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Editorial on the Research Topic

Machine learning and deep learning applications in pathogenic
microbiome research
Artificial intelligence has established a solid basis for deep learning (DL), especially with

the introduction of the Transformer architecture, which has gained much attention from

researchers in multiple disciplines. Machine learning (ML) and DL, branches of artificial

intelligence, have increasingly transformed research in various fields. One area notably

impacted is microbiology (Obermeyer and Emanuel, 2016). In particular, the complexity

and diversity of microbiomes and infectious diseases make them ideal candidates for novel

ML and DL techniques.

In this Research Topic, titled “Machine Learning and Deep Learning Applications in

Pathogenic Microbiome Research”, we have gathered a collection of 11 manuscripts that

embody the application of ML and DL in the research field of pathogenic microbiomes.

These collected manuscripts are mostly original articles that provide an understanding of

how ML and DL can be used to further insights into research on pathogenic microbiomes.

Currently, ML is widely used in the development of predictive models (Collins and Moon,

2019). By integrating ML or DL approaches with predictive models, the manuscripts in this

Research Topic highlight the importance of interdisciplinary integration in understanding

diseases associated with pathogenic microbiomes and promoting better health and the well-

being of both humans and ecosystems.

In this Research Topic, Shao et al. dive into the complex interactions between

pathogenic microorganisms and various orthopedic conditions in the mini-review

“Exploring the impact of pathogenic microbiome in orthopedic diseases: machine learning

and deep learning approaches”. By analyzing datasets on microbiota and the interactions

with the host, they highlight how ML and DL can enhance the understanding, diagnosis,

and treatment of diseases such as osteoporosis and arthritis.
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Gut microbiota impact human health and disease (Lynch and

Pedersen, 2016). By utilizing ML and DL, relationships between

microbiota and diseases can be established and understood,

enhancing overall health and contributing to the management of

diseases. In their manuscript entitled “Gut microbiota landscape

and potential biomarker identification in female patients with

systemic lupus erythematosus using machine learning”, Song et al.

explore the relationship between gut microbiota and the

autoimmune disease systemic lupus erythematosus (SLE) and aim

to identify biomarkers for SLE by analyzing the gut microbiota in

female patients using machine learning techniques. The article “Gut

microbiome-based noninvasive diagnostic model to predict acute

coronary syndromes” presents a study by Wang et al. on the

potential of using a gut microbiome profile as a noninvasive

diagnostic tool for acute coronary syndromes. “Construction and

validation of a machine learning model for the diagnosis of juvenile

idiopathic arthritis based on fecal microbiota”, by Tu et al., discusses

the use of fecal microbiome profiling in developing a diagnostic tool

for juvenile idiopathic arthritis, leading to development of the

XGBoost model.

Chronic diseases are also closely linked to gut microbiota. The

article by Wang et al., “The effect and mechanism of Fushen Granule

on gut microbiome in the prevention and treatment of chronic renal

failure”, examines the impact of Fushen Granule, a Traditional

Chinese Medicine (TCM), on the gut microbiome and its

therapeutic effects on chronic renal failure. For further study

concerning TCM, Zeng et al. discuss the impacts of two Chinese

herbal formulas on insomnia treatment via gut microbiome

modulation in their research paper “Traditional Chinese herbal

formulas modulate gut microbiome and improve insomnia in

patients with distinct syndrome types: insights from an

interventional clinical study”, enhancing our understanding of the

gut-brain axis and supporting strategies for using TCM for

insomnia. The study, “Alteration and clinical potential in gut

microbiota in patients with cerebral small vessel Disease”, by Shi

et al. examines changes in the gut microbiota of patients with

cerebral small vessel disease and the potential clinical implications.

Apart from gut microbiota, microbiomes located in other parts

of the body can also impact health. “The impact of Sangju Qingjie

Decoction on the pulmonary microbiota in the prevention and

treatment of chronic obstructive pulmonary disease” by Liu et al.

examines the effects of Sangju Qingjje Decoction (SJQJD) on the

pulmonary microbiota of COPD rats, finding that SJQJD improves

lung structure, reduces inflammation, and enhances the diversity

and abundance of lung microbiota. The study by Zheng et al. titled

“Comparative characterization of supragingival plaque microbiomes

in malocclusion adult female patients undergoing orthodontic

treatment with removable aligners or fixed appliances: a descriptive

cross-sectional study” investigates the effects of different orthodontic

appliances on the oral microbiome. The study found that fixed

appliances are associated with increased anaerobic and Gram-

negative bacteria compared to clear aligners and could lead to the
Frontiers in Cellular and Infection Microbiology 026
development of better cleaning techniques and materials. The

authors emphasized the need for tailored oral hygiene practices

for individuals undergoing orthodontic treatment.

In addition to studies related to human health, the collection of

papers in this Research Topic includes content on animal

experiments and single-cell analysis. In the original article,

“Comprehensive assessment of HF-rTMS treatment mechanism for

post-stroke dysphagia in rats by integration of fecal metabolomics

and 16S rRNA sequencing”, Zhao et al. explore the effects of high-

frequency repetitive transcranial magnetic stimulation (HF-rTMS)

on swallowing dysfunction in post-stroke rats and reveal that HF-

rTMS can improve swallowing function and modify gut microbiota

composition. The study titled “Integrating machine learning

algorithms and single-cell analysis to identify gut microbiota-

related macrophage biomarkers in atherosclerotic plaques” by Ke

et al. focuses on identifying macrophage biomarkers linked to gut

microbiota that are influential in the development of atherosclerotic

plaques, combining machine learning techniques and single-

cell analysis.

In conclusion, the Research Topic “Machine Learning and Deep

Learning Applications in Pathogenic Microbiome Research”

encompasses 11 valuable manuscripts that integrate ML and DL

into innovative microbiome research. The Research Topic features

interdisciplinary applications ranging from diagnostic models to

interactions between microbiomes and various diseases,

highlighting the significance of understanding and managing

health through the view of microbiota. We are thankful to the

editorial team and authors for their significant contributions which

have been instrumental to the success of this Research Topic.
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Background: Cerebral small vessel disease (CSVD) is a cluster of microvascular

disorders with unclear pathological mechanisms. The microbiota-gut-brain axis

is an essential regulatory mechanism between gut microbes and their host.

Therefore, the compositional and functional gut microbiota alterations lead to

cerebrovascular disease pathogenesis. The current study aims to determine the

alteration and clinical value of the gut microbiota in CSVD patients.

Methods: Sixty-four CSVD patients and 18 matched healthy controls (HCs) were

included in our study. All the participants underwent neuropsychological tests,

and the multi-modal magnetic resonance imaging depicted the changes in brain

structure and function. Plasma samples were collected, and the fecal samples

were analyzed with 16S rRNA gene sequencing.

Results: Based on the alpha diversity analysis, the CSVD group had significantly

decreased Shannon and enhanced Simpson compared to the HC group. At the

genus level, there was a significant increase in the relative abundances of

Parasutterella, Anaeroglobus, Megasphaera, Akkermansia, Collinsella, and

Veillonella in the CSVD group. Moreover, these genera with significant

differences in CSVD patients revealed significant correlations with cognitive

assessments, plasma levels of the blood-brain barrier-/inflammation-related

indexes, and structural/functional magnetic resonance imaging changes.

Functional prediction demonstrated that lipoic acid metabolism was

significantly higher in CSVD patients than HCs. Additionally, a composite

biomarker depending on six gut microbiota at the genus level displayed an

area under the curve of 0.834 to distinguish CSVD patients from HCs using the

least absolute shrinkage and selection operator (LASSO) algorithm.
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Conclusion: The evident changes in gut microbiota composition in CSVD

patients were correlated with clinical features and pathological changes of

CSVD. Combining these gut microbiota using the LASSO algorithm helped

identify CSVD accurately.
KEYWORDS

cerebral small vessel disease, gut microbiota, cognitive function, magnetic resonance
imaging, least absolute shrinkage and selection operator algorithm
Introduction

Cerebral small vessel disease (CSVD) is a prevalent

neuropathological process in clinical practice and is vital in

dementia, stroke, depression, and gait disturbances among

elderly patients (Cannistraro et al., 2019; Markus and Erik De

Leeuw, 2023). Disrupting the blood-brain barrier (BBB),

neuroinflammation, and impaired neurovascular coupling can

cause CSVD (Ungvari et al., 2021). However, the underlying

pathogenesis remains poorly understood. Currently, the clinical

diagnosis of CSVD is based on brain magnetic resonance imaging

(MRI) features, such as recent small subcortical infarcts, white

matter hyperintensities (WMH), lacunar infarcts (Lis), cerebral

microbleeds (CMBs), and enlarged perivascular spaces (EPVS)

(Chen et al., 2019b; Van Den Brink et al., 2023). Additionally,

various circulating blood indexes are considered potential

biomarkers to identify and reflect the pathological changes in

CSVD. These include matrix metalloproteinase-9 (MMP-9) in

BBB integrality (Li et al., 2022), neurofilament light in axonal

injury (Qu et al., 2021), and tumor necrosis factor-alpha (TNF-a)
in inflammatory response (Wan et al., 2023). Meanwhile, advanced

imaging also provides new insight into CSVD pathophysiology.

Resting-state functional MRI depicts the association between

altered brain function in the sensorimotor and frontoparietal

networks and gait disorders (Zhou et al., 2020) and the

underlying mechanism of aberrant spontaneous brain activity

within the default mode network, leading to cognitive decline in

CSVD (Li et al., 2021).

Gut microbes can develop neuroactive compounds and regulate

neuronal function, vital in gut-brain interactions (Ascher and

Reinhardt, 2018; Pluta et al., 2021). The gut-brain axis is

necessary for the onset and progression of cerebrovascular disease

through complex signaling pathways. These involve vagus nerves

within the enteric nervous system, the neuronal-glial-endothelial

interactions, and activating gut inflammatory and immune cells

induced by cytokines (Arya and Hu, 2018). The microbial-derived

metabolites (e.g., short-chain fatty acids, trimethylamines,

amino acid metabolites) play an essential role in metabolic and

signaling functions of BBB and brain neurons to protect from the

pathology and inflammation asstociated with disease (Parker et al.,

2020; Hoyles et al., 2021). However, the intestinal ecological

imbalance can affect the global immune system and alter the

production of neuroprotective intestinal metabolites (Huang and
029
Xia, 2021; Nelson et al., 2021). This causes aggravation of

neuroinflammation and BBB dysfunction. Previous studies have

demonstrated that stroke patients have reduced gut microbiome

diversity, and several microbial taxa, such as Streptococcus,

Lactobacillus, Escherichia, Eubacterium, and Roseburia, could be

risk indicators of ischemic stroke (Peh et al., 2022; Zou et al., 2022).

Cai et al. recently observed that gut microbiota could up-regulate

interleukin-17A production in neutrophils by activating RORgt
signaling to induce CSVD occurrence (Cai et al., 2021). Cerebral

autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy also depicts significant changes in gut

microbiota abundance at the genus level, and this could lead to

the onset and progression of hereditary CSVD (Matsuura et al.,

2019). Since these findings are in the initial stage, the underlying

association of gut microbiota with CSVD should be investigated.

Therefore, recognizing the implication of the gut microbiota in

CSVD pathophysiology and identifying beneficial gut bacteria are

crucial as early warning CSVD biomarkers.

The current study aimed to determine the gut microbiota

alteration and underlying pathological mechanisms in CSVD

patients. Additionally, the relationship between the clinical

features of CSVD and the expression of the gut microbiota was

thoroughly investigated. Meanwhile, machine learning helped build

a composite biomarker depending on the gut microbiota in CSVD.

The current study also assessed the diagnostic potential of the gut

microbiota to identify CSVD early.

Materials and methods

Participants

64 CSVD patients were recruited from the Affiliated Wuxi

People’s Hospital of Nanjing Medical University, and 18 matched

healthy controls (HCs) were included in the present study through

community health screening. All participants were Chinese Han.

Neuropsychological assessments including Mini-Mental State

Examination (MMSE), and Montreal Cognitive Assessment

(MoCA), and 17-Item Hamilton Depression Rating Scale

(HAMD-17), were carried out on all the recruited participants.

Moreover, National Institutes of Health Stroke Scale (NIHSS) was

also used for evaluate the symptom of stroke. Furthermore, the

multi-modal MRI including the structural MRI and functional MRI,

were conducted in all the participants.
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All the participants provided a written informed consent. The

Ethics Committee of the Affiliated Wuxi People’s Hospital of

Nanjing Medical University approved the present study (approval

number: KY2112).
Inclusion and exclusion criteria

The inclusion criteria for all the participants were: (1) aged 50-80

years old; (2) ≥ six years of education; and (3) no contraindication in

MRI scan.

CSVD patients were diagnosed according to the established

diagnostic criteria (Chen et al., 2019b) using MRI evidence of

vascular changes. Participants were found as the CSVD patients

with the following features: (1) total number of lacunar infarcts (Lis)

were counted, and ≥ 2 Lis were considered as the presence of

lacunes; (2) periventricular and deep WMH was quantified using

the Fazekas scale (overall score of 3), and a score ≥ 1 was considered

as displaying WMH; (3) the total number of CMBs were counted,

and ≥ 1 CMBs was considered as a positive; or (4) the total number
Frontiers in Cellular and Infection Microbiology 0310
of EPVS were counted, and ≥ 10 EPVS was considered as a

threshold. Additionally, all the matched HCs had not any stroke

performance, as reflected by no imaging changes (Table 1).

The exclusion criteria for each participant were: (1) clinical

evidence supporting cerebrovascular disorders with large

intracranial vascular lesions; (2) any severe psychiatric disorders

(e.g., schizophrenia); (3) abuse or alcohol or drugs dependence; (4)

brain trauma or other neurologic diseases (e.g., Parkinson’s disease);

and (5) any significant medical problems (e.g., tumor, significantly

impaired liver or kidney functions).
Functional MRI data acquisition
and preprocessing

The imaging data preprocessing was performed using the Data

Processing Assistant for Resting-State functional MRI (DPARSFA

2.3) toolbox (Chao-Gan and Yu-Feng, 2010). The amplitude of low-

frequency fluctuation (ALFF) estimates the local spontaneous

neuronal activity (Chen et al., 2022; Shi et al., 2023a). The REST
TABLE 1 Comparison of demographic and clinical characteristics of subjects between the CSVD and HC groups.

CSVD (n = 64) HC (n = 18) P-value

Age (years) 69.15 ± 5.73 66.17 ± 5.49 0.052*

Sex (male/female) 32/32 7/11 0.437&

Education years 8.83 ± 2.43 8.89 ± 2.42 0.782#

Hypertension (yes/no) 38/26 9/9 0.592&

Diabetes (yes/no) 16/48 2/16 0.335&

NIHSS scores 0.48 ± 0.73 0 –

MMSE scores 27.59 ± 2.20 28.67 ± 1.24 0.032#

MoCA scores 24.52 ± 4.27 27.00 ± 2.09 0.023#

HAMD-17 scores 3.48 ± 3.98 2.33 ± 3.24 0.214#

Plasma S100b (pg/ml) 96.25 ± 26.03 71.07 ± 27.03 0.001*

Plasma MMP-9 (ng/ml) 25.42 ± 12.04 21.41 ± 5.48 0.538#

Plasma NSE (ng/ml) 49.85 ± 22.41 13.70 ± 9.16 < 0.001*

Plasma TNF-a (pg/ml) 8.15 ± 2.07 6.20 ± 1.64 < 0.001*

Structural MRI features

Periventricular WMH Fazekas scores 1.80 ± 0.67 0 –

Deep WMH Fazekas scores 0.89 ± 0.89 0 –

Total WMH Fazekas scores 2.69 ± 1.38 0 –

Number of EPVS 4.45 ± 5.37 0 –

Number of CMBs 2.84 ± 3.53 0 –

Number of Lis 10.41 ± 8.49 0 –
CSVD, cerebral small vessel disease; HC, healthy control; NIHSS, National Institutes of Health Stroke Scale; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment;
HAMD-17, 17-Item Hamilton Depression Rating Scale; S100b, S100beta protein; MMP-9, matrix metalloproteinase-9; NSE, neuron-specific enolase; TNF-a, tumor necrosis factor-alpha; MRI,
magnetic resonance imaging; WMH, white matter hyperintensities; EPVS, enlarged perivascular spaces; CMBs, cerebral microbleeds; Lis, lacunar infarcts.
*P-values were obtained by Independent-Samples T test.
#P-values were obtained by Mann-Whitney U test.
&P-values were obtained by Chi-square test.
“-” means no statistic analysis was performed.
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software was used to calculate ALFF values and help perform the

statistical analysis between the two groups (Alphasim multiple

comparison correction p < 0.05). The brain regions with

significant ALFF values were displayed using the BrainNet Viewer

software. More details were displayed in Supplementary Materials

and could be found in our previous studies (Shi et al., 2021a; Shi

et al., 2021b; Shi et al., 2022).
Collection of fecal samples and 16S rRNA
gene sequencing

After overnight fasting, the fecal sample was collected (7:00-9:00

AM) after participant’s defecation using stool collection tubes with

stool DNA stabilizer (Genstone Biotech, Beijing, China), and then

stored at - 80°C.

The DNA extractions of fecal samples using FastDNA Spin Kit

For Soil (MP Biomedicals, Santa Ana, CA) and compositional

analysis of gut microbiota were performed by Genesky

Biotechnologies Inc. (Shanghai, China). Details of sequencing and

data analysis were provided in Supplementary Materials and

previous study (Xu et al., 2022).
Collection of plasma samples and
detection of plasma indexes

Peripheral venous blood was collected using EDTA-coated

tubes after the collection of fecal samples immediately. Then, the

plasma samples were obtained by centrifugation at 2000 × g at 4°C

for 10 minutes, and further were stored at -80°C until use.

Four plasma indexes, S100beta protein (S100b) (Cao et al.,

2022), MMP-9 (Rempe et al., 2016), neuron-specific enolase (NSE)

(Yun et al., 2022), and TNF-a (Zelová and Hosěk, 2013), were

detected using commercial enzyme-linked immunosorbent assays

kit (FineTest, Wuhan, China; Catalog Number: EH0543 for S100b,
EH0238 for MMP-9, EH0370-HS for NSE, and EH0302 for TNF-

a). The levels of these indexes were measured in triplicate and the

inter- and intra-assay coefficients of variation were < 5%.
Statistical analyses

The data analyses were conducted using SPSS version 22.0

(SPSS Inc. Chicago, IL, USA) and R software package

(version 4.2.1).

The diversity analysis of gut microbiota was comprised of alpha

and beta diversity analyses. The alpha-diversity included Observed

species, Chao1, and ACE indicators for the community richness and

Shannon, Simpson, and Coverage for the community diversity. Beta

diversity is used to indicate differences in the composition of gut

microbiota using Partial Least Squares-Discriminant Analysis.

Linear Discriminant Analysis (LDA) Effect Size (LEfSe) was

conducted to identify the markers to interpret the difference

between groups where the threshold score of LDA was two. The

functions of species in the gut microbiota of both the groups were
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predicted using PICRUSt2 analysis tool and Kyoto Encyclopedia of

Genes and Genomes database (https://www.genome.jp/

kegg/pathway.html).

The Kolmogorov-Smirnov test was used to evaluate the normal

distribution of the data. The continuous variables were shown as

mean ± standard deviation and were analyzed using the Mann-

Whitney U test for non-normal distribution, or the Student’s t-test

for normal distribution. The categorical variables were analyzed

using the chi-square test. Pearson correlation analysis was used to

determine the correlation between the taxonomies of gut

microbiota and clinical data and MRI data. Furthermore, to

identify the potential diagnostic biomarker of gut microbiota for

CSVD, least absolute shrinkage and selection operator (LASSO)

algorithm was used to construct a composite biomarker based on

the gut microbiota with significant difference between the groups (Ji

et al., 2021; Shi et al., 2023b). Receiver operating characteristic

(ROC) curves were utilized to compute the area under the curve

(AUC) for determining the diagnostic accuracy of the biomarkers.

The Youden index was used to estimate optimal values of sensitivity

and specificity. The statistically significant differences were

considered as P-value < 0.05.
Results

Characteristics of participants

Table 1 represents no difference in age, sex, education years and

complications (hypertension and diabetes) between the CSVD and

HC groups. CSVD patients had significantly increased NIHSS,

MMSE, and MoCA scores when compared to HCs. However,

there was no significant difference in HAMD-17 scores between

the two groups.

Additionally, the plasma levels of S100b, NSE, and TNF-a were

significant higher in CSVD patients than HCs, however, plasma

MMP-9 exhibited a similar level between the two groups (Table 1).
Compositional analysis of gut microbiota in
CSVD and HC groups

A total 5,357,333 sequences were obtained from 82 samples,

including 4,160,196 sequences in the CSVD group, and 1,197,137

sequences in the HC group, after the quality filtration, noise

reduction, splicing, and de-chimerism of data using QIIME2

software (SRA accession number: PRJNA985039).

The operational taxonomic units were assigned with a 95%

sequence similarity threshold. The CSVD group exhibited a higher

number of operational taxonomic units than the HC group (3463

vs. 1560), including 901 similar operational taxonomic units

(Supplementary Figure 1A). All the samples’ curves in the

rarefaction curves based on the amplicon sequence variant

reached saturation plateau at the depth of 52,000 reads, indicating

that the sequencing depths were sufficient to represent the majority

of microbe species, and the number of samples was reasonable

(Supplementary Figure 1B).
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Diversity analysis of gut microbiota
between two groups

Alpha diversity analysis
Six a-diversity indicators, i.e., Observed species, Chao1, ACE,

Shannon, Simpson, and Coverage, were analyzed in the present

study (Supplementary Figure 2A). Except for Coverage scores,

significant reduced Shannon scores and significant elevated

Simpson scores were found in the CSVD group when compared

to the HC group, suggesting lower species diversity in the gut

microbiota of the CSVD group. Meanwhile, compared with the HC

group, Observed, Chao 1, and ACE scores displayed reduced trends

in the CSVD group, which suggested lower species richness in the

gut microbiota of the CSVD group.

Beta diversity analysis
The b-diversity was calculated using Partial Least Squares-

Discriminant Analysis, a supervised discriminant analysis, for the

reduction of the impact of intergroup differences (Supplementary

Figure 2B). The results of b-diversity suggested that the overall

composition of gut microbiota in the CSVD group patients was

different from that of the HC group.

Compositional analysis of gut microbiota at
genus level levels between two groups

The top four most dominant bacterial genera with the

highest relative abundances in both the two groups were

consistent, i.e., Bacteroidetes, Faecalibacterium, Prevotella, and

Lachnospiracea_incertae_sedis (Figures 1A, B). Except for

Bacteroidetes with the same highest abundances between the

groups, the second highest abundance was that of Faecalibacterium

(6.36%), followed by Lachnospiracea_incertae_sedis (5.57%)

and Prevotella (5.68%) in the CSVD group, however, in

HCs, Faecalibacterium (9.74%) accounted for the second highest

relative abundance, followed by Prevotella (9.48%) and

Lachnospiracea_incertae_sedis (5.39%) (Figure 1C).

The MetaStats analysis represented six genera with significant

differences in their relative abundances between the two groups

(Figure 2A). Parasutterella, Anaeroglobus , Megasphaera ,

Akkermansia, Collinsella, and Veillonella significantly increased in

the CSVD group as compared to the HC group.

LEfSe analysis
Using the LEfSe analysis, there were 17 taxa identified with LDA

scores of > 2 and p-value of < 0.05. Supplementary Figure 3A showed a

cladogram for all the taxonomic levels abundance, and Supplementary

Figure 3B showed the top 10 taxa with the highest LDA scores in each

group. At the genus level, the CSVD group had significantly increased

relative abundance of Parasutterella, Enterobacter, Terrisporobacter,

Ezakiella, and Anaerostipes as compared to the HC group, and the HC

group had increased relative abundance of Bacteroides, Coprococcus,
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Pseudomonas,Dorea, Parabacteroides, and Phascolarctobacterium than

the CSVD group.
Correlation analysis of environmental
factors in CSVD patients

Neuropsychological assessments
As shown in Figures 2B, C, the MMSE and MoCA scores were

negatively correlated with the relative abundance of Parasutterella.

However, there was no correlation between the MMSE and MoCA

scores and others gut microbiota at genus level levels.

Plasma indexes
The relative abundance of Parasutterella was positively

correlated with plasma levels of S100b (Figure 2D). Moreover, a

positive correlation was also found between the relative abundance

of Collinsella and plasma levels of TNF-a (Figure 2E).
MRI features
The total Fazekas scores and periventricular WMH Fazekas

scores were positively correlated with the relative abundance of

Collinsella, and the number of Lis was positively correlated with the

relative abundance of Veillonella (Figure 3A).

In addition, compared with HCs, CSVD patients exhibited

decreased ALFF values in the left supplementary motor area and

left median cingulate and paracingulate gyri, and increased ALFF

values in the bilateral middle frontal gyrus, bilateral calcarine fissure

and surrounding cortex, right superior occipital gyrus, right

paracentral lobule (Figure 3B, AlphaSim corrected p < 0.05,

number of voxels: 70). Further correlation analyses in CSVD

patients revealed that the ALFF values in the bilateral middle

frontal gyrus were positively correlated with the relative

abundance of Parasutterella, the ALFF values in the bilateral

calcarine fissure and surrounding cortex were positively

correlated with the relative abundance of Veillonella, and the

ALFF values in the right paracentral lobule were positively

correlated with the relative abundance of Akkermansia (Figure 3C).
Functional predictions for gut microbiota
in the two groups

Using the PICRUSt2 analysis tool, the species’ functions in the gut

microbiota of both the groups were predicted and annotated based on

the Kyoto Encyclopedia of Genes and Genomes database. The relative

abundances of the functional genes in gut microbiota responsible for

the “biosynthesis of ansamycins”, “biosynthesis of vancomycin group

antibiotics”, “valine, leucine and isoleucine biosynthesis”, “glycan

degradation”, and “D-Glutamine and D-glutamate metabolism” were

high (Figure 4A). Meanwhile, the differences in the functional
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prediction between the two groups were analyzed further usingWelch’s

t-test. The pathway of “lipoic acid metabolism” in the CSVD group was

significantly higher than the HC group (Figure 4B).
Diagnostic performance of gut microbiota
for CSVD

Using the machine learning, a composite biomarker was built

based on the gut microbiota at genus level with significant differences
Frontiers in Cellular and Infection Microbiology 0613
between the groups. The composite biomarker of the LASSO model

was calculated as follows: composite biomarker = the relative abundance

of Parasutterella × 3.8879931 + the relative abundance of Anaeroglobus

× 1.9590061 + the relative abundance of Megasphaera × 3.5400764 +

the relative abundance of Akkermansia × 0.6387538 + the relative

abundance of Collinsella × 24.9083996 + the relative abundance of

Veillonella × 2.3311538 + 0.6438699 (Figures 5A, B).

There was the significant difference in the relative levels of the

composite biomarker between the CSVD and HC groups (Figure 5C).

ROC curve indicated that the composite biomarker had an AUC value
B

C

A

FIGURE 1

Relative abundances at genus level between CSVD and HC groups. (A) Heat-map analysis at genus. Abscissa is the sample and ordinate is the taxa at
genus level. The colors in heat-map represent the species abundance, and the gradual change of color from blue to red indicates that the species
abundance changed from small to large. (B) Bar plots of the relative abundances of two groups at genus level. (C) Pieplots of the distribution of the
relative abundances of two groups at genus level. CSVD, cerebral small vessel disease; HC, healthy control.
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of 0.834 to identifying CSVD patients from HCs (sensitivity = 76.56%,

specificity = 77.78%), which was the higher than other single index of

gut microbiota (Figures 5D, E; Supplementary Table 1).

Discussion

The main findings of the present study were: (1) The CSVD

group had significantly lower species diversity and richness in the
Frontiers in Cellular and Infection Microbiology 0714
gut microbiota than the HC group. (2) CSVD patients showed

significantly higher genus-level relative abundances of

Parasutterella, Anaeroglobus, Megasphaera, Akkermansia,

Collinsella, and Veillonella than HCs. (3) Significant associations

could be seen between the gut microbiota and cognitive

assessments, BBB-/inflammation-related indexes, and structural/

functional MRI changes in CSVD patients. (4) Lipoic acid

metabolism was involved in CSVD pathogenesis. (5) A composite
B C

D E

A

FIGURE 2

Analysis of taxa with significant differences at genus level. (A) Taxa with significant differences at genus level between the CSVD and HC groups. P-value
was obtained using Metastats analysis, and Q-value was obtained using FDR correction. (B, C) Correlation analysis of MMSE and MoCA scores with taxa
with significant differences at genus level in CSVD patients. (D, E) Correlation analysis of plasma levels of S100b and TNF-a with taxa with significant
differences at genus level in CSVD patients. CSVD, cerebral small vessel disease; HC, healthy control; NIHSS, National Institutes of Health Stroke Scale;
MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; S100b, S100beta protein; TNF-a, tumor necrosis factor-alpha.
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biomarker of intestinal bacteria revealed the optimal diagnostic

power for distinguishing CSVD from HCs. Therefore, the gut

microbiota is vital in CSVD pathogenesis (Figure 6), with great

potential as a clinical biomarker for CSVD diagnosis.

The present study analyzed diversity and potential function in

the gut microbiota of CSVD patients. Meanwhile, environmental

factors, such as clinical symptoms, peripheral molecular indexes,

and brain imaging features, helped comprehensively estimate the

association between gut microbiota and CSVD. Furthermore, a

machine learning LASSO model was used to build a composite

biomarker depending on the gut microbiota at the genus level to

improve the CSVD identification accuracy. The rigorous study

design and findings strongly support the significance of gut
Frontiers in Cellular and Infection Microbiology 0815
microbiota in CSVD pathological changes. Therefore, we first

proposed ideal biomarkers of the gut microbiota for CSVD

clinical application.

The Parasutterella genus is a core component of the human gut

microbiota and is associated with bile acid maintenance and

cholesterol metabolism (Ju et al., 2019). Recently, Akash et al.

observed that Alzheimer’s disease rat model had an age-related

enhancement of Parasutterella (Nagarajan et al., 2023).

Additionally, a neuroprotective drug, resveratrol, can effectively

improve cognitive impairment and increase the abundance of

Parasutterella in Alzheimer’s disease mice (Yang et al., 2023).

Similarly, in our study, CSVD patients had significantly elevated

relative abundances compared with HCs. Moreover, significant
B C

A

FIGURE 3

Associations of MRI features with gut microbiota at genus level. (A) Heatmap shows the correlation coefficient between structural MRI features and
gut microbiota at genus level. (B) Eight region with significantly differential ALFF in CSVD patients compared with HCs (p < 0.05, Alphasim multiple
comparison correction, voxel number: 70). Covariates were age, gender and years of education. (C) Heatmap shows the correlation coefficient
between ALFF values in eight brain regions and gut microbiota at genus level. MRI, magnetic resonance imaging; CSVD, cerebral small vessel
disease; HC, healthy control; P-WMH, periventricular white matter hyperintensities; D-WMH, deep white matter hyperintensities; EPVS, enlarged
perivascular spaces; CMBs, cerebral microbleeds; Lis, lacunar infarcts; ALFF, amplitude of low-frequency fluctuation; SMA, supplementary motor
area; DCG, median cingulate and paracingulate gyri; MFG, middle frontal gyrus; CAL, calcarine fissure and surrounding cortex; SOG, superior
occipital gyrus; PCL, paracentral lobule. *P-value < 0.05; **P-value < 0.01.
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correlations were observed in CSVD patients between relative

abundances of Parasutterella and specific clinical features (e.g.,

MMSE and MoCA scores and the ALFF values of bilateral middle

frontal gyrus). Thus, the Parasutterella-mediated pathological

mechanism may affect cognitive decline (Liang et al., 2022).

Furthermore, there was a significantly positive correlation

between the relative abundance of Parasutterella in CSVD

patients and S100b plasma levels, a peripheral BBB function

marker (Thelin et al., 2017; Solarz et al., 2021), which suggested

that Parasutterellamay be associated with disrupted BBB integrality

in CSVD. Previous studies indicated that high-density lipoproteins

protected endothelial function and BBB integrity (Tran-Dinh et al.,

2013). However, increased high cholesterol ingestion could

exacerbate BBB disruption and affect cognitive function (De

Oliveira et al., 2020). Therefore, Parasutterella may control the

cholesterol metabolism to affect the BBB function, leading to

cognitive impairment in CSVD patients.

The relative abundances of Collinsella were significantly

increased in some psychiatry disorders [e.g., schizophrenia (Li

et al., 2020) and autism spectrum disorders (Ding et al., 2020)]
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compared to HCs in the published studies, indicating that

Collinsella could affect the normal function of the central nervous

system. However, only one study on cerebrovascular disease

revealed that combining Puerariae Lobatae Radix and

Chuanxiong Rhizoma can enhance intestinal Collinsella

disturbances in ischemic stroke (Chen et al., 2019a). The present

study observed significantly elevated Collinsella levels and a positive

correlation with the WMH scores in CSVD patients. This indicated

that the relative abundance of Collinsella may reflect the CSVD

severity. Additionally, Ruiz-Limoń et al. demonstrated that the

increase of the genus Collinsella was related to cumulative

inflammatory activity (Ruiz-Limón et al., 2022). A significant

association was observed in our study between Collinsella and

plasma TNF-a levels in CSVD patients. Hence, Collinsella-

mediated inflammation response could have an effect on the

CSVD white matter lesions.

A previous study identified more Akkermansia in cerebral

ischemic stroke patients than HCs (Li et al., 2019). However,

another study described contrary results in stroke patients (Chang

et al., 2021). In our study, CSVD patients had significantly elevated
B

A

FIGURE 4

Functional predictions of the gut microbiota. (A) Heat-map of functional genes in gut microbiota of all participants, showing top. 30 genes with
maximum relative abundances. The Abscissa stands for the samples, and the ordinate is functional genes. The colors represent the abundance of
function, and the gradual change in color from light to deep indicates the relative abundance of function from low to high. (B) Significant difference
in Kyoto Encyclopedia of Genes and Genomes pathways for gut microbiota in CSVD and HC groups. *P-value < 0.05. CSVD, cerebral small vessel
disease; HC, healthy control.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1231541
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Shi et al. 10.3389/fcimb.2023.1231541
Akkermansia levels compared to HCs. Moreover, Akkermansia

levels were positively associated with the ALFF values in the right

paracentral lobule. Due to lower paracentral lobule activity being

negatively associated with the total small vessel disease burden (Xu

et al., 2018), Akkermansia as a probiotic (Zhang et al., 2019) may

protect CSVD.

Furthermore, CSVD patients showed a significantly higher

relative abundance of Veillonella, Megasphaera, and Veillonella

than HCs. Among them, elevated Megasphaera was also observed

in stroke patients (Wang et al., 2021), but other gut microbiota were

proposed firstly by us in patients with cerebrovascular disease. The

present study revealed that significantly increased Veillonella

exhibited positive correlations with the number of Lis and the

ALFF values in the bilateral calcarine fissure and surrounding

cortex among CSVD patients. Therefore, Veillonella could be

associated with CSVD occurrence by affecting brain activity in

bilateral calcarine fissure and surrounding cortex. However, the
Frontiers in Cellular and Infection Microbiology 1017
underlying mechanism of these gut microbiota in CSVD pathology

remains unknown.

A combined biomarker using the LASSO model showed better

diagnostic performance in identifying CSVD than the single gut

microbiota biomarker. Thus, using machine learning contributes to

elevating the differential power for CSVD.

The present study had some limitations. (1) The number of HCs

was less than the CSVD group. A sample size calculator was used

(https://sample-size.net/), which indicated the acceptability of the

current sample size. The sample size will be increased in subsequent

studies to verify the obtained results. (2) Since CSVD patients

possess various clinical symptoms, the different clinical subtypes of

CSVDmay possess distinct performances of gut microbiota. We did

not analyze the differences in gut microbiota among CSVD patients

with cognitive impairment, depression, or gait disturbances. (3) The

independent present composite biomarker verification of gut

microbiota is absent in the present study. (4) Animal study is
B

C D E

A

FIGURE 5

Diagnostic performance of gut microbiota at genus level for CSVD. (A) The coefficients of each gut microbiota in the LASSO model (1 =
Parasutterella, 2 = Anaeroglobus, 3 = Megasphaera, 4 = Akkermansia, 5 = Collinsella, 6 = Veillonella). (B) The mean-squared error of LASSO model.
(C) The significant difference in the relative levels of the composite biomarker between CSVD patients and HCs. (D) ROC curve of six gut microbiota
at genus level for identifying CSVD. (E) ROC curve of the composite biomarker for identifying CSVD. CSVD, cerebral small vessel disease; HC,
healthy control; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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absent in the present study. We will conduct the animal study to

determine the association between the gut microbiota and CSVD

pathological mechanisms in the following study. Therefore, a multi-

center study should be conducted to validate the current findings.
Conclusion

The present study demonstrated the composition of gut

microbiota composition in patients with CSVD and found several

microbes correlated with cognitive decline, BBB integrality, and

brain MRI changes, which might expound the underlying
Frontiers in Cellular and Infection Microbiology 1118
pathogenesis of CSVD. Meanwhile, a composite biomarker of gut

microbiota using LASSOmodel will contribute to identifying CSVD

conveniently and accurately.
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Solarz, A., Majcher-Maślanka, I., and Chocyk, A. (2021). Effects of early-life stress
and sex on blood-brain barrier permeability and integrity in juvenile and adult rats.
Dev. Neurobiol. 81 (7), 861–876. doi: 10.1002/dneu.22846

Thelin, E. P., Nelson, D. W., and Bellander, B. M. (2017). A review of the clinical
utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta
Neurochirurgica 159 (2), 209–225. doi: 10.1007/s00701-016-3046-3

Tran-Dinh, A., Diallo, D., Delbosc, S., Varela-Perez, L. M., Dang, Q. B., Lapergue, B.,
et al. (2013). HDL and endothelial protection. Br. J. Pharmacol. 169 (3), 493–511. doi:
10.1111/bph.12174

Ungvari, Z., Toth, P., Tarantini, S., Prodan, C. I., Sorond, F., Merkely, B., et al.
(2021). Hypertension-induced cognitive impairment: from pathophysiology to public
health. Nat. Rev. Nephrol. 17 (10), 639–654. doi: 10.1038/s41581-021-00430-6

Van Den Brink, H., Doubal, F. N., and Duering, M. (2023). Advanced MRI in cerebral
small vessel disease Int. J. Stroke 18 (1), 28–35. doi: 10.1177/17474930221091879

Wan, S., Dandu, C., Han, G., Guo, Y., Ding, Y., Song, H., et al. (2023). Plasma
inflammatory biomarkers in cerebral small vessel disease: a review CNS Neurosci Ther.
29, 2, 498–515. doi: 10.1111/cns.14047

Wang, Z., Xu, K., and Zhou, H. (2021). [Characteristics of gut virome and
microbiome in patients with stroke]. nan fang yi ke da xue xue bao. J. South. Med.
Univ. 41 (6), 862–869. doi: 10.12122/j.issn.1673-4254.2021.06.08

Xu, X., Lau, K. K., Wong, Y. K., Mak, H. K. F., and Hui, E. S. (2018). The effect of the
total small vessel disease burden on the structural brain network. Sci. Rep. 8 (1), 7442.
doi: 10.1038/s41598-018-25917-4

Xu, Y., Shao, M., Fang, X., Tang, W., Zhou, C., Hu, X., et al. (2022). Antipsychotic-
induced gastrointestinal hypomotility and the alteration in gut microbiota in patients
with schizophrenia. Brain Behav. Immun. 99, 119–129. doi: 10.1016/j.bbi.2021.09.014

Yang, L., Wang, Y., Li, Z., Wu, X., Mei, J., and Zheng, G. (2023). Brain targeted
peptide-functionalized chitosan nanoparticles for resveratrol delivery: impact on
insulin resistance and gut microbiota in obesity-related alzheimer's disease.
Carbohydr. Polym. 310, 120714. doi: 10.1016/j.carbpol.2023.120714

Yun, G. S., In, Y. N., Kang, C., Park, J. S., You, Y., Min, J. H., et al. (2022).
Development of a strategy for assessing blood-brain barrier disruption using serum
S100 calcium-binding protein b and neuron-specific enolase in early stage of
neuroemergencies: a preliminary study. Med. (Baltimore) 101 (28), e29644.
doi: 10.1097/MD.0000000000029644
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Objectives: Systemic Lupus Erythematosus (SLE) is a complex autoimmune

disease that disproportionately affects women. Early diagnosis and prevention

are crucial for women’s health, and the gut microbiota has been found to be

strongly associated with SLE. This study aimed to identify potential biomarkers

for SLE by characterizing the gut microbiota landscape using feature selection

and exploring the use of machine learning (ML) algorithms with significantly

dysregulated microbiotas (SDMs) for early identification of SLE patients.

Additionally, we used the SHapley Additive exPlanations (SHAP) interpretability

framework to visualize the impact of SDMs on the risk of developing SLE

in females.

Methods: Stool samples were collected from 54 SLE patients and 55 Negative

Controls (NC) for microbiota analysis using 16S rRNA sequencing. Feature

selection was performed using Elastic Net and Boruta on species-level

taxonomy. Subsequently, four ML algorithms, namely logistic regression (LR),

Adaptive Boosting (AdaBoost), Random Forest (RF), and eXtreme gradient

boosting (XGBoost), were used to achieve early identification of SLE with

SDMs. Finally, the best-performing algorithm was combined with SHAP to

explore how SDMs affect the risk of developing SLE in females.

Results: Both alpha and beta diversity were found to be different in SLE group.

Following feature selection, 68 and 21 microbiota were retained in Elastic Net

and Boruta, respectively, with 16 microbiota overlapping between the two, i.e.,

SDMs for SLE. The four ML algorithms with SDMs could effectively identify SLE

patients, with XGBoost performing the best, achieving Accuracy, Sensitivity,

Specificity, Positive Predictive Value, Negative Predictive Value, and AUC values

of 0.844, 0.750, 0.938, 0.923, 0.790, and 0.930, respectively. The SHAP

interpretability framework showed a complex non-linear relationship between

the relative abundance of SDMs and the risk of SLE, with Escherichia_fergusonii

having the largest SHAP value.
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Conclusions: This study revealed dysbiosis in the gut microbiota of female SLE

patients. ML classifiers combined with SDMs can facilitate early identification of

female patients with SLE, particularly XGBoost. The SHAP interpretability

framework provides insight into the impact of SDMs on the risk of SLE and

may inform future scientific treatment for SLE.
KEYWORDS

systemic lupus erythematosus, machine learning, elastic net, Boruta, gut microbiota
Introduction

Advancements in medical technology and increasing awareness

of health issues have brought a growing focus on women’s health,

given their unique physiological structure and functions (Qiao et al.,

2021). Systemic lupus erythematosus (SLE) is a chronic

autoimmune disease with high incidence, frequent relapses, and a

generally poor prognosis, particularly affecting women between the

ages of 20 and 40 (Tsang and Bultink, 2021; Lazar and Kahlenberg,

2023). It exhibits a wide range of clinical manifestations, ranging

from mild cutaneous issues to severe organ failure and

complications during pregnancy (Barber et al., 2021). Besides,

individuals with SLE face an increased risk of conditions like

atherosclerosis, thrombosis, arterial inflammation, and vascular

spasms compared to the general population (Samuelsson et al.,

2021).Tragically, SLE ranks among the leading causes of death in

young women (Yen and Singh, 2018), with a significantly elevated

mortality rate.

In the USA, a meta-analysis of over 26,000 female SLE patients

revealed a mortality rate 2.6 times higher than the general

population (Lee et al., 2016). In Asia, the annual incidence ranges

from 2.8 to 8.6 cases per 100,000 person-years, with a prevalence

varying from 26.5 to 103 cases per 100,000 individuals (Chiu and

Lai, 2010; Zou et al., 2014; Barber et al., 2021). The current

treatment for SLE primarily involves glucocorticoids and

immunosuppressants. While standard therapy is effective to some

extent, it comes with severe side effects and is not suitable for long-

term use (Golder and Tsang, 2020). Also, until now, the diagnosis of

SLE is primarily based on clinical assessment, although there are a

few instances where serologic tests show negative results. There are

no specific diagnostic criteria for SLE, and diagnosis is frequently

made using classification criteria, albeit with notable limitations

(Fanouriakis et al., 2021). Since women with SLE often experience

more severe symptoms and organ damage than men, early

diagnosis and prevention are essential for women’s health, and

identifying new biomarkers associated with SLE is of great

clinical significance.

Studies have shown a close relationship between intestinal flora

and the occurrence of SLE, with significant differences in gut

microbiota composition and metabolites in SLE patients

compared to healthy individuals (Hevia et al., 2014). A study

found that the Firmicutes/Bacteroidetes ratio in SLE patients was
0222
significantly lower than that in healthy subjects, which was

confirmed by quantitative PCR analysis. Besides, another study

showed that Proteobacteria increased and Ruminococcaceae

decreased in SLE patients in different regions of Heilongjiang

(Wei et al., 2019). Additionally, there are significant differences in

the levels of metabolites in the gut microbiota of SLE patients

compared to healthy individuals, especially aromatic amino acids

and phosphatidylinositol (Robinson et al., 2021).

Given the close relationship, constructing a model with

significantly dysregulated microbiotas (SDMs) for SLE would

make its early identification possible. Yet, traditional regression

models, which are determined by maximum likelihood estimation,

have not made much progress in disease auxiliary diagnosis (Song

et al., 2022). Notably, machine learning (ML), a research hotspot in

the field of life sciences, gains ground in various diseases, including

cardiovascular and cerebrovascular diseases (Zheng et al., 2021),

kidney diseases (Belur Nagaraj et al., 2020), tumours (Sammut et al.,

2022), neurological diseases (Boutet et al., 2021), immune diseases

(Chen et al., 2021). Therefore, the utilization of ML techniques for

the diagnosis of SLE based on gut microbiota is of great interest.

However, there is currently a relative lack of research on this topic.

Thus, ML could be adopted to identify crucial microbiota that may

be intimately associated with the onset and progression of SLE.

Building multiple algorithms utilizing these significant microbiotas

as predictive factors to recognize SLE may potentially offer novel

insights and value for the microbiota perspective of SLE diagnosis.

Furthermore, interpretability serves as a critical supplement to ML

decisions, and by integrating interpretable techniques with the most

effective ML algorithms and presenting the diagnostic rationale of

the model to physicians through visualization methods, it could

greatly facilitate the treatment of SLE, which helps promote

women’s health.

Considering the mounting evidence linking gut microbiota

dysbiosis to SLE, there is a growing interest in exploring the

potential of using gut microbiota as a predictive indicator for

early identification and prevention of SLE in female patients. To

this end, the present study aimed to characterize the gut microbiota

landscape using feature selection approaches, develop and validate

ML algorithms for early identification of SLE in female patients.

Additionally, we aimed to use interpretability techniques to

visualize the predictive factor mechanism, shedding light on the

complex relationships between gut microbiota and SLE risk
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occurrence, and providing a reference for the future scientific

treatment of SLE.
Materials and methods

Participants

This is a cross-sectional study conducted between December

2018 and August 2019, in which 54 patients diagnosed with

systemic lupus erythematosus (SLE) at the Second Hospital of

Shanxi Medical University were enrolled. Additionally, 55

negative controls (NC) who had no history of rheumatic immune

diseases or family history were also recruited at the Physical

Examination Centre of Shanxi Provincial People’s Hospital. The

inclusion criteria for the study were as follows: patients with

primary SLE diagnosed by a rheumatologist and who met the

1997 classification criteria for SLE as revised by the American

College of Rheumatology (Hochberg, 1997). Exclusion criteria

included patients with other autoimmune diseases, those who had

received immunosuppressant or antibiotic therapy in the past 2

months, those with incomplete clinical data, those who were

pregnant, those with special dietary habits, and those with severe

hepatic and renal insufficiency.

Ethics approval for the study was obtained from the Ethics

Committee of the Second Hospital of Shanxi Medical University

(Ethics No.: 2019-YX-107), and all patients provided informed

consent. The study workflow is illustrated in Figure 1.
Sample collection and experiments

Demographic information, including age and gender, was collected

from study participants before the experiment. Stool samples were

collected from both the SLE and NC groups after defecation during

admission or health examination, and stored at -80°C in a protective

solution using sterile cotton swabs for subsequent sequencing. The

detection of microorganisms in the intestinal flora is based on the

Illumina MiSeq sequencing platform, which employs bipartite

sequencing technology to construct sequence libraries of small

fragments that can be analyzed by sequencing. By splicing and

filtering the Reads, clustering or noise reduction to obtain the

Operational Taxonomic Unit (OTU), and then annotating and

analyzing the abundance of the species, the species composition of

the intestinal flora of the research object can be revealed.

The experiment procedures consist of DNA extraction and

Illumina sequencing, Operational taxonomic unit (OTU) cluster

analysis and species annotation and Bioinformatics analysis, as

previously described (Xin et al., 2022).

According to the manufacturer’s instructions, we first removed

the fecal specimens adsorbed with enteric flora from the cannula

and extracted the total DNA of the microorganisms in the samples

using the MagMAX™ Nucleic Acid Separation Kit; we tested the

DNA quality of the samples by agar gel electrophoresis, NanoDrop
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One and Qubit 4 (Thermo Fisher Scientific); we extracted the DNA,

and analyzed it by Phanta EVO Ultra The DNA was extracted and

amplified by Phanta EVO Ultra Fidelity DNA Polymerase

(Vazyme) to amplify the highly variable region of V3-V4 of the

microbial 16S rRNA gene. The product was purified and recovered

by FC magnetic bead kit (enlightenment). After purification, the

concentration of the purified product was detected by Qubit 4, and

its length distribution was detected on a Qsep100 Bioanalyzer, and

the fragment length was basically in the range of 350-400 bp. Each

PCR product was mixed homogeneously at the same final

concentration and sequenced 75 bp bipartite using the Illumina

MiSeq platform using MiSeq V2 reagent.

Pairs of raw data were acquired by sequencing using the

Illumina Miseq platform, followed by preprocessing of the raw

data, i.e., quality control, including low-quality filtering, and length

filtering, to obtain high-quality sequences. When the single-end

sequencing Read was less than 50 bp, the pair of Paired Reads was

deleted.When the single-end sequence read contained bases (Q

value< 5) less than 50% of the read length, the read was deleted.The

above steps were performed in Fastp software.

In addition, host genes were deleted using Bowtie2 software, i.e.,

comparing them with the host sequence and filtering out reads that

may be of host origin.Finally, quality-controlled Clean Reads were

compared with microbial databases using Kraken2 software to

obtain microbial data. In order to study the diversity information

of microbial composition of the samples, the valid sequences of all

samples were clustered into OTUs using Vsearch 2.4.4 with 97%

similarity (Hu et al., 2022). The representative sequences were then

analyzed by Silva128 database (http://www.arb-silva.de/) for species

annotation and taxonomy.

Also, we discuss the a diversity and b diversity between the two

groups. As for the b diversity, both Principal Co-ordinates Analysis

(PCoA) based on the Bray-Curtis distance matrix and Permutation-

basedMultivariate Analysis of Variance (PERMANOVA) and Non-

metric multidimensional scaling (NMDS) were employed to

determine the significance of the difference (Franklin et al., 2022).
Feature selection

Feature selection is a crucial step in data mining, which

eliminates irrelevant and redundant features while preserving the

original data’s value. It improves the data quality and reduces

computational costs, enhancing the model’s generalization ability

(Abbasi Mesrabadi et al., 2023). In the analysis of intestinal

microbiota in SLE patients, characterizing microbiota data at the

taxonomic level and removing redundant and irrelevant features is

necessary to reduce noise. ML algorithms offer three feature

selection methods: filtering, packaging, and embedding (Saha

et al., 2022). This study uses embedded-based Elastic Net and

packaging-based Boruta algorithms due to the differences in the

subset of features selected by different methods.

The Elastic Net algorithm is a linear regression model that

utilizes L1 and L2 regularization matrices. It inherits the sparsity of
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the LASSO method and the stability of the ridge regression L2

regularization. Elastic Net combines the two to obtain an optimal

sparse model when cross-validating feature selection while

compensating for the correlation between observed variables.

Most feature selection methods seek the feature set that

minimizes the model’s loss function. In contrast, Boruta selects a

set of features relevant to the outcome. It is a wrapping algorithm

for all relevant feature selections and identifies all features related to

classification in the candidate features, determining the optimal

subset of features (Kursa and Rudnicki, 2010; Kursa and

Rudnicki, 2010).
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Model construction

To investigate the potential of the intestinal significantly

dysregulated microbiota as a biomarker for SLE, four ML

algorithms were utilized to establish the relationship between 16

SDMs and SLE. These algorithms include logistic regression (LR),

adaptive boosting (AdaBoost), eXtreme gradient boosting

(XGBoost), and Random Forest (RF).

