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Editorial on the Research Topic

Microbiome and machine learning, volume II

Microbiomes play a crucial role in various biological processes, ranging from human

and animal health to the functioning soil and marine ecosystems that support food

production and biodiversity. Understanding how perturbations of these communities can

impact their respective environments is essential for making new scientific discoveries

and developing practical solutions to improve both human wellbeing and the health of

our planet. However, encapsulating the sheer diversity of microbial communities and the

intricate web of interactions they establish with other organisms results in vast and complex

datasets. Traditional statistical methods often fall short in capturing both the nuances and

global summary of these interactions. With its ability to process large datasets and identify

intricate patterns, machine learning (ML) provides a powerful solution. Techniques such

as neural networks and ensemble learning models are particularly well-suited for this task,

enabling researchers to make sense of the multi-layered structures inherent in microbiome

data. Nevertheless, the integration of ML in microbiome research has challenges, including

input data standardization, heterogenous, noisy, and high-dimensional data as well as

interpretability of ML models. Addressing these challenges requires a concerted effort

from biologists, data scientists, and computational experts, fostering a collaborative

environment where knowledge and techniques can be shared and refined. This is a exactly

what we carried out as part of the COST Action ML4Microbiome (CA18131), which is

best summarize by publications in the “Microbiome and Machine Learning” volumes in

Frontiers in Microbiology. This second volume represents a significant step forward in

harnessing the power of artificial intelligence to decode the complex world of microbiomes.

ML4Microbiome key achievements are summarized in D’Elia et al.. In this

article, the authors also underscore the importance of ethical considerations

when deploying machine learning in microbiome research. Ensuring data
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privacy, avoiding biases in algorithmic predictions, and

promoting transparency in model development are essential

to maintaining public trust and maximizing the societal benefits

of these technologies. Papoutsoglou et al. subsequently detailed

the technical complexity of applying ML for microbiome

research. The review identifies and addresses challenges such as

preprocessing, feature selection, predictive modeling, performance

estimation, and model interpretation, finally providing a set

of recommendations on algorithm selection, pipeline creation,

and evaluation to aid in decision-making processes related

to microbiome research. An in-depth exploration of data

preprocessing methods is provided by Ibrahimi et al.. This article

aims to guide both established researchers and those new to the

field in selecting appropriate transformation methods based on

their research questions, objectives, and data characteristics.

To provide researchers with insights into specific ML

resources facilitating microbiome analysis, Marcos-Zambrano et

al. categorized ML tools based on the type of analysis they are

designed for and the ML algorithms they employ. The focus

spans various software tools for feature generation, taxonomic

assignment, clustering, binning, and disease classification.

Kumar et al. emphasize the crucial role of metadata in

interpreting and comparing microbiome datasets and highlight

the need for standardized metadata protocols to fully leverage

the potential of metagenomic data. In this paper microbiome

data are classified into five types based on the methodology used

for their production: shotgun sequencing, amplicon sequencing,

metatranscriptomic sequencing, metabolomic measurements, and

metaproteomic expression analysis. The significance of metadata in

data interpretation and comparison and the challenges in collecting

standardized metadata are thoroughly explored.

In the clinical domain, Chang et al. investigated the diagnostic

classification and predictive power of four different ML methods

for diagnostic screening in myasthenia gravis (MG) using gut

microbiome data. The proposed ML model may serve as

biomarkers for clinical use and can be applied for non-invasive

screening of MG. Zhang et al. present a study that provides

valuable insights into the potential impact of gut microbiota

on carcinoid syndrome (CS). The article investigates the cause-

and-effect relationship between gut microbiota abundance and

carcinoid syndrome (CS) through a bidirectional Mendelian

randomization study. Murovec et al. present a study aimed to

compare microbiome profiles of patients with colorectal cancer

(CRC) and colorectal adenomas (CRA) to healthy participants

using metagenomic data. The methodology involved extensive

analysis using the MetaBakery pipeline, integrating data matrices

like microbial taxonomy, functional genes, enzymatic reactions,

metabolic pathways, and predicted metabolites. By integrating all

layers of information, the study showcased the development of

robust prediagnostic methods for colorectal cancer detection.

To analyze microbiome data in the context of identifying

biomarkers for colorectal cancer (CRC) Novielli et al. centered

their study on leveraging explainable artificial intelligence (XAI).

By employing ML techniques, the researchers aimed to classify

a cohort of control subjects from those with CRC based

on gut microbiota data and demographic information. The

study underscored the potential of gut microbiota data within

an XAI framework for precise CRC classification. Another

study underscoring the importance of combining ML and XAI

approaches is presented by Magarelli et al.. In this study,

the researchers explored the use of ML algorithms, specifically

the Random Forest (RF) classifier, to effectively classify the

geographical origin of PDO Mozzarella di Bufala Campana

based on microbiota data. The results showed that the RF

classifier outperformed other algorithms, achieving high accuracy

in discerning the origin of the samples. The study emphasized the

critical role of microbiota analysis in ensuring the authenticity,

quality, and safety of food products. Another innovative approach

of using XAI is presented by Tangaro et al.. This article outlines

a comprehensive study protocol for understanding the interplay

among human microbiota, volatilome, and disease biomarkers in

Behçet’s disease (BD). The study design involves a three-phase

approach, including a clinical study with control and experimental

groups receiving a soluble fiber-based dietary supplement alongside

standard therapy, followed by data collection and analysis using

gas chromatography, mass spectrometry, and metagenetic analysis

to examine microbiota and volatilome composition. The third

phase introduces XAI to analyze collected data to identify markers

associated with BD, dietary habits and the dietary supplement,

aiming to establish correlations between microbiota, volatilome,

and phenotypic characteristics. The results demonstrate how

the use of XAI algorithms on multi-modal clinical data could

revolutionize disease management.

The importance of practical applications of ML in industries,

particularly in the fields of probiotics and pharmaceuticals is

exemplified in the article by Liu et al., who were able to discriminate

between Bifidobacterium longum subsp. infantis and subsp. longum

by leveraging MALDI-TOF MS and ML techniques. Through the

application of logistic regression, RF, and support vector machine,

the researchers developed classification models to differentiate

between the two subspecies. The RF model emerged as the most

effective. Overall, this study underscores the potential of combining

MALDI-TOF MS and ML for rapid and precise discrimination of

Bifidobacterium subspecies essential for product development and

quality control, paving the way for microbial identification and

classification advancements.

While these comparative method evaluations are indisputably

important, the development of new tools for analyzing

microbiome data is also pivotal for aiding the rapidly evolving

field of microbiome research. Bakir-Gungor et al. present

microBiomeGSM that can identify taxonomic biomarkers from

metagenomic data using a new grouping, scoring and modeling

(GSM) approach. The tool incorporates pre-existing taxonomy

information into a ML model to analyze metagenomic datasets

associated with different diseases. By focusing on specific

taxonomic levels (genus, family, and order), microBiomeGSM

aims to identify their associations with diseases and facilitate

disease diagnosis.

