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Editorial on the Research Topic

Nutrients, stress response, and human health

Although significant progress has been made in understanding nutrient signaling

pathways and their role in cellular health, the complexity of these mechanisms has revealed

that their impact extends far beyond basic metabolic functions. Nutrient availability and

sensing are now recognized as critical determinants of cellular adaptation to stress, with

far-reaching implications for human health. The interplay between nutrient sensing, stress

response pathways, and metabolic regulation holds the key to addressing conditions

ranging from cancer progression to metabolic disorders. This Research Topic, titled

“Nutrients, Stress Response, and Human Health” brings together contributions that explore

the intricate dynamics of nutrient signaling in cellular physiology. Each study sheds light

on distinct yet interconnected aspects of how nutrient homeostasis influences health and

disease, providing a comprehensive view of this essential biological theme.

Wang et al. explore the causal relationship between circulating serum metabolites

(CSMs) and hemorrhagic stroke (HS) through rigorous Mendelian randomization

analysis. Their findings identify specific metabolites, such as biliverdin and linoleate,

as protective factors for intracerebral hemorrhage (ICH), while others like 1-

eicosadienoylglycerophosphocholine increase the risk of subarachnoid hemorrhage (SAH).

These results emphasize the role of metabolites in influencing inflammation, oxidative

stress, and lipid homeostasis, thus uncovering actionable biomarkers and pathways

relevant to stroke prevention. This study lays a foundational understanding of how

metabolic health can be influenced by circulating biomarkers.

Expanding on the theme of metabolic influences, Yu et al. investigate the relationship

between the triglyceride-glucose (TyG) index and the risk of aortic aneurysm and

dissection (AAD). They highlight the predictive power of TyG-related indices, particularly

TyG-waist circumference (TyG-WC), in identifying high-risk individuals. This study

underscores the role of metabolic health markers in cardiovascular disease risk

stratification, complementing Wang et al.’s focus on metabolic pathways by emphasizing

the translational value of early detection metrics in clinical practice.

The role of dietary interventions in modulating metabolic pathways is explored by Liu

et al., who studies the nutritional regulation of aging, examining the relationship between

folate intake and serum Klotho levels in adults. This cross-sectional study identifies folate

as a modulator of Klotho, a protein implicated in aging-related diseases and longevity. The

findings highlight the role of specific nutrients in regulating aging pathways, suggesting

that folate may helpmitigate age-related diseases. This research emphasizes the importance
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of nutrient-stress response interactions in promoting healthy aging,

resonating with the findings of Wang et al. and Yu et al. by

highlighting the significance of dietary components in systemic

health regulation.

Adding to the dietary narrative, Roumi et al. investigate the

interplay between polyphenol intake, genetic predispositions, and

cardiometabolic risk factors in overweight and obese women. Their

study demonstrates significant gene-diet interactions, with specific

polyphenol types influencing markers like HDL cholesterol and

triglycerides. These findings suggest the potential for personalized

nutrition strategies, aligning with Liu et al.’s emphasis on tailored

dietary interventions to mitigate metabolic risks.

Odetayo et al. address nutrient-driven modulation of oxidative

stress and inflammation in their investigation of omega-3

fatty acids (O3FA) as protective agents against tamoxifen-

induced gonadotoxicity. Their results highlight O3FA’s ability

to restore redox balance, suppress inflammatory pathways, and

mitigate apoptosis, offering mechanistic insights into how dietary

supplements can counteract drug-induced side effects. This study

builds on the oxidative stress narratives introduced by Wang et al.

and Roumi et al., emphasizing the therapeutic potential of nutrients

in stress response pathways.

Continuing with oxidative balance, Yuan et al. explore

the association between oxidative balance score (OBS) and

serum cobalt levels in individuals with metal implants. Their

findings reveal an inverse relationship, particularly in older

males, and propose antioxidant-rich diets as strategies to mitigate

implant-related oxidative stress. This study’s emphasis on dietary

antioxidants complements Odetayo et al.’s findings, reinforcing the

role of oxidative stress modulation in health maintenance.

Finally, Amer et al. investigate the metabolic effects of glucose

supplementation in high-fat diet mouse models, shedding light on

the dual role of glucose in accelerating liver injury and promoting

lipid oxidation. Their findings provide a critical perspective

on how excessive dietary components can exacerbate metabolic

dysfunction. While certain nutrient components exhibit clear

protective effects on human health, as highlighted by Liu et al.’s

findings on dietary folate and its positive role in enhancing serum

Klotho levels, and Roumi et al.’s demonstration of polyphenols

mitigating cardiometabolic risks, it is equally critical to recognize

the potential harms associated with excessive nutrient intake. Amer

et al.’s work underscores this cautionary principle by illustrating

how excessive glucose supplementation, particularly with L-

glucose, exacerbates liver injury in mice. These findings collectively

offer a balanced view of nutrient impacts on metabolic health.

Conclusion

In conclusion, these articles collectively illuminate the

intricate connections between nutrients, stress responses, and

human health. They underscore the importance of metabolic

markers, dietary components, and oxidative stress modulation

in understanding disease mechanisms and developing preventive

strategies. This Research Topic is both timely and crucial,

given the rising global burden of metabolic and age-related

disorders. Together, these studies provide a robust foundation

for advancing our understanding of how targeted dietary

and metabolic interventions can improve health outcomes,

offering actionable insights for both clinical and public

health applications.

Author contributions

JM: Writing – original draft, Writing – review & editing. JL:

Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Ralph W. and Grace M. Showalter Research

Trust, Department of Biochemistry andMolecular Biology, Indiana

University School of Medicine (080659-00002B to JM).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNutrition 02 frontiersin.org5

https://doi.org/10.3389/fnut.2025.1558682
https://doi.org/10.3389/fnut.2024.1376889
https://doi.org/10.3389/fnut.2024.1454880
https://doi.org/10.3389/fnut.2024.1410811
https://doi.org/10.3389/fnut.2024.1420087
https://doi.org/10.3389/fnut.2024.1443895
https://doi.org/10.3389/fnut.2024.1376889
https://doi.org/10.3389/fnut.2024.1410811
https://doi.org/10.3389/fnut.2024.1485428
https://doi.org/10.3389/fnut.2024.1443895
https://doi.org/10.3389/fnut.2024.1469952
https://doi.org/10.3389/fnut.2024.1420087
https://doi.org/10.3389/fnut.2024.1410811
https://doi.org/10.3389/fnut.2024.1469952
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Frontiers in Nutrition 01 frontiersin.org

Exploring the causal association 
between genetically determined 
circulating metabolome and 
hemorrhagic stroke
Yaolou Wang 1†, Yingjie Shen 1†, Qi Li 1, Hangjia Xu 1, Aili Gao 2, 
Kuo Li 2, Yiwei Rong 1, Shang Gao 1, Hongsheng Liang 1,3*‡ and 
Xiangtong Zhang 1,3*‡

1 Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 
Heilongjiang, China, 2 School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 
China, 3 NHC Key Laboratory of Cell Transplantation, Harbin, Heilongjiang, China

Background: Hemorrhagic stroke (HS), a leading cause of death and disability 
worldwide, has not been clarified in terms of the underlying biomolecular 
mechanisms of its development. Circulating metabolites have been closely 
associated with HS in recent years. Therefore, we explored the causal association 
between circulating metabolomes and HS using Mendelian randomization (MR) 
analysis and identified the molecular mechanisms of effects.

Methods: We assessed the causal relationship between circulating serum 
metabolites (CSMs) and HS using a bidirectional two-sample MR method 
supplemented with five ways: weighted median, MR Egger, simple mode, 
weighted mode, and MR-PRESSO. The Cochran Q-test, MR-Egger intercept 
test, and MR-PRESSO served for the sensitivity analyses. The Steiger test and 
reverse MR were used to estimate reverse causality. Metabolic pathway analyses 
were performed using MetaboAnalyst 5.0, and genetic effects were assessed 
by linkage disequilibrium score regression. Significant metabolites were further 
synthesized using meta-analysis, and we  used multivariate MR to correct for 
common confounders.

Results: We finally recognized four metabolites, biliverdin (OR 0.62, 95% CI 
0.40–0.96, PMVMR  =  0.030), linoleate (18. 2n6) (OR 0.20, 95% CI 0.08–0.54, 
PMVMR  =  0.001),1-eicosadienoylglycerophosphocholine* (OR 2.21, 95% CI 1.02–
4.76, PMVMR  =  0.044),7-alpha-hydroxy-3 -oxo-4-cholestenoate (7-Hoca) (OR 
0.27, 95% CI 0.09–0.77, PMVMR  =  0.015) with significant causal relation to HS.

Conclusion: We demonstrated significant causal associations between 
circulating serum metabolites and hemorrhagic stroke. Monitoring, diagnosis, 
and treatment of hemorrhagic stroke by serum metabolites might be a valuable 
approach.

KEYWORDS

causal association, circulating metabolome, hemorrhagic stroke, linkage 
disequilibrium score regression, Mendelian randomization
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1 Introduction

In recent studies, stroke has been considered the second leading 
cause of death (6.6 million persons) and disability [143 million 
Disability Life Years (DALYs) loss] worldwide. In the last three decades, 
the global incidence of stroke has increased by 70%, the prevalence of 
stroke has increased by 85%, the mortality rate has risen by 43%, and 
DALYs attributable to stroke have risen by 32%, amongst which 
hemorrhagic stroke (HS) is a major contributor (1, 2), there is an urgent 
need to explore the underlying molecular mechanisms of hemorrhagic 
stroke. HS is the deadliest form of stroke and includes subtypes of 
intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) 
(3). Currently, neuroinflammation, oxidative stress, chronic damage to 
the vascular wall, cell death, and hemodynamic alterations have been 
discovered to be tightly related to the development of hemorrhagic 
stroke (4, 5). Thus, searching for the molecules that drive these 
microscopic mechanisms is particularly significant.

Circulating serum metabolites are a series of metabolic substrates 
and products closely associated with human health (6). Circulating 
serum metabolites (CSMs) drive various cellular functions, such as 
energy production and storage, signal transduction, and apoptosis (7). 
They can act in the development of a variety of diseases, such as chronic 
kidney disease, oncological diseases, and myocardial infarction (8–10). 
As for the nervous system, lipid metabolites with a function of 
triggering nerve repair were discovered (11), and a group of circulating 
serum metabolites consisting of serine, isoleucine, betaine, PC (5:0/5:0), 
and LysoPE (18:2) were judged to be  excellent biomarkers for the 
diagnostic and progression process of acute ischemic stroke (AIS) (12). 
Also, a meta-analysis from seven prospective cohorts investigating the 
connections between serum or circulating metabolites and stroke risk 
found that the amino acid histidine, the glycolysis-related metabolite 
pyruvate, the acute-phase response marker glycoprotein acetyls, and 
several lipoprotein subfractions were linked to stroke risk. All stroke 
events, as well as ischemic and hemorrhagic events, were included in 
the analysis (13); likewise, after stroke onset can reduce human blood 
plasma metabolites such as branched-chain amino acids (valine, 
leucine, and isoleucine) that correlate with poor neurological outcomes 
(14). These studies reveal an inextricable link between CSMs and stroke.

Mendelian randomization (MR) is an application of instrumental 
variable analysis. It utilizes genetic variation to ascertain whether an 
observed association between risk factors and outcome corresponds 
to the causal effect. The principle refers to Mendel’s second law about 
the independent segregation of genetic alleles when DNA is passed 
from parents to offspring at gamete formation (15). Since MR analysis 
generates a random distribution of genetic variants through natural 
arbitrary classification, which is immutable, this method not only 
lowers the risk of confounding but also decreases the danger of reverse 
causality bias and is not influenced by disease state (16). Meanwhile, 
randomized controlled trials (RCTs) as the gold standard of causality 
have unavoidable problems such as substantial financial investment, 
weak patient compliance, and the ethics of randomized treatment 
allocation. Further, in situations where RCTs are unavailable, MR is 
extensively employed to infer a causal connection between exposure 
and outcome, with equally compelling results.

Based on the background mentioned above, we  utilized MR 
analysis to detect the causal relationship between the circulating 
metabolome and hemorrhagic stroke to search for the metabolic 
pathways and mechanisms of effect behind the causality.

2 Materials and methods

2.1 Ethics statement and study design

This study did not require additional ethical approval since 
we  used publicly available data, which had already received 
approval from the appropriate ethical and institutional 
review boards.

In this study, we  evaluated the causal relationship between 
human blood metabolites and the risk of hemorrhagic stroke using 
a two-sample bidirectional MR design. A scientific MR study 
should comply with three hypotheses: (1) Instrumental variables 
(IVs) are strongly associated with the exposure of interest; (2) IVs 
must be independent of confounders; and (3) IVs are not related 
to the outcome, but only affect the outcome through exposure. And 
follow the Strengthening the Reporting of Observational Studies 
in Epidemiology Using Mendelian Randomization guidelines 
(STROBE-MR) (Supplementary Table S1) (17).

Notably, we each used four different GWAS summary data to 
perform a comprehensive MR analysis with hemorrhagic stroke as 
the outcome. False discovery rate correction for p-value, meta-
analysis, and multivariate Mendelian randomization were 
performed to increase the reliability and stability of the results, 
linkage disequilibrium score regression (LDSC) was used by us to 
assess the genetic correlation between the screened exposures and 
the outcome, and similarly, we  also explored the potential 
mechanisms of circulating serum metabolites for hemorrhagic 
stroke by metabolite pathway analyses, as outlined in the present 
study in Figure 1.

2.2 Data source for circulating serum 
metabolites

We downloaded summary-type GWAS data for human serum 
metabolites from the Metabolomics GWAS Server.1 Notably, this is 
the most comprehensive report on the genetic loci of blood 
metabolites, which successfully screened out 486 metabolites with 
genetic influences on human serum metabolites by Shin et al. (18). 
Specifically, the study included 7,824 Europeans, including 1768 
from the KORA F4 study in Germany and 6,056 from the 
United Kingdom Twin Study. This study analyzed 529 metabolites 
in plasma or serum from 7,824 adult individuals from two 
European population studies via liquid chromatography and gas 
chromatography separation-coupled tandem mass spectrometry. 
Four hundred and eighty-six serum metabolites were obtained 
after rigorous quality control. Among the 486 metabolites, 177 
were defined as unknown due to poorly defined chemical 
properties. Another 309 metabolites were chemically authenticated 
and allocated to eight broad metabolic groups, including amino 
acid, carbohydrate, cofactors and vitamin, energy, lipid, nucleotide, 
peptide, and xenobiotic metabolism, as documented in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. We record 
additional information in Supplementary Table S2.

1  http://metabolomics.helmholtz-muenchen.de/gwas/
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2.3 Data source for hemorrhagic stroke

Hemorrhagic stroke includes two subtypes, intracerebral 
hemorrhage (ICH) and subarachnoid hemorrhage (SAH). GWAS 
summary data for hemorrhagic stroke were obtained from the FinnGen 
and European Bioinformatics Institute (EBI) databases. For more detail, 
for ICH and SAH summary data, we chose the R9, R7, and R5 versions 
of the FinnGen database as well as the registry numbers downloaded 
from the GWAS Catalog for the data sets GCST90018870 and 
GCST90018923 datasets, the latter being the result of the meta-analysis 
of FinnGen R3 and UK Biobank by Saori Sakaue et al. (19). We show 
the specific features of the above datasets in Supplementary Table S2. 

More information can be acquired by accessing (https://www.finngen.
fi/fi) and (https://www.ebi.ac.uk/gwas/).

2.4 Selection of instrumental variables

We selected instrumental variables to satisfy the three main 
assumptions mentioned above, and the first step was to screen SNPs 
for subsequent MR analyses by an association threshold of p < 1 × 10−5 
to maximize the amount of genetic variance explained by genetic 
predictors (20). Second, SNPs were clustered in the European 1,000 
Genomes Project Phase III reference panel using the R software with 

FIGURE 1

Overall study overview flowchart. SNP, single nucleotide polymorphism; MR, Mendelian randomization; ICH, intracerebral hemorrhage; SAH, 
subarachnoid hemorrhage; MR-PRESSO, MR pleiotropy residual sum and outlier.
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a linkage disequilibrium threshold r2 < 0.01 within 500 kilobases (kb), 
a condition that has been widely used in previous studies (21, 22). 
Finally, at the same time, the F-statistic was used as a reliable measure 
to assess the tool’s robustness. Ultimately, the F-statistic serves as a 
robust and reliable metric for evaluating the tool. We  used the 
following formula to calculate:

	

F
R n k

R k
=

− −( )
−( )

2

2

1

1

Where R2 denotes explained variance, n denotes sample size, and 
k denotes the number of selected IVs.

2.5 Bidirectional MR analysis and sensitivity 
analysis

For univariable MR analysis, given that the random-effects inverse 
variance weighted (IVW) estimates were derived from a pooled 
analysis of Wald ratios across all genetic variants and the premise that 
IVW could provide the most accurate assessment of causal effects 
based on the assumption that there was no horizontal pleiotropy 
across all the included SNPs (23). We chose a p < 0.05 for the results of 
IVW as a preliminary assessment of a causal relationship between 
circulating serum metabolites (CSMs) and hemorrhagic stroke (HS). 
We  also used five methods, Weighted median, MR Egger, Simple 
mode, Weighted mode, and MR-PRESSO, as complementary analyses 
to the IVW method, although the Weighted median method produces 
unbiased estimates even when as much as 50% of the data come from 
invalid instruments (24). The Weighted mode method is reliable when 
most individual instrument causal effect estimates come from valid 
instruments, even if some are considered invalid (25). Simple mode 
represents an unweighted empirical density function for causal 
estimation (26). In addition, the MR-Egger method is a valuable tool 
for estimating causal effects through the slope coefficients of Egger 
regressions, which helps to identify and address potential slight study 
bias (27). When the condition of IVW method p < 0.05, even though 
the p value of the five methods of supplementary analysis does not 
satisfy all <0.05, but the β value of all methods show the same direction 
effect, the result is recognized as positive circulating serum metabolites 
(28), which are included in the next stage of analysis. Meanwhile, the 
MR-PRESSO method results in a p < 0.05, which can further increase 
the accuracy and stability of positive results. As for the reverse MR 
analysis, we chose HS for exposure, significant and potentially causal 
CSM as the outcome, and applied the identical SNP selection 
conditions of the forward MR analysis by which to test the 
directionality of causality.

For the MR results of positive primary screening in the above 
steps, we corrected the p value of false discovery rate (FDR) according 
to the different types of HS and the different classifications of CSM to 
derive the corresponding PFDR. When the p < 0.05 and PFDR < 0.1, 
we  considered that there was a significant causative relationship 
between the exposure and outcome (29). Moreover, we thought of a 
potential causal relationship between exposure and outcome when 
p < 0.05 but PFDR ≥ 0.1.

For sensitivity analyses of significant and potential causality, 
we employed three methods, Cochran’s Q test, MR-Egger intercept 

test, and MR-PRESSO, to identify horizontal pleiotropy and 
heterogeneity and to mitigate their effects by removing outliers. 
Cochran’s Q-test was used to detect heterogeneity, while the MR-Egger 
intercept test and MR-PRESSO (Global test) were used to detect 
horizontal pleiotropy of selected SNP, and the MR analysis was 
repeated after excluding these pleiotropic SNP. p > 0.05 indicates the 
absence of heterogeneity or pleiotropy (27, 30, 31). Additionally, to 
ensure unbiased causal estimation, we performed a leave-one-out 
analysis, which assesses whether the results are affected by the severity 
of a single SNP by discarding each SNP in turn and then performing 
MR analysis (32).

2.6 Linkage disequilibrium score and 
directionality tests

Although SNPs associated with HS were excluded during screening 
for IV, SNPs that can mediate the inheritance of HS still exist. And MR 
analyses may violate the causal effect in the presence of a genetic 
correlation between exposure and outcome (33). LDSC regression 
observes the genetic contribution of complex traits and characteristics 
by estimating the strength of association between SNPs and traits. 
Therefore, we utilized the LDSC to examine the genetic correlation 
between positive circulating serum metabolites and HS to ascertain that 
the genetic concordance of exposure and outcome did not confound 
the inter-causal effects. We also performed a Steiger test to eliminate 
bias due to reverse causality and validate causality’s directionality (34), 
providing a more informative interpretation of the reverse MR results.

2.7 Metabolic pathway analysis

We explored the possible pathways and mechanisms of action 
behind circulating serum metabolites with significant and potentially 
causal effects on hemorrhagic stroke using MetaboAnalyst 5.02 (35).

2.8 Meta-analysis and multivariate MR 
analysis

Aiming to make the final screening of circulating serum metabolites 
causally associated with hemorrhagic stroke comprehensive, precise, and 
constant, ICH and SAH in hemorrhagic stroke, we used four different 
GWAS data each. Then, a meta-analysis of the results of the IVW model 
was carried out using the R software package, followed by the screening 
of the corresponding PMeta, with PMeta > 0.05 removed. Meanwhile, 
we applied I2 to perform the heterogeneity test of meta-results (36).

To adequately adjust for confounders, circulating serum 
metabolites after meta-analysis selection were further included as 
confounders (hypertension, obesity, alcohol consumption) in our MR 
analysis for multivariate MR analysis (MVMR). IVW, weighted 
median, and MR-Egger regression were also analyzed in the MVMR 
analysis. Besides, Egger-intercept and Cochran’s Q tests were evaluated 
to assess the multiplicity and heterogeneity of the results (37).

2  https://www.metaboanalyst.ca/
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2.9 Analysis software and packages

All the statistical analyses and data visualizations were performed 
using R software version 4.3.1. Bidirectional and multivariate MR 
analyses were implemented with the packages “TwoSampleMR” (26), 
“MR-PRESSO” (31), and “MendelianRandomization” (38); meta-
analysis was done using the “meta” (39) package.

3 Results

3.1 Instrumental variables selection in 
causal analyses

Following rigorous instrumental variable selection rules and 
procedures, we performed MR analyses on 309 known circulating serum 
metabolites, acquiring IVs ranging from 3 to 485 SNPs. All selected 
SNPs had F values exceeding 10, showing instrumental solid efficacy.

3.2 Causal assessment of circulating 
metabolome leading to hemorrhagic 
stroke

Detailed results of the IVs and each method selected for positive 
MR analysis of 309 CSMs of known structure and function with HS 
are shown in their entirety in Supplementary Tables S3, S4, and the 
visualization of the results is available in Figures 2, 3. We judged that 
CSMs with IVW model p < 0.05 were positive for the presence of a 
causal effect, provided that the β values of the five analytical methods 
were in the same direction, and PFDR < 0.1 were considered to have a 
significant causal effect.

As for the ICH results, following the above selection criteria, 
we identified a total of 39 positive CSMs in seven significant categories 
for the four ICH GWAS data, classified according to circulating serum 
metabolites, of which 18 were in Lipid, 9 in Amino acid, 3 in Peptide, 
3 in Cofactors and vitamins, 3 in Xenobiotics, 1 in Carbohydrate, and 
2 in Nucleotide. Corresponding β, OR, and p values can be searched 
in Supplementary Table S4 and Figure 2.

For the SAH results, with the same screening standard, 
we recognized 34 positive CSMs in six major categories for the four 
SAH GWAS data, according to the circulating serum metabolite 
classification, of which 18 belong to Lipid, 8 to Amino acid, 4 to 
Peptide, 2 to Carbohydrate, 1 to Cofactors and vitamins and 1 to 
Nucleotide. Matching β, OR, and p values are shown in 
Supplementary Table S2 and Figure 3.

Of the above 73 positive circulating serum metabolites after 
rectification (Figure 4), 7 of these (PFDR < 0.1) were determined to 
be significant causative CSMs, ICH was the outcome for 4, namely 
pyroglutamylglycine in Peptide (OR 2.13, 95% CI 1.28–3.53, 
p = 0.00348, PFDR = 0.0939), biliverdin in Cofactors and vitamins (OR 
0.59, 95% CI 0.40–0.86, p = 0.00679, PFDR = 0.0883), linoleate (18:2n6) 
in Lipid (OR 0.11, 95% CI 0.04–0.33, p = 0.0000966, PFDR = 0.0118) and 
eicosenoate (20:1n9 or 11) (OR 0.26, 95% CI 0.13–0.52, p = 0.000141, 
PFDR = 0.00862) in Lipid, and 3 for SAH as an ending, for gamma-
glutamylmethionine* in Peptide(OR 3.25, 95% CI 1.51–7.00, 
p = 0.00258, PFDR = 0.0697), 1-eicosadienoylglycerophosphocholine* in 
Lipid (OR 3.22, 95% CI 1.72–6.04, p = 0.000255, PFDR = 0.0311) and 

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) in Lipid (OR 0.13, 
95% CI 0.04–0.42, p = 0.000605, PFDR = 0.0738). The above results are 
presented in Table 1 and Figures 2–4, 5A.

3.3 Sensitivity tests in positive causal 
analysis

We did multiplicity and heterogeneity tests and leave-one-out 
analyses in the sensitivity analyses. MR-Egger regression intercepts 
were not significantly different from zero (all Pegger-intercept > 0.05) except 
for gamma-glutamylmethionine (Pegger-intercept = 0.046) for Peptide in 
FinnGen R7 SAH, in which the resulting causality was not plausible 
since there was horizontal multiplicity in this serum substance. The 
Cochran’s Q test for heterogeneity p-values were all more than 0.05; 
after removing all outliers of X-14208-phenylalanylserine from 
Peptide in EBI SAH MR-PRESSO Global test P- values were more 
than 0.05, without significant heterogeneity and pleiotropy 
(Supplementary Tables S5, S6). Moreover, leave-one-out analysis 
demonstrated that no particular SNPs driving the correlation between 
CSMs and HS existed (Supplementary Table S7).

3.4 Genetic association assessment and 
directionality test for positive causality

Genetic correlation through linkage disequilibrium (LDSC), when 
assessing causality using circulating serum metabolites as exposures, 
indicated that 3-methylhistidine (Rg = 1.199, SERg = 0.543, PRg = 0.027) 
as the outcome of FinnGen R7 ICH, ursodeoxycholate (Rg = 1.026, 
SERg = 0.475, PRg = 0.031) as the outcome of FinnGen R5 ICH, gamma-
glutamylvaline (Rg = 0.580, SERg = 0.285, PRg = 0.042) as the outcome of 
FinnGen R9 SAH, guanosine (Rg = 1.441, SERg = 0.725, PRg = 0.047) as 
the outcome of FinnGen R5 ICH, These four metabolites were 
genetically correlated with the outcome meaning that the results of the 
MR analysis mixed and coexisted with the genetic component, so the 
initially gained causality between them was not sufficiently robust, as 
well as some of the metabolites for which the genetic correlation was 
calculated to be  negative, which we  denoted as NA 
(Supplementary Table S8). Also, the directionality check Steiger test 
results implied that none of the reverse causality effects influenced the 
forward causality (Supplementary Table S5).

3.5 Alterations in the circulating 
metabolome after hemorrhagic stroke

Reverse MR analyses involving circulating serum metabolites as 
outcome to estimate causality included FinnGen R7 ICH as exposure 
to mannose (β 0.026, 95% CI 0.008–0.044, p = 0.004, PFDR = 0.065), EBI 
ICH as exposure to taurochenodeoxycholate (β 0.063, 95% CI 0.016–
0.109, p = 0.008, PFDR = 0.067) and tetradecanedioate with EBI ICH as 
the exposure (β 0.047, 95% CI 0.013–0.080, p = 0.007, PFDR = 0.110) were 
considered to have a causal effect, whereby the levels of the mentioned 
three metabolites increased after the occurrence of ICH 
(Supplementary Tables S9, S10). Also, we did not find heterogeneity and 
pleiotropy, nor were SNPs significantly correlated with the results in 
leave-one-out analysis (Supplementary Tables S11, S12).
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3.6 Effect pathway analysis of the 
circulating metabolome

By performing metabolic pathway analyses on GWAS data from 
8 ICH and SAH as outcomes probing for causality, we characterized 
altogether 10 possible pathways of effect (p < 0.05), “Biosynthesis of 
unsaturated fatty acids” (p = 0.00088), “Linoleic acid metabolism” 
(p = 0.02873), “Ascorbate and aldarate metabolism” (p = 0.04562), 
“Porphyrin and chlorophyll metabolism” (p = 0.00212), and “Histidine 
metabolism” (p = 0.04069) might be  the pathway mechanisms by 
which circulating serum metabolites contribute to the progression of 
ICH, while “Arginine biosynthesis” (p = 0.02687), “Glycine, serine and 
threonine metabolism” (p = 0.00625), “Aminoacyl-tRNA biosynthesis” 

(p = 0.01301), “Pantothenate and CoA biosynthesis “(p = 0.04818) 
may be related to the SAH disease process, “Glycerophospholipid 
metabolism” (p = 0.01705 for EBI ICH, p = 0.00742 for FinnGen R7 
SAH, p = 0.00306 for FinnGen R9 SAH) is a probable metabolite 
action pathway common to the development of ICH and SAH 
(Supplementary Table S13 and Figure 5B).

3.7 Meta-analyses based on multiple 
versions of hemorrhagic stroke

Aiming to further refine the exploration and evaluation of causal 
effects, we conducted a meta-analysis of the IVW model for each of 

FIGURE 2

Causal relationships between circulating serum metabolites and intracerebral hemorrhage based on different data versions; respectively (A) FinnGen 
R9 (B) FinnGen R7 (C) FinnGen R5 (D) EBI database. From outside to inside, the β values of the five methods of inverse variance weighted (IVW), 
weighted median, MR egger, simple mode, weighted mode, the p values of IVW model, the PFDR, and the metabolite species grouping are shown 
sequentially.
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the seven CSMs with significant causal associations with HS based on 
the results of the MR analyses of the four outcome data we selected, 
revealing that the results of biliverdin (OR 0.72, 95% CI 0.60–0.86, 
Prandom effects < 0.01, I2 = 0%), pyroglutamylglycine (OR 1.83, 95% CI 
1.24–2.72, Prandom effects < 0.01, I2 = 40%), linoleate (18:2n6) (OR 0.23, 
95% CI 0.12–0.46, Prandom effects < 0.01, I2 = 4%) with a constant causal 
relationship between ICH, 1-eicosadienoylglycerophosphocholine* 
(OR 2.13, 95% CI 1.07–4.25, Prandom effects = 0.03, I2 = 77%) (I2 suggests 
that there is heterogeneity in this result, which needs to be interpreted 
with caution), gamma- glutamylmethionine* (OR 3.10, 95% CI 1.86–
5.17, Prandom effects < 0.01, I2  = 0%), 7-alpha-hydroxy-3-oxo-4-
cholestenoate (7-Hoca) (OR 0.28, 95% CI 0.14–0.55, Prandom effects < 0.01, 
I2 = 0%) stablely influenced the progression of SAH, while eicosenoate 

(20:1n9 or 11) (OR 0.59, 95% CI 0.30–1.17, Prandom effects = 0.13, 
I2 = 67%) with ICH causality was not plausible, thus it will be excluded 
from the subsequent analysis (Figures 6A,B).

3.8 Removing confounding effects with 
multivariate MR analysis

To ensure that the eventually obtained CSMs directly influenced HS 
rather than through confounders, we  incorporated alcohol 
consumption, hypertension, and obesity as confounders, using the 
respective types of HS data as the outcome and performing multivariate 
MR analyses considering them separately and collectively. The results 

FIGURE 3

Causal relationships between circulating serum metabolites and subarachnoid hemorrhage based on different data versions; respectively (A) FinnGen R9 
(B) FinnGen R7 (C) FinnGen R5 (D) EBI database. From outside to inside, the β values of the five methods of inverse variance weighted (IVW), weighted 
median, MR egger, simple mode, weighted mode, the p values of IVW model, the PFDR, and the metabolite species grouping are shown sequentially.

12

https://doi.org/10.3389/fnut.2024.1376889
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al.� 10.3389/fnut.2024.1376889

Frontiers in Nutrition 08 frontiersin.org

FIGURE 4

Circulating serum metabolites with causal effects on outcome in different versions of hemorrhagic stroke. Demonstrate the magnitude of ORs and 
p-values based on the IVW model. OR, odds ratio; IVW, inverse-variance weighted.
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TABLE 1  Results of MR estimation of circulating serum metabolites significantly and causally associated with hemorrhagic stroke.

Hemorrhagic 
stroke/
outcome

Classification Serum metabolites/
exposure

Resulting 
source 
dataset

nSNP Method of MR β SE p-value OR (95%CI) PFDR

Intracerebral hemorrhage

Peptide Pyroglutamylglycine FinnGen R9 4

Inverse variance weighted 0.756 0.259 3.48E-03 2.129 (1.282–3.534)

9.39E-02

Weighted median 0.592 0.337 7.95E-02 1.807 (0.933–3.502)

MR Egger 1.649 0.793 1.73E-01 5.204 (1.101–24.610)

Simple mode 0.534 0.410 2.83E-01 1.706 (0.764–3.808)

Weighted mode 0.565 0.354 2.09E-01 1.759 (0.879–3.522)

Cofactors and 

vitamins
Biliverdin FinnGen R7 17

Inverse variance weighted −0.528 0.195 6.79E-03 0.590 (0.403–0.865)

8.83E-02

Weighted median −0.517 0.232 2.62E-02 0.596 (0.378–0.941)

MR Egger −0.353 0.328 2.99E-01 0.703 (0.369–1.337)

Simple mode −1.461 0.558 1.87E-02 0.232 (0.078–0.693)

Weighted mode −0.487 0.244 6.31E-02 0.614 (0.381–0.991)

Lipid

Linoleate (18:2n6)

ebi-a-

GCST90018870

17

Inverse variance weighted −2.206 0.566 9.66E-05 0.590 (0.403–0.865)

1.18E-02

Weighted median −2.220 0.811 6.21E-03 0.596 (0.378–0.941)

MR Egger −2.988 2.166 1.88E-01 0.703 (0.369–1.337)

Simple mode −2.108 1.388 1.48E-01 0.232 (0.078–0.693)

Weighted mode −2.191 1.276 1.05E-01 0.614 (0.381–0.991)

Eicosenoate (20:1n9 or 11) 13

Inverse variance weighted −1.360 0.357 1.41E-04 0.257 (0.127–0.517)

8.62E-03

Weighted median −1.481 0.507 3.49E-03 0.228 (0.084–0.614)

MR Egger −0.938 0.950 3.44E-01 0.391 (0.061–2.517)

Simple mode −1.822 0.898 6.52E-02 0.162 (0.028–0.940)

Weighted mode −1.746 0.749 3.81E-02 0.175 (0.040–0.758)

Subarachnoid 

hemorrhage

Peptide Gamma-glutamylmethionine*

FinnGen R9

8

Inverse variance weighted 1.179 0.391 2.58E-03 3.251 (1.510–7.000)

6.97E-02

Weighted median 1.110 0.538 3.90E-02 3.033 (1.058–8.698)

MR Egger 2.303 0.830 3.23E-02 10.007 (1.965–50.958)

Simple mode 0.969 0.769 2.48E-01 2.636 (0.584–11.904)

Weighted mode 1.096 0.711 1.67E-01 2.991 (0.743–12.045)

Lipid

1-Eicosadienoylglycerophosphocholine* 13

Inverse variance weighted 1.171 0.320 2.55E-04 3.224 (1.722–6.039)

3.11E-02

Weighted median 1.300 0.456 4.41E-03 3.668 (1.499–8.972)

MR Egger 1.149 0.653 1.06E-01 3.156 (0.877–11.358)

Simple mode 1.644 0.681 3.26E-02 5.175 (1.363–19.653)

Weighted mode 1.524 0.545 1.62E-02 4.591 (1.577–13.369)

7-Alpha-hydroxy-3-oxo-4-cholestenoate 

(7-Hoca)

ebi-a-

GCST90018923
16

Inverse variance weighted −2.021 0.589 6.05E-04 0.132 (0.042–0.421)

7.38E-02

Weighted median −1.789 0.811 2.74E-02 0.167 (0.034–0.820)

MR Egger −2.226 1.639 1.96E-01 0.108 (0.004–2.680)

Simple mode −1.575 1.239 2.23E-01 0.207 (0.018–2.348)

Weighted mode −1.710 1.114 1.46E-01 0.181 (0.020–1.607)

SE, standard error; OR, odds ratio; SNP, single nucleotide polymorphism; FDR, false discovery rate.
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of the separate analyses are presented in Supplementary Table S14, and 
the results of the collective studies are shown in Table 2 and Figure 6C. In 
summary, four CSMs were identified that directly contributed to HS, of 
which biliverdin belonging to Cofactors and vitamins and linoleate 
(18:2n6) belonging to lipid were potential protective factors for ICH, 
while 1-eicosadienoylglycerophosphocholine* belonging to lipid and 

7- alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) belonging to lipid, 
the former being a possible risk factor for SAH and the latter a potential 
protective factor for SAH (Figure  7). We  similarly conducted the 
Cochran’s Q test for MVMR analysis (Multivariable IVW and 
Multivariable MR-Egger) and MR-Egger’s intercept without potential 
heterogeneity and multiplicity (Supplementary Table S15).

