employing biarticular actuators
to simplify GRF direction control and consequently, posture

control. Using this actuator-skeletal design principle, we can
benefit from synchronization between hip and knee joint and
increasing efficiency by transferring energy between joints. Using
these bioinspired principles we can improve interaction between
human and the assistive device. Instead of regular position, force
or impedance control of the end effector, in our approach we
adjust the stiffness of a biarticular spring based on the leg force.
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Therefore, there is no need to track desired impedance with the
controller. Instead, a sensory feedback circuit can be used to
measure the leg force and modulate the hip actuator stiffness.
The control loop will be closed at a higher level when this
modulation finally influences the leg force. Hence, we do not use a
desired signal for tracking. This is similar to reflex-based control
in human locomotion that results in stable gaits without direct
control of the target states (Geyer et al., 2003; Geyer and Herr,
2010).

In Zhao et al. (2017), we have implemented the FMCH control
approach on LOPES II exoskeleton through separate control of
the knee and hip torques using Equation (12). Since there was
no physical spring in that rigid exoskeleton, the joint angles are
measured to emulate virtual springs. With this approach, the
activation of different muscles was decreased and more than
10% reduction in metabolic cost was achieved compared to
transparent mode control. As there was no biarticular muscle
in the LOPES II robot, we could not benefit from the other
properties of biarticular actuation such as transferring energy
and synchronization between the adjacent joints. Therefore,
using biarticular thigh actuators in a soft suit may be beneficial
to achieve higher performance with the assistive device using
variable impedance actuators. One possible type of actuator for
implementing the proposed method is a pneumatic air muscle
(PAM).

In LOPES experiments, the results are compared with
transparent mode in which the control target is zeroing the
interaction force between the robot and human body. Therefore,
there is no additional mass in the assisted mode with FMCH-
based control compared to the transparent mode. In addition,
the robot can generate force in both directions and not just pull
as in exosuits. Hence, 13% reduction in metabolic cost using
only one of the thigh biarticular muscles in our simulations
is an achievement compared to 10% reduction with LOPES
II via bidirectional actuators. This demonstrates the potential
advantages of employing soft-suits and biarticular compliant
actuators (e.g., PAMs). With biarticular actuators it is possible to
avoid internal losses by transferring energy between two joints
instead of positive work at one joint and negative at the adjacent
joint. Furthermore, an adaptation of human motor control to
the robot can even increase the efficiency of the proposed
approach.

In addition to more aligned force direction and lower inertia
of the soft suits, their lighter weights are of advantage compared
to rigid exoskeletons (Panizzolo et al., 2016). In this paper, we
showed that an additional weight of the exosuit (about 5% of the
body weight) close to body CoM does not have substantial effects
on assistance. It is of utmost significance that these wearable
robots can appropriately interact with the body (Ding et al.,
2017). In contrast to the exoskeletons with actuators paired with
the biological joints, softsuits are merely capable of generating
tensile forces, that prevents resistance against natural walking,
and hence provides comfort and reduced metabolism (Asbeck
et al., 2014). Based on our control method, the mechanism can
be simply adjusted to individuals of different body constitutions
and motor control properties. In Ding et al. (2018), Bayesian
optimization was used to identify the peak and offset timing of

hip extension assistance thatminimizes the energy expenditure of
walking with a wearable device. Similar learning based methods
can be easily applied to our method to find the variable spring
parameters (kh and ψ0) for each subject. It means that instead
of time-based optimization, reflex-based control is employed and
minimal parameter space is sufficient for finding the optimal
controller. Using PAMs with adjustable compliance for actuation
in the soft suit, the only required sensory information for control
is the leg force. Therefore, the proposed mechanism for the soft
suit can be implemented using minimal sensory measurements.

One drawback of the neuromuscular control model used in
this study is the lack of rectus femoris. This muscle was neglected
due to its minor contribution in normal walking. In order to
investigate the idea of assisting human locomotion based on the
proposed approach we have implemented the same mechanism
using anOpenSimmodel of human walking.We achieved similar
results in reduction of muscle activation and total metabolic costs
with this model. One main issue with OpenSim models was
that changing the structure of the model requires an adaptation
of the control. This feature is provided in the reflex-based
neuromuscular models, but in the OpenSim model, it is missing.
This means that better results could be achieved by further tuning
the model. Finally, we have built an exosuit (Figure 12), which
works based on the biarticular actuation of thigh segment. In
future we will implement the proposed controller on this system.
The hardware properties of the exosuit (with mass) used in
both models (Geyer model and OpenSim) are borrowed from
this recently manufactured wearable robot. In this design, we
focused on thigh biarticular actuators to validate the FMCH-
based control methods on a soft-exo. This design principle makes
this assistive device different from the other previously developed
exosuits (Asbeck et al., 2014; Ding et al., 2017).

The bioinspired balance control based on the VPP concept is
supporting efficient locomotion with reduced CoM accelerations
and decelerations during the gait cycle. This control concept
of using leg force feedback for control of the muscles could be
extended for the ankle joint. However, due to the asymmetric
function of the human foot during locomotion, the function
of the individual ankle muscles on supporting body against
gravity and in maintaining balance is still not well understood.
Additional research will be required to better understand the
interplay between hip and ankle strategies for stable locomotion
while keeping the body aligned upright.
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An important function missing from current robotic systems is a human-like method for

creating behavior from symbolized information. This function could be used to assess the

extent to which robotic behavior is human-like because it distinguishes human motion

from that of human-made machines created using currently available techniques. The

purpose of this research is to clarify the mechanisms that generate automatic motor

commands to achieve symbolized behavior. We design a controller with a learning

method called tacit learning, which considers system–environment interactions, and

a transfer method called mechanical resonance mode, which transfers the control

signals into a mechanical resonance mode space (MRM-space). We conduct simulations

and experiments that involve standing balance control against disturbances with a

two-degree-of-freedom inverted pendulum and bipedal walking control with humanoid

robots. In the simulations and experiments on standing balance control, the pendulum

can become upright after a disturbance by adjusting a few signals in MRM-space with

tacit learning. In the simulations and experiments on bipedal walking control, the robots

realize a wide variety of walking by manually adjusting a few signals in MRM-space.

The results show that transferring the signals to an appropriate control space is the key

process for reducing the complexity of the signals from the environment and achieving

diverse behavior.

Keywords: mechanical resonance mode, tacit learning, control structure, symbolized information, human-like

movement

1. INTRODUCTION

Can robots be good neighbors? Despite much effort by many researchers to make robots be good
partners, robotic systems remain limited to being merely useful tools in factories and houses1.
This is the case even though mobility control for rough terrain2and artificial intelligence for
understanding human speech3,4and behavior have improved drastically in recent years. What is
the critical difference that distinguishes people from human-made machines?

1Roomba. iRobot Corporation. Available online at: https://www.irobot.com/
2Atlas. Boston Dynamics. Available online at: https://www.bostondynamics.com/
3Amazon Echo. Amazon.com, Inc. Available online at: https://www.amazon.com/dp/B00X4WHP5E
4Google Home. Google LLC. Available online at: https://store.google.com/product/google_home
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We think that an important function that is currently missing
from robotic systems is a way to create behavior from symbolized
information. For instance, when walking, we deliberately attend
to symbolized behavioral purposes such as “walk faster” and
“turn right” or more symbolic forms such as “go to the station.”
The detailed control signals that create such motion, such as
joint trajectories and muscle activations, are then generated
automatically.

It is said that these automatic control signals are created by
the activities of local neural systems including the cerebellum
and spinal cord. In our daily lives, we attend only to symbolized
behavioral purposes that are highly specialized. The appropriate
behavior and detailed control signals that achieve those purposes
are then chosen according to the prevailing situation and the
surrounding environment. If we could share such symbolized
behavioral purposes with robots, and if the robots and we
could create the appropriate behavior independently according
to not only the surroundings but also the features of our
respective functions, then we would feel that the robots
are really our partners. Therefore, generating behavior from
symbolized purpose could be an important way to assess the
extent to which robots could be our partners with human-like
behavior.

In this paper, we discuss the process of creating behavior
from symbolized behavioral purpose, focusing on creating
motor commands from simple behavioral targets through body–
environment interactions. There have been various attempts
to clarify the mechanisms that generate automatic motor
commands from symbolized purposes, an important approach
being a physiological one. Recently, Takei et al. (2017) reported
the existence of neurons in the spinal cords of monkeys that
commonly activate in association with various hand actions,
suggesting that a small control signal, with dimensionality lower
than the number of muscles, can encode complicated hand
motion.

Model-based approaches provide the conceptual basis for
the aforementioned physiological approach. A bow-tie structure
(Csete and Doyle, 2004; Zhao et al., 2006) has been proposed
to represent a biological control system whereby information
acquired from the environment is gradually symbolized to
reduce its dimensions, while control signals are created from
this symbolized information to increase their dimension. The
notions of muscle synergy (Bernstein, 1967; Tresch et al., 1999;
d’Avella et al., 2003; Chvatal et al., 2011; Alnajjar et al., 2013;
Barroso et al., 2014; Gonzalez-Vargas et al., 2015; Garcia et al.,
2018; Kogami et al., 2018) and joint synergy (Schenkman
et al., 1990; Latash, 2000; Yamasaki and Shimoda, 2016)
that represent the output side of this bow-tie structure are
prominent examples of estimating lower-dimensional signals
from observable signals such as electromyographic signals. The
sensor synergy representing the input side of the bow-tie
structure has been discussed regarding estimating sensor signals
from the environment (Ting, 2007; Latash, 2008; Alnajjar et al.,
2015).

Another important approach to clarifying the mechanisms
that generate automatic motor commands is the development
of artificial controllers that have the same features as those of

biological controllers. The autoencoders discussed in artificial
intelligence (Hinton and Salakhutdinov, 2006; Hosseini-Asl et al.,
2016) share the same idea as the bow-tie structure. Recently,
there have been various discussions about using autoencoders
to control robots (Noda et al., 2014; Finn et al., 2016; van Hoof
et al., 2016; Kondo and Takahashi, 2017). KullbackLeibler control
(Todorov, 2009) is an interesting task-dependent approach to
control robot (Uchibe and Doya, 2014; Matsubara et al., 2015)
with combination of control policies.

These computational approaches clarified that small
control signals, with dimensionality lower than the number
of motors, can represent behavioral features, suggesting
that lower-dimensional control signals play the role of
symbolized behavioral purposes. Shimoda et al. proposed
a bio-mimetic behavior-adaptation architecture known as
tacit learning (Shimoda and Kimura, 2010; Shimoda et al.,
2013; Hayashibe and Shimoda, 2014) and have used it to
generate bipedal walking from a roughly defined walking
gait (Shimoda et al., 2013), to control the wrist joint of
a forearm prosthesis in response to the wearer’s shoulder
movements (Oyama et al., 2016), and to control a lower-limb
exoskeleton robot in response to the wearer’s movements
(Shimoda et al., 2015). Through experiments on this tacit
learning adaptation, they established that two types of adaptation
process could work simultaneously to adapt the behavior to an
unorganized environment. One of these processes is selecting
appropriate behavior and the other is adapting reactive behavior
to unpredictable disturbances and small changes in body
parameters and environment without changing the behavioral
purpose.

Even though it has been established that it is important
for these two processes to operate in parallel, the conditions
of the controllers needed to realize such adaptation remain
under discussion. Herein, we advance this discussion by using
an artificial controller that can adapt the motor commands
to real-time changes in the symbolized purpose, and we
clarify the conditions for adapting in real time to both the
environment and the symbolized purpose. We begin in section 2
by designing a controller with tacit learning and that transfers
the control signals into a different control space know as
mechanical resonance mode space (MRM-space). In MRM-
space, the signals are used to control the mechanical resonance
modes of the robot. This makes it easy to understand how the
robot behavior changes when the control signal is changed in
MRM-space. In sections 3 and 4, we propose an adaptation
method in MRM-space using a two-degree-of-freedom (2DoF)
inverted pendulum, 27DoF humanoid robot, and the NAO
humanoid robot5, respectively. We show through simulation
and experiment that this controller can adapt the motion to the
environment. In section 5, we discuss the importance of body
mechanisms in the process of simultaneous adaptation and how
that process can be used to evaluate the human-like motion of a
robot.

5NAO. SoftBank Robotics. Available online at: https://www.ald.softbankrobotics.

com/en/robots/nao
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2. METHODS USED TO DESIGN A
CONTROL STRUCTURE

Transfer toMRM-space and behavior adaptation by tacit learning
are the key analytical methods of the present study. Because both
methods are discussed in detail elsewhere (mechanical resonance
mode Kry et al., 2009; tacit learning Shimoda and Kimura, 2010;
Shimoda et al., 2013; Hayashibe and Shimoda, 2014), we explain
their essential points only briefly herein.

2.1. Mechanical Resonance Mode
A mechanical resonance mode is defined by the position and
the condition of the robot joints. For instance, a 2DoF inverted
pendulum has two mechanical resonance modes as shown in
Figures 1A,B. A mechanical resonance mode is characterized
mathematically by mode vectors and eigenvalues. Writing the
equation of motion of a 2DoF inverted pendulum as

M ¨θ + Kθ = 0 (1)

⇔ ¨θ = −M−1Kθ , (2)

where θ ∈ R2 implies the angles of the joints, the mode vectors
and eigenvalues are calculated by a singular-value decomposition
(SVD) ofM−1K :

M−1K H⇒

{

v1, v2 (mode vectors)

λ1, λ2 (eigenvalues)
, (3)

SVD

whereM ∈ R2×2 is the inertia matrix of the pendulum linearized
around θ = 0 and K ∈ R2×2 is a stiffness matrix that has
the spring coefficients of the joints on its main diagonal. The
first mode (v1) corresponds to the smallest eigenvalue (λ1) and
the second mode (v2) corresponds to the next-largest eigenvalue
(λ2). The mode vector represents the shape of the pendulum
oscillation.

The state variable θ of the pendulum can be represented as a
superposition of the mode vectors as follows:

θ = v1w1 + v2w2 =
[

v1 v2
] [

w1 w2

]T

∴ θ = Tw (⇔ w = T−1θ), (4)

where w1,w2 represent the weights of each mode vector and T

can be defined as a transfer matrix. We can define the weights of
the mode vectors as symbolized state variables in MRM-space.

The adjustment of the symbolized state variables is reflected in
the movement of individual joints by the transfer matrix. This is
much like the top-down process in people, namely changing one’s
behavior by means of symbolized information without having to
attend to the actions of individual joints.

2.2. Tacit Learning
Tacit learning is an adaptive learning method inspired by two
features of living beings. First, living beings can perform adaptive
behavior globally even though control is realized by only a
summation of local nerve-cell firings. Second, adaptive learning

FIGURE 1 | Modes of two-degree-of-freedom (2DoF) inverted pendulum and

27DoF humanoid robot: (A) first mode of pendulum (same-phase posture); (B)

second mode of pendulum (anti-phase posture); (C) first mode of robot

(bipedal leg swinging); (D) eighth mode (leg swinging on frontal plane).

and behavioral control are calculated in parallel; this is unlike
machine learning, whose calculation is divided into a learning
phase and an action phase.

To apply these features to artificial controller, action targets
and the concept of “reflex” are used in tacit learning. The
reflex plays a role in directing the movement of the controlled
system toward a state in situations in which the system does not
receive many environmental stimuli from a global perspective.
By enhancing the reflex by accumulating reflex commands,
the system can acquire a state autonomously through system–
environment interactions, where there are fewer environmental
stimuli without having to distinguish between the learning phase
and the action phase.

Other learning methods use behavioral functions or
teaching signals to adjust the controlled system behavior and
achieve adaptive behavior in a top-down manner. In that
sense, tacit learning can be defined as a bottom-up learning
process, adjusting the behavior through system–environment
interactions. However, it can control the system to achieve
adaptive behavior from a global perspective. Herein, we use tacit
learning to develop a bio-mimetic adaptation process.

3. STANDING BALANCE CONTROL WITH
2DOF INVERTED PENDULUM

In this section, we introduce the controller with tacit learning in
MRM-space and apply it to standing balance control of a 2DoF
inverted pendulum. We show that the tacit learning controller
can maintain balance against larger disturbances than the case
without learning.

3.1. Model of 2DoF Inverted Pendulum
Figure 2 shows the 2DoF inverted pendulum model used in this
simulation. Its equation of motion is

M(θ) ¨θ + g(θ , ˙θ) = τ , (5)

where θ is a 2× 1 vector consisting of the joint angles, τ is a 2× 1
torque vector that affects each joint, and M(θ) is a 2 × 2 inertia
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matrix given by

M(θ)

=

[

I1 +m1a
2
1 + l21m2 + η + 2ξ cos θ2 η + ξ cos θ2

η + ξ cos θ2 η

]

,
(6)

where a1 = l1/2, a2 = l2/2, η = I2 + m2a
2
2, ξ = l1m2a2, and

g(θ , ˙θ) is

g(θ , ˙θ)

=

[

−ξ (2θ̇1 + θ̇2)θ̇2 sin θ2 − g1 sin θ1 − g2 sin(θ1 + θ2)

ξ θ̇21 sin θ2 − g2 sin(θ1 + θ2)

]

,
(7)

where g1 = (m1a1 +m2l1)g, g2 = m2a2g, and g = 9.81 m/s2.

3.2. Standing Balance Control Structure
Figure 3 shows a standing balance controller designed by using
the transfer matrix T described in 4 and tacit learning. Terms θi
and τi are the angle and torque, respectively, of joint i. The torque
vector τ for each joint is

τ = TAT−11θ + TBT−11 ˙θ + Tζm + ζ , (8)

τ =

[

τ1 τ2
]T

. (9)

1θ and 1 ˙θ are

1θ =

[

θ ref − θ
]

,1 ˙θ = − ˙θ , (10)

FIGURE 2 | Model of 2DoF inverted pendulum: (A) pendulum model in

simulator; (B) definitions of joint angles and system parameters. The pendulum

sits on a board that is moved horizontally by a force f [N], thereby imparting

disturbances to the pendulum.

FIGURE 3 | Block diagram for standing balance control of 2DoF inverted

pendulum; see section 3.2 for details.

where θ and ˙θ are state variables:

θ =

[

θ1 θ2
]T

, ˙θ =

[

θ̇1 θ̇2
]T

. (11)

θ ref is a reference for each joint:

θ ref =
[

θref 1 θref 2
]T

. (12)

Terms A and B are diagonal matrices:

A =

[

kp1 0
0 kp2

]

, B =

[

kd1 0
0 kd2

]

, (13)

where kp1 and kp2 are proportional (P) gains of the proportional-
derivative (PD) controller in MRM-space, kd1 and kd2 are
derivative gains of the PD controller in MRM-space, and T−1 is
the transfer matrix from joint space to MRM-space.

Term ζ is a vector that consists of the integration of τ as
follows:

ζ =

[

ζ1
ζ2

]

=

[

k1 0
0 k2

] [ ∫

τ1dt
∫

τ2dt

]

, (14)

where k1 and k2 are the coefficients of the integrators that
accumulate the joint torques and output the integrated values.
These accumulations correspond to tacit learning, and these
integrators adjust the individual joint torques and work to keep
the pendulum upright after disturbance through pendulum–
environment interaction, as in Shimoda et al. (2013).

Term ζm a vector that consists of the integration of ζ as
follows:

ζm =

[

ζm1

ζm2

]

=

[

0 0
km2 0

] [ ∫

ζ1dt
0

]

, (15)

where km2 is the coefficient of the integrator in MRM-space that
accumulates ζ1 and outputs the integrated values. km2 can change
the level of learning in standing balance control. km2 = 0 is
defined as “without learning,” and km2 > 0 is defined as “with
learning.” ζm adjusts the movement of the second mode, which
we selected based on visual inspection of the movement of all
modes. Because any disturbance has a pronounced effect on
joint 1, the torque of the second mode is adjusted based on the
torque of joint 1.

The whole system can be expressed by combining (5) and (8)
as follows:

M(θ) ¨θ + g(θ , ˙θ) = TAT−11θ + TBT−11 ˙θ

+ Tζm + ζ .
(16)

3.3. Standing Balance Control Simulation
and Results
The two mode vectors v1, v2 of the pendulum defined in Figure 2

are given as

v1 =

[

−0.9
−0.3

]

, v2 =

[

0.3
−0.9

]

, (17)
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As shown in Figures 3A,B, the first mode v1 represents same-
phase posture and the second mode v2 represents anti-phase
posture. The transfer matrix T is

T =

[

−0.9 0.3
−0.3 −0.9

]

. (18)

Standing balance control simulations are conducted as follows.

1. The pendulum is placed upright on a board that can move
horizontally.

2. The board is moved for 0.2 s with the disturbance f [N].
3. A simulation is ended once the height of the center of

mass(CoM) of the pendulum falls below 0.2 m or the
pendulum become upright.

We conduct simulations with each of f = 170, · · · , 210 N. The
gains are kp1 = 22.0, kd1 = 21.0, kp2 = 22.0, kd2 = 21.0, k1 =

1.0 × 10−3, and k2 = 1.0 × 10−3. The references are θref 1 =

θref 2 = 0.0.
Table 1 gives the results of whether the pendulum falls down

in the process of trying to maintain standing balance. The
pendulum is clearly more stable with tacit learning in MRM-
space than without tacit learning in MRM-space.

Figure 4 shows an overview of standing balance control
simulations without and with learning in MRM-space. The
pendulum CoM falls lower in the process of regaining balance
when tacit learning is applied in MRM-space. Figure 5 shows

TABLE 1 | Stability changes due to different coefficients.

Disturbance Without learning With learning

km2 = 0.0 km2 = 5.0 × 10−4

170 ≤ f ≤ 184 [N] Stable Stable

185 ≤ f ≤ 204 [N] Fallen Stable

205 ≤ f [N] Fallen Fallen

FIGURE 4 | Overview of standing balance control simulation: (A) without

learning; (B) with learning. “Without learning” means that tacit learning is

applied to only joint space, and “With learning” means that tacit learning is

applied to joint space and MRM-space. The red dotted line is the general

trajectory of the center of mass (CoM) of the pendulum in the process of

regaining balance after a disturbance. The CoM falls lower while regaining

balance with tacit learning in MRM-space.

the trajectories of joints 1 and 2 in the process of regaining
balance. In the case without learning in MRM-space shown in
Figure 5A, the pendulum becomes upright after the disturbance
by moving joints 1 and 2 in phase. By contrast, in the case with
learning in MRM-space shown in Figure 5B, joints 1 and 2 move
in anti-phase.

Figure 6 shows the relationship between the disturbance and
the energy consumption E per unit time, which is calculated from

E =

∑T
t= 0(τ1

2
+ τ2

2)

T
, (19)

where T is the time until the pendulum becomes upright.We also
calculate E when the simulation is conducted with tacit learning

FIGURE 5 | Trajectories of joints 1 and 2 while regaining balance in the

simulation: (A) without learning; (B) with learning. The gray areas are where the

joints move in phase, the white areas are where they move in anti-phase.

Joints 1 and 2 move in phase while regaining balance without tacit learning in

MRM-space. Joints 1 and 2 move in anti-phase while regaining balance with

tacit learning in MRM-space. The disturbance is f = 184 N. The gain of tacit

learning in MRM-space is km2 = 5.0× 10−4.
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FIGURE 6 | Relationship between energy consumption per unit time and

disturbance in the simulation. Each square represents the maximum

disturbance for which the pendulum can become upright. For example, the

pendulum cannot become upright against a disturbance of 185 N or more

without learning in MRM-space. Both the energy consumption per unit time

and the stability against disturbance increase with the coefficient of tacit

learning in MRM-space.

in MRM-space by using different integral coefficients, namely
km2 = 5.0× 10−6 and 5.0× 10−5.

The pendulum can become upright against a larger
disturbance with learning in MRM-space than without learning
in MRM-space. The size of disturbance that the pendulum
can withstand without falling over increases with the integral
coefficient km2 for tacit learning. However, E also increases with
km2.

3.4. Standing Balance Control Experiment
and Results
We conducted an experiment on a real 2DoF inverted pendulum
with the same block diagram as in the simulation. The transfer
matrix was calculated based on the physical parameters of
the pendulum, whereas the gains in the block diagram were
determined by trial and error. The experimental conditions can
be seen in the Supplementary Video. Figure 7A shows the actual
2DoF inverted pendulum. Figure 7B shows the trajectories of
joints 1 and 2 in the process of regaining balance. The pendulum
becomes upright by moving joints 1 and 2 in anti-phase, as in the
simulation with tacit learning in MRM-space.

3.5. Discussion of Standing Balance
Control
The pendulum can remain upright against larger disturbances as
the coefficient of tacit learning in MRM-space is increased (see
Figure 6). However, a problem is that the energy consumption
per unit time in same disturbance also increases as the coefficient
is increased. Another problem is that, although we did not
analyze the stability of this system, too large an integral tacit

learning coefficient makes the system unstable (see Shimoda
et al., 2012). To regain balance efficiently after a disturbance, it
is necessary to change the tacit learning coefficient according to
the disturbance.

It is well-known that people change their standing balance
strategies between ankle and hip strategies (Horak and Nashner,
1986; Runge et al., 1999; Robinovitch et al., 2002) according to the
prevailing disturbances. Each strategy is shown in Figure 8. The
ankle strategy is a standing balance control method in which the
person mainly moves the ankle joints in response to a relatively
small disturbance, whereas the hip strategy is a standing balance
control method in which the person moves the hip and ankle
joints in anti-phase in response to a larger disturbance. The
movements involved in the hip strategy are similar to those of the
2DoF pendulum when tacit learning is applied in MRM-space.
It is interesting that our method of adjusting signals in MRM-
space with tacit learning has something in commonwith a human
strategy.

4. BIPEDAL WALKING CONTROL ON FLAT
PLANE WITH 27DOF HUMANOID ROBOT

In section 3, we discussed the use of standing balance control of
allow a 2DoF pendulum to react to disturbances. In this section,
we add a “top-down” signal to include intentional behavioral
changes. We apply the same control strategies to a 27DoF
humanoid robot walking control with the added top-down signal.
The weight and the length of segments of the robot is decided
based on the NASA biometric research (NASA). We show
through simulation and experiment that the signal added to the
controller in MRM-space plays the role of behavioral intentions
to change walking direction while maintaining walking balance.

4.1. Bipedal Walking Control Structure
Figure 9 shows a bipedal walking controller designed by using

the transfer matrix T and tacit learning. Terms θ , ˙θ ∈ R27

are vectors of state variables. Terms θ ref ∈ R27 is a vector of

angle references. The torque vector τ ∈ R27 for each joint is
represented as

τ = TAT−11θ + TBT−11 ˙θ + Tc+ ζ , (20)

τ =

[

τ1 · · · τ27
]T

, (21)

ζ =

diag(
[

0 · · · klankle krankle · · · 0
]

)

∫

τdt,
(22)

where ζ is a vector that consists of the integral values of tacit
learning, and tacit learning is applied to only the left and right
ankle joints. The balance in the sagittal plane is maintained by
tacit leaning, as in Shimoda et al. (2013). Terms klankle and krankle
are the integral coefficients for the left and right ankle joints,

respectively. Terms 1θ and 1 ˙θ are

1θ =

[

θ ref − θ
]

, 1 ˙θ = − ˙θ . (23)
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FIGURE 7 | (A) 2DoF inverted pendulum. (B) Trajectories of joints 1 and 2 in the process of regaining balance in the experiment. Each point is supplemented with a

spline curve. The gray areas are where the joints move in phase, the white areas are where they move in anti-phase. Joints 1 and 2 move in anti-phase in the process

of regaining balance, as in the simulation with tacit learning.

FIGURE 8 | Standing balance control strategies of a person (Horak and

Nashner, 1986; Runge et al., 1999; Robinovitch et al., 2002). (A) Ankle

strategy: the person mainly moves the ankle joints and can balance against

small disturbances only. (B) Hip strategy: the person moves the hip and ankle

joints in anti-phase and can balance against larger disturbances. The

participant of this figure gave informed consent to appear on the current work.

Terms A and B are diagonal matrices:

A = diag(
[

kp1 kp2 · · · kp27
]

),

B = diag(
[

kd1 kd2 · · · kd27
]

),
(24)

where kp1, · · · , kp27 are values obtained by multiplying the
eigenvalues of each mode by 10, and kd1, · · · , kd27 are values
obtained by multiplying the eigenvalues of each mode by 0.1. The
eigenvalues are given by the mechanical resonance mode of the
robot.

Term c is a vector that consists of the constant value of the
torque of the eighth mode and is given by

c =
[

0 · · · ξ8 · · · 0
]T

, (25)

FIGURE 9 | Block diagram for bipedal walking control of 27DoF robot; see

section 4.1 for details.

where ξ8 is a constant that can be adjusted manually.
The transfer matrix T ∈ R27×27 of the 27DoF robot

can be calculated using the method given in section 2.1. The
movement of all modes can be seen in the Supplementary Video.
In controlling the robot behavior, we focus on two specific
modes from all the modes, namely the first and eighth modes
(see Figures 1 C,D). We expect to realize two specific types
of walking. Adjusting only the signal of the first mode while
changing the P gain kp1 can make the robot change its walking
velocity on a flat plane. Adjusting the signal of the eighth mode
with the constant value c can make the robot turn left and right
on a flat plane with fixing kp1 for the robot to walk forward.

