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Editorial on the Research Topic

Challenges and current research status of vertigo/vestibular diseases,

volume II

Vertigo and vestibular diseases are prevalent among middle-aged and older adults,

posing an increased risk of falls and thereby significantly contributing to injury and

disability. These conditions also exert a notable impact on individuals’ psychological

wellbeing. Management can be particularly challenging, as symptoms are often nonspecific

and may indicate various underlying causes. The ten published articles in this Research

Topic encompass clinical and basic research on common vertigo disorders, as well as

reviews and case reports.

This topic includes two articles on Benign Paroxysmal Positional Vertigo (BPPV),

which is the most common cause of vertigo. Chen X. et al. conducted a comparative

analysis between the modified Epley maneuver and the traditional method for treating

posterior semicircular canal BPPV. Their research unveiled that, compared to the

traditional method, the modified Epley maneuver significantly enhanced repositioning

success rates and reduced instances of canal switching. Previous research has suggested

a link between BPPV and various mental disorders, but due to methodological

constraints, the results remain contentious. Therefore, Liu et al. employed the Mendelian

randomization method to investigate the association between BPPV and seven mental

disorders. They did not find a significant causal relationship between BPPV and bipolar

disorder, depression, anxiety disorder, schizophrenia, or suicidal tendencies. But they

conclude that neuroticism and mood swings may be risk factors for BPPV.

There are two articles on Bilateral Vestibulopathy (BVP) in this Research Topic. BVP is

known for its diverse clinical manifestations and multiple underlying causes, contributing

to its heterogeneous and chronic nature. van Stiphout et al. conducted a narrative review

focusing on key insights and advancements concerning the clinical presentation of BVP.

Additionally, they introduced a novel diagnostic algorithm and discussed current and

prospective therapeutic approaches. Moreover, variability exists in the reported presence or
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absence of Vestibular Evoked Myogenic Potentials (VEMPs)

among studies involving BVP patients. Lucieer et al. showcased

that multi-frequency testing yielded a higher incidence of otolith

responses. Cervical VEMPs (cVEMPs) were more frequently

present than ocular VEMPs (oVEMPs). Notably, the majority of

present VEMP responses were detected during testing at 500,

750, and 1,000Hz, with fewer occurrences at 2,000Hz, which also

exhibited significantly higher thresholds (for cVEMPs).

Additionally, three articles focus on the application of

nystagmus in this topic. Spontaneous nystagmus (SN) serves as

a prevalent clinical indicator of peripheral vestibular disorders

(1, 2). It commonly manifests as horizontal or horizontal-torsional,

direction-fixed movements, accentuated by the removal of visual

fixation. Furthermore, its slow phase velocity (SPV) adheres to

Alexander’s law, wherein the nystagmus amplitude intensifies when

the eye moves in the direction of the fast phase (2). Huang et al.

elucidated the three-dimensional features of nystagmus elicited

by various semicircular canal combinations in healthy young

individuals. Additionally, they established an initial reference range

for the SPV and its asymmetry in nystagmus induced by the vertical

semicircular canal. This research serves to deepen understanding of

the mechanisms underlying semicircular canal-induced nystagmus

and enhance the diagnostic precision of nystagmus in patients with

otogenic vertigo. Zhang et al. demonstrated a positive correlation

between the SPV of horizontal and torsional components of SN in

vestibular neuritis (VN) patients and the angular vestibulo-ocular

reflex (aVOR) gain asymmetry observed in the video head impulse

test (vHIT). Additionally, they found that the direction of SN

aligns with the plane of the affected semicircular canals. Superior

VN typically presents with horizontal-vertical upward-torsional

nystagmus, while total VN exhibits horizontal nystagmus with a

prominent torsional component but no vertical component. Weak

nystagmus, observed upon fixation removal, may occur in both

normal individuals and during recovery from unilateral vestibular

disturbances, yet its clinical relevance remains unclear in patients

experiencing dizziness. Chen C-C. et al. conducted a comparison

of nystagmus characteristics at different stages following unilateral

vestibular loss. Their findings suggest that nystagmus with visual

fixation may diminish as early as 1 week after the onset of acute

unilateral vestibular loss. Conversely, nystagmus in the absence of

visual input persisted at a subdued level for several months, with

its direction predominantly aligning with the anticipated pattern of

paralytic nystagmus.

In a case report, MRI follow-ups depicted the evolving

transition from an initial inflammatory response to the

development of endolymphatic hydrops within the inner ear

(Chen Y. et al.). Chen Y. et al. detailed these progressive changes,

observed from labyrinthitis to endolymphatic hydrops, as

visualized in inner ear MRI scans of a patient diagnosed with

Meniere’s disease (MD) and suspected immune dysfunction. This

visual representation highlights the correlation between MD and

inflammation, offering valuable insights into its pathogenesis to

inform treatment decisions. Qi et al. demonstrated that employing

postauricular injection of nitroglycerin provides a safer and

more effective approach for modeling migraine in rats compared

to intraperitoneal injection. This novel method of establishing

a migraine animal model not only confirms the impact of

migraine on hearing but also establishes a groundwork for future

clinical research.

Persistent postural-perceptual dizziness (PPPD) typically arises

following conditions that disrupt balance or manifest as acute

or episodic vertigo, unsteadiness, or dizziness (Yagi et al.). An

essential characteristic of PPPD warranting further investigation

is its exacerbation upon exposure to moving or complex visual

stimuli. Yagi et al. discovered that vestibular inputs may not

be fully integrated within the vestibulo-visuo-somatosensory

network. They observed an increase in functional connectivity

(FC) between visuospatial and spatial cognitive areas even in

healthy individuals following visual stimuli. Therefore, these results

showing heightened FC from visual areas to spatial cognitive

and prefrontal areas subsequent to visual stimuli may contribute

to explaining the prolonged symptoms experienced after visual

exacerbation in PPPD.

In a nutshell, this Research Topic, consisting of 10 articles

covering diverse subjects within the realm of vertigo or vestibular

diseases, unveiled the significant potential of this area of research

and facilitated advancements in this challenging field of study.
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Changes in functional connectivity 
among vestibulo-visuo-
somatosensory and spatial 
cognitive cortical areas in 
persistent postural-perceptual 
dizziness: resting-state fMRI 
studies before and after visual 
stimulation
Chihiro Yagi 1*, Yuka Morita 1, Tatsuya Yamagishi 1, 
Shinsuke Ohshima 1, Shuji Izumi 1, Kuniyuki Takahashi 2, 
Masaki Watanabe 3, Kosuke Itoh 3, Yuji Suzuki 3, Hironaka Igarashi 3 
and Arata Horii 1

1 Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical 
and Dental Sciences, Niigata, Japan, 2 Department of Otolaryngology Head and Neck Surgery, Faculty of 
Medicine, University of Miyazaki, Miyazaki, Japan, 3 Center for Integrated Human Brain Science, Brain 
Research Institute, Niigata University, Niigata, Japan

Introduction: Persistent postural-perceptual dizziness (PPPD) is a functional 
chronic vestibular syndrome with symptom exacerbation by upright posture, 
motion, and complex visual stimuli. Among these exacerbating factors, visual 
exacerbation is the most specific characteristic of PPPD requiring further 
investigation. We  hypothesized that stimulus-induced changes occur in the 
functional connectivity (FC) rather than simple neural activation that is involved in 
visual stimulation. The present study aimed to identify the neural basis of PPPD by 
investigating FC before and after visual stimulation.

Methods: Eleven patients with PPPD and 11 age- and sex-matched healthy 
controls (HCs) underwent resting-state fMRI (rs-fMRI) before and after task-based 
fMRI with visual stimuli.

Results: At pre-stimulus, FC between the vestibular cortex and visual areas was 
low, while that between the somatosensory and visual areas was high in PPPD 
compared with that in HCs. FC between the visuospatial (parahippocampal 
gyrus) and spatial cognitive areas (inferior parietal lobule) was elevated in PPPD 
even in the pre-stimulus condition, which no longer increased at post-stimulus 
as observed in HCs. In the post-stimulus condition, FC between the visual and 
spatial cognitive areas and that between the visual and prefrontal areas increased 
compared with that in the pre-stimulus condition in PPPD. Task-based fMRI 
demonstrated that no brain regions showed different activities between the HC 
and PPPD groups during visual stimulation.

Discussion: In PPPD, vestibular inputs may not be fully utilized in the vestibulo-
visuo-somatosensory network. Given that the FC between visuospatial and spatial 
cognitive areas increased even in HCs after visual stimuli, elevated status of this 
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FC in combination with the high FC between the somatosensory and visual areas 
would be  involved in the visual exacerbation in PPPD. An increase in FC from 
the visual areas to spatial cognitive and prefrontal areas after visual stimuli may 
account for the prolonged symptoms after visual exacerbation and anxious status 
in PPPD.

KEYWORDS

persistent postural-perceptual dizziness, resting-state functional magnetic resonance 
imaging, functional connectivity, visual stimuli, vestibular system, chronic dizziness

1. Introduction

Persistent postural-perceptual dizziness (PPPD) is a functional 
vestibular disorder characterized by chronic vestibular symptoms 
lasting over 3 months. The core symptoms are dizziness, unsteadiness, 
and non-spinning vertigo that are exacerbated by three factors: 
upright posture or walking, active or passive movement, and exposure 
to moving or complex visual stimuli (1).

Persistent postural-perceptual dizziness is usually preceded by 
conditions that disrupt balance or cause acute or episodic vertigo, 
unsteadiness, or dizziness. The most common preceding conditions 
are peripheral or central vestibular disorders (1, 2). Posture is 
maintained by three sensory inputs: visual, vestibular, and 
somatosensory information. Preceding vestibular disorders disrupt 
balance and posture, leading to two reactions: first, heightened 
vigilance as expressed by postural stiffness during standing and 
walking, which is also observed in healthy individuals when standing 
on elevated or unstable surfaces (3–5), and second, increased reliance 
on visual and/or somatosensory information (6, 7). Generally, these 
two conditions return to normal with the recovery of the preceding 
disease. However, the psychological trend of patients with PPPD 
involving neuroticism or introversion (8, 9) could influence the 
persistence of these conditions (10). Sustained heightened vigilance 

and increased reliance on visual and/or somatosensory information 
cause persistent dizziness and exacerbation by visual stimuli and 
motions (11). Ultimately, these processes may alter the spatial 
orientation (12) and impair postural control in complex environments 
(13, 14).

Recent neuroimaging studies on PPPD have gradually revealed 
the neural mechanisms that account for the abovementioned 
pathophysiological models. Resting-state functional MRI (rs-fMRI) 
and voxel-based morphometry have shown reduced functional 
connectivity (FC) and decreased gray matter volume, respectively, in 
multimodal vestibular cortical areas of patients with PPPD compared 
with those of healthy controls (HCs) (15, 16). Among three 
exacerbating factors, visual exacerbation is the most specific 
characteristic of PPPD (17) and requires further investigation. 
Therefore, we focused on the neural mechanisms underlying visual 
exacerbation in this study. Once symptom exacerbation by visual 
stimuli occurs, it persists for hours or more, suggesting that the 
stimulus-induced changes occur in FC rather than the simple neural 
activation that is involved in the visual stimulation. Hence, 
we performed rs-fMRI on patients with PPPD and normal volunteers 
before and after visual stimulation. In addition, task-based fMRI 
analysis was also performed during visual stimulation.

2. Methods

2.1. Patients

Eleven patients with PPPD were enrolled in this study between 
October 2020 and September 2021. As a control group, 11 healthy 
volunteers who were matched for age, sex, and handedness to patients 
with PPPD were included. All healthy volunteers had no history of 
vertigo or dizziness and no serious medical diseases.

Persistent postural-perceptual dizziness was diagnosed using the 
diagnostic criteria of the Barany Society (1). The Japanese version of 
the dizziness handicap inventory (DHI) (18, 19) was used to assess the 
severity of vestibular symptoms, the Hospital Anxiety and Depression 
Scale (HADS) (20) to evaluate anxiety and depression levels, the 
Japanese version of the Ten Item Personality Inventory (TIPI-J) (21, 
22) to assess personality, the Visual Analog Scale (VAS) to evaluate the 
degree and changes in vestibular symptoms before and after the visual 
stimuli, and the Simulator Sickness Questionnaire (SSQ) (23) to 
evaluate visual stimulation-induced symptoms.

To assess the patients’ vestibular function, bithermal caloric 
testing, rotatory chair test (RCT), video head impulse test (vHIT), 

Abbreviations: PPPD, persistent postural-perceptual dizziness; FC, functional 

connectivity; HCs, healthy controls; rs-fMRI, resting-state fMRI; DHI, dizziness 
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ocular vestibular-evoked myogenic potential; SVV, subjective visual vertical; CP, 
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division of supramarginal gyrus/angular gyrus; FP, frontal pole; PCG, paracingulate 

gyrus; SFG, superior frontal gyrus; sLOC, superior division of lateral occipital cortex; 

MidFG, middle frontal gyrus; pSMG, posterior supramarginal gyrus.
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cervical and ocular vestibular-evoked myogenic potential (cVEMP 
and oVEMP, respectively), and subjective visual vertical (SVV) test 
were conducted. Bithermal caloric testing was performed by 
stimulating each external auditory canal twice with air at 26°C and 
45°C for 60 s at 5-min intervals. The maximum slow phase velocity 
was measured using an electronystagmography and canal paresis (CP; 
%) was calculated using Jongkee’s index formula (24). RCT was done 
with a rotatory chair to which a pendulum-like rotation was applied, 
so that the maximum head angular velocity was 50°/s at a stimulation 
frequency of 0.1 Hz. The eye movements were monitored using an 
electronystagmography and vestibulo-ocular reflex (VOR) gain was 
calculated. vHIT was conducted using EyeSeeCam® (Interacoustics, 
Denmark) to assess the VOR gain and corrective catch-up saccades 
(CUS) during a rapid high-velocity head turn. cVEMP and oVEMP 
using the Neuropack System® (Nihon Kohden, Japan) were performed 
to evaluate the otolithic function, and the interaural asymmetry ratios 
(IAARs) of the cVEMP and oVEMP were used as indicators of 
saccular and utricular function, respectively. SVV test was also 
conducted to assess otolithic function using the SVV examination 
system (UNIMEC, Japan). CP greater than 25%, VOR gain less than 
0.3 in RCT (25), VOR gain less than 0.8 with CUS in vHIT (26), IAAR 
greater than 32% (27, 28), and SVV greater than 2.5 degrees (29) were 
considered abnormal values.

All participants underwent static posturography on a solid or 
foam rubber surface using Gravicoda® (ANIMA Corp., Japan) with 
eyes open and in closed conditions. The elliptical balance area (cm2) 
was adopted as a representative index of the degree of postural sway. 
Pure tone audiometry, blood pressure measurement, and blood 
routine tests were performed if indicated.

2.2. Experimental design and visual stimuli

Rs-fMRI was acquired before (pre-stimulus) and after (post-
stimulus) visual stimulation for 320 s each (Figure 1). The data from 
the initial 20 s were discarded to ensure a steady state. The visual 
stimulation task designed and used in this study consisted of five 
different visual stimuli. Each block consisted of 180 s, and the data for 
the initial 30 s were discarded to ensure a steady state. The rest and 
task were administered alternately for 30 s each.

The visual stimuli used in this study were created with the After 
Effects software (Adobe Inc., San Jose, CA, United  States) by 
attempting to reproduce the stimuli of scenes that are likely to 
exacerbate symptoms in patients with PPPD in daily life, such as 
flashing lights on TV, scenery flowing sideways when viewed from 
inside a train, and scenery flowing from front to back when riding in 
a passenger car. In the experiments, visual stimuli consisted of (i) a 
checkerboard pattern stimulus comprising 8 rows × 12 columns of 
squares reversed in contrast (100%) at 0.5 Hz, (ii) a checkerboard 
pattern stimulus comprising 2 rows × 2 columns of squares reversed 
in contrast (100%) at 12 Hz, (iii) a checkerboard pattern stimulus 
comprising 8 rows × 12 columns of squares reversed in contrast 
(100%) at 12 Hz, (iv) optokinetic stimulus by 12 black-and-white 
vertical stripes sweeping across a screen at 6°/s, and (v) radial optic 
flow stimulus with moving white dots (size: 0.1–1.1 degrees of visual 
angle, speed: 3°/s with a flat speed gradient) on a black background 
expanding from the center of the screen. For visual stimuli (i), (ii), and 
(iii), a checkerboard pattern comprising 2 rows × 2 columns of squares 
reversed in contrast (100%) at 0.5 Hz was presented as rest. For visual 
stimuli (iv) and (v), the respective static images were presented as rest.

FIGURE 1

Experimental design and visual stimuli. Resting-state functional MRI (rs-fMRI) was acquired before and after visual stimulation for 320 s each and the 
data for the initial 20 s was discarded to ensure a steady state. The visual stimulation task used in this study utilized a block design and consisted of five 
different visual stimuli. One block consisted of 180 s, with the data for the initial 30 s discarded to ensure a steady state. Rest and task were administered 
alternately for 30 s each.
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2.3. Imaging

All imaging data were acquired on the Signa LX 3.0-Tesla (GE 
Medical System) imaging system with an 8-channel head coil. During 
image acquisition, the participants were instructed to relax, stay 
awake, and focus on the middle of the screen throughout the 
experiment. As a general quality assurance procedure, functional 
scans were checked for head movements with a translation not 
exceeding 0.6 mm in any axis during each run. If a head movement 
exceeding 0.6 mm was observed, the run was re-performed. The 
structural images were recorded using a three-dimension spoiled 
gradient recalled echo (3D-FSPGR) sequence [repetition time (TR), 
7.4 ms; field of view (FOV), 200 × 200 mm2; voxel size, 
0.781 × 0.781 × 1.5 mm3; matrix, 256 × 256; echo time (TE), 3.04 ms; 
flip angle, 20°; slice thickness, 1.5 mm; slice spacing, 1.5 mm]. The 
functional images were obtained using gradient-echo echo-planar 
pulse sequence (TR, 1000 ms; FOV, 200 × 200 mm2; voxel size, 
3.125 × 3.125 × 7.5 mm3; matrix, 64 × 64; TE, 30 ms; flip angle, 70°; slice 
thickness, 5 mm; slice spacing, 7.5 mm).

2.4. Preprocessing

2.4.1. rs-fMRI
The rs-fMRI images were preprocessed using Statistical Parametric 

Mapping 12 (SPM12, Wellcome Department of Cognitive Neurology, 
United Kingdom) and the CONN toolbox (version 21a; http://www.
nitrc.org/projects/conn) working on MATLAB R2022a (MathWorks, 
Inc., Natick, United States). The preprocessing and quality assurance of 
functional and structural MRI data were performed according to the 
default pipeline implemented in CONN as follows: (a) realignment and 
unwarp, (b) slice timing correction, (c) outlier detection with 
conservative settings (95th percentile of the normative sample), (d) 
segmentation and normalization (transform to the Montreal 
Neurological Institute [MNI] space), and (e) smoothing using a 6-mm 
fullwidth at half-maximum (FWHM) Gaussian kernel. After the 
preprocessing, time points were identified as outliers if movement from 
a preceding image exceeded a 0.5 mm deviation or global mean signal 
intensity exceeded 3 standard deviations. These time points were 
included as regressors along with principal components extracted from 
anatomical noise regions and realignment parameters during a 
denoising step. Finally, a band-pass filter was applied to the functional 
data with a frequency window of 0.008–0.09 Hz.

2.4.2. Task-based fMRI
The task-based fMRI images were preprocessed using the SPM12 

software. Functional images were realigned to the first image in the series 
to correct for within-scan head motions, performed slice timing correction 
to correct for temporal misalignment of slices, coregistered with the 
T1-weighted structural image for each subject, normalized to the MNI 
space, and spatially smoothed by an 8-mm FWHM Gaussian kernel.

2.5. Data analysis

2.5.1. Demographic and clinical characteristics
To compare the demographic and clinical characteristics between 

the HC and PPPD groups, the Mann–Whitney U test was performed 

for HADS, TIPI-J, SSQ, and posturographic data. Statistical 
significance was set at p < 0.05. Statistical analyses were performed 
using GraphPad Prism version 9 (GraphPad Software, San Diego, CA, 
United States).

2.5.2. rs-fMRI analysis
We performed seed-to-voxel resting-state FC analysis using priori-

defined seed regions related to the vestibular, visual, somatosensory, 
and spatial cognitive regions of the brain. For the vestibular cortex, 
we selected the parieto-insular vestibular cortex (PIVC) and posterior 
insular cortex (PIC). The seed regions were determined as spheres with 
a radius of 5 mm, according to the latest structural study (30): x = −36, 
y = −25, z = 18 for the left PIVC; x = 36, y = −22, z = 17 for the right 
PIVC; x = −46, y = −33, z = 24 for the left PIC; and x = 51, y = −27, z = 28 
for the right PIC. For the visual cortex, we selected the intracalcarine 
cortex (ICC), supracalcarine cortex (SCC), lingual gyrus (LG), and 
cuneal cortex (CC) bilaterally. For the somatosensory cortex, 
we  selected the post-central gyrus (PostCG) bilaterally. For the 
visuospatial and spatial cognitive regions, we selected the anterior/
posterior parahippocampal gyrus (aPaHC and pPaHC) and 
hippocampus (HC), respectively. The above seeds related to visual, 
somatosensory, and spatial cognition were determined from the atlas, 
which consists of cortical or subcortical regions of interest from the 
FSL Harvard–Oxford Atlas and is included by default in CONN.

To infer clusters of voxels functionally connected to each seed 
region, two thresholds were sequentially applied based on the random 
field theory method, used with a cluster-forming threshold of 
uncorrected p < 0.001 and cluster-level threshold of p < 0.05 corrected 
for multiple comparisons by using family-wise error (FWE).

To compare the base FC conditions between patients with PPPD 
and HCs, a two-sample t-test was performed on the pre-stimulus data.

For comparisons between pre- and post-stimulus in the PPPD 
group, data from only patients in whom dizziness symptoms were 
exacerbated by the visual stimuli, confirmed by an increase in the VAS 
score compared with that of pre-stimulus, were used. Differences in 
FC between pre- and post-stimulus in HCs or PPPD were tested using 
a paired t-test.

To detect regions showing a significant change in FC after visual 
stimuli in the PPPD group, differences between pre- and post-stimulus 
were evaluated relative to those of the HC group. This was tested using 
a 2 × 2 mixed ANOVA interaction. The patterns of changes in PPPD/
HC group showed significant differences between the pre- and post-
stimulus conditions in the PPPD group relative to the HC group 
(Figure  2). When the patterns of the relative increase in FC are 
observed after visual stimuli in the PPPD group, the following three 
possibilities may be included: increase in the PPPD group, decrease in 
the HC group, and a combination of both (the upper row). Similarly, 
when the patterns of the relative decrease in FC are observed after 
visual stimuli in the PPPD group, the following three possibilities may 
be included: decrease in the PPPD group, increase in the HC group, 
and a combination of both (the lower row).

For all group analyses, we used FWE-corrected values for multiple 
comparisons, and p < 0.05 was considered to indicate 
statistical significance.

2.5.3. Task-based fMRI analysis
For the first-level analysis, the onsets and durations of the task 

were modeled, and the change in brain activity during the task relative 
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to that during rest was set as a contrast. For the second-level analysis, 
the group analyses with unpaired t-tests comparing the HC and PPPD 
groups were performed with a significant threshold at FWE-corrected 
p < 0.05.

2.6. Ethics statement

This study was approved by the institutional review board of 
Niigata University Medical and Dental Hospital (Niigata city, Japan; 
#2019-0021). All procedures performed in this study were in 
accordance with the ethical standard of the 1964 Helsinki Declaration. 
Informed consent was obtained from all participants at the time of 
inclusion in the study, authorizing the anonymous use of data for 
further studies.

3. Results

3.1. Demographic and clinical 
characteristics

Table 1 summarizes the demographic and clinical data of the HC 
and PPPD groups. Two males and nine females were included in each 
group. All participants were right-handed. There was no significant 
difference in age between the two groups. As shown in Table 1, the 
Mann–Whitney U test demonstrated that the HADS score (total 

score) and the neuroticism score of the TIPI-J were significantly 
higher in the PPPD group than in the HC group. There was no 
significant difference in the elliptical balance area (with eyes open) 
between the two groups, while the elliptical balance area (with eyes 
closed, eyes open on foam rubber, eyes closed on foam rubber) of the 
PPPD group was significantly larger than that of the HC group. The 
SSQ score of the PPPD group was significantly higher than that of the 
HC group.

Table 2 summarizes the demographic data of each patient with 
PPPD. The median duration of disease was 32 months (interquartile 
ranges [IQR]: 14 months), and the preceding diseases were acute 
unilateral vestibulopathy (AUVP) in 6 patients, benign paroxysmal 
positional vertigo (BPPV) in 4 patients, and chronic anxiety disorders 
in 1 patient. The median DHI score was 34 (IQR: 48). Of the 11 
patients with PPPD, 5 were taking escitalopram or venlafaxine. Eight 
of 11 patients had exacerbation of dizziness symptoms by visual 
stimulation, which was confirmed by an increase in the VAS score 
compared with that of pre-stimulus data. Data from only these eight 
exacerbated patients were used for comparisons between pre- and 
post-stimulus in the PPPD group. In contrast, no participant in the 
HC group complained of dizziness symptoms during/after 
visual stimuli.

Vestibular test results for patients with PPPD are shown in 
Supplementary Table 1. Some patients (P01, P06, and P09) showed 
results deviating from the normal range; however, no cases of obvious 
peripheral vestibular dysfunction were found based on the overall 
findings of the examination.

FIGURE 2

Relative increase or decrease in FC after visual stimuli in the PPPD group. Patterns of changes in PPPD/HC group showed significant differences 
between the pre- and post-stimulus conditions in the PPPD group relative to the HC group. The upper and lower row shows the patterns of relative 
increase or decrease after visual stimulation in the PPPD group, respectively. FC, functional connectivity; HC, hippocampus; PPPD, persistent postural-
perceptual dizziness.
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3.2. Pre-stimulus FCs in PPPD and HCs

The PPPD group showed several significant differences in FC 
compared with the HC group at pre-stimulus. FC between the left 

PostCG and the right temporooccipital part of the middle/inferior 
temporal gyrus (toMTG/toITG), right aPaHC and the right posterior 
division of supramarginal gyrus/angular gyrus (pSMG/AG), and the 
right HC and the left frontal pole (FP) in the PPPD group was 
significantly higher than that in the HC group at pre-stimulus 
(Figure 3; Table 3). Conversely, FC between the right PostCG and the 
left FP, the right PIVC and the bilateral LG, and the left PIVC and the 
left FP/paracingulate gyrus/superior frontal gyrus (FP/PCG/SFG) in 
the PPPD group was significantly lower than those in the HC group 
(Figure 3; Table 3).

3.3. Differences between pre- and 
post-stimulus FCs

As shown in Figure  4 and Table  4, FC between the right 
PIVC and left LG and that between the right SCC and left pSMG 
significantly increased in the post-stimulus condition than those 
in the pre-stimulus condition in the PPPD group. FC between 
the right PostCG and right pSMG and that between the right CC 
and left pMTG significantly decreased in the post-stimulus 
condition than those in the pre-stimulus condition in the PPPD 
group. No FC other than these 4 FCs showed significant changes 
after the stimulus compared with those before the stimulus 
in PPPD.

As shown in Figure 5 and Table 5, FC between the right aPaHC 
and right pSMG, which was significantly lower in the HC group than 
in the PPPD group before the stimulus (Figure 3; Table 3), significantly 
increased in the post-stimulus condition than those in the 
pre-stimulus condition in the HC group. FC between the right CC and 
left FP significantly increased, whereas FC between the right ICC and 
right superior division of lateral occipital cortex (sLOC) was 
significantly decreased in the post-stimulus condition than that in the 
pre-stimulus condition in the HC group.

TABLE 1 Demographic profiles and characteristics of the healthy controls 
(HCs) and patients with persistent postural-perceptual dizziness (PPPD).

Variables HCs PPPD Value of p 
(Mann–

Whitney U 
test)

Sample size  

(male/female)
11 [2/9] 11 [2/9]

Age, years 46 (8) 42 (4) 0.30

HADS (total score) 9 (7) 16 (14) <0.01**

TIPI-J Extraversion 4.5 (3.0) 2.5 (3.5) 0.07

Agreeableness 5.0 (1.5) 4.5 (2.5) 0.39

Conscientiousness 4.0 (2.0) 4.0 (1.5) 0.66

Neuroticism 3.5 (2.0) 6.0 (2.5) <0.01**

Openness 3.5 (3.0) 4.0 (2.5) 0.21

Elliptical balance area, 

cm2 Eyes open
3.3 (3.7) 6.1 (3.9) 0.19

Eyes closed 4.5 (3.8) 9.3 (7.9) 0.02*

Eyes open on foam 

rubber
6.1 (2.5) 9.6 (5.1) <0.01**

Eyes closed on foam 

rubber
10.6 (5.6) 17.6 (15.6) <0.01**

SSQ (total score) 3.7 (18.7) 44.9 (78.5) <0.01**

*Values indicate statistical significance. *p < 0.05; **p < 0.01.
Values are reported as median and interquartile range.
HADS, Hospital Anxiety and Depression Scale; HCs, healthy controls; PPPD, persistent 
postural-perceptual dizziness; SSQ, Simulator Sickness Questionnaire; TIPI-J, Ten Item 
Personality Inventory.

TABLE 2 Demographic characteristics of patients with persistent postural-perceptual dizziness (PPPD).

Patient no. Age 
(years)

Sex (M/F) Duration 
(months)

Preceding 
disease

DHI Medication VAS 
(before → after)/

Exacerbation  
(+ or –)

P01 43 F 32 AUVP 10 Escitalopram 5 → 7/(+)

P02 41 F 27 BPPV 82 (−) 3 → 8/(+)

P03 42 F 7 AUVP 34 (−) 2 → 6/(+)

P04 42 F 33 AUVP 12 Venlafaxine 3 → 3/(−)

P05 45 M 34 BPPV 50 (−) 6 → 6/(−)

P06 39 F 5 BPPV 74 (−) 5 → 7/(+)

P07 41 F 50 AUVP 48 Escitalopram 0 → 2/(+)

P08 47 M 73 AUVP 26 (−) 4 → 7/(+)

P09 32 F 23 AUVP 64 Venlafaxine 7 → 9/(+)

P10 44 F 35 BPPV 30 Escitalopram 1 → 1/(−)

P11 40 F 6
Chronic anxiety 

disorders
16 (−) 4 → 5/(+)

AUVP, acute unilateral vestibulopathy; BPPV, benign paroxysmal positional vertigo; DHI, Dizziness Handicap Inventory; F, female; HADS, Hospital Anxiety and Depression Scale; M, male; 
PPPD, persistent postural-perceptual dizziness; VAS, visual analog scale.
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3.4. Differences between pre- and 
post-stimulus FCs in PPPD relative to HCs

Figure  6 and Table  6 show the FCs modulated by visual 
stimulation in the PPPD group relative to the HC group. FC 

between the right ICC and the left pSMG, the right SCC and the left 
middle frontal gyrus (MidFG), and the right CC and the right 
MidFG significantly increased in the post-stimulus condition in the 
PPPD group relative to the HC group. It should be noted that this 
was an increase relative to that in the HC group. Since these three 

FIGURE 3

Significantly different functional connectivity between patients with persistent postural-perceptual dizziness and healthy controls under the pre-
stimulus condition. Seed regions are shown in red, higher functional connectivity (FC) is indicated by yellow bars, and lower FC is indicated by green 
bars. The color bar represents T scores. The [x, y, z] values indicate the Montreal Neurological Institute (MNI) coordinates. aPaHC, anterior 
parahippocampal gyrus; FP, frontal pole; FP/PCG/SFG, frontal pole/paracingulate gyrus/superior frontal gyrus; HC, hippocampus; LG, lingual gyrus; 
PIVC, parieto-insular vestibular cortex; PPPD, persistent postural-perceptual dizziness; pMTG, posterior middle temporal gyrus; postCG, post-central 
gyrus; pSMG/AG, posterior supramarginal gyrus/angular gyrus; toMTG/toITG, temporooccipital middle/inferior temporal gyrus.

TABLE 3 Significantly different functional connectivity (FC) between patients with persistent postural-perceptual dizziness (PPPD) and healthy controls 
(HCs) in the pre-stimulus condition.