FIGURE 5

(A) Forest plot of five MR analysis methods for circulating serum metabolites significantly and causally associated with hemorrhagic stroke. 
(B) Significant metabolic pathways enriched based on different versions of hemorrhagic stroke outcome. MetRatio  =  Metabolites enriched/Total 
number of metabolites in the metabolic pathway.
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4 Discussion

For this study, we  selected to explore the causal associations 
between 309 known CSMs and HS by using eight different large 
GWAS datasets on hemorrhagic stroke. We  performed several 

bidirectional two-sample MR analyses, combined with robustness 
checks of the results, after correction for p-values, Pyroglutamylglycine 
(Peptide), biliverdin (Cofactors and vitamins), linoleate (18:2n6) 
(Lipid), eicosenoate (20:1n9 or 11) (Lipid), gamma- 
glutamylmethionine*(Peptide), 

FIGURE 6

Meta-analysis of circulating serum metabolites with significant causality based on four versions of the outcome IVW model. Of these, (A) with ICH as 
the outcome (B) with SAH as the outcome. (C) De-confounded multivariate MR analysis incorporating alcohol consumption, obesity, and essential 
hypertension.
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1-eicosadienoylglycerophosphocholine* (Lipid), 7-alpha-hydroxy-3-
oxo-4-cholestenoate (7-Hoca) (Lipid), these 7 CSMs were recognized 
as having a significant causal link with HS. Subsequently, we made use 
of meta-analysis to thoroughly investigate the causal relationships of 
these CSMs with distinct versions of hemorrhagic stroke. We found 
that the relevance of eicosenoate (20:1n9 or 11) (Lipid) to the outcome 
became insignificant. Moreover, we  conducted multivariate MR 
analysis to remove potential confounders. Ultimately, we identified 
four CSMs that had significant causality with HS. Specifically, 
biliverdin (Cofactors and vitamins) and linoleate (18:2n6) (lipid) can 
serve as protective factors for ICH, and increased levels of 
1-eicosadienoylglycerophosphocholine* (lipid) raise the risk of 

SAH. In contrast, high levels of 7-alpha-hydroxy-3-oxo-4-
cholestenoate (7-Hoca) (lipid) lower the risk of SAH. Besides, we also 
appraised the genetic correlation through LDSC from CSMs and HS 
to clarify the coexistence of inherited effects, strengthening the 
reliability of our findings. Finally, metabolic pathway analysis was 
applied to find ten potential action pathways binding the two, 
including a shared path (glycerophospholipid metabolism) that CSMs 
act on both ICH and SAH. In recent similar studies, Wang et al. (40) 
focused on the effect of selected serum metabolites produced by gut 
flora on stroke, and our attention is centered on the role of the more 
comprehensive circulating metabolome on the mechanisms of 
hemorrhagic stroke. Zhang et  al. conducted a broad and general 

TABLE 2  Results of multivariable MR estimation of circulating serum metabolites and hemorrhagic stroke.

Type of 
outcome

Classification Type/metabolism nSNP Methods of 
multivariable MR

β SE p-
value

OR 
(95%CI)

Intracerebral 

hemorrhage/

FinnGen R9

Peptide Pyroglutamylglycine 101

Multivariable IVW −0.037 0.232 8.73E-01
0.96 (0.61–

1.52)

Multivariable median 0.164 0.303 5.89E-01
1.18 (0.65–

2.13)

Multivariable egger 0.002 0.234 9.93E-01
1.00 (0.63–

1.59)

Intracerebral 

hemorrhage/

FinnGen R7

Cofactors and 

vitamins
Biliverdin 114

Multivariable IVW −0.476 0.219 3.01E-02
0.62 (0.40–

0.96)

Multivariable median −0.510 0.255 4.55E-02
0.60 (0.36–

0.99)

Multivariable egger −0.448 0.220 4.19E-02
0.64 (0.42–

0.98)

Intracerebral 

hemorrhage/

EBI database

Lipid Linoleate (18:2n6) 105

Multivariable IVW −1.599 0.503 1.48E-03
0.20 (0.08–

0.54)

Multivariable median −1.641 0.699 1.88E-02
0.19 (0.05–

0.76)

Multivariable egger −1.540 0.507 2.38E-03
0.21 (0.08–

0.58)

Subarachnoid 

hemorrhage/

FinnGen R9

Peptide Gamma-glutamylmethionine* 105

Multivariable IVW 0.391 0.417 3.47E-01
1.48 (0.65–

3.35)

Multivariable median 0.066 0.513 8.98E-01
1.07 (0.39–

2.92)

Multivariable egger 0.413 0.416 3.21E-01
1.51 (0.67–

3.42)

Subarachnoid 

hemorrhage/

FinnGen R9

Lipid

1-Eicosadienoylglycerophosphocholine* 108

Multivariable IVW 0.792 0.392 4.35E-02
2.21 (1.02–

4.76)

Multivariable median 1.389 0.506 6.07E-03
4.01 (1.49–

10.81)

Multivariable egger 0.840 0.391 3.17E-02
2.32 (1.08–

4.99)

Subarachnoid 

hemorrhage/

EBI database

7-Alpha-hydroxy-3-oxo-4-

cholestenoate (7-Hoca)
119

Multivariable IVW −1.322 0.543 1.48E-02
0.27 (0.09–

0.77)

Multivariable median −1.461 0.740 4.83E-02
0.23 (0.05–

0.99)

Multivariable egger −1.322 0.543 1.48E-02
0.27 (0.09–

0.77)

SE, standard error; OR, odds ratio; SNP, single nucleotide polymorphism.
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exploration of the causal relationship between serum metabolites and 
various subtypes of stroke, including hemorrhagic and ischemic stroke 
(41). While existing studies lack in-depth studies on each of these 
subtypes, our research focusing on hemorrhagic stroke fills this gap. 
We used multiple versions rather than a single version of the ending 
data to comprehensively analyze the causality, then combined the 
results of the individual versions utilizing meta-analysis, followed by 
the MVMR method to remove the interference of common 
confounders associated with HS, and the interlocking analyses led us 
to obtain a wealthy and robust causal relationship between CSMs and 
HS. We believe that the circulating serum metabolites discovered in 
this comprehensive study can offer assistance in the prevention, 
treatment, and deeper mechanistic investigation of hemorrhagic stroke.

Recently, a large cohort study that explored the association of 
L-alpha glycerylphosphorylcholine (α-GPC) with the risk of 
subsequent stroke at 10 years noted a higher hazard of hemorrhagic 
stroke in α-GPC users compared to non-users, after adjusting for 
traditional cerebrovascular risk factors (42). This indicates that 
exogenous metabolites can influence the occurrence of HS in the form 
of altered intake in a dose–response manner. In a meta-analysis of 26 
prospective cohort studies and 12 randomized controlled trials, fish 
and long chain omega 3 fatty acids intake were found to be moderately 

negatively related to cerebrovascular risk (43). Fish can supply a 
wealth of diverse nutrients which, upon entering the body, make their 
transformation into a variety of metabolites entering the circulatory 
system and thereby intervening in the occurrence of cerebrovascular 
events, suggesting that HS is also capable of being interfered with by 
variations in the categories and concentrations of circulating 
metabolites due to food intake. As for endogenous circulating 
metabolites, current findings demonstrate that greater circulating 
concentrations of vitamin D correlate with a lower incidence of 
cerebrovascular disease, whereas higher levels of circulating calcium 
relate to an increased risk of cerebrovascular disease (44). Conversely, 
the post-HS CSMs also altered correspondingly. Reduced plasma 
concentrations of L-arginine in patients early after intracerebral 
hemorrhage were identified as an independent risk factor for poor 
outcomes (45). Meanwhile, following subarachnoid hemorrhage, 
nitric oxide metabolites nitrite and nitrate levels are also markedly 
elevated (46–48). The aforementioned discoveries confirm that CSMs 
and HS share a reciprocal impact. During our study, we  initially 
identified 73 CSMs that were causally associated with HS; combined 
with reverse MR, we  found similar mannose (carbohydrate), 
taurochenodeoxycholate (lipid), and tetradecanedioate (lipid), three 
metabolites that are capable of interfering with ICH. Mannose and 

FIGURE 7

The analytical procedure and detailed information (category, OR values and outcome of action) of the 4 main metabolites were eventually obtained.
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taurochenodeoxycholate serve as potential protective factors for ICH, 
and tetradecanedioate is a potentially hazardous element in 
ICH. Following the occurrence of ICH, the level of all three rises. 
Mannose synthesizes glycoproteins and participates in 
immunomodulation as a widely distributed monosaccharide in body 
fluids and tissues (49). Hence, it is upregulated after the onset of ICH 
as a timely energy supplier and immunomodulator. 
Taurochenodeoxycholate has been linked to the inhibition of cell 
death (50) and, in turn, may act as a neuroprotective factor that is 
activated upon the rise of stress following the development of 
ICH. Regarding tetradecanedioate, the pathway mediating FA 
β-oxidation, peroxisomal FA β-oxidation or FA α-oxidation may 
damage vascular components contributing to ICH (51), Whereas, 
once ICH occurs, it might remain persistently elevated owing to its 
complex biological functions for example in vivo transporter protein 
assessment of biomarkers (52).

We further adjusted for common confounders of hemorrhagic 
stroke via multivariate MR analysis, which ultimately identified four 
metabolites having significant causal effects. To begin with, biliverdin 
(cofactors and vitamins) was characterized as an ICH protective 
element. It acts as a by-product of heme degradation, and numerous 
studies have confirmed that its biological functions are tightly linked 
to anti-inflammatory, anti-apoptotic, and anti-oxidative stress (53). 
Moreover, it also inhibits the expression of the pro-inflammatory 
cytokines interleukin 1β, tumor necrosis factor α, and interleukin 6 
to achieve an anti-inflammatory role (54). Studies have shown that 
the anti-oxidative stress effect of biliverdin (cofactors and vitamins) 
can be  accomplished by scavenging superoxide (55); meanwhile, 
biliverdin protects vascular tissue from vessel damage by reducing 
c-Jun NH2 terminal kinase activation and preventing endothelial cell 
apoptosis (56); additionally, it regulates the Nrf2/A20/eEF1A2 axis to 
suppress cellular death and thereby attenuates cerebral ischemia–
reperfusion injury (57). However, the main mechanisms involved in 
the pathogenesis of ICH include damage to the cerebral vascular wall, 
vitellosis, and lipid deposition (4); in the latest study, oxidative stress 
erythrocyte-associated erythrocyte-brain endothelial interactions 
that can induce microglia activation in vivo also lead to cerebral 
hemorrhage (58). In summary, biliverdin probably blocks the 
occurrence and progression of ICH by decreasing vascular 
inflammation and cellular pyroptosis caused by the release of cellular 
inflammatory factors, preventing vascular endothelial apoptosis and 
oxidative stress in erythrocytes. Linoleate (18:2n6) (lipid) is likewise 
recognized as a protection factor for ICH by us, and it is an n-6 
polyunsaturated fatty acid essential for average growth and 
development. It is found in low concentrations within the brain (<2% 
of total fatty acids). It constitutes a necessary precursor to benign 
fatty acids and arachidonic acid in the brain, which has important 
implications for neurodevelopment and the regulation of pain and 
inflammatory signaling in peripheral tissues (59). The bio function 
of linoleate (18:2n6) is more sophisticated. There is a belief that long-
term consumption of a low-level linoleate diet might protect the 
brain from inflammation. It has been found that a dietary structure 
in which linoleate is completely deprived for an extended period 
leads to a rapid loss of the beneficial components of ceruloplasmin in 
the rat brain and, conversely, an accumulation of anti-inflammatory 
lipids in the rat brain following low intake of linoleate. In contrast, 
excessive intake promotes neuroinflammation in the rats (60, 61). 
The genotype is closely related to how linoleate exerts inflammatory 

and metabolic responses in the human body (62). Briefly, linoleate 
(18:2n6) may act as an ICH protective factor through an anti-
inflammatory mechanism of action, but long-term low-level intake 
is required to fulfill this conclusion. When ingested in excess over 
time, it could become a risk factor for ICH by enhancing the 
inflammatory response. Therefore, more in-depth mechanisms need 
to be investigated further.

SAH usually occurs in association with aneurysm rupture, and 
the mechanisms behind it are primarily hemodynamic stress and 
vascular wall injury with inhibition of its repair (5). Apart from the 
significant discovery of ICH and circulating serum metabolites, 
we  have also identified circulating serum metabolites relevant to 
SAH. Our analysis showed that 1-eicosadienoylglycerophosphocholine* 
(lipid) promoted SAH. 1-eicosadienoylglycerophosphocholine*, alias 
lysophosphatidylcholine (20:2), a cleavage product of 
phosphatidylcholine, and in addition, lysophosphatidylcholine (20:2) 
(LPC) plays a critical role in promoting the progression of 
atherosclerosis and other cardiovascular diseases by affecting 
endothelial cells, vascular smooth muscle cells, and arteries (63). LPC 
is recognized as a significant component of oxidatively damaged 
low-density lipoprotein (oxLDL), which induces migration of 
lymphocytes and macrophages, increases the production of 
pro-inflammatory cytokines, and can aggregate inflammation, trigger 
oxidative stress, and promote apoptosis. On the other hand, it activates 
NLRP3 and NLRC4 inflammatory vesicles in microglia and astrocytes. 
It also synergizes with Procaspase-1 to induce activation of the ROS 
promoter CYP1B1 and a robust inflammatory response in 
human arterial endothelial cells (64, 65). Furthermore, 
lysophosphatidylcholine (20:2), besides inducing oxidative stress in 
human endothelial cells through NOX5-mediated increases in 
intracellular calcium (66), also activated voltage-dependent calcium 
channels to increase calcium influx and enhanced 5-HT-induced 
contraction of vascular smooth muscle cells in umbilical arteries (67). 
These micro-mechanisms provide more evidence that LPC can result 
in cerebral neurovascular inflammatory injury, oxidative stress, and 
rapid hemodynamic changes, consistent with our results. Hence, 
elevated levels of 1-eicosadienoylglycerophosphocholine* are likely to 
be  the mechanism behind the development of SAH. 7-Hoca is a 
naturally existing cholesterol metabolite in human blood, produced 
by the metabolism of 7α-hydroxy-4-cholestene-3-one and 
27-hydroxycholesterol in the brain. It is also an intermediate 
metabolite in the synthesis of bile acids (BA) (68). A significant rise 
in the concentration of 7-Hoca after SAH was observed (69); while 
the conversion of 27-hydroxycholesterol to 7-Hoca is an essential 
mechanism for the elimination of preoxidized sterols of the brain, 
27-hydroxycholesterol has been implicated in the protection of both 
brain and cognition after injury (70). From this, the increase in 
7-Hoca after SAH may indicate accelerated metabolism of 
27-hydroxycholesterol to mediate cerebral protection. BA, a 
downstream product of 7-Hoca, could lower plasma triglycerides by 
inhibiting hepatic SREBP-1c expression or modulating glucose-
induced adipogenesis. Meanwhile, BA’s activation of the farnesoid X 
receptor (FXR) improved dyslipidemia in mice (71). So, 7-Hoca might 
be  a metabolite acting as a cerebroprotective agent. Therefore, 
we consider that 7-Hoca exerts a potential protective function in SAH 
primarily via abolishing 27-hydroxycholesterol and facilitating BA as 
a downstream product, thereby mediating lipid regulation. Yet more 
direct mechanisms of action require more thorough exploration.
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Although we have done complete and systematic research, some 
limitations remain. Firstly, the sources we chose for the dataset are all 
European, with results that are not guaranteed in terms of population 
generalizability. Secondly, to obtain a sufficient number of SNPs for 
MR analysis of the exposure data, we slightly liberalized the filtering 
criteria; this may have made the IVs less effective, although it is 
common practice among other studies, And the fact that the IVs 
we got are all strong instrumental variables and the directionality test 
has no wrong causal direction also strengthens the credibility of our 
results in some extent. Lastly, we have examined many metabolites of 
recognized functional structure, yet many unknown circulating serum 
metabolites could not be researched. Nevertheless, we went through a 
series of rigorous and comprehensive MR analyses, which led to the 
identification of a reliable causal relationship, which can provide a 
high reference value for carrying out more in-depth interaction 
research between CSMs and HS.

5 Conclusion

In conclusion, we  comprehensively and systematically 
evaluated the causality among circulating serum metabolites and 
hemorrhagic stroke utilizing MR analysis. Four circulating serum 
metabolites with statistically significant and robust causal effects 
with hemorrhagic stroke were eventually identified. Of these, 
biliverdin and linoleate (18:2n6) are capable of decreasing the risk 
of ICH, 1-eicosadienoylglycerophosphocholine* is a hazard factor 
for SAH and 7-Hoca is a protective element for SAH, the mediation 
of inflammation, oxidative stress, apoptosis, lipid homeostasis and 
hemodynamics are the likely mechanisms for the action of these 
metabolites. Additionally, another ten notable metabolic pathways 
have been characterized. These results suggest that these 
metabolites might be considered biomarkers for HS prevention 
and monitoring and also provide some references and assistance 
for future research on the selection of circulating metabolites and 
the exploration of the mechanism of preventive and 
curative targets.
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Objective: This study aims to explore the relationship between dietary folate 
intake and serum Klotho levels in adults from aged 40 to 79  years in the 
United States, seeking to elucidate the intricacies of their interaction.

Methods: Analyzing data from the National Health and Nutrition Examination 
Survey (NHANES) spanning 2007 to 2016. The survey research determined 
folate intake through a 24-h dietary recall and nutrient density modeling, and 
assessed Klotho levels using enzyme-linked immunosorbent assay (ELISA). 
The relationship between folate intake and Klotho levels was evaluated using 
weighted linear regression, and complemented by analysis via smoothed curve 
models for nuanced understanding.

Results: The study encompassed 10,278 participants, with an average age 
of 57.64  years, revealing a noteworthy positive correlation between dietary 
folate and serum Klotho levels. The regression coefficient stood at 0.11 (95% 
confidence interval, 0.05, 0.18) post-adjustment for various covariates. When 
dietary folate intake was categorized into quartiles, the second, third, and fourth 
quartiles exhibited statistically significant differences compared to the lowest 
quartile. This indicates that higher folate intake correlates with increased serum 
Klotho levels. These findings underscore the potential benefits of elevating 
folate intake to enhance serum Klotho levels. Stratified analysis indicated that 
this association was more pronounced among males aged 60  years or older and 
individuals with hypertension.

Conclusion: The findings suggest a significant correlation between increased 
dietary folate intake and elevated serum Klotho levels in adults aged 40–
79  years. Hinting at the potential nutritional influences on the aging process 
and associated health conditions. This calls for further exploration into the 
mechanisms and broader implications of this association.
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1 Introduction

Aging is universally recognized as a multifaceted process influenced 
by an intricate interplay of genetic, environmental, and lifestyle 
determinants (1–3). This phenomenon spans a comprehensive 
spectrum of biological transformations, including diminished cellular 
functionality (4), the accumulation of DNA damage (5), and anomalies 
in amino acid metabolism (6). These transformations transcend singular 
biological levels, engaging in complex interactions that cumulatively 
precipitate the deterioration of tissue and organ function, thereby 
impacting the organism’s health and longevity. Consequently, it is 
crucial to thoroughly understand these processes. Effective interventions 
can slow down the aging process and enhance quality of life.

Since 1997, the Klotho protein has emerged as a focal point in anti-
aging research (7, 8). It is predominantly expressed in the kidneys (9) 
and found in other tissues including the brain (10). Klotho plays a 
pivotal role in fostering longevity and health. It does so by modulating 
calcium and phosphorus metabolism, contributing to the antioxidant 
defense, and impacting critical cellular signaling pathways, notably 
Wnt/β-catenin and insulin-like growth factor-1 (IGF-1) (11, 12). A 
decline in Klotho gene expression is intricately linked to various aging-
associated diseases, such as cardiovascular disease (13), osteoporosis 
(14), and chronic kidney disease (15). Research demonstrates that 
enhancing Klotho protein levels exogenously or activating its signaling 
pathways can mitigate these conditions and potentially slow the aging 
process (13, 16–19). Therefore, Klotho proteins not only serve as crucial 
markers for deciphering the mechanisms underlying aging, but also 
offer promising avenues for developing novel anti-aging therapies (8).

Folate, a critical component of the B-vitamin family, occupies a 
pivotal role in processes such as cell division and growth (20, 21), 
DNA synthesis and repair (22), and the metabolism of amino acids 
(23). Its significance is particularly pronounced during the initial 
stages of development, where it is indispensable in forestalling 
congenital disorders, including neural tube defects (24). Furthermore, 
a deficiency in folate intake can precipitate a range of health issues, 
encompassing anemia, cardiovascular diseases, and even cognitive 
impairments (25, 26). Ongoing scientific investigation continues to 
unveil the advantages of folate in supporting cardiovascular health, 
enhancing cognitive function, and contributing to anti-aging benefits 
(27). Therefore, it is essential to supplement folate for promoting 
health and preventing disease in pregnant women, those planning 
pregnancy, and individuals at risk of folate deficiency. However, high-
dose supplementation is unnecessary for healthy individuals with 
normal folate levels (28).

Recent research has elucidated that particular dietary practices 
and the intake of specific types of food are closely linked to fluctuations 
in klotho protein levels (29, 30). Considering the pivotal roles that 
both klotho protein and folate occupy in fostering health and 
decelerating the aging process, understanding the dynamics of their 
interplay is of paramount importance.

2 Materials and methods

2.1 Study population

This investigation drew upon data from five successive cycles of 
the National Health and Nutrition Examination Survey (NHANES) 

spanning from 2007 to 2016, encompassing 87,719 participants. 
Following the exclusion of subjects due to incomplete data on serum 
Klotho levels (n = 36,824), Dietary energy (n = 38,432), dietary folate 
intake (n = 804), and other covariates (n = 1,381). the study’s final 
cohort consisted of 10,278 individuals (Figure  1). The NHANES 
employed a sophisticated multistage probability sampling technique, 
orchestrated by the National Center for Health Statistics (NCHS). 
Informed Consent was signed by each participant, and the 
methodology of data collection received approval from an ethics 
committee, ensuring the protection of participants. Comprehensive 
details regarding the survey are accessible on the NHANES website.1

2.2 Measurement of dietary folate intake

In this study, the 24-h dietary recall was conducted using a 
combination of face-to-face and telephone interviews. The initial 
interview was carried out at the Mobile Examination Center (MEC), 
followed by subsequent interviews conducted via telephone 3 to 
10 days later. This approach employed the USDA’s Automated 
Multiple-Pass Method (AMPM),2 which precisely recorded the types 
and quantities of foods and beverages consumed by participants 
within the 24 h prior to the interview. The nutrient content of these 
consumables was then assessed through a comprehensive dietary 
survey. The nutrient calculations used the USDA’s Food and Nutrient 
Database for Dietary Studies (FNDDS 4.1; see Footnote 2). Moreover, 
the average of the two dietary recalls was taken, reflecting only the 
actual intake levels, not the habitual intake of the population. To 
minimize the measurement errors associated with self-reported 
dietary assessment tools, we standardized nutrient intake relative to 
total energy intake and accounted for variations in individual energy 
needs. The adjusted intake formula is: dietary folate intake / energy 
intake * 1000 (31). This method, commonly referred to as nutrient 
density model, allows for a more precise evaluation of dietary folate 
intake across diverse energy requirements.

Additionally, in sensitivity analyses, we extended this method to 
assess folate from natural foods, folic acid from fortified foods and 
supplements, and dietary vitamin B12. Each nutrient’s intake was 
similarly adjusted for energy, ensuring robustness in our analyses 
across different dietary sources and intake patterns.

2.3 Serum klotho levels

Blood samples from participants were transported to the 
Northwest Laboratory for Lipid Metabolism and Diabetes Research, 
adhering to predefined protocols, and subsequently preserved at 
−80°C for analysis. The measurement of Klotho levels was conducted 
utilizing an ELISA kit produced (“IBL International,” Japan). In a bid 
to uphold laboratory standards and mitigate potential detection bias 
attributable to random variance, the samples underwent duplicate 
analyses. The mean of these analyses was accepted contingent upon 
compliance with the in-lot quality control criteria. Samples 

1  https://www.cdc.gov/nchs/nhanes/about_nhanes.htm

2  http://www.ars.usda.gov/ba/bhnrc/fsrg
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demonstrating a variance exceeding 10% between the two 
measurements were subjected to reevaluation and duly documented.

2.4 Assessment of covariates

The study incorporated a comprehensive set of covariates, totaling 
11 which included both continuous and categorical variables. These 
covariates are as follows: sex (categorized as male or female), age, 
racial/ethnic background (categorized as non-Hispanic white, 
non-Hispanic black, Mexican American, or other, which includes 
multiracial and other Latino identities), marital status (categorized as 
married, not currently partnered, or cohabiting with a partner), and 
household income relative to the poverty threshold (categorized into 
three groups: ≤1.30, 1.31–3.50, and > 3.50 based on the poverty 
income ratio [PIR]). The poor income ratio was determined based on 
Federal Poverty Level (FPL) information, which considers factors such 
as inflation and family size.3 The Body Mass Index (BMI) is calculated 
as weight (in kilograms) divided by the square of height (in meters; 
kg/m2). According to the World Health Organization (WHO), BMI is 
categorized into four groups: underweight (less than 18.5 kg/m2), 
normal weight (18.5 to less than 25 kg/m2), overweight (25 to less than 

3  https://aspe.hhs.gov/

prior-hhs-poverty-guidelines-and-federal-register-references

30 kg/m2), and obese (30 kg/m2 or greater).4 Hypertension was defined 
as having an average systolic blood pressure greater than 140 mmHg, 
an average diastolic blood pressure greater than 90 mmHg, a history 
of being diagnosed with high blood pressure, or current use of 
prescription medication for high blood pressure, with at least one of 
these criteria being met. Diabetes status was determined based on a 
doctor’s diagnosis. Heart disease identification relied on four 
indicators: a history of congestive heart failure, coronary artery 
disease, angina pectoris, or a heart attack, with any one of these 
conditions affirming the presence of heart disease. The Urine Albumin 
to Creatinine Ratio (UACR) was categorized as <30 mg/g for normal 
individuals and ≥ 30 mg/g indicating abnormal proteinuria. 
Glycosylated hemoglobin (HbA1c) levels were also considered, 
serving as an indicator of long-term glycemic control.

2.5 Statistical analysis

To obtain more representative estimates, this study applied the 
MEC weights recommended by the NHANES database in all analyses. 
All data collection and statistical analyses were performed using 
R4.2.05 and Empower Stats.6

4  https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/

body-mass-index

5  http://www.r-project.org

6  http://www.empowerstats.com

FIGURE 1

Flowchart of the study population.
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TABLE 1  Characteristic of the study population in NHANES 2007–2016.

Dietary folate intake (μg/1000 kcal)

Variables Total Q1 (41.83–147.61) Q2 (147.62–186.00) Q3 (186.03–239.11) Q4 (239.2–1291.04) p-value

N (%) 10,278 2,569 (25.00%) 2,570 (25.00%) 2,569 (25.00%) 2,570 (25.00%)

Serum Klotho quartiles (pg/mL) 856.03 ± 311.67 846.83 ± 327.15 860.78 ± 320.93 856.29 ± 301.48 860.22 ± 296.04 0.018

Age (years) 57.64 ± 10.82 56.11 ± 10.54 57.47 ± 10.80 58.25 ± 10.97 58.73 ± 10.81 <0.001

UACR(mg/g) 47.67 ± 359.83 48.62 ± 374.18 41.86 ± 286.60 53.26 ± 398.82 46.95 ± 369.89 0.046

HbA1c (%) 5.94 ± 1.15 5.94 ± 1.19 5.94 ± 1.16 5.94 ± 1.15 5.94 ± 1.10 0.953

Gender (%) <0.001

Male 4,908 (47.75%) 1,371 (53.37%) 1,221 (47.51%) 1,156 (45.00%) 1,160 (45.14%)

Female 5,370 (52.25%) 1,198 (46.63%) 1,349 (52.49%) 1,413 (55.00%) 1,410 (54.86%)

Ethnicity/Race (%) <0.001

Non-Hispanic White 1,486 (14.46%) 314 (12.22%) 388 (15.10%) 404 (15.73%) 380 (14.79%)

Non-Hispanic Black 1,096 (10.66%) 194 (7.55%) 264 (10.27%) 321 (12.50%) 317 (12.33%)

Mexican American 4,832 (47.01%) 1,226 (47.72%) 1,228 (47.78%) 1,168 (45.47%) 1,210 (47.08%)

Other Race - Including Multi-Racial 2001 (19.47%) 721 (28.07%) 535 (20.82%) 415 (16.15%) 330 (12.84%)

Other Hispanic 863 (8.40%) 114 (4.44%) 155 (6.03%) 261 (10.16%) 333 (12.96%)

Marital (%) <0.001

Married 6,260 (60.91%) 1,468 (57.14%) 1,541 (59.96%) 1,596 (62.13%) 1,655 (64.40%)

Currently in a relationship 478 (4.65%) 155 (6.03%) 128 (4.98%) 106 (4.13%) 89 (3.46%)

Not currently in a partner 3,540 (34.44%) 946 (36.82%) 901 (35.06%) 867 (33.75%) 826 (32.14%)

Poor income ratio (%) <0.001

<1.3 2,896 (28.18%) 784 (30.52%) 735 (28.60%) 673 (26.20%) 704 (27.39%)

1.3–3.5 3,740 (36.39%) 983 (38.26%) 954 (37.12%) 915 (35.62%) 888 (34.55%)

≥3.5 3,642 (35.43%) 802 (31.22%) 881 (34.28%) 981 (38.19%) 978 (38.05%)

BMI (%) <0.001

Underweight (<18.5 kg/m2) 101 (0.98%) 32 (1.25%) 25 (0.97%) 28 (1.09%) 16 (0.62%)

Normal weight (18.5–24.9 kg/m2) 2,323 (22.60%) 487 (18.96%) 542 (21.09%) 627 (24.41%) 667 (25.95%)

Overweight (25–29.9 kg/m2) 3,496 (34.01%) 849 (33.05%) 875 (34.05%) 872 (33.94%) 900 (35.02%)

Obese (≥30 kg/m2) 4,358 (42.40%) 1,201 (46.75%) 1,128 (43.89%) 1,042 (40.56%) 987 (38.40%)

Hypertension (%) 0.433

No 5,524 (53.75%) 1,404 (54.65%) 1,363 (53.04%) 1,399 (54.46%) 1,358 (52.84%)

Yes 4,754 (46.25%) 1,165 (45.35%) 1,207 (46.96%) 1,170 (45.54%) 1,212 (47.16%)

(Continued)
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TABLE 1  (Continued)

Dietary folate intake (μg/1000 kcal)

Variables Total Q1 (41.83–147.61) Q2 (147.62–186.00) Q3 (186.03–239.11) Q4 (239.2–1291.04) p-value

Diabetes (%) 0.009

Yes 1769 (17.21%) 384 (14.95%) 454 (17.67%) 447 (17.40%) 484 (18.83%)

No 8,206 (79.84%) 2,113 (82.25%) 2032 (79.07%) 2054 (79.95%) 2007 (78.09%)

Borderline 303 (2.95%) 72 (2.80%) 84 (3.27%) 68 (2.65%) 79 (3.07%)

CVD (%) 0.115

No 8,970 (87.27%) 2,235 (87.00%) 2,243 (87.28%) 2,274 (88.52%) 2,218 (86.30%)

Yes 1,308 (12.73%) 334 (13.00%) 327 (12.72%) 295 (11.48%) 352 (13.70%)

Mean +/− SD for: age, dietary folate intake, UACR, HbA1c. % for: gender, race, marital, poor income ratio, BMI, hypertension, diabetes, CVD.

TABLE 2  Association between dietary folate intake and serum klotho levels among adults in NHANES 2007–2016.

Dietary folate intake 
(μg/1000  kcal)

Model 1 Model 2 Model 3

β (95%CI) p-value β (95%CI) p-value β (95%CI) p-value

Continuous 0.09 (0.02, 0.15) 0.0079 0.11 (0.05, 0.18) 0.0005 0.11 (0.05, 0.18) 0.0009

Quartiles

Q1(41.83–147.61) Reference Reference Reference

Q2(147.62–186.00) 27.34 (11.27, 43.41) 0.0009 30.58 (14.59, 46.57) 0.0002 29.79 (13.84, 45.75) 0.0003

Q3(186.03–239.11) 18.69 (2.54, 34.84) 0.0234 23.36 (7.18, 39.53) 0.0047 21.17 (5.01, 37.34) 0.0103

Q4(239.2–1291.04) 24.17 (8.05, 40.29) 0.0033 31.13 (14.96, 47.30) 0.0002 30.15 (13.94, 46.37) 0.0003

p for trend 0.0240 0.0022 0.0035

Model 1: no cofounder. Model 2: adjusted for age, gender, race. Model 3: adjusted for age, gender, race, marital, BMI, poor income ratio, hypertension, diabetes, CVD, HbA1c and UACR. CI, confidence interval.
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FIGURE 2

Association between dietary folate intake and serum Klotho levels 
adjusted for age, gender, race, marital, body mass index, poor 
income ratio, hypertension, diabetes, CVD, HbA1c and UACR.

The relationship between dietary folate intake and serum Klotho 
levels was examined using multivariate linear regression analysis, which 
facilitated the computation of beta values and 95% confidence intervals. 
This analysis was structured into three distinct models: Model 1, which 
did not adjust for any variables; Model 2, which adjusted for sex, age, and 
race; and Model 3, which incorporated adjustments for additional 
covariates. Serum Klotho levels were analyzed both as a continuous 
independent variable and categorically, divided into quartiles, to evaluate 
trends. To visually represent this relationship, a smoothed curve-fitting 
model was employed. The study also conducted stratified and interaction 
analyses to investigate how this association might differ across subgroups 
defined by each covariate. Specifically, analyses were stratified by age 
(comparing those under 60 years to those 60 years and older), sex, and 
the presence of hypertension across varying dietary folate intake.

Further, sensitivity analyses were carried out on distinct population 
subsets: those consuming only naturally occurring folate in foods, those 
whose intake included only dietary folic acid from fortified food 
[calculated as μg of DFEs provided = μg of natural food folate + (1.7 × μg 
of folic acid)] (32), and those consuming folate exclusively through 
supplements. The characteristics of these populations are detailed in 
Supplementary Table S1. These analyses aimed to assess the impact of 
potential outliers on the findings. To ensure the stability of the outcomes, 
the study excluded data points representing extreme values, this included 
individuals with Klotho levels above 2,500 pg./mL, those with dietary 
folate intake exceeding 500 μg/1000 kcal or below 100 μg/1000 kcal after 
energy adjustment, and individuals with energy-adjusted vitamin B12 
levels greater than 6.0 μg/1000 kcal. Additionally, individuals categorized 
as “obese” by BMI, as well as those diagnosed with hypertension, 
diabetes, or heart disease, and those with a urine albumin/creatinine 
ratio (UACR) greater than 30 mg/g were also excluded.

3 Results

3.1 Baseline characteristics of all 
participants

This study enrolled a total of 10,278 participants, of whom 47.75% 
were male and 52.25% were female. The age range of participants 
spanned from 40 to 79 years, with a mean age of 57.64 years (standard 
deviation ±10.82 years). Participants were stratified based on the quartiles 
of serum Klotho levels, and the baseline characteristics are delineated in 
Table 1. Significant differences were observed across the quartiles of 
Dietary folate intake in terms of age, gender, race, marital status, Poor 
income ratio, body mass index (BMI), diabetes mellitus, urinary 
albumin-to-creatinine ratio (UACR), and glycosylated hemoglobin levels.