LR is a generalized linear model that assumes a Bernoulli

distribution for the dependent variable y. Logistic regression

introduces the Sigmoid function to better handle nonlinear
FIGURE 1

Workflow of this study. LR, Logistic Regression; LASSO, Least Absolute Shrinkage and Selection Operator; CART, Classification and Regression Tree;
Adaboost, Adaptive Boosting; XGBoost, Extreme Gradient Boosting; RF, Random Forest; PPV, Positive Predicted Value; NPV, Negative Predicted
Value; AUC, Area Under the Curve.
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classification problems, unlike linear regression, which assumes a

Gaussian distribution for y (LaValley, 2008; Meurer and Tolles,

2017). AdaBoost is a fundamental ML algorithm that assigns

different weights to the bit error rate of the weak classifier to create

a strong classifier (Sevinç, 2022). XGBoost is an enhanced algorithm

that combines individual learners to efficiently construct parallel

operations on the augmented tree (Davagdorj et al., 2020). By

adding regular terms to the original function, it reduces the

possibility of overfitting and accelerates the convergence speed

(Ogunleye and Wang, 2020). RF is an ensemble learning algorithm

that constructs multiple classification trees based on autonomously

sampled training data. It selects independent variables to achieve

decorrelation between trees, which in turn reduces the model

variance. The final classification result is obtained by aggregating

the results of multiple trees (Liu et al., 2022).

In summary, these algorithms were chosen for their ability to

handle nonlinear classification problems, reduce overfitting, and

achieve strong generalization ability.
Model evaluation

This study employs various performance evaluation metrics for

ML algorithm models, including Accuracy, Sensitivity, Specificity,

Positive Predictive Value (PPV), Negative Predictive Value (NPV),

and the receiver operating characteristic curve (ROC curve) with

Area under the Curve (AUC).
SHAP interpretability framework

SHAP is an additivity interpretation framework developed by

Lundberg et al. and is based on the ideas of game theory (Li et al.,

2023). For any individual, the prediction model outputs a

prediction, and the SHAP framework assumes that each feature is

a “contributor” to the target prediction and assigns Shapley values

to them. The sum of the cumulative Shapley value of the target

prediction and the average prediction value gives the contribution

of all features of the individual.

The shapley value for a particular feature xj represents the

average marginal contribution of that feature to the prediction. The

difference between the predictions with and without feature xj is

obtained by calculating the difference between the predictions with

and without feature xj for all possible combinations, specifically by

weighted summation with all possible combinations of features:

EQUATION 1

Fj(val) = o
S⊆ x1,…,xpf gn xjf g

Sj j ! (p − Sj j − 1) !
p !

val(S ∪ xj
� �

) − val(S)
� �

(1)

EQUATION 2

val(S) =
Z

f̂ (x1,…, xp)dPx∉S − Ex f̂ (X)
� �

(2)

x represents the feature value of the individual to be interpreted,

S⊆ x1,…, xp
� �n xj

� �
is the subset of all features excluding xj

� �
, p is
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the number of features in the subset, val(S ∪​ xj
� �

) denotes the

prediction of all features in the subset that contains xj
� �

, val(S) is the

prediction of the subset S that does not contain   xj
� �

of all feature,

Ex(f̂ (X))is the predicted expectation of all features, where
Sj j ! (p− Sj j−1) !

p !

is the weight of the subset S. For the understanding of the weights of

subset S: p features have p!possibilities under any ordering, and after

determining the subset S, p features have Sj j ! (p − Sj j − 1) ! kinds of

possibilities, so Sj j ! (p− Sj j−1) !
p ! is the possible share of feature

combinations for subset S.

Positive SHAP values (>0) indicate a feature positively affects

the predicted value, while negative SHAP values (<0) indicate an

adverse impact (Jiang et al., 2021). SHAP provides both global and

local explanations. Global explanations calculate the average SHAP

value of each feature on the entire dataset, while local explanations

determine the SHAP value of each feature for a single sample. The

SHAP framework is useful in understanding the mechanism behind

predictive models and making informed decisions.
Statistical analysis

The statistical analysis in this study was performed using R

software (version 4.2.0). Continuous variables with normal

distributions were reported as Mean ± Standard Deviation, while

skewed variables were presented as median (interquartile range).

Two-sample t-tests or Wilcoxon’s rank sum tests were utilized to

draw statistical inferences. To build the ML models, random

sampling was employed to split the dataset into training sets

(70%) and test sets (30%), respectively. The level of significance

was set at P< 0.05.
Results

Baseline characteristics

This study enrolled a total of 54 female patients diagnosed with

SLE and 55 healthy women in the NC group. The mean age of SLE

patients was 39.0 (32.0, 50.0) years, while the mean age of the NC

group was 34.0 (28.0 to 53.0) years. The age difference was not

statistically significant (P = 0.111), as shown in Table 1.
Diversity analysis

This study employed alpha diversity to assess the richness and

evenness of intestinal microbiota in SLE patients. The findings indicated

that the Chao1 and Richness indices of the SLE group were

significantly lower than those of the NC group (P< 0.001), indicating

reduced bacterial Richness in the SLE group (Figures 2A, B).
TABLE 1 Comparision of age in two groups.

Variable NC (N=55) SLE (N=54) p

age 39.00 (32.00 to 50.00) 34.00 (28.00 to 53.00) 0.111
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Furthermore, the Ace and Sobs indices of the SLE group were

also significantly lower than those of the NC group (P< 0.05),

suggesting an abnormal Evenness in the SLE group (Figures 2C, D).

Beta diversity was utilized to assess the structural composition

similarity of intestinal flora. PCoA analysis revealed that Coordinate 1

accounted for 13.76% and Coordinate 2 occupied 6.55%. Also, the

PERMANOVA analysis demonstrated that there were significant

structural differences between the two groups (P = 0.028).

Additionally, NMDS analysis indicated dissimilarity of species

composition between the two groups, as demonstrated in Figures 2E, F.
Feature selection

In total, there were 171 microbial species, which were

considered for feature selection. To obtain a subset of highly

correlated and non-redundant flora, Elastic Net and Boruta were
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utilized for feature selection. The parameters of Elastic Net for a
equals 0.3 and for Lambdamin equals 0.085. Besides, the parameters

employed for Boruta were as follows: doTrace=1, ntree=500, and

maxRuns=350. The resulting flora subsets consisted of 68 and 21

features in Elastic Net and Boruta, respectively (Figures 3A, B).

Among these subsets, 16 SDMs were identified (Figure 3C).

Among them, the abundance of Faecalibacterium_prausnitzii,

Euba c t e r i um_ e l i g e n s , D i a l i s t e r _ s u c c i t i p h i l u s , a n d

Rosebur ia_ in te s t i l i s , whi l e Rosebur ia_ inu l in ivorans ,

Va l l i t a l e a _p r on y en s i , P s eudobu t y r i v i b r i o _ rum in i s ,

Papillibacter_cinmivorans, and Clostridium_asparagiforme were

comparatively higher in SLE group, while the abundance of

Escherichia_fergusonii and Bacteroides_fragilis were higher in the

SLE group, with Blautia_wexlerae , Eubacterium_hallii ,

Blautia_faecis, Clostridium_aldenense, and Dorea_longicate

showing a slightly higher abundance in the SLE group as

well (Figure 3D).
A B

C D

E F

FIGURE 2

Comparison of alpha and beta diversity between SLE and NC groups. The points in the figure represent samples; *P<0.0001; (A) chao1 index; (B)
Richness index; (C) Sobs index; (D) Shannon index; (E) Principal Co-ordinates Analysis; the closer the distance between samples, the more similar
the species; (F) Non-metric multi-dimensional scale analysis, the closer the distance between samples, the higher the similarity between samples;
Stress value<0.2 indicated that NMDS could explain the similarity of sample structure to some extent; The R2 was defined as the ratio of variance to
the total variance of each group, and higher R2 values indicated a higher degree of explanation for sample differences between different groups.
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Comparison of SDMs in training and
test sets

This study randomly allocate the training and testing sets,

achieving a balanced ratio of 39:38 for NC and SLE in the training

set, and 16:16 in the testing set. This balanced ratio of 1:1 was

implemented to mitigate any adverse impact on model training

arising from class imbalance. Additionally, a rank sum test was

conducted to ensure the comparability of microbiota in both sets

and to facilitate an accurate evaluation of model performance. The

findings revealed no statistically significant difference (P > 0.05) in the

16 SDMs between the groups in both sets, as demonstrated in Figure 4.
Model evaluation

In this study, model performance evaluation was conducted

using Accuracy, Sensitivity, Specificity, PPV, NPV and AUC. As

shown in Table 2, all four ML algorithms showed commendable
Frontiers in Cellular and Infection Microbiology 0727
classification performance, with values exceeding 0.750 for all

metrics. Specifically, LR achieved a value of 0.750 for each metric.

AdaBoost achieved an Accuracy, Sensitivity, Specificity, PPV, and

NPV of 0.844, 0.875, 0.813, 0.824, and 0.867, respectively. XGBoost

exhibited metrics of 0.844, 0.750, 0.938, 0.923 and 0.930, while RF

achieved metrics of 0.875, 0.750, 1.000, 1.000, and 0.800. AUC values

were ranked as follows: XGBoost (0.930), RF (0.875), AdaBoost

(0.844), and LR (0.750), demonstrating the high performance of

the models.
XGBoost-SHAP interpretable framework

This study employed the XGBoost algorithm in combination

with the SHAP interpretability framework, owing to the former’s

superior performance compared to other models. The SHAP values

of 16 SDMs were outputted to obtain global and partial dependence

plots for the SLE risk of disease. The SHAP global dependency plot

in Figure 5 ranks the importance of XGBoost algorithm variables
A C

B D

FIGURE 3

Feature selection and comparison of SDMs between the two groups. (A) When Log (Lamda) is taken the smallest, there are 68 bacteria left after
using Elastic Net for feature selection; (B) There are 21 bacteria left after using Boruta for feature selection, the red part in the figure is the eliminated
intestinal flora, and the green part is the remaining ones; (C) the intersected bacteria by using Elastic Net and Boruta, a total of 16, i.e. significantly
dysregulated microbiotas (SDMs). (D) comparison of 16 SDMs in the two groups.
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and their respective positive and negative effects on SLE. The top 10

bacteria in terms of importance are Escherichia_fergusonii,

Fae ca l i ba c t e r ium_prau sn i t z i i , Eubac t e r ium_e l i g en s ,

Clostridium_aldenense, Vallitalea_pronyensis, Dorea_longicate,

Blautia_faecis, Roseburia_intestilis, Roseburia_inulinivorans, and

Papillibacter_cinmivorans. The colour gradient from low to high

represents the feature value from small to large, while the positive
Frontiers in Cellular and Infection Microbiology 0828
and negative SHAP values denote the correlation between the

feature and the prediction result. For instance, a negative value

for Eubacterium_eligens in a sample with a large value suggests a

reduced risk of SLE. The SHAP value is mainly concentrated in the

region with a positive SHAP value in the lower half of the colour

gradient in the figure, indicating that the higher the relative

expression of Roseburia_intestilis, the lower the risk of SLE.
A

B

FIGURE 4

Comparison of SDMs between the training and test sets in the two groups. Red represents the testing set; Green represents the training set; ns,
non-significant, P > 0.05; **: P< 0.01. (A) SLE group; (B) NC group.
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However, the SHAP global dependency plot is limited in its ability

to accurately reveal the relationship between each feature and SLE.

Therefore, we analyzed the SHAP partial dependency plot to better

comprehend the impact of feature samples on SLE, as depicted in

Figure 6. Each point in the plot represents the sample value of that

feature, where the abscissa denotes the magnitude of the feature value

and the ordinate represents the SHAP value of the corresponding

feature. For Faecalibacterium_prausnitzii, the SHAP value indicates a

trend of first decreasing and then rising, implying that the relative

expression of the bacterium and the risk of SLE exhibit a complex

nonlinear relationship, with a lower risk first and higher risk afterwards.
Discussion

Women’s health is a crucial issue in contemporary society, and

research indicates that gut microbiota plays a vital role in women’s
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health. However, the aetiology of SLE, a female-dominated immune

disease, remains incompletely understood. This study aimed to

explore the dysregulation of gut microbiota in SLE patients and

identify significantly dysregulated microbiota in SLE patients in

comparison with NC using ML algorithms.

In this study, we found significant differences in alpha and beta

diversity between the SLE and NC groups, indicating gut microbiota

dysregulation in SLE patients, which is consistent with prior findings in

related immune diseases, such as autoimmune hepatitis (Wei et al.,

2020), rheumatoid arthritis (Qiao et al., 2022), and primary dry

syndrome (Siddiqui et al., 2016). The investigation identified 16

significantly dysregulated microbial taxa in SLE patients using Elastic

Net and Boruta. We also revealed a complex relationship between the

relative abundance of each bacterium and the risk of SLE using the

SHAP interpretability framework.

Feature selection (Açıkoğlu and Tuncer, 2020) is a common data

preprocessing method used in ML modelling. It reduces model
TABLE 2 Model performance evaluation of four algorithms.

Algorithms Accuracy Sensitivity Specificity PPV NPV AUC

LR 0.750 0.750 0.750 0.750 0.750 0.750

Adaboost 0.844 0.875 0.813 0.824 0.867 0.844

XGBoost 0.844 0.750 0.938 0.923 0.790 0.930

RF 0.875 0.750 1.000 1.000 0.800 0.875
frontie
PPV, Positive Predicted Value; NPV, Negative Predicted Value.
FIGURE 5

XGBoost-SHAP partial dependency plot Analysis for Distribution of Feature Importance in SLE occurrence risk.
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complexity and improves accuracy by selecting a subset of features

with strong discriminatory power. Among the significantly

dysregulated microbial taxa, Faecalibacterium_prausnitzii,

Eubacterium_eligens, and Roseburia_intestilis were found to be

more abundant in the NC group, while Escherichia_fergusonii and

Bacteroides_fragilis were more abundant in the SLE group. These

microbial taxa are associated with gut health, systemic inflammation,

and immune diseases. Roseburia_intestilis is a butyrate-producing

bacterium that maintains gut health and alleviates systemic

inflammation through the production of metabolites. It has the

potential to improve atherosclerosis (Kasahara et al., 2018; Nie et al.,

2021). Faecalibacterium_prausnitzii is one of the most common gut

bacteria in healthy adults. Changes in its abundance may lead to the

occurrence of immune diseases (Miquel et al., 2013; Lopez-Siles et al.,

2017). Eubacterium_eligens plays an important role in intestinal

inflammation. Studies have shown that its abundance is significantly

reduced in patients with atherosclerosis (Liu et al., 2020) and

hypertension (Nakai et al., 2021). Escherichia_fergusonii is a

pathogenic bacterium that causes infections in humans and

animals (Gaastra et al., 2014) and is overexpressed in the gut of

non-alcoholic fatty liver disease patients (Xin et al., 2022). An
Frontiers in Cellular and Infection Microbiology 1030
increase in its abundance may contribute to the development of

SLE. Previous studies have shown that the abundance of

Proteobacteria increases, while Ruminococcaceae decreases in the

gut microbiome of SLE patients (Hevia et al., 2014; Wei et al., 2019).

This is not consistent with this study, which may be caused by

regional differences.

The nonlinearity between gut microbiota and SLE has not been

adequately modelled due to high dimensionality and significant

inter-individual variability of gut microbiota (Qutrio Baloch et al.,

2020). Recent advancements in artificial intelligence and big data

have led to the emergence of data-driven ML algorithms in medical

research (Ngiam and Khor, 2019). In this study, we divided the gut

microbiota data into training and testing sets, with a 7:3 ratio,

respectively. The feasibility of this approach was confirmed by the

non-statistically significant differences of the 16 SDMs between the

two datasets and a 1:1 SLE to NC ratio.

In this study, XGBoost showed the best performance, followed by

RF. RF is a classifier that can be trained and used for prediction through

multiple decision trees (Zhang et al., 2023). It is capable of adapting to

complex datasets and improves the richness, generalizability, stability,

and accuracy of the results by using random sampling (Yu and Zeng,
A B C D
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FIGURE 6

XGBoost-SHAP Global Dependence Plot Analysis for Distribution of Feature Importance in SLE occurrence risk. The distribution of the impact of each
feature on the model is displayed in the figure, where each point corresponds to a sample and the colour of the point represents the magnitude of the
variable value. The variable values are colour-coded from yellow to purple, corresponding to a high-to-low gradient. The x-axis represents relative
abundance. (A) Escherichia_fergusonii; (B) Faecalibacterium_prausnitzii; (C) Eubacterium_eligens; (D) Clostridium_aldenense; (E) Vallitalea_pronyensis;
(F) Dorea_longicate; (G) Blautia_faecis; (H) Roseburia_intestilis; (I) Roseburia_inulinivorans; (J) Papillibacter_cinmivorans; (K) Blautia_wexlerae;
(L) Bacteroides_fragilis; (M) Dialister_succitiphilus; (N) Eubacterium_hallii; (O) Clostridium_asparagiforme; (P) Pseudobutyrivibrio_ruminis.
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2022). This method can effectively avoid overfitting, and therefore, the

overall performance of the RF was better than other algorithms, second

only to XGBoost. Boosting is an effective ML technique that transforms

basic weak classifiers into strong classifiers using ensemble algorithm

theory to achieve better classification performance (Davagdorj et al.,

2020). XGBoost demonstrated robustness and improved the model’s

accuracy, avoiding overfitting and being less constrained by linear,

collinear, and other issues compared to traditional models (Liang et al.,

2021). Therefore, the performance of XGBoost was better than that of

other algorithms.

Although sophisticated algorithms can potentially benefit patients

by improving accuracy in clinical decision-making, their ambiguous

decision-making processes create a “black box” dilemma. To address

this issue, SHAP feature attribution analysis was employed to determine

the influence of each attribute on the final model output, thereby

improving the model’s interpretability. This study is the first to use

SHAP to explore the impact of microbiota on SLE, revealing how

changes in the relative abundance of SDMs affect the risk of SLE. For

example, an increase in the relative abundance of Escherichia_fergusonii

was found to increase the risk of SLE, while the relationship between

Faecalibacterium_prausnitzii and SLE risk was complex and non-linear.

However, the risk of SLE increased after a certain reduction in the

relative abundance of Faecalibacterium_prausnitzii, suggesting that

intestinal flora can be used as a dynamic detection index for SLE to

identify high-risk groups. Clinical trials are necessary to validate the

model and guide clinicians in conducting reasonable interventions on

the flora that increase the risk of SLE, thus providing a new direction for

individualized treatment of SLE.

While there is a large body of research exploring the relationship

between the gut microbiota and SLE (Chen et al., 2022; Mohd et al.,

2023; Toumi et al., 2023), it is important to note that our study focused

specifically on female participants. This thoughtful choice was made

due to the higher prevalence of SLE in women, making our study more

gender-specific and relevant to the population most affected by the

disease. This unique approach allowed us to gain insight into how SLE

manifests itself in more common groups. In addition, our study first

introduced ML-based SHAP to investigate how specific microbial

communities influence the occurrence of SLE. This innovative

approach provides a more detailed understanding of the key

microbial factors contributing to the development of SLE, allowing

us to analyze the complex relationship between gut microbiota and SLE

more comprehensively.

The study has several limitations. Firstly, the sample size was small,

and the data were collected from only one hospital in Shanxi province,

which may limit the generalizability of the results. To enhance the

robustness of our findings, future studies should aim to include larger

sample sizes from different regions to more fully control for potential

confounders and to improve the external validity of the results.

Additionally, the study only controlled for age, and other confounders

may have affected the results. Future research should include larger

sample sizes from multiple regions to better control for other

confounders and to verify the reliability of the findings. Furthermore,

the study did not analyze themetabolic pathways of the SDMs,making it

challenging to speculate whether the SDMs contributed to inflammation

and immune responses leading to disease. Future studies may benefit

from metabolomic analyses to elucidate these potential mechanistic
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links. Lastly, the SHAP results were not experimentally validated,

limiting the study’s conclusions. Further studies should aim to

experimentally validate the SHAP results and improve the credibility

of our findings and their applicability in clinical practice.
Conclusion

By comparing the composition of intestinal flora in SLE and NC

groups, this study showed that the alpha and beta diversity of intestinal

flora in SLE patients were significantly different from that of NC

individuals, which suggests dysregulation of intestinal flora in SLE

patients. Additionally, this study revealed the characteristics of the

intestinal microbiota in SLE patients. ML algorithms combined with

SDMs can be used to identify SLE individuals, especially the XGBoost

algorithm, which facilitates SLE prediction and provide a reference for

clinical decision-making. Moreover, SHAP analysis helps to identify the

relationship between SDMs and the risk of SLE, which provides valuable

information for improving scientific treatment for SLE in the future.
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The effect and mechanism of
Fushen Granule on gut
microbiome in the prevention
and treatment of chronic
renal failure
Lin Wang1,2†, Ao Xu1,2†, Jinxiang Wang3†, Guorong Fan1,2,
Ruiqi Liu4, Lijuan Wei1,2 and Ming Pei1,2*

1Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese
Medicine, Tianjin, China, 2Graduate School, Tianjin University of Traditional Chinese Medicine,
Tianjin, China, 3Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision
Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University,
Shenzhen, China, 4Nephrology Department, Tianjin Academy of Traditional Chinese Medicine
Affiliated Hospital, Tianjin, China
Background: Fushen Granule is an improved granule based on the classic

formula Fushen Formula, which is used for the treatment of peritoneal dialysis-

related intestinal dysfunction in patients with end-stage renal disease. However,

the effect and mechanism of this granule on the prevention and treatment of

chronic renal failure have not been fully elucidated.

Methods: A 5/6 nephrectomy model of CRF was induced and Fushen Granule

was administered at low and high doses to observe its effects on renal function,

D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The

16SrRNA sequencing method was used to analyze the abundance and

structure of the intestinal flora of CRF rats. A FMT assay was also used to

evaluate the effects of transplantation of Fushen Granule fecal bacteria on

renal-related functional parameters and metabolic toxins in CRF rats.

Results: Gavage administration of Fushen Granule at low and high doses down-

regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate,

endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol

sulphate in CRF rats. Compared with the sham-operated group in the same

period, CRF rats had a decreased abundance of the firmicutes phylum and an

increased abundance of the bacteroidetes phylum at the phylum level, and a

decreasing trend of the lactobacillus genus at the genus level. Fushen Granule

intervention increased the abundance of the firmicutes phylum, decreased the

abundance of the bacteroidetes phylum, and increased the abundance of the

lactobacillus genus. The transplantation of Fushen Granule fecal bacteria

significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA),

24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic

metabolic toxins in CRF rats. Compared with the sham-operated group, the

transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and

Bacteroidetes phyla and the Lactobacillus genus.
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Conclusion: Fushen Granule improved renal function and intestinal barrier

function by regulating intestinal flora, inhibiting renal fibrosis, and delaying

the progression of chronic renal failure.
KEYWORDS

chronic renal failure, intestinal microecology, fecal microbiota transplantation,
renal-intestinal axis, Fushen Granule
GRAPHICAL ABSTRACT
1 Introduction
Chronic renal failure (CRF) is a progressive disease resulting from

various chronic kidney diseases (CKD), leading to abnormalities in

kidney tissue structure and function until eventual failure (Fang et al.,

2023). Its development into the final stage, end-stage renal disease

(ESRD), poses a significant threat to human health and consumes

considerable health resources(Wouters et al., 2015) (Dai et al., 2021;

Wouk, 2021). Statistics show that CKD affects approximately 15-20% of

the global population (Matsushita et al., 2022), with the number of cases

increasing by about 20million per year. The prevalence of CRF stands at

15.1% among adults in the US and 10.8% in China (Wang et al., 2021).

As a late complication of CKD (Webster et al., 2017), ESRD is a major

disease with highmorbidity andmortality rates worldwide (Zhang et al.,

2012; Liyanage et al., 2015). The cost of treating ESRD is currently

staggering; in the US alone, it is estimated to be around US$34 billion

per year (Saran et al., 2018). The burden of CRF on healthcare systems

and health insurance costs has become a tremendous challenge for

public health systems worldwide. Therefore, determining how to delay
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the disease process and improve patients’ quality of life during the

chronic kidney failure phase is a crucial issue in preventing and treating

chronic kidney disease and end-stage renal disease.

The treatment of CRF still has no specific method in the

international medical community, mainly to control protein intake,

anti-oxidative stress, blood pressure, blood glucose and lipid control

and other risk factors that may lead to the progression of the disease to

slow down the deterioration (Ruiz-Ortega et al., 2020; Faria and de

Pinho, 2021); Although there has been great progress in the study of

molecular mechanisms and related markers, the clinical translation is

poor. In recent years, more and more studies have demonstrated that

the development of CRF is closely related to the imbalance of intestinal

microecology, and that disorders of intestinal flora and disruption of

intestinal barrier structure and function play an important role in

disease progression (Yang et al., 2018; Pluznick, 2020). Intestinal

dysfunction can be seen in the early stages of CRF, mainly in the

form of digestive symptoms such as impaired digestion and absorption

in the intestine, as well as varying degrees of impairment of intestinal

barrier function. The presence of the intestinal barrier prevents

bacteria, pathogens and other harmful substances in the intestinal

lumen from entering the bloodstream to maintain the stability of the

internal environment. After the intestinal barrier is damaged,

endotoxins and intestinal flora can enter the blood circulation,

resulting in enterogenic endotoxemia, which aggravates the micro-

inflammatory state of the body. CRF and peritoneal dialysis patients are
frontiersin.org
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combined with varying degrees of endotoxemia (Gonçalves et al., 2006;

Szeto et al., 2008; Feroze et al., 2012), and uremic rats are more prone to

lateral translocation of intestinal bacteria (de Almeida Duarte et al.,

2004), this is a reflection of the impaired intestinal barrier in CRF. In

addition, the accumulation of intestinal proteins in CRF alters the

structure of the intestinal flora and increases the number of enteric

proteolytic bacteria. Tryptophan is fermented in the intestine to

produce indole, which is absorbed into the blood via the intestine

and converted to IS in the liver; tyrosine and phenylalanine are

fermented in the intestine to produce p-cresol, which is converted to

PCS in the intestinal epithelium (Liabeuf et al., 2011). The latter is

converted to PCS in the intestinal epithelium. Since IS and PCS are

bound to albumin in the blood and cannot be excreted through dialysis,

their accumulation in the body can accelerate the progression of renal

failure by aggravating glomerulosclerosis and interstitial fibrosis

(Miyazaki et al., 1997; Gelasco and Raymond, 2006; Watanabe et al.,

2013). Therefore, repairing the intestinal barrier and reversing the

imbalance of intestinal flora are considered as potential therapeutic

targets and new targets for intervention in the treatment of CRF.

Traditional Chinese medicine (TCM) holds a unique advantage

in the treatment of CRF. CRF involves a complex interplay among

various organs, with a particularly intricate relationship between the

spleen and kidney systems in TCM. The fundamental mechanism

underlying CRF is often described as “deficiency of the spleen and

kidney, accumulation of turbid toxins.” Guided by this medical

principle, the Department of Nephrology at the First Affiliated

Hospital of Tianjin University of Traditional Chinese Medicine has

tailored its approach to the pathogenic patterns of CRF. Draw upon

extensive clinical practice and years of specialized case data, and

referencing the optimized compilation and efficacy validation of

nationwide TCM protocols for CRF, this has ultimately evolved

into the “Fushen Formula.” This formula serves as the basis for a

corresponding composite herbal preparation named “Fushen

Granule.” The granule preparation has received hospital

formulation approval (Batch Number: 140928) and is primarily

employed to treat intestinal dysfunctions related to peritoneal

dialysis in ESRD patients. It has been shown to achieve definite

therapeutic effects in clinical practice. In clinical application, the

treatment group receiving Fushen Granule demonstrated superior

improvement in renal function and reduction in blood creatinine

(BCR) and blood urea nitrogen(BUN) levels compared to the control

group, with no adverse reactions observed (Sun and Liu, 2010).

Among elderly CKD stage 4 patients, oral administration of Fushen

Granule significantly enhanced kidney function and nutritional

status, ameliorated symptoms, and elevated quality of life (Yang

and Yang, 2015). Another study revealed that the combination of

blood purification and oral administration of Fushen Granule for

treating CRF significantly improved kidney function and quality of

life, reduced hospitalization time, lowered mortality rates, and

alleviated economic burdens (Lei, 2016). Furthermore, the

comprehensive efficacy of oral administration of Fushen Granule

combined with acupuncture at specific points was found to surpass

that of conventional acupuncture alone in CKD stage 4 patients

(Zhang and Yang, 2016). Building upon clinical practice,

fundamental research on Fushen Granule has also been initiated.
Frontiers in Cellular and Infection Microbiology 0336
Results from basic experiments demonstrate that Fushen Granule can

slow down the progression of renal function impairment in a rat

model of CRF. It reduces the expression of mild inflammatory factors

(such as hs-CRP, IL-6, and TNF-a), lowers blood urea nitrogen

(BUN) and blood creatinine(BCR) levels, thereby improving kidney

function and delaying the progression of renal deterioration (Zhang

and Yang, 2018a; Zhang and Yang, 2018b). Fushen Granules are not

only suitable for patients with CRF, but also for conditions such as

peritoneal dialysis in CRF and renal interstitial fibrosis (Zhao et al.,

2022). A multicenter clinical study involving 240 peritoneal dialysis

patients over a 6-month period demonstrated significant

enhancements attributed to Fushen Granules. These enhancements

include improved TCM syndromes, enhanced dialysis efficiency,

increased removal of toxins and excess water, slowed decline of

residual kidney function, and an overall improvement in quality of

life (Yang et al., 2012a; Yang et al., 2013). Additionally, Fushen

Granules exhibited positive effects on the prognosis of peritonitis

(Jiang et al., 2020a), gastrointestinal function in peritoneal dialysis

patients (Chen, 2016), and maintenance of protein nutritional status

(Yang et al., 2014; Lei and Yang, 2018; Lei et al., 2018a). In peritoneal

dialysis rats, research reveals that Fushen Granules improve renal

function damage through multiple pathways, including modulating

Glo-1 expression levels and reducing serum AGEs accumulation,

thereby safeguarding residual kidney function(Tang et al., 2017; Tang

et al., 2018b). Furthermore, it alleviates ultrafiltration volume and

glucose transport, enhancing peritoneal dialysis efficacy(Yang et al.,

2021b). Fundamental research also indicates that Fushen Granules

regulate Dcn, inhibit activation of the TGF-b pathway, disrupt

extracellular matrix accumulation, modulate glucose and lipid

metabolism, suppress expression of fibrosis-promoting factors (such

as TGF-b1, TGF-bRII, CTGF, IL-6, CTGF, VEGF), and elevate

expression of anti-fibrotic factors (HGF, BMP-7), thereby

restraining peritoneal collagen formation and inhibiting mesothelial

cell transdifferentiation. As a result, it slows the progression of

peritoneal fibrosis (Yang et al., 2012b; Dou, 2015; Lei et al., 2018b;

Lei et al., 2018c; Jiang et al., 2020b; Li et al., 2020; Yang et al., 2021a).

Additionally, Fushen Granules reduce the accumulation of pro-

oxidative factors like MG and MDA, upregulate the expression of

the antioxidant GSH, subsequently ameliorating anemic conditions

in CRF peritoneal dialysis rats (Tang et al., 2018a).

Fecal microbiota transplantation (FMT) has recently gained

renewed clinical interest as a long-established therapy for rebuilding

the intestinal flora. FMT, i.e. the isolation of functional donor or

autologous intestinal flora and transplantation into the patient’s

gut, has been applied to treat a range of gastrointestinal/non-

gastrointestinal disorders associated with intestinal flora and is a

breakthrough medical advance in recent years (Cui et al., 2016). In

addition, FMT is also used in the renal field for kidney

transplantation (Ahmad and Bromberg, 2016). Although the

correlation between intestinal flora and CKD/CRF is currently a

hot topic of research, the use of FMT in the treatment of CKD/CRF

has not yet been reported. Therefore, within the scope of affirming

Fushen Granules’ ability to retard peritoneal fibrosis progression,

enhance dialysis efficacy, and improve quality of life for peritoneal

dialysis patients—particularly in ameliorating intestinal functional
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disorders—we have integrated Fushen Granules with FMT. This

integration enables a more profound and direct impact of post-

intervention microbiota reinfusion on intestinal microbiota

dynamics. From this perspective, the pivotal role and significance

of gut microbiota in CRF are harnessed, establishing novel avenues

and intervention targets for preventing and treat ing

CRF progression.
2 Materials and methods

2.1 Preparation of the experimental drug,
Fushen Granule

Fushen Granules (Batch number: 140928) were provided by the

First Teaching Hospital of Tianjin University of Traditional

Chinese Medicine (Tianjin, China) in strict compliance with the

Good Manufacturing Practice and Good Laboratory Practice

guidelines for Pharmaceutical Manufacturers. Fushen Granules

are primarily composed of eight different herbal ingredients. The

names of these herbs have been revision in the plant list (http://

www.theplantlist.org), and the details can be found in Table 1.

Through UPLC/Q-TOF analysis, the main active components of the

Fushen Granules were characterized. We have preliminarily

identified 55 different compounds in FSG, as detailed in the

attached document. The granules were dissolved in distilled

water, and the dosage for rats was adjusted based on the body

surface area of humans, with equal amounts administered as low

doses and 10 times the amount given as high doses.
2.2 Laboratory animals

Specific pathogen-free (SPF) healthy male Sprague-Dawley

(SD) rats (weight 180 ± 20g) were purchased from the

Experimental Animal Centre of the Chinese People’s Liberation

Army Academy of Military Medical Sciences. They were housed in

the Experimental Animal Centre of Tianjin University of Chinese

Medicine. Throughout the experiment, the rats were fed normal
Frontiers in Cellular and Infection Microbiology 0437
chow (no yeast, no probiotics) and had ad libitum access to water.

All animal procedures were conducted in accordance with the NIH

Guide for the Care and Use of Laboratory Animals and the Chinese

Laboratory Animal Management Methods. The ethical approval for

this study was No. IRM-DWLL-2020100.
2.3 Experimental reagents and apparatus

The following reagents and apparatus were used in the study:

Rat Indoxyl Sulfate (IS) ELISA Kit (Jianglai Bio, JL44174), Rat P-

Cresol Sulfate (PCS) ELISA Kit (Jianglai Bio, JL48836), Lactate Test

Kit (Nanjing Jiancheng, A019-2-1), Endotoxin Assay Kit (Xiamen

Horseshoe Crab Bio, EC80545), Urea Nitrogen Assay Kit

(Changchun Huili, C010), Creatinine Assay Kit (Changchun

Huili, C074), Uric Acid Assay Kit (Changchun Huili, C075), and

DNA Isolation Kit (MoBio, Carlsbad, CA, USA). An Illumina HiSeq

platform was provided by Novogene Bioinformatics Co. Ltd.,

Beijing, China.

Equipment used in the study included a vertical refrigerated

display cabinet (Star), a horizontal freezer (Meiling), an electronic

balance (Mettler-Toledo Instruments (Shanghai) Co., Ltd.), a high-

speed tissue grinder (Servicebio), a benchtop high-speed frozen

centrifuge (ThermoFisher), and an enzyme-linked immunosorbent

assay (BioTek).
3 Methods

3.1 Chronic renal failure rat model
construction and sample collection

In this study, a 5/6 nephrectomy was performed to establish a

chronic renal failure(CRF) model in rats. The left kidney was initially

resected by 5/6 nephrectomy, and after a 1-week recovery period, the

right kidney was completely resected. Blood and urine biochemical

tests were conducted at the end of the modeling period. Fresh feces

from each group were collected in sterile lyophilized tubes,

immediately placed in liquid nitrogen, and then stored at -80°C.
TABLE 1 The constituents of Fushen Granule.

Num Scientific name Material Latin name Chinese name Mass Ratio

1 Astragalus membranaceus Root Hedysarum Multijugum Maxim Huangqi 15g

2 Angelica sinensis Root Angelica sinensis (Oliv.) Diels Danggui 10g

3 Epimedium brevicornu Maxim Root Epimedium brevicornu Maxim Xianlingpi 15g

4 Citrus reticulata Blanco outer pericarp Citrus reticulata Blanco Chenpi 10g

5 Pinellia ternata Roots and rootstalk Pinellia ternata (Thunb.) Makino Banxia 15g

6 Salvia miltiorrhiza Bunge Roots and rootstalk Salvia miltiorrhiza Bunge Danshen 30g

7 Rheum Roots and rootstalk Rheum palmatum L. Dahuang 10g

8 Siebold Winged shoots or branch wings Euonymus alatus (Thunb.) Siebold Guijianyu 30g
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3.2 Observation on the intervention effect
of Fushen Granule on intestinal flora
in CRF

For in vivo studies, 150 specific pathogen-free (SPF) healthy

male Sprague-Dawley (SD) rats were acclimatized for 1 week. The

rats were randomly divided into the following groups: 30 rats in the

sham-operated group (Group A), 30 rats in the sham-operated

Chinese medicine group (Group B), and 90 rats in the modeling

group. The modeling group was further divided into a low-dose

Chinese medicine group (Group C), a high-dose Chinese medicine

group (Group D), and a control model group (Group E), with 30

animals in each group. Groups B and C received a low dose of

Fushen Granule via gavage; Group D received 10 times the high

dose of Fushen Granule via gavage; Groups A and E were given

2ml·d-1 distilled water via gavage. Six animals from each group

were euthanized for examination at the beginning of drug

intervention, at the end of the second week, and at the end of the

fourth week. All remaining animals were euthanized at the end of

the sixth week.
3.3 Fecal microbiota transplant experiment

After 1 week of acclimatization, 55 specific pathogen-free (SPF)

healthy male Sprague-Dawley (SD) rats were randomly divided into

a 5/6 nephrectomized kidney failure rat model recipient group (15 x

3) and a donor rat group (5 x 2, approximately 1/3 the number of

the recipient group). The donor group was further divided into the

Fushen Granule donor group and the normal donor group, while

the recipient group was divided into the model group + Fushen

Granule donor FMT group, the model group + normal donor FMT

group, and the model group + saline sham operation group. In the

Fushen Granule donor group, a low dose of Fushen Granule was

administered for 6 weeks from the first day of right nephrectomy,

based on the effect of the previous experimental intervention. No

intervention was made in the normal donor group. Fresh,

uncontaminated feces were collected daily, and intestinal

microbial extracts were prepared in saline. Fecal microbiota

transplantation(FMT) was completed within 4 hours of feces

collection. The recipient groups, model group + Fushen Granule

donor and model group + normal donor, underwent FMT with

intestinal microbial extracts from the Fushen Granule donor group

and the normal donor group, after determining successful modeling

through dynamic observation of kidney function. The model group

+ saline sham group underwent a procedure with an equal amount

of saline equivalent as the control group.
3.4 Observation indicators

The animals were dynamically observed, and their body weight

was assessed every 5 days. The focus was on the general status of the

rats at the beginning of drug intervention and at the end of the 2nd,

4th, and 6th weeks (general status in terms of behavioral activity,
Frontiers in Cellular and Infection Microbiology 0538
body weight, phenotypic signs, and survival rate), renal function

indicators (Cr, BUN, UA, eGFR, and urinary microalbumin), serum

endotoxin, D-lactate, metabolic toxins of intestinal origin (IS, PCS),

and analysis of intestinal bacterial diversity.
3.5 Analysis of intestinal bacterial diversity

In this study, 16S rRNA was used to assess intestinal bacterial

diversity, but the timing of fecal sample collection differed between

the two experiments. Fresh fecal samples were collected at around

10 am at the beginning of the intervention and at the end of the

second, fourth, and sixth weeks. Fecal samples were collected from

the three model groups at two time points: before the start of the

FMT experiment and 15 days after the transplantation (Note: The

feces were collected for the same amount of time each instance).

Fresh fecal samples collected were immediately frozen in liquid

nitrogen for 5 minutes and then stored at -80°C. DNA was extracted

from feces using the Power Fecal DNA Isolation Kit (MoBio,

Carlsbad, CA, USA). DNA was recovered using 30 mL of the

buffer included in the kit. Sequencing principles were used for

synthetic sequencing with the Illumina HiSeq platform (Novogene

Bioinformatics Co., Beijing, China). Taxonomic composition of the

flora was analyzed to evaluate bacterial abundance and

compositional diversity, using phylum, order, family, and

genus classifications.
3.6 Statistical analysis

SPSS 19.0 for Windows statistical software was used for data

analysis. Data were expressed as mean ± SEM relative to the number

of samples in each group (n). Analysis of variance (ANOVA),

Wilcoxon rank-sum test, Tukey’s t-test, and Student’s t-test were

used to determine statistical significance between multiple

treatment groups. The Kaplan-Meier survival test was used to

analyze survival rates. Results with p< 0.05 were considered

statistically significant.
4 Results

4.1 Effect of Fushen Granule on the status
of rats with CRF

4.1.1 General state
During the modeling phase, rats in the model group typically

exhibited irritability, emotional instability, and agitated reactions

when injected or given the drug via gavage. Over time, rats in the

sham-operated group gained weight, appeared in good spirits,

moved freely, were responsive, and had well-groomed,

moisturized fur. In contrast, rats in the model group gradually

lost weight, ate less than the sham-operated group, appeared more

depressed, squinted, were less active, less responsive, and had
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disheveled and unkempt fur. Rats in the drug intervention group

demonstrated better performance in terms of mental status, body

weight, activity, responsiveness, and fur appearance after treatment,

but still showed slight differences compared to the sham-

operated group.

4.1.2 Observation of renal function indicators
Compared with the sham-operated group, the model group

showed a statistically significant increase in Cr, BUN, and 24-h

urinary microalbumin at weeks 2, 4, and 6 (P< 0.01), indicating

successful modeling of renal failure (see Table 2). UA also tended to

increase, but the difference was not statistically significant.

Compared with the model group, the 24-h urine microalbumin in

the Chinese medicine low-dose group decreased significantly at

weeks 2 and 4 (P< 0.001), BUN decreased significantly at week 4 (P<

0.05), and Cr decreased significantly at week 6 (P< 0.05). The

Chinese medicine high-dose group showed significant decreases in

Cr and 24-h urine microalbumin at weeks 2, 4, and 6 (P< 0.01), and

BUN at week 4 (P< 0.05) (Table 2). In conclusion, the herbal

intervention group had a positive effect on the renal function

indices of rats with CRF, and the efficacy of the high-dose herbal

group was better.
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4.1.3 Observation of serum endotoxins and
metabolic toxin-like indicators of enteric origin

Compared with the sham-operated group, rats in the model

group showed significantly higher IS, PCS, D-lactic acid, and

endotoxin levels at weeks 2, 4, and 6 (P< 0.05), indicating

successful modeling of renal failure. Compared with the model

group, the Chinese medicine low-dose group showed significant

decreases in IS, PCS, D-lactate, and endotoxin at weeks 2, 4, and 6

(P< 0.05). The high-dose group of Chinese medicine showed a

significant decrease in PCS (P< 0.01) at the beginning of the drug

intervention and in IS, PCS, D-lactic acid, and endotoxin at weeks 2,

4, and 6 (P< 0.05) (Table 3). This indicates that both the low and

high dose groups of Chinese medicine demonstrated improvement

in D-lactate, endotoxin, and enteric-derived metabolic toxin-like

indicators. Compared with the low-dose group, the high-dose group

generally had a better effect on D-lactate, endotoxin, and intestinal-

derived metabolic toxins.

4.1.4 Analysis of intestinal bacterial diversity
4.1.4.1 Sequencing data quality and OTU analysis

The IonS5TMXL sequencing platform was utilized to analyze

the diversity of intestinal bacteria. Using a single-end sequencing
TABLE 2 Indicators of kidney function.

Group
Point
in time

Cr
(mmol/L)

BUN
(µmol/l)

UA
(mmol/l)

24-h urine microalbumin
(mg/L)

Sham-operated Group A

Initial 48.25 ± 4.28 18.29 ± 2.15 108.35 ± 4.79 23.28 ± 4.82

2 weeks 42.45 ± 3.35 14.28 ± 2.23 104.22 ± 16.38 26.75 ± 3.24

4 weeks 65.59 ± 10.07 16.58 ± 0.61 107.53 ± 20.37 29.36 ± 4.91

6 weeks 74.31 ± 5.05 38.66 ± 1.07 117.16 ± 12.77 25.18 ± 3.52

Fushen Granule low dose control
(Group B)

Initial 50.23 ± 5.97 20.34 ± 2.46 110.25 ± 5.32 25.17 ± 3.34

2 weeks 55.9 ± 5.23 13.98 ± 2.80 121.00 ± 20.57 25.37 ± 5.82

4 weeks 65.72 ± 9.82** 16.04 ± 1.16 109.29 ± 14.96 27.54 ± 3.26

6 weeks 72.34 ± 8.14 38.47 ± 0.67 139.85 ± 40.34 24.34 ± 2.84

Model (Group E)

Initial 47.93 ± 4.74 19.23 ± 2.73 115.32 ± 5.28 27.43 ± 3.44

2 weeks 109.23 ± 4.56*** 50.24 ± 4.56*** 110.25 ± 11.39 128.37 ± 12.37***

4 weeks 103.75 ± 2.57** 45.47 ± 0.95** 104.42 ± 16.04 379.85 ± 28.37***

6 weeks
107.79

± 12.37**
44.33 ± 2.1** 127.40 ± 18.15 583.92 ± 45.29***

Fushen Granule at low doses
(Group C)

Initial 51.2 ± 5.22 20.12 ± 1.94 109.73 ± 4.91 24.82 ± 4.19

2 weeks 106.78 ± 1.25 45.91 ± 3.12 108.13 ± 26.28 88.24 ± 6.74###

4 weeks 96.46 ± 3.67** 25.48 ± 2.63# 107.68 ± 24.15 128.49 ± 18.58###

6 weeks 95.41 ± 3.91**# 44.63 ± 1.45** 136 ± 34.74 73.95 ± 10.28###

Fushen Granule at high doses
(Group D)

Initial 49.37 ± 4.60 18.32 ± 2.31 111.20 ± 4.83 26.37 ± 2.58

2 weeks 95.24 ± 3.13## 44.15 ± 4.50 103.67 ± 30.12 75.63 ± 6.53###

4 weeks 85.1 ± 9.7**## 41.69 ± 0.9**# 120.97 ± 24.09 102.53 ± 13.45###

6 weeks
90.41

± 9.77**##
44.03 ± 2.24** 119.87 ± 15.49 58.24 ± 8.94###
Compared to the sham-operated group: * indicates p< 0.05, ** indicates p< 0.01, *** indicates p< 0.001; compared to the model group, # indicates p< 0.05, ## indicates p< 0.01, ### p< 0.001.
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method, an average of 83,925 reads per sample were measured by

shear filtering of Reads, and an average of 78,965 valid data were

obtained after quality control, with a quality control efficiency of

94.15%. The sequences were clustered into OTUs (Operational

Taxonomic Units) with 97% agreement, yielding a total of 4,955

OTUs. The OTUs sequences were then analyzed against the

Silva132 database for species annotation to understand the

composition and differences between intestinal flora. A total of

4,955 OTUs were counted according to different taxonomic levels,

of which the number of OTUs that could be annotated to the

database was 4,954 (99.98%). Dilution curves were constructed by

the number of OTUs detected at each sequencing depth of the

experimental data, and it was found that as the sequencing depth

gradually increased, the sparsity curve also gradually smoothed out,

indicating that the current sequencing depth is essentially sufficient

to reflect the microbial diversity contained in this community

sample (Figures 1A, B). The smoothness of the Rank Abundance

curve reflects the uniformity of the species distribution, and from

the figure (Figure 1C), it can be observed that the distribution of

microbial species contained in this sequenced sample was poorly

distributed. Species accumulation box plots were used for sample
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size and diversity analysis of the biota. As seen in the box line plot

(Figure 1D), the box positions no longer rose sharply but leveled off

as the sample size expanded, indicating that the current sample size

was abundant and adequate, and largely representative of the

community’s flora characteristics.

By clustering, sequences can be grouped into various categories

based on their similarity to each other, with each category

representing a taxonomic OTU. OTUs with a 97% similarity level

are typically analyzed for bioinformatic statistics. In this study, we

analyzed intestinal bacterial diversity in 5/6 nephrectomized rats.

The results showed that the number of OTUs shared between the

model and sham-operated groups was highest at week 0 (1465).

However, the number of OTUs shared by the five groups gradually

decreased at weeks 2 and 4, with 1197 and 541, respectively. This

indicates that 5/6 nephrectomy can cause a decrease in the number

of OTUs in the group. In terms of unique OTUs, the model group

had 247, 186, and 66 unique OTUs at weeks 2, 4, and 6, respectively.

The Chinese medicine high-dose treatment group had 393, 357, and

821 unique OTUs, while the low-dose treatment group had 87, 177,

and 55 unique OTUs in that order. These findings suggest that

Fushen Granule may alleviate intestinal flora damage and increase
TABLE 3 Indicators for D-lactate, endotoxin and enteric-derived metabolic toxin categories.

Group Point in time

Metabolic toxins of
enteric origin

Serum endotoxin

IS (mg/ml) PCS (mg/ml) D-Lactic acid (mg/ml) Endotoxin (EU/ml)

Sham-operated (Group A)

Initial 1.02 ± 0.12 0.03 ± 0.01 7.68 ± 0.27 0.019 ± 0.003

2 weeks 1.35 ± 0.34 0.05 ± 0.01 7.59 ± 0.31 0.029 ± 0.004

4 weeks 1.66 ± 1.12 0.08 ± 0.01 7.51 ± 0.21 0.027 ± 0.002

6 weeks 1.71 ± 0.47 0.13 ± 0.07 7.66 ± 0.30 0.032 ± 0.004

Fushen Granule low dose control
(Group B)

Initial 0.85 ± 0.23 0.02 ± 0.01 7.52 ± 0.31 0.021 ± 0.002

2 weeks 0.90 ± 0.11 0.04 ± 0.01 7.45 ± 0.36 0.025 ± 0.003

4 weeks 0.96 ± 0.47 0.07 ± 0.01 7.22 ± 0.25 0.026 ± 0.006

6 weeks 3.04 ± 0.6 0.06 ± 0.02 7.82 ± 0.48 0.021 ± 0.001

Model (Group E)

Initial 1.05 ± 0.19 0.05 ± 0.01* 7.61 ± 0.27 0.023 ± 0.003

2 weeks 3.67 ± 0.65*** 0.43 ± 0.11*** 15.92 ± 0.28*** 0.316 ± 0.027***

4 weeks 6.02 ± 1.58** 0.58 ± 0.38** 20.31 ± 0.48*** 0.429 ± 0.031***

6 weeks 6.35 ± 2.24** 1.74 ± 0.34* 14.76 ± 0.34*** 0.496 ± 0.038***

Fushen Granule at low doses (Group C)

Initial 0.98 ± 0.10 0.04 ± 0.01 7.76 ± 0.24 0.026 ± 0.003

2 weeks 2.59 ± 0.35## 0.20 ± 0.04### 10.22 ± 0.47### 0.209 ± 0.023###

4 weeks
3.89

± 0.78**##
0.26 ± 0.1 9.03 ± 1.02### 0.297 ± 0.027###

6 weeks 3.54 ± 1.97# 0.3 ± 0.23# 11.76 ± 0.13### 0.234 ± 0.025###

Fushen Granule at high doses (Group D)

Initial 0.95 ± 0.15 0.02 ± 0.01## 7.53 ± 0.25 0.025 ± 0.001

2 weeks 2.48 ± 0.32## 0.13 ± 0.02### 9.84 ± 0.52### 0.174 ± 0.018###

4 weeks 3.55 ± 0.79*## 0.15 ± 0.04# 10.79 ± 0.63### 0.216 ± 0.023###

6 weeks 3.19 ± 1.56# 0.39 ± 0.24# 12.01 ± 0.44### 0.183 ± 0.017###
Compared to the sham-operated group: * indicates p< 0.05, ** indicates p< 0.01, *** indicates p< 0.001; compared to the model group, # indicates p< 0.05, ## indicates p< 0.01, ### p< 0.001.
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the number of OTUs in rats with 5/6 nephrectomy to some extent.

Compared with the same time points, the herbal high-dose

treatment groups at weeks 2, 4, and 6 contained the highest

number of unique OTUs. This indicates that the Chinese

medicine high-dose group was more effective in restoring

intestinal flora diversity in 5/6 nephrectomized rats than the low-

dose treatment group (Figure 2).