Seed region Cluster coordinates  
(x, y, z)

Cluster size Cluster regions Cluster value of p 
(FWE)

Higher FC in PPPD

Postcentral Gyrus_L + 66– 50– 10 138
Middle/Inferior Temporal Gyrus, 

temporooccipital part_R

0.015

Parahippocampal Gyrus, anterior 

division_R
+ 58– 40+ 46 589

Supramarginal Gyrus, posterior 

division_R/Angular Gyrus_R
<0.001

Hippocampus_R − 42 + 44– 14 215 Frontal Pole_L <0.001

Lower FC in PPPD

Postcentral Gyrus_R − 8 + 68 + 26 145 Frontal Pole_L <0.01

PIVC_R + 14– 68– 8 738 Lingual Gyrus_R/L <0.001

PIVC_L − 16 + 52 + 40 140

Frontal Pole_L/Paracingulate 

Gyrus_L/Superior Frontal 

Gyrus_L

<0.01

R/L, bilateral; FC, functional connectivity; FWE, family-wise error; HCs, healthy control; L, left; PIVC, parieto-insular vestibular cortex; PPPD, persistent postural-perceptual dizziness; R, 
right.
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FCs neither occurred in the list of increased FC after visual stimulus 
in the PPPD group (Figure 4; Table 4) nor in that of decreased FC 
after visual stimulus in the HC group (Figure 5; Table 5), increase 
in these FCs could be derived from the combination of increase and 
decrease in FC of the PPPD and HC groups, respectively (See 
Methods and Figure 2). FC between the left PostCG and the right 
toMTG/toITG, the right aPaHC and the right pSMG/AG, and the 

left aPaHC and the right toMTG/AG/pSMG significantly decreased 
in the PPPD group compared with that in the HC group (Figure 6; 
Table 6). Among these, FC between the right aPaHC and the right 
pSMG/AG was higher in the PPPD group than that in the HC group 
in the pre-stimulus condition (Figure 3; Table 3). There were no 
significant changes in this FC between pre- and post-stimulus 
conditions in the PPPD group (Figure 4; Table 4), while this FC 
significantly increased in the post-stimulus than in the pre-stimulus 
condition in the HC group (Figure 5; Table 5). In summary, the 
relative decrease in FC observed in the post-stimulus condition of 
PPPD may imply that this FC increased after visual stimulation in 
the HC group; however, it could no longer occur in the PPPD 
group, perhaps this FC had already been fully facilitated even in the 
pre-stimulus condition.

3.5. Brain activity during visual stimulation 
in PPPD: task-based fMRI analysis

No areas were significantly activated/inhibited during all five 
visual stimulations in the PPPD group compared with those in the HC 
group (data not shown).

4. Discussion

4.1. Demographic and clinical 
characteristics of PPPD

As shown in Table 1, the PPPD group had higher total scores 
for HADS and neuroticism scores for TIPI-J than the HC group. 
These psychiatric trends of patients with PPPD, i.e., anxiety/
depression and neuroticism are consistent with those in previous 
reports (8, 31).

FIGURE 4

Significantly modified functional connectivity under the post-stimulus condition in the persistent postural-perceptual dizziness group. Seed regions are 
shown in red, increased functional connectivity (FC) is indicated by yellow bars, and decreased FC is indicated by green bars. The color bar represents 
T scores. The [x, y, z] values indicate the Montreal Neurological Institute (MNI) coordinates. CC, calcarine cortex; LG, lingual gyrus; PIVC, parieto-insular 
vestibular cortex; PPPD, persistent postural-perceptual dizziness; pMTG, posterior middle temporal gyrus; postCG, post-central gyrus; pSMG, posterior 
supramarginal gyrus; SCC, supracalcarine cortex.

TABLE 4 Significantly modified functional connectivity (FC) in the post-
stimulus condition in the persistent postural-perceptual dizziness (PPPD) 
group.

Seed 
region

Cluster 
coordinates 

(x, y, z)

Cluster 
size

Cluster 
regions

Cluster 
value 
of p 

(FWE)

Increased FC

PIVC_R −8 -62 -8 98
Lingual 

Gyrus_L

<0.001

Supracalcarine 

Cortex_R
−50 -40 + 50 77

Supramarginal 

Gyrus, 

posterior 

division_L

<0.01

Decreased FC

Postcentral 

Gyrus_R
+58–38 + 44 99

Supramarginal 

Gyrus, 

posterior 

division_R

<0.01

Cuneal 

Cortex _R
−62 -28 -2 119

Posterior 

Middle 

Temporal 

Gyrus_L

<0.001

FC, functional connectivity; PPPD, persistent postural-perceptual dizziness; FWE, family-
wise error; L, left; PIVC, parieto-insular vestibular cortex, R, right.
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The PPPD group had broader elliptical balance areas on 
posturography than the HC group under the eyes closed, eyes open 
on foam rubber, and eyes closed on foam rubber conditions. These 
posturography results are consistent with previous outcomes (13, 14), 
showing no significant differences under the eyes open condition 
compared with that in the HC group, but significantly poorer 
performance under challenging conditions such as the eyes closed or 
standing on foam rubber conditions. Therefore, postural stability, 
which is barely maintained under the eyes open condition, would 
be easily disrupted by mild stimulation in patients with PPPD.

Regarding the vestibular function, the comprehensive findings of 
the examination revealed no cases of obvious unilateral or bilateral 
vestibular dysfunction, consistent with previous reports (32, 33) that 
described a deficit of specific laboratory findings.

SSQ (total score) was significantly higher in the PPPD group, 
indicating that patients with PPPD were more likely to be affected by 
motion sickness symptoms by visual stimuli (Table  1). Vestibular 
symptoms in patients with PPPD were considered to be exacerbated 
by visual stimuli and symptoms such as nausea and disorientation also 
occurred in conjunction with the exacerbation.

In summary, although the number of participants in this study 
was relatively small; the demographic and clinical features of patients 
with PPPD, e.g., anxious/depressive, neurotic, unstable posture, 
almost normal canal function, and susceptibility to visual stimuli were 
consistent with those of previous studies.

4.2. Comparison of FCs between PPPD and 
HCs at rest

Regarding the visuo- and vestibulo-spatial cognitive processes, the 
right hemisphere may be the dominant hemisphere (34, 35). As shown 
in Figure 3 and Table 3, significant differences in FC with seeds of 
PIVC, aPaHC, and HC of the dominant hemisphere were observed 
between the HC and PPPD groups: FC between right PIVC and 
bilateral LGs, that between the right aPaHC and right inferior parietal 
lobule (pSMG/AG), and that between the right HC and left FP.

Significantly lower FC was found in the PPPD group than in the 
HC group between the right PIVC, vestibular cortex, and bilateral 
LGs, the visual areas (Figure  3; Table  3). This is consistent with 

FIGURE 5

Significantly modified functional connectivity under the post-stimulus condition in the healthy control group. Seed regions are shown in red, increased 
functional connectivity (FC) is indicated by yellow bars, and decreased FC is indicated by green bars. The color bar represents T scores. The [x, y, z] 
values indicate the Montreal Neurological Institute (MNI) coordinates. aPaHC, anterior parahippocampal gyrus; CC, calcarine cortex; FP, frontal pole; 
HC, healthy control; ICC, intracalcarine cortex;pSMG, posterior supramarginal gyrus; sLOC, superior division of lateral occipital cortex.

TABLE 5 Significantly modified functional connectivity (FC) in the post-stimulus condition in the healthy controls (HCs).

Seed region Cluster coordinates 
 (x, y, z)

Cluster size Cluster regions Cluster value of p 
(FWE)

Increased FC

Parahippocampal Gyrus, anterior 

division_R
+60–42 + 20 113

Supramarginal Gyrus, posterior 

division_R
<0.01

Cuneal Cortex_R +2 + 60 + 24 68 Frontal Pole_L 0.048

Decreased FC

Intracalcarine Cortex _R +30–68 + 16 134
Lateral Occipital Cortex, 

superior division_R
<0.01

FC, functional connectivity; HCs, healthy controls; FWE, family-wise error; L, left; R, right.
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previous reports where decreased FC was found between the 
vestibular cortex, represented by the posterior perisylvian regions, and 
visual areas such as the extrastriate areas when evaluating FC in 
patients with PPPD or predecessors of PPPD relative to HCs (36, 37). 
Moreover, in our study, a higher FC was observed between the PostCG 
of the left dominant side (38), a somatosensory cortex, and toMTG/

toITG of the right dominant side (39), upstream of the visual pathway 
(Figure 3; Table 3). Li et al. (40) also found a similar increase in FC 
between the post-central gyrus and the occipital pole visual network 
in PPPD. These findings suggest that vestibular inputs are not fully 
utilized in the vestibulo-visuo-somatosensory network, and the 
somatosensory and visual inputs would compensate for the vestibular 

FIGURE 6

Significantly modified functional connectivity under the post-stimulus condition in patients with persistent postural-perceptual dizziness relative to that 
of healthy control. Seed regions are shown in red, increased functional connectivity (FC) is indicated by yellow bars, and decreased FC is indicated by 
green bars. The color bar represents F scores. The [x, y, z] values indicate the Montreal Neurological Institute (MNI) coordinates. aPaHC, anterior 
parahippocampal gyrus; CC, calcarine cortex; ICC, intracalcarine cortex; MidFG, middle frontal gyrus; PostCG, post-central gyrus; PPPD, persistent 
postural-perceptual dizziness; pSMG/AG, posterior supramarginal gyrus/angular gyrus; SCC, supracalcarine cortex; toMTG/toITG, temporooccipital 
middle/inferior temporal gyrus.

TABLE 6 Significantly modified functional connectivity (FC) in the post-stimulus condition in persistent postural-perceptual dizziness (PPPD) relative to 
healthy controls (HCs).

Seed region Cluster coordinates  
(x, y, z)

Cluster size Cluster regions Cluster value of p 
(FWE)

Increased FC

Intracalcarine Cortex_R − 46 -46 + 46 96
Supramarginal Gyrus, posterior 

division_L
0.047

Supracalcaraine Cortex _R − 22 + 0 + 58 168 Middle Frontal Gyrus_L <0.01

Cuneal Cortex_R + 34 + 8 + 32 105 Middle Frontal Gyrus_R 0.026

Decreased FC

Postcentral Gyrus_L + 68– 48 – 10 118
Middle/Inferior Temporal Gyrus, 

temporooccipital part_R
0.017

Parahippocampal Gyrus, anterior 

division_R
+ 62–44 + 18 167

Supramarginal Gyrus, posterior 

division_R/Angular Gyrus_R
<0.01

Parahippocampal Gyrus, anterior 

division_L
+ 62– 46 + 14 111

Middle Temporal Gyrus, 

temporooccipital part_R/Angular 

Gyrus_R/Supramarginal Gyrus, 

posterior division_R

0.022

FC, functional connectivity; L, left; PPPD, persistent postural-perceptual dizziness; R, right; HCs, healthy control; FWE, family-wise error.
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inputs, leading to visually and somatosensory-dependent maintenance 
of spatial orientation in PPPD.

The PPPD group showed significantly higher FC between the 
right aPaHC and the right inferior parietal lobule (pSMG/AG) than 
the HC group (Figure 3; Table 3). The inferior parietal lobule including 
pSMG/AG is a spatial cognitive area that aggregates and integrates 
multiple types of sensory information and regulates the spatial 
interrelationship between the body and the external environment (41, 
42), while the aPaHC is involved in visuospatial processing (43). 
Therefore, visual inputs are more likely facilitated in patients with 
PPPD than in HCs to maintain spatial cognition.

FC between the right HC and the left FP was significantly higher 
in the PPPD group than in the HC group (Figure 3; Table 3). Since HC 
and FP are the central areas for spatial cognition and mood control, 
respectively, the facilitation of this FC would account for changes in 
mood, e.g., anxiety, induced by tasks that require the spatial cognitive 
processes in patients with PPPD.

FCs between the right PostCG and the left FP and that between 
the left PIVC and the left FP/PCG were significantly lower in the 
PPPD group than in the HC group under the pre-stimulus condition 
(Figure 3; Table 3). Although the finding was significant, the role of 
differences in FCs from these non-dominant seed regions (right 
PostCG and left PIVC) should be treated with caution.

4.3. Brain activity during visual stimulation 
in PPPD

Task-based fMRI demonstrated that there were no brain regions 
that showed significantly different activities between the HC and 
PPPD groups during all five visual stimulations (data not shown), 
suggesting that there was no difference in the visual processing in 
PPPD and HCs. Consistent with our results, Riccelli et al. (44) found 
no significant difference in brain activity between the HC and PPPD 
groups assessed by fMRI when presented with virtual-reality 
rollercoaster stimuli in the motion vs. static conditions, whereas when 
vertical vs. horizontal motion conditions were compared, they found 
greater activation in the third short insular gyrus and adjacent 
Rolandic operculum in the HC group than that in the PPPD group. 
Although some studies previously demonstrated visually activated/
inhibited areas in PPPD (45, 46), our results failed to reveal significant 
areas that were affected during visual stimuli relative to that in HCs. 
This could be attributed to the fact that although five types of visual 
stimuli were used in this study, the degree of symptom exacerbation 
by each stimulus would vary from patient to patient, and the diversity 
of symptoms within the disease group, which is also observed in real 
clinical practice, may have prevented the demonstration of the 
significant areas.

4.4. FCs in HCs and PPPD after visual 
stimulations

FC between the right aPaHC and right pSMG, which was higher 
in the PPPD group than in the HC group under the pre-stimulus 
condition (Figure  3; Table  3), increased under the post-stimulus 
condition in the HC group (Figure 5; Table 5). In contrast, this FC 
could no longer be increased under the post-stimulus condition in the 

PPPD group (Figure 4; Table 4); rather, it decreased relative to that in 
the HC group (Figure 6; Table 6), perhaps because this FC had already 
been elevated under the pre-stimulus condition in the PPPD group. 
An increase in this FC under the post-stimulus condition in the HC 
group suggests that visuospatial pathways were facilitated in the 
spatial cognitive processes even in HCs after visual stimulation. Given 
that the vestibular symptoms were never induced in the HC group 
during/after visual stimulation, enhancement of only this FC was not 
sufficient to account for visually dependent spatial orientation nor 
visual exacerbation of symptoms. Additional facilitation of FC 
between somatosensory (PostCG) and visual (toMTG/toITG; 
Figure 3; Table 3) areas to that between aPaHC and pSMG/AG might 
be responsible for the visual exacerbation in PPPD.

FCs from several seed regions of visual areas of the dominant 
side (47), e.g., right ICC/SCC/CC, increased under the post-
stimulus condition in the PPPD group compared with that in the 
HC group. FC between the right ICC and the left pSMG increased 
under the post-stimulus condition compared with that under the 
pre-stimulus condition in the PPPD group relative to the HC group 
(Figure 6; Table 6). Since ICC and pSMG were the centers for visual 
processing and spatial cognition, respectively, it is suggested that 
visuospatial pathways were facilitated in PPPD after visual 
stimulation. FC between the right SCC/CC and the left/right 
MidFG, the prefrontal responsible area for emotion and mood 
disorders (48, 49), also increased under the post-stimulus condition 
in the PPPD group relative to the HC group (Figure 6; Table 6). 
Popp et al. (45) and Passamonti et al. (50) also reported an increase 
in FC by visual stimulations between the visual and prefrontal areas 
in PPPD. All these results would account for the prolonged 
symptoms after a visual exacerbation and anxious status in patients 
with PPPD.

FC between the left PostCG and the right toMTG/toITG, which 
was higher in the PPPD group than in the HC group under the 
pre-stimulus condition (Figure 3; Table 3), significantly decreased 
under the post-stimulus condition in the PPPD group relative to the 
HC group (Figure 6; Table 6). Since changes of this FC were not 
observed in the HC group (Figure 5; Table 5), it is suggested that 
visual stimulation would weaken the somatosensory (postCG) to 
visual (toMTG/toITG) circuit of spatial orientation, which was 
heightened even at rest in patients with PPPD. In clinical settings, this 
may imply that the vestibular rehabilitation that promotes habituation 
to visual stimuli would effectively affect this point in the treatment 
of PPPD.

Significance of changes observed under the post-stimulus 
condition in the PPPD group, e.g., an increase in FC between the 
vestibular (PIVC) and visual (LG) areas and that between the visual 
(SCC) and spatial cognitive (pSMG) areas and a decrease in FC among 
the visual areas (CC and pMTG; Figure 4; Table 4), disappeared when 
analyzed relative to HCs (Figure 6; Table 6). Therefore, these data must 
be  interpreted carefully. FC between the left aPaHC and the right 
toMTG/AG/pSMG decreased under the post-stimulus condition in 
the PPPD group relative to the HC group (Figure 6; Table 6). FC 
between the right PostCG and the right pSMG also decreased under 
the post-stimulus condition compared with that under the 
pre-stimulus condition in the PPPD group. Although the results were 
significant, the role of differences in FCs from these non-dominant 
seed regions (left aPaHC and right PostCG) should be  treated 
with caution.
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4.5. Neural mechanisms underlying PPPD

Figure 7 summarizes the current results and possible neural 
mechanisms underlying PPPD. At rest, while FC between 
vestibular and visual cortices is low, that between somatosensory 
and visual cortices is high, suggesting that vestibular inputs are 
not fully utilized in the vestibulo-visuo-somatosensory network. 
A heightened FC between parahippocampal visuospatial and 
spatial cognitive areas of the inferior parietal lobe in combination 
with visually and somatosensory-dependent spatial orientation 
strategy would be  involved in the visual exacerbation in 
PPPD. An increase in FC from visual areas to spatial cognitive 
and prefrontal areas after visual stimuli may account for the 
prolonged symptoms after a visual exacerbation and anxious 
status in PPPD. Overall, the study presents the underlying neural 
mechanisms involved in PPPD and will promote better 
management of the patients.

4.6. Limitations

There are several limitations in this study. First, the psychological 
factors were not controlled due to the small sample size. Second, 
patients on antidepressants were included (51–53). Third, the 
possibility that brain regions other than the seed region used in this 
analysis may be  implicated in the pathogenesis of PPPD cannot 
be denied. Lastly, it was difficult to determine whether the FC changes 
observed in this study were a cause or a consequence. To better 
elucidate the pathogenesis of PPPD, it is necessary to interpret not 
only the results of fMRI studies but also combine them with the 
results of clinical tests, such as the sensory organization test, 
subjective visual vertical test, eye-tracking test, or spatial 
cognition test.

5. Conclusion

In PPPD, vestibular inputs may not be  fully utilized in the 
vestibulo-visuo-somatosensory network. The FC between 
visuospatial and spatial cognitive areas was increased even in HCs 
after visual stimuli. Hence, the elevated status of this FC in 
combination with the high FC between the somatosensory and 
visual areas would be  involved in the visual exacerbation in 
PPPD. An increase in FC from the visual areas to spatial cognitive 
and prefrontal areas after visual stimuli may account for the 
prolonged symptoms after a visual exacerbation and anxious status 
in PPPD.
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Characteristics of spontaneous 
nystagmus and its correlation to 
video head impulse test findings in 
vestibular neuritis
Xueqing Zhang 1,2,3,4,5, Qiaomei Deng 1,2,3,4,5, Yao Liu 1,2,3,4,5, 
Shanshan Li 1,2,3,4,5, Chao Wen 1,2,3,4,5, Qiang Liu 1,2,3,4,5, 
Xiaobang Huang 1,2,3,4,5, Wei Wang 1,2,3,4,5* and 
Taisheng Chen 1,2,3,4,5*
1 Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, 
China, 2 Institute of Otolaryngology of Tianjin, Tianjin, China, 3 Key Laboratory of Auditory Speech and 
Balance Medicine, Tianjin, China, 4 Key Medical Discipline of Tianjin (Otolaryngology), Tianjin, China, 
5 Quality Control Centre of Otolaryngology, Tianjin, China

Objective: To explore the direction and SPV (slow phase velocity) of the 
components of spontaneous nystagmus (SN) in patients with vestibular neuritis 
(VN) and the correlation between SN components and affected semicircular 
canals (SCCs). Additionally, we aimed to elucidate the role of directional features 
of peripheral SN in diagnosing acute vestibular syndrome.

Materials and methods: A retrospective analysis was conducted on 38 patients 
diagnosed with VN in our hospital between 2022 and 2023. The direction and 
SPV of SN components recorded with three-dimensional videonystagmography 
(3D-VNG) and the video head impulse test (vHIT) gain of each SCC were analyzed 
as observational indicators. We examined the correlation between superior and 
inferior vestibular nerve damage and the direction and SPV of SN components, 
and vHIT gain values in VN patients.

Results: The median illness duration of between symptom onset and moment 
of testing was 6  days among the 38 VN patients (17 right VN and 21 left VN). In 
total, 31 patients had superior vestibular neuritis (SVN), and 7 had total vestibular 
neuritis (TVN). Among the 38 VN patients, all had horizontal component with 
an SPV of (7.66  ±  5.37) °/s, 25 (65.8%) had vertical upward component with a 
SPV of (2.64  ±  1.63) °/s, and 26 (68.4%) had torsional component with a SPV of 
(4.40  ±  3.12) °/s. The vHIT results in the 38 VN patients showed that the angular 
vestibulo-ocular reflex (aVOR) gain of the anterior (A), lateral (L), and posterior 
(P) SCCs on the ipsilesional side were 0.60  ±  0.23, 0.44  ±  0.15 and 0.89  ±  0.19, 
respectively, while the gains on the opposite side were 0.95  ±  0.14, 0.91  ±  0.08, 
and 0.96  ±  0.11, respectively. There was a statistically significant difference in the 
aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs 
(p  <  0.001). The aVOR gains of A-, L-, and P-SCC on the ipsilesional sides in 31 
SVN patients were 0.62  ±  0.24, 0.45  ±  0.16, and 0.96  ±  0.10, while the aVOR gains 
on the opposite side were 0.96  ±  0.13, 0.91  ±  0.06, and 0.98  ±  0.11, respectively. 
There was a statistically significant difference in the aVOR gain between the A-, 
L-SCC on the ipsilesional side and the other SCCs (p  <  0.001). In 7 TVN patients, 
the aVOR gains of A-, L-, and P-SCC on the ipsilesional side were 0.50  ±  0.14, 
0.38  ±  0.06, and 0.53  ±  0.07, while the aVOR gains on the opposite side were 
0.93  ±  0.17, 0.90  ±  0.16, and 0.89  ±  0.09, respectively. There was a statistically 
significant difference in the aVOR gain between the A-, L-, and P-SCC on the 
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ipsilesional side and the other SCCs (p  <  0.001). The aVOR gain asymmetry 
of L-SCCs in 38 VN was 36.3%. The aVOR gain asymmetry between bilateral 
A-SCCs and bilateral P-SCCs for VN patients with and without a vertical upward 
component was 12.8% and 8.3%, which was statistically significant (p  <  0.05). For 
VN patients with and without a torsional component, the aVOR gain asymmetry 
of bilateral vertical SCCs was 17.0% and 6.6%, which was statistically significant 
(p  <  0.01). Further analysis revealed a significant positive correlation between the 
aVOR gain asymmetry of L-SCCs and the SPV of the horizontal component of 
SN in all VN patients (r  =  0.484, p  <  0.01), as well as between the asymmetry of 
bilateral vertical SCCs and the SPV of torsional component in 26 VN patients 
(r  =  0.445, p  <  0.05). However, there was no significant correlation between the 
aVOR gains asymmetry of bilateral A-SCCs and P-SCCs and the SPV of the vertical 
component in 25 VN patients.

Conclusion: There is a correlation between the three-dimensional direction 
and SPV characteristics of SN and the aVOR gain of vHIT in VN patients. These 
direction characteristics can help assess different SCCs impairments in patients 
with unilateral vestibular diseases.

KEYWORDS

spontaneous nystagmus, vHIT, vestibular neuritis, semicircular canals, nystagmus 
direction

1. Introduction

Spontaneous nystagmus (SN) is a common clinical sign of 
peripheral vestibular disorders. SN is typically horizontal or 
horizontal-torsional, direction-fixed, and enhanced by removing 
visual fixation, and its SPV follows Alexander’s law (Liu et al., 2017). 
It is an objective indicator of asymmetric static tension in the 
bilateral vestibular system (Liu et  al., 2017). Vestibular neuritis 
(VN) is a vestibular syndrome caused by acute unilateral 
vestibulopathy and is the second leading cause of peripheral 
vestibular vertigo: with the first being benign paroxysmal 
positioning vertigo (BPPV) (Le et al., 2019). There is unambiguous 
evidence of reduced aVOR function on the side opposite to the 
direction of the fast phase of the SN in VN (Aw et al., 2001; Baier 
et  al., 2008; Bachmann et  al., 2018). Unidirectional horizontal-
torsional SN beats to the healthy side, and the SPV weakens with 
the establishment of vestibular compensation (Lacour et al., 2016). 
In 1996, Fetter and Dichgans (1996) studied the three-dimensional 
(3D) properties of aVOR in 16 VN patients using 3D magnetic 
search coil eye movement recording and quantified the dynamic 
asymmetries. A large body of research has shown that VN is not a 
complete unilateral vestibular lesion; instead, it most commonly 
affects only the upper branch of the vestibular nerve innervating the 
anterior (A)-semicircular canal (SCC), L-SCC, the utricle, and their 
afferents (Sando et  al., 1972; Buki and Ward, 2021). Therefore, 
patients with unilateral VN show significantly reduced aVOR gain 
values of A- and L-SCCs on the ipsilesional side and present with 
covert or overt saccades (Psillas et al., 2022). This study aimed to 
investigate impairments in SCCs and explore the relationship 
between the direction characteristics of SN and various SCCs 
impairments. This was achieved by analyzing the 3D direction and 
SPV of SN in patients with unilateral VN and combining them with 
the aVOR gain and aVOR gain asymmetry in vHIT. This study’s 

findings will assist in further evaluating different SCCs impairments 
in patients with unilateral vestibular diseases.

2. Materials and methods

2.1. Participants

This retrospective study involved the assessment of 38 patients 
with unilateral VN or acute unilateral vestibulopathy (AUVP) 
patients, examined at the Ear, Nose, and Throat (ENT) Department of 
MY Hospital, Tianjin First Central Hospital between 2022 and 2023. 
Of 38 patients, 31 had superior vestibular neuritis (SVN), and seven 
had total vestibular neuritis (TVN). All the subjects provided 
informed consent to be included in the study. The study procedures 
were approved by the Ethics Committee of Tianjin First 
Central Hospital.

We included patients diagnosed with AUVP or VN according to 
the multidisciplinary experts’ consensus on vestibular neuritis 
(Professional Committee on Vertigo, 2020) and the diagnostic criteria 
of AUVP or VN (Strupp et al., 2022).

We exclude patients with unclear diagnoses or diagnostic 
controversies. Additionally, we excluded patients with coexistence of 
other diseases, such as BPPV, Meniere disease, sudden deafness with 
vertigo, Ramsay Hunt syndrome, labyrinthitis, as well as head trauma, 
vestibular migraine, stroke, and other central vestibular vertigo and 
balance disorders.

2.2. Study procedure

We obtained a detailed medical history of the onset of symptoms 
and their severity, illness duration, and associated factors. VN and 
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AUVP were diagnosed with the results of SN, vHIT, and caloric test. 
The lesion side, superior or inferior vestibular nerve damage, and 
associated SCCs were determined. SN, vHIT, caloric test, and 
corresponding parameters were observed and recorded using 
3D-VNG (VertiGoggles-M, ZEHNIT Medical Technology-VNG-II, 
Shanghai, China).

The VOR gain of vHIT is the ratio of eye velocity to head velocity, 
with a normal values range of 0.8–1.2 for L-SCCs and 0.7–1.2 for 
vertical SCCs. Unilateral weakness (UW) ≥25% and directional 
preponderance (DP) ≥30% indicate an abnormal caloric test.

2.3. Analysis

The main measures in vHIT are the aVOR gain, aVOR gain 
asymmetry, and the presence or absence of compensatory saccades. 
The aVOR gain assesses the function of the SCCs and their 
corresponding nerves on both sides. The aVOR gain asymmetry is a 
good sensitivity and specificity test for the early diagnosis of VN 
associated with acute vertigo. We analyzed the 3D direction and SPV 
(slow phase velocity) of SN and the aVOR gain of vHIT in patients 
with unilateral VN. The horizontal component of SN is caused by the 
imbalance of aVOR in the bilateral L-SCCs, while the vertical and 
torsional components are the comprehensive vectors of bilateral A- 
and P-SCCs effects.

The formula for calculating the aVOR gain asymmetry of vHIT is 
as follows:

 1) The aVOR gain asymmetry of L-SCCs:

 
| |L L L Lipsilesional opposite ipsilesional opposite−( ) +( ) ∗/ %100

 2) The aVOR gain asymmetry between bilateral A-SCCs and 
bilateral P-SCCs:

 

| A A P P

A

ipsilesional opposite ipsilesional opposite+( ) − +( ) 
/ iipsilesional opposite ipsilesional oppositeA P P+ + +  ∗| 100%

 3) The aVOR gains asymmetry of bilateral vertical SCCs:

 

| A P A P

A

ipsilesional ipsilesional opposite opposite+( ) − +( ) 
/ iipsilesional ipsilesional opposite oppositeP A P+ + +  ∗| 100%

IBM SPSS Statistics 22 (IBM SPSS, Turkey) and JASP 0.16.3 (JASP, 
Netherlands) were used for statistical analyses. The quantitative data 
are presented as mean ± SD values and plotted using GraphPad Prism 
version 5 (GraphPad, San Diego, CA, United States). The strength of 

correlation (r) was calculated, and a p-value <0.05 was considered 
statistically significant.

3. Results

3.1. General demographic characteristics of 
subjects

The ages of the 38 patients with VN (26 male and 12 female) 
ranged from 18–68 years (mean 42.21). Seventeen of the 38 patients 
had right-VN (13 male and 4 female) and their ages ranged from 
20–62 years (mean 42.76), while 21 patients had left-VN (13 male 
and 8 female) with age ranges from 18–68 years (mean 41.76). Thirty 
one patients had superior-VN (22 male and 9 female), and their ages 
ranged from 18–68 years (mean 40.68); 7 patients had total-VN (4 
male and 3 female) with ages ranging from 43–62 years (mean 
49.00). Demographic data for VN are shown in Table 1. There were 
no significant differences in age or sex ratio between groups 
(p > 0.05). All VN patients had a median illness duration of between 
symptom onset and moment of testing of 6 days. And the illness 
duration was negatively correlated with the horizontal and torsional 
components, respectively, but not with the vertical components 
(Figures 1A–C).

3.2. Direction and SPV of spontaneous 
nystagmus of VN

The 3D direction and SPV of SN in the 38 VN patients were 
recorded and analyzed. The direction of the horizontal component 
was toward the opposite side, and the SPV was 7.66 ± 5.37°/s. About 
65.7% (25/38) of the patients had a vertical upward component with 
a SPV of 2.64 ± 1.63°/s, and 68.4% (26/38) had a torsional component 
with a SPV of 4.40 ± 3.12°/s. Among the 17 RVN patients, all cases had 
a left horizontal component with a SPV of 11.30 ± 5.42°/s, 12 cases had 
a vertical upward component with a SPV of 3.47 ± 1.78°/s, and 13 
cases had a torsional component with the direction of upper pole of 
the eye beating toward the right ear (from patients’ perspective) with 
a SPV of 5.46 ± 3.72°/s. Among the 21 LVN cases, 21 had a right 
horizontal component with a SPV of 4.70 ± 3.05°/s, 13 cases had a 
vertical upward component with a SPV of 1.87 ± 1.02°/s, and 13 cases 
had a torsional component with the direction of upper pole of the eye 
beating toward the left ear (from patients’ perspective) with a SPV of 
3.35 ± 2.01°/s. Of the 31 SVN patients, the SPV of the horizontal 
component was 7.38 ± 5.49°/s, 23 cases had a vertical upward 
component with a SPV of 2.64 ± 1.67°/s, and 19 cases had a torsional 
component with a SPV of 4.41 ± 3.19°/s. In the 7 TVN patients, all 
cases had a horizontal and torsional components with SPV of 

TABLE 1 Demographic features of subjects in the vestibular neuritis groups.

Group feature R-VN L-VN SVN TVN VN

Number 17 21 31 7 38

Age (years)* 42.76 ± 13.25 41.76 ± 14.11 40.68 ± 14.05 49.00 ± 8.93 42.21 ± 13.55

Sex (M:F)* 13:4 13:8 22:9 4:3 26:12

VN, vestibular neuritis; RVN, right VN; LVN, left VN; SVN, superior VN; TVN, total VN; M, male; F, female; *p > 0.05.
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8.87 ± 4.98°/s and 5.54 ± 2.61°/s respectively, and 2 case had vertical 
component with SPV of 2.50 ± 1.41°/s (Table 2).