Another article by Ligeti et al. introduces the ProkBERT

model family, a series of genomic language models developed for

microbiome applications. By utilizing the novel Local Context-

Aware tokenization technique, the ProkBERT models exhibit

superior performance in various tasks such as promoter prediction

and phage identification for both supervised and unsupervised
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tasks. Importantly, the study emphasizes the significance of

innovative approaches in leveraging the vast repositories of

raw sequence data and navigating the complexities of labeling

inconsistencies within the microbiology field.

Murovec et al. finally presents the development and utilization

of MetaBakery, an integrated application designed as a framework

for executing the bioBakery workflow on metagenomic sequencing

data. MetaBakery streamlines the processing of paired or unpaired

fastq files, with optional compression, using programs such

as KneadData, MetaPhlAn, HUMAnN, and StrainPhlAn, along

with integrated utilities. It includes MelonnPan for metabolite

prediction and Mothur for calculating microbial alpha diversity.

The development and utilization of MetaBakery provide a versatile

and well-documented tool for microbiome analysis, offering

efficient exploration of changing parameters and input datasets for

various biostatistical and ML approaches.

In conclusion, as we continue to push the boundaries of what

is possible at the intersection of microbiome science and ML,

the potential applications are vast and varied. By bridging these

two dynamic fields, we are paving the way for groundbreaking

discoveries that have the potential to revolutionize science and

improve lives. From enhancing our understanding of microbial

ecology to developing novel diagnostic tools and treatments, the

research showcased in this volume is a testament to the innovative

and interdisciplinary nature of this field.
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Microbiome data predictive analysis within a machine learning (ML) workflow 
presents numerous domain-specific challenges involving preprocessing, feature 
selection, predictive modeling, performance estimation, model interpretation, and 
the extraction of biological information from the results. To assist decision-making, 
we offer a set of recommendations on algorithm selection, pipeline creation and 
evaluation, stemming from the COST Action ML4Microbiome. We  compared 
the suggested approaches on a multi-cohort shotgun metagenomics dataset of 
colorectal cancer patients, focusing on their performance in disease diagnosis 
and biomarker discovery. It is demonstrated that the use of compositional 
transformations and filtering methods as part of data preprocessing does 
not always improve the predictive performance of a model. In contrast, the 
multivariate feature selection, such as the Statistically Equivalent Signatures 
algorithm, was effective in reducing the classification error. When validated on a 
separate test dataset, this algorithm in combination with random forest modeling, 
provided the most accurate performance estimates. Lastly, we  showed how 
linear modeling by logistic regression coupled with visualization techniques such 
as Individual Conditional Expectation (ICE) plots can yield interpretable results 
and offer biological insights. These findings are significant for clinicians and non-
experts alike in translational applications.
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1. Introduction

The microbiome is a highly diverse system that plays a significant 
role in human health. Its composition and function can vary widely 
among individuals, and can be influenced by several factors such as 
host age, lifestyle habits, environmental or nutritional factors. 
Dysbiosis, or an imbalance in the microbiome, has been linked to a 
variety of health conditions (Claesson et al., 2017). For example, the 
gut microbiome is involved in many important physiological 
processes, including digestion, immune function, and metabolism. 
Changes in gut microbiota have been linked to several diseases such 
as inflammatory bowel disease (Glassner et al., 2020), type 2 diabetes 
(Navab-Moghadam et al., 2017), and colorectal cancer (CRC) (Zeller 
et  al., 2014), as well as to mental diseases such as schizophrenia 
through the gut-brain axis (Thirion et al., 2023). Microbiome science 
is now having important implications for drug development and 
personalized medicine (Behrouzi et al., 2019).

The microbiome research community has traditionally relied on 
bioinformatic methods in order to solve important challenges such as 
taxonomic classifications, metagenome assembly and phylogenetic 
binning (Claesson et al., 2017). The use of ML can further support 
clinical applications. The most common ML tasks in microbiome 
research involve disease diagnosis, prognosis or the response to 
treatment (Brouillette, 2023) based on the taxonomic or functional 
composition of samples (Ghannam and Techtmann, 2021). Another 
important task is to predict the response of the microbiome to drug 
treatments, different dietary interventions or environmental exposures 
based on its composition (Thirion et al., 2022). Moreover, ML can 
be  used to discover diagnostic or prognostic biomarkers in the 
microbiome, that is, the informative features (i.e., genes, taxa or 
functions) that are most strongly associated with a disease, phenotype, 
environmental variable or treatment response. Biomarkers can, in 
turn, be used for early detection of a disease, patient stratification, and 
personalized medicine (Flemer et al., 2017; Cammarota et al., 2020; 
Ryan et al., 2020; Berland et al., 2023).

A comprehensive overview of the challenges and solutions 
associated with the application of statistical and ML techniques in 
human microbiome studies has recently, been provided by the 
ML4Microbiome COST action1 (Moreno-Indias et  al., 2021). A 
subsequent review of the applications of ML in human microbiome 
studies (Marcos-Zambrano et al., 2021) addressed the challenges of 
microbiome data analysis, and the importance of feature selection in 
the development of robust and interpretable models.

In this work, we continue in this direction by highlighting the 
specific issues pertaining to optimization and standardizing of state-
of-the-art ML techniques for microbiome data predictive analysis. 
We define a set of initial Standard Operating Procedures (SOPs) in the 
form of practical advices, outline areas suitable for automation, and 
describe processes on how to integrate everything into pipelines. This 
will facilitate the translational usage of the developed models by 
clinicians and non-experts. We consider numerous aspects, ranging 
from tasks, algorithms or combinations of algorithms, hyper-
parameters, to performance estimation protocols for disease 
prediction. We  operationalize these pipelines using shotgun 

1  https://www.ml4microbiome.eu/

metagenomic datasets of gut microbiome and demonstrate the power 
of automated machine learning techniques (AutoML) in finding the 
optimal pipeline.

2. ML tasks and associated analysis 
steps

2.1. Biological, methodological, and 
technical constraints for data analysts

While predictive modeling using ML has the potential to provide 
valuable insights to the biology of the microbiome, several challenges 
and limitations need to be addressed (Table 1). Data preparation, for 
example, is an essential first step to enable predictive modeling. It 
consists of the bioinformatic analysis conversion of sequencing reads 
to tables that quantify genes, operational taxonomic units (OTU) or 
more recently Amplicon Sequence Variants (ASVs), metagenomic 
species (MSP), or functional modules. Two main sequencing methods 
are used to obtain microbiome data, 16S rRNA sequencing and 
shotgun metagenomics. Both of them have advantages and drawbacks. 
Profiling microbial communities using amplified 16S rRNA genes 
involves sequencing this specific gene, which is present in all bacteria, 
in order to identify and quantify the types of bacteria in a sample. It is 
a straightforward and cost-effective method to profile the taxonomic 
composition of a microbial community. The weaknesses of this 
methodology are (Větrovský and Baldrian, 2013; Poretsky et al., 2014; 
Tremblay et al., 2015; Khachatryan et al., 2020): (i) its relatively low 
taxonomic resolution due to the conservation of the target gene, (ii) 
imprecise taxa quantification due to the bias induced by the PCR 
amplification step and the variable gene copy number between and 
within microbial species, (iii) lack of functional information and intra-
species and/or intra-population gene heterogeneity. Shotgun 
sequencing involves sequencing all extracted DNA in a microbiome 
sample, which allows a higher taxonomic resolution of the microbes 
species/strains, along with functional information (Brumfield et al., 
2020; Durazzi et  al., 2021). Analysis using metagenomic species 
reconstructed from non-redundant reference gene catalogs allows 
specific identification and quantification of the microbial species 
(Plaza Oñate et al., 2019). On the other hand, shotgun metagenomics 
sequencing is a much more expensive technique that generates large 
and complex datasets, which can be difficult to process, analyze, or 
interpret (Liu et al., 2021). Shotgun sequencing is also less suitable for 
samples with relatively low bacterial biomass (e.g., intestinal biopsies), 
where 16S rRNA sequencing is able to amplify these genes.