4.2. Bipedal Walking Simulation and
Results
Bipedal walking is performed as shown in Figure 10A, with one
cycle of walking consisting of eight steps. The integral coefficients
for the left and right ankle joints are klankle = krankle = 1.0e − 4.
The references for each joint at each step in the simulation are
described in Table 2. After finishing one cycle, the reference
returns to the beginning of the cycle.
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FIGURE 10 | (A) Posture of each target set, for which the joints enclosed by

dashed circles are controlled. Steps 5–7 (not shown) are the bifrontally

symmetric postures of steps 1–3. Steps 4 and 8 (not shown) involve waiting

for a time while holding the posture of the corresponding previous target set.

References for joints are given in Table 2. (B) Overview of walking simulation

for adjusting the eighth mode. By adding positive constant values to the eighth

mode, the robot can turn left.

TABLE 2 | Target set for bipedal walking control simulation.

Target angle [rad] ×10−1

Step Description Left leg Right leg

Step 0 Standing posture – –

Hip Hip

Step 1 Balance on left leg (−0.1) (0.1)

Hip Knee

Step 2 Right leg up – (−9.0) (9.0)

Hip Knee

Step 3 Right leg down – (−4.5) (4.5)

Step 4 Balance on both leg – –

Hip Hip

Step 5 Balance on right leg (0.1) (−0.1)

Hip Knee

Step 6 Left leg up (−9.0) (9.0) –

Hip Knee

Step 7 Left leg down (−4.5) (4.5) –

Step 8 Balance on both leg – –

Each step shifts to the next step under specific conditions.
When the robot raises a foot, that step shifts to the next step
when a knee joint angle of the robot equals the reference of the
knee joint angle. When the robot puts a foot down, that step

shifts to the next step when the sole of the foot touches the
ground. If the robot falls down while walking, the robot is moved
to the initial position while holding the integral values of tacit
learning.

(i) Walking forward and backward
Figure 11A shows time series of the CoM position in the
direction in which the robot walks and the P gain kp1 used to
adjust the movement of the first mode. In the early stage of
walking, the P gain is set as kp1 = 270.0. It can be seen that the
robot walks forward and backward according to the adjustment
of the P gain. An overview of the simulation can be seen in the
Supplementary Video.

(ii) Turning left and right
Figure 10B shows an overview of the walking simulation adjust
the movement of the eighth mode by adding positive constant
values to the signal of the eighth mode with an appropriate P gain
kp1 to walk forward. The robot can be seen turning left.

Figure 11B shows the trajectories of the CoM of the robot
from the top view; the robot walks from the left of the figure
to the right with teh appropriate P gain kp1. From Figure 11B,
it can be seen that the walking direction is changed depending
on the constant value used to adjust the movement of the eighth
mode. The robot turns more as the constant value is increased.
An overview of the simulation can be seen in the Supplementary
Video.

Figure 11C shows the trajectories of the CoM of the robot
from the top view; the robot walks from the left of the figure
to the right with a fixed constant value ξ8 = 4.5e3. From
Figure 11C, it can be seen that P gain kp1 is a key factor
that affects the velocity in turning behaviors, and the walking
direction is changed.

4.3. Bipedal Walking Experiment and
Results
We conducted not only simulations but also walking experiments
by using an actual robot, namely the humanoid robot NAOmade
by Aldebaran. This has 25DoF, and we can control the angle of
each of its joints. NAO is controlled by angle inputs rather than
torque inputs. We designed a control structure that generates
reference joint angles by using the transfer matrix T.

The reference joint angle for a wide variety of walking can be
described as

φ′
= T†


























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1.0 0

. . .

0 1.0










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φ +






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


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
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
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







(26)

if kp1 = 1.0 and α8 = 0.0, φ′
= φ,

where φ ∈ R25 is a vector that consists of joint-angle references
for walking, and φ′

∈ R25 is an adjusted vector. Term T† is a
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FIGURE 11 | Trajectory and time series of CoM position in turning and walking forward and backward in simulation: (A) Time series of CoM position in the direction in

which the robot walks and the P gain of the first mode in the simulation. In the early stage of walking, the P gain is set as kp1 = 270.0. The robot walks forward and

backward according to changes in the P gain of the first mode. (B) Trajectories of robot CoM in walking simulation with adjusting the movement of the eighth mode.

The robot walks from the left to the right of the figure. The black line is a trajectory of the robot walking forward without adjusting the movement of the eighth mode.

The walking direction is changed depending on the constant value. The robot turns more as the constant value is increased. (C) Directions of robot CoM in turning

with different walking velocities. Solid lines represent walking directions. The constant value is set as ξ8 = 4.5e3. Walking velocity can be changed in turning behavior

with different P gain kp1, and the walking direction is affected by walking velocity.

TABLE 3 | Target set for bipedal walking control experiment.

Target angle [rad]

Step Description Left leg Right leg

Step 0 Standing posture – –

Hip Hip

Step 1 Balance on left leg (−0.1e− 1) (0.1e− 1)

Hip Knee

Step 2 Right leg up – (−0.8) (1.0)

Hip Knee

Step 3 Right leg down – (−0.4) (0.7)

Step 4 Balance on both leg – –

Hip Hip

Step 5 Balance on right leg (0.1e− 1) (−0.1e− 1)

Hip Knee

Step 6 Left leg up (−0.8) (1.0) –

Hip Knee

Step 7 Left leg down (−0.4) (0.7) –

Step 8 Balance on both leg – –

transfer matrix modified from the transfer matrix T to fit the
DoF of NAO. Term kp1 works like the P gain in the simulation of
walking forward and backward.Term α8 works like the constant
value in the simulation of turning. Walking balance is acquired
by applying tacit learning to joint space in the same way as 2DoF
inverted pendulum postural control.

Experiments are conducted using the same scheme as that
shown in Figure 10A. The target joint angles at each step in the
simulation are described in Table 3. Each step shifts to the next
step under specific conditions. When NAO raises a foot, that step
shifts to the next step when the knee joint angle of the robot
equals the reference knee joint angle. When NAO puts a foot
down, that step shifts to the next step when the sole of the foot
touches the ground.

(i) Walking forward and backward

FIGURE 12 | Time series of left hip and left knee joint angles in an experiment

involving walking forward and backward. The P gain kp1 for adjusting the

movement of the first mode changes as follows: kp1 = 1.0 for 0–150 s,

kp1 = 1.1 for 150–240 s, and kp1 = 1.0 for 240–250 s. NAO walks forward for

0–150 s and backward for 150–240 s. When walking is switched from forward

to backward by adjusting the movement of the first mode, the hip joint angle

decreases and the knee joint angle increases. (A) Left hip angle. (B) Left knee

angle.

NAO can walk forward and backward when we adjust only
the movement of the first mode by adjusting its gain. An
overview of the experiment can be seen in the Supplementary
Video. Figure 12 shows time series of the left hip joint and left
knee joint angles while walking forward and backward. When
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FIGURE 13 | Overview of walking experiment with NAO, and CoM and foot

trajectories when NAO turns left and right in the experiment. (A) Overview of

walking experiment with NAO. (B) Turning left: NAO can turn left when the

constant value α8 for adjusting the movement of the eighth mode is positive.

(C) Turning right: NAO can turn right when the constant value α8 for adjusting

the movement of the eighth mode is negative. The participant of this figure

gave informed consent to appear on the current work.

walking is switched from forward to backward by adjusting
the movement of the first mode, the hip joint angle decreases
and the knee joint angle increases (see around 150 s in Figure 12).

(ii) Turning right and left
Figure 13A shows NAO turning left adjust the movement of the
eighth mode by adding a positive constant value to the signal of
the eighth mode with an appropriate P gain kp1 to walk forward.
Figures 13B,C shows the trajectories of the CoM and feet when
the movement of the eighth mode is adjusted with positive and
negative constant values. Figure 14 shows time series of the knee
angles when NAO turns left and right.

NAO can turn left and right by adjusting the movement
of the eighth mode, as in the simulation. As shown in
Figure 14A, the amplitude of the left knee joint angle is
bigger than that of the right knee joint angle in adjusting the
movement of the eighth mode by the constant value α8 =

−25.0, whereupon NAO turns left. The converse holds in
Figure 14B.

4.4. Discussion of Bipedal Walking Control
The robot NAO could turn left and right by adjusting the
movement of the eighth mode, that is, adjusting the bending of
the robot and NAO at the waist on the frontal plane by adjusting

FIGURE 14 | Time series of knee joint angle in turning experiment: (A) turning

right; (B) turning left. When NAO turns right, the amplitude of the left knee joint

angle is bigger than that of the right knee joint angle in adjusting the movement

of the eighth mode by the constant value α8 = −25.0. When the constant

value is negative, NAO turns left.

the constant value. Adjusting the movement of the eighth mode
deflected the CoM to the left-hand or right-hand side of the
body, whereupon one foot took a larger step than did the other
foot. This phenomenon can be confirmed from the fact that the
amplitude of the left knee joint angle was bigger than that of the
right knee joint angle (see Figure 14A).

The robot and NAO could walk forward and backward by
adjusting the movement of the first mode. The robot and NAO
differed in how the gain was adjusted, but we consider this
to be because the gains of the other modes differed between
the robot and NAO. When the movement of the first mode is
adjusted, the degree to which the legs are opened is adjusted,
whereupon the position at which the foot touches the ground can
be adjusted. This can be confirmed from the fact that the hip joint
angle decreases and the knee joint angle increases when walking
switches from forward to backward (see Figure 12).

It is normally difficult to make a robot walk in a wide variety of
ways because that necessitates designing a plurality of controllers
and preparing references concerning each combination of
individual joints. Instead, our method realizes turning and
walking forward and backward smoothly by adjusting a few
symbolized parameters in MRM-space without having to care
about each combination of 27 joints and switching controllers.
This is because there is a pattern of movements according to the
mode, and the pattern to adjust is easy to understand visually.

A person can change behavior while caring intentionally only
about “turn left and right” or “forward and backward.” Likewise,
ourmethod can adjust signals and realize behavior without caring
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FIGURE 15 | Neuro-synergy system concept. (A) One layer. This is a schematic diagram that is used in the simulations and experiments. T−1 plays the role of

integrating complex signals from the environment and generating semantic information, and T plays the role of converting semantic information to specific control

signals. In this paper, standing balance and walking control is realized by adjusting part of the signals in a transfer space. (B) Two layers. Part of the integrated signals

is integrated, and an upper layer is formed. Control and adjustment are conducted in the upper layer, and the output signals from the upper layer play the role of

adjusting in the lower layer. (C) Three layers. The layer step-up is accumulated to form a larger network, and we can produce various behaviors from the

more-symbolized behavioral target.

about each joint, which is important in considering human-like
movement in the robot under consideration.

5. DISCUSSION

As discussed in section 1, the aim of this paper is to clarify
the mechanisms of generating automatic motor commands to
achieve a symbolized behavioral purpose. Our approach is to
develop an artificial controller that embodies those mechanisms
and derive the important features of that function to assess the
extent to which the robot behavior is human-like.

We reasoned that the key problem in developing a
controller with those mechanisms would be realizing bio-
mimetic adaptation with two-way behavioral adaptation. The
first way is selecting the appropriate behavior that progresses in
a top-down manner, and the second is adjusting the behavior
according to the environment, which is a bottom-up process that
progresses through body–environment interactions.

In the preliminary study, we discussed the standing balance
control of a 2DoF inverted pendulum to introduce our
control strategies, focusing only on the bottom-up adaptation
process. In our control strategy, the control signals to each
joint are transferred to another space computed by using
the mechanical resonance modes, whereby we can easily
understand the behavioral pattern that each control signal
creates. We applied tacit learning in MRM-space and developed
the controller to maintain standing against various levels of

disturbance. The simulation and experimental results showed
that the standing balance control capability was increased when
the 2DoF inverted pendulum was controlled using MRM-
space, suggesting that the simple adaptation mechanism is
enough to improve the behavioral performance of standing
balance when behavior control is conducted in a space
where we can set the direction of behavior by adjusting to
the change of the disturbance. The similarities between the
mechanical resonance modes used in this system and the
hip and ankle motion strategies of people must be another
indication of the importance of reacting to a wide range of
disturbances in a space in which the body parameters are well
represented.

In the bipedal walking study using NAO, we discussed two-
way adaptation. To represent the top-down process in which
the behavioral purpose is selected, we chose the appropriate
resonance mode with which to adjust the behavior to the desired
one. As described in Figure 13, when we adjust the parameter
of the eighth mode, the robot begins to turn left and right while
maintaining walking balance. Walking balance was maintained
by tacit learning applying the method in Shimoda et al. (2013) to
joint space in the same way as 2DoF inverted pendulum control
as a bottom-up process. In the simulation and the experiments,
we succeeded in changing the behavior to turn left/right and go
forward/backward by stimulating different mechanical resonance
modes.

We consider that the signals added to the specified mode
control can be treated as symbolized behavioral purpose in
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our study. The detailed commands to the joint control were
created in two processes, namely, transferring the control
signal from MRM-space to joint space, and tacit learning for
maintaining walking balance while reacting to environmental
inputs. Therefore, these results suggest that one-dimensional
signal change can create the complicated combinations of the
25DoF of NAO required to change the behavior when the
appropriate mode is stimulated.

Joint control is much more complicated in people than it
is in robots because complicated combinations of muscles are
required in the former. The notion of muscle synergy introduced
in section 1 shares the same features as those of the mechanical
resonance mode used in our method for robot control because
the muscle-synergy space represents the behavioral features of
body mechanisms and contributes to adjusting behavior in our
case by using lower-dimensional signals.

These results and discussion suggest that transferring the
signals to the appropriate control space is the key process for
reducing the complexity of the signals from the environment.
Discussing muscle synergy in a human controller and the
mechanical resonance mode is only one step to the final output.
If such steps were to be accumulated to form a larger network as
described in Figure 15, we could form various behaviors from the
more-symbolized behavioral target such as “go to the station.”

We reason that the extent to which a symbolized target
that is represented by the lower-dimensional signals is used
to create the robot behavior is the critical assessment for
evaluating the extent to which the robot behavior is human-
like. The results in this paper are just one step up from pure
motor-control signals, implying far from human-like behavior.
Further discussion is required to elevate the proposed system
to using more-symbolized behavioral targets such as “go to the
station.” A key problem is automatic creation of the mechanical
resonance mode. Non-linear transfer for more complicated
environment is another important problem. Even in the control
of human behavior, the process of creating muscle synergy
remains mysterious. We are now on the way to clarifying the

process to a morehierarchical system in both physiological and
artificial ways.
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The lack of an efficient modelling-simulation-analysis workflow for creating

and utilising detailed subject-specific computational models is one of the key

reasons why simulation-based approaches for analysing socket-stump interaction

have not yet been successfully established. Herein, we propose a novel and

efficient modelling-simulation-analysis workflow that uses commercial software for

generating a detailed subject-specific, three-dimensional finite element model of an

entire residual limb from Diffusion Tensor MRI images in <20 min. Moreover, to complete

the modelling-simulation-analysis workflow, the generated subject-specific residual limb

model is used within an implicit dynamic FE simulation of bipedal stance to predict

the potential sites of deep tissue injury. For this purpose, a nonlinear hyperelastic,

transversely isotropic skeletal muscle constitutive law containing a deep tissue injury

model was implemented in LS-DYNA. To demonstrate the feasibility of the entire

modelling-simulation-analysis workflow and the fact that detailed, anatomically realistic,

multi-muscle models are superior to state-of-the-art, fused-muscle models, an implicit

dynamic FE analysis of 2-h bipedal stance is carried out. By analysing the potential

volume of damaged muscle tissue after donning an optimally-fitted and a misfitted

socket, i.e., a socket whose volume was isotropically shrunk by 10%, we were able to

highlight the differences between the detailed individual- and fused-muscle models. The

results of the bipedal stance simulation showed that peak stresses in the fused-muscle

model were four times lower when compared to the multi-muscle model. The peak

interface stress in the individual-muscle model, at the end of bipedal stance analysis,

was 2.63 times lower than that in the deep tissues of the stump. At the end of the

bipedal stance analysis using the misfitted socket, the fused-muscle model predicted
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that 7.65% of the residual limb volume was injured, while the detailed-model predicted

16.03%. The proposed approach is not only limited to modelling residual limbs but also

has applications in predicting the impact of plastic surgery, for detailed forward-dynamics

simulations of normal musculoskeletal systems.

Keywords: continuum-mechanics, diffusion tensor MRI, skeletal muscle, transfemoral amputation, injury

1. INTRODUCTION

When designing and fitting prosthetic devices, prosthetists try
to cater to the unique needs and desires of a patient. Those
prosthetic devices that are perceived as good prosthetic fits
provide the ability to walk comfortably, which should be as
close as possible to normal gait, i.e., someone with a healthy
residual limb (Legro et al., 1999). However, studies indicate
that prosthetic fit varies, not only from one prosthetist to
another, but also within the same prosthetist (Boone et al., 2012;
Kobayashi et al., 2015). This indicates that most fits are sub-
optimal, and thereby impede the acceptance of prosthetic devices,
affect gait, and may lead to pain and injury (Klute et al., 2001;
Van Velzen et al., 2005). Until 2008, both computational and
experimental studies focussed their efforts towards reducing the
socket-stump interface pressure, which was considered to be the
most critical factor in deciding the comfort of a prosthesis. The
contribution of internal tissue strains towards the evolution of
deep tissue injuries was first investigated by Gefen et al. (2008)
and Portnoy et al. (2008). These tissue injuries originate deep
within the limb and propagate towards the outer skin, making
their timely prognosis difficult and dangerous. On the other
hand, there exist continuum-mechanical approaches and finite
element (FE) simulations that have been extensively used to
predict the response of various biological tissues to external
stimuli without invasive experiments (e.g., Röhrle et al., 2012;
Miga, 2016; Budday et al., 2017; Heidlauf et al., 2017). This
makes FE analyses (FEA) a suitable tool to understand internal

soft tissue strains in residual limbs. However, to succeed in
using FE simulations for investigating and ultimately designing
prosthetic devices, if deep tissue injuries can be strongly reduced
or eliminated, one requires an efficient tool to construct patient-
specific limbmodels, e.g., fromMRI or CT scans and appropriate
loading conditions such as the ones that occur during bipedal

stance or locomotion.
Over the last two decades, medical scans have been used

to generate patient-specific FE models (cf. Zachariah et al.,
1996; Portnoy et al., 2008; Zhang et al., 2013; Sengeh et al.,
2016; Cagle et al., 2018). In these models, the soft tissues
were segmented at most into one or two layers, i.e., muscle-fat
complex (Portnoy et al., 2008; Cagle et al., 2018), and fused-

muscle and skin (Sengeh et al., 2016), which we refer to in
the following as fused-muscle models. The justification provided
for such a segmentation was that the small volume of the
residuum comprisedmostly of a muscle lump. The experimental-
numerical validations of the proposed geometry were performed
using interface pressure maps by Portnoy et al. (2008) and with

indenters by Sengeh et al. (2016). However, it remains to be seen

if such minimally-segmented models can also be validated in
case of transfemoral residua, where the volume of soft tissues
is high, and segmenting the stump into a two-layered model
might lead to problems in fitting the material parameters. The
necessity of highly detailed human models based on medical-
imaging data have been emphasised by several authors. Scheys
et al. (2006) and Blemker et al. (2007) emphasise that image-
based personalised biomechanical analyses are required to truly
understand human movement, motion related disorders, or
postoperative gait anomalies, and Fernandez and Pandy (2006)
place importance on realistic subject-specific, three-dimensional,
individual-muscle FE models. In spite of the emphases on the
necessity of detailed muscle models, the review by Dickinson
et al. (2017) showed that the proposed FE models were either
generic or one- or two-layered segmentation of the limb from
MRI and/or CT. Further, they ignore the muscle’s anisotropic
behaviour. These models were primarily used to study the effects
of different loading conditions on the stresses at the socket-
residual limb interface. This is despite the fact that recent studies
involving patient-specific FE analyses are raising the importance
of tissue anisotropy (Sengeh et al., 2016; Dickinson et al., 2017).
Such information is, however, not considered to date although
it can be obtained, e.g., by utilising diffusion tensor imaging
(DT-MRI).

DT-MRI, which is widely used to study the fibrous white
matter in the brain (cf. Alexander et al., 2007), can also be
used to extract skeletal muscle fibres through a technique called
tractography, and the muscle structure thereof (cf. Froeling et al.,
2014; Oudeman et al., 2016). The fibre architecture is particularly
important for skeletal muscles, as they strongly influence their
mechanical behaviour. Without key mechanical properties such
as the fibre direction, it would be difficult to study gait and
the evolution of internal tissue stresses during locomotion with
a prosthesis (cf. Shojaei et al., 2016). In the muscle-driven
forward dynamic simulations to study normal and pathological
gait (cf. Piazza, 2006), it was stated that knowledge of muscle
activations would provide the aetiology of movement disorders,
and lead to effective treatments. It therefore follows that patient-
specific models that aim to distinguish individual muscles, i.e.,
resolve them individually, must include muscle fibre orientation
if continuum muscle models and the FE method are utilised to
perform FE-based biomechanical analyses. Moreover, Dickinson
et al. draw in their latest review on the state of utilising FE
simulations for analysing the mechanical behaviour of lower
limb amputees consensus that computational models used in
socket design and tissue viability studies require patient-specific
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geometry and material models to investigate the internal state of
residual limb tissues under load.

To the authors’ knowledge, no high-fidelity model of the
lower residual limb, in which the muscles are modelled as
individual objects exist (the so-called individual-muscle models).
More importantly, for the transfemoral case, no conclusive
evidence has been provided, which proves that a one- or two-
layered segmentation similar to those of the transtibial case
is sufficient. Hence, this research proposes a DT-MRI-based
modelling-simulation-analysis workflow that requires minimal
user intervention, generates highly detailed patient-specific FE
models of a residual limb, and uses the detailed model to carry
out simulations investigating the difference between individual-
muscle and fused-muscle residual limb models. This study is a
precursor to future forward dynamics studies involving muscle
activations, and mechanical loading of the internal soft tissues
during gait.

While this work focuses more on assessing the influence
of a particular socket on deep tissue injury (DTI), the same
modelling-simulation-analysis workflow can also be utilised
for other research questions, e.g., for predicting the result of
plastic surgery by simulating, for example, contraction of the
planned muscle graft, for detailed forward-dynamics simulations
predicting the forces acting within a musculoskeletal system
during motion (e.g., as proposed in Röhrle et al., 2017; Valentin
et al., 2018), or for analysing neural activity for investigating
neural-driven control strategies for prostheses.

2. METHODS

Given the limitations of existing stump models, the primary
objective of this research is to develop a modelling-simulation-
analysis workflow to aid in the modelling of a highly accurate
three-dimensional, patient-specific, FE residual limb model. The
proposed workflow for generating the residual limb model is
based on MATLAB to orchestrate the pre- and post-processing
of medical image data, to enable data transfer between different
software tools, to support the generation of FE mesh of the
residuum, and to finally map the muscle fibre information
present in the DT-MRI scans onto the generated FE mesh.
To complete the modelling-simulation-analysis workflow, the
generated, subject-specific residual limb model is used within
an implicit dynamic FE simulation of bipedal stance to predict
potential regions of the residuum that might be subjected to
DTI. This requires appropriate constitutive material models
characterising the deformation and injury of soft tissues and
reasonable boundary conditions. Here, boundary conditions
reflecting bipedal stance are considered. Further, to investigate
the necessity of the proposed highly detailed FE model of
the residual limb, the dynamic FE simulations of bipedal
stance are used to compare the results of the FE analyses
between the detailed models and the fused-muscle model of
the same residual limb when the same loading conditions are
imposed. This is done by comparing the resulting stresses
and volumes of regions that are predicted to be affected
by DTI.

2.1. Data Acquisition
The detailed patient-specific residual limb model that is required
for the FE analyses shall be derived from a medical image set. For
this purpose, DT-MRI scans of the entire residual stump of a left
transfemoral amputee were performed at the University Hospital
Tübingen, Germany. The MR Examinations were performed
on a 3 T MRI whole body scanner (Magnetom Skyra, Siemens
Healthcare, Erlangen, Germany), and the volunteer gave written
informed consent prior to the examinations. Ethical approval was
obtained beforehand (ref: 587/2014BO1).

For signal detection, body array coils of themanufacturer were
employed. One coil was positioned below and the other above
the thigh stump. A Magnetisation Prepared Rapid Acquisition
Gradient-Echo sequence (MP-RAGE) sequence was used to
obtain high-resolution 3D data sets of the residual limb, with the
socket donned, and without the socket. The sequence parameters
were: repetition time (TR) 2,300 ms, echo time (TE) 3.21 ms,
inversion time (TI) 974 ms, readout bandwidth 200 Hz/px, flip
angle (FA) 8◦, in-plane resolution 1.1 × 1.1 mm2, matrix size
224× 448, field of view (FOV) 245 x 491 mm2, slice thickness 1.1
mm, 192 sagittal slices and an acquisition time of 4min and 42 s.

For the DT-MRI scans, a 2D Echo Planar Imaging (EPI)
sequence with stimulated echo preparation and fat suppression
was applied. The sequence parameters were TR 13,000 ms, TE
36 ms, mixing time (TM) 200 ms, Bandwidth 2,380 Hz/px,
resolution 3.2 × 3.2 mm2, matrix size 76 × 150, FOV 245 ×

491 mm2, fractional readout 6/8, slice thickness 3 mm, slice
orientation sagittal, 42 slices, 12 diffusion directions, b-values
0 and 700 s/mm2, 4 acquisitions for each direction and 12
acquisitions for images with b = 0 s/mm2 (b0 images) and an
acquisition time of 13 min and 23 s.

2.2. Modelling the Residual Limb From
DT-MRI Scans
DT-MRI involves scanning a volume along 6 or more pre-
defined gradient directions (cf. Mori and Zhang, 2006). From the
diffusion of water molecules in any given voxel of the scanned
volume, the variation of the applied magnetic field gradient
is measured and its three-dimensional diffusion characteristics
determined. These characteristics can be represented by a tensor,
the so-called diffusion tensor. In skeletal muscles, this diffusion
occurs preferentially along the muscle fibres, thereby revealing
the anatomy of the muscles. To obtain a computational subject-
specific model suitable for an FE analysis from such data, a
workflow was created in MATLAB (R2016a, The Mathworks,
Inc., Natick, Massachusetts, United States). The following
sections describe the modelling process.

2.2.1. Data Preparation
The DT-MRI scans were obtained in mosaic format (see
Figure 1), where each image contained the entire 3D scan
volume. For this subject, a total of 60 mosaic images were
obtained from 4 acquisitions, where each mosaic image had
dimensions of 532×1, 050 px, and each 2D slice in themosaic had
dimensions of 76× 150 px. By first traversing along the columns
(k-axis) of the mosaic (cf. Figure 1), and stacking each 2D slice
one behind another, a 3D representation of the residual limb was

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2018 | Volume 6 | Article 126158

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ramasamy et al. Investigating Socket-Stump Interaction

created. Each pixel in this mosaic can be accessed by providing
two sets of coordinates. The first set of coordinates ([k, l]) selects
a 2D slice, and the second set of coordinates ([u, v]) selects a pixel
in this 2D slice. If i denotes the intensity of any given pixel in the
mosaic, the voxel intensities in the 3D image stack, S, is given by

S = [iuv]kl = iuvm

with m = N(l− 1)+ k,
(1)

where m can be thought of as the slice number (index) in the
constructed 3D volume,N is the total number of rows or columns
in the mosaic (here, N = 7), and indices k and l index a 2D
slice in the mosaic (k = l = {1, . . . , 7}). The extents of each 2D
slice within the mosaic are 76 × 150 px, i.e., u = {1, . . . , 76} and
v = {1, . . . , 150}. In the given example (cf. Figure 1), the last row
contains no images (m = {1, . . . , 42}).

To reduce noise in the mosaic images, the variance in pixel
intensities was reduced by averaging the images over all 4
acquisitions, i.e., the average was taken over 60 images such that
we had one image along each gradient direction, and one b0
image, which resulted in a total of 13mosaics. The “Dicom to nifti
converter, nifti tool and viewer” MATLAB toolbox was used to
convert these 13 images into a NIfTI file. This NIfTI file was used
in MedINRIA’s DTI Track module (v1.9.2, 64-bit, ASCLEPIOS
Research team, France) to track muscle fibres. The parameters,
which were used for fibre tractography are fibre smoothness 10,
minimum length of fibres 10, and both FA thresholds were 0. The
resulting fibres were wavy due to inherent noise in the scans (cf.
Figure 2A). It has been shown that this inherent noise in DT-
MRI images is best described by a Rice distribution (cf. Basu
et al., 2006). So, a technique using overcomplete local PCA was
employed to remove this Rician noise from the NIfTI images (cf.
Manjón et al., 2013). The resulting fibres are shown in Figure 2B.
DICOM images (DT-MRI-DICOMs) were produced from these
averaged and de-noised NIfTI images.