3.3. Characteristics of vHIT and caloric test 
in VN

The aVOR gain and aVOR gain asymmetry of vHIT were analyzed 
in all 38 VN cases. The aVOR gains of the A-, L- and P-SCCs on the 
ipsilesional side were 0.60 ± 0.23, 0.44 ± 0.15, 0.89 ± 0.19, and those on the 
opposite side were 0.95 ± 0.14, 0.91 ± 0.08, 0.96 ± 0.11, respectively. There 
were significant differences between the gains of the A- and L-SCCs on 
the ipsilesional side and those of the other SCCs (p < 0.001). In the 17 
RVN patients, the gains of A-, L-, and P-SCCs on the right side were 
0.51 ± 0.21, 0.35 ± 0.11, and 0.85 ± 0.21, and those on the left side were 
0.99 ± 0.12, 0.94 ± 0.08, and 0.89 ± 0.09, respectively. There were significant 
differences between the gains of the A- and L-SCCs on the right side and 
those of the other SCCs (p < 0.001). In the 21 LVN patients, the gains of 
A-, L-, and P-SCCs on the right side were 0.92 ± 0.14, 0.88 ± 0.07, and 
1.02 ± 0.10, and those on the left side were 0.67 ± 0.22, 0.51 ± 0.15, and 
0.91 ± 0.17, respectively. There were significant differences between the 
gains of the A- and L-SCCs on the left side and those of the other SCCs 
(p < 0.001). In the 31 SVN patients, the gains of A-, L-, and P-SCCs on the 

ipsilesional side were 0.62 ± 0.24, 0.45 ± 0.16, 0.96 ± 0.10, and those on the 
opposite were 0.96 ± 0.13, 0.91 ± 0.06, and 0.98 ± 0.11, respectively. There 
were significant differences between the gains of the A- and L-SCCs on 
the ipsilesional side and those of the other SCCs (p < 0.001). Among the 7 
TVN patients, the gains of A-, L-, and P-SCCs on the ipsilesional side were 
0.50 ± 0.14, 0.38 ± 0.06, and 0.53 ± 0.07, and those on the opposite were 
0.93 ± 0.17, 0.90 ± 0.16, and 0.89 ± 0.09, respectively. There were significant 
differences between the gains of the A-, L-, and P-SCCs on the ipsilesional 
side and those of the other SCCs (p < 0.001) (Figure 2).

The caloric test showed decreased aVOR function of L-SCCs on 
the ipsilesional side at low frequency (0.003 Hz) in all the VN patients 
and DP to the opposite side (UW = 58.51 ± 22.89 > 25, 
DP = 83.37 ± 25.65 > 30). The UW and DP were (47.60 ± 20.69) and 
(89.00 ± 27.11) in the 17 RVN patients and were (66.70 ± 22.02) and 
(79.15 ± 25.04) in the 21 LVN patients, respectively, consistent with 
previous research results (Molnar et al., 2023).

3.4. Correlation between SN and vHIT gain 
in VN

All patients with VN had SN directed toward the opposite side 
(Figure 3). We analyzed the aVOR gain asymmetry of different SCCs 

FIGURE 1

Correlation between the illness duration and the SPV of SN components in VN patients, and correlation between the SPV of SN components and aVOR 
gain asymmetry of vHIT in VN patients. (A) The correlation between the illness duration and the SPV of the horizontal component among all the VN 
patients. (B) The correlation between the illness duration and the SPV of the vertical component among 25 VN patients. (C) The correlation between 
the illness duration and the SPV of a torsional component among 26 VN patients. Illness duration means the time between symptom onset and 
moment of testing. The illness duration was negatively correlated with the horizontal and torsional components, respectively, but not with the vertical 
components. (D) The correlation between the aVOR gain asymmetry of L-SCCs and the SPV of the horizontal component among all the VN patients. 
(E) The correlation between the aVOR gain asymmetry of bilateral A- and P-SCCs and the SPV of the vertical component among 25 VN patients. 
(F) The correlation between the aVOR gain asymmetry of bilateral vertical SCCs and the SPV of a torsional component among 26 VN patients. R2 
represents the goodness of fit, and p  <  0.05 indicates a significant correlation between aVOR gain asymmetry and the SPV of SN components.
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in vHIT. The aVOR gain asymmetry of L-SCCs in 38 VN was 36.3%. 
For VN patients with a vertical upward component (65.8%, 25/38), the 
aVOR gain asymmetry between bilateral A-SCCs and bilateral P-SCCs 
was 12.8%, while the asymmetry for those without a vertical 
component was 8.3%, and these differences were statistically 
significant (p < 0.05). For VN patients with a torsional component 
(68.4%, 26/38), the aVOR gain asymmetry of bilateral vertical SCCs 
was 17.0%, while the asymmetry for those without a vertical 
component was 6.6%, and these differences were statistically 
significant (p < 0.01).

We further analyzed the correlation between the aVOR gain 
asymmetry of SCCs in vHIT and the SPV of 3D components of SN in 
VN patients (Figures  1D–F). There was a significant positive 
correlation between the aVOR gain asymmetry of L-SCCs and the 
SPV of the horizontal component among all the VN patients (r = 0.484, 
p < 0.01), as well as the asymmetry of bilateral vertical SCCs and the 
SPV of torsional component in 26 VN patients (r = 0.445, p < 0.05). 
However, no significant correlations were found in asymmetry of 

bilateral A- and P-SCCs and the SPV of vertical component among 25 
VN patients.

4. Discussion

Spontaneous nystagmus (SN)—present in a static state with the 
head upright and looking straight forward without any inducing 
condition—is common in acute unilateral vestibular dysfunction, 
which is spontaneous, unilateral and caused by asymmetric hypo-
function of the angular vestibulo-ocular reflex (aVOR) (Wenyu 
et  al., 2017; Ling et  al., 2023). In the diagnosis, treatment, and 
rehabilitation of vestibular diseases, SN has the following clinical 
significance as a routine physical examination indication: (1) it 
identifies a central or peripheral disease based on the fixation 
inhibition test and changes in the direction and SPV of nystagmus 
during left and right fixation (Alexander’s law); (2) it indicates the 
side of the peripheral vestibular lesion. The direction of the SN 

FIGURE 2

The aVOR gain of vHIT in vestibular neuritis patients. VN, vestibular neuritis; RVN, right VN; LVN, left VN; SVN, superior VN; TVN, total VN; A, anterior; L, 
lateral; P, posterior; red, the right semicircular canals; blue, left semicircular canals.

TABLE 2 The direction and SPV of spontaneous nystagmus in 38 VN patients.

Comp. Direction and 
SPV

Direction R-VN (17 
cases)

L-VN (21 
cases)

SVN (31cases) TVN (7 
cases)

VN (38 
cases)

H
Direction

Left 17 0 13 4 17

Right 0 21 18 3 21

/ 0 0 0 0 0

SPV (°/s) 11.30 ± 5.42 4.70 ± 3.05 7.38 ± 5.49 8.87 ± 4.98 7.66 ± 5.37

V
Direction

Upward 12 13 23 2 25

Downward 0 0 0 0 0

/ 5 8 8 5 13

SPV (°/s) 3.47 ± 1.78 1.87 ± 1.02 2.64 ± 1.67 2.50 ± 1.41 2.64 ± 1.63

T
Direction

Right 13 0 9 4 13

Left 0 13 10 3 13

/ 4 8 12 0 12

SPV (°/s) 5.46 ± 3.72 3.35 ± 2.01 4.41 ± 3.19 5.54 ± 2.61 4.40 ± 3.12

Comp., component; H, horizontal component; V, vertical component; T, torsional component; left/right, upward/downward, right/left (upper pole of the eye beating toward the right/left ear 
from patients’ perspective), the direction of a component; /, no nystagmus.
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points toward the higher tension side of the bilateral vestibule, 
which is usually the healthy side. For example, a right SN indicates 
a left peripheral vestibular lesion; (3) it evaluates the status of 
compensation. Patients with SN often indicate that vestibular static 
compensation has not been established; (4) it affects other vestibular 
examination results. SN of a certain SPV often affects the results of 
visual eye movement tests and caloric tests (Liu et al., 2017; Xie 
et al., 2021); (5) based on the theory of vestibular frequency, SN is 
a common sign of vestibular lesion at various frequencies (Deng 
et al., 2023); and (6) it traces the lesion of SCCs. Vestibular SN is a 
sign of SCCs pathway damage, but its relationship with SCCs 
lesions is not fully understood.

Ewald’s law, derived from animal experiments, reveals the 
physiological effects of endolymph flowing in a single SCC, 
including the plane, direction, and SPV of nystagmus. One of its 
main connotations is that the direction of nystagmus is the same 
as the plane of the stimulated SCCs. The law helps in 
understanding the physiological and pathological characteristics 
of human SCCs. Nystagmus induced by unilateral L-SCC 
stimulation was mainly the horizontal component accompanied 
by a weak vertical upward component. By contrast, nystagmus 
induced by unilateral P-SCC stimulation was chiefly vertical, 
upward, and torsional, accompanied by a weak horizontal 
component. Meanwhile, nystagmus induced by unilateral A-SCC 
stimulation was vertical, downward, and torsional nystagmus 
(Eggers et al., 2019). The nystagmus induced by BPPV follows the 
physiological effects of endolymph flowing in a single 
SCC. Previous studies have shown that the characteristics of 

nystagmus in horizontal semicircular canal canalolithiasis (HSC-
Can) (Zhang et al., 2021, 2022) and posterior semicircular canal 
canalolithiasis (PSC-Can) (Liu et al., 2022) align with Ewald’s law 
and can be used as excellent physiological stimulation model of 
SCCs in humans.

However, peripheral vestibular diseases represented by VN in 
clinical often involve two or more SCCs pathways, resulting in a 
combined vector feature of multiple SCCs effects in the direction of 
SN. This interplay makes it challenging for clinicians to observe and 
understand SN and its intrinsic pathology. 3D-VNG technology can 
help analyze the combined vector features of SN. According to 
Ewald’s law, analyzing the characteristics of SN components using 
3D-VNG technology and tracing the damage to the affected SCCs 
pathway is a new perspective for the clinical diagnosis of vestibular 
disease. Our study focuses on patients with a confirmed diagnosis 
of VN or AUVP and combines vHIT with 3D-VNG technology to 
explore the 3D characteristics of nystagmus after different SCCs 
aVOR injuries.

VN is a unilateral vestibular lesion mainly affecting the superior 
division of the vestibular nerve (Chang et  al., 2022; Paris et  al., 
2022)—injuries to both the superior and inferior vestibular nerves 
are rare, whereas the inferior vestibular nerve is most often spared 
(Lee et al., 2019). Studies have shown that SN in SVN is horizontal, 
vertical, and torsional, whereby L-SCC afferent nerve dysfunction 
leads to the horizontal component, while A-SCC afferent nerve 
dysfunction leads to the torsional and weak vertical upward 
components (Fetter and Dichgans, 1996; Yagi et al., 2010). In the 
current study, the results of the vHIT and the caloric test 

FIGURE 3

The SN and vHIT in SVN and TVN patients. (A) The SN of a SVN patient. Left horizontal (black), upward vertical (gray), and torsional (yellow) 
components. Nystagmus decreased after fixation. (B) vHIT of a SVN patient. Low aVOR gain in the A- and L-SCC on the right side with overt and covert 
saccades, and normal gain and no saccade in other SCCs. (C) The SN of a TVN patient. Left horizontal (black), no vertical (gray), and torsional (yellow) 
components. Nystagmus decreased after fixation. (D) vHIT of a TVN patient. Low aVOR gains in both the A-, L- and P-SCCs on the right side, 
accompanied by overt and covert saccades, and normal gain and no saccade in Left SCCs.
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demonstrated that the superior vestibular nerve was affected in 31 of 
the 38 VN patients, while both the superior and inferior vestibular 
nerves were affected in 7 of the 38 patients. The median illness 
duration of between symptom onset and moment of testing was 
6 days. Static compensation had not yet been established, and SN was 
present in all patients. And the illness duration was negatively 
correlated with the horizontal and torsional components, respectively, 
but not with the vertical components (Figures 1A–C). All 38 VN 
patients in this study had a horizontal component toward the 
opposite side, 65.8% (25/38) had a vertical upward component, 68.4% 
(26/38) had a torsional component, and no patient had a vertical 
downward component. The results of vHIT showed significantly 
reduced aVOR gain values on the ipsilesional L-SCC with normal 
aVOR gain in the opposite L-SCC, and the asymmetry of L-SCCs was 
36.3%. For VN patients with a vertical upward component, the aVOR 
gain asymmetry between bilateral A-SCCs and bilateral P-SCCs was 
12.8%, while the asymmetry was 8.3% for those without a vertical 
component, and these differences were statistically significant 
(p < 0.05). And for VN patients with a torsional component, the 
aVOR gains asymmetry of bilateral vertical SCCs was 17.0%, while 
the asymmetry was 6.6% for those without a vertical component, and 
these differences were statistically significant (p < 0.01).

Further analysis of the correlation between the aVOR gain 
asymmetry and the SPV of SN components revealed a significant 
positive correlation between the aVOR gain asymmetry of L-SCCs 
and the SPV of horizontal component among the 38 VN patients 
(r = 0.484, p < 0.01), as well as between the asymmetry of bilateral 
vertical SCCs (analysis in Materials and methods) and the SPV of 
torsional component in 26 VN patients (r = 0.445, p < 0.05), while 
there was no significant correlations in asymmetry of bilateral A- and 
P-SCCs and the SPV of vertical component. However, no effective 
correlation analysis could be conducted due to the small sample size. 
Additionally, the intensities of SN components induced by the A- and 
P-SCCs were 30% and 10% of that of the L-SCCs, respectively (Aw 
et al., 1998): the vertical components have low weights in nystagmus 
such that weak nystagmus values cannot show a significant correlation 
with vHIT gain.

In this study, patients with SVN had significantly lower vHIT 
gains of the A- and L-SCCs on the ipsilesional side than other SCCs. 
The aVOR of the L-SCC on the ipsilesional side was lower than that 
on the opposite side, and the aVOR of the A-SCC on the ipsilesional 
side was lower than that of the other vertical SCCs. The direction 
characteristics of SN included a horizontal component toward the 
opposite side, a vertical upward component, and a torsional 
component (upper pole of the eye beating toward the right ear in RVN 
and upper pole of the eye beating toward the left ear in LVN). In 
patients with TVN, the vertical components of the A- and P-SCCs 
cancel or partially cancel each other, while the torsional components 
are added up with a stronger SPV than that of SVN (Table 2), so that 
the SN appears as a horizontal-torsional component. Patients with 
IVN were not involved in this study. According to the results of this 
study and Ewald’s law, the afferent nerve of the affected P-SCC is 
dysfunctional, the aVOR of the affected P-SCC is lower than that of 
other vertical SCCs, and the direction of SN is a vertical downward 
with torsional component (upper pole of the eye beating toward the 
right ear in RVN and upper pole of the eye beating toward the left ear 
in LVN).

Among the VN patients included in this study, the superior 
vestibular nerve was affected in 31, while both the superior and 
inferior vestibular nerves were affected in 7. The number of cases 
was relatively small, and there was a lack of patients with a 
dysfunctional inferior vestibular nerve. It is impossible to describe 
and analyze the SN characteristics of a single P-SCC lesion. 
Therefore, the SN characteristics of a single P-SCC lesion and its 
correlation with VHIT gain need further study. In addition, the lack 
of VEMPs results makes it impossible to evaluate the impact of 
otolith damage on SN in VN patients. In contrast to vHIT and 
caloric testing, VEMPs are much less relevant for the diagnosis of 
VN/AUVP (Fife et al., 2017; Strupp et al., 2022), while it is necessary 
to improve the evaluation of otolith damage on SN in VN patients 
in the future.

In conclusion, we  analyzed the correlation between the 
direction and SPV of SN components and vHIT gain. The results 
showed that the SPV of the SN horizontal components and torsional 
components in VN patients were positively correlated with the 
aVOR gain asymmetry of vHIT, and the direction of SN 
corresponded to the plane of the excitable SCCs. There is a 
horizontal-vertical upward-torsional nystagmus in SVN, while 
horizontal nystagmus with a strong torsional component is found 
with no vertical component in TVN (upper pole of the eye beating 
toward the right ear in RVN, upper pole of the eye beating toward 
the left ear in LVN). Combining Ewald’s law and observing the 3D 
direction of SN in patients with VN/AUVP, it is of great clinical 
significance to locate the damaged SCCs and trace the target of the 
lesion. This study provides an objective basis for investigating the 
relationship between the SN direction and SCC lesions. It also 
clarifies the significance of the directional characteristics of 
vestibular peripheral SN components in diagnosing acute vestibular 
syndrome through medical history and examination.
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Case report: MRI changes of the 
inner ear in an MD patient with 
suspected immune dysfunction
Yurun Chen 1, Pengfei Zhao 2, Xin Ma 1, Tongxiang Diao 1* and 
Lisheng Yu 1*
1 Department of Otolaryngology, Head and Neck Surgery, People’s Hospital, Peking University, Beijing, 
China, 2 Beijing Friendship Hospital, Capital Medical University, Beijing, China

Objectives: The primary objective of this study was to present the progressive 
changes from labyrinthitis to endolymphatic hydrops (EH) demonstrated in the 
inner ear MRI of a patient with MD and suspected immune dysfunction.

Patient: This 31-year-old male was diagnosed with MD and suspected 
autoimmune diseases.

Interventions: Immunosuppressants and biological agents.

Main outcomes measures: Inner ear MRI images.

Results: Changes in the patient’s progress revealed that inner ear immune and 
inflammatory changes might induce EH, which may eventually turn into MD.

Conclusion: This case is the first documented case of MRI revealing progressive 
changes from inflammatory response to endolymphatic hydrops in the inner 
ear. It shows the correlation between MD and inflammation visually. It is of great 
significance to reveal the pathogenesis of MD to further assist in the guidance of 
treatment decision making.

KEYWORDS

Meniere’s disease, immune and inflammatory responses, endolymphatic hydrops, MRI, 
pathophysiology

1. Introduction

Meniere’s disease was first proposed by Prosper Menière in 1861 and is characterized by 
recurring spontaneous vertigo, fluctuating hearing loss, tinnitus, and aural fullness. The 
prevalence of MD is approximately 34–190 per 100,000 (1). Not all patients with MD showed 
every typical symptom at the early stage of onset. Approximately 50% of patients with MD 
sustained vertigo and hearing loss, 19% suffered only vertigo, and 26% presented only hearing 
loss (2). In this case, the patient first developed vertigo before the onset of fluctuating hearing 
loss, tinnitus, and aural fullness.

Studies have shown that the occurrence of Meniere’s disease (MD) may be  related to 
inflammation and immune dysfunction. In fact, as early as 1916, Wittmacck et al. proposed that 
some dizziness and imbalance diseases might be caused by infection based on temporal bone 
anatomy (3). Previous studies by our team have shown that MD patients are often associated 
with poorer mastoid pneumatization, which suggests that factors such as long-term drainage 
disorders and repeated inflammatory stimulation caused by anatomical variations may play an 
important role in the occurrence and development of MD (4).
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Approximately one-third of patients with MD are accompanied 
with immune dysfunction (5). In 1986, Brooks et al. found that 54% 
of patients with MD had increased levels of immune complexes in 
their circulating blood. Several studies have described MD associated 
with autoimmune diseases such as rheumatoid arthritis, systemic 
lupus erythematosus, or psoriasis (6). Alleman et al. believed that this 
confirmed increase was caused by a local immune response in the 
endolymphatic sac, which originates from infection or allergy rather 
than from autoimmunity.

However, there remains a lack of direct evidence for the 
underlying pathophysiological mechanism of MD induced by immune 
and inflammatory responses. The changes of the inner ear 
demonstrated by MRI of the patient in this case intuitively 
demonstrated the progressive changes from labyrinthitis to 
endolymphatic hydrops (EH), which is of important clinical 
significance for not only validating the relationship between immune 
inflammatory response and MD, but also for providing a new 
direction to reveal the pathophysiology of MD and guiding its 
diagnosis and treatment.

2. Case report

A 31-year-old male presented to a physician with repeated 
episodes of rotational vertigo that lasted for a number of hours over 
the past 4 years (2017-09). He also reported nausea and vomiting 
with no tinnitus or hearing loss during the attack. Three years ago 
(2018-06), the patient started to experience left sided fluctuating 
tinnitus and sensorineural hearing loss (Table 1), accompanied by 
vertigo and aural fullness. He suffered attacks two or three times a 
week, lasting from 15 min to 2 h each. His past medical history 
was  unremarkable, with no family history of dizziness or 
autoimmune disease.

There was no obvious abnormality in the video head impulse test 
(vHIT), while the caloric test showed left horizontal semicircular canal 
paresis (CP = 79%). This discrepancy indicates semicircular canal 
functions at normal head movement frequency and velocity ranges, 
but disfunctions at low frequency. No obvious abnormality was found 
in the electrocochleogram. No frequency of the left ear was elicited by 
distortion product otoacoustic emissions (DPOAE). Furthermore, 
ocular vestibular evoked myogenic potential (oVEMP) showed 
prolonged latency and low amplitude on the left-sided ear. Moreover, 
a lower amplitude on the left side was observed by cervical vestibular 
evoked myogenic potential (cVEMP).

The vHIT test is less sensitive for the detection of semicircular 
canal hypofunction than the caloric test (7). Considering all of the 
above, this patient was diagnosed with MD (1). Because the patient 
was less sensitive to vasodilators, flunarizine, and betahistine mesylate, 
but more sensitive to hormones, the immunologists believed that 
autoimmune diseases should be  taken into consideration. After 
receiving immunosuppressants and biological agents, including 
tacrolimus, interleukin-2, cyclosporine, Rituxan, and Tocilizumab 
injections since March 2019, the patient reported that vertigo occurred 
less frequently. During the course of treatment, the immunologists 
attempted to reduce the dose of prednisone twice (2019-03, 2019-10). 

However, after the reduction, the patient experienced vertigo similar 
to before the therapy. Thereafter, methylprednisolone and prednisone 
were used alternately up until now. After receiving glucocorticoids and 
immunosuppressant therapy, the patient was relieved from vertigo 
and stopped losing hearing.

The patient underwent inner ear MRI every 6 months since onset; 
all examinations were performed using the same apparatus. In March 
2019, the left vestibular signal was higher than that in the contralateral 
in both T1WI (A1) and 3DT2FLAIR sequences, whereas it was lower 
in the water imaging sequence (A2), indicating a disruption of the 
blood labyrinth barrier caused by inflammatory or hemorrhagic 
changes (A3). In October 2019, the signal of the left vestibular in the 
T1WI sequence remained higher than that in the contralateral (B1). 
In the 3D-T2-FLAIR sequence, the signals of the left vestibular and 
vestibular nerve were higher than those of the right (B2). The 
differences between both sides became more remarkable, which 
suggested progression of the disease. In April 2020, the signals of the 
left vestibular and vestibular aqueduct remained higher than that of 
the contralateral in the 3D-T2-FLAIR sequence. Nevertheless, the 
signal differences decreased (C), indicating that inflammatory lesions 
had subsided. In December 2020, the left vestibular filling defect 
became larger under gadolinium angiography in the 3D-T2-FLAIR 
sequence, which was a sign of EH (D). In July 2021, under gadolinium 
angiography in the 3D-T2-FLAIR sequence, left-sided EH 
improved (E).

The inner ear MRI of the patient showed the progressive change 
from exudative inflammatory changes to EH. This revealed that inner 
ear immune and inflammatory changes might induce EH, which can 
eventually turn into MD.

3. Discussion

EH is currently believed to be the main pathophysiology of MD; 
approximately one-third of patients with MD may be associated with 
immune dysfunction (5). Frejo (8) divided unilateral and bilateral MD 
patients into five clinical subtypes. One of these is MD combined with 
autoimmune diseases. As for this patient’s long course of disease, 
sensitivity to hormone and immunosuppressant therapy, and the rise 
in blood IgG4, immune diseases should be taken into consideration. 
However, there was no direct evidence on the pathological mechanism 
of how the immune inflammatory response induced MD. The inner 
ear MRI of this patient is the first documented case illustrating the 
progressive development from immune inflammatory changes to EH 
in the occurrence of MD. We  speculate that local immune 
inflammatory responses in the inner ear can cause destruction of the 
blood-labyrinth barrier and labyrinthitis, can induce microcirculation 
disturbances, and can eventually lead to EH.

4. Conclusion

This case is the first documented case of MRI revealing the 
progressive changes from an inflammatory response to endolymphatic 
hydrops in the inner ear. It visually shows the correlation between MD 
and inflammation. It is of great significance to reveal the pathogenesis 
of MD, and this can further assist in the guidance of treatment 
decision making.Abbreviations: MD, Meniere’s disease; EH, Endolymphatic hydrops.
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TABLE 1 The patient underwent Pure Tone Threshold Audiometry (PTA) and inner ear MRI since onset.

Date Audiograms MRI

2018-06

2019-02 In March 2019, the left vestibular signal was 

higher than that in the contralateral in both the 

T1WI (A1) and 3DT2FLAIR sequences, 

whereas it was lower in the water imaging 

sequence (A2), indicating disruption of the 

blood-labyrinth barrier caused by inflammatory 

or hemorrhagic changes (A3).
2019-03

2019-10 In October 2019, the signal of the left vestibular 

in the T1WI sequence remained higher than 

that in the contralateral (B1). In the 3D-T2-

FLAIR sequence, the signals of the left 

vestibular and vestibular nerve were higher than 

those of the right (B2).

2020-04 In April 2020, the signals of the left vestibular 

and vestibular aqueduct remained higher than 

that in the contralateral in the 3D-T2-FLAIR 

sequence. Nevertheless, the signal differences 

decreased (C), indicating that inflammatory 

lesions had subsided.

2020-12 In December 2020, the left vestibular filling 

defect became larger under gadolinium 

angiography in the 3D-T2-FLAIR sequence, 

which was a sign of EH (D).

2021-03

(Continued)
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China

Objective: The mechanism by which migraines produce inner ear-related

symptoms is not well understood. Previous studies have found that the latency

of auditory brainstem response (ABR) in animal models of migraine has changed,

but the threshold has not changed significantly. Therefore, it is necessary to

establish a better animal model with both migraine and hearing loss to explore

the relationship between migraine and auditory function deeply.

Methods: In this study, the rat model of migraine was induced by postauricular

injection of nitroglycerin (NTG), and the e�ect on the auditory function of the inner

ear was explored by comparing with intraperitoneal injection of nitroglycerin. The

rats were given the drug repeatedly on alternate days, a total of 5 dosing, with the

body weight monitored during the drug administration. The tactile threshold of

the rats’ forepaw was measured using von-Frey filaments and auditory function

was assessed by ABR.

Results: The results showed that the baseline tactile threshold of rats gradually

decreased during the modeling process, and hyperalgesia appeared. Postauricular

injection of NTG did not a�ect the weight gain of rats, while intraperitoneal

injection of NTG showed slow or even negative weight gain. The ABR threshold

of Click, 4 and 8 kHz of postauricular NTG injection rats increased, the latency

was prolonged, and the ABR threshold in the right ear was higher than that in the

left ear.

Conclusions: We demonstrated that postauricular injection of nitroglycerin may

be safer and more e�ective than intraperitoneal injection of nitroglycerin in

the process of creating rat migraine model without a�ecting the weight gain.

Postauricular injection of nitroglycerin has more damage to the auditory function

of rats. Therefore, the migraine model rat induced by postauricular injection of

nitroglycerin may be a new model of cochlear migraine.

KEYWORDS

postauricular injection, intraperitoneal injection, auditory function, migraine model rat,

cochlear migraine

1. Introduction

Migraine is a common neurological disease, which is characterized by paroxysmal,

mostly unilateral, moderate to severe throb headache, often accompanied by photophobia,

phonophobia, nausea and vomiting (1). According to the global burden of diseases 2016

study, migraine is the second most common neurological disability disease (2). Migraine

patients can be accompanied by inner ear related symptoms such as vertigo, hearing loss,

Frontiers inNeurology 01 frontiersin.org33

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1259982
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1259982&domain=pdf&date_stamp=2023-10-25
mailto:yulish68@163.com
mailto:tongx@foxmail.com
https://doi.org/10.3389/fneur.2023.1259982
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1259982/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Qi et al. 10.3389/fneur.2023.1259982

tinnitus, hyperacusis, ear fullness, etc. The incidence of hearing

loss in migraine patients ranges from 3.3 to 14% (3, 4); however,

there are few studies using migraine animal models to explore

the relationship between migraine and the inner ear function,

especially those related to auditory function. Arakaki et al. (5)

reported that the latency of IV, V, and VI waves of the ABR

of the 8-khz stimulus sound was significantly prolonged 2 h

after nitroglycerin administration in the rat model of migraine.

Therefore, to understand the association between migraine and

inner ear hearing impairment deeply, it is necessary to establish

a better animal models with both migraine-related manifestations

and hearing loss.

Postauricular injection is a newmethod of drug administration.

At present, postauricular injection of glucocorticoids is mainly

used to treat inner ear diseases such as sudden deafness, tinnitus,

and ear fullness. Previous studies have shown that postauricular

injection has the advantages of being less invasive, convenient,

and having high local cochlear drug concentrations (6, 7). Qiu

et al. (8) used the anti-tumor drug cisplatin to explore the

drug distribution characteristics after postauricular injection in

animal experiments, the results showed that the systemic adverse

reactions induced by cisplatin in the postauricular injection group

and the intraperitoneal injection group were similar, and the

postauricular injection of cisplatin could cause obvious damage

to bilateral cochlear hair cells, and the damage of hair cells

in the ipsilateral cochlea was significantly greater than that in

the contralateral cochlea, postauricular injection of cisplatin also

caused more damage to the hair cells of the ipsilateral cochlea

than intraperitoneal injection, it is suggested that postauricular

administration can achieve higher local drug concentration than

systemic administration. In general, postauricular injection has the

characteristics of high drug concentration in the inner ear of the

administration side and drug distribution to the opposite inner ear

and the whole body.

The nitroglycerin-induced migraine model is a classic

experimental migraine model. The methods of nitroglycerin

injection include intraperitoneal injection, intravenous injection

and subcutaneous injection, and intraperitoneal injection is the

most commonly used. So far, no relevant literature and reports on

migraine animal models by postauricular injection of nitroglycerin

have been retrieved. According to the distribution characteristics

of drugs after postauricular injection, the migraine model rat was

established by postauricular injection of nitroglycerin, so as to

better study the correlation between migraine and the inner ear.

2. Material and methods

2.1. Animal subjects

Healthy male Wistar rats (7–8 weeks old, 200–250 g) were

purchased from SPF Biotech Ltd (Beijing, China). The animals

were housed under standard laboratory conditions: 20 ± 4◦C

ambient temperature with a relative humidity of 60 ± 5% and

a 12-h light/dark cycle. All the animals had unlimited access

to food and water. This study was approved by the Animal

Ethics Committee of Peking University People’s Hospital (Approval

Number: 2022PHE135), and animal care was performed in

accordance with the Guide for the Care and Use of Laboratory

Animals set by the China Association of Laboratory/Animal Care.

2.2. Experimental design

In this experiment, 45 Wistar rats were randomly assigned to

four groups: group 1 (n = 15) received a postauricular injection

of NTG (10 mg/kg) (PI-NTG) every other day for 9 days; group

2 (n = 10) received a postauricular injection of 0.9% saline (10

mL/kg) (PI-NS) every other day for 9 days; group 3 (n = 10)

received a intraperitoneal injection of NTG (10 mg/kg) (II-NTG)

every other day for 9 days; and group 4 (n = 10) received a

intraperitoneal injection of 0.9% saline (10 mL/kg) (II-NS) every

other day for 9 days. The body weight was monitored every other

day for all rats. Forepaw sensitivity to mechanical stimulation

was assessed using von Frey device 20min before and 2 h after

each dose for all rats. Five rats were randomly selected from

group 1 to continue feeding for 14 days after the last dose,

all remaining rats underwent ABR test 2 h after the last dose.

After 14 days, the five rats from group 1 were assessed again

for forepaw sensitivity to mechanical stimulation and underwent

ABR tests.

2.3. Drug administration

The formula of NTG for injection was prepared as

described previously (9). 5.0 mg/ml NTG (Beijing Yiming,

China) was diluted with 0.9% saline to 1 mg/ml. Rats in

the postauricular group were injected in the middle of

the right postauricular groove. Rats in the intraperitoneal

group were injected into the lower left quadrant of

their abdomen.

2.4. Behavioral observation

The behavioral activities of the rats were observed and recorded

before and after each administration. NTG-treated animals showed

more anxiety-like behavior such as increased self-grooming and

face rubbing behavior (10).

2.5. Measurement of forepaw thresholds
after mechanical stimulation

As a surrogate measure of pain/pronociception, tactile

sensitivity to stimulation with von Frey monofilaments (North

Coast Medical, USA) within fore paw nociceptive circuits was

measured using the up-down paradigm (11) as previously described

in detail (12). The testing was performed with the rat placed

in clear plexiglas chambers on a mesh floor. Rats were placed

in the chambers for acclimatization 30–45min prior to testing.

Calculation of 50% withdrawal thresholds was done using the
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free online calculator at https://bioapps.shinyapps.io/von_frey_

app/ with application of inter-filament steps (13). Tactile sensitivity

was measured at baseline and 120min after each administration by

a blinded experimenter.