4.1.4.2 Species annotation and taxonomic analysis

Species abundance tables at different taxonomic levels were

generated using QIIME software, and then mapped into

community structure at each taxonomic level of the samples

using R language tools. The results showed that the dominant

species at the phylum level were Firmicutes, Bacteroidetes, and

Proteobacteria; at the genus level, the dominant species were

Lactobacillus, Enterococcus, and Stenotrophomonas. The phylum

Firmicutes and the phylum Bacteroidetes are the most abundant

bacterial phyla in the intestinal flora, accounting for more than 90%

of all bacteria. An analysis of the relative abundance of the intestinal

flora at the phylum and genus taxonomic levels is shown in

Figure 3A, B. In the sham-operated group, the levels of the two

bacteria, Phylum Firmicutes and Phylum Bacteroidetes, were
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relatively stable and did not change over time. The relative

abundance of Phylum Firmicutes was 70%, 69%, 68%, and 63%,

and the relative abundance of Phylum Bacteroidetes bacteria was

24%, 24%, 22%, and 30% at the four time points of 0, 2, 4, and 6

weeks, respectively. The ratio of Phylum Firmicutes to Phylum

Bacteroidetes bacteria remained roughly between 2 and 3. In

contrast, in the 5/6 nephrectomy model group, the relative

abundance of the Firmicutes phylum decreased, and the relative

abundance of the Bacteroidetes increased, resulting in a decrease in

the Firmicutes phylum/Bacteroidetes phylum ratio. Compared to

the sham-operated group during the same period, the relative

abundance of Firmicutes phylum bacteria in the model group

decreased from 81% at week 0 to 54% at week 6, while the

relative abundance of Bacteroidetes phylum increased from 10%

at week 0 to nearly 40% at week 6, with a decreasing trend in the

ratio of the two contents (Table 4). Compared with the model

group, the Chinese medicine low-dose and Chinese medicine high-

dose groups could differently reduce this alteration to some extent

and restore the Firmicutes phylum and Bacteroidetes phylum

composition ratio. For example, at the second week, the

Firmicutes phylum and Bacteroidetes phylum ratio was 2.88 in

the sham-operated group, and the ratio was 1.1, 2.27, and 1.88 in the
B

C D

A

FIGURE 1

Analysis of intestinal bacterial diversity. (A, B) Sparsity curve of the sample to be tested; (C) Rank Abundance curve; (D) Cumulative box plot
of species.
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model, low-dose, and high-dose Chinese medicine groups,

respectively (Table 5). In terms of genus level, Lactobacillus was

the main dominant genus, and compared with the sham-operated

group during the same period, the level of Lactobacillus in the

model group showed a decreasing trend, at 25% at 2 weeks, 23% at 4

weeks, and 10% at 6 weeks, respectively. Compared with the model

group, the low dose of Chinese medicine and high dose of Chinese

medicine treatment could increase the content of Lactobacillus to

different degrees (Table 6).
4.2 Using FMT as a technical platform to
study the Improvement of Intestinal Flora
in CRF with Fushen Granule

4.2.1 General state observation
The rats in the control donor group had significantly increased

body weight, good mental condition, free movement,

responsiveness, and neat and moist hair. In contrast, the rats in

the model group gradually lost weight, ate less, appeared more

depressed, squinted, were less active, less responsive, and had loose

body hair and shaggy fur. The Fushen Granule donor group or FMT

group had a better mental status, weight, activity, reaction, and coat

color after treatment, but was still worse than the control group.

4.2.2 Observation of renal function indicators
Compared with the normal donor group, Cr, BUN, UA, and 24-

h urine microalbumin were significantly higher in the nephrectomy

+ saline group at weeks 2, 4, and 6, with statistically significant

differences (P< 0.05), indicating successful modeling of renal failure.
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Compared with the nephrectomy + saline group, BUN and 24-h

urine microalbumin decreased significantly (P< 0.05) at week 2, and

Cr, BUN, UA, and 24-h urine microalbumin also decreased

significantly (P< 0.05) at weeks 4 and 6 in the nephrectomy +

Fushen Granule group. In contrast, BUN, UA, and 24-h urine

microalbumin also decreased significantly in the nephrectomy +

normal f group at week 2 (P< 0.05), and Cr, BUN, UA, and 24-h

urine microalbumin decreased significantly at weeks 4 and 6 (P<

0.05). The improvement in 24-h urinary microalbumin at weeks 2,

4, and 6 did not significantly differ between the kidney cut + Fushen

Granule group and the kidney cut + normal f group (P >

0.05) (Table 7).

4.2.3 Observation of serum endotoxins and
metabolic toxin-like indicators of enteric origin

Compared to the normal donor group, the nephrectomy +

saline group showed a statistically significant increase (P< 0.05) in

IS, PCS, D-lactic acid, and endotoxin at weeks 2, 4, and 6, indicating

successful modeling of renal failure. Compared with the

nephrectomy + saline group, the nephrectomy + Fushen Granule

group showed a significant decrease in PCS, D-lactic acid, and

endotoxin at weeks 2 and 4 (P< 0.05), and a significant decrease in

IS at week 6 (P< 0.05). Similarly, compared to the nephrectomy +

saline group, the nephrectomy + normal f group showed significant

decreases in PCS, D-lactic acid, and endotoxin at weeks 2, 4, and 6

(P< 0.05), and a significant decrease in IS at weeks 4 and 6 (P< 0.05).

The improvement in D-lactate and endotoxin in the kidney cut +

Fushen Granule group at weeks 2, 4, and 6 was not significantly

different from that in the kidney cut + normal f group (P >

0.05) (Table 8).
B

C D

A

FIGURE 2

Number of OTUs of intestinal flora in five groups of rats at 0, 2, 4 and 6 weeks. (A) 0 weeks, (B) 2 weeks, (C) 4 weeks, (D) 6 weeks.
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4.2.4 Analysis of intestinal bacterial diversity
4.2.4.1 Sequencing data quality and OTU analysis

In this study, the coverage of each sample library was assessed

by calculating the Coverage Index, and values of the Coverage Index
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were obtained to be >0.99, indicating comprehensive coverage of

each sample library and a high detection rate of the sample

sequences (Table 9). Hierarchical abundance curves were used to

simultaneously interpret the richness and evenness of the species
B

A

FIGURE 3

Top 10 relative abundance of intestinal flora in each group of rats (A) phylum level, (B) genus level. ZW indicates zero week, TW indicates two-week,
FW indicates fourth week, SW indicates sixth week. 1 indicates model, 2 indicates fushen granule at high doses, 3 indicates fushen granule at low
doses, 6 indicates sham-operated fushen granule control, 7 indicates sham-operated.
TABLE 4 Levels of Firmicutes and Bacteroides of rats in sham-operated and model groups at 0, 2, 4 and 6 weeks.

Group Time Point (weeks) Firmicutes (%) Bacteroides (%) Firmicutes/Bacteroidetes ratio

Sham-operated

0 70 24 2.97

2 69 24 2.88

4 68 22 3.1

6 63 30 2.1

Model

0 81 10 8.1

2 51 46 1.11

4 60 26 2.31

6 54 40 1.35
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contained in the samples. The graph shows that the distribution of

microbial species in the sequenced samples, excluding sample B2,

was reasonably even, it is possible that the B2 sample was

contaminated during the sampling process, resulting in a

significantly different species abundance and proportion from the

pre-intervention samples (Figures 4A, B). Dilution curves were used

to verify that the sequencing data reflected the actual biodiversity in

the samples and indirectly the species richness in the samples. The

results showed that the curve levelled off as the number of sequences

increased, indicating that the depth of sequencing had largely

covered all species in the samples (Figures 4C, D). In addition,

the results of the number of OTUs of each sample obtained by

clustering using usearch software showed that the number of rat

intestinal flora characteristics in groups FD, FE and FF after Fecal

microbiota transplantation(FMT) showed an overall increasing

trend compared to groups FA, FB and FC before FMT. In terms

of the number of rat intestinal flora characteristics after FMT, the

kidney cut + normal group FMT (FD) > kidney cut + Fushen

Granule FMT (FF) > kidney cut + saline group FMT

(FE) (Figure 4E).
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4.2.4.2 Alpha diversity analysis

Alpha diversity reflects the richness and diversity of species in a

single sample and is measured by various indices such as Chao, Ace,

Shannon, Simpson, Coverage, and peritoneal dialysis - whole_tree.

The Chao and Ace indices measure species richness, i.e., the

number of species, and larger values of the Shannon and Simpson

indices are used to indicate the species diversity of a sample (Grice

et al., 2009). Using QIIME2 software, the Alpha Diversity Index of

the samples was assessed, and the values for each sample were

tallied in Table 9. In terms of flora richness, the Ace and Chao

indices increased in groups FD, FE, and FF compared to groups FA,

FB, and FC, indicating an increase in flora richness in rats after fecal

microbiota transplantation(FMT), with statistically significant

differences. In terms of bacterial diversity, the Shannon and

Simpson indices were used to estimate the diversity of the flora,

and the higher the value, the higher the community diversity. It was

found that the Shannon and Simpson indices in groups FD, FE, and

FF were higher than those in groups FA, FB, and FC. This indicates

that the diversity of the rat intestinal flora was restored after FMT.

In conclusion, FMT helped to restore the richness and diversity of

the rat intestinal flora. In the comparison between the groups, the

normal group had the best results for FMT, followed by the FMT of

Fushen Granule, and finally the saline sham operation group.

4.2.4.3 Beta diversity analysis

Beta diversity analysis was conducted in this study using QIIME

software to compare the extent to which different samples were

similar in terms of species diversity. Principal Component Analysis

(PCA), Principal Coordinate Analysis (PCoA), and Non-metric

Multidimensional Scaling Analysis (NMDS) were used to examine

differences between samples. PCA uses variance decomposition to

reflect differences between multiple data sets on a two-dimensional

coordinate plot, with the axes representing the two eigenvalues that

best reflect the variance. PCoA and PCA plots showed that groups

FA, FB, and FC were closer together, indicating high consistency

and less variability in the samples. On the other hand, samples FD,

FE, and FF after 15 days were less similar in terms of species

diversity compared to groups FA, FB, and FC, suggesting that the

intervention caused a change in species variability. NMDS analysis

had a reliable Stress value of 0.0445 (less than 0.2), indicating its

accuracy. Overall, the results suggest that the transplantation of

Fushen Granule and normal flora had a moderating effect on the

changes in the composition of the intestinal flora in 5/6

nephrectomized rats (Figures 5A-C).

4.2.5 Annotation and variability analysis of
intestinal flora species

The primary bacteria that dominate at the phylum level include

firmicutes, bacteroidetes , proteobacteria, spirochaetes,

actinobacteria, patescibacteria, tenericutes, cyanobacteria, and

verrucomicrobia. The relative abundance of intestinal flora at the

phylum taxonomic level was analyzed in Figure 6. Compared to rats

before FMT, the model + saline group, the model + Fushen Granule

Donor group, and the model + normal Donor group showed a

decreasing trend for Firmicutes bacteria and an increasing trend for
TABLE 5 Levels of Firmicutes and Bacteroides of rats in each group at
week 2.

Group
Firmicutes

(%)
Bacteroidetes

(%)

Firmicutes/
Bacteroidetes

ratio

Sham 69% 24% 2.88

Sham-
operated

56% 37% 1.53

Model 51% 46% 1.11

Fushen
Granule at
low doses

66% 29% 2.27

Fushen
Granule at
high doses

62% 33% 1.88
TABLE 6 Levels of Lactobacillus of rats in each group at 2, 4 and
6 weeks.

Group
Lactobacillus

2 weeks
Lactobacillus

4 weeks
Lactobacillus

6 weeks

Sham 0.46 0.25 0.25

Sham-
operated

0.30 0.19 0.25

Model 0.25 0.23 0.10

Fushen
Granule

at
low doses

0.36 0.33 0.17

Fushen
Granule

at
high
doses

0.20 0.27 0.16
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TABLE 7 Indicators of renal function.

Group Point in time Cr Bun UA (mmol/L) 24-hour urine
microalbumin (mg/L)

Normal Donor Initial 44.39±0.81 20.43±0.44 102.27±1.08 20.28±2.89

2 weeks 47.80±3.55 23.53±2.35 112.23±9.48 23.57±2.74

4 weeks 45.89±0.98 22.89±0.95 104.83±2.04 28.32±2.53

6 weeks 45.89±0.98 25.93±4.39 128.32±8.85 30.28±2.73

Kidney cut + saline Initial 42.34±1.97 24.45±0.73 105.26±1.15 22.53±4.20

2 weeks 95.78±1.96** 37.20±0.28* 145.60±1.19** 288.34±21.49***

4 weeks 110.39±26.23** 33.33±8.98* 146.46±2.00** 482.95±32.94***

6 weeks 110.39±26.23** 55.82±2.89* 190.33±45.55** 638.29±44.76***

Kidney cut + Fushen Decoction donor Initial 45.12±2.49 20.81±0.64 105.87±2.73 21.15±2.46

2 weeks 55.78±3.61### 26.06±3.51# 121.37±6.30### 75.24±7.93###

4 weeks 38.15±1.22### 32.58±2.09 130.70±20.98### 129.27±10.89###

6 weeks 38.15±1.22### 29.70±3.99# 128.50±5.41### 91.13±9.27###

Kidney cut + Fushen Decoction f Initial 43.70±1.01 22.38±0.68 104.25±1.37 23.47±3.19

2 weeks 94.04±3.57 22.56±5.68# 142.57±4.42 100.66±12.18###, D

4 weeks 62.45±1.87### 23.48±1.12# 111.40±18.23### 178.82±12.34###, D

6 weeks 62.45±1.87### 37.31±0.86# 93.28±3.56### 103.28±8.42###, D

Kidney cut + normal f Initial 42.29±3.04 22.66±1.39 105.10±1.77 24.72±2.50

2 weeks 98.63±0.32 24.57±1.40# 137.03±6.89### 83.47±8.82###

4 weeks 57.04±2.81### 29.01±4.23# 63.47±1.93### 153.94±13.76###

6 weeks 57.04±2.81### 43.92±0.51# 104.57±15.06### 98.73±7.51###
F
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Compared with normal donor group,** P< 0.01,*** P< 0.001; compared with kidney cut + saline group, #P< 0.05, ### P< 0.001; compared with kidney cut + normal f group, D P > 0.05.
TABLE 8 Indicators for D-lactate, endotoxin and enteric-derived metabolic toxin categories.

Group Point in time Metabolic toxins of
enteric origin

Serum endotoxin

IS (mg/mL) PCS (mg/mL) D-Lactic acid (mg/mL) Endotoxin (EU/ml)

Normal Donor Initial 0.91±0.13 0.17±0.02 7.34±0.28 0.023±0.003

2 weeks 0.93±0.06 0.15±0.1 7.52±0.36 0.028±0.003

4 weeks 0.85±0.21 0.13±0.02 7.88±0.42 0.032±0.002

6 weeks 0.86±0.23 0.15±0.01 7.52±0.28 0.029±0.004

Kidney cut + saline Initial 0.83±0.12 0.14±0.01 7.58±0.19 0.030±0.004

2 weeks 5.69±2.87** 1.73±0.22*** 18.19±0.54*** 0.387±0.032***

4 weeks 5.24±0.73*** 1.8±0.21*** 15.28±1.25*** 0.498±0.028***

6 weeks 6.68±2.17*** 2.12±0.62*** 15.28±1.25*** 0.518±0.028***

Kidney Cut + Fushen Decoction Donor Initial 0.94±0.17 0.18±0.03 7.28±0.32 0.026±0.005

2 weeks 4.98±1.25 1.28±0.31# 12.33±0.17### 0.224±0.021###

4 weeks 4.83±1.00 0.37±0.06### 10.25±0.93### 0.243±0.017###

6 weeks 3.64±1.10# 0.39±0.08### 10.25±0.93### 0.217±0.014###

(Continued)
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Bacteroidetes. Compared with the model + saline sham-operated

group, the relative abundance of these two groups decreased less in

the model + Fushen Granule Donor group and the model + normal

Donor group, suggesting that the Fushen Granule and normal flora

transplantation had a moderating effect on the relative abundance

of colonic flora at the phylum level. At the genus level, the model

group exhibited a decreasing trend of Lactobacillus after FMT.

Compared with the Kidney-cut + saline group during the same

period, the Kidney-cut + Fushen Granule Donor group and the

Kidney-cut + normal Donor group had some degree of restorative

effect on Lactobacillus, and the Fushen Granule FMT was superior

to the other two groups.

4.2.6 LefSe analysis
In order to screen for colonies with significant differences

between groups, this study employed a novel metagenomic

analysis method called LefSe (Linear Discriminant Analysis Size

Effect). This method is a statistical approach used in the fields of

genetics and microbiology to identify high-dimensional biomarkers

and reveal genomic features. LefSe analysis combines linear

discriminant analysis with non-parametric tests to identify

multiple biomarkers and enable comparisons between multiple

groups. In this study, LDA values greater than 3.5 were used as
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screening criteria to examine the abundance of the flora. In an

evolutionary branching tree diagram, different circles represent

various taxonomic levels from inner to outer, including domain,

kingdom, phylum, class, order, family, genus, and species. Different

nodes in the diagram represent dominant genera, while the

connections between nodes indicate their correlation. The

thickness of the lines reflects the strength of the correlation;

thicker lines represent stronger correlations. Additionally, the size

of the nodes represents the number of associations with other

microorganisms; the more associations, the larger the node. The

results showed that Model Group FA had significant differences in

a) uncultured_bacterium_g_Prevotella_1 and b) g_prevotella_1.

Group FE exhibited significant differences in c) o_Clostridiales

after FMT (Figure 7).
5 Discussion

As a progressive, irreversible disease with a complex

pathogenesis, limited therapeutic modalities, and issues of

tolerance and dependence, the development of effective drugs to

treat or alleviate CRF has become an urgent task (Eirin and Lerman,

2014). The gut’s microbial composition is a key player in renal
TABLE 8 Continued

Group Point in time Metabolic toxins of
enteric origin

Serum endotoxin

IS (mg/mL) PCS (mg/mL) D-Lactic acid (mg/mL) Endotoxin (EU/ml)

Kidney cut + Fushen Decoction f Initial 0.89±0.12 0.16±0.02 7.69±0.33 0.028±0.002

2 weeks 4.90±1.31 1.03±0.19## 14.28±1.23###, D 0.258±0.028###, D

4 weeks 4.22±0.92 0.93±0.15### 12.15±1.02##, D 0.305±0.020###, DD

6 weeks 4.08±1.36# 0.86±0.21### 12.15±1.02###, D 0.293±0.021###, D

Kidney cut + normal f Initial 0.86±0.09 0.15±0.01 7.21±0.21 0.027±0.003

2 weeks 3.92±1.19 0.88±0.09### 13.57±0.67### 0.206±0.019###

4 weeks 3.49±1.25# 0.75±0.11### 12.57±0.78## 0.251±0.019###

6 weeks 2.78±0.64## 0.64±0.09### 12.57±0.78### 0.264±0.029###
Compared to the normal donor group, *** indicates P < 0.001; compared to the nephrectomy + saline group, # indicates P < 0.05, ## indicates P < 0.01, ### indicates P < 0.001; compared to the
nephrectomy + normal f group, D indicates P > 0.05.
TABLE 9 Displays the analysis of intestinal flora diversity in each group of rats (�x ± s, n = 3).

Group Chao Ace Shannon Simpson Coverage

FA 502.8182 ± 10.0702 495.2557 ± 9.7063 5.5293 ± 0.1972 0.9363 ± 0.0128 0.9987 ± 0

FB 564.9597 ± 10.163 569.3319 ± 19.4272 6.2448 ± 0.7023 0.951 ± 0.0204 0.9983 ± 0

FC 548.2892 ± 15.9462 535.5732 ± 13.0593 5.1845 ± 0.3452 0.9081 ± 0.0152 0.9983 ± 0.0003

FD 658.0036 ± 9.4833 645.3728 ± 9.0772 6.04 ± 0.5148 0.9244 ± 0.0399 0.9989 ± 0

FE 582.801 ± 7.0036 578.1836 ± 6.6149 5.6382 ± 0.4512 0.9257 ± 0.0281 0.9985 ± 0

FF 603.0205 ± 5.3112 583.5407 ± 15.2415 5.8779 ± 0.5683 0.9368 ± 0.0241 0.9984 ± 0.0005
FA before fecal microbiota transplantation(FMT) in the model group + Donor group; FB before FMT in the model group + control Donor group; FC before model group + saline intervention; FD
after FMT in the model group + control Donor group; FE after model group + saline intervention; FF after FMT in the model group + Donor group.
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disease and is closely related to the development of CRF (Meijers

et al., 2019; Zhu et al., 2021; Krukowski et al., 2023). Based on our

findings, the use of Fushen Granule can regulate the intestinal

microbiota and control the progression of CRF. And we

demonstrated that FMT in rats in the Fushen Granule group

reversed the severe taxonomic and functional imbalance caused

by CRF to a certain extent. This represents the first published study

to date utilizing the combined treatment of Fushen Granules and
Frontiers in Cellular and Infection Microbiology 1447
FMT for CRF. The Fushen Granule and its compound “Fushen

Granules” have been used clinically in the treatment of various

kidney diseases such as peritoneal dialysis and interstitial fibrosis

(Chen, 2021; Ding, 2022). Modern pharmacological studies have

also shown that Astragalus, the primary component of Fushen

Granule, has the ability to reduce urinary protein (Zhang et al.,

2014) and protect kidney function (Zhou et al., 2017). The

combination of Astragalus and Salvia miltiorrhiza can slow down
B

C D

E

A

FIGURE 4

Single sample intestinal flora diversity analysis (A, B) Rank abundance curve The horizontal coordinate is the ordinal number sorted by the
abundance of features, the vertical coordinate is the relative abundance of the corresponding features; (C, D) Sample dilution curve. The horizontal
coordinate is the number of randomly selected sequencing strips, and the vertical coordinate is the number of features obtained based on the
number of sequencing strips. Each curve represents a sample and is marked with a different color. (E) Plot of the number of features for each group
of samples. The horizontal coordinate is the name of the sample, the vertical coordinate is the number of features, and the number above the bar is
the number of OTUs for the corresponding sample.
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B

C

A

FIGURE 5

The beta diversity analysis. (A) PCA. The dots indicate each sample with different colors representing different groupings. The horizontal and vertical
coordinates represent the two eigenvalues that cause the greatest variation between samples, with the percentage indicating the contribution of
each principal component to the variation of the samples. (B) PCoA. Points represent each sample separately, with different colors representing
different groupings. The horizontal and vertical coordinates represent the two characteristic values that cause the greatest variation between
samples, and the degree of influence is represented as a percentage. The closer the samples are on the coordinate plot, the greater the similarity.
(C) NMDS. The dots represent each sample separately, with different colors representing different groupings, and the distance between the dots
indicates the degree of difference. A Stress value of less than 0.2 indicates that NMDS analysis has a certain degree of reliability, and the closer the
samples are on the coordinate graph, the higher the similarity.
BA

FIGURE 6

Histogram of the relative abundance of species composition of multiple samples for community composition analysis. (A) phylum level, (B) genus
level. FA before FMT in the model group + Donor group; FB before FMT in the model group + control Donor group; FC before model group +
saline intervention; FD after FMT in the model group + control Donor group; FE after model group + saline intervention; FF after FMT in the model
group + Donor group.
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kidney fibrosis (Han et al., 2021) and suggests a high level of drug

safety. In vitro and clinical trials have demonstrated that Fushen

Granule can, to a certain extent, correct intestinal dysfunction in

peritoneal dialysis patients and delay the process of peritoneal

fibrosis. Meanwhile, there is increasing evidence suggesting that

traditional Chinese medicine plays a beneficial role in the treatment

of chronic kidney disease by modulating dysbiosis of the intestinal

microbiota (Gao et al., 2021; Ming et al., 2021). However, the effect

of Fushen Granule on CRF and the specific potential mechanism

remain to be elucidated. Therefore, in this experiment, the effect of

Fushen Granule on CRF rats was investigated using a 5/6

nephrectomized CRF rat model. The experimental results showed

that the basic conditions of CRF rats were alleviated after different

doses of Fushen Granule, and the levels of the intestinal toxins

indoxyl sulfate (IS) and p-cresyl sulfate (PCS), as well as D-lactic

acid and endotoxin, which are indicators of intestinal barrier

damage, were reduced in a dose-related manner. At the same

time, the number of operational taxonomic units (OTUs), the

ratio of Firmicutes to Bacteroidetes, and the number of lactic acid

bacteria increased after Fushen Granule treatment, which restored

to some extent the changes in the abundance and structure of the

intestinal flora of the rats caused by slow renal failure.

CRF is accompanied by a progressive decrease in glomerular

filtration rate and the continued accumulation of metabolic waste

products that can accelerate the progression of CRF and affect its

prognosis. The enteric-derived toxins indoxyl sulfate (IS) and p-cresol

sulfate(PCS) are known as protein-bound toxins due to their protein-

binding properties and are currently not filtered out by dialysis. In

normal renal function, these two substances are secreted into the renal

tubules and excreted from the body. In CRF, the intestinal tract

undergoes a series of changes, including a lack of gastrointestinal

motility and reduced digestive capacity of the small intestine, which

increases the amount and retention time of dietary protein in the
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colon, which further contributes to the increase in the number of

colonic proteolytic bacteria, resulting in increased production of the

IS and PCS precursors indole and p-cresol, and ultimately an increase

in IS and PCS generation. At the same time, renal filtration function is

reduced, resulting in the accumulation of metabolic toxins such as IS

and PCS in the body. The long-term retention of IS and PCS in the

body can further aggravate glomerulosclerosis and renal fibrosis,

leading to a vicious circle (Ito et al., 2010; Lekawanvijit et al., 2010;

Niwa, 2010; Liabeuf et al., 2011; Shimizu et al., 2011; Lin et al., 2012;

Liu et al., 2012). Therefore, reducing the level of IS and PCS is one of

the most important problems to be solved. There is a lack of effective

means of IS and PCS clearance, and most of the research on reducing

IS and PCS has been conducted in the intestinal tract from the

perspective of inhibiting their production, such as with AST120

(Shimoishi et al., 2007; Kikuchi et al., 2010; Asai et al., 2019). Since

enteric-derived toxin precursors are primarily produced by the

enzymatic processes of the intestinal flora, it is possible to reduce

their production by adjusting the structure of the intestinal flora. In

the present study, Fushen Granule demonstrated a notable down-

regulating effect on the levels of intestine-derived metabolic toxins IS

and PCS in CRF rats. It is hypothesized that the mechanism may be

related to improving the intestinal tract status and promoting the

excretion of toxin precursors.

Serum endotoxin is a metabolite or component of intestinal

bacteria that can translocate into the circulation when the barrier is

not functioning properly (Violi et al., 2023), it is used as an indicator

of intestinal barrier function (Vancamelbeke and Vermeire, 2017).

Fushen Granule can improve renal function indicators by repairing

intestinal barrier function, reducing metabolic toxins in the serum,

and enhancing renal function. D-lactate is a bacterial metabolite

produced by the intestinal flora, and its level is low and relatively

stable under normal conditions. Elevated levels may reveal the extent

of damage to the intestinal mucosa (Guo et al., 2019). Endotoxin, a
FIGURE 7

Evolutionary branching diagram for LEfSe analysis of the differences in the dominant groups. The circles radiating from the inside to the outside
represent the taxonomic levels from phylum to species; each small circle at a different taxonomic level represents a taxon at that level, and the
diameter of the small circles is proportional to the size of the relative abundance; the coloring principle is that species with no significant differences
are colored uniformly in yellow, and other differing species are colored according to the subgroup in which the species is most abundant. Different
colors indicate different subgroups, and different colored nodes indicate the microbiota that play an important role in the subgroup represented by
that color.
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major component of the outer membrane of Gram-negative bacteria,

can translocate into the body’s circulation when intestinal barrier

function is compromised, transforming host immune defenses into a

pro-inflammatory state (Violi et al., 2023). The endotoxin itself can

further contribute to the deterioration of the mucosal barrier function

(Tang et al., 2019). In this study, serum endotoxin and D-lactate

levels were measured in CRF rats to assess intestinal barrier function.

In the sham-operated group, serum endotoxin levels were stable,

whereas in the model group, serum endotoxin levels increased with

the progression of CRF. The model rats also showed a significant

increase in serum D-lactate, both of which are indicative of impaired

intestinal barrier function. Fushen Granule reduced the variation of

endotoxin and down-regulated the serumD-lactate level, which had a

protective effect on the intestinal barrier function and thus delayed

the progression of CRF.

Changes in the intestinal flora play a key role in accelerating the

progression of CRF, and this study found that Fushen Granule was

able to modify the structure of intestinal flora in rats to slow down

the progression of CRF. Previous research has reported that in

patients with ESRD, the number of Firmicutes, Actinobacteria,

Proteobacteria, and Lactobacillus decreased( Vaziri et al., 2013;

Simões-Silva et al., 2020), while the number of Bacteroides

increased (Crespo-Salgado et al., 2016). In patients with CKD,

there was a lower abundance of Lactobacillus and an increased

proportion of Enterobacteriaceae (Mahmoodpoor et al., 2017; Lau

et al., 2018). It is evident that there is an imbalance between the

intestinal flora and the host in the disease state, which may lead to

the accumulation of uremic toxins while limiting the beneficial

functions and products conferred by the normal flora, thereby

accelerating the progression of renal disease (Vaziri et al., 2013).

In contrast, the homeostatic gut microbiota serves the host through

a wide range of physiological activities, including the prevention of

pathogens, maintenance of the function and integrity of the

intestinal epithelium, and regulation of the host immune system

(Bian et al., 2022). 16S rRNA or DNA sequencing is the common

method to evaluate microbial diversity and identify differential

microbes in patients compared with healthy control subjects (Cao

et al., 2022). The present study, combined with 16S rRNA gene

sequencing experiments, aimed to investigate the mechanism of

action of Fushen Granule in improving CRF from the perspective of

structural changes in the intestinal flora. The results showed that the

rats in the model group exhibited a decrease in the number of OTUs

in the intestinal flora. At the phylum level, the relative abundance of

bacteria in the Firmicutes phylum decreased in the model group

after 5/6 nephrectomy compared to the sham-operated group

during the same period, while the content of the Bacteroidetes

phylum increased, and the ratio of the Firmicutes phylum to the

Bacteroidetes phylum showed a decreasing trend. After Fushen

Granule intervention, the low-dose and high-dose groups of

Chinese medicine reduced this alteration to different degrees, thus

restoring the normal ratio of Firmicutes and Bacteroidetes to a

certain extent and repairing the alteration of the composition ratio

of intestinal flora caused by slow renal failure. At the genus level, the

relative abundance comparison showed that Lactobacillus was the

predominant genus. This genus is a probiotic strain that can slow

down the progression of kidney disease by improving the intestinal
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environment (Yoshifuji et al., 2016). The relative abundance of

Lactobacillus in the model group showed a decreasing trend

compared to the sham-operated group during the same period. In

contrast, the relative abundance of Lactobacillus in the low-dose

and high-dose groups of Chinese medicine showed an increasing

trend after treatment. This indicates that Fushen Granule can, to a

certain extent, reverse the effect of 5/6 nephrectomy on the

intestinal flora of rats, correct the disorder of flora, and make it

converge to the normal group, and has the effect of improving the

intestinal flora of CRF rats. In conclusion, the restoration of the

altered intestinal flora in the CRF state by Fushen Granule may be

another mechanism of its action in delaying renal failure.

To further investigate whether Fushen Granule exerts its

therapeutic effect through the regulation of intestinal flora, a FMT

experiment was conducted to verify the effect of Fushen Granule.

Multiple studies indicate that the transplantation of a healthy gut

microbiota plays a therapeutic role in various renal diseases. A

clinical case study report suggests that FMT reduces the

accumulation of PBUTs in the host by modulating the intestinal

microbiota’s amino acid metabolism, consequently mitigating the

progression of CKD (Liu et al., 2022). In investigations on IgAN, it

has been reported that FMT-induced microbial transfer regulates the

IgAN phenotype, thereby paving the way for new treatment

modalities for IgAN patients (Lauriero et al., 2021). Furthermore,

in various published studies, FMT has consistently been a valuable

tool in verifying the correlation between gut microbiota dysbiosis

and the progression of CRF, indicating its value in restoring the

intestinal microbiota in CRF. However, there is currently limited

understanding of the application of FMT in the treatment of CRF. In

this study, we used a rat model to comprehensively evaluate the

effects of Fushen Granule on the improvement of serum intestinal

endotoxins, intestinal flora structure and diversity, and renal

function in CRF with the aid of FMT technology. The results of

the study showed that both the Fushen Granule Donor Group and

the FMT Group could effectively improve the general status of CRF

rats, enhance renal function, reduce serum levels of toxins, and

improve intestinal status to promote excretion of toxin precursors,

reduce D-lactate, narrow the rise of endotoxin, and protect intestinal

barrier function after treatment. Alpha and beta diversity were

assessed in the feces collected from each group of rats at the end

of fecal microbiota transplantation(FMT). Alpha diversity was

assessed mainly from the Ace, Chao, Shannon, and Simpson

indices. The results showed that all the above indices exhibited

different degrees of increase in the model group after FMT,

suggesting that the diversity of rat intestinal flora was restored and

the abundance tended to increase. The Ace, Chao, Shannon, and

Simpson indices of the model + control Donor group and the model

+ Fushen Granule Donor group were very close to each other

compared to the model + saline sham group. b diversity was

demonstrated by PCA, PCoA, and NMDS, and the results showed

that there was little overlap between the three groups, suggesting

significant differences in the structure of the flora between the

groups. Further analysis of the composition and species abundance

of the intestinal flora of each group revealed that Fushen Granule

and normal flora transplantation had a moderating effect on the

structure and relative abundance of the intestinal flora of CRF rats.
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6 Conclusion

Based on the 16SrRNA amplification and sequencing

technology, this study investigated the mechanism of action of

Fushen Granule in the prevention and treatment of CRF in rats with

5/6 nephrectomy as a classical renal failure animal model. The

results showed that Fushen Granule was effective in the treatment of

CRF rats, potentially delaying the process of CRF by repairing

intestinal barrier function, reducing metabolic toxins in serum,

improving renal function indicators, and adjusting the structure of

intestinal flora. In addition, through FMT experiments, we found

that the transplantation of feces from the Fushen Granule Group

was able to replicate the intestinal flora structure of the original

Fushen Granule Group to a certain extent in the subject rats, and

improve the renal function and intestinal status of the CRF rats.

This further demonstrates that Fushen Granule can delay the

progression of CRF by regulating the “renal-intestinal axis” and

improving the intestinal flora structure. This study demonstrates

that the Fushen Granules are advantageous in enhancing the

structure of the intestinal microbiota and play a constructive role

in the prevention and treatment of CRF, thereby offering a scientific

basis for its clinical application. The results also suggest that

reshaping the homeostasis of the intestinal flora may be an

important therapeutic target to slow down the progression of CRF.
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Gut microbiome-based
noninvasive diagnostic
model to predict acute
coronary syndromes
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Xingyu Cao1, Yiming Ma1, Mingqiang Wang1, Chaoyue Zhang1,
Xiang Luo1, Fanru Lin1, Xianbin Li1, Yong Duan3*

and Hongyan Cai1*

1Department of Cardiology, the First Affiliated Hospital of Kunming Medical University,
Kunming, China, 2Department of Geriatric Cardiology, the First Affiliated Hospital of Kunming Medical
University, Kunming, China, 3Department of Clinical Laboratory, The First Affiliated Hospital of
Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical
Research Center for Laboratory Medicine, Kunming, China
Background: Previous studies have shown that alterations in the gut microbiota

are closely associated with Acute Coronary Syndrome (ACS) development.

However, the value of gut microbiota for early diagnosis of ACS

remains understudied.

Methods: We recruited 66 volunteers, including 29 patients with a first diagnosis

of ACS and 37 healthy volunteers during the same period, collected their fecal

samples, and sequenced the V4 region of the 16S rRNA gene. Functional

prediction of the microbiota was performed using PICRUSt2. Subsequently, we

constructed a nomogram and corresponding webpage based on microbial

markers to assist in the diagnosis of ACS. The diagnostic performance and

usefulness of the model were analyzed using boostrap internal validation,

calibration curves, and decision curve analysis (DCA).

Results: Compared to that of healthy controls, the diversity and composition of

microbial community of patients with ACS was markedly abnormal. Potentially

pathogenic genera such as Streptococcus and Acinetobacter were significantly

increased in the ACS group, whereas certain SCFA-producing genera such as

Blautia and Agathobacter were depleted. In addition, in the correlation analysis

with clinical indicators, the microbiota was observed to be associated with the

level of inflammation and severity of coronary atherosclerosis. Finally, a

diagnostic model for ACS based on gut microbiota and clinical variables was

developed with an area under the receiver operating characteristic (ROC) curve

(AUC) of 0.963 (95% CI: 0.925–1) and an AUC value of 0.948 (95% CI: 0.549–

0.641) for bootstrap internal validation. The calibration curves of the model show

good consistency between the actual and predicted probabilities. The DCA

showed that the model had a high net clinical benefit for clinical applications.
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Conclusion: Our study is the first to characterize the composition and

function of the gut microbiota in patients with ACS and healthy

populations in Southwest China and demonstrates the potential effect of

the microbiota as a non-invasive marker for the early diagnosis of ACS.
KEYWORDS

acute coronary syndrome, gut microbiome, diagnostic model, nomogram, 16SrRNA
Introduction

Acute coronary syndromes (ACS), including ST-segment

elevation myocardial infarction (STEMI), non-ST-segment

elevation myocardial infarction (NSTEMI), and unstable angina

(UA), are leading causes of morbidity and mortality worldwide

(Bergmark et al., 2022). Its major pathological mechanism is the

rupture or erosion of unstable atherosclerotic plaques, leading to

myocardial ischaemia and thrombosis, which is characterized by

sudden onset and rapid progression, and may lead to malignant and

life-threatening lesions at any time if left untreated(Bhatt et al.,

2022). Currently, ACS diagnosis relies on clinical symptoms,

electrocardiographic dynamics, and alterations in myocardial

necrosis markers such as myoglobin, creatine kinase isoenzyme

MB (CK-MB), cardiac troponin T (cTnT), and cardiac troponin I

(cTnI) (Byrne et al., 2023). However, one of the main problems in

the clinical diagnosis ACS is the late onset of disease symptoms or

only atypical symptoms, which may lead to a delay in consultation

and miss the optimal time to save the patient’s life(Brieger et al.,

2004). In addition, myocardial necrosis markers are not released

from the myocardium until after myocardial ischaemia and

necrosis, and are not elevated in unstable angina or in the early

stages of acute myocardial infarction, making it impossible to

diagnose early ischaemia(Mair, 1997; Braunwald, 2012).

Therefore, the identification of novel biomarkers for the early

diagnosis of ACS is an emerging priority, as it may facilitate the

timely receipt of appropriate treatment and reduce the mortality

and disability of patients(Katus et al., 2017).

Recently, a growing body of evidence has shown that gut

microbiota is closely related to the pathogenesis of cardiovascular

diseases, particularly coronary artery disease(Koeth et al., 2013; Jie

et al., 2017; Zhu et al., 2018; Liu et al., 2019), hypertension(Yang

et al., 2015), and heart failure(Pasini et al., 2016). This interaction

between the gut and the heart is known as the “gut-heart axis”(Du

et al., 2020; Troseid et al., 2020). On the one hand, Dysbiosis of the

gut microbiota contributes to the progression of cardiovascular

diseases by manipulating the host immune response and

exacerbating the inflammatory response(Chistiakov et al., 2015;

van den Munckhof et al., 2018). On the other hand, the microbial

community in the gut can produce various metabolites, including

trimethylamine oxides, bile acids, and short-chain fatty acids, which
0255
enter the systemic circulation and affect the host’s lipid metabolism,

bile acid metabolism, and energy metabolism(Zhu et al., 2016;

Fatkhullina et al., 2018; Haghikia et al., 2022; Tousoulis et al.,

2022). Numerous studies have demonstrated the presence of gut

microbiota dysbiosis in patients with coronary artery disease,

accompanied by changes in the structure, composition and

function of the microbiota(Jie et al., 2017; Zhu et al., 2018).

Furthermore, a diagnostic model based on gut microbiota and

clinical features was developed to improve the diagnostic

performance of CAD(Zheng et al., 2020). Recently, the

composition and function of the gut microbiota were shown to

vary in patients with different subtypes of coronary artery disease.

In particular, the microbiota profile of patients with ACS is

significantly different from that of patients with stable coronary

artery disease(Liu et al., 2019; Khan et al., 2022; Dong et al., 2023).

However, no study has established a gut microbiome-based

diagnostic model for ACS.

To address these questions, we investigated the characteristics

and differences in gut microbiota composition between patients

with ACS and healthy populations by 16S rRNA gene sequencing

and explored the effectiveness of gut microbiota as a tool for early

diagnosis of ACS.
Materials and method

Study population

This was a single-center cross-sectional study. We consecutively

recruited 29 patients with newly diagnosed ACS, including those

with ST-segment elevation myocardial infarction (STEMI), non-

ST-segment elevation myocardial infarction (NSTEMI), and

unstable angina (UA), January 2022–June 2022 at the First

Affiliated Hospital of Kunming Medical University. The diagnosis

of ACS was based on a combination of clinical symptoms,

electrocardiograms, myocardial enzymes, and coronary

angiography and the detailed diagnostic criteria were based on

the ESC guidelines(Byrne et al., 2023). The control group comprised

37 asymptomatic healthy volunteers who underwent routine

physical examination at the First Affiliated Hospital of Kunming

Medical University during the same period. All participants were
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long-term local residents, aged between 18 and 80 years, and

volunteered to provide a complete medical history, clinical

examination parameters, and stool samples. We excluded patients

with previous coronary artery disease, heart failure, structural heart

disease, gastrointestinal disease (including peptic ulcer, acute

gastroenteritis, inflammatory bowel disease, etc.), severe liver or

kidney disease, autoimmune disease, malignant tumours, antibiotic

or probiotic use in the past three months, and those with a history of

prolonged diarrhoea or constipation. The study protocol was

approved by the Ethics Committee of the First Affiliated Hospital

of Kunming Medical University and all patients provided written

informed consent to participate in the study. All procedures were

performed in accordance with the ethical standards of the

Declaration of Helsinki and its subsequent revisions.
Clinical data and sample collection

Clinical data were collected from all participants, including

demographic characteristics such as age, sex, height, weight, smoking

and drinking habits, and medical history. All patients underwent

coronary angiography, the results of which were independently

confirmed by two professional cardiologists, and the severity of

coronary atherosclerosis was assessed using the Gensini score

(Gensini, 1983). Five milliliters of fasting peripheral venous blood

were collected from each participant on the morning of the day

following admission, and routine blood tests, liver function, renal

function, and lipid analyses were performed. All participants were

asked to collect stool samples within the next day of admission and

were trained in sample collection. Each subject was provided with a

sterile disposable tray and sterile stool sampler with a spoon for stool

sample collection by researchers beforehand. All participants were

asked to empty their urine, wash their hands, and wear disposable

gloves prior to stool collection. The subjects’ stools were collected in

sterile disposable trays and the middle portion of the stool was collected

using a sterile stool sampler with a spoon. Each subject’s stool sample

was then divided equally into five portions of 200 mg each and

transported immediately to the laboratory for freezing at -80°C.
DNA extraction and 16S rRNA gene V4
region sequencing

The fecal bacterial DNA was extracted using cetyltrimethylammonium

bromide (CTAB) method. The DNA concentration and purity were

monitored on a 1% agarose gel. According to the concentration, DNA

was diluted to 1ng/µL using sterile water. The V4 region of the 16S rRNA

gene was amplified by polymerase chain reaction (PCR) using the extracted

DNA as template. The sequence of the forwarding primers used was 515F

(5’-GTGCCAGCMGCCGCGGTAA-3’) and the reverse primer used

sequence was 806R (5’-GGACTACHVGGGTWTCTAAT-3’). Sequencing

libraries were generated using the TruSeq® DNA PCR-Free Sample

Preparation Kit (Illumina, USA) and index codes were added according to

the manufacturer’s recommendations. Library quality was assessed using a

Qubit@ 2.0 Fluorometer (Thermo Scientific) and an Agilent Bioanalyzer

2100 system. Finally, the validated libraries were sequenced using an Illumina
Frontiers in Cellular and Infection Microbiology 0356
NovaSeq 6000 (NovoGene, Beijing, China), generating 250 bp paired-end

reads according to the manufacturer’s instructions.
Gut microbiome analyses

The data for each sample was split from the downstream data

based on the barcode and PCR amplification primer sequences and

after truncating the barcode and primer sequences, the reads for each

sample were spliced using FLASH (V1.2.7, http://ccb.jhu.edu/software/

FLASH/) to obtain the raw tags. Quality filtering of raw tags was

performed under specific filtering conditions to obtain high-quality

clean tags according to the QIIME (V1.9.1, http://qiime.org/scripts/

split_libraries_fastq.html) quality-controlled process. Then the tags

were then compared with a reference database (Silva database,

https://www.arb-silva.de/) using the UCHIME algorithm (http://

www.drive5.com/usearch/manual/uchime_algo.html) to remove

chimeric sequences and obtain effective tags. Operational taxonomic

units (OTUs) were analyzed for clustering and species classification

based on effective data using UPARSE software(Edgar, 2013).

Sequences with ≥ 97% similarity were grouped into the same OTU

and representative sequences from each OTU were annotated with

taxonomic information based on the Mothur algorithm using the Silva

database. The community composition of each sample was assessed at

different taxonomic levels (phylum, order, order, family, and genus)

and compared among groups of taxonomic levels. Alpha and beta

diversity analyses were performed using the QIIME software (V1.9.1)

and R software (V4.3.1). The alpha diversity of the samples was

described using the observed species and Chao1 and ACE indices

and p-values were calculated using Wilcoxon’s test. Beta diversity was

assessed using an unweighted UniFrac distance matrix and visualized

using principal coordinate analysis (PCoA) and non-metric

multidimensional scaling (NMDS) plots; while differences in

microbial community composition between the two groups were

compared using ANOSIM analysis. We used a hierarchical clustering

method, the Unweighted Pair-group Method with Arithmetic Means

(UPGMA), which interprets distance matrices using average linkage

via the QIIME software (version 1.9.1), for comparing the similarity of

the gut microbiota in each group of samples. Linear discriminant

analysis effect size (LEfSe) was used to identify key microbial taxa that

differed significantly between the two groups(Segata et al., 2011) with

an LDA threshold greater than 3.0 (NovoMagic Cloud Platform,

https://magic.novogene.com/). To reveal potential differences in

metabolism, a phylogenetic investigation of communities by

reconstruction of unobserved state analysis (PICRUSt2) based on the

MetaCyc database was used to predict the functional pathways in the

microbiota(Douglas et al., 2020). The relative predicted abundance of

the MetaCyc pathways was calculated by dividing the abundance of

each pathway by the sum of the abundance of all pathways per sample.
Construction and validation of
diagnostic models

For clinical modeling, univariate logistic regression analysis

combined with ROC curve analysis was used to screen out
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clinical variables with significant predictive value (p < 0.05, AUC ≥

0.7). These variables were then included in the multivariate logistic

regression analysis and those with p < 0.05 were further screened as

independent risk factors for ACS and included in the final model.

The “Forestplot” package in R was used to generate a forest map to

show the Odds Ratio (OR), lower/upper 95% CI, and p-value. For

microbiome modelling, we built a 10-fold cross-validated random

forest model via “randomForest” R package to identify the

microbiota biomarkers. Further, three diagnostic models were

developed: clinical, microbiome and combined models. The

accuracy of each model was assessed using the AUC value for the

area under the ROC curve. The internal validation of the models

was carried out using a bootstrap resampling method with a total of

1,000 resamples and was implemented using the “caret” R package

and the ROC curves were plotted using the “pROC” R package.

Based on the selected clinical variables and gut microbiome, a

nomogram was constructed using the R package “rms” and a

visualised dynamic nomogram web page with an interactive

interface was developed using the R package “DynNom” to

facilitate clinical application. The calibration of the model was

assessed by Hosmer-Lemeshow test and calibration curves using

the “rms” and “ResourceSelection” R packages. Decision curve

analysis (DCA) was also performed using the “rmda” R package

to assess the clinical utility of the diagnostic model.
Statistical analysis

The continuous variables were expressed as mean ± standard

deviation or median and interquartile range (IQR), and categorical

variables were expressed as frequencies (percentages). Analysis of

differences between groups that conformed to normal distribution

was performed using the independent samples t-test and non-

normally distributed differences were compared using the Mann–

Whitney test. Categorical variables between the two groups were

analyzed using the chi-squared test. Correlations between

microbiota and clinical parameters as well as metabolic pathways

were analyzed using Spearman’s correlation coefficients and

presented visually by the R package “pheatmap”. All data analyses

were performed using SPSS software (version 26.0), GraphPad

Prism 9.0, and R 4.3.1 software. P < 0.05 was considered

statistically significant.
Results

Baseline characteristics of the participants

After rigorous screening and exclusion criteria, 66 individuals,

including 29 patients with ACS and 37 healthy controls, were

included in the study. As shown in Table 1, patients with ACS

had significantly higher levels of white blood cells (WBC),

neutrophils (NEU), aspartate aminotransferase (AST), alanine

aminotransferase (ALT), creatinine (Cr), and uric acid (UA), as

well as higher rates of smoking history and hypertension, and

significantly lower levels of beats per minute (BPM) and left
Frontiers in Cellular and Infection Microbiology 0457
ventricular ejection fraction (LVEF) compared to healthy

controls. No significant differences were observed in demographic

data, including age, body mass index (BMI), history of drinking,

diabetes mellitus, hyperlipidemia, systolic blood pressure (SBP),

total bilirubin (TBIL), blood urea nitrogen (BUN), fasting blood

glucose (FBG), and serum lipid levels between the two groups.
Data quality assessment and gut
microbiota diversity

Gut microbiota analyses were performed using 16S rRNA

sequencing of fecal samples from the included study population.

To determine whether the sample size was sufficient to estimate the

abundance of the microbial community, the species accumulation

boxplot showed a gradual increase in species diversity with

increasing sample size, with the curve flattening out at 66 samples

(Figure 1A). This suggests that the current sequencing sample size

was sufficient to detect most species in each sample. The abundance

rank curves indicated high species richness and evenness in each

sample group (Figure 1B). Through 16S rRNA gene sequencing, the

sequenced samples were clustered into OTUs at a 97% similarity

level, and 2614 OTUs were obtained. The Venn diagram

(Figure 1C) displays the identified OTUs and shows a decreasing

trend in the number of OTUs in patients with acute myocardial

infarction (AMI) and unstable angina pectoris (UA) compared to

the control group. In addition, the number of OTUs was

significantly higher in the AMI group than in the UA group.

Alpha-diversity analyses consistently showed similar results.

Although no significant difference was observed in a-diversity
between the ACS and control groups (Figures 1D–F), further

subgroup analyses showed that the bacterial community richness

and diversity were significantly increased in the AMI group

compared to those in UA group (Figures 1G–I). To assess the

overall structure of the gut microbiota, a principal coordinate

analysis (PCoA) score plot was constructed based on the

unweighted UniFrac distance. The results showed that the ACS

group and healthy control group were separated, and the

distribution between the two groups was approximately

symmetrical (Figure 2A, P < 0.001). Analysis of non-parametric

similarity (ANOSIM) further showed that the distribution and

composition of the gut microbiota were significantly different

between the two groups (R = 0.229, p = 0.001, Figure 2B). In

addition, subgroup analyses using principal coordinate analysis

(PCoA) score plots and non-metric multidimensional scaling

(NMDS) analyses showed a clear separation between the AMI

and control groups, with significant differences in the distribution

of bacterial communities (Figures 2C, D).
Composition and comparison of the gut
microbiota in patients with ACS and
healthy controls

Based on the species annotation results, the top ten species of

phyla and genera with the highest relative abundance were selected,
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and relative abundance histograms were generated. At the phylum

level, Firmicutes (AMI: 54.1%, UA: 53.3%, control: 58.7%) and

Bacteroidota (AMI: 21.9%, UA: 35.9%, control: 20.5%) were the

dominant phyla in all three groups (Figure 3A). The ratio of

Firmicutes to Bacteroidota (F/B ratio) has been reported to be

associated with metabolic disease (Magne et al., 2020). In our

study, no significant differences were observed among the three

groups in terms of the Firmicutes phylum (Figure 3C). The

abundance of Bacteroidota was significantly higher, and the F/B

ratio was significantly lower in the UA group than in the control

and AMI groups (Figures 3D, E), which is consistent with the

results of a previous multicenter study(Zheng et al., 2020). At the

genus level, Bacteroides (AMI: 16.6%, UA: 29.2%, control: 16.3%)

and Faecalibacterium (AMI: 6.6%, UA: 8.3%, control: 10.2%) were

the most abundant genera in the three groups (Figure 3B). Further,

we compared the differences in expression abundance among the

three groups at the genus level and found that five genera were

significantly different (Figures 4A, B). Overall, the genera

Bacteroides, Streptococcus and Allobaculum were significantly

more abundant in the case group than in the control group,

whereas Megamonas and Prevotella_9 were significantly less

abundant. In addition, we observed subtle differences in the

characteristics between the AMI and UA groups. In the UA

group, a significant increase was observed in the genera

Bacteroides, whereas the AMI group was characterized by a

significant increase in Streptococcus spp. and Allobaculum spp

abundance. To investigate the similarities between different

samples, we constructed a cluster tree of the samples by UPGMA

(Unweighted Pair-group Method with Arithmetic Mean) cluster

analysis (Figure 5). The results showed that the clustering of the

samples in the ACS and healthy control groups was clearly

separated, whereas the AMI and UA samples in the ACS group

were very close to each other, suggesting that the overall structure of

the gut microbiota within the ACS group was similar. Therefore, we

took acute coronary syndrome as a whole and further analysed the

differences in gut microbiota between the ACS and control group,

using linear discriminant analysis effect size (LEfSe) to identify

specific differential genera between the two groups. The cladogram

shows the phylogenetic distribution of the gut microbiota in
TABLE 1 Baseline characteristics of the participants.