3.2 Association between dietary folate 
intake and serum klotho levels

In the multivariate regression analysis detailed in Table  2, an 
association was observed between dietary folate intake and serum 
Klotho levels. Specifically, in both Model 2 and Model 3, each 
1 μg/1000 kcal increase in energy-adjusted dietary folate intake was 
associated with a 0.11 pg./mL increase in serum Klotho levels. 
Subgroup analyses in Models 2 and 3 showed significant associations 
for Groups Q2, Q3, and Q4 compared to Group Q1, with p-values less 
than 0.05 for each group. The trend difference between the groups in 

both Model 2 and Model 3 was significant, with p-values for trend less 
than 0.0022 and 0.0035, respectively.

We used smoothed curve fitting to show the complex, non-linear 
relationship between folate intake and Klotho levels in the blood 
(Figure 2). This technique helps highlight how these two variables 
interact beyond straightforward linear patterns.

3.3 Subgroup analysis and sensitivity 
analysis

In the subgroup analysis examining the relationship between 
dietary folate intake and Klotho levels (Table 3), the study population 
was stratified into quartiles based on their dietary folate intake. 
Following adjustments for potential confounding variables, the 
correlation appeared to be more pronounced among individuals aged 
60 years or older, within the male demographic, and among 
participants with a history of hypertension.

Furthermore, extensive sensitivity analyses were conducted in this 
study to assess the stability of the results (refer to Table 4): (1) only 
samples deriving from natural food folate intake were included; (2) 
Inclusion was limited to samples containing dietary folic acid from 
fortified foods; (3) the analysis included only samples with intake of 
folate supplements; (4) samples exhibiting Klotho levels >2,500 pg./mL 
were excluded; (5) Excluding samples with dietary folate intake 
exceeding 500 μg/1000  kcal; (6) exclusion of samples with 
<100 μg/1000 kcal of dietary folate intake; (7) samples with dietary 
vitamin B12 intake >6.0 μg/1000 kcal were also excluded; (8) given the 
potential influence of hyperlipidemia on Klotho levels, samples with a 
BMI categorization of “obese” were excluded (33); (9) considering the 
association of hypertension prevalence with lower Klotho levels, samples 
with a hypertension status of “yes” were excluded (34); (10) due to the 
nonlinear relationship between serum Klotho levels and the prevalence 
of diabetes mellitus, samples with a diabetes mellitus status of “yes” were 
excluded (35); (11) recognizing the significant correlations of serum 
Klotho with heart failure (36) and myocardial infarction (37), samples 
with a cardiac status of “yes” were excluded; (12) considering the 
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association between Klotho levels and urinary albumin excretion rate 
(38) as well as chronic kidney disease albuminuria (15) samples with 
UACR results ≥30 were excluded. These results imply that folate intake 
from natural sources significantly impacts serum Klotho levels, whereas 
factors such as dietary fortification with folic acid and the prevalence of 
hypertension appear to have a negligible influence on this relationship.

4 Discussion

In our study, we explored the relationship between dietary folate 
intake and serum Klotho levels, finding a nuanced interplay. This 

connection was stronger in individuals over 60, males, and those with 
hypertension, highlighting folate’s role in regulating the anti-aging 
factor Klotho. After adjusting for energy intake, each additional unit 
of dietary folate intake was associated with a 0.11 pg./mL increase in 
Klotho levels. This correlation may play a positive role in promoting 
healthy aging and preventing age-related diseases. Additionally, it lays 
the foundation for pioneering new health strategies focused on 
dietary interventions.

Folate intake has been found to exert significant effects on multiple 
signaling pathways, notably the mTOR pathway, the insulin/IGF-1 
signaling pathway, and the Wnt/β-catenin signaling pathway. For 
instance, the research conducted by Fredrick J. Rosario and colleagues 

TABLE 3  Stratified analyses of association between dietary folate intake and serum klotho levels in NHANES 2007–2016.

Variable Dietary folate intake (μg/1000 kcal), β (95%CI) p-value P for interaction

Age subgroup 0.0742

<60 years

41.83–147.61 Reference

147.62–186.00 8.76 (−13.09, 30.60) 0.4321

186.03–239.11 11.92 (−10.58, 34.42) 0.2992

239.2–1291.04 16.46 (−6.04, 38.95) 0.1517

P for trend 0.1614

≥60 years

41.83–147.61 Reference

147.62–186.00 64.30 (41.09, 87.51) <0.0001

186.03–239.11 38.36 (15.52, 61.20) 0.0010

239.2–1291.04 51.37 (28.36, 74.39) <0.0001

P for trend 0.0036

Gender subgroup 0.1776

Male

41.83–147.61 Reference

147.62–186.00 26.54 (5.60, 47.48) 0.0130

186.03–239.11 3.29 (−18.37, 24.94) 0.7660

239.2–1291.04 37.55 (15.88, 59.21) 0.0007

P for trend 0.0047

Female

41.83–147.61 Reference

147.62–186.00 33.65 (9.66, 57.64) 0.0060

186.03–239.11 37.52 (13.60, 61.45) 0.0021

239.2–1291.04 26.73 (2.74, 50.71) 0.0290

P for trend 0.1116

Hypertension subgroup 0.3968

No

41.83–147.61 Reference

147.62–186.00 49.02 (27.29, 70.75) <0.0001

186.03–239.11 27.55 (5.67, 49.44) 0.0136

239.2–1291.04 30.01 (7.83, 52.19) 0.0080

P for trend 0.1055

Yes

41.83–147.61 Reference

147.62–186.00 −0.97 (−24.54, 22.60) 0.9357

186.03–239.11 9.40 (−14.69, 33.48) 0.4444

239.2–1291.04 26.95 (3.18, 50.72) 0.0263

P for trend 0.0114

Adjusted for age, gender, race, marital, BMI, poor income ratio, hypertension, diabetes, CVD, HbA1c and UACR except the subgroup variable.
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TABLE 4  Inclusion and exclusion criteria.

β (95% CI) p-value

Only folate intake from natural foods was included (μg/1000 kcal) 0.24 (0.14, 0.34) <0.0001

Only dietary folic acid from fortified food (DFE μg/1000 kcal) 0.02 (−0.06, 0.10) 0.7025

Only folic acid supplement intake was included (DFE μg/1000 kcal) −0.01 (−0.03, 0.01) 0.4292

Samples with klotho level > 2,500 pg./mL were excluded 0.12 (0.06, 0.18) 0.0002

Samples with dietary folate intake >500 (μg/1000 kcal) were excluded 0.15 (0.07, 0.23) 0.0001

Samples with dietary folate intake <100 (μg/1000 kcal) were excluded 0.10 (0.03, 0.17) 0.0040

Samples with dietary vitb12 > 6.0 (μg/1000 kcal) were excluded 0.18 (0.10, 0.25) <0.0001

Exclusion of obese people 0.13 (0.04, 0.21) 0.0032

Excluding people with hypertension 0.13 (0.04, 0.22) 0.0042

Exclusion of people with diabetes 0.13 (0.06, 0.20) 0.0004

Excluding people with heart disease 0.12 (0.05, 0.19) 0.0007

People with UACR≥30 mg/g were excluded 0.13 (0.06, 0.19) 0.0004

illustrates that maternal folate deficiency can impair fetal growth by 
inhibiting placental mTOR signaling, thereby establishing a direct 
connection between folate levels and mTOR signaling (39). 
Furthermore, Elena Silva’s studies have shown that folate deficiency 
influences cellular functions through innovative sensing mechanisms, 
which in turn activate the mTOR signaling pathway, affecting 
processes such as nutrient transport and protein synthesis (40). 
Additionally, Andrea Annibal and co-authors have discovered through 
high-resolution mass spectrometry analysis of the metabolome of the 
nematode Cryptomeria hidrobatidis, that one-carbon metabolism and 
the folate cycle are integral in jointly regulating lifespan, with insulin/
IGF signaling playing a comparable regulatory role across different 
species’ longevity models. This suggests that certain metabolic nodes 
are pivotal in promoting healthy aging (41). Meanwhile, research by 
Wen-Chi L. Chang and others on the impact of folic acid 
supplementation in the development of colitis-associated colorectal 
cancer indicated that high doses of folic acid can encourage cancer 
formation by modifying the epigenetic field effects of the Wnt/β-
catenin and MAPK signaling pathways (42). Despite the compelling 
evidence linking folate intake with mechanisms of anti-aging, a gap 
remains in the direct, controlled trials demonstrating a connection 
with Klotho, highlighting a promising avenue for future research.

The primary dietary sources of folate include green leafy vegetables 
(for instance, spinach and broccoli), citrus fruits, legumes, nuts, and whole 
grain products (43–47). To alleviate health issues caused by folate 
deficiency, since 1998, the United States and Canada have mandated the 
addition of dietary folic acid from fortified food to flour and grain 
products. Common foods containing fortified folic acid include flour, 
bread, breakfast cereals, pasta, and cornmeal (48–50). Our sensitivity 
analysis unveiled a noteworthy observation: a significant correlation was 
identified exclusively between folate intake from natural sources and 
serum Klotho levels, whereas folic acid obtained through fortified foods 
and supplements did not exhibit a similar association, paralleling the 
discoveries of Mengyi Liu et al. (51). This prompts us to suggest that there 
exists an “optimal” range for folate intake, with the intake of folate from 
natural foods generally falling precisely within this range (52). The 
excessive intake of folic acid may precipitate adverse effects, notably when 
surpassing the recommended daily allowance (53). Such overconsumption 
bears the risk of concealing the diagnosis of vitamin B12 deficiency and 
merely ameliorating anemia symptoms without addressing the potential 

for neurological harm (54–56). Furthermore, certain research suggests 
that a long-term, high-dose regimen of folic acid could correlate with an 
elevated risk of specific cancers (57). Consequently, it is imperative to 
regulate folic acid intake meticulously to prevent excessive ingestion (58).

Subgroup analyses have elucidated a broad decline in metabolic 
function and nutrient absorption capabilities as individuals age (59–
61). Notably, research focusing on adults aged 60 and above has 
highlighted a correlation between folate intake and serum Klotho levels, 
particularly pronounced among those seniors with elevated folate 
intake (p < 0.0001, trend p-value = 0.0036). These findings underscore 
the significance of maintaining a moderate intake of folate within aging 
populations to support cardiovascular health, bone integrity, and other 
health facets (62, 63). Conversely, in individuals younger than 60 years, 
the link between folate intake and Klotho levels did not prove to 
be significant. This suggests that the demand for folate, along with its 
contribution to physical well-being, assumes greater importance as one 
ages, highlighting the potential benefits of targeted nutritional 
supplementation to meet the specific needs posed by aging (2, 26).

Moreover, we observed pronounced differences between genders 
regarding the association between dietary folate intake and serum 
Klotho levels among men and women (64). In men, a notable 
correlation was observed between folate intake and serum Klotho 
levels, particularly within the moderate to high folate intake category 
(p-values = 0.0007 and a trend p-value of 0.0047). Similarly, in 
females, dietary folate intake was significantly associated with serum 
Klotho levels (p-values ranging from 0.0021 to 0.0290, trend 
p-value = 0.1116). Although some literature suggests the potential 
influence of testosterone levels on Klotho protein expression in men 
(65–67), our current dataset does not directly investigate this 
hypothesis at either a physiological or molecular level. Thus, these 
findings underscore the critical need for subsequent research to more 
comprehensively explore how gender differences affect the interplay 
between folate intake and Klotho levels.

The potential beneficial impact of folate on the expression and 
functionality of Klotho proteins assumes critical importance, 
particularly in light of Klotho’s pivotal role in preserving vascular 
health and regulating the equilibrium of blood pressure (20, 62). This 
mode of action not only underscores the profound importance of 
folate in combating cardiovascular diseases but also illuminates its 
prospective utility in the realm of anti-aging (41).
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This study is subject to certain limitations. Firstly, the NHANES 
cohort might not accurately reflect the global population, particularly 
in countries and regions where food is not fortified with folic acid. 
Thus, incorporating additional samples from a variety of centers could 
enhance the study’s validity. Secondly, like all dietary assessment 
methods, the 24-h dietary recall used in this study has inherent 
limitations. These include recall bias, as it relies on participants’ ability 
to accurately remember and report their food intake, and response 
bias, where participants might alter their reported intake to align with 
perceived social norms or to avoid negative judgment. Additionally, 
the 24-h recall provides a snapshot of a single day’s intake, which may 
not accurately represent usual dietary patterns. Moreover, while data 
from cross-sectional studies can establish associations, they are 
insufficient for determining causality, necessitating further evidence 
to elucidate the cause-and-effect relationship.

5 Conclusion

In summary, among a nationally representative population of 
American adults, our study identified a significant association 
between dietary folate intake and serum Klotho levels, especially 
prominent in men, individuals aged 60 and above, and those with 
hypertension. These findings suggest a potential role for dietary folate 
in supporting healthy aging and underscore the need for further 
research to understand its mechanisms and broader 
health implications.
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Background: Cardiovascular disease (CVD), which is an important global 
health challenge, is expanding. One of the main factors in the occurrence 
of CVD is a high genetic risk. The interaction between genetic risk in CVD 
and nutrition is debatable. Polyphenols are one of the important dietary 
components that may have a protective role in people who have a high genetic 
risk score (GRS) for cardiometabolic risk factors. This study, conducted 
in overweight and obese women, examines the interaction between 
polyphenol intake and specific genes (MC4r, Cav-1, and Cry1) related to 
maintaining body balance and their interaction with cardiometabolic risk 
factors.

Methods: This cross-sectional study included 391 women who were overweight 
or obese, aged 18 to 48  years, with a body mass index (BMI) between 25 and 
40  kg/m2. Body composition was measured using the InBody 770 scanner. Total 
dietary polyphenol intake (TDPI) was assessed with a validated 147-item food 
frequency questionnaire (FFQ), and polyphenol intakes were determined using 
the Phenol-Explorer database. Serum samples underwent biochemical tests. 
The Genetic Risk Score (GRS) was calculated based on the risk alleles of three 
genes: MC4r, Cav-1, and Cry1.

Results: The mean ± standard deviation (SD) age and BMI of women were 
36.67 (9.1) years and 30.98 (3.9) kg/m2, respectively. The high GRS and high 
TDPI group had a significant negative interaction with fasting blood glucose 
(FBS) (p  = 0.01). Individuals who had a high GRS and a high phenolic acid 
intake were found to have a significant negative interaction with Triglyceride 
(p  = 0.04). Similarly, individuals with high GRS and a high intake of flavonoids 
had a significant negative interaction with TG (p  < 0.01) and a significant 
positive interaction with High-density lipoprotein (HDL) (p  = 0.01) in the 
adjusted model.
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Conclusion: According to our findings, those with a high GRS may have a 
protective effect on cardiometabolic risk factors by consuming high amounts 
of polyphenols. Further studies will be necessary in the future to validate this 
association.

KEYWORDS

cardiometabolic risk factors, genetic risk score, homeostasis, obesity, polyphenols

Introduction

Cardiovascular disease (CVD), which is the leading cause of death 
and a global health challenge, is becoming more prevalent (1–3). It is 
projected that by 2030, the number of deaths from this disease will 
reach 23.6 million (4). The rate of CVD in women is reported to 
be 1 in every 3 women, with 45% of women over the age of 20 affected 
(5, 6). Cardiometabolic risk factors like obesity, high blood pressure, 
dyslipidemia, and inflammation play a role in the development of 
CVD (7, 8).

Genetic background plays an important role in CVD (9). CVD is 
greatly influenced by the genetic predisposition of individuals (10). 
Research has shown that having a genetic risk for developing 
cardiometabolic risk factors increases the likelihood of certain health 
problems, emphasizing the importance of genetic factors in 
understanding cardiometabolic diseases (11). A genetic risk score 
(GRS) is an estimate of an individual’s genetic predisposition to a 
specific outcome, such as disease susceptibility. The combination of 
multiple genetic markers enables the prediction of disease risk based 
on an individual’s genetic profile (12). Genes play a crucial role in 
maintaining body homeostasis by regulating various metabolic 
processes. The research suggests that gene expression is closely 
connected to metabolite homeostasis, influencing adaptations in 
response to environmental changes and influencing energy efficiency 
and product formation (13).

Genetic mutations, like the Melanocortin 4 receptor (MC4R) 
gene mutation, can lead to obesity (14). This gene is situated in 
the hypothalamus (15, 16) and its mutation may indirectly 
contribute to a higher risk of mortality from CVD (17). The 
MC4R gene (rs17782313) not only influences obesity but is also 
associated with other risk factors for CVD, including hypertension 
(HTN) (18). Inactivation of the MC4R gene has been shown to 
reduce blood pressure independently of obesity in previous 
studies (19).

CAV-1, also known as Caveolin-1, is a protein that has been 
related to different biological processes and diseases. Research has 
found that CAV-1 levels are increased in individuals with metabolic 
syndrome (20). Studies reported that CAV-1 might have a role in the 
impairment of endothelial function, which is a fundamental anomaly 
in the development of hypertension, atherosclerosis, and coronary 
artery disease (21).

Moreover, the presence of CAV-1 in the cells lining the blood 
vessels can be  affected by various factors including green tea 
polyphenols. The presence of CAV-1 in individuals with metabolic 
syndrome, a disease linked to insulin resistance (IR), high blood 
glucose levels, hypertension, abnormal lipid levels, obesity, and 
increased WC, has been observed (20, 22).

The Cryptochrome 1 (Cry1) gene is a molecular clock gene that 
plays a role in generating circadian rhythms (23). Evidence suggests a 
potential association between CRY1 (rs10861688) polymorphism, 
obesity and related cardiovascular risk factors (24). Research has 
shown that CRY1 is associated with components of metabolic 
syndrome, such as hypertension and triglyceride (25) levels, as well as 
obesity and insulin resistance (IR) (26, 27). Furthermore, recent 
research has suggested that variations and genetic differences in the 
human genome, including different forms of the Cry1 gene, could 
have an effect on energy expenditure and body weight (28).

Nutrition is a factor that influences GRS on the incidence of 
cardiometabolic diseases (29). Polyphenols, chemical compounds 
present in plants such as fruits, vegetables, and tea, have been shown 
in studies to be effective in decreasing the risk factors associated with 
CVD (30, 31). Previous studies have discussed various types of 
polyphenols, including flavonoids, stilbenes, phenolic acids, and 
lignans (32). Numerous research studies have examined the potential 
benefits of polyphenols in preventing obesity, and there is evidence to 
suggest that plant polyphenols have the potential to be effective in this 
area (33). In a cohort study, researchers discovered that elevated levels 
of flavanones and lignans were correlated with adult body 
composition, including BMI and waist circumference (WC) (34). 
Furthermore, a separate study conducted on women showed that 
polyphenols were linked to decreased fasting blood sugar (FBS) and 
blood pressure levels. Moreover, there was a significant correlation 
between elevated levels of high-density lipoprotein (HDL) cholesterol 
(35, 36).

The GRS allows us to explore how various genes related to 
cardiometabolic diseases interact with dietary intake to influence 
cardiometabolic risk factors. In this study, we aim to examine how a 
high consumption of polyphenols affects cardiometabolic risk factors 
in individuals with a high GRS, to determine if consuming high levels 
of polyphenols is beneficial in improving these risk factors.

Method

Study population

In this cross-sectional study, 391 overweight or obese women, 
aged between 18 and 48 years and with a body mass index (BMI) 
between 25 and 40 kg/m2 participated. These women were selected 
from people who visited 20 different health centers in Tehran using 
random sampling. Individuals with a prior medical history of 
cardiovascular or thyroid disease, malignancies, liver or kidney 
diseases, types of diabetes, acute or chronic diseases, pregnancy, 
lactation, or menopause, adherence to a specific diet or weight loss 
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supplements, consumption of glucose and lipid lowering drugs and 
blood pressure medications within the past year, and smoking were 
not included in the study. Before the study, all participants were 
required to sign a written informed consent form. The study protocol 
received ethics approval from the Human Ethics Committee of Tehran 
University of Medical Sciences, with the ethics number IR.TUMS.
MEDICINE.REC.1402.636. The procedures were conducted in 
compliance with applicable guidelines and regulations.

Evaluation of dietary intake

The participants’ nutritional status, including energy intake, 
macronutrients, and micronutrients, was assessed using the food 
frequency questionnaire (FFQ) consisting of 147 items. Previous 
studies have confirmed the validity of this questionnaire for the 
Iranian population (37). A trained nutritionist conducted interviews 
with women to complete this questionnaire. The data were then 
analyzed using version 7 of the NUTRITIONIST 4 software, after 
being converted to grams using household measure servings (38).

Evaluation of dietary polyphenol intake 
(DPI)

The Phenol-Explorer database (www.phenol explorer.eu/contents) 
was used to gather data on the overall polyphenol content in various 
foods (39). The total polyphenol content was determined either 
through the Folin Ciocalteu assay or by calculating the sum of four 
main subgroups, which include flavonoids, phenolic acids, stilbenes, 
lignans, and other polyphenols.

Measurement of anthropometric indicators

Participants’ height was measured using a Seca stadiometer with 
an accuracy of 0.1 cm, and their weight was measured with a Seca 
digital scale (Hamburg, Germany) with an accuracy of 0.1 kg. To 
measure these two indicators, the participants must be without shoes 
and in the lightest clothes. BMI was calculated from the ratio of weight 
(kg) to the square of height (m2). In addition, to measure abdominal 
obesity, WC in the smallest circumference and hip circumference 
(HC) in the largest circumference were measured with an accuracy of 
0.1 cm (40). Waist-to-hip ratio (WHR) was also calculated.

Assessment of body composition

The InBody 770 Scanner, a multi-frequency bioelectrical 
impedance analyzer, was used to measure body composition 
parameters such as the amount and proportion of visceral fat level 
(VFL) and obesity degree (3). The measurements were taken in the 
morning while participants were in a fasted state and wearing light 
clothing. Participants were instructed to refrain from exercising, 
carrying electrical devices, and to urinate before the analysis to ensure 
accuracy. Following the manufacturer’s instructions, participants 
stood on the scale barefoot and held the machine’s handles for 20 s, 
after which the results were printed (41).

Biochemical assessments

To assess the levels of biochemical factors (such as glucose and 
lipids) in the participants, blood samples were collected after a 
period of fasting and the serum was separated using a centrifuge. 
The serum was then divided into smaller portions and stored at 
−80°C until it could be  analyzed. All blood parameters were 
measured in the Bionanotechnology Laboratory of the Endocrine 
and Metabolism Research Institute of Tehran University of Medical 
Sciences and analyzed using an exclusive assay based on the 
instructions provided by the manufacturer. All calculations were 
performed using a package from Randox Laboratories (Hitachi 
902). The GPO-PAP method was employed to determine the levels 
of TG, while enzymatic and clearance endpoint assays were utilized 
to measure the total cholesterol (TC) and HDL cholesterol, 
respectively, in this research (42). Alanine aminotransferase (4) and 
aspartate aminotransferase (AST) were measured via 
standard protocols.

Measurement of genetic risk score (GRS)

The DNA was obtained from whole blood samples through salting 
out techniques (43). The quality and quantity of the extracted DNA 
were evaluated using 1% agarose gel and the Nanodrop  8000 
Spectrophotometer, respectively. TaqMan Open Array was used to 
genotype single nucleotide polymorphisms (SNPs), including CAV-1 
(rs3807992), Cry1 (rs2287161), and MC4R (rs17782313) (44). These 
SNPs have been associated with obesity-related traits in previous 
studies (45–47). The GRS was computed by summing up the scores of 
the three SNPs, which were coded as 0, 1, or 2 based on their 
association with higher BMI. The unweighted GRS ranges from 0 to 
6, with higher scores indicating a greater genetic predisposition to 
high BMI (48).

Measurement of blood pressure

Systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) were measured using standard sphygmomanometer and 
cuff through auscultation. After each subject had sat for at least 
5 min, two consecutive blood pressure measurements were taken. 
Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured with a standard mercury sphygmomanometer 
using the first and fifth Korotkoff sounds, to within 2 mmHg. If the 
difference between the two systolic or diastolic blood pressures 
was more than 5 mmHg, an additional measurement 
was performed.

Assessment of other variables

Trained nutritionists filled out a demographic questionnaire that 
consisted of information regarding job, education, marital, and 
economic status. The present study measured PA as a confounding 
variable using the International Physical Activity Questionnaire 
(IPAQ). The data obtained from this questionnaire was measured on 
a scale of metabolic hours per week (MET. h week−1) (49).
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Statistical analysis

In the present study, cardiometabolic risk factors were 
determined based on biochemical, anthropometric and body 
composition criteria. The statistical analyses were performed using 
the IBM SPSS Statistics 23 software, with a significance level of less 
than 0.05. The normality of the distribution of the quantitative data 
of the study was performed by the Kolmogorov–Smirnov test. In 
this study, qualitative variables (Marriage, Education, Job and 
Economic Status) were described as numbers/percentages and 
quantitative variables (demographic variables, anthropometric 
measurements, body composition, blood parameters and blood 
pressure) were described as mean ± standard deviation (SD). The 
characteristics of the study participants among the tertile of GRS 
were compared with ANOVA and the characteristics of the study 
participants among the total dietary polyphenols index (TDPI) 
were compared with the independent t-test. To eliminate any 
confounding outcomes, ANCOVA was utilized. Both the crude and 
adjusted models employed a generalized linear model (GLM) to 
evaluate the interactions between metabolic factors and GRS, 
phenolic acid, lignans, flavonoids, and polyphenol. The outcomes 
were adjusted for age, energy intake, and PA.

Results

Study population characteristic

Our study was conducted on 391 overweight or obese women. 
The mean (± SD) age, weight, BMI and WC of participants were 36.67 
(9.1) years, 80.28 (11.05) kg, 30.98 (3.9) kg/m2 and 99.16 (9.42) cm, 
respectively. Most of the participants were married (70.8%) and had 
no academic education (51%). They were also in a Moderate economic 
situation (45.5%).

Characteristics of the study participants 
among tertile of GRS

The baseline characteristics of the study participants were presented 
in Table 1, categorized based on tertiles of their GRS. According to the 
table, in crude model there were a significant difference in mean values 
among the GRS tertiles for weight (p = 0.03), height (p = 0.03), WC 
(p = 0.03), and WHR (p = 0.03). There was also a marginally significant 
difference for TG (p = 0.06) among the GRS tertiles. After adjusting for 
confounding factors such as age, PA, and energy intake, the VFL 
(p = 0.03), SBP (p = 0.01), FBS (p = 0.02), and LDL (p = 0.01) became 
significantly different among the GRS tertiles. Additionally, there was a 
significant difference in height (p = 0.005), WC (p = 0.04), and WHR 
(p = 0.02), and a marginally significant difference for weight (p = 0.06) 
and TC (p = 0.08) among the GRS tertiles.

Characteristics of the study participants 
among intake of TDPI

In Table 2, the characteristics of the participants are compared 
based on receiving low and high TDPI. The results showed that in the 

crude model, there is a significant difference between the two groups 
(low and high TDPI) in terms of job (p = 0.02), However in the 
adjusted model (age, PA, and energy intake), in addition to job 
(p = 0.01), the participants also had significant differences in terms of 
FBS (p < 0.001), TC (p = 0.01), and LDL (p < 0.001). Also a marginal 
difference for WC (p = 0.08) and WHR (p = 0.09) between the low 
intake and high intake groups of TDPI.

The interaction between GRS, TDPI, 
stilbenes, phenolic acid, lignans, flavonoids 
and polyphenol on cardiometabolic risk 
factors

The findings on the interaction between GRS, TDPI, and stilbenes 
on cardiometabolic risk factors are presented in Table 3. The crude 
and adjusted models showed a significant negative interaction 
between high GRS and high intake TDPI with FBS (crude: 
95%CI = −20.39, −3.28, p < 0.001; adjusted: 95%CI = −19.95, −1.8, 
p = 0.01).

The findings also showed that the significant negative interaction 
between moderate GRS and high intake TDPI with BMI 
(95%CI = −5.05, −1.03, p < 0.001), WC (95%CI = −12.53, −2.33, 
p < 0.001), VFL (95%CI = −3.88, −0.33, p = 0.02), FBS (95%CI = −20.39, 
−3.28, p < 0.001) and LDL (95% CI = −28.75, 0.028, p = 0.05) in the 
crude model. After adjusting for age, IPAC and total energy intake in 
model 1, the interaction between moderate GRS and high intake TDPI 
with BMI (95% CI = −4.55, −0.46, p = 0.01), WC (95% CI = −12.51, 
−2.38, p < 0.001), VFL (95% CI = −3.85, −0.26, p = 0.02) and FBS (95% 
CI = −13.38, −1.63, p = 0.01) remained negative. The interaction 
between TDPI and GRS on BMI, WC, VFL and FBS is shown in 
Figure 1.

Furthermore, there was no significant interaction found between 
moderate/high GRS and stilbenes with cardiometabolic risk factors in 
both the crude and adjusted models.

The interaction between GRS, phenolic acid and lignans on 
cardiometabolic risk factors were presented in Table  4. In the 
crude model, a significant positive interaction was observed 
between high GRS and high intake phenolic acid on HDL 
(95%CI = 0.16, 19.23, p = 0.04) But in adjusted model, this 
interaction was not reported. However, a significant negative 
interaction was observed between high GRS and high intake 
phenolic acid on TG (95%CI = −115.66, −2.42, p = 0.04). 
Interaction between Phenolic acid and GRS on TG is shown in 
Figure 2.

Furthermore, there was no significant interaction found between 
moderate/high GRS and lignans with cardiometabolic risk factors in 
both the crude and adjusted models.

The interaction between GRS, flavonoids and polyphenol on 
cardiometabolic risk factors were presented in Table 5. The crude and 
adjusted models showed a significant negative interaction between 
high GRS and high intake flavonoids with TG (crude: 
95%CI = −137.58, −31.2, p < 0.001; adjusted: 95%CI = −135.52, 
−22.69, p < 0.001). Also, a significant positive interaction was observed 
between high GRS and high intake flavonoids with HDL 
(95%CI = 2.47, 22.65, p = 0.01) in the adjusted model.

The findings also showed that the significant negative interaction 
between moderate GRS and high intake flavonoids with BMI 
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(95%CI = −5.44, −1.49, p < 0.001), WC (95%CI = −12.48, −2.39, 
p < 0.001), VFL (95%CI = −3.96, −0.46, p = 0.01) and OD 
(95%CI = −24.62, −1.47, p = 0.02) in the crude model. After adjusting 
for age, IPAC, and total energy intake in model 1, the interaction 
between moderate GRS and high intake flavonoids with BMI 
(95%CI = −4.59, −0.52, p = 0.01), WC (95%CI = −10.79, −0.56, 

p = 0.03) and OD (95%CI = −22.67, 0.27, p = 0.05) remained negative. 
Interaction between Flavonoids and GRS on BMI, WC, OD, TG and 
HDL is shown in Figure 3.

Furthermore, there was no significant interaction found between 
moderate/high GRS and polyphenol with cardiometabolic risk factors 
in both the crude and adjusted models.

TABLE 1  Characteristics of the study participants among tertile of genetic risk score (GRS).

Variables GRS

Low risk <3 
(n =  164)

Moderate risk 
(3&4) (n =  97)

High risk ≥5 
(n =  130)

p-value p-value*

Demographic variables

Age (years) 36.02 ± 8.78 36.53 ± 8.15 36.08 ± 8.61 0.91 0.89

PA (MET-minutes/week) 1052.27 ± 1116.01 1353.96 ± 2742.28 1389.51 ± 2576.15 0.61 0.58

Anthropometric measurements

Weight (kg) 79.31 ± 9.79 76.9903 ± 10.29312 82.47 ± 9.33 0.03 0.06

Height (cm) 162.46 ± 5.41 160.26 ± 5.93 161.41 ± 4.45 0.03 0.005

BMI (kg/m2) 29.98 ± 3.31 30.09 ± 3.5 31.44 ± 3.32 0.16 0.22

WC (cm) 97.39 ± 8.62 96.4 ± 8.56 101.42 ± 9.03 0.03 0.04

WHR 0.92 ± 0.05 0.92 ± 0.04 0.95 ± 0.05 0.03 0.02

Body composition

VFL (cm2) 14.9 ± 3.15 15 ± 3.07 16.16 ± 2.98 0.19 0.03

OD (%) 139.37 ± 15.47 139.91 ± 16.32 146.25 ± 15.54 0.16 0.22

Blood pressure

SBP (mmHg) 111.24 ± 12.06 111.26 ± 15.38 113.08 ± 14.57 0.83 0.01

DBP (mmHg) 77.14 ± 10.08 77.44 ± 9.51 77.58 ± 11.04 0.97 0.16

Blood parameters

FBS (mg/dL) 87.32 ± 9.2 86.46 ± 10.32 88.7 ± 9.82 0.57 0.02

TC (mg/dL) 186.41 ± 33.3 182.95 ± 37.7 179.83 ± 35.46 0.68 0.08

TG (mg/dL) 120.83 ± 57.88 108.35 ± 53.01 136.91 ± 75.67 0.06 0.11

HDL (mg/dL) 47.35 ± 9.69 47.59 ± 11.62 46.87 ± 11.6 0.95 0.98

LDL (mg/dL) 96.96 ± 21.67 95.12 ± 25.51 90.45 ± 25.82 0.51 0.01

AST (IU/L) 17.51 ± 6.9 17.97 ± 8.08 17.91 ± 8.56 0.92 0.79

ALT (IU/L) 18.16 ± 14.02 18.77 ± 13.31 20.25 ± 13.68 0.8 0.53

Qualitative variable N (%)

Marriage status
Single 29 (49.2) 25 (42.4) 5 (8.5)

0.16 0.18
Married 69 (35.9) 96 (50) 27 (14.1)

Education levels
Non academic 49 (76.8) 62 (88.4) 22 (34.9)

0.3 0.32
Academic 49 (42.2) 57 (49.1) 10 (8.6)

Job
Unemployed 52 (34.7) 77 (51.3) 21 (14)

0.16 0.18
Employed 45 (46.9) 40 (41.7) 11 (11.5)

Economic status

Poor 19 (34.5) 27 (49.1) 9 (16.4)

0.77 0.77Moderate 46 (39.3) 56 (47.9) 15 (12.8)

Good 28 (43.8) 30 (46.9) 6 (9.4)

BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; Chol, Cholesterol; TG, Triglyceride; HDL, High density lipoprotein; LDL, Low density 
lipoprotein; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
Quantitative variable: Mean ± SD (Standard deviation), Qualitative variable: N (%) Number (Percentage).
p-values < 0.05 are in bold.
p-value calculated by analysis of variance (ANOVA).
*p-value was found by ANCOVA, and adjusted for age, IPAC and total energy intake.
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Discussion

The purpose of this cross-sectional study was to investigate the 
relationship between polyphenol consumption and genes (MC4r, 
Cav-1, and Cry1) and cardiometabolic risk factors in overweight and 
obese Iranian women.

The findings of our study revealed a significant negative interaction 
between high GRS and high intake TDPI with FBS in both crude and 
adjusted models. Also, a significant negative interaction was observed 
between high GRS and high intake of phenolic acid on TG in the 

adjusted model. Moreover, a significant negative interaction was 
observed between high GRS and high intake flavonoids with TG, and a 
significant positive interaction was observed between high GRS and 
high intake flavonoids with HDL in the adjusted model. Furthermore, a 
significant negative interaction between moderate GRS and high intake 
TDPI on BMI, WC, VLF and FBS levels. According to our results, high 
intake of TDPI is associated with significant interaction with decreased 
levels of BMI, WC, VLF, and FBS in participants at moderate risk of 
GRS. In addition, in this study reported a significant negative interaction 
between moderate GRS and flavonoid on BMI, WC and OD levels.

TABLE 2  Characteristics of the study participants among intake of total dietary polyphenols index (TDPI).