2.6. Auditory brain stem response

ABR measurement was carried out in a sound-attenuating,

electrically shielded booth located inside a sound-attenuating

room. The rats were anesthetized with 10% chloral hydrate (4

mL/kg) injected intraperitoneal. ABR responses were recorded

using subdermal needle electrodes. Needle electrodes were placed

at the vertex (active), the test ear (reference), and the contralateral

ear (ground) pinnae. Tucker Davis Technologies (TDT) System III

hardware and SigGen/BioSig software (TDT, Alachua, FL USA)

were used to present the stimulus and record responses. Click

and 4, 8, 16, 24, and 32 kHz tone bursts were used as the

auditory stimulant. Up to 1,024 responses were averaged for each

stimulus level. Hearing thresholds were defined starting from 90 dB

SPL, decreasing in 10 dB increments each time. Thresholds were

interpolated between the lowest stimulus level where a response

is observed, and 5 dB lower, where no response is observed. The

latency time of I, II, III, IV, and V wave with 4 kHz 90 dB SPL tone

bursts ABRwaveformwas recorded. Rats in the postauricular group

tested both ears, while those in the intraperitoneal group only tested

the right ear.

2.7. Statistical analysis

Descriptive data were presented as means and standard

deviations (SD). Student’s t-test was used for statistical comparisons

between two groups. One-way or two-way ANOVA followed by

post-hoc analysis with the Tukey test was used for statistical

comparisons among groups. MannWhitneyU-test was selected for

the non-parametric analysis. All statistical analyses were performed

using SPSS software (version 27.0, IBM, USA), and statistical

significance was set at p < 0.05.

3. Results

3.1. PI-NTG could induce migraine without
a�ecting the animals’ weight gain

The specific administration schedule is shown in Figure 1A.

Behavioral manifestations related to migraine occurred after each

administration of NTG. Chronic injection of NTG produced

progressive basal hypersensitivity (Figure 1B) and acute allodynia

(Figure 1C). However, abdominal pain, loss of appetite, and even

diarrhea were observed in II-NTG rats, while no such phenomenon

was observed in PI-NTG rats. During the modeling process, there

was no significant difference in the body weight growth of rats in

the PI-NTG group, the PI-NS group and the II-NS group (p > 0.05),

while the body weight of rats in the II-NTG group increased slowly

or even negatively, which was significantly different from other

groups (Figure 1D; p < 0.05).

3.2. Compared with II-NTG group, PI-NTG
rats showed more severe hearing loss

Compared with the II-NTG group, the ABR threshold of Click,

4 and 8 kHz in the PI-NTG injection group was increased (Table 1;

p < 0.05), the latency was prolonged (Table 2; p < 0.05), and

the ABR threshold in the right ear was higher than that in the

left ear (Table 1; p < 0.05). There was no significant change in

ABR threshold of rats in the II-NTG group, only the latency

was prolonged.

3.3. Hearing loss was irreversible in PI-NTG
group

Five rats in the PI-NTG group were selected and fed for 14

days after the last administration. The tactile threshold of forepaw

and ABR were measured again. The results showed that the paw

mechanical pain threshold basically returned to the state before

administration on day 1. The ABR threshold and latency did not

change significantly from the day after the last dose.

4. Discussion

The mechanism of migraine accompanied with inner ear

dysfunction remains unclear. However, there are few basic

researches on the relationship between migraine and inner ear

function, especially animal experiments on the effect of migraine

on auditory function. Previous studies have found that the latency

of ABR in migraine animal models changes, but the threshold does

not change significantly (5). Therefore, it is necessary to establish

better animal models with both migraine and hearing loss, so as

to understand the relationship between migraine and inner ear

function deeply.

The results of this study show that it is feasible to establish a

rat model of migraine by postauricular injection of nitroglycerin.

Every time after postauricular injection of nitroglycerin, the

rats showed the corresponding behavioral manifestations and

hyperalgesia of migraine. Chronic intermittent administration can

cause progressive, persistent hyperalgesia. The results of this study

showed that the rats in the intraperitoneal injection of nitroglycerin

group had poor appetite, reduced food intake, slow weight gain,

or even negative growth, which was significantly different from the

postauricular injection of nitroglycerin group. Compared with the

intraperitoneal injection of nitroglycerin, postauricular injection of

nitroglycerin is safer and has fewer systemic side effects. However,

some rats with postauricular injection of nitroglycerin showed hair

loss on the postauricular skin.

The results of this study show that postauricular injection

of nitroglycerin can increase the ABR threshold and prolong

the latency of ABR in rats, while intraperitoneal injection of

nitroglycerin has no significant change in the ABR threshold of rats,

only show prolonged latency, suggesting that the migraine model

rat induced by postauricular injection of nitroglycerin is more likely

to cause inner ear auditory function damage. The results of this

study showed that the increase of ABR threshold in migraine model
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FIGURE 1

(A) Timeline of administration. (B) Basal and post-treatment tactile threshold (C) of forepaw were markedly decreased in a time dependent manner

after NTG injection. (D) Body weight growth of each group, the weight gain is the weight on day 9 minus the weight on day 1. Group 1 (n = 10):

postauricular NTG injection group; Group 2 (n = 10): postauricular saline injection group; Group 3 (n = 10): intraperitoneal NTG injection group;

Group 4 (n = 10): intraperitoneal saline injection group.

rat induced by post-auricular injection of nitroglycerin mainly

occurred in click and 4 kHz tone bursts. The increase of ABR

threshold was also observed in 8 kHz tone bursts, but it was not

as obvious as that in 4 kHz tone bursts. The ABR threshold of 16,

24, and 32 kHz tone bursts did not change. The results suggest

that the hearing changes in the migraine model rat induced by

post-auricular injection of nitroglycerin mainly occur in the low

frequency hearing, and the high frequency hearing is not impaired,

which is consistent with the hearing changes in most migraine

patients clinically. Shi et al. (14) studied the hearing of 166 patients
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TABLE 1 ABR threshold (dB SPL) (x ± s).

Group1
R

Group1
L

Group2
R

Group2
L

Group3
R

Group4
R

Click 39.50± 3.69 32.00± 2.58 30.00± 0.00 30.00± 0.00 23.00± 2.58 21.00± 2.11

4 k 33.50± 3.38 28.50± 5.30 25.00± 0.00 25.00± 0.00 18.00± 2.58 16.00± 2.11

8 k 22.00± 4.22 17.00± 4.22 17.00± 2.58 17.00± 2.58 10.00± 0.00 10.00± 0.00

16 k 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00

24 k 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00

32 k 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00

Group 1 (n = 10): postauricular NTG injection group; Group 2 (n = 10): postauricular saline injection group; Group 3 (n = 10): intraperitoneal NTG injection group; Group 4 (n = 10):

intraperitoneal saline injection group.

R, Right ear; L, Left ear.

TABLE 2 4kHz 90 dB SPL tone bursts ABR latency (ms) (x ± s).

Group1
R

Group1
L

Group2
R

Group2
L

Group3
R

Group4
R

I 1.38± 0.02 1.31± 0.06 1.31± 0.03 1.31± 0.04 1.33± 0.02 1.29± 0.05

II 2.26± 0.16 2.05± 0.16 2.15± 0.12 2.07± 0.07 2.13± 0.06 2.03± 0.11

III 3.00± 0.25 2.70± 0.12 2.77± 0.18 2.70± 0.08 2.79± 0.07 2.64± 0.10

IV 3.76± 0.27 3.56± 0.14 3.65± 0.33 3.57± 0.07 3.60± 0.11 3.48± 0.11

V 4.95± 0.42 4.49± 0.16 4.56± 0.06 4.53± 0.07 4.64± 0.16 4.46± 0.12

Group 1 (n = 10): postauricular NTG injection group; Group 2 (n = 10): postauricular saline injection group; Group 3 (n = 10): intraperitoneal NTG injection group; Group 4 (n = 10):

intraperitoneal saline injection group.

R, Right ear; L, Left ear.

with vestibular migraine and found that the hearing impairment of

VM patients was mainly manifested as low frequency hearing loss.

Xue et al. (15) also found that patients with VM mainly presented

with low-frequency hearing loss, and proposed that the history of

migraine may be the cause of sudden low-frequency hearing loss.

The mechanism of migraine-related hearing loss is still unclear,

and several theories have been proposed: (1) Migraine triggers

vasospasm in the small arteries of the cochlea and labyrinth, which

can induce endolymphatic hydrops (16). (2) Some inflammation

and neurotransmitters involved in the pathogenesis of migraine

affect the inner ear and central auditory system (17). (3) Ion

channels expressed in both the inner ear and the brain may

affect the peripheral and central auditory systems (18). The

results of this study showed that the rat migraine model with

postauricular injection of nitroglycerin wasmainly characterized by

low-frequency hearing loss, and there was no significant change in

ABR hearing loss 14 days after administration. It was speculated

that the rats in this model may have labyrinthiotic hydrocephaly.

Due to the limitation of experimental time and conditions,

this subject was not further verified by electrocochleogram. In

addition, the possibility of ototoxicity should be considered, but

intraperitoneal administration of nitroglycerin did not change the

ABR threshold of rats, and the relevant literature did not mention

that nitroglycerin had ototoxicity.

In 2018, with the cochlear migraine first proposed by Lai et al.

(19), Cochlear migraine entered the field of view of the population.

Cochlear migraine is a disease that is clinically related to migraine

and mainly produces moderate to severe auditory symptoms.

The results of this study show that the migraine model rat

induced by postauricular injection of nitroglycerin accompanied

with hearing loss, suggesting that this model is more inclined

to cochlear migraine, and may be used as an animal model of

cochlear migraine, it provides an important foundation for future

clinical research.

5. Limitation

There were some limitations in our research. First, our study

found that the migraine model rat induced by postauricular

nitroglycerin injection was mainly characterized by low frequency

hearing loss, and it was speculated that the inner ear of

this migraine model rats might have hydrops of membranous

labyrinth. However, due to the limitations of experimental

time and conditions, this subject was not further verified by

electrocochleogram, which is worthy of further study. Second,

our study did not further explore the molecular mechanism of

hearing loss in this model, which is well worth exploring. The last

but not the least, we didn’t have an effective mean of measuring

vestibular function in rats to more fully evaluate inner ear function

of this model.

6. Conclusion

In conclusion, we demonstrated that postauricular injection of

nitroglycerin is a safer and more effective way to model migraine

in rats than intraperitoneal injection. Postauricular injection of
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nitroglycerin has more damage to the auditory function of rats.

Therefore, the migraine model rat induced by postauricular

injection of nitroglycerin may be a newmodel of cochlear migraine.

The animal model of migraine established by our new method not

only validates the effect of migraine on hearing, but also lays a

foundation for future clinical research.
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Weak nystagmus in the dark 
persists for months after acute 
unilateral vestibular loss
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4 Division of Neuro-Visual and Vestibular Disorders, Department of Neurology, The Johns Hopkins 
Hospital, Baltimore, MD, United States, 5 Department of Neurology/Neuro-medical Scientific Center, 
Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, 6 Department of 
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Background: Weak nystagmus with fixation removed can be seen both in normal 
individuals and in recovery from a unilateral vestibular insult, thus its clinical 
significance is unclear in patients with dizziness. We  thus sought to compare 
features of nystagmus at various stages following unilateral vestibular loss (UVL).

Methods: We enrolled thirty consecutive patients after acute UVL with impaired 
vestibulo-ocular reflex (VOR) gain. The patients were allocated into three groups 
according to time from onset of symptoms: acute (1–7  days), subacute (8–
30  days), and chronic (>30  days). Patients underwent video-oculography (with 
and without fixation) and video head impulse testing (vHIT) to determine VOR 
gain. We  examined the relationships amongst SPV, VOR gain, and time from 
symptom onset across groups.

Results: There were 11, 10, and 9 patients in the acute, subacute, and chronic 
stages of UVL, respectively. With visual fixation, only 8 patients (26.7%) 
demonstrated nystagmus, all from the acute group. With fixation removed, 26 
patients (86.7%) exhibited spontaneous nystagmus, including 90.9%, 90%, and 
77.8% of the patients from the acute, subacute, and chronic groups, respectively. 
Horizontal nystagmus was paralytic (i.e., fast phase contralesional) in 25 (96.7%) 
cases. Horizontal SPV was negatively correlated with logarithm of time from 
onset to examination (r =  −0.48, p =  0.007) and weakly negatively correlated with 
ipsilesional VOR gain (r =  −0.325, p =  0.08).

Conclusion: In the subacute or chronic stages of UVL, paralytic nystagmus with 
fixation removed persisted at a low intensity. Therefore, weak nystagmus in the 
dark may have diagnostic value in chronic dizziness.

KEYWORDS

nystagmus, vestibular, video-oculography, vertigo, dizziness

Introduction

Nystagmus is an involuntary “to and fro movement” of the eyes, which can be highly 
localizing in patients with acute dizziness and vertigo. One common cause of vertigo is acute 
unilateral vestibular loss (UVL), for example from vestibular neuritis. Unilateral vestibular loss 
(UVL) typically presents with horizontal-predominant nystagmus with the fast phase toward 
the contralesional side (1).
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Vestibular recovery following unilateral vestibular loss is a 
dynamic process. The spontaneous nystagmus, which often starts 
strong, gradually gets weaker with time as vestibular compensation 
begins. One technique to enhance detection of subtle nystagmus at 
the bedside is to remove fixation (i.e., to remove the stationary 
visual signal that can suppress VOR and inhibit nystagmus). 
Conventional teaching is that removing visual fixation only 
enhances peripheral nystagmus (2). However, studies have also 
demonstrated that some central nystagmus can be enhanced by 
removing visual fixation (3, 4).

In clinical settings, various tools are used to remove visual 
fixation, such as the penlight cover test (5), occlusive ophthalmoscopy 
(6), optical Frenzel goggles, video-infrared goggles examination, and 
video-oculography (VOG). Among them, VOG systems that employ 
infrared goggles can completely remove visual fixation.

The clinical significance of weak nystagmus with removal of 
fixation (i.e., in the dark) remains unclear. Studies have demonstrated 
that some healthy individuals present with weak spontaneous or 
positional nystagmus in the dark (7, 8). This finding in normal 
subjects can make it difficult to interpret the relevance of low-intensity 
nystagmus, particularly those with a slow-phase velocity (SPV) of 
<3°/s (9).

To date, most studies have focused on ocular motor signs during 
the acute stage of vertigo (10, 11), rather than the subacute or chronic 
phases (12). In clinical practice, however, patients often present after 
the acute phase. We therefore need better data on nystagmus intensity 
in the subacute and chronic phases of peripheral loss (ideally, a 
clinical cut-point that can help determine whether a given weak 
nystagmus is likely to represent recovering vestibular loss versus a 
normal finding).

In the present study, we investigated the direction and intensity of 
nystagmus in patients who presented at differing time-points after 
(initially acute) UVL. We sought to determine (i) how commonly 
weak nystagmus persists in the dark after acute UVL and (ii) whether 
weak nystagmus has localizing value (i.e., can it predict the 
lesion side?).

Method

We retrospectively reviewed consecutive patients who presented 
to our outpatient department for dizziness or vertigo between July 
2019 and June 2021. All patients underwent structured histories, 
complete neurological and oto-neurological examinations, and 
video-infrared goggles examination (with skull vibration and head-
shaking as provocative maneuvers for nystagmus). All underwent 
VOG (including quantitative nystagmus measurement) and video 
head impulse testing (vHIT) simultaneously, which was recorded 
using a VOG/vHIT system (EyeSeeCam; Middelfart, Demark). Brain 
MRI was performed when focal neurological signs or central 
vestibular signs were identified. The patients who experienced acute 
vestibular syndrome at onset of dizziness and had a VOR gain of 
<0.8 on one side during vHIT were included for subsequent analysis. 
Patients with central vestibulopathy confirmed by MRI (i.e., a 
structural lesion) were excluded from this study. Patients who took 
any vestibular suppressant in the 48 h prior to vestibular testing were 
excluded. Patients who underwent vestibular rehabilitation before 

VOG examination were similarly excluded. The present study was 
performed in accordance with the ethical standards set forth in the 
1964 Declaration of Helsinki and its subsequent amendments, and 
it was approved by the Institutional Review Board of the Research 
Ethics Committee of Taichung Tzu Chi Hospital (REC109-64).

During VOG examination, spontaneous nystagmus with and 
without visual fixation was recorded when the patients sat upright 
with their heads in neutral position and straight-ahead gaze. The 
presence or absence of nystagmus was determined by a subspecialty-
trained vestibular neurologist (TPC) on the basis of VOG traces and 
videos. When nystagmus was present, the SPVs of the horizontal 
and vertical components were calculated. The lesion side was 
determined through vHIT, where which the lesioned VOR gain was 
defined as <0.8. On the basis of the time from symptom onset to 
VOG and vHIT, the included patients’ UVL were classified as being 
in the acute (1–7 days), subacute (8–30 days), or chronic (>30 days) 
stage. We  compared the SPVs of nystagmus across the acute, 
subacute, and chronic stages. We also measured the relationships 
(i) between SPV and VOR gain, (ii) between SPV and time from 
onset to examination, and (iii) between VOR gain and time from 
onset to examination.

Descriptive statistics were applied to the collected demographic 
data and the data on the prevalence of nystagmus at various stages of 
UVL. Mann–Whitney U test was performed to compare the SPVs 
between stage groups. Pearson’s correlation coefficients were 
calculated to determine the correlations between SPV, VOR gain, and 
the time from onset to examination.

Results

Thirty patients with UVL were included in our study. Among the 
included patients, 18 (60%) were male, their mean age was 54.1 years 
(range, 32–76 years), 16 (53.3%) had right vestibular loss, and 14 had 
left vestibular loss. The etiologies comprised acute unilateral 
vestibulopathy/vestibular neuritis (n = 25), Ramsay Hunt syndrome 
(n = 3), and acute unilateral audio-vestibular loss (n = 2). None of the 
included patients had middle ear symptoms or prior history of middle 
ear diseases.

On the basis of the timing of VOG and vHIT examinations 
relative to symptom onset, 11, 10, and 9 patients were determined to 
be  in the acute stage (1–7 days), subacute stage (8–30 days), and 
chronic stage (>30 days) of UVL, respectively. The mean time from 
onset of vestibular syndrome to exam was 4.1 days in acute stage, 
21.1 days in subacute stage, and 192.3 days in chronic stage (range 
2–409 days). All included patients were symptomatic (i.e., had 
dizziness or vertigo) at the time of examination. With visual fixation, 
8 patients (72.7%) in the acute stage had spontaneous nystagmus 
(mean horizontal SPV, 0.76°/s), whereas none in the subacute or 
chronic stage presented with spontaneous nystagmus.

In the dark (i.e., without fixation), 26 of the included patients 
(86.7%) had spontaneous nystagmus, including 90.9%, 90%, and 
77.8% of the patients in the acute stage, subacute stage, and chronic 
stage, respectively. Among the included patients, 25 (96.7%) 
presented with paralytic nystagmus, in which the fast phase was 
directed toward the contralesional side. One patient displayed 
recovery nystagmus in which the fast phase was directed toward the 
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ipsilesional side. Quantitative analysis revealed that the mean 
horizontal SPVs were 3.93°/s, 0.95°/s, and 1.19°/s in the acute stage, 
subacute stage, and chronic stage, respectively. The distribution is 
presented in Figure 1. The SPV tended to be higher in the acute stage 
(acute vs. subacute, p  = 0.06; acute vs. chronic, p  = 0.04, Mann–
Whitney U test), but not different between subacute and chronic 
stages (p = 0.84, Mann–Whitney U test). The horizontal SPV was 
negatively correlated with the ipsilesional VOR gain but not to a 
significant level (r = −0.325, p = 0.08; Figure 2). The horizontal SPV 
was not correlated with the time from onset to examination 
(r = −0.202, p = 0.28). However, it was negatively correlated with the 
logarithm of time (r = −0.48, p = 0.007). Most SPV values recorded 
in the first week (63.6%) were greater than 3°/s. Thereafter, the 
recorded SPVs decreased sharply. However, most of the nystagmus 

in the subacute and chronic stages persisted at a low intensity (SPV, 
0.69°/s–2.73°/s). Three patients still had nystagmus 1 year after 
vertigo onset. Weak paralytic nystagmus (SPV, 0.69°/s) was observed 
for up to 409 days (Figure 3) in one case.

Of the 30 included patients, 10 (33.3%) also had vertical 
components to their nystagmus. All vertical components were 
upbeating (vertical SPV, 0.73°/s–5.66°/s), and 70% of the upbeat-
component nystagmus cases were in patients seen in the acute stage. 
Among the patients with provoked nystagmus, 28 had skull vibration–
induced nystagmus, and 27 had head-shaking-induced nystagmus. All 
provoked nystagmus was paralytic (i.e., with fast phase directed 
toward the contralesional side).

Only one patient with left vestibular neuritis had recovery 
nystagmus, which was observed 8 days after vertigo onset. This 
spontaneous nystagmus was left-beating. By contrast, the patient’s 
skull vibration–induced and head-shaking nystagmus were 
right-beating.

Discussion

In the present study, we investigated nystagmus characteristics in 
patients who were at different stages following onset of unilateral 
vestibular loss. Nystagmus with fixation disappeared beyond 1 week 
of symptom onset of vestibular loss. By contrast, most patients 
continued to demonstrate weak nystagmus (SPV < 3°/s) in the absence 
of fixation (in other words, in the dark) for months. Notably, this faint 
nystagmus was still observed in 3 patients who were examined more 
than 1 year after onset. The longest interval was 409 days. Of the 26 
cases with nystagmus, 25 exhibited nystagmus beating away from the 
lesion side, indicating the presence of paralytic nystagmus. Several 
patients (36.4%) in the acute stage only exhibited weak nystagmus 
(SPV < 3°/s) even when examinations were conducted in the absence 
of fixation.

A number of compensatory mechanisms begin soon after a 
vestibular insult and may be attributed to either static vestibular 
compensation or vestibular restoration (i.e., recovery of vestibular 
hair cells or the vestibular nerve) (13). These processes cause 
spontaneous nystagmus to decay over time following acute vestibular 
injury. Rodents can achieve complete static vestibular compensation 
in 1 week (14), and cats can complete this process in 6 weeks (15, 16). 
By contrast, the time required to complete static compensation 
varies widely across human individuals. An early study by Matsuzaki 
et  al. indicated that the spontaneous nystagmus of most people 
completely disappeared within 1 month after vestibular neuritis (17). 
However, Matsuzaki used optical Frenzel goggles, which could not 
completely remove visual fixation. In a study that used infrared 
goggles to block fixation, only 2 of 20 patients exhibited weak 
spontaneous nystagmus at 3 months after symptom onset, and only 
1 still had nystagmus 1 year after onset (12). However, 35% of 
patients in that study had reversal of their canal paresis by calorics, 
suggesting that a part of their nystagmus disappeared because of 
vestibular restoration. Another long-term follow-up study 
reexamined 18 patients 7–8 years after the onset of vestibular 
neuritis, and it reported that 7 (38.9%) patients still displayed weak 
spontaneous nystagmus, which was identified through electro-
oculography (18). Caloric testing revealed that among the 18 

FIGURE 1

Nystagmus slow phase velocities (SPVs) in the dark in acute stage 
(1–7  days), subacute stage (8–30  days), and chronic stage (>30  days) 
after acute unilateral vestibular loss. The box and whisker plots 
present median values (central line), upper and lower quartiles, upper 
and lower extremes, and outliers.

FIGURE 2

Horizontal slow-phase velocities (SPV) tended to be negatively 
correlated with ipsilesional VOR gain (r =  −0.325, p =  0.08). Solid and 
dotted lines are regression and zero-horizontal lines, respectively.
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patients, 10 (55.6%) exhibited vestibular restoration and eight did 
not. In contrast to the aforementioned studies, the patients included 
in our study all exhibited incomplete vestibular restoration (as 
indicated by their vHIT results) at the time of enrollment. 
Consequently, 25 (83.3%) of the included patients presented with 
paralytic nystagmus and only one patient had recovery nystagmus. 
Our study demonstrated that when vestibular restoration is 
incomplete, static vestibular compensation is usually insufficient to 
completely overcome imbalances, resulting in residual weak 
nystagmus in the dark. This weak spontaneous nystagmus reflects 
the patients’ inability to establish stable static compensation and is 
associated with the chronic dizziness of these patients. Interestingly, 
there may have been a plateau of static compensation in these 
patients since the SPV was similar in subacute and chronic patients 
(in other words, nystagmus did not weaken further beyond the 
subacute phase). A prospective, longitudinal study with repeated 
measurement of SPV in the same patients is required to examine the 
existence of this plateau.

With the development of video oculomotor recording systems, 
infrared goggles can be effectively used to detect weak nystagmus. 
However, the clinical relevance of weak nystagmus is still being 
debated. In a study, portable VOG with fixation blocking revealed a 
high prevalence (30.7%) of low-velocity spontaneous nystagmus in 
100 healthy individuals (7). This finding also corresponds to those 
of several other studies, which detected weak nystagmus (SPV, 0.7°/
s–5.0°/s) in some healthy individuals (8, 19, 20). Collectively, these 
literature findings contribute to the ongoing debate about the clinical 
relevance of weak nystagmus. The present study showed that most 
patients in the subacute and chronic stages following unilateral 
vestibular loss had persisting low-intensity nystagmus that could 
only be  detected with fixation removal. Another similar study 
examined 22 patients 2 months after acute vestibular neuritis and 
found that ten manifested weak nystagmus (SPV, 0°/s–3°/s) (21). If 
weak nystagmus is clinically nonsignificant, the directions of 

nystagmus should be evenly distributed between the ipsilesional and 
contralesional sides. Our study indicated that 96.2% of the 
nystagmus cases beat toward the contralesional side (i.e., were 
paralytic nystagmus), demonstrating that weak nystagmus in UVL 
is likely clinically significant and an indicator of the lesion side. 
There is likely an overlap in the range of intensity of nystagmus 
between physiologic nystagmus and the weak, but clinically 
significant, nystagmus seen in the subacute and chronic stages 
following unilateral loss. Thus, for patients with the correct history 
(onset of dizziness weeks to months prior), weak nystagmus should 
be carefully examined for, including with removal of visual fixation. 
For clinical settings without specialized equipment (e.g., infrared 
video-oculography or optical Frenzels), fixation can be  easily 
removed at the bedside by means of the penlight-cover test, or by 
occlusive ophthalmoscopy (5, 6). Because of the overlap in 
nystagmus intensity, it is hard to distinguish weak pathological 
nystagmus from physiologic nystagmus simply using an SPV cut-off. 
Instead, the presence and intensity of nystagmus should 
be considered within the broader clinical context (clinical history, 
vestibular findings, ocular motor signs). Together, these features help 
identify when weak nystagmus may be pathologic and/or provide 
useful diagnostic information. If its clinical relevance remains 
undetermined, the weak nystagmus should be closely followed up to 
observe how the nystagmus changes over time.

Our study has several limitations. First, it was not a longitudinal 
study, and included patients were not individually followed up at 
multiple time points to monitor changes in nystagmus. Second, our 
study was a retrospective study with a small sample size. Prospective 
studies with larger sample sizes are needed to confirm our findings.

Conclusion

Nystagmus with visual fixation may begin to disappear by as soon 
as 1 week after onset of acute unilateral vestibular loss. By contrast, 
nystagmus in the dark persisted at a low intensity for months, and in 
most cases the direction was consistent with the expected paralytic 
nystagmus (i.e., contralesional). Therefore, although subtle nystagmus 
in the dark is not always pathological, it can be of clinical significance 
in patients with chronic dizziness and should not be overlooked.
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FIGURE 3

Nystagmus weakened rapidly after acute stage unilateral vestibular 
loss and was maintained at a low intensity (0.69°/s and 2.73°/s). 
Horizontal slow-phase velocity (SPV) was negatively correlated with 
logarithm of time from onset to examination (r =  −0.48, p =  0.007). 
X-axis scale is logarithmic. Solid and dotted lines are regression and 
zero-horizontal lines.
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Bilateral vestibulopathy (BVP) is characterized by its heterogeneous and chronic 
nature with various clinical presentations and multiple etiologies. This current 
narrative review reflects on the main insights and developments regarding clinical 
presentation. In addition, it proposes a new diagnostic algorithm, and describes 
available and potential future therapeutic modalities.

KEYWORDS

bilateral vestibulopathy, clinical update, diagnostic algorithm, diagnosis, review, 
vestibular impairment, vestibulopathy

1 Background

Bilateral vestibulopathy (BVP) was first described in 1936 in patients with Menière’s disease 
who had been managed with bilateral vestibular neurectomy (1, 2). BVP has also been known 
as Dandy syndrome (after the neurosurgeon who performed 907 vestibular neurectomies), 
bilateral vestibular hypofunction, bilateral vestibular impairment, bilateral vestibular areflexia 
and bilateral vestibular loss (3–5). The Consensus document of the Classification Committee of 
the Bárány Society (2017) recommends “bilateral vestibulopathy” as the preferred term (6). As 
the variation in the terms for BVP imply, it is defined by a bilaterally reduced or absent function 
of the vestibular end organs and/or nerves, ganglia, the vestibular root entry zone and/or the 
brain, which negatively impacts vestibular functioning resulting in symptoms of impaired gaze 
stabilization and imbalance (7). The reported prevalence varies from 28 to 81 per 100,000 
people. However, this is believed to be a significant under estimation based on misdiagnosis 
(8–12). This is partly caused by the heterogeneous presentation of the disorder, with its various 
clinical characteristics and multiple etiologies (5, 7, 13, 14). BVP negatively impacts quality of 
life and the socio-economic burden of BVP is substantial, due to work-related disability and 
health service utilization (8, 15–17). Here we offer an evidence-based approach for the clinician 
in approaching the patient with a potential BVP.
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2 Clinical characteristics

2.1 Etiology

BVP may be the result of over 20 different etiologies (Table 1) (7). 
Nonetheless, the reported percentages of idiopathic BVP vary between 
20 and 75% (7, 14, 19–21). The more common causes of BVP are 
genetic disorders (e.g., DFNA9), ototoxicity exposure (e.g., 
aminoglycosides antibiotics, chemotherapy), and infectious causes 
(e.g., meningitis). Less frequently, BVP may be caused by bilateral 
Menière’s Disease, trauma, auto-immune disease [e.g., Cogan’s 
syndrome, Autoimmune Inner Ear Disease (AIED)], and 
neurodegenerative disorders [e.g., Cerebellar Ataxia with 
Neuronopathy and Vestibular Areflexia Syndrome (CANVAS)] (19, 
22, 23). BVP may also be a component of peripheral neuropathy [e.g., 
Chronic Inflammatory Demyelinating Polyradiculoneuropathy 
(CIDP) and Charcot–Marie Tooth (CMT) disease], congenital 
syndromes (e.g., Usher and Turner syndromes) and Wernicke’s 
encephalopathy (19, 24). Furthermore, an association between 
vestibular migraine and the development of BVP has been described 
(7, 25). Largely depending on etiology, BVP can have a rapid or slowly 
progressive onset (mostly due to ototoxicity and genetic causes 
respectively). BVP can also develop following recurrent episodes of 
vertigo, as is particularly seen in patients with bilateral (sequential or 
consecutive) Menière’s Disease (7).

2.2 Symptoms

Two of the main physical symptoms of BVP are movement-
induced blurred vision (oscillopsia) and unsteadiness when walking 
or standing which often worsens on uneven ground or in darkness. 
These symptoms are primarily due to impaired vestibular-ocular and 

vestibular-spinal reflexes (6). Furthermore, BVP may be associated 
with cognitive and emotional symptoms such as difficulties with 
performing dual tasks, impaired concentration, forgetfulness, reduced 
spatial orientation, anxiety, anger, and sadness (26–29).

Neither vertigo nor abnormal nystagmus are typical symptoms of 
BVP as both are generally related to an acute asymmetry in vestibular 
function (i.e., an acute unilateral vestibulopathy) and are in general 
not caused by a symmetrical decrease in vestibular function (30). The 
exception here is bilateral sequential vestibulo-ocular reflex (VOR) 
reduction. In other words, vertigo and nystagmus can be related to the 
underlying etiology of BVP (e.g., Menière’s disease), but are generally 
not a sign of BVP itself.

In particular the unsteadiness can be  difficult to recognize as 
balance control is a multisensory process (31–33). Compensation via 
sensory reweighting plays a key role in attempted recovery from 
BVP. In this process, the remaining senses such as vision, 
somatosensory input (e.g., pressure perception) and proprioception 
are preferentially utilized (34). As a result of sensory reweighting, 
many spatiotemporal gait parameters do not differ between BVP 
patients and healthy controls at their preferred walking speed. 
However, BVP patients do tend to walk with an increased cadence 
(35). When testing gait at fixed walking speeds, gait parameters such 
as step length and step width variability differ significantly to those of 
healthy controls (33). Sensory reweighting also explains why certain 
complaints worsen in situations where other sensory inputs are less 
effective, such as worsening of unsteadiness in poorly lit environments. 
This phenomenon offers a partial explanation for the higher incidence 
of falls and severe fall-related injuries in the BVP population (18, 
36–38). In addition, loss of somatosensory input (in particular from 
the soles of the feet) also increases unsteadiness and is a proven risk 
factor for falls in BVP patients (39). Other risk factors for falls include 
advanced age, a decline in cognitive resources and having a sedentary 
lifestyle (38).