The specificity of the generated microbiome data has several 
implications which depend on the sequencing techniques used: (1) 
The total reads per sample (or depths of coverage) can vary by orders 
of magnitude within a single sequencing run. Comparison across 
samples with different depths of coverage requires specific adjustments 
that depend on the sequencing technique and the purpose of the 
analysis. (2) Microbiome data are sparse (excess of zeros in the feature 
tables) because (i) many species may be present in one individual and 
not in others (ii) species are present but sub-dominant and not found 
at the depth of coverage for a given sample. This feature is present in 
both 16S and shotgun data, but tends to be more severe in shotgun 
data. (3) This excess of zero renders the statistical distribution of the 
quantifications far from gaussian and thus hampers the use of 
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modeling approaches which assume Gaussianity. (4) In high 
throughput sequencing, the total read count represents a fixed-size, 
random sample of the DNA/RNA molecules within the underlying 
habitat. It is crucial to note that this count is independent of the 
absolute number of molecules in the sample and is therefore subject 
to total sum constraints. Consequently, alterations in the abundance 
of one sequence necessitate compensatory changes in the abundance 
of other sequences. The mathematical framework for these data types 
is compositional analysis, however its application to microbiome data 
and the consequences on ML models is still an active research area. 
(5) Microbiome data has a complex inter-dependency structure, 
where the species may interact with each other in many ways, 
including mutualism, parasitism, commensalism, and competition. 
For shotgun data, sequenced genes might belong to the same species 
and as such strongly correlated. Some variables may be correlated 
which requires special attention for some ML algorithms.

Following microbiome quantification in the form of raw 
quantification (feature) tables, the first major challenge for predictive 
modeling is the preprocessing of the tables in order to reduce technical 
biases and render the data suitable for ML modeling. This is because 
differences in preprocessing can have a significant impact on the 
performance of the models and may introduce biases into the analysis. 
Typical preprocessing tasks involve normalization, cleaning, and batch 
effect correction. Normalization is needed for reducing technical 
biases, such as sequencing depth, and for making samples and features 
comparable. To the latter, the normalization strategy should consider 
the compositional nature of microbiome data and appropriate 
transformations should be applied to avoid misleading results (Li, 
2015; Odintsova et al., 2017; Calle, 2019). Accordingly, incorrect or 
absence of scaling can lead to poor performance or even model failure. 
For example, when a distance metric is used like in Support Vector 

Machines (SVMs), scaling must be  performed. Similarly, Linear 
Discriminant Analysis or Gaussian Naive Bayes are statistically 
effective if only the model errors are Gaussian. Modeling approaches 
based on decision trees, like CART, random forest, boosted decision 
trees, do not make such assumptions and work comfortably on raw 
unscaled data as well. Data cleaning, on the other hand, involves 
removing outlier samples or features with the aim to improve the 
quality of the data and reduce the impact of the noise in the modeling 
process. The identified outliers require careful examination before 
taking the decision to eliminate them. In addition, feature cleaning by 
low-abundance filtering often improves the performance of ML 
models and renders more interpretable signatures. However, there is 
no universal consensus of the threshold filter value to apply. Finally, 
batch effect correction, or including batch information as a covariate, 
can help in avoiding spurious associations between microbial features 
or phenotypes and unmasking true biological variation. This is 
particularly important in the case of extensive studies that involve 
samples analyzed at different time points or sequenced in separate 
runs, as well as meta-analyses comprising multiple independent 
studies (Goh et  al., 2017). To this date, only a limited number of 
methods exist for this purpose, and there is a general lack of 
established recommendations for standardized approaches (Dai et al., 
2019; Ling et al., 2022; Wang and Lê Cao, 2023).

Another major challenge is data dimensionality. Microbiome data 
is high-dimensional, meaning that there are often many more features 
than samples, which can lead to overfitting and poor generalization of 
performance. Feature selection and prevalence/abundance filtering 
methods can help to reduce the dimensionality of the data and select 
the most informative features for ML models. However, filtering 
methods do not remove redundant features. Similarly, different feature 
selection methods can optimize different objective functions, which 

TABLE 1  List of challenges/constraints associated with applying machine learning (ML) approaches to microbiome data.

Challenge/Constraint Description

Data acquisition and preparation The process of acquiring and preparing microbiome data for predictive modeling involves bioinformatic analysis to convert raw 

sequencing reads into quantification (feature) tables. There are challenges associated with the sequencing methods used (16S 

rRNA sequencing or Shotgun metagenomics). Sequence data and accompanying metadata are often shared only with a bare 

minimum of detail, which is not always adequate for replication and further exploration.

Variability and sparsity of microbiome 

data

Microbiome data exhibits high variability in read depths per sample, sparsity (excess of zeros), non-Gaussian distributions and 

compositionality. The dependency structures among microbial species further complicates analysis.

Preprocessing tasks Preprocessing tasks such as cleaning, normalization and batch effect correction are crucial for reducing technical biases and 

rendering data suitable for ML models. Challenges include choosing appropriate threshold filters for read quality and sparsity 

reduction, selecting normalization methods based on the model’s assumptions, and accounting for experimental conditions.

Data dimensionality Microbiome data is often high-dimensional, with more features (microbial genes or taxa) than samples. This can lead to overfitting 

and poor generalization, especially with small sample sizes. Feature filtering and selection methods are employed to reduce 

dimensionality, but different methods can yield different results, and correlated features can hinder selection.

Non-linearity Several ML models assume a linear relation between response and predictors. Since non-linear relationships may exist both among 

and between features and the target, the selection of appropriate model is fundamental for analysis.

Interpretability of ML models While ML models can identify predictive patterns, interpreting these patterns in a biological context can be challenging. Using 

inherently interpretable models (e.g., decision trees, linear regression) and integrating metadata, environmental data, or functional 

assays can enhance interpretability. Visualization techniques and explainable AI methods can also aid in understanding the 

relationships between features and outcomes. Nevertheless, there is usually an interpretability/performance trade-off, by which the 

most highly performing models are often harder to interpret.