Variables ACS(n=29) Control(n=37) P-values

Age, years 57.17 ± 9.86 57.78 ± 12.9 0.833

Male, n (%) 26(89.66) 22(59.46) 0.006

BMI, kg/m2 24.97 ± 3.60 23.91 ± 3.24 0.213

Smoking, n (%) 14(48.28) 6(16.22) 0.005

Drinking, n (%) 4(13.79) 3(8.11) 0.157

Hypertension, n (%) 20(68.97) 10(27.03) 0.001

Hyperlipidemia,
n (%)

4(13.79) 5(13.51) 0.974

DM, n (%) 3(10.34) 3(8.11) 0.754

Type of ACS

STEMI, n (%) 7(24.14) NA NA

NSTEMI, n (%) 12(41.38) NA NA

UA, n (%) 10(34.48) NA NA

No. of
stenosed vessels

1, n (%) 11(37.93) NA NA

2, n (%) 9(31.03) NA NA

3, n (%) 9(31.03) NA NA

Gensini score 68.55 ± 32.07 NA NA

SBP, mmHg 126.59 ± 17.57 121 ± 17.48 0.203

BPM 78.66 ± 11.47 87.78 ± 11.58 0.002

LVEF(%) 66.59 ± 7.06 71.41 ± 5.21 0.002

Laboratory results

WBC, ×109/L 7.99(6.04,10.72) 5.54(4.73,6.42) <0.001

NEU, ×109/L 5.64(3.42,8.35) 2.77(2.47,4.00) <0.001

LYM, ×109/L 1.61(1.14,2.25) 1.79(1.30,2.12) 0.752

Hb, g/L 151.28 ± 16.22 144.30 ± 17.41 0.101

PLT, ×109/L 226.34 ± 56.98 234.46 ± 53.88 0.556

ALB, g/L 42.17 ± 6.58 41.26 ± 3.66 0.482

AST, U/L 36(18.15,67.55) 18.2(15.1,23.55) <0.001

ALT, U/L 28.5(18.15,42.5) 18.6(13.75,25.55) 0.010

TBIL, umol/L 12.09 ± 3.85 10.75 ± 4.28 0.194

BUN, mmol/L 5.42 ± 1.81 5.78 ± 1.52 0.378

Cr, umol/L 86.46 ± 19.62 74.4 ± 13.66 0.005

UA, umol/L 411.98 ± 108.36 358.98 ± 93.68 0.037

FBG, mmol/L 6.34 ± 2.63 5.24 ± 1.87 0.063

TC, mmol/L 4.63 ± 1.11 4.64 ± 0.85 0.949

TG, mmol/L 1.88 ± 1.27 1.53 ± 0.83 0.182

(Continued)
TABLE 1 Continued

Variables ACS(n=29) Control(n=37) P-values

LDL-C, mmol/L 2.77 ± 0.89 2.79 ± 0.72 0.928

HDL-C, mmol/L 1.09 ± 0.27 1.22 ± 0.30 0.073
fr
Continuous variables are presented as mean ± SD or median (interquartile range). Categorical
variables are expressed as n (%). BMI, body mass index; DM, diabetes mellitus; STEMI, ST-
segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial
infarction; UA, unstable angina; LVEF, left ventricular ejection fraction; SBP, systolic blood
pressure; DBP, diastolic blood pressure; BPM, beat per minute; WBC, white blood cells; NEU,
neutrophil; LYM, lymphocyte; Hb, hemoglobin; PLT, platelets; ALB, albumin; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; TBIL, total bilirubin; BUN, blood urea
nitrogen; Cr, creatinine; UA, uric acid; FBG, fasting blood glucose; TC, total cholesterol; TG,
triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol.
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patients with ACS and healthy controls (Figure 6A), and the LDA

score plot showed that 22 genera were significantly different

between the two groups (Figure 6B). Specifically, 10 genera such

as Streptococcus, Acinetobacter, Allobaculum and Dubosiella were

significantly enriched in ACS group; whereas 12 genera of Blautia,

Agathobacter, Clostridium_sensu_stricto_1, Ruminococcus and

Megamonas were more abundant in healthy controls (all ps <

0.05, LDA > 3).
Correlations between the gut microbiome
and clinical characteristics

Subsequently, we analyzed the correlation between these

different genera and key clinical indicators to identify the key

bacteria that are closely associated with the occurrence of ACS

(Figure 6C). The results showed that the microbiota was

significantly more strongly correlated with smoking, hypertension

history, inflammation levels, and Genisi scores; whereas it was
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weakly correlated with lipid levels and a history of diabetes and

hyperlipidemia. Specifically, we found that the microbiota was

significantly associated with cardiovascular risk factors including

smoking, hypertension, and levels of inflammation assessed by

WBC count and NLR, with Acinetobacter showing the strongest

positive correlations with WBC count (r = 0.419, p < 0.05) and NLR

(r = 0.401, p < 0.05). In addition, the microbiota were strongly

associated with cardiovascular protective factors, including HDL-C

and LVEF, with Anaerostipes showing the highest positive

correlation with HDL-C (r = 0.356, p < 0.05) and LVEF (r=

0.393, p < 0.05). Finally, we also observed that among these 22

genera, 21 genera had significant correlations with the severity of

coronary atherosclerosis assessed by the Genisi score (10 positive

and 11 negative), with Acinetobacter showing the highest positive

correlation with the Genisi score (r= 0.799, p < 0.05) and Dorea

showing the highest negative correlation with Genisi score (r=

-0.511, p< 0.05). These results suggest that alterations in

microbial communities, particularly those of Acinetobacter, Dorea,

and Anaerostipes, may indicate changes in inflammation,
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FIGURE 1

Data quality and alpha diversity of microbial sequences. (A) The species accumulation curve showed a flattening of the curve as the sample size
increased, suggesting that the sample size was sufficient to show the richness of the community. (B) The rank abundance curve indicated high
species diversity and good species evenness in the sample. (C) Venn diagram showing the number of unique OTUs and their shared OTUs in the
AMI, UA and control groups. (D) Observed species index for ACS and control groups. (E) Chao1 index for ACS and control groups. (F) ACE index for
ACS and control groups. (G) Observed species index for the three groups. (H) Chao1 index for the three groups. (I) ACE index for the three groups.
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FIGURE 2

Analysis of the beta diversity of the gut microbiota. (A) PCoA score plot showing that samples from the ACS group (red) and the control group
(green) were significantly separated (p<0.001). (B) ANOSIM showed a significant difference between the two groups (R = 0.229, p = 0.001). (C) PCoA
score plot for AMI, UA and control groups. (D) NMDS analysis of AMI, UA and control groups(stress=0.14 (< 0.2)).
A B

D EC

FIGURE 3

Analysis of microbial composition. (A) Composition of gut microbiota at the phylum level. (B) Composition of gut microbiota at the genus level.
(C) Differences in abundance of Firmicutes phyla between the three groups. (D) Differences in abundance of Bacteroidota phyla between the three
groups. (E) Differences in the ratio of Firmicutes to Bacteroidota (F/B) between the three groups.
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metabolism, and severity of coronary atherosclerosis in patients

with ACS.
Microbial function prediction analysis

To investigate functional alterations in the microbial

community of patients with ACS, we identified the functional

potential of the gut microbiota using the PICRUSt2 tool based on

the MetaCyc database. A total of 94 metabolic pathways were

significantly different (p < 0.05, FDR < 0.2; Figure 7A, Table S1)

(56 pathways enriched and 38 pathways depleted in the ACS

group). The results showed that the pathways of glycolysis,

homolactic fermentation, pyrimidine deoxyribonucleotides de

novo biosynthesis, purine nucleotides de novo biosynthesis were

enriched in the ACS group, whereas adenosylcobalamin

biosynthesis, glycogen degradation, L-glutamate and L-glutamine

biosynthesis, L-lysine biosynthesis and thiamin salvage were

enriched in the control group. Notably, glycolytic metabolic

pathways were highly enriched in the ACS microbiome, whereas

adenosylcobalamin biosynthesis was significantly reduced, which

may be related to the disease state. Furthermore, these metabolic
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pathways were closely associated with important differential

microbiota (Figure 7B). The glycolytic pathway was positively

associated with the ACS-enriched genera, particularly

Acinetobacter and Allobaculum, whereas the adenosine synthesis

pathway was positively associated with the ACS-negative genera.
ACS diagnostic models based on gut
microbiome and clinical features

Subsequently, to identify important microbial biomarkers for the

construction of diagnostic models, we constructed a random forest

model with a 10-fold cross-validation among the different genera

screened. As shown in Figure 8A, random forest analysis filtered the

top 10 genera that were most important for distinguishing patients

with ACS from healthy controls based on the mean decrease accuracy

index. Among the top five genera in terms of variable importance

were selected as gut microbiome markers, including Acinetobacter,

Dubosiella, Exiguobacterium, Coriobacteriaceae_UCG.002, and

Allobaculum. Based on the five selected gut microbial markers, we

calculated the Probability of Disease (POD) index, which reflects the

diagnostic value of microbial markers in the ACS group and healthy
A

B

FIGURE 4

Differences in the relative abundance of major genera among the three groups. (A) Significant differences were observed in the genera Bacteroides
and Streptococcus. (B) Megamonas, Prevotella_9, and Allobaculum were significantly different between the three groups. ns, no significance;
*p < 0.05; **p < 0.01; ***p < 0.001.
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controls(Zheng et al., 2020). As shown in Figure 8B, the POD index

was significantly higher in ACS samples than in control samples (p <

0.001). The POD index was then used to construct the microbiome

model and ROC curves were plotted, reaching an AUC value of 0.947

with a 95% CI of 0.899–0.995 (Figure 8D). These results indicated

that the diagnostic model based on microbial markers had good

diagnostic efficacy. Although the gut microbiome has performed well

in diagnosing ACS, it alone may not be sufficient owing to the

complexity of the disease. Therefore, we screened clinical indicators

for inclusion in the diagnostic model to optimize their performance

in disease prediction. To screen for candidate clinical variables,

univariate regression and ROC curves (with AUC) were first

utilized to screen for clinical indicators with p < 0.05 and AUC ≥

0.7, and four predictive clinical factors were identified (Table 2).

Multivariate logistic regression was then performed on these four

factors, and the results showed that a history of hypertension (p =

0.004), elevatedWBC count (p = 0.047), and elevated AST (p = 0.027)

were independent risk factors for ACS (Figure 8C). Finally, these

three independent risk factors were included in the logistic regression

analysis to construct a clinical model with an AUC value of 0.906

(95% Cl: 0.829–0.982) (Figure 8E). This indicated that the diagnostic

efficacy of the microbiome model was superior to that of the

clinical model.
Combined model and nomogram for
predicting ACS

To optimize diagnostic efficiency, we constructed a combined

diagnostic model by combining the gut microbiome POD index with
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screened clinical indicators and developed a nomogram to visualize the

risk of ACS (Figure 9A). Simultaneously, a web-based dynamic

nomogram was developed to predict the risk of ACS and to its

facilitate clinical application (https://wjcww.shinyapps.io/dynnomapp/

). For example, patients were randomly selected from a population. The

patient was diagnosed with hypertension, with aWBC of 8 x109/L, and

an AST level of 49 U/L. Microbiological tests were performed on the

stool samples, and the POD index was calculated as 0.6. Entering the

above information into this diagnostic model, the probability of ACS in

this patient is 97.8%, and the results are shown in Figure 9B. The results

showed a higher predictive power of the combined model than that of

the clinical model (AUC: 0.963 vs. AUC: 0.906) or microbiome model

(AUC: 0.963 vs. AUC: 0.947) alone(Figure 10A). In addition, the

consistency index (C-index) of 0.951 was used to assess the diagnostic

performance of the combined mode. For internal validation, we used

the bootstrap method to internally validate the model with 1,000

bootstrap resamples, resulting in an AUC value of 0.948, sensitivity of

0.89, and specificity of 0.83 (Figure 10B). The model showed good

diagnostic efficacy during resampling, indicating that it was stable.

Regarding the assessment of the model calibration, a Hosmer-

Lemeshow goodness-of-fit test was performed, which resulted in p =

0.729 (>0.05), and the calibration curves also showed no significant

deviation between the observed and predicted probabilities

(Figure 10C). To assess the utility of the model in decision-making, a

decision curve analysis was performed. As shown in Figure 10D, the

model curve deviated from the two extreme curves (none and all),

indicating that the diagnostic model yielded a high net clinical benefit

in patients with ACS. These results suggest that a diagnostic model

based on the gut microbiome and clinical variables has favorable

diagnostic efficacy and utility.
FIGURE 5

UPGMA (unweighted pair-group method with arithmetic mean) sample clustering tree showing the distribution of samples in the ACS and
control groups.
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Discussion

Recent studies have found that the gut microbiota can be used

as noninvasive biomarkers for the early diagnosis and prognostic

assessment of disease; however, differences in the gut microbiota

and the efficiency of the models are affected by regional variations

(He et al., 2018). Therefore, investigating the characteristics of the

gut microbiota in patients from different regions is crucial for

elucidating possible pathogenic mechanisms and establishing

diagnostic models. In this study, we first characterized the

differences in gut microbiota between patients with ACS and

healthy people in Southwest China and constructed a diagnostic

model based on the microbiome, which significantly improved the

diagnostic accuracy in patients with ACS and had a high clinical

utility value.
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A balanced intestinal microecology is important for

maintaining normal physiological functions in the human body

(Xu et al., 2020). Our study showed that the diversity and

composition of the gut microbiota were significantly disturbed in

patients with ACS compared to those in healthy controls. LEfSe

analysis revealed that certain potentially pathogenic bacteria were

significantly enriched in the ACS group, such as Streptococcus spp.

and Acinetobacter spp. This is not the first time that the relationship

between Streptococcus spp. and coronary artery disease has been

reported. More than a decade ago, Koren et al.(Koren et al., 2011)

detected Streptococcus spp. in the gut and oral cavity of patients

with atherosclerosis and the same DNA was detected in

atherosclerotic plaque samples. Recent studies have shown that

the abundance of Streptococcus spp. is significantly increased in

patients with subclinical atherosclerosis(Sayols-Baixeras et al.,
A

B C

FIGURE 6

Analysis of specific differential microbiota in the ACS and control groups. (A) Cladogram generated by the LEfSe method showed the phylogenetic
distribution of the gut microbiota associated with patients with ACS and healthy controls. (B) Histogram of LDA scores of the gut microbiota
showing significant differences at the genus level between the ACS (red) and the control group (green). The default criteria LDA > 3 and p < 0.05
indicate that species are different, with one group being more abundant than the other. (C) Heat map of Spearman’s correlation between the
differential genera and clinical characteristics. Colours represent positive (red) or negative (blue) correlations and p values are denoted as follows:
*p < 0.05, **p < 0.01, ***p < 0.001. LVEF, left ventricular ejection fraction; WBC, white blood cell; NLR, neutrophils/lymphocytes.
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2023), stable coronary artery disease(Jie et al., 2017), and acute

myocardial infarction(Dong et al., 2023), and has a high predictive

value for disease. Our study found that the abundance of

Streptococcus spp. was significantly elevated in both the AMI and

UA groups compared to the control group, however, this elevation

was more pronounced in the AMI group (Figure 4A, p<0.001). This

indicates that changes in Streptococcus spp. abundance may be

associated with the formation of atherosclerotic plaques or thrombi

and may be a valuable marker for detecting the progression of ACS.

Furthermore, we found that the number of OTUs and the diversity

of the gut microbiota were also significantly higher in the AMI

group than in the UA group, which is different from the results of

other studies(Gao et al., 2020a; Qian et al., 2022). This may be due

to the unique pathophysiological processes of acute myocardial

infarction, such as acute thrombosis, myocardial necrosis,

inflammation, and activation of the neuroendocrine system,

which may cause changes in the characteristics of the gut
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microbiota in patients with AMI. Ventricular dysfunction after

acute myocardial infarction may lead to hemodynamic

disturbances, such as inadequate intestinal perfusion and

congestion, which can lead to increased intestinal permeability

and intestinal dysfunction, allowing the intestinal microbiota to

divert into circulation and cause endotoxemia, which may

exacerbate the onset and progression of AMI(Zhou et al., 2018).

Therefore, further study of the mechanisms of gut microbiota

translocation may contribute to improving the diagnosis and

treatment of myocardial infarction.

Notably, we found that abnormal enrichment of Acinetobacter

spp. seemed to have a significant impact on the diagnosis of ACS. A

small cohort study found that Acinetobacter was the most

commonly detected genus in the coronary balloons of patients

with obstructive coronary atherosclerosis(Serra e Silva Filho et al.,

2014). In addition, a recent prospective cohort study found that

Acinetobacter was also detected in cerebral thrombus samples from
A

B

FIGURE 7

Microbial function prediction analysis. (A) PICRUSt2 analysis was used to predict alterations in metabolic pathways and showed that a total of 94
MetaCyc pathways were significantly different between the two groups, with a mean proportion of pathways greater than 0.005 being displayed.
(B) The correlation heatmap demonstrated the association between major metabolic pathways and important differential genera. *p < 0.05,
**p < 0.01, ***p < 0.001.
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patients with large-vessel occlusive stroke, and that the abundance

of Acinetobacter was positively associated with the risk of

perioperative adverse events and death within three months(Liao

et al., 2022). Therefore, we hypothesized that Acinetobacter in the
Frontiers in Cellular and Infection Microbiology 1265
intestine may be transferred to coronary atherosclerotic plaques or

thrombi via blood circulation, thereby exacerbating the formation

of inflammation and the progression of atherosclerotic plaques.

However, this requires further study. However, we did not perform
frontiersin.or
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FIGURE 8

Identification of important microbial markers and clinical variables. (A) The top 10 genera most important for distinguishing ACS from healthy
controls were screened by Random Forest (RF). Each genus was ranked according to mean decrease accuracy. (B) Comparison of gut microbiome
POD index between ACS and control groups (p < 0.001). (C) Candidate variables for clinical model development were presented as forest plots.
(D) ROC curves with AUC for diagnostic performance of the microbiome model. (E) ROC curves with AUC for diagnostic performance of the clinical
model. POD, probability of disease; AUC, area under the curve.
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16S rRNA gene sequencing of coronary plaque or thrombus

samples, which is a limitation of our study. Although the

relationship between Acinetobacter and ACS remains unclear, we

observed that the abundance of Acinetobacter in the gut was

significantly and positively correlated with the level of

inflammation and the severity of coronary atherosclerosis. In

addition, microbial function prediction analyses have shown a

significant positive correlation between Acinetobacter and the

glycolytic pathway, which is the most critical pathway for glucose

metabolism in humans(Chen et al., 2023). Studies have found that

during myocardial ischemia-reperfusion, myocardial metabolism

shifts from oxidative phosphorylation to aerobic glycolysis, leading

to an abnormal accumulation of glycolytic intermediates. This

drives mitochondrial dysfunction and increases the formation of

reactive oxygen species (ROS), further leading to the apoptosis of

cardiomyocytes(Ait-Aissa et al., 2019; Dambrova et al., 2021).

Therefore, further investigation of the link and mechanism

between Acinetobacter, glycolytic metabolic pathways, and ACS is

of great interest, and will provide potential opportunities for

microbial metabolic pathways as targets for therapeutic

intervention in cardiovascular disease.

Contrarily, the genera Blautia, Agathobacter, Ruminococcus,

Dorea, and Anaerostipes were depleted in patients with ACS and

significantly enriched in healthy controls. These genera have been

reported to ferment carbohydrates to produce short-chain fatty

acids, which are essential for maintaining the integrity of intestinal
Frontiers in Cellular and Infection Microbiology 1366
epithelial cells and preventing bacterial translocation into the

bloodstream and subsequent endotoxaemia(Makki et al., 2018;

Wan et al., 2019). In our study, the genus Blautia had the highest

LDA values among the healthy controls and was negatively

correlated with the severity of coronary atherosclerosis. Gao et al.

(Gao et al., 2020b) showed that Blautia may play an important role

in a-linolenic acid-mediated improvement in intestinal barrier

integrity and anti-inflammatory effects, and that exacerbation of

inflammation is critical in the pathophysiology of ACS (Dziedzic

et al., 2022). In addition, a Mendelian randomization relating gut

microbiota to ischaemic heart disease and its risk factors showed

nominal associations of Acidaminococcus, Aggregatibacter,

Anaerostipes, Blautia, Desulfovibrio, Dorea, and Faecalibacterium

with a modestly lower risk of T2DM, lower adiposity, more

beneficial lipid profiles, and higher HOMA-IR(Yang et al., 2018).

Several studies have shown that the gut microbiota and

metabolic profiles can be altered through dietary interventions,

which may have a significant impact on cardiovascular risk factors

(So et al., 2018; Wan et al., 2019). For example, dietary intervention

with high-fiber rye foods resulted in changes in the composition of

the gut microbiota and increased the abundance of butyric acid-

producing Agrobacterium, which may be associated with

intervention-induced weight loss and improvement in metabolic

risk indicators(Iversen et al., 2022). In addition, statins have been

reported to modulate the gut microbiota of patients with ACS,

increasing beneficial flora (such as Bifidobacterium longum subsp.

longum, Anaerostipes hadrus and Ruminococcus obeum) to a

healthier state, thus reducing the metabolic risk of patients(Hu

et al., 2021). These results suggest that targeted modulation of gut

microbiota through probiotic supplementation may be a novel

approach for the prevention and treatment of cardiovascular

diseases. However, there are few reports on the mechanisms by

which probiotics improve cardiovascular disease, which should be a

direction for future research.

In our study, we found that hypertension, WBC count, and AST

levels were independent risk factors for ACS, consistent with the

results of previous studies(Kaminska et al., 2018; Li et al., 2021).

However, studies have found that up to 20% of patients with ACS

do not have traditional clinical risk factors (Figtree and Vernon,

2021), limiting the clinical application of predictive models that

include only clinical indicators. Therefore, we combined clinical

variables with the gut microbiome to construct a combined

diagnostic model with an AUC value of 0.963. The predictive

power of the combined model was significantly better than that of

the other two models. More importantly, even after bootstrap

internal validation, the model showed good performance (AUC =

0.948), indicating that our model was stable.

The gut microbiota has been used to predict coronary artery

disease in several recent studies and has shown high a predictive

value(Zhang et al., 2022; Dong et al., 2023), suggesting the potential

of the gut microbiota to predict ACS. However, these studies only

constructed predictive models and did not validate the calibration
TABLE 2 Candidate variables for clinical model development.

Variables AUC P-values 95%CI

Male 0.651 0.011 0.043-0.662

BMI 0.562 0.214 0.947-1.276

Smoking 0.660 0.007 0.066-0.647

Hypertension 0.710 0.001 0.057-0.486

WBC 0.771 0.001 1.233-2.147

AST 0.778 0.003 1.030-1.151

ALT 0.687 0.331 0.990-1.029

BUN 0.417 0.374 0.642-1.181

Cr 0.686 0.010 1.011-1.085

UA 0.646 0.042 1.000-1.011

FBG 0.676 0.076 0.975-1.661

TC 0.506 0.948 0.591-1.636

TG 0.582 0.191 0.848-2.280

HDL-C 0.635 0.078 0.032-1.203

LDL-C 0.497 0.926 0.523-1.803

LVEF 0.709 0.005 0.798-0.961
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and utility of the models, making it difficult to generalize the models

for clinical use because of the lack of clinical application tools.

Considering the importance of the early diagnosis of ACS, we

developed a nomogram and a corresponding online webpage based

on the gut microbiome and clinical indicators to visualize the model

and assist in the clinical diagnosis and risk assessment of ACS. A

previous study constructed a disease classifier based on a

combination of 24 bacterial co-abundance groups (CAGs) and 72

serum metabolites, which accurately differentiated between stable

coronary artery disease and acute coronary syndromes, with an

AUC value of 0.897(Liu et al., 2019). However, this model requires
Frontiers in Cellular and Infection Microbiology 1467
the incorporation of many microbial indicators as well as invasive

blood sampling to detect metabolites and is relatively complex and

expensive to implement, which may limit its use in clinical settings.

Conversely, our model was characterized by its simplicity, non-

invasiveness, and accuracy, which was achieved by incorporating

only a few microbiota and common clinical indicators. In our study,

all participants were from the same region, and their lifestyles and

diets were similar, which reduced the potential confounding effects

of geographic and dietary differences on the microbiota. In addition,

our study population included newly diagnosed and untreated

patients with ACS who were at a relatively early stage of the
A

B

FIGURE 9

Nomogram and its webpage development. (A) The nomogram was constructed based on hypertension, WBC, AST and microbiome to predict the
probability of developing ACS. To use the nomogram, a vertical line is drawn from the risk factor to the “Points” axis to determine the score for each
risk factor in the nomogram. The scores for all risk factors are summed and a vertical line is drawn from the “Total Score” axis to the “Probability of
ACS” axis, the corresponding value of which is the probability of developing ACS. (B) Web-based risk calculator (Dynamic Nomogram (https://
wjcww.shinyapps.io/dynnomapp/) to predict incidence rate of ACS. *p < 0.05, **p < 0.01.
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disease, which reduced the impact of confounding factors, such as

medication and disease progression, on the microbiome analysis.

Therefore, the developed model is more informative for the early

diagnosis of ACS.

Our study has several limitations. First, we only sequenced the

16S rRNA gene in fecal samples; we did not assess the metabolites of

the microbiota, and the mechanisms are understudied. Second,

although we established an accurate diagnostic model based on the

gut microbiota, the specific functions of these microbiota remains

unclear. Finally, this was a single-center study with a limited sample

size, which did not allow for external validation in different regions.

Bootstrap resampling was performed to ensure internal validity.

In conclusion, the current study showed that the diversity

and composition of the intestinal mycobiota of patients with

ACS was significantly disturbed and was characterized by

significant enrichment of certain potentially pathogenic genera

and a significant reduction in certain SCFA-producing genera.

Our study provides novel insights into the association between

the gut microbiota and ACS and more targeted studies of these

critical microbiota will be valuable in the future. In addition, we

constructed a noninvasive diagnostic model based on the gut

microbiome and common clinical indicators, providing a novel
Frontiers in Cellular and Infection Microbiology 1568
approach to assist in the early diagnosis and risk warning

of ACS.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/

sra/PRJNA1020457.
Ethics statement

The studies involving humans were approved by the Ethics

Committee of the First Affiliated Hospital of Kunming Medical

University. The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in this

study. Written informed consent was obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.
A B

DC

FIGURE 10

Validation and assessment of the model. (A) ROC curve with AUC for the diagnostic performance of the Nomogram. (B) The AUC for Nomogram
bootstrap internal validation. (C) Calibration curve of the nomogram, with the x-axis representing the probability predicted by the nomogram and
the y-axis representing the actual observed probability. (D) Decision curve analysis (DCA) of the nomogram showed the net benefit of using the
model to diagnose ACS compared to the “treat all” or “treat none” strategy at different decision thresholds.
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Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
Purpose: Human gut microbiota has been shown to be significantly associated

with various inflammatory diseases. Therefore, this study aimed to develop an

excellent auxiliary tool for the diagnosis of juvenile idiopathic arthritis (JIA) based

on fecal microbial biomarkers.

Method: The fecal metagenomic sequencing data associated with JIA were

extracted from NCBI, and the sequencing data were transformed into the relative

abundance of microorganisms by professional data cleaning (KneadData,

Trimmomatic and Bowtie2) and comparison software (Kraken2 and Bracken).

After that, the fecal microbes with high abundance were extracted for

subsequent analysis. The extracted fecal microbes were further screened by

least absolute shrinkage and selection operator (LASSO) regression, and the

selected fecal microbe biomarkers were used for model training. In this study, we

constructed six different machine learning (ML) models, and then selected the

best model for constructing a JIA diagnostic tool by comparing the performance

of the models based on a combined consideration of area under receiver

operating characteristic curve (AUC), accuracy, specificity, F1 score, calibration

curves and clinical decision curves. In addition, to further explain the model,

Permutation Importance analysis and Shapley Additive Explanations (SHAP) were

performed to understand the contribution of each biomarker in the

prediction process.

Result: A total of 231 individuals were included in this study, including 203 JIA

patients and Non-JIA individuals. In the analysis of diversity at the genus level, the

alpha diversity represented by Shannon value was not significantly different

between the two groups, while the belt diversity was slightly different. After

selection by LASSO regression, 10 fecal microbe biomarkers were selected for

model training. By comparing six different models, the XGB model showed the

best performance, which average AUC, accuracy and F1 score were 0.976, 0.914

and 0.952, respectively, thus being used to construct the final JIA

diagnosis model.
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Conclusion: A JIA diagnosis model based on XGB algorithm was constructed

with excellent performance, which may assist physicians in early detection of JIA

patients and improve the prognosis of JIA patients.
KEYWORDS

juvenile idiopathic arthritis, fecal microbes, machine learning, diagnosis, XGB algorithm
Introduction

The gut microbiota plays a crucial role in immune system

development and regulation. Autoimmune diseases, marked by the

immune system’s attack on healthy cells, lead to inflammation and

tissue damage. Dysbiosis in the gut microbiome, such as abnormal

enrichment of certain symbionts, diversity loss, or pathogen

invasion, has been shown to cause various human diseases. For

example, Zaky et al. have identified the role of the gut microbiome

in diabetes and obesity-related kidney diseases (Zaky et al., 2021).

And several studies have found that gut microbiota disorder is

linked to the activity of rheumatic diseases (Yu et al., 2021; Bao

et al., 2020).

Juvenile Idiopathic Arthritis (JIA), the most common chronic

rheumatic disease in children, is marked by its mysterious origins

and sustained arthritis for over six weeks in individuals under 16

years old. The disease exhibits a varied incidence rate, estimated

between 1.6 and 23 cases, and a prevalence ranging from 3.8 to 400

per 100,000 children (Gibiino et al., 2018; Weiss, 2022). It often

severely impacts the physical and mental health of children,

restricting growth and causing joint deformities, thus

diminishing the quality of life and social participation

(Haverman et al., 2012). Early diagnosis and treatment are

critical to improving outcomes and preventing deformities.

Clinical symptoms and imaging findings are helpful in the

diagnosis of JIA. However, the etiology of JIA remains elusive

and inflammatory findings are not always evident as early

symptoms, which may delay the diagnosis of JIA and further

aggravate the progression of the disease. By identifying particular

signs of chronic inflammation, imaging studies are essential to the

early diagnosis of JIA. They are also beneficial in tracking the

illness and assessing the efficacy of treatment. Nevertheless, this

approach is still in its infancy (Stevens and Rudd, 2013; Tsujioka

et al., 2023). Previous research indicated that the diagnosis of JIA

often necessitates referrals to three different physicians, with an

average median time of three months for a definitive diagnosis,

indicating that the diagnosis of JIA is currently difficult (Aoust

et al., 2017). Therefore, it is of great significance to develop a tool

that can accurately diagnose JIA.

With the emergence of digital health and gene sequencing,

artificial intelligence (AI) has shown a broad prospect in medical

field (Kim et al., 2021). At present, the emergence of electronic
0272
medical records (EMR) and the expansion of databases present

significant opportunities for ML application in the medical field.

Additionally, ML algorithms are frequently employed for prediction

of clinical outcomes, tailored treatment, and early illness diagnosis

(Goecks et al., 2020; Huang et al., 2018). For instance, Liu et al. had

developed efficient machine learning (ML) models for predicting

metastatic bone tumors (LiuWC. et al., 2021). Similarly, Li et al. had

designed a ML model to predict the incidence of pulmonary

infections following spinal cord injuries (Li et al., 2023). With the

advent of software for quality control and precise alignment of

metagenomic sequencing data (such as kneaddata, bracken,

Kracken, etc.) (Wood et al., 2019; Lu et al., 2022), our

understanding of gut microbiota has become more accurate and

in-depth, and it is also possible for gut microbiota to be used as

predictors for the construction of machine learning prediction

models. For example, Su et al. used species based on fecal

microbial species level to construct a machine learning predictive

model for the prediction of multiple diseases (Su et al., 2022).

In previous studies, the relationship between fecal microbiome

and JIA had been explored (Tejesvi et al., 2016). Many studies have

pointed out that the pathophysiology of JIA is linked to the gut

microbiome (De Filippo et al., 2019; van Dijkhuizen et al., 2019; Qian

et al., 2020). A study by Tejesvi et al. (2016) found that the fecal

microbiota in JIA presents a high level of Bacteroidetes and a low

level of Firmicutes, and changes in the gut microbial ecology may put

genetically predisposed individuals’mucosal immune systems at risk,

which could lead to local proinflammatory cascades and the

development of JIA. However, fecal microbiome-based ML

diagnostic models for JIA are rare. Therefore, in this study, we

aimed to integrate phylum and genus-level gut biomarkers to

construct and validate a high-performance ML model for assisting

JIA diagnosis.
Methods

Metagenomic datasets

The metagenomic data utilized in this study were derived from

the NCBI project PRJNA379123. We downloaded the FASTQ files

of 16S rRNA gene sequences extracted from the fecal samples.

Metagenomic data from the experimental group were exclusively
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derived from fecal samples collected from juvenile idiopathic

arthritis (JIA) patients at the initial treatment phase. Figure 1

illustrated the research flow of this study.
Sequencing data processing and
microbiome profiling

Firstly, we used the KneadData tool to clean and control the raw

FASTQ file. The quality of all reads was managed with Trimmomatic

(version 0.39), with parameters set to SLIDINGWINDOW:4:20

MINLEN:50 LEADING:3 TRAILING:3 (Bolger et al., 2014). Reads

containing human sequences were filtered out using Bowtie2

(version 2.4.5), applying the human reference database

(hg37_and_human_contamination) recommended by KneadData,

with parameters configured to –very-sensitive –dovetail (Langmead

and Salzberg, 2012).

Subsequently, the cleansed FASTQ data were compared against

sequences from known microbes with the goal of translating

metagenomic 16S rRNA sequencing data into species abundance

information. The metagenomic data were classified using Kraken

software version 2.2.1.3, with reference to the official Kraken2/

Bracken 16S RNA indexes (Silva 138) (Wood et al., 2019; Lu et al.,

2022). For precise quantification of microbial abundance as

determined by Kraken2, Bracken version 2.9 was employed (Lu

et al., 2017). The read counts were converted into relative

abundances of gut microbiota at both the phylum and genus

levels through Bracken software for subsequent analysis.
Microbiome analysis and screening

Microbiome analysis and screening and statistical analysis were

performed using Python 3.8 and R version 4.3.2. Descriptive

statistics were assessed using chi-square tests or Fisher’s exact

tests as appropriate. Continuous variables were compared using

Student’s t-tests or rank-sum tests. P-value of less than 0.05

considered statistically significant.
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To understand the distribution of gut microbiota in the study

population, we performed diversity analysis at the genus level,

including a-diversity and b-diversity, based on the data after

kraken2 classification and bracken abundance estimation. Alpha

diversity is often used to measure the number of species in a single

sample or environment (richness) and how evenly these species are

distributed (evenness). We calculated the Shannon’s a-diversity
index (Sh) for each sample using the alpha_diversity.py script from

KrakenTools. However, beta diversity is often used to measure the

differences in species composition across environments or regions.

In this study, b-diversity was examined using Principal Coordinates

Analysis (PCoA) based on the Bray–Curtis distance matrix, which

was computed using the relative abundances of microbial genus.

This facilitated the visualization of sample clustering according to

their genus-level compositional profiles. Differences in microbiome

composition among various phenotypes were determined using

permutational multivariate analysis of variance (PERMANOVA)

with distance matrices (adonis) via the adonis function of the vegan

R package v.2.6-4.

To reduce the risk of overfitting the prediction model, we need

to screen suitable variables before training the model. Initially, we

selected the top three phyla and the top twenty genera ranked by

average abundance to reduce the influence of technical error on the

results. Subsequently, to refine the variables used to train the ML

model, these 23 variables were further filtered by least absolute

shrinkage and selection operator (Lasso) regression. Features with

nonzero regression coefficients in the LASSO model were chosen to

train the subsequent ML predictive models.
Model establishment and evaluation

In this study, all data were randomly divided into training and

test sets in a 7:3 ratio. The Synthetic Minority Over-sampling

Technique (SMOTE) method was used to oversampling the

training set to mitigate the potential impact of imbalanced data

on model training (Solihah et al., 2020; Wu et al., 2019). The secret

to this approach is to oversample the small class data samples in

order to increase the number of small class data samples and boost

the model’s accuracy. To identify the most effective ML model for

diagnosing juvenile idiopathic arthritis, we trained six commonly

used ML models, including three ensemble algorithms and three

simple classification algorithms: Random Forest (RF), eXtreme

Gradient Boosting (XGB) and Gradient Boosting Machine (GBM)

are ensemble algorithms. Naive Bayes Classifiers (NBC), Decision

Tree (DT) and Logistic Regression (LR) are three simple

classification algorithms. In model construction, each model

underwent internal ten-fold cross-validation and tuned

hyperparameters. Subsequently, ROC curves and calibration

curves for each model were plotted in both the training and test

sets to comprehensively assess model performance, aiming to select

the model with optimal efficacy for the diagnosis of juvenile

idiopathic arthritis. Additionally, to visually demonstrate the net

benefit of each model at varying clinical decision thresholds, clinical

decision curves were plotted for the models in both training and test

sets. Ultimately, the best-performing model for disease diagnosis
FIGURE 1

The flow chart of the study.
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was selected based on a combined consideration of AUC value,

accuracy, specificity, F1 score, calibration curves, and clinical

decision curves.
Feature importance analysis and
model demonstration

Shapley Additive Explanations (SHAP) and Permutation

Importance analysis are frequently utilized for elucidating ML

models (Altmann et al., 2010; Li et al., 2022). The presentation of

feature importance not only aids in interpreting the predictive

process of ML models but also substantially contributes to our

understanding of the roles various microbiota play in the onset and

progression of diseases. Through a randomization of the feature test

data values and measuring the average error they introducing into

the model, permutation importance determines which features are

more accurate for a trained model. Different from permutation

importance, the SHAP computes each feature’s contribution to the

predicted value in order to identify the feature’s significance

(Goings and Hammes-Schiffer, 2020; Liu LP. et al., 2021).

Therefore, both methods were used to explain the prediction

models in this study. In addition, for a more transparent

demonstration, we conducted SHAP value visualization by

randomly selecting samples from both the experimental and

control groups. This approach distinctly illustrates the

contribution of different features to the final prediction value

when the model predicts outcomes for individual samples.
Results

Basic characteristics of the dataset

The present investigation sourced its dataset from the NCBI

project PRJNA379123, submitted by the Bambino Gesù Children’s

Hospital, IRCCS, Rome, Italy, incorporating a cohort of 231

European individuals. This dataset spans across four distinct

phenotypes: three stages of JIA—baseline, inactive, and persistent

activity—and a cohort of healthy controls. Our analysis consolidates

all JIA conditions into a unified experimental group to delineate the
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association between the gut microbiota and JIA. Consequently, the

study designates 203 individuals as the experimental group and 28

as the control group, with the intent to construct ML models for

JIA diagnosis.
Microbiome analysis and
biomarkers screening

Following metagenomic data processing, including cleaning,

taxonomic classification, and abundance estimation, our study

performed a diversity analysis of gut microbiota at the genus

level. As shown in Figure 2A, alpha diversity was evaluated by

Shannon index, and there was no significant difference between the

JIA group and the healthy group (mean values were 2.47 and 2.52,

respectively, P=0.568). However, Principal Component Analysis

(PCA) in Figure 2B indicated subtle distinctions in beta diversity

between JIA patients and healthy individuals (P=0.001).

To train a high-performance diagnostic model, we initially selected

biomarkers based on the top three phyla and top twenty genera by

average abundance, with their distribution across the experimental and

control groups presented in Table 1. At the phylum level, Firmicutes

dominate the gut microbial distribution in this population, with a

higher relative abundance in healthy individuals than in JIA patients.

Bacteroidota and Proteobacteria followed, with higher prevalence in

the JIA group. In addition, at the genus level, only Faecalibacterium,

with a mean relative abundance exceeding 0.1, showed no significant

difference between the groups. To prevent overfitting due to an excess

of biomarkers, a LASSO regression was applied to the 23 preselected

biomarkers, culminating in the identification of 10 variables for the

subsequent model construction and validation, including 3 phylum-

level biomarkers (Firmicutes, Bacteroidota and Proteobacteria) and 7

genus-level biomarkers (Faecalibacterium, Alloprevotella, UCG-002,

Dialister, Lachnoclostridium, Monoglobus and Veillonella) (Figure 3).
Model selection and
performance evaluation

After screening the variables, we trained six ML models based

the ten biomarkers. In internal ten-fold cross-validation, the
BA

FIGURE 2

Genus-level diversity of fecal microorganisms. (A) alpha diversity; (B) belt diversity.
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XGBoost (XGB) model emerged as the most effective, achieving an

average AUC of 0.976 (Figure 4A). The ROC curves for both

training and test sets underscored the XGB model’s exceptional

performance (Figure 4B). Calibration curves for each model further

substantiated the XGB model’s accuracy and interpretability,

showcasing a closer alignment with perfect calibration in both

datasets (Figure 4C). Other performance metrics such as

accuracy, AUC, Recall, precision, and F1 index of the six models

in the test set are detailed in Table 2, where the RF, GBC, and XGB

models demonstrated remarkable effectiveness. Clinical decision

curve analysis confirmed the XGB model’s superior net benefit

across nearly all risk thresholds, especially in the test dataset

(Figure 4D). Considering the overall performance, the XGB

model was selected as the diagnostic tool for JIA. Figure 5

presented the confusion matrix of the final diagnostic model in

the training and test sets.
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Feature importance analysis and prediction
process presentation

To explain the role of different biomarkers in the predictive

mechanism, we performed a feature importance analysis. Initially, a

permutation feature importance assessment across all six models

highlighted that Proteobacteria and genus UCG-002 provided the

most substantial contribution within the top-performing models—

RF, GBC, and XGB (Figure 6). The subsequent SHAP analysis of the

XGB model also yielded the same result that the contributions of

these two biomarkers were significantly higher than those of other

biomarkers, followed by Bacteroidota, among others (Figure 7).

In addition, Figure 8 presented the diagnostic model’s analytic

process through SHAP value visualization. Figure 8A specifically

demonstrates the model’s predictive sequence for a JIA sample, with

an outcome of f(x) = 0.99, suggesting a high likelihood of JIA as
TABLE 1 Summary descriptives table by groups of `juvenile idiopathic arthritis’.

Gut microflora Control Experiment P-value

N=28 N=203

Phylum level

Firmicutes_1672 0.91 (0.11) 0.66 (0.26) <0.001

Bacteroidota_43868 0.05 (0.09) 0.17 (0.18) <0.001

Proteobacteria_2375 0.01 (0.01) 0.12 (0.19) <0.001

Genus level

Faecalibacterium_45544 0.22 (0.19) 0.13 (0.14) 0.023

Bacteroides_43874 0.02 (0.06) 0.07 (0.11) 0.001

Subdoligranulum_45553 0.07 (0.06) 0.06 (0.10) 0.477

Escherichia.Shigella_46463 0.00 (0.01) 0.04 (0.09) <0.001

Alloprevotella_43941 0.01 (0.01) 0.04 (0.08) <0.001

Ruminococcus_45552 0.05 (0.08) 0.03 (0.08) 0.144

Blautia_45422 0.04 (0.05) 0.03 (0.05) 0.414

Streptococcus_1853 0.02 (0.03) 0.03 (0.07) 0.188

UCG.002_45530 0.07 (0.08) 0.02 (0.07) 0.009

Dialister_45783 0.06 (0.13) 0.02 (0.06) 0.131

Bacillus_1688 0.03 (0.05) 0.02 (0.06) 0.430

Christensenellaceae.R.7.group_45329 0.03 (0.04) 0.02 (0.07) 0.296

Lachnoclostridium_45446 0.00 (0.00) 0.02 (0.09) 0.001

Pseudomonas_3723 0.00 (0.00) 0.02 (0.08) 0.001

uncultured_43978 0.01 (0.03) 0.02 (0.06) 0.113

Alistipes_43965 0.01 (0.01) 0.02 (0.05) 0.005

Flavobacterium_44221 0.01 (0.02) 0.01 (0.05) 0.152

Monoglobus_45507 0.03 (0.06) 0.01 (0.03) 0.177

Akkermansia_46831 0.01 (0.01) 0.01 (0.05) 0.048

Veillonella_45786 0.00 (0.01) 0.01 (0.04) <0.001
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TABLE 2 Performance metrics of different models.

Models Accuracy AUC Recall Precision F1

LR 0.700 0.948 0.661 1.000 0.796

NB 0.671 0.887 0.629 1.000 0.772

DT 0.771 0.847 0.758 0.979 0.855

RF 0.900 0.942 0.903 0.983 0.941

GBM 0.886 0.946 0.919 0.950 0.934

XGB 0.914 0.958 0.952 0.952 0.952
F
rontiers in Cellular and In
fection Microbiology
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RF, Random Forest; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine; NBC, Naive Bayes Classifiers; DT, Decision Tree; LR, Logistic Regression.
BA

FIGURE 3

Through LASSO binary logistic regression analysis, ten fecal microbe biomarkers were selected, 3 phylum-level biomarkers (Firmicutes, Bacteroidota
and Proteobacteria) and 7 genus-level biomarkers (Faecalibacterium, Alloprevotella, UCG-002, Dialister, Lachnoclostridium, Monoglobus and
Veillonella). (A) Penalty maps of the Lasso model for 23 biomarkers; (B) LASSO coefficient mapping of 23 biomarkers.
B

C D

A

FIGURE 4

Demonstration of model performance. (A) ten-fold cross-validation results of different machine learning (ML) models in training dataset; (B) ROC
curves of different ML models in training set and test set; (C) calibration curves of different ML models in training set and test set; (D) decision curve
analysis (DCA) of different ML models in training set and test set.
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assessed by the diagnostic model. The numbers following the

biomarkers detailed their individual contributions to the

prediction. Figure 8B showed the prediction process of the model

for a healthy sample.
Discussion

Juvenile Idiopathic Arthritis (JIA) is a relatively uncommon

disease that not only affects joints but can also involve other organs.

The limited understanding of JIA among pediatricians and general

practitioners, coupled with the absence of characteristic symptoms,

leads to a high incidence of misdiagnosis, missed diagnosis, and

delayed diagnosis. A retrospective study from France, analyzing the

diagnostic journey of 67 JIA patients, highlighted these challenges

(Aoust et al., 2017). The study revealed that prior to a confirmed

diagnosis of JIA, patients had consulted with an average of three

physicians, and the median time to diagnosis was 3 months,
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underscoring the significant difficulties encountered in accurately

diagnosing JIA. The most common initial misdiagnoses were

Reactive Arthritis (34%) and Septic Arthritis (24%) (Aoust et al.,

2017). The treatment approaches for these conditions differ

markedly from JIA, and misdiagnosis resulting in prolonged

antibiotic use not only hinders recovery but may also promote

the development of JIA by disrupting the balance of the human

microbiome (Horton et al., 2015). Therefore, the development of a

simple and effective tool for diagnosing JIA is of great significance.

Artificial intelligence (AI) is a broad field that enables

computers to mimic human intelligence to perform tasks,

including understanding language, recognizing images, solving

scientific problems, and learning (Laskaris, 2015). Machine

Learning (ML), a subset of AI, focuses on developing algorithms

and techniques that allow computers to learn from data and make

decisions or predictions (Alhusain et al., 2013). ML algorithms

achieve learning by analyzing and identifying patterns in data

(Alhusain et al., 2013). Considering the abundance of data
FIGURE 6

Permutation importance analysis of different models.
BA

FIGURE 5

Confusion matrix of the diagnostic model constructed by the XGB algorithm. (A) training set; (B) test set.
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accessible online and the emergence of electronic medical records

(EMR), more clinical data sets, including clinical diagnoses and

laboratory data, could be obtained conveniently, thus making ML

bring a bright future in medical filed (Deo, 2015; Handelman et al.,

2018; Toh et al., 2019; Bhavsar et al., 2021).

In this study, we innovatively constructed six different ML

classification models based on fecal microbiomics, including the

conventional logistic regression model and ensemble ML models

commonly used in the medical field, such as RF, GBM and XGB.

Ultimately, XGB model was chosen to construct the diagnostic tool

for JIA. Previously, the RF model was commonly employed for

processing fecal microbiomics data, and it was generally considered

more suitable for handling such data. For instance, Huang et al.

developed an RF model based on fecal microbiomics data to predict

tumor patients’ responses to PD-L1 antibodies (Huang et al., 2023),

and Su et al. also constructed an RF model for multi-disease

classification using fecal microbiome data (Su et al., 2022). In our

study, an RF model was also developed in the pre-construction

phase of the models, which demonstrated excellent performance

across various evaluation metrics. However, compared to the XGB

model, the RF model was slightly inferior in all aspects, particularly

in the calibration curve and clinical decision curve in the test set.

This indicates that the XGBmodel may has stronger generalizability

and can bring greater benefits to clinical diagnosis. The XGB

algorithm is a scalable, adaptable and effective ML algorithm

classifier that has been applied extensively in the medical field,
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such chronic kidney disease, COVID-19, and bone metastasis (BM)

in non-small cell lung cancer (Ogunleye and Wang, 2020; Guan

et al., 2021; Li et al., 2022). Li et al. compared six commonly

machine learning algorithms and found the XGB algorithm

performed best, thus building a web predictor of BM from non-

small cell lung cancer (Li et al., 2022). The XGB algorithm included

a regular term in the objective function in order to prevent

overfitting and manage model complexity. Additionally, it

supported column sampling to improve model stability. This

could be contributing to the fact that it performed the best in this

study (Ester et al., 2022).

In this study, the diversity assessments were conducted at the

genus level, which might introduce some deviations compared to

the species level. This limitation was due to sequencing quality

issues, which prevented accurate extraction of relative abundance of

species at the species level (Caporaso et al., 2011; Kuczynski et al.,

2011). In addition, the abundance of gut microbiota at phylum level

and genus level were extracted to further analyze the influence of

gut microbiota on JIA. At the phylum level, a significant reduction

in Firmicutes was observed in JIA patients compared to healthy

individuals. Firmicutes play a crucial role in immune regulation, as

elucidated in the literature. Clarke et al. had explored the

relationship between Firmicutes and the immune system,

revealing that the gut can process and release glycoconjugates

from Firmicutes, promoting cytokine IL-34 release (Jordan et al.,

2023). This cytokine stimulates macrophage proliferation,
B

A

FIGURE 8

Demonstration of the prediction process of the XGB model. (A) A JIA sample; (B) A health sample.
FIGURE 7

SHAP features analysis of the XGB model.
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enhancing the body’s defense mechanisms. Additionally, IL-34-

mediated Mtorc1 activation in sentinel cells can remove

glycoconjugates in peripheral tissues, maintaining immune

homeostasis. Our findings indicated a significantly lower

proportion of Firmicutes in JIA patients, potentially linked to

decreased immune regulation functions.

In evaluating model feature importance and SHAP analysis, we

focused on two significant biomarkers: Bacteroidetes and UCG-002.

We observed a notably higher relative abundance of Bacteroidetes

in the JIA group compared to healthy individuals, with SHAP

analysis indicating a positive impact of this biomarker on predicting

JIA. As the largest phylum of Gram-negative bacteria found in our

guts, Bacteroidetes are regarded as crucial participants in

maintaining the complex and healthy homeostasis. It has been

proved that several Bacteroidetes genera are linked to the

emergence of immunological dysregulation, neurological

problems, and systemic diseases including metabolic syndrome

(Gibiino et al., 2018). The abundance of the proteobacteria

phylum is significantly increased in patients with moderate-to-

severe COPD, especially in those with exacerbation of the disease

(Pragman et al., 2012). In inflammatory bowel disease, this group of

bacteria was also significantly increased (Sartor, 2008). This

suggests that the Proteobacteria are important for inflammation

promotion, but the underlying mechanisms remain unclear

(R izza t t i e t a l . , 2017) . UCG-002 , be long ing to the

Ruminococcaceae family, is a key indicator in gut microbiome

studies. Lee et al. showed that the high relative abundance of

Ruminococcaceae UCG-002 is associated with IgE-mediated food

allergy in children (Lee et al., 2021), and Rhee et al. also suggested

that Ruminococcaceae UCG-002 genus is a potential factor for

psychiatric disorders such as bipolar disorder and major depression

(Rhee et al., 2020). Our research found that UCG-002 contributed

significantly to JIA, but the underlying mechanisms remain unclear.

Although this study constructed a ML model for JIA diagnosis

based on feces with excellent performance, there were still some

limitations. First, only sequencing data from a single center were

used in this study. In future studies, multi-center data including

different ethnic groups are needed for further training of the model

to increase the generalization ability of the model. Second, because

the data came from a public database, some common confounding

factors such as age and gender that may affect the onset of JIA could

not be excluded. Third, since species-level relative abundance could

not be extracted, only species at the genus and phylum levels were

analyzed in this study, and more subdivided species may be more

beneficial to construct prediction models with excellent

performance in future studies.
Conclusion

In this study, based on the relative abundance of 10 fecal

biomarkers, we used XGB algorithm to construct a JIA diagnosis

model with excellent performance, which can assist physicians in

early detection of JIA patients and improve the prognosis of

JIA patients.
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Introduction: Serological responses following hepatitis B vaccination are crucial

for preventing hepatitis B (HBV). However, the potential relationship between

serum lipid levels and immunity from HBV vaccination remains poorly understood.

Methods: In this study, we conducted an analysis of the National Health and

Nutrition Examination Survey (NHANES) data spanning from 2003 to 2016.

Multivariable weighted logistic regression models, generalized linear analysis,

stratified models, smooth curve fitting, segmentation effect analysis and

sensitivity analysis were utilized to assess the relationships.