The fibres were segmented into various muscle fibre bundles
using MedINRIA’s fibre cropping tool. This tool allowed fibres
passing through the region of interest, i.e., a cropping box,
to be bundled together. Fibres of 11 muscles, which were
distinctly visible, were bundled. These were Adductor Magnus,
Biceps Femoris, Gluteus Maximus, Gluteus Minimus, Pectineus,
Rectus Femoris, Sartorius, Semimembranosus, Semitendinosus,
Vastus Lateralis, and Vastus Medialis. Segmentation of the voxels
traversed by each of the above muscles was exported from
MedINRIA, which were processed in MATLAB to create binary
images of these muscles.

2.2.2. Image Segmentation Using Simpleware ScanIP
The 3D residual limb model was created using Synopsys’
Simpleware ScanIP (Synopsys, Mountain View, USA). The
binary images that were created by MATLAB, were loaded as
background image stacks in ScanIP. These binary image stacks
that represent regions of interest (also called masks) are used
to create 3D volumetric models. The geometric model for our
analysis consisted of the femur, muscle tissues, fat, prosthetic
liner and socket, whose construction are described below.

FIGURE 1 | Siemens mosaic file. A sample mosaic image is shown here. For

the sake of illustration, the 2D slices that make up the mosaic are separated

by thin lines. Any pixel in the mosaic can be accessed using two coordinate

systems–the [k, l] coordinate that references a 2D slice in the mosaic, and the

[u, v] coordinate that references a pixel in the 2D slice referenced by [k, l].

Muscles. The muscle masks that were created in the previous
section were loaded in Simpleware ScanIP, whose segmentation
resulted in volumetric muscle models.

Femur and socket. The highly diffused spongiosa, and the
relatively low water content in the femur resulted in negligible
or random diffusion of water in the DT-MRI scans. This made its
segmentation difficult. Furthermore, the socket was also opaque
in the DT-MRI scans due to absence of water content. For this
reason, the femur and socket were segmented fromT1MP-RAGE
sequences (cf. section 2.1).
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FIGURE 2 | Muscle fibres in MedINRIA. Shown here is the posterior view of the muscle fibre tracts produced by MedINRIA’s DTI Track module. Panel (A) shows the

fibres produced when using the raw NIfTI images as input, and the fibres shown in (B) are produced from the de-noised NIfTI images. The colours in fibre tracts

indicate the anatomical axis along which they are aligned, i.e., the inferior-superior direction is represented by blue, the medial-lateral axis by red, and the

anterior-posterior direction by green.

To register the T1 MP-RAGE sequences with the DT-MRI
scans, femurs from both these scans were segmented and
exported as surface (STL) models. Using an iterative closest
point technique, the transformation that correctly positioned
and aligned the surface model of femur segmented from T1
scans (the T1-segmented femur) with that of DT-MRI (the DT-
MRI-segmented femur), was determined. This transformation
was then applied to the T1-segmented femur and socket,
and were imported as CAD models into Simpleware +CAD
module.

Fat. A mask of the complete residual limb was created from
the DT-MRI-DICOMs. A boolean difference of this mask from
the union of the muscle and femur masks resulted in the mask
for fat tissues.

Liner. The subject’s liner was 9 mm thick. This liner was
modelled by uniformly extending the outer surface of the
residual limb in the normal direction towards its exterior
by 9 mm.

A Python script automated the process of loading the
above masks into Simpleware ScanIP. Morphological
and smoothing filters (dilation and recursive Gaussian)
were applied on all masks to generate smooth surfaces.
After post-processing, the maximum difference between
the volumes of muscle masks before and after smoothing
was <0.2%.

2.2.3. Generation of the FE Model
Using Simpleware ScanIP +FE, an FE mesh of the subject’s
residual limb was created for LS-DYNA (LSTC, Livermore,
California). All parts were meshed with linear tetrahedral
elements. The mesh parameters were: coarseness -10, number
of quality optimisation cycles 10, mean Jacobian of 0.5 and
minimum of 0.1. The parts were allowed to change during
meshing, where the maximum distance that a surface node can
be displaced off the original surface was limited to 0.2 mm.
Contacts were not defined in Simpleware ScanIP, which resulted
in common nodes between the tissues in the FE mesh.

As mentioned earlier in section 1, the muscle fibres were
not only meant to automate the modelling process but also
to enhance the FE mesh with directional fibre information,
which are required in muscle activation studies. The fibres, that
were in the NIfTI coordinate system (CS), were aligned with
the FE mesh by transforming them back into the DICOM CS.
These fibres were not physically modelled and embedded in the
FE mesh but rather the fibre anisotropy within each element
of the muscles was modelled using the “element_solid_ortho”
card in LS-DYNA. To do so, the feature that fibres exported
from MedINRIA were consecutively numbered was exploited
in determining the number of fibre strands passing through an
element. Three fibre strands passing through two elements of the
FE mesh are illustrated in Figure 3. The effective fibre direction
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FIGURE 3 | Effective fibre direction in an element. The points within a fibre

strand created by MedINRIA were sequentially numbered. When more than

one fibre strand passed through an element, the effective fibre direction at the

element centroid C was computed by the weighted sum of the best fit lines

from each strand.

in an element is the weighted sum of the trend lines fitted for
each set of consecutively numbered fibre points in that element.
In general, if an FE mesh consists of Ne elements, where Ni

s fibre
strands traverse the ith element (i ∈ Ne) with its centroid xi, and
gs was the line of best fit for the strand s with weight ws, the
effective fibre direction in that element, f(xi), was defined as

f(xi) =

Ni
s

∑

s=1

wsgs,

with ws =
n2s

Ni
s

∑

s=1
n2s

,
(2)

where ns was the number of fibre points in the fibre strand s. The
effective fibre direction in all Ne mesh elements was determined.

The estimation of effective fibre direction in some elements
showed inconsistencies with the fibre directions in their
immediate neighbourhood. In some other elements of the
mesh, like near the boundary of Gluteus Maximus, no fibres
were detected. This is attributed to the partial volume effects,
and morphological and smoothing filters applied during image
processing using Simpleware ScanIP that changed the muscle
volume, resulting in missing some fibre information within the
boundary elements. To correct the orientation of fibres, and to
enhance themodel, the fibre field was smoothed using radial basis
interpolation with a Gaussian kernel. The new fibre direction in
the ith element with its centroid at xi, f̃(xi), was defined as

f̃(xi) =

Ne
∑

e=1

φf(xe)

with φ = φ̂(xi, xe, p) = exp

(

−p
‖xi − xe‖

L

)2

,

(3)

where f(xe) was the original effective fibre direction in the
element with centroid at xe [cf. Equation (2)], φ was the Gaussian
radial basis function kernel, the scalar parameter p set the number
of neighbouring elements that influenced the fibre orientation in
the current element (here, p = 20), and L was the length of the
diagonal of the bounding box formed by mesh elements of the
muscle. The above steps were performed for all 11 muscles in the
residual limb. This resulted in the final FE mesh for our analyses.
An overview of the entire workflow is shown in Figure 4.

2.3. Constitutive Model for Soft Tissues
Skeletal muscle contractions occur as a result of chemical
interactions resulting in physical movement of muscle filaments.
The grand sum of individual filament contractions results in
the overall muscle contraction. These muscle contractions can
be described in varying levels of detail (see Heidlauf and
Röhrle, 2014; Bradley et al., 2018, for more details). The
continuum-mechanical model for the soft tissues, within this
work, was based on a 3D phenomenological approach, i.e., the
constitutive model of the muscles is based on macroscopically
observed muscle contractions as presented in Röhrle et al.
(2017).

It is assumed that the force developed by the muscle
fibres is additively split into an active and a passive part.
Passive force is generated when fibres stretch, while an
active force is related to muscle contraction stemming from
chemo-electro-mechanical processes on the cellular level. In
order to model these processes in a continuum-mechanical
sense, these contributions were expressed as a function
of the fibre’s length or stretch. Time-dependent viscoelastic
behaviour of soft tissues was ignored, and the soft tissues
were modelled as hyperelastic, quasi-incompressible materials.
Muscles are assumed to undergo large deformations, and
therefore, the theory of finite elasticity is assumed. The material
model for soft tissues implemented here is based on Röhrle
et al. (2017). In the following, a brief overview of the
theory and constitutive equations for the material model are
given.

2.3.1. Constitutive Muscle Model
A continuum body B is assumed to be a collection of points
P in space whose local deformation can be described by the
deformation gradient F. The deformation gradient F is a map
between the reference and the current configuration, and is
defined as F = Grad x = ∂Xx, where X is the position vector
to a material point P at the reference configuration, and x is the
position vector to the same point in the deformed configuration
of the body B. In the theory of Finite Elasticity, the deformed
state of the body B is formulated in terms of the right or the
left Cauchy-Green tensor, which are defined as C = FTF, and
B = FFT, respectively. The balance of linear momentum is
given by

divT+ ρg = ρẍ, with ρ =

1

det F
ρ0, (4)

where T is the Cauchy stress, ρ0 is the material density in
the reference configuration, ρ is the density in the current
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FIGURE 4 | Overview of implemented workflow. The proposed workflow that converts the DT-MRI scans into patient-specific residual limb model is illustrated here.

MATLAB handles data processing and transfer between the various software tools. Fibre tracking is done using MedINRIA. Binary muscle masks are created from the

voxel segmentation data, which are loaded into Simpleware ScanIP. After image processing in ScanIP, the FE mesh is generated with the ScanIP +FE module. Finally,

the extracted fibres are embedded into the FE mesh.

configuration, g is the acceleration due to gravity, and ẍ is the
acceleration of spatial points P ∈ B.

The stress developed in the soft tissues is additively split
into one part stemming from the isotropic matrix and one part
originating from anisotropic behaviour associated with the fibre
direction. Likewise, the stress in the fibre direction is additively
split into its active and passive contributions. Therefore, the
second Piola-Kirchhoff stress tensor, S, can be expressed as

S = Siso + Saniso = Siso + (1− γ )(Spas + αSact), (5)

where S
iso

and S
aniso

are the isotropic and anisotropic parts of
the stress tensor. Likewise, the passive and active contributions
to the anisotropic stress tensor are Spas and Sact. As mentioned
earlier (cf. section 2.3), the material model developed here was
meant to be applicable for soft tissues, i.e., fat, skeletal muscles
and tendons. For this reason, a binary variable γ was introduced
to control the exclusion or inclusion of the stress contribution
from fibres. For example, γ = 1 results in purely isotropic stress
contribution, while γ = 0 allows one to consider the anisotropic
contributions due to the fibres as well. Muscle activation is given
by α, with 0 ≤ α ≤ 1.

The strain energy formulation for the compressible isotropic
soft tissue matrix was taken from Crisfield (1997). The isotropic
second Piola-Kirchhoff tensor is

Siso = (B1I+ B2C+ B3C
−1)+ k(det F− 1) I3

1/2C−1, (6)

where k is the bulk modulus of the soft tissue matrix, and

B1 = 2C1I
−1/3
3 + 2C2I

−2/3
3 I1,

B2 = −2C2I
−2/3
3 , and

B3 = −2/3C1I
−1/3
3 I1 − 4/3C2I

−2/3
3 I2.

(7)

Here, C1 and C2 are material parameters of the isotropic part of
the strain energy function, and I1, I2 and I3 are the invariants of
C. The fourth invariant of the transversely isotropic material is

I4(C,M) = M :C,

where M = a0⊗ a0,
(8)

where M is a structural tensor defined by means of the fibre
direction, a0 in the reference configuration. Then, one can define
the fibre stretch 3 as 3 =

√

I4.
The active and passive contributions of fibres to the second

Piola-Kirchhoff stress (cf. Röhrle et al., 2017) are

Saniso = (1− γ )(Spas + αSact), where

Spas =







1

32
C3

(

3C4 − 1
)

M , if 3 ≥ 1,

0, otherwise , and

Sact =















Smax

32
exp

(

−

∣

∣

∣

∣

3/3opt − 1

1Wasc

∣

∣

∣

∣

νasc
)

M, if 3 ≤ 3opt,

Smax

32
exp

(

−

∣

∣

∣

∣

3/3opt − 1

1Wdsc

∣

∣

∣

∣

νdsc
)

M, if 3 > 3opt.

(9)
Here, C3 and C4 are material parameters and Smax is the
maximum stress that a muscle can produce at its optimal length
(3opt). The parameters 1Wasc, νasc, 1Wdsc and νdsc affect
the magnitude of the active part of the Piola-Kirchhoff stress.
The material parameters chosen for the muscles are given in
Table 1. The material tangent, C, that is required for implicit
computations is a fourth-order tensor obtained from the second-
order Piola-Kirchhoff stress tensor as C = CMNOP = 2∂CS. It
is noted that the implementation within LS-DYNA requires the
definition of the spatial counterpart of C, which is denoted by
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TABLE 1 | Material parameter table.

Model Material parameter Contribution Value

Muscle (Röhrle et al., 2017)

CM
1 Isotropic 2.5× 10−6 MPa

CM
2 Isotropic 6× 10−3 MPa

CM
3 Anisotropic (passive) 1× 10−3 MPa

CM
4 Anisotropic (passive) 6 (–)

Smax Anisotropic (active) 0.1 MPa

1Wasc Anisotropic (active) 0.15 (–)

1Wdsc Anisotropic (active) 0.16 (–)

νasc Anisotropic (active) 2 (–)

νdsc Anisotropic (active) 4 (–)

3opt Anisotropic (active) 1.3 (–)

γ M - 0

αM - 0

Skin/Fat (Röhrle et al., 2017)

CS
1 Isotropic 2.5× 10−6 MPa

CS
2 Isotropic 6× 10−3 MPa

CS
3 Anisotropic (passive) 1× 10−3 MPa

CS
4 Anisotropic (passive) 6 (–)

Smax Anisotropic (active) 0.1 MPa

1Wasc Anisotropic (active) 0.15 (–)

1Wdsc Anisotropic (active) 0.16 (–)

νasc Anisotropic (active) 2 (–)

νdsc Anisotropic (active) 4 (–)

3opt Anisotropic (active) 1.3 (–)

γ S - 1

αS - 0

Liner (Łagan and Liber-Kneć, 2018)
CL
1 Isotropic 0.33 MPa

CL
2 Isotropic 0.01 MPa

Femur (Zhang et al., 2013)

ρ (density) - 1× 10−3 g·mm−3

E (Young’s modulus) - 1.5× 104 MPa

ν (Poisson ratio) - 0.27

Socket (Zhang et al., 2013)

ρ (density) - 1× 10−3 g·mm−3

E (Young’s modulus) - 1.0× 104 MPa

ν (Poisson ratio) - 0.30

Parameters for the material model. Parameters for muscle and Skin/Fat were adapted from Röhrle et al. (2017).

B. But B is easily obtained by the push-forward of the material
tangent C, i.e.,

B = J−1χ∗(C) = (F⊗ F)
23
T
C(FT⊗ FT)

23
T . (10)

The superscript 23 above the transpose indicates that the
transposition is defined by the exchange of second and third bases
in the dyadic product. Hence, the spatial elasticity tensor is given
in index notation by

Bijkl = FiMFjNFkOFlPCMNOP. (11)

2.3.2. Tissue Injury Model
Exposing the residual limb to excessive stresses and strains leads
to soft tissue damage through cell death (see Oomens et al.,

2014). This is also associated with deep tissue injury, whose
timely prognosis is difficult. Using patient-specific limb models,
FE analyses can provide the internal stress state of soft tissues; the
basis for predicting tissue damage.

The main idea of Gefen et al. (2008) is that cell death occurs if
εeff > εcrit, where εeff is the effective strain in the cell, and εcrit
is the critical strain limit beyond which cell death occurred. The
effective and critical strains are defined as

εeff =

√

2

3
εijεij , and

εcrit =
K

1+ exp(β(t − t0))
+ C,

(12)

where ε is the symmetric Green strain. The values for
the empirical constants in Equation (12) are K = 0.268,
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t0 (time of midpoint of the sigmoid step) = 9.78 × 106 ms, β =

5.83 × 10−7ms-1 and C = 0.332 (see Gefen et al., 2008). The
Boltzmann-type sigmoid curve seen in Equation (12) provides
the evolution of critical strain based on which a cell was identified
as either injured or healthy. This injury model was implemented
in the material model.

The material parameters of the soft tissues, bone, liner and
socket used in the FE simulations are provided in Table 1.

2.4. Loading and Boundary Conditions for
FE Analysis of Bipedal Stance
The dynamic FE analysis of bipedal stance is performed in two
stages: socket donning, followed by constant femoral load over
a period of 2 h. The boundary conditions, loads and contact
definitions applied in the analysis are detailed here.

For the generated FE mesh of the residual limb, no contact
pairs were defined (cf. section 2.2.3). This resulted in common
nodes between adjacent parts of the residual limb (muscles, bone,
fat, liner) at their boundaries. A frictionless surface-to-surface
mortar contact was defined between the outer surface of the liner
and inner surface of the socket.

For the FE analysis of bipedal stance, the residual limb and
prosthesis were only permitted to translate in the craniocaudal
axis, while the other 5 degrees of freedom (DoF) were
constrained. In the initial state, the socket and residual limb-
liner complex were separated by a distance of 130 mm in the
craniocaudal direction. In the socket donning simulation, the
femur was constrained in all DoFs and the socket was translated
towards the limb (superior) by 130 mm along the craniocaudal
axis in 10 s (see also Figure 5A). At the end of the socket
donning simulation, the nodes of the liner that were in contact
with the socket, were tied to the socket using tied-nodes-to-
surface penalty-based contact in LS-DYNA. The translational
constraint along the craniocaudal axis that was imposed on the
femur during the socket donning simulation was removed. This
was followed by the application of 400 N femoral load, which
is approximately half the subject’s body weight, acting in the
positive inferior direction for 2 h (see also Figure 5B). This
duration (2 h) was selected to be long enough to study strain-time
dependent cell death.

The residual limb, socket and liner were meshed with
1-point, constant pressure, solid tetrahedral elements. The
dynamic, implicit analysis was solved using Davidon-Fletcher-
Powell (DFP) quasi-Newton iterative solver with LS-DYNA on
a Linux workstation with 4 processors [Intel(R) Xeon(R) CPU
E5-2687W, 3.10 GHz] using 1.12 GB RAM.

3. RESULTS

In the following, we present the outcome of the proposed
modelling-simulation-analysis workflow, i.e., the result of the
geometry and FE mesh generation of the residual limb, and how
this model can be used to analyse and compare stresses and
injured volumes between fused- and individual-muscle models in
the socket-donned state, with the original and misfitted sockets,
during bipedal stance.

FIGURE 5 | Boundary conditions for FE analysis. The two stages of the socket

donning analysis are illustrated here. (A) In the first stage, the socket is donned

over the residual limb through prescribed motion boundary condition. (B) In

the next stage, the patient’s body weight is applied on the femur in the

socket-donned state as the prosthesis rests on the ground.

3.1. Geometry and FE Mesh of the
Residuum
The results of applying the above described modelling workflow
to the imaging data results in the discretised residual limb model,
which is shown in Figure 6. Figure 6A depicts the geometries of
the bone (residual femur) and the skeletal muscles within the
stump by suppressing the opacity of the outer skin and liner
while Figure 6B shows the stump including the fat/skin and
liner geometry, and Figure 6C presents the model of the original
socket worn by the subject. The FE meshes of these models,
constructed with the mesh parameters listed in section 2.2.3,
are shown in Figure 7. In Figure 7A, the FE mesh of muscles
and bone is superimposed on the mesh of the skin. The linear
Lagrange tetrahedral FE meshes of liner and socket are shown
in Figures 7B,C. The mesh consisted of 5, 416 elements in the
femur, 35, 257 elements in the muscles, 97, 503 elements in the
skin/fat layer, 51, 791 elements in the liner, and 327, 865 elements
in the socket.

The fibres that were mapped from MedINRIA into the
FE mesh suffered from inconsistent fibre directions among
neighbouring elements, and with some elements completely
devoid of fibre information. This is shown in the case of Gluteus
Maximus in Figure 8A. With the fibre-mapping algorithm
described in section 2.2.3, these inconsistencies were corrected,
which resulted in the fibre distribution in the Gluteus Maximus
as shown in Figure 8B. The direction of muscle fibres in the
complete residual limb is shown in Figure 8C.

The duration of the overall modelling process, from
segmenting the DT-MRI scans to creating the FE model of the
residual limb with tissue anisotropy, was about 20min.
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FIGURE 6 | Residual limb model. (A) The residual limb model created in Simpleware ScanIP. The opacity of liner and fat layers have been reduced to reveal the

underlying bone and muscles. (B) The liner around fat/skin layer is shown in grey. (C) Model of the original socket worn by the subject.

FIGURE 7 | FE mesh. FE meshes for the residual limb, liner and socket are presented in (A–C), respectively.

3.2. Mesh Convergence Studies
Prior to performing the bipedal stance analysis, a mesh
convergence study with the boundary conditions described in
section 2.4 was performed. Varying mesh densities of the residual
limbmodel were obtained by adjusting themesh coarseness slider
in Simpleware ScanIP +FE between −35 and −5. The selection
criteria was based on convergence of volume-normalised stresses
in the residuum, with which the optimal mesh was selected. The
volume-normalised stress σ is computed by

σ =

1

V

Ne
∑

e=1

σ eve, (13)

where σ e is the von Mises stress in an element of volume ve, V
is the total volume of residual limb and Ne is the total number
of elements in the residuum. The mesh convergence plot and the
mesh densities of the residual limb model are shown in Figure 9.
From the graph, one can see that the normalised stress is
decreasing with increasing mesh density, in a negligible fashion,

i.e., by <1.5%. As a result, the FE model created with coarseness
factor of –35 resulting in a mesh with 517, 832 elements was
chosen for this study.

3.3. Bipedal Stance Simulation
For highlighting the full capabilities of the modelling-simulation-
analysis workflow and for emphasising the need of detailed,
individual-muscle models, two models were created. These are
(i) the fused-muscle model for the sake of comparison with the
proposed individual-muscle model and (ii) a misfitting socket to
predict tissue injury. To create the fused-muscle model, masks of
individual muscles were fused. Using the same mesh parameters,
the FE mesh of the fused-muscle model was generated. The
resulting model and the FE mesh are shown in Figure 10.
The number of linear tetrahedral elements in the fused muscle
model were 477, 989. The misfitting socket was generated by
isotropically shrinking the original socket by 10%. This scaling
factor is not motivated by any particular application.

The bipedal stance simulation was performed using three
different limb models, namely (i) the individual-muscle model

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 September 2018 | Volume 6 | Article 126165

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ramasamy et al. Investigating Socket-Stump Interaction

FIGURE 8 | Corrected fibre orientation. (A,B) show the fibres in Gluteus Maximus before and after interpolation using radial basis function, respectively. It can be seen

that some boundary elements in (A) contained no fibre information. The inconsistent and missing fibres were corrected through the interpolation method proposed in

section 2.2.3, and the resulting fibre distribution is shown in figure (B). Fibre orientation in the muscles are shown in (C) with femur, fat and liner suppressed for the

sake of clarity.

FIGURE 9 | Mesh convergence. Convergence of the normalised von Mises stresses of the residual limb model with decreasing ScanIP coarseness factor is shown.

On the right, the number of linear tetrahedral elements in the FE model is tabulated against the ScanIP coarseness factors. The graph depicts the decrease in

normalised stress with increase of mesh density, i.e., decreasing the mesh coarsening factor from −35 to −5.

together with original socket, (ii) the individual-muscle model
together with smaller, misfitting socket, and (iii) the fused-muscle
model together with the misfitting socket. The von Mises stresses

and tissue damage in the residual limb during the bipedal stance
analysis are shown for each of the cases in Figure 11. A maximal
von Mises stress of 63.5 kPa developed in the individual-muscle
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FIGURE 10 | Fused-muscle model. The geometry and FE mesh of the fused

muscle are shown in (A,B), respectively.

model with themisfitting socket, i.e., in case (ii). The peak stresses
for cases (i) and (iii) were 19 and 14.34 kPa, respectively.

Figures 11D–F depicts, for all three cases, the damaged
muscle tissues in red. The magnitude of soft-tissue damage for
the three cases is plotted in Figure 13. Here, the volume percent
of damaged tissues with respect to the total, undamaged volume
of the tissues is plotted over the duration of the entire stance
phase. It is observed that with the original socket, the volume
percent of damage is negligible. The maximum observed damage
at the end of the simulation was 0.01%. When simulated with the
misfitting socket, i.e., cases (ii) and (iii), this rose to 16.03 and
7.65%, respectively.

The interface stresses on the skin/fat layer in both the fused-
and individual-muscle models after the 2-h bipedal stance when
donned with the original sockets are shown in Figure 12. The
mean and standard deviation of the interface stresses in the
fused- and individual-muscle models were 5.4±1.6 and 4.9±1.1
kPa, respectively. The peak stresses in the two models were 16.3
and 24.1 kPa, respectively, which were observed in the proximal
anterior and posterior regions of the residual limb.

4. DISCUSSION

In this study, we proposed an efficient modelling-simulation-
analysis workflow to investigate stump-socket interaction during
bipedal stance and hypothesised that detailed, individual-muscle
models of residual limbs will provide more insight into the
prosthesis-stump interaction than that provided by fused-muscle
models. This study can be considered as a proof of concept for
future work on automating and optimising socket design from
imaging data.

4.1. DT-MRI-to-FE Mesh Workflow
The core of the modelling-simulation-analysis workflow of this
research is the quasi-automatic generation of detailed patient-
specific FE models of residual limbs from DT-MRI scans. The

model generation relies on the fibres extracted from DT-MRI
scans, i.e., the muscle and other soft tissue masks that are
imported to Simpleware ScanIP, are created from the tracked
fibres. But the process of extracting these fibres is done manually,
and therefore subjected to some degree of human-related error.
For example, the influence of parameters set in MedINRIA’s DTI
Track module, in the resulting fibre distribution, and in the
muscle masks that were generated, is not known. It is expected
that changes in these parameters might affect the volume of
muscle masks but not the resulting fibre orientations. Another
potential source of error is due to the manual grouping of
muscle fibres into bundles, in MedINRIA. This can lead to some
fibres being simultaneously grouped into two muscle bundles,
and therefore result in overlapping muscle masks in Simpleware
ScanIP, where the stacking order of these masks plays a vital
role in determining the resulting model and FE mesh. In case of
overlapping volumes, the masks at the top of the stack overwrite
the volume of intersecting masks below them. Hence, different
models can result from different mask hierarchies. Moreover,
smoothing and morphological operations in ScanIP, which are
essential to obtain a smooth and kink-free FE mesh, alter the
resulting volume and geometry of the residual limb. However,
utmost care was taken in performing these morphological and
smoothing operations such that the total volume of the muscle
masks did not vary by more than 0.2%.

As a result of the parameters chosen for fibre tractography,
and the smoothing and morphological operations that alter
the geometry of the residual limb, some elements of the FE
mesh might either lack fibre information or contain inconsistent
fibre orientations. Incorrectly bundled fibres might also lead
to inconsistent fibre directions in the mesh. The implemented
fibre-correction algorithm fills in the missing fibre information
and also corrects the inconsistent fibre orientations within each
muscle. This however, is done at the cost of smoothing the
fibre orientation field over the entire muscle domain, which
might lead to over-smoothing. The extent of any such over-
smoothing needs to be verified by comparing the smoothed
fibre field with that of the non-smoothed, original fibre field.
The error associated with manual bundling of muscle fibres also
affects the fibre orientation in the muscles. Incorrectly bundling
fibres of neighbouring muscles might lead to non-realistic fibre
orientation at the muscle boundaries. A potential scope for
improving the fibre-correction algorithm is to include checks
for mutual exclusion of muscle fibre bundles. Furthermore, the
Gaussian kernel size p, which is assumed to be constant here, can
be modelled as a function of mesh density. The value of p should
be inversely proportional to the mesh density, i.e., a dense mesh
will have a smaller value of p than a coarsemesh. For the proposed
model, these errors are expected to play a very minor role since
the majority of muscle fibres in the model tend to have distinct
lines of action, where relatively negligible inconsistencies and
error in fibre orientations do not contribute to large differences
in the direction and magnitude of the generated muscle force.

Another source of error in modelling the residual limb is the
fact that tendinous structures cannot be extracted directly from
DT-MRI images. But the tendinous structures are responsible
for transferring the forces generated by skeletal muscles to the
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skeleton. However, due to the inherent limitations of the DT-
MRI scans, tendons cannot be tracked. To do so, scanners with
large magnetic field strength, and extremely high pixel resolution
are necessary (cf. Gupta et al., 2010; Karampinos et al., 2012).
In Gupta et al. (2010), excised rabbit tendons were tracked
using DT-MRI with in-plane pixel resolution of 200 µm, in
a 11.74 T scanner. Scanning with such high resolution is not
feasible for humans due to the extremely high scan duration. As a
result, models created with the proposed workflow lack tendons,
which is not a limitation of the proposed methodology but
rather of the current scanner technology. Tendons may, however,
be laboriously hand-segmented from T1- or T2-weighted MRI
scans, and imported into the limb model.