Limited availability of methods and 

recommendations

There is a limited number of established methods and standardized approaches for tasks such as batch effect correction and feature 

selection. Further research and consensus are needed to address these limitations and provide more robust solutions.
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FIGURE 1

The typical process from data preparation to predictive model building, highlighting the methods to consider during each stage.

may be distinct from the objective functions used in the ML models, 
and can result in different sets of selected features. Highly correlated 
features also hamper the selection of the relevant features. All these 
factors may negatively impact the performance of the model. 
Furthermore, not all feature selection methods are able to scale up to 
the thousands of microbial genes or taxa present in different 
individuals. Along the same lines, not many ML algorithms can scale 
down to low sample sizes. Low sample size can limit the statistical 
power and generalizability of ML models. Special care must therefore 
be given to the performance estimation protocol used during training 
for the best predictive model. The bootstrap bias correction method, 
for example, is such an approach equipped to provide better results 
than traditional cross-validation methods particularly at low sample 
sizes, also reducing the variance in the estimates of model performance 
(Tsamardinos et al., 2018).

A final challenge is that although ML models can identify 
predictive patterns in the data, it is often difficult to interpret these 
patterns in a biological context. This can limit the utility of ML for 
generating hypotheses and guiding experimental research. One way 
to ensure interpretability is to choose predictive modeling algorithms 
that are inherently interpretable, such as decision trees, logistic 
regression or linear SVMs. These models have an intuitive connection 
between the input and the output making it easier to understand the 
relationship between the microbiome features and the outcome. 
However, there is usually a performance/interpretability trade-off in 
ML, by which more complex models (ensembles of trees, neural 
networks) show better predictive power, but their outputs are also 
harder to interpret. Another way to improve interpretability is by the 
combined use of feature selection and the integration between 
metadata, environmental data, or functional assays, to encourage the 
model to use a smaller number of features, making it more 
interpretable and at the same time provide a comprehensive 
understanding of the microbial community. Dimensionality reduction 
methods such as sparse Partial Least Squares regression (PLS) are 
highly interpretable and also provide a visual representation of the 
data and the model’s predictions. Explainable AI techniques such as 
feature importance, partial dependence plots, and SHAP values can 
also help to explain the model’s predictions and how they are 
influenced by the input features (Lê Cao et al., 2009).

2.2. ML steps, and appropriate algorithms 
to use

Once data has been collected and prepared for analysis, the typical 
process of building an ML model able to predict an outcome of 
interest consists of three consecutive steps: data preprocessing, feature 
selection and predictive modeling (Figure 1). For each of these steps 
there are several methods to consider so the optimal choice depends 
on the biological, methodological, and technical constraints of 
microbiome data (Table 2).

2.2.1. Data preprocessing
Regarding data preprocessing, one needs primarily to consider 

how to normalize the data to enable biologically meaningful 
comparisons between samples or features. Normalization methods try 
to eliminate the variability in sampling depth and the sparsity of the 
data. Rarefying has been a widely used normalization method, 
especially for 16S rRNA data, in cases where there are significant 
differences in the library sizes (e.g., more than 10-fold) (Pereira et al., 
2018). However, rarefying may not always be an ideal choice since it 
can reduce statistical power depending on the amount of samples 
being removed and it does not address all challenges of compositional 
data (McMurdie and Holmes, 2014).

Alternatives to rarefying are scaling and transformation. However, 
these are not recommended to be  used at the same time, as this 
practice can invalidate the data, e.g., rescaling may preserve the 
original distributions but transformation may not (Lovell et al., 2015). 
Scaling involves finding a sample-specific factor, i.e., a fixed value or 
proportion, to multiply the matrix counts. Transformation methods, 
on the other hand, will replace values with the normalized ones. 
Several scaling approaches have been proposed based on the total 
sum, trimmed mean (Robinson and Oshlack, 2010), geometric mean 
(Love et al., 2014), upper quartile or a data-driven threshold (Paulson 
et al., 2013). But choosing the most effective one is difficult (McMurdie 
and Holmes, 2014; Weiss et al., 2017; Pereira et al., 2018; Lin and 
Peddada, 2020) because of the possible over- or under-estimation of 
fraction of zero counts and distortion of feature correlations across 
samples due to the data sparsity and differences in sequencing depths. 
Similarly, there are several transformation methods for microbiome 
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data. Since microbiome datasets are essentially compositional, these 
methods follow Aitchison’s methodology for compositional data to 
convert the feature counts to log-ratios within each sample by applying 
an additive, centered or isometric log-ratio transformation (Aitchison, 
1982; Egozcue et al., 2003). Again, a reference feature (gene, taxon, or 
function) is sought to be used for eliminating the effect of the sampling 

fraction. However, one should be cautious on how to replace the zeros 
during calculations for which there is no clear consensus. For example, 
zeroes can be eliminated by either incorporating a pseudo count or 
imputing values using probability or zero-inflated models. However, 
both approaches pose certain challenges. The addition of a pseudo 
count may artificially inflate low-abundance features while imputation 

TABLE 2  Summary of machine learning (ML) algorithms for each workflow step.

Workflow step Task Algorithms

Data preprocessing

Handling outliers

Identify outliers by graphical methods (distribution or dimensionality reduction plots) or by statistical methods 

(Z-score).

Investigate the cause of the outliers. if they are due to measurement errors or sample contamination, they should 

be removed.

Filter out non-

informative features
Threshold filtering, variance filtering or correlation-based filtering.

Normalization

Rarefying.

Scaling (different approaches: total sum, trimmed mean, geometric mean, upper quartile or data-driven threshold).

Transformation (additive, centered or isometric log-ratio transformation).

Batch correction ComBat, limma, RUV, and PLSDA-batch.

Feature selection

Identify the most 

informative genes, taxa 

or functions

Filter methods: supervised (e.g., based on correlation, mutual information or ANOVA), unsupervised (e.g., based on 

dispersion and similarity measures).

Wrapper methods: e.g., Recursive feature elimination (RFE), Statistically equivalent signatures (SES) or genetic 

algorithms.

Embedded methods: feature selection during the model training process incorporating techniques such as Least 

absolute shrinkage and selection operator (LASSO) or Elastic net regularization.

Predictive modeling

Classification

Linear classifiers: logistic regression, linear discriminant analysis, partial least squares discriminant analysis (PLS-

DA).

Non-linear classifiers: SVMs, decision trees, random forests, artificial neural networks, gradient boosting, kernel 

PLS-DA.

Performance estimation 

protocols: evaluate the 

quality of a predictive 

model

Holdout method: typically 70/30 split.

K-fold Cross Validation protocol.

Monte Carlo cross validation.

Handling class 

imbalance

Stratified K-fold Cross Validation.

Oversampling the minority class: random oversampling, synthetic oversampling.

Undersampling the majority class: random undersampling, heuristic or learning models that try to find redundant 

examples for deletion.

Class weighting.

Optimization metrics

Threshold-independent measures: area under the receiver operating characteristic curve (AUROC), and area under 

the precision-recall curve (AUPRC).

Threshold-dependent measures: accuracy, balanced accuracy, f1 score, Matthew’s correlation coefficient (MCC).

Model selection

Hyper-Parameter 

Optimization (HPO) or 

Combined Algorithm 

Selection and HPO 

(CASH)

Optimization techniques: random search, grid search, Bayesian optimization, and evolutionary algorithms. Early 

stopping, model checkpoints

Model interpretability
Explainable artificial 

intelligence (XAI)

Global explainer: feature importance (e.g. permutation feature importance).