Quantitative variables TDPI

Low intake (n =  196) High intake (n =  195) p-value p-value *
Demographic variables

Age (years) 35.44 ± 8.58 36.77 ± 8.42 0.23 0.31

PA(MET-minutes/week) 1086.64 ± 2159.97 1292.74 ± 2061.70 0.44 0.21

Anthropometric measurements

BMI (kg/m2) 30.6 ± 4.06 30.29 ± 3.4 0.53 0.43

Weight (kg) 80.51 ± 11.04 79.73 ± 10.56 0.48 0.21

Height (cm) 160.82 ± 6.31 161.25 ± 5.31 0.47 0.35

WC (cm) 98.17 ± 9.06 97.32 ± 9.24 0.48 0.08

WHR 0.93 ± 0.046 0.92 ± 0.05 0.45 0.09

Body composition

VFL (cm2) 15.32 ± 3.3 15.06 ± 3.3 0.55 0.45

OD (%) 142.21 ± 18.98 140.88 ± 15.84 0.56 0.43

Blood parameters

FBS (mg/dL) 88.19 ± 11.18 86.77 ± 8.4 0.27 <0.001

TC (mg/dL) 186.86 ± 40.29 182.19 ± 32.73 0.33 0.01

TG (mg/dL) 116.29 ± 56.32 118.61 ± 60.03 0.76 0.31

HDL (mg/dL) 46.63 ± 11.28 47.39 ± 10.35 0.59 0.73

LDL (mg/dL) 94.68 ± 24.53 95.55 ± 23.98 0.78 <0.001

AST (IU/L) 17.97 ± 6.37 17.68 ± 8.11 0.76 0.81

ALT (IU/L) 18.68 ± 10.33 19.38 ± 14.93 0.68 0.48

Qualitative variable

Marriage status
Single 58 (52.7) 52 (47.3)

0.29 0.36
Married 138 (49.1) 143 (50.9)

Education
Nonacademic 97 (49.5) 107 (55.4)

0.26 0.14
Academic 99 (50.5) 86 (44.6)

Job
Unemployed 105 (46.3) 122 (53.7)

0.02 0.01
Employed 90 (57) 68 (43)

Economic status

Poor 42 (47.7) 46 (52.3)

0.18 0.17Moderate 86 (47.3) 96 (52.7)

Good 62 (57.9) 45 (42.1)

BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; Chol, Cholesterol; TG, Triglyceride; HDL, High density lipoprotein; LDL, Low-density 
lipoprotein; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
TDPI Low intake < 2060.65 (mg/day), TDPI High intake ≥ 2060.65(mg/day).
p-values < 0.05 are in bold.
Quantitative variable: Mean ± SD (Standard deviation).
Qualitative variable N (%): N (%) Number (Percentage).
p-value calculated by analysis of independent sample t-test.
p-value *Adjusted for age, IPAC, and total energy intake calculated by analysis of covariance (ANCOVA).
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TABLE 3  The interaction between GRS, TDPI and stilbenes on cardiometabolic risk factors.

Variables GRS TDPI Stilbenes

Low 
intake < 
2060.65 

(mg/
day)

High intake Low 
intake 
< 0.49 
(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −3.04

−5.05 

to 

−1.03

<0.001 −2.50

−4.55 

to 

−0.46

0.01 – 0.48
−1.49 

to 2.47
0.62 0.12

−1.89 

to 2.14
0.9

High risk – −1.81
−4.96 

to 1.34
0.26 −1.79

−5.01 

to 1.42
0.27 – −1.16

−4.13 

to 1.8
0.44 −0.43

−3.47 

to 2.59
0.77

WC (cm)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −7.43

−12.53 

to 

−2.33

<0.001 −7.45

−12.51 

to 

−2.38

<0.001 – 3.27
−1.73 

to 8.29
0.2 2.68

−2.36 

to 7.73
0.29

High risk – −5.29
−13.12 

to 2.53
0.18 −5.59

−13.32 

to 2.14
0.15 – −2.35

−9.8 to 

5.09
0.53 −1.21

−8.72 

to 6.29
0.75

WHR

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.01

−0.048 

to 

0.008

0.17 −0.02

−0.052 

to 

0.004

0.09 – 0.02
0.001–

0.056
0.06 0.02

−0.005 

to 0.05
0.1

High risk – −0.02

−0.056 

to 

0.031

0.56 <0.001

−0.051 

to 

0.035

0.71 – −0.01
−0.051 

to 0.03
0.61 <0.001

−0.05 

to 0.32
0.68

Body composition

VFL (cm2)

low risk Reference Reference Reference Reference

Moderate 

risk
– −2.11

−3.88 

to 

−0.33

0.02 −2.06

−3.85 

to 

−0.26

0.02 – 0.89
−1.66 

to 1.83
0.92 −0.23

−2.02 

to 1.55
0.79

High risk – −1.02
−3.76 

to 1.71
0.46 −0.82

−3.58 

to 1.93
0.55 – −0.96

−3.56 

to 1.64
0.47 −0.31

−2.98 

to 2.34
0.81

OD (%)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −6.70

−18.47 

to 5.06
0.26 −6.77

−18.37 

to 4.82
0.25 – 2.17

−9.32 

to 

13.67

0.71 −2.32
−13.78 

to 9.13
0.69

High risk – −8.52
−26.69 

to 9.65
0.35 −9.56

−27.36 

to 8.23
0.29 – −7.73

−24.85 

to 9.39
0.37 −4.72

−21.77 

to 

12.32

0.58

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −9.16

−14.74 

to 

−3.58

<0.001 −7.51

−13.38 

to 

−1.63

0.01 – 3.06
−2.41 

to 8.53
0.27 3.48

−2.29 

to 9.17
0.24

High risk – −11.83

−20.39 

to 

−3.28

<0.001 −10.88
−19.95 

to −1.8
0.01 – 2.58

−5.68 

to 

10.85

0.54 4.09

−4.66 

to 

12.84

0.36

(Continued)

40

https://doi.org/10.3389/fnut.2024.1410811
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Roumi et al.� 10.3389/fnut.2024.1410811

Frontiers in Nutrition 08 frontiersin.org

TABLE 3  (Continued)

Variables GRS TDPI Stilbenes

Low 
intake < 
2060.65 

(mg/
day)

High intake Low 
intake 
< 0.49 
(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −25.02

−46.51 

to 

−3.54

0.22 −18.77
−40.94 

to 3.39

0.09 – 1.51 −19.24 

to 

22.28

0.88 −3.86 −25.18 

to 

17.44

0.72

High risk – −21.92 −54.89 

to 

11.04

0.19 −18.74 −52.97 

to 

15.49

0.28 – 3.88 −27.47 

to 

35.24

0.8 17.08 −15.44 

to 

49.62

0.3

TG (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −7.63 −44.58 

to 

29.23

0.68 0.45 −38.6 

to 

39.52

0.98 – 18.50 −16.65 

to 

53.67

0.3 14.71 −22.49 

to 

51.91

0.43

High risk – −23.11 −81.29 

to 

35.06

0.43 −21.68 −83.49 

to 

40.12

0.49 – 4.36 −49.41 

to 

58.13

0.87 14.59 −42.95 

to 

72.15

0.61

HDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −1.42 −8.12 

to 5.26

0.67 1.23 −5.8 to 

8.26

0.73 – 0.30 −5.97 

to 6.58

0.92 0.51 −6.12 

to 7.14

0.88

High risk – 2.73 −7.53 

to 13

0.6 1.09 −9.76 

to 

11.95

0.84 – 2.71 −6.7 to 

12.26

0.56 4.77 −5.35 

to 

14.89

0.35

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −14.36 −28.75 

to 

0.028

0.05 −6.08 −21.04 

to 8.87

0.42 – 6.25 −7.41 

to 

19.91

0.37 7.05 −7.12 

to 

21.24

0.33

High risk – −20.03 −42.11 

to 

2.049

0.07 −21.10 −44.2 

to 1.99

0.07 – 6.39 −14.24 

to 

27.03

0.54 12.57 −9.08 

to 

34.22

0.25

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −0.50 −5.05 

to 

4.038

0.82 0.83 −3.91 

to 5.59

0.72 – 0.52 −3.8 to 

4.86

0.81 1.94 −2.58 

to 6.47

0.4

High risk – −4.80 −11.78 

to 2.16

0.17 −3.90 −11.25 

to 3.43

0.29 – −3.69 −10.51 

to 2.57

0.23 −3.76 −10.68 

to 3.14

0.28

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −3.25 −11.27 

to 4.76

0.42 −1.39 −9.92 

to 7.14

0.74 – 0.64 −7.01 

to 8.29

0.86 3.00 −5.14 

to 

11.14

0.47

High risk – −5.93 −18.23 

to 6.37

0.34 −4.02 −17.2 

to 9.15

0.54 – −2.71 −14.27 

to 8.85

0.64 −0.96 −13.39 

to 

11.46

0.87

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low density lipoprotein; HDL, 
High density lipoprotein; OD Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
TDPI High intake ≥ 2060.65 (mg/day), Stilbenes High intake ≥ 0.49(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk alleles, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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FIGURE 1

Interaction between TDPI and GRS on (A) BMI, (B) WC, (C) VFL, (D) FBS. The interaction between low and high intake of TDPI and GRS. Data shown are 
mean  ±  standard error of the mean. BMI, Body mass index; WC, Waist circumference; VFL, Visceral fat level; FBS, Fasting Blood Sugar; GRS, genetic risk 
score; TDPI, total dietary polyphenol intake. Adjust  =  adjusted for potential confounding factors including (age, IPAC and total energy intake). The 
asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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TABLE 4  The interaction between GRS, phenolic acid and Lignans on cardiometabolic risk factors.

Variables GRS Phenolic acid Lignans

Low 
intake

< 
55.95 
(mg/
day)

High intake Low 
intake

< 
0.0065 

(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.83

−2.83 

to 1.16
0.41 −0.60

−2.62 

to 1.41
0.55 – −0.30

−2.29 

to 1.69
0.76 0.48

−1.54 

to 2.52
0.63

High 

Risk
– −0.59

−3.56 

to 2.37
0.69 −1.26

−4.29 

to 1.77
0.41 – −1.08

−4.04 

to 1.88
0.47 −0.60

−3.65 

to 2.44
0.69

WC (cm)

Low Risk Reference Reference Reference Reference

Moderate 

Risk
– 0.33

−4.74 

to 5.4
0.89 −0.06

−5.15 

to 5.01
0.97 – −0.69

−5.76 

to 4.38
0.78 1.05

−4.03 

to 6.15
0.68

High 

Risk
– 2.09

−5.38 

to 9.56
0.58 <0.001

−7.55 

to 7.53
0.99 – −3.52

−11 to 

3.95
0.35 −2.20

−9.8 

to 5.39
0.56

WHR

Low Risk Reference Reference Reference Reference

Moderate 

Risk
– 0.01

−0.01 

to 0.04
0.35 0.01

−0.01 

to 0.03
0.43 – <0.001

−0.03 

to 0.02
0.67 −2.24

−0.02 

to 0.02
0.99

High 

Risk
– 0.03

−0.009 

to 

0.072

0.12 0.02
−0.01 

to 0.06
0.21 – −0.01

−0.05 

to 0.02
0.52 <0.001

−0.04 

to 0.03
0.86

Body composition

VFL (cm2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.66

−2.42 

to 1.09
0.45 −0.66

−2.44 

to 1.12
0.46 – 0.57

−1.17 

to 2.33
0.51 0.92

−0.86 

to 2.72
0.31

High risk – 0.07
−2.51 

to 2.67
0.95 −0.24

−2.89 

to 2.41
0.85 – −0.83

−3.42 

to 1.76
0.39 0.03

−2.64 

to 2.7
0.98

OD (%)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 2.99

−8.57 

to 

14.56

0.61 0.25
−11.18 

to 11.69
0.96 – 3.79

−7.58 

to 

15.54

0.5 5.08

−6.4 

to 

16.57

0.38

High 

Risk
– 0.27

−16.82 

to 

17.37

0.97 −4.73
−21.75 

to 12.28
0.58 – −7.17

−24.29 

to 9.94
0.41 −5.25

−22.42 

to 11.9
0.54

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 0.45

−5.03 

to 5.94
0.87 0.30

−5.45 

to 6.05
0.91 – 1.19

−4.34 

to 6.72
0.67 1.03

−4.78 

to 6.84
0.72

High risk – −2.71
−10.97 

to 5.55
0.52 −3.39

−12.21 

to 5.41
0.45 – 0.37

−7.96 

to 8.7
0.93 0.41

−8.7 

to 9.54
0.92

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 0.65

−20.11 

to 

21.42

0.95 −3.75
−24.96 

to 17.45

0.72 – 16.88 −3.92 

to 

37.68

0.11 12.40 −8.99 

to 

33.81

0.25

T3 – −11.81 −43.07 

to 

19.44

0.45 −21.04 −53.54 

to 11.45

0.2 – 4.59 −26.73 

to 

35.93

0.77 14.60 −18.97 

to 

48.18

0.39

(Continued)
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However, there was no significant interaction found between 
moderate/high GRS and high intake stilbenes, polyphenols, and 
lignans with cardiometabolic risk factors in both the crude and 
adjusted models. In a study, there was no significant association total 
polyphenol and stilbenes with FBS, TG, HDL in participants. Also, 
there was no association between lignans with cholesterol, TG, HDL, 
DBP (50). The another study after adjusted for age, BMI, physical 
activity, and total energy intake, there was no association between 
Cry1 genotypes with cholesterol, TG, HDL, LDL, SBP, DBP (51). 

There was no association between Cav-1 rs3807992 genotypes with 
FBS, insulin, TC, TG (52).

Polyphenols are effective in cardiovascular health due to their 
antioxidant, blood sugar control, anti-inflammatory, and lipid profile 
control effects (25, 53, 54). In a study, it was discovered that a better 
diet quality, which might include polyphenol-rich foods, was 
significantly linked to a reduction in cardiometabolic risk factors (55). 
Furthermore, a cohort study spanning 10 years and involving more 
than 450,000 participants across 10 European countries revealed that 

TABLE 4  (Continued)

Variables GRS Phenolic acid Lignans

Low 
intake

< 
55.95 
(mg/
day)

High intake Low 
intake

< 
0.0065 

(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

TG (mg/dL) Low Risk Reference Reference Reference Reference

Moderate 

risk

– 31.83 −2.74 

to 

66.41

0.07 28.60 −7.62 

to 64.82

0.12 – 1.96 −33.53 

to 

37.45

0.91 −9.24 −46.61 

to 

28.13

0.62

High risk – −39.54 −92.26 

– 

13.17

0.14 −59.04 −115.66 

to 

−2.42

0.04 – 16.72 −37.22 

to 

70.67

0.54 28.58 −30.54 

to 87.7

0.34

HDL (mg/

dL)

Low risk Reference Reference Reference Reference

Moderate 

risk

– 3.10 −3.23 

to 9.44

0.33 2.87 −3.77 

to 9.52

0.39 – −0.13 −6.56 

to 6.3

0.96 2.13 −4.6 

to 8.87

0.53

High risk – 9.70 0.16–

19.23

0.04 7.89 −2.3 to 

18.08

0.12 – 1.85 −7.83 

to 

11.54

0.7 7.02 −3.55 

to 

17.59

0.19

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– 6.33 −7.48 

to 

20.14

0.36 9.11 −5.01 

to 23.25

0.2 – 9.69 −4.22 

to 

23.61

0.17 11.26 −3.14 

to 

25.66

0.12

High risk – −7.33 −28.12 

to 

13.45

0.48 −13.89 −35.54 

to 7.76

0.2 – 0.19 −20.76 

to 

21.16

0.98 3.34 −19.24 

to 25.9

0.77

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −2.93 −7.25 

to 1.37

0.18 −2.68 −7.19 

to 1.83

0.24 – −2.01 −6.39 

to 2.36

0.36 −0.54 −5.13 

to 4.04

0.81

High risk – −2.31 −8.8 

to 4.17

0.48 −1.86 −8.78 

to 5.05

0.59 – −1.35 −7.95 

to 5.23

0.68 2.03 −5.16 

to 9.23

0.58

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −6.83 −14.38 

to 0.71

0.07 −5.45 −13.49 

to 2.59

0.18 – −7.23 −14.9 

to 0.43

0.06 −4.59 −12.79 

to 3.59

0.27

High 

Risk

– −0.28 −11.64 

to 

11.07

0.96 −0.12 −12.45 

to 12.2

0.98 – −3.70 −15.26 

to 7.84

0.52 1.02 −11.83 

to 

13.87

0.87

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low-density 
lipoprotein; HDL, High-density lipoprotein; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
Phenolic acid High intake ≥ 55.95(mg/day), Lignans High intake ≥ 0.0065(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk alleles, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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higher diet quality index (DQI) scores were linked to a reduced risk 
of CVD mortality and its associated risk factors, such as dyslipidemia 
and hyperglycemia (56).

GRS play a key role in comprehending various aspects of body 
homeostasis, especially with respect to conditions such as type 2 
diabetes (T2DM) and cardiometabolic risk factors (9, 57). It seems 
that the effects of MC4R, Cav-1 and Cry1 genes on body composition 
and metabolic parameters may depend on the quality of the diet (58). 
Polyphenols have antioxidant and anti-inflammatory properties that 
can improve the quality of food. Based on the evidence, these 
compounds have the ability to influence the interaction and 
interactions between diet, genes, and metabolic parameters (59, 60). 
Polyphenols and their various types play a role in this interaction by 
either activating or deactivating genes that are associated with obesity. 
The precise molecular and cellular mechanism behind this process is 
still not entirely comprehended (36). Previous research has shown 
that gene-diet interactions have an impact on metabolic factors, and 
our study’s findings are consistent with this. A cross-sectional study 
found a relationship between the dietary inflammatory index (DII) 
and the rs17782313 mutation, which influences body composition 
(61). Hianza et al. conducted a study on individuals with a genetic 
predisposition to obesity and discovered that adopting a healthy diet 
led to a decrease in risk factors associated with CVD (62).

A study conducted by Aali et al. has significantly validated the 
findings of our study. Both studies have found a negative correlation 
between the consumption of polyphenols and its various forms with 
indicators of body composition (such as WC, WHR, WHtR) and 
metabolic parameters such as glycemia (FBG, HOMA-IR) and lipids 
(CHOL, TG). Also, Aali’s study has reported a positive correlation 
with HDL cholesterol. However, our study did not find any significant 
correlation between the consumption of lignans and stilbenes with 
body composition and CVD risk factors, Aali’s study did report such 
a correlation, which is the only point of difference between the two 
studies (50).

Numerous studies have confirmed that GRS increases the risk of 
CVD (9), the exact way in which food compounds like polyphenols 

can mitigate this effect remains unclear. The statistical power of the 
analysis can be  affected by factors such as sample size, food 
components used, genetic variations, and gender, which can cause 
discrepancies in study findings. Evidence shows that polyphenols and 
its types reduce TG accumulation, increase lipolysis, decrease 
lipogenesis, and increase energy consumption, which may be  an 
acceptable reason to justify the negative interaction between the 
consumption of polyphenols and GRS on body composition and some 
of the risk factors of CVD (63). Polyphenols play a crucial role in 
regulating blood sugar levels and improving the body’s ability to 
respond to insulin by decreasing the production of specific hormones 
(64). Moreover, these compounds have the ability to control the 
process of lipolysis by activating hormone-sensitive lipase (65). 
Polyphenols enhance the body’s antioxidant system, reduce fat 
oxidation, and enhance the activity of antioxidant enzymes (66, 67). 
Therefore, it is anticipated that enhancing the consumption of a diet 
rich in polyphenols and their various forms will result in enhanced 
body composition and a reduction in certain risk factors associated 
with CVD (68). These results are confirmed by our study.

The present study is one of the first studies to examine the 
interaction of polyphenol intake with GRS on metabolic parameters, 
which is one of the strengths of this study. Some limitations of this 
research include the cross-sectional design of the study, the lack of 
investigation into causal interactions, the use of memory-based tools 
such as FFQ, and the inability to generalize the results to men’s gender.

Conclusion

Our findings indicate that individuals who consume high GRS 
and polyphenols have a significant negative effect on FBS and TG 
levels, as well as a significant positive effect on HDL. Therefore, a high 
intake of polyphenols in individuals with high GRS may have a 
protective effect on cardiometabolic risk. This finding indicates that 
the interaction of dietary components, such as polyphenols, with 
genetic risk factors over cardiometabolic risk factors is of great 
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FIGURE 2

Interaction between phenolic acid and GRS on TG. The interaction between low and high intake of phenolic acid and GRS on Triglycerides. Data 
shown are mean  ±  standard error of the mean. TG, Triglycerides; GRS, genetic risk score. Adjust  =  adjusted for potential confounding factors including 
(age, IPAC and total energy intake). The asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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TABLE 5  The interaction between GRS, flavonoids and polyphenol on cardiometabolic risk factors.

Variables GRS Flavonoids Polyphenol

Low 
intake
< 81.55 

(mg/
day)

High intake ≥81.55(mg/day) Low 
intake

< 62.59
(mg/day)

High intake ≥62.59(mg/day)

Crude Adjust Crude Adjust

β 95% CI p β 95% CI p β 95% CI p β 95% CI p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate risk – −3.46 −5.44 to −1.49 <0.001 −2.56 −4.59 to −0.52 0.01 – 0.26 −1.7 to 2.23 0.79 0.43 −1.56 to 2.44 0.66

High risk – −0.91 −3.84 to 2.02 0.54 −0.27 −3.28 to 2.73 0.85 – −0.66 −3.66 to 2.34 0.66 0.62 −2.45 to 3.69 0.69

WC (cm)

Low risk Reference Reference Reference Reference

Moderate risk – −7.43 −12.48 to −2.39 <0.001 −5.67 −10.79 to −0.56 0.03 – 0.82 −4.17 to 5.81 0.74 2.53 −2.48 to 7.54 0.32

High risk – −0.82 −8.22 to 6.58 0.82 0.65 −6.78 to 8.08 0.86 – −3.08 −10.67 to 4.5 0.42 1.60 −6.04 to 9.26 0.68

WHR

Low risk Reference Reference Reference Reference

Moderate risk – −0.01 −0.043 to 0.013 0.29 <0.001 −0.033 to 0.023 0.71 – 0.00 −0.02 to 0.03 0.85 0.01
−0.014 to 

0.041
0.34

High risk – 0.02 −0.016 to 0.066 0.23 0.03 −0.007 to 0.075 0.1 – <0.001 −0.051 to 0.032 0.65 0.01
−0.023 to 

0.061
0.37

Body composition

VFL (cm2)

Low risk Reference Reference Reference Reference

Moderate risk – −2.21 −3.96 to −0.46 0.01 −1.61 −3.4 to 0.17 0.07 – 0.10 −1.63 to 1.83 0.91 0.87 −0.87 to 2.63 0.32

High risk – 0.57 −2 to 3.15 0.66 1.44 −1.15 to 4.05 0.27 – −0.00 −2.65 to 2.64 0.99 1.67 −1.01 to 4.36 0.22

OD (%)

Low risk Reference Reference Reference Reference

Moderate risk – −13.04 −24.62 to −1.47 0.02 −11.20 −22.67 to 0.27 0.05 – −4.03 −15.45 to 7.38 0.48 0.85
−10.48 to 

12.18
0.88

High risk – −3.69 −20.75 to 13.36 0.67 −1.25 −17.99 to 15.47 0.88 – −8.65 −26.06 to 8.76 0.33 −0.90
−18.24 to 

16.43
0.91

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate risk – −0.85 −6.43 to 4.72 0.76 0.07 −5.82 to 5.97 0.98 – −0.09 −5.53 to 5.34 0.97 0.86 −4.82 to 6.56 0.76

High risk – −3.58 −11.92 to 4.75 0.4 −2.92 −11.71 to 5.86 0.51 – −0.76 −9.2 to 7.68 0.86 −0.12 −9.15 to 8.91 0.97

(Continued)
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TABLE 5  (Continued)

Variables GRS Flavonoids Polyphenol

Low 
intake
< 81.55 

(mg/
day)

High intake ≥81.55(mg/day) Low 
intake

< 62.59
(mg/day)

High intake ≥62.59(mg/day)

Crude Adjust Crude Adjust

β 95% CI p β 95% CI p β 95% CI p β 95% CI p

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate risk – −13.03
−34.14 to 8.08 0.22 −7.61 −29.5 to 14.26 0.49 – −3.11 −23.63 to 17.39 0.76 2.69 −18.31 to 

23.71

0.8

High risk – −16.48 −48.02 to 15.06 0.3 −4.17 −36.79 to 28.43 0.8 – −10.82 −42.67 to 21.02 0.5 −11.42 −44.78 to 

21.93

0.5

TG (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – −5.96 −41.06 to 29.12 0.73 2.96 −34.27 to 40.21 0.87 – 4.04 −30.93 to 39.01 0.82 9.17 −27.45 to 

45.79

0.62

High risk – −84.30 −137.58 to 

−31.02

<0.001 −79.11 −135.52 to −22.69 <0.001 – 8.23 −47.21 to 63.68 0.77 15.75 −44.36 to 

75.86

0.6

HDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – 1.75 −4.72 to 8.22 0.59 3.94 −2.82 to 10.71 0.25 – −4.03 −10.35 to 2.28 0.21 −2.17 −8.8 to 4.44 0.51

High risk – 8.39 −1.28 to 18.06 0.08 12.56 2.47–22.65 0.01 – −7.74 −17.56 to 2.06 0.12 −7.31 −17.82 to 

3.19

0.17

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – −2.68 −16.77 to 11.39 0.7 3.94 −10.74 to 18.63 0.59 – 0.95 −10.35 to 2.28 0.21 3.46 −8.8 to 4.44 0.51

High Risk – −11.13 −32.18 to 9.91 0.3 −4.83 −26.72 to 17.06 0.66 – −16.77 −17.56 to 2.06 0.12 −22.00 −17.82 to 

3.19

0.17

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate risk – −2.14 −6.57 to 2.28 0.34 −1.86 −6.51 to 2.79 0.43 – 0.70 −3.61 to 5.03 0.74 1.15 −3.36 to 5.67 0.61

High risk – −0.78 −5.83 to 7.4 0.81 2.35 −4.58 to 9.29 0.5 – −0.79 −7.5 to 5.9 0.81 1.25 −5.91 to 8.42 0.73

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate risk – −7.02 −14.74 to 0.69 0.07 −5.31 −13.58 to 2.96 0.2 – 0.83 −6.77 to 8.43 0.83 2.34 −5.72 to 

10.42

0.56

High risk – 3.75 −7.78 to 15.28 0.52 6.04 −6.28 to 18.37 0.33 – −5.77 −17.58 to 6.02 0.33 −2.46 −15.27 to 

10.34

0.7

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low density lipoprotein; HDL, High density lipoprotein; OD, Obesity degree; VFL, Visceral fat level.
Flavonoids High intake ≥ 81.55(mg/day), Polyphenol High intake ≥ 62.59(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk allele, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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FIGURE 3

Interaction between flavonoids and GRS on (A) BMI, (B) WC, (C) OD, (D) TG, (E) HDL. The interaction between low and high intake of Flavonoids and 
GRS on BMI, WC, OD, TG, HDL. Data shown are mean  ±  standard error of the mean. BMI, Body mass index; WC, Waist circumference; OD, Obesity 
degree; TG, Triglycerides; HDL, High density lipoprotein; GRS, genetic risk score. Adjust  =  adjusted for potential confounding factors including (age, 
IPAC and total energy intake). The asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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importance. Further research is necessary in the future to validate 
this association.
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Glossary

ALT Alanine aminotransferase

AST Aspartate aminotransferase

CVD Cardiovascular diseases

BMI Body mass index

WC Waist circumference

DPI Dietary polyphenols intake

FBS Fasting blood glucose

FPG Fasting plasma glucose

MC4R Melanocortin 4 receptor

Cry1 Cryptochrome 1 gene

CAV1 Caveolin-1

FFQ Food frequency questionnaire

DQI diet quality index

PA Physical activity

IPAQ International physical activity questionnaire-short form

HC Hp circumference

WHR Waist-to-hip ratio

VFL Visceral fat level

OD Obesity degree

GOD-PAP Glucose oxidase-phenol 4-aminoantipyrine peroxidase

GPOPAP Glycerol-3-phosphate oxidase–phenol 4-aminoantipyrine peroxidase

TG Triglyceride

HDL High-density lipoprotein

LDL Low-density lipoprotein

SBP Systolic blood pressure

DBP Diastolic blood pressure

GRS Genetic risk score

TC Total cholesterol

TDPI Total dietary polyphenols index

SLM Soft lean mass

FFM Fat-free mass

SMM Skeletal muscle mass

DII Dietary inflammatory index
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Omega-3 fatty acids abrogates
oxido-inflammatory and
mitochondrial
dysfunction-associated
apoptotic responses in testis of
tamoxifen-treated rats
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Moses Agbomhere Hamed4,5, Morufu Eyitayo Balogun1,
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Osogbo, Nigeria, 3Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso,

Nigeria, 4Department of Medical Laboratory Science, Afe Babalola University, Ado Ekiti, Nigeria, 5The

Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria, 6Department of Physiology, Crescent

University, Abeokuta, Nigeria, 7Department of Physiology, University of Ilorin, Ilorin, Nigeria

Background: Tamoxifen (TAM) is a widely used drug in patients with

gynecomastia and breast cancer. TAM exerts its anticancer e�ects via its

antiestrogenic activities. Unfortunately, TAM has been reported to exert

gonadotoxic e�ects on male testes. Therefore, this study was designed to

explore the possible associated mechanisms involved in TAM-induced testicular

dysfunction and the possible ameliorative e�ects of omega-3 fatty acids (O3FA).

Methodology: Animals were randomly divided into control, O3FA, TAM, and TAM

+ O3FA. All treatment lasted for 28 days.

Results: TAM exposure impaired sperm qualities (count, motility, and

normal morphology) and decreased testicular 3β-HSD and 17β-HSD. It was

accompanied by a decline in serum testosterone and an increase in estradiol,

luteinizing and follicle-stimulating hormones. These observed alterations were

associated with an increase in testicular injury markers, oxido-inflammatory

response, and mitochondria-mediated apoptosis. These observed alterations

were ameliorated by O3FA treatments.

Conclusions: O3FA ameliorated TAM-induced testicular dysfunction in male

Wistar rats by modulating XO/UA and Nrf2/NF-kb signaling and cytochrome

c-mediated apoptosis in TAM-treated rats.

KEYWORDS

anticancer drugs, nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-

kappa B (NF-κB) signaling, selective estrogen receptor modulators, testicular function,

cytochrome c

Introduction

Tamoxifen (TAM; Z-1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2-diphenyl-1-butene)

is a synthetic nonsteroidal estrogen agonist-antagonist antineoplastic agent (1, 2). TAM

is the major anti-estrogen therapy for the management of hormone receptor-positive

breast cancer in pre-menopausal women (3). TAM has also been recommended for the
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management of gynecomastia in males (4). In fact, TAM is

recommended for pubertal gynecomastia once it is accompanied

by significant pain, irrespective of the disc size (5). TAM is

believed to majorly act through its inhibitory effect on estradiol

binding at the ligand-binding domain of the estrogen receptor

(ER) alpha and blockage of estrogen receptor interaction with

co-activator proteins (6, 7). However, TAM has also been shown

to act as an estrogen agonist. These dual actions on estrogen

could depend on the type of species, cell types, tissue, and

organs (8, 9). In humans and rats, TAM primarily exhibits

antiestrogenic activities with residual estrogenic effects (10). Apart

from these estrogenic effects, TAM also acts via different signaling

proteins such as protein kinase C, mitogen-activated protein

kinases, and c-jun N-terminal kinase (JNK) and also distorts

bcl-2-like protein 4 (BAX)/B-cell lymphoma 2 (BCL-2) ratio.

Furthermore, TAM stimulates the mitochondrial permeability

transition and cytochrome C release, which eventually results in

increased apoptosis (11). With the increasing usage of TAM for

the management of gynecomastia (4) and possibly benign prostatic

hyperplasia (12), attention has been drawn to its possible testicular

toxic effects.

TAM has been shown to impair spermatogenesis and

steroidogenesis (13). TAM administration has also been shown

to disrupt the hypothalamic-pituitary-gonadal (HPG)-axis

(14) responsible for maintaining testicular functions. TAM-

induced testicular toxicities could be associated with reactive

oxygen species (ROS) generation (15), which are capable

of reacting with the cellular DNA, proteins, and lipids to

form DNA-adducts, protein crosslink, and lipid peroxidation

products (16) in the testis. As a result, these activities can

create oxidative stress (redox imbalance), inflammatory

response, mitochondrial dysfunction, uncontrolled cell death,

and impair testicular cells integrity and functionality. Hence,

this study sought to establish a supplement for managing

TAM-induced gonadotoxicity in patients who require

TAM treatment.

Nutritional supplements can be recommended for the

prevention and management of toxicants-induced health

disorders. Omega-3 fatty acids (O3FA) is one of these

natural supplements that has been shown to possess various

pharmacological and biological activities (17, 18). O3FA are

essential fatty acids commonly found in plants and marine

life. They are referred to as essential fatty acids because they

cannot be synthesized in the body; they can only be obtained

from diets. O3FA are required for different functions such as

growth, brain development, vision, and fertility enhancement

(19). O3FA might be performing these functions via its anti-

inflammatory (20), anti-oxidant (21, 22), and anti-apoptotic

(23) activities.

Despite O3FA’s established protective activities, no study has

explored its possible ameliorative role on TAM-induced testicular

injury. Hence, we hypothesize that O3FA might attenuate TAM-

induced testicular toxicity in male Wistar rats. The findings from

this study will establish O3FA as a supplement that can be

introduced as an adjunct therapy together with TAM.

Materials and methods

Chemicals/reagents

TAM 20mg was purchased from Milpharm, Ltd, UK, while

O3FA was procured from Gujarat Liqui Pharmacaps Pvt. Ltd.

Vadodara, Gujarat, India. Each of the O3FA capsules consists of

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)

in 3:2. All other chemicals used in this study except otherwise

stated were of analytical grades and were procured from Sigma

(MS, USA).

Ethical consideration

The animals were humanly handled in accordance with

the Guidelines for Laboratory Animal Care published by

the National Institute of Health (NIH). The experimental

protocol complied with the US NAS guidelines, and ethical

approval was obtained from the Institutional Ethical Review

Committee (UERC/ASN/2022/2396).

Animals

Twenty-four (24) male Wistar rats (aged 10–12

weeks and weighing 180–200 g) were purchased from the

Biochemistry Department, University of Ilorin, and housed

in standard ventilated cages. The rats were allowed free

access to feed and water under a normal 12-h light and

darkness cycle.

Experimental procedure

The animals were allowed to acclimatize for 2 weeks before

they were randomly divided into 4 groups (n = 6 groups): Group

1: Control (Cntrl), vehicle-treated animals with 0.5ml of corn

oil, Group 2: animals treated with 300 mg/kg of O3FA, Group 4:

animals exposed to 0.4 mg/kg of TAM, Group 5: animals co-treated

with 0.4 mg/kg of TAM and 300 mg/kg of O3FA. All treatments

were via oral gavage and lasted for 28 days. The dose of 0.4 mg/kg

used in this study has been earlier reported as the most effective

dosage of TAM for antifertility studies (7) and is similar to that

of Motrich et al. (1) and Lee et al. (15), while the 300 mg/kg of

O3FA was the most effective dosage based on the reports from our

previous findings (19, 22).

The study was terminated 24 h after the last treatment, and

animals were sacrificed via an intraperitoneal administration of

ketamine (40 mg/kg) and xylazine (4 mg/kg) (24). Blood samples

were obtained via cardiac puncture and put into plain bottles. The

obtained blood samples were centrifuged at 3,000 rpm for 10min,

and the obtained serum was used for hormonal assay. Both testes

were removed, and the surrounding tissues were separated. The

left testes were homogenized in phosphate buffer for biochemical
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assays, while the right testes were preserved with bouin solution

for histology.

Sperm analysis

Caudal epididymis was meticulously cut into a clean petri

dish, and sperm count, motility, and abnormal sperm morphology

were estimated based on previous methods (25, 26). Briefly,

for sperm motility, cauda epididymis was cut with surgical

blade; the spermatozoa released onto a sterile glass slide and

then diluted with pre-warmed 2.9% sodium citrate dehydrate

solution. The glass slide was covered with a coverslip, and sperm

motility was evaluated under microscope by examining at least

ten microscopic fields at ×40 magnification. For sperm count,

the cauda epididymis was gently crushed in normal saline and

filtered with a nylon mesh to obtain the sperm suspension.

Five µL of the sperm suspension was mixed with 95 µl of

0.35% formalin containing 0.25% trypan blue and 5% NaHCO3.