Results: After adjusting for relevant covariates, we observed that low levels of

high-density lipoprotein cholesterol (HDL) were independently linked to a

significantly lower seroprotective rate. Compared to HDL levels of ≥ 60 mg/dL,

the odds ratios (ORs) for individuals with borderline levels (40-59 mg/dL for men,

50-59 mg/dL for women) and low levels (< 40 mg/dL for men, < 50 mg/dL for

women) were 0.83 (95% CI 0.69-0.99) and 0.65 (95% CI 0.56-0.78), respectively.

This association was particularly pronounced in individuals aged 40 or older.

Conversely, higher levels of the triglyceride to HDL (TG/HDL) ratio (OR, 0.90; 95%

CI, 0.84-0.98), total cholesterol to HDL (Chol/HDL) ratio (OR, 0.77; 95% CI, 0.64-

0.92), and low-density lipoprotein to HDL (LDL/HDL) ratio (OR, 0.85; 95% CI,

0.76-0.96) were associated with a decreased likelihood of seroprotection.

Conclusion: This study suggests that lipid levels may play a role in modulating the

immune response following HBV vaccination.
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lipid, hepatitis B vaccination, immunity, HDL, HBV - hepatitis B virus
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GRAPHICAL ABSTRACT
1 Introduction

HBV infection can advance to chronic hepatitis B and, in more

severe cases, lead to cirrhosis and hepatocellular carcinoma (Global,

regional, and national burden of hepatitis B, 1990-2019: a

systematic analysis for the Global Burden of Disease Study 2019,

2022). As per a survey by the World Health Organization, an

estimated 296 million people globally (3.8%) are chronically

infected with HBV, resulting in approximately 820,000 deaths

annually (Cui et al., 2023; Jeng et al., 2023). In response to this

significant health burden, hepatitis B vaccination, including the

administration of a birth dose, has been implemented as a key

component of the Immunization Agenda 2030 (IA2030), which is

endorsed by the World Health Assembly. Serological protection

from vaccination is considered achieved when anti-HBs titers are ≥

10 mIU/mL. However, despite the demonstrated effectiveness of the

hepatitis B vaccine, a subset of individuals fails to attain

seroprotection (Muhoza et al., 2021; Chang et al., 2022; El-Sayed

and Feld, 2022; Wong et al., 2022). Identifying the factors that

influence seroprotection is crucial for enhancing vaccination

strategies and reducing the impact of HBV-related diseases. While

factors such as age, sex, obesity, smoking, and HIV infection have

been reported to affect the immune response to hepatitis B

vaccination, additional determinants of seroprotection warrant

further investigation (Alavian et al., 2008; Deng et al., 2022; Di

Lello et al., 2022; Fonzo et al., 2022; Lian and Morrish, 2022).

Abnormal levels of lipids, including Chol, TG, HDL, and LDL, are

associated with various health conditions. Elevated LDL levels are
Frontiers in Cellular and Infection Microbiology 0282
implicated in the development of cardiovascular diseases, while

hypertriglyceridemia is linked to nonalcoholic fatty liver disease and

acute pancreatitis. The TG/HDL ratio is recognized as a marker for

metabolic syndrome (Ryan et al., 2018; Sulaiman, 2020; Pirillo et al.,

2021). Lipid metabolism also plays a significant role in modulating

immune responses, with implications for T cells, macrophages, dendritic

cells, and other immune cell types in diseases such as nonalcoholic fatty

liver disease, pancreatic fibrosis, and cancer progression (Yan and

Horng, 2020; Liu et al., 2021; Yu et al., 2021; Lim et al., 2022; Zhao

et al., 2022). Additionally, lipid-based nanoparticles have been shown to

be effective vaccine adjuvants, enhancing antibody responses in vaccines

targeting pathogens like SARS-CoV-2, HIV, and HBV (Di Paolo et al.,

2010; Bartlett et al., 2020; Lou et al., 2020; Park et al., 2021; Bevers et al.,

2022). Despite these findings, the impact of serum lipid levels on

immunity following vaccination remains underexplored.

This study aims to investigate the association between serum

lipid levels and seroprotection following hepatitis B vaccination,

using a large sample of individuals who have received three doses of

the vaccine from the National Health and Nutrition Examination

Survey (NHANES).
2 Materials and methods

2.1 Research population

NHANES database is a comprehensive program designed to

assess the health and nutritional status of adults and children in the
frontiersin.org
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United States. It employs a biennial sampling strategy to select a

nationally representative sample of approximately 10,000

individuals through a meticulous sampling process. Participants

are randomly chosen to partake in interviews that cover

demographic, socioeconomic, dietary, and health-related topics, in

addition to undergoing medical, dental, and physiological

measurements and laboratory tests.

For this cross-sectional study, we analyzed data from seven

NHANES cycles spanning from 2003 to 2016 (Figure 1). Out of the

total 71,058 subjects (35,122 men and 35,936 women), 33,665 had

completed three doses of the hepatitis B vaccine, and 25,524 had

available anti-HBs data. We excluded individuals who tested

positive for HBsAg, anti-HBc, or HIV antibodies, indicative of

potential immunosuppression. The final study subjects comprised

6,530 unique participants with available data on serum lipids and

covariates. This population was further divided into two groups:

those with seroprotection against HBV vaccination (n=3,276) and

those susceptible to hepatitis B (n=3,254).
2.2 Hepatitis B serology assessment

HBV serological markers, including hepatitis B surface antigen

(HBsAg), hepatitis B surface antibody (anti-HBs), and hepatitis B

core antibody (anti-HBc), were evaluated using the VITROS ECi/

ECiQ Immunodiagnost ic Systems and VITROS 3600

immunodiagnostic system (Ortho Clinical Diagnostics). The

combined assessment of these markers enabled the evaluation of

immunity against HBV infection. Individuals with anti-HBs levels

equal to or exceeding 10 mIU/mL were considered to have acquired

immunity either from vaccination or from the resolution of a

previous HBV infection. The presence of HBsAg indicated acute

or chronic HBV infection, while anti-HBc positivity suggested

previous or ongoing HBV infection. In our study, only

participants negative for HBsAg and anti-HBc and positive for

anti-HBs were considered to have immunity from vaccination

(seroprotection), while those negative for all these markers were

classified as nonresponsive after vaccination.
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2.3 Serum lipid level assessment

In this study, cholesterol (Chol), LDL, HDL, and triglycerides

(TG) were measured using the UniCel® DxC 800 Synchron &

UniCel® DxC 660i Synchron Access Clinical Systems (Beckman

Coulter Diagnostics) or Cobas 6000 Chemistry Analyzer (Roche

Diagnostics). Chol and HDL assessments were conducted for

participants aged 6 and above, while TG and LDL measurements

were taken for those aged 12 and older during the morning session.

These measurements were categorized according to clinical

guidelines (Christensen et al., 2015). Hyperlipidemia was defined

as total cholesterol ≥ 200 mg/dL, triglycerides ≥ 150 mg/dL, LDL ≥

130 mg/dL, or HDL ≤ 40 mg/dL in men and ≤ 50 mg/dL in women,

following the National Cholesterol Education Program (NCEP)

guidelines for adults (Executive summary of the third report of

the national cholesterol education program (NCEP) expert panel on

detection, evaluation, and treatment of high blood cholesterol in

adults (Adult treatment panel III), 2001). Additionally, we

calculated the Chol/HDL (Conraads et al., 2003), TG/HDL

(Oliveri et al., 2024), and LDL/HDL (Di Taranto et al., 2019)

ratios to evaluate their relevance to seroprotection from the

hepatitis B vaccine.
2.4 Covariates

Based on factors known to potentially impact the immune

response to the hepatitis B vaccine and serum lipid levels, as

outlined in the CDC’s Red Book and previous studies (Christensen

et al., 2015; Penina Haber and Schillie, 2023), we selected several

covariates, including age, sex, body mass index (BMI), race/ethnicity,

family poverty-to-income ratio (PIR), country of birth, and smoking

status. BMI was used to categorize participants into normal weight (<

25 kg/m²), overweight (25-29.9 kg/m²), and obese (≥ 30 kg/m²)

according to CDC cutoffs for adults (CDC, 2023). Participants were

classified as exposed to environmental smoke or active smokers (≥ 10

ng/mL) and nonsmokers (< 10 ng/mL) based on their serum cotinine

levels (Andrews et al., 2021).
2.5 Statistical analysis

Given the complex multistage probability sampling and

oversampling of specific subgroups within the NHANES dataset,

we applied data weighting using a “survey design” approach to

enhance the accuracy of statistics and ensure they more accurately

reflect the true distribution of the U.S. population. We employed the

2-Year Mobile Examination Center Weight for Fasting Subsample

(WTSAF2YR) in our weighted analysis, as triglyceride

measurements were collected in the fasting subsample. For the

final analysis, the sample weight was determined as the average of

the “WTSAF2YR” values from seven NHANES survey cycles.

Continuous variables, such as Chol, TG, HDL, and LDL, were

categorized based on previous literature (Executive summary of the

third report of the national cholesterol education program (NCEP)

expert panel on detection, evaluation, and treatment of high blood
FIGURE 1

Flow chart of the population included in the final analysis of
our study.
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cholesterol in adults (Adult treatment panel III), 2001). Summary

statistics, including survey-weighted means and 95% confidence

intervals for continuous variables, as well as unweighted sample

sizes and survey-weighted percentages for categorical variables,

described the baseline characteristics of the study participants. In

the analysis of continuous variables, we utilized the Kruskal-Wallis

rank sum test, and for situations involving fewer than ten

theoretical count variables, the Fisher’s exact probability test was

applied. Categorical data were subjected to p-value determination

through weighted chi-square analysis (refer to Table 1).

Furthermore, we conducted four statistical tests, namely, the

Anderson-Darling normality test, the Cramer-von Mises normality

test, the Lilliefors (Kolmogorov-Smirnov) normality test, and the

Pearson chi-square normality test (refer to Supplementary Table

S2). We employed the “ggplot2” R package to create visual

representations of the data distribution, as illustrated in Figure 2.

And we applied a log2 transformation during regression analysis to

account for non-normality. To assess the independent impact of

lipid concentrations on the response to the HBV vaccine, we

utilized multivariable weighted linear regression models. These

models included Model I, which was unadjusted for covariates;

Model II, adjusted for age, PIR, and sex; and Model III, adjusted for

age, race, sex, PIR, serum cotinine, place of birth, and BMI.

Covariate selection adhered to internationally recognized

practices, introducing or removing variables based on their effect

on the regression coefficient of X exceeding 10%.

To evaluate potential nonlinear relationships, we performed

smooth curve fitting and segmentation effect analysis. Subsequently,

we conducted a subgroup analysis employing stratified multivariate

logistic regression and interaction testing to explore stratified

relationships between serum lipid levels and HBV vaccine-

induced immunity, as well as the interactive effects of covariates

on this relationship.

For sensitivity analysis, we categorized HDL, TG, and other

lipid-related indexes into quartiles (Q1-Q4), as shown in

Supplementary Table S4. All statistical analyses were performed

using R software (Version 4.2.3), the R package, and EmpowerStats

(www.empowerstats.com), with a significance level set at P < 0.05.

FigDraw was utilized for graphical illustrations.
3 Results

3.1 Baseline characteristics

The analysis included a total of 6,530 individuals, comprising

3,276 participants with immunity following hepatitis B vaccination

and 3,254 individuals susceptible to HBV. Table 1 outlines the

baseline characteristics, highlighting significant differences between

those with post-vaccination immunity and those susceptible to

HBV concerning age, gender, race, PIR, BMI, smoking status, as

well as levels of HDL, TG, TG/HDL ratio, Chol/HDL ratio, LDL/

HDL ratio, and the presence of hyperlipidemia.

The seroprotection group was characterized by a higher

proportion of females (59.0%), a younger age demographic (age <
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40), non-smokers (82.1%), non-Hispanic whites (67.6%),

individuals with a PIR ≥ 3.5, higher HDL levels (55.9 mg/dL, 95%

CI 55.2-56.7), lower TG levels (100.0 mg/dL, 95% CI 97.0-103.1), a

lower TG/HDL ratio (2.0, 95% CI 1.9-2.1), a lower Chol/HDL ratio

(3.4, 95% CI 3.3-3.4), a lower LDL/HDL ratio (2.0, 95% CI 1.9-2.0),

and a lower prevalence of hyperlipidemia (97.5%).

When examining lipid levels as categorical variables, the

seroprotection group demonstrated a higher percentage of

individuals with ‘desirable’ levels of HDL and TG compared to

the susceptible group. Nevertheless, no significant differences were

observed in Chol and LDL levels between these two groups.
3.2 The connection between serum lipid
levels and immunity from hepatitis
B vaccination

To investigate the association between serum lipid levels and HBV

vaccination-induced immunity, we developed three weighted logistic

regression models, as presented in Table 2. In Model 1, where no

variables were taken into account, we observed significant association

between HDL, TG, LDL/HDL, TG/HDL, and TC/HDL ratios and

post-vaccination immunity. Remarkably, even after comprehensive

adjustments for all variables, these associations persisted.

Specifically, a reduction in HBV vaccination-induced immunity

was associated with lower HDL levels, but higher TG, TG/HDL,

Chol/HDL, and LDL/HDL ratios. Using HDL levels of ≥ 60 mg/dL

as a reference, the ORs for the borderline group (40/50-59 mg/dL)

and the low group (<40 mg/dL for men, <50 mg/dL for women)

were 0.83 (95% CI 0.69-0.99) and 0.65 (95% CI 0.56-0.78),

respectively, indicating a 17% and 35% reduction in serological

protection following vaccination. Additionally, for each 1-unit

increment in log2-TG/HDL, log2-Chol/HDL, and log2-LDL/HDL

ratios, vaccine-induced immunity decreased by 10%, 23%, and

15%, respectively.
3.3 Stratified analysis

In the fully adjusted model, we delved deeper into the association

between serum lipid concentrations and seroprotection following

vaccination within specific subgroups categorized by sex, BMI, and

age, as depicted in Figure 3. Furthermore, we conducted interaction

analyses on the three regression models, considering variables such as

age, gender, BMI, smoking, PIR, and race, as detailed in

Supplementary Table S3.

We observed that these variables did not exhibit significant

interactions concerning the association between LDL/HDL, Chol/

HDL, and post-HBV vaccination immunity. However, an interaction

emerged with smoking and TG/HDL, where individuals in the

smoking group experienced a 16% reduction in the likelihood of

post-HBV vaccination immunity for each unit increase in TG/HDL.

Additionally, age demonstrated an interaction effect with HDL,

underscoring a more pronounced association between HDL and post-

HBV vaccination immunity among individuals aged 40 and older.
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TABLE 1 Characteristics of 6530 participants in NHANES data,
2003-2016.

Characteristics
Susceptible

to HBV
N=3254

Immunity from
Hepatitis B
Vaccination
N=3276

P
value

Mean (95%
CI) or
n(%)

Mean (95% CI)
or
n(%)

Age(years) 32.6 (31.8,33.4) 29.4 (28.5,30.4) <0.01

Age(years) <0.01

6-19 1437 (31.5) 1821 (33.5)

20-39 933 (35.2) 934 (41.0)

40-59 568 (24.7) 377 (20.3)

≥ 60 316 (8.6) 144 (5.3)

Sex <0.01

Male 1603 (48.0) 1418 (41.0)

Female 1651 (52.0) 1858 (59.0)

Race/Ethnicity <0.01

Mexican American 681 (10.7) 670 (7.7)

Other Hispanic 283 (6.2) 223 (4.7)

Non-Hispanic White 1159 (63.5) 1207 (67.6)

Non-Hispanic Black 876 (14.8) 868 (12.0)

Other Race -
Including

Multi-Racial
255 (5.8) 308 (8.1)

Country of Birth 0.41

U.S.- born 2699 (87.9) 2755 (87.9)

non-U.S.-born 553 (12.0) 520 (12.0)

Refused 2 (0.1) 1 (0.0)

Family poverty/
income ratio

<0.01

< 1.5 1455 (31.6) 1327 (25.4)

1.5-3.5 1039 (34.7) 987 (29.7)

≥ 3.5 760 (33.7) 962 (44.9)

Serum Cotinine
(ng/mL)

<0.01

non-smoker (< 10) 2614 (77.6) 2778 (82.1)

Smoker (≥ 10) 640 (22.4) 498 (17.9)

Body Mass Index
(kg/m2)

<0.01

Normal weight
(< 25)

1460 (41.0) 1854 (51.2)

Overweight (25-29.9) 802 (25.9) 754 (26.0)

Obese (≥ 30) 992 (33.1) 668 (22.8)

HDL (mg/dL) 52.1 (51.5,52.8) 55.9 (55.2,56.7) <0.01

(Continued)
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TABLE 1 Continued

Characteristics
Susceptible

to HBV
N=3254

Immunity from
Hepatitis B
Vaccination
N=3276

P
value

Mean (95%
CI) or
n(%)

Mean (95% CI)
or
n(%)

HDL (mg/dL) <0.01

Desirable(≥ 60) 896 (26.0) 1109 (35.0)

Borderline (40/50-59) 1446 (43.7) 1400 (42.4)

Low (< 40 for man,
< 50 for women)

912 (30.3) 767 (22.6)

TG (mg/dL)
109.0

(105.9,112.1)
100.0 (97.0,103.1) <0.01

TG (mg/dL) <0.01

Desirable (< 150) 2640 (79.5) 2848 (84.9)

Borderline (150–199) 333 (10.8) 243 (8.5)

High (200–499) 281 (9.7) 185 (6.5)

LDL (mg/dL)
105.6

(103.7,107.6)
103.3 (101.7,104.9) 0.07

LDL (mg/dL) 0.23

Desirable for high
risk (< 70)

500 (12.5) 575 (14.0)

Desirable (70–99) 1226 (35.4) 1308 (36.2)

Near optimal
(100–129)

899 (29.4) 906 (29.8)

Borderline (130–159) 434 (15.5) 354 (14.6)

High (160–189) 151 (5.6) 94 (3.9)

Very high (≥ 190) 44 (1.6) 39 (1.6)

Chol (mg/dL)
179.5

(177.4,181.6)
179.2 (177.2,181.3) 0.84

Chol (mg/dL) 0.39

Desirable(< 200) 2472 (71.8) 2600 (73.3)

Borderline (200–239) 782 (20.1) 675 (19.8)

High (≥ 240) 0 (8.1) 1 (6.9)

TG/HDL 2.4 (2.3,2.5) 2.0 (1.9,2.1) <0.01

Chol/HDL 3.7 (3.6,3.7) 3.4 (3.3,3.4) <0.01

LDL/HDL 2.2 (2.1,2.2) 2.0 (1.9,2.0) <0.01

Hyperlipidemia <0.01

No 3150 (95.9) 3211 (97.5)

Yes 104 (4.1) 65 (2.5)
front
Chol, total cholesterol; LDL, LDL cholesterol; HDL, HDL cholesterol; TG, triglycerides.
For continuous variables, the data were presented as survey-weighted mean (95% CI). For
categorical variables, the data were presented as unweighted sample sizes and survey-
weighted percentage.
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3.4 Nonlinear or linear association between
lipid levels and serological protection

In the final phase of our analysis, we implemented smooth curve

fitting to examine potential partitioning of the independent variable

into multiple intervals, as visualized in Figure 4. Additionally, we
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explored the segmentation effect, employing the saturation

threshold effect, which is outlined in Table 3.

Notably, our findings unveiled a relationship between HDL

concentration and an increase in seroprotection. Conversely, TG/

HDL and Chol/HDL displayed a linear association with a decrease

in seroprotection. Furthermore, we identified negative segmental

linear effects in the case of LDL/HDL. Even after adjusting for

variables such as sex, age, race, PIR, BMI, and place of birth, LDL/

HDL levels ≥ 2.54 exhibited a significant association with a decrease

in seroprotection, with an OR of 0.82 (95% CI 0.72-0.95).
3.5 Sensitivity analysis

In our sensitivity analysis, serum lipid concentrations were

discretized from continuous variables into categorical variables

(Q1-Q4). The outcomes of this sensitivity analysis were consistent

with the results obtained from the weighted linear regression

models. Notably, we observed that as HDL levels increased, the

impact on seroprotection following HBV vaccination became

progressively more significant. These sensitivity analysis findings

revealed that the segment of the American population with higher

serum lipid concentrations exhibited a stronger association with

post-HBV vaccination immunity compared to the segment with

lower serum lipid concentrations. Additional details regarding the

sensitivity analysis can be found in Supplementary Table S4.
4 Discussion

This study delved into the potential association between serum

lipid levels and immunity following HBV vaccination, utilizing data

from the NHANES database spanning from 2003 to 2016,

representative of the US population. Our analysis of 6,530

participants revealed distinct patterns: individuals with

seroprotection from vaccination were more likely to be female,

younger, and nonsmokers, aligning with previous research (Alavian
TABLE 2 Associations between lipid levels and immunity from Hepatitis
B vaccination in NHANES, 2003-2016.

Exposure
Model 1
cOR

(95% CI)

Model 2
aOR

(95% CI)

Model 3
aOR

(95% CI)

HDL (mg/dL)

Desirable (≥ 60) Reference Reference Reference

Borderline (40/50-59)
0.72***

(0.61-0.85)
0.80*

(0.67-0.96)
0.83*

(0.69-0.99)

Low (< 40 for man, < 50
for women)

0.55****
(0.47-0.66)

0.60****
(0.50-0.71)

0.65****
(0.56-0.78)

TG (mg/dL)

Desirable (< 150) Reference Reference Reference

Borderline (150–199)
0.74**

(0.61-0.90)
0.86

(0.70-1.06)
0.91

(0.74-1.13)

High (200–499)
0.63***

(0.49-0.82)
0.74*

(0.57-0.97)
0.79

(0.60-1.05)

Log2-TG/HDL
0.80****

(0.75-0.86)
0.87***

(0.81-0.94)
0.90*

(0.84-0.98)

Log2-Chol/HDL
0.57****

(0.49-0.67)
0.70***

(0.59-0.83)
0.77**

(0.64-0.92)

Log2-LDL/HDL
0.70****

(0.63-0.78)
0.80***

(0.71-0.90)
0.85**

(0.76-0.96)
The reference group for the outcome variable is the population that did not acquire immunity
after hepatitis B vaccination.
95% CI, 95% Confidence Interval; OR, Odds Ratio.
model I, unadjusted for covariates; model II, adjusted for age, sex, and PIR; model III, adjusted
for age, sex, PIR, serum cotinine, place of birth, race, and BMI.
*P-value < 0.05; ** P-value < 0.01; ***P-value < 0.001; ****P-value < 0.0001.
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FIGURE 2

Distribution of serum lipid markers: (A) LDL/HDL, (B) TG/HDL, (C) TC/HDL, (D) Chol, (E) HDL, (F) TG, (G) LDL. Chol, total cholesterol; HDL, high-
density lipoprotein cholesterol, TG, triglycerides, LDL, low-density lipoprotein cholesterol.
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et al., 2008; Deng et al., 2022; Di Lello et al., 2022; Fonzo et al., 2022;

Lian and Morrish, 2022). Notably, our study was the first to

establish a significant association between elevated HDL levels

and reduced TG, TG/HDL, Chol/HDL, and LDL/HDL levels with

seroprotection from HBV vaccination. Even after adjusting for

pertinent covariates, these lipid levels remained independent risk

factors for HBV vaccination immunity. Additionally, among

participants aged 40 and older, heightened HDL levels were

associated with a significant enhancement in seroprotection.

Furthermore, our research unveiled that when LDL/HDL

exceeded 2.54, the likelihood of HBV vaccination-induced

immunity significantly declined.

Recent years have seen clinical database analysis significantly

advancing disease diagnosis and prognosis, providing fresh

insights into disease diagnosis and treatment (Zhang J. et al.,
Frontiers in Cellular and Infection Microbiology 0787
2023; Ren et al., 2023; Chi et al., 2023; Zhang P. et al., 2023; Zhang

S. et al., 2023; Zhang et al., 2024; Zhang D. et al., 2023). Among

these, several studies have examined the relationship between

inflammatory markers and lipid levels. For instance, Xiao et al.

reported a linear negative association between the systemic

immune inflammation (SII) index and TG (Xiao et al., 2023). In

contrast, Mahemuti et al. found a notable positive correlation

between SII and hyperlipidemia (Mahemuti et al., 2023). In a

separate study involving uterine leiomyoma patients, the

neutrophil-lymphocyte ratio and SII exhibited a significant

positive correlation with TG, while the monocyte-lymphocyte

ratio demonstrated a notable negative correlation with TG

(Duan et al., 2023). Discrepancies in these study outcomes may

arise from variations in the studied populations and the utilization

of different indicators. Moreover, Li et al. identified an inverse
FIGURE 3

Subgroup analysis for the association between lipid levels and immunity from Hepatitis B vaccination: 95% CI, 95% Confidence Interval; OR, Odds
Ratio. Adjusted for age, sex, PIR, serum cotinine, place of birth, race, and BMI. The model was not adjusted for the stratification variable itself.
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relationship between thyroglobulin antibody positivity and HDL

levels, as well as a direct association with LDL levels in the general

population with normal thyrotropin levels. This relationship was

also influenced by gender (Li et al., 2021). These prior findings

offer potential support for the observations presented in this

study. However, it is important to note that the association
Frontiers in Cellular and Infection Microbiology 0888
between lipid levels and immunity remains a topic of

ongoing debate.

The underlying mechanisms governing the association

between lipid levels and immunity remain elusive. For instance,

Kochumon et al. have demonstrated the pivotal role of IL-23 in

the pathogenesis of inflammation induced by elevated low-
B

C D

A

FIGURE 4

The relationship between serum lipid levels and seroprotection rate: Liner and non-liner association between Chol/HDl (A), LDL/HDL (B), TG/HDL
(C), HDl (D) and seroprotection rate. The solid red line represents the smooth curve fit between variables. Blue bands represent the 95% confidence
interval from the fit. Chol, total cholesterol; HDL, high-density lipoprotein cholesterol, TG, triglycerides, LDL, low-density lipoprotein cholesterol.
TABLE 3 Treshold effect analysis of Lipid-related Index on Immunity from Hepatitis B Vaccination using Segmented regression models.

Crude OR (95% CI) P Adjusted OR (95% CI) P

LDL/HDL 0.19 LDL/HDL 0.04

LDL/HDL < 2.50 0.82*** (0.74, 0.91) LDL/HDL < 2.54 1.02 (0.92, 1.14)

LDL/HDL ≥ 2.50 0.72*** (0.63, 0.82) LDL/HDL ≥ 2.54 0.82** (0.72, 0.95)

Chol/HDL 0.54 Chol/HDL 0.07

Chol/HDL < 3.90 0.82*** (0.75, 0.90) Chol/HDL < 2.29 0.55* (0.30, 0.99)

Chol/HDL ≥ 3.90 0.78*** (0.71, 0.86) Chol/HDL ≥ 2.29 0.96 (0.90, 1.01)

TG/HDL 0.04 TG/HDL 0.08

TG/HDL < 2.50 0.82*** (0.75, 0.88) TG/HDL < 1.14 1.25 (0.94, 1.65)

TG/HDL ≥ 2.50 0.92*** (0.88, 0.96) TG/HDL ≥ 1.14 0.95* (0.92, 0.99)
frontiers
The reference group for the outcome variable is the population that did not acquire immunity after hepatitis B vaccination.
Crude OR: unadjusted for covariates.
Adjusted OR: adjusted for age, sex, PIR, serum cotinine, place of birth, race, and BMI.
95% CI, 95% Confidence Interval; OR, Odds Ratio.
*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.
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density lipoprotein cholesterol (Kochumon et al., 2022).

Furthermore, lipoxins and metabolites of omega-3 fatty acids

have been linked to inflammation resolution (Bäck et al., 2015).

In a review by Nancy R. Webb, it was proposed that high-density

lipoprotein may contribute to the in vivo regulation of serum

amyloid A, thereby influencing the inflammatory response

(Webb, 2021). Additionally, lipid mediators like leukotrienes

and prostaglandins have been shown to modulate mast cell

(MC) funct ions (Hagemann et a l . , 2019) . Abnormal

accumulation of endogenous lipids or their oxidation products

can activate NLRP3, subsequently triggering inflammatory

responses (Liang et al., 2021). Short-chain fatty acids have been

reported to impact immune function through the stimulation of

GPR43 or GPR41, leading to increased regulatory T cell numbers

and enhanced function, while also reducing inflammatory

cytokines (Tan et al., 2023). Schümann et al. reviewed ApoE

(and potentially other apolipoproteins)-mediated lipid antigen

transport, revealing its critical role in tumor immune surveillance

and offering new perspectives for immunotherapy and vaccines

(Schümann and De Libero, 2006). In summary, the interplay

between lipid levels and immunity involves intricate mechanisms

that warrant further investigation.

The present study unveils a novel association between serum

lipid levels and immunity from HBV vaccination. Specifically,

HDL cholesterol levels exhibit an association with an increase in

seroprotection, while TG/HDL, Chol/HDL, and LDL/HDL levels

display associations with a decrease in seroprotection. Our study

boasts several merits. Firstly, the extensive dataset sourced from

NHANES bolsters the reliability and applicability of our

findings. Secondly, we meticulously employed appropriate

methodologies to mitigate the influence of confounding

variables. Furthermore, our results underwent weighting to

reduce the potential bias stemming from population selection

and augment overall representativeness.

However, it is crucial to acknowledge several limitations. Firstly,

while the NHANES sample is extensive and representative of the US

population, it may not comprehensively reflect other demographics

or geographic regions. Secondly, despite our efforts to control for

pertinent covariates, we cannot entirely dismiss the impact of

unmeasured confounding factors on the observed associations.

Thirdly, due to the natural exposure and time-dependent waning

of serological protection following vaccine administration, there

exists a potential for inherent bias in the outcomes of this study (31,

Van Damme et al., 2017; Kushner et al., 2020). Lastly, this study,

based on real-world data from a large population sample, sheds

light on the potential association between serum lipid levels and the

serological protection conferred by hepatitis B vaccination.

However, further prospective research or animal-level verification

is still needed to confirm the causal relationship between serum

lipid levels and serological protection following hepatitis

B vaccination.

Notwithstanding these constraints, our findings provide

valuable insights into the prospective role of lipid metabolism in

HBV vaccine response, potentially leading to enhanced

vaccination strategies and more robust protection against HBV-

related diseases.
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5 Conclusion

Through the utilization of weighted logistic regression models

and saturation threshold effect analysis, we highlight a distinctive

relationship between lipid levels and immunity post HBV

vaccination. Our findings underscore the positive association of

HDL with seroprotection, while indicating negative associations of

TG/HDL, LDL/HDL, and Chol/HDL with seroprotection. To

substantiate potential causal links within our results,

comprehensive prospective studies are imperative.
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Osteoporosis, arthritis, and fractures are examples of orthopedic illnesses that not

only significantly impair patients’ quality of life but also complicate and raise the

expense of therapy. It has been discovered in recent years that the

pathophysiology of orthopedic disorders is significantly influenced by the

microbiota. By employing machine learning and deep learning techniques to

conduct a thorough analysis of the disease-causing microbiome, we can enhance

our comprehension of the pathophysiology of many illnesses and expedite the

creation of novel treatment approaches. Today’s science is undergoing a

revolution because to the introduction of machine learning and deep learning

technologies, and the field of biomedical research is no exception. The genesis,

course, and management of orthopedic disorders are significantly influenced by

pathogenic microbes. Orthopedic infection diagnosis and treatment are made

more difficult by the lengthy and imprecise nature of traditional microbial

detection and characterization techniques. These cutting-edge analytical

techniques are offering previously unheard-of insights into the intricate

relationships between orthopedic health and pathogenic microbes, opening up

previously unimaginable possibilities for illness diagnosis, treatment, and

prevention. The goal of biomedical research has always been to improve

diagnostic and treatment methods while also gaining a deeper knowledge of

the processes behind the onset and development of disease. Although traditional

biomedical research methodologies have demonstrated certain limits throughout

time, they nevertheless rely heavily on experimental data and expertise. This is the

area in which deep learning and machine learning approaches excel. The

advancements in machine learning (ML) and deep learning (DL) methodologies

have enabled us to examine vast quantities of data and unveil intricate

connections between microorganisms and orthopedic disorders. The

importance of ML and DL in detecting, categorizing, and forecasting harmful

microorganisms in orthopedic infectious illnesses is reviewed in this work.
KEYWORDS

pathogenic microbiome, orthopedic, machine learning, deep learning, applications,
individuation, osteoporosis, arthritis
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Introduction

Orthopedic problems, such as osteoporosis, arthritis, and

fractures, are becoming a more significant public health concern

as the world’s population ages, these illnesses not only significantly

lower patients’ quality of life on a daily basis, but they also

significantly increase the financial strain on the healthcare system

(Safiri et al., 2020; Steinmetz et al., 2023). The involvement of

pathogenic microorganisms in the onset and progression of

orthopedic illnesses has come to the attention of scientists in

recent years. Research has indicated that some bacteria and

viruses have the ability to directly impact bone health and

accelerate the course of illness. However, classic biological

techniques struggle to disclose the complex and diverse processes

underlying pathogen-host interactions.

Researchers are focusing more and more on the role that

pathogenic microorganisms play in orthopedic diseases because

they can even directly infect orthopedic patients, such those who

have fractures. Improvements in microbial detection technology have

also led to an increase in the number of organisms at the site of

Periprosthetic Joint Infections (PJIs) (Anagnostakos and Fink, 2021).

Machine learning and deep learning are novel methods that

have gradually emerging in recent years. Many researchers have

described the concepts, applications or application fields of machine

learning and deep learning (Goodfellow et al., 2016; Shinde and

Shah, 2018; Campesato, 2020; Janiesch et al., 2021).

In this regard, new research instruments have been made

available by the emergence of machine learning and deep learning

methodologies. By analyzing vast quantities of intricate biological

data, spotting possible biomarkers, and forecasting illness patterns,

these technologies can shed light on the connection between

infections and orthopedic disorders. For instance, machine

learning algorithms can predict the relationship between

particular bacteria and osteoporosis by examining the genetic

information and microbiological makeup of a patient.

Convolutional neural networks and other deep learning

techniques have been used to automatically identify lesions in

imaging pictures to aid in the diagnosis of orthopedic diseases,

including fractures.

Even while deep learning and machine learning have made

some initial strides in this area, they still face several obstacles.

There are still issues to be resolved about the interpretability of

models, the quantity and quality of data restrictions, and the

efficient integration of these technologies into clinical practice.

Furthermore, the effective use of these technologies depends on

multidisciplinary cooperation that brings together the knowledge of

biologists, computer scientists, and medical professionals.

The objective of this study is to incorporate the most recent

findings about the involvement of pathogenic microorganisms in

orthopedic disorders, with a specific focus on the use of machine

learning and deep learning techniques to enhance disease

prevention, diagnosis, and therapy. We intend to give patients

hope by evaluating the most recent study findings and offering

recommendations for future research initiatives.

Techniques based on data, such as machine learning and deep

learning, can manage vast amounts of biomedical data, including
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genetic, protein, and clinical data. The advent of these sophisticated

methods has given scholars access to useful resources (Jordan and

Mitchell, 2015; LeCun et al., 2015). To improve our comprehension

of biological processes and our ability to employ data mining

techniques for clinical prediction, image analysis, drug

development, and other purposes, patterns and relationships in

the data can be found (Rajkomar et al., 2019). Furthermore,

machine learning algorithms may uncover genetic variations

linked to certain diseases by examining genomic data, which aids

researchers in identifying possible treatment targets.
Standing on the shoulders of the
“giants” of machine learning and deep
learning for future deeper analysis of
the impact of microbes
on osteoporosis

Osteoporosis is a diagnosable and treatable disease, a systemic

bone disease due to a decrease in bone density and bone mass and

destruction of the bone microstructure due to a variety of causes,

resulting in increased bone brittleness and thus susceptibility to

fracture, and the concept of osteoporosis has been addressed in

many studies (Schapira and Schapira, 1992; Raisz, 2005; Marcus

and Bouxsein, 2008; Akkawi and Zmerly, 2018).

An international public health concern, osteoporosis is

becoming more common as the world’s population ages. Patients’

quality of life is significantly impacted by the condition, which

makes bones brittle and increases the chance of fractures. In spite of

the fact that a variety of variables, including heredity, poor diet, and

inactivity, are linked to the development of osteoporosis (Riggs and

Melton Iii, 1995; Clynes et al., 2020; Salari et al., 2021), new studies

have indicated that pathogenic microbes may also be a significant

contributing factor (Hao et al., 2019; De Martinis et al., 2020;

Cronin et al., 2022).

Pathogenic microorganisms, especially bacteria and viruses,

may accelerate the process of bone loss and structural damage.

Due to the complexity of pathogen host interactions and the

limitations of traditional biological research methods in managing

large-scale biomedical data, the exact relationship and mechanism

of action between infection and osteoporosis are still unclear. This is

the benefits and significance of machine learning and deep learning.

With the advancement of these technologies, new tools have

emerged to solve these problems, extracting patterns and features

from a large amount of complex data, providing new insights into

the relationship between osteoporosis and pathogenic

microorganisms. For example, by using machine learning

algorithms to analyze a large amount of data on the host genome,

microbiome, and proteome, future research may focus on

identifying microbial biomarkers associated with high risk of

osteoporosis. The composition and function of the gut

microbiome have a significant impact on bone metabolism,

providing new ideas for the prevention and treatment of

osteoporosis. Machine learning and deep learning provide more

future possibilities for research in this field.
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Pathogenic microorganisms have a high correlation with several

established modifiable variables, which in turn function as mediators

to further impact bone accrual, maintenance, and decline in the

geriatric population. Preliminary research on the connection between

microbes and bone health has shown that microbes can affect how

interactions between bone metabolism occur, and that the gut

microbiome plays a role in the regulation of bone metabolism,

osteoporosis pathogenesis, prevention, and treatment (Hernandez,

2017; Ding et al., 2020; Seely et al., 2021; Guan et al., 2022).

With the rapid development of machine learning and deep

learning in recent years, new perspectives have been provided to

study the relationship between pathogenic microorganisms and

osteoporosis. Several studies have been conducted in related

fields, for example, many studies have utilized machine learning

or deep learning on osteoporosis fracture rates or bioinformatics

involving osteoporosis (Engels et al., 2020; Ulivieri et al., 2021; Liu

et al., 2022). Most of these studies do not incorporate microbial

information, which has been a limitation of previous researchers,

and as more and more studies demonstrate the significant effects of

certain microbes on osteoporosis, there is a need to incorporate

microbial data into subsequent studies in order to obtain more

rigorous and scientific results.

In order to detect osteoporosis signals in imaging data, deep

learning techniques like Convolutional Neural Networks (CNNs)

have made great strides in the field of medical image processing.

This information may then be utilized to forecast the course of the

illness and evaluate the effectiveness of treatment. Furthermore,

deep learning may be utilized to combine data from other biological

data sources, such microbiome data and clinical characteristics, to

increase the precision of osteoporosis progression prediction.

Figure 1 shows how pathogenic microorganisms, especially

intestinal flora, can indirectly affect bone metabolism and bone
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mineral density through inflammatory responses or by affecting

calcium and phosphorus absorption, or through the gut-bone axis,

which has been found to affect the immune system, the metabolites

produced (e.g., short-chain fatty acids), and by affecting the

absorption of nutrients. In the future, in the study of microbial

influence on osteoporosis, the addition of already mature clinical data

information and bioinformatic data, and then through the powerful

medium of machine learning and deep learning, will certainly bring

new life and opportunities for research in related fields.
Visualization of keywords in the field
of pathogenic microorganisms using
machine learning or deep learning,
and a brief overview of related
orthopedic diseases affected
by microorganisms

In order to have a better analysis of the use of machine learning

and deep learning methods to study the impact of pathogenic

microorganisms in orthopedic diseases, we have attempted to

provide an intuitive visualization of how researchers have used

machine learning and deep learning methods to study pathogenic

microorganisms in recent years, and we have utilized visualization

tools to demonstrate this with the aim of getting a better grasp of the

direction of development of studies exploring the impact of

pathogenic microbiomes in orthopedic diseases using the premise

of machine learning and deep learning methods, or an outlook on

the frontiers of the future.

Table 1 shows the top 10 keywords in terms of frequency of

occurrence of machine learning and deep learning methods for
FIGURE 1

Microbes affect osteoporosis and how deep learning or machine learning can be utilized in the future. Ca refers to calcium, P refers to phosphorus,
and microorganisms directly or indirectly (such as inflammatory reactions) affect the occurrence of osteoporosis.
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research on pathogenic microorganisms, and it can be clearly

found that “Artificial intelligence”, “Prediction”, “Antimicrobial

resistance” are the key focus of research in this field, and also the

possible future research of orthopedic microorganisms with the

support of machine learning or deep learning methods.

We selected theWoS database on January 10, 2024 for an intuitive

visual analysis of keywords for research in this area. Figure 2A is a

collaborative linkage diagram of keywords that appear more

frequently in the research of pathogenic microorganisms analyzed

using machine learning and deep learning methods from 2000 to

2024, which can well show the relationship between keywords in this

research field, the larger the circle indicates that this keyword plays a

greater role in the research of this field, the higher the frequency of

appearance, and the more the linkage between keywords indicates that

the more the keyword is used in the research of this field, the more the

linkage between keywords indicates that the keyword is used in the

research of this field. the closer the connection between them.

Figure 2B shows which orthopedic related diseases can be affected

by microorganisms.
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Visualization analysis of keywords related to research in the

field of machine learning or deep learning and pathogenic

microorganisms can help us identify the current focus of

attention among researchers in this field and explore potential

future research hotspots in this field. For example, we can see

that this field seems to be closely related to “ therapy”, “expression”,

“diagnosis”, etc., which may also indicate the direction of

future development.
Pathogenic microorganisms
associated with orthopedic diseases

The most prevalent pathogens in orthopedic disorders are

bacteria. The most frequent cause of infections, both hospital-

and community-acquired, is Staphylococcus aureus. Furthermore,

gram-negative bacteria like Escherichia coli and streptococci are

frequently the cause of an event. Staphylococcus aureus-caused

osteomyelitis is a dangerous bone infection that can result in bone

death. Surgery and/or long-term antibiotic therapy are typically

needed to treat this illness.

Although they are less prevalent in orthopedic diseases, fungal

infections can nevertheless pose a major risk to individuals with

weakened immune systems. Aspergillus and Candida are common

fungi that cause problems. Patients with weakened immune

systems, such those receiving organ transplants or HIV, are more

likely to get fungal infections. Antifungal drugs are typically needed

to treat these infections.

Even though measles and rubella viruses are not common, they

can still impact bone health. This is the case with viral bone disease.

The goal of treating viral bone disease is to improve the immune

system’s capacity to combat the virus while also managing

its symptoms.

Machine learning and deep learning techniques have become

valuable tools in orthopedic disease research and therapy,

particularly in the understanding and management of infections

caused by pathogenic microorganisms. Large volumes of biological

data may be processed and analyzed using these sophisticated

computational techniques to provide information on pathogen
TABLE 1 Top 10 keywords with the highest frequency of occurrence in
studies analyzing pathogenic microorganisms using machine learning
and deep learning methods.

ID Keyword Occurrences
Total
link strength

1 Machine learning 104 101

2 Identification 28 53

3 Deep learning 26 33

4 Microbiology 24 42

5 Artificial intelligence 23 51

6 Classification 23 37

7 Prediction 23 53

8 Bacteria 17 22

9
Antimicrobial
resistance

15 24

10 Clinical microbiology 13 18
BA

FIGURE 2

(A, B) Respectively demonstrate the use of machine learning or deep learning to visualize keywords in the field of pathogenic microorganisms and
provide a brief overview of the types of orthopedic diseases affected by microorganisms.
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features, infection patterns, illness development, and patient

response to therapy.
Identification and categorization
of pathogens

Researchers can precisely detect and categorize microorganisms

that cause orthopedic illnesses from clinical samples by utilizing

deep learning algorithms (Bernard et al., 2022; Hu et al., 2023). This

includes common bacteria like Staphylococcus aureus and other

Gram-negative bacteria like Streptococcus and Escherichia coli.

Physicians are able to promptly adopt focused treatment

measures, such choosing the appropriate medications to fight

certain bacterial illnesses, by precisely and swiftly detecting these

organisms. Some studies have used machine learning or deep

learning to analyze infections that cause orthopedic diseases, and

some of these infections also include factors associated with

pathogenic microorganisms (Martı ́nez-Pastor et al., 2009;

Goswami et al., 2022).
Forecasting patterns of infection

Additionally, particular pathogen infection patterns, including

hospital and community transmission, may be predicted using

machine learning algorithms. By examining past infection data

and patient characteristics, these models forecast infection

outbreaks, assisting hospital management and public health

officials in taking proactive steps to stop the spread of diseases

(Genevès et al., 2018; Sharma et al., 2018; Teeple et al., 2020).
Analysis of drug susceptibility

The most effective medications for Staphylococcus aureus-

caused severe osteomyelitis can be identified with the use of

machine learning techniques. Individualized treatment plans can

be created to increase treatment effectiveness while lowering the

emergence of antibiotic resistance by evaluating the pathogen’s

susceptibility to various antibiotics.

Figure 2B shows the impact of different microorganisms on

different orthopedic diseases and the utilization of deep learning or

machine learning.
Pathogenic microorganisms
and arthritis

Arthritis is a group of diseases that affect millions of people

worldwide and are characterized by joint inflammation, pain and

dysfunction. Although the exact causes of arthritis are varied and

include genetics, immune system dysregulation and environmental

factors, there is growing evidence that pathogenic microorganisms,

such bacteria and viruses, also play an important role in the
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development and progression of arthritis (Li et al., 2013; Bo et al.,

2020; Berthelot et al., 2021). Arthritis is a common inflammatory

joint disease involving one or more joints. Its main symptoms

include joint pain, swelling, stiffness and limited movement.

Depending on the cause and presentation, arthritis can be

categorized into a number of types, the two most common of

which are osteoarthritis (OA) and rheumatoid arthritis (RA), which

puts a huge financial strain on the world’s arthritis sufferers (March

and Bachmeier, 1997; Leifer et al., 2022). While the causes of

arthritis are diverse, there is growing evidence that pathogenic

microorganisms play a key role in many types of arthritis. It is

difficult to determine the precise microbe that causes arthritis,

though, as it requires removing and evaluating a lot of data from

intricate biological samples. Recent years have seen a considerable

advancement in the field of biomedical research, particularly in the

areas of pathogen identification, genomes analysis, and illness

prediction, thanks to the fast adoption of machine learning and

deep learning techniques. These technological advancements

provide novel approaches to the diagnosis and treatment of

arthritis by processing and analyzing vast amounts of biological

data, recognizing disease patterns, and forecasting the relationship

between infections and illnesses. In the future, patients can receive

individualized diagnoses and treatment plans by merging machine

learning models with patient-specific data. These cutting-edge

techniques, such deep learning and machine learning, will pave

the way for customized therapy. This approach may also be used to

promote collaboration between biologists, computer scientists, and

doctors in order to create more efficient methods of arthritis

diagnosis and treatment.

In the future, to promote research on the relationship between

pathogenic microorganisms and arthritis, researchers will need to

generate larger and more complete public datasets in order to better

use machine learning and deep learning methodologies.

Robust methods for comprehending the intricate connection

between pathogenic microorganisms and arthritis are offered

by machine learning and deep learning methodologies. The

advancement of these technologies offers fresh hope for the

identification and management of arthritis, notwithstanding

the difficulties. In the future, we anticipate seeing more creative

ideas that will result in improved therapies for arthritis patients as

multidisciplinary collaboration grows and technology progresses.
Recognizing and
categorizing infections

Researchers can reliably identify the bacteria that cause

infectious arthritis from joint fluids and other clinical samples by

using deep learning algorithms (Lo and Lai, 2023). These

algorithms can differentiate between various bacteria and viruses

by examining their gene sequences and patterns of protein

expression, which serves as a foundation for creating specialized

treatment plans (Choi et al., 2021). In clinical practice and medical

research, precise pathogen identification and categorization is

essential for infectious arthritis. Numerous bacteria and viruses

can cause infectious arthritis, a dangerous condition for which a
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prompt and precise diagnosis is essential to the development of a

successful treatment strategy. From joint fluids and other clinical

samples, researchers can now reliably identify the bacteria and

viruses that cause infectious arthritis thanks to the growing use of

deep learning algorithms in bioinformatics and clinical diagnostics.

The novel applications of deep learning, a cutting-edge machine

learning approach, include pathogen identification and classification,

protein expression pattern recognition, and gene sequence analysis.

Researchers can collect and analyze complicated biological data

to pinpoint the precise species of germs that cause diseases by

training deep neural networks. These algorithms are an effective

diagnostic tool for infectious arthritis because they are particularly

good at identifying patterns and characteristics from large volumes

of data.

In the future, deep learning will be used in pathogen

identification research in novel ways, with a focus on integrating

additional kinds of biological data, optimizing algorithm

performance, and increasing model interpretability. Additionally,

as personalized medicine gains traction, deep learning methods will

be used to customize treatment regimens based on the unique

genetic make-up and clinical presentation of each patient (Zhang

et al., 2018; Agarwal et al., 2020; Wason et al., 2020). Furthermore,

improved management and treatment results for infectious arthritis

will come from a closer integration of machine learning models

with clinical decision support systems.
Forecasting the course of an illness

A patient’s genetic makeup, way of life, and past infection

history may all be analyzed by machine learning algorithms to

determine their likelihood of having a particular kind of arthritis.

These models reveal patterns and trends linked to the course of

disease, which aids doctors in early diagnosis and intervention

(Norgeot et al., 2019; Kedra et al., 2021).
Discussion

The biomedical area has witnessed a tremendous advancement

in machine learning and deep learning technologies, which has

made them very promising for investigating the intricate

connections between pathogenic microorganisms and orthopedic

illnesses. Several studies have also shown howmachine learning and

deep learning can be used to predict the course of diseases, find links

between particular pathogenic microorganisms and the emergence

of orthopedic disorders, and develop novel approaches to illness

prevention, diagnosis, and treatment.

It is our belief that the relationship between pathogenic

microbes and orthopedic illnesses may be successfully shown by

integrating cutting-edge techniques like machine learning and deep

learning to assess microbiome data and clinical factors. Future risk

and development of orthopedic disorders, including osteoarthritis,

fracture infections, and spinal ailments, can be effectively predicted

with the use of these technologies. Additionally, researchers have

started to progressively uncover how these harmful bacteria impact
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the onset and progression of illnesses by examining the makeup of

microorganisms and the interactions among hosts (Jansma and El

Aidy, 2021; Zhou et al., 2022).

Future research should concentrate on the following areas to

overcome these issues and progress the field: first, creating bigger,

better-quality datasets that are more complete; second, enhancing

data standards and sharing to make model training and validation

easier. Second, the creation of fresh models and algorithms to

enhance model interpretability and prediction accuracy,

particularly when simulating intricate relationships between

pathogenic microbes and the ir hos t s . Fur thermore ,

multidisciplinary cooperation—which calls for tight coordination

between biologists, doctors, data scientists, and computer scientists

—is essential to comprehending these intricate systems.

In addition to advancing our knowledge of pathogenic microbes

and orthopedic disorders, the use of machine learning and deep

learning technologies in these fields has the potential to completely

transform clinical diagnoses and therapeutic approaches. For

instance, doctors may monitor treatment outcomes, apply

individualized therapies, and detect high-risk patients sooner

thanks to the knowledge these technologies give. These

technologies can also aid in the development of novel therapeutic

approaches, such the targeting of certain pathogenic

microorganisms or the modification of host-microbe interactions

in the prevention or treatment of orthopedic illnesses.

In conclusion, there is a lot of promise and difficulty in the rapidly

developing field of applying machine learning and deep learning to

the study of pathogenic microorganisms and orthopedic illnesses.

Through the removal of current obstacles and ongoing advancements

in this field of study, we seek to provide new opportunities for the

diagnosis, treatment, and prevention of orthopedic disorders as well

as offer patients better access to healthcare.