Local explainer: Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations 

(SHAP).

Individual Conditional Expectation (ICE) plots.
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introduces artificial values, which can distort the true distribution of 
the data and potentially obscure genuine biological variation (Kaul 
et al., 2017; Lubbe et al., 2021).

Practical advice: Normalization is problem- and algorithm-
dependent. It is advisable to experiment with different types of 
normalization as part of the ML pipeline, and select the one who 
works the best. It is also important that some ML algorithms whose 
representation learning typically has a distance measure, might need 
specific types of normalization to work (e.g., SVMs require 
standardized data).

Apart from normalization, cleaning the data from outliers and 
unnecessary features is an essential preprocessing step to consider. 
Handling outliers requires to identify them typically by graphical 
methods (e.g., distribution or dimensionality reduction plots) or 
statistical ones (e.g., Z-score). For example, sanity checks for outlier 
detection include Principal Component Analysis of microbiome data 
that have been normalized. Subsequent ML tasks might also 
encompass the use of robust methods downweighting outlying 
observations during the estimation procedure (Kurnaz et al., 2018; 
Monti and Filzmoser, 2022; Kurnaz and Filzmoser, 2023). The cause 
of their outlierness must then be investigated. Outliers may be due to 
measurement errors, sample contamination, or biological variation. 
Understanding the cause can help determine the appropriate approach 
to handling outliers. If outlier samples are due to measurement errors 
or sample contamination, it may be appropriate to remove them from 
the dataset.

In terms of non-informative features or taxa that are biologically 
irrelevant or known contaminants, filtering can be based on thresholds 
on their abundance/prevalence, variance or correlation. 
Low-abundance or prevalence filtering involves eliminating features 
present in less than, e.g., 10% of the samples (Cao et  al., 2021). 
Variance filtering involves removing features of zero or low variance 
across the samples as they are less likely to contribute to the overall 
variation in the data and may be less informative. The threshold for 
variance filtering can be determined based on the distribution of the 
variance in the data. Finally, based on the correlation coefficient or the 
mutual information between features, one can detect and filter out 
those that are highly associated with each other as they are redundant 
and may not provide additional information.

Practical advice: Perform exploratory data analysis that includes 
visualization of observations in a reduced dimension subspace for 
the inspection of outliers, correlation maps for the identification of 
highly correlated features, and descriptive statistics for the inspection 
of missing values and non-informative taxa.

After normalization and cleaning, one can perform batch 
correction to account for batch effects that may arise due to technical 
factors such as sequencing platform, library preparation, or batch 
processing. Several batch effect correction methods have been 
proposed in the literature, mainly for RNAseq and microarray data, 
such as ComBat, limma, and RUV that can be used to correct for 
batch effects in the microbiome domain (Wang and LêCao, 2020). 
Very recently, a new and effective approach for correcting batch effects 
called PLSDA-batch has been presented that can effectively correct for 
batch effects and improve the accuracy of downstream analyses (Wang 

and Lê Cao, 2023). Regardless of the chosen batch adjustment method, 
however, it is important to consider the statistical assumptions of the 
method, such as Gaussianity. It is possible that the data transformation 
applied prior to the batch adjustment may not satisfy 
these assumptions.

Practical advice: Before generating sequence data, make sure that 
samples are randomized so that whole study groups do not end up 
in separate batches. Visually inspect the post-sequencing impact of 
all possible batch effects on samples' distribution in a space of 
reduced dimension and in subsequent ML model performance, and 
if needed correct for this using recent appropriate tools.

2.2.2. Feature selection
After preprocessing, feature selection is the next important step 

for microbiome data analysis in order to identify the most informative 
genes, taxa or functions. In principle, feature selection is the process 
of selecting a subset of features from a larger set of available features 
that are most important in predicting the outcome variable. The goal 
is to reduce the number of input features required to achieve good 
model performance, thereby improving the efficiency and 
interpretability of the model. This also helps to avoid overfitting, a 
common problem when analyzing high dimensional datasets where 
the model becomes too complex and starts to memorize the training 
data instead of learning general patterns.

Feature selection techniques can be broadly categorized into three 
types: filter methods, wrapper methods, and embedded methods. 
Filter methods can be either unsupervised (e.g., using dispersion and 
similarity measures) or supervised (e.g., based on correlation, mutual 
information or ANOVA), the latter evaluating the relevance of features 
to the outcome variable (Ferreira and Figueiredo, 2012), which can 
then be used to select the top-ranked features (Segata et al., 2011). 
Wrapper methods, such as recursive feature elimination, statistically 
equivalent signatures or genetic algorithms, employ statistical metrics 
too. However, they do so in combination with a predictive algorithm 
so as to select features based on their impact on the model’s 
performance (Lagani et  al., 2017; Sanz et  al., 2018). Embedded 
methods perform feature selection during the model training process 
by incorporating regularization techniques, such as L1 or L2 
regularization, that automatically penalize the less important features. 
Nevertheless, there is still no consensus on which feature selection 
method should be used (Marcos-Zambrano et al., 2021).

The choice of the appropriate feature selection method remains an 
open problem because microbiome data poses numerous analysis 
challenges, such as noise, high dimensionality and small sample sizes, 
sparsity, and intercorrelated or redundant features. Filter methods can 
handle high-dimensional data relatively well, but they may not 
perform well in the presence of sparsity or low sample size. For 
example, correlation-based methods may suffer from false positives 
when the correlation is driven by sparse features or may select one 
feature from a correlated pair, resulting in suboptimal feature 
selection. Similarly, ANOVA may have low statistical power with few 
samples and may select redundant features that do not contribute 
additional information beyond what is already provided by other 
features. Wrapper methods, on the other hand, can better capture the 
complex interactions between features and may perform better than 
filter methods in the presence of redundancy, sparsity or low sample 
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size. Their main drawback is that they can be  computationally 
intensive and may not scale well to high-dimensional data. Embedded 
methods, such as least absolute shrinkage and selection operator 
(LASSO) or Elastic Net regularization, are well-suited for high-
dimensional, sparse data and can handle low sample size relatively 
well (Tibshirani, 1996). These methods can perform both feature 
selection and regularization during model training, and can often 
identify a small number of highly relevant features that capture the 
underlying patterns in the data.

Regarding linearity, most filtering methods rely on linear 
statistical models to rank and select features based on their association 
with the response variable. Similarly, embedded methods typically use 
linear models to embed the features into a lower-dimensional space 
or to fit a regression model that selects the most informative features. 
To capture more complex relationships, mutual information is such a 
non-linear measure of the association between two random variables 
that can be  used as a filter method. For example, the Minimum 
Redundancy Maximum Relevance (mRMR) selects features that have 
the highest mutual information with the target variable and the lowest 
mutual information with the previously selected features (Chen et al., 
2016). Accordingly, any wrapper method that embeds a non-linear 
statistical metric can be  used for capturing complex associations 
among features.

Lastly, certain feature selection techniques are inherently 
stochastic, implying that they may return different results in successive 
runs. Consequently, it is recommended to run each algorithm 
containing random elements multiple times, to obtain a more accurate 
understanding of its predictions. Alternatively, fixing the random seed 
in each run is guaranteed to provide consistent and 
deterministic results.