Despite these drawbacks, having good knowledge in anatomy
for grouping the muscle fibres is helpful in resolving most
fibre-bundling-related problems in MedINRIA. It remains to be
verified in future experiments, if higher resolution DT-MRI scans
will mitigate partial volume effects to such an extent that the
boundaries between muscle fibres are distinctly visible, leading
to easier classification of mutually exclusive fibre bundles. If not,
an alternative would be to overlay the muscle masks over T1- or
T2-weighted MRI scans, and correct the mask boundaries before
creating the model. It is common for surgical amputations to
result in extensive modifications of the limb musculature, which
results in a unique residual limb anatomy in each patient. In such
cases, conventional segmentation of the residual limb with MRI
or CT scans, with the intention of creating a detailed limb model,
is rather difficult. With the proposed technique, the anatomy
of this new musculature is evident from its fibre distribution
with which individual muscles of the residual limb can be easily
modelled. This ease of use of the proposed workflow is obvious
given the relatively short time (about 20 min) that is required
to model the highly detailed patient-specific FE mesh of the
stump.

4.2. FE Mesh and Continuum-Mechanical
Model
The use of realistic constitutive laws is, like for almost any
other subject-specific computational model, a challenge and
a source of error. Here, the soft tissue parameters of the
continuum-mechanical model were adapted from Röhrle et al.
(2017), where the skeletal muscle parameters were optimised for
healthy upper limb muscles. Unlike healthy muscles, amputated
muscles are incapable of generating normal muscular force
owing primarily to reduced physiological cross-sectional area
and altered insertion points of transected muscles, among
other factors. Therefore, the soft tissue parameters of the
stump were adapted from the healthy parameter set by simply
weakening them. The correctness of such a set is not guaranteed
here. Extensive experimental methods, which currently are
active research topics (cf. Sengeh et al., 2016), are required
to accurately determine the correct parameter set for the
stump.

Further, the contact between soft tissues in the residual limb
were idealised through common nodes at the interfaces between
individual parts of the FE mesh. This assumption is comparable

to the role of connective tissues that bind the soft tissues
together, which leads to favourable conditions in the FE analyses.
For example, through the use of common nodes, frictional or
sliding contact between the individual parts, which is difficult to
quantify, is eliminated. This results in a quicker computation.
Another benefit of this contact-less model is that there are no
nonsensical gaps in-between the soft tissues and also between
the bone and surrounding soft tissues during the simulations.
Similarly, the sticky contact between the inner surface of the
prosthetic liner worn by the subject and the skin was idealised
through common nodes at their surface.

4.3. Boundary Conditions and Results of
Bipedal Stance
Themodels of residual limb and prosthetic socket were generated
from DT-MRI and T1-MRI scans, respectively. This was due
to the fact that the socket, which lacked water content, was
transparent in the DT-MRI scans and therefore could not be
segmented. The correct alignment between the residual limb and
socket was achieved by manually segmenting and aligning the
femur in both models. This manual segmentation of the femur
in Simpleware ScanIP is trivial and quick due to large differences
in the pixel intensities of the bone and the surrounding soft
tissues. Following this alignment procedure, the initial position
of the socket for the socket donning simulation was chosen
such that the stump and the socket were not in initial contact.
The duration of this simulation was assumed to be 10 s, which
was not experimentally-motivated. The dynamic socket donning
simulation pre-conditioned the limb for the bipedal stance
simulation that followed. The duration for bipedal stance was
chosen to be 2 h, which is motivated by the strain-based cell
necrosis studies by Gefen et al. (2008), where tolerance of tissues
to compressive strains decreased significantly between 1 and 3 h
upon loading.

The fused muscles, which were generated for the sake of
comparison with the individual-muscle model, were created by
fusing the individual muscle masks that were created with the
proposed workflow. This resulted in a bone-fat-muscle complex,
which still contained an equivalent or more segmentation layers
than the state-of-the-art fused-muscle models, where patient-
specific stump has been either segmented into bone-muscle (cf.
Portnoy et al., 2008; Cagle et al., 2018) or bone-muscle-skin
layers (cf. Sengeh et al., 2016). However, in the above studies,
no distinction was made between fat and muscles in the soft
tissue complex despite their properties being largely dissimilar.
And, in order to remain consistent with the above state-of-the-art
models, tissue anisotropy was ignored in the fused-muscle model.

The differences between the individual- and fused-muscle
models are immediately clear upon comparing the magnitude
and distribution of stresses on the muscles. A 4-fold difference
in the peak stresses is present between two models, with
the peak stresses in the individual- and fused-muscle models
being 63.5 and 14.34 kPa, respectively. This large difference
may be attributed to the contribution of passive fibre stiffness
to the global stiffness matrix in the individual-muscle model,
which is absent in the fused-muscle model. With regard to
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FIGURE 11 | FE analysis of bipedal stance. Shown here are the results of the FE analysis (in the anterior-medial viewing direction) for the three cases discussed

above. (A,B) Show the Von Mises stresses in the residual limb muscles after the 2-h bipedal stance, when analysing the individual-muscle model of the residual limb

with the original and misfitted sockets, respectively, while (D,E) Show damage in the skeletal muscles in the same period. (C,F) Show the Von Mises stresses and soft

tissue damage, respectively, in the fused-muscle model of the residual limb. The stress legend is common for all three cases and was capped at 20 kPa for better

illustrating the stress zones.

the stress distribution, the stresses in the fused-muscle model
are easily spread over the single muscle volume, resulting in
lower magnitude and larger spread of the stresses while those in
the individual-muscle model are concentrated at the soft tissue
interfaces. In contrary to the large stress differences in the deep
tissues of the residual limb, the difference in the interface stresses
between the fused- and individual-muscle models resulted in
only a small difference, i.e., 5.4 kPa in the fused-muscle model
and 4.9 kPa in the individual-muscle model. The magnitude of
the mean interface stresses in both these models are similar to
those obtained by Lacroix and Ramírez Patiño (2011). However,
there is a marked difference between the peak interface and
deep-tissue stresses within each model, e.g., in the individual-
muscle model, the peak interface and deep-tissue stresses after
the bipedal stance analysis were 24.1 and 63.5 kPa, respectively.
Hence, the study of interface stresses, which is necessary to ensure
good health of the skin, may not be a sufficient measure of
the health of deep tissues in the stump. In the above results,
the magnitude and distribution of stress in the soft tissues
corresponded to those of strains, and therefore, only stresses

were reported here in order to be consistent with the rest of
the literature. Since the DTI model was strain-based, which in
this case corresponded to the stresses, the regions of skeletal
muscle predicted to be affected by DTI was comparable to
the stress distribution for all three cases. As expected, bipedal
stance simulation of the residual limb model with original socket
predicted negligible tissue damage. However, the volume of
tissues in the fused-muscle model that was predicted to have
been damaged was less than half of that predicted to be damaged
in the individual-muscle model. The proposed hypothesis that
individual-muscle models are advantageous and provide more
insight in stump-prosthesis interaction studies is hereby verified.

5. CONCLUSION

The focus of this work was on developing an efficient modelling-
simulation-analysis workflow to investigate stump-socket
interaction during bipedal stance using patient-specific, three-
dimensional, continuum-mechanical, finite element residual
limb model, in which the model is generated with minimal
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FIGURE 12 | Interface stresses. The interface stresses on the skin/fat layer at the end of 2-h bipedal stance analysis are shown (in the anterio-posterior viewing

direction) here. (A,B) Show the Von Mises stresses in the fused- and individual-muscle models, respectively. For the sake of clarity, the socket is hidden, and the liner

is rendered transparent to show the stresses on the underlying skin/fat layer. The stress legend is common for both the models, and is capped at 5 kPa to better

illustrate the stress zones.

FIGURE 13 | Volume ratio of injured tissues. The plot shows the volume of muscle tissues that was affected by deep tissue injury as a percentage of total muscle

volume in the residual limb. The evolution of tissue damage for all 3 cases is plotted here.

user intervention. A nonlinear, hyperelastic, transversely
isotropic continuum-mechanical model of the soft tissues
was implemented in LS-DYNA to measure stresses in the
residual limb. With the implemented FE model, potential

sites of deep tissue injury were predicted. Comparison of the
proposed individual-muscle model with the state-of-the-art
residual fused-muscle/fat models reveals that the fused-
muscle models underestimate the stresses and volume of
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injured tissues. Tissue anisotropy contributes to both active
and passive stresses, and must be considered when studying
socket-stump interactions. Moreover, for forward dynamics
simulations, the proposed model provides an efficient method
to obtain FE models of skeletal muscles, including its fibre
orientations. In the forthcoming studies, it is envisioned to
extend this workflow to model tendons and to include the
effects of muscle contractions for various dynamic boundary
conditions.
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The principles underlying smooth and effortless human walking while maintaining stability

as well as the ability to quickly respond to unexpected perturbations result from a

plethora of well-balanced parameters, most of them yet to be determined. In this

paper, we investigate criteria that may be useful for benchmarking stability properties

of human walking. We perform dynamic reconstructions of human walking motions of

unimpaired subjects and subjects walking with transfemoral prostheses from motion

capture recordings using optimal control. We aim at revealing subject-specific strategies

in applying dynamics in order to maintain steady gait considering irregularities such

as deviating gait patterns or asymmetric body segment properties. We identify foot

placement with respect to the Instantaneous Capture Point as the strategy globally

applied by the subjects to obtain steady gait and propose the Residual Orbital Energy

as a measure allowing for benchmarking human-like gait toward confident vs. cautious

gait.

Keywords: benchmarking, capture point, foot placement, multibody dynamics, optimal control, stability,

transfemoral prosthesis, walking

1. INTRODUCTION

Human and human-like walking motions form an important and challenging class of motions
with respect to dynamics and control. The development of efficient measures for benchmarking
bipedal locomotion is an important topic for many fields of research, ranging from human motion
studies in biomechanics or medical fields to the development and control of humanoid robots,
exoskeletons, prostheses etc. Among others, benchmarking allows to define walking standards,
measure progress of human walking during therapy, define training goals or to compare different
robot platforms, alternative prostheses models or tunings for a patient, different exoskeleton
technologies or control algorithms, etc. Good benchmarking measures allow to shift from a purely
qualitative comparison of motions to a more useful quantitative one that precisely assesses the
quantities in a motion that are considered relevant for quality, thus giving helpful insights for
improvement.

There are many different types of benchmarking measures. In the KoroiBot project, which
studied human locomotion with the intention to improve walking qualities of humanoid robots,
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we have distinguished three different groups of key performance
indicators (KPIs) to benchmark locomotion (see Schubert et al.,
2014). The first group concerns technical indicators for walking
performance which are equally important for all the fields
discussed above and which have also been discussed in Torricelli
et al. (2015). The second group concerns computational
properties of the algorithms used for generating and controlling
locomotion, so it is a criterion which is mainly relevant for
technical systems, i.e., robots or controlled technical assistive
devices. The third group contains high level KPIs and aims to
asses to which amount motions of robots are human-like, a
concept that can also be extended to investigate the effect of
impairments or assistive devices to human walking motions. This
evaluation is, of course, to some extent related to the technical
performance evaluation on the lower level.

Technical performance indicators include elementary
characteristics of walking performance such as walking speed
in different walking scenarios, step length and step width,
different measures for energy consumption, efficiency and cost
of transport, as well as measures related to the walking scenario,
such as manageable stair height, slope inclination or roughness
of terrain. These criteria are straightforward to define and in
most cases also quite easy to measure on a given system and
scenario. Technical performance indicators however also include
measures of stability and robustness of motions which are less
straightforward to define and, as we will review in the following
paragraph, for which no uniform consensus exists yet.

Maintaining stability and being robust also to larger
perturbations that might occur, is one of the major objectives
during a locomotion task. Human walking is characterized by a
repetitive sequence of well-coordinated motions of the upper and
lower limbs which carry the human body into a desired direction.
The stance leg serves as a body support while the swing leg is
moved toward the next support location. As described in Perry
and Burnfield (2010), the legs alternate their roles in a reciprocal
manner until the subject intents to stop. According to Winter
(1995), due to the elevated center of mass (COM) balancing over
the small contact surface established by the feet, the human body
is an inherently unstable system for which stability is maintained
by a continuously acting control system as well as by exploiting
the whole-body dynamics. Stability of human walking describes
the ability to maintain the intended locomotion task without
falling.

The focus of this paper will be to evaluate several criteria
for benchmarking stability of bipedal locomotion. We are
particularly interested in criteria that can be applied to all fields
of application listed above. As we will outline in the following
paragraph, several approaches exist for controlling stability of
humanoid robots - which, however, are not based on a criterion
relevant for humans - and on the other side for evaluating
perturbation reaction in human walking a posteriori which are
unsuitable to predict or control behavior of robots.

1.1. Related Research
An intuitive approach to bipedal locomotion defines any gait as
stable as long as it does not lead to a fall. The set of all states of
a walker which leads to stable gait according to this definition

has been termed the viability kernel byWieber (2002). Due to the
vast computational effort required to compute this set as well as
the lack of methods to generate control strategies based on this
definition, the viability kernel has not yet found any practical
application.

Stability in human walking has also been approached
by Mombaur et al. (2001) by describing the human body as a
hybrid dynamic system and examining its properties in terms of
Lyapunov stability. This approach has led to some insights into
the self-stabilization properties of human locomotion mechanics.
However, to fully understand Lyapunov stability properties of
human movement, fundamental knowledge about the feedback
loops which are active during human locomotion would be
required and would have to be included in the model, but it is
not available yet. Modeling the human response to unpredictable
changes in the environment in terms of a hybrid dynamic system
has so far been an unsolved task (see Bruijn et al., 2013).

Other approaches which have beenwidely used in both clinical
applications and the research community working on humanoid
robotics derive control laws based on ground reference points
which require a minimal amount of computational effort to be
obtained and can be evaluated in real-time (Popovic et al., 2005).
Other ground reference points which consider the velocities of
the bipedal walker enable to explain foot placement and fall
prevention as a response to sudden pushes Pratt and Tedrake
(2006).

Maintaining the Ground Center of Mass (GCoM), i.e., the
projection of the Center of Mass on the ground plane, within
the borders of the Base of Support (BoS), i.e., the convex hull
spanned by the contact points of the system with the ground,
can be used as a very simple requirement for static stability of
bipedal systems (Berns et al., 1994; Goswami, 1999). However,
in our context, this approach is only applicable for static poses or
quasi-static motions and is not feasible for describing the stability
of dynamic bipedal motions such as human walking.

A very popular approach to stability in bipedal locomotion
is based on the Zero Moment Point (ZMP), introduced
by Vukobratovic and Branislav (2004), which is defined as
the ground reference point in which the resulting horizontal
moments from the inertial and gravitational forces of the bipedal
system vanish. In case the bipedal system does not slip and no
other external forces than the ground reaction forces act on it the
ZMP coincides with the Center of Pressure (CoP). Maintaining
the ZMP within the borders of a subset of the BoS has been used
by various projects to control the walking motion of a humanoid
robot (e.g., Sakagami et al., 2002; Wang et al., 2014). However,
this approach leads to very conservative motions which do not
resemble the dynamic appearance of human gait. In fact, human
walking is characterized by ZMP locations very close to the
borders of the actual BoS. In addition, the ZMP only reflects the
current state of the system and does not provide any meaningful
information to predict falls.

This work focuses on describing the human foot placement
strategy in terms of the velocity-based Capture Point (CaP),
introduced by Pratt et al. (2006), Koolen et al. (2012), and Hof
et al. (2005), since it treats gait phenomena as future events
and provides a versatile method to predict and evaluate the
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gait of individual subjects. The Capture Point indicates the
foot location which should be anticipated after a push to come
to complete stop. It considers the minimum time required to
perform a step as well as the step’s maximum reachable distance
and has been implemented in the gait control of humanoid robots
in Englsberger et al. (2015), Koolen et al. (2013), and Krause
et al. (2012) and described as a recovery strategy applied by
humans as a response to unexpected perturbations in everyday
situation by Aftab (2012). Furthermore, based on the Capture
Point, strategies to adapt temporo-spatial gait parameters to
varying environmental conditions and asymmetric step lengths
in transtibial prosthetic gait have been associated with functional
compensation strategies in order to reduce the risk of falling
backwards in Hak et al. (2013a,b, 2014). Disregarding the
maximum step length and the minimum step duration, the
Capture Point is referred to as the Instantaneous Capture Point
(ICaP).

In addition, this work considers the Angular Momentum
applied by the human walkers about the center of mass. It has
been observed by Herr and Popovic (2008) that during straight
and upright walking the average angular momentum about the
principal axes remains close to zero. As discussed in Mombaur
and Vallery (2018), the oscillations of the angular momentum
around zero, even though small, are not small enough to be
ignored and are contributing to the nature of walking, which is
also in accordance with the observation of the virtual pivot point
located above the center of mass (see Maus et al., 2010).

1.2. Contributions of This Paper
In this work, we discuss different benchmarking criteria for their
applicability to quantify the stability of bipedal locomotion. We
propose a combined assessment of bipedal gait based on an
extension of the Capture Point as well as the full body angular
momentum as a benchmarking tool for human walking. The
application of this method is demonstrated by computing data
for two unimpaired subjects and one subject walking with a
prosthesis.

We hypothesize that, in order to maintain a steadily stable
walking motion, the desired foot location approached by
unimpaired humans while moving the swing leg forward is
correlated to the Instantaneous Capture Point (Pratt et al., 2006;
Koolen et al., 2012). Furthermore, we conjecture that humans
with deviating habitual gait patterns, asymmetric body properties
or limb replacements aim at a similar stability strategy by
adjusting their gait dynamics according to the modified dynamic
and actuatory properties. This implies that a symmetric foot
placement strategy is maintained by applying asymmetric gait
dynamics. In order to analyze human gait for these strategies
we reconstruct the dynamics of the human walking motion
from motion data obtained in a gait laboratory. Introducing the
Residual Orbital Energy, we are able to simultaneously analyze the
reconstructed motions for the underlying whole-body dynamics
as well as the foot placement strategy with respect to the
Instantaneous Capture Point.

The application of the proposed method results in
distinguishable gait dynamics for impaired and unimpaired
humans with symmetric and asymmetric body proportions

leading to the common objective, namely to move the swing leg
toward the Instantaneous Capture Point. In order to validate the
method, however, walking motions of many more subjects need
to be investigated.

2. METHODS

In this paper, we present a first study of the proposed
benchmarking criteria. This includes their evaluation on existing
walking data of a few subjects—two unimpaired subjects and one
subject with a prosthesis—as a first indicator on the performance
of the proposed method. A large statistical analysis of the
benchmarking criteria is beyond the scope of this paper and will
be subject of our future work.

The dynamics of the subjects’ walking motion are
reconstructed from recorded motion capture data using
individualized multibody models of the subjects and optimal
control methods in a least-squares sense. This approach ensures
that the dynamics of the model are satisfied throughout the
entire time horizon rather than only on discrete time steps.
Based on the reconstructed motions, the whole-body dynamics
as well as the temporo-spatial gait parameters are compared
between the subjects. The analysis focuses on the behavior of the
ICaP for each subject and, in particular, on the characteristics of
each subject’s foot placement with respect to the ICaP right at the
heel strike event.

2.1. Motion Recordings
The recordings include a full stride beginning with the toe off of
the left foot of three subjects: (A) an unimpaired female subject,
(B) an unimpaired male subject as well as (C) a male subject
walking unilaterally with a transfemoral prosthesis on the right
side. Some characteristics of the subjects are included in Table 1.

The kinematic part of the walking motion of the subjects
has been recorded using marker-based motion capturing. The
recordings have been gathered in the Clinic for Orthopedics and
Trauma Surgery at Heidelberg University Hospital1 located in
the Heidelberg University Orthopedic Hospital equipped with a
Vicon Motion Systems Ltd.2 MoCap system and three Kistler
Instrumente GmbH3 force plates. An extended version of the
Plug-In Gait marker set provided by Vicon Motion Systems Ltd.
(2010) has been chosen to enable the recording of the full body
motion for all subjects, as shown in Figure 1.

The subjects’ gait has been recorded at self-selected walking
speeds. The gait appearance of the unimpaired subjects can
be considered healthy, symmetric and without any physical
limitations. The impaired subject has been individually fitted
with a prosthetic knee which also includes a customized socket
and appropriately selected prosthetic components. This subject
has been provided on the right side with the Össur hf. (2017a)
Rheo prosthetic knee and the Össur hf. (2017b) Vari-Flex foot.
His gait appears smooth and symmetric.

1http://www.vicon.com
2http://www.kistler.com
3Heidelberg MotionLab, http://www.heidel-motionlab.de
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TABLE 1 | Subject details.

Subject Age [years] Height [m] Weight [kg] Leg length [m]

A Female unimpaired 30 1.68 54.1 0.792

B Male unimpaired 41 1.88 89.0 0.862

C Male impaired 42 1.79 92.0 0.825

FIGURE 1 | Subjects in the motion capture laboratory: (A) Unimpaired female, (B) Unimpaired male, (C) Male walking with a transfemoral prosthesis on the right side.

All subjects gave written informed consent in accordance with the Declaration of Helsinki for the publication of their identifiable image.

2.2. Models
The human body is modeled as a 13-segment multibody model
with 34 degrees of freedom (DoFs). The rigid bodies represent
the body segments pelvis, left/right thigh, left/right shank, left/right
foot, mid/upper trunk, left/right upper arm, left/right lower arm,
left/right hand, and head, respectively.

The rigid bodies are connected by the 3-DoF joints right/left
hip, right/left ankle, Lumbo-Sacral joint, right/left shoulder, and
Cervicale as well as the 1-DoF joints right/left elbow and right/left
knee, respectively. The absolute translation and orientation of
the entire system with respect to the global frame in Euclidean
space is defined by the six DoFs for the absolute translation and
orientation of the pelvis segment.

The model is based on the 16-segment multibody model
with 43 DoFs illustrated in Figure 2. During human walking,
no significant motion occurs in the Xiphoid joint and the
right/left wrists. Hence, zero DoFs are assumed between the
middle and upper trunk as well as between the lower arms and
the hands, respectively, and the model can be reduced to the
model used in this study. The dynamic model parameters for all
subjects were obtained using the regression equations provided
by de Leva (1996). In addition, the dynamic model parameters
for the prosthetic leg have been obtained by simple experiments
involving scaling, balancing and oscillating the prosthesis. For

Subject C the prosthetic leg’s mass is approximately 35% the mass
of his opposite leg. Themodel establishes ground contact with the
feet which are represented by rigid triangular segments spanned
by the three contact points heel, hallux and meta5 as shown in
Figure 3.

2.3. Equations of Motion
Depending on the current gait phase, the mechanical system
described above is subject to changing contact properties and can
be described by a set of differential algebraic equations

q̇ = v (1)

v̇ = a (2)
(

H(q) G(q)T

G(q) 0

) (

a

−λ

)

=

(

−C(q, v)+ τ (q, v)
γ (q, v)

)

(3)

with the symmetric and positive-definite mass matrix H, the
generalized non-linear effects C, the generalized internal forces
τ , the differential variables q and v for the positions and the
velocities, respectively, the algebraic variables a and λ for the
accelerations and the contact forces, respectively, as well as the
contact Hessian

γ (q, v) = −Ġ(q)v = −vT
dG(q)

dq
v. (4)
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FIGURE 2 | Multibody models of the full human body: (A) Full human body

with segment COM positions and local coordinate frames, (B) Full human

body with transfemoral prosthesis (yellow).

FIGURE 3 | Foot model with the three contact points hallux, meta5, and heel.

and additional constraints on position and velocity level

g(q) = 0 (5)

G(q)q̇ = 0 (6)

For non-redundant constraints g(q) the contact Jacobian G(q)
has full rank and (3) can be uniquely solved.

Whenever the model gains contact with the ground, the
perfectly rigid foot model causes discontinuous transitions from
the generalized velocity v− before the collision to the generalized
velocity v+ after the collision. The transition is determined by

(

H(q) G(q)T

G(q) 0

) (

v+

−3

)

=

(

H(q)v−

0

)

(7)

where the first line determines the change of the system’s
momentum caused by the collision and 3 denotes the contact
impulse.

2.4. Identification of Walking Motions by
Means of Optimal Control
In this paper, unimpaired and prosthetic human walking
motions are reconstructed by fitting the motions of subject-
specific dynamic models to motion capture data by formulating
and solving a large-scale multi-phase optimal control problem
(OCP) in a least-squares (LSQ) sense. In order to minimize
the dimension of the optimal control problem the motion is
reasonably fitted along the generalized coordinates of the model
instead of the Cartesian coordinates.

The reference motions for the optimal control problems
are created by converting the measured motion capture data
from marker trajectories in Cartesian space into trajectories in
joint angle space. This can be performed by approximating the
motion of a subject-specific multibody model such that the
distance between virtual markers defined on the model and
the appropriate measured marker positions are minimized for
each time frame considered. The fit is performed in a least-
squares sense and considers the entire kinematic chain of the
multibody model (see Sugihara, 2011; Felis, 2015). In this study,
the reference motion has been fitted with an average matching
error over all markers of 2.0 cm ± 1.1 (Female unimpaired),
2.0 cm ± 1.3 (Male unimpaired), and 1.6 cm ± 0.8 (Male
impaired), respectively.

The optimal control problem is divided into 8 phases
according to the phases of a whole gait cycle as well as four
transitions to account for the discontinuities occuring when
ground contact is established, see Figure 4. The gait phases can be
distinguished by the different contact configurations between the
human and the environment, expressed in themodel as nonlinear
point constraints, which determine the dynamics of the system.

The reference motions can be summarized in a set of
time discrete postures expressed in terms of the generalized
coordinates qikj ∈ R

ndof , j = 0, . . . ,m at the time instances

t0, . . . , tm ∈ R. The least-squares problem is then described for
the nph = 8 model stages by

min
x(·),u(·)

m
∑

j=1

1

2
||qikj − q(tj)||

2
2 + γu||Wu(tj)||

2
2 (8)

subject to:

ẋ(t) = f i(x(t), u(t)), (9)

x(t+i ) = hi(x(t
−

i )), (10)
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FIGURE 4 | Gait phases for the optimal control problem. Transition phases (gray) are introduced to account for the discontinuities occurring to the velocities q̇ at

ground collision when a new contact is gained.

0 ≤ g i(t, x(t), u(t)), (11)

0 = req(x(0), . . . , x(T), u(0), . . . , u(T)), (12)

0 ≤ rineq(x(0), . . . , x(T), u(0), . . . , u(T)), (13)

for t ∈ [τi−1, τi], i = 1, . . . , 8, τ0 = 0, τ8 = T

with the differential states

x(t) =

(

q(t)
q̇(t)

)

∈ R
2ndof (14)

and themodel’s generalized coordinates q(t) ∈ R
ndof , generalized

velocities q̇(t) ∈ R
ndof and the controls u(t) ∈ R

nact

which represent the torques that act directly on the model’s
joints.

The first term of the objective function Equation (8)
minimizes the sum of squared differences between the model
joint angles q(t)j and the joint angles qikj from the inverse-

kinematics analysis of themotion capture recordings. The second
term regularizes the problem and accounts for the different
magnitudes of the joint forces weighted by the diagonal matrix
W = diag(wl),wl > 0, l = 1...nact and the factor γu. The
ODEs Equation (9) describe the model dynamics in each phase

where the right hand sides f i :R
nx ×R

nu ×R
nx are characterized

by the different constraint properties. Discontinuities in the
generalized velocities q̇(t) that occur due to the model specific
perfectly rigid impact at ground collision in case of touch-
down events are handled using the phase transition functions
Equation (10). Upper and lower bounds for the differential
states x(t) as well as the controls u(t) are covered by the
path constraints Equation (11). The path constraints for the
generalized coordinates x(t) are chosen to reflect the ranges for
the typical walking motions. Additional constraints that, e.g.,
ensure physical feasibility such as unilateral ground contacts as
well as switching conditions for phases are contained in the
interior point constraints Equations (12, 13) which distinguish
the several gait phases from each other.

Due to the hybrid dynamic character of the computed
walking motions the optimal control problem is solved using
the direct multiple-shooting method and a piecewise linear control
discretization. The multiple-shooting state parameterization
transforms the original boundary value problem into a set
of initial value problems with corresponding continuity
and boundary conditions. The multiple-shooting method is
implemented in the software package MUSCOD-II (Bock and
Plitt, 1983).
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2.5. Angular Momentum
Human walking is characterized by the alternating swinging
motions of the upper and lower limbs. Counter-rotating motions
of the upper and lower body are applied to balance the whole
body angular momentum around the longitudinal axis and
enable the human to walk straight. Oscillating angular momenta
are applied in the frontal plane to facilitate the transfer of the
body weight from one leg to the other. We analyze the angular
momentum applied by the subjects in the horizontal plane (i.e.,
with respect to the vertical axis) by the motions of the upper
and lower body for their contribution to the full body angular
momentum in order to reveal individual strategies to compensate
for asymmetric dynamic properties of the body or unbalanced
habitual gait patterns in steady walking.