In the study of pathogenic microorganisms in orthopedic

diseases, machine learning and deep learning technologies offer

new research directions and trends. These are primarily reflected in

the areas of microbial community analysis, personalized healthcare,

pathogen resistance prediction, fast and accurate pathogen

identification and classification, and monitoring and outbreak

prediction. Individual susceptibility to specific pathogenic

microbial infections can be predicted by combining machine

learning and deep learning techniques to analyze genetic data,

lifestyle, and environmental factors of patients. This data can then

be used to support personalized prevention and treatment plans. In

the study of pathogenic microorganisms in orthopedic illnesses,

machine learning and deep learning technologies have

demonstrated considerable promise. They aid in quick diagnosis,

accurate treatment, and efficient prevention, all of which enhance

patient outcomes and quality of life. These technologies will have

more comprehensive and long-lasting uses in this industry as long

as they continue to grow and improve.
Conclusions

Specifically, deep learning and machine learning techniques are

employed to comprehend and forecast the complex relationships
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between these microorganisms and orthopedic disorders. The role

of pathogenic microorganisms in orthopedic illnesses is examined

in this research. Through a review of the present literature, we can

see that although deep learning and machine learning offer strong

instruments for locating, categorizing, and forecasting the role of

pathogenic microorganisms in orthopedic disorders, there are some

challenges to be addressed. High-quality, standardized, and

annotated biological data are currently hard to come by, which

limits their application in model training and validation. Although

machine learning and deep learning models are quite good at

identifying patterns and predicting outcomes, interpretability is

still a big problem. This is particularly true in the medical

domain, where it is necessary for researchers and doctors to be

able to comprehend the results made by models with ease. It can

occasionally be challenging for a single machine learning or deep

learning model to collect all the pertinent biological signals due to

the complexities of pathogen-host interactions. Further study must

look at more complex models and algorithms to accurately depict

these complex biological processes.
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Comprehensive assessment
of HF-rTMS treatment
mechanism for post-stroke
dysphagia in rats by integration
of fecal metabolomics and
16S rRNA sequencing
Fei Zhao1†, Jiemei Chen1†, Yilong Shan1†, Jiena Hong1,
Qiuping Ye1,2, Yong Dai2, Jiahui Hu2, Jiantao Zhang1,
Chao Li1*‡ and Hongmei Wen 1*‡

1The Third Affiliated Hospital of Sun Yat-sen University, Department of Rehabilitation Medicine,
Guangzhou, Guangdong, China, 2Guangzhou University of Chinese Medicine, Clinical Medical College
of Acupuncture Moxibustion and Rehabilitation, Guangzhou, Guangdong, China
Background: The mechanism by which high-frequency repetitive transcranial

magnetic stimulation (HF-rTMS) improves swallowing function by regulating

intestinal flora remains unexplored. We aimed to evaluate this using fecal

metabolomics and 16S rRNA sequencing.

Methods: A Post-stroke dysphagia (PSD) rat model was established by middle

cerebral artery occlusion. The magnetic stimulation group received HF-rTMS

from the 7th day post-operation up to 14th day post-surgery. Swallowing

function was assessed using a videofluoroscopic swallowing study (VFSS).

Hematoxylin-eosin (H&E) staining was used to assess histopathological

changes in the intestinal tissue. Intestinal flora levels were evaluated by

sequencing the 16S rRNA V3-V4 region. Metabolite changes within the

intestinal flora were evaluated by fecal metabolomics using liquid

chromatography-tandem mass spectrometry.

Results: VFSS showed that the bolus area and pharyngeal bolus speed were

significantly decreased in PSD rats, while the bolus area increased and pharyngeal

transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups,

H&E staining revealed damaged surface epithelial cells and disrupted cryptal

glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells.

16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its

associated metabolites, whereas HF-rTMS can significantly regulate the

composition of the intestinal microflora. Firmicutes and Lactobacillus

abundances were lower in the PSD group than in the baseline group at the

phylum and genus levels, respectively; however, both increased after HF-rTMS

administrat ion. Levels of ceramides (Cer) , f ree fatty acids (FA) ,

phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl

diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels

decreased after HF-rTMS treatment, whereas the TAG levels increased.

Peptococcaceae was negatively correlated with Cer, Streptococcus was
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negatively correlated with DG, and Acutalibacter was positively correlated with

FA and Cer. However, these changes were effectively restored by HF-rTMS,

resulting in recovery from dysphagia.

Conclusion: These findings suggest a synergistic role for the gut microbiota and

fecal metabolites in the development of PSD and the therapeutic mechanisms

underlying HF-rTMS.
KEYWORDS

stroke, middle cerebral artery, rats, dysphagia, gut microbiota, metabolite profiles,
HF-rTMS
Introduction

Post-stroke dysphagia (PSD) has emerged as a prevalent and

consequential complication subsequent to an episode of stroke, with

a prevalence of more than 50% (Bonilha et al., 2014; Zhang et al.,

2021). Moreover, more than 10% of patients have persistent

symptoms of dysphagia until six months after onset (Dawson

et al., 2016). PSD is associated with a risk of aspiration

pneumonia, malnutrition, dehydration, and death (Shigematsu

and Fujishima, 2015). Therefore, there is an urgent need to

develop effective therapeutic methods for reducing these risks.

Routine therapies such as postural substitution and adjustment of

food texture do not have satisfactory effectiveness (Reyes-Torres

et al., 2019; Lin et al., 2021). However, recent studies have reported

that noninvasive brain stimulation such as transcranial magnetic

stimulation (TMS) is effective in improving swallow function

(Chiang et al., 2019; Du et al., 2022; Hammad et al., 2022).

A meta-analysis unveiled a heightened effect size in dysphagia

rehabilitation within the high-frequency rTMS (HF-rTMS)

subgroup, surpassing that observed in the low-frequency rTMS

(LF-rTMS) subgroup (Liao et al., 2017). In line with this, Khedr

et al. (Khedr and Abo-Elfetoh, 2009) administered HF-rTMS (3 Hz)

treatment to dysphagia patients, observing superior clinical

outcomes in the treatment group compared to the sham group.

Regarding to the stimulation site of HF-rTMS, Park et al. (Park

et al., 2013) found that when 5Hz HF-rTMS applied to the

contralateral cerebral hemisphere of patients with PSD, the

swallowing function of the treatment group was significantly

better than that of the sham stimulation group. Cheng et al.

(Cheng et al., 2015) also proved that HF-rTMS applied over the

tongue region of the motor cortex of the unaffected hemisphere

improves the swallowing performance in stroke patients with

chronic dysphagia. These studies focus on the mechanism of HF-

rTMS at the central level. It is noteworthy that a previous study

has suggested a potential impact of ischemic stroke on the
02101
gut microbiota, resulting in increased intestinal permeability

and activation of the intestinal immune system. This, in

turn, exacerbates ischemia-reperfusion injury through the brain-

gut axis. Conversely, fecal microbiota transplantation is

neuroprotective after stroke (Singh et al., 2016). Furthermore, gut

microbiota metabolites can affect the physiological status of the

host, both within the gut and after entering the bloodstream, by

acting as a bridge between the microbiome and host. For example,

short-chain fatty acids (SCFAs) may affect post-stroke outcomes via

local and systemic inflammation and other pathways (Benakis et al.,

2020). A recent study suggested that stimulation of the dorsolateral

prefrontal cortex by HF-rTMS modifies brain-gut interactions in

humans, for example, by modifying fine contractions of the

gastrointestinal tract (Aizawa et al., 2021). Similarly, in rat model

of depression, HF-rTMS (10 Hz) primarily contributes to the

increased abundance of Firmicutes (Seewoo et al., 2022). These

studies suggest that HF-rTMS can affect intestinal flora, but studies

on its role in PSD have not been reported. In this study, we

hypothesized that PSD could influence the composition of gut

microbial communities and metabolites, which may be modified

by HF-rTMS, resulting in improved swallowing function. To verify

this, we investigated these mechanisms by integrating fecal

metabolomics and 16S rRNA sequencing at the rat level.
Materials and methods

Animals

Thirty-six male Sprague-Dawley (SD) rats (aged 6-8 weeks)

were purchased from the Guangdong Medical Laboratory Animal

Center (Guangzhou, China). The rats were housed under a 12 h

light-dark cycle (lights on 07:00) with controlled temperature

(20-26°C), relative humidity (40-70%), and had free access to

food and water. The rats were randomly assigned to experimental
frontiersin.org
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groups. Rats were allowed to acclimate for five days before the

experiments were started. All animal experiments were approved by

the Animal Care Committee of the South China Agricultural

University (Guangzhou, China. Approval number NO.2020d030)

and were performed in accordance with the ARRIVE Guidelines.
PSD models and experimental grouping

The rat PSD model was established using transient middle

cerebral artery occlusion (tMCAO). Thirty SD rats were

randomly selected for left transient middle cerebral artery

occlusion. After administering intraperitoneal anesthesia with

0.4% pentobarbital (40 mg/kg), the rats were fixed on a flat plate,

the hair on the neck region was removed and disinfected with

iodine. An incision (10 mm long) was made on the left side of the

neck to expose the common carotid artery (CCA) and external

carotid artery (ECA). The proximal ends of the left CCA and the

ECA were ligated. A monofilament nylon line (50 mm in length;

0.26 mm in diameter) coated with 5-mm silica gel in the distal

segment was used. Monofilament lines were inserted into the

internal carotid artery (ICA) through a left CCA incision. The

line was then inserted at a depth of 18-20 mm (beginning at the

carotid bifurcation) to block the left middle cerebral artery. Finally,

the skin was sutured and the rats were placed on a thermal

insulation blanket. After 90 min of ischemia, the monofilament

lines were carefully extracted from the ICA to induce reperfusion.

Seventeen rats survived beyond 7 days postoperatively without

mortality. Based on Videofluoroscopy swallowing study (VFSS)

assessments, 12 of the 17 surviving rats that displayed dysphagia

were randomly divided into two groups: the PSD group (n = 6) and

the PSD+HF-rTMS group (n = 6). During the VFSS enrollment

assessment of the 12 model rats, stroke severity was evaluated using

the Longa scale. The scores obtained ranged from 1 to 2 points,

indicating uniformity in neurological function severity among the

rats (Zhong et al., 2022). Additionally, the sham operation group

(n = 6) of SD rats was subjected to the same protocol without

monofilament insertion. The detailed experimental schedule is

shown in Figure 1A.
HF-rTMS treatment

HF-rTMS was administered using a customized stimulator

(YRDCCI, Wuhan, China). On the 7th day post-operation, the

magnetic stimulation group received rTMS treatment, which was

continued until the 14th day post-surgery. A round prototype coil

(23mm diameter with 3.5T peak magnetic welds) was positioned

perpendicular to the cortical surface projection area of the right

primary motor cortex (M1). TMS-induced electric field modeled in

the animal’s brain is 140 V/m. The treatment protocol was as

follows: stimulation for 5 s and then, rest for 60 s (repeated 10

times); stimulation intensity, 33% of the maximum stimulator

output; stimulation frequency, 10Hz. The animal special coil

mechanism diagram and pictures of rTMS administered in

animal models in Figures 2A-C.
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Videofluoroscopy swallowing study
(VFSS) assessments

The rats underwent VFSS on the day before surgery (baseline)

and 2 weeks after surgery (day 14). The rats were fasted for 12 h

before the VFSS assessments. A mixture of experimental rat breeding

feed and iohexol (1:1) was placed on a platform in a transparent

plastic box. During ad libitum feeding of the feed mixture, videos

were obtained at 30 fps using swallowing radiography equipment

(digital fluoroscopic X-ray machine PLD8100C, Zhuhai, China).

Only swallows with clear sagittal views were analyzed. The mean

fluoroscopic results for each rat were calculated using 8-10 swallows.

ImageJ software (National Institutes of Health, Bethesda, MD)

was used to assess swallowing function, including 1) bolus area

(mm2): bolus size measured after swallow initiation and before the

head of the bolus passed through the second cervical vertebra (C2);

2) Pharyngeal Transit Time (PTT, s): initiated on bolus passing

through the posterior oropharynx and ended on it completely

passing through C2, while the position was near the upper

esophageal sphincter; 3) pharyngeal bolus speed (mm/s): the

maximum speed at which the head of the bolus traveled from the

initiation point to C2; and 4) inter-swallow interval (s): time

interval between two successive swallows during uninterrupted

eating (Russell et al., 2013; Welby et al., 2021).
Hematoxylin–eosin (H&E) staining of
intestinal tissue

All rats were sacrificed on the 14th days after surgery. The

Intestinal tissues (3 samples of each group) were placed in 4%

paraformaldehyde for 24 h, mounted with gelatin, and then,

embedded in paraffin. The tissues were cut into 10 mm slices;

after which the sections were deparaffinized and stained with

histopathological and eosin (Servicebio, G1076).
Fecal collection

We collected feces early in the morning after lights were turned on

at the housing facility. The rats were temporarily placed individually in

empty autoclaved cages and allowed to defecate. Approximately two

fecal pellets were collected aseptically from each rat and placed in a

sterile 2-mL tube. Fecal samples from four rats were collected from

each group and stored at -80.0°C refrigerator. The time point for fecal

sample collection coincided with that of the VFSS assessments.
DNA extraction and 16S rRNA gene
sequencing of fecal samples

The stool samples of each group were removed from the -80°C

refrigerator. Total genomic DNA from stool samples was extracted

using the CTAB/SDS method, and its concentration and purity were

monitored using 1% agarose gels according to the concentration. The

DNAwas diluted to 1 ng/µL using sterile water. Primers were designed
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to amplify the variable V3-V4 regions of the 16S rRNA gene. PCRs was

performed with 15 mL of Phusion® High-Fidelity PCR Master Mix

(New England Biolabs, USA), 0.2 mM forward and reverse primers,

and approximately 10 ng of template DNA. The initial denaturation

temperature was set at 98°C for 1 min, followed by denaturation at 98°

C for 10 s (30 cycles), annealing at 50°C for 30 s, extension at 72°C for

1 min, and final elongation at 72°C for 8 min and storage at 10°C. PCR

products were electrophoresed on a 2% agarose gel and purified using

the Qiagen Gel Extraction Kit (Qiagen, Germany). The TruSeq DNA

PCR-Free Sample Preparation Kit (Illumina, USA) was used to

construct the library, which was assessed using an Agilent

Bioanalyzer 2100 system. After the library was qualified, the

Illumina NovaSeq was used for 16S rRNA V3-V4 sequencing. We

spliced and filtered the original data to remove contaminated data and

to obtain accurate and reliable data.
Evaluation of microbiome composition
based on 16S rRNA sequences and
informatics analysis

Uparse software was used to cluster clean reads from all

samples, and sequence clustering was converted into OTUs) by
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default with 97% identity. Species annotation analysis was

performed using the Silva Database based on the Mothur

algorithm to evaluate the differences and community

composition of the dominant species in different samples. Raw

data were analyzed using BioTree Biotechnology Co., Ltd.

(Shanghai, China). Alpha and beta diversities were calculated

using the breakaway method implemented in Quantitative

Insights into Microbial Ecology, version 2.0. Finally, linear

discriminant analysis effect size and linear discriminant analysis

were used to identify the dominant bacterial taxa in the different

groups of rats.
Liquid chromatography–mass
spectrometry (LC-MS/MS)
based metabolomics

A total of 25 mg of fecal sample was weighed and placed in an

EP tube. Then, 200 mL of water and 480 mL of extract solution

(MTBE: MeOH = 5:1) were added sequentially. After vortexing for

30 s, the samples were homogenized for 4 min at 35 Hz and

sonicated for 5 min in an ice-water bath. Homogenization and

sonication cycles were repeated three times. Next, the samples were
A

B

C

FIGURE 1

Schematics of experimental design (A), representative radiographic image from rats undergoing videofluorography (B), and Hematoxylin-eosin (H&E)
Staining of the colon tissue (C). (scale bar = 200 and 100 mm). VFSS, Videofluoroscopy swallowing study; C2, the second cervical vertebra; black
arrow, C2; white arrow, bolus.
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incubated at -40°C for 1 h and centrifuged at 3000 rpm for 15 min at

4°C. The supernatant (300 mL) was transferred to a fresh tube and

dried under vacuum at 37°C. Then, The dried samples were

reconstituted in 200 mL of 50% methanol in dichloromethane by

sonication for 10 min in ice water bath. The mixture was then

centrifuged at 13000 rpm for 15 min at 4°C, and 150 mL of the

supernatant was collected and stored in a refrigerator at -20°C until

LC-MS/MS analysis was performed.

LC-MS/MS analysis was performed using a UHPLC system

(Vanquish, Thermo Fisher Scientific) with a UPLC HSS T3 column

(2.1 mm × 100 mm; 1.8 mm) coupled with a Q Exactive HFX mass

spectrometer (Orbitrap MS, Thermo). The Mobile phase A

consisted of 40% water, 60% acetonitrile, and 10 mM ammonium

formate. The Mobile phase B consisted of 10% acetonitrile and 90%

isopropanol, which was added with 50 mL of 10 mmol/L

ammonium formate for every 1000 mL mixed solvent. Analysis

was performed using an elution gradient. The column temperature

was 55°C. The autosampler temperature was maintained at 4°C. A

Triple TOF 5600 + mass spectrometer (AB SCIEX, USA) was used

for the electrospray ionization (ESI) positive and negative ion mass

spectrometry analyses. ESI conditions: ion source gas 1:60, ion

source gas 2:60, temperature 600°C, voltage ± 5500 V in positive

and negative modes, mass scanning range m/z:60-1000 Da, first-

level scanning range 25-1000 Da, scanning time 0.2 s, and high-

sensitivity mode was used. For the second mass spectrometry, the

delustering voltages of the positive and negative modes were ± 60 V

and the high collision energy was (35 ± 15) eV.
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Screening and identification of main
differential metabolites

The raw data files were converted to files in the mzXML format

using the ‘msconvert’ program from ProteoWizard. The CentWave

algorithm in XCMS was used for peak detection, extraction,

alignment, and integration; the minfrac for annotation was set at

0.5, and the cutoff for annotation was set at 0.3. Supervised

orthogonal projections to latent structure discriminant analysis

(OPLS-DA) was used to screen for the differential metabolites.

Variable importance in projection (VIP) ≥ 1.0 and absolute fold

change ≥ 3.0, were used as criteria for differential metabolite selection.
Statistical analyses

Data are presented as mean ± standard error of the mean

(SEM). One-way ANOVA variance was performed to compare the

continuous variables across multiple groups. All statistical analyses

and correlation graphs were generated using GraphPad Prism 8

(GraphPad Software, San Diego, CA, United States).

Three different parameters (observed operational taxonomic

units (OTUs) and Shannon and Simpson indices) were used to

assess the alpha diversity. Beta diversity between samples was

assessed using principal coordinate analysis (PCoA) and

permutational multivariate analysis of variance (PERMANOVA).

Phylogenetic Investigation of Communities by Reconstruction of
A

B C

FIGURE 2

The animal special coil mechanism diagram (A) and pictures of rTMS administered in animal model (B, C).
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Unobserved States (PICRUSt) was utilized to explore differences in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

in bacterial taxa between groups. MetaboAnalyst 5.0 (Xia Lab,

McGill University, Canada) was used to analyze metabolomics

data, including a pathway analysis overview. The association

between the main differential metabolites and gut butyrate-

producing bacteria was assessed using Spearman’s rank

correlation and correlation heat maps were drawn using R Studio

(version 3.6.1, Boston, Massachusetts, USA). p-value < 0.05.
Results

VFSS analysis

A total of 24 recorded swallowing videos (six rats at baseline and

six rats each from the PSD, PSD+HF-rTMS, and Sham groups on

the 14th postoperative day) were manually analyzed. As shown in

Table 1, compared with the baseline group, the bolus area and

pharyngeal bolus speed were significantly decreased in the PSD

group, and there were significant increases in the bolus area and

decreases in PTT following HF-rTMS intervention (p < 0.05).

Representative radiographic images of the rats undergoing

videofluorography are shown in Figure 1B. According to these

results, middle cerebral artery occlusion can result in dysphagia,

which can be mitigated by HF-rTMS intervention.
Histopathological changes of
intestinal tissue

H&E staining revealed that the colon epithelial cells of rats in

the sham group had intact structures and were tightly arranged. In

contrast, the rats in the PSD group exhibited damaged surface

epithelial cells and disrupted cryptal glands. However, in the

PSD+HF-rTMS group, there was a reduction in damage,

thickening of the intestinal mucous layer, and recovery of the

appearance of the surface epithelium (Figure 1C). These findings

suggest that HF-rTMS intervention may have a positive restorative

effect on intestinal tissues in rats with PSD, thereby further

reinforcing intestinal epithelial cell integrity.
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Gut microbial profiles

The rarefaction, Shannon-Wiener, and rank-abundance curves in

the three groups tended to be flat or plateaued, thus demonstrating

satisfactory sequencing depth (Supplementary Figure 1).

Alpha diversity analysis revealed no significant differences in the

observed OTUs and Chao1 and Shannon indices among the baseline,

PSD, and HF-rTMS groups (Figures 3A-C). The PCoA and

PERMANOVA analysis of variance for beta diversity revealed a

significant difference in the composition and abundance of the gut

microbiota between the baseline and PSD groups. (Bray-Curtis

p < 0.05; R2 = 0.287) (Figure 3D). The PCoA and PERMANOVA

analyses did not show significant differences in the composition and

abundance of the gut microbiota between the PSD+HF-rTMS group

and PSD group (Bray-Curtis p > 0.05, R2 = 0.173) (Figure 3E).
Effect of PSD and HF-rTMS on
gut microbiota

Taxon-dependent analysis revealed the top 10 phyla in the

Baseline, PSD, and PSD+HF-rTMS groups, with Firmicutes,

Bacteroidetes, Verrucomicrobia, Tenericutes, and Proteobacteria

being the most dominant phyla (Figures 4A, E). Although no

significant differences in the gut microbiota composition at the

phylum level were observed among the three groups, the abundance

of the phylum Firmicutes was significantly lower in the PSD group

than in the baseline group (p < 0.05) (Figure 4C), and the

abundance of Verrucomicrobia showed an increasing trend

without statistical significance (p > 0.05). Notably, the abundance

of Firmicutes increased after HF-rTMS treatment in the PSD+HF-

rTMS group (p < 0.05) (Figure 4G).

The most relative abundant genera (> 1.0%) in the three groups

are shown in Figures 4B, F. At the genus level, the proportion of

Lactobacillus , Anaerotruncus , Romboutsia , Turicibacter ,

Ruminococcaceae_NK4A214_group, Allobaculum, Dubosiella, and

Faecalibaculum (p < 0.05) decreased, whereas those of

Ruminococcaceae_UCG-014 and Odoribacter increased in the PSD

group (p < 0.05) (Figure 4D). In the PSD+HF-rTMS group, the

relative abundance of Lactobacillus and uncultured_bacterium_f_

Prevotellaceae showed an increasing trend; however, the difference
TABLE 1 Results of VFSS swallowing assessment.

Baseline group
(n=6)

Sham group
(n=6)

PSD group
(n=6)

PSD+
HF-rTMS group

(n=6)

Bolus Area (mm2) 20.73 ± 1.04 18.27 ± 1.24 8.45 ± 0.61* 18.65 ± 0.77†

Pharyngeal Transit Time (PTT, s) 1.37 ± 0.17 1.17 ± 0.14 1.67 ± 0.28 1.03 ± 0.17†

Pharyngeal Bolus Speed (mm/s) 375.68 ± 35.81 366.06 ± 14.35 297.05 ± 21.20* 344.09 ± 11.30

Inter-Swallow Interval (ISI, s) 1.59 ± 0.13 1.69 ± 0.28 2.7 ± 0.30 2.45 ± 0.65
Data were presented as the mean ± SEM. VFSS, Videofluoroscopy swallowing study.
*: Compared with Baseline group, p < 0.05.
†: Compared with PSD group, p < 0.05.
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was not statistically significant. Although the relative abundance

was < 1.0%, the proportion of uncultured_bacterium_

Peptococcaceae and Marvinbryantia increased, whereas the

abundance of [Eubacterium]_xylanophilum_group decreased

(p < 0.05) (Figure 4H).
Identification of group gut
microbiota biomarkers

Linear discriminant analysis effect size (LEfSe) was used to identify

potential microbiota biomarkers among different groups. Firmicutes

exhibited a relatively higher abundance at the phylum level in the

baseline group than in the PSD group. At the genus level, Quinella and

Lactobacillus were the most abundant at baseline, whereas

Ruminococcaceae_UCG_014, Enterococcus, and Phascolarctobacterium

were enriched in the PSD group (linear discriminant analysis (LDA) >

3, p < 0.05) (Figures 5A, C). These microbes might be considered as

biomarkers for the Baseline and PSD groups.

At the phylum level, Firmicutes was remarkably enriched in the

PSD+HF-rTMS group compared to that in the PSD group. At the

genus level, the abundance of uncultured_bacterium_Peptococcaceae

was relatively high in the PSD+HF-rTMS group. The abundance of

Streptococcus, Acutalibacter, and Ruminiclostridium_9 were relatively

high in the PSD group (LDA > 3, p < 0.05) (Figures 5B, D).
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Pathway analysis of microbiotas

Several KEGG pathways, such as cell growth, cancer-specific

types, and immune diseases, were significantly different between the

Baseline and PSD group (p < 0.05) (Supplementary Figure 2A). The

pathways in the PSD group and PSD+HF-rTMS group differed in

cardiovascular and infectious diseases (viral) (p < 0.05)

(Supplementary Figure 2B).
Identification of group
differential metabolites

LC-MS/MS was used to determine the metabolic characteristics

of rats in the three groups. OPLS-DA models showed that the

metabolic profile of the PSD group was significantly different from

that of the baseline group in both the negative and positive ion

modes (Figures 6A, D). Similarly, the PSD+HF-rTMS group was

significantly different from the PSD group (Figures 7A, D).

Differential metabolites were identified using VIP > 1 and

p < 0.05. A total of 699 differential metabolites [357 upregulated

and 342 downregulated]) were screened and identified in the PSD

group compared with those in the baseline group in the negative

mode (Figure 6B). In Figure 6C, the heatmap displays a subset of 17

named metabolites (15 upregulated and two downregulated) out of
A B

D E

C

FIGURE 3

The a-diversity and PCoA analysis of fecal samples based on 16S rRNA gene sequences. Community Richness was quantified based on the number
of observed species (A) and Chao1 index (B), and community diversity was characterized using the Simpson index (C). Neither richness or diversity
differed significantly among the three groups. PCoA analysis between Baseline and PSD group (D) and PSD and PSD+HF-rTMS group (E), based on
Bray-Curtis distances at the OTU level. OTU, operational taxonomic unit; PCoA, principal coordinates analysis; A, Baseline group; C, PSD group;
T, PSD+HF-rTMS group.
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the 699 differential metabolites analyzed. Additionally, in positive-

mode analysis (Figure 6E), 403 metabolites (234 upregulated and

169 downregulated) were identified and compared. Furthermore,

among the 403 differentially expressed metabolites, three

upregulated metabolites were visualized with their names in the

form of a heat map, as presented in Figure 6F. Briefly, the

expression levels of differential metabolites in lipid classes, such

as ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine
Frontiers in Cellular and Infection Microbiology 08107
(PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol,

were increased in PSD.

In the negative mode, a comprehensive analysis of the

PSD+HF-rTMS group compared to the PSD group identified

1470 differential metabolites (963 upregulated and 507

downregulated) (Figure 7B). Among these 1470 metabolites, 26

specifically named metabolites (11 upregulated and 14

downregulated) were selected for visualization in the form of a
A B

D
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C

FIGURE 4

The distributions of the predominant bacteria among the Baseline, tMCAO, and PSD+HF-rTMS group rats. Significantly differential microbes are
shown as mean ± SEM. Results at the phylum level (A, C, E, G). Results at the genus level (B, D, F, H). A, Baseline group; C, PSD group; T, PSD+HF-
rTMS group; SEM, Standard error of mean; * p < 0.05, ** p < 0.01 (one-way ANOVA).
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heat map (Figure 7C). Additionally, in the positive-mode analysis,

919 metabolites (260 upregulated and 659 downregulated) were

identified (Figure 7E). Figure 7F presents a heatmap that displays 20

named metabolites (11 upregulated and 15 downregulated) from

the total pool of 919 differential metabolites analyzed. Briefly, the

levels of the differential lipids Cer, FA, and DG decreased after HF-

rTMS treatment, whereas TAG levels increased.
Analysis of metabolic pathways

The MetaboAnalyst 5.0 was used for MetaboAnalyst pathway

analysis of group differential metabolites, with p < 0.05. As shown in

Figure 8A, metabolic pathways, such as glycerolipid, sphingolipid,

glycerophospholipid, and urine metabolism, were altered in rats

with PSD. HF-rTMS induced changes in sphingolipid, cysteine,
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methionine, glycerophospholipid, and pyrimidine metabolism in

the PSD+HF-rTMS group (Figure 8B).
Correlations between the gut microbiome
biomarkers and differential metabolites

Spearman correlation analysis was performed to explore the

association between gut microbiota biomarkers and the

aforementioned group of differential metabolites (including

negative and positive modes). At the genus level, a relationship

between the four genera and 21 metabolites was observed between

the PSD and Baseline groups (Figure 6G). Specifically, Enterococcus

was positively correlated with Cer, FA, and PE in the PSD rats.

Similarly, a relationship between the four genera and 45 metabolites

was observed between the PSD+HF-rTMS and PSD groups.
A B

D

C

FIGURE 5

The potential biomarkers were defined based on effect size (LEfSe) combined with linear discriminant analysis (LDA). Cladogram for taxonomic
representation of significant differences between Baseline and tMCAO group (A) and PSD and PSD+HF-rTMS groups (B). The colored nodes from
the inner to the outer circles represent taxa from the phylum to species level. Histogram of the LDA scores for differentially abundant features
among groups (C, D). The threshold on the logarithmic LDA score for discriminative features was set to 3.0. A, Baseline group; C, PSD group;
T, PSD+HF-rTMS group.
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Peptococcaceae was negatively correlated with Cer, Streptococcus

was negatively correlated with DG, and Acutalibacter was positively

correlated with FA and Cer (Figure 7G).
Discussion

Using VFSS, we found that performing HF-rTMS on the M1

cortex of the unaffected hemisphere for one week can improve

swallowing function in PSD rats. This is especially true for bolus

area and pharyngeal bolus speed. We observed that PSD rats

exhibited damaged surface epithelial cells, disrupted cryptal

glands in the colon, and altered intestinal microbiota and

associated metabolites, which were ameliorated by the HF-rTMS

intervention. These findings highlight the effects of HF-rTMS on

the gut microbiota and its metabolites, which are associated with its

therapeutic effects.

Numerous studies have demonstrated the efficacy of rTMS in

enhancing swallowing function. Both HF-rTMS and LF-rTMS
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interventions have shown positive outcomes in various studies

targeting the ipsilateral or contralateral cerebral cortex of lesion

(Cheng et al., 2015; Lee et al., 2015; Park et al., 2017; Du et al., 2022;

Hammad et al., 2022). Park et al. (Park et al., 2013) proved that HF-

rTMS (5 Hz) over the pharyngeal motor cortex of the unaffected

hemisphere significantly improved swallowing function, which is

consistent with our findings. This mechanism may involve

enhanced stimulation of bulbar motor neurons projecting to the

pharynx and further increase corticobulbar excitability (Park et al.,

2013). A recent study (Aizawa et al., 2021) suggested that

stimulation of the dorsolateral prefrontal cortex by rTMS

modifies brain-gut interactions in humans. A comprehensive

study has indicated that stroke has the potential to elevate

intestinal permeability and activate the intestinal immune system,

thus exacerbating ischemia-reperfusion injury through the brain-

gut axis. However, some metabolites produced by the intestinal

flora attenuate ischemia-reperfusion injury by suppressing the post-

stroke inflammatory response and promoting the repair of

neurological function through the axis (Hu et al., 2022). Using
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FIGURE 6

PLS-DA score plots (A), volcano map (B), and heatmap (C) of differential metabolites between Baseline and PSD group in the negative ion patterns.
PLS-DA score plots (D), volcano map (E), and heatmap (F) of differential metabolites in the positive ion patterns. Heatmap of correlation (G) between
the differential gut microbes and differential metabolites between Baseline and PSD group. NES, Negative Ion Mode; POS, Positive Ion Mode;
A, Baseline group; C, PSD group; T, PSD+HF-rTMS group. * p < 0.05.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1373737
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fcimb.2024.1373737
A B

D E

F

G

C

FIGURE 7

PLS-DA score plots (A), volcano map (B), and heatmap (C) of differential metabolites between the PSD+HF-rTMS and PSD group in the negative ion
patterns. PLS-DA score plots (D), volcano map (E), and heatmap (F) of differential metabolites in the positive ion patterns. Heatmap of correlation
(G) between the differential gut microbes and differential metabolites between PSD+HF-rTMS and PSD group. NES, Negative Ion Mode;
POS, Positive Ion Mode; A, Baseline group; C, PSD group; T, PSD+HF-rTMS group. * p < 0.05, ** p < 0.01.
A B

FIGURE 8

KEGG pathway analysis of group differential metabolites. (A) KEGG pathway enrichment analysis of group differential metabolites between the
Baseline and PSD group. (B) Analysis of group differential metabolites between the PSD+HF-rTMS and PSD group. The metabolic pathways are
displayed as distinctly colored circles depending on their enrichment analysis scores (vertical axis, shade of red) and topology (pathway impact,
horizontal axis, circle diameter) using MetaboAnalyst 5.0.
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16S sequencing, we found that HF-rTMS promoted the restoration

of intestinal flora balance. Therefore, after indirect excitatory

stimulation, the vagus nerve in the medulla may play an active

role via brain-gut interactions.

Using 16S rRNA gene sequencing, we observed that although no

significant differences in gut microbiota composition at the phylum

level were observed among the three groups, the abundance of the

phylum Firmicutes was significantly decreased in the PSD group

compared with that at baseline. This finding was consistent with the

results of previous studies, both in a rat model and in patients (Li et al.,

2020; Haak et al., 2021; Wu et al., 2021). Firmicutes are the

predominant phylum in the intestinal microbiota and contribute to

the maintenance of the normal gastrointestinal tract (Ley et al., 2006).

The results showed that HF-rTMS increased the abundance of

Firmicutes to help restore gut microbiota balance. Similarly, Seewoo

et al. (Seewoo et al., 2022) found that rTMS (10HZ) is primarily

responsible for maintaining a high abundance of Firmicutes in a rat

model of depression. The abundance of the genus Lactobacillus

(phylum Firmicutes), an important type of host probiotic bacterium,

was considerably affected in the PSD group. Chen et al. (Chen et al.,

2019b) found that the level of Lactobacillus decreased in monkeys after

MCAO, which was consistent with our findings. Lactobacillus can

produce SCFAs such as butyrate and acetate, which can improve

wound healing, reinforce intestinal epithelial cell integrity in mice

with stroke, and inhibit bacterial migration (Cushing et al., 2015;

Zou et al., 2022). After HF-rTMS treatment, the relative abundance

of Lactobacillus showed an upward trend, but did not reach

statistical significance, which may be related to the treatment

time; prolonging the treatment time may be a better choice.

Moreover, H&E staining results further substantiated the

effectiveness of HF-rTMS in reinforcing intestinal epithelial

cell integrity, which may be correlated with SCFAs. The LEfSe

analysis indicated that Ruminococcaceae_UCG_014, Enterococcus,

and Phascolarctobacterium were enriched in the PSD group.

Ruminococcaceae_UCG_014 and Phascolarctobacterium can produce

SCFAs including acetate and propionate (Wu et al., 2017; Tian et al.,

2021). Their enrichment in the PSD group may be related to a

compensatory response secondary to the massive reduction in the

level of SCFA-producing bacteria, especially butyrate-producing

bacteria such as Lactobacillus. Enterococcus is an opportunistic

pathogen that can cause pneumonia and bacteremia in patients with

stroke, resulting in unfavorable outcomes even 3 month post-stoke

(Stanley et al., 2016; Sun et al., 2021). Furthermore, LEfSe analysis

showed that the abundance of uncultured_bacterium_Peptococcaceae

was relatively high after HF-rTMS treatment, whereas Streptococcus,

Acutalibacter, and Ruminiclostridium_9 were enriched in the PSD

group. Peptococcaceae and Ruminiclostridium_9 are also groups of

bacteria characterized by the production of SCFA after the

degradation of indigestible plant-derived polysaccharides (Bernad-

Roche et al., 2021). Streptococcus and Acutalibacter are

proinflammatory bacteria. PSD increased the levels of opportunistic

pathogens and decreased the levels of SCFA-producing bacteria,

particularly Lactobacillus, whereas HF-rTMS increased SCFA-

producing bacteria and decreased pro-inflammatory bacteria levels.

Chen et al. demonstrated that interfering with the gut microbiota by

transplanting SCFA-rich fecal bacteria is an effective treatment for
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cerebral ischemic stroke (Chen et al., 2019a). Thus, HF-rTMS may

enhances brain-gut interactions via SCFA to effectively improve PSD

swallowing function, and the effect was similar to that of

transplanting feces.

Combined with untargeted metabolomic analysis, we found that

PSD was associated with disturbances in fecal metabolomics.

Pathway analysis showed that these metabolites are primarily

involved in glycerolipid, sphingolipid, glycerophospholipid, and

urine metabolism. A previous study has shown that stroke is

related to urine and sphingolipid metabolism (Ding et al., 2022).

Furthermore, the results indicated that sphingolipid metabolism,

cysteine and methionine metabolism, glycerophospholipid

metabolism, and pyrimidine metabolism are potential target

metabolic pathways of HF-rTMS. Moreover, we investigated the

association between gut microbiota and fecal metabolites. This

analysis showed that Enterococcus was positively correlated with

Cer, FA, and PE levels in the PSD rats. As these levels were all

significantly increased in the PSD group, they may be risk factors for

PSD. After administration of HF-rTMS, Peptococcaceae was

negatively correlated with Cer, Streptococcus was negatively

correlated with DG, Acutalibacter was positively correlated with FA

and Cer. These untargeted metabolomics findings suggest that HF-

rTMS has the potential to induce modifications in the composition of

the gut microbiota, thus influencing the levels of fecal metabolites.

These alterations in metabolites are expected to affect specific

metabolic pathways, ultimately resulting in therapeutic effects in PSD.

In summary, our research findings validate that HF-rTMS can

effectively ameliorate intestinal flora imbalance and reinstate the

integrity of the intestinal wall. This restoration may potentially

mitigate intestinal inflammation and diminish the influx of toxins

into the bloodstream, thus alleviating cerebral ischemia injury.

Additionally, HF-rTMS augments the population of SCFAs-

producing bacteria, leading to the production of metabolites

such as SCFAs. These metabolites exhibit a protective role

against cerebral ischemic injury and facilitate the functional

recovery of PSD by curbing inflammation, restraining bacterial

migration, among other mechanisms (Cushing et al., 2015;

Zou et al., 2022). Presently, a multitude of animal models

predominantly utilize fecal microbiota transplantation (FMT) to

rectify intestinal flora imbalances. This approach proves to be

financially burdensome in clinical settings and is not readily

available in general hospital settings. Furthermore, FMT

encounters formidable hurdles stemming from the potential

transmission of diseases between donors and recipients, patient

reluctance, adverse repercussions, and the ambiguity surrounding

its impact on the recipient’s immune system, encompassing

conditions such as peripheral neuropathy and idiopathic

thrombocytopenic purpura (Wang et al., 2019; Porcari et al.,

2023). rTMS therapy, a non-invasive treatment that does not

require the special cooperation of the patient, which can be used as

an alternative therapy to bacterial transplantation, improves

intestinal flora disorders through the brain-gut axis and in turn

promotes stroke rehabilitation.

This study had some limitations. Although we propose a

potential contribution of HF-rTMS to the gut microbiome and

fecal metabolites, the mechanisms underlying the gut-brain
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interactions remain unclear and require further elucidation.

Therefore, extensive evaluation of additional metabolites,

including neurotransmitters and SCFAs, is crucial for establishing

the comprehensive efficacy of HF-rTMS. Prior investigations

(Aizawa et al., 2021; Seewoo et al., 2022) have highlighted the

impact of HF-rTMS on the gastrointestinal system. Notably, in our

study, we observed a significant increase in rat defecation rates

following HF-rTMS stimulation. We hypothesize that the

application of high-frequency transcranial magnetic stimulation

to the M1 region in rat models could activate the dorsal vagal

nucleus situated within the medulla oblongata. This activation, in

turn, may enhance gastrointestinal motility via the vagus nerve,

potentially mitigating dysbiosis. So subsequent studies will focus on

assessing the role of the dorsal vagal complex and vagus nerve in the

therapeutic mechanism of HF-rTMS. Understanding the

involvement of the dorsal vagal complex-vagus nerve-gut axis

holds a tempting prospect for advancing our knowledge in this

field. Finally, further clinical research is warranted to validate

our findings.
Conclusion

In conclusion, we employed a combination of intestinal

pathology, 16S rRNA gene sequencing, and LC-MS analysis to

compare the colonic structure, composition, and abundance of gut

microbiota and fecal metabolites among three groups: Baseline,

PSD, and PSD with HF-rTMS treatment. We observed that PSD

rats exhibited damaged surface epithelial cells and disrupted cryptal

glands in the colon, which were ameliorated by HF-rTMS. Our

investigation of the gut microbiota revealed a significant decrease in

the presence of SCFA-producing bacteria in rats with PSD, with

notable augmentation following the HF-rTMS intervention.

Moreover, using fecal metabolomic analysis, we identified distinct

metabolites that exhibited variation across groups. Finally, our

integrated analysis demonstrated a correlation between the gut

microbiota and dysregulated metabolites. These findings suggest a

synergistic role for the gut microbiota and fecal metabolites in the

development of PSD and the therapeutic mechanisms underlying

HF-rTMS. This mechanism may be related to changes in the brain-

gut axis and warrants further investigation to fully understand and

use HF-rTMS for treating PSD.
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Glossary

Acar Acylcarnitine

AcylGlcADG Acylglucuronosyldiacylglycerol

Cer/ADS Ceramide alpha-hydroxy fatty aciddihydrosphingosine

Cer/AP Ceramide alpha-hydroxy fatty acidphytospingosine

Cer/AS Ceramide alpha-hydroxy fatty acid-sphingosine

Cer/ BS Ceramide beta-hydroxy fatty acid-sphingosine

Cer/EODS Ceramide Esterified omega-hydroxy fatty
acid-dihydrosphingosine

Cer/NS Ceramide non-hydroxyfatty acid-sphingosine

DGDG Digalactosyldiacylglycerol

DGTS Diacylglyceryl trimethylhomoserine

FA Free fatty acid

FAHFA Fatty acid ester of hydroxyl fatty acid

GlcADG glucuronosyldiacylglycerol

HBMP Hemibismonoacylglycerophosphate

HexCer/AP Hexosylceramide alphahydroxy fatty acid-phytospingosine

HexCer/NS Hexosylceramide nonhydroxyfatty acid-sphingosine

HF-TMS High frequency repetitive transcranial magnetic stimulation

ISI inter-swallow interval

LEfSe Linear discriminant analysis Effect Size

LF-rTMS Low frequency repetitive transcranial magnetic stimulation

LPE Lysophosphatidylethanolamine

M1 Primary motor cortex

MGDG Monogalactosyldiacylglycerol

NSS neurological severity scores

OPLSDA Orthogonal Projections to Latent Structures
Discriminant Analysis

OTUs operational taxonomic units

PA Phosphatidic acid

PC Phosphatidylcholine

PCA Principal component analysis

PCoA principal coordinate analysis

PE Phosphatidylethanolamine

PEtOH Phosphatidylethanol

PSD post-stroke dysphagia

PTT pharyngeal transit time

SCFAs short-chain fatty acids

SHexCer SulfurHexosylceramide hydroxyfatty acid

SQDG Sulfoquinovosyl diacylglycerol

(Continued)
F
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Continued

TAG triacylglycerol

tMCAO transient middle cerebral artery occlusion

VFSS Videofluoroscopy swallowing study
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Objective: The relationship between macrophages and the gut microbiota in

patients with atherosclerosis remains poorly defined, and effective biological

markers are lacking. This study aims to elucidate the interplay between gut

microbial communities and macrophages, and to identify biomarkers associated

with the destabilization of atherosclerotic plaques. The goal is to enhance our

understanding of the underlying molecular pathways and to pave new avenues

for diagnostic approaches and therapeutic strategies in the disease.

Methods: This study employed Weighted Gene Co-expression Network Analysis

(WGCNA) and differential expression analysis on atherosclerosis datasets to

identify macrophage-associated genes and quantify the correlation between

these genes and gut microbiota gene sets. The Random Forest algorithm was

utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related

macrophage genes, and a nomogram was constructed. Based on the top five

genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to

construct gut microbiota-related macrophage clusters and analyze their

potential biological alterations. Subsequent single-cell analyses were

conducted to observe the expression patterns of the top five genes and the

interactions between immune cells. Finally, the expression profiles of key

molecules were validated using clinical samples from atherosclerosis patients.

Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK,

IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes

that are upregulated in atherosclerotic plaques. A nomogram based on the

expression of these five genes was constructed for use as an auxiliary tool in

clinical diagnosis. Single-cell analysis confirmed the specific expression of gut

microbiota-associated macrophage genes in macrophages. Clinical samples

substantiated the high expression of PLEK in unstable atherosclerotic plaques.
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Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68,

CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic

plaques and could serve as diagnost ic markers to aid pat ients

with atherosclerosis.
KEYWORDS

gut microbiota, macrophage, machine learning, atherosclerotic plaques, bioinformatics
1 Introduction

Atherosclerosis is a stealthy vascular disease characterized by

lipid accumulation and inflammation within the arterial intima,

leading to plaque formation (Camare et al., 2017; Vergallo and Crea,

2020; Alkarithi et al., 2021). This process often progresses

asymptomatically, yet when unstable plaques rupture, it can

precipitate severe cardiovascular events such as myocardial

infarction or stroke (Bailey et al., 2016). Rupture of unstable

plaques releases necrotic tissue and structural components into

the vasculature, activating the coagulation system and prompting

platelet aggregation at the site of injury, forming thrombi (Mangge

and Almer, 2019; Sterpetti, 2020). These thrombi may exacerbate

arterial narrowing, obstruct blood flow, and cause myocardial

ischemia due to oxygen and nutrient deprivation. If not promptly

addressed, this ischemia can rapidly deteriorate, leading to life-

threatening events. Thus, stabilizing atherosclerotic plaques and

preventing their rupture is of paramount clinical importance for

preventing acute cardiovascular incidents.

In the progression of atherosclerosis, macrophages within the

arterial wall play a complex and pivotal role. They not only

contribute to plaque formation by ingesting oxidized low-density

lipoprotein (ox-LDL) and transforming into foam cells but also

exacerbate local inflammation by releasing pro-inflammatory

cytokines such as tumor necrosis factor-a (TNF-a) and

interleukin-1b (IL-1b), attracting more immune cells and

promoting plaque growth (Libby, 2021a). Macrophage death,

particularly through the inflammatory cell death pathway of

pyroptosis, releases factors that destabilize plaques, increasing the

likelihood of rupture and thrombus formation (Wei et al., 2023).

Additionally, macrophages differentiate into various phenotypes

based on environmental signals, which play a decisive role in plaque

stability and repair (Wolf and Ley, 2019; Libby, 2021b). They also

participate in the reverse cholesterol transport, affecting the

metabolic balance of plaques. Despite the crucial role of

macrophages in atherosclerosis, the identification and clinical

application of macrophage-related biomarkers remain challenging.

Recent research suggests a possible connection between the gut

microbiota and atherosclerosis. Changes in the composition and

metabolic activity of the gut microbiota, which affect host lipid
02116
metabolism, inflammation, and immune function, are thought to

play a critical role in the formation and development of

atherosclerosis . Notably, the gut bacterial metabolite

trimethylamine N-oxide (TMAO), derived from the metabolism of

choline, has been closely associated with the risk of atherosclerosis.

Imbalances in the gut microbiota can also trigger systemic

inflammatory responses and metabolic dysfunction, exacerbating

the pathological process of atherosclerosis (Jonsson and Backhed,

2017; Ma et al., 2022). Modulating the gut microbiota with probiotics

has opened new avenues for the treatment of atherosclerosis.

However, the specific mechanisms by which the gut microbiota

interacts with the host through its complex metabolic network to

influence atherosclerosis require further scientific investigation.

With the ongoing progress of high-throughput sequencing, it’s

become more common to investigate immune cells and gut

microbiota characteristics with single-cell RNA sequencing and

transcriptome analysis (Alcazar et al., 2022). In biomedicine,

machine learning is increasingly applied to diagnose and predict

disease outcomes (Danneskiold-Samsoe et al., 2019). These

techniques analyze large data sets to uncover disease mechanisms

and guide clinical decisions. This study seeks to identify

macrophage genes closely tied to atherosclerotic plaques in

relation to gut microbiota. We analyzed gene expression

differences between normal carotid artery and atherosclerotic

plaque samples, then identified key genes using machine learning

algorithms.Finally, our single-cell and clinical sample analyses

highlighted these genes’ pivotal role in plaque instability, offering

novel insights for clinical approaches.
2 Materials and methods

2.1 Data collection

Bulk transcriptome datasets (GSE43292 and GSE120521) and

single-cell datasets (GSE155512) were downloaded from the GEO

database. GSE43292 contains 32 atheroma plaque and 32

macroscopically intact tissue samples, GSE120521 has four

unstable and four stable plaque samples, and GSE155512 includes

four atherosclerotic samples.
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2.2 Differential expression analysis
and WGCNA

Differential expression analysis was performed on the

GSE43292 dataset for atheroma plaque and macroscopically

intact tissue samples using the limma package, resulting in 188

upregulated genes in atherosclerosis plaques with criteria of |logFC|

>0.8 and adjusted P-value <0.05. WGCNA algorithm was used to

calculate gene significance (GS) and module membership (MM),

confirming a key atherosclerosis module (blue module with 1115

genes) (Wang et al., 2023). Immune infiltration analysis was

conducted using the deconvo_tme function from the IOBR

package, and CIBERSORT was applied to WGCNA to calculate

immune cell-related modules for M0, M1, and M2 macrophages,

which were blue, red, and yellow, respectively (Wu et al., 2022). The

union of genes from these three modules was defined as

macrophage-related genes (a total of 2323 genes).
2.3 Pinpointing crucial macrophage genes

By integrating the 188 differentially expressed genes, the 1115

genes from the disease-related blue module, and the 2323

macrophage-related genes, a Venn diagram was constructed,

ultimately yielding 139 genes. STRING database (https://cn.string-

db.org/) was used to analyze these 139 genes, identifying key genes

with a threshold score of 30 Degrees, and Cytoscape software was

employed for visualizing protein-protein interactions (PPI)

(Schroeder et al., 2013; Crosara et al., 2018). The cytoHubba

plugin was then used to identify important genes, resulting in 24

significant genes. A random forest algorithm from the R package

randomForest was applied to feature selection for these 24 genes,

with the top 5 results defined as hub genes.
2.4 Collection of gut microbiota-
related datasets

Gut microbiota-related gene sets were collected from GSEA (gsea-

msigdb.org) using “Gut Microbiota” as the keyword (Supplementary

Table S1). After scoring with the ssGSEA algorithm, correlation

analysis with the five hub genes was performed to ultimately

determine gut microbiota-related macrophage genes.
2.5 Construction of gut microbiota-related
macrophage cluster

ConsensusClusterPlus package was used for consistency

clustering analysis based on the expression of gut microbiota-

related macrophage genes, ensuring the stability of the clustering

assessment. The pheatmap package was utilized to visualize the

expression differences of the five hub genes between groups, and

PCA was visualized according to group and expression levels.