Practical advice: Consider testing a conservative filter method as a 
pre-screening stage in the feature selection task, or a more expensive 
multivariate method (e.g., embedded) to remove irrelevant and 
non-informative features in high-dimensional datasets. Another 
good general practice is to consider the objective function which is 
used in the feature selection and try to match it with the objective of 
the subsequently chosen modeling approach. For instance, feature 
selection based on Fisher score is suitable for linear discriminants, 
PCA is a good dimensionality reduction routine for Gaussian 
mixture models, recursive feature elimination is applicable for 
non-linear SVMs, etc.

2.2.3. Predictive modeling
Lastly, the task of modeling involves selecting a predictive 

algorithm, a protocol for performance assessment, a protocol for 
model selection, and a metric for optimizing that performance. The 
choice of algorithm mainly depends on the problem type and the data 
characteristics. In the microbiome domain, classification problems are 
the most prevalent although efforts to address survival ones also exist. 
Regarding data characteristics there are several types of modeling 
algorithms, each having its strengths and weaknesses. Below, 
we explore methods that can handle challenges related to microbiome 
data such as scalability to high-dimensional data and small sample 
sizes, as well as interpretability. This will include both linear and 
nonlinear classifiers commonly employed and methods to estimate 
their performance.

Logistic regression and linear discriminant analysis, for example, 
are linear classifiers that can handle high-dimensional data, but they 
may be sensitive to overfitting when sample sizes are small (e.g., less 
than 100 per class). They may thus be good choices when the data is 
not too complex and the sample sizes are not too small. Partial Least 
Squares Discriminant Analysis (PLS-DA) is a good option for high-
dimensional data with low sample sizes and benefits from 
multicollinearity, although care must be taken to avoid overfitting. On 
the other hand, SVMs are mainly nonlinear classifiers that can handle 
high-dimensional data but can be computationally expensive when 
the number of features is very large. Hence, they may be a good choice 
when the data is more complex, but the computational cost may be an 
issue. In contrast, decision trees and random forests are nonlinear 
classifiers that can handle high-dimensional data and are relatively 
robust to small sample sizes. However, they suffer from overfitting and 
instability when the trees are too deep or the data is noisy. Artificial 
neural networks and gradient boosting are also nonlinear classifiers 
that can handle high-dimensional data and are relatively robust to 
small sample sizes, but can be computationally expensive. Careful 
hyperparameter tuning is therefore important to avoid overfitting.

Unfortunately, due to the curse of dimensionality and the 
unknown patterns in the data, one cannot provide specific guidance 
on choosing a predictive modeling algorithm based on the number of 
features. Moreover, the so-called No Free Lunch Theorem in machine 
learning states that there is no single “best” method that can 
universally excel in solving all types of problems. The selection of an 
appropriate algorithm needs to consider the specific characteristics 
and constraints of the task at hand. Nevertheless, a combination of 
feature selection and a suitable performance estimation protocol can 
enhance a classifier’s performance in a high-dimensional setting 
(Wolpert, 2002). If interpretability is an important consideration, 
logistic regression, PLS-DA or decision trees are highly interpretable, 
while SVMs and artificial neural networks may be less so. Essentially, 
if feature selection is performed and techniques such as feature 
importance measures and visualization are used, insights into the 
behavior of even the most complex models can be gained.

Practical advice: For high-dimensional scenarios, as is the case with 
microbiome data, the choice of the model must consider the sample 
size and the desired computational cost and interpretability level. 
Coupling with a feature selection algorithm may improve 
prediction accuracy.

2.3. Building and evaluating ML workflows

2.3.1. Performance estimation protocols
Performance estimation protocols are methods used to evaluate 

the quality of a predictive model. Their main purpose is to estimate 
the performance of the model on new, unseen data called out-of-
sample performance or generalization error–the error that the model 
will obtain if hypothetically tested on the unseen data of infinite size. 
Estimation of the performance should not be confused with improving 
the performance which is the purpose of the model selection routine. 
The simplest protocol for performance assessment is the holdout 
method which involves splitting the available data into two parts, a 
training set and a test set; typically, a 70/30 split is used. The model is 

15

https://doi.org/10.3389/fmicb.2023.1261889
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Papoutsoglou et al.� 10.3389/fmicb.2023.1261889

Frontiers in Microbiology 08 frontiersin.org

trained on the training set, and its performance is evaluated on the 
testing set. Holdout is suitable when the available data is sufficiently 
large, and the number of features is not too high relative to the number 
of samples. If the sample size is low, the performance on the test set 
will have a large variance. One way to reduce the variance is by 
repeating this protocol, each time by randomly assigning samples to 
training and test sets, and estimating the average model’s performance.

The well-known K-fold Cross-Validation protocol can be used for 
that. It involves dividing the data into K mutually exclusive, equally 
sized sets, or folds. Each time the model is trained on all folds but one 
that is held out for estimating the performance. If the sample size is 
very low, this protocol may be repeated several times with a different 
partitioning to folds, to further reduce the estimation variance. A 
typical value for the number of folds is 5 or 10, but this can be adjusted 
depending on the size of the data. In a similar manner, Monte Carlo 
cross-validation can be suitable when the available data is sufficiently 
large, and the number of features is high relative to the number of 
samples. This method can be useful when the data is noisy or there is 
a high degree of variability in the data, as it allows for multiple random 
splits to be generated. Taking K-fold Cross-Validation to the extreme, 
one can perform leave-one-out (LOO) cross validation, where all but 
a single sample is used for training and the performance is assessed on 
the remaining sample and averaged across all samples. LOO is known 
to be an almost unbiased performance assessment routine (Vapnik, 
2006). The main advantage is its repeatability that comes from the 
deterministic nature of the routine. However, it can be  a time-
consuming process when the number of samples is larger.

A common characteristic of all protocols is that they use a 
portion of the data to train a model and the rest to evaluate its out-of-
sample performance. In cases where the samples are plenty, losing 
some part of the data to estimation is acceptable. If not, as in the 
microbiome case, finding the right balance between training and test 
data is essential. Obviously, the best predictive model is—on average, 
not always—the one trained on all available data. However, since 
there is no more data left, how does one estimate its performance? 
The answer is to use one of the aforementioned protocols, i.e., 
evaluate the model performance on some partitioning protocol but 
train the final model on all available data. This process is called the 
“Train-Test-Retrain” procedure and presents a big change in 
perspective because it uses the performance of a suboptimal model 
as a proxy for the performance of the full model (Tsamardinos et al., 
2022). As a result, the estimate is conservative, which is better than 
being overly optimistic. Essentially, during performance estimation 
we are not evaluating a specific model instance, but the entire ML 
pipeline that produces the final model.