2.6. Foot Placement
An intuitive approach to quantify and control stability in human
walking is motivated as a response to an unexpected loss of
balance, e.g., when a sudden perturbation occurs. Since walking

can be considered a perpetual falling motion followed by a
well-timed and well-placed step, we analyze the walking motion
based on the Capturability concept introduced by Pratt et al.
(2006), Hof et al. (2005) and Koolen et al. (2012) and the herein
proposed location of the Instantaneous Capture Point (ICaP)

ricap = rcop +
ṙcom

ω0
. (15)

with the current position of the Center of Pressure rcop,
the velocity ṙcom of the pendulum’s mass and its angular
eigenfrequency ω0 =

√

g/l with the pendulum’s length l. In
addition, we study the Orbital Energy Elip of the Linear Inverted
Pendulum Model (LIPM) underlying the walking system which
we normalize by dividing the quantities related to positions and
lengths by each subject’s leg length (hip to ankle) such that

E′lip =

1

2
ṙ′2com −

1

2
(r′com − r′cop)

2ω2
0 . (16)

FIGURE 5 | Angular momenta in frontal, sagittal, and horizontal plane for the upper body (dashed), the lower body (dotted) and the full body (solid) motion. Vertical

lines indicate the gait events heel strike (solid), toe strike (dotted) and toe off (dashed) for the left (green) and right (red) feet, respectively. (A) Unimpaired female,

(B) Unimpaired male, (C) Male with prosthesis.
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We analyze the normalized orbital energy E′
lip

of the LIPM at a

given time instance taking into account the current COM height
and assuming that the velocity vector is horizontal. In particular,
we are interested in E′

lip
at the time instances right after the heel

strike and propose the expression Residual Orbital Energy E′res.
We use this parameter to characterize the specific gait pattern
of the subject established by the self-selected combination of the
step length, the step width and the magnitude of the ground
collision impact at heel strike which causes a loss of kinetic energy
and, thus, gait velocity. The link between the gait velocity and the
Orbital Energy is established in the first term of Equation (16)
and included into the model by Equation (10).

3. RESULTS AND DISCUSSION

3.1. Angular Momentum and Foot
Placement
The results for the angular momentum applied by the subjects
in the upper body, lower body and full body, respectively, in
the frontal, sagittal, and horizontal planes are shown in Figure 5.
Figure 6 shows that the subjects choose their step locations such
that the ICaP is approximately reached by the forefoot to midfoot
of the anterior foot in sagittal direction. The subjects maintain
a well-balanced gait in terms of the ICaP being smoothly

moved between both feet in lateral direction to facilitate lateral
oscillation from one stance leg to the other.

Subject A has balanced momenta in the frontal and horizontal
plane during the left swing phase (Figure 5A). However, she
diverges her momenta in both planes during the right swing
phase. During that phase, the upper body has no significant
contribution to the full body momentum to balance the
momentum applied by the lower body. This causes Subject A to
experience a strong tilt and slight turn to the left. She adjusts her
step location accordingly to follow the ICaP by placing her swing
foot further into the same direction, see Figure 5A.

The angular momentum of Subject B in the frontal plane
is regular and symmetric mostly established by a balanced
pendulum motion of the upper body (Figure 5B). The angular
momentum in the horizontal plane can be considered strongly
unbalanced in the right swing phase. This leads to a stronger
external rotation of the right foot compared to the left foot
rotation (Figure 6B). However, since the greater amount of
angular momentum is applied by the upper body, balancing
the full body momentum can be achieved by exploiting friction
between the stance foot and the ground. Applying this strategy,
Subject B achieves a perfectly straight walking path.

Subject C shows well-balanced angularmomenta in the frontal
and horizontal plane in the time instances right before the heel
strike events of both feet (Figure 5C). Although walking with a
transfemoral prosthesis on his right side, he adjusts his upper

FIGURE 6 | Footprints of the right (red) and left (green) feet as well as the trajectories of the ICaP (solid) and the ground projection of the COM (dashed) in the

xy-plane. The ICaP positions (◦) are illustrated right at the heel strike of the right and left feet, respectively, along with the COM positions (▽) at the same time

instances. (A) Unimpaired female, (B) Unimpaired male, (C) Male with prosthesis.
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TABLE 2 | Normalized residual orbital energy E′res [1/s2] at left and right hell strike

(HS) and the average value.

Subject Left HS Right HS Average

A Unimpaired female 0.0664 0.0660 0.0662

B Unimpaired male 0.0783 0.0435 0.0609

C Male with prosthesis 0.0723 0.0649 0.0686

body motions to establish strongly asymmetric angular momenta
which compensate for the equally asymmetric momenta from
the lower body. Applying this strategy, Subject C achieves a
well-balanced and straight walking path, see Figure 6C.

The angularmomenta in the sagittal plane have typical profiles
for all subjects. The whole bodymomentum is created by forward
swinging motions of the arms and legs and is partially dissipated
at heel strike.

3.2. Residual Orbital Energy
The normalized residual orbital energy E′res of each subject right
at the heel strike events as well as their average values are
summarized in Table 2. As can be seen in Equation (16), a greater
value for E′res is caused either by greater gait velocities, greater
CoP-ICaP distances, or both. In these cases, capturing from
sudden disturbances become increasingly difficult. Accordingly,
lower values for E′res are caused by lower gait velocities, shorter
CoP-ICaP distances, or both and capturing from disturbances
becomes less difficult.

Considering the Residual Orbital Energy E′res, the values in
Table 2 reveal a symmetric behavior for Subject A. In contrast,
Subject B shows a strongly asymmetric behavior mostly caused
by an asymmetric application of upper body angular momentum
(Figure 5B) and, thus, an asymmetric gait velocity right at the
heel strike events. The residual orbital energy E′res at the heel
strike event of the right (prosthetic) foot of Subject C is slightly
less than at left heel strike. We might assume that Subject C
reduces his gait velocity and, thus, his impact at ground collision
in order to prevent pain at the socket-stump interface.

Using the Residual Orbital Energy E′res in combination with
the foot placement strategies with respect to the ICaP as a
benchmarking tool, we consider the individual walking motions
of the Subjects A and B (both unimpaired) as irregular gait and
the walking motions of Subject C (walking with a prosthesis) as
conscious gait.

4. CONCLUSION

In this work, we have investigated benchmarking criteria that
help to quantitatively assess the stability of walking motions. As
a first test, we have applied them to the walking motions of two
unimpaired subjects and one subject walking with a transfemoral
prosthesis which have been reconstructed from motion capture
recordings using multibody dynamics and optimal control
methods. The reconstructed walking motions have been analyzed
for their dynamics and findings are gathered on how unbalanced
habitual gait patterns can lead to irregular walking motions. On

the other hand, the analysis provides insights into the individual
strategies applied by the subject walking with the prosthesis to
compensate for his asymmetric dynamic properties of the lower
limbs and achieve a perfectly balanced walking motion.

For all subjects, the ICaP is shown to be consistently
approached by the swing foot even if the walking paths deviate
in lateral direction. The subjects choose their step locations such
that the ICaP is located in anterior-medial direction of the foot
and maintain a Residual Orbital Energy at heel strike >0 in
order to facilitate the forward propulsion and lateral oscillation
characteristic for human walking. The Residual Orbital Energy
combines the subject’s distance maintained between the CoP and
the ICaP at each step with the gait velocity which, in human
walking, is controlled to a great part by the rate of change of
angular momentum.

In our proposed method we simultaneously interpret foot
placement with respect to the ICaP as well as the Residual
Orbital Energy. By deconstructing the walking motion into these
parts we are able to reveal hidden phenomena in gait which
superficially appears regular and symmetric. Regarding these
criteria, the walking motion of both unimpaired subjects turn
out to be irregular while the impaired subject’s gait is well-
controlled and well-balanced. We suspect that the unimpaired
subjects’ awareness of their physical capabilities provides them
with enough confidence to allow for less conscious gait. On the
other hand, we suspect that the impaired subject is aware of his
limited ability to control his prosthetic leg and, therefore, follows
a more cautious and conscious approach to walking.

The results are encouraging, but the criteria obviously remain
to be further tested and validated on large sets of data. A thorough
evaluation of these criteria based on existing whole-body walking
data (i.e., including upper body and arms), e.g., from data bases,
KoroiBot Motion Capture Database4, or newly collected whole-
body data for unimpaired subjects and subjects walking with
prostheses will be conducted. It remains to be determined how
subject-specific properties have to be systematically taken into
account to adjust the proposed criteria and allow for appropriate
classifications.
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The assessment of the risk of falling during robot-assisted locomotion is critical for gait

control and operator safety, but has not yet been addressed through a systematic and

quantitative approach. In this study, the balance stability of Mina v2, a recently developed

powered lower-limb robotic exoskeleton, is evaluated using an algorithmic framework

based on center of mass (COM)- and joint-space dynamics. The equivalent mechanical

model of the combined human-exoskeleton system in the sagittal plane is established

and used for balance stability analysis. The properties of the Linear Linkage Actuator,

which is custom-designed for Mina v2, are analyzed to obtain mathematical models of

torque-velocity limits, and are implemented as constraint functions in the optimization

formulation. For given feet configurations of the robotic exoskeleton during flat ground

walking, the algorithm evaluates the maximum allowable COM velocity perturbations

along the fore-aft directions at each COM position of the system. The resulting velocity

extrema form the contact-specific balance stability boundaries (BSBs) of the combined

system in the COM state space, which represent the thresholds between balanced

and unbalanced states for given contact configurations. The BSBs are obtained for the

operation of Mina v2 without crutches, thus quantifyingMina v2’s capability of maintaining

balance through the support of the leg(s). Stability boundaries in single and double

leg supports are used to analyze the robot’s stability performance during flat ground

walking experiments, and provide design and control implications for future development

of crutch-less robotic exoskeletons.

Keywords: robotic exoskeleton, balance stability boundary, combined human-exoskeleton system, linear linkage

actuator, Mina v2

INTRODUCTION

Robotic exoskeletons have the potential to change the day-to-day life of countless individuals with
mobility impairment. Commercial lower-limb exoskeletons, such as ReWalk (Esquenazi et al.,
2012), Ekso (Ekso, 2018), and Indego (Parker, 2018) have made significant progress in restoring
the mobility of individuals with spinal cord injury (SCI) (e.g., paraplegics or paraparetics). Current
research addresses various aspects of exoskeleton functionality, such as providing mobility to
patients who are confined to a wheelchair (Esquenazi et al., 2012) or are suffering from muscular
weakness (e.g., the elderly and infirm; Sankai, 2010), improving rehabilitation (neurological or
orthopedic) and recovery efficacy (Colombo et al., 2000; Veneman et al., 2007), and augmenting the
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performance of healthy individuals during heavy load carrying
tasks (Guizzo and Goldstein, 2005; Walsh et al., 2007). Recent
achievements in lower-limb exoskeleton assistance include
successes in robot-assisted walking (Raj et al., 2011; Hassan
et al., 2014; Sanz-Merodio et al., 2014; Griffin et al., 2017), stair
ascent and descent (Xu et al., 2017), and sit-to-stand movements
(Tsukahara et al., 2010). Additionally, other studies have focused
on the reduction of exoskeleton’s energy consumption during
task performance through the use of elastic and dissipative
elements (Wang et al., 2011; Kim et al., 2015).

In walking applications, the goal is to achieve stable robot-
assisted locomotion that is adaptable to various terrain and
gait parameters, and at an increased range of speeds and
larger step lengths, for which ankle actuation is essential. The
robotic exoskeleton H2 was the first robotic exoskeleton for
gait rehabilitation to include ankle actuation, and has been
followed by the development of other designs employing active
ankles (Bortole et al., 2015). The recently developed assistive
device Mina v2 (Griffin et al., 2017) includes ankle, hip, and
knee actuations with the intention of achieving more human-
like lower-limb motion during gait. Its powered plantar flexion
allows the human operator to navigate various environments,
such as stairs and ramps, as demonstrated during the 2016
Cybathlon competition, and to reliably achieve a conservative
walking speed of 0.29 m/s (Griffin et al., 2017). These recent
advancements could progress toward robot-assisted gait that
requires reduced effort from the user (Griffin et al., 2017)
and has desired dynamic walking characteristics, e.g., similar
to normal or load-carrying human walking (Mummolo and
Kim, 2013; Mummolo et al., 2013, 2016). The effort of
translating human locomotion principles into robotic solutions
requires quantitative benchmarks to evaluate the human-like
performance of robotic assistive devices (Neuhaus et al., 2011).
In existing studies, analyses of robot-assisted gait have been
conducted with data collected from a sensorimotor wearable
robotic system (Raj et al., 2011), a versatile instrumented cane
together with body worn sensors (Hassan et al., 2014; Lancini
et al., 2016), and motor encoders (Griffin et al., 2017). Given
these data, several outcomes can be used to benchmark the
exoskeleton-assisted gait of SCI individuals against normal gait
(Torricelli et al., 2015).

While human-like dynamic walking is a desired performance
goal in the design of exoskeletons for robot-assisted locomotion
(Barbareschi et al., 2015; Li et al., 2015; Agrawal et al., 2017), user
safety remains the primary concern. In addition to employing a
structural design that guarantees the physical safety of human-
robot interactions (i.e., the user should not experience physical
discomfort or injury by wearing and operating the robot), proper
control design must also be implemented to stabilize the system
so that the user is also protected from the risk of injury due to
falls. To guarantee stable robot-assisted movements, a systematic
and quantitative analysis of the balance stability of the human
operator wearing the exoskeleton suit is required from its initial
mechanical design to its final assessment. Currently, maintaining
balance during robot-assisted gait remains a challenging problem
and the operator often relies on the support of additional devices
to improve balance. For example, one study (Slavnic et al., 2010)

considered the use of a powered exoskeleton integrated with a
wheeled mobile platform to provide balance during walking. In
several cases, the operator relies on crutches or walkers in order to
maintain balance (Acosta-Marquez and Bradley, 2005; Strausser
and Kazerooni, 2011; Esquenazi et al., 2012; Farris et al., 2014;
Stücheli et al., 2017). While real-time gait planning strategies
using crutches as balancing aids have been implemented to
produce stable and natural walking (Zhang et al., 2015a,b),
they are far from ideal solutions. The use of crutches is often
incompatible with the surrounding environment, restricts the
operator’s use of hands, limits the achievable walking speed, and
requires a significant amount of upper limb strength during
walking and standing, fatiguing the user (Griffin et al., 2017).

Researchers have recently begun to address the balance
stability analysis for humans wearing exoskeletons in the absence
of crutches. The design of a hybrid drive exoskeleton has been
proposed (Hyon et al., 2011, 2013), in which a combination
of pneumatic muscles and electric motors are used to provide
sufficient torque and controllability in order to balance without
crutches. In those studies, the analysis was focused on the robotic
system alone, excluding its human component, and was based
on a limited performance evaluation and validation. The design
of a robotic exoskeleton with a balance stabilizer mechanism
has been proposed and tested for use on SCI subjects (Li et al.,
2015), which requires further improvement in order to manage
significant shifts in body weight in the coronal plane. Control
methods have been developed to provide active gait assistance
in both sagittal and frontal planes (Wang et al., 2013, 2015) for
the MINDWALKER exoskeleton, and its stable walking without
crutches has been demonstrated for healthy subjects (but not
yet for SCI paraplegics; Wang et al., 2015). Human and robot
balance stability criteria, for instance, based on the capture
point and extrapolated center of mass concepts, have also served
as promising sources of inspiration for robot-assisted balance
control (Huynh et al., 2016; Zhang et al., 2018) and balance
recovery against slipping-like perturbation (Monaco et al., 2017);
these studies have addressed healthy subjects or subjects with
significant voluntary abilities retained. Very recently, ankle
joints powered via variable stiffness actuators, which mimic
the modulation of muscle impedance in the human ankle for
balancing, were proposed to replace constant stiffness actuators
(Ugurlu et al., 2016) in order to provide more favorable external
disturbance dissipation. However, depending on the disturbance
amplitude, the desired ankle stiffness may not be physically
realizable with the variable stiffness actuator, and the system can
still fail to maintain balance. In the absence of comprehensive
human-exoskeleton combined models and a systematic balance
stability analysis of lower-limb exoskeletons, control strategies
will continue to rely heavily on additional balancing aids, such
as crutches and ad hoc criteria.

There is no commonly applicable and comprehensive
framework for the balance stability analysis of robot-assisted
locomotion so far. The difficulty arises in part from the
traditional challenges in determining balancing vs. falling
conditions for general legged systems (Mummolo et al., 2017),
but also from themodeling complexity of actuator andmultibody
dynamics of the combined human-exoskeleton system. When
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addressing the balance stability of robot-assisted gaits, it is
essential to establish an accurate model that can describe the
dynamics of the combined system representing the human
operator wearing the robotic exoskeleton. While several models
exist to describe the multibody dynamics of human and robotic
biped systems separately, few studies take into account the
combined system’s dynamics. One study that proposed a hybrid
zero dynamics controller for robot-assisted gait treated the
human lower body and the exoskeleton as a lumped rigid-
body system due to the lack of actuation from the legs
(Agrawal et al., 2017). Another study used an improved human-
exoskeleton model that introduced compliance at each joint by
adding spring-mass-damper systems with parameters obtained
through optimization using data from push recovery experiments
(Schemschat et al., 2016).

In this study, the balance and locomotion stability
characteristics of Mina v2 are systematically evaluated for
its typical foot-ground contact configurations. An equivalent
model representing the human-exoskeleton system dynamics is
established, where the mechanical and actuation models of the
human body and the robotic device are combined. A center of
mass (COM)-state-based criterion is used to characterize the set
of balanced states of the combined human-exoskeleton system in
legged support without crutches. For a given foot-ground contact
configuration of the combined system, the criterion determines
the threshold between balanced and unbalanced states of the
system with respect to that configuration. The balance stability
criterion is applied to the equivalent model in single and double
contact configurations to quantify the capability of Mina v2
to maintain balance through the support of the leg(s), for
instance, during swing and transfer gait phases, respectively. The
application of the balance stability criterion is demonstrated by
using experimental data to characterize the state of balance of
robot-assisted walking motions.

ROBOTIC EXOSKELETON MINA V2

Mina v2 exoskeleton is a prototype paraplegic mobility assistance
device designed and built by the authors at the Florida Institute
for Human andMachine Cognition (IHMC), and is the third in a
series of devices designed to provide upright mobility for people
with lower extremity paralysis (Figure 1). Each of these devices
provides sagittal planemotion of the legs while its upright balance
is provided by the user with required forearm crutches (i.e.,
no balance controller currently implemented). These wearable
devices rigidly constrain the operator’s joint position and track
a commanded joint profile from the walking controller.

The exoskeleton Mina v1 (Kwa et al., 2009; Figure 1) had four
sagittal plane motors, at the hips and knees, and two passive
compliant ankle joints. The actuators were brushless motors
with a harmonic drive gear reduction and could be used with
either stiff position control or torque control (Neuhaus et al.,
2011). Similar to Mina v1, the exoskeleton X1 (Figure 1) had
four sagittal plane motors, at the hips and knees, and passive
compliant ankle joints. Driving each powered joint was a series
elastic actuator that could allow for position or force control.

Mina v2 (Figure 1) has actuators at the hips and knees like its
predecessors, and, in addition, includes an actuator for each ankle
joint, resulting in full actuation in the sagittal plane. The powered
ankle plantar flexion and dorsiflexion provide the exoskeleton
system with stability and mobility, and is motivated by the
analysis of human walking (Winter, 1990), which shows that the
ankle plays an important role by injecting energy during the
toe-off (terminal stance) phase of the trailing stance foot and
allowing for dynamic walking (Torricelli et al., 2016). Moreover,
the modulation of ankle torque can control the center of
pressure displacement within the contact area during mid stance
(Perry and Burnfield, 1992), which is a well-known fundamental
strategy for balance control.

Joint Actuator Design
The actuation of Mina v2 is modular in design. Each joint is
powered by a custom Linear Linkage Actuator (LLA), allowing
for ease of replacement, accessibility, and repair. The LLA
was designed specifically for use with Mina v2, and features a
frameless electric motor, integrated electronics, a load sensor, and
an onboard motor amplifier and controller for distributed joint-
level control. The motor, via a linear ball screw transmission,
drives a slider-crank linkage mechanism connected to the joint
output (Figure 2). The frameless motor has no internal gearing,
i.e., its rotor is mounted on the same shaft as the ball screw, hence
the effective gear ratio from the motor shaft to actuator joint
output is R = ω/θ̇A, where ω is the rotational speed of the motor
shaft and θ̇A is the actuator joint output velocity. Mechanical
power losses in the linear transmission are negligible, given that
the majority of the loss from the motor to the joint output occurs
at the ball screw, which is typically 98–99% efficient. As a result,
the effective joint output torque achievable by the actuator is
estimated as τA = TR, where T is the motor torque.

The LLA exhibits a non-linear relationship between the
motor position and the joint output position, resulting in an
effective gear ratio R that varies with the stroke as a function
of the output position θA (Figure 2). The values of the LLA’s
effective gear ratio R are calculated from the geometry and then
verified experimentally by varying the output position within its
admissible mechanical range in actuator space θA ∈ [−2.3, 0]
(rad), where−1.25 rad corresponds approximately to mid-stroke
configuration. As a result, the gear ratio varies between 41 and 53
as a function of the actuator output position, and is ∼46 around
mid-stroke.

Based on the 48 VDC bus voltage, the motor can achieve a
maximum no-load speed of 3,340 rpm (ωmax = 349.76 rad/s)
and a maximum stall torque Tmax = 2.7Nm due to thermal
limitations. The motor limits and the effective gear ratio are used
to obtain the joint output torque and velocity limits in actuator
space as functions of joint position:

− ωmax/R(θ
A) ≤ θ̇A ≤ ωmax/R(θ

A) (1)

−TmaxR(θ
A) ≤ τA ≤ TmaxR(θ

A) (2)

For a given actuator joint output position θA, the above lower
and upper bounds define a rectangular region of actuator joint
output torque-velocity (τA, θ̇A) limits (Figure 3). In the first and
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FIGURE 1 | Mina v1 (Left), X1 (Center), and Mina v2 (Right) exoskeletons (permission for image reproduction granted by the participants).

FIGURE 2 | Schematic of the LLA used for all powered joints of Mina v2 (left). Effective gear ratio from motor rotation to joint rotation of each LLA (right).

third quadrants of this region, i.e., when the actuator performs
positive work, the maximum and minimum velocities are also
dependent on the torque, and are estimated as linear functions
with intercepts at the peak no-load speed ωmax/R(θ

A) and peak
torque TmaxR(θ

A) at the given joint output position. Hence, the
feasible region of actuator joint output torque and velocity is
additionally constrained by the following inequality:

− ωmax ≤ θ̇AR(θA)+
ωmax

TmaxR(θA)
τA ≤ ωmax (3)

When the actuator performs negative work (second and fourth
quadrants), the speed of the motor is limited by the bus voltage,
and the torque is limited by the rated current of the motor, and it
is assumed that there is no additional relation between the speed
and torque. Therefore, the four-quadrant torque-velocity feasible
region in the actuator space takes the shape of a hexagon for a
given output position and of a hexagonal-base volume for the
entire range of joint output position (Figure 3).

Exoskeleton Mechanical Model
The mechanical design of Mina v2 is illustrated in the frontal
and sagittal planes (Figure 4). Since this study focuses on the
sagittal plane mobility and balance stability, the planar model
of Mina v2 is described by a seven-link kinematic chain in the
(X, Y) plane, with the origin at the center of the leading stance
foot. The exoskeleton’s mechanical design includes lower body
links (feet, shanks, and thighs) and actuators, a pelvic belt, and
a backpack containing a lithium ion battery (2.3 kg), computer,
power distribution system, and networking hardware. The total
mass of the backpack including the battery is 11.2 kg. From its
mechanical design, the total mass of the exoskeleton is ∼32 kg,
while its actual mass including fasteners, wires, and pads (not
included in the current model) may be slightly higher.

The local position of each robot link’s COM (with massmR
i ) is

indicated by the position vector irRi , relative to the local frame {xi,
yi} attached to each link i, for i = 1–7 (Figure 4). In the sagittal
plane model, a pelvic link with negligible length connects the hip
joints (Mummolo et al., 2013) and has a total mass mR

4 equal to
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FIGURE 3 | Multi-quadrant LLA torque-velocity limits for a given output position (left) and for the entire output position range (right).

FIGURE 4 | Mina v2 robotic exoskeleton design in the frontal and sagittal plane views. Local frame {xi , yi} for i = 1–7 is attached to each link, while the global frame

{X, Y, Z} has origin O belonging to the region of the ground that is in contact with the stance foot. The COM of each link is shown. The orientation of the backpack is

assumed to be always perpendicular to the x4 axis.

the sum of the pelvic belt and the backpack masses, combined
into one point mass located at 4rR4 .

The first and last links of the robot connect each ankle

joint to its respective foot plate, and their length corresponds

to the operator’s foot height. The length of the foot plate is

33.4 cm, which is approximately equal to the operator’s foot

length, including the shoe. The lengths a = 0.099m and b =

0.235m are the distances in the sagittal plane from the projection

of the ankle joint onto the ground to the rear and front edges

of the foot plate, respectively. When the system is in single foot
contact, the contact surface length is a+b, while, during double

contact, it may vary; the foot plate is not rigid and has stiffness

properties similar to those of a shoe. In the general double contact
configuration, the dimension c of the contact patch at the trailing
stance foot depends on the operator/controller strategy to move
forward during the transfer phase of walking, as described later.

Due to different orientations of the LLAs within the
exoskeleton structure and the joint angle conventions used
(Figure 5), the LLA output must be mapped from the actuator
space into the anatomical joint space of the robotic device, as
follows:

θRhip = −(θA + 1.28); θRknee = −θA; θRankle = θA + 1.05 (4)

τRhip = −τA; τRknee = −τA; τRankle = τA (5)
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where superscripts A and R are used to indicate joint angles
and torques in the actuator space and the robot (anatomical)
joint space, respectively. Following the current lower body joint
angle anatomical convention, positive angles θR, velocities θ̇R,
and torques τR at the robot joints are used for hip extension,
knee flexion, and ankle plantar flexion (Figure 5). The zero joint
angles are the zero anatomical angles, which correspond to the
angles observed in the upright standing pose on flat ground. In
addition to the admissible mechanical range of the LLA output
angle (θA ∈ [−2.3, 0] rad), the joint angles of Mina v2 are further
constrained by more conservative limits, which are based on the
operator’s joint limits, to protect the operator from any extreme
joint flexion and extension.

COMBINED HUMAN-EXOSKELETON
SYSTEM: MODELS AND PARAMETERS

A seven-degree-of-freedom (DOF) model representing the
combined human-exoskeleton system is established in the sagittal
plane. The equivalent link, joint, and actuation parameters
are derived by combining the planar models of the robotic
exoskeleton and its human operator, both established in joint
space.

Models of the Exoskeleton’s Operator
A seven-link model analogous to that used for the exoskeleton
system describes the lower and upper body segments of Mina
v2’s human operator in the (X, Y) sagittal plane. The foot, shank,
and thigh segments are modeled with three links for each leg.
Lower body link lengths are directly measured from the human
operator and used as a reference for modeling the exoskeleton’s
links such that Mina v2 and its pilot have identical link and
foot lengths. The mass distribution of the human body is based
on reference data from a biostereometric survey of six male
subjects (Herron et al., 1976). The masses of human pelvis,
torso, arm, and head segments are combined into one point
mass located perpendicular to the pelvic link. Similarly to the
exoskeleton model, the COM position of each link (with mass
mH

i ) is described with respect to the local frame {xi, yi} by the
position vector irHi , for i= 1–7.

In this study, the operator has no volitional motor control
of the lower limbs and the passive ranges of motion were
measured by moving the joints gently until the ligaments
provided resistance. Note that this same procedure can be done
on subjects capable of voluntary motion, whose passive (or
externally driven) ranges of motion will usually be larger than
their active (internally driven) ones. The resulting joint ranges
of motion are used as references for the design of safe mechanical
limits for the robot.

Depending on the type and level of impairment, an
appropriate model for internal joint torque at the human lower
limbs should be formulated and combined with the robot’s
actuation model. The exoskeleton pilot is paraplegic and is
assumed to exert no active torque at the lower body joints.
In addition, internal torques caused by neuromuscular reflexes
are not considered in this model, since the pilot’s experience

operating the robot suggests that such reflexes at the lower limbs
tend to disappear over time with acclimation to the device.
Therefore, the only joint torques at the human lower body
segments are, in this case, due to the passive contribution of
elastic elements. Each internal torque at the anatomical ankle,
knee, and hip joints is modeled as a non-linear function of joint
angle (Anderson et al., 2007):

τH = B1e
k1θ

H
+ B2e

k2θ
H

(6)

where the sign of θH follows the same anatomical reference used
for the robot joint space (Figure 5). The parameters B1, B2, k1,
and k2 for ankle, knee, and hip joints (Table 1) are obtained from
a literature study (Anderson et al., 2007).

Equivalent DH Model for the Combined
Human-Exoskeleton System
Based on the above-mentioned planar models for the robotic
exoskeleton and the human body, an equivalent model is
developed to represent the kinematics and dynamics of the
combined human-exoskeleton system. The equivalent model in
the sagittal plane consists of a 7-DOF serial kinematic chain,
and thus can be established according to the Denavit-Hartenberg
(DH) convention (Figure 6). Joints 2–7 are the revolute joints of
the lower body, while joint 1, which connects the leading stance
foot to the global frame {X, Y} origin, is fixed and has zero range
of motion.