A fraction (10 µl) of the diluted spermatozoa was placed on

the haemocytometer, allowed to sediment for 5min, and then

counted using the Improved Neubauer chamber and a light

microscope at ×40. For sperm morphology, The abnormalities

in the head, middle-piece and tail (tailless head, bent mid piece,

curved mid-piece, headless tail, bent tail, curved tail, looped tail)

were counted and classified as documented by Bloom (27) and

Parkinson (28).

Steroidogenic enzymes

Testicular 3 beta-hydroxysteroid (3β-HSD) (29, 30) and 17

beta-hydroxysteroid (17 β-HSD) dehydrogenase (30, 31) were

estimated as previously established respectively. “For 3β-HSD,

testicular tissue was homogenized, and the supernatant was

carefully separated. 1ml of the supernatant was mixed with 1ml

of 100 µmol sodium pyrophosphate buffer (pH 8.9), 30 µg of

dehydroepiandrosterone in 40 µl of ethanol, and 960 µl of 25%

BSA. The mixture was then incubated and 0.5 µmol of NAD

was added. The absorbance was read spectrophotometrically at a

wavelength of 340 nm using a blank as reference. For testicular 17β-

HSD, 1ml of the supernatant obtained from the testicular sample

was mixed with 1ml of 440 µmol sodium pyrophosphate buffer

(pH 10.2), 40 µl of ethanol containing 0.3 µmol of testosterone,

and 960µl of 25% BSA. Themixture was incubated and 1.1µmol of

NAD was added in a U 2,000 spectrophotometer cuvette at 340 nm

against a blank.”

Reproductive hormones

The serum levels of luteinizing hormone (LH), follicle-

stimulating hormone (FSH), testosterone, and estradiol (Bio-

Inteco, UK) were determined using an ELISA method according

to the manufacturer’s description.

Testicular histology

Histology was performed according to the established method

(32, 33). The preserved testis in bouin solution was dehydrated

using ethanol series and cleared with toluene. The cleared testes

were embedded and blocked in paraffin wax. After that, 5µm thick

paraffin sections were stained with hematoxylin and eosin (H&E).

Testicular biopsy/Johnsen score was estimated as previously

described (30, 34).

Testicular injury markers

Testicular lactate dehydrogenase (LDH) and Gamma-glutamyl

transferase (GGT) activities were determined as described by the

manufacturer (Agape Diagnostics Ltd.). Additionally, testicular

lactate concentration was evaluated based on the manufacturer’s

guideline (EnzyChrom, ELAC-100).

Oxidative stress markers

Testicular malondialdehyde (MDA) level was assayed as

previously reported (35, 36). In addition, testicular glutathione

(GSH), glutathione peroxidase (GPx), Glutathione-S-transferase

(GST), superoxide dismutase (SOD), and catalase (CAT) activities

were assayed based on established methods (30, 37, 38).

“Malondialdehyde (MDA), a marker of oxidative stress, was

determined as previously documented based on the generated

amount of thiobarbituric acid reactive substance (TBARS) during

lipid peroxidation. This method involves the reaction between

2- thiobarbituric acid (TBA) and malondialdehyde, a byproduct

of lipid peroxidation, by analyzing the pink chromogen complex

[(TBA) 2-malondialdehyde adduct] formed upon heating at acidic

pH. The sample (200 µl) was first treated with 500 µl of

Trichloroacetic acid (TCA) to remove proteins and centrifuged at

3,000 rpm for 10min. Next, 1ml of 0.75% TBA was added to 0.1ml

of the supernatant and heated in a water bath at 100◦C for 20min,

then cooled with ice water. The absorbance of the sample/standard

was then read at 532 nm using a spectrophotometer and compared

to a blank. The concentration of TBARS was determined by

extrapolating from a standard curve.

For GSH, an aliquot of the sample was deproteinized by adding

an equal volume of 4% sulfosalicylic acid, and was centrifuged at

4,000 rpm for 5min. 0.5ml of the supernatant was then added to

4.5ml of Ellman’s reagent. A blank was prepared by mixing 0.5ml

of the diluted precipitating agent with 4.5ml of Ellman’s reagent.

The level of GSH was calculated by measuring the absorbance at

412 nm.

For catalase, 1:29 dilution of the sample was made by mixing

1ml of the supernatant of the testicular homogenate with 19ml

of diluted water. 4ml of H2O2 solution (800 µmoles) and 5ml

of phosphate buffer were added to a 10ml flat bottom flask.

1ml of the diluted enzyme preparation was mixed into the

reaction mixture by gentle swirling at 37◦C. Samples of the

reaction mixture were withdrawn at 60 s intervals, and the H2O2

content was determined by blowing 1ml of the sample into 2ml
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FIGURE 1

E�ect of O3FA on sperm (A) count (B) motility (C) abnormal morphology in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs.

TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty acids; TAM, Tamoxifen.

dichromate/acetic acid reagent. Catalase levels in the sample were

determined by comparing the absorbance at 653 nm to that of a

certified catalase standard.

For GPx, the sample was incubated at 37◦C for 3min, then

0.5ml of 10% trichloroacetic acid (TCA) was added and themixture

was centrifuged at 3,000 rpm for 5min. The supernatant was then

mixed with 2ml of phosphate buffer and 1ml of 5
′

- 5
′

- dithiobis-

2-dinitrobenzoic acid (DTNB) solution, and the absorbance was

measured at 412 nm using a blank as reference. The GPx activity

was determined by plotting a standard curve and determining the

concentration of remaining GSH from the curve.

The activity of glutathione-S-transferase in testicles was also

measured. This method utilizes the enzyme’s high activity with 1-

chloro-2,4-dinitrobenzene as a substrate. The assay was performed

at 37◦C for 60 s and the absorbance was read at 340 nm after

comparing it with a blank sample.

For SOD, a 1:10 dilution of the sample was made using 1ml

of sample and 9ml of distilled water. 0.2ml of the diluted sample

was added to 2.5ml of 0.05M carbonate buffer (pH 10.2) and

the reaction was initiated by adding 0.3ml of freshly prepared

0.3mM adrenaline. The mixture was mixed and the increase in

absorbance was monitored at 480 nm every 30 s for 150 s using a

spectrophotometer. A reference cuvette containing 2.5ml buffer,

0.3ml substrate (adrenaline), and 0.2ml water was also used.”

Inflammatory markers

Testicular tumor necrotic factor-alpha (TNF-α) and interleukin

6 (IL-6) were assayed using ELISA kits (Solarbio, China). Also,

testicular myeloperoxidase (MPO) was estimated according to

previously reported methods (30, 39), while testicular nitric

oxide (NO) concentration was determined based on the Griess

reaction (40).

Briefly, “the method for measuring MPO is based on the

ability of myeloperoxidase to catalyze the oxidation of guaiacol

to oxidized guaiacol in the presence of hydrogen peroxide. The

oxidized form of guaiacol has a brown color, which is measured
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FIGURE 2

E�ect of O3FA on testicular (A) 3β-HSD (B) 17β-HSD in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were

analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty acids; TAM Tamoxifen; 3β-HSD, 3 beta-hydroxysteroid dehydrogenase;

17β-HSD, 17 beta-hydroxysteroid dehydrogenase.

FIGURE 3

E�ect of O3FA on serum (A) Luteinizing hormone (LH) (B) Follicle stimulating hormone (FSH) (C) testosterone (D) estradiol in TAM exposed rats. aP <

0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty

acids; TAM, Tamoxifen.
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FIGURE 4

Testicular histology. Control, O3FA, and TAM + O3FA: section shows the testicular tissue composed of coils of seminiferous tubules (ST) with a

defined lumen (L) containing sperm cells (SP), the seminiferous tubules contained germinal epithelium with germ cells at varying degree of

maturation (line). The interstitium, contained blood vessel (arrow) which is free of collection and contained interstitial cells of Leydig (arrow head)

appearing unremarkable. TAM, The blood vessels (black star) within the interstitium (plain star) appeared congested, and the interstitial cells of Leydig

(arrow head) appears unremarkable.

spectrophotometrically at a wavelength of 470 nm. The intensity of

the color produced is proportional to the concentration of oxidized

guaiacol produced in the reaction, thus providing a measure of

myeloperoxidase activity.

For NO, a mixture of 100 µl of Griess reagent, 300 µl

of a nitrate-containing testicular homogenate, and 2.6ml

of deionized water were incubated for 30min at room

temperature in a spectrophotometer cuvette. A blank

was prepared by mixing 100 µl of Griess reagent and

2.9ml of deionized water. The absorbance of the nitrate-

containing sample was measured at 548 nm in relation to the

reference sample.”

Xanthine oxidase/uric acid

The activities of testicular xanthine oxidase (XO) were

determined based on the method of Zahide and Bahad (41), while

a colorimetric method was used for uric acid (UA) concentration

(Precision, UK).

Transcriptional factors

Testicular nuclear factor kappa B (NFkB) and nuclear

factor erythroid 2-related factor 2 (Nrf2) levels were
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determined using the ELISA method (Elabscience Biotechnology

Inc., USA).

Apoptotic markers

Testicular BCl-2, cytochrome C, and caspase 3 activities

were determined by an ELISA method as described by the

manufacturer (Elabscience Biotechnology Inc., USA). At the same

time, the testicular DNA Fragmentation Index (DFI) was estimated

according to the method of Perandones et al. (42). Five ml each

of testicular homogenate supernatant and pellet were treated with

3ml of freshly prepared diphenylamine (DPA) reagent for color

development. The solutionwas incubated at 37◦C for 16 to 24h. The

absorbance of light green/yellowish-green supernatant was read

spectrophotometrically at 620 nm. The percentage of fragmented

DNA was calculated by dividing the absorbance of the homogenate

supernatant by the sum of the absorbance of the pellet and the

absorbance of the supernatant.

Statistical analysis

Data were analyzed using a one-way analysis of variance

(ANOVA) followed by Tukey’s post hoc test using GraphPad

PRISM 5 software, and they were reported as mean ± standard

deviation. Also, all P values below 0.05 were classified as

statistically significant.

Results

As shown in Figure 1, TAM exposure led to a significant

decrease in sperm count (p < 0.0001), motility (p < 0.0001), and

an increase in abnormal morphology (p < 0.0001) compared with

the control and O3FA groups. These impaired sperm qualities were

ameliorated by O3FA treatment.

In the same vein, TAM administration impaired steroidogenic

enzymatic activities, evidenced by a significant decrease in 3β-

HSD (p < 0.0001) and 17β-HSD (p < 0.0001) compared with

the control and O3FA groups (Figure 2). These observed decreases

were abrogated in animals in the TAM+ O3FA group.

Furthermore, compared with the control groups, animals

administered with TAM had a significant increase in serum LH

(p < 0.0001), FSH (p < 0.0001), and estradiol and a decrease in

testosterone (Figure 3). TAM and O3FA co-administration blunted

these observed hormonal imbalances.

Histopathological findings revealed features consistent with

normal testicular tissue of animals in the control, O3FA, and

TAM + O3FA groups, while their counterparts in the TAM group

exhibited histological features that suggest cellular reaction to

injury and inflammatory response (Figure 4). Also, a decrease in

Johnsen score was observed in TAM-exposed animals compared

with the controls (Figure 5). This alteration was ameliorated in

animals that received TAM and O3FA co-treatment.

Additionally, TAM administration led to a significant increase

in testicular lactate, LDH, and GGT and a decrease in testicular

SDH (Figure 6) compared with the controls. These observed

FIGURE 5

E�ect of O3FA on Johnsen Score in TAM exposed rats. aP < 0.05 vs.

control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed

by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty

acids; TAM, Tamoxifen.

increases in testicular injury markers were ameliorated in animals

treated with TAM and O3FA.

Also, Figure 7 showed that TAM administration led to a

significant increase in testicular MDA and a decrease in testicular

SOD, CAT, GSH, GPX, and GST. This observed redox imbalance

was abrogated in animals that received O3FA and TAM co-

treatment.

Similarly, TAM treatment significantly led to an increase

in testicular TNF-α, IL-6, MPO, and NO compared with

the control groups (Figure 8). These observed TAM-induced

inflammatory responses were ameliorated in animals treated with

TAM and O3FA.

Furthermore, testicular XO and UA were significantly elevated

in animals treated with TAM compared with the control (Figure 9).

These observed TAM-induced XO/UA signaling distortions were

blunted in animals treated with TAM and O3FA.

Additionally, TAM administration led to a significant decrease

in testicular Nrf2 and an increase in testicular Nf-κB compared

with the control groups (Figure 10). This observed TAM-induced

Nrf2/Nf-κB signaling distortion in TAM-treated animals was

ameliorated in their counterparts treated with TAM and O3FA.

Finally, TAM exposure led to a significant increase in testicular

cytochrome C, BCl-2, caspase 3, and DFI compared with the

animals in the control group (Figure 11). TAM and O3FA co-

treatment blunted this observed increase in apoptotic markers.

Discussion

It has been sufficiently established that estrogen plays a major

role in male reproductive system development and maintenance.

In fact, the presence of ER α and β in the testicular (43, 44)
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FIGURE 6

E�ect of O3FA on testicular (A) lactate (B) lactate dehydrogenase (LDH) (C) Gamma-glutamyl transferase (GGT) (D) sorbitol dehydrogenase (SDH) in

TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test.

O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

and sperm cells (45, 46) indicates the cognate role of estrogen in

testicular functions. Supportively, Korach (47) reported impaired

testicular functions in ER α and β knockout mice. TAM is a

potent nonsteroidal antiestrogen that has been recommended

for managing breast cancer and gynecomastia. In fact, it has

been recommended for treating idiopathic oligospermia despite

insufficient data on its effectiveness (48, 49). However, these

authors did not compare their findings with a placebo control,

which is a fundamental aspect to consider when testing the real

therapeutic effect of a drug. In fact, Rolf et al. (50) concluded

that the beneficial role of TAM may not justify its side effects

in healthy males after reviewing 29 clinical trials involving 1,586

patients. TAM has been reported to negatively impact male fertility

status in different strains, including rats, monkeys, and dogs (1).

Although different studies have studied the antiestrogenic and

estrogenic effects of TAM, information on its effect on oxido-

inflammatory response and apoptosis on testicular tissue is still

lacking. Hence, we investigated the putative gonadotoxic effects

of TAM and the possible role of redox imbalance, inflammation,

and apoptotic response in TAM-induced testicular dysfunction.

Also, we explored the possible ameliorative effect of O3FA on

TAM-induced gonadotoxicity.

Our findings revealed that O3FA treatment inhibited the

impaired sperm quality, steroidogenesis, HPG-axis, and surge

in testicular injury markers following TAM exposure. These

histological and biochemical events were accompanied by O3FA-

induced amelioration of TAM-mediated distortion of Nrf2/Nf-κb

signaling and the consequent redox balance, the suppression of

inflammatory response, and cytochrome C-mediated apoptosis.

In this study, TAM administration led to a significant

decrease in sperm motility, count, and normal morphology.

This impaired sperm quality was accompanied by a significant

decline in serum testosterone and steroidogenic enzymatic

activities, which are in tandem with previous reports (13).

Different mechanisms might be responsible for the observed

spermatogenesis and steroidogenesis impairment. TAM might

impair testicular function by disrupting the HPG axis activities

or via direct testicular damage. In male reproduction, the

hypothalamus is responsible for secreting GnRH, which stimulates

LH and FSH secretion from the pituitary gland, which also

stimulates the testis. The secreted LH stimulates steroidogenesis

(testosterone and estrogen secretion), while FSH stimulates

spermatogenesis. Additionally, testosterone and estrogen also play

a dominant role in spermatogenesis. Testosterone and estrogens,
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FIGURE 7

E�ect of O3FA on testicular (A) malondialdehyde (MDA) (B) superoxide dismutase (SOD) (C) catalase (CAT) (D) glutathione (GSH) (E) glutathione

peroxidase (GPx) (F) Glutathione-S-transferase (GST) in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were

analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

in turn, inhibit the synthesis of the gonadotropins at the level of the

pituitary or directly inhibit GnRH secretion from the hypothalamus

(51). Thus, the disruption of the HPG axis activities at any

level will directly impair testicular functions (spermatogenesis and

steroidogenesis). The fact that TAM exposure led to a significant

increase in gonadotropins (LH and FSH) might suggest that
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FIGURE 8

E�ect of O3FA on testicular (A) tumor necrotic factor-alpha (TNF-α) (B) interleukin 6 (IL-6) (C) myeloperoxidase (MPO) (D) nitric oxide (NO) in TAM

exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA,

Omega 3 fatty acids; TAM, Tamoxifen.

FIGURE 9

E�ect of O3FA on testicular (A) Xanthine oxidase (XO) (B) uric acid (UA) in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs.

TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

TAM-induced testicular dysfunction could be independent of the

HPG axis activities rather than via direct testicular damage since

circulatory LH was unable to stimulate the gonad (testis) to

synthesize testosterone.

The fact that TAM exposure disrupted the normal testicular

cytoarchitecture supports our claim that TAM might impair

testicular function via direct testicular damage. Also, the increase in

testicular injury markers (Lactate, LDH, GGT, and SDH) following
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FIGURE 10

E�ect of O3FA on testicular (A) Nrf2 (B) Nf-kb in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed

by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

TAM exposure further substantiates our claim. Additionally,

spermatogenesis is a complex process that requires energy balance

(52). Unfortunately, the observed increase in lactate is a marker

of energy imbalance (53), which is an indication of impaired

spermatogenesis and testicular degeneration (22). These findings

corroborated previous findings of Marek et al. (54), who reported

that TAM activities are associated with energy imbalance and an

increase in lactate.

This direct testicular damage could result from oxidative

stress or redox imbalance, which plays a key role in testicular

functions (55, 56). Oxidative stress occurs when there is

an imbalance between pro-oxidant generation and antioxidant

activities. Oxidative stress, on the other hand, can stimulate

different transcription factors to activate inflammatory pathways

(57, 58). TAM treatment could impair testicular function via

its oxido-inflammatory activities evidenced by an increase in

testicular MDA, IL-6, TnF-a, MPO, and NO and a decrease in

CAT, SOD, GSH, GST, and GPx. These observed TAM-induced

oxido-inflammatory responses could be mediated by the increase

in XO/UA signaling. An increase in XO and the consequent

increase in UA has been implicated in lipid peroxidation (59).

Although UA is an antioxidant, it becomes a pro-oxidant once

produced in excess (60), thereby generating excessive ROS.

Excessive ROS can overwhelm Nrf2 activities, the endogenous

transcription factor responsible for maintaining redox balance (35).

The consequent redox imbalance might activate Nf-κb, responsible

for increasing pro-inflammatory gene induction, leading to an

inflammatory response (61). The increase in Nf-κb will further

inhibit Nrf2 activities, thereby leading to a further decline in

the endogenous antioxidant activities. This observed XO/UA

and Nrf2/Nf-κb-mediated oxido-inflammatory response following

tamoxifen exposure agreed with the study of Ahmed et al. (62) and

Schieber and Chandel (63), who reported that TAM can impair

cellular functions via oxidative stress.

Additionally, excessive oxidative stress and inflammatory

response can collaborate to stimulate apoptosis (64), which

is another key factor that can be responsible for TAM-

induced testicular dysfunction. The observed increase in testicular

cytochrome c following TAM exposure could account for the

observed TAM-induced apoptotic response. In mammals, the

cytochrome c-initiated pathway is a key caspase activation pathway

(65). Various apoptotic stimuli can stimulate the release of

cytochrome c from the mitochondria, leading to a series of

biochemical reactions that activate caspase and the consequent

cell death. Mitochondria plays a major role in the redistribution

of cytochrome c (66). Also, the anti-apoptotic protein (BCl-2)

located predominantly at the outer mitochondria membrane assists

in blocking 1ψm reduction and cytochrome c release (67). Hence,

during mitochondrial dysfunction, there is a leakage of cytochrome

c from the mitochondria and a decrease in BCl-2 (66), thereby

leading to caspase 3- 3-mediated apoptosis (68). Hence, it is

plausible that the observed increase in testicular caspase 3 and

DFI and decrease in testicular BCl-2 might be associated with

the leakage of cytochrome c from the mitochondria of TAM-

treated rats. Our guess that TAM disrupts testicular function

via mitochondria dysfunction-mediated apoptosis corroborates the

findings of Unten et al. (69) and Nazarewicz et al. (70).

Another key finding from this study is the therapeutic

potential of O3FA against TAM-induced testicular dysfunction.

This study revealed that O3FA ameliorated TAM-induced

testicular dysfunction by decreasing testicular injury markers and

oxido-inflammatory and apoptotic response, thus improving

spermatogenesis, sperm quality, hormone synthesis, and

testicular histoarchitecture. These findings agreed with

previous studies that established the antioxidant (71), anti-

inflammatory (22), and anti-apoptotic (72) effects of O3FA.

Hence, it is safe to infer that the increase in testicular SOD,

CAT, GSH, GPX, and GST and decrease in TNF-a, IL-6, MPO,

and NO of TAM exposed rats showed that O3FA –driven

repression UA release via XO activities downregulation probably

modulated the Nrf2/Nf-κb signaling, thereby inhibiting the

transcription of genes responsible for encoding pro-inflammatory
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FIGURE 11

E�ect of O3FA on testicular (A) cytochrome c (B) B-cell lymphoma 2 (BCl-2) (C) caspase 3 (D) DNA fragmentation index (DFI) in TAM exposed rats. aP

< 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty

acids; TAM, Tamoxifen.

cytokines and oxidative response. Furthermore, the observed

increase in BCl-2 and decrease in caspase 3 and DFI in

O3FA and TAM co-treated rats could also be associated

with O3FA-associated decline in cytochrome c release from

the mitochondria.

Conclusion

The findings from this study revealed that O3FA

ameliorated impaired sperm quality, hormonal imbalance,

oxido-inflammatory response, and apoptosis by modulating

XO/UA and Nrf2/NF-kb signaling and cytochrome c-mediated

apoptosis in TAM-treated rats. These findings suggests the

combination therapy with TAM and O3FA in the management

of gynecomastia and breast cancer, since O3FA can help

alleviate the side effects associated with TAM with respect to

male fertility.

Limitations

This study was conducted in healthy animals and we suggest

a replica of it in gynecomastia subjects receiving TAM treatment.

Additionally, downstream target genes responsible for maintain

oxido-inflammatory response and apoptosis were not estimated

using real-time PCR, western blot, immunohistochemistry,

or TUNEL analysis (for apoptosis). However, the observed

modulation of XO/UA and Nrf2/NF-kb and cytochrome c-

mediated apoptosis accompanied by oxido-inflammatory response

suggests the involvement of these pathways in TAM-induced

testicular dysfunction.
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Association of 
triglyceride-glucose index and its 
combination with obesity 
indicators in predicting the risk of 
aortic aneurysm and dissection
Wangqin Yu 1, Xiaoling Wang 2, Zhongyan Du 3 and 
Wenke Cheng 4,5*
1 School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China, 
2 Department of Pharmacy, Lintong Rehabilitation and Recuperation Centre, Xi'an, China, 3 Zhejiang 
Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for 
"Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical 
Sciences, Zhejiang Chinese Medical University, Hangzhou, China, 4 Zhejiang Key Laboratory of Blood-
Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China, 5 Medical Faculty, 
University of Leipzig, Leipzig, Germany

Background: The association between the triglyceride-glucose (TyG) index and 
its combination with obesity indictors in aortic aneurysm and dissection (AAD) 
remains unclear. We aimed to investigate the association between TyG and TyG-
body mass index (TyG-BMI), TyG-waist circumference (TyG-WC), TyG-waist 
height ratio (TyG-WHtR) and AAD risk.

Methods: This study included 387,483 baseline participants from the UK Biobank 
with complete data on TyG, TyG-BMI, TyG-WC and TyG-WHtR. Cox proportional 
hazard models evaluated the relationship between these four indicators and the 
risk of AAD occurrence. Restricted cubic spline (RCS) examined the non-linear 
relationship between these indicators and AAD risk, while receiver operating 
characteristic (ROC) curves assessed the predictive value of these four indicators 
for AAD risk.

Results: Over a median follow-up of 13.7  years, 3,041 AAD events were recorded. 
Multivariate Cox regression analysis indicated that for each standard deviation 
increase, the risk of AAD occurrence increased by 33% (HR: 1.33, 95%CI: 1.29–
1.38), 25% (HR: 1.25, 95%CI: 1.21–1.29), 61% (HR: 1.61, 95%CI: 1.56–1.66) and 
44% (HR: 1.44, 95%CI: 1.39–1.49) for TyG, TyG-BMI, TyG-WC and TyG-WHtR, 
respectively. RCS demonstrated a linear relationship between these indicators 
and AAD risk, with TyG-WC demonstrating the best performance in predicting 
AAD occurrence based on ROC curves.

Conclusion: The present study, based on a large prospective cohort design, 
showed that higher TyG index and its combination with obesity indices were 
significantly associated with the risk of AAD. Moreover, AFT models further 
showed that elevation of these indicators significantly advanced the onset of 
AAD. In addition, RCS analyses demonstrated a linear association between these 
indicators and the risk of AAD, and the TyG-WC showed higher predictive ability 
for AAD. These findings emphasize the potential application of the TyG index 
and its combination with obesity indicators in the early identification of AAD.

KEYWORDS

TyG, TyG-BMI, TyG-WC, TyG-WHtR, aortic aneurysm and dissection, UK biobank
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Introduction

Aortic aneurysm and dissection (AAD) poses a significant risk to 
cardiovascular health, with an extremely high mortality rate (1). 
Epidemiological data indicates an annual incidence of AAD ranging 
from 2 to 16 cases per 100,000 individuals, with a significant male 
predominance (2, 3). Statistics reveal that AAD claims over 150,000 
lives annually (4). Currently, surgical intervention stands as the 
primary treatment, yet despite advancements, postoperative mortality 
rates persist above 10% (5). While medications like β-adrenergic 
receptor antagonists and angiotensin II receptor antagonists offer 
some control over aneurysm progression, the lack of precise 
biomarkers and effective therapeutic targets hampers prevention and 
treatment efforts (6, 7).

Previous research identifies smoking, hypertension, age and 
atherosclerosis as key AAD risk factors (8). Smoking is a well-
established contributor, as it leads to chronic inflammation and 
weakening of the aortic wall, significantly increasing the risk of 
aneurysm formation (9). Hypertension, or high blood pressure, places 
additional stress on the aortic wall, which not only promotes the 
growth of aneurysms but also increases the risk of aortic dissection, 
where a tear in the inner layer of the aorta can occur (10). Age is 
another crucial factor, with the risk of both conditions increasing as 
the aorta becomes more fragile over time (11). Atherosclerosis, 
characterized by the accumulation of plaque in the arteries, can cause 
the stiffening and narrowing of the aorta, which further elevates the 
risk of aneurysm rupture and dissection by weakening the structural 
integrity of the arterial wall (12). Additionally, increasing evidence 
implicates diabetes and obesity in AAD development (13, 14). Insulin 
resistance (IR), a hallmark of diabetes and obesity, emerges as a pivotal 
contributor to various cardiovascular diseases (CVDs) (15). 
Furthermore, studies link higher IR markers with larger aneurysm 
diameters (16). IR disrupts metabolic processes and fuels 
inflammation, underscoring its potential significance in AAD onset 
and progression (17).

While the hyperinsulinemic-euglycemic clamp serves as the gold 
standard for IR measurement, its complexity including the need for 
specialized equipment, prolonged testing time, and skilled personnel 
limits its feasibility for routine clinical application (18). The 
triglyceride-glucose (TyG) emerges as a simpler, efficient alternative 
for early IR identification (19). Ahn et al. showed the potential efficacy 
of TyG in discerning prediabetes from diabetes in the general 
population (20). Moreover, it serves as a reliable indicator for various 
metabolic diseases, including stroke, CVD and metabolic syndrome 
(21–23). Furthermore, combining the TyG index with obesity 
indicators enhances diagnostic accuracy compared to TyG alone 
(24, 25).

To date, no study has explored the relationship between the TyG 
index, its combination with obesity indicators, and the risk of AAD. In 
summary, IR has been shown to increase the risk of AAD, and both 
the TyG index and obesity-related parameters hold promise as 
potential surrogates for IR. Therefore, we hypothesize that higher 
levels of the TyG index and its combinations with obesity parameters 
(TyG-BMI, TyG-WC, TyG-WHtR) are associated with an increased 
risk of AAD occurrence. In the present study, our aim was to 
investigate the associations between the TyG index, its combinations 
with obesity metrics, and the risk of AAD, as well as to compare the 
ability of these IR surrogates in predicting AAD occurrence.

Methods

The UKB constitutes a large-scale, prospective, community-based 
cohort study aimed at advancing biomedical research and informing 
public health policies. Between 2006 and 2010, the project recruited 
over 500,000 participants from 22 centers across the United Kingdom. 
All participants were registered with the National Health Service 
(NHS), the publicly funded healthcare system in the United Kingdom, 
ensuring they had comprehensive health records available for long-
term follow-up and research purposes. At baseline, participants 
completed detailed touchscreen questionnaires covering 
demographics, health and lifestyle factors, alongside undergoing 
physical examinations, functional assessments and providing blood, 
urine and saliva samples. Comprehensive study protocols and 
descriptions have been previously reported (26), and all data collection 
and research in the UKB adhere to strict ethical and privacy standards, 
with participants providing written informed consent before 
enrolment. The study received approval from the North West Multi-
Center Research Ethics Committee and aligns with the Declaration of 
Helsinki principles.

Ascertainment of exposures

Upon enrolment in the UKB, blood samples were randomly 
collected from participants with fasting times recorded prior to blood 
sampling. Given the logistic challenges of collecting fasting blood 
samples from a large, geographically dispersed population (27), 
biochemical measurements were conducted within 24 h on non-fasting 
serum samples, including triglycerides (TG), glucose, total cholesterol 
(TC), high (HDL)- and low-density lipoprotein cholesterol (LDL). The 
coefficients of variation for TG and glucose concentrations were both 
less than 3%. Physical measurements such as height, weight and WC 
were also ontained during baseline examinations. WHtR was 
computed as the ratio of WC to height (28). Four indices were 
calculated using the following formulas: TyG = ln [triglycerides (mg/
dL) × glucose (mg/dL) / 2]; TyG-BMI = TyG * BMI; TyG-WC = TyG * 
WC; TyG-WHtR = TyG * WHtR (29, 30).

Assessment of outcome

The diagnosis of AAD relied on the International Classification of 
Diseases, Tenth Revision (ICD-10) codes I71.0-I71.9, with data 
sourced from hospital admissions and death registries within the 
UKB. Participants were followed from the date of their recruitment 
into the study until the first of the following events occurred: a 
confirmed AAD event, death, or the study cutoff date of 26 October 
2022. The follow-up period ended at whichever of these events 
happened first for each individual.

Assessment of covariates

Baseline sociodemographic data encompassed sex, age, ethnicity, 
physical activity, smoking and drinking status, dietary habits, Townsend 
Deprivation Index (TDI), family history of CVD, medication usage and 
baseline history of chronic diseases, primarily cancer, heart diseases, 

68

https://doi.org/10.3389/fnut.2024.1454880
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yu et al.� 10.3389/fnut.2024.1454880

Frontiers in Nutrition 03 frontiersin.org

hypertension and diabetes. Physical activity levels were quantified 
using weekly metabolic equivalent (MET) minutes (31). TDI reflected 
participants’ socioeconomic status at baseline (32). Dietary scores were 
derived from participants’ reports of consumption of nine food items, 
with detailed scoring information reported elsewhere (32, 33). Family 
history of CVD herein referred to parental heart disease history 
collected through self-reports at baseline. Medication history primarily 
encompassed antihypertensive drugs, lipid-lowering drugs and insulin.

Selection criteria

We initially included 502,357 participants from UK Biobank. 
We then excluded the participants with any missing TyG, TyG-BMI, 
TyG-WC and TyG-WHtR data (n  = 75,063). Subsequently, 
we excluded two participants with missing recruitment time records. 
Additionally, to mitigate confounding effects, participants with 
baseline CVDs including heart valve disease, cardiomyopathy, 
arrhythmias, heart failure or coronary artery disease (n = 33,420) were 
further excluded (Supplementary Table S1). Consequently, a total of 
387,483 participants were retained for subsequent analysis (Figure 1).

Statistical analysis

Missing covariate values were imputed using multiple imputations 
via random forests, with one set of imputed data selected for analysis. 
Kolmogorov–Smirnov test was used to assess the distribution type of 
continuous variables. All continuous variables exhibited a skewed 
distribution. Baseline characteristics were stratified according to AAD 
and non-AAD groups, with continuous variables expressed as medians 
(interquartile ranges) and categorical variables presented as numbers 
and proportions (N, %). Comparisons between the two groups for 

continuous and categorical variables were conducted using the Mann–
Whitney U test and Chi-square test, respectively Incidence of AAD 
across quartiles of TyG, TyG-BMI, TyG-WC and TyG-WHtR during 
the follow-up period was assessed using Kaplan–Meier (KM) curves, 
with significance evaluated by log-rank test. Cox proportional hazard 
models were employed to assess the association between TyG and its 
combination with obesity metrics and AAD risk across three Cox 
multivariable regression models. Model 1 lacked adjustments for any 
variables, while Model 2 adjusted for age, sex and race. Model 3 further 
adjusted for physical activity, smoking and drinking habits, diet score, 
TDI, fasting time, family history of CVD, usage of antihypertensive 
drugs, lipid-lowering drugs or insulin and baseline chronic diseases 
including cancer, hypertension and diabetes. The selection of 
confounders was determined using a directed acyclic graph (DAG)1 
(34), with the results depicted in Supplementary Figure S1. Each 
model categorized TyG, TyG-BMI, TyG-WC and TyG-WHtR into 
quartiles, with the first quartile (Q1) serving as a reference to evaluate 
AAD risk trends and calculate p-values. Subsequently, these four 
metrics were standardized using Z-scores to assess AAD risk changes 
per one standard deviation (SD) increase.

Restricted cubic spline (RCS) analysis with three knots (10, 50, 
90th) were employed to evaluate the non-linear association between 
these four indicators and AAD risk, adjusting for Model 3 covariates, 
with nonlinearity assessed using the log-likelihood ratio test. 
Subsequently, the accelerated failure time (AFT) model investigated the 
impact of TyG, TyG-BMI, TyG-WC and TyG-WHtR levels on AAD 
event timings (35). Using the lowest quartile group (Q1) as the 
reference, we assessed the effect of increases in these indices on the 
timing of AAD onset. Receiver operating characteristic (ROC) curves 
and area under the curve (AUC) analyses evaluated the diagnostic and 

1  http://www.dagitty.net

FIGURE 1

Flowchart of participant selection.
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TABLE 1  Baseline demographic and clinical characteristics.