TABLE 1 Etiologies of bilateral vestibulopathy (18, 19).

Idiopathic

Genetic DFNA9, DFNA11, DFNA15, DFNB4, mutation chromosome 5q, 6q, 11q, 22q Muckle Wells (NLPR3)

Toxic/metabolic Antibiotics (particularly aminoglycosides), furosemide, amiodarone, aspirin, chemotherapeutics (e.g., cisplatin), immunotherapy (e.g., immune 

checkpoint inhibitors), anti-epileptic drugs (particularly aromatic anti-epileptic drugs), alcohol, styrene poisoning, combination non-steroidal 

anti-inflammatory drugs with penicillin

Infectious Meningitis, syphilis, Lyme disease, bilateral vestibular neuritis (Herpes Simplex Virus), Herpes zoster, rubella

Other ear pathology Bilateral Menière’s disease, otosclerosis, bilateral labyrinthitis, cholesteatoma, vestibular atelectasis, presbyvestibulopathy

Trauma Head trauma, iatrogenic (e.g., bilateral Cochlear Implant, local radiotherapy)

Autoimmune Cogan’s syndome, Susac syndrome, Sarcoïdosis, Granulomatosis with polyangiitis, Sjögren syndrome, inflammatory bowel disease, Behçet’s 

disease, celiac disease, polyarteritis nodosa, antiphospholipid syndrome, Anti-GQ1b antibody syndrome, Autoimmune Inner Ear Disease, other 

systemic diseases

Neuropathies Guillain-Barre Syndrome (GBS), and Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP), Charcot–Marie Tooth (CMT) 

disease, Fabry’s disease

Neurodegenerative CANVAS, Friedreich Ataxia, multiple system atrophy, SCA3, SCA6, SCA27B,

Congenital/syndromal Usher, Turner, enlarged vestibular aqueduct syndrome, Alport syndrome, coloboma-heart-atresia-retarded-genital-ear (CHARGE) syndrome

Vascular Vertebrobasilar dolichoectasia

Tumors Bilateral vestibular schwannoma, Neurofibromatosis type 2, metastasis, lymphoma

Other Auditory neuropathy spectrum disorders, superficial siderosis, hypothyroidism, vitamin B12 deficiency, folate deficiency, vestibular migraine, 

Wernicke’s encephalopathy.
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Due to the absence of standardized and validated Patient Reported 
Outcome Measures (PROMs) capable of capturing the subjective 
severity and burden of the complete spectrum of BVP symptoms, the 
Bilateral Vestibulopathy Questionnaire (BVQ) was recently developed. 
The BVQ serves as a comprehensive tool for assessing the spectrum of 
BVP symptoms and its impact on daily life, in order to quantify 
treatment efficacy and improve clinical decision making (40, 41).

3 Physical examination and laboratory 
assessment

Physical and laboratory assessment in BVP patients mainly 
focuses on two aspects: (1) identifying the presence or absence of 
central vestibular signs (e.g., gaze evoked nystagmus, downbeat 
nystagmus, dysmetria, etc.), and (2) confirming BVP.

3.1 Physical examination

In identifying central vestibular signs, it is advised to perform 
cerebellar testing, including oculomotor examination, evaluation of 
coordination (e.g., finger-to-nose test for identifying dysmetria, rapid 
alternating movements for identifying dysdiadochokinesia) and 
evaluation of gait and posture. As abnormalities in oculomotor 
functioning may be the first signs of central pathology, oculomotor 
examination should always be performed (42). The Head Impulse Test 
(HIT) is sensitive in identification of severe BVP, particularly when 
performed by an expert (43). However, false-negative results may 
be found in the presence of covert saccades, mild BVP and when the 
HIT is performed by less experienced clinicians (5, 43, 44). Another 
key oculomotor test is the visually enhanced VOR (VVOR), which is 
specific for the combination of BVP and cerebellar impairment. The 
VVOR is performed by turning a patient’s head slowly side-to-side 
while the patient fixates at an earth-fixed target (e.g., the clinicians 
nose). The VVOR is abnormal in case the ensuing eye movements are 
broken-up or saccadic, rather than smooth. The VVOR is a simple, 
brief and reproducible bedside test (45). In addition to oculomotor 
examination and the HIT, Romberg’s test (including Romberg in 
tandem or Romberg on foam rubber) and evaluation for neuropathy 
is recommended (39, 46, 47).

3.2 Laboratory assessment

The Consensus document of the Classification Committee of the 
Bárány Society describes the diagnostic criteria for BVP as 
summarized in Table 2 (6). Regarding the three objective VOR test 
measurements (Table 2, part C), both caloric testing and horizontal 
vHIT appear to be  more sensitive for detecting impairment of 
vestibular function than the torsion swing test (rotatory chair testing). 
The latter proved to be most sensitive in measuring residual vestibular 
function (19). When performing the vHIT, it is important to be aware 
that the sensitivity may depend on the type of device used, as vHIT 
systems are not yet standardized across different manufacturers (48). 
In addition to the HIT, the Suppression Head Impulse Paradigm 
(SHIMP) was introduced as a diagnostic tool for identifying VOR 
alterations in BVP patients. The advantage of SHIMP is that it 

significantly reduces covert saccades (49, 50), which might allow for 
more reliable VOR gain calculation. However, a recent study in BVP 
patients showed that the clinical benefit of SHIMP compared to HIT 
was marginal, given that both paradigms successfully detected BVP in 
the majority of patients (93%) (50). Despite the comparable diagnostic 
capabilities of SHIMP and HIT, the former, characterized as a ‘covert 
saccade killer’, may serve as a viable alternative in clinical settings 
where access to a vHIT-system is unavailable (50). In order to facilitate 
the most efficient diagnostic workflow, it is worth considering to first 
perform vHIT (due to the lower patient burden), followed by caloric 
testing, before performing the torsion swing test. In this way, the test 
battery can be discontinued as soon as the patient meets one of the 
diagnostic test criteria.

Other possible vestibular function measurements are cervical 
and ocular Vestibular Evoked Myogenic Potentials (c- and oVEMPs). 
However, various studies have found a high degree of variability in 
VEMP responses within BVP populations, and more importantly, 
there remains a lack of certainty regarding whether isolated bilateral 
impairment of both otolith organs causes significant disability (19, 
51, 52). Therefore, c- and oVEMPs are as yet not included in the 
Bárány diagnostic criteria as a definite stand-alone diagnostic 
modality in BVP.

Several outcome measures are available for quantifying the 
functional manifestations of BVP. The functional HIT (fHIT) proved 
to be a feasible test for evaluating oscillopsia by testing the Dynamic 
Visual Acuity (DVA) (53). Another assessment complementary to the 
fHIT, is testing the DVA while walking on a treadmill, which is 
strongly related to activities of daily living and therefore has significant 
ecological validity (54, 55). Unfortunately, the DVA while walking on 
a treadmill cannot always be  performed in elderly patients, as 
increased age in combination with BVP leads to a higher drop out rate 
during test performance (54). Lastly, the vestibular system contributes 
to detecting self-motion. Earlier research showed that self-motion 
perception is significantly decreased in patients with BVP compared 
to control subjects, and therefore self-motion perception could also 
be considered as a functional outcome measure in the future (56–58).

TABLE 2 Diagnostic criteria for bilateral vestibulopathy, as described by 
the Bárány Society (6).

A. Chronic vestibular 

syndrome with the 

following symptoms

 1 Unsteadiness when walking or standing plus at least 

one of 2 or 3

 2 Movement-induced blurred vision or oscillopsia 

during walking or quick head/body movements and/or

 3 Worsening of unsteadiness in darkness and/or on 

uneven ground

B. No symptoms while sitting or lying down under static conditions

C. Bilaterally 

reduced or absent 

angular VOR 

function 

documented by

 - Bilaterally pathological horizontal angular VOR gain 

<0.6, measured by the video-HIT or scleral-coil technique 

and/or

 - Reduced caloric response (sum of bithermal max. 

Peak SPV on each side <6°/sec) and/or

 - Reduced horizontal angular VOR gain <0.1 upon 

sinusoidal stimulation on a rotatory chair (0.1 Hz, 

Vmax  =  50°/sec) and a phase lead >68 degrees (time 

constant <5 sec).

D. Not better accounted for by another disease
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4 Proposal of a diagnostic algorithm 
for BVP

Establishing the diagnosis of BVP is often delayed. To facilitate a 
prompt, accurate and robust diagnostic process, a new protocol has 
been proposed based on the current knowledge summarized in this 
narrative review (Figure  1). The diagnostic process for vestibular 
disorders starts with an adequate medical history. A tool for improving 
history taking is the 4-step approach which focuses on: (1) potential 
attacks of vertigo and/or dizziness, (2) potential chronic vestibular 
symptoms, (3) any additional functional, psychological or psychiatric 
co-morbidities, and taken together leading to (4) a comprehensive 
differential diagnosis (59). Regarding episodes of vertigo or dizziness 
attacks in the context of BVP principally depends on etiology (e.g., 
positive history taking for experiencing vertigo attacks in a patient 
with bilateral Menière’s Disease). Chronic symptoms are however 
always present in BVP and can be  summarized according to the 
DISCOHAT acronym (worsening of symptoms in Darkness and/or 
uneven ground, Imbalance, Supermarket effect, Cognitive complaints, 
Oscillopsia, Head movements worsen symptoms, Autonomic 
complaints, and Tiredness), with a particular focus on imbalance/
unsteadiness and oscillopsia (60).

In every patient with a positive history for imbalance/unsteadiness 
and/or oscillopsia without any other neurological symptoms (e.g., 
dysarthria, dysmetria, dysesthesia), a thorough physical examination 
focused on oculomotor testing, HIT, cerebellar testing, and testing for 
neuropathy is indicated. This is all necessary in order to identify 
patients with combined peripheral and central neurological disorders 
such as CANVAS or the recently described Spinocerebellar Ataxia 
Type 27B (SCA27B) (7, 61). Oculomotor abnormalities such as 
broken-up visual pursuit, gaze-evoked nystagmus and abnormal 
saccades to target, point to pathology of the cerebellum and its 

connections (62). In addition to oculomotor signs, other localizing 
abnormalities observed during examination include cerebellar 
dysarthria, often described as ‘slurred’ or ‘drunken’ speech, as well as 
limb ataxia, such as the presence of an intention tremor during the 
finger-to-nose test. These clinical manifestations are frequently 
encountered in cases of cerebellar impairment (63).

In addition to the physical examination, at least one vestibular 
laboratory examination to objectify the vestibular function must 
be performed, preferably by means of a vHIT or caloric test (5). vHIT 
is favored over HIT as it provides a calculated VOR gain and 
recognizes the influence of covert saccades and other eye movement 
abnormalities (5). Regarding caloric testing, it is important to irrigate 
with at least 250 mL of water for a duration of 30s for both cold (30°C) 
and warm (44°C) irrigations with a 5-min stimulus interval between 
irrigations. Furthermore, it is necessary to not only look for a potential 
asymmetry (%) but also evaluate absolute caloric values (°/sec). The 
torsion swing test is less suitable to use as a single diagnostic tool since 
it appears to be less sensitive for detecting vestibular impairment as 
compared to vHIT and the caloric test (7, 19). Therefore, the torsion 
swing test is not included in the diagnostic algorithm.

Where history, physical examination and vestibular function tests 
lead to a BVP diagnosis without neurological involvement, the next 
step is attempting to identify the etiology (Figure 1, lower left side of 
the flow chart). Important information includes past medical history 
(e.g., surgery, auto-immunity, infectious diseases such as Lyme disease 
or syphilis), family history (genetic disorders), use of medication 
(ototoxicity), subjective hearing loss and auto-immune symptoms 
(including those of inflammatory eye disease and fluctuating hearing 
loss). Where a treatable etiology is identified (e.g., autoimmune or 
infectious disease), then this obviously becomes the clinical priority. 
Where the etiology remains idiopathic, a one-time contrast-enhanced 
MRI of the posterior fossa is advised because of the relatively high 

FIGURE 1

A new diagnostic protocol for bilateral vestibulopathy (BVP). The 4-step approach is discussed elaborately elsewhere (59). DISCOHAT  =  the acronym of 
‘Darkness worsens symptoms, Imbalance, Supermarket effect, Cognitive complaints, Oscillopsia, Head movements worsen symptoms, Autonomic 
complaints, Tiredness’. *Be aware that the presence of covert saccades, mild BVP and HIT by nonexperts can result in false-negative results. 
**Suspected based on sensory examination findings and/or imbalance out of proportion to isolated BVP. ***MRI abnormalities are not required as 
clinical signs, e.g., oculomotor abnormalities, may precede MRI cerebellar changes.
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yield of positive findings (e.g., vestibular schwannoma). Contrast-
enhanced MRI scans are preferred over non-contrast MRI scans as 
they increase the detection rate of small schwannomas, particularly 
intralabyrinthine ones, which may be missed by radiologists who are 
less familiar with intralabyrinthine pathology (64). Blood tests are not 
routinely advised because of the low yield (7).

Where history, physical examination, and vestibular function tests 
lead to a BVP diagnosis in combination with neurological signs, the 
next step is the evaluation of peripheral sensory neuropathy and/or 
cerebellar features by performing clinical tests such as a nerve 
conduction study and/or a MRI scan (Figure  1, right side of the 
flow chart).

Regarding peripheral neuropathy, studies show that up to 53 
percent of patients with a peripheral neuropathy also suffer from 
vestibular hypofunction (65). Conditions where this combination is 
seen, include Chronic Inflammatory Demyelinating 
Polyradiculoneuropathy (CIDP), Charcot–Marie Tooth (CMT) 
disease, Guillain-Barre Syndrome (GBS), neurosarcoidosis and other 
inflammatory and inherited diseases (noting that diseases such as 
GBS, CIDP and neurosarcoidosis require treatment which may 
be lifesaving) (66–71). Therefore, further testing for, e.g., CIDP and 
CMT needs to be  considered in cases of bilateral vestibulopathy 
accompanied by abnormal nerve conduction studies indicating a 
peripheral sensory neuropathy.

Regarding cerebellar features, BVP is increasingly identified as an 
extracerebellar feature of the many cerebellar ataxias, including the 
most common sporadic and inherited diseases such as idiopathic late-
onset cerebellar ataxia (ILOCA), idiopathic Cerebellar Ataxia with 
Bilateral Vestibulopathy (iCABV), spinocerebellar ataxia (SCA) 3 and 
6, Friedreich ataxia (FRDA), Cerebellar Ataxia, Neuronopathy, 
Vestibular Areflexia syndrome (CANVAS)/RFC1-related disease, and 
most recently SCA27B (FGF14 GAA expansion) (23, 61, 72–76). 
Where cerebellar signs on examination, or MRI changes such as 
atrophy are found (with or without sensory peripheral neuropathy), 
further testing for the above-mentioned etiologies is advised. It is 
important to bear in mind that cerebellar signs on examination 
(particularly oculomotor abnormalities) may be seen well before MRI 
changes are found. In other words, the normal appearance of the 
cerebellum on MRI scanning does not exclude cerebellar impairment, 
especially in the earlier stages of cerebellar disease (77).

5 Treatment

Unfortunately, to date, the prognosis for recovery of vestibular 
function is poor (14). Detailed patient counseling and education with 
a focus on explaining the cause of the symptoms is therefore of 
great importance.

Vestibular rehabilitation therapy remains the mainstay of 
treatment for vestibular hypofunction. Exercise-based vestibular 
rehabilitation is aimed at (1) adaptation and (2) substitution. 
Adaptation is the process by which the gain of the vestibular reflexes 
are increased, while substitution (or sensory reweighting) involves 
strategies to utilize alternate modalities in place of the vestibular 
hypofunction (78). The reported efficacy of vestibular rehabilitation 
in BVP differs. Two independent systematic reviews found moderate 
to strong evidence supporting the utility of vestibular rehabilitation 

in BVP in improving gaze and postural stability and improving 
overall functional status (79, 80). Additionally, vestibular 
rehabilitation was found to significantly reduce the number of falls in 
patients with combined BVP and cerebellar impairment (81). Sensory 
reweighting (substitution) is however limited since other 
somatosensory systems cannot fully compensate for the elaborate 
function of the vestibular system. In particular, the somatosensory 
system is not able to respond as rapidly as the VOR, the vestibulo-
spinal reflex, and the vestibulo-collic reflex. As a result, the balance 
system as a whole lacks the speed and automatism provided by an 
intact vestibular system (82). In other words, a BVP patient is less 
able to reflexively react to balance perturbations. Sensory substitution 
devices aim to substitute the loss of vestibular input by administering 
tactile or auditory stimulation which may result in some degree of 
improvement in balance control (83–85). However, it is important to 
note that these devices are unable to replace the rapid 
vestibular reflexes.

Other therapeutic approaches, such as noisy galvanic vestibular 
stimulation, aim to enhance the residual vestibular function. Previous 
studies indicated that noisy galvanic vestibular stimulation improves 
postural and gait stability in patients with BVP (86–88). This treatment 
strategy will probably offer the most benefit in patients with residual 
vestibular function (e.g., similar to the functionality of hearing aids: 
hearing aids can augment the hearing performance only in the 
presence of residual hearing).

An artificial balance organ, the vestibular implant, directly 
stimulates the peripheral vestibular nerve and therefore does not 
depend on the presence of residual vestibular function (89, 90). 
Vestibular implant research to date demonstrated partial recovery of 
the VOR and the vestibulo-collic reflex, and hence, rapid vestibular 
responses are achievable (89, 91–93). This approach appears promising 
since the functional improvements closely match the expectations of 
BVP patients regarding vestibular implant treatment (94, 95).

6 Conclusion

The knowledge of BVP has grown expansively since its first 
description in 1936. The proposed diagnostic algorithm facilitates 
in-clinic assessment and diagnosis. In addition to the vestibular 
rehabilitation, therapeutic modalities currently under development 
hold significant promise.
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The effectiveness of the 
modified Epley maneuver for 
the treatment of posterior 
semicircular canal benign 
paroxysmal positional vertigo
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Objective: To compare the repositioning effect of the modified Epley 
maneuver and the traditional Epley maneuver for posterior semicircular 
canal benign paroxysmal positional vertigo (PC-BPPV).

Methods: Sixty-five patients with unilateral PC-BPPV were randomly divided 
into two groups. The control group received the traditional Epley maneuver, 
while the experimental group received the modified Epley maneuver, which 
prolonged the time in the healthy side lying position and the final bowing 
position. The number of successful repositions after one, two, and three 
attempts and the total number of successful repositions were recorded and 
compared between the two groups. A BPPV virtual simulation model was 
used to analyze the mechanism of the modified Epley maneuver.

Results: The first repositioning success rate of the experimental group was 
significantly higher than that of the control group (85% vs. 63%, p  =  0.040). 
The experimental group achieved 100% repositioning success rate after 
two attempts, while the control group needed three attempts to reach 86% 
repositioning success rate. Four cases in the control group experienced 
canal switching during the repositioning process, while none in the 
experimental group did. The BPPV virtual simulation model showed that the 
modified Epley maneuver could facilitate the passage of otoliths through 
the posterior arm of the posterior semicircular canal, especially through the 
location of obstruction.

Conclusion: The modified Epley maneuver is more effective than the 
traditional Epley maneuver in improving the single repositioning success 
rate and reducing the canal switching rate for PC-BPPV. This study provides 
a new option for the treatment of BPPV.
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1 Introduction

Benign paroxysmal positional vertigo (BPPV) stands out as a 
prevalent cause of peripheral vertigo, constituting 17–42% of reported 
cases (1). Manifesting as brief episodes of vertigo and nystagmus, BPPV 
is triggered by alterations in head position relative to gravity, such as lying 
down, turning over, or standing up (2). The prevailing pathophysiological 
understanding attributes BPPV to the detachment of otoconia from the 
utricular macula, migrating into one or more semicircular canals. This 
migration disrupts normal endolymph flow and induces abnormal 
stimulation of the cupula (3). BPPV is further categorized based on the 
involved semicircular canal, with posterior canal BPPV (PC-BPPV) 
being the most prevalent, accounting for 80% of cases (4).

Diagnosis relies predominantly on patient history and positional 
tests, such as the Dix-Hallpike test for PC-BPPV and the supine roll 
test for horizontal canal BPPV (HC-BPPV) (5). Treatment primarily 
revolves around repositioning maneuvers, aiming to relocate otoconia 
from the affected semicircular canal back to the utricle through a 
series of head movements (6). The widely adopted Epley maneuver, 
introduced by John Epley in 1992 (6, 7), has demonstrated efficacy and 
safety for PC-BPPV, with success rates ranging from 63.65 to 98% after 
one or more attempts (8).

Despite its success, some patients exhibit poor response or canal 
switching, converting PC-BPPV to HC-BPPV during or after the 
maneuver (9). Factors contributing to these challenges remain not fully 
elucidated, potentially involving anatomical variations, membranous 
canal stenosis, otolith adhesion, otolith re-entry, incorrect diagnosis, 
or inadequate repositioning techniques (10). Consequently, 
modifications to the Epley maneuver have been proposed to enhance 
efficacy and reduce adverse effects, including head shaking, prolonged 
postural holding, or hastened head movements (11). However, these 
modifications may introduce limitations such as increased complexity, 
discomfort, or an elevated risk of canal switching (12).

This study introduces a novel modification to the Epley maneuver for 
PC-BPPV, incorporating a BPPV virtual simulation model. Our 
modification involves extending the retention time in the healthy lateral 
position and the final low head position, facilitating the passage of otoliths 
through the posterior arm of the posterior semicircular canals, especially 
through obstructed regions. We hypothesize that our modified Epley 
maneuver can enhance the single repositioning success rate for PC-BPPV 
compared to the traditional Epley maneuver. To test this hypothesis, 
we conducted a randomized controlled trial involving 65 patients with 
unilateral PC-BPPV, comparing repositioning outcomes between the 
modified and control groups. Additionally, we utilized a BPPV virtual 
simulation model to analyze the mechanism underlying our modified 
Epley maneuver. The aim of this study is to provide a promising treatment 
option for PC-BPPV, especially for refractory PC-BPPV.

2 Materials and methods

2.1 Sample size calculation and endpoints

The sample size calculation centered on the primary endpoint—
the first repositioning success rate, defined as the absence of vertigo 
and nystagmus after a single attempt of the repositioning maneuver. 
Assuming a baseline first repositioning success rate of 70% for the 
traditional Epley maneuver, we anticipated a 20% increase with the 
modified Epley maneuver. With a significance level of 0.05 and a 

power of 0.8, the calculated sample size was 28 patients in each group. 
To account for potential dropouts (estimated at 10%), the sample size 
was increased to 32 patients per group. Secondary endpoints included 
the number of repositioning attempts for successful reduction, canal 
switching rate, repositioning time, and patient tolerance.

2.2 Ethical considerations

Approval for the study was obtained from the ethical committee 
of Wenzhou People’s Hospital (KY-2022-080). The study adhered to 
the principles of good clinical practice (ICH-GCP), the Declaration of 
Helsinki, and national laws and regulations regarding clinical studies. 
Written informed consent was obtained from eligible patients, or in 
cases of incapacity, approval was sought from a legally acceptable 
representative (see Table 1).

2.3 Subjects

Patients diagnosed with unilateral posterior semicircular canal 
BPPV at Wenzhou People’s Hospital from January 2022 to October 
2022 were included. Inclusion criteria comprised patients aged 20 to 
80 years exhibiting vertigo episodes lasting no more than 60 s triggered 
by a change in head direction relative to gravity. Diagnosis was 
confirmed through the Dix-Hallpike maneuver, with delayed torsional 
upbeating nystagmus lasting no more than 60 s. No nystagmus 
induced by the supine roll test or torsional nystagmus evoked by the 
supine roll test and cannot be attributed to other diseases (13).

Exclusion criteria encompassed an inability to complete physical 
therapy due to language comprehension or compliance issues, 
involvement of horizontal or multiple semicircular canals, and the 
presence of severe cervical spondylosis, cardiac arrhythmia, heart failure, 
movement disorders, or upper gastrointestinal bleeding, history 
suggestive of alternate peripheral or central vestibular disorders including 
vestibular neuritis, Ménière’s disease, migrainous vertigo, etc., torsional 
upbeating nystagmus lasting >60 s provoked by the Dix-Hallpike 
maneuver suggestive of cupulolithiasis (13). A computer-generated 
randomization sequence divided the 65 eligible patients into the Control 
and Experimental groups, ensuring no statistically significant baseline 
imbalances between the two groups (p > 0.05) as confirmed by a balance 
test utilizing standardized mean difference (SMD) (14, 15).

2.4 Equipment

The G-Force swivel chair system (Figure 1) has a high accuracy 
and stability for nystagmus detection and recording, with spatial and 
temporal resolution of 640*480@60 Hz (16). The system we  have 
developed also generates a BPPV virtual simulation model based on 
the patient’s nystagmus data and repositioning maneuver parameters, 
which can be used to visually analyze the movement of the otolith in 
the semicircular canal (17).

2.5 Repositioning maneuver

Figure  2 illustrates the structure of the semicircular. Figure  3 
illustrates the operational flow of the Epley maneuver and modified 
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Epley maneuver. The Control group underwent the traditional Epley 
maneuver (Figure 3), while the experimental group received the novel 
modified Epley maneuver (Figure 3). The operations are as follows:

Right Epley repositioning maneuver. (A) The patient was in an 
upright position (B) The patient’s head was allowed to turn 45° to the 
right side (C) The patient was allowed to lie down quickly, supine, with 
head tilted back 30° and the position was maintained for 1 min. (D1) 
Turn the head 90° to the left side, keeping the head tilted back and 
maintained for 1 min. (D2) Turn the head 90 to the left side, keeping 
the head flat or tilted back, and maintained for 1 min. (E1) Return to 
the sitting position and lowered the head 30° and held it for 5 min.

Novel modified right Epley repositioning maneuver. (A) The 
patient was in an upright position. (B) The patient’s head was allowed 

to turn 45° to the right side. (C) The patient was allowed to lie down 
quickly, supine, with head tilted back 30° and the position was 
maintained for 1 min. (D3) Turn the head 135° to the left side with the 
healthy side lying down and maintained for 5 min. (E2) Return to the 
sitting position and lowered the head 60° and held it for 5 min.

2.6 Observed indicators

The Dix-Hallpike maneuver, performed 5 min after the first 
repositioning, evaluated the repositioning effect. Patients without 
vertigo and nystagmus were considered cured. If vertigo and 
nystagmus persisted or transformed into other BPPV types, the 
repositioning was deemed ineffective. Each group underwent a 
maximum of 3 repositioning attempts, with evaluation after 5 min 
each time. The observed indicators included the success rate of the 
repositioning maneuvers (1st, 2nd, and 3rd) and the incidence of 
canal switching.

2.7 BPPV virtual simulation model

A BPPV virtual simulation model was employed to visualize and 
analyze otolith movement during traditional and modified Epley 
maneuvers (17). Developed using Unity 3D software (version 2020.3) 
and the NVIDIA physics engine, the model simulated head 
movements and postural changes based on maneuver parameters (17). 
Real patient nystagmus data from the G-Force swivel chair system 
were used for calibration and validation, generating realistic and 
dynamic images of otolith movement in the semicircular canal under 
varying head positions (16, 18, 19).

2.8 Statistical analysis

Data analysis utilized SPSS 22.0 software, with measurement data 
expressed as x ± s. The t-test compared the age of the two groups, while 
the Mann–Whitney U test compared disease duration due to 
non-normal distribution. χ2 was employed for comparing patient 
history of vestibular disease, gender, underlying disease, laterality of 
the involved semicircular canal, and repositioning effect, with a 
significance level set at α = 0.05.

TABLE 1 Comparison of baseline information of the 2 groups of patients.

Characteristic Control group Experimental group χ2/t/Z P

Male/Cases (%) 10(31) 9(27) 0.124 0.724

Age/Years 51.59 ± 14.74 7.09 ± 14.3 1.254 0.932

History of vestibular disease/Cases(%) 8(25) 14(42) 2.203 0.138

Disease duration/d 20.69 ± 64.0 6.27 ± 8.0 1.769 0.077

Right posterior semicircular canal/Cases(%) 16(50) 20(61) 0.740 0.390

Left posterior semicircular canal/Cases(%) 16(50) 13(39) 0.740 0.390

Combined Hypertension/Cases(%) 10(31) 8(24) 0.398 0.528

Combine Diabetes/Cases(%) 3(9) 3(9) 0 1

The duration of the latency time/Seconds 0.875 ± 2.091 0.909 ± 2.777 0.056 0.478

Time of nystagmus/Seconds 16.375 ± 8.354 15.485 ± 7.041 0.465 0.322

FIGURE 1

The G-Force swivel chair system.
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3 Results

3.1 Repositioning outcomes

In the Control group, the traditional Epley maneuver 
successfully repositioned 32 cases. Among these, 20 cases were 
successfully repositioned on the first attempt, accounting for 63%. 

Additionally, 6 cases were successfully repositioned on the second 
attempt (19%), and 2 cases required three attempts for successful 
repositioning (6%). Unfortunately, 4 cases in the Control group 
were converted into horizontal semicircular canals, constituting 
13% of the cases.

In the experimental group, the modified Epley maneuver 
successfully repositioned 33 cases. Of these, 28 cases were 

FIGURE 2

The structure of the semicircular canal shows the anterior, horizontal, and posterior canals. By using the crista as a boundary, the semicircular canal is 
divided into short and long arms. Besides, the long arm is divided into lower, posterior and upper parts.

FIGURE 3

Operational flowchart of the right Epley maneuver and the modified right Epley maneuver. The left side shows the schematic diagram of the head 
position and the right side shows the corresponding virtual simulation model of the right semicircular canal. Red dots represent otoliths. AC: anterior 
semicircular canal; HC: horizontal semicircular canal; PC: posterior semicircular canal.
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successfully repositioned on the first attempt, constituting 85%. 
Moreover, 5 cases were successfully repositioned on the second 
attempt (15%) (see Table 2). The first repositioning success rate in 
the experimental group was significantly different from that of the 
Control group, with the experimental group showing superior 
performance (χ2 = 4.201, p = 0.040) (see Figure 4). Importantly, in 
the experimental group, resulting in a 100% success rate after two 
repositioning attempts, while in the Control group, two cases 
required triple repositioning maneuvers for success. Furthermore, 
no canal switching occurred in the experimental group. Despite 
these variations, there was no significant difference in the total 
repositioning success rate between the two groups (χ2 = 2.498, 
p = 0.114).

3.2 BPPV virtual simulation model

The BPPV simulation model illustrated that during the head-
down position of the Epley maneuver, the otoliths in the posterior 
semicircular canal entered the utricle via the common duct (see 
Figure  5). In the supine position, the otoliths in the posterior 
semicircular canal were prone to deposition in the posterior arm (see 
Figure 6).

Upon direct transfer of the patient to the healthy side lateral 
position after the supine position, the simulation model demonstrated 
that the otolith in the obstructed position moved away from the 
ampulla. Subsequently, under the influence of gravity, the otolith left 

the posterior semicircular canal and entered the common crus. This 
position was found to be more conducive for the otolith to slide into 
the common duct (see Figure 7). Drawing on clinical experience, 
extending the retention time in the lateral position of the healthy side 
to 5 min was deemed sufficient for the otolith to effectively enter the 
common duct.

4 Discussion

The Epley maneuver, a widely utilized repositioning technique 
for posterior canal benign paroxysmal positional vertigo 
(PC-BPPV), may encounter challenges such as ineffectiveness or 
canal switching.

In this study, we introduce a novel modified Epley maneuver and 
analyze its mechanism using the BPPV virtual simulation model.

This modification involved prolonging the time in the healthy side 
lying position and the final bowing position. Our findings indicate 
that the modified Epley maneuver significantly enhanced the single 
repositioning success rate and reduced the incidence of canal 
switching in PC-BPPV when compared to the traditional 
Epley maneuver.

Several factors contribute to the failure or complication of 
the Epley maneuver for PC-BPPV (10), including anatomical 
variations, membranous canal stenosis, otolith adhesion, otolith 
re-entry, incorrect diagnosis, and inadequate repositioning 
technique (2, 20–23).

TABLE 2 Comparison of the repositioning effect of the 2 groups of patients.

Group n Number of first 
successful 

repositions/
Cases(%)

Number of 
second 

successful 
repositions /

Cases(%)

Number of third 
successful 

repositions/
Cases(%)

Total number of 
failed 

repositions/
Cases (%)

Total number of 
successful 

repositions/
Cases (%)

Control group 32 20(63) 6(19) 2(6) 4(13) 28(86)

Experimental group 33 28(85) 5(15) 0(0) 0(0) 33(100)

χ2 4.201 0 0 0 2.498

p 0.040 1 1 1 0.114

FIGURE 4

The success rate of first reposition. The success rate was significantly higher in the experimental group than in the Control group. (χ2test: p  <  0.05).
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 1) Anatomical variations of the affected semicircular canal, such 
as semicircular canal fistula or fracture, which may prevent the 
complete discharge of otoliths or debris in the expected 
direction during the head movements (20).