In this study, the seven corresponding exoskeleton and human
links are combined into seven equivalent rigid bodies, assuming
that the relative motion between the two systems is negligible
and, therefore, θH = θR for each lower body joint. Since the
exoskeleton’s links and joint ranges of motion are designed based
on the operator’s body and joint parameters, the equivalent DH
model has the same link lengths and joint limits as those of
the robot. The equivalent link mass mi of the combined system
(Figure 6) is the sum of the ith link masses of the robot and
human models, for i = 1–7. Point mass assumption is used to
model the equivalent inertial parameters (COM location and
inertia matrix) of each link, expressed with respect to the local
frame {xi, yi} attached to link i. In particular, the local position
of the equivalent point mass mi relative to frame i is iri =

(mR
i
irRi +mH

i
irHi )/mi, from which the corresponding moments

and products of inertia relative to frame i can be calculated.
The ankle, knee, and hip rotations of the equivalent model

are described in joint space by the DH revolute joint variable
θi, which is measured from positive xi−1 to positive xi,
counterclockwise by convention. The relationships between the
DH joint variable θi, for i = 2–7, and the lower body joint angles
in the anatomical reference are given by:

θRankle = θHankle = θ2 = −θ7; θRknee = θHknee = θ3 = −θ6;

θRhip = θHhip = θ4 + π/2 = −θ5 − π/2 (7)

Based on this transformation, the joint angle limits of the
combined system, which are designed in the joint-space
anatomical reference, can be expressed in the local reference of
the equivalent model according to the DH representation.
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FIGURE 5 | Lower body anatomical reference in joint space. The arrows indicate the positive and negative senses of rotation assumed by the current joint angle

anatomical convention.

TABLE 1 | Non-linear spring parameters for human passive joint torque modelsa.

Human joint θH B1 k1 B2 k2

Ankle −0.0005781 5.819 0.967 −6.090

Knee 0 0 6.250 −4.521

Hip −1.210 6.351 0.476 −5.910

aThe parameters shown represent the normative passive torque characteristics of healthy

male subjects aged 18–25.More detailed subject- and impairment-specific characteristics

of passive elements could be implemented in a similar manner, if such additional

physiological data becomes available.

In addition to the joint angle limits, the joint torque-velocity
limits for the combined human-exoskeleton system must also be
expressed in the joint space with respect to the DH joint variable
θi and torque τi, by taking into account the actuation limits of
the robotic device (defined in the actuator space) and the passive
joint torques in the human body (defined in the anatomical
joint space). Using Equations (4) and (7), the joint variable θi is
mapped into the actuator space through the relationships θA =

fi(θi), for revolute joints 2–7, where:

f2(θ2) = θ2 − 1.05

f3(θ3) = −θ3

f4(θ4) = −(θ4 + π/2)− 1.28 (8)

f5(θ5) = θ5 + π/2− 1.28

f6(θ6) = θ6

f7(θ7) = −θ7 − 1.05

This mapping is used to model the robotic actuator’s effective
gear ratio in DH joint space, as a third-order polynomial function
R(fi(θi)) = c0 + c1fi(θi) + c2fi(θi)

2
+ c3fi(θi)

3, whose coefficients
c0 = 41.14, c1 = −42.75, c2 = −47.03, and c3 = −12.84 are
determined through curve fitting using the available R data
(Figure 2). The joint velocity limits of the equivalent model as

functions of the DH joint variable θi and its time derivative are
formulated as follows:

− ωmax/R(fi(θi)) ≤
dfi(θi)

dt
≤ ωmax/R(fi(θi)) for i = 2− 7 (9)

At a given joint, the sum of the robotic torque τR and the
passive human torque τH in the joint-space anatomical reference
provides the total actuation of the combined system, which can
be mapped into the DH joint torque τi using the following
relationships:

τRankle + τHankle = τ2 = −τ7; τRknee + τHknee = τ3 = −τ6;

τRhip + τHhip = τ4 = −τ5 (10)

where positive torques τi in the DH local reference frames follow
the right hand rule. Using Equations (5) and (10), the robotic
torques in actuator space can be expressed as functions of the DH
joint variables and torques through the mapping τA = φi(τi, θi),
for i= 2–7, as follows:

φ2(τ2, θ2) = τ2 − τH
ankle

(θ2)

φ3(τ3, θ3) = −(τ3 − τH
knee

(θ3))

φ4(τ4, θ4) = −(τ4 − τH
hip

(θ4 + π/2))

φ5(τ5, θ5) = τ5 + τH
hip

(−θ5 − π/2)

φ6(τ6, θ6) = τ6 + τH
knee

(−θ6)

φ7(τ7, θ7) = −τ7 − τH
ankle

(−θ7)

(11)

where the human passive torques are written as functions of θi
using the transformations in Equation (7).

Based on the mappings fi(θi) and φi(τi, θi), the LLA output
torque limits can be rewritten as functions of the DH joint and
torque variables θi and τi, for i= 2–7:

− TmaxR(fi(θi)) ≤ φi(τi, θi) ≤ TmaxR(fi(θi)) (12)
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FIGURE 6 | Planar model for the combined human-exoskeleton system in the

sagittal plane. The links (thick solid lines) indicate the equivalent lower body

segments (feet, shanks, and thighs) and the pelvis segment connecting the

two hips. The local position of the equivalent COM of each link is described

relative to the corresponding local frame {xi , yi}, for i = 1–7. The orientation of

the backpack and upper body (dashed lines) is assumed to be perpendicular

to link 4. Foot segments in single and double contact configurations are

shown for reference, along with the corresponding contact area dimensions

and resultant contact wrenches. In the double contact configuration, the

distance between the front edges of the trailing and leading stance feet is

equal to the step length (ls).

Lastly, the linear relationship in the first and third quadrants
between actuator output velocity and torque at each joint can be
rewritten as a function of DH joint variable (and its derivative)
and torque, as follows:

− ωmax ≤
dfi(θi)

dt
R(fi(θi))+

ωmax

TmaxR(fi(θi))
φi(τi, θi) ≤ ωmax

(13)

The equivalent DH model, along with the above link inertial
parameters, joint transformations, and actuation model, is used
to formulate the kinematics, dynamics, and the corresponding
constraints of the combined human-exoskeleton system. In this

study, the recursive Lagrangian dynamics is used to derive the
joint-space equations of motion of the equivalent DH model.

SYSTEM CONTROL AND EXPERIMENTS

The exoskeleton-assisted gait is generated using pre-defined
reference joint angle trajectories for the hips, knees, and ankles,
based on the upcoming footstep locations and the type of terrain
to be traversed (flat ground, steps, or slopes). Within one step of
the walking cycle, the exoskeleton’s contact configurations with
the ground are double contact (during the transfer phase) and
single contact (during the swing phase), while the operator is
always allowed to make additional contacts with the ground by
placing the crutches.

During the transfer phase of walking (Figure 7), a toe-off
movement is designed in order to exploit the presence of the
powered ankle joints in Mina v2 (Griffin et al., 2017). In
particular, a minimum jerk trajectory is planned for the trailing
ankle joint, such that it reaches a given final plantar flexion
angle at the end of transfer, while the body and the leading
leg rotates about the leading ankle. This ankle plantar flexion
during toe-off motion is powered by the ankle actuator and
provides a forward force to the body and helps the push-off of the
trailing stance foot prior to initiation of swing. As a result of the
reference trajectories for continuous walking, the trailing stance
foot during the transfer phase is mostly in toe contact, resulting
in a contact region with an approximate dimension c= 8 cm due
to the flexibility of the shoe and the foot plate (Figure 6).

During the swing phase, four Cartesian-space waypoints are
defined for the swing foot: the starting position, the upcoming
foothold at a distance equal to the stride length (2ls), and
two midpoints positioned at fractions %ls,b and %ls,f of the
nominal step length (ls) and at a fixed height (hs) (Figure 7).
The parameters %ls,b, %ls,f , ls, and hs are tuned for a given
step, while the joint angles at each waypoint are calculated
using inverse kinematics. The reference joint trajectories are
formulated as the minimum jerk trajectories passing through
each of these waypoints. The combination of the flexible
trajectory design during swing phase with the use of powered toe-
offmotion contributed significantly to the system’s successful gait
performance (Griffin et al., 2017).

For the exoskeleton to execute the generated walking
trajectory, each actuator is operated in position control mode
on the Elmo Twitter Gold embedded motor controller. This
motor amplifier closes the position loop using current control to
account for position error at a loop rate of∼3 kHz. The resulting
joint-level behavior produces the highest-achievable impedance
actuation at each joint, tracking positions as best as possible.
Using position control as the basis for the motion comes at the
cost of low compliance between the device and the terrain.

The operator was not given specific performance instructions
other than to execute a typical walking gait. While walking, the
crutches are repositioned during every transfer phase, and are
placed on the ground during the swing phase. The operator
adopts a tripod-type gait during swing phase, balancing on one
leg and two crutches, and always moves both crutches during the
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FIGURE 7 | Joint trajectory planning for transfer and swing phases [adapted from Griffin et al. (2017)]. Tuning parameters %ls,f , %ls,b, ls, and hs are selected to

generate the desired joint motions in the swing phase.

transfer phase, standing stably on both legs (Figure 8). The phase
changes of the controller were entirely governed by user-selected
time, and did not, nor could, rely on any contact or force sensor.

The joint trajectories of the combined human-exoskeleton
system were recorded by the exoskeleton’s motor encoders for
over 20 trials of flat-ground continuous walking experiments.
The data was averaged over all the walking steps taken during the
trials, representing 80 steps. The average robot joint kinematics
(angular positions θi

R(t) and velocities θ̇Ri (t)) measured across
the walking trials is mapped into the DH kinematics (θi(t), θ̇i(t))
and used to evaluate the forward COM kinematics of the
equivalent DH model. In particular, the sagittal plane global
position r(t) and velocity ṙ(t) of the combined system’s COM are
calculated at all times as functions of θi(t) and θ̇i(t), where the
kinematic chain’s global frame has its origin at the center of the
leading stance foot, which is constrained to be flat on the ground
during the entire step duration.

CONTACT-DEPENDENT BALANCE
STABILITY ANALYSIS

The state-based stability is evaluated for Mina v2’s robot-assisted
balance and locomotion. A numerical optimization framework
is used to construct the balance stability boundaries (BSBs) of
the combined human-exoskeleton system in single and double
legged supports.

Dynamic Model With Contact Constraints
The BSBs of the combined human-exoskeleton system are
constructed by iteratively solving a series of constrained
non-linear optimization problems, in which the joint-
space constrained dynamics of the equivalent DH model
is implemented. The joint-space equations of motion are
recursively formulated for the equivalent DH model in its open-
(single contact) and closed-loop (double contact) kinematic
configurations, by taking into account the dynamics of the
contact interactions between the system and its environment.
The contact dynamics of the single and double contact

configurations are the results of the kinematic and kinetic
constraints at the feet imposed during the swing and transfer
phase of walking, respectively.

Within one complete step cycle, the center of the leading
stance foot is fixed at the origin of the global frame {X, Y} and
its orientation is coincident with that of the ground plane at
all instants in time. For both contact configurations, no relative
motion between the contact surface of the stance feet and the
ground is allowed. During the transfer phase, the front edge of
the trailing stance foot is fixed to a point with X-coordinate
equal to –(ls – b), consistent with the step length (Figure 6). The
orientation of the trailing stance foot about the metatarsal joint
[positioned at X-coordinate of –(ls – b + c)] is left free, as it
rotates during the toe-off motion. During the swing phase, the
stance foot remains in full contact with the ground, while the Y-
coordinate of the swing foot and any other part of the system is
constrained to be above the ground level.

The distributed reaction forces at the contact interface
between the feet and the ground are modeled with one equivalent
system of resultant contact force and moment (i.e., contact
wrench) applied at each stance foot (Figure 6). The resultant
contact wrench is null at the swing foot during the single
contact configuration (e.g., swing phase), while the contact
wrench at the support foot is uniquely determined for a given
motion. Therefore, in single contact, the unknowns of the
non-linear optimization problems for BSB construction are
joint trajectories, while joint torques and the reactions at the
fixed base are recursively determined from the inherent inverse
dynamics scheme. In the double contact configuration (e.g.,
transfer phase), the distribution of contact wrenches between
the two feet is indeterminate, and the contact wrenches, joint
kinematics, and actuator torques must all be solved for within the
given optimization problem. In this study, the unknowns of the
optimization problems for the construction of the BSB in double
contact are joint trajectories and contact wrenches at both feet,
while joint torques are again determined from inverse dynamics.
This formulation in double contact is based on the conjunction of
joint- and COM-space dynamics of the given biped system [full
details available in Mummolo et al. (2018)].
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FIGURE 8 | The contact sequence used by the operator in the gait phases. The numbered rectangles and circles indicate the locations of feet and crutches

placement, respectively. The support polygon during the swing and transfer phases is shown by the regions with dashed and solid border, respectively. The contact

sequence shown corresponds to three complete steps (permission for image reproduction granted by the participant).

In addition, the kinetic constraints related to the ground
reaction forces and moments applied at each foot are imposed.
For each contact surface, the resultant contact force in the normal
direction is subject to the unilateral constraint ensuring that the
ground only exerts positive normal forces that push on the foot.
The friction cone constraint is also imposed on the tangential
component of the resultant reaction force to prevent sliding. The
position of the center of pressure calculated for each contact
wrench is constrained to be within the contact area dimension
of the corresponding foot in the sagittal plane (i.e., c for the
trailing stance foot and a + b for the leading stance foot) to
ensure that any physically realizable pressure distribution (and
the corresponding resultant contact wrench) does not cause the
foot to tip over.

Balance Stability Boundary Construction
The balancing capability of a legged system is a characteristic that
is dependent on the system’s current state (position and velocity)
and its current contact configuration (Mummolo et al., 2017).
In this study, the capability of the combined human-exoskeleton
system to maintain balance solely through the support of the legs
(i.e., without crutches) is quantified in the sagittal plane, thus
isolating the role of crutches in assisting stability in the fore-
aft (+X and –X) directions. A state-based stability criterion for
legged systems that was recently introduced (Mummolo et al.,
2018) is used to evaluate the balancing capabilities of Mina
v2 in its two main foot-ground (single and double) contact
configurations. In the proposed criterion, the equivalent DH
model’s COM state as its global Cartesian position r(t0) and
velocity ṙ(t0) at a given time t0 is used to determine whether
the system is in a balanced state with respect to a specified

contact configuration, according to the definitions in the authors’
previous study (Mummolo et al., 2018). In other words, if the
legged system can reach a static equilibrium from a current
state (r(t0), ṙ(t0)) without ever altering its contact configuration,
that state is balanced with respect to that contact configuration.
Vice versa, if the current state (r(t0), ṙ(t0)) leads to an inevitable
change in the system’s current contact configuration, the state is
unbalanced with respect to that contact configuration.

The implementation of the proposed COM state-based
criterion consists in the numerical construction of the system-
specific and contact-specific BSB. The BSB is a partition of the
COM state space that includes all possible balanced states of
the given system in the specified contact configuration. A COM
state outside of the BSB represents the sufficient condition for
losing balance, from which a change in the system’s contact is
inevitable. For each sampled COM initial position r(t0) = r∗(t0),
the optimal trajectories and actuator torques in the joint space are
found, such that the component of the initial COM velocity ṙ(t0)
along a desired direction is maximized while satisfying relevant
constraints. From the joint-space solution of each optimization
problem, the state (r∗(t0), ṙ

∗

(t0)) is calculated and stored as a
point of the BSB, and represents the most extreme balanced state
for the system at the given COM position and in the specified
contact configuration.

At each iteration of this numerical construction algorithm,
a new COM position is sampled within the system’s contact-
specific COM workspace, which is the region of all positions
reachable by the legged system’s COM subject to joint limits
and the specified kinematic contact constraints. In this study, a
rectangular grid with a uniform spacing is used to sample the
entire workspace area, while any general discretization strategy
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can be used. In each optimization problem, the equivalent DH
model is governed by the dynamics in joint and COM spaces,
including the contact dynamics formulation, and is subject to the
following constraints:

I System-specific design: combined joint torque-velocity limits
[Equations (9, 12, 13)] and equivalent link and mass
parameters.

II Contact kinematics: global position and orientation
constraints for each foot segment in the single and double
contact configurations.

III Contact kinetics: unilateral normal reaction force, friction
cone, and center of pressure limits for each foot.

IV Balanced state conditions: sampled initial COM position,
preservation of the given contacts, and long-term (at a
sufficient final time tf ) static equilibrium of the COM.

The resulting initial conditions (r∗(t0), ṙ
∗

(t0)), for all possible
sampled initial COM positions, are the points of the BSB in the
state space and identify the maximum allowable COM velocity
perturbations along +X and –X directions for the given system
such that static equilibrium can still be reached while remaining
solely in the specified (single or double) contact configuration.

RESULTS AND DISCUSSION

The established parameters are integrated into the combined
human-exoskeleton system model. The stability boundaries
constructed for the combined system in legged supports are
analyzed in the system’s COM state space. Then the states
of balance of the robot-assisted walking motion are evaluated
against the BSBs.

Combined System Model and Walking
Trajectories
Mina v2’s design was customized for its pilot, and the joint
positions and link lengths of the exoskeletonmodel closely match
those of the human operator (Table 2). The human subject
operating Mina v2 in the current experiments is a male, is 1.78m
tall, and has a total mass of 82.8 kg. This mass is similar to
that of Subject 2 from a literature study (Herron et al., 1976),
which is used to estimate the mass distribution of the operator’s
body segments. The link and mass parameters for the equivalent
DH model of the combined human-exoskeleton system were
calculated accordingly (Table 2). In particular, the equivalent
link’s COM local position iri is calculated from irRi and irHi , for
i= 1–7, using the proposed methods as described above.

The operator’s (passive) joint ranges of motion were obtained
as previously described and the robot joint limits are designed in
the anatomical joint space to be less than or equal to the operator’s
joint range of motion, with a safety margin as a precaution. Based
on these ranges of motion and the transformations in Equation
(7), the lower and upper bounds of the joint variables in the
equivalent DH model are expressed with respect to the local
reference frames (Table 3).

The resulting dynamic models of the combined human-
exoskeleton system are implemented into the optimization

problems for the BSB construction. As a simple measure of model
validation, the total normal component of the ground reaction
force(s) is equal to 1,124.9N at the final static equilibrium for all
single and double contact solutions to the optimization problems,
which accurately reflects the weight of the combined system with
a total mass of 114.7 kg.

A forward kinematics algorithm processes the link parameters
(mi and

iri; Table 2), the DH joint angle limits (Table 3), and
the kinematic contact constraints of the equivalent DH model,
and evaluates the system’s contact-specific COM workspace in
the single and double contact configurations (Figure 9). The
workspace area in single contact is larger than that in double
contact. In particular, since the double contact configuration
satisfies all kinematic constraints present in the single contact
configuration plus the additional constraint of the trailing stance
foot position, every joint configuration that satisfies the double
contact kinematic constraints also satisfies those of the single
contact configuration. As a result, the double contact workspace
area is entirely included inside the single contact workspace
area.

The experimental joint trajectories were averaged for one
complete step (Figure 10) and correspond to the robot and
human joint rotations in the sagittal plane. The nominal step
length corresponding to the reference joint angle trajectories
for each walking trial is ls = 0.4m, with %ls,b = %ls,f = 30,
hs = 0.1m, and the swing and transfer time equal to 1.0 s
and 0.4 s, respectively. The average walking speed of the trials
was 0.29 m/s. The forward kinematics algorithm also processes
the average joint trajectories [mapped into the DH kinematics
(θi(t), θ̇i(t))] for the calculation of the corresponding average
COM trajectory of the combined human-exoskeleton system
during the flat-ground walking experiments. The total COM
trajectory in the sagittal plane during walking (plotted for one
step in Figure 9) is included within and close to the workspace
boundaries corresponding to the single and double contact
configurations, with an average Y-coordinate of 1.00m. In this
study, the COM positions for the BSB construction were sampled
within the workspace at the grid points nearest to the COM
trajectory in the (X, Y) plane, in order to characterize the system’s
balance stability at a COM height similar to that of experimental
walking trials. Therefore, the selected sample points for the
COM initial position r(t0) = r∗(t0) have a Y-coordinate of
1.00m and an X-coordinate within the corresponding workspace
ranges of [−0.368, 0.4255] for single contact and [−0.162,
0.148] for double contact (in meters), with uniform spacing of
2 cm.

Balance Stability Boundaries for Legged
Support
The balance stability characteristics of the combined human-
exoskeleton system in legged support are demonstrated through
the calculation of the BSB for single and double contact
configurations. The velocity extrema are found along the +X
and –X directions to evaluate the stability characteristics of
the combined system in the sagittal plane against positive and
negative perturbations along the direction of forward walking
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TABLE 2 | Link parameters for the sagittal plane model of Mina v2, the operator, and the equivalent DH model for the combined human-exoskeleton system.

Link number Body part Link length (m) Link mass (kg) Link’s local COM position vector (xi , yi ) (cm)

Robot Human model Equivalent DH model Robot Human model Equivalent DH model

mR
i

mH
i

mi
irR
i

irH
i

ir
i

1 Right foot height 0.087 0.760 1.209 1.969 (−5.89, −3.44) (−6.55, −5.08) (−6.30, −4.45)

2 Right shank 0.422 2.902 3.234 6.136 (−26.19, −2.94) (−17.99, 0.00) (−21.87, −1.39)

3 Right thigh 0.424 5.206 8.378 13.584 (−20.89, −3.36) (−16.32, 0.00) (−18.07, −1.29)

4 Upper body* 0.001 2.953 + 11.2 57.177 71.330 (−15.38, 17.25) (−0.88, 37.63) (−3.75, 33.59)

5 Left thigh 0.424 5.206 8.378 13.584 (−21.50, 3.36) (−26.08, 0.00) (−24.33, 1.29)

6 Left shank 0.422 2.902 3.234 6.136 (−16.01, 2.94) (−24.21, 0.00) (−20.33, 1.39)

7 Left foot height 0.087 0.760 1.209 1.969 (−2.81, 3.44) (−2.15, 5.08) (−2.40, 4.45)

*The robot’s upper body consists of a pelvis link (2.953 kg) and a backpack (11.2 kg). The human’s upper body includes the head, arms, torso, and pelvis.

TABLE 3 | Joint ranges of motion (in degrees) of Mina v2, the operator, and the combined human-exoskeleton system.

Anatomical reference

Human Robot Combined system

Joint Flexion Extension Flexion Extension Flexion Extension

Ankle −34 (dorsiflex.) 51.5 (plantar flex.) −30 (dorsiflex.) 40 (plantar flex.) −30 (dorsiflex.) 40 (plantar flex.)

Knee 122 0 118 0 118 0

Hip −140 45 −105 0 −105 0

Local DH reference for combined system

Joint Lower bound Upper bound Joint Lower bound Upper bound

Ankle θ2 −30 40 Ankle θ7 −40 30

Knee θ3 0 118 Knee θ6 −118 0

Hip θ4 −195 −90 Hip θ5 −90 15

progression. The BSB results corresponding to the selected
grid points of interest are projected onto the X-state space
(Figure 11).

The BSBs quantify of the state space regions within which the
combined system can maintain balance using only the support of
the leg(s) and without resorting to other balancing mechanisms,
such as crutch placement. If the X component of any velocity
perturbation of the combined system’s COM are within the single
contact BSB threshold (Figure 11, left), it indicates that balance
can be maintained on a single foot and without crutches. If
the X component of a velocity perturbation of the combined
system’s COM surpasses the single contact BSB threshold, then
the human-exoskeleton system will not be able to stop unless the
single contact is altered, for example, by placing the non-stance
foot (i.e., stepping) or crutches on the ground. In this case, the
current COM state is said to be an unbalanced state with respect
to the specified single contact configuration, and will necessarily
end up in a contact change. A similar statement can be made for
the double contact BSB results (Figure 11, right). Note that the
BSBs results are not associated to a specific motion, and their
construction algorithm does not assume any specific controller
design. Instead, the state space partitions identified by the BSBs

are the result of the system properties (mechanical and actuation
models) and the specified contacts with the environment.

The states of balance for each contact configuration can be
analyzed with respect to the X limits of the COM workspace at
Y = 1.00m and the X dimensions of the base of support between
the foot/feet and the ground (Figure 11). For the single contact,
balanced states exist for the COM positions only within the range
[−0.24, 0.26], in meters, which is smaller than its workspace
range (Figure 11, left). While there are COM positions out
of this range that are kinematically feasible within the single
contact COM workspace, they cannot be balanced due to kinetic
constraints. When the COM position lies sufficiently outside
of the foot base of support, regardless of its velocity, restoring
balance requires either the motion of the stance foot (sliding or
tipping-over) relative to the ground or the presence of additional
contacts (stepping or crutch placement); otherwise, falling is
inevitable. For the double contact configuration, the BSB extends
up to its workspace limits. Therefore, all COM positions within
the double contact COM workspace can be balanced if their
velocity perturbations in the fore-aft directions are within the
double contact BSB. In addition, all COM positions within the
double contact BSB are also statically stable, in other words, all
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FIGURE 9 | Contact-specific COM workspaces, discretized using a rectangular grid for COM initial position sampling in the construction of the BSB. The COM

trajectory in the sagittal plane is calculated from the average joint angle experimental data of one step walking cycle. The contact dimensions during single (a + b) and

double (a + b and c) contacts are shown.

FIGURE 10 | Average joint angle trajectories during one step of the flat ground walking trials [adapted from Griffin et al. (2017)]. The desired trajectories are shown as

solid (blue) and the actual trajectories are shown as dashed (red) lines. The horizontal axis (percent gait) is the time axis normalized by the duration of a step cycle. The

shaded region represents the double contact transfer phase. The plots in the left column are the joint angles of the trailing stance leg that performs the swing motion,

and those in the right column are for the leading stance leg, which is always in contact with the ground during a step. When the percent gait reaches 100%, the legs

switch roles, such that a new step cycle begins.
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FIGURE 11 | Balance stability boundaries during single and double contacts. Note that a COM state being inside or on the BSB is a necessary condition for the

system to be currently balanced, while it being outside of the BSB is the sufficient condition for unbalanced.

their X-positions are within the base of support region. Note
that a statically stable COM position can be inside or outside of
the BSB (i.e., balanced or unbalanced) depending on its COM
velocity.

The single contact BSB is much larger than and encloses
the double contact BSB, and therefore has a greater balancing
capability. In a single contact, the freedom of the system
to employ its angular momentum enhances its balancing
performance. For the double contact configuration, the balancing
advantage of the additional contact wrench at the trailing stance
foot is offset by the condition for double contact that both feet
must be pinned to the ground. However, it should be noted that
some unbalanced double contact states may result in being within
the single contact BSB through a foot detachment, and thus can
maintain balance without crutch placements.

Balance Stability of Robot-Assisted Gait
and Role of Crutches
The BSBs under the support of the leg(s) and in the absence
of additional contacts, such as crutches, can serve as a basis
for comparison when characterizing the balance stability of the
current robot-assisted walking motion during transfer and swing
phases. In particular, the balance stability of the average COM
state space trajectory during one step obtained from the flat
ground walking trials is analyzed with respect to the contact-
specific BSB for the corresponding gait phases (Figure 12).

The COM state space trajectory from the experimental
walking trials is the result of the gait planning and control
implemented as described previously, which was formulated
in the lower body joint space without any balance controller,
and thus resulted in the use of crutches. It is observed that
the COM state trajectory during transfer and swing mostly
lies within the corresponding BSB (double and single contact,
respectively). The transfer phase begins and ends well within the
double contact BSB, indicating that each state of the prescribed
transfer trajectory is balanced with respect to the double contact

FIGURE 12 | Crutch-less balance stability characteristics of the robot-assisted

crutched walking trajectories. The forward walking progression is in the

positive X direction. Markers indicate the beginning and the end of the transfer

and swing phases.

configuration. This implies that a control strategy could be
designed such that the same transfer motion can be performed
stably (at least with respect to the sagittal plane) without
using crutches. Moreover, the stability region in double contact
indicates that the operator may safely reposition both crutches
during transfer phase in preparation of the next swing phase,
without losing balance in the sagittal plane. The COM trajectory
is also contained within the single contact BSB during the swing
phase, only briefly exiting at the very end when the legs switch
roles in preparation for the next transfer phase. The balance
stability of the given crutched walking trials in relation with the
calculated crutch-less stability boundaries indicates that a future
balance controller could be designed such that the role of crutches
in the sagittal plane balancing could be reduced in transfer
phase and most of the swing phase. This enhanced sagittal plane
balancing capability in single and double contacts is in part due
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to the full (including ankle) joint actuation in the sagittal plane
in Mina v2. On the other hand, the role of crutches may still be
relevant at the very end of the swing phase for the sagittal plane
stability of Mina v2, and also at the swing and transfer phases
for the lateral stability, since the system is unactuated and has
restricted joint rotation in the frontal plane.