GSEABase and GSVA packages were used to calculate immune

scores for samples, visualizing differences in immune cell scores
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between groups and immune cell infiltration between high and low

PLEK expression groups.
2.6 Construction of nomogram model for
gut microbiota-related macrophage genes

The Nomogram model was constructed using the R package

“rms,” based on the expression data of the TOP5 gut microbiota-

related macrophage genes. The role of macrophage genes associated

with gut microbiota in influencing disease outcomes was evaluated,

and each gene was assigned a corresponding score. By summing

these scores, a total score was obtained, which was used to assess the

severity of atherosclerosis in patients.
2.7 Single-cell sequencing analysis

In the single-cell analysis phase, R packages Seurat and SingleR

were used to process single-cell RNA sequencing data, with filtering

criteria including retaining cells with counts greater than 200 and

less than 10,000, and removing cells containing more than 20%

mitochondrial genes or ribosomal genes. Data were then

normalized, high-variance genes identified, and principal

component analysis (PCA) performed for dimensionality

reduction. Key principal components were determined through

JackStraw analysis, and cell clustering analysis was conducted

using the FindNeighbors and FindClusters functions from the

“Seurat” package with a resolution of 1.2, followed by further

analysis using t-SNE technology. The FindAllMarkers function

from the Seurat package was used to identify differentially

expressed genes, and cell annotation was based on the Human

Primary Cell Atlas. Violin and heat maps were used to display the

expression differences of atherosclerosis-related genes across

different cell types. Additionally, macrophage sub-group analysis

based on PLEK expression and GO and KEGG enrichment analyses

were conducted to reveal changes in cell functions and signaling

pathways. Finally, cell trajectories and intercellular communication

networks were explored using the monocle and CellChat tools.
2.8 Clinical sample collection

After explaining our study to patients set for carotid

endarterectomy, we got their approval and they signed consent

forms. We collected four samples of stable plaques and five of

unstable plaques. The study was approved by the ethics committee

at The University-Town Hospital of Chongqing Medical University

(Approval No: LL-202213).
2.9 Histology and immunohistochemistry

Fresh carotid atherosclerotic plaques were fixed overnight in 4%

formaldehyde, then embedded in paraffin, and continuous 5-

micron thick sections were obtained for subsequent experiments.
frontiersin.org

https://cn.string-db.org/
https://cn.string-db.org/
https://doi.org/10.3389/fcimb.2024.1395716
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ke et al. 10.3389/fcimb.2024.1395716
The specific immunohistochemistry (IHC) protocol followed

previously described methods (Jiang et al., 2019). We utilized the

PLEK antibody from Proteintech, China. Based on the

immunoreactive score method, the intensity of human

atherosclerotic plaque tissue staining (protein expression) was

scored range from 0-4, indicating negative staining to

strong staining.
2.10 Western blot

For the specific Western Blot procedure, please refer to the

methods previously described (Jiang et al., 2019). Ultimately, we

assessed the expression levels of PLEK, P65, phospho-P65, IkBa,
phospho- IkBa and GAPDH. All the aforementioned antibodies

were sourced from Proteintech, China.
2.11 Cell culture

The RAW264.7 cell line was cultivated in DMEM (Gibco, USA),

enriched with 10% FBS (Gibco, USA), and antibiotics penicillin

(100 units/mL) and streptomycin (100 µg/mL). After washing with

PBS, the cells were pre-treated with TNF-a (20 ng/mL) and LPS

(100 ng/mL) from Abcam, USA, for 24 hours before proceeding

with further experiments.
2.12 Lentiviral infection

Design primers, anneal and ligate them, and construct the sh-

Plek plasmid with the sh sequence inserted at the AgeI and EcoRI

restriction sites in the pLKO.1 vector. Revive normally growing

293T cells. The plasmid sequencing was successful, and lentivirus

packaging was carried out at a ratio of 4:3:1 (sh-Plek, PsPAX.2,

Pmd2.G) using Lipo3000 (Thermo Fisher, USA) as the transfection

reagent. After 60 hours, collect the lentivirus using a 0.45 µm filter

(Millipore, USA) and infect cells in six-well plates, with polybrene at

a concentration of 8 µg/ml per milliliter. Change the medium 12

hours later, and passage the cells when they grow confluent,

followed by antibiotic selection. The knockdown sequences are as

follows: sh1- CCGG-GCTGGTTTCTAACAAGCTAGT-CTC

GAG-ACTAGCTTGTTAGAAACCAGC-TTTTTT,sh2- CCGG-

GGAGAACTCCAGTGATGATGA-CTCGAG-TCATCATCAC

TGGAGTTCTCC-TTTTTT,sh3- CCGG- GCCTACCTGC

ACTACTATGAT-CTCGAG- ATCATAGTAGTGCAGGTAGGC-

TTTTTT.
2.13 Statistical analysis

In this study, R software version 4.1.2 and GraphPad Prism 7

were utilized for data analysis. We employed t-tests and Wilcoxon

tests to assess the differences between the two groups. The

significance levels are marked with asterisks: * for p-values below

0.05, ** for p-values less than 0.01, and *** for p-values under 0.001.
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3 Results

3.1 Analysis of macrophage-related genes
and immune infiltration in
atherosclerotic plaques

We conducted a differential expression analysis on the GSE43292

dataset for atheroma plaque and macroscopically intact tissue

samples (control group), identifying 142 downregulated and 188

upregulated genes (Figure 1A; Supplementary Table S2). Heatmap

illustrates the top 30 genes with the most pronounced upregulation

and downregulation (Figure 1B). Pathway enrichment analysis

revealed significant enrichment in Neutrophil Extracellular Traps

formation, Chemokine signaling pathway, and Lip and

atherosclerosis (Figure 1C). Analysis of immune cell infiltration in

atheroma plaque and macroscopically intact tissue samples showed a

marked increase in inflammatory cell infiltration in the atheroma

plaque group (Figure 1D). We employed the CIBERSORT algorithm

to score immune cell-related modules, and theWGCNA algorithm to

determine key modules related to M0, M1, and M2 macrophages,

which were blue, red, and yellow, respectively, totaling 2323 genes

(Figure 1E). Using the WGCNA algorithm, we identified a key

module of 1115 genes in atherosclerosis (Figure 1F). A Venn

diagram was used to identify 139 macrophage-related

genes (Figure 1G).
3.2 Functional enrichment analysis of
atherosclerotic plaque-related
macrophage genes

To explore the potential biological significance of macrophage-

related genes, we performed DO/KEGG/GO enrichment analysis.

The DO analysis significantly enriched in primary immunodeficiency

disease and multiple diseases, the GO analysis significantly enriched

in positive regulation of cytokine production and cytokine binding,

and the KEGG analysis significantly enriched in cytokine-cytokine

receptor interaction and primary immunodeficiency (Figures 2A–C

and Supplementary Table S3).
3.3 Identification of gut microbiota-related
core macrophage genes

The metabolic products of the gut microbiota can reach the

vascular system through the bloodstream and affect macrophages,

intervening in the development of atherosclerosis. However, more

evidence is needed to deeply understand these complex relationships.

Therefore, we compared the gut microbiota-related gene sets of

atheroma plaque and macroscopically intact tissue samples. We

found that the scores for HP_SMALL_INTESTINAL_

DYSMOTILITY, HP_MELENA, HP_INTESTINAL_FISTULA, and

GOBP_ENTERIC_NERVOUS_SYSTEM_DEVELOPMENT were

significantly higher in the atheroma plaque group than in the control

group,while the score for GOMF_N_N_DIMETHYLANILINE_

MONOOXYGENASE_ACTIVITY was higher in the control group
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FIGURE 1

Identifyng macrophage genes linked to atherosclerotic plaques. (A) Volcano plot showing differentially expressed genes in atherosclerosis.
(B) Heatmap displaying the top thirty specific differential genes between normal carotid artery and atherosclerotic plaque samples. (C) Signaling
pathways highly related to atherosclerosis (X-axis: Represents the distribution range of the log2-transformed expression fold changes of core
enrichment genes in enriched pathways). (D) Immune cell infiltration in normal carotid artery and atherosclerotic plaque samples. (E) WGCNA
algorithm identifying key macrophage-related modules. (F) WGCNA analysis determining key modules in atherosclerosis. (G) VENN diagram
identifying macrophage genes related to atherosclerotic plaques. (***P < 0.001).
A B C

FIGURE 2

Pathway enrichment analysis. (A) DO enrichment analysis. (B) GO enrichment analysis. (C) KEGG enrichment analysis.
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(Figure 3A). Subsequently, we performed protein-protein interaction

(PPI) analysis on the 139 genes and visualized the results (Figure 3B

and Supplementary Table S4). The random forest algorithm identified

the top five genes (PLEK, IRF8, BTK, CCR1, and CD68), with PLEK

being the most significant (Figures 3C, D). Finally, we conducted a

correlation analysis between the top five genes and gut microbiota-

related genes, showing that the top five genes were significantly

positively correlated with HP_MELENA but significantly negatively

correlated with GOBP_ENTERIC_NERVOUS_SYSTEM_

DEVELOPMENT (Figure 3E). Ultimately, PLEK, IRF8, BTK, CCR1,

and CD68 were confirmed as Gut Microbiota-Related Core

Macrophage Genes.
3.4 Constructing a nomogram based on
gut microbiota-related core
macrophage genes

To provide targeted diagnostic assistance for atherosclerosis

patients, we constructed a proprietary Nomogram model based on

the expression of PLEK, IRF8, BTK, CCR1, and CD68 (Figure 4A).

Calibration curve analysis revealed that the Nomogram model
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performed well in predictive accuracy, with its predictions closely

matching the actual positive rates (Figure 4B). Decision curve

analysis (DCA), clinical impact curve analysis (CICA), and ROC

analysis further confirmed the significant clinical value of gut

microbiota-related core macrophage genes in constructing the

Nomogram model for atherosclerosis patients (Figures 4C–I).

Analysis results in the GSE120521 dataset also showed that the

expression levels of PLEK, IRF8, BTK, CCR1, and CD68 were

significantly higher in the atheroma plaque group than in the

control group (Supplementary Figure S1).
3.5 Construction and exploration of the
biological characteristics of gut
microbiota-related core
macrophage clusters

To further investigate the potential role of gut microbiota-

associated core macrophage genes in atherosclerosis, we applied

unsupervised clustering methods based on the expression of PLEK,

IRF8, BTK, CCR1, and CD68 to classify atherosclerosis patients into

groups A and B (Figures 5A, B). The Principal Component Analysis
A B
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C

FIGURE 3

Identifying macrophage genes related to gut microbiota. (A) Boxplot showing changes in gut microbiota between normal carotid artery and
atherosclerotic plaque samples. (B) Protein-protein interaction network of macrophage-related genes. (C) Random forest plot with red, green, and
black dots representing atherosclerotic plaques, normal carotid artery, and all samples, respectively, with the x and y axes representing the number
of trees and error rate. (D) Lollipop plot showing the top ten important genes. (E) Correlation analysis between the top five genes and gut
microbiota-related gene sets. (*P < 0.05, **P < 0.01, ***P < 0.001).
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(PCA) results indicated that macrophage genes associated with the

gut microbiota could effectively categorize atherosclerosis patients

into clusters A and cluster B (Figure 5C). Additionally, PLEK, IRF8,

BTK, CCR1, and CD68 were more highly expressed in cluster A
Frontiers in Cellular and Infection Microbiology 07121
than in cluster B, and immune cell infiltration was also significantly

higher in cluster A (Figures 5D, E). We then conducted a differential

analysis between cluster A and cluster B and displayed the results

using heatmaps and volcano plots (Figures 5F, G; Supplementary
A
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C

FIGURE 4

Constructing a nomogram related to gut microbiota macrophages to assess clinical value. (A) The nomogram demonstrates the prognostic value of
the top five gut microbiota-related macrophage genes (PLEK, IRF8, BTK, CCR1, and CD68) for atherosclerosis patients. (B) Calibration curves to
assess the degree of similarity between the predicted and true results of the gut microbiota-related macrophage nomogram. (C) Decision curve
analysis to evaluate the sensitivity and specificity of the gut microbiota-related macrophage nomogram. (D) Clinical impact curve to assess the
clinical impact of the gut microbiota-related macrophage nomogram at different thresholds. (E–I) ROC analysis results for the top five gut
microbiota-related macrophage genes.
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Table S5). Finally, we performed pathway enrichment analysis on

the upregulated genes in cluster A, which were significantly

enriched in pathways such as vascular smooth muscle

contraction, regulation of lipolysis in adipocytes, muscle system

process, muscle cell development, and muscle cell differentiation

(Figures 5H, I).
3.6 Analyze the expression of gut
microbiota-related macrophage genes in
the atherosclerotic single-
cell transcriptome

Using the “FindNeighbors” and “FindClusters” functions in the

“Seurat” package for cell clustering analysis, we identified 17 cell

clusters (Figure 6A). We used UMAP visualization to divide them

into six cell populations: macrophages, monocytes, T cells,

endothelial cells, chondrocytes, and smooth muscle cells, with

heatmaps showing the marker genes for each subpopulation
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(Figures 6B, C). Finally, we found that PLEK, IRF8, BTK, CCR1,

and CD68 were significantly expressed in monocytes and

macrophages, further confirming the reliability of our previous

transcriptome analysis (Figures 6D, E).
3.7 Investigating the effects of PLEK
expression on macrophages

Since the random forest tree results previously showed that

PLEK was the most significant (Figure 3D), we divided

macrophagesinto High PLEK Macrophage and Low PLEK

Macrophage groups based on the median expression value of

PLEK to analyze the biological changes between the two groups

(Figures 7A, B). Using the irGSEA.score function for gene set

analysis, we found that the TNFA-signaling-via-NFKB pathway

was significantly upregulated in the High PLEK Macrophage group,

while this pathway was significantly downregulated in the Low

PLEK Macrophage group (Figure 7C). Subsequently, we performed
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FIGURE 5

Constructing clusters of macrophages related to gut microbiota. (A, B) Clusters A and B were established using the NFM algorithm (consensus matrix
k=2). (C) PCA analysis of Cluster A and Cluster B. (D) Expression of the top five genes between the two groups. (E) Expression of immune cells in
Cluster A and Cluster B. (F, G) Results of differential analysis between Cluster A and Cluster B. (H, I) Pathway enrichment analysis of Cluster A-
specifically expressed genes. (***P < 0.001).
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pathway enrichment analysis on the differentially expressed genes

between the PLEK high and low groups, which significantly

enriched in DNA-binding transcription activator activity and

DNA-binding transcription factor binding (Figure 7D).
3.8 Validate the expression of PLEK in
atherosclerosis samples and investigate its
impact on the NFkB pathway

To validate the reliability of PLEK for diagnosing atherosclerosis

patients, we collected samples from patients with atherosclerosis,

including stable and unstable plaques (Figures 8A, B). PLEK

expression was significantly higher in unstable plaques than in

stable plaques (Figures 8C–E). Based on the results of Figure 7C,

we found that PLEK might affect the NFkB signaling pathway. We

stimulated RAW264.7 cells and PLEK-knockdown RAW264.7 cells

with LPS and TNF-a to observe whether PLEK would influence the

atherosclerosis process through the NFkB signaling pathway

(Figure 8F). The results indicated that after the knockdown of

PLEK, P65 and IkBa remained unchanged, while there was a

significant downregulation of p-P65 expression (Figure 8G).
4 Discussion

Atherosclerosis, a complex and multifaceted disease, is

characterized by the accumulation of lipids, inflammation, and

fibrous thickening within the arterial walls, leading to vascular

stenosis or occlusion and a heightened risk of cardiovascular events.
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Dysregulation of lipid metabolism, endothelial dysfunction, and

infiltration of inflammatory cells synergistically contribute to

plaque development. The rupture of an unstable plaque can

precipitate thrombosis and trigger acute cardiovascular incidents.

Current therapeutic approaches for atherosclerosis encompass

pharmacological interventions aimed at mitigating plaque

progression and enhancing vascular function. Early diagnosis is

pivotal for effective prevention and management of this disease. Our

research endeavors to identify and validate early biomarkers of

atherosclerosis, facilitating timely interventions and improving

patient outcomes. Macrophages, with their dualistic role, are

instrumental in the pathogenesis of atherosclerosis, modulating

the inflammatory milieu of plaques and thereby influencing

disease progression (Tabas and Bornfeldt, 2020). The gut

microbiota’s intricate relationship with atherosclerosis is

increasingly recognized, with dysbiosis potentially exacerbating

lipid metabolism disorders and amplifying inflammatory

responses. The interplay between the gut microbiota and

macrophages is particularly intriguing, yet the specific

contributions of gut microbiota-associated macrophage genes to

atherosclerosis remain to be fully elucidated.Our study delves into

the potential of gut microbiota and macrophages as significant

factors in atherosclerosis, aiming to uncover novel insights into the

disease’s pathophysiology. By identifying and analyzing key genes

associated with the gut microbiota and macrophage activity, we seek

to unravel the underlying biological mechanisms and chart a course

for innovative diagnostic and therapeutic strategies.

In our comparative analysis of gut microbiota-related gene set

activities between normal carotid artery and atherosclerotic plaque

samples, we discerned a pronounced elevation in the activities of
A B
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FIGURE 6

Single-cell subgroup annotation of atherosclerosis. (A, B) UMAP visualization of subgroup annotations. (C) Heatmap showing marker genes.
(D, E) Expression of the top five gut microbiota-related macrophage genes in immune cells.
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HP_SMALL_INTESTINAL_DYSMOTILITY, HP_MELENA, HP_

INTESTINAL_FISTULA, and GOBP_ENTERIC_NERVOUS_

SYSTEM_DEVELOPMENT in the cohort with atherosclerotic

plaque samples. This finding is corroborated by research

highlighting the intimate connection between the progression of

non-alcoholic fatty liver disease and disruptions in gut microbiota,

as well as intestinal dysfunction (Leung et al., 2016), underscoring

the burgeoning research potential in elucidating the interplay

between gut microbiota and atherosclerosis. Conversely, the

normal carotid artery group exhibited a notable increase in

N_N_DIMETHYLANILINE_MONOOXYGENASE_ACTIVITY.

Prior studies have posited that plasma TMAO levels do not

correlate with the incidence of atherosclerosis but are markedly

positively associated with unstable plaques (Koay et al., 2021). This

discrepancy may suggest that TMAO within the arterial intima

possesses distinct biological implications compared to its plasma

counterpart, warranting further exploration into the nuanced roles

of TMAO in the arterial wall’s pathology.

In recent years, the Nomogram model has emerged as a reliable

clinical diagnostic tool, demonstrating exceptional predictive

accuracy and offering personalized diagnostic strategies for patients

(Tong et al., 2023). Leveraging machine learning algorithms, we have

identified PLEK, IRF8, BTK, CCR1, and CD68 as evaluative markers

to assist in the diagnosis of atherosclerosis. Studies have reported a

significant upregulation of PLEK in ulcerative colitis and rheumatoid

arthritis (Chen et al., 2020). Sequence variants near the IRF8 gene

have been implicated as key risk factors for inflammatory bowel
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disease and multiple sclerosis (Salem et al., 2020). BTK inhibitors,

approved for the treatment of leukemia and lymphoma (Brullo et al.,

2021), raise intriguing questions about their potential role in

atherosclerosis patients. Our research has uncovered the specific

expression of CCR1 in macrophages, paralleling the observed

increase in CCR1 expression on inflammatory cells in patients with

severe chronic obstructive pulmonary disease (COPD) (Nakano et al.,

2018). CD68, a common macrophage marker, is well-documented in

its association with a variety of inflammatory diseases, further

substantiating its relevance in the context of atherosclerosis. At the

single-cell level, we classified macrophage subpopulations based on

the expression levels of the PLEK, dividing them into high PLEK-

expression macrophages and low PLEK-expression macrophages

around the median value. This stratification revealed a concomitant

upregulation of TNFa-signaling-via-NFKB, IFNG response, and

inflammatory response pathways in macrophages with heightened

PLEK expression. Given the established role of macrophages in

orchestrating inflammatory responses, which are critical in the

pathophysiology of numerous immune-mediated conditions

(Koelwyn et al., 2018), our bioinformatics findings lead us to

hypothesize that increased PLEK expression on macrophages may

potentiate their inflammatory profile.

In summary, this investigation harnesses a comprehensive suite

of bioinformatics tools to uncover the intricate connections between

the gut microbiota, macrophage function, and the pathogenesis of

atherosclerosis, thereby contributing fresh perspectives to our

understanding of this complex disease. Despite these
A B
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FIGURE 7

Single-cell level analysis of the impact of PLEK on macrophages. (A, B) Macrophages were divided into two groups based on PLEK expression and
visualized using bar plots and UMAP. (C) Gene set enrichment analysis between high PLEK macrophage group and low PLEK macrophage group.
(D) Pathway enrichment analysis between high PLEK macrophage group and low PLEK macrophage group.
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advancements, our study acknowledges limitations, such as the

reliance on existing sequencing data, the finite scope of human

sample cohorts, and the imperative for more profound exploration

into the underlying biological mechanisms.
5 Conclusion

In summary, our study comprehensively examined the

relationship between gut microbiota-associated macrophage genes

and atherosclerosis, leading to the identification of pivotal genes.

Subsequently, these key genes were subjected to an integrated analysis

alongside immune cell dynamics, gut microbiota activity, and single-

cell profiling. Ultimately, PLEK was revealed as a potential driver in

the formation of unstable atherosclerotic plaques.
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FIGURE 8

Experimental validation of PLEK. (A, B) HE staining showing stable atherosclerotic plaques and (C) expression of PLEK in stable and unstable
atherosclerotic plaques. (E) H-SCORE of the two groups (P = 0.0002). (F) Validation of PLEK knockdown efficiency in RAW264.7 cells. (G) Western
Blot detection of changes in p-P65, P65, p-IkBa, IkBa in RAW264.7 cells.
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The impact of Sangju Qingjie
Decoction on the pulmonary
microbiota in the prevention and
treatment of chronic obstructive
pulmonary disease
Zheng Liu1†, Ying Huang2†, Chao Hu3 and Xiang Liu1*
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Medicine, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China,
3Pulmonary and Critial Care Medicine, Xiangtan Center Hospital, Xiangtan, Hunan, China
Objective: Exploring the effect of SJQJD on the pulmonary microbiota of

chronic obstructive pulmonary disease (COPD) rats through 16S ribosomal

RNA (rRNA) sequencing.

Methods: A COPD rat model was constructed through smoking and

lipopolysaccharide (LPS) stimulation, and the efficacy of SJQJD was evaluated

by hematoxylin and eosin (H&E) staining and Enzyme-Linked Immunosorbnent

Assay (ELISA). The alveolar lavage fluid of rats was subjected to 16S rRNA

sequencing. The diversity of lung microbiota composition and community

structure was analyzed and differential microbiota were screened. Additionally,

machine learning algorithms were used for screening biomarkers of each group

of the microbiota.

Results: SJQJD could improve lung structure and inflammatory response in COPD

rats. 16s rRNA sequencing analysis showed that SJQJD could significantly improve

the abundance and diversity of bacterial communities in COPD rats. Through

differential analysis and machine learning methods, potential microbial biomarkers

were identified as Mycoplasmataceae, Bacillaceae, and Lachnospiraceae.

Conclusion: SJQJD could improve tissue morphology and local inflammatory

response in COPD rats, and its effect may be related to improve

pulmonary microbiota.
KEYWORDS

SJQJD, COPD, pulmonary microbiota, biomarker, machine learning
Abbreviations: SJQJD, Sangju Qingjie Decoction; COPD, Chronic Obstructive Pulmonary Disease;

AECOPD, Acute Exacerbation of Chronic Obstructive Pulmonary Diseases; LPS, Lipopolysaccharide;

H&E, Hematoxylin and Eosin; IL-6, Interleukin 6; IL-8, Interleukin 8; MMP-2, Matrix Metallopeptidase 2;

MMP-3, Matrix Metallopeptidase 3; sIgA, secretory Immunoglobulin A; TNF-a, Tumor Necrosis Factor a;

OTUs, Operational Taxonomic Units; LEfSe, Linear discriminant analysis effect size; ELISA, Enzyme-Linked

Immunosorbnent Assay; LDA, Linear Discriminant Analysis; FVC, Forced Vital Capacity; FEV1, Forced

Expiratory Volume in the 1st second; SCFAs, Short-Chain Fatty Acids.
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1 Introduction

COPD is a common respiratory disease in clinical practice, and

its risk factors include advancing age, long-term smoke irritation,

high incidence, and mortality, with continuous airflow restriction

being the main pathological characteristic. Relevant statistics (Fang

et al., 2018) show that there are approximately 100 million patients

with COPD and increasing incidences of COPD in China.

According to the World Health Organization, COPD may

become the third leading cause of mortality worldwide by 2030

(Kim et al., 2021). Acute exacerbation of COPD (AECOPD) refers

to a clinical event characterized by worsening of respiratory

symptoms in patients with COPD, leading to changes in

symptoms beyond the daily variation range and drug treatment

regimens, which is critical for treating COPD disease. This results in

reduced quality of life of patients, accelerated decline of lung

function, and increased mortality rate of hospitalized patients

(Baqdunes et al., 2021; Celli et al., 2021). Presently, there is no

effective treatment for AECOPD; therefore, exploring effective

prevention and treatment of COPD is one of the most urgent

demands of the medical field worldwide.

The respiratory tract constantly exchanges gases with the

environment; hence, it is also a system with bacterial

colonization. Studies on respiratory microbiota remain in the

initial stages. Reportedly, the pulmonary microbiota is closely

related to the host’s autoimmune function and participates in the

regulation of the immune microenvironment (Cao et al., 2023; Wu

et al., 2023). The lungs were presumed to be sterile in healthy

individuals; however, owing to the continuous development of

medical science and technology, 16S rRNA sequencing has

revealed microbial communities detected in the lungs of healthy

individuals (Ramsheh et al., 2021; Yagi et al., 2021). The human

microbiome includes all forms of microorganisms and their

genomes residing within the body of an individual at a specific

time, such as in the gut and other mucosal surfaces including the

skin, mouth, airways, and vagina (Anand and Mande, 2018, Shi

et al., 2021). Ecological imbalance refers to any compositional

changes in the microbiome compared with that of healthy

individuals (Shi et al., 2021). The low diversity of microbial

communities indicates ecological imbalance (Valdes et al., 2018),

whereas high diversity is often associated with health and temporal

stability (Leitao Filho et al., 2019; Vaughan et al., 2019; Shi

et al., 2021).

SJQJD is a medicinal formulation composed of 30 g of mori

cortex, 15 g of chrysanthemi indici flos, 40 g of semen benincasae, 20 g

of trichosanthis pericarpium, 20 g of pheretima, 20 g of fritillariae

cirrhosae bulbus, 50 g of phragmitis rhizoma, 150 g of plantaginis

semen, 20 g of concretio silicea bambusae, and 10 g of glycyrrhizae

radix et rhizoma. SJQJD exerts considerable clinical effects on

patients with COPD presenting phlegm-heat obstructing lung (Yee

et al., 2022); however, the specific mechanism underlying SJQJD-

mediated treatment of COPD remains unclear. Herein, we

constructed a COPD rat model and investigated the effects of

SJQJD on the pulmonary microbiota of COPD rats through 16S

rRNA sequencing. Modern pharmacology indicates that the extract
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of mori cortex has a regulatory effect on oxidative stress (Zhai et al.,

2022), chrysanthemi indici flos, trichosanthis pericarpium, pheretima,

fritillariae cirrhosae bulbus, phragmitis rhizoma all exhibit anti-

inflammatory activity (Park et al., 2016; Liu et al., 2020; Tian et al.,

2020; Li et al., 2022; Liu et al., 2024), plantaginis semen has the

function of regulating lipid metabolism and immune response (Sun

et al., 2019; Ren et al., 2021), glycyrrhizae radix et rhizoma has anti-

inflammatory and detoxifying effects (Li et al., 2019; Jiang et al.,

2022). These physiological processes are involved in various stages of

physiological pathology. However, there is currently limited research

by semen benincaae and concretio silicea bambusae.
2 Methods

2.1 SJQJD preparation

SJQJD is an internal preparation of Zhongshan Traditional

Chinese Medicine Hospital (specific lot number: Guangdong

Medicine Preparation Z20071015). All traditional Chinese medicine

decoction pieces are provided by the Chinese Pharmacy of Zhongshan

Traditional Chinese Medicine Hospital, and identified as qualified

authentic products by Deputy Chief Pharmacist He Jianhong. The

abovementioned 10 herbs were soaked in water for 30 minutes, and

the decoction treatment was performed twice for 1.5 hours. Both

decoctions were combined, filtered, concentrated, and added with 200

g of sugar, 3 g of sodium benzoate, and 0.5 g of hydroxyethyl ester. The

mixture was boiled and brought to a constant volume of 1 L.

Following this, it was allowed to stand for 1 day, and the

supernatant was isolated and packaged to complete the preparation.
2.2 Animal experiments

Experimental grouping: Specific pathogen free grade 10 week

old Wistar male rats (250 ± 20), purchased from Spelford Beijing

Biotechnology Co., Ltd. In total, 30 rats were randomly divided into

the following five groups (n = 6): control, model, model + SJQJD

(high-dose [H]: 1.2 g/mL), model + SJQJD (medium-dose [M]: 0.8

g/mL), and model + SJQJD (low-dose [L]: 0.6 g/mL) groups.

Animal model construction: Both cigarette smoke exposure and

lipopolysaccharide (LPS) intratracheal instillation were used to

establish the COPD model, as follows: (1) LPS intratracheal

instillation: 0.2 mL of LPS solution (1 mg/mL) was instilled into

the airway on the 1st and 14th day of modeling; and (2) smoking:

from day 2 to 28, rats were transferred to a dedicated disinfection

box and exposed to smoke daily (except for day 14), 10 cigarettes

per time for 30 minutes, twice a day in the morning and afternoon.

Medication intervention: The control group was not subjected

to LPS intratracheal instillation and smoking procedures and was

administered 2.5 mL of physiological saline by gavage every day; the

model group was administered 2.5 mL of physiological saline by

gavage every day; the administration groups were orally

administered 2.5 mL of SJQJD (H, M, and L) every day. The

alveolar lavage fluids and lung tissues of rats were retrieved after

administration for subsequent experiments.
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2.3 H&E staining experiment

The retrieved lung tissues were fixed with 10% formaldehyde

solution. Following this, the tissues were cut into 2-mm thick tissue

blocks, which were then dehydrated using gradient ethanol, made

transparent using xylene, and embedded in paraffin. Next, the tissue

blocks were cut into 5-mm thick slices, stained with H&E, and sealed

with neutral gum. The morphology of the lung tissues was observed

under a microscope and their photos were captured.
2.4 ELISA testing

The alveolar lavage fluids of rats were centrifuged at 4°C at 1800

r/min for 5 minutes, and the supernatants were collected for

detection. Next, ELISA was performed to detect interleukin (IL)-

6, IL-8, matrix metallopeptidase (MMP)-2, MMP-3, secretory

immunoglobulin (sIg)A, and tumor necrosis factor (TNF)-a in

the supernatant of the alveolar lavage fluid according to the

instructions of the kit (JiangLai, China).
2.5 16S rRNA sequencing and
bioinformatics analyses

The 16s rRNA sequencing was performed by Shenzhen

Weikemeng Technology Group Co., Ltd. using the experimental

alveolar lavage fluid, including DNA extraction, polymerase chain

reaction-mediated amplification, and Illumina high-throughput

sequencing. Bioinformatics analyses were performed using the

Wekemo Bioincloud (https://www.bioincloud.tech). Operational

taxonomic units (OTUs) were clustered with 97% consistency,

and the sequences of OTUs were annotated with species to obtain

the corresponding species information and species-based

abundance distribution. Additionally, a-diversity analysis was

performed utilizing the following evaluation indexes: Chao1 index

for evaluating microbial abundance, and Shannon and Simpson

indexes for evaluating microbial evenness and abundance.

Furthermore, b-diversity was analyzed to compare the diversity
Frontiers in Cellular and Infection Microbiology 03129
among different ecosystems, and cluster analysis was performed on

the sample distance matrix to construct a hierarchical visualization

of differences among samples. Linear discriminant analysis effect

size (LEfSe) analysis was performed to test the significance of

differences in species composition and community structure of

the grouped samples, further analyzing the microbiome

composition of the two groups at the phylum and genus levels,

and determining the species abundances with significant

differences. Finally, the characteristic microbial communities of

each group were screened using machine-learning methods.
2.6 Statistic analyses

The GraphPad Prism 9.0 software was used to process data and

visualize the data. The comparison between two groups was

conducted using t-test method, the comparison between three

groups was conducted using one-way ANOVA test method, and

the comparison between three groups that did not follow a normal

distribution was conducted using Kruskal Wallis test. The P-value

of < 0.05 was considered statistically significant.
3 Results

3.1 SJQJD improves the lung tissue
morphology in COPD rats

The tissue morphology of the control group was intact with no

notable inflammatory cell infiltration (Figure 1); however, that of the

COPD model group was disordered, with considerable detectable

inflammatory cell infiltration and epithelial goblet cell proliferation,

indicating the successful establishment of the model. In the SJQJD-H

group of rats, a few inflammatory cells were observed in the lung tissue,

along with an enlargement of the alveolar spaces. The SJQJD-M group

of rats showed reduced aggregation of inflammatory cells in the lung

tissue, with some increase in the alveolar septa and inflammatory cell

infiltration. The SJQJD-L group of rats demonstrated moderate

interstitial inflammatory changes in the lung tissue, along with the

widening of the alveolar septa and inflammatory cell infiltration.
FIGURE 1

SJQJD improved COPD in rats.
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3.2 SJQJD inhibited the release of
inflammatory factors in COPD rats

ELISA was performed to detect the content of inflammatory

factors in the alveolar lavage fluid. The results showed that

compared with the control group, the levels of IL-6 (P < 0.0001),

IL-8 (P < 0.0001), MMP-2 (P < 0.0001), MMP-3 (P < 0.0001), sIgA

(P < 0.0001), and TNF-a (P < 0.0001) in the model group increased

considerably, whereas SJQJD (H, M, and L) suppressed their

increase in a concentration-dependent manner (Figure 2).
3.3 Analysis of the effects of SJQJD on the
pulmonary microbiota

The composition structures of the lung microbiota of each group

of rats were analyzed at the phylum and genus levels through 16S

RNA high-throughput sequencing to explore the effects of SJQJD. At

the phylum level, the composition of Tenericutes notably increased in

the model group and considerably decreased in the control and

SJQJD groups. In contrast, the compositions of Proteobacteria,

Actinobacteria, Unspecified_Bacteria, and Firmicutes considerably

decreased in the model group and markedly increased in the
Frontiers in Cellular and Infection Microbiology 04130
control and SJQJD groups (Figures 3A, B). At the genus level,

the composition of Mycoplasmataceae considerably increased in the

model group and markedly decreased in the control and SJQJD

groups. In contrast, the composition of Streptomycetaceae,

Enterobacteriaceae, Microbacteriaceae, and Bacillaceae markedly

decreased in the model group and notably increased in the control

and SJQJD groups (Figures 3C, D).
3.4 Analyses of a- and b-diversities

Compared with the control rats, the a-diversity indexes, namely

Chao1 (P = 0.0397), Shannon (P = 0.0030), and Simpson (P = 0.0021)

indexes, of COPD rats were markedly reduced (Figures 4A–C),

suggesting a decrease in both microbial abundance and diversity

under COPD conditions. SJQJD reversed the decrease in the

aforementioned three indexes, demonstrating its therapeutic effects

on COPD rats. b-diversity distance measurements, performed to

study the structural changes of the pulmonary microbiota among

samples, showed notable differences in the microbial communities of

control and COPD rats (Figure 4D). However, the SJQJD

administration reversed this phenomenon.
B C

D E F

A

FIGURE 2

SJQJD improved pulmonary inflammatory response. The level of (A) IL-6, (B) IL-8, (C) MMP-2, (D) MMP-3, (E) sIgA, and (F) TNF- a in rat alveolar
lavage fluid. The data was displayed as the mean ± SD (n=6). # P < 0.05, ## P < 0.01, ### P < 0.001, #### P < 0.0001, * P < 0.05, ** P < 0.01,
*** P < 0.001, **** P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1379831
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1379831
3.5 Analysis of dominant microbial
communities in each group

The bacterial taxa with statistically significant differences

among the groups were identified based on the Linear

Discriminant Analysis (LDA) value, and the results were

visualized by creating a LefSe cladogram (Figure 5A) and a

histogram of LDA values (Figure 5B). Actinobacteria,

Phyllobacteriaceae, and Alphaproteobacteria were the dominant

bacterial taxa in the control group, whereas Mycoplasmatales,

Mycoplasmataceae, Tenericutes, and Mollicutes were the dominant

taxa in the model group. Proteobacteria, Gammaproteobacteria,
Frontiers in Cellular and Infection Microbiology 05131
Weeksellaceae, and others were characteristic taxa for the

SJQJD group.
3.6 Analysis of species differences in the
pulmonary microbiota

The differences in bacterial communities among groups were

analyzed at different levels, such as the family level. The results

suggest that compared with the control group, the composition of

families Peptostreptococcaceae, Mycoplasmataceae, Rikenellaceae,

Listeriaceae, and Ruminococcaceae considerably increased in the
B

C D

A

FIGURE 3

Stacking diagram of the relative abundance of microbial communities. (A) The relative abundance of microbial communities at the phylum level in
each sample. (B) The relative abundance of microbial communities at the phylum level in each group. (C) The relative abundance of microbial
communities at the genus level in each sample. (D) The relative abundance of microbial communities at the genus level in each group.
B C DA

FIGURE 4

SJQJD improved the diversity of lung microbiota. (A) Chao1 index. (B) Shannon index. (C) Simpson index. (D) NMDS. * P < 0.05, ** P < 0.01.
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model group, whereas that of Chthoniobacteraceae, Streptomycetaceae,

and Enterococcaceae markedly reduced (Figures 6A, B). Compared

with the model group, the composition of families such as

Bacillaceae, Nocardiaceae, and Micrococcaceae notably increased in

the SJQJD group, whereas that of Listeriaceae, Clostridiaceae,

Campylobacteraceae, and Mycoplasmataceae considerably reduced

(Figures 6A, C). Notably, the abundance of the family

Mycoplasmataceae (P = 0.0021) was considerably increased in the

model group, whereas it remained low in both the control and SJQJD

groups, suggesting its potential as a therapeutic marker (Figure 6D).

Although there were no statistically significant differences in

Bacillaceae abundance among the groups, we observed that this

family was almost absent in the model group but exhibited high

abundances in both the control and SJQJD groups, suggesting its

possible protective role in the disease (Figure 6E).
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3.7 Machine-learning method-based
screening of biomarkers

The markers in the microbiota of each group were further

screened through machine learning. The results show that

characteristic microbes of the control group obtained using the

random forest algorithm included Lachnospiraceae, Enterococcaceae,

and Staphylococcaceae, whereas the model group featured

Mycoplasmataceae, Pasteurellaceae, and Aeromonadaceae. The

characteristic microbes of the SJQJD group included Nocardiaceae,

Lachnospiraceae, and Burkholderiaceae (Figures 7A, B; Table 1).

Additionally, the characteristic microbes of the control group

obtained using the support vector machine algorithm included

Rhodobacteraceae, Lachnospiraceae, and Moraxellaceae; those of the

model group included Campylobacteraceae and Moraxellaceae, and
BA

FIGURE 5

Analysis results of the dominant microbial communities in each group. (A) The branch diagram was obtained through LEfSe analysis. (B) LDA effect
size analysis of major biomarker taxonomic groups.
B

C

D

E

A

FIGURE 6

Analysis results of species differences in pulmonary microbiota. (A) Heatmap of differential microbial communities among groups. (B) Volcano
diagram of Model vs. Control. (C) Volcano diagram of SJQJD vs. Model. (D) The abundance of Mycoplasmataceae in three groups. (E) The
abundance of Bacillaceae in the three groups. ** P < 0.01, ns, no significant.
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those of the SJQJD group included Lachnospiraceae, Burkholderiaceae,

and Phyllobacteriaceae (Figures 7C, D; Table 1). By intersecting the

results, we found the family Lachnospiraceae to be a common marker

between the control and SJQJD groups (Figure 7E).
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4 Discussion

COPD is a chronic inflammatory disease characterized by

persistent restriction of the small airways, and it often affects

multiple systems. Studies predict that because of the increasing

number of smokers and population aging, the annual COPD-

associated mortality and number of patients may exceed 5.4 million

(GBD 2017 Causes of Death Collaborators, 2018) by the 2060s. Acute

exacerbation, leading to frequent medical visits, hospitalizations, and

changes in medication regimens, is a major cause of mortality in

patients with COPD (Wu et al., 2014; Vogelmeier et al., 2017; Hua

et al., 2020; Li et al., 2021). Microbial cultures indicate that the lung

microbiota is related to COPD pathogenesis (Shi et al., 2021), and the

advances in metagenomic technologies have further validated this

conclusion (Karakasidis et al., 2023).

SJQJD is a hospital-prepared medication formulation reviewed by

the drug regulatory authority. Clinical studies have shown the good

therapeutic effects of SJQJD when used in combination with Western

medicine to treat phlegm-heat obstructed lung-type community-

acquired pneumonia. Reportedly, the combined treatment of SJQJD

with Western medicine for bronchiectasis can effectively improve the

lung function, forced vital capacity (FVC), forced expiratory volume in

the 1st second (FEV1), and FEV1/FVC levels of the patients, with a

total effective rate of 97.50%, compared with 85.00% in the control

group (P < 0.05) (Dong et al., 2018). Additionally, clinical research on

patients with phlegm-heat congested lung-type AECOPD has shown

(Huang et al., 2021) that after treatment with SJQJD in combination

with Western medicine, the T lymphocyte subgroup cluster of

differentiation (CD)4+ and the CD4+/CD8+ ratio increased,

compared with those before the treatment, and CD8+ reduced,

indicating the significantly better optimization in the combined

treatment group than that in the Western medicine control group

(P < 0.05). This suggested that SJQJD might improve the immune

function of patients, thereby enhancing their resistance. These findings

imply that SJQJDmay exert its therapeutic effect on COPD by altering
B

C D

EA

FIGURE 7

Machine learning screening of microbial biomarkers. (A, B) The results of RF method screening for characteristic microbial communities. (C, D) The
results of SVM method screening for characteristic microbial communities. (E) Intersection results of feature microbial communities selected by
machine learning.
TABLE 1 Machine learning screening of characteristic microbial
communities in each group.

Group RF SVM

Control Lachnospiraceae
Enterococcaceae
Staphylococcaceae
Sphingomonadaceae
Porphyromonadaceae
Weeksellaceae
Pseudoalteromonadaceae
Nocardiaceae
Comamonadaceae
Microbacteriaceae
Flavobacteriaceae
Rhodobacteraceae

Rhodobacteraceae
Lachnospiraceae
Moraxellaceae
Staphylococcaceae
Carnobacteriaceae
Flavobacteriaceae
Enterococcaceae
Erysipelotrichaceae
Ruminococcaceae
Brucellaceae
Bacteroidaceae
Chthoniobacteraceae
Sinobacteraceae
Prevotellaceae

Model Mycoplasmataceae
Pasteurellaceae
Aeromonadaceae
Desulfovibrionaceae
Shewanellaceae

Campylobacteraceae
Moraxellaceae

SJQJD Nocardiaceae
Lachnospiraceae
Burkholderiaceae
Chitinophagaceae
Pseudomonadaceae
Comamonadaceae
Phyllobacteriaceae
Caulobacteraceae
Sphingomonadaceae
Chromatiaceae
Microbacteriaceae
Promicromonosporaceae

Lachnospiraceae
Burkholderiaceae
Phyllobacteriaceae
Aurantimonadaceae
unclassified
Chitinophagaceae
Nocardiaceae
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the lung microenvironment and consequently modulating the

lung microbiota.

Herein, a COPD rat model was constructed through a

combined approach of cigarette smoke exposure and intratracheal

LPS instillation, which is a widely used model for COPD. The

COPD model group showed structural disorder with considerable

inflammatory cell infiltration and epithelial goblet cell proliferation.

However, the SJQJD administration reversed these phenomena,

indicating its interventional effects on COPD. Moreover, SJQJD

improved pulmonary inflammation.

The lung microbiome plays an important role in maintaining

stability within the lungs. The airways of patients with COPD often

harbor Haemophilus influenzae, Streptococcus pneumoniae, and

Moraxella catarrhalis, which in severe cases can be colonized by

Klebsiella pneumoniae, Pseudomonas aeruginosa, and other Gram-

negative bacteria. Various factors affect the composition of the

respiratory microbiota, including the anatomy of the airways,

gender, age, and the immune function of the host (Whiteside

et al., 2021). In healthy individuals, the lung microbiota is

transient and can be regulated by normal lung defense

mechanisms, such as bronchial epithelial cilia movements,

coughing, and the immune function of the host. Under healthy

conditions, the regional growth conditions generally do not support

the extensive proliferation of bacteria, resulting in relatively fewer

bacteria. However, inflammatory responses increase the vascular

permeability of the airways, providing abundant nutrients, such as

amino acids, vitamins, carbon sources, and iron, for bacterial

reproduction. Inflammation damages epithelial cells, exposing the

basement membrane matrix and promoting bacterial adhesion.

Similar to the gut microbiota, dysbiosis of the lung microbiota

promotes the persistent progression of COPD (Bowerman et al.,

2020). Reduced microbial diversity has been associated with COPD

exacerbation events (Sze et al., 2012; Wang et al., 2019; Enaud et al.,

2020; Su et al., 2022). Herein, the results showed that the microbial

abundance and diversity in the COPD model group were

significantly reduced, and SJQJD could considerably reverse this

phenomenon, suggesting its role in improving the lung microbiota.

The family Mycoplasmataceae includes prokaryotic bacteria

such as Mycoplasma and genital Ureaplasma that are pathogenic

to humans (Wood et al., 2021). Reportedly, mycoplasmas are one of

the common pathogens in patients with COPD (14%) (Lieberman

et al., 2001, 2002).Mycoplasmas can evade the host immune system,

induce apoptosis, generate free radicals, and cause oxidative-

reductive imbalance in the cellular glutathione potential through

pro-inflammatory cytokines, thus leading to AECOPD (Sessa et al.,

2009; Papaetis et al., 2010). The family Bacillaceae includes rod-

shaped, endospore-forming, Gram-positive bacteria (Liu et al., 2015).

They are widely found in nature, including both pathogenic and

beneficial strains (Hathout et al., 2000). However, their specific role

in COPD remains unelucidated. Reportedly, the increase of Bacillus

in the mouse lungs can aggravate local inflammatory response,

resulting in more severe pulmonary emphysema (Richmond

et al., 2018), which suggests that Bacillus may be a risk factor for
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COPD. Moreover, a considerably higher population of Bacillaceae

has been reported in the rat lungs treated with particulate matter

2.5, a COPD-inducing factor, compared with that in the control

(Laiman et al., 2023). Furthermore, lower levels of Bacillus have

been detected in the sputum of patients with COPD (Simpson et al.,

2016), indicating that Bacillus may play a protective role in COPD.

The results of this study indicated a low abundance of Bacillaceae in

the COPD model, whereas it was considerably higher in the

control and SJQJD treatment groups, suggesting that Bacillaceae

may have a role in combating COPD. Reportedly, most members of

the Lachnospiraceae family in the gut are associated with decreased

lung function; however, the abundances of some members are

markedly reduced in COPD (Bowerman et al., 2020; Chiu et al.,

2021). To date, only a few studies are on the distribution

and role of Lachnospiraceae in the lungs. Herein, we discovered

Lachnospiraceae to be a marker of the microbiota, with a high

abundance in the control and SJQJD groups and a low abundance in

the model group, suggesting the regulatory role of its members in

COPD in the lungs. Lachnospiraceae members can metabolize

dietary fiber into short-chain fatty acids (SCFAs), and the SCFA

levels are positively correlated with the severity of COPD because of

their participation in the maturation process of immune cells, which

then exert local and systemic anti-inflammatory effects (Jang et al.,

2020; Song et al., 2023). The above evidence suggests that

Lachnospiraceae likely regulate the pulmonary microenvironment

and local immune function through their metabolic products.

Furthermore, our study only presented the above results at the

animal level. The identification of biomarkers still needs further

validation in clinical human specimens. In addition, this article also

has certain limitations, as it only observed changes in lung

microbiota and did not further verify whether these changes will

be involved in the occurrence and development of COPD, as well as

the specific mechanisms involved in the process. These are the

topics that we need to delve deeper into in the future.
5 Conclusion

The findings of this study show that SJQJD can improve COPD in

rats. Pulmonary microbiome analysis combined with machine

learning identified Mycoplasmataceae, Bacillaceae , and

Lachnospiraceae as potential key biomarkers for SJQJD intervention

in COPD; however, more in-depth studies are required to elucidate

their specific mechanisms and clinical significance.
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Comparative characterization
of supragingival plaque
microbiomes in malocclusion
adult female patients undergoing
orthodontic treatment with
removable aligners or fixed
appliances: a descriptive
cross-sectional study
Jiajia Zheng1†, Xiujing Wang1†, Ting Zhang2, Jiuhui Jiang2

and Jiaqi Wu1*

1First Clinical Division, Peking University School and Hospital of Stomatology & National Center for
Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research
Center of Oral Biomaterials and Digital Medical Devices, Beijing, China, 2Department of Orthodontics,
Peking University School and Hospital of Stomatology & National Center for Stomatology & National
Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral
Biomaterials and Digital Medical Devices, Beijing, China
Objectives: This study aimed to explore the effects of removable aligners and

fixed appliances on the supragingival bacterial communities in adult female

patients undergoing orthodontic treatment.

Methods: Supragingival plaque samples from 48 female individuals underwent

microbiome analysis (16S rRNA gene sequencing) using PacBio Sequel

sequencing. The study included 13 adults without orthodontic treatment needs

as the control group (Group C), and 35 patients with comparable initial

orthodontic conditions who received treatment at a university clinic in Beijing,

China. The treatment involved either traditional fixed brackets (Group B, n = 17)

or Invisalign
®
aligners (Group AT, n = 18). Bioinformatics methods were used for

data analysis.

Results: From the 48 plaque samples, a total of 334,961 valid reads were

obtained, averaging 6,978 sequences per sample. The 16S rDNA sequences

were classified into 25,727 amplicon sequence variants (ASVs). Significant

variances in alpha and beta diversity among the groups were noted. Group B

microbiome exhibited an increased presence of Gram-negative bacteria. At the

phylum level, Actinobacteriota was significantly more prevalent in Group C

samples, while Bacteroidota was enriched in Group B samples. Family-level

relative abundance analysis showed a notable increase in Saccharibacteria

(formerly TM7) and Prevotellaceae in Group B. Genus-level analysis revealed a

significant rise in Lautropia in Group AT. Fixed orthodontic appliances were linked

to oral microbiome changes, notably an enhanced relative abundance of

anaerobes, including periodontal pathogens.
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Conclusion: The observation points to the impact of orthodontic appliance on

the oral microbial community, highlighting the difference between traditional

braces (Group B) and clear aligners (Group AT)in terms of the predominance of

anaerobic and gram negative bacteria. This emphasizes the importance of

considering the microbiological effects when choosing orthodontic appliance

and underscores the need for tailored oral hygiene practices for individuals

undergoing these treatments. This research might provide insights that could

assist in the development of innovative cleaning techniques and

antibacterial materials.
KEYWORDS

16S rRNA gene, orthodontic brackets, clear aligners, oral plaque, oral microbiome
Introduction

Developments in materials science have significantly advanced

the field of invisible orthodontic technology. This technology has

become increasingly popular, particularly among female patients,

owing to its aesthetic appeal and comfort (Lucchese et al., 2020). One

of the key advantages of these aligners is their removability, which

allows for uninterrupted daily oral hygiene practices. However, the

way these invisible appliances interact with enamel surface is distinct

from that of traditional fixed appliances. This difference is particularly

notable because patients can remove the aligners, which may impact

the mechanical forces applied to the hard and soft tissues.

Clinical studies have suggested that clear aligners may be more

beneficial for periodontal health than fixed appliances, potentially

making them a better option for patients at risk of developing

gingivitis (Jiang et al., 2018). Teenagers who use removable

appliances typically demonstrate better compliance with oral

hygiene and tend to accumulate less plaque compared to those

wearing fixed appliances (Abbate et al., 2015). Fixed appliances, on

the other hand, may facilitate plaque buildup and promote bacterial

affinity to metallic surfaces (Ahn et al., 2006).

Although the current findings are informative, there is still a

limited amount of research on the comparative analysis of oral

microecological changes on the enamel surface environment among

different orthodontic treatment method. Specifically, the effect of

removable aligners on the oral microflora represents an area that

requires further exploration to fully understand its implications.

With the emergence of culture-independent methods, exploring

the diversity of the oral microbiota has become more feasible.

Besides, the advent of third-generation sequencing (TGS)

technologies, particularly those offered by the Pacific Biosciences

(PacBio) platform, has simplified genome sequencing processes

(Athanasopoulou et al., 2021). Combining these technologies, this

study aimed to examine how removable aligners and fixed

appliances affect the supragingival bacterial communities in adult

female patients.
02138
Since bacteria adhere to enamel, metal, and plastic-coated

enamel surfaces in distinct ways, this research hope to offer

insights that could aid in the development of innovative cleaning

methods and antibacterial materials.
Ethical approval

Ethical approval for this study was granted by the Ethics

Committee of Peking University Health Science Center

(PKUSSIRB-202054050). Written informed consent was obtained

from all participants before their involvement in the study.
Materials and methods

Recruitment

The study recruited all suitable patients from October 2019 to

January 2021 at the First Clinical Division, Peking University

School and the Hospital of Stomatology. Participants were all

female, aged between 18 and 38 years, and free from chronic

periodontal disease and active caries.

Inclusion Criteria:
1. Aged above 18 years old.

2. No missing permanent teeth, except the third molars.

3. Essential oral hygiene practices. No untreated caries.

4. Good compliance, with braces worn for at least 6 months

and clear aligners for at least 22 hours per day.
Exclusion Criteria:
1. Pregnancy.

2. Medical complications.
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3. Lack of cooperation.

4. Chronic periodontitis and untreated dental caries.

5. Antibiotics or analgesics should be used before treatment.
Our study participants consist of 48 female patients, who are

categorized into three distinct groups (Table 1).

Control Group (Group C): 13 patients, serving as the

control group.

Brackets Group (Group B): 17 patients underwent treatment

with self-ligating fixed appliances and nickel-titanium

(NiTi) archwires.

Aligners T Group (Group AT): 18 patients treated with

Invisalign® aligners, with samples taken from the tooth surface.

The baseline data for age, weight, and height were analyzed

using one-way ANOVA tests. The results indicated no statistically

significant differences among the three groups for each of these

parameters: age (p=0.73), weight (p=0.79), and height (p=0.99).
Sample collection

Supragingival plaque samples were collectedusing a sterile

cotton swab. Plaque was collected from the buccal and lingual

sides, as well as the occlusal surface, of the teeth ranging from 17 to

47. The orthodontic group refrained eating for 2 hours and from

brushing teeth for 4 hours before plaque sampling. Samples were

preserved at -80°C for subsequent analysis.
Bacterial DNA extraction, PCR
amplification, and PacBio
sequel sequencing

Total DNA was extracted from the samples using the

PowerSoil® DNA Isolation Kit, following the manufacturer’s

instructions. The 16S full-length gene was amplified using PCR

with the 27F-1492R conservative region primers in a 10 mL reaction

system (Solexa PCR). The specific primers used were:
Forward primer 27F: AGRGTTTGATYNTGGCTCAG

Reverse primer 1492R: TASGGHTACCTTGTTASGACTT
After constructing the sequencing library, we performed a quality

check, which involved barcode identification and processing the

obtained high-quality circular consensus sequencing (CCS)

sequences. We then clustered the optimized CCS sequences with a

97% similarity threshold using USEARCH (version 10.0). Species
tiers in Cellular and Infection Microbiology 03139
classification was determined by analyzing the amplicon sequence

variants (ASVs) based on their sequence composition. For species

annotation and taxonomy analysis, as well as to evaluate the oral

microbiota’s diversity, we employed the 16S Plaque database and the

RDP Classifier. Alpha diversity analysis, examining species richness

and diversity within each sample, was performed. Beta diversity

analysis compared community composition and structure across

samples. Metastats analysis identified significant differences at the

genus level between groups, and linear discriminant analysis effect

size (LEfSe) identified statistically distinct biomarkers between groups

(biomarker screening criteria: LDA score>4). Various statistical

techniques were utilized to establish a correlation between 16S data

and the specific type of orthodontic appliance utilized by the patients.
Results

Taxonomic identification and
relative abundance

To investigate the composition of the plaque microbial

community in the three groups, plaque samples were analyzed

through sequencing with the IPacBio Sequel technology A total of

334,961 valid reads were obtained from the 48 plaque samples,

averaging 6,978 sequences per sample. These 16S ribosomal DNA

sequences were classified into ASVs.