Lastly, a typical methodological problem in predictive modeling 
is that of data leakage which can lead to optimistic or entirely invalid 
models. Data leakage occurs when performing data preprocessing or 
feature selection on the whole dataset before applying cross-validation. 
For example, when standardizing the data using the mean and 
standard deviation of the entire dataset, the rescaling process gains 
knowledge of the full data distribution, introducing bias on the 
rescaled values that can affect the performance of the algorithms on 
the cross-validation test sets. To avoid data leakage, therefore, the 
preprocessing, feature selection and predictive modeling must 
be performed together within each fold of the cross-validation and 
only apply them to the test fold on each cycle, ensuring the integrity 
of the evaluation process.

Practical advice: Evaluate the entire ML pipeline with cross-
validation. For small sample sizes (e.g., 100 per class) use a 
Stratified, Repeated K-fold Cross Validation, of 4–5 repeats, with 
retraining on all data to produce the final model with a maximum 
K the number of samples in the rarest class so that at least one 
sample from each class gets into each fold.

2.3.2. Class imbalance
A data characteristic that often appears in the microbiome 

domain is class imbalance where the number of samples in one class 
is much smaller than the number of samples in the other classes. 
Class imbalance can be problematic and lead to biased models that 
underperform on the minority class. One technique to alleviate this 
is the stratification of samples to cross-validation folds, namely, 
stratified K-fold Cross-Validation. This entails partitioning the data 
with the extra constraint that the distribution of the outcome in 
each fold is close to the distribution of the outcome in all samples. 
Other ways to compensate for the class imbalance include 
oversampling the minority class, undersampling the majority class 
and class weighting. Oversampling methods include random 
oversampling, where instances from the minority class are randomly 
duplicated, and synthetic oversampling, where new instances are 
in-silico synthesized from existing ones of the minority class, 
referred to as data augmentation, e.g., SMOTE (Chawla et al., 2002). 
General concern with oversampling is the increase of likelihood of 
overfitting due to exact or synthetic copies of the existing data 
(Fernández et al., 2018). Undersampling methods include random 
undersampling, where instances from the majority class are 
randomly removed, and methods that involve heuristics or learning 
models trying to find redundant examples for deletion or useful 
examples for non-deletion. However, removing too many samples 
from the majority class can be a problem, especially if the dataset is 
small. Oversampling and undersampling techniques can potentially 
enhance model performance when applied either as preprocessing 
steps or as integral components of the model itself (Mihajlović 
et al., 2021).

On the other hand, class weighting regards the assignment of 
weights to the classes to balance their contributions to the loss 
function during training. By assigning higher weights to the minority 
class, the algorithm can redistribute its capacity to focus more on 
correctly predicting the minority class, thus improving the overall 
performance on the imbalanced dataset. However, finding the right 
weights can be quite challenging. This strategy, also known as cost-
sensitive learning strategy encourages the model to focus on correctly 
predicting the minority class, as misclassifying instances of this class 
incurs a higher cost (Ling and Sheng, 2010).

Regardless of how class imbalance is approached when 
evaluating the performance of a model on an imbalanced dataset, 
it is important to use appropriate performance metrics that 
consider the imbalance (e.g., balanced accuracy; averaged versions 
of precision, recall, F1-score etc.).

Practical advice: Data stratification during performance estimation 
and appropriate choice of performance metric should be practiced. 
Test several over/under-sampling options is suggested but always 
validate the similarity between synthetic samples and actual data. 
Alternatively consider class weighing or cost-sensitive methods.
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2.3.3. Performance metrics
Performance measures play a crucial role in evaluating and 

quantifying the predictive capabilities of classifiers. For example, 
threshold-independent measures like Area Under the Receiver 
Operating Characteristic Curve (AUROC or AUC) and Area Under 
the Precision-Recall Curve (AUPRC) are advantageous in assessing 
overall classifier performance. The AUC quantifies the ability of a 
classifier to discriminate between positive and negative instances 
across all possible decision thresholds. In other words, it measures the 
classifier discriminative capacity. Intuitively, AUC denotes the 
probability that a randomly chosen positive instance is ranked by a 
classifier higher than a randomly chosen negative instance. AUC is 
robust to moderate class imbalance and useful when the relative costs 
of false positives and false negatives are equal (Bewick et al., 2004). In 
contrast, AUPR focuses on the precision-recall trade-off and is 
particularly useful in imbalanced datasets, when the positive class is 
of greater interest. It denotes the probability of correct detection of 
positive instances (Saito and Rehmsmeier, 2015). Threshold-
dependent measures, on the other hand, assess classifier performance 
at a specific decision threshold between 0 and 1. Threshold tuning 
does not change the classifier quality but can improve the performance 
metric, while also being one of the simplest approaches to handle a 
severe class imbalance (Fernández et al., 2018). Accuracy, for example, 
calculates the proportion of correctly classified instances over the total 
number of instances. However, it can be  misleading under class 
imbalance, as it may achieve a high accuracy score by simply 
predicting that all observations belong to the majority class (Akosa, 
2017). In contrast, balanced accuracy measures the average accuracy 
obtained from both the minority and majority classes. However, it 
treats all misclassifications equally and does not provide information 
about the performance of the classifier on individual classes. The F1 
score is defined as the harmonic mean of precision and recall, which 
considers both false positives and false negatives. Nevertheless, F1 
score does not capture true negatives, which can be crucial in certain 
applications. In contrast, Matthew’s Correlation Coefficient considers 
all four outcomes of a binary classification, true positive, true negative, 
false positive, and false negative rates. This is especially useful when 
the class distribution is imbalanced or when the costs associated with 
different types of errors vary (Chicco and Jurman, 2020).

Practical advice: Selecting an appropriate performance metric 
depends on the specific requirements of the task, the prevalence of 
class imbalance, and the trade-offs between different types of 
classification errors. Although AUC is widely used, different metrics 
highlight different performance aspects. Using multiple ones may help 
in analysis and better understanding of the classifier performance.

2.3.4. Hyperparameter tuning
Several different candidate algorithms should typically be tried for 

each of the analysis steps based on the aforementioned factors to find 
the optimal ML pipeline. Nonetheless, each algorithm comes with 
several settings, referred to as hyper-parameters, that need to be set 
before training. Examples of hyperparameters include the learning 
rate of a neural network, its early stopping or model checkpoint 
parameters, the regularization strength of a linear model, or the depth 
of a decision tree. Optimizing for these choices is called Tuning, or 
else, Hyper-Parameter Optimization (HPO) or Combined Algorithm 

Selection and HPO (CASH) (Thornton et al., 2013; Feurer et al., 2015). 
In a nutshell, HPO selects the best hyperparameter values to achieve 
optimal performance while CASH involves selecting the best machine 
learning algorithm and its hyperparameters. CASH aims to automate 
the process by searching over a large space of possible algorithm and 
hyperparameter combinations. This is particularly useful when there 
is no clear choice of algorithm, or when the performance of different 
algorithms is highly dependent on the choice of hyperparameters.

Both HPO and CASH require training and evaluating many 
different ML pipelines with different hyperparameters or algorithms. 
To this end, various optimization techniques have been proposed, 
such as random search, grid search, Bayesian optimization, and 
evolutionary algorithms, among others. These techniques aim to 
efficiently search the hyperparameter or algorithm space to find the 
best combination that optimizes the desired performance metric. 
Random and grid search are simple to implement and parallelize but 
can be  inefficient for high-dimensional search spaces. Bayesian 
optimization and evolutionary algorithms are more efficient, can use 
past evaluations to guide the search and also handle non-continuous 
and non-convex search spaces. Evolutionary algorithms can also 
search for multiple optima but can be computationally expensive. The 
downside of Bayesian optimization is that it requires a well-defined 
prior over the search space and can be  sensitive to the choice of 
function to determine the next set of hyperparameters to evaluate.