The calculated BSBs in the single and double contact
configurations predict the contact-specific state space regions
within which the combined human-exoskeleton system has the
physical capability to maintain balance using the support of
the leg(s) during any generic task, without ever altering the
respective contacts. Therefore, these regions represent a contact-
dependent system property that can be used as a reference for
the design of task-specific controller domains in the state space,
for which the contact-specific balanced and unbalanced regions
are pre-computed (i.e., known a priori). As specific applications
in robotic exoskeletons, the calculated balance stability regions
would provide quantitative guidelines for the mechanical and
control system design of robot-assisted locomotion. For instance,
the BSBs can be used as reference maps for benchmarking human
gait, improving the walking trajectory design at an early stage
(before the trajectories’ actual implementation and testing), and
evaluating the role of crutches as balancing aids in multiple
planes. The integration of the proposed balance stability criterion
within novel human-robot interface technologies could provide
the operator with quantitative feedbacks during training, hence
providing assistance for the exploration of less conservative and
more agile walking trajectories.
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In this paper we report results on benchmarking a HRP-2 humanoid robot. The humanoid

robots of this serie are known to be very robust. They have been successfully used by

several research groups for the design of new motion generation algorithms. As such it

is a reference in the category of electrically driven humanoid robot. As new humanoid

robots are continuously built it is interesting to compare the performances of these

new prototypes to those of HRP-2. This benchmarking study was realized through a

campaign of measurements in an advanced equipped testing laboratory that provides

a well adapted controlled environment. We have investigated the effect of temperatures

variation on the robot walking capabilities. In order to benchmark various environmental

conditions and algorithms we computed a set of performance indicators for bipedal

locomotion. The scope of the algorithms for motion generation evaluated here ranges

from analytical solution to numerical optimization approach, enabling real-time walking

or multi-contacts motions.

Keywords: benchmarking, bipedal locomotion, humanoid robot HRP-2, controlled environment, numerical

optimization, walking

1. INTRODUCTION

From the seminal work of Chestnutt (2010) to the recent methods proposed in the frame of the
Darpa Robotics Challenge (DRC) (Radford et al., 2015; DeDonato et al., 2017; Johnson et al., 2017;
Lim et al., 2017; Marion et al., 2017; Tsagarakis et al., 2017), humanoid robots use for moving
a control architecture that roughly follows the general framework depicted in Figure 1. Based
on an internal representation of the environment and the localization of the robot (r̂b and θ̂b
being, respectively, the base position and orientation), the Motion Planner (MP) plans a sequence
of reference end-effector contact positions (f ref ), or a reference center of mass linear velocity
combined with a reference waist angular velocity (Vref ). These references are then provided to a
Model-Predictive Whole-Body Controller (MPWBC) which generates a motor command for each
joint (joint torques (τ ref ), positions (qref ), velocities (q̇ref ) and accelerations (q̈ref )). This block is
critical in terms of safety as it maintains the dynamic feasibility of the control and the balance of the
robot. The Model-Predictive Whole-Body Controller can be expressed as a unique optimal control
problem but at the cost of efficiency in terms of computation time or solution quality. This is why
this controller is usually organized in two stages. First, trajectories for the robot center of mass cref

and the positions of contacts with the environment f ref are found using a Centroidal Dynamics
Pattern Generator (CDPG). Then, a Whole-Body Controller (WBC) computes an instantaneous
controller enabling to track these trajectories. More details about the CDPG can be found in the

199
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FIGURE 1 | General architecture used to generate humanoid robot motions. In this paper the modules in the orange boxes are the ones that are benchmarked,

whereas those in blue are not benchmarked.

next paragraph. The whole body reference is in turn sent to the
Robot Hardware, which can be either the simulator or the real
robot. The feedback terms are based upon the measurements of
the different sensors. The encoders evaluate the joint position
(q̃). The inertial measurement unit (IMU) measures the angular
velocity (ω̃IMU) and the linear acceleration (ãIMU) of the robot
torso, which give information about the orientation of the robot
with respect to the gravity field. Finally the interaction with
the environment is provided by the force sensors classically
located at the end-effectors (FEE ∈ {FRF , FLF , FRH , FLH}, where
the subscripts have the following meaning: (EE): end-effector,
(RF): right foot, (LF): left foot, (RH): right hand, (LH): left
hand). All these information are treated in an Estimator to
extract the needed values for the different algorithms. Finally
the Localization block is used to locate as precisely as possible
the robot in its 3D environment. Various implementations of
this architecture have been proposed with various levels of
success from the highly impressive Boston Dynamics System,
to robots widely available such as Nao. An open question is
the robustness and the repeatability of such a control system
as well as its performance. In this paper our main contribution
is to propose a benchmarking of the HRP-2 robot in various
setups and provide performance indicators in scenarios which
are possibly interesting for industrial applications. We hope
this study will provide a quantitative comparison and will
serve as a baseline for the elaboration of new algorithms. In
addition we believe that this paper is one of the first attempt to
apply the detailed performance indicators provided by Torricelli
et al. (2015) to a human size humanoid robot. The paper is
structured as follows: firstly, the section 2 presents the related
work on control and benchmarking for humanoid robots. Then
section 2.3 depicts our precedent contribution in the Koroibot
project and how it relates to this work. To continue, section
3 lists the materials and different methods used to perform
the benchmarking. In turn section 4 shows the experimental
results using the indicators from section 3. Finally the conclusion
in section 5 summaries the contributions and results of the
study.

2. RELATED WORK

In this paragraph we present the work that has been done relative
to the control and the benchmarking of the HRP2 humanoid
robot.

2.1. Motion Generation for Humanoid
Robots
The different benchmarks included in this paper are relative
to the MPWBC sketched in Figure 1. This related work is
presented in this first subsection. Several techniques are used
to mathematically formulate this problem. For instance hybrid-
dynamics formulations as proposed by Grizzle et al. (2010) or
Westervelt et al. (2007) are efficient but difficult to generalize.
The approaches used in this paper are based on mathematical
optimization which is broadly used in the humanoid robotics
community. More precisely, the locomotion problem can be
described as an Optimal Control Problem (OCP). The robot
generalized configuration (qref ) and velocity (q̇ref ) usually
compose the state (x ∈ R

n). The future contact points can be
precomputed by a Motion Planner or included in the state of
the problem. The control of this system u ∈ R

m, can be the
robot generalized acceleration (q̈ref ), the contact wrench (φk with
k ∈ {0, . . . , Number of Contact}), or the motor torques (τ ref ).
We denote by x and u the state and control trajectories. The
following optimal control problem (OCP) represents a generic
form of the locomotion problem (which can be for instance a
direct multiple shooting problem):

min
x, u

S
∑

s= 1

∫ ts+1ts

ts

ℓs(x, u) dt (1a)

s.t. ∀t ẋ = dyn(x, u) (1b)

∀t φ ∈ K (1c)

∀t x ∈ Bx ⊂ R
n (1d)
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∀t u ∈ Bu ⊂ R
m (1e)

x(0) = x0 (1f)

x(T) ∈ X∗ ⊂ R
n (1g)

where ts+1 = ts + 1ts is the starting time of the phase s
(with t0 = 0 and tS = T). In the direct multiple shooting
problem a phase s corresponds to an interval where the system
is simulated using constraint (1b) which makes sure that the
motion is dynamically consistent. Phases are connected through
the constraints (1d) and (1e) which impose bounds on the state
and the control, they are lying, respectively, in admissible set of
states Bx and in admissible set of controls Bu. Constraint (1c)
enforces balance with respect to the contact model. Breaking and
adding contact are usually done at phases junctions because it
changes the structure of the dynamics. Constraint (1f) imposes
the trajectory to start from a given state (estimated by the sensor
of the real robot). Constraint (1g) imposes the terminal state to be
in the viable terminal states set X∗ (Wieber, 2008). The cost (1a)
is decoupled ℓs(x, u) = ℓx(x)+ℓu(u) and its parameters may vary
depending on the phase. ℓx is generally used to regularize and to
smooth the state trajectory while ℓu tends to minimize the forces.
The resulting control is stable as soon as ℓx comprehends the
L2 norm of the first order derivative of the robot center of mass
(CoM), Wieber et al. (2015). Problem (1) is difficult to solve in
its generic form. And specifically (1b) is a challenging constraint.
Most of the time the shape of the problem varies from one solver
to another one only by the formulation of this constraint. The
difficulty is due to two main factors: (1) There is a large number
of degrees of freedom (DoF). In practice we need to compute
36 DoF for the robot on a preview window with 320 iterations
(1.6 s) to take into account the system inertia. (2) The dynamics
of the system is nonlinear. Figure 2 depicts the structure of the
problem. To be able to solve the whole problem, represented
by the full rectangle in Figure 2 researchers often use nonlinear
optimization. In this paper we evaluated a resolution of the
MPWBC based on the formulation given by Equation (1). In this
approach described in Koch et al. (2014), the authors computed
a dynamical step-over motion with the HRP-2 robot, but this
process can take several hours of computation. So simplifications
are necessary, for example Tassa et al. (2014), Koenemann et al.
(2015) use simplifications on the contact model. This method
is very efficient but not suitable for complex contacts during
walking. Seminal works (Kajita et al., 2003b; Orin et al., 2013)
show that (1b) can be divided into two parts, the non-convex
centroidal dynamics (top horizontal rectangle in Figure 2) (Orin
et al., 2013) that includes fewDoF, and the convex joint dynamics
(vertical rectangle in Figure 2). Kuindersma et al. (2014) and
Sherikov (2016) chose to deal the two aforementioned parts of
Figure 2 at once. They optimize for the centroidal momentum
on a preview horizon and the next whole body control. Qiu et al.
(2011), Rotella et al. (2015), and Perrin et al. (2015) decouple
the two separated aforementioned rectangles in Figure 2. They
solve first for the centroidal momentum and then for the whole
body control. In general the centroidal momentum remains
difficult to handle due to its non-convexity. Finally Kajita

FIGURE 2 | Representation of the dimension of the locomotion problem. The

abscissa represents the duration of the predicted horizon and the ordinate the

number of robot DoF.

et al. (2003a), Herdt et al. (2010), and Sherikov et al. (2014)
linearize the centroidal momentum which provides a convex
formulation of the locomotion problem. In Deits and Tedrake
(2014), the problemwas formulated has amixed-integer program
(i.e., having both continuous and discrete variables) in case of flat
contact. InMordatch et al. (2012), the same problemwas handled
using a dedicated solver relying on a continuation heuristic, and
used to animate the motion of virtual avatars.

2.2. Benchmarking
Different methods exist to benchmark robot control
architectures. In del Pobil et al. (2006) the authors argue
that robotic challenges offer an efficient way to do so. For
example, the results of the DARPA Robotics Challenge published
in the Journal of Field Robotics special issues Iagnemma and
Overholt (2015) and Spenko et al. (2017), show the different
control architecture in a determined context. Each behavior
successfully accomplished grants point to the team and the
best team wins the challenge. This benchmarking was however
costly as the robots had no system to support them in case of
fall. In addition, as it is mostly application driven, the challenge
provides an overall evaluation of the system integration but not
of the independent sub-parts.

For the specific case of motion generation, it has been recently
proposed by Brandao et al. (2017) to use a scenario called
“Disaster Scenario Dataset.” It allows benchmarking posture
generation (solved by the WBC) and trajectory generation
(MPWBC) using optimization. A set of problems is proposed by
means of foot step locations (FRF , FLF). Using this approach, it is
possible to compare algorithms realizing the two functionalities
(WBC and MPWBC). The evaluation is realized in simulation
using the Atlas robot and the ODE dynamic simulator. This first
step is necessary but one step further is required to benchmark
a real humanoid platform. For this paper we used a more
systematic decomposition of the humanoid bipedal locomotion
(Torricelli et al., 2015). Further description can be found in
section 3.7. This paper focuses on evaluating the MPWBC and
WBC on the Robot Hardware. The Estimator used in this context
is important but it is reflected in the stabilization process. The
Motion Planning is not evaluated here as the planned motion is
always the same or solved at the MPWBC level. The Localization
is provided by a motion capture system.
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FIGURE 3 | (Left) Graphical representation of the scientific approach of the Koroibot project. (Right) View of the humanoid robot used in the Koroibot project

dreaming of human walking capabilities (Pictures taken from http://www.koroibot.eu).

2.3. A Motivating Example: The Koroibot
Project
The work presented in this paper takes its root in the context
of the European project Koroibot (http://www.koroibot.eu/).
The goal of the Koroibot project was to enhance the ability of
humanoid robots to walk in a dynamic and versatile way, and
to bring them closer to human capabilities. The Koroibot project
partners had to study human motions and use this knowledge to
control humanoid robots via optimal control methods. Human
motions were recorded with motion capture systems and stored
in an open source data base which can be found at https://
koroibot-motion-database.humanoids.kit.edu/. With these data
several possibilities were exploited:

• Criteria that humans are assumed tominimize using Inverse
Optimal Control.

• Transfer from human behaviors to robots given by walking
alphabets and learning methods (Mandery et al., 2016).

• Human behaviors safely integrated in robots by means of
optimal controllers.

• Design principles derived for new humanoid robots (Clever
et al., 2017; Mukovskiy et al., 2017).

In order to evaluate the progress of the algorithms at the
beginning and at the end of the project, a set of challenges
focusing specifically on walking were designed (see Figure 4).
Figure 3 (right) shows all the robots hosted by the Koroibot
partners. Each team owning a robot had to perform some of these

challenges considering the current and the potential state of their
robots and controllers.

2.4. The Key Performance Indicators (KPI)
In this context and in collaboration with the H2R project, a
detailed set of key performance indicators (KPI) have been
proposed (Torricelli et al., 2015). These KPI try to capture all
the bipedal locomotion patterns. Specific sub-functions of the
global motor behaviors were analyzed (see Figure 5, right). The
results are expressed as two different sub-function sets. First,
the sub-functions associated with the body posture task without
locomotion. Second, the same sub-functions but including the
robot body transport. The initial condition may vary depending
on the experiment to perform. This is the idea of the intertrial
variability. The sub-functions are also classified by taking into
account the changes in the environment or not. Each of these
functions can be evaluated for different robots using the criteria
depicted in Figure 5 (left). The performances are classified
into two sub categories, quantitative performances and human
likeness. In addition, information in the last two columns indicate
whether the criteria is applicable on a standing task or on a
locomotion task. Again, all the teams owning a robot had to
perform an evaluation of these KPI, considering the current and
potential state of their robots and controllers.

2.5. The Work Done in the Koroibot Context
In the Koroibot context the Gepetto team evaluated the KPI one
the robot HRP-2 (second robot from the left in (Figure 3, right).
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FIGURE 4 | Challenges of the Koroibot project. In red the challenges chosen by the LAAS-CNRS.

FIGURE 5 | (Left) Performances indicators, (Right) motor skills considered in the benchmarking scheme. This scheme is limited to bipedal locomotion skills. The

concept of intertrial variability represents modifications of the environment between trials. (dashed) motor skills evaluated in Naveau (2016) (not dashed) motor skills

evaluated in this paper.

Among the challenges presented in Figure 4, we considered the
following ones:

• walking on a flat ground,
• walking on an uneven ground,
• walking on a mattress,
• walking on a beam without handrail,

• climbing a stair case with/without handrail,
• walking on stepping stones,
• going down a stair case without handrail,

They are depicted by red circles in Figure 4. In addition to these
challenges we added the perturbation rejection. Considering the
selected challenges we picked the following KPI:
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• horizontal ground at constant speed,
• stairs,
• bearing constant weight (the robot’s own weight)

while considering the following motor-skills:

• success rate across N different trials,
• mechanical energy,
• mechanical plus electrical energy,

All these choices are shown in Figure 5 by red ellipses in the
table. The mathematical details and results are presented below
in section 3.7.

3. MATERIALS AND METHODS

The experimental setups used to compute each of the
performance indicators given in section 3.7 are described in
this section. The motor skills given in Figure 5 and their
implementation are also presented. In addition, the algorithms
used to perform the different tests are depicted in section 3.8 and
illustrated in Figure 6.

3.1. Different Temperatures
The LNE is equipped with temperature-varying rooms which
allowed us to measure some of the performance indicators
at various temperatures ranging from 5◦C to 45◦C. In this
way, we evaluated the robustness and limits of our robot with
respect to the performance indicators in different environmental
conditions. It appeared that the robot behavior deteriorates at
low temperatures. At 5◦C it is not possible to perform the
calibration procedure as the robot could not move. At 10◦C
the friction is sufficiently low such that the robot could move.
Another phenomenon occurs above 40◦C after few motions due
to internal temperature build up: thermal protection prevents
the robot from moving if the temperature is too high. In this
room, apart from these extreme cases, the motions and indicators
measurements have been performed as expected on a flat ground
or on the staircase testbed of the Koroibot project. This staircase
is made of 4 15 cm high stairs and a top platform. The dimension
of one stair case is 1 m× 0.25 m× 0.05 m.

3.2. Tilted Surfaces
In the context of the body skills in motion, we considered
tilting surfaces. This was tested with the stabilizer commercially
available with HRP-2. The setup is a platform which can be tilted
upward and downward on one side with a hydraulic actuator.
The surface was tilted continuously until the robot fell off. On the
other hand, we tested walking algorithms with different angles
(pointing up or down) until the robot fell down. Tests were
realized with the robot pointing down, pointing up and across
the slope. In Figure 5 this test corresponds to Body Posture—
Continuous Surface Tilts.

3.3. Horizontal Translations
We used a mobile plate controlled in the horizontal plane to
perform continuous oscillating surface translations at various
frequencies and various amplitudes. The platform was moved
by a hydraulic actuator. The aim was to find the frequency

and the amplitude that the controlled robot is able to sustain.
In Figure 5 this test corresponds to Body Posture—Continuous
Surface translations.

3.4. Bearing
In order to test the robot capability to bear weights, we loaded
it with additional masses (bags of 5–15 kgs) in such way that
its balance is maintained. This approach is a bit limited as they
are several ways to bear a weight. Indeed it can be done with
a backpack, in collaboration with someone, or by holding the
object against its chest. Each of this approach comes with its own
specific constraint. In order to avoid such constraints, we decided
to take the simplest choice and hang soft weights on the front and
the back of the robot chest. In Figure 5 this test corresponds to
Body Transport—Bearing Constant Weight.

3.5. Pushes
This paragraph presents the pushes experiments. We tried to
find the sufficient force to make the robot fall down. This was
achieved by using a stick on top of which was fixed a force sensor
displaying the maximum force measured during an experiment.
The sensor used was a HBM 1000 N of type u3 together with a
HBM Scout 55 amplifier. The experience was realized while the
robot was standing and walking. The force was applied in the
sagittal and frontal planes until making HRP-2 fall. The force was
applied from behind the waist of the robot. This part of HRP-2
was made specifically soft to support impacts. The walking part is
themost difficult in terms of repeatability as the robot might be in
different foot support and thereforemore or less stable depending
on the configuration. In Figure 5 this test corresponds to Body
Posture—Pushes and Body Transport—Pushes.

3.6. Data
A CAD model of the staircase used is available on the
github repository where all the log of the experiments
are also present: https://github.com/laas/koroibot_KPI. All the
computations performed on the logs and implementing the key
performance indicators are available here: https://github.com/
laas/EnergyComputation.

3.7. Key Performance Indicators (KPI)
In this section the performance indicators used to evaluate
the humanoid robot HRP-2 are described. They are mostly
based on the work proposed in Torricelli et al. (2015). In the
Koroibot project we used key performance indicators (KPI)
to analyze the behavior of the robot at the beginning and
at the end of the project. These results lead us toward the
improvements to be made. In 2013 the algorithm mostly
used and implemented on HRP-2 in LAAS-CNRS where the
walking pattern generators described in Morisawa et al. (2007)
and Herdt et al. (2010). The performance indicators chosen
were:

• The execution time TM = tend − tbegin, where tbegin is
the time at which the sum of the norm of the motor axis
velocities reaches 6 rad s−1 for the first time in the log and
tend is when the sum of the norm of the motor axis velocities
passes below 0.5 rad s−1.
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FIGURE 6 | Pictures of the experimental setup at LNE (A) the robot hang up to walk on a slope (B) the translational plate (C) the temperature-controlled chamber

(end of the robot climbing 15 cm at 10◦C).

• The walked distance, being the distance between the
final base position and the initial one. The base pose is
reconstructed using odometry with the joint positions only.
The drift of this odometry is 8 cm over 3.6 m during a
straight walk.

• The success rate, being the number of time a specific task
could be performed without falling, over the total number
of trials of the task.

• The maximum tracking error from the planned trajectory,

TrackingError(t) =

∫ t+0.1

t
|qref − q̃|dt/0.1

MaxTrackingError = max
t
(TrackingError(t))

with TrackingError being the average normed difference
between the desired joint trajectory (qref ) and the joint pose
measured from the encoder (q̃) during 0.1 s starting at time
t. And MaxTrackingError being the maximum value of the
TrackingError function.

• The mechanical energy consumed normalized over the
walking distance D and the execution time TM .

Emechanical =

∫ tend

tbegin

|τω|dt/(TM D)

with Emechanical being the integral over time of the
mechanical power, τ being the torques applied at the robot
joints and ω being the velocity of the robot joints.

• The electrical energy dissipated by the motor resistance
normalized over the walking distance D and the execution
time TM ,

Emotor resistance =

∫ tend

tbegin

R i2dt/(TM D)

=

∫ tend

tbegin

R k2c τ 2dt/(TM D)

with Emotor resistance being the integral over time of the
electric power dissipated, R being the motor resistances, kc
being the electric motor torque constant and τ being again
the torques applied at the robot joints.

• The total energy consumed during the walking distance D
and the execution time TM ,

Etotal = Emechanical + Emotor resistance + Eelectronics

with Etotal being the sum of the energy consumed by
the system normalized over the walking distance D and
the execution time TM , and Eelectronics being the energy
consumed by the on-board electronic cards. Eelectronics is
neglected in this study so:

Etotal = Emechanical + Emotor resistance

• The mechanical cost of transport and the total cost of
transport,

Emechanical cost transport =

∫ tend

tbegin

|τω|dt/(m g D)

Etotal cost transport =

(

∫ tend

tbegin

|τω|dt +

∫ tend

tbegin

R k2c τ2dt

)

/(m g D)

with Emechanical cost transport and Etotal cost transport being,
respectively, the mechanical and total cost of transport, m
being the total mass of the robot, and g = 9.81ms−2 the
gravity constant.

• The Froude number,

Fr =
v
√

gl

v =
D

TM

where v is the robot center of mass mean velocity along
the horizontal plane and l is the leg length. This number
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FIGURE 7 | Sample of the experimental setup of the Koroibot project in LAAS-CNRS.

represents the ratio between the kinetic energy and the
potential energy. It can also be interpreted as an indicator
on the stepping frequency.

The trajectories were generated off line and repeatedly played on
the robot to analyze their robustness. Views of the experimental
setups are given in Figure 7.

3.8. Motion Generation for Humanoid
Robot Locomotion
This section explains the links between the motion generation
architecture depicted in Figure 1 and the Key Performance
Indicators given in the section 3.7. The set of functions
entitled body posture, depicted in Figure 1 (right), represents
the behavior which is provided by what is called a whole-body
controller. It consists of two parts:

• an estimator, which provides the orientation of the robot
with respect to the gravity field and the positions of the
end-effectors in contact with the environment.

• a whole-body controller which guarantees that the robot
balance is maintained with respect to cref , f ref and possibly a
qref .

In this paper we have evaluated independently only one whole
body motion controller. It is the stabilizer provided by Kawada
Inc. We give detailed performances evaluation of this controller
in the experimental part of this paper. It was described in

various paper such as Kajita et al. (2007) and Kajita et al.
(2001).

The set of function entitled body transport, depicted in
Figure 1 (right) in this paper, are four CDPG and one MPWBC.
The four CDPG evaluated in this paper are the following ones:
Carpentier et al. (2016), a multi-contact centroidal dynamic
pattern generator used to climb stairs with given contact
positions, Kajita et al. (2003a), the original walking pattern
generator implemented by Shuuji Kajita with given foot steps,
Morisawa et al. (2007), an analytical walking pattern generator
allowing immediate foot step modifications, Naveau et al.
(2017), a real time nonlinear pattern generator able to decide
autonomously foot-steps positions. In each case the goal of the
CDPG is to generate a center of mass trajectory and the foot-steps
trajectories. For Kajita et al. (2003a), Naveau et al. (2017), and
Morisawa et al. (2007) a dynamical filter is used to correct the
center of mass trajectory to improve the dynamical consistency
of the motion. In each case, a whole body motion generator (not
to be confused with a whole body motion controller) is used
without feedback to generate the reference position qref , and the
desired zref which are then sent to the stabilizer. For Naveau
et al. (2017) and Morisawa et al. (2007) we used the stack of
tasks described in Mansard et al. (2009) as a Generalized Inverse
Kinematics scheme. In Carpentier et al. (2016) a Generalized
Inverse Dynamics was used to generate the reference value for
qref and cref . The MPWBC provides the controls directly. The
one used is from Koch et al. (2014) using the Muscod-II Diehl
et al. (2001) nonlinear solver.
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FIGURE 8 | Climbing 10 cm stairs without handrail.

4. RESULTS

In this paragraph we present the numerical results obtained from
the computation of the KPI explained in detail in section 3.7
for each set of experiments. As a reminder the list of the KPI is
recalled:

• walked distance,
• success rate,
• max tracking error,
• duration of the experiment,
• mechanical joint energy,
• actuators energy,
• cost of transport,
• mechanical cost of transport,
• Froude number.

A video displaying a mosaic of all the experiments is
available at the following URL: https://www.youtube.com/
watch?v=djWGsb44JmY&feature=youtu.be or as a
Supplementary Material on the editor site of this paper.

4.1. Climbing Stairs
4.1.1. Stairs of 10 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs
of 10 cm height without any handrail. The difficulty of this task
is that the robot has to perform quite large steps and vertical
motion. For this reason, the robot is climbing one stair at a time,
which means that the robot puts successively one foot on the
next stair and the other one on the same stair. This avoids a

too large joint velocity that the robot could not track. Morisawa
et al. (2007) CDPG was evaluated at the beginning of the project
although the variation of height violates the assumption of the
cart-table model. But thanks to the dynamical filter the motion
generated was dynamically consistent so that the stabilizer
could cope with the situation. Because this experiment was not
performed at the LNE (it was done 3 years before) it was not
possible to control carefully the room temperature but the test
was performed at 20◦C. The KPI results can be seen in Figure 11

(tool upstairs). The other test was performed at the end of the
project using the CDPG (Carpentier et al., 2016). This time the
CDPG took into account the center of mass height variation but
not the whole body motion. The stabilizer should theoretically
have less trouble to compensate for the simplifications made. For
Carpentier et al. (2016) three different temperatures were tested:
10◦C, 20◦C, and 35◦C. The numerical results are depicted in
Figure 8. Interestingly, the temperature level has a direct impact
in terms of mechanical cost as it diminishes with the increase in
temperature. It is reflected in the tracking error. This intertrial
variation does not come from the change of reference trajectory
as it is strictly the same for every trial. There is a level of
adaptation due to the stabilizer, but each temperature has been
tested at least 4 times. A possible explanation is the fact that the
grease in the harmonic drives generates less friction at higher
temperature. As the cost of transport is dimensionless it allows
the two motions to be compared regardless of their duration. It is
then interesting to see that the cost of transport in Figure 11 (tool
upstairs) and in Figure 8 (10◦C) are very similar. And that, at the
same temperature, the total cost of transport for Carpentier et al.
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FIGURE 9 | Climbing 15 cm stairs with a handrail.

(2016) CDPG is 9.6% better (from 6.71 to 6.06). One explanation
is that the motion from Carpentier et al. (2016) CDPG being
more dynamically consistent, the stabilizer consumes less energy
to compensate for the model simplifications.

4.1.2. Stairs of 15 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs
of 15 cm height using a handrail. In addition the robot is not
using any stabilization algorithm, because there are non-coplanar
contacts. In this setup the Morisawa et al. (2007) CDPG has to
be used without handrail because of the model simplifications.
Trials have therefore been done using a WBC (described in
Mansard et al., 2009) without the handrail. The results show
that the current demanded by the motors went up to 45 A.
And because the HRP-2 batteries cannot provide more than
32 A, all trials failed. This is the reason why the results are
not shown in this study. Nevertheless, tests using the handrail
could be performed with Carpentier et al. (2016) CDPG. The
corresponding results are depicted in Figure 9. It confirms that
the energy is decreasing with the increase of temperature without
the stabilizer. Note that the energy spent by the robot is clearly
higher than for the experience on the 10 cm stairs, i.e., a 36% of
increase of the energy for walking.

4.1.3. Stepping Stones
In this experience, the humanoid robot HRP-2 had to walk up
and down on stairs made of red interlocking paving stones.
Between each stair there is a height difference of ±5 cm. The
CDPG described in Morisawa et al. (2007) was used. this test

is slightly different from the previous experiments because the
robot cannot put his two feet on a same level surface (contrary to
a stair step). To cope with this, the generated trajectories had to
always change the height of the next support foot. As the paving
stones were always slightly moving due to the robot weight, the
balance was difficult to obtain in a reliable way. As indicated in
the graph depicted in Figure 11, despite a success rate of 1, the
tracking error reaches a level (8e−03 rad). This tracking error
is greater than the one obtained during the 10 cm climbing
experiment at 10◦C but lower than the one obtained during the
15 cm climbing experiment at 35◦C (which is the lowest for this
temperature and the CDPG). A possible explanation of why the
energy consumption is greater than during the 10 cm climbing
stairs might be the instability of the stones and the fact that in
this experiment the robot climb the stairs in a human fashion,
i.e., not one stair at a time.