The rarefaction curves (Figure 1) for all groups confirmed the

sufficiency of the sampling efforts.

This rank-abundance curve (Figure 1) underscores the variations

in microbial community structure that may be attributed to the

different conditions or treatments applied to each group.
Bacterial composition

The predominant phyla across all three groups were Firmicutes

(42.9% in Group AT, 40.4% in Group B, 44.1% in Group C)

(Figure 2). The top 10 phylum: Firmicutes, Proteobacteria,

Bacteroidota, Fusobacteriota, Actinobacteriota, Patescibacteria,

Campylobacterota, Verrucomicrobiota, unclassified_Bacteria, and

Spirochaetota. Notably, the proportion of Bacteroidota increased in

Group B patients. At the genus level, Streptococcus was the most

abundant in all groups (32.0% in Group AT, 25.0% in Group B,

29.7% in Group C). Among these genera, Streptococcus,

Haemophilus, Veillonella, Capnocytophaga, Neisseria, Leptotrichia,

Fusobacterium, Prevotella, Rothia, and Lautropia were observed.
Microbiome diversity and richness

Alpha-diversity analysis
The alpha-diversity analysis involved calculates species-level

ASVs, diversity, and richness estimates for each sample. The Chao1

and ACE indices are measures of species richness, while the

Shannon and Simpson index also considers species evenness.
TABLE 1 Demographic and clinical characteristics.

Group Age(y) Weight(kg) Height(cm)

Control(N=13) 26.0 ± 6.6 58.6 ± 3.6 168.9 ± 1.9

Brackets(N=17) 26.2 ± 6.0 52.0 ± 5.9 163.4 ± 4.1

Aligners T (N=18) 27.9 ± 5.2 52.8 ± 2.3 163.3 ± 5.3
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For the Chao1 index, Group C has significantly higher species

richness than Group AT. The ACE index reveals significant

differences in species richness between all groups, with Group AT

having the lowest richness and Group C the highest. The Shannon

index shows a significant difference between the AT and B groups,

suggesting variance in both the richness and evenness of species

between these two treatments. In Simpson index, the presence of a

p-value suggests that the difference in diversity between the AT and

B groups is statistically significant. The figure does not show any
Frontiers in Cellular and Infection Microbiology 04140
significant difference between the B and C groups or between the

AT and C groups (Figure 3).

Beta‐diversity analysis
Beta-diversity analysis was employed to examine and compare

the community structures among the microbiotas of the three

groups. Clustering analysis is presented in Figure 4.

The clustering in the figure displays the similarities and

differences in the oral microbial communities of the patients.
A B

FIGURE 1

(A) Multi-group rarefaction curves, generated based on the number of unique amplicon sequencing variants. (B) Rank-Abundance Curves of
Microbial Communities Under Different Conditions.
A

B

FIGURE 2

Most abundant bacterial phylum (A) and genus (B) in all samples.
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Additionally, a principal component analysis (PCA) plot

revealed no distinct separation between these groups (Figure 5).

The relative positions of the ellipses and points indicate differences

in microbial diversity or the dominance of certain taxa in one group

over the other. The analysis of bacterial beta diversity showed no

distinct separation between Group B and Group C. We also utilized

heatmaps to visually depict the correlation coefficients among the

samples (Figure 6).
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To further investigate microbial community structure changes,

we compared ASV abundance and microbial distribution at the

phylum, genus, and species levels.

Figure 7 displays the results of the LEfSe analysis, which was

conducted to identify specific microbial communities. This analysis

revealed 16 discriminative features (LDA>4, p<0.05) at various

taxonomic levels: phylum (n=2), family (n=4), order (n=2), class

(n=2), genus (n=4), and species (n=2).
A B C D

FIGURE 3

Alpha diversity was calculated based on different groups. p-values for each comparison are depicted above the box plots of the groups being
compared. (A) ACE index. (B) Chao 1 index. (C) Shannon index. (D) Simpson index.
A B

FIGURE 4

Cluster Analysis of Taxonomic Composition in Microbial Communities Across Various Sample Groups. (A) Weighted Unifrac. (B) Bray-Curtis.
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At the phylum level, Actinobacteriota was more prevalent in

Group C samples, while Bacteriodota was predominant in Group B.

Significant variations were noted among the groups in the

classes Actinobacteria and Bacteroidia, families Burkholderiaceae,

Flavobacteriaceae, Saccharimonadaceae, and Prevotellaceae, and

genera Capnocytophaga, Saccharimonadaceae, Lautropia,

Prevotella_7, and Prevotella, as depicted in Figures 8, 9.

The functional genes present in the samples were examined

using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database. Through differential analysis of the KEGG metabolic

pathways, we can understand the differences in the functional

genes of the microbial communities among different group

samples in terms of metabolic pathways, as well as the extent of

these variations (Figure 10).
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The microbial communities in Group B displayed significant

differences in their polysaccharide biosynthesis, metabolism, and

transport when compared to those in Group C. In the case of Group

AT, we observed noteworthy distinctions in the metabolism of

various amino acids in comparison to Group C. From a microbial

functional metabolism standpoint, the effects on the immune

system, cardiovascular health, viral infections, and endocrine/

metabolic disorders varied between Group AT and Group B.

COGs, or Clusters of Orthologous Groups of proteins,

constitute a bioinformatics resource that groups proteins from

complete genomes into categories based on orthologous

relationships, suggesting a common ancestral gene. We utilized

this database to classify and compare the protein profiles of Group

AT and Group B, as illustrated in Figure 11.
FIGURE 5

Principal components analysis using the weighted UniFrac beta-diversity metric. The ellipses denote the 95% confidence intervals, providing a visual
summary of each group’s spread and indicating the variability within the groups.
A B

FIGURE 6

Heat map displaying correlations among 48 subjects. In the heatmap, color intensity indicates the magnitude of the correlation, with red
representing positive correlations and blue indicating negative correlations. (A) Weighted unifrac. (B) Bray-Curtis.
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This figure allows for the assessment of the comparative

abundance of functional protein categories between experimental

conditions, highlighting areas of significant divergence that may

warrant further investigation.
Discussion

The composition of the oral microbiome is generally stable

under normal conditions. However, microbiome dysbiosis,

characterized by a disruption to the stability of the symbiotic

microbiota, can adversely affect the host’s health status (Duran-

Pinedo et al., 2021). Changes in the oral microbial environment are

intimately linked to the onset and progression of periodontal

diseases and caries. Existing research indicates that the use of

orthodontic appliances could modify the oral cavity’s status and

influence the colonization of oral biofilm by opportunistic/

pathogenic strains (Perkowski et al., 2019).

The oral cavity is the entry point to the digestive tract. As such, the

oral microbiome can impact the overall health and composition of the

gastrointestinal (GI) microbiome (Kitamoto et al., 2020).

Microorganisms present in the mouth can be swallowed and

integrated into the gut microbiome. Both the oral and digestive tract

microbiomes are complex ecosystems, composed of bacteria, viruses,

fungi, and other microorganisms. However, the specific composition and

diversity vary between these two sites (Kitamoto et al., 2020). The oral

microbiome is exposed to different environmental factors (like food,

oxygen levels, and oral hygiene practices) compared to the gut

microbiome, which is influenced by factors like diet, medication, and

intestinal conditions. Changes in the oral microbiome can have

repercussions on the gut microbiome and vice versa. The oral and

digestive tract microbiomes are deeply interconnected, with implications

for overall health, disease, and potential therapeutic strategies.

Full-length 16S sequencing offers advantages such as longer read

lengths and more expansive amplification regions, enhancing the

comprehensiveness of the analysis (Hong et al., 2024). This approach

allows for a more precise species classification and a broader scope of

species annotation compared to traditional 16S sequencing methods

used in second-generation platforms. In this study, third-generation
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sequencing technology was utilized to achieve full-length sequencing.

To reduce potential biases due to variations in sex hormone levels, the

study exclusively included adult female subjects.

It has been shown that the salivary and teeth surface microbiota

of patients with invisible braces undergo changes 12 hours post-

application of clear aligners (Yan et al., 2021). Saliva and dental

plaques are primary sample sources reflecting the oral microbial

community. Dental plaque provides a more accurate representation

of the bacteria that adhere to tooth surfaces and contribute to dental

caries and periodontitis (Campobasso et al., 2021). Studying bacteria

within this biofilm environment is crucial for understanding their

behavior, and interactions, which differs significantly from their

planktonic (free-floating) counterparts in saliva (Jakubovics, 2015).

Owing to the difficulty in accessing dental plaques, only a limited

number of studies have employed them as sources of samples. Our

study used supragingival dental plaque and found an average of 6978

ASVs per patient. We characterized the microbiomes of Groups B

and AT patients and compared them to those of orally healthy

controls (Group C).

Firmicutes, Planctomycetota, Bacteroidota, and Cyanobacteria

emerged as dominant bacteria across the three groups. Firmicutes

are involved in the initial colonization of the tooth surface and the

formation of dental plaque. Some species, like Streptococcus mutans

produce acids from carbohydrate fermentation, contributing to tooth

decay (Homayouni Rad et al., 2023). As a key etiological agent of

human dental caries, Streptococcus mutans primarily resides in dental

plaque (Wang et al., 2019). They have a remarkable ability to

metabolize fermentable carbohydrates, especially sucrose, to

produce lactic acid, which lowers the pH in the mouth and leads to

the demineralization of the tooth enamel (Abranches et al., 2018).

For alpha diversity index, Figure 3 collectively suggest that there

are differences in microbial diversity associated with the different

orthodontic treatments, as indicated by several biodiversity indices.

The Group AT consistently shows lower diversity compared to the

Group C, and there are noticeable differences between the Group

AT and B groups. Clear aligners, made from thermoplastic material,

are removable and fit over the teeth. The thermoplastic material

itself may influence the oral environment differently than

traditional braces, affecting bacterial growth.
FIGURE 7

Specific taxa associated with orthodontic treatment. Linear discriminant analysis (LDA) effect size analysis of the three groups. Cladogram using
LEfSe method indicating the distribution of microbes.
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The PCA plots function as a means to visualize complex

microbial data and simplify the comparison of microbial

communities across various treatment groups. In Figure 5, the

ellipses that overlap indicate a similarity between the microbial

communities in Group AT and Group B. Moreover, the beta

diversity—which indicates variation in microbial community

structure—reveals no significant differences between Group C and
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Group B. This may be related to the fact that invisible braces fully

envelop the tooth surface. In contrast, the tooth surfaces in the fixed

orthodontic group are exposed to the oral environment.

We found the presence of orthodontic brackets can create unique

niches and environmental conditions in the oral cavity.

The environments where dental plaque forms are different; there is

plaque accumulation beneath bracket slot, brackets, and under
A B

C D

E F

G H

I J

FIGURE 8

Depiction of varied microbial clade abundance in different groups: (A) Actinobacteria, (B) Bacteroidia, (C) Burkholderiacese, (D) Flavobacteriaceae.
(E) Prevotellaceae, (F) Saccharimonadaceae, (G) Capnocytophaga, (H) Lautropia, (I) Prevotella_7, (J) Prevotella..
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archwires. According to our research findings, fixed orthodontics

may create a more anaerobic environment on the enamel surface.

Fixed orthodontic appliances pose challenges to oral hygiene

and may temporarily impact periodontal health (Azaripour et al.,

2015). Research indicates increased microbial diversity in patients

with fixed orthodontics compared to normal individuals (Sun

et al., 2018).These conditions may favor certain bacterial species

or alter bacterial behavior. A meta-analysis suggests that patients

treated with Invisalign® exhibit better periodontal health than

those with traditional fixed appliances (Lu et al., 2018). Previous

studies have highlighted that Invisalign® aligner margins are

typically designed below the marginal gingiva, and their smooth

surface, coupled with a maximum usage duration of 14 days per

aligner, results in significantly less biofilm accumulation

compared to traditional fixed orthodontic and removable

appliances (Zhao et al., 2020).

In Group B, there was a significant reduction in Actinobacteriota

compared to Groups AT and C. Actinobacteriota, formerly known as

Actinobacteria, is a phylum of Gram-positive bacteria. While certain

bacteria within the Actinobacteriota phylum may be present in the

oral cavity, their direct association with dental caries is not as

prominent as that of other bacteria like mutans streptococci (from

the Firmicutes phylum) (Qudeimat et al., 2021). Brackets can make

oral hygiene more challenging, leading to changes in the microbial

community. The reduction in Actinobacteriota might reflect an

imbalance in the oral microbiome due to these changes.

At the family level, higher levels of Flavobacteriaceae,

Prevotellaceae, and Sacchariomonadaceae were observed in Group B.
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Flavobacteriaceae specific role in oral health is less clear. Prevotellaceae

is commonly found in the human oral cavity and gut. They are

anaerobic and are known to play a role in the breakdown of proteins

and carbohydrates. Increased levels of Prevotellaceae in the oral

microbiome are often associated with periodontal disease (Tian et al.,

2021). The alteration in the microbiome composition, particularly the

increase in families associated with periodontal pathogens, underscores

the importance of enhanced oral hygiene practices for patients with

fixed braces. In Group C, because the absence of orthodontic

appliances, the natural balance of the oral microbiome, including

Actinobacteriota, is expected to be maintained.

Within Group AT, elevated levels of the family Burkholderiaceae

were observed. Burkholderiaceae is not commonly associated with the

oral cavity (Kerber-Diaz et al., 2022). However, advancements in

microbial sequencing have started to reveal a more diverse array of

bacteria in dental plaque than previously recognized. Their presence

in dental plaque might also indicate a broader diversity in the oral

microbiome than traditionally understood. Insights into lesser-

known bacterial families in the oral cavity could lead to the

development of targeted therapeutic strategies for managing

oral health.

Longitudinal studies have identified biofilm maturation and caries

lesion progression with an increase in Gram-negative anaerobes,

including Veillonella and Prevotella (da Costa Rosa et al., 2021). Our

observation that higher levels of Prevotella and Prevotella_7 were

observed at the genus level in Group B suggests a significant shift in

the oral microbial community among those wearing fixed orthodontic

appliances. These changes in the oral environment can create
A B

C D

FIGURE 9

Comparative Analysis of Microbial Characteristics Across Three Groups. (A) the relative abundance of microbial categories. (B–D) plots depicting the
relative abundance of aerobic, anaerobic, and facultatively anaerobic bacteria across the three groups.
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conditions that favor the growth of Prevotella species, as they thrive in

anaerobic conditions and can utilize the nutrients available in the

accumulated dental plaque. An increase in Prevotella levels might

indicate a higher risk of periodontal disease or caries development

(Sharma et al., 2022), making it important for individuals with fixed

braces tomaintain rigorous oral hygiene and have regular dental check-

ups. Streptococcus, Lactobacillales, and Neisseria cinerea were also

noted. This aligns with another study that found Neisseria mucosa

had higher levels at sites with orthodontic bands either at (OBM) or

below the gingival margin (OBSM) (Kim et al., 2010). The significant

increase in Lautropia in Group AT suggests that the use of the clear
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aligners creates an oral environment that favors the growth or

proliferation of Lautropia. While Lautropia is not typically associated

with oral diseases (Keijser et al., 2018), its increased prevalence could

indicate changes in the oral ecosystem that might have implications for

oral health, although these would likely be benign. Saccharimonadaceae

falls within the realm of bacterial taxonomy. It’s part of a more

extensive classification that includes various bacteria with differing

characteristics and roles. While some families like Streptococcaceae and

Actinobacteriota are well-known for their roles in oral health and

disease, the role of Saccharimonadaceae in dental plaque might be less

clear (Tian et al., 2022). The next-generation sequencing allowed us to
A

B

C

FIGURE 10

KEGG analysis results for the three groups (A) Group AT compared with Group C. (B) Group B compared with Group C. (C) Group AT compared
with Group B.
FIGURE 11

Cluster of Orthologus Groups of proteins (COG).
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uncover of this previously underexplored microbial resident in the

supragingival plaque. Its role in oral health still needs to be

further explored.

Changes in polysaccharide biosynthesis, metabolism, and transport

suggest a shift in how bacteria process and utilize carbohydrates. This

could be due to altered food retention around the brackets, changes in

saliva flow, or variations in the oral microbiome composition.

Microecological alterations in the oral environment can lead to

detrimental changes in the composition or metabolic activity of the

oral microbiome (Nascimento et al., 2019). The specific mention of

differences in amino acid metabolism indicates that the bacteria

present in Group AT might be processing amino acids differently

compared to the normal oral microbiome. This could be due to

changes in pH, oxygen levels, or nutrient availability caused by

the aligners.

The oral microbiome can modulate the immune response (Hou

et al., 2022). A balanced microbiome supports immune function,

while dysbiosis (microbial imbalance) can trigger inflammatory

responses, potentially leading to systemic effects. Research has

suggested connections between oral health and cardiovascular

diseases (Carasol et al., 2023). For example, periodontal disease has

been associated with an increased risk of heart disease (Priyamvara

et al., 2020). The oral microbiome can influence the body’s resistance

to or susceptibility to viral infections. A healthy microbiome can act

as a barrier to infection, while an imbalanced one might increase

vulnerability (Di Stefano et al., 2022). It highlights the need for a

holistic approach in orthodontics, considering not just dental

outcomes but also broader health implications.

These findings highlight the need to understand how

orthodontic treatments influence the oral microbial ecosystem.

This knowledge can guide dental professionals in recommending

appropriate oral hygiene practices for patients with braces or

aligners. It also contributes to the development of materials and

designs that minimize adverse effects on the oral microbiome.

A notable limitation of this study is its sole focus on adult

female patients. This specific demographic inclusion restricts the

applicability of the results to a more diverse patient population,

potentially affecting the generalizability of the findings.
Limitation

One notable limitation of our study is the exclusion of male

subjects, potentially impacting the generalizability of our findings.
Conclusion

The observation points to the impact of orthodontic appliance on

the oral microbial community, highlighting the difference between

traditional braces (Group B) and clear aligners (Group AT) in terms

of the predominance of anaerobic and gram negative bacteria. This

emphasizes the importance of considering the microbiological effects

when choosing orthodontic appliance and underscores the need for

tailored oral hygiene practices for individuals undergoing these

treatments. This research might provide insights that could assist in
Frontiers in Cellular and Infection Microbiology 11147
the development of innovative cleaning techniques and

antibacterial materials.
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Traditional Chinese herbal
formulas modulate gut
microbiome and improve
insomnia in patients with distinct
syndrome types: insights from an
interventional clinical study
Huimei Zeng1†, Jia Xu2†, Liming Zheng1, Zhi Zhan1, Zenan Fang1,
Yunxi Li1, Chunyi Zhao3, Rong Xiao4, Zhuanfang Zheng5,
Yan Li1* and Lingling Yang1*

1Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese
Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine,
Guangzhou, China, 2Singapore Institute for Clinical Sciences, Agency for Science, Technology and
Research, Singapore, Singapore, 3The Second Clinical Medical College, Guangzhou University of
Traditional Chinese Medicine, Guangzhou, China, 4Department of Rehabilitation, The Eighth People’s
Hospital of Hefei, Hefei, China, 5Teaching and research Center, Guangdong Provincial Trade Union
Cadre School, Guangzhou, China
Background: Traditional Chinese medicine (TCM) comprising herbal formulas

has been used for millennia to treat various diseases, such as insomnia, based on

distinct syndrome types. Although TCM has been proposed to be effective in

insomnia through gut microbiota modulation in animal models, human studies

remain limited. Therefore, this study employs machine learning and integrative

network techniques to elucidate the role of the gut microbiome in the efficacies

of two TCM formulas — center-supplementing and qi-boosting decoction

(CSQBD) and spleen-tonifying and yin heat-clearing decoction (STYHCD) — in

treating insomnia patients diagnosed with spleen qi deficiency and spleen qi

deficiency with stomach heat.

Methods: Sixty-three insomnia patients with these two specific TCM syndromes

were enrolled and treated with CSQBD or STYHCD for 4 weeks. Sleep quality was

assessed using the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity

Index (ISI) every 2 weeks. In addition, variations in gut microbiota were evaluated

through 16S rRNA gene sequencing. Stress and inflammatory markers were

measured pre- and post-treatment.

Results: At baseline, patients exhibiting only spleen qi deficiency showed slightly

lesser severe insomnia, lower IFN-a levels, and higher cortisol levels than those

with spleen qi deficiency with stomach heat. Both TCM syndromes displayed

distinct gut microbiome profiles despite baseline adjustment of PSQI, ISI, and

IFN-a scores. The nested stratified 10-fold cross-validated random forest

classifier showed that patients with spleen qi deficiency had a higher

abundance of Bifidobacterium longum than those with spleen qi deficiency

with stomach heat, negatively associated with plasma IFN-a concentration. Both

CSQBD and STYHCD treatments significantly improved sleep quality within 2
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sequence variants.
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weeks, which lasted throughout the study. Moreover, the gut microbiome and

inflammatory markers were significantly altered post-treatment. The longitudinal

integrative network analysis revealed interconnections between sleep quality, gut

microbes, such as Phascolarctobacterium and Ruminococcaceae, and

inflammatory markers.

Conclusion: This study reveals distinct microbiome profiles associated with

different TCM syndrome types and underscores the link between the gut

microbiome and efficacies of Chinese herbal formulas in improving insomnia.

These findings deepen our understanding of the gut-brain axis in relation to

insomnia and pave the way for precision treatment approaches leveraging TCM

herbal remedies.
KEYWORDS

insomnia, traditional Chinesemedicine syndrome, herbal formula, gut microbiome, gut-
brain axis, longitudinal integrative network
1 Introduction

Insomnia, a condition marked by dissatisfaction with sleep

duration, continuity, and quality, is characterized by persistent

difficulties in falling asleep or maintaining sleep, coupled with

daytime functional impairment (Perlis et al., 2022). As the most

common sleep disorder, insomnia is highly prevalent, affecting

approximately 30%–50% of the general population (Brownlow

et al., 2020). Often present independently or co-occurring with

other medical conditions, such as cardiometabolic diseases, or

mental health disorders, such as depression or anxiety, insomnia

poses a significant risk of the development and exacerbation of these

conditions if left untreated (Perlis et al., 2022).

The first-line recommended treatment for insomnia is cognitive

behavioral therapy for insomnia, but access to this therapy is often

limited due to high costs and variable response rates (Wilson et al.,

2010). As a second-line treatment, pharmacotherapy, particularly

hypnotics, is frequently prescribed (Madari et al., 2021; Sutton,

2021; Perlis et al., 2022). Despite their relative safety for long-term

use, the long-term adverse effects and varying efficacy of hypnotic

medications remain a concern (Yue et al., 2023). There is no global

consensus on the most effective pharmacological treatment with the

best risk-benefit ratio (Perlis et al., 2022). This complexity

underscores the necessity to explore different nonpharmacologic

and pharmacologic treatments, especially with the emergence of

more effective interventions (Yue et al., 2023).

Current understanding of the neurobiological mechanisms

underlying insomnia is still evolving. The central system, which
qi-boosting decoction;

tion; PSQI, Pittsburgh

dex; ASV, amplicon

02150
controls the sleep-wake cycle, is influenced by signals from

peripheral tissues. Recent research has revealed reciprocal

connections between the central nervous system, sleep, and the

immune system. This relationship implies that while sleep bolsters

immune defenses, afferent signals from immune cells also promote

sleep. The homeostatic regulation of sleep is influenced by cytokine

responses, neuroendocrine and autonomic pathways, and

inflammatory peptides, collectively forging a link between sleep

and the immune system (Irwin, 2019; Garbarino et al., 2021).

Additionally, emerging studies suggest that the microbiota-gut-

brain axis plays a regulatory role in sleep behavior, highlighting

its potential significance in understanding sleep disorders (Wang

et al., 2022). Notably, sleep deprivation can negatively affect gut

microbiome function, and alterations in gut microbiota have been

observed in sleep disorders (Feng et al., 2023).

Traditional Chinese medicine (TCM) has been used to treat

insomnia for over 2000 years, and it continues to gain attention in

modern medical practices (Liu et al., 2017). Historical medical

books and recent studies have confirmed the efficacy of various

TCM formulas and herbs in enhancing sleep (Singh and Zhao,

2017b). TCM treatments are customized based on individual

pattern diagnosis or syndrome differentiation, which involves

analyzing an individual’s symptoms, signs, pulse form, and

tongue appearance. Given the diversity of symptoms and signs,

multiple TCM pattern diagnoses can exist for the same disease,

leading to varied treatment approaches (World Health

Organization, 2007). There are different TCM prescriptions for

different TCM syndrome types for insomnia (Yeung et al., 2012).

Spleen qi deficiency syndrome, including spleen qi deficiency and

spleen qi deficiency with heat stagnation, is a prevalent TCM

syndrome type in insomnia cases (Singh and Zhao, 2017a).

Previous studies have highlighted a significant correlation

between spleen inadequacy and imbalances in gut microbiota
frontiersin.org
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(Qiu et al., 2017; Lin et al., 2018). Recent evidence in animal models

suggests that TCM can improve sleep quality by regulating gut

microbiota (Si et al., 2022a, Si et al., 2022b).

The center-supplementing and qi-boosting decoction (CSQBD)

and spleen-tonifying and yin heat-clearing decoction (STYHCD)

are two classic TCM formulas recorded in the “Treatise on Spleen

and Stomach” by Li Gao of the Jin dynasty (1115–1234). They have

been traditionally used to address the imbalances of qi and yin that

are often observed in sleep disorders according to TCM principles.

Specifically, CSQBD is used to treat spleen qi deficiency, whereas

STYHCD addresses spleen qi deficiency with heat stagnation.

However, a critical research gap persists, especially in human

studies, regarding the association of different spleen qi deficiency

syndrome types with distinct gut microbiome profiles. Moreover,

the gut microbiome-modulating efficacy of various herbal formulas

to treat different TCM syndrome types in insomnia remains

largely unexplored.

In addressing the identified research gap, this study endeavors

to elucidate the relationship between different TCM syndrome types

and their specific gut microbiome profiles in the context of

insomnia through a clinical trial. Additionally, it aims to evaluate

the role of the gut microbiome in the treatment of insomnia among

patients classified by specific TCM syndromes, utilizing two

targeted herbal formulas CSQBD and STYHCD. These

investigations aim to deepen our understanding of the interplay

between the therapeutic efficacy of TCM for insomnia and the

microbiota-gut-brain axis, which could provide novel insights to

refine the precision of therapeutic interventions for insomnia.
2 Materials and methods

2.1 Study design

This is a two-arm interventional trial involved 63 patients with

insomnia. Patients were recruited and divided into two groups

based on their TCM syndromes: 28 patients with spleen qi

deficiency-associated insomnia received the CSQBD and 35

patients with spleen qi deficiency and stomach heat-associated

insomnia were treated with the STYHCD. This study adhered to

the principles of the declaration of Helsinki and received approval

from the ethics committee of Guangdong Provincial Hospital of

Chinese Medicine (ChiCTR-INR-1701110).

Exclusion criteria for the study included individuals with

Diabetes mellitus, hypertension, cardiovascular diseases (based on

clinical history), those on sleep medications, or those who had used

antibiotics in the 6 months preceding the study. Additionally,

patients whose insomnia was attributed to mental disorders,

physical disorders, or medication use were also excluded from

the analysis.

The herbal formulas of STYHCD and CSQBD are

demonstrated in Supplementary Tables S1 and S2. They were

processed into decocting-free granules according to a standard

production process (Supplementary Materials) and administered

orally with hot water — two bags/dose, twice a day. Both formulas
Frontiers in Cellular and Infection Microbiology 03151
were supervised by Guangdong Provincial Hospital of Chinese

Medicine and produced by Jiangyin Tianjiang Pharmaceutical

Co., Ltd., ensuring quality control. The major chemical

components of these formulas were identified using high

performance liquid chromatography-mass spectrometry, with

detai ls provided in the Supplementary Methods and

Supplementary Figures S1 and S2.

Fecal samples (>500 mg each) were collected at 0, 2, and 4 weeks

post-interventions using microlution (Dayun Gene Technology,

Shenzhen, China) stool collection tubes containing stool DNA

stabilizer. All samples were processed within the temperature

range and timeframe suggested by the manufacturer’s instruction.

Samples were stored at −80°C for subsequent gut microbiome

analysis. Plasma samples were collected at the baseline (week 0)

and at the end (week 4) of the study to assess stress, inflammatory,

and anti-inflammatory makers by ELISA.
2.2 Sleep quality assessment

To evaluate the sleep quality of patients, we employed two well-

established measurement methods: the Pittsburgh Sleep Quality

Index (PSQI) and Insomnia Severity Index (ISI). The total global

PSQI score, which ranges from 0 to 21, is used to quantify sleep

quality, with a score >7 indicating poor sleep quality (Buysse et al.,

1989). It is a comprehensive assessment that measures seven

dimensions of sleep: subjective sleep quality (good or poor), sleep

latency (≤15 to >60 min), sleep duration (≥7 to <5 h), sleep

efficiency (≥85% to <65% h sleep/h in bed), sleep disturbances

(any kind of sleep disturbance ≥1 time/week), and use of sleeping

medications (use of sleep medication ≥1 time/week). The ISI was

used to assess the severity of both nighttime and daytime insomnia

(Morin et al., 2011). The efficacy of the herbal formulas in treating

insomnia was evaluated by comparing these scores before 2 and

after 4 weeks of the treatment.
2.3 Fecal DNA extraction and 16S rRNA
gene sequencing

The genomic DNA samples of the gut microbiota were

extracted using the DNeasy PowerSoil Kit (QIAGEN Inc.,

Netherlands). The amplification of the V3-V4 region of the 16S

rRNA gene was carried out using the 341F forward primer (5’-

CCTACGGGNGGCWGCAG-3’) and the 806R reverse primer (5’-

GGACTACHVGGGTATCTAAT-3’) with minor modifications

(Tong et al., 2018). The purification of PCR amplicons was

carried out using Agencourt AMPure beads (Beckman Coulter,

Indianapolis, IN), and the quantification of the PCR amplicons was

performed using the PicoGreen dsDNA assay kit (Invitrogen,

Carlsbad, CA, USA). Subsequently, the quantified amplicons were

pooled in equal amounts. Paired-end sequencing of 2×250 bp was

conducted using the Illumina MiSeq platform and the MiSeq

reagent kit v3 (Illumina, San Diego, CA, USA) at Shanghai

Personal Biotechnology Co., Ltd.
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2.4 Microbiome data processing
and bioinformatics

Most of enrolled patients provided fecal samples at all the three

time points, resulting in a total of 136 fecal samples for gut microbiome

analysis. Among these, the CSQBD group contributed 26, 26, and 22

samples at 0, 2, and 4 weeks, respectively, whereas the STYHCD group

contributed 21, 20, and 21 samples at 0, 2, and 4 weeks, respectively.

The initial raw sequencing data was processed using QIIME2 (v2023.2)

(Bolyen et al., 2019; Chen et al., 2020; Xu et al., 2020). The amplicon

sequence variants (ASV) were obtained with the DADA2 plugin

(Friedman and Alm, 2012). The taxonomic classification of all ASV

representative sequences was performed using a Naive Bayes classifier

trained on the V3-V4 region of the 16S rRNA gene with the SILVA

database v138.1 (Quast et al., 2013; Robeson et al., 2021). The

phylogenetic tree was constructed using the SEPP method within the

fragment-insertion plugin (Matsen et al., 2010; Eddy, 2011; Matsen

et al., 2012; Janssen et al., 2018). Following rigorous data processing

and quality control procedures, 6,540,042 high-quality reads were

retained, averaging 48,089 ± 7,669 reads/sample. A total of 891

features were subsequently utilized for downstream analysis. To

mitigate discrepancies in varying sequencing depths among the

samples, the ASV abundance table was rarefied to the same

sequencing depth of 33,000 for downstream analysis. The diversity

plugin in QIIME2 was used for the generation of alpha-diversity

indices, beta-diversity distance matrices, and ordination matrices

through the core-metrics-phylogenetic method. The differential gut

microbiome resulting from both herbal formulas over time was

identified by using random forest regressor with q2-sample-classifier

(Bokulich et al., 2018) — a nested stratified 10-fold cross-validation

approach with 500 decision trees. The seed used by random number

generator was 123.
2.5 Statistical analysis

The demographics and baseline characteristics between the two

treatment groups were compared using the Mann-Whitney U test for

continuous variables and chi-square test for categorical variables. A

linear mixed model was applied to assess the longitudinal changes in

PSQI, ISI, inflammatory markers, differential microbes, and alpha-

diversity indices in both treatment groups. The subject ID was

included as a random effect, whereas time was considered as a

fixed effect. This analysis was conducted in R (version 4.3.0) using

the lmerTest package (Kuznetsova et al., 2017). To compare the

longitudinal effects of the two herbal formulas, the samemethodology

was applied. The interaction between time and treatment was

included as the fixed effect to investigate potential differences in

treatment responses. Prior to analysis, all data underwent log10

transformation. To explore the longitudinal association between

PSQI, ISI, stress or inflammatory markers, and microbes, we used

the rmcorr package in R (version 4.3.0) (Bakdash and Marusich,

2017). The association between alpha-diversity indices/microbial

species and drug treatments was recognized with MaAsLin2

(Mallick et al., 2021). The Adonis test was performed with the

vegan package in R. Additionally, to address multiple comparisons,
Frontiers in Cellular and Infection Microbiology 04152
the Benjamini-Hochberg method was used to correct p-values. To

visualize associated networks, Cytoscape v3.9.1 was used,

constructing an informative representation of interrelationships

revealed by the data.
3 Results

3.1 Insomnia patients with different TCM
syndromes harbored different gut
microbiome profiles

Of the 63 insomnia patients, 47 patients completed the 4-week

treatment period and were included in the data analysis (Figure 1).

Demographic and baseline characteristics indicated slightly more

severe insomnia in patients with spleen qi deficiency and stomach

heat than in patients with only spleen qi deficiency, as indicated by

PSQI and ISI scores. However, this difference became statistically

insignificant after adjusting for multiple comparisons (Table 1).

Patients with spleen qi deficiency and stomach heat syndrome

exhibited significantly higher INF-a levels at the baseline than

patients with only spleen qi deficiency. Rest of the demographic

and baseline characteristics were comparable between the two

treatment groups at the baseline.

Regardless of minor differences in the insomnia levels, striking

differences in gut microbiome profiles of patients with the two TCM

syndromes (P.adj = 0.001, Figure 2A) were observed. This finding

was based on the Unweighted UniFrac distance and adjusted for

baseline differences in PSQI, ISI, and IFN-a scores using the Adonis

test. Besides, patients with only spleen qi deficiency exhibited

greater microbial diversity and evenness than patients with spleen

qi deficiency and stomach heat (Supplementary Table S3). These

findings suggest a correlation between specific TCM syndrome

types in insomnia and gut microbiota profiles.

By using random forest classifier, we identified 22 differential

microbial species in insomnia patients with different TCM

syndromes (Figure 2B). The classification accuracy was 97.8%.
FIGURE 1

Clinical interventional trial flow diagram. STYHCD, spleen-tonifying
and yin heat-clearing decoction; CSQBD, center-supplementing and
qi-boosting decoction.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1395267
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fcimb.2024.1395267
Of these 22 ASVs, 11 species, including Bifidobacterium longum,

Bacteroides coprocola, 2 ASVs of Bifidobacterium, 3 ASVs of

Veillonella, and 1 ASV of Prevotella, were more abundant in the

patients with only spleen qi deficiency than in patients with spleen qi

deficiency and stomach heat. Conversely, 11 variants, including 4 ASVs

from the Lachnospiraceae family, 1 ASV of Eubacterium ruminantium,

Clostridium butyricum, Bacteroides fragilis, Succinivibrio, Roseburia,

Bacteroides plebeius, were less abundant in these patients’ gut than in

the gut of patients with spleen qi deficiency and stomach heat. A higher

abundance of Bifidobacterium longum was significantly correlated with

lower baseline levels of INF-a in patients with only spleen qi deficiency

(FDR_BH < 0.01, Figure 2B). Additionally, the high abundance of

other species, such as ASV351-Bifidobacterium, ASV32-Bacteroides

coprocola, and ASV24-Megamonas, and the rarity of ASV723-

Lachnospiraceae family, ASV96-Eubacterium ruminantium group,

ASV41-Bacteroides fragilis, and ASV76-Succinivibrio, showed

significant positive correlations with INF-a levels (FDR_BH <

0.05, Figure 2B).
3.2 Insomnia improvement with herbal
formula interventions

Following 4 weeks of treatment, both herbal formulas

significantly improved PSQI and ISI scores (Figures 3A, B),
Frontiers in Cellular and Infection Microbiology 05153
suggesting consistent longitudinal alleviation of insomnia

symptoms. Notably, this improvement was already significant

after 2 weeks of treatment and sustained through 4 weeks

(Figure 3C). However, the effect sizes of both treatments were

more substantial between week 2 and 0 than between week 4 and 0.

This pattern may stem from treatment compliance and patient

adaptation. Besides, no significant differences in insomnia

improvement were observed between the two treatments over

time (Figure 3B).

Apart from insomnia measurements, we evaluated the effects of

herbal formula interventions on stress and systematic inflammation.

At the baseline, insomnia patients exhibiting only spleen qi deficiency

displayed elevated cortisol levels— an indication of heightened stress.

This elevation, though initially significant, became statistically

insignificant after adjustments for multiple comparisons (Table 1).

However, CSQBD administration reduced plasma cortisol levels,

suggesting its efficacy in mitigating stress in the affected patients.

Additionally, after 4-week CSQBD treatment, a marked increase in

the levels of anti-inflammatory marker IL-10 along with a reduction

in IFN-a levels was observed (Table S4). These findings collectively

indicate CSQBD’s potential anti-inflammatory and anti-stress effects.

Conversely, patients with combined spleen qi deficiency and

stomach heat exhibited significantly higher IFN-a levels than

patients with only spleen qi deficiency — a trend that persisted

even after FDR correction for multiple tests (Table 1). This pattern
TABLE 1 Study demographics and baseline characteristics.

Variable STYHCD
(N = 26)

CSQBD
(N = 21)

p-valuea FDR_BHb

Age (year) 36.0 ± 11.3 41.7 ± 11.6 0.1768 0.3789

Gender (N) Female 18 15 1 1

Male 8 6

Education (N) Below university 12 10 1 1

University 14 11

Systolic blood pressure (mmHg) 114.3 ± 13.7 114.5 ± 11.5 0.9896 1

Diastolic blood pressure (mmHg) 70.4 ± 8.2 70.9 ± 7.2 0.6945 0.9470

Heart rate (BPM) 71.9 ± 12.6 76.7 ± 9.7 0.1358 0.3563

PSQI score 13.6 ± 2.4 12.4 ± 2.6 0.0884 0.3315

ISI score 20.6 ± 4.0 17.6 ± 4.8 0.0328 0.2420

Cortisol (ng/mL) 19.3 ± 12.2 29.0 ± 19.7 0.0484 0.2420

IL-1b (pg/mL) 158.3 ± 66.6 185.4 ± 205.9 0.1425 0.3563

IL-6 (pg/mL) 57.2 ± 56.5 50.8 ± 17.4 0.2567 0.4345

TNF-a (pg/mL) 56.7 ± 29.7 65.4 ± 78.9 0.2607 0.4345

TNF-b (pg/mL) 26.5 ± 44.1 41.5 ± 67.3 0.9429 1

IFN-a (pg/mL) 93.0 ± 87.4 36.4 ± 50.2 0.0003 0.0045

IL-10 (pg/mL) 22.1 ± 19.9 14.3 ± 6.8 0.3748 0.5622
The table displayed the number of subjects for each categorical variable — gender and education. The rest of the variables were shown as the mean ± standard deviation.
STYHCD, spleen-tonifying and yin heat-clearing decoction; CSQBD, center-supplementing and qi-boosting decoction.
a p-values were obtained with Mann-Whitney U test for continuous variables and chi-square test for categorical variables.
bFDR_BH, FDR-corrected p-values were obtained using Benjamini-Hochberg method for adjusting multiple comparisons.
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underscores a more pronounced inflammatory state in these

patients. Four-week STYHCD treatment in these patients resulted

in a significant increase in the levels of IL-10. Conversely, the levels

of inflammatory markers IL-1b and IL-6 and TNF-a also increased

significantly (Table S4), presenting a complex interplay of

inflammatory responses post-treatment of STYHCD.
3.3 Impact of herbal formula interventions
on gut microbiome

As indicated by unweighted UniFrac PCoA, both CSQBD and

STYHCD treatments significantly changed gut microbiome profiles

over the intervention period (Figure 4). Similar findings were
Frontiers in Cellular and Infection Microbiology 06154
observed using PCoA of other distance metrics, including Jaccard

and Bray-Curtis (Supplementary Figure S3). However, no

significant longitudinal effects were detected within each

treatment group or between the two treatments in terms of alpha-

diversity measures, such as Shannon entropy, Pielou’s evenness, and

Faith’s phylogenetic diversity (Supplementary Table S5).
3.4 Key gut microbial species altered by
herbal formulas

Utilizing a nested stratified 10-fold cross-validated random

forest regressor, we identified key gut microbial features impacted

by each herbal formula treatment over time. Based on the ranking of
B

A

FIGURE 2

Baseline gut microbial profiles in insomnia patients with different TCM syndromes. (A) Principal coordinate analysis based on unweighted UniFrac
distance. Adjusted P-value (P.adj) was obtained after controlling the baseline scores of PSQI, ISI, and IFN-a using the Adonis test. (B) Heatmap of the
top 22 differential gut microbial species between the two treatment groups at the baseline and their correlations with clinical measurements. The
abundance of each ASV was averaged within each group. Correlation coefficient was obtained with spearman correlation. FDR_BH, FDR-corrected
p-value obtained using the Benjamini-Hochberg method to adjust for multiple comparisons. STYHCD, spleen-tonifying and yin heat-clearing
decoction; CSQBD, center-supplementing and qi-boosting decoction; ASV, amplicon sequence variant.
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the feature importance of these microbes (Supplementary Figure

S4), top 14 and 20 microbial species were identified for further

analysis of STYHCD and CSQBD treatments, respectively. Both

treatments enriched Bacteroides coprophilus (Figure 5).

Among the top 14 microbial species affected by STYHCD

(Figure 5A), the abundance of 5 species, namely, ASV134-
Frontiers in Cellular and Infection Microbiology 07155
Bacteroides coprophilus, ASV783-Phascolarctobacterium, ASV244-

Clostridium butyricum, ASV68-Prevotella copri, and ASV24-

Megamonas, was enhanced. Conversely, the abundance of 9

species, including 5 species of Prevotella, ASV244-Clostridium

butyricum, ASV2-Megamonas, ASV96-Eubacterium ruminantium

group, and ASV655-Bacteroides, was inhibited.
B

C

A

FIGURE 3

Both herbal formula interventions significantly improved insomnia. (A) Changes in PSQI and ISI scores over time following intervention with two
herbal formulas. (B) Longitudinal effects on PSQI and ISI scores between two treatments and within each treatment. (C) Long-term sustainability of
the effectiveness of treatments compared to baseline. FDR_BH, FDR-corrected p-value obtained using the Benjamini-Hochberg method to adjust
for multiple comparisons. The vertical dashed line represents the FDR_BH threshold of 0.05. P-values were determined using linear mixed models.
PSQI, Pittsburgh Sleep Quality Index; ISI, Insomnia Severity Index; STYHCD, spleen-tonifying and yin heat-clearing decoction; CSQBD, center-
supplementing and qi-boosting decoction.
BA

FIGURE 4

Temporal alterations in the gut microbiome of insomnia patients over time after receiving two herbal formula treatments. (A) Principal coordinate
analysis based on Unweighted UniFrac distance. (B) Clustering of gut microbiota based on inter-group distances obtained through MANOVA test
using the initial 31 PCs (explained >80% variation) of unweighted UniFrac PCoA. STYHCD, spleen-tonifying and yin heat-clearing decoction; CSQBD,
center-supplementing and qi-boosting decoction.
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Of the top 20 microbial species influenced by CSQBD (Figure 5B), 8

species, including ASV51-Bacteroides coprophilus, ASV536-Bacteroides,

ASV177-Prevotella, ASV143-Lachnoclostridium, ASV114-Bilophila,

ASV722-Ruminococcaceae family, ASV34-Collinsella, and ASV6-

Phascolarctobacterium, were enriched. In contrast, 12 species, including

ASV167-Megasphaera, ASV356-Enterobacteriaceae family, ASV3-

Faecalibacterium, ASV351-Bifidobacterium, ASV145-Haemophilus,

ASV25-Fusobacterium mortiferum, ASV11-Bacteroides vulgatus, ASV5-

Faecalibacterium, ASV12-Bifidobacterium longum, ASV73-Anaerostipes,

ASV8-Escherichia-Shigella, and ASV36-Ruminococcus gnavus group,

were inhibited.
3.5 Longitudinal integrative networks
between insomnia improvement, gut
microbiome, and systemic inflammation

To explore the comprehensive link between insomnia

improvement, modulation of key gut microbial species, and
Frontiers in Cellular and Infection Microbiology 08156
systemic inflammation induced by the herbal formula treatments,

we performed longitudinal integrative network analysis (Figure 6).

In the patients with spleen qi deficiency and stomach heat

(Figure 6A), PSQI and ISI scores were inversely associated with

plasma IL-10 levels. ASV783-Phascolarctobacterium — enriched by

STYHCD treatment— was negatively associated with PSQI and ISI

scores, whereas ASV655-Bacteroides — inhibited by STYHCD

treatment — showed a positive association with PSQI and ISI

scores. These findings suggest a link between the change in gut

microbiome and improved sleep quality.

In the patients with only spleen qi deficiency (Figure 6B), the stress

marker cortisol and ASV34-Collinsella — both reduced by CSQBD

treatment — showed a positive association with PSQI and ISI scores.

The anti-inflammatorymarker IL-10 along with ASV114-Bilophila and

ASV722-Ruminococcaceae family showed negative correlations with

PSQI and ISI scores. IL-10 was positively associated with both

ASV114-Bilophila and ASV722-Ruminococcaceae family. This

suggests that CSQBD treatment may bolster the immune system —

linked to ASV114-Bilophila and ASV722-Ruminococcaceae family
B

A

FIGURE 5

Key gut microbial species altered by herbal formula treatments over time. (A) Heatmap of the top 14 gut microbial species altered by STYHCD
treatment overtime. (B) Heatmap of the top 20 gut microbial species altered by CSQBD treatment overtime. STYHCD, spleen-tonifying and yin heat-
clearing decoction; CSQBD, center-supplementing and qi-boosting decoction.
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enrichment in the gut — and improve sleep quality in patients with

spleen qi deficiency.
4 Discussion

Contrary to the uniform treatment approach of Western

medicine, TCM tailors therapies to every patient’s unique TCM

syndrome and diagnosis (Huang et al., 2022; Wu et al., 2022). In this

study, we found that distinct TCM syndromes in insomnia patients

were mirrored in their gut microbiome composition. The significant

microbiome variations observed in patients with spleen qi

deficiency and those with spleen qi deficiency coupled with

stomach heat underscore the intricate connection between gut

microbiota and TCM symptomatology. This association was

particularly evident from the differential abundance of specific

microbial species, such as Bifidobacterium longum. This species

showed a notable negative correlation with inflammation markers,
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such as INF-a. Such gut microbiome distinctions in different TCM

syndromes were observed in other conditions, such as intestinal

diseases and metabolic syndromes (Zhang et al., 2019; Wang et al.,

2020; Shang et al., 2022). Our findings further extend the

understanding of insomnia, supporting the biological basis of

TCM syndrome differentiation. This insight allows precise

treatment selection and medication prescriptions, bridging the

TCM theory with precision medicine.

Additionally, our study showed that both CSQBD and

STYHCD treatments significantly improved the sleep quality —

reflected through PSQI and ISI scores. This finding aligns with

TCM’s principle of symptom-based treatment and underscores the

relevance of personalized approaches in modern medical practice

(Janssen et al., 2018; Li et al., 2019). The rapid and sustained

improvements in sleep quality highlight the potential efficacy of

these herbal formulas. The diminishing effectiveness observed from

week 2 to week 4 suggests stabilization in the treatment response—

a pattern observed in other herbal intervention studies (Xu et al.,
B

A

FIGURE 6

Longitudinal networks involved in insomnia improvement, key gut microbial species, and plasma biomarkers. (A) Longitudinal integrative network of
STYHCD. (B) Longitudinal integrative network of CSQBD. STYHCD, spleen-tonifying and yin heat-clearing decoction; CSQBD, center-supplementing
and qi-boosting decoction.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1395267
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zeng et al. 10.3389/fcimb.2024.1395267
2015; Tong et al., 2018). The lack of significant differences between

the two treatments over time suggests a potential universal

mechanism in herbal interventions for insomnia, warranting

further investigation.

This study contributes to the growing body of evidence linking

gut microbiome alterations to sleep improvement, especially within

the context of TCM applications in humans. The significant

microbiome changes observed in patients post-treatment provide

human data supporting the role of the gut-brain axis in sleep

regulation (Sen et al., 2021; Bi et al., 2022; Wang et al., 2022).

Our longitudinal integrative network suggests a potential link

between specific gut microbes, inflammatory responses, and sleep

quality improvement. For example, in insomnia patients with

spleen qi deficiency and stomach heat, STYHCD enriched

ASV783-Phascolarctobacterium, which has been shown to be

reduced in patients with obstructive sleep apnea (Szabo et al.,

2022). Similarly, CSQBD treatment in the patients exhibiting

spleen qi deficiency enriched species, such as ASV114-Bilophila

and ASV722-Ruminococcaceae, associated with stress and

insomnia improvements. The reduction in cortisol levels

following CSQBD treatment underscores its potential in stress

management — a key factor in insomnia (Zhao et al., 2021;

Dressle et al., 2022). Based on our findings, it might be promising

to consider the potential beneficial effects of Phascolarctobacterium

and Ruminococcaceae in the context of insomnia treatment. These

bacteria are known as short-chain fatty acids (SCFAs) producers

(Wu et al., 2017; Xie et al., 2022). SCFAs, particularly propionate,

may influence the gut-brain axis by affecting inflammatory

responses, neurotransmitter synthesis, and perhaps even the

regulation of stress and circadian rhythms — factors closely

linked to the pathophysiology of insomnia (Tahara et al., 2018;

Kimura et al., 2020; Cook et al., 2021; Grüter et al., 2023). These

findings collectively reinforce the role of TCM in utilizing gut

microbiota modulation as a therapeutic pathway for insomnia.

While our study did not directly establish a causative role of the

gut microbiome in the effects of TCM formulas on insomnia, it aligns

with emerging research suggesting the microbiome’s influence on

sleep regulation. Notably, a previous study found that depletion of the

gut microbiota by antibiotics significantly affects sleep/wake behavior,

potentially through disruptions in neurotransmitter balances, such as

serotonin, underscoring the microbiome’s regulatory capacity on

sleep (Ogawa et al., 2020). Additionally, a more recent study

proposes a causal link between specific gut microbiotas and

insomnia via a Mendelian randomized two-way validation method

(Wang et al., 2024). These findings highlight the complexity of the

gut-brain axis and its implications for sleep disorders. Given the

preliminary nature of these insights and the absence of direct

evidence from our study, further investigation into how TCM

formulas interact with the gut microbiome to influence sleep is

crucial. This includes the need for both animal model studies and

clinical trials to elucidate the underlying mechanisms more clearly.

While our study provides valuable insights into precision

medicine for insomnia patients with distinct TCM syndromes, it

is important to acknowledge its limitations. Future research

involving larger clinical trials that include healthy subjects, as well

as placebo and positive drug control groups, would facilitate a more
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comprehensive evaluation of TCM’s efficacy in treating insomnia

and its link with gut microbiome. Additionally, investigating the

molecular mechanisms behind the observed shifts in gut microbiota

and sleep quality could unearth deeper insights into how Chinese

herbal formulas exert their therapeutic effects on insomnia. Such

studies are vital for the seamless integration of traditional herbal

formula treatments into modern clinical practices, enhancing the

precision of insomnia therapy.
5 Conclusion

This study reveals distinct microbiome profiles associated with

different TCM syndromes and underscores the link between the gut

microbiome and efficacy of Chinese herbal formulas in

improving insomnia. These findings not only enrich our

understanding of the gut-brain axis in insomnia but also open

new avenues for personalized and holistic insomnia treatments

using herbal formulas.
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