 2) Membranous canal stenosis, which may occur when the 
otoliths or debris partially adhere to the membranous 
semicircular canal, especially the common crus, causing a 
narrowing of the lumen and impeding the expulsion of the 
remaining otoliths or debris (21).

 3) Otolith adhesion, which may occur when the otoliths or debris 
adhere to the cupula or ampulla of the affected semicircular 
canal, making them resistant to gravity and head 
movements (22).

 4) Otolith re-entry, which may occur when the otoliths or debris 
that have entered the utricle fall off again and re-enter the 
semicircular canal, either the same one or a different one, 
causing recurrent or converted BPPV (23).

 5) Incorrect diagnosis, which may occur when the affected side or 
canal is misidentified, leading to inappropriate repositioning 
maneuvers or false negative results (2).

 6) Inadequate repositioning technique, which may occur when 
the head movements are not performed with sufficient speed, 
angle, or duration, or when the postural holding time is 
too short, leading to incomplete relocation of otoliths or 
debris (2).

Notably, some patients exhibited no significant movement of 
otoliths or debris during the head-down position of the Epley 
maneuver, suggesting an obstruction in the posterior arm of the 
posterior semicircular canal. This obstruction hindered otolith 
movement into the utricle, leading to vertigo upon returning to the 
sitting position. To validate this observation, we  utilized a BPPV 
virtual simulation model, demonstrating that extending the time in 
the healthy side lying position facilitated otolith movement through 
the posterior arm, preventing their return to the ampulla and 
subsequent vertigo.

The model illustrated an obstruction in the posterior arm during 
the head-down position, impeding otolith passage through the 
common crus (Figure  5). Transitioning to the healthy side lying 
position facilitated otolith movement away from the ampulla, aiding 
their entry into the common crus (Figure 7). Extending the postural 
holding time in this position enhanced otolith passage through the 
posterior semicircular canals, particularly past the site of obstruction, 
preventing their dislodgment.

In a randomized controlled trial involving 65 unilateral PC-BPPV 
patients, our modified Epley maneuver demonstrated a significant 
improvement in the single repositioning success rate (85%) compared 
to the traditional Epley maneuver (63%). Additionally, the canal 
switching rate was reduced to 0% in the experimental group compared 
to 13% in the control group, indicating the efficacy and safety of 
our modification.

FIGURE 5

In the head-downward position of the Epley maneuver, the otoliths in the posterior semicircular canal enter the utricle through the common duct. The 
red arrow represents the direction of otolith advancement.

FIGURE 6

Position of otolith deposition in the supine position. The red arrow indicates where the otolith is obstructed.
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Comparisons with other modified Epley maneuvers from existing 
studies reveal varying success rates. The Semont maneuver achieved 
success rates of 72–84% and 92–93% after one and two maneuvers, 
respectively (24, 25). The Modified Epley Maneuver achieved success 
rates of 76.2–83% and 92–95.2% after one and two maneuvers (25, 26). 
A shorter variant of Epley’s treatment is the so-called Quick Liberatory 
Rotation, based on the same principles and technique as Gans 
maneuver (27), achieved success rates of 81 and 96% after one and two 
maneuvers, respectively (27, 28).

Our modified Epley maneuver demonstrated a one-maneuver 
success rate of 85% and a two-maneuver success rate of 100%, 
suggesting its efficacy in achieving superior treatment outcomes.

In summary, our modified Epley maneuver effectively addresses 
challenges associated with PC-BPPV by overcoming obstructions in 
the posterior arm, resulting in more efficient and safer otolith 
relocation to the utricle. While various modifications of the Epley 
maneuver have shown improvements, our modification significantly 
reduces the need for repeated maneuvers, potentially enhancing 
treatment adherence in BPPV patients.

Despite these promising findings, our study has limitations, 
including a relatively small sample size that may impact the 
generalizability of results. Additionally, our study did not encompass 
patients with bilateral or multiple canal involvement, necessitating 
further investigation to assess the applicability and efficacy of our 
modified Epley maneuver for these cases.

5 Conclusion

The utilization of the BPPV virtual simulation model emerges 
as a valuable tool for both studying and refining repositioning 
maneuvers in benign paroxysmal positional vertigo (BPPV). In 
particular, the modified Epley maneuver, applicable to patients 
with posterior semicircular canal BPPV, even those with 
semicircular canal obstruction, extends the duration of the 
healthy side lying position. This extension proves beneficial in 
facilitating the expulsion of otoliths. Our study contributes a 
novel treatment approach for patients with posterior canal BPPV, 
particularly those with refractory cases, offering a promising 
therapeutic option.
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FIGURE 7

Observation of otolith passage through the obstructed position in the healthy side lying position. The red arrow represents the direction of otolith 
advancement.
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Three-dimensional 
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Speech and Balance Medicine, Tianjin, China, 4 Key Medical Discipline of Tianjin (Otolaryngology), 
Tianjin, China, 5 Quality Control Centre of Otolaryngology, Tianjin, China

Objective: The study aimed to analyze the three-dimensional characteristics 
of nystagmus induced by different semicircular canal combinations in 
healthy young people, and to determine the reference range of nystagmus 
slow phase velocity (SPV) and its asymmetry.

Materials and methods: Fifty-two healthy volunteers (26 males and 26 
females, aged 17–42  years, average 23.52  ±  6.59), were recruited to perform 
the manual triaxial rotation testing with a 3D-Videonystagmography 
(3D-VNG) device (VertiGoggles (ZT-VNG-II), Shanghai ZEHNIT Medical 
Technology Co., Ltd., Shanghai, China) using a 0.3  Hz prompt beat and a 
90° amplitude, respectively. The induced nystagmus around the Z-, X-, and 
Y-axes were recorded in the yaw, pitch, and roll planes. The directions and 
slow phase velocities of the horizontal, vertical, and torsional components of 
the induced nystagmus under different semicircular canal combinations (the 
left lateral and right lateral semicircular canal combination, bilateral anterior 
semicircular canals, bilateral posterior semicircular canals combination, and 
the anterior and posterior semicircular canals combination of each ear), as 
well as their asymmetry, were taken as the observation indexes to analyze 
the characteristics of the nystagmus vectors of different combinations.

Results: Fifty-two healthy volunteers had no spontaneous nystagmus. 
The characteristic nystagmus was induced by the same head movement 
direction in all three axial rotation tests. The SPVs of the left and right 
nystagmus were 44.45  ±  15.75°/s and 43.79  ±  5.42°/s, respectively, when the 
subjects’ heads were turned left or right around the Z-axis (yaw). The SPVs 
of vertically upward and downward nystagmus were 31.67  ±  9.46°/s and 
30.01  ±  9.20°/s, respectively, when the subjects’ heads were pitched around 
the X-axis (pitch). The SPVs of torsional nystagmus, with the upper poles 
of the eyes twisting slowly to the right and left ears (from the participant’s 
perspective), were 28.99  ±  9.20°/s and 28.35  ±  8.17°/s, respectively, when 
the subjects’ heads were turned left or right around the Y-axis (roll). There 
was no significant difference in the SPVs of nystagmus induced by the same 
rotation axis in two opposite directions (p  >  0.05). The reference ranges 
for the slow phase velocities (SPVs) of nystagmus induced by the triaxial 
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rotation testing were as follows: For the Z-axis (yaw), the SPVs were 13.58–
75.32°/s for leftward head rotation and 13.56–74.02°/s for rightward head 
rotation. For the X-axis (pitch), the SPVs were 13.13–50.21°/s for upward 
head nystagmus and 11.98–48.04°/s for downward head nystagmus. For the 
Y-axis (roll), the SPVs were 10.97–47.02°/s for the left-sided head rotation 
and 12.34–44.35°/s for the right-sided head rotation.

Conclusion: This study clarified the three-dimensional characteristics of 
nystagmus induced by different semicircular canal combinations in healthy 
young people. It also established a preliminary reference range of SPVs and 
SPV asymmetry of nystagmus induced by the vertical semicircular canal. It 
can further provide a basis for the mechanism of semicircular canal-induced 
nystagmus and the traceability of nystagmus in patients with otogenic 
vertigo. It is shown that the portable  3D-VNG eye mask can be  used for 
the manual triaxial rotation testing to achieve the evaluation of the low-
frequency angular vestibulo-ocular reflex (aVOR) function of the vertical 
semicircular canal, which is convenient, efficient, and practical.

KEYWORDS

nystagmus, vertical semicircular canal, rotation test, 3D-VNG, SPV, nystagmus 
direction

1 Introduction

Peripheral vestibular spontaneous and induced nystagmus serve as 
objective signs of asymmetric input from the same plane semicircular 
canals or different semicircular canal combinations between the two 
ears. These are crucial for the diagnosis, treatment, rehabilitation, and 
evaluation of otogenic vertigo. It can be  horizontal, horizontally 
torsional, or vertically torsional (von Brevern et al., 2015; Strupp et al., 
2022). The characteristics of peripheral vestibular nystagmus abide by 
Ewald’s law, but this law is limited to a single semicircular canal effect in 
animals. Previous studies have also shown that the characteristics of 
nystagmus in BPPV-Canalolithiasis represent the manifestation of 
Ewald’s law in a single semicircular canal effect (single canal mode) 
(Zhang et al., 2021). If two or more semicircular canals or different 
combinations of semicircular canals get impaired, their detailed 
nystagmus characteristics (Eggers et al., 2019) are rarely reported. The 
evaluation of semicircular canal function is a major aspect of the 
evaluation of vestibular function in patients with vertigo and balance 
disorders. At present, there are many clinical evaluation methods for the 
lateral semicircular canal, including the caloric test (0.003 Hz), head 
shaking test (2 Hz), rotation test (SHAT, 0.01–3 Hz), active rotation test 
VAT (2–6 Hz), passive rotation test, the video head impulse test (vHIT), 
(2–5 Hz), etc., involving low-frequency, medium-frequency, and high-
frequency functional area detection, with a wide frequency coverage. 
However, there are few evaluation techniques for the vertical 
semicircular canal. In 1963, Robinson proposed the magnetic sclera 
search coil system (Eibenberger et al., 2016), which quickly became the 
recognized standard for accurately recording eye movement. In 1964, 
Suzuki et  al. (1964) conducted animal experiments, surgically 
implanting electrodes to stimulate the ampullary nerve of the vertical 
semicircular canal, and observed the eye movement of four different 
animals with photographic records. In 1988, Halmagyi and Curthoys 
(1988) introduced this technology to evaluate the function of the lateral 
semicircular canal. It was subsequently adopted to evaluate the function 

of the vertical semicircular canals, thereby evolving into a reliable 
method for recording the three-dimensional eye movement. In 1996, 
Fetter and Dichgans (1996) studied the three-dimensional 
characteristics of spontaneous nystagmus and nystagmus induced by 
rotation of the semicircular canal in different planes, as well as the 
dynamic characteristics of the lateral, anterior, and posterior 
semicircular canals (vestibulo-ocular reflex, VOR) in patients with 
“vestibular neuritis” by using the magnetic sclera search coil technology. 
They also conducted vector analysis. Despite its effectiveness, the 
invasive and costly nature of this technology limited its widespread use 
from 1988 to 2008 (Halmagyi et al., 2017). In 1988, Halmagyi and 
Curthoys first reported the HIT technology (Halmagyi and Curthoys, 
1988; Curthoys et al., 2023). In 2009, MacDougall (MacDougall et al., 
2009) further developed this into a noninvasive variant (vHIT) to detect 
the lateral semicircular canal abnormalities. By 2013, vHIT could 
objectively and quantitatively detect high-frequency (2–5 Hz) aVOR 
injury of the six semicircular canals (Macdougall et al., 2013). Since 
then, detecting the vertical semicircular canal mainly relies on vHIT and 
VAT, both of which focus on the high-frequency functional area. In 
2001, Iida (Iida et al., 2001) proposed a stimulation method for the 
vertical semicircular canal by using the head position of 60° backward 
and 45° left/right inclination. However, this method is only suitable for 
mechanism exploration, rather than clinical application due to its 
limited practicality. In the same year, Young (Young et al., 2001) used 
3D-VNG (Ulmer, France Synapsys) to conduct the three-dimensional 
analysis of post-caloric nystagmus in different postures. In 2003, Morita 
(Morita et  al., 2003) explored a method for detecting the vertical 
semicircular canal abnormalities using different head positions during 
the traditional low-frequency swivel chair rotation around the vertical 
axis. However, due to the need for a large swivel chair or invasive 
technology, as well as the age limitation and difficulty in controlling the 
head position, the method was deemed impractical. Recently, 3D-VNG 
has attracted broad attention (Liu et al., 2022). However, it is limited to 
the three-dimensional nystagmus record and analysis in the caloric test, 
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positional test, and the evaluation of low–medium frequency of aVOR 
function of the lateral semicircular canal during the rotation tests. In the 
early stage, our research center initially applied 3D-VNG to analyze the 
characteristics and mechanism of nystagmus in benign paroxysmal 
positional vertigo (BPPV) (Liu et al., 2022). This analysis proved that 
BPPV was the embodiment of Ewald’s law in humans, and can be used 
as a nystagmus model for the single semicircular canal under single-
factor stimulation (Zhang et  al., 2021). However, otogenic vertigo 
diseases usually involve two or more semicircular canals. Therefore, a 
more comprehensive and effective method is necessary for multi-
frequency evaluation of the semicircular canal system. In this study, a 
portable 3D-VNG eye mask was used to investigate the feasibility of 
low-frequency aVOR-induced nystagmus in the vertical semicircular 
canal. The aim was to record and analyze the directions and slow phase 
velocity (SPV) characteristics of horizontal, vertical, and torsional 
components of low-frequency aVOR-induced nystagmus of each 
semicircular canal and different semicircular canal combinations under 
different axial stimuli via the 3D-VNG, to provide a basis for the 
mechanism of semicircular canal induced nystagmus and tracing 
nystagmus in patients with otogenic vertigo. It can also provide a more 
convenient, efficient, and practical approach for low-frequency 
measurement technology of all semicircular canals.

2 Materials and methods

2.1 Participants

From July to September 2023, 52 healthy young volunteers were 
recruited to record the three-dimensional nystagmus using 
3D-Videonystagmography (3D-VNG) in the Department of 
Otorhinolaryngology, Tianjin Institute of Otorhinolaryngology, and 
Tianjin Key Laboratory of Auditory Speech and Balance Medicine in 
Tianjin First Central Hospital. All participants provided informed 
consent before being included in the study. This study has been 
approved by the Ethics Committee of Tianjin First Central Hospital.

2.2 Methods

There were 52 healthy volunteers (26 males and 26 females, aged 
17–42 years, average 23.52 ± 6.59). They all declared no medical 
history of tinnitus, deafness, dizziness, vertigo, or equilibrium 
disorders. None of the participants exhibited any cochlear, vestibular, 
or ophthalmic symptoms or clinical signs, including covert or overt 
strabismus. Using a 3D-VNG meter (VertiGoggles (ZT-VNG-II), 
Shanghai ZEHNIT Medical Technology Co., Ltd., Shanghai, China), 
the same physician performed the manual triaxial rotation testing on 
volunteers, who were seated upright in the examination chair and 
wore a 3D-VNG eye mask with two high-resolution and high-
frequency cameras recording their binocular movements, respectively. 
After calibration, the spontaneous nystagmus was recorded first. 
Thereafter, the triaxial passive rotation test was performed with a 
prompt beat sound of 0.3 Hz and a total amplitude of 90° rotation 
(referring to the following study procedure below) (Figure 1). The 
eye-tracking windows and the eye-tracing curves were used to detect 
nystagmus, including its direction. Employing different semicircular 
canal combinations, the characteristics of nystagmus vectors were 

analyzed by observing the directions, SPVs, and asymmetry of 
different horizontal, vertical, and torsional components of nystagmus.

2.3 Study procedure

The head was turned left and right in the yaw plane around the 
vertical axis (Z) to stimulate the left and right lateral semicircular canals, 
respectively (Figure  1, Row A). The head was pitched around the 
interauricular axis (X) along the pitch plane to stimulate the combination 
of the anterior semicircular canals of both ears and the combination of 
the posterior semicircular canals of both ears (double-canal mode), 
respectively (Figure 1, Row B). The head was tilted to the left and right 
in the roll plane around the anterior and posterior axis, namely the nasal 
occipital axis (Y), and the anterior and posterior semicircular canal 
combination of each ear was stimulated (double-canal mode), 
respectively (Figure 1, Row C). Then, the induced nystagmus of the 
passive rotation around the Z, X, and Y axes were recorded.

The asymmetry of induced nystagmus SPV was calculated based 
on the formulae:

 1 SPV asymmetry in horizontal nystagmus induced by the left 
and right lateral semicircular canals:

 • | (Lleft − Lright) / (Lleft + Lright) | *100%
 • = | (SPVYawL − SPVYawR) / (SPVYawL + SPVYawR) | *100%

 2 SPV asymmetry in vertical nystagmus induced by bilateral 
anterior semicircular and bilateral posterior semicircular 
canals combination:

 • | [(Aleft + Aright) − (Pleft + Pright)] / [Aleft + Aright + Pleft + Pright] | *100%
 • = | (SPVPitchA − SPVPitchP) / (SPVPitchA + SPVPitchP) | *100%

 3 SPV asymmetry in torsional nystagmus induced by bilateral 
anterior and posterior semicircular canals combination:

 • | [(Aleft + Pleft) − (Aright + Pright)] / [Aleft + Pleft + Aright + Pright] | *100%
 • = | [(SPVRollL − SPVRollR)] / [SPVRollL + SPVRollR] | *100%

2.4 Analysis

IBM SPSS Statistics 21 (IBM SPSS, Turkey) was used for statistical 
analyses. The quantitative data were presented as mean ± SD values 
and plotted using GraphPad Prism version 10 (GraphPad, San Diego, 
CA, United  States). A p value <0.05 was considered statistically 
significant. The two-sided reference range was ±1.96 SD and the 
single-sided reference range was ±1.65 SD.

3 Results

3.1 Demographic characteristics

A total of 52 healthy young volunteers were enrolled, including 26 
males and 26 females, aged 17–42 years (average 23.52 ± 6.59). The age 
range of males was 17–42 years (average 22.12 ± 6.61), while that for 
the females was 18–37 years (average 24.92 ± 6.39). No significant 
difference in age was observed between groups (p > 0.05).
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3.2 Characteristics of nystagmus induced 
by triaxial rotation testing

None of the 52 healthy young volunteers exhibited spontaneous 
nystagmus (Figure 2). The direction of nystagmus induced by triaxial 
rotation test mirrored the direction of head movement. The SPVs of 
left-to-right horizontal nystagmus induced by the left and right 
turning of the head around the Z-axis (yaw) were 44.45 ± 15.75°/s and 
43.79 ± 15.42°/s, respectively, with no vertical or torsional components 
observed. The SPVs of vertical downward-to-upward nystagmus 
induced by turning the head in the same direction around the X-axis 
(pitch) were 30.01 ± 9.20°/s and 31.67 ± 9.46°/s, respectively, without 
obvious horizontal or torsional components. The left and right biases 
around the Y axis (roll) induced the upper pole of the eye to twist fast 
toward the subject’s left ear, with the nystagmus SPV recorded as 
28.99 ± 9.20°/s, while the SPV for the upper pole of the eye twisting 
fast to the subject’s right ear was 28.35 ± 8.17°/s, accompanied by a 
slight horizontal component and no obvious vertical component. The 
average SPVs of the two-directional nystagmus induced by rotation 
around the Z-axis (yaw), X-axis (pitch), and Y-axis (roll) were 
44.12 ± 15.51°/s, 30.84 ± 9.32°/s, and 28.67 ± 8.66°/s, respectively. A 
significant difference was observed in the average SPVs of the 

nystagmus induced by rotation around the Z-axis (yaw) compared 
with those induced by rotation around the X-axis (pitch) and Y-axis 
(roll) (p < 0.001) (Figure 3A). Among them, the SPV of the three-
directional nystagmus induced by rotation around the Z-axis (yaw) 
was the largest, with the ratio of SPVYaw: SPVPitch and SPVYaw: SPVRoll of 
about 3:2, while that of SPVPitch: SPVRoll of about 1:1 (Figure 3B). No 
significant difference was found in the SPVs of nystagmus induced in 
different genders and between the aforementioned groups (p > 0.05). 
Similarly, there was no significant difference in the SPVs of the 
two-directional nystagmus induced by rotating around the same axis 
(p > 0.05).

The reference ranges for SPVs of nystagmus induced by the 
triaxial rotation testing were as follows:

 • For the left-directional rotation around the Z-axis (yaw): (13.58–
75.32) °/s.

 • For the right-directional rotation around the Z-axis (yaw): 
(13.57–74.02) °/s.

 • For the up-directional rotation around the X-axis (pitch): (13.13–
50.21) °/s.

 • For the down-directional rotation around the X-axis (pitch): 
(11.98–48.04) °/s.

FIGURE 1

The schematic diagram of the triaxial rotation testing. Gray boxes named “B” and “F” are the buttons to calibrate the gyroscope in every picture. Row 
(A–C) indicate the rotation protocol of three planes (yaw, pitch, and roll). The amplitude of rotation in each direction is 45 degrees. Red arrows depict 
the six semicircular canals of both inner ears. L-PSC, left-posterior semicircular canal; R-PSC, right-posterior semicircular canal; L-LSC, left-lateral 
semicircular canal; R-LSC, right-lateral semicircular canal; L-ASC, left-anterior semicircular canal; R-ASC, right-anterior semicircular canal.
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FIGURE 2

The induced nystagmus by the triaxial rotation testing. The movements of two eyes are displayed from top to bottom in the order of horizontal, 
vertical, and torsional components, with red lines for the right eye and blue for the left eye. The upward direction of each trace indicates the right, up, 
and upper pole of the eye beating slowly toward the left ear from the subject’s perspective. (A) spontaneous nystagmus. The spontaneous nystagmus 
(SN) of a participant was negative and remained negative after fixation. (B) The head was turned left and right in the yaw plane around the vertical axis 
(Z). When the physician rotated the subject’s head left to right back and forth at the yaw plane, horizontally left and right nystagmus appeared. (C) The 
head was pitched around the interauricular axis (X) along the pitch plane. When the physician rotated the subject’s head up and down back and forth at 
the pitch plane, vertically up and down nystagmus appeared. (D) The head was rolled to the left and right side around the nasal occipital axis (Y) at the 
roll plane. When the physician rotated the subject’s head left to right back and forth at the roll plane, torsional (upper pole of the eye beating toward 
the right/left ear from the subject’s perspective) nystagmus appeared.

FIGURE 3

This figure illustrates the results of the triaxial rotation tests. (A) depicts the relationship among the slow phase velocities (SPVs) of nystagmus induced 
by these tests. (B) presents the ratios of SPVs of nystagmus induced by the same tests. The direction of nystagmus is indicated as left/right, upward/
downward, or Right/Left (the upper pole of the eye beating toward the right/left ear (from the participant’s perspective). The red color represents 
positive-direction nystagmus or right semicircular canals, while blue signifies negative-direction nystagmus or left semicircular canals. The horizontal 
(black), vertical (gray), and torsional (yellow) components of nystagmus are also depicted. Statistical significance is denoted as follows: ‘***’ for 
p  <  0.001 and ‘ns’ for not significant.
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 • For the left-directional rotation around the Y-axis (roll): (10.97–
47.02) °/s.

 • For the right-directional rotation around the Y-axis (roll): 
(12.34–44.35) °/s.

The reference ranges of SPVs of horizontal nystagmus induced by 
rotation around the Z-axis (yaw), vertical nystagmus induced by 
rotation around the X-axis (pitch), and rotational nystagmus induced 
by rotation around the Y-axis (roll) were 13.72–74.52°/s, 12.57–
49.11°/s and 11.7–45.64°/s, respectively (Table 1).

3.3 The asymmetry of induced nystagmus 
SPVs and its reference range by triaxial 
rotation testing

SPV asymmetry for the nystagmus induced by the triaxial rotation 
testing was 11.8 ± 9.1% for yaw, 15.1 ± 13.0% for pitch, and 10.8 ± 7.8% 
for roll, respectively (Table 2).

4 Discussion

4.1 Three-dimensional characteristics and 
clinical significance of the low-frequency 
induced nystagmus of each semicircular 
canal in healthy young people

The detection of vertical semicircular canal function has posed a 
significant challenge in clinical vestibular medicine. The traditional 
sine harmonic acceleration (SHA) around the vertical axis is limited 
to detecting the aVOR function in the low-frequency region of the 
lateral semicircular canal. Although vHIT can detect all six 
semicircular canals, it only detects the aVOR function in the high-
frequency region of each semicircular canal (Liu et al., 2023; Ramaioli 

et al., 2023). Despite many studies (Baloh et al., 1986; Iida et al., 2001; 
Young et al., 2001) have explored methods to detect the low-frequency 
region of the vertical semicircular canal, their clinical applicability 
remains limited due to the high cost, invasiveness, age restrictions, 
and difficulties of head position control.

In this study, a 3D-VNG eye mask was used to perform the 
manual triaxial rotation testing focusing on the vertical semicircular 
canal. The results showed no statistical significance when comparing 
SPVs of nystagmus induced by two opposite directions of the same 
rotation. This suggests that this portable manual triaxial rotation 
testing could consistently stimulate nystagmus to the same extent in 
two opposite directions of the same rotation axis, with equivalent 
nystagmus SPVs. This aligns with the characteristics of vestibular 
function examination, where equal physiological stimulation can 
induce an equal effect, which can provide a reliable reference for 
future studies on the mechanism and location of damage in the 
different vertical semicircular canals at low frequencies. This study 
also showed that the type of nystagmus is contingent on the plane of 
head movement: the horizontal nystagmus was primarily observed 
with left and right head turns in the yaw plane, the vertical nystagmus 
with head tilts in the pitch plane, and the torsional nystagmus 
(accompanied with a slight horizontal component) mainly with left 
and right head turns in the roll plane. The SPVs of induced nystagmus 
in the yaw plane were the largest, followed by the pitch plane, while 
the roll plane was the smallest. The SPV ratio for yaw plane to pitch 
plane-induced nystagmus was approximately 3:2, while that for pitch 
plane to roll plane-induced nystagmus was approximately 1:1. The 
reasons for the mild horizontal component of nystagmus induced by 
the left and right head deviation in the roll plane and the unequal SPV 
in the three planes may be due to off-axis stimulation of the vertical 
semicircular canal. This aligns with reports by Benson et al. (1989) and 
Allred and Clark (2023) suggesting a higher perception threshold for 
the vertical semicircular canal than that for the lateral semicircular 
canal. In 1979 and 2023, it was reported that when the rotation axis is 
not parallel to the gravitational acceleration vector, the effect of the 

TABLE 1 The direction and SPV of induced nystagmus in 52 subjects.

Rotation plane Yaw Pitch Roll

Direction Left Right Upward Downward Right Left

Sex (M:F) 1:1 1:1 1:1 1:1 1:1 1:1

M* SPV (°/s) 42.81 ± 13.63 43.31 ± 12.28 31.78 ± 8.27 30.72 ± 7.53 28.11 ± 6.80 27.80 ± 7.41

F* SPV (°/s) 46.08 ± 17.73 44.27 ± 18.27 31.56 ± 10.68 29.30 ± 10.72 29.87 ± 11.17 28.89 ± 8.97

Both SPV (°/s) 44.45 ± 15.75 43.79 ± 15.42 31.67 ± 9.46 30.01 ± 9.20 28.99 ± 9.20 28.35 ± 8.17

RVSPV (°/s) (13.58, 75.32) (13.57, 74.02) (13.13, 50.21) (11.98, 48.04) (10.97, 47.02) (12.34, 44.35)

SPV (°/s) 44.12 ± 15.51 30.84 ± 9.32 28.67 ± 8.66

RVSPV (°/s) (13.72–74.52) (12.57–49.11) (11.7–45.64)

Both, male and female; M, male; F, female; *p > 0.05; left/right, upward/downward, right/left (upper pole of the eye beating toward the right/left ear (from the participant’s perspective), the 
direction of nystagmus; SPV, slow phase velocity; RV, reference value of slow phase velocity.

TABLE 2 The induced nystagmus SPV asymmetry of multiaxial rotation test and its reference value in 52 subjects.

Rotation plane Yaw Pitch Roll P – value

SPV asymmetry (%) 11.8 ± 9.1 15.1 ± 13.0 10.8 ± 7.8 0.140**

RVSPV Asymmetry (%) (0, 26.8) (0, 36.6) (0, 23.7) /

**p > 0.05; SPV, slow phase velocity; RVSPV Asymmetry, reference value of slow phase velocity asymmetry; ‘/’, no value.
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velocity storage mechanism diminishes or disappears (Raphan et al., 
1979; Allred and Clark, 2023). This characteristic was also observed 
in this study. In 1988, Lafortune et al. (1988) studied the effect of 
otoliths organ-mediated activity induced by triaxial active head 
position changes coupled with human horizontal velocity storage on 
optokinetic afternystagmus (OKAN) in 16 subjects. They found that 
OKAN was inhibited along the pitch or roll plane but enhanced along 
the yaw plane, suggesting a potential correlation.

In 2003, Morita (Morita et  al., 2003) stimulated the vertical 
semicircular canal by tilting the head back 60° and rotating it 45° from 
the sagittal plane to either side. The findings revealed that the vertical 
semicircular canal function was less affected by the velocity storage 
mechanism than the lateral semicircular canal function. These results 
are consistent with previous research (Liu et  al., 2022), and the 
relationship between nystagmus SPVs (3:2 and 1:1) is consistent with 
the physiological characteristics of the semicircular canals. In 
addition, this study established the reference ranges for SPVs induced 
by the triaxial rotation testing: the SPV reference ranges for the left 
and right horizontal nystagmus induced by the left and right rotation 
around the Z-axis (yaw) were 13.58–75.32°/s and 13.56–74.02°/s, 
respectively. The SPV reference ranges of the vertical upward and 
downward nystagmus induced by head elevation and head bowing 
around the X-axis (pitch) were 13.13–50.21°/s and 11.98–48.04°/s, 
respectively. For the left/right rotation induced by head tilt around the 
Y-axis (roll) (from the subject’s perspective), the reference range for 
normal nystagmus SPV was 10.97–47.02°/s and 12.34–44.35°/s, 
respectively. The mean values of SPV asymmetry induced by the 
triaxial rotation around the Z-axis (yaw), X-axis (pitch), and Y-axis 
(roll) were 11.8 ± 9.1%, 15.1 ± 13.0%, and 10.8 ± 7.8%, respectively, 
with no statistical significance (p = 0.140). The reference ranges of one 
side were 0, 26.8%, 0, 36.6%, and 0, 23.7%, respectively. The above 
normal reference ranges can provide a reliable reference for 
quantitative analysis of the low-frequency damage of different vertical 
semicircular canals. The asymmetric reference range for SPV of 
induced nystagmus by the pitch plane rotation is larger than those of 
nystagmus induced in the yaw and roll planes, which may be related 
to the effect of receiving the same stimulation in the anterior and 
posterior semicircular canals. Aw et al. (1998) stimulated the three 
semicircular canals by caloric tests and found that the induced 
nystagmus of the lateral semicircular canal was the strongest, and the 
SPV for the induced nystagmus of the anterior and posterior 
semicircular canal was 30% and 10%, respectively. The difference 
between this report and our study results may be due to the different 
stimulation frequencies of the two methods or the simultaneous 
stimulation of the two anterior and two posterior semicircular canals 
in this study.

Modern diagnosis and treatment of vertigo put forward higher 
requirements for the recording of eye movements. To align with the 
evolution of big data and intelligence in vertigo diagnosis and 
treatment, a study (Kattah and Newman-Toker, 2022; Parker et al., 
2022) on big data of vertigo telemedicine was conducted in the 
United States in recent years. However, it was unsuccessful due to the 
lack of a reliable eye movement recording system. This study, following 
the description method of nystagmus presented by the Barany 
Association in 2019 (Eggers et al., 2019), applied a portable 3D-VNG 
eye mask to carry out the low-frequency manual triaxial rotation 
testing on each semicircular canal and different semicircular canal 
combinations. We  analyzed the SPV characteristics of induced 

nystagmus and discussed the application of this method for detecting 
the lateral semicircular canal. We also evaluated the feasibility of the 
low-frequency aVOR-induced nystagmus in the vertical semicircular 
canal. The results of this study show that the manual triaxial rotation 
testing can be used to evaluate the function of the low-frequency 
aVOR of the semicircular canals. Specifically, the horizontal 
nystagmus, induced by rotation around the Z-axis (yaw), can 
distinguish the damaged side of the left and right lateral semicircular 
canals. Rotation around the X-axis (pitch) induces vertical nystagmus, 
which identifies the anterior and posterior semicircular canals. This, 
in combination with rotation around the Y-axis (roll), identifies the 
left and right vertical semicircular canals, thereby localizing damage 
to the vertical semicircular canal. The damage of any one of the 
vertical semicircular canals can be  deduced from the SPV of 
nystagmus induced by the combinations of “double anterior + double 
posterior” semicircular canals and “anterior + posterior on each side” 
semicircular canals by rotating in the pitch plane and roll plane, 
respectively. For example, nystagmus induced by rotation along the 
pitch plane is characterized by a smaller SPV for the vertical downward 
nystagmus compared to that of the vertical upward nystagmus 
[(LA + RA) < (LP + RP)]. Nystagmus induced by rotation along the roll 
plane shows a smaller SPV for the right-rotatory nystagmus compared 
to that of the left-rotatory nystagmus [(RA + RP) < (LA + LP)], 
suggesting damage to the right anterior (RA) semicircular canal, and 
vice versa. Similarly, the function of the right anterior/right posterior 
semicircular canal and the left anterior/left posterior semicircular 
canal can be evaluated separately based on the SPV characteristics of 
the nystagmus induced by rotation along the pitch and roll planes 
(referring to the formula below). The results of our study show the 
characteristics of nystagmus induced by different semicircular canal 
combinations, which can help to provide objective support for tracing 
the injury localization of one or two semicircular canals, especially 
vertical semicircular canals, and further provide objective quantified 
big data and machine learning algorithms of AI technology for 
otogenic disease in the future.