Characteristic
Total Non-AAD AAD

p-value
(n =  387,483) (n  =  384,442) (n  =  3,041)

Age, years 57.0 (50.0–63.0) 57.0 (50.0–63.0) 63.0 (58.0–66.0) <0.001

Male 172,711 (44.6%) 170,383 (44.3%) 2,328 (76.6%) <0.001

White 366,889 (94.7%) 363,922 (94.7%) 2,967 (97.6%) <0.001

Weight 76.0 (66.2–87.1) 76.0 (66.1–87.0) 83.0 (73.4–93.6) <0.001

Height 168.0 (161.5–175.0) 168.0 (161.0–175.0) 173.0 (167.0–179.0) <0.001

BMI 26.6 (24.1–29.7) 26.6 (24.1–29.7) 27.6 (25.1–30.6) <0.001

WC 89.0 (80.0–98.0) 89.0 (80.0–98.0) 96.0 (88.5–104.0) <0.001

MET 1800.0 (825.0–3573.0) 1800.0 (825.0–3572.0) 1815.0 (742.5–3767.5) 0.905

TDI −2.2 (−3.7–0.4) −2.2 (−3.7–0.4) −2.1 (−3.6–0.6) 0.122

Fasting time 3.0 (2.0–4.0) 3.0 (2.0–4.0) 3.0 (3.0–4.0) <0.001

Diet score 5.0 (4.0–6.0) 5.0 (4.0–6.0) 5.0 (4.0–6.0) <0.001

DM 16,718 (4.3%) 16,547 (4.3%) 171 (5.6%) <0.001

Hypertension 97,138 (25.1%) 95,802 (24.9%) 1,336 (43.9%) <0.001

Cancer 34,108 (8.8%) 33,794 (8.8%) 314 (10.3%) 0.003

History of heart diseases family 149,648 (38.6%) 148,470 (38.6%) 1,178 (38.7%) 0.894

Lipid-lowering drugs 51,879 (13.4%) 51,056 (13.3%) 823 (27.1%) <0.001

Antihypertensives 68,231 (17.6%) 67,187 (17.5%) 1,044 (34.3%) <0.001

Insulin 3,363 (0.9%) 3,342 (0.9%) 21 (0.7%) <0.001

Drinking status <0.001

Never 16,552 (4.3%) 16,471 (4.3%) 81 (2.7%)

Previous 12,995 (3.4%) 12,854 (3.3%) 141 (4.6%)

Current 357,936 (92.4%) 355,117 (92.4%) 2,819 (92.7%)

Smoking status <0.001

Never 158,096 (40.8%) 157,362 (40.9%) 734 (24.1%)

Previous 188,904 (48.8%) 187,306 (48.7%) 1,598 (52.5%)

Current 40,483 (10.4%) 39,774 (10.3%) 709 (23.3%)

TyG 8.7 (8.3–9.1) 8.7 (8.3–9.1) 8.8 (8.5–9.2) <0.001

TyG-BMI 232.1 (203.7–265.7) 232.0 (203.6–265.6) 245.5 (217.3–277.8) <0.001

TyG-WC 776.2 (676.1–878.6) 775.5 (675.5–877.9) 855.0 (763.0–948.5) <0.001

TyG-WHtR 4.6 (4.1–5.2) 4.6 (4.1–5.2) 4.9 (4.4–5.5) <0.001

AAD, aortic aneurysm and dissection; BMI, body mass index; WC, waist circumference; MET, metabolic equivalent task; TDI, Townsend deprivation index; DM, diabetes mellitus.

predictive capabilities of the four indicators in predicting the risk of 
AAD. To assess the stability of the model, we randomly split the dataset 
into 70% training and 30% testing sets. We then plotted ROC curves for 
both sets to evaluate the model’s generalization ability on unseen data.

Additionally, subgroup analyses were conducted based on sex, 
age, BMI, smoking and alcohol consumption, fasting time, diet score, 
diabetes, hypertension, cancer, medication use and family history of 
CVD, with p-values for between-group interactions calculated via 
likelihood ratio tests. Finally, several sensitivity analyses were 
conducted to assess the robustness of our findings. (1) Participants 
who developed AAD within 2 years of the follow-up period were 
excluded to mitigate potential reverse causal effects. (2) Participants 
with any missing covariate values at baseline were excluded, and the 
main analysis was repeated. (3) To address the significant differences 
in sample sizes between the AAD and non-AAD groups, as well as 

differences in baseline characteristics, and avoid potential selection 
bias, propensity score matching (PSM) was employed in a 1:1 manner 
based on all Model 3 covariates. After calculating propensity scores, 
matching was performed using the nearest-neighbor matching 
algorithm with a caliper of 0.2 pooled SD (36). All analyses were 
performed using R (version 4.2.1), with statistical significance set at a 
two-sided p-value less than 0.05.

Results

Basic characteristics of participants

A total of 387,483 AAD-free participants, with a median age of 
57 years and 44.6% males, were included. Table 1 illustrates baseline 
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characteristics, categorized by AAD status. Compared to the 
non-AAD group, the AAD group exhibited higher age, BMI, WC, 
weight and height, alongside a higher proportion of male and white 
participants, and a higher prevalence of chronic diseases (all p < 0.001). 
Additionally, levels of TyG, TyG-BMI, TyG-WC and TyG-WHtR were 
significantly elevated in the AAD group compared to the non-AAD 
group (all p < 0.001).

The associations between TyG, TyG-BMI, 
TyG-WC, TyG-WHtR and the risk of AAD

During a median follow-up of 13.7 years, 3,041 AAD cases were 
identified. KM curves illustrated an escalating risk of AAD with 
increasing quartiles of TyG, TyG-BMI, TyG-WC and TyG-WHtR (all 
p-values <0.001; Figure 2). Consistent findings emerged from Cox 
models. In Model 1, lacking adjustments, there was an upward trend 
in the relative risk of AAD occurrence with increasing quartiles of 
TyG, TyG-BMI, TyG-WC and TyG-WHtR (all P for trend <0.001; 
Table 2). For each SD increase, the risk of AAD occurrence increased 
by 33% (HR: 1.33, 95%CI: 1.29–1.38), 25% (HR: 1.25, 95%CI: 1.21–
1.29), 61% (HR: 1.61, 95%CI: 1.56–1.66) and 44% (HR: 1.44, 95%CI: 
1.39–1.49) for TyG, TyG-BMI, TyG-WC and TyG-WHtR, 
respectively. These associations persisted in Model 2 after adjusting 

for age, sex and race. Furthermore, in Model 3, adjusting for 
additional covariates, the increased quartiles of these four indicators 
enhanced the risk of AAD occurrence compared to the Q1 group, 
especially in the Q4 group. Meanwhile, each SD increase in these four 
indicators increased the risk of AAD occurrence by 10% (HR: 1.10, 
95%CI: 1.05–1.14), 13% (HR: 1.13, 95%CI: 1.09–1.18), 21% (HR: 
1.21, 95%CI: 1.16–1.26) and 15% (HR: 1.15, 95%CI: 1.10–1.19), 
respectively (Table 2).

Subsequent RCS exhibited a linear dose-dependent relationship 
between all four indicators and AAD risk (all P for nonlinear >0.05; 
Figure 3).

Impact of TyG, TyG-BMI, TyG-WC and 
TyG-WHtR on time to AAD onset

AFT analysis revealed a decreasing time to AAD onset with 
increasing quartiles of TyG, TyG-BMI, TyG-WC and TyG-WHtR (all 
P for trend <0.05; Figure 4). Specifically, compared to the Q1 group, 
the median time to AAD onset in the Q2 to Q4 groups of the TyG 
index was advanced by 25.2 months, 54.6 months and 69.5 months, 
respectively. Similar trends were observed for TyG-BMI, TyG-WC and 
TyG-WHtR, particularly for TyG-WC, with the median time to AAD 
onset in the Q2 to Q4 groups advanced by 31.9 months, 58.2 months 

FIGURE 2

A Kaplan–Meier curves for AAD events in the TyG index (A), TyG-BMI (B), TyG-WC (C) and TyG-WHtR (D) quintile group. TyG index, triglyceride glucose 
index; TyG-BMI, triglyceride glucose index–body mass index; TyG-WC, triglyceride glucose index-waist circumference; TyG-WHtR, triglyceride glucose 
index-waist height ratio.
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TABLE 2  The association between TyG, TyG-BMI, TyG-WC, TyG-WHtR and the risk of AAD.

Type Model 1 Model 2 Model 3

HR (95%CI) p HR (95%CI) p HR (95%CI) p

TyG

Q1 Reference Reference Reference

Q2 1.51 (1.34–1.7) < 0.001 1.14 (1.01–1.28) 0.033 1.1 (0.98–1.24) 0.111

Q3 1.77 (1.57–1.98) < 0.001 1.15 (1.03–1.29) 0.017 1.08 (0.96–1.21) 0.198

Q4 2.39 (2.14–2.67) < 0.001 1.43 (1.28–1.6) < 0.001 1.29 (1.15–1.44) < 0.001

P for trend < 0.001 < 0.001 < 0.001

Per SD increase 1.33 (1.29–1.38) < 0.001 1.14 (1.1–1.18) < 0.001 1.1 (1.05–1.14) < 0.001

TyG-BMI

Q1 Reference Reference Reference

Q2 1.56 (1.39–1.76) < 0.001 1.08 (0.96–1.22) 0.183 1.07 (0.95–1.2) 0.291

Q3 1.93 (1.72–2.16) < 0.001 1.19 (1.06–1.33) 0.003 1.11 (0.99–1.25) 0.073

Q4 2.28 (2.04–2.54) < 0.001 1.54 (1.37–1.72) < 0.001 1.36 (1.21–1.53) < 0.001

P for trend < 0.001 < 0.001 < 0.001

Per SD increase 1.25 (1.21–1.29) < 0.001 1.18 (1.14–1.23) < 0.001 1.13 (1.09–1.18) < 0.001

TyG-WC

Q1 Reference Reference Reference

Q2 2.06 (1.79–2.38) < 0.001 1.19 (1.03–1.38) 0.02 1.13 (0.98–1.31) 0.1

Q3 3.19 (2.79–3.65) < 0.001 1.38 (1.2–1.59) < 0.001 1.25 (1.09–1.45) 0.002

Q4 4.86 (4.27–5.53) < 0.001 1.86 (1.62–2.14) < 0.001 1.58 (1.37–1.82) < 0.001

P for trend < 0.001 < 0.001 < 0.001

Per SD increase 1.61 (1.56–1.66) < 0.001 1.28 (1.23–1.33) < 0.001 1.21 (1.16–1.26) < 0.001

TyG-WHtR

Q1 Reference Reference Reference

Q2 1.8 (1.58–2.05) < 0.001 1.09 (0.95–1.24) 0.021 1.04 (0.91–1.19) 0.57

Q3 2.59 (2.29–2.93) < 0.001 1.28 (1.13–1.45) < 0.001 1.15 (1.02–1.31) 0.027

Q4 3.42 (3.03–3.85) < 0.001 1.64 (1.45–1.85) < 0.001 1.38 (1.22–1.56) < 0.001

P for trend < 0.001 < 0.001 < 0.001

Per SD increase 1.44 (1.39–1.49) < 0.001 1.22 (1.18–1.27) < 0.001 1.15 (1.1–1.19) < 0.001

AAD, aortic aneurysm and dissection; Model 1 has no variables adjusted; Model 2 adjusted age, sex, and race; Model 3 further adjusted with physical activity, smoking and drinking status, diet 
score, TDI, fasting time, family history of CVD, usage of antihypertensive drugs, lipid-lowering drugs, and insulin, cancer, hypertension, and diabetes.

and 121.4 months, respectively (all P for trend <0.05; Figure  4; 
Supplementary Table S2).

Additionally, the ROC curve highlighted TyG-WC as the strongest 
predictor of AAD risk, with the highest AUC (AUC = 0.65, 95%CI: 
0.64–0.66), followed by TyG-WHtR (AUC = 0.62, 95%CI: 0.61–0.63), 
TyG index (AUC = 0.59, 95%CI: 0.58–0.60) and TyG-BMI 
(AUC = 0.58, 95%CI: 0.57–0.59; Supplementary Figure S2). Notably, 
these results remained consistent across both the training and 
testing sets.

Subgroup analyses

Stratified analyses upheld the positive correlation between TyG, 
TyG-BMI, TyG-WC, TyG-WHtR and AAD risk across various 
subgroups, including age, medication use, diet score, family history 
of CVD and hypertension (Figures 5–8). Additionally, the association 

was more pronounced in male participants, individuals with 
BMI < 30 kg/m2, Caucasians, current smokers, alcohol consumers, and 
those without a history of cancer. Furthermore, significant 
interactions were noted between TyG indices and AAD risk, 
particularly in relation to smoking status for TyG (P for 
interaction = 0.003; Figure  5) and gender for TyG-BMI (P for 
interaction = 0.004; Figure 6).

Sensitivity analyses

In sensitivity analyses, the exclusion of participants within 2 years 
of follow-up and those with missing baseline covariates yielded 
consistent results with the main findings (Supplementary Tables S3, 
S4). Additionally, PSM analysis effectively balanced baseline 
characteristics between AAD and non-AAD groups 
(Supplementary Table S5). Subsequent Cox proportional hazards 
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models post-PSM adjustment demonstrated consistent results 
(Supplementary Table S6).

Discussion

This large-scale prospective cohort study, to the best of our 
knowledge, represents the first investigation into the interplay between 
the TyG index, obesity indices and AAD risk. Our findings underscore 
a significant positive association between TyG, TyG-BMI, TyG-WC, 
TyG-WHtR and AAD risk, with a linear relationship observed. 
Furthermore, elevations in these indices significantly accelerated AAD 
occurrence. Among these indicators, TyG-WC exhibited the strongest 
association with AAD risk, as indicated by a larger AUC. Furthermore, 
the associations of the four indicators with AAD were particularly 
prominent among individuals with BMI < 30 kg/m2, Caucasians, 
current smokers, alcohol consumers and those without a history 
of cancer.

The TyG index, serving as a surrogate marker for IR, has garnered 
attention owing to its convenience and high sensitivity and specificity 
(37). In a retrospective cohort study of individuals over 40 years old, 
Hong S et al. reported a 26% increased risk of stroke (HR: 1.26, 95% 

CI: 1.23–1.29) and a 31% increased risk of myocardial infarction 
(HR: 1.31, 95% CI: 1.28–1.35) among participants in the TyG Q4 
group compared to the Q1 group (37, 38). Similarly, Wan Y et al. 
demonstrated a linear association between each unit increase in TyG 
and a 16% increase in CVD risk, consistent with our findings (39). 
Conversely, Che B et al. identified a nonlinear relationship between 
TyG and CVD risk (40).

TyG-BMI, TyG-WC and TyG-WHtR represent combinations of 
TyG with obesity metrics. A prospective cohort study revealed that 
each SD increase in TyG-BMI correlated with a 17% increase in CVD 
risk (HR: 1.17, 95% CI: 1.04–1.31). The linear relationship between 
TyG-BMI and CVD risk observed in this study aligns with our 
findings (41). Another subgroup cohort study investigating the 
association between TyG-BMI and prehypertension (pre-HTN) or 
hypertension (HTN) identified TyG-BMI as an independent risk 
factor for the development of pre-HTN and HTN, with a linear 
correlation between TyG-BMI and pre-HTN/HTN risk, particularly 
showing significant sex interaction (42). Consistent with our study, 
we  also observed a significant sex interaction in the relationship 
between TyG-BMI and AAD risk.

TyG-WC and TyG-WHtR are two additional indices utilized in 
CVD identification. Dang K et al. demonstrated that elevated levels of 

FIGURE 3

Association of the TyG (A), TyG-BMI (B), TyG-WC (C) and TyG-WHtR (D) with AAD using RCS. Models were fully adjusted with the maximum covariates 
in Model2. AAD, aortic aneurysm and dissection; RCS, Restricted cubic splines.
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TyG-WC and TyG-WHtR significantly increase the risk of CVD (24, 37). 
Furthermore, another study indicated that TyG-WC and TyG-WHtR 
exhibit a linear relationship with developing CVD risk, with TyG-WC 
(AUC = 0.63) and TyG-WHtR (AUC = 0.65) outperforming TyG 
(AUC = 0.59) and TyG-BMI (AUC = 0.58) in predicting CVD risk (43). 
Similarly, Miao H et al. found that TyG-WC and TyG-WHtR surpass 
TyG and TyG-BMI in predicting CVD, with TyG-WC showing the 
strongest predictive capability (44). In our study, we similarly observed 
that TyG-WC and TyG-WHtR were closely associated with AAD risk, 
displaying a linear relationship. Notably, TyG-WC exhibited the highest 
predictive performance for AAD, followed by TyG-WHtR, TyG and 
TyG-BMI. Although the AUC of TyG-WC was 0.65, it should 
be emphasized that this is only the predictive ability of a single indicator. 
The clinical symptoms of AAD are highly variable and the etiology of the 
disease is complex, which poses a diagnostic challenge. The accuracy of 
any single biomarker in predicting AAD is limited. In the future, the 
combination of TyG-WC with other markers should be considered to 
improve the predictive ability of AAD.

AAD represents a challenging medical event to predict in advance 
(45). Although factors such as male gender, older age, hypertension 
and a family history of aneurysms are associated with AAD risk, 
identifying high-risk populations remains difficult due to its low 
incidence rate (8). The occurrence of AAD may be linked to various 
cardiovascular-related conditions (46). In our study, to eliminate the 

potential confounding effects of heart disease on the study results, 
participants with a history of heart disease at baseline were excluded. 
Subgroup analysis revealed that TyG, TyG-BMI, TyG-WC and 
TyG-WHtR demonstrated a stronger impact on AAD occurrence in 
men, Caucasians, individuals with BMI < 30 kg/m2, those without 
hypertension, diabetes, a history of cancer, and without a family 
history of cardiovascular disease.

The mechanisms underlying AAD development in relation to the 
TyG index and its derivatives, TyG-BMI, TyG-WC and TyG-WHtR, 
remain incompletely understood but likely involve several aspects. 
Firstly, the TyG index comprises lipid and glucose components. The 
lipid portion inhibits insulin secretion, leading to ectopic fat 
deposition in muscle cells and subsequent IR (47). The glucose 
component may elevate reactive oxygen species (ROS) levels, exerting 
toxic effects on pancreatic β-cells and impairing their function, 
thereby contributing to IR (48). TyG-BMI, TyG-WC and TyG-WHtR 
combined with obesity indicators, reflect the accumulation of visceral 
fat, further exacerbating IR and metabolic disturbances, which in turn 
mediate systemic inflammation, endothelial dysfunction and vascular 
remodeling, thereby promoting atherosclerosis (49). Previous studies 
have highlighted a strong correlation between the TyG index and 
atherosclerosis (50, 51). Atherosclerosis weakens the arterial wall, 
rendering it more susceptible to AAD under fluctuations in blood 
pressure or mechanical stress (52). Endothelial injury and 

FIGURE 4

Association of the TyG (A), TyG-BMI (B), TyG-WC (C) and TyG-WHtR (D) with AAD using AFT. Models were fully adjusted with the maximum covariates 
in Model2. AAD, aortic aneurysm and dissection; TyG index, triglyceride glucose index; TyG-BMI, triglyceride glucose index–body mass index; TyG-WC, 
triglyceride glucose index-waist circumference; TyG-WHtR, triglyceride glucose index-waist height ratio; AFT, accelerated failure time.
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FIGURE 5

Association between each standard deviation increase in TyG and the risk of AAD stratified by different clinical characteristics. AAD, aortic aneurysm 
and dissection; TyG index, triglyceride glucose index.
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inflammatory reactions further weaken the arterial wall, facilitating 
blood infiltration into the medial layer, ultimately resulting in AAD 
occurrence (52). Moreover, vascular endothelial secretion of 
inflammatory factors such as vascular cell adhesion molecule-1 

(VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) induces 
platelet adhesion and aggregation, promoting thrombus formation 
and vascular endothelial damage and increases the risk of dissection 
formation and extension (53–55).

FIGURE 6

Association between each standard deviation increase in TyG-BMI and the risk of AAD stratified by different clinical characteristics. AAD, aortic 
aneurysm and dissection; TyG-BMI, triglyceride glucose index–body mass index.
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Our study boasts certain strengths. First, it is the first to explore 
the relationship between TyG and obesity-related indicators and the 
AAD risk using a prospective approach and comprehensive long-term 
follow-up data. Additionally, subgroup analysis identified high-risk 

populations for AAD, and sensitivity analysis enhanced the robustness 
of the results. However, several limitations should also 
be  acknowledged. Firstly, data on TyG, TyG-BMI, TyG-WC and 
TyG-WHtR were collected only at baseline, preventing observation of 

FIGURE 7

Association between each standard deviation increase in TyG-WC and the risk of AAD stratified by different clinical characteristics. AAD, aortic 
aneurysm and dissection; TyG-WC, triglyceride glucose index-waist circumference.
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FIGURE 8

Association between each standard deviation increase in TyG-WHtR and the risk of AAD stratified by different clinical characteristics. AAD, aortic 
aneurysm and dissection; TyG-WHtR, triglyceride glucose index-waist height ratio.
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dynamic changes during follow-up and their impact on 
AAD. Secondly, despite adjusting for known confounding factors, 
unmeasured variables may still influence outcomes due to the 
observational study design, precluding the establishment of causality. 
Thirdly, our study’s predominantly middle-aged and older adults, 
along with a predominantly White population, may limit 
generalizability to other demographics. Lastly, the likelihood of 
healthy individuals participating during UKB recruitment may 
underestimate AAD incidence.

Conclusion

The present study, based on a large prospective cohort design, 
showed that higher TyG index and its combination with obesity 
indices were significantly associated with the risk of AAD. Moreover, 
AFT models further showed that elevation of these indicators 
significantly advanced the onset of AAD. In addition, RCS analyses 
demonstrated a linear association between these indicators and the 
risk of AAD, and the TyG-WC showed higher predictive ability for 
AAD. These findings emphasize the potential application of the TyG 
index and its combination with obesity indicators in the early 
identification of AAD.
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Association between oxidative 
balance score and serum cobalt 
level in population with metal 
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Background: Growing evidence indicates that metal implants influence the 
body’s oxidative stress status, which in turn affects the degradation and stability 
of metal implants. The oxidative balance score (OBS) is a composite indicator, 
reflecting the overall oxidative balance of pro-and antioxidants of the human 
body. However, the associations between OBS and the level of metal ions on 
the population with metal implants remain to be elucidated.

Methods: We conducted a cross-sectional study using data from 2015 to 
2020 National Health and Nutrition Examination Survey (NHANES). Dietary 
and lifestyle factors closely associated with oxidative stress were quantified to 
calculate the OBS. Weighted multivariate logistic regression and smooth curve 
fittings were performed to examine the relationship between OBS and serum 
cobalt levels. Subgroup analyses were stratified by age and gender. In cases 
where non-linearity was detected, threshold effects were assessed using a two-
piecewise linear regression model.

Results: A total of 549 participants were included in this analysis. The dietary 
OBS was negatively associated with serum cobalt level in fully adjusted model 
(β = −0.179, 95%CI: −0.358 to −0.001, P: 0.04918). Stratified by age and 
gender, negative correlation of OBS and dietary OBS with serum cobalt level 
was observed only in men and age over 70 years participants. Threshold effect 
analysis showed linear relationships between OBS, dietary OBS and cobalt level 
in males. There were non-linear relationships between OBS, dietary OBS and 
cobalt level in age over 70 years participants, with inflection points identified at 
16.3 and 8.7 for OBS and dietary OBS, respectively.

Conclusion: Our study confirms the inverse relationships between oxidative 
stress and serum cobalt level in individuals with metal implants, highlighting the 
significance of optimizing OBS to mitigate the risk of metal ion toxicity. These 
findings emphasize the importance of maintaining an antioxidant diet and 
lifestyle, particularly as they offer greater protective effect for males and the 
elderly population.
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1 Introduction

Currently, the trend of global aging is becoming increasingly 
prominent due to persistently low birth rates and extended life 
expectancy. By 2050, it is projected that the population aged 65 and 
older will account for 20% of the global population (1), which suggests 
a significant rise in the incidence of degenerative diseases and related 
complications, such as osteoporosis, fractures, osteoarthritis (2). In 
patients with orthopedic diseases, the use of metal implants for fixation 
or replacement to relieve pain, correct deformities, and restore function 
has increased annually (2–6). It has been reported that over one million 
total hip and knee replacement are performed annually in the 
United States, with the cost exceeding $25 billion (7). However, the 
long-term survival rate of metal implants is not optimistic. Among 
younger patients undergoing total hip replacement, only 72% of the 
implants are able to last for 10 years (8). One of the challenges in the 
application of metal implants is the generation of metal debris and the 
release of metal ions. As is well known, these debris and ions can 
trigger localized adverse reactions, leading to the loosening and failure 
of the implants, and they may even enter the circulatory system, 
resulting in systemic damage (9). Numerous studies suggest that the 
accumulation of metal debris and ions can induce the formation of 
local pseudotumors (10, 11). Research conducted by Grammatopoulos 
et  al. (12) found that out of 53 cases of metal-on-metal hip 
replacements, 16 required revision surgery due to the presence of 
pseudotumors. A prospective study carried out by British researchers 
revealed that, compared to preoperative values, patients who 
underwent metal-on-metal hip replacement experienced a significant 
increase in the incidence of chromosomal aneuploidy and 
translocations in peripheral blood, with rates rising 2-fold and 1.5-fold, 
respectively, within 2 years post-surgery (13). As our understanding of 
the adverse reactions caused by metal implants deepens, the prevention 
of these adverse effects has gradually become a focal point of research.

An increasing number of studies indicate that the integration 
process of metal implants with surrounding tissues may trigger a series 
of physiological and pathological changes (14). In the initial stage of 
implantation, the interaction between immune cells and the metal 
materials leads to the activation and secretion of various mediators, 
such as superoxide anions and hydroxyl radicals (15, 16). Additionally, 
metal particles generated due to fatigue, fretting, or corrosion can 
similarly stimulate local cells to produce excessive reactive oxygen 
species (ROS) (17–21). These intracellular and extracellular ROS may 
induce local inflammation and alter the chemical environment of the 
implants, thereby accelerating the degradation of metal implants and 
the release of metal ions. Metal micro-particles and ions not only cause 
localized harm but can also penetrate the bloodstream and lymphatic 
system, spreading throughout various tissues and organs, triggering 
systemic inflammatory responses and activating the immune system, 
resulting in tissue damage and functional impairment (22). Although 
existing research suggests that ROS are an important factor in the 
reduced stability of metal implants (5), there is currently a lack of 
reliable indicators to reflect the oxidative state after metal implantation 
and to elucidate the relationship between oxidative stress and the 
dissociation of metal ions.

The OBS is a comprehensive metric designed to assess the balance 
between oxidative stress and antioxidant capacity within the body 
(23–25). This indicator has been used to identify individuals at high 
risk for various chronic diseases, such as cardiovascular diseases, 

diabetes, and cancer, and to implement corresponding intervention 
measures. Additionally, it is considered an important monitoring 
indicator for evaluating treatment efficacy (24, 26–29). However, it 
remains unclear whether the oxidative stress status of patients with 
metal implants can be adequately assessed using the OBS, and whether 
this metric can effectively illustrate the relationship between oxidative 
stress and the dissociation of metal ions. Herein, we conducted a 
cross-sectional study to investigate the association between OBS and 
metal ion of the patients with metal implants using a large-scale, 
community population-based data from NHANES 2015–2020.

2 Materials and methods

2.1 Data source

The NHANES is a program in the United States designed to assess 
the health and nutritional status of adults and children. It involves a 
complex and comprehensive set of data methods, including physical 
examinations, laboratory tests, and questionnaires. The survey aims 
to monitor trends in various health indicators, such as diseases, 
nutritional deficiencies, and exposure to environmental contaminants. 
The National Center for Health Statistics Ethics Review Board has 
approved NHANES protocols, with all participants provided 
consenting to their data’s use in research (30).

2.2 Study population

In this study, we analyzed NHANES data from three consecutive 
2-year cycles spanning 2015–2020. We  included participants with 
metal objects inside body, and had complete data of OBS components, 
serum cobalt, and serum chromium. We  excluded participants 
without metal objects (n = 32,360), with missing data for cobalt 
(n = 1,194), chromium (n = 2), calcium (n = 46), cotinine (n = 5), 
Body mass index (BMI) (n = 13), with indication of infection 
(WBC > 10 × 109/L; n = 86) and inflammation (CRP > 5 mg/L; 
n = 173). The participant screening processes is presented in Figure 1.

For each participant enrolled, data on OBS components, serum 
cobalt, and serum chromium, and covariates were extracted and analyzed.

2.3 Study variables

2.3.1 Independent variables
Based on prior research about the relationship of nutrients and 

lifestyle factors with oxidative stress, 16 nutrients and three lifestyle 
factors (alcohol consumption, smoking, and BMI) were collected to 
calculate OBS, including five pro-oxidants and 14 antioxidants (31, 32). 
Among the variables assessed, 16 nutrients and alcohol were derived 
from the mean of the various ingredients from the dietary interview on 
first day to determine the quantiles thresholds for scoring purposes. 
Smoking was estimated by serum cotinine, which was measured by an 
isotope dilution-high performance liquid chromatography/
atmospheric pressure chemical ionization tandem mass spectrometry 
(ID HPLC-APCI MS/MS). The BMI (kg/m2) was collected from body 
measures and calculated as weight in kilograms divided by height in 
meters square. We stratified all components into three distinct groups, 
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corresponding to the first, second, and third tertiles, respectively. 
Antioxidants were allocated fractional values ranging from 0 to 2, 
whereas the scoring for pro-oxidants were inversely distributed. Finally, 
the OBS scores for each participant were aggregated to yield the 
individual final OBS values. Supplementary Table S1 shows the 
distribution scheme of OBS components.

2.3.2 Dependent variables
Whole blood specimens were processed, stored, and shipped to 

the Division of Laboratory Sciences, National Center for 
Environmental Health, Centers for Disease Control and Prevention, 
Atlanta, GA for analysis. The concentrations of cobalt (nmol/L) and 
chromium (nmol/L) in whole blood specimens were directly measured 
using inductively coupled plasma mass spectrometry (ICP-MS) (33).

2.3.3 Covariates
All covariates were identified based on findings from previous 

studies (22, 34). The demographic data, including age (year), gender 
(male/female), and ethnicity (Hispanic, non-Hispanic White, 
non-Hispanic Black, and Other Races), were collected. BMI was 
obtained from body measures. The criteria for identifying hypertension 
and diabetes were based on participants’ self-reported medical 
diagnoses validated by a physician. Smoking status was ascertained 
through Questionnaire Data. Participants who had smoked fewer than 
100 lifetime cigarettes were categorized as never smokers. Those who 
had smoked at least 100 cigarettes, but were not smoking at the time of 
the survey were classified as former smokers. Conversely, participants 
who had exceeded the 100 cigarette threshold and were actively 
smoking at the time of the survey were identified as current smokers 
(35). The neutrophil count (1,000 cells/μL), neutrophil percentage (%), 
lymphocyte count (1,000 cells/μL), monocyte number (1,000 cells/μL), 
and platelet count (1,000 cells/μL), were quantified utilizing the 

Complete Blood Count with a Five-Part Differential methodology. 
Blood urea nitrogen (mg/dL), iron (ug/dL), phosphorus (mg/dL), total 
protein (g/dL), albumin (g/dL), and uric acid (mg/dL) were assessed 
using Beckman UniCel® DxC800 Synchron. HDL-cholesterol (mg/dL) 
and total cholesterol (mg/dL) were quantified using Roche/Hitachi 
Modular P Chemistry Analyzer. The albumin in urine (mg/dL) was 
measured using a solid-phase fluorescent immunoassay by sequoia-
Turner Digital Fluorometer, Model 450, urine creatinine (mg/dL) was 
determined by Enzymatic using Roche Cobas 6,000 Analyzer. Urinary 
albumin-creatinine ratio (UACR) was calculated by dividing urinary 
albumin by creatinine (36). Monocyte/HDL cholesterol ratio (MHR) 
was calculated as monocyte number divided by HDL cholesterol (37). 
Systemic immune-inflammation indicator (SII) was calculated by 
multiplying the platelet count by the neutrophil count and dividing by 
the lymphocyte count (38). Neutrophil percentage to albumin ratio 
(NPAR) was calculated as neutrophil percentage divided by albumin 
(39). The NHANES website provides full information on the laboratory 
procedures, data processing, quality control, and analytic notes.

2.4 Statistical analysis

The statistical software packages R 3.4.31 and EmpowerStats 2.02 
were used to conduct data analysis, with p < 0.05 was considered 
statistically significant. All estimates were calculated with 
consideration of the NHANES sample weights. Continuous variables 
were compared using a weighted linear regression model, while 

1  https://www.r-project.org/

2  http://www.empowerstats.com

FIGURE 1

Flowchart diagram depicting the selection strategy of study participants.
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categorical variables were assessed with a weighted chi-square test. 
Weighted multivariable linear regression analyses were performed to 
investigate the relationship of OBS with serum cobalt and chromium. 
Further investigation was conducted through subgroup analyses, 
stratified by age and gender. The presence of non-linear relationships 
was examined using generalized additive models and smooth curve 
fittings. When non-linearity was detected, a two-piecewise linear 
regression model was employed to analyze the threshold effect.

3 Results

3.1 Baseline characteristics

In accordance with the inclusion and exclusion criteria, a total of 
549 participants were deemed eligible for inclusion in the definitive 
analysis. These participants were divided into four groups based on 
OBS levels. As the levels of OBS escalate, there is a progressive decline 
in the levels of serum cobalt, BMI, urine creatinine, and uric acid, as 
well as the incidence rates of diabetes and hypertension (Table 1).

3.2 Association between OBS, dietary OBS, 
lifestyle OBS, and serum cobalt

Multiple linear regression analyses were conducted to evaluate the 
correlations between OBS, dietary OBS, lifestyle OBS, and serum cobalt 
level. The unadjusted and adjusted outcomes of these analyses are 
presented in Table 2. In all models examined, no significant correlation 
was observed between OBS and lifestyle OBS with respect to serum 
cobalt levels. Dietary OBS was found negatively associated with serum 
cobalt levels in fully adjusted model (model 3: β = −0.179, 95%CI: −0.358 
to −0.001, P: 0.04918), but not in unadjusted and partially adjusted model.

3.3 Subgroup analysis for the relationship 
of OBS, dietary OBS, lifestyle OBS, and 
serum cobalt

When stratified by gender, negative relationships of OBS (model 
3: β = −0.259, 95%CI: −0.487 to −0.032, P: 0.02626) and dietary OBS 
(model 3: β = −0.288, 95%CI: −0.524 to −0.052, P: 0.01740) with 
serum cobalt were found to be statistically significant in males while 
not in females (Table 3).

In subgroup analysis stratified by age, we  observed negative 
relationships of OBS (model 3: β = −0.545, 95%CI: −0.982 to −0.108, 
P: 0.01545) and dietary OBS (model 3: β = −0.657, 95%CI: −1.110 to 
−0.205, P: 0.00496) with serum cobalt only in ≥70 years old 
participants, but not in other age groups (Table 4).

3.4 Threshold effect analysis

The relationship between OBS and serum cobalt exhibited a 
non-linear pattern, as shown by smooth curve fitting (Figure 2A). When 
OBS < 19.7, a one-unit increase in OBS level was associated with 0.5 
units decrease in serum cobalt level. When OBS was >19.7, no significant 
association was observed with serum cobalt (Figure 2A and Table 5). 

Similarly, dietary OBS and serum cobalt exhibited a non-linear 
relationship as shown by smooth curve fitting (Figure 3A). When dietary 
OBS < 9.6, a one-unit increase in dietary OBS was associated with 2.225 
units decrease in serum cobalt level. When OBS was >9.6, no significant 
association was observed with serum cobalt (Figure 3A and Table 5).

When stratified by gender, linear relationships of OBS and dietary 
OBS with serum cobalt were detected in males (Figures 2B, 3B). When 
stratified by age, non-linear relationships of OBS and dietary OBS with 
serum cobalt were observed in ≥70 years old participants (Figures 2C, 
3C). When OBS < 16.3, a one-unit increase in OBS level was associated 
with 1.904 units decrease in serum cobalt level. When OBS was >16.3, 
no significant association was observed with serum cobalt. Similarly, 
when dietary OBS < 8.7, a one-unit increase in dietary OBS level was 
associated with 5.184 units decrease in serum cobalt level. When 
dietary OBS was >8.7, no significant association was observed with 
serum cobalt (Table 6).

4 Discussion

To investigate the association between oxidative stress and metal 
ion levels in patients with metal implants, we conducted a large-scale 
cross-sectional study involving 549 representative participants based 
on data from NHANES 2015–2020. Our results indicated that as the 
OBS increased, serum cobalt levels gradually decreased. These 
findings highlight the importance of managing OBS in individuals 
with metal implants. Elevated OBS and dietary OBS levels are 
indicative of lower cobalt levels, ultimately helping to minimize the 
impact of metal ions on health.

Aging is an irreversible trend that has led to a significant increase 
in orthopedic degenerative diseases and their complications among 
the elderly population, thereby resulting in a continuous rise in the 
demand for metal implants. Epidemiological studies indicate that the 
prevalence of chronic diseases, such as hypertension, coronary heart 
disease, and diabetes, is relatively high in this demographic. Therefore, 
it is crucial to explore the factors influencing the progression of 
chronic disease in patients who have undergone metal implantation. 
Oxidative stress refers to the imbalance between antioxidant defense 
mechanisms and the production of ROS, and it has been confirmed to 
be closely associated with various chronic diseases. Oxidative stress is 
considered a significant contributing factor to cardiovascular diseases 
like atherosclerosis, heart disease, and hypertension, and it also plays 
a vital role in the onset and progression of diabetes (40). Hyperglycemic 
states can trigger the production of ROS, leading to insulin resistance 
and β-cell dysfunction. Furthermore, oxidative stress is closely related 
to complications of diabetes, including cardiovascular diseases, kidney 
disease, and neuropathy (41). Our research has revealed that as OBS 
levels increase, the incidence of diabetes and hypertension gradually 
decreases, and renal function also shows improvement. This finding 
suggests that maintaining a healthy lifestyle and a diet rich in 
antioxidants can help mitigate the progression of chronic diseases in 
patients receiving metal implant therapy.