4.2. Walking on a Beam
This experiment was realized using the CDPG Morisawa et al.
(2007). In this experiment the humanoid robot HRP-2 is walking
on a beam. Initially, the experiment success rate on a real beam
was around 20%. This rate was improved to achieve a 90%
success rate, thanks a new implementation of the dynamical filter
presented in Kajita et al. (2003a). It reduced the drift which is
important as the beam length is 3m long. This could probably
be improved by a proper vision feed-back. However, in these
experiments, the robot walked on a normal ground as if it was on
a beam. The reason is the absence of a beam in the temperature-
controlled room. Even though the foot step location is discarded,
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FIGURE 10 | Walking on a beam.

FIGURE 11 | Multiple algorithms: Slopes at 5 degrees using Kajita algorithm (Skor), going up with a tool on a wooden pallet 10 cm (tool upstairs), going down on a

wooden pallet 10 cm (down stairs), going over an obstacle solving an OCP approach (Muscod), stepping on a interlocking paving stones (stepping stones).
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FIGURE 12 | Straight walk with Kajita’s walking pattern generator (Kajita et al., 2003a).

the balance problem is exactly the same. Here, the success rate is
1. The corresponding result is depicted in Figure 10.

To perform the motion on a limited bandwidth (beam), the
robot has to execute faster motions with its legs in order to place
its foot ahead the previous one. It is emphasized by the increase
of the cost of transport compared to normal straight walking (see
Figure 12). Though the robot’s legs are moving faster, the step
frequency is lowered compared to a normal walking in order to
keep the joint velocities in the feasible domain. This is reflected by
the fact that the Froude number is around 35% less than during a
straight walking (see Figure 12).

4.3. Straight Walking on Flat Ground
4.3.1. Temperatures
In the temperature-controlled room the humanoid robot
HRP-2 is performing a 2m straight walking following the
implementation of Kajita et al. (2003a). The corresponding result
is depicted in Figure 12. Note that the energy with respect to the
temperature is following the same trend as for the experiments on
the stairs and on the beam. We also tested the algorithm (Naveau
et al., 2017) at 10◦C. The total cost of transport is higher than
the algorithm (Kajita et al., 2003a) at the same temperature but
lower than the one used for walking over the beam. It is however
strongly less than the total cost of transport for climbing stairs
at 10◦C. The fact that the energy cost is higher for Naveau et al.
(2017) than for Kajita et al. (2003a) at the same temperature is
that Naveau et al. (2017) (illustrated in Figure 13) provides a
higher range of motion but the generated motions are closer to
the limit of the system, so the stabilizer spends more energy to
compensate for this.

4.3.2. Bearing Weights
Wemade the humanoid robot HRP-2 walk while bearing weights
at ambient temperature between 15◦ and 19◦. The two algorithms
Kajita et al. (2003a) and Naveau et al. (2017) were tested. The
robot was able to walk while carrying up to 14 kg with the two
algorithms. Note that, as expected, the effort to compensate for
the additional weight reflects in the cost of transport.

4.3.3. Pushes
We performed pushes in the lateral direction and in the frontal
direction while the robot was walking along a straight line. The
two algorithms Kajita et al. (2003a) and Naveau et al. (2017)
were again tested. In our case, the tested algorithm was not able
to modify its foot-steps according to the pushes contrary to the
impressive work by Takumi et al. (2017). For this specific set
of experiments with push from the back, the robot was able to
sustain forces from 31 N to 47 N. Pushes applied in the lateral
plane were varying between 23 N and 40 N. For Kajita et al.
(2003a), the cost of transport has a value of 3.31 similar to the
one obtained when walking on the beam. It is lower than the cost
of transport for climbing stairs. The cost of transport for Naveau
et al. (2017) is of 4.08. For both algorithms pushes are among the
most consuming behaviors. It is due to the stabilizer action to
compensate for the perturbation.

4.3.4. Slopes
The robot walked on a straight line while being on a
slope of various inclinations ([1◦ − 3.0◦]) -and with two
possible directions (upward or downward). The two algorithms
Kajita et al. (2003a) and Morisawa et al. (2007) were tested.
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FIGURE 13 | Straight walk with the walking pattern generator described in Naveau et al. (2017).

For Kajita et al. (2003a) the cost of transport is higher than for
standard straight walking but far less than during the pushes. For
Morisawa et al. (2007) the cost of transport is higher than when
performing the pushes with Kajita et al. (2003a) approach and is
at the same level than the beam test. It can be explained by the
fact that when the experiment has been realized the dynamical
filter was not used. Therefore the stabilizer had to compensate for
the discrepancy between the motion dynamics and the reference
given by the center of pressure. An algorithm able to estimate the
ground slope and adapt the walking pattern to it would probably
increase the efficiency of this motion.

4.3.5. Frictions
The robot walked on carpets with different textures including
different friction coefficients. In this case, we did not see any
consequences with the CDPG (Kajita et al., 2003a). This is
probably due to the particular coating of HRP2 soles used, they
might have avoided foot slippage. which is one way to affect the
friction coefficient. A possible extension of this work would be to
use more slippery ground. But a proper way to handle such case
is to implement a slip observer such as it was done (Kaneko et al.,
2005).

4.3.6. Uneven Terrain
The robot walked over gravels of calibrated size.We tested several
diameters with the CDPG (Kajita et al., 2003a). The robot was
able to walk on gravels of size up to 8 mm. Beyond this size, the
robot was falling. Note that in Figure 12 the cost of transport
is slightly more expensive than for classical straight walking at

nominal temperature, but not much than walking at 10◦C. It is
far less expensive than climbing a slope or counteracting pushes.
As expected it has no impact on the frequency of the footstep as
can be reflected by the Froude Number.

4.3.7. Walking Over an Obstacle
We have computed the same performance indicators to achieve
the task described in Koch et al. (2014) in the frame of the
Koroibot project. This strategy is quite different from the others
as it implements a MPWBC under the formulation of an Optimal
Control Problem given by Equation (1). The solution of this
problem was computed by the Muscod-II (Diehl et al., 2001)
solver. As the solver is trying to maximize a solution which is
not on a reduced space (the centroidal dynamics for the previous
algorithms), but on the whole robot, the solution found is close
to the limits of the robot in terms of joint position, velocity,
acceleration and torques. This is reflected in the cost of transport
which is very high, 10.15, almost as high as for climbing the stairs
of 15 cm (see Figure 11, Muscod).

4.4. Stabilizer
The stabilizer described in Kajita et al. (2007) and Kajita et al.
(2001) was extremely resilient during all the tests. A horizontal
testbed platform was used to generate oscillations along the
sagittal plane and the perpendicular plane at 1 and 2 Hz at
various amplitude [10, 20, 30, 40, 48] in mm. Along the sagittal
plane at 40 and 48 mm for both frequencies the feet of the
robot were raising up. In the perpendicular plane at 40 and 48
mm for both frequencies the overall robot rotated of about 15◦
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FIGURE 14 | Evaluation of the stabilization algorithm described in Kajita et al. (2007) and Kajita et al. (2001). The upper figure shows the results along the sagittal

plane, whereas the lower figure depicts the results along the perpendicular plane.

and 20◦. It was also tried to increase the frequency for a given
amplitude of 10 mm. In the sagittal plane, the robot was able
to reach 7 Hz without falling. In the perpendicular plane at 7
Hz the robot was making violent oscillations (without falling)
reaching mechanical resonance. The trial was subsequently

stopped. The results are depicted in Figure 14. We can clearly
see that for the oscillation in the perpendicular plane the increase
of total energy is following an exponential curve, compared to
the same experience in the sagittal plane. This clearly shows
that the resonance frequency of the system was reached as it
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can be seen in the video available at the following location
https://www.youtube.com/watch?v=djWGsb44JmY&feature=
youtu.be or as a Supplementary Material on the editor site of
this paper.

5. DISCUSSION

Human performance in locomotion tasks is still unmatched by
humanoid robots. Because of the lack of assessment methods
shared and accepted by the entire robotics community, it is even
difficult to estimate the level of maturity of existing technologies.
A response to these evaluation needs should induce significant
advances in robotics-research. Such an influence of evaluation on
the progression of technology performance has been observed in
the past, in particular for computer vision andNLP tasks (Martin,
2004).

The definition of evaluation protocols including testing
scenarios, testing environments and KPIs or metrics is crucial for
the definition of common standards for:

• certifying humanoid robots (i.e., to guarantee the conformity
of the product to fixed quality and performance requirements);

• allowing the user to make an informed choice when selecting
a specific robot among existing technologies;

• establishing a shared references on which developers and
buyers of these technologies can agree in order to define
specifications.

This study contributes to the definition of these performance
evaluation standards by proposing reproducible experiments
and evaluate repeatable performance measurements. These
evaluation methods are intended to be passed on to the robotics
research community and to standardization committees. In
addition we proposed one of the first thorough evaluation of such
performance indicators on a human size humanoid robot.

5.1. Summary and Major Outcomes
In this paper we presented a benchmarking for the control
architecture described in Figure 1 that was implemented on the
HRP-2 robot owned by LAAS-CNRS. The performance indicator
used in this paper are mostly based on Torricelli et al. (2015).
Based on this work we computed the following set of KPI:

• walked distance,
• success rate,
• maximum tracking error,
• duration of the experiment,
• mechanical joint energy,
• actuators energy,
• cost of transport,
• mechanical cost of transport,
• Froude number.

These KPI represent either the particular characteristics of the
experiments or the performances of the control architecture used.
The list of algorithms executed on the HRP-2 robot were:

• a flat ground CDPG from Kajita et al. (2003a),
• an analytical flat ground CDPG fromMorisawa et al. (2007),

• a nonlinear flat ground CDPG from Naveau et al. (2017),
• a multi-contact CDPG from Carpentier et al. (2016),
• a MPWBC from Koch et al. (2014),
• a WBC which is the stabilizer from Kajita et al. (2007) and
Kajita et al. (2001)

• a WBC that computes the joint position from the end-
effector plus center of mass trajectories from Mansard et al.
(2009)

• a WBC that computes the joint acceleration from the end-
effector plus center of mass trajectories used in Carpentier
et al. (2016).

The list of environmental conditions where the tests could
successfully be performed is:

• a temperature controlled room which provided from 10◦C
to 35◦C,

• a sloped ground of various inclinations ([1◦ − 3.0◦]),
• a controlled mobile platform that simulates a translating
ground,

• a set of calibrated weight from 5 to 15 kgs,
• a stick equipped with a force sensor at its tip to apply to
measure perturbation on the robot,

• different floors with different frictions.

The list of motion performed in the environmental conditions :

• climbing up 10 cm high stairs without handrail,
• climbing up 15 cm high stairs with handrail,
• walking over stepping stones,
• walking on a beam,
• walking on a flat ground,
• walking on a slope,
• walking over obstacles.

From all these results and experiments few major results come
out. First the temperature plays a role on the energy consumed
during a motion. We observed that the colder the room is, the
more mechanical and electrical energy is consumed. We also
noticed that the more the motion is at the limit of stability
the more the stabilizer has to inject energy into the system to
compensate for potential drift. This creates a noticeable increase
in energy consumption, e.g., when the robot walks on a beam,
steps over obstacle, walks on stepping stones. However the most
expensive motion is climbing stairs which is clearly a challenge
for future potential applications in which stairs are involved.
Finally, in terms of cost of transport, the algorithm proposed by
Carpentier et al. (2016) seems to be the most efficient and the
most versatile. Its main disadvantage during this campaign was
the lack of on-line implementation compared to Morisawa et al.
(2007) and Naveau et al. (2017).

5.2. Limits
The main limit in the approach proposed here is the difficulty
to make the experiments to be more statistically significant. In
its current form at least 3 people are needed to perform one
experiment, whichmakes them error-prone and time consuming.
Given the wide range of motions that a humanoid robot is able
to perform, wear testing needs humanoid robots to be able to
fall down and stand up again and restart their behavior. This is
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a current hot topic in humanoid robotics. The Atlas humanoid
robot built by Boston Dynamics has recently demonstrated its
capabilities to fall down without breaking and stand up. HRP-
2 is an electric-based humanoid robot which is mechanically
fragile due to its harmonic drive. Although several works
(Fujiwara et al., 2006; Samy and Kheddar, 2015) have developed
new approaches toward making such robot more resilient to
falling, it is still difficult to implement them in practice due
to the cost of failure. In the meantime, benchmarking will
help to understand the repeatability and the robustness of the
various algorithms implemented on humanoid robots. For very
unstructured environments more tests will probably be needed,
and a way to classify the environments necessary (using gravels,
stairs, size of stairs, different shapes of stairs, or database of
environments, forests). But so far such environments can be
handled only by a small number of humanoids and the approach
proposed in this paper is feasible for a large set of current
humanoid robots.

5.3. Future Work
We could not properly compute the KPI when trying to vary
the friction of the ground. A future work is then to implement a
proper slip observer like the one in Kaneko et al. (2005). based on
this observer, Based on this we should build a stabilizer that could
be used in multi-contact motions in order to compensate for
external perturbations and modeling assumption. Furthermore,
the LAAS-CNRS has acquired a new humanoid robot Talos
(Stasse et al., 2017). The future work consists in implementing
all the algorithms presented in this paper and perform the
benchmarking on this new robot.
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behaviors through contact-invariant optimization ACM Trans. Graph. 31:43.

doi: 10.1145/2185520.2185539

Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F.,

et al. (2007). “Experimentation of humanoid walking allowing immediate

modification of foot place based on analytical solution,” in International

Conference on Robotics and Automation (Roma).

Mukovskiy, A., Vassallo, C., Naveau, M., Stasse, O., Soueres, P., and Giese, M. A.

(2017). Adaptive synthesis of dynamically feasible full-body movements for the

humanoid robot HRP-2 by flexible combination of learned dynamic movement

primitives. Robot. Auton. Syst. 91, 270–283. doi: 10.1016/j.robot.2017.01.010

Naveau, M. (2016). Advanced Human Inspired Walking Strategies for Humanoid

Robots. Ph.D. thesis, Université de Toulouse 3 Paul Sabatier.

Naveau, M., Kudruss, M., and Stasse, O. (2017). A reactive walking pattern

generator based on nonlinear model predictive control. Robot. Autom. Lett.

2, 10–17.

Orin, D. E., Goswami, A., and Lee, S.-H. (2013). Centroidal dynamics of a

humanoid robot. Auton. Robot. 35, 161–176. doi: 10.1007/s10514-013-9341-4

Perrin, N., Lau, D., and Padois, V. (2015). “Effective generation of dynamically

balanced locomotion with multiple non-coplanar contacts,” in International

Symposium on Robotics Research (Sestri Levante).

Qiu, Z., Escande, A., Micaelli, A., and Robert, T. (2011). “Human motions analysis

and simulation based on a general criterion of stability,” in International

Symposium on Digital Human Modeling (Lyon).

Radford, N. A., Strawser, P., Hambuchen, K., Mehling, J. S., Verdeyen, W. K.,

Donnan, A. S., et al. (2015). Valkyrie: Nasa’s first bipedal humanoid robot.

J. Field Robot. 32, 397–419. doi: 10.1002/rob.21560

Rotella, N., Herzog, A., Schaal, S., and Righetti, L. (2015). “Humanoid momentum

estimation using sensed contact wrenches,” in International Conference on

Humanoid Robotics (Seoul).

Samy, V., and Kheddar, A. (2015). “Falls control using posture reshaping

and active compliance,” in International Conference on Humanoid Robotics

(Seoul).

Sherikov, A. (2016). Balance Preservation and Task Prioritization in Whole Body

Motion Control of Humanoid Robots. Ph.D. thesis, INRIA.

Sherikov, A., Dimitrov, D., and Wieber, P.-B. (2014). “Whole body motion

controller with long-term balance constraints,” in International Conference on

Humanoid Robotics (Madrid).

Spenko, M., Buerger, S., and Iagnemma, K. (2017). Editorial. J. Field Robot. 34,

227–228. doi: 10.1002/rob.21711

Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Prete, A. D.,

et al. (2017). “Talos: a new humanoid research platform targeted for industrial

applications,” in IEEE/RAS International Conference on Humanoid Robotics

(ICHR) (Birmingham).

Takumi, K., Hiroyuki, K., Mitsuhide, K., Chiaki, T., Shinya, S., Masanori, T., et

al. (2017). “Dynamic gait transition between walking, running and hopping

for push recovery,” in International Conference on Humanoid Robotics

(Birmingham).

Tassa, Y., Mansard, N., and Todorov, E. (2014). “Control-limited differential

dynamic programming,” in International Conference on Robotics and

Automation (Hong Kong).

Torricelli, D., González-Vargas, J., Veneman, J.-F., Mombaur, K., Tsagarakis, N.,

del Ama, A. J., et al. (2015). Benchmarking bipedal locomotion: a unified

scheme for humanoids, wearable robots, and human IEEE Robot. Autom.

Mag.

Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc,

V., et al. (2017). Walk-man: a high-performance humanoid platform for

realistic environments. J. Field Robot. 34, 1225–1259. doi: 10.1002/rob.

21702

Westervelt, E. R., Grizzle, J.W., Chevallereau, C., Choi, J. H., andMorris, B. (2007).

Feedback Control of Dynamic Bipedal Robot Locomotion. Boca Raton, FL: CRC

Press.

Wieber, P.-B. (2008). “Viability and predictive control for safe locomotion,” in

International Conference on Humanoid Robotics (Nice).

Wieber, P.-B., Tedrake, R., and Kuindersma, S. (2015). “Modeling and control of

legged robots,” in Handbook of Robotics, eds S. Bruno and K. Oussama (Cham:

Springer International Publishing), 1203–1234.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer FA and handling Editor declared their shared affiliation.

Copyright © 2018 Stasse, Giraud--Esclasse, Brousse, Naveau, Régnier, Avrin and

Souères. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 17 November 2018 | Volume 5 | Article 122215

https://doi.org/10.1002/rob.21673
https://doi.org/10.1109/TRO.2016.2572685
https://doi.org/10.1002/rob.21681
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1016/j.robot.2017.01.010
https://doi.org/10.1007/s10514-013-9341-4
https://doi.org/10.1002/rob.21560
https://doi.org/10.1002/rob.21711
https://doi.org/10.1002/rob.21702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Assessing bipedal locomotion: towards replicablebenchmarks for robotic and robot-assisted locomotion
	Table of Contents
	Editorial: Assessing Bipedal Locomotion: Towards Replicable Benchmarks for Robotic and Robot-Assisted Locomotion
	Introduction
	Assessing, Understanding, and Replicating Bipedal Locomotion
	Conclusions and Future Perspectives
	Author Contributions
	Acknowledgments
	References

	Golden Gait: An Optimization Theory Perspective on Human and Humanoid Walking
	INTRODUCTION
	GAME THEORY: THE ULTIMATUM GAME EQUILIBRIUM
	CURRENT ADVANCES IN HUMAN WALKING: THE GOLDEN GAIT
	APPLYING GAME THEORY TO HUMAN WALKING
	FUTURE DIRECTIONS: FROM HOMINIDS TO HUMANOID WALKING, PASSING THROUGH ROBOT-ASSISTED WALKING
	CONCLUSION
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	REFERENCES

	Comparing Gait with Multiple Physical Asymmetries Using Consolidated Metrics
	1. Introduction
	2. Background
	2.1. Gait Patterns
	2.2. Gait Metrics

	3. Methods
	3.1. Participants
	3.2. Experimental Apparatus
	3.3. Experimental Procedure
	3.4. Data Analysis

	4. Results
	4.1. Calculating the CGAM Score
	4.2. Comparison of Alterations
	4.3. Statistical Analysis
	4.4. Comparison to Machine Learning

	5. Discussion
	6. Conclusion
	Author Contributions
	Funding
	References

	Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals
	Introduction
	Materials and Methods
	Instrumentation Setup
	Data Collection Protocol
	Post-processing

	Results
	Discussion
	Ethics Statement
	Author Contributions
	Funding
	References

	Corrigendum: Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals
	Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population
	Introduction
	Materials and Methods
	Experimental Set-Up
	Participants
	Current Procedure for Manual Setting of Ekso
	Computational Calibration Procedure
	Step Identification Procedure
	Muscular Activation Pattern Definition
	Performance Index Extraction

	Computational Calibration Procedure Validation
	Graphical User Interface (GUI) for Clinical Use

	Results
	Muscular Activation Pattern
	Gait Metric Behavior
	Reproducibility and Validity of Computational Calibration

	Discussion
	Author Contributions
	Acknowledgments
	References

	A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait
	Introduction
	Materials and Methods
	Ground-Truth Motion Recording
	Skeletal Model Personalization
	Human-Exoskeleton Model Generation
	Computation of the Ground-Truth Joint Angles
	Human Joint Angles Estimation Using EIKPE
	Assessment of the Accuracy of EIKPE Estimations

	Results
	Discussion
	Conclusions
	Ethics Statement
	Author Contributions
	Funding
	References

	Posture Control—Human-Inspired Approaches for Humanoid Robot Benchmarking: Conceptualizing Tests, Protocols and Analyses
	INTRODUCTION
	BASIC ASPECTS OF HUMAN POSTURE CONTROL
	Shaping of Postural Control by the Terrestrial Force Environment
	Sensory Estimations of the Four Basic Disturbances and Their Predictions
	Analytical Description of the Human Postural Control
	Heuristic Model of Human Posture Control
	Modular Control Architecture of DEC Modules
	Mutual Inspirations Between Robotics and Human Posture Control Research

	CONCEPTUALIZING BENCHMARKS TESTS FOR POSTURE CONTROL IN ROBOTS
	Conceptualized Scenarios and Tests

	EXAMPLES OF ROBOT TESTS
	DISCUSSION
	Empirical Benchmarking: Quantification of Experimental Results, Metrics and Human Likeliness Measure
	General Robot Evaluation Issues
	From Human Experiments to Robot Evaluation Principles
	Is Human-Likeliness an Advantage?

	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES
	APPENDIX

	Foot Placement Modulation Diminishes for Perturbations Near Foot Contact
	Introduction
	Materials and Methods
	Participants
	Apparatus
	Data Collection
	Protocol
	Data Processing

	Results
	Perturbation Effects on COM Velocity
	Foot Placement Location Following ML Perturbations
	Alternative Foot Locations Following ML Perturbations
	Foot Placement Timing Following ML Perturbations
	Foot Placement Location Following AP Perturbations
	Foot Placement Timing Following AP Perturbations
	Relations With the COM Velocity

	Discussion
	Balance Responses Are Gait Phase Dependent
	Lack of Foot Placement Adjustments in the First Recovery Step Elicits Other Strategies
	Various Responses Contribute to the Same Relation
	Effects of Treadmill Walking

	Conclusions
	Data availability
	Author Contributions
	Funding
	Acknowledgments
	References

	Fusion of Bilateral Lower-Limb Neuromechanical Signals Improves Prediction of Locomotor Activities
	Introduction
	Materials and Methods
	Experimental Protocol
	Signal Processing
	Offline Classifier Evaluation
	Optimal Sensor Selection
	Preliminary Application to Controlling a Powered Leg Prosthesis
	Experimental Protocol
	Signal Processing
	Offline Classifier Evaluation


	Results
	Bilateral Neuromechanical Signals and Features
	Offline Classifier Evaluation
	Contralateral Sensor Selection
	Preliminary Application to Controlling a Powered Leg Prosthesis

	Discussion
	Related Work

	Limitations
	Conclusion
	Author Contributions
	Funding
	References

	Conservation of Reactive Stabilization Strategies in the Presence of Step Length Asymmetries During Walking
	INTRODUCTION
	MATERIALS AND METHODS
	Participant Characteristics
	Experiment Protocol
	Data Acquisition
	Data Processing
	Whole-Body Angular Momentum
	Orbital Stability

	Statistical Analysis

	RESULTS
	Modulation of Whole-Body Angular Momentum in Response to Treadmill Perturbations
	Effects of Asymmetry on the Reactive Control of Whole-Body Angular Momentum
	Orbital Stability

	DISCUSSION
	Conservation of Reactive Response
	Effects of Limb-Dominance on Reactive Control of Balance
	Orbital Stability During Asymmetric Walking
	Limitations

	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

	﻿Effectively Quantifying the Performance of Lower-Limb Exoskeletons Over a Range of Walking Conditions﻿
	1. Introduction
	2. Material and Methods
	2.1. Model Development
	2.2. Experimental Protocol
	2.3. Post-Processing
	2.4. APO Joint Misalignment
	2.5. APO Torque Transmission Models
	2.6. OpenSim Analyses
	2.7. Candidate Stability Metrics
	2.8. Modelling Metabolic Power Consumption
	2.9. Statistical Analysis

	3. Results
	3.1. Gait Metric Invariance
	3.2. Metabolic Power Consumption

	4. Discussion
	4.1. Stability Metrics
	4.2. Metabolic Power Consumption

	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Leg Force Control Through Biarticular Muscles for Human Walking Assistance
	Introduction
	Methods
	Conceptual Modeling of Bipedal Walking
	Human Walking Model
	Control Method Description
	Balance Control, VPP and FMCH
	Segmentation and Biarticular Actuation
	Optimization


	Results
	Effects on HAM Muscle
	Effects on the Whole Leg Neuromuscular Control
	Energy Economy
	Balance Control

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References

	Generation of Human-Like Movement from Symbolized Information
	1. Introduction
	2. Methods Used to Design a Control Structure
	2.1. Mechanical Resonance Mode
	2.2. Tacit Learning

	3. Standing Balance Control with 2DoF Inverted Pendulum
	3.1. Model of 2DoF Inverted Pendulum
	3.2. Standing Balance Control Structure
	3.3. Standing Balance Control Simulation and Results
	3.4. Standing Balance Control Experiment and Results
	3.5. Discussion of Standing Balance Control

	4. Bipedal Walking Control on Flat Plane with 27DoF Humanoid Robot
	4.1. Bipedal Walking Control Structure
	4.2. Bipedal Walking Simulation and Results
	4.3. Bipedal Walking Experiment and Results
	4.4. Discussion of Bipedal Walking Control

	5. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models
	1. Introduction
	2. Methods
	2.1. Data Acquisition
	2.2. Modelling the Residual Limb From DT-MRI Scans
	2.2.1. Data Preparation
	2.2.2. Image Segmentation Using Simpleware ScanIP
	2.2.3. Generation of the FE Model

	2.3. Constitutive Model for Soft Tissues
	2.3.1. Constitutive Muscle Model
	2.3.2. Tissue Injury Model

	2.4. Loading and Boundary Conditions for FE Analysis of Bipedal Stance

	3. Results
	3.1. Geometry and FE Mesh of the Residuum
	3.2. Mesh Convergence Studies
	3.3. Bipedal Stance Simulation

	4. Discussion
	4.1. DT-MRI-to-FE Mesh Workflow
	4.2. FE Mesh and Continuum-Mechanical Model
	4.3. Boundary Conditions and Results of Bipedal Stance

	5. Conclusion
	Ethics Statement
	Author Contributions
	Funding
	References

	Benchmarking Stability of Bipedal Locomotion Based on Individual Full Body Dynamics and Foot Placement Strategies–Application to Impaired and Unimpaired Walking
	1. Introduction
	1.1. Related Research
	1.2. Contributions of This Paper

	2. Methods
	2.1. Motion Recordings
	2.2. Models
	2.3. Equations of Motion
	2.4. Identification of Walking Motions by Means of Optimal Control
	2.5. Angular Momentum
	2.6. Foot Placement

	3. Results and Discussion
	3.1. Angular Momentum and Foot Placement
	3.2. Residual Orbital Energy

	4. Conclusion
	Ethics Statement
	Author Contributions
	Acknowledgments
	References

	Stability of Mina v2 for Robot-Assisted Balance and Locomotion
	Introduction
	Robotic Exoskeleton Mina v2
	Joint Actuator Design
	Exoskeleton Mechanical Model

	Combined Human-Exoskeleton System: Models and Parameters
	Models of the Exoskeleton's Operator
	Equivalent DH Model for the Combined Human-Exoskeleton System

	System Control and Experiments
	Contact-Dependent Balance Stability Analysis
	Dynamic Model With Contact Constraints
	Balance Stability Boundary Construction

	Results and Discussion
	Combined System Model and Walking Trajectories
	Balance Stability Boundaries for Legged Support
	Balance Stability of Robot-Assisted Gait and Role of Crutches

	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Benchmarking the HRP-2 Humanoid Robot During Locomotion
	1. Introduction
	2. Related Work
	2.1. Motion Generation for Humanoid Robots
	2.2. Benchmarking
	2.3. A Motivating Example: The Koroibot Project
	2.4. The Key Performance Indicators (KPI)
	2.5. The Work Done in the Koroibot Context

	3. Materials and Methods
	3.1. Different Temperatures
	3.2. Tilted Surfaces
	3.3. Horizontal Translations
	3.4. Bearing
	3.5. Pushes
	3.6. Data
	3.7. Key Performance Indicators (KPI)
	3.8. Motion Generation for Humanoid Robot Locomotion

	4. Results
	4.1. Climbing Stairs
	4.1.1. Stairs of 10 cm
	4.1.2. Stairs of 15 cm
	4.1.3. Stepping Stones

	4.2. Walking on a Beam
	4.3. Straight Walking on Flat Ground
	4.3.1. Temperatures
	4.3.2. Bearing Weights
	4.3.3. Pushes
	4.3.4. Slopes
	4.3.5. Frictions
	4.3.6. Uneven Terrain
	4.3.7. Walking Over an Obstacle

	4.4. Stabilizer

	5. Discussion
	5.1. Summary and Major Outcomes
	5.2. Limits
	5.3. Future Work

	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Back Cover