The damage of every one of the vertical semicircular canals can 
be deduced based on the formula:

 1 RAloss ⇒ [(LA + RAloss) < (LP + RP)] + [(RAloss + RP) < (LA + LP)];
 2 LPloss ⇒ [(LA + RA) < (LPloss + RP)] + [(RA + RP) < (LA + LPloss)];
 3 LAloss ⇒ [(LAloss + RA) < (LP + RP)] + [(RA + RP) < (LAloss + LP)];
 4 RPloss ⇒ [(LA + RA) < (LP + RPloss)] + [(RA + RPloss) < (LA + LP)].

4.2 Mechanism analysis of the 
low-frequency induced nystagmus of each 
semicircular canal

The test results showed that turning the head around the Z-axis 
(yaw) stimulates the left and right lateral semicircular canals, inducing 
left and right horizontal nystagmus, respectively. Pitching the head 
around the X-axis (pitch) stimulates the combination of the anterior 
semicircular canals of both ears and the combination of the posterior 
semicircular canals of both ears (double-canal mode), inducing 
vertical downward and upward nystagmus. Rolling the head around 
the Y-axis (roll) to the left and the right stimulates the anterior and 
posterior semicircular canals (double-canal mode) of each ear, 
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respectively, inducing significant torsional nystagmus. Given that the 
lateral semicircular canal is at a physiological angle of 30° to the 
ground, the torsional nystagmus was accompanied by a mild 
horizontal nystagmus. The direction and SPV characteristics of 
nystagmus induced by the triaxial rotation testing were analyzed. The 
SPV induced by nystagmus in two opposite directions of the same 
rotation axis was not statistically significant. This suggests that this 
portable manual triaxial rotation testing can achieve consistent results, 
namely that an equal amount of induced nystagmus SPV is induced 
by an equal of stimulation in two opposite directions around the same 
rotation axis. The test exhibits the characteristic where an equal 
amount of physiological stimulation induces an equal amount of effect 
(Figure 2).

4.3 Mechanism analysis

4.3.1 When the head rotates to the left around the Z-axis (yaw), 
the bilateral lateral semicircular canal aligns with the plane of rotation. 
Consequently, the endolymph fluid in the left lateral (LL) semicircular 
canal flows to the ampullary crest, producing excitatory stimulation, 
while, in the right lateral (RL) semicircular canal, it flows away, 
producing inhibitory stimulation. This excites the left lateral (LL) 
semicircular canal, activating the left medial rectus (MR) and the right 
lateral rectus (LR), producing a combined effect to produce a slow-
phase eye movement to the right (the fast phase of nystagmus in the 
opposite direction). Similarly, when the head rotates to the right 
around the Z-axis (yaw), the bilateral lateral semicircular canal aligns 
with the rotation plane. Thereafter, the endolymph fluid in the right 
lateral (RL) semicircular canal flows to the ampulla crest, producing 
excitatory stimulation, while, in the left lateral (LL) semicircular canal, 
it flows away, producing inhibitory stimulation. This excites the right 
lateral (RL) semicircular canal, activating the right medial rectus (MR) 
and left lateral rectus (LR), producing a combined effect that results in 
a slow phase movement of the eye to the left (opposite to the 
nystagmus fast phase).

4.3.2 When the head rotates downward around the X-axis (pitch), 
a combined equal excitation of both the left anterior (LA) and right 
anterior (RA) semicircular canals activates bilateral superior rectus 
(SR) and oblique muscles, causing purely upward slow phases as the 
torsional components from each canal cancel each other out (purely 
downward fast phases of nystagmus). Similarly, when the head rotates 
upward around the X-axis (pitch), a combined equal excitation of both 
the left posterior (LP) and right posterior (RP) semicircular canals 
activates bilateral inferior rectus (IR) and oblique muscles, causing 
purely downward slow phases as the torsional components from each 
canal cancel each other out (purely upward fast phases of nystagmus). 
Clinically, bilateral anterior or posterior injuries are rare, but this 
study induced pure vertical upward or downward nystagmus through 
the combination of bilateral anterior and bilateral posterior 
semicircular canals in healthy individuals, further suggesting that pure 
vertical nystagmus is often caused by damage to the vestibular center.

4.3.3 When the head deflects to the left around the Y-axis (roll), 
the bilateral anterior and posterior (LA + LP + RA + RP) vertical 
semicircular canals enter the rotation plane, the endolymph fluid in 
the left anterior (LA) and posterior (LP) vertical semicircular canals 
flows away from the ampullary crest, producing a joint excitatory 
stimulus. The endolymph fluid in the right anterior (RA) and posterior 

(RP) vertical semicircular canal flows toward the ampullary crest, 
producing a combined inhibitory stimulus. This excites the left 
anterior (LA) canal, activating the right inferior oblique (IO) (large), 
right superior rectus (SR), left superior oblique (SO), and left superior 
rectus (SR) (large). Excitation of the left posterior (LP) semicircular 
canal excitation activates the right inferior oblique muscle (IO), right 
inferior rectus (IR) (large), left superior oblique muscle (SO) (large), 
and left inferior rectus (IR). The vertical components of the left 
vertical semicircular canal up and down cancel each other out, 
resulting in a slow phase movement of the upper pole of the eye 
twisting to the right ear (from the subject’s perspective). This produces 
nystagmus in which the upper pole of the eye twists to the left ear 
(from the subject’s perspective) or purely clockwise nystagmus (from 
the physician’s perspective). Similarly, when the head deflects to the 
right around the Y-axis (roll), both the bilateral anterior and posterior 
(LA + LP + RA + RP) vertical semicircular canals align with the 
rotation plane. The endolymph fluid in the right anterior (RA) and 
posterior (RP) vertical semicircular canal flows away from the 
ampullary crest, producing a joint excitatory stimulus. Conversely, in 
the left anterior (LA) and posterior (LP) vertical semicircular canal, 
the endolymph fluid flows toward the ampullary crest, producing a 
joint inhibitory stimulus. Excitation of the right anterior (RA) 
semicircular canal activates the left inferior oblique (IO) (large), left 
superior rectus (SR), right superior oblique (SO), and right superior 
rectus (SR) (large). Excitation of the right posterior (RP) semicircular 
canal activates the left inferior oblique (IO), left inferior rectus (IR) 
(large), right superior oblique (SO) (large), and right inferior rectus 
(IR). Thereafter, the vertical components of the right vertical 
semicircular canal up and down cancel each other out, resulting in a 
slow phase movement of the upper pole of the eye to the left ear (from 
the subject’s perspective). This produces nystagmus in which the 
upper part of the eye moves to the right ear (from the subject’s 
perspective) or pure counterclockwise nystagmus (from the 
physician’s perspective).

4.4 Limitations and further research

This study’s observations were limited to healthy young people; 
further research is needed to extend these findings to other age 
groups. Although rotation in the left anterior/right posterior 
semicircular canal conjugate plane is the most effective stimulation of 
the vertical canal, this study did not adopt this stimulation method 
due to the effect of pupillary exposure on the 3D nystagmus recording. 
Further research should focus on overcoming these limitations and 
improving the 3D recording of nystagmus in different head positions. 
Multi-frequency, multi-axial vertical semicircular canal induction test 
represents a promising direction for future research. Portable 
binocular 3D-VNG, which may be facilitated in bedside examination 
or as an in-home vestibular event monitor to capture intermittent 
events for later analysis (Young et al., 2019), makes it possible for 
telemedicine and AI diagnosis based on bid data in the future.

5 Conclusion

In summary, the manual triaxial rotation testing, facilitated by a 
portable  3D-VNG eye mask, effectively induces the characteristic 

67

https://doi.org/10.3389/fnins.2023.1321906
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1321906

Frontiers in Neuroscience 09 frontiersin.org

nystagmus, and enables the evaluation of the vertical semicircular 
canal’s low-frequency aVOR function. This method is convenient, 
efficient, and practical. Moreover, it elucidates the three-dimensional 
characteristics of nystagmus induced by different semicircular canal 
combinations in healthy young people. The reference range for the 
SPV of the vertical semicircular canal-induced nystagmus and its 
asymmetric reference range in healthy young people were 
preliminarily obtained. These findings provide a basis for the 
traceability of nystagmus in patients with otogenic vertigo and pave 
the way for further research on the mechanism of semicircular canal-
induced nystagmus, baseline evaluation of various otogenic vertigo 
diseases, precision diagnosis, and treatment rehabilitation as well as 
big data telemedicine.
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Multi-frequency VEMPs improve 
detection of present otolith 
responses in bilateral 
vestibulopathy
F. Lucieer 1*, M. van der Lubbe 1, L. van Stiphout 1, M. Janssen 2, 
V. Van Rompaey 3, E. Devocht 1, A. Perez-Fornos 4, N. Guinand 4 
and R. van de Berg 1

1 Division of Balance Disorders, Department of Otorhinolaryngology, Head and Neck Surgery, 
Maastricht University Medical Centre, Maastricht, Netherlands, 2 Department of Methodology and 
Statistics, Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands, 
3 Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, 
Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium, 4 Service of 
Otorhinolaryngology Head and Neck Surgery, Department of Clinical Neurosciences, Geneva 
University Hospitals, Geneva, Switzerland

Objective: To investigate whether multi-frequency Vestibular Evoked Myogenic 
Potential (VEMP) testing at 500, 750, 1,000, and 2,000  Hz, would improve 
the detection of present dynamic otolith responses in patients with bilateral 
vestibulopathy (BV).

Methods: Prospective study in a tertiary referral center. BV patients underwent 
multi-frequency VEMP testing. Cervical VEMPs and ocular VEMPs were 
recorded with the Neuro-Audio system (v2010, Neurosoft, Ivanovo, Russia). The 
stimuli included air-conducted tone bursts of 500, 750, 1,000, and 2,000  Hz, 
at a stimulation rate of 13  Hz. Outcome measures included the percentage of 
present and absent VEMP responses, and VEMP thresholds. Outcomes were 
compared between frequencies and type of VEMPs (cVEMPs, oVEMPs). VEMP 
outcomes obtained with the 500  Hz stimulus, were also compared to normative 
values obtained in healthy subjects.

Results: Forty-nine BV patients completed VEMP testing: 47 patients completed 
cVEMP testing and 48 patients completed oVEMP testing. Six to 15 % more 
present VEMP responses were obtained with multifrequency testing, compared 
to only testing at 500  Hz. The 2,000  Hz stimulus elicited significantly fewer 
present cVEMP responses (right and left ears) and oVEMP responses (right ears) 
compared to the other frequencies (p ≤  0.044). Using multi-frequency testing, 
78% of BV patients demonstrated at least one present VEMP response in at least 
one ear. In 46% a present VEMP response was found bilaterally. BV patients 
demonstrated a significantly higher percentage of absent VEMP responses and 
significantly higher VEMP thresholds than healthy subjects, when corrected for 
age (p ≤  0.002). Based on these results, a pragmatic VEMP testing paradigm is 
proposed, taking into account multi-frequency VEMP testing.

Conclusion: Multi-frequency VEMP testing improves the detection rate of 
present otolith responses in BV patients. Therefore, multi-frequency VEMPs 
should be considered when evaluation of (residual) otolith function is indicated.

KEYWORDS

bilateral vestibulopathy (BV), vestibular evoked myogenic potential (VEMP), multi-
frequency, vestibular, cVEMP, OVEMPs, otolith
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Introduction

Bilateral vestibulopathy (BV) is a chronic disorder in which the 
vestibular function is bilaterally severely reduced or absent (1). It has 
many etiologies, varying from toxic (e.g., gentamicin ototoxicity), 
infectious (e.g., meningitis) and genetic (e.g., DFNA9), to inner ear 
disease (e.g., Menière’s disease, auto-immune inner ear disease) and 
neurodegenerative disease (e.g., CANVAS) (2). BV patients report a 
spectrum of symptoms, of which chronic unsteadiness and/or 
oscillopsia are most frequently reported (3, 4). These symptoms often 
result in a decreased quality of life and a high socio-economic burden 
on society (4, 5). BV can be diagnosed using the diagnostic criteria of 
the Bárány Society. These criteria include a chronic vestibular 
syndrome with symptoms of unsteadiness when walking or standing 
(possibly combined with oscillopsia), and a bilaterally reduced or 
absent angular vestibulo-ocular reflex function. This latter should 
be documented by at least one of the following three tests: video Head 
Impulse Test, caloric test or rotatory chair test (6). Currently, only 
lateral semicircular canal function is included in the diagnostic criteria 
of BV, not otolith function. This implies that in patients diagnosed 
with BV, otolith function can still be present (7–9).

Vestibular evoked myogenic potentials (VEMPs) measure dynamic 
otolith function by stimulating the Type I hair cells at the striola (10, 
11). VEMPs are electromyographic responses to air-conducted sound 
or bone-conducted vibration of the skull, which most likely reflect 
otolith function. Two types of VEMPs can be  measured: cervical 
VEMPs (cVEMP) and ocular VEMPs (oVEMP). Cervical VEMPs 
comprise inhibitory responses from the ipsilateral sternocleidomastoid 
muscle, mainly evaluating function of the saccule. Ocular VEMPs 
comprise excitatory responses from the contralateral inferior oblique 
extra-ocular muscle, mainly evaluating function of the utricle. The 
testing paradigm and interpretation of VEMPs are difficult to 
standardize (12). Since VEMP response characteristics (amplitude, 
latency, threshold) depend on, e.g., stimulus type, muscle-contraction 
and age, each laboratory should obtain its own normative data. 
However, even after correcting for differences in muscle contraction, 
variability in VEMPs can be large in normal subjects (13).

In BV, VEMPs vary widely. BV can lead to reduced or absent 
VEMP responses, but in a significant number of patients VEMPs are 
within the normal range (7–9). The number of reduced, absent or 
present VEMPs in BV patients differs between studies. This most 
likely reflects the heterogeneity of testing paradigms, outcome 
measures and patient populations used in these studies (7). For 
example, some etiologies like aminoglycoside toxicity might 
be associated with otolith abnormalities (14). Moreover, it remains 
difficult to perfectly understand VEMPs in BV due to the large 
variability in normal subjects. After all, VEMPs might be reduced due 
to BV, but still be within the “broad” normal range, leading to false 
negative results (7). Additionally, age significantly affects VEMPs, 
resulting in a high rate of absent responses in normal subjects above 
the age of 60 years (12). Since the age of the BV population is relatively 
high (8), an absent VEMP response in a BV patient might reflect age, 
BV, testing paradigm, or a combination of these factors. In these 
patients, the influence of BV in the observed VEMP responses remains 
unknown. Furthermore, as stated above, otolith function is not 
included in the diagnostic criteria of BV. Patients with disorders 
predominantly affecting otolith function, might therefore be missed 
and not included in BV studies (7, 15, 16).

It was previously found that different acoustic stimulus 
frequencies, evoke different VEMP responses (17). For example, 
cVEMP responses in the affected ears of patients with Menière’s 
disease, demonstrate a significantly higher cVEMP threshold at tone 
bursts of 500 Hz than at 1,000 Hz, compared to normal subjects (18, 
19). This implies that “frequency tuning” exists in the vestibular 
system. This “frequency tuning” is also affected by age. In young 
normal adults, the largest VEMP responses are obtained around 
500 Hz. In older adults (≥ 60 years), the largest VEMP responses are 
more often obtained at 750 and 1,000 Hz in the majority of cases. It 
was therefore recommended to test 750 and 1,000  Hz tone burst 
frequencies, in case absent responses are found at 500 Hz (20).

In the last decades, a novel treatment was proposed to treat BV: 
the vestibular implant. This is a (not yet clinically available) strategy 
to partially restore vestibular function by stimulating the vestibular 
nerves, using surgically implanted electrodes (21–23). The electrodes 
can be implanted inside or close to the semicircular canals (24, 25), or 
inside the otolith organs (26). Surgically positioning electrodes in a 
semicircular canal or otolith organ, can destroy the (residual) function 
of that specific organ. Consequently, otolith implantation is currently 
only considered in case of bilaterally absent cVEMP and oVEMP 
responses (27). In BV subjects it is therefore imperative to understand, 
before considering vestibular implantation, whether otolith function 
is present or not. However, previous VEMP studies in BV patients 
mainly tested at 500 Hz (8, 9, 14). This might imply that some BV 
patients that were considered to have absent VEMP responses, might 
have had preserved VEMPs at other test frequencies.

The objective of this study was therefore to investigate whether 
multi-frequency VEMP testing (500, 750, 1,000, and 2,000 Hz) would 
improve the detection of present otolith responses in BV patients.

Methods

Patient population

The patient population was previously described (4, 28–33). In 
short, BV patients who were previously diagnosed according to the 
diagnostic criteria of the Bárány Society (6) at Maastricht University 
Medical Center, were included in this prospective study. Adult BV 
patients were invited for a testing day that also involved examinations 
related to other BV studies (4, 28–33). BV patients who were not able 
to undergo the detailed audiovestibular testing, or who did not want 
to talk about one of the investigated topics (e.g., psychological 
symptoms), or who were not able to stop vestibulo-suppressive 
medication, were excluded from this study.

VEMP testing

Cervical VEMPs and oVEMPs were recorded with the Neuro-
Audio system (v2010, Neurosoft, Ivanovo, Russia) and self-adhesive 
electrodes (Blue sensor, Ambu, Denmark). For cVEMPs, the recording 
electrodes were placed on the sternocleidomastoid muscles and the 
reference electrode on the sternum. For oVEMPs, the recording 
electrodes were placed on the orbital margin inferior to both eyes, and 
the reference electrode approximately 2 cm below them. For both 
c-and oVEMPS, the ground electrode was placed on the forehead (8). 
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The order of testing was randomized for VEMP type (cVEMP and 
oVEMP) and for stimulation side (right ear and left ear).

Cervical VEMPs were measured in supine position. The head was 
flexed 30° and turned away from the stimulation side. A monitor 
(v2010, Neurosoft, Ivanovo, Russia) provided visual feedback to the 
patient regarding sternocleidomastoid muscle contraction. Patients 
were instructed to control muscle contraction between 65 and 
205 μV. This was indicated on the monitor as a meter which should 
be held in a green area. Red areas on the monitor indicated contractions 
which were too low or too high. Two-hundred electromyography traces 
with muscle contraction between 65 and 205 μV were required (8). 
Cervical VEMPs were elicited with air-conducted tone bursts, provided 
by inserted earphones. The stimuli included air-conducted tone bursts 
of 500, 750, 1,000, and 2,000 Hz. A Blackman gating window was used 
with a two cycle rise/fall without a plateau. The resulting rise time was 
4.00 ms at 500 Hz, 2.66 ms at 750 Hz, 2.00 ms at 1,000 Hz, and 1.00 ms at 
2,000 Hz. Thirteen Hertz was chosen as stimulation rate, to decrease 
testing time (34). Furthermore, no significant difference was found 
regarding present and absent cVEMP and oVEMP responses, when 
comparing normative VEMP data of 5 and 13 Hz (500 Hz air-conducted 
tone bursts) obtained in our vestibular laboratory (p ≥ 0.063).

Ocular VEMPs were also measured in supine position. Patients 
were instructed to keep their eyes fixed on a target which was located 
30 degrees behind their head on the ceiling of the examination room. 
This achieved superomedial gaze. The same stimulus parameters were 
used as for cVEMPs, but for oVEMPS a minimum of 300 
electromyography traces were required (8).

A staircase approach was adopted to determine VEMP thresholds. 
Steps of 5 dB SPL were used, which started at 130 dB SPL. The 
threshold was defined as the lowest sound level that elicited detectable 
P1 and N1 peaks. A trial repetition was performed to confirm the 
absence of P1 and N1 peaks at the sound level just below threshold 
(8). Stimulation was not corrected for conductive hearing loss, since 
no significant conductive hearing loss was present in any of the 
patients, as tested by audiometry (Interacoustics Affinity audiometer 
and Easidata software). All tested ears demonstrated ≤20 dB air-bone 
gaps at all tested frequencies. The median air-bone gaps of right and 
left ears separately, were 5 dB for each tested frequency.

To obtain normative data for our vestibular laboratory, normative 
cVEMP data was obtained in 51 healthy subjects (29 women, mean 
age 47 years, standard deviation 20 years). Normative oVEMP data 
was obtained in 48 healthy subjects (27 women, mean age 49 years, 
standard deviation 19 years).

Statistical analysis

Data were analyzed using SPSS Statistics 28 for Windows. VEMP 
outcome measures included the percentage of present and absent 
VEMP responses, and VEMP thresholds. A VEMP response was 
considered present, in case a response could be obtained (regardless 
of the absolute threshold). A VEMP response was considered absent, 
in case no response could be obtained at the highest stimulus level. 
Regarding thresholds, the sound level (dB SPL) was used as input for 
the statistical analysis. In case of an absent response, a (hypothetical) 
sound level of 140 dB SPL was used. This number was chosen to 
facilitate conservative calculations, since it was very close to the 
highest tested sound level (130 dB SPL).

The Cochran’s Q test was used to determine whether the 
proportion of patients who had a VEMP response differed across the 
4 stimulus frequencies. In case of a significant Cochran’s Q test, post 
hoc paired analyses were carried out using multiple McNemar’s tests. 
Since every BV patient was tested at multiple frequencies, the 
assumption of independence was violated. Therefore, the relationship 
between stimulus frequency (500, 750, 1,000, and 2,000 Hz) and 
VEMP sound level threshold (dB SPL) was investigated using 
marginal linear regression analyses with unstructured covariance 
matrix of the residuals. The effect of stimulus frequency was adjusted 
for ear (left, right), age, gender and starting side of the threshold 
measurements (left, right ear). In addition, to test for a possible 
differential effect, the interaction between frequency and ear was first 
included in the model and removed again if it was not significant (top-
down strategy). Linear regression analysis was applied to compare the 
mean threshold levels (dB SPL) between BV patients and healthy 
controls adjusted for age. To compare the BV patients and controls 
with respect to the occurrence of a present VEMP response after 
correction for age, logistic regression was performed. Mean differences 
in threshold levels and odds ratio’s for no present VEMP response 
were reported as BV patients compared to healthy controls. The 
α-value was set to 0.05. In case of multiple comparisons, Bonferroni 
correction was applied. Two-sided Bonferroni corrected (exact) 
p-values were reported, unless stated otherwise.

Ethical considerations

This study was performed in accordance with the Declaration of 
Helsinki (amended version 2013). Approval was obtained from the 
ethical committee of Maastricht University Medical.

Center (NL52768.068.15/METC). All subjects provided written 
informed consent.

Results

Patient characteristics

Forty-nine BV patients underwent multi-frequency VEMP testing 
in this study. This included 24 women (49%). Mean age of all patients 
was 60 years (minimum 21 years, maximum 79 years). Etiologies 
included ototoxicity (22%), infectious (16%), genetic (14%), Menière’s 
disease (6%), metabolic (4%) and auto-immune disease (2%). The 
etiology in approximately 35% of patients remained idiopathic. Forty-
seven patients completed cVEMP testing and 48 patients completed 
oVEMP testing. In total, multi-frequency cVEMPs and oVEMPs 
could both be obtained in 46 patients. Reasons for not completing 
multi-frequency VEMP testing in all patients included: tiredness 
(n = 1), neck pain (n = 1) and equipment failure (n = 1).

Presence of multi-frequency VEMP 
responses in BV patients

Figures  1A,B present the percentages of present cVEMP and 
oVEMP responses in BV patients, classified by stimulus frequency. 
Regarding cVEMPs, it can be observed that a present cVEMP was 
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found in more than 40% of the patients for the frequencies 500 to 
1,000 Hz. This was significantly lower for 2,000 Hz compared to the 
other frequencies (right ears: p ≤ 0.009; left ears: p = 0.018). Marginal 
regression analysis showed that cervical VEMP thresholds were 
significantly higher at 2,000 Hz in both ears of the BV patients 
(p < 0.001). Regarding oVEMPs, the percentage of present VEMP 
responses was significantly lower for all frequencies compared to 
cVEMP in right ears (one-sided p-values ≤ 0.012). This was not the 
case for all frequencies in left ears: p  = 0.040 (500 Hz), p  = 0.012 
(750 Hz), p = 0.052 (1,000 Hz), p = 0.360 (2,000 Hz). Present oVEMP 
responses were found in 15–23% for the frequencies 500 Hz to 
1,000 Hz, and in less than 13% for 2,000 Hz (Figure 1B). Two-thousand 
Hertz elicited significantly fewer present oVEMP responses compared 
to the other frequencies in the right ears (p ≤ 0.044), but not in the left 
ears. However, marginal regression analysis did not show a significant 
relationship between the stimulation frequency and the oVEMP 
threshold values in both ears. The frequencies eliciting present VEMP 
responses differed between patients: not all patients with, e.g., a 
present VEMP response at 500 Hz, also showed a present VEMP 
response at 750 Hz. Patients with at least one present VEMP response, 
demonstrated (on average) present VEMP responses at 3.0 and 2.7 
frequencies for cVEMP (right and left ears respectively), and at 2.4 
and 2.3 frequencies for oVEMP (right and left ears respectively). The 
percentage of patients with at least one present VEMP response was 
therefore higher than the percentages found in Figure 1 (see also 
Table 1).

Detection of present otolith function in BV: 
multi-frequency vs. 500  Hz stimulus

Table 1 illustrates that, in the same BV population, more present 
otolith responses were found when using multi-frequency stimuli 
compared to only testing at 500 Hz. This was significant for cVEMP 
and oVEMP responses obtained in left ears, but not in right ears 
(Table  1). The difference in present responses between multi-
frequency and 500 Hz stimulation could increase up to 15% when 
considering each ear separately (cVEMPs, left ears). Additionally, 70% 
of patients demonstrated a cVEMP response in at least one ear, and 
35% of patients demonstrated an oVEMP response in at least one ear 
(Table 1). A bilaterally present VEMP response was found in 40% 
(cVEMP) and 19% (oVEMP) of the patients.

In some ears, a VEMP response was found at only one frequency, 
despite multifrequency testing (Table  2). This was the case in the 
minority of ears and did not always involve 500 Hz. For example, in 
6% of the left ears, a cVEMP response was only present at 1,000 Hz.

Multi-frequency VEMPS: cVEMPs and 
oVEMPs combined

Forty-six BV patients completed both cVEMP and oVEMP 
testing, sufficient for analysis. Seventy-eight percent of these patients 
showed at least one present cVEMP or oVEMP response, in at least 
one ear. It was found that in 46% of BV patients, bilateral VEMP 
responses were found in cVEMP, or oVEMP, or both. However, this 
latter was only the case in 15% of the patients (Table 3).

VEMP responses (500  Hz stimulus): BV 
patients vs. healthy subjects

VEMP responses (500 Hz stimulus) of the BV patients were 
compared to VEMP responses of healthy subjects. Cervical VEMP 
responses (right and left ears) were significantly more absent in BV 
patients compared to healthy subjects (Odds Ratio ≥ 4.462, p ≤ 0.002). 
Furthermore, mean thresholds of cVEMP responses (right and left 
ears) were significantly different in BV patients compared to healthy 
subjects (mean difference BV patients compared to healthy controls 
of ≥7.698 dB SPL, p ≤ 0.001). Ocular VEMP responses (right and left 
ears) were also significantly more absent in BV patients compared to 
healthy subjects (Odds Ratio ≥ 8.885, p < 0.001). The mean thresholds 
of oVEMP responses in BV patients compared to healthy controls 
(right and left ears) were significantly different as well (mean 
difference BV patients compared to healthy controls of ≥9.379 dB SPL, 
p  < 0.001). In summary, BV patients demonstrated a significantly 
higher percentage of absent VEMP responses and significantly higher 
VEMP thresholds than healthy subjects, when corrected for age.

Discussion

This study investigated whether multi-frequency VEMP testing 
(500, 750, 1,000, and 2,000 Hz) would improve the detection of present 

FIGURE 1

(A,B) Percentages of present cVEMP and oVEMP responses in BV patients, classified by stimulus frequency (500, 750, 1,000, and 2,000  Hz).
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otolith responses in BV patients, compared to only testing at 500 Hz. 
It was demonstrated that more present otolith responses were obtained 
with multi-frequency testing. Present cVEMPs were more often 
present than present oVEMPs. Most present VEMP responses were 
found when testing at 500, 750, and 1,000 Hz, while 2,000 Hz resulted 
in fewer present VEMP responses and (for cVEMPs) significantly 
higher thresholds. These results show that multi-frequency VEMP 
testing should be considered in BV patients, in case evaluation of 
(residual) otolith function is indicated.

Multi-frequency VEMP testing improves the detection of present 
VEMP responses in BV patients, emphasizing the need to test “beyond” 
the 500 Hz stimulus. These findings are congruent with previous 
literature in healthy subjects, in which it was illustrated that 500 Hz is 
not always the best frequency for VEMP testing (20). This results from 
“frequency-tuning” of the vestibular system, in which different acoustic 
stimulus frequencies evoke different VEMP responses. Frequency-
tuning is patient specific, since it might depend on multiple factors. 
These factors include, among others: etiology, stage of disease, age, and 
stimulation paradigm (18, 20). Since multi-frequency VEMP testing 
improves the detection of present VEMP responses in BV patients, it 
might be somehow analogous to ice water caloric testing (1). After all, 
multi-frequency VEMPs and ice water calorics can both be used to 
detect residual function in case no responses are obtained in the 
“routine tests” (respectively 500 Hz VEMPs and bithermal caloric 
testing). Furthermore, this study showed that fewer present VEMP 
responses and (for cVEMPs) significantly higher thresholds were found 
when testing at 2,000 Hz. This was expected, since in healthy subjects 
2,000 Hz has also less robust responses and significantly higher 
thresholds than the other tested frequencies (35). This might not directly 
imply that VEMP testing at 2,000 Hz should be abandoned completely: 
one ear only demonstrated a 2,000 Hz oVEMP response, without any 
responses at the other tested frequencies (oVEMPs and cVEMPs). 
Future research should be conducted to investigate whether testing at 
other frequencies is beneficial.

Present VEMP responses were frequent in this BV population. 
Seventy-eight percent demonstrated at least one present VEMP 

response in at least one ear, and in 46% a present VEMP response 
was found bilaterally. A high percentage of present VEMP responses 
in BV patients is consistent with previous studies. However, direct 
comparison is difficult because of different BV populations, 
stimulation paradigms and outcome measures. Nevertheless, these 
results illustrate two important aspects. First, BV is currently a 
diagnosis based on lateral semicircular canal function: it does not 
include vertical semicircular canal function, or otolith function as 
measured by VEMPs (6, 9, 14). This implies that patients with 
predominantly affected vertical semicircular canal and/or otolith 
function, might be  missed (7, 15, 16, 36). However, diagnosing 
(isolated) otolith dysfunction is still challenging. The clinical 
presentation of otolith dysfunction is not yet well understood and 
no consensus has been reached on this possible clinical entity (37–
39). After all, absent VEMP responses are not necessarily causally 
related to vestibular symptoms, and do not rule out involvement of 
other structures (37). It would therefore be  advised to further 
investigate the possible clinical entity of otolith dysfunction (38). 
Secondly, this study shows that VEMP responses are often still 
present in BV patients. On-the-one-hand this may imply that 
otolith function is relatively spared in BV patients compared to 
lateral semicircular canal function. It could be hypothesized that, 
e.g., otoliths are less affected by certain vestibular disorders. 
On-the-other-hand it might have nothing to do with otoliths being 
less affected than semicircular canals, but with VEMP testing itself. 
It could be hypothesized that VEMPs are relatively stronger stimuli 
to the otoliths than, e.g., bithermal caloric testing or video head 
impulse testing to the semicircular canals. In other words: although 
otolith function might be affected, a response remains present due 
to the strong nature of the stimulus. As a result, a present VEMP 
response is obtained, while hypofunction of the lateral semicircular 
canals is detected by the caloric test and/or video head impulse test. 
Additionally, VEMPs are considered to test Type 1 hair cells, while 
the caloric test might mainly test Type 2 hair cells (10). A 
dissociation between these tests could therefore also result from a 
difference in affected hair cell type. Furthermore, the interpretation 

TABLE 1 Present VEMP responses: multi-frequency vs. only the 500  Hz stimulus in BV patients.

cVEMP (n =  47) oVEMP (n =  48)

Multi-frequency 500  Hz Multi-frequency 500  Hz

Present response(s): right ear 51% 43% 21% 15%

Present response(s): left ear 60% 45% * 33% 21% *

Present response(s): at least one ear 70% 57% * 35% 23% *

Present response(s): both ears 40% 30% * 19% 13%

All tested frequencies present (500–2,000 Hz) 15% N/A 2% N/A

Multifrequency VEMP response(s) are classified as present, in case at least one tested frequency demonstrated a present response. Multi-frequency included VEMP testing at 500, 750, 1,000, 
and 2,000 Hz. N/A, not applicable. *Significant difference between multi-frequency testing and only testing at 500 Hz (one-sided value of p < 0.05).