Mechanical wear and fluid corrosion have long been recognized as 
the primary factors leading to the generation of metallic particles and 
the release of metal ions (42, 43). In recent years, the role of oxidative 
stress in this process has garnered increasing attention. Research 
indicates that oxidative stress exacerbates the generation of metallic 
particles and the release of metal ions through various mechanisms, 
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such as enhancing the corrosion rate of metal implants, promoting 
inflammatory responses, intensifying cellular damage and apoptosis, 
and altering the surface characteristics of materials. The increase in 
ROS accelerates the degradation of implants while diminishing the 

tissue’s ability to clear metal ions, thereby exacerbating the accumulation 
of metallic particles and ions in the surrounding environment (44–47). 
Xu et  al. (44) observed extensive infiltration and accumulation of 
macrophages in the synovial tissue of patients with failed metal hip 

TABLE 1  Baseline characteristics of study participants.

OBS

Characteristics <10 ≥10, <20 ≥20, <30 ≥30 p-value

n 66 203 225 55

Age (years) 62.292 ± 12.112 64.521 ± 10.159 61.054 ± 12.267 61.236 ± 12.192 0.01531

BMI (kg/m2) 31.124 ± 5.723 29.693 ± 5.075 29.545 ± 6.778 25.773 ± 3.402 <0.00001

Chromium (nmol/L) 9.512 ± 16.489 10.324 ± 9.739 8.210 ± 7.720 8.613 ± 7.542 0.13219

Cobalt (nmol/L) 10.269 ± 40.897 3.460 ± 7.514 4.370 ± 8.265 2.787 ± 1.290 0.01864

Urine creatinine (mg/dL) 122.523 ± 91.860 103.849 ± 62.542 98.079 ± 64.584 75.665 ± 48.977 0.00152

Blood urea nitrogen (mg/dL) 15.699 ± 7.220 16.286 ± 5.444 16.433 ± 4.857 16.791 ± 4.212 0.73797

Iron (μg/dL) 89.411 ± 26.580 85.607 ± 28.057 86.114 ± 33.064 86.230 ± 37.065 0.91010

Phosphorus (mg/dL) 3.673 ± 0.514 3.666 ± 0.494 3.709 ± 0.564 3.728 ± 0.514 0.77810

Total Protein (g/dL) 7.049 ± 0.413 6.971 ± 0.407 6.910 ± 0.361 7.055 ± 0.328 0.01160

Uric acid (mg/dL) 5.375 ± 1.360 5.591 ± 1.361 5.336 ± 1.362 4.750 ± 1.038 0.00016

Monocyte number (1,000 cells/μL) 0.626 ± 0.187 0.571 ± 0.163 0.574 ± 0.178 0.596 ± 0.298 0.31775

HDL-cholesterol (mg/dL) 55.236 ± 16.203 57.743 ± 22.547 56.273 ± 19.857 60.625 ± 16.961 0.39335

Total cholesterol (mg/dL) 186.738 ± 32.688 192.013 ± 43.755 193.473 ± 47.404 198.341 ± 32.718 0.55408

MHR 0.012 ± 0.005 0.012 ± 0.007 0.012 ± 0.006 0.011 ± 0.007 0.66601

UACR 0.520 ± 2.228 0.208 ± 1.025 0.559 ± 2.937 0.240 ± 0.622 0.34465

NPAR 0.949 ± 0.298 0.904 ± 0.262 0.951 ± 0.285 0.835 ± 0.283 0.01519

SII 464.666 ± 210.373 483.256 ± 250.736 520.514 ± 255.919 501.649 ± 215.223 0.33337

Dietary OBS 4.371 ± 1.365 11.350 ± 2.756 20.929 ± 3.131 26.585 ± 1.436 <0.00001

Lifestyle OBS 3.077 ± 1.120 3.397 ± 1.302 3.552 ± 1.349 4.979 ± 1.083 <0.00001

Gender 0.50096

 � Male 47.250 43.238 47.368 37.636

 � Female 52.750 56.762 52.632 62.364

Race 0.11863

 � Hispanic 9.240 9.561 7.862 4.006

 � Non-Hispanic White 70.385 74.423 79.801 85.374

 � Non-Hispanic Black 16.173 6.800 4.519 3.096

 � Other 4.202 9.215 7.817 7.524

Diabetes 0.02921

 � Yes 24.417 19.821 12.504 5.818

 � No 74.145 77.318 85.133 93.695

 � Borderline 1.438 2.861 2.364 0.487

Hypertension 0.00271

 � Yes 68.423 53.094 45.113 36.083

 � No 31.577 46.906 54.887 63.917

Smoking 0.28010

 � Never 37.659 39.608 47.766 48.476

 � Former 37.057 41.651 36.792 41.180

 � Still 25.283 18.742 15.442 10.343

MHR, monocyte/high density lipoprotein cholesterol ratio; UACR, urinary albumin/creatinine ratio; NPAR, neutrophil percentage to albumin ratio; SII, systemic immune-inflammation 
indicator. Mean ± SD for continuous variables: P-value was calculated by weighted linear regression model. Percent for categorical variables: P-value was calculated by weighted chi-square test.
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prostheses. Their study revealed that cobalt released from the metal 
implants stimulate surrounding immune cells to produce ROS, which 
subsequently downregulate the RhoA signaling pathway in 
macrophages. This alteration results in increased formation of 
intracellular podosome-type adhesion structures and enhanced 
adhesion to the extracellular matrix, ultimately leading to decreased 
motility of the macrophages (44). Furthermore, Kim et al. (47) found 
that ROS induced by metal implants could trigger apoptosis in 
osteoblasts and gingival fibroblasts through the activation of the Nrf2/
ARE pathway and the upregulation of heme oxygenase-1. What is even 
worse, the significant entry of metal ions into the bloodstream can 
provoke systemic toxic reactions, impacting the functionality of vital 
organs. Metals such as cobalt, chromium, nickel, and titanium, which 
are major components of metal implants, have gained increasing 
attention due to the health issues they may cause. In a prospective study 
involving 100 patients with metal implants, researcher Brodner 
evaluated the serum cobalt concentrations in patients following metal-
on-metal total hip arthroplasty, finding that the serum cobalt levels 
exceeded the detection limit (48). Another study described a 70-year-
old patient with cobalt toxicity, whose primary symptoms included 
progressive hearing and vision deterioration, cataracts, and axonal 
sensorimotor neuropathy (49). Signorello et al. (50) found that cobalt 
released from metal implants enters the bloodstream and ultimately 

accumulates in large amounts in the bladder, resulting in a significant 
increase in the incidence rate of bladder cancer among patients 
undergoing hip replacement surgeries. Building on this, Speer et al. (46) 
investigated the effects of cobalt on human urothelial cells and revealed 
that soluble cobalt induces cell cycle arrest, leading to cytotoxicity and 
genotoxicity. Moreover, elevated levels of serum cobalt have also been 
found to closely associated with increased risks of cardiovascular 
diseases, hormonal imbalances, immune system suppression, and 
reduced capacity for infection resistance (21, 51, 52). In this study, 
we observed a negative correlation between OBS, dietary OBS, and the 
serum cobalt levels in patients with metal implant. When OBS is less 
than 19.7, for every unit increase in OBS, the cobalt level decreased by 
0.5 units. Similarly, when dietary OBS is less than 9.6, the cobalt levels 
reduced by 2.225 units as the unit dietary OBS raised. This suggests that 
maintaining a healthy lifestyle and dietary habits may be an effective 
strategy to reduce ion dissociation from metal implants, lower related 
complications, and improve the long-term survival rate of implants.

Previous studies have indicated that there are significant differences 
in the response to oxidative stress based on gender and age. Before 
puberty, girls appear to be more susceptible to metabolic dysfunction 
induced by oxidative stress, whereas elevated redox markers in boys 
seem to offer protection against arterial stiffness and maintain lipid 
homeostasis (53). This phenomenon suggests that sex may play a crucial 

TABLE 2  Relationships of OBS, dietary OBS, lifestyle OBS, and the cobalt level.

Outcome Model 1 Model 2 Model 3

β (95%CI) p-value β (95%CI) P-value β (95%CI) P-value

OBS −0.100 (−0.256, 0.056) 0.20771 −0.086 (−0.246, 0.075) 0.29628 −0.155 (−0.328, 0.018) 0.07924

Dietary OBS −0.129 (−0.292, 0.035) 0.12269 −0.109 (−0.278, 0.059) 0.20412 −0.179 (−0.358, −0.001) 0.04918

Lifestyle OBS 0.485 (−0.350, 1.320) 0.25504 0.390 (−0.473, 1.253) 0.37604 0.556 (−0.564, 1.676) 0.33119

Model 1: no covariates were adjusted.
Model 2: age, M-HDL, and UACR were adjusted.
Model 3: age, BMI (kg/m2), diabetes, hypertension, smoking, urine creatinine (mg/dL), blood urea nitrogen (mg/dL), iron (μg/dL), phosphorus (mg/dL), total Protein (g/dL), uric acid (mg/
dL), monocyte number (1,000 cells/μL), HDL-Cholesterol (mg/dL), total Cholesterol (mg/dL), M-HDL, UACR, NPAR, and SII were adjusted.

TABLE 3  Relationships of OBS, dietary OBS, lifestyle OBS, and the cobalt level stratified by gender.

Outcome Male Female

β (95%CI) P-value β (95%CI) P-value

Model 1

 � OBS −0.153 (−0.356, 0.051) 0.14243 −0.054 (−0.288, 0.180) 0.65016

 � Dietary OBS −0.186 (−0.398, 0.027) 0.08746 −0.076 (−0.322, 0.169) 0.54266

 � Lifestyle OBS 0.479 (−0.600, 1.558) 0.38494 0.442 (−0.822, 1.707) 0.49358

Model 2

 � OBS −0.124 (−0.328, 0.080) 0.23453 −0.046 (−0.289, 0.197) 0.71257

 � Dietary OBS −0.154 (−0.368, 0.060) 0.16057 −0.063 (−0.318, 0.192) 0.62932

 � Lifestyle OBS 0.428 (−0.662, 1.517) 0.44209 0.332 (−0.981, 1.645) 0.62048

Model 3

 � OBS −0.259 (−0.487, −0.032) 0.02626 −0.102 (−0.376, 0.171) 0.46308

 � Dietary OBS −0.288 (−0.524, −0.052) 0.01740 −0.122 (−0.403, 0.158) 0.39272

 � Lifestyle OBS 0.332 (−1.175, 1.839) 0.66641 0.528 (−1.167, 2.222) 0.54214

Model 1: no covariates were adjusted.
Model 2: age, M-HDL, and UACR were adjusted.
Model 3: age, BMI (kg/m2), diabetes, hypertension, smoking, creatinine, urine (mg/dL), blood urea nitrogen (mg/dL), iron (μg/dL), phosphorus (mg/dL), total Protein (g/dL), uric acid (mg/
dL), monocyte number (1,000 cells/μL), HDL-Cholesterol (mg/dL), total cholesterol (mg/dL), M-HDL, UACR, NPAR, and SII were adjusted.
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role in regulating oxidative stress-related genes, such as NCF2 and 
NOX3. Furthermore, research has demonstrated that sex hormones can 
influence the expression and activity of NADPH oxidase genes and 
myeloperoxidase, resulting in differences in the response to oxidative 
stress between males and females (54). Antioxidant lifestyles have been 
shown to play a significant protective role in the prevention and 
treatment of depression in women (23). Additionally, Cao’s research has 
found stronger protective effects of dietary antioxidants in women, 
suggesting that dietary changes can effectively prevent chronic kidney 

disease (55). This phenomenon may be attributed to the regulation of 
most proteins involved in redox status and mitochondrial function by 
sex hormones (56). The expression of mitochondrial related genes has 
been shown to be closely related to gender, suggesting a key role of sex 
hormone signaling in mitochondrial dynamics and cellular redox 
biology (57). When activated, estrogen-related receptors improve fatty 
acid oxidation, mitochondrial dynamics, and respiratory chain activity 
(58, 59). The results of our study indicate that the negative correlation 
between OBS and serum cobalt levels is pronounced in men but not as 

TABLE 4  Relationship of OBS, dietary OBS, lifestyle OBS, and the cobalt level stratified by age.

Outcome <50 ≥50, <60 ≥60, <70 ≥70

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value

Model 1

 � OBS −0.032 (−0.028, 

0.091)

0.30203 −0.019 (−0.147, 

0.109)

0.77068 0.103 (−0.169, 

0.375)

0.46034 −0.332 (−0.738, 

0.075)

0.11123

 � Dietary OBS 0.019 (−0.043, 

0.082)

0.54829 −0.031 (−0.168, 

0.106)

0.65973 0.136 (−0.136, 

0.409)

0.32842 −0.432 (−0.868, 

0.004)

0.05367

 � Lifestyle OBS 0.384 (0.081, 

0.688)

0.01522 0.231 (−0.460, 

0.923)

0.51312 −1.001 (−2.502, 

0.500)

0.19303 1.205 (−0.995, 

3.404)

0.28423

Model 2

 � OBS 0.026 (−0.032, 

0.085)

0.37504 −0.025 (−0.158, 

0.108)

0.71546 0.109 (−0.184, 

0.403)

0.46614 −0.413 (−0.820, 

−0.005)

0.04846

 � Dietary OBS 0.016 (−0.045, 

0.076)

0.61676 −0.036 (−0.178, 

0.106)

0.61878 0.145 (−0.145, 

0.436)

0.32802 −0.509 (−0.942, 

−0.077)

0.02212

 � Lifestyle OBS 0.337 (0.038, 

0.637)

0.03006 0.201 (−0.516, 

0.918)

0.58347 −1.184 (−2.798, 

0.431)

0.15292 1.065 (−1.190, 

3.321)

0.35565

Model 3

 � OBS 0.022 (−0.039, 

0.084)

0.48221 −0.098 (−0.266, 

0.070)

0.25728 0.216 (−0.125, 

0.558)

0.21683 −0.545 (−0.982, 

−0.108)

0.01545

 � Dietary OBS 0.019 (−0.043, 

0.082)

0.54491 −0.114 (−0.291, 

0.063)

0.20996 0.252 (−0.083, 

0.586)

0.14332 −0.657 (−1.110, 

−0.205)

0.00496

 � Lifestyle OBS 0.144 (−0.257, 

0.545)

0.48342 0.172 (−0.843, 

1.187)

0.74097 −1.649 (−3.722, 

0.424)

0.12152 2.836 (−0.191, 

5.862)

0.06798

Model 1: no covariates were adjusted.
Model 2: M-HDL, and UACR were adjusted.
Model 3: BMI (kg/m2), diabetes, hypertension, smoking, urine creatinine (mg/dL), blood urea nitrogen (mg/dL), iron (μg/dL), phosphorus (mg/dL), total Protein (g/dL), uric acid (mg/dL), 
monocyte number (1,000 cells/μL), HDL-Cholesterol (mg/dL), total Cholesterol (mg/dL), M-HDL, UACR, NPAR, and SII were adjusted.

FIGURE 2

The relationship between OBS and serum cobalt (A), stratified by gender (B), stratified by age (C).
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FIGURE 3

The relationship between dietary OBS and serum cobalt (A), stratified by gender (B), stratified by age (C).

evident in women. This discrepancy may be related to differences in 
hormone levels, as estrogen is known to combat oxidative stress. Itagaki 
et al. (60) have found that estradiol inhibits the production of ROS and 
MAPK signaling, thereby preventing the activation of transcription 
factors and inactivating the downstream transcription processes involved 
in the expression and activation of TGF-β. Additionally, Sun’s research 
indicates that β-estradiol can enhance ROS generation and RUBICON 
expression, further promoting LC3B-associated phagocytosis in 
macrophages, which suggests a novel perspective for understanding the 
mechanism of trained immunity in gender differences during sepsis 
response (61). Furthermore, women tend to adopt healthier lifestyle 
choices compared to men, which may contribute to a lack of significant 
impact on their serum cobalt levels. Consequently, dietary modifications 
may be more beneficial for lowering serum cobalt levels in men.

Moreover, subgroup analyses reveal significant differences in the 
association between OBS and serum cobalt levels across various age 
groups. A notable negative correlation is observed in participants over 
the age of 70, while this correlation is less pronounced in other age 
groups. This finding is consistent with previous research by Qu, which 
highlighted a stronger negative correlation between OBS and 
periodontitis in the elderly (24). Xiao et  al. (62) comprehensively 
identified redox-modified disease networks that are remodeled in aged 

mice, establishing a systemic molecular foundation for the complex 
links between redox dysregulation and tissue aging. They found that 
the bladders of aged mice exhibit baseline reactive oxygen species 
(ROS) accumulation and heightened oxidative stress. Mysorekar’ team 
discovered that d-mannose treatment reversed autophagy flux, 
rescued the senescence-associated secretory phenotype, and alleviated 
ROS and the shedding of NLRP3/Gasdermin/IL-1β-driven pyroptotic 
epithelial cell in elderly animals (63). These phenomena may 
be  associated with the decline in cellular repair capacity and the 
efficiency of antioxidant defense systems that often accompany aging. 
Therefore, it is crucial for older adults to improve their OBS in order 
to reduce serum cobalt levels and mitigate the toxic effects of cobalt.

This study exhibits prominent strengths. Firstly, the data from 
NHANES were obtained by a sophisticated, multi-stage probability 
sampling design, strictly adhered to comprehensive quality control to 
ensure the effectiveness and integrity of the dataset. Therefore, based 
on the database, our results are highly credible when extended to 
non-institutionalized populations, especially, the association was 
validated to be robust after the adjustment for various confounders. 
Second, an increasing number of studies have demonstrated a 
significant correlation between CRP levels and biomarkers associated 
with oxidative stress, indicating that inflammation and infection may 
be  potential factors influencing oxidative stress. To mitigate this 
impact, we implemented stringent exclusion criteria to omit individuals 
with CRP levels exceeding 5 mg/L, thereby enhancing the reliability of 
our findings (64, 65). Third, the present study concentrated on the 
OBS, encompassing a composite indicator of antioxidant lifestyle and 
diet, rather than monitoring single component in isolation. This 
approach enables a more thoroughgoing understanding of the intricate 
interplay among diverse diet and lifestyle factors in the population with 
metal implants, as well as their association with the serum cobalt level. 
Fourth, our study found the association between OBS and serum 
cobalt level for the first time in population with metal implants and 
uncovered the gender-specific and age-specific effects of OBS on the 
serum cobalt level. Fifth, the use of an appropriate covariate adjustment 
increased the representativeness and reliability of our study. Therefore, 
the findings carry vital public health implications in the mitigation of 
the metal ions toxicity on human with metal implants.

Nevertheless, there were also a few limitations in this study. 
Firstly, the grading criteria for physical activity lack uniformity and 

TABLE 5  Threshold effect analysis of OBS and dietary OBS on the cobalt 
level using the two-piecewise linear regression model.

Adjusted β (95%CI) P-value

OBS infection point 19.7

 � OBS < 19.7 −0.500 (−0.876, −0.125) 0.0093

 � OBS > 19.7 0.154 (−0.191, 0.499) 0.3818

 � Log likelihood ratio 0.039

Dietary OBS infection point 9.6

 � Dietary OBS < 9.6 −2.225 (−3.120, −1.329) <0.0001

 � Dietary OBS > 9.6 0.161 (−0.067, 0.389) 0.1662

 � Log likelihood ratio <0.001

The age, BMI (kg/m2), diabetes, hypertension, smoking, urine creatinine (mg/dL), blood 
urea nitrogen (mg/dL), iron (μg/dL), phosphorus (mg/dL), total Protein (g/dL), uric acid 
(mg/dL), monocyte number (1,000 cells/μL), HDL-Cholesterol (mg/dL), total Cholesterol 
(mg/dL), M-HDL, UACR, NPAR, and SII were adjusted.
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certain essential data are inaccessible. Therefore, physical activity was 
excluded from the calculation of the OBS score. Second, our design of 
a cross-sectional survey restricts causal inferences between OBS and 
serum cobalt level. So further prospectively designed studies are 
needed to verify the causality between OBS and serum cobalt level in 
human with metal objects. Meanwhile, the biases of recall and 
reporting using self-reported questionnaires may compromise the 
accuracy of OBS calculations. Third, the level of metal ions in the 
human body is influenced by environment and occupation. However, 
due to privacy concerns, the NHANES database fail to get the 
geographical location and living status of participants, which makes 
it impossible to estimate the impact of environmental and 
occupational exposure on metal ions of human body. Moreover, the 
uncertainty of implantation type, quantity, reason, or duration, 
determined the highly heterogeneity of the included population. 
Finally, the level of metal ions may alter with prolonged postoperative 
time, so a longer follow-up is extremely needed to further clarify the 
relationship between the OBS and the serum cobalt level in the 
population with metal implants.

5 Conclusion

In conclusion, data from a nationally representative sample uncovers 
the significant negative association between OBS and the level of serum 
cobalt in the population with metal implants. This negative correlation 
has been corroborated across different gender and age subgroups. 
Notably, the protective effects of an antioxidant diet and healthy lifestyle 
are particularly pronounced among males and individuals aged over 70. 
For the population with metal implants, maintaining good dietary and 
lifestyle habits may help reduce the generation of metal particles and the 
dissociation of metal ions, thereby improving the survival rate of metal 
implants and decreasing the risk of related complications.
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TABLE 6  Threshold effect analysis of OBS and dietary OBS on the cobalt 
level in ≥70 participants using the two-piecewise linear regression model.

Adjusted β (95%CI) P-value

OBS infection point 16.3

 � OBS < 16.3 −1.904 (−3.261, −0.548) 0.0066

 � OBS > 16.3 0.060 (−0.660, 0.780) 0.8711

 � Log likelihood ratio 0.029

Dietary OBS infection point 8.7

 � Dietary OBS < 8.7 −5.184 (−7.497, −2.871) <0.0001

 � Dietary OBS > 8.7 0.053 (−0.510, 0.615) 0.8548

 � Log likelihood ratio <0.001

The age, BMI (kg/m2), diabetes, hypertension, smoking, creatinine, urine (mg/dL), blood 
urea nitrogen (mg/dL), iron (μg/dL), phosphorus (mg/dL), total Protein (g/dL), uric acid 
(mg/dL), monocyte number (1,000 cells/μL), HDL-Cholesterol (mg/dL), total Cholesterol 
(mg/dL), M-HDL, UACR, NPAR, and SII were adjusted.
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High-fat diet mouse model 
receiving L-glucose 
supplementations propagates 
liver injury
Johnny Amer 1*†, Athar Amleh 1†, Ahmad Salhab 1, Yuval Kolodny 2, 
Shira Yochelis 2, Baker Saffouri 1, Yossi Paltiel 2 and Rifaat Safadi 1

1 Liver Institute, Hadassah-Hebrew University Hospital, Jerusalem, Israel, 2 Applied Physics Department, 
Center for Nanoscience and Nanotechnology, Hebrew University Givaat Ram, Jerusalem, Israel

Background and aims: Limited data link manufactured sweeteners impact on 
metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to 
evaluate the effects of manufactured sugars (L-glucose) compared to natural 
sugars (D-glucose) on phenotype, molecular and metabolic changes in mice 
models fed with either regular diet (RD) or high fat diet (HFD).

Methods: C57BL/6 mice fed 16-weeks with either RD; 70% carbohydrate or 
HFD; 60% fat, with or without additional glucose (Glu, at 18% w/v) to drinking tap 
water at weeks 8–16; of either natural (D-Glu) or manufactured (L-Glu) sugars. 
Liver inflammation (ALT and AST serum levels, liver H&E histologic stains and 
cell viability profile by p-AKT), liver fibrosis [quantitated α smooth-muscle-actin 
(αSMA) by western blot and RT-PCR, Masson Trichrome staining (MTC) of liver 
tissue], liver lipid [steatosis stain by H&E, Adipose Differentiation-Related Protein 
(ADRP) lipid accumulation, serum and lipid peroxidation Malondialdehyde 
(MDA) markers by ELISA], glucose hemostasis (serum Glucose and C-peptide 
with HOMA-IR score calculation) and liver aspects [hepatic glucose transporter 
2 (GLUT2), insulin receptor (IR) expressions and GYS2/PYGL ratio] evaluated.

Results: D- and L-Glu supplementations propagate hepatocytes ballooning 
and steatosis in HFD-fed mice and were associated with αSMA down-
expressions by 1.5-fold compared to the untreated group while showed an 
acceleration in liver fibrosis in the RD-fed mice. Lipid profile (Steatosis, ADRP 
and MDA) significantly increased in HFD-fed mice, both Glu supplementations 
(mainly the L-Glu) increased serum MDA while decreased ADRP. HOMA-IR 
score and IR significantly increased in HFD-fed mice, with further elevation 
in HOMA-IR score following Glu supplementations (mainly L-Glu). The 
increase in HOMA-IR negatively correlated with IR and Glut2 expressions. D- 
and L-Glu supplementations showed significant decrease of Glycogenesis 
(low GYS2/PYGL ratio) and unchanged p-AKT pattern compared to their RD 
counterparts.

Conclusion: Our data indicate an increase in rate of de-novo lipogenesis (DNL) 
in RD-fed mice (High carbohydrate diet) and liver fibrosis following additional 
sugar supplementations. In contrast, HFD-fed mice (with pre-existing high lipid 
profile) supplemented with sugar showed less liver fibrosis, because of reduced 
de-novo fatty acids synthesis and subsequently, the lipid oxidation pathways 
become dominated and induce the net results of lipid clearance.
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Introduction

Metabolic dysfunction–associated steatotic liver disease (MASLD) 
has become a prevalent health concern in the modern world, affecting 
up to 35–50% of the adult population and up to 20% of children (1). 
This condition, characterized by the accumulation of fat in the liver 
cells, occurs without significant alcohol consumption and is often 
linked to unhealthy lifestyle choices, including poor diet and lack of 
exercise (2).

Given the association between unhealthy lifestyle choices and the 
development of MASLD (3), it is crucial to examine how specific 
dietary components, such as different forms of glucose, might influence 
the disease’s progression (4). D-glucose (D-Glu), the naturally 
occurring form, is a fundamental carbohydrate in human metabolism, 
participating in essential processes such as glycolysis and the citric acid 
cycle (5). High levels of D-Glu, particularly in the form of high-fructose 
corn syrup and other sweeteners, can lead to increased expression of 
glucose transporters GLUT2, further promoting glucose and 
contributing to MASLD progression (6). Conversely, L-glucose (L-Glu); 
a Non-Nutritive Sugars (NNS), is a synthetic stereoisomer of glucose, 
and not metabolized by the body in the same manner as D-Glu (7). Due 
to its unique structure, L-Glu is poorly absorbed in the intestines and 
does not contribute significantly to caloric intake or blood glucose 
levels (7, 8). This raises intriguing questions about NNS potential 
impact on liver metabolism and MASLD as a dietary supplement.

A high-carbohydrate diet can prime the hepatic de-novo 
lipogenesis (DNL) pathway (9). DNL has been suggested to 
be abnormally increased in and contribute to the pathogenesis of 
MASLD (10), a highly prevalent metabolic disease that is linked to the 
development of type 2 diabetes mellitus (T2DM) (11).

One area of interest in MASLD research is dietary sugars’ role in 
the disease’s development and progression. While much attention has 
been given to the impact of natural sugars such as D-Glu, the effects 
of synthetic sugars like L-Glu still need to be explored. Our study aims 
to investigate the metabolic and phenotypic consequences of L-Glu 
supplementation compared to D-Glu in a high-fat diet (HFD) 
mouse model.

Methods

High fat diet animal model

The in vivo experiment was performed according to the 
regulations and guidelines of the National Institutes of Health (NIH) 

and the Hebrew University of Jerusalem under a protocol approved by 
the animal facility at the Hebrew University of Jerusalem with ethic 
number MD-18-154943. Six-week-old C57BL/6 J male mice (n = 60) 
were purchased from Harlan Laboratory, Jerusalem. Mice were placed 
on either a regular diet (RD) of isocaloric low-fat control diet (10% 
kcal energy from fat, 20% protein, and 70% carbohydrates) (Cat. # 
D12450B) or high-fat diet (HFD) (60% kcal energy from fat, 20% 
protein, and 20% carbohydrates) (Cat. # D12492) for 16 weeks. From 
week 8 to week 16, mice were watered with either tap water or 18% 
(w/v) D-Glu or 18% (w/v) L-glucose in RD and HFD mice groups. 
Mice’s initial maternal body weight and weekly weights and total food 
intake were recorded each week during the experiment. By week 16, 
mice were sacrificed, liver and body weights were recorded, and liver 
and serum samples were stored at −80°C until use.

Western blot analysis

Whole liver protein extracts were prepared with RIPA buffer 
(Sigma, Cat# R0278) containing protease and phosphatase inhibitors 
(Roche, 1183617011). Protein concentrations and quantification were 
determined by following the manufacturer’s instructions for the BCA 
protein assay kit (Thermo Fisher Scientific, Cat# 23225). Band 
visualization and quantification were performed on SDS-PVDF 
membranes of 10% Acrylamide gels. Protein of 40 μg was loaded on 
each well. The following are the detected antibodies. Rabbit anti-
Human/Mouse GYS2 (Proteintech, 22371-1-AP), Rabbit anti-Human/
Mouse Glycogen synthase [p Ser641] (Novus bio, NBP2-67315), 
rabbit anti-human/mouse PYGL antibody (Proteintech, 15851-1-AP), 
rabbit anti-human/mouse Glut2 polyclonal antibody (Proteintech, 
20436-1-AP), rabbit anti-human/mouse ADRP/Perilipin 2 Polyclonal 
antibody (Proteintech, 15294-1-AP), rabbit anti-human/mouse Alpha 
Smooth Muscle antibody (Novus, NBP1-30894), mice anti-human/
mouse AKT antibody (R&D, MAB 2055), mice anti-human/mouse 
phospho-AKT antibody (R&D, MAB 887), rabbit anti-human/mouse 
Insulin Receptor-beta antibody (Proteintech, 20433-1-AP), and rabbit 
anti-human/mouse beta Actin polyclonal antibody (Proteintech, 
20536-1-AP).

RNA isolation and cDNA preparation

Total RNA was extracted from 50 to 100 mg of liver samples using 
Trizol (TRI) reagent (Bio-Lab, Cat# 009010233100) in which liver 
sample was homogenized in 1 mL of TRI reagent for 5 min at room 
temperature using Tissuelyser LT (QIAGEN), followed by the 
addition of 0.2 mL chloroform (Bio-Lab, Cat#03080521), tightly 
covered, shacked vigorously for 15 s and allowed to stand for 
2–15 min at room temperature. The mixture was centrifuged at 
12,000 × g for 15 min at 2–8°C. The colorless upper aqueous phase 
(containing RNA) was transferred to a fresh tube, and 0.5 mL of 
2-propanol (Bio Lab, Cat# 16260521) was added, mixed, and allowed 
to stand for 5–10 min at room temperature, then centrifuged at 
12,000 × g for 10 min at 2–8°C. The supernatant was removed, and 

Abbreviations: ADRP, Adipose differentiation-related protein; ALT, Alanine 

aminotransferase; AST, Aspartate aminotransferase; D-Glu, D-Glucose; Glu, 

Glucose; GLUT2, Glucose Transporter 2; HFD, High fat diet; HOMA-IR, Homeostasis 

model assessment of insulin resistance; MDA, Malondialdehyde; MTC, Masson 

trichrome staining; p-AKT, Phosphorylated AKT; RD, Regular diet; αSMA, Alpha-

smooth muscle actin; L-Glu, L-glucose; PYGL, Glycogen phosphorylase L; GYS2, 

Glycogen synthase 2.
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the RNA pellet was washed by adding a minimum of 1 mL of 75% 
ethanol; the sample was vortexed and then centrifuged at 7,500 × g for 
5 min at 2–8°C. The RNA pellet was briefly dried for about 5–10 min 
by air-drying, and then the pellet was re-suspended in RNase-DNase-
free water. RNA was quantified using a Nanodrop machine at the 
central research lab, the Hebrew University of Jerusalem. Samples 
were stored at −80°C until needed. Complementary DNA (cDNA) 
was synthesized from 2 μg of total RNA using a High-Capacity cDNA 
Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems, 
Cat # 4374966) following the manufacturer’s instructions. Samples 
were stored at −20°C until needed. RT-PCR was performed for the 
quantification of the expression of the genes that encoded alpha-
smooth muscle actin (αSMA) (Applied Biosystems, Mm0072512_S1 
Acta2, Lot # 1812381) and Glucose transporter 2 (Glut2) (Applied 
Biosystems, Mm00446229_m1 SLC2a2, Lot # 1790842) compared to 
GAPDH as a housekeeping gene (Applied Biosystems, Mm99999915_
g1, Lot # 1703322) by using a TaqMan™ Fast Advanced Master Mix 
(Applied Biosystems, Cat # 4444964) following the 
manufacturer’s instructions.

Serum biochemistry

Mice cardiac blood samples were collected on the day of sacrifice 
and centrifuged at 5,000 rpm for 15 min at 4°C. Serum ALT (Abcam; 
ab285263, sensitivity: 4 pg/mL), AST (Abcam; ab263882, sensitivity: 
39 pg/mL), and TRG (Abcam; ab65336, sensitivity: > 2 μM) were 
measured using Enzyme-Linked Immunosorbent Assay (ELISA) kits. 
All reagents and samples were brought to room temperature 
(18–25°C) before use. A volume of 100 μL of each standard and 
sample was added to the appropriate wells and incubated for 2.5 h at 
room temperature with gentle shaking. The solution was discarded, 
and the wells were washed four times with 1X wash solution; washing 
was performed by filling each well with wash buffer (300 μL) using a 
multichannel pipette or auto-washer. After washing, the liquid was 
completely removed at each step. A 100 μL of 1× prepared detection 
antibody was added to each well and incubated for 1 h at room 
temperature with gentle shaking. One hundred microliters of a 
prepared streptavidin solution were added to each well and incubated 
for 45 min at room temperature with gentle shaking. A 100 μL of TMB 
One-Step Substrate Reagent (Item H) was added to each well and 
incubated for 30 min at room temperature in the dark with gentle 
shaking. Finally, 50 μL of Stop Solution (Item I) was added to each 
well. The absorbance at 450 nm was immediately read using an ELISA 
reader (Tecan M100 plate reader).

Serum C-peptide levels

The serum C-peptide 2 level was determined by ELISA using Rat/
Mouse C-peptide 2 kit (Merck Millipore, Cat# EZRMCP2-21 K, 
sensitivity: 15 pM).

Serum malondialdehyde assay

The serum MDA level was determined by ELISA using MDA 
assay kit (Abcam, Cat#ab238537).

Homeostasis model assessment

Homeostasis model assessment (HOMA-IR) is a model of the 
relationship between glucose and insulin that predicts fasting steady-
state glucose (mmol/l) and fasting serum C-peptide (nmol/l). The 
product of fasting glucose and fasting C-peptide is an index of hepatic 
insulin resistance. Here, we used a computerized model with a higher 
accuracy, the HOMA 2 calculator,1 to calculate the HOMA-IR score. 
The formula involves the introduction of data regarding glycemia 
(mmol/l or mg/dl), insulinemia (pmol/l or μU/mL), or C-peptide 
(nmol/l or ng/mL), automatically calculating %B, %S, and IR.

Histological assessments of liver injury

One-third of the posterior liver was fixed with 4% formalin for 
24 h at room temperature and then embedded in paraffin in an 
automated tissue processor (HIS-TSQ; MRC). Microtome Sectioning 
Tutorial (7 μm; HIS-2268; MRC) was deparaffinized by immersion in 
xylene. The sections were then rehydrated by passing them through a 
graded alcohol series, starting with absolute alcohol and ending with 
distilled water. H&E staining was used to evaluate steatosis, necro-
inflammatory regions, and apoptotic bodies as mentioned in Table 1. 
Masson’s trichrome (MTC, ab150686, Abcam) was used to visualize 
the connective tissue. A veterinary pathologist assessed all 
histopathological findings and reported assessment grades. To 
quantify the fibrotic area, stained slides were scanned using a Zeiss 
microscope equipped with image analysis software (ImageJ), which 
was used to outline the fibrotic areas within the tissue section.

Statistical analysis

Statistical differences will be analyzed either with the two-tailed 
unpaired Student’s t-test (For comparison between two groups) with 
one-way or two-way ANOVA with Newman–Keuls’ post-tests among 
multiple groups using Graph pad Prism 5.0 (GraphPad Software, La 
Jolla, CA).

Results

Total body weights were reduced in RD-fed 
following D- and L-Glu supplemented and 
were unchanged in HFD-fed mice

D- and L-Glu were supplemented to drinking water starting from 
week 8 of the experiment, as mentioned in the section “Materials and 
methods.” At week 16 (sacrifice date), HFD-fed mice exhibited 
a ~ 32.7% increase in body weight (Figure 1A) compared to RD-fed 
mice. Additional water supplementation of D-Glu to the RD mice 
groups caused a decrease of 13.55% in their total body weight, while 
the L-Glu had reduced body weight by about 20% (p < 0.002). 
HFD-fed mice receiving D- and L-Glu supplementations had 

1  https://www.dtu.ox.ac.uk/homacalculator/download.php
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TABLE 1  H&E assessment parameters.

Item Definition Score/Grade

Steatosis grade Lower to medium evaluation of parenchymal involvement by steatosis

<5% 0

5–33% 1

>33–66% 2

>66% 3

Location Predominant distribution pattern

Zone3 0

Zone1 1

Azonal 2

Panacinar 3

Fibrosis stage None 0

Persinusoidal or periportal 1

Mild, Zone3, persinusoidal 1A

Moderate, Zone3, persinusoidal 1B

Portal/ periportal 1C

Persinusoidal and Portal/ periportal 2

Bridging fibrosis 3

Cirrhosis 4

Inflammation

Lobular inflammation Overall assessment of all inflammatory foci

No foci 0

<2 foci per 200X field 1

2–4 foci per 200X field 2

>4 foci per 200X field 3

Microgranulomas Small aggregates of macrophages

Absent 0

Present 1

Large lipogranulomas Usually in portal areas or adjacent to central veins

Absent 0

Present 1

Portal inflammation Assessed from low magnification

None to minimal 0

Greater than minimal 1

Liver cell injury

Ballooning None 0

Few balloons’ cells 1

Many cells/prominent ballooning 2

Acidophil bodies None to rare 0

Many 1

Pigmented macrophages None to rare 0

Many 1

Megamitochondria None to rare 0

Many 1
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comparable body weight to the untreated counterparts (P = ns). 
Figure 1B shows kinetic changes in body weight from week 1 to week 
16. In the RD-fed mice group, a reduction in body weight was noticed 
at week nine following supplementations of L-Glu; this was considered 
an early effect. However, a reduction in body weight was observed at 
week 13 in the RD-fed mice following supplementations of D-Glu 
(late effect) (Figure 1B).

L-Glu caused increased water consumption 
and total calories in HFD-fed mice

To address changes in body weight observed in the RD-fed mice, 
we calculated total food consumption and diet calories obtained from 
consumed food and glucose supplementation in drinking water. The 
total amount of consumed diet and water intake was measured weekly. 
In addition, total food consumption was calculated before and 
following supplementations with glucose. Figure  2A summarizes 
averages of total food consumed calculated by grams before glucose 
supplementation (week 0 to week 8). Results show no differences in 
total food consumption between RD and HFD-fed mice groups. In 
parallel, HFD-fed mice display more calorie intake (1.6-fold; 
p < 0.001) as compared to RD-fed mice (Figure 2B). We also assessed 
total food consumption and calculated diet calorie intake following 
glucose supplementation from week 8 to week 16. Figure 2C shows 
similar food consumption patterns between mice fed with RD 
compared to HFD (P = ns). Both mice groups receiving the D- and 
L-Glu supplementations caused a reduction in total food intake to 
1.03-fold in all mice groups (p < 0.001). These reductions were 
accompanied by reduced diet calorie intake in RD and HFD-fed mice 
(Figure  2D). Although RD and HFD-fed mice with no glucose 
supplementations had comparable food intake, the HFD-fed mice 
showed high (1.56-fold) total calorie intake. The results also 
demonstrate that the HFD-fed mice might not need to increase their 

eating habit because of the high-calorie intake. Consumed water 
glucose supplementations were also included to better calculate total 
diet calories. Table 2 shows the amounts of drinking water consumed 
and glucose supplementations in mice groups in ml volume/week. 
Figure 2E shows the total calorie intake obtained from water. Results 
showed an increase in calculated calories from water consumption in 
mice fed with HFD compared to the RD ones, while RD-fed mice 
showed similar water intake and water calories. These data were 
comparable to the expected increase in water consumption observed 
in Table 3 and showed significant effects in favor of L-Glu in the 
HFD-fed mice. Figure  2F represents a summary of total calories 
calculated following food and water consumption in all mice groups. 
Data indicate reduced total calories in mice fed with RD receiving the 
D- and L-Glu supplementations in consistent with their reduced total 
food consumptions (Figure  2B) and same water intake (Table  3), 
which might explain the reductions in their body weight summarized 
in Figure  1B and may suggest fluctuations in their diet behavior 
resulted in loss of appetite. Moreover, the same calorie intake between 
mice groups HFD-fed mice with or without the Glu supplementations 
may explain their sustained body weight, as seen in Figure 1B.

Our results indicated a reduction in food intake in the HFD-fed 
mice received Glu supplementations, however, high-calorie intake was 
apparent in mice with the L-Glu supplementation, which drank more 
water and substituted the reduced calories obtained from food, 
indicating the significant effects of sweeteners in contributing to total 
calorie gain.

FIGURE 1

Changes in body weight following glucose supplementation. (A) Body weight measurements in grams (g) following D- and L-Glu supplementations in 
RD and HFD-fed mice groups at week 16. (B) Changes in body weight kinetics through 1-week interval readings for 16 weeks. Paired and unpaired 
Student’s t-test and ANOVA were used for statistically significant differences. p value was compared between RD and HFD control groups or within RD 
or HFD groups. *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2  Daily consumed water in ml/week.

Daily drink 
volume (mL/
week)

NT D-Glu L-Glu

RD 5 5 5

HFD 9 10 11
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TABLE 3  NAS activity score.

RD RD + D-Glu RD + L-Glu HFD HFD + D-Glu HFD + L-Glu

Hepatic ballooning 0 0 0 2 1 0

Lobular 

inflammation (LI)

0 0 0 1 0 0

Steatosis (S) 0 0 0 3 (63%) 3 (74%) 3 (85%)

NAS scoring 0 0 0 6 4 3

HFD-fed mice developed larger livers while 
significantly reduced following D- and 
L-Glu supplementations

To further characterize our HFD-fed mice model, livers were 
obtained from all mice groups and weighed. HFD-fed mice with no 
D- and L-Glu supplementations developed larger livers (Figure 3A) 
and were significantly heavier than the RD-fed mice by 2.17-fold 

increase. Liver weights in RD-fed mice showed no changes following 
the D- and L-Glu supplementations, while fewer liver weights were 
significantly noticed in the HFD-fed mice group of about 18.2 and 
18.1% following the D- and L-Glu supplementations, respectively. The 
same pattern of data was obtained concerning liver to body weight 
ratio (Figure  3B). Our data indicate that both D- and L-Glu 
supplementations had comparable results in achieving lower liver 
weights in HFD-fed mice.

FIGURE 2

Calculated calories from consumed food and glucose supplementation in drinking water. (A) Total food consumption in g/8 weeks from week 0 to 
week 8 (B) Food caloric intakes in Kcal from week 0 to week 8 (C) Total food consumption in g/8 weeks from week 8 to week 16. (D) Food caloric 
intakes/8 weeks in Kcal from week 8 to week 16. (E) Total water caloric intakes in Kcal from week 8 to week 16. (F) Total-food and water-caloric 
intakes/8 weeks in Kcal from week 8 to week 16. Paired and unpaired Student’s t-test and ANOVA were used for statistically significant differences. p 
value was compared between RD and HFD control groups or within RD or HFD groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Characterization of inflammatory profile in 
mice fed with RD and HFD following sugar 
supplementations

To better understand alterations in histopathological findings, 
livers were assessed for inflammation and steatosis by H&E and for 
histological visualization of collagenous connective tissue fibers by 
Masson’s trichrome (MTC) staining. In Figure 4A, no histopathological 
finding was observed on liver tissues obtained from the RD-fed mice. 
In contrast, microscopic examination of H&E tissue slides revealed 
higher hepatocyte lipid droplet accumulation in the livers of HFD-fed 
mice of steatosis grade of 3 with panacinar location and micro-
vesicular steatosis (Figure  4D). In addition, livers showed portal 
inflammation greater than minimal, prominent ballooning, many 
acidophil bodies, and many mega-mitochondria. D- and L-Glu 
supplementations did not affect histopathology on livers obtained 
from mice fed with RD (Figures 4B, C). In parallel, D- and L-Glu 
supplementations showed increased hepatocyte ballooning 
(Figure  4E) and steatosis (Figure  4F). Table  3 summarizes the 
differences in MASLD activity score (NAS) between and among the 
experimental groups. Data indicate steatosis sub-grading scores in the 
liver of HFD-fed mice receiving the D-Glu of 74% and L-Glu of 85% 
compared to 63% in untreated mice. The increase in steatosis grading 
is well noticed following the L-Glu supplementation in 
Figure 4F. Biochemical marker outcomes of ALT and AST serum 
levels were evaluated. Figure 4G shows ALT, and Figure 4H shows 
AST serum levels with no significant changes in their levels in the 
mice groups fed with RD following the D- and L-Glu supplementations; 
results were consistent with the H&E staining. In parallel, both D- and 
L-Glu supplementations caused a significant reduction in ALT and 
AST serum levels comparable with the H&E assessments. These data 
suggest that propagation in liver injury following the L-Glu 

supplementation in HFD-fed mice resulted in more steatosis and 
reduced hepatocyte ballooning, which might, in part, indicate 
accelerated de-novo lipogenesis and, therefore, accumulated lipids in 
the liver. In addition, reduced ALT/AST serum levels could indicate a 
chronic liver injury and highlight the issue of the fast uptake rhythm 
of L-Glu inside the cells, which needs further and future study to 
confirm this phenomenon.

Characterization of liver fibrosis profile in 
RD and HFD-fed mice following sugar 
supplementations

Discrepancies in inflammatory profile severities in HFD-fed 
mice drinking Glu could highlight a more advanced state of liver 
fibrosis because of Glu supplementation’s continuous (prolonged) 
insults in drinking water. For this purpose, we aimed to stain liver 
fibrosis using MTC staining for histological visualization of 
collagenous connective tissue fibers in liver sections. In Figure 5A, 
no liver fibrosis was observed in RD-fed mice; in contrast, the 
HFD-fed mice group (Figure 5D) showed high intensities of MTC 
staining. D- and L-Glu supplementations in RD-fed mice caused 
more stained tissues with MTC (Figures 5B,C) in favor of the L-Glu 
group. Data indicate accelerated fibrogenesis in the mice fed with 
RD mice following D- and L-Glu supplementations. No difference 
in liver fibrosis visualization was noticed in the HFD-fed mice 
group following the D- and L-Glu supplementations (Figures 5E,F); 
however, accumulation of lipid droplets could be  observed as 
presented in Figures 5E,F. We next quantitate liver αSMA (fibrosis 
marker) using the western blot analysis [Figure  5G, 
Supplementary Figure  1 (original gels)] and by the RT-PCR 
(Supplementary Figure 2). Figure 5G shows significant elevations 

FIGURE 3

Changes in liver weight. (A) The whole mouse’s liver was weighed in week 16, and (B) liver to body weight ratio was calculated. Our data indicate that 
both D- and L-Glu supplementations had; data are presented in grams (g). Paired and unpaired Student’s t-test and ANOVA were used for statistically 
significant differences. The p value was compared between the RD and HFD control groups or within the RD or HFD groups. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.
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FIGURE 4

Inflammatory profile assessment: Representative sections of immunohistochemically liver staining with H&E (original magnification 10×) are shown 
(A–F), scale 200 μM. Liver injury markers of (G) serum ALT and (H) serum AST were assessed. Paired and unpaired Student’s t-test and ANOVA were 
used for statistically significant differences. p value was compared between RD and HFD control groups or within RD or HFD groups. **p < 0.01; 
***p < 0.001; ****p < 0.0001.

in αSMA in the HFD-fed mice (16.4-fold increase; p = 0.00005) 
compared to RD-fed mice. Both D- and L-Glu supplementations 
significantly induced 2.5-fold and 6.5-fold elevations in αSMA, 
respectively. In the HFD-fed mice group, both D- and L-Glu 
supplementations repress αSMA to nearly 1.5-fold compared to the 
untreated group (p = 0.002). These results were also confirmed 
using the RT-PCR with the same achieved patterns 
(Supplementary Figure 2). The data obtained from the HFD-fed 
mice could suggest (1) amelioration in liver fibrosis or (2) severe 
disruption in liver histology leading to clearance of fibrosis in liver 
sections. Therefore, several experiments were conducted to clarify 
the effects of glucose on regulating liver injury profiles.

Reduce hepatic ADPR expression in the 
HFD-fed mice receiving the D-and L-Glu 
supplementations, indicating less hepatic 
lipid uptake

The overall data indicates several clinical outcomes from 
glucose supplementations in the RD and HFD-fed mice groups. 
While D- and L-Glu supplementations showed a pro-fibrotic effect 
in the RD-fed mice model, both supplementations caused a 
reduction in inflammatory as well as fibrotic markers in their 
HFD-fed counterparts. These data were accompanied by reduced 
liver weights in the HFD-fed mice model. Therefore, we next asked 
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whether the decrease in liver weight observed in the HFD-fed mice 
following glucose supplementation could result from less 
accumulation in fat deposits. For this purpose, we  evaluated 
expressions of adipose differentiation-related protein (ADRP), 
which facilitates the uptake of long-chain fatty acids and the 
formation of lipid droplets in lipid-accumulating cells in 
hepatocytes (12). It has been shown that decreased expression of 
ADRP decreases the fatty liver while increasing its expression is 
associated with several metabolic diseases like type 2 diabetes, 
insulin resistance, and heart diseases. Figure 6A (Supplementary  
Figure  1, original gels) shows elevated ADRP expressions in 
HFD-fed mice (6.8-fold, p = 0.003). Supplementation of D- and 
L-Glu to the RD-fed mice caused elevated expressions of ADRP, 

which may indicate higher fat uptake and an active lipogenesis 
process. In contrast, D- and L-Glu supplementations to the 
HFD-fed mice caused a significant reduction in ADRP expressions 
to 1.3 and 2.8-fold, respectively. While these results could suggest 
less lipid uptake in the HFD-fed mice, we hypothesized that lipids 
could accumulate outside the livers. For this reason, serum 
triglycerides were evaluated. Figure 6B shows serum TG elevated in 
the HFD-fed mice at 1.2 mmol/L compared to 1.06 mmol/L in the 
RD-fed mice (p < 0.05). These results indicate more lipid uptake 
and accumulation in the HFD-fed mice. Following the Glu 
supplementations, the same high lipid uptake and accumulation 
patterns were obtained in the RD-fed mice (1.15 mmol/L in the 
D-Glu and 1.34 mmol/L in the L-Glu).

FIGURE 5

Fibrotic profile assessment: Representative sections of immunohistochemically liver staining with trichrome stain (original magnification 100×) are 
shown (A–F). Liver fibrosis markers of hepatic αSMA expressions were assessed by (G) western blot analysis. For western blot analysis, results are 
presented as the ratio of αSMA to the housekeeping protein (β-actin). Paired and unpaired Student’s t-test and ANOVA were used for statistically 
significant differences. p value was compared between RD and HFD control groups or within RD or HFD groups. **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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FIGURE 6

Lipid profile assessment: (A) Adipose differentiation related-protein (ADRP) was assessed by western blot analysis, and data were represented by the 
ratio of ADRP to the housekeeping protein (β-actin). (B) Serum triglyceride (TG mmol/L) levels were assessed. Paired and unpaired Student’s t-test and 
ANOVA were used for statistically significant differences. The p value was compared between the RD and HFD control groups or within the RD or HFD 
groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

In the HFD-fed mice, further elevations in serum TG were 
observed only following the D-Glu (1.6 mmol/L; p = 0.0003), however 
were reduced following the L-Glu supplementations to 1.2 mmol/L; 
p = 0.0003. The results obtained so far could indicate the following: 
1-In the RD-fed mice group, serum levels of TG following glucose 
supplementations were elevated, together with an increase in their 
hepatic uptake, indicating normal hemostasis of lipid trafficking 
(efflux) and the liver’s ability to deal with additional sugar intake (later 
converted to fat; known as de-novo lipogenesis (DNL)). 2-Reduced 
hepatic ADPR expressions were noticed in the HFD-fed mice group 
receiving the D-Glu, which was in line with its accumulation in the 
blood, indicating less hepatic lipid uptake. 3- Although hepatic ADRP 
expressions were also reduced in the HFD-fed mice group receiving 
the L-Glu, a significant decrease in serum TG levels was noticed, 
suggesting less accumulation of lipids in the blood and raising the 
issue of lipid accumulation in other organs or/and increase in 
clearance of lipid through lipid peroxidation as a result diffusion of 
lipids. The above data speculates that reduced fat storage in HFD-fed 
mice could partly explain the reduced liver weight observed in the 
HFD-fed mice following the glucose supplementations.

Glucose induces lipid peroxidation in both 
RD and the HFD-fed mice

To explain the less lipid uptake and less serum TG in the HFD-fed 
mice receiving the L-Glu, we  assessed lipid peroxidation, hepatic 
glucose transporter expression, and insulin serum levels. We have 
checked for malondialdehyde (MDA), a product of oxidative 
degradation of lipids. Several studies showed oxidative stress to 
be  implicated in the pathogenesis of type 2 diabetes and its 
complications. Metabolic disturbances contribute to oxidative stress 
and compromise the antioxidant defense system in type 2 diabetes 
patients (13). Figure 7 shows high serum MDA levels in HFD-fed 
mice compared to the RD-fed mice (1.7-fold, p < 0.0001). In the 

RD-fed mice, D- and L-Glu caused significant elevation in serum 
MDA to 1.14 and 1.21 –folds, respectively (p < 0.0001). The same 
patterns were obtained in the HFD-fed mice, showing further elevated 
serum MDA levels following the glucose supplementations 
(p < 0.0001). These data suggested the direct effects of glucose on 
accelerating lipid peroxidation in both RD and HFD-fed mice, which 
was in favor of the latter. The high extent of lipid peroxidation in 
HFD-fed mice could result from inhibited expressions of ARDP. In 
the RD-fed mice, it could be suggested due to the increase in de-novo 
lipogenesis (RD contains a high-carbohydrate diet).

Decreased in Glut2 transporter in HFD-fed 
mice

To further assess the metabolic assessments of glucose on lipid 
peroxidation, we  evaluate fasting blood sugar (FBS) in our mice 
model. In hepatocytes, glucose can be stored as glycogen, degraded 
through the glycolytic pathway, or converted to fatty acids by the 
lipogenic pathway. The release of glucose in circulation follows the 
degradation of glycogen or gluconeogenesis. Glucose also modifies 
cellular metabolism by allosteric and transcriptional regulation. 
HFD-fed mice showed high FBS levels (19.2 mmol/L) compared to 
the RD-fed mice (13.1 mmol/L; p = 0.001, Figure 8A). While D-Glu 
had no significant effects on FBS in the RD-fed mice, L-Glu 
significantly elevated FBS to 1.1–fold (p = 0.02). D- and L-Glu 
supplementations increased FBS in the HFD-fed groups to 1.2-fold in 
both groups (p = 0.01). These results indicate that glucose 
supplementation and high FBS insults could contribute to lipid 
peroxidation, as shown in Figure 7. Hyperglycemia obtained in our 
HFD-fed mice following glucose supplementations could indicate less 
hepatic glucose uptake and point to modulation in hepatic glucose 
transporter in these mice. GLUT2 is the major glucose transporter of 
hepatocytes in rodents and humans (44) The generally accepted role 
of this transporter is to take up glucose during the absorptive phase 
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and to release it in the blood during fasting (14). We evaluated hepatic 
GLUT2 expressions by the western blot and RT-PCR methods. 
Figure  8B (Supplementary Figure  1, original gels) indicates high 
expressions of GLUT2 in the HFD-fed mice compared to the RD-fed 
mice (1.2-fold, p = 0.001). D- and L-Glu supplementations, while 
inducing elevated expressions of GLUT2 in the RD-fed mice, 
significantly inhibited GLUT2 expressions in the HFD-fed mice 
groups (p < 0.01). The RT-PCR analysis achieved the same pattern of 
results (Figure  8C). Our results indicate that adding sugar to the 
existing high-carbohydrate diet (70% Kcal) in the RD-fed mice 
stimulates GLUT2 expression. HFD-fed mice [weaning on a high-
carbohydrate diet (20% Kcal)], while having elevated GLUT2 
expressions, most probably to uptake more glucose, were unexpectedly 
shown to be inhibited when the HFD-fed mice were combined with 
additional sugar supplementations.

Hyperinsulinemia in HFD-fed mice is 
correlated with elevated serum glucose

Although the carbohydrate content in the HFD-fed mice, even 
with the addition of sugar supplementations, did not reach the RD 
content with no expected elevation in the GLUT2, this could point to 
an inhibitory pathway that led to GLUT2 downregulation. In this 
aspect, we sought to evaluate whether insulin could induce reductions 
in GLUT2. Hepatic GLUT2 is not pathologically involved in states of 
glucose intolerance. Therefore, serum insulin C-peptide levels were 
evaluated as a marker of insulin production rate and hepatic insulin 
receptors (15). Figure 8D shows a significantly higher serum insulin 
C-peptide level in the HFD-fed mice compared to the RD-fed mice 
1.6-fold (p < 0.001). In the RD-fed mice, D- and L-Glu 
supplementations induce a reduction in serum insulin C-peptide, 
reflecting a state of hypo-insulinemia. These results were associated 
with elevations in the hepatic insulin receptor [Figure  8E, 
Supplementary Figure 1 (original gels)] to 1.67-fold and 1.2-fold in 
the D- and L-Glu supplemented groups, respectively (p < 0.05). This 

data, together with the elevation in the GLUT2 observed in 
Figures 8B,C, suggests normal glucose hemostasis due to the normal 
response of the liver to elevated concentrations of sugar and are in less 
need of insulin interference. In contrast, in the HFD-fed mice, further 
increases in the serum insulin C-peptide levels (Hyperinsulinemia) 
were observed following glucose supplementation accompanied by a 
reduction in the expression of hepatic insulin receptor (Figure 8E) and 
inhibited GLUT2 seen in Figures 8B,C suggested a state of insulin 
resistance. Figure 8F summarizes HOMA–IR score as summarized in 
the section “Materials and methods.” HFD-fed groups receiving the 
D- and L-Glu supplementations showed high HOMA-IR to 1.3-fold 
and 3.4-fold, respectively (p < 0.001).

Glucose flux balance in HFD-fed mice with 
Glu supplementation

To evaluate whether changes observed in the metabolic profile 
alter glucose flux and, as a consequence, may affect hepatocytes 
viability, we assessed the enzymes necessary for glucose storage (GYS2; 
a Glycogen synthase is a key enzyme in glycogenesis, the conversion 
of glucose into glycogen) as well as for glycogen degradation (PYGL; 
a liver glycogen phosphorylase, catalyzes the phosphorolysis of an α-1, 
4-glycosidic bond in glycogen to yield glucose 1-phosphate; glycogen 
degradation) (16). Moreover, cell survival and metabolism (p-Akt) 
pathways were evaluated. Figure 9A (Supplementary Figure 1, original 
gels) shows the ratio of p-GYS2/PYGL assessed by the western blot 
analysis. Figure 9A indicates that RD-fed mice receiving the D-Glu 
had a similar ratio to the untreated mice, suggesting the balance of 
glucose storage and glucose degradation and demonstrate normal 
glucose hemostasis. In contrast, RD-fed mice receiving the L-Glu had 
reduced glycogen degradation in favor of glucose storage, indicating 
high glucose flux [high L-Glu uptake (increase in GLUT R)]. In 
parallel, both D-and L-Glu supplementations caused an increased 
glycogen degradation in the HFD-fed mice group (represented as a 
low p-GYS2/PYGL ratio); results may indicate the demand of the cells 
to maintain normal levels of the intracellular glucose and suggest less 
glucose uptake into the cell. These results also align with the high 
HOMA scores in these two groups. We next evaluated p-Akt as it is 
being suggested as a mediator for insulin activity (17). p-Akt 
disturbance, on the other hand, may cause insulin resistance (17). 
Therefore, we quantitated p-Akt expression in livers obtained from our 
mice model. Figure 9B (Supplementary Figure 1, original gels) shows 
elevated expressions of hepatic p-Akt following the D- and L-Glu 
supplementations in the RD-fed mice. D- and L-Glu supplementations 
in the HFD-fed mice caused no changes in the liver p-Akt expressions, 
indicating less responsiveness of the cells to the metabolic stimulation 
needed for cell survival and viability. The above results may conclude 
that the livers of HFD-fed mice receiving an extra diet of sugars may 
affect cell phenotype viability through inhibited p-Akt expressions. 
Indeed, insulin has been suggested to activate GYS2 through p-Akt 
(17) and in insulin resistance state, this process could be diminished.

Discussion

Overconsumption of diet rich in fat and sugar-sweetened 
beverages are risk factors for developing obesity, insulin resistance and 

FIGURE 7

Serum lipid peroxidation: Malondialdehyde (MDA) was used as a 
marker of lipid peroxidation. Results show serum MDA levels as 
evaluated by ELISA. Paired and unpaired Student’s t-test and ANOVA 
were used for statistically significant differences. p value was 
compared between RD and HFD control groups or within RD or HFD 
groups. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 8

Metabolic profile assessment: (A) Fasting blood sugar (FBS) was assessed as indicated in materials and methods. GLUT2 expressions were quantitated 
by (B) western blot and (C) RT-PCR methods. (D) Serum insulin C-peptide measured by ELISA. (E) Hepatic expression of inulin receptor (IR) was 
evaluated from liver sections by western blot (F) HOMA2 calculator calculated HOMA-IR. Paired and unpaired Student’s t-test and ANOVA were used 
for statistically significant differences. p value was compared between RD and HFD control groups or within RD or HFD groups. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.

fatty liver disease (18). Some epidemiological studies have shown that 
artificial sweeteners are beneficial for weight loss and for those who 
suffer from glucose intolerance and type 2 diabetes mellitus (19). 
However, accumulating evidence in recent years suggests that artificial 
sweetener consumption could perturb human metabolism, especially 
glucose regulation (20, 21). Artificial sweeteners have been found to 
cause glucose intolerance and induce metabolic syndrome and are 
associated with higher body weight gain (21). These findings suggest 
that artificial sweeteners may increase the risk of obesity. However, the 
specific mechanism through which artificial sweeteners dysregulate 
the host metabolism remains elusive.

Artificial sweeteners are marketed as a healthy alternative to sugar 
and as a tool for weight loss, however, the evidence that they are 
helpful over a longer period is limited (20). By dissociating sweetness 
from calories, NNS could interfere with physiological responses that 
control homeostasis (20). Second, by changing the intestinal 
environment, NNS could affect microbiota and in turn trigger 
inflammatory processes that are associated with metabolic disorders 

(20). Third, by interacting with novel sweet-taste receptors discovered 
in the gut, NNS could affect glucose absorptive capacity and glucose 
homeostasis (20). Up to date, five NNS (acesulfame potassium, 
aspartame, neotame, saccharin, and sucralose) are approved by the US 
food and drug administration (FDA) (20). For instance, Acesulfame 
potassium (Ace-K), an artificial sweetener, is found to be 200 times 
sweeter than sucrose (common sugar), present in used soft drinks, 
drink mixes, frozen desserts, baked goods, candy, gum, and tabletop 
sweeteners, and in athlete’s protein shake. Although it is considered 
safe by the FDA, still there are debates about their long-term use and 
doses (22). Indeed, data suggests that the intended effects of artificial 
sweeteners do not correlate with what is seen in clinical practice (22).

From this concept, we aimed to study effects of L-Glu (artificial 
synthesized sugar) intake on animal model of HFD-fed mice. This 
hypothesis is derived from the idea that obese patients could use 
artificial sweeteners in an attempt to control their weight and maintain 
a diet with low calorie. No previous studies were conducted to assess 
differences in D- and L-Glu intake in patients with obesity and/or with 
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MASLD. For this reason, we adapted the mice model of HFD-fed mice 
to study effects of D- and L-Glu supplementations on glucose and lipid 
homeostasis. Moreover, liver profile was also assessed following 
glucose supplementations.

Our research has concluded some evidence on how glucose 
supplementations could alter health and disease outcome status. 
Pre-existing insulin resistance in HFD-fed mice with additional sugar 
intake caused them to develop a more severe HOMA-IR score 
(hyperglycemia and hyperinsulinemia), consistent with elevated 
serum triglyceride levels. Surprisingly, L-Glu induced a more severe 
HOMA-IR score than D-Glu. Moreover, the hepatic expression of 
ADRP was suppressed in the mice group receiving the L-Glu, 
indicating less formation of lipid droplets in lipid-accumulating cells 
in hepatocytes. This data indicates that the lipid content in the cells 
regulates ADRP, and its inhibitions are attributed to a preexisting 
increase in lipid accumulation in the liver. These results were 
compatible with increased lipid peroxidation following L-Glu intake. 
Studies showed that fructose-sweetened beverages consumed by 
human subjects for several weeks resulted in increased hepatic 
lipogenesis, accumulation of intra-abdominal fat, production of 
atherogenic lipids, and a marked reduction in insulin sensitivity 
compared with an isocaloric consumption of glucose (9). The overload 
of fatty acids and lipid accumulation in MASLD may mechanistically 
inhibit the synthesis of de-novo fatty acids. Subsequently, the lipid 
oxidation pathways dominate and induce the net results of lipid 
clearance (23). An increase in lipid peroxidation following L-Glu 
supplementation could partly explain reduced liver weights obtained 
in HFD-fed mice (Figure 3).

Glucose induces oxidative stress and contributes to the 
inflammatory pathways associated with diabetes and atherosclerosis 
pathophysiology (24). Specifically, oxidative stress contributes to 
insulin resistance through an “oxidative-inflammatory cascade (OIC).” 
Glucose, obesity, and oxidative stress reduce intracellular antioxidant 

defense mechanisms while activating inflammatory responses from 
transcription factors and kinases, such as c-Jun N-terminal kinase 
(JNK), protein kinase C (PKC), and inhibitor of kappa B kinase-β 
(IKKβ) (25). Moreover, some inflammatory pathways, such as 
activation of IKKβ, have a causative role in the harmful effects of high 
glucose on endothelial cell function (26).

Non-Nutritive Sugars has been shown to play a role in the pathways 
regulating glucose absorption from the intestinal lumen into 
enterocytes in the gut (27). Data obtained in rodents suggest that 
intestinal sweet taste receptors control both active glucose absorption 
by modulating expression of sodium-dependent glucose transporter 
isoform 1 (SGLT) and passive glucose absorption by modulating apical 
GLUT2 insertion to the intestine (27). No available data on NNS effects 
on hepatic GLUT2 expressions were studied previously. GLUT2 is the 
major glucose transporter of hepatocytes in rodents and humans. The 
generally accepted role of this transporter is to take up glucose during 
the absorptive phase and release it in the blood during fasting. Hepatic 
expression on the role of GLUT2 in HFD-fed mice and its modulatory 
signaling pathway is not well understood. Our data showed elevated 
hepatic expressions of GLUT2  in HFD-fed mice compared to the 
RD-fed mice. While D- and L-Glu supplementations induced elevated 
expressions of GLUT2 in the RD mice, they significantly inhibited 
GLUT2 expressions in the HFD-fed mice. Our results indicate that 
additional sugar supplementations to the existing high carbohydrate 
diet (70% Kcal) in the RD mice stimulate GLUT2 expression. HFD-fed 
mice weaned on a high carbohydrate diet (20% Kcal) while having 
elevated GLUT2 expressions, most probably in an attempt to uptake 
more glucose, have shown to be  unexpectedly inhibited when the 
HFD-fed was combined with additional sugar supplements. Although 
total sugar content in the HFD-fed mice was less than their RD-fed 
counterparts, even though they were supplemented with sugar, this did 
not induce the expected elevation in the GLUT2 and pointed to 
inhibitory pathways leading to GLUT2 downregulation (elevated 

FIGURE 9

Glucose flux balance regulation and hepatic survival: (A) phosphor-glycogen synthase (p-GYS2) to Glycogen degradation (PYGL) ratio was assessed by 
western blot. A decrease in the ratio indicates a decrease in glycogen degradation. (B) Hepatic phosphorylated Akt was quantitated through western 
blot analysis. Paired and unpaired Student’s t-test and ANOVA were used for statistically significant differences. The p value was compared between the 
RD and HFD control groups or within the RD or HFD groups. *p < 0.05; ***p < 0.001; ****p < 0.0001.
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insulin). Activation of Akt is the integral result of multiple inputs to 
regulate hepatic glucose and lipid metabolism. Indeed, studies have 
shown that insulin regulates GLUT2 expression through 
phosphorylation of Akt (28). A survey by Rathinam et  al. (29); 
concludes a possible link between Akt activation and GLUT2 synthesis 
and translocation. In obesity, insulin resistance increases GLUT2 levels, 
which may further exacerbate metabolic dysfunction in 
MASLD. However, excess glucose led to internalized GLUT-2 and the 
insulin receptor together into endosomes in response to insulin (30).

Our data showed a lack of hepatic insulin receptors and GLUT2 in 
the glucose-supplemented HFD-fed mice, associated with HOMA-IR 
scores and low p-Akt signaling pathways. A significant association was 
demonstrated between NNS consumption and obesity in a meta-analysis 
conducted by Ruanpeng et  al. (8). According to a review study by 
Pearlman et  al. (31) in both animal models and humans, NNS may 
change the host microbiome, leading to decreased satiety, alteration in 
glucose homeostasis, increased calorie intake, weight gain, and metabolic 
syndrome. There is no clear evidence of the direct link between NNS and 
liver injury. Most studies focused on NNS’s potential role in microbiota 
alteration and dysbiosis and consequently contribute to the progression 
of MASLD. Dietary factors and increased plasma fatty acid levels may 
be due to increased triglyceride synthesis, lipolysis, and DNL in the liver, 
which induce liver injury and fibrosis (32). It has been shown that hepatic 
steatosis is correlated with the progression of fibrosis (33). Although the 
mechanism is not fully understood, lipotoxicity induced by severe macro-
vesicular steatosis may result in chronic inflammation and oxidative 
stress, leading to the activation of hepatic stellate cells (34). A high-
carbohydrate diet can prime the DNL pathway with a large substrate load 
and increase rates of DNL importantly this leads to an accumulation of 
DNL products, fatty acyl chains linked to coenzyme A, which can 
be incorporated into a plethora of lipid species (9). These lipids may then 
have further metabolic functions, which may be deleterious in cases of 
elevated DNL.

Our data indicate the development of liver fibrosis in mice fed 
with RD (High carbohydrate diet) with additional sugar 
supplementations, underlining a state of increased rate of DNL, which 
could partly explain liver fibrosis. In contrast, HFD-fed mice (already 
with a pre-existing high lipid profile) supplemented with additional 
sugar intake showed less progression of hepatic fibrosis, most probable 
because of reduced de-novo fatty acids synthesis. Subsequently, the 
lipid oxidation pathways become dominant and induce the net results 
of lipid clearance.

Conclusion

Individuals widely use non-nutritive sweeteners (NNS) in 
attempts to lower their overall daily caloric intake, lose weight, and 
sustain a healthy diet. In our current study, we showed evidence in 
linking NNS and their implications on the development of 
metabolic syndrome. The study has suggested that NNS may 
contribute to the development or worsening of metabolic diseases, 
including metabolic syndrome, obesity associated with elevated 
oxidative stress and development of insulin resistance in particularly 
in mice receiving the HFD with pre-existing high calorie intake and 
high food consumption.
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