TABLE 2 Multi-frequency testing: percentage of ears with a VEMP response at only one frequency.

cVEMP (n =  47), only present response at: oVEMP (n =  48), only present response at:

500  Hz 750  Hz 1,000  Hz 2,000  Hz 500  Hz 750  Hz 1,000  Hz 2,000  Hz

Present response: right ear 4% 0% 2% 0% 2% 2% 0% 0%

Present response: left ear 4% 4% 6% 0% 4% 2% 0% 2%
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FIGURE 2

Proposal for a clinical VEMP testing paradigm in BV patients, if the clinician would focus on the presence or absence of a VEMP response.

of the tests may play a role. VEMPs are currently not able to detect 
subtle changes in otolith function, even with good normative data 
(7). This results from the large range of normal responses in healthy 
subjects (7). Therefore, except for superior semicircular canal 
dehiscence syndrome (40), VEMPs are clinically often interpreted 
as an “on–off ” response: response are considered present or absent 
(27). It is however not justified to compare tests with different 
outcomes: categorical “on–off ” (VEMPs) vs. numerical (e.g., caloric 
test slow phase eye velocities, video-head impulse test vestibulo-
ocular reflex gain). For example, in cases with reduced (but still 
minimally present) otolith and lateral semicircular canal function, 
a reduced but present VEMP response might be  obtained. This 
would then be classified as “normal.” The numerical outcomes of the 
caloric test and/or video head impulse would indicate a reduced 
function. These tests would then be  classified as “abnormal.” 
However, if the caloric test and video head impulse test would 
be interpreted based on just the presence of a response, these tests 
would have also been classified as “normal” (e.g., a video head 
impulse test gain of 0.4 is still a response). Therefore, the 
dissociation between otolith and lateral semicircular canal findings 
in BV patients, should be  interpreted with care. It might even 
be incorrect to state that, e.g., otolith function would be less affected 
than lateral semicircular canal function in BV patients.

Nevertheless, this study demonstrates that the diagnostic criteria 
of bilateral vestibulopathy should be revised in the future. A more 
detailed classification could be considered, taking into account all 10 

vestibular sensors, not only the lateral semicircular canals. This might 
facilitate a detailed classification. For example, categories could vary 
from abnormal vestibular responses in all vestibular sensors, to 
isolated abnormal responses such as selective vertical canal or otolith 
impairment (10, 36).

In this study, the presence of present cVEMP responses was higher 
than present oVEMP responses. Air-conducted cVEMPs are therefore 
superior to air-conducted oVEMPs to detect present VEMP responses 
in BV patients. This does not necessarily indicate that, e.g., saccular 
function is less affected than utricular function. After all, these findings 
are not consistent with previous literature, in which saccular and 
utricular function were almost equally affected (14). Most likely, this can 
mainly be attributed to the stimulation paradigm: air-conducted sound 
(this study) vs. bone conducted vibration. Bone conducted vibration 
produces more reliable oVEMP responses than air-conducted sound 
(12). This implies that the oVEMP findings in this study probably 
underestimate the presence of present oVEMP responses in BV patients. 
It was aimed to use bone-conducted vibration in this study, but long 
lasting equipment failure unfortunately prevented this study from using 
bone-conducted vibration. Nevertheless, the objective of this study was 
to investigate the application of multi-frequency stimulation. This could 
still be  accomplished, but these findings are only applicable to 
air-conducted stimulation.

BV patients demonstrated a significantly higher percentage of 
absent VEMP responses and significantly higher VEMP thresholds 
than healthy subjects, when corrected for age. This shows that VEMP 
responses can be significantly affected in BV patients. Unfortunately, 
as stated above, the large range of normal responses in healthy subjects 
does not allow to detect subtle changes in otolith function (7, 12). 
Therefore, VEMPs are mainly interpreted as an “on–off ” response in 
BV patients (27). Taking these limitations and the results of this study 
into account, a pragmatic VEMP testing paradigm could be proposed 
for BV patients, if the clinician would only be  interested in the 
presence or absence of a VEMP response. This paradigm is illustrated 
in Figure 2.

Its concept focuses on obtaining a relatively quick insight in 
VEMP responses: start testing at a high sound pressure level (e.g., 
130 dB SPL) to maximize the detection rate; use a 13 Hz stimulus rate 
to minimize testing time (cVEMPs); use multi-frequency testing to 
improve detection rate; stop when one frequency shows a present 

TABLE 3 Bilaterally present multi-frequency VEMP responses (n =  46).

Percentage of BV patients

Present bilateral responses: cVEMP 41%

Present bilateral responses: oVEMP 20%

Present bilateral responses: cVEMP 

or oVEMP or both 46%

Present bilateral responses: cVEMP 

and oVEMP 15%

Multifrequency VEMP response(s) are classified as present, in case at least one tested 
frequency demonstrated a present response. Multi-frequency included VEMP testing at 500, 
750, 1,000, and 2,000 Hz.
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response since presence of a VEMP response has been demonstrated. 
It should be noted that testing at 2,000 Hz may be optional. After all, 
only one ear demonstrated a present VEMP response at 2,000 Hz, 
without any responses at the other frequencies (Table 2: oVEMP, left 
ear). The proposed frequencies in this paradigm are based on this 
study, and other frequencies (e.g., 1,500 Hz) were not tested. Therefore, 
other frequencies could also be  included. Additionally, based on 
previous literature it would be proposed to use a bone-conducted 
stimulus for oVEMP testing (12). However, the reliability of a 13 Hz 
stimulus for a bone-conducted stimulus should still be determined 
and therefore a 5 Hz stimulus would still be preferred for oVEMPs.

Limitations

BV is a heterogeneous disorder and VEMP responses depend on 
many factors (e.g., age). This implies that findings of this study are 
restricted to this specific study population.

Conclusion

Multi-frequency VEMP testing improves the detection rate of 
present otolith responses in BV patients. Therefore, multi-frequency 
VEMPs should be considered when evaluation of (residual) otolith 
function is indicated.
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Background: The association between benign paroxysmal positional vertigo

(BPPV) and various mental disorders is still controversial. This study used the

Mendelian randomization (MR) method to clarify the correlation between BPPV

and seven mental disorders (bipolar disorder, depression, anxiety disorder,

schizophrenia, suicidality, neuroticism, and mood swings) to aid in the

exploration of BPPV complications and prevention and early treatment of

mental disorders.

Methods: The datasets for BPPV and seven mental disorders were obtained

from genome-wide association studies (GWASs). Two-sample MR was used to

analyze the correlation between exposure (BPPV) and various outcomes (bipolar

disorder, depression, anxiety disorder, schizophrenia, suicidality, neuroticism,

and mood swings). A reverse MR study was also performed. The inverse variance

weighting (IVW) method, the MR–Egger method, the simple mode method, the

weighted mode method, and the weighted median method were selected.

Results: The MR analysis and the reverse MR analysis results did not reveal

significant associations between BPPV and bipolar disorder, depression, anxiety

disorder, schizophrenia, suicidal tendencies, neuroticism, and mood swings.

Interestingly, neuroticism (IVW: OR = 1.142, 95% CI: 1.059–1.231, P = 0.001;

P-MR-PRESSO adjustment = 0.0002) and mood swings (IVW: OR = 3.119, 95%

CI: 1.652–5.884, P = 0.0004) may have a significant association with BPPV. After

MR-PRESSO adjustment, there was no horizontal pleiotropy or heterogeneity,

and a significant association between neuroticism, mood swings, and BPPV has

still been suggested.

Conclusion: We conducted MR analysis on genetic data from European

populations and discovered a causal relationship between BPPV and the seven

mental disorders. Our research findings suggest that BPPV may not have a

significant causal relationship with bipolar disorder, depression, anxiety disorder,

schizophrenia, or suicidal tendencies. However, neuroticism and mood swings

may be risk factors for BPPV.

KEYWORDS

Mendelian randomization, benign paroxysmal positional vertigo, mental disorders,

neuroticism, mood swings
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1 Introduction

Benign paroxysmal positional vertigo (BPPV) is the

most common cause of vertigo, and 24.1% of patients with

dizziness/vertigo have BPPV (1). The underlying mechanism

of BPPV may be the displacement of degenerate otoliths into

the semicircular canal, resulting in increased sensitivity to head

movement, which induces paroxysmal positional vertigo (2). The

lifetime incidence of BPPV is as high as 2.4% (3), and BPPV

seriously affects the quality of life in affected individuals (4),

increases their risk of falls, and reduces their walking speed (5).

BPPV has caused a significant medical burden worldwide (6).

Therefore, exploring the impact of BPPV on the incidence of

other diseases would be highly helpful for informing personalized

treatment and improving patient prognosis.

At present, increased attention has been given to mental

disorders worldwide. Approximately one in five people experience

a common mental disorder in a year (7). Mental disorders lead to

a serious decline in the participation rate of affected individuals in

the social labor force, and the high cost of treatment seriously affects

their quality of life in the later stages of the illness (8, 9). Multiple

diseases or behaviors are thought to contribute to an increased

prevalence of mental disorders (10–12). Therefore, identifying the

risk factors for mental disorders could facilitate early intervention

for individuals affected, thereby reducing the impact of mental

disorders on both patients and society.

Although vertigo caused by BPPV can be resolved by the

implementation of repeated canalith repositioning procedure

(CRP), symptoms of vertigo and positional nystagmus in the

patient often return (13). However, some studies have suggested

that the clinical features of paroxysmal vertigo may induce various

mental disorders in patients with BPPV. At present, whether

BPPV can increase the risk of various mental disorders in patients

is still controversial, and related studies are rare. A cohort

study from Taiwan, China, suggested that chronic stress due to

paroxysmal vertigo may increase the risk of BPPV-related suicide

(14). A survey of the incidence of BPPV in all patients with

mood disorders in Korea revealed that mood disorders may be

significantly associated with BPPV (15). A recent meta-analysis

suggested that BPPV may increase the risk of anxiety, but no

significant association between BPPV and depression was found.

There were few relevant studies included in this meta-analysis, and

the sample size was small; therefore, further research is needed

to determine the associations between BPPV and anxiety and

depression (16). Similar to anxiety and depression, bipolar disorder

and schizophrenia are also common mental disorders (17), and

no relevant studies have explored the associations between bipolar

disorder and schizophrenia and BPPV. A lower neuroticism score

and stable emotions play a certain role in mental health (18, 19).

However, recurrent progression of vertigo may lead to greater

neuroticism and mood swings in patients (20).

Many studies have explored the association between mental

disorders and diseases through Mendelian randomization (MR)

(11, 21). MR is used to clarify the association between two traits.

Genetic variants are included as instrumental variables. Single-

nucleotide polymorphisms (SNPs) are identified from independent

genome-wide association study (GWAS) datasets and are subjected

to association analysis as instrumental variables (22). The

advantages of MR include avoiding the limitations of traditional

observational research and eliminating the interference of various

confounding factors in the study as much as possible so that the

research results have greater credibility. MR studies have improved

the statistical power to infer causal relationships between diseases

(23). This study aimed to analyze the relationship between BPPV

and seven mental disorders (bipolar disorder, depression, anxiety

disorder, schizophrenia, suicidality, neuroticism, andmood swings)

by using the MR method to clarify whether there is a correlation

between BPPV and seven mental disorders. Neuroticism and the

presence of mood swings are considered risk factors for mental

disorders; therefore, these factors were included in this study to

explore the correlation between BPPV and neuroticism and mood

swings. The association between BPPV and mental disorders is

clarified to improve the timeliness and targeting of the prevention

and treatment of both conditions.

2 Methods

2.1 Data sources

In this study, a two-sample MR analysis was used to analyze

the relationship between exposure (BPPV) and various outcomes

(bipolar disorder, depression, anxiety disorder, schizophrenia,

suicidality, neuroticism, and mood swings). Reverse MR was

applied to analyze the correlation between exposure (bipolar

disorder, depression, anxiety disorder, schizophrenia, suicidality,

neuroticism, and mood swings) and an outcome (BPPV). The

GWAS datasets used in this study were all obtained from the

IEU GWAS database (https://gwas.mrcieu.ac.uk/), from which

the datasets for BPPV and bipolar disorder, depression, anxiety,

schizophrenia, suicidality, neuroticism, and mood swings were

selected. The BPPV dataset was collected from the FinnGen

database, which includes genomic and health data collected from

500,000 Finnish biobanks to determine the genetic basis of the

disease. The IEU database has obtained the BPPV dataset from the

FinnGen database R5 version. The diagnosis criteria in the FinnGen

database are based on the Tenth Revision of the International

Statistical Classification of Diseases and Related Health Problems

(ICD-10). The diagnosis of BPPV requires meeting the diagnostic

criteria with the code H81.1 according to the ICD-10. Depression,

anxiety disorders, suicidality, neuroticism, andmood swing-related

datasets were collected from the UK Biobank, which includes

genetic information obtained from more than 500,000 participants

from all over the UK. The bipolar disorder and schizophrenia

dataset was derived from a GWAS database of patients with bipolar

disorder and schizophrenia (24, 25). Detailed information on the

GWAS data sources used in our study is provided in Table 1.

2.2 Selection of instrumental variables

The SNPs were selected from the GWAS dataset based on the

following conditions: 1. The significance in genome-wide studies to

prevent the inclusion of fewer SNPs (P < 5∗10−6 was selected as

the screening criterion). 2. No linkage disequilibrium was detected
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TABLE 1 The GWAS data sources.

Phenotype Data source PMID Cases Controls Sample size Ancestry

BPPV FinnGen 3,834 209,582 213,416 European

Bipolar disorder Stahl, E et al. 31043756 20,352 31,358 51,710 European

Depression Ben Elsworth et al. 26,595 436,338 462,933 European

Anxiety disorders Ben Elsworth et al. 6,410 456,523 462,933 European

Schizophrenia Trubetskoy V et al. 35396580 52,017 75,889 127,906 European

Suicidality Neale laboratory 2,658 2,275 4,933 European

Neuroticism Ben Elsworth et al. 374,323 European

Mood swings Ben Elsworth et al. 204,412 247,207 451,619 European

BPPV, benign paroxysmal positional vertigo.

between any of the SNPs to preserve SNP independence (r2 <

0.001 and 10,000 kb). 3. SNPs with an F-statistic < 10 were

excluded as they were considered weak instrumental variables.

Plus-strand allele inference was then attempted using palindromic

allele frequencies.

2.3 Mendelian randomization analysis

The inverse variance weighting (IVW), MR–Egger, simple

mode, weighted mode, and weighted median methods were used

for data evaluation. IVW obtained a total estimate of the effect of

exposure on the outcome by combining the causal estimate of the

Wald ratio for each IV, and IVW was used as the primary analysis

method (26). The non-zero intercept values shown by the MR–

Egger method were mainly used to examine horizontal pleiotropy

(27). The weighted median gives an accurate estimate based on the

assumption that at least 50% of IVs are effective (28). The simple

mode, weighted mode, and weighted median methods were mainly

used to verify the reliability and stability of the results. Causality

was assessed using the odds ratio (OR) and 95% confidence interval

(95% CI) to determine the significance. To strengthen the reliability

of this study, the significance was set at 0.05/7 (0.007) according to

the Bonferroni correction method.

The MR–Egger method was used to obtain intercept values

to evaluate horizontal pleiotropy. The Q-statistic from Cochran’s

IVW was then used to investigate the impact of heterogeneity. The

results of pleiotropic and heterogeneousMR-PRESSO analysis were

obtained to remove outlier SNPs from the group and recalculate the

MR results.

MR analysis was performed using the TwoSampleMR

package in R version 4.2.3 (http://www.r-project.org) (29). The

TwoSampleMR package enables online analysis of the association

between exposure and outcome datasets through the IEU database.

3 Results

3.1 The results of MR analysis between
BPPV and seven mental disorders

The p-value of <5∗10−6 was selected as the screening

criterion for BPPV-related SNPs. After screening based on the

screening criteria, MR analysis was performed, and the F-

statistics of the SNPs included in the analysis were all found

to be >10, indicating that they were all strong instrumental

variables (Supplementary material). All heterogeneity analyses

showed results that p > 0.05, which suggested that there was no

heterogeneity in the results. No horizontal pleiotropy was found

in any of the MR–Egger analyses (P > 0.05). The results suggested

that there was no significant association between BPPV and bipolar

disorder (IVW: OR = 1.014, 95% CI: 0.940–1.094, P = 0.704),

depression (IVW: OR = 0.999, 95% CI: 0.997–1.001, P = 0.449),

anxiety disorders (IVW: OR = 1.001, 95% CI: 0.999–1.002, P =

0.054), schizophrenia (IVW: OR = 1.000, 95% CI: 0.949–1.053, P

= 0.988), suicidality (IVW: OR = 0.996, 95% CI: 0.947–1.047, P =

0.879), neuroticism (IVW: OR = 1.004, 95% CI: 0.969–1.039, P =

0.818), and mood swings (IVW: OR = 0.996, 95% CI: 0.991–1.001,

P = 0.166) (Figures 1, 2). The detailed analysis results are shown in

Table 2.

3.2 The results of MR analysis between
seven mental disorders and BPPV

The p-value of <5∗10−6 was selected as the screening criterion

for seven mental disorder-related SNPs. After screening based

on the criteria, MR analysis was performed, and the F-statistics

of the SNPs included in the analysis were all found to be >10,

indicating strong instrumental variables (Supplementary material).

No significant association was found in the reverse MR of bipolar

disorder (IVW: OR = 1.004, 95% CI: 0.938–1.074, P = 0.902),

depression (IVW: OR = 6.995, 95% CI: 0.069–7.004E+02, P

= 0.408, P-MR-PRESSO adjustment = 0.147), anxiety (IVW:

OR = 3.529E-04, 95% CI: 1.037E-10-1.200E+03, P = 0.300),

schizophrenia (IVW: OR = 0.994, 95% CI: 0.944–1.045, P =

0.809), suicidality (IVW: OR = 0.975, 95% CI: 0.730–1.301, P =

0.864), and BPPV. Neuroticism (IVW: OR= 1.142, 95% CI: 1.059–

1.231, P = 0.001; P-MR-PRESSO adjustment = 0.0002) and mood

swings (IVW: OR = 3.119, 95% CI: 1.652–5.884, P = 0.0004)

were significantly associated with BPPV. Horizontal pleiotropy

and heterogeneity were detected in the reverse MR analysis of

patients with depression and BPPV, and heterogeneity was detected

in the inverse variance MR analysis of patients with neuroticism

and BPPV. MR analysis was performed again after MR-PRESSO

adjustment, and the results showed a lack of horizontal pleiotropy
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FIGURE 1

Summary view of the MR images derived from the IVW, MR–Egger, simple mode, weighted median, and weighted mode methods. (A) The MR

analysis results for BPPV and bipolar disorder. (B) The MR analysis results for BPPV and depression. (C) The MR analysis results for BPPV and anxiety

disorders. (D) The MR analysis results for BPPV and schizophrenia. (E) The MR analysis results for BPPV and suicidality. (F) The MR analysis results for

BPPV and neuroticism. (G) The MR analysis results for BPPV and mood swings.

FIGURE 2

The results of the MR analysis between BPPV and mental disorders.

and heterogeneity (Figures 3, 4). The detailed analysis results are

shown in Table 3.

4 Discussion

In this study, the MRmethod was used to assess the association

between BPPV and seven mental disorders. The results showed

that BPPV was not significantly associated with bipolar disorder,

depression, anxiety disorders, schizophrenia, or suicidality. Reverse

MR analysis indicated that bipolar disorder, depression, anxiety,

schizophrenia, and suicidality were not significantly associated

with BPPV, while higher neuroticism scores and mood swings

may promote the occurrence and development of BPPV. Analyses

of horizontal pleiotropy and heterogeneity after MR-PRESSO

adjustment did not reveal significant differences, which suggests the

reliability of the results.

In related studies analyzing patients with BPPV in Korea,

it was found that the risk of developing mood disorders in

BPPV patients was significantly greater than that in healthy

people (15). The degree of anxiety and depression may reflect

the probability of residual dizziness after canalith repositioning

(30). At present, the associations between BPPV and anxiety and

depression have been studied the most. A recent meta-analysis of
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FIGURE 3

Summary view of the MR images derived from the IVW, MR–Egger, simple mode, weighted median, and weighted mode methods. (MR-PRESSO

adjustment) (A) The MR analysis results for bipolar disorder and BPPV. (B) The MR analysis results for depression and BPPV. (C) The MR analysis results

for anxiety disorders and BPPV. (D) The MR analysis results for schizophrenia and BPPV. (E) The MR analysis results for suicidality and BPPV. (F) The

MR analysis results for neuroticism and BPPV. (G) The MR analysis results for mood swings and BPPV.

FIGURE 4

The results of the MR analysis between mental disorders and BPPV.

23 studies and 2,902 patients showed that there was a significant

association between BPPV and anxiety, but the association between

BPPV and depression still needs to be further studied (16). Yang

et al. conducted an analysis of 72,569 patients with peripheral

vestibular disorders and 217,707 healthy controls in Taiwan and

reported that suicidal attempts were strongly associated with BPPV,

Meniere’s disease, and vestibular neuritis; however, due to the

uncertainty of other suicide risk factors, the association between

these conditions needs to be further studied (14), and other studies

have shown results similar to those in our analyses. Kalderon

et al. analyzed the clinical data of 18 patients with BPPV and 18

healthy controls and reported that there may be no difference in

anxiety between patients with BPPV and healthy controls (31).

In our research, no relevant clinical studies on BPPV or bipolar

disorder or schizophrenia were found, and the association between

BPPV and the relevance of bipolar disorder and schizophrenia

may require further exploration. Psychological distress has been

shown to predict the severity of vestibular dysfunction to a certain

extent (32). Neuroticism and mood swings, which are common

psychological factors (33), may also have a certain effect on BPPV.

Several clinical studies have confirmed our results from other

perspectives (20, 34, 35). Our results are inconsistent with the

results of several clinical analyses, possibly due to the lack of

reliability of the results due to the unmeasured confounding factors

that often appear in clinical studies of mental disorders or BPPV.

Therefore, the results of clinical studies cannot fully reflect the
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TABLE 2 Results of the MR analysis of BPPV and mental disorders.

Exposure Outcome SNP Method OR 95% CI P-value Q_df (Q_pval)

BPPV Bipolar disorder 11 MR Egger 1.113 0.968–1.281 0.165 9 (0.404)

Weighted median 1.011 0.916–1.116 0.822

IVW 1.014 0.940–1.094 0.704 10 (0.301)

Simple mode 1.054 0.893–1.245 0.543

Weighted mode 1.021 0.866–1.205 0.802

BPPV Depression 12 MR Egger 0.997 0.992–1.001 0.246 10 (0.554)

Weighted median 0.998 0.995–1.001 0.478

IVW 0.999 0.997–1.001 0.449 11 (0.554)

Simple mode 0.998 0.993–1.002 0.465

Weighted mode 0.998 0.994–1.001 0.345

BPPV Anxiety disorders 10 MR Egger 1.002 0.998–1.007 0.291 8 (0.361)

Weighted median 1.001 0.999–1.003 0.119

IVW 1.001 0.999–1.002 0.054 9 (0.422)

Simple mode 1.002 0.999–1.004 0.186

Weighted mode 1.001 0.999–1.004 0.212

BPPV Schizophrenia 11 MR Egger 1.046 0.944–1.159 0.406 9 (0.190)

Weighted median 0.999 0.937–1.066 0.994

IVW 1.000 0.949–1.053 0.988 10 (0.181)

Simple mode 1.016 0.915–1.129 0.763

Weighted mode 1.009 0.926–1.099 0.835

BPPV Suicidality 12 MR Egger 1.041 0.947–1.145 0.418 10 (0.194)

Weighted median 1.022 0.962–1.085 0.476

IVW 0.996 0.947–1.047 0.879 11 (0.175)

Simple mode 1.031 0.933–1.139 0.552

Weighted mode 1.032 0.934–1.140 0.540

BPPV Neuroticism 13 MR Egger 0.966 0.905–1.030 0.321 11 (0.329)

Weighted median 0.983 0.940–1.027 0.443

IVW 1.004 0.969–1.039 0.818 12 (0.266)

Simple mode 0.993 0.927–1.062 0.832

Weighted mode 0.979 0.924–1.036 0.475

BPPV Mood swings 13 MR Egger 1.002 0.992–1.011 0.742 11 (0.263)

Weighted median 0.999 0.992–1.004 0.647

IVW 0.996 0.991–1.001 0.166 12 (0.221)

Simple mode 0.999 0.988–1.009 0.857

Weighted mode 0.999 0.989–1.008 0.838

BPPV, Benign paroxysmal positional vertigo.

association between these diseases. We used the MR method at the

level of genetic analysis to determine the relationship between the

two parameters (mental disorders and BPPV), ruling out various

confounding factors, and thus improved the reliability of the

results (36).

Due to the influence of various factors on the mechanism of

BPPV, there may be no significant association between several

mental disorders and this disease. Neuroticism and mood swings

are more likely to be the risk factors for BPPV compared to other

mental disorders. However, the mechanism by which neuroticism

and mood swings, as common psychological distress factors, affect

the occurrence and development of BPPV is still unclear, and

local inflammation due to abnormal psychology could promote

the development of BPPV (37, 38). Psychological stress can trigger
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TABLE 3 Results of the MR analysis of mental disorders and BPPV.

Exposure Outcome SNP Method OR 95% CI P-value Q_df
(Q_pval)

P-value
(MR-PRESSON

after adjustment)

Bipolar

disorder

BPPV 101 MR Egger 0.924 0.675–1.264 0.622 99 (0.623)

Weighted

median

0.992 0.898–1.095 0.882

IVW 1.004 0.938–1.074 0.902 100 (0.642)

Simple mode 0.953 0.732–1.240 0.723

Weighted

mode

0.983 0.764–1.263 0.892

Depression BPPV 30 MR Egger 3.419E+07 3.733E+3–

3.131E+12

0.006 28 (0.097) 0.028

Weighted

median

17.253 0.089–3.318E+03 0.288 0.293

IVW 6.995 0.069–7.004E+02 0.408 29 (0.011) 0.147

Simple mode 39.385 4.942E-04–

3.139E+06

0.529 0.543

Weighted

mode

39.385 2.188E-03–

7.090E+05

0.468 0.502

Anxiety

disorders

BPPV 7 MR Egger 0.065 4.480E-28–

9.384E+24

0.933 5 (0.385)

Weighted

median

0.058 2.737E-11–

1.214E+08

0.794

IVW 3.529E-04 1.037E-10–

1.200E+03

0.300 6 (0.507)

Simple mode 9.836 3.593E-12–

2.691E+13

0.881

Weighted

mode

7.861 2.101E-12–

2.941E+13

0.894

Schizophrenia BPPV 328 MR Egger 0.978 0.809–1.181 0.819 326 (0.609)

Weighted

median

0.948 0.878–1.023 0.171

IVW 0.994 0.944–1.045 0.809 327 (0.624)

Simple mode 0.870 0.667–1.134 0.306

Weighted

mode

0.864 0.672–1.109 0.253

Suicidality BPPV 10 MR Egger 0.866 0.497–1.509 0.626 8 (0.690)

Weighted

median

1.012 0.684–1.496 0.951

IVW 0.975 0.730–1.301 0.864 9 (0.754)

Simple mode 1.130 0.648–1.968 0.677

Weighted

mode

1.057 0.630–1.770 0.839

Neuroticism BPPV 263 MR Egger 1.042 0.760–1.427 0.798 261 (0.046) 0.757

Weighted

median

1.126 1.012–1.251 0.028 0.026

IVW 1.142 1.059–1.231 0.001 262 (0.048) 0.0002

Simple mode 1.034 0.730–1.463 0.851 0.902

Weighted

mode

1.066 0.768–1.480 0.701 0.716

(Continued)
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TABLE 3 (Continued)

Exposure Outcome SNP Method OR 95% CI P-value Q_df
(Q_pval)

P-value
(MR-PRESSON

after adjustment)

Mood swings BPPV 179 MR Egger 2.713 0.195–37.608 0.458 177 (0.252)

Weighted

median

2.357 0.928–5.979 0.071

IVW 3.119 1.652–5.884 0.0004 178 (0.269)

Simple mode 2.648 0.145–48.330 0.512

Weighted

mode

1.795 0.132–24.352 0.661

BPPV, Benign paroxysmal positional vertigo. Bold values indicates that P-values are significant.

a systemic stress response, leading to an inflammatory reaction.

This regulation of an inflammatory reaction may serve a protective

function in the short term, but sustained chronic inflammation

stimulation may affect the functioning of the balance receptors in

the inner ear, ultimately promoting the development of BPPV (39).

Additionally, neuroticism and mood swings may enhance neural

network activity, thereby affecting patients’ visual balance control

(40). Stable visual perception is crucial for individuals with BPPV

(41). Further exploration of the relevant mechanisms is needed

in the future. A deeper understanding of these mechanisms will

aid in the development of more effective treatment strategies and

preventive measures for BPPV.

Although our results suggest that there is no significant

association between BPPV and five mental disorders (bipolar

disorder, depression, anxiety disorder, schizophrenia, and

suicidality), BPPV may have some influence on the occurrence

and development of the five mental disorders. The underlying

mechanisms of BPPV and mental disorders are complex. It is

possible that long-term repeated harmful physical stimuli, such as

chronic pain, may lead to emotional changes in patients, whichmay

induce mental disorders (42). It has been suggested that somatic

imbalance, spatial orientation disorder, nausea, and vomiting

caused by recurrent vertigo attacks lead to secondary psychological

distress (43). It has also been hypothesized that the cerebellar and

vestibular systems play complementary roles in emotion regulation

and that long-term maladaptation to the environment may lead

to anxiety and depression (44, 45). Hemispheric lateralization

may link vestibular systems to systems that process emotions (46).

The chronic physical stress caused by BPPV will also continue to

affect the hypothalamic–pituitary–adrenal (HPA) axis (47), and

disorders of the HPA axis may affect mood in individuals (48). The

exploration of the mechanisms underlying the correlation between

neuroticism and mood swings and BPPV merits further study

because of the association between BPPV and mental disorders,

which may be significant for guiding future research on the

underlying mechanisms of the associations between psychological

states and BPPV.

To date, no MR study has examined the association between

BPPV and mental disorders. We used MR analysis in this study

to avoid the bias caused by confounding factors and sample

size difficulties that occur in traditional clinical research. The

reliability and accuracy of the study were improved. MR analysis

strengthened the causal relationship and reduced the probability of

confounding and reverse causality. This study has some limitations.

Because the datasets were obtained from a public database and

the patients were of European ancestry, the results of this study

were not necessarily generalizable to other regions or ethnic groups.

Although we did not find horizontal pleiotropy after adjustment

for MR-PRESSO, we cannot completely rule out that horizontal

pleiotropy affected the generalizability of our results. Since the

datasets used in this study were obtained from a public database,

we cannot classify the sample population by age and sex or

analyze their correlation more precisely. Although the findings

of the study established a causal relationship between BPPV and

neuroticism and mood swings, future research should involve

additional design interventions targeting the risk factors for BPPV

to aid in the development of better prevention for the recurrence

of BPPV.

5 Conclusion

In summary, the results of the two-sample MR analysis

revealed that BPPV was not significantly associated with

five mental disorders (bipolar disorder, depression, anxiety

disorders, schizophrenia, and suicidality). Neuroticism and

mood swings are more likely to be the risk factors for BPPV.

Therefore, we need to pay more attention to the psychological

distress in BPPV patients, and we need to treat BPPV and

prevent its recurrence. The association between BPPV and

mental disorders is clarified to improve the early prevention

and treatment of mental disorders and BPPV in clinical

research. The findings of this study will help to improve the

comprehensive medical management of patients with mental

disorders and BPPV in clinical practice and contribute to

further revealing the underlying mechanisms of mental disorders

and BPPV.
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