2.3.5. Model selection process while tuning
When trying multiple ML pipelines, it is tempting to select as best 

the one with the highest estimated performance. Practitioners 
sometimes confuse or mix up the error estimation process with the 
error reduction process. The performance assessment aims to estimate 
the error while model selection aims to reduce the error. When these 
procedures are mixed up a selection bias occurs leading to the 
respective performance estimate becoming compromised (usually 
over-optimistic). This problem is called the “winner’s curse” and is 
conceptually equivalent to the multiple hypothesis testing problem in 
statistics (Jensen and Cohen, 2000). Essentially, this phenomenon 
occurs since each performance protocol simulates an ideal scenario 
by pretending that the test sets come from the future, but in reality, 
these test sets are used to select the winning model and thus the 
process that aimed to estimate the performance is now used to 
improve it. This problem becomes more pronounced in low sample 
sizes, where the optimism could be as much as 20 AUC points (Ding 
et  al., 2014; Tsamardinos et  al., 2014). Therefore, appropriate 
performance estimation protocols should be used to correct for the 
winner’s curse.

The simplest solution to this problem is to hold out a second set 
of samples to be used for model selection. That is, extend the Train-
Test protocol into the Train-Validate-Test protocol. The samples in the 
Validation may be used several times, but only for selecting the best 
model while those in the test set are used once, for performance 
estimation. Obviously, as before, this procedure is preferable when the 
sample size is large. In cases of low sample sizes, several alternatives 
have been proposed such as the nested cross validation (Salzberg, 
1997), the Tibshirani-Tibshirani procedure (Tibshirani and 
Tibshirani, 2009) and the Bootstrap bias corrected cross validation 
(BBC-CV) (Tsamardinos et al., 2018) among others (Ding et al., 2014).

The nested cross validation involves a double loop procedure, 
where an inner cross-validation loop is run over the training data and 
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is used for hyperparameter tuning, and an outer one for estimating the 
performance. Although nested cross-validation is very useful when 
the dataset is small and the number of hyperparameters is large it is 
computationally very expensive. The Tibshirani and Tibshirani 
method does not employ a separate hold out set. Rather it employs 
traditional K-fold cross-validation estimates to calculate the bias and 
subtract it from the performance estimates. A similar, but 
computationally more efficient method that has smaller variance and 
bias, is the BBC-CV method that was recently presented (Tsamardinos 
et al., 2018). Here, in order to calculate the bias, bootstrap resampling 
is employed on the pooled out-of-sample estimates collected during 
cross-validation of multiple pipelines.

Practical advice: Combined Algorithm Selection and HPO allows 
finding the optimal ML pipeline when this combines different 
algorithms and hyperparameters. Start exploring the space by grid 
or random search, and always correct for the “winner’s curse.” If the 
sample size is sufficient, use nested-CV due to its simplicity of 
implementation, otherwise use BBC-CV.

2.3.6. AutoML: challenges and best practices
The above information suggests that implementing a complete 

machine learning workflow typically requires a substantial amount of 
skilled manual effort. In addition to being time-consuming, it also 
requires an expert to make informed decisions about which methods 
to incorporate into the pipelines. However, the lack of such experts 
and the associated high costs have paved the way for the emergence of 
automated machine learning (AutoML) (Hutter et al., 2019). AutoML 
aims to automate various stages of the machine learning process, 
including data preprocessing, feature selection, model training, 
hyperparameter tuning, and model evaluation. By doing so, AutoML 
enables objective and data-driven analysis decisions, resulting in high-
quality models that can be  utilized even by inexperienced users 
(Xanthopoulos et al., 2020).

AutoML is frequently used synonymously with the 
aforementioned CASH and HPO approaches that focus on solving a 
particular optimization problem. However, these solely aim to deliver 
predictive models and do not encompass the entire machine learning 
workflow necessary for microbiome data analysis. While various 
AutoML systems such as the well-known auto-sklearn (Feurer et al., 
2022) or GAMA (Gijsbers and Vanschoren, 2019) exist, only TPOT 
(Olson and Moore, 2019) and JADBio (Tsamardinos et al., 2022) have 
the capability to extend their functionality to include the feature 
selection step. Notably, JADBio goes even further by encompassing all 
the necessary steps, including the estimation of out-of-sample 
predictive performance, which most AutoML systems do not 
automate, thereby providing a comprehensive solution for the ML 
analysis of microbiome data.

While AutoML offers significant advantages by automating 
various steps of the machine learning workflow, it may also have 
certain challenges. Firstly, AutoML may lack transparency, making it 
challenging to understand and explain the underlying decisions made 
by the automated processes. This opacity can limit the ability to detect 
and address biases or errors. AutoML tools may also have limited 
customization options, as they are designed to cater to a wide range of 
users and tasks, restricting flexibility and domain-specific adaptations. 
Furthermore, it can increase computational cost due to extensive 

model exploration and lastly, relying solely on AutoML can diminish 
the essential role of human expertise and domain knowledge, which 
are crucial in understanding the context, interpreting results, and 
making informed decisions. It is therefore essential to strike a balance 
between the advantages of automation and the need for human 
involvement (Gijsbers et al., 2019; Romero et al., 2022).

Practical advice: AutoML is becoming increasingly popular, but most 
approaches primarily focus on solving the CASH problem to provide 
an optimal predictive model. As a result, researchers still need to 
decide on performance estimation methods and protect against the 
“winner’s curse”.

2.4. Model interpretability and explainability 
of results

Model explainability involves understanding how algorithms 
learn the relationship between inputs and outputs. In classification 
models, there are three main goals: to create an accurate model, to 
accurately estimate how good the model is and interpretability. 
However, there is often a tradeoff between these objectives whereby 
linear models are interpretable but may underperform compared to 
nonlinear models. Complex nonlinear models achieve better 
performance but are less interpretable. This lack of interpretability 
limits their use in biomedical research where understanding the 
classification process is crucial.

For this reason, explainable artificial intelligence is a growing field 
that focuses on explaining the output or decisions of ML models 
(Carrieri et al., 2021; Lombardi et al., 2021, 2022; Bellantuono et al., 
2022). One prominent technique in this respect is the measurement 
of feature importance. Feature importance methods aim to quantify 
the contribution of each feature to the model’s predictions. Particularly, 
global methods provide an overall ranking of features while local 
methods try to explain the contribution of each feature to a specific 
prediction. For example, permutation importance is a global method 
that evaluates importance by disrupting the relationship between the 
feature and the true outcome. The underlying concept is simple: if 
permuting a feature’s values results in higher prediction error, it 
indicates its importance. Conversely, if permuting the feature does not 
affect the error, it is classified as unimportant. Regarding local 
methods, Local Interpretable Model-agnostic Explanations (LIME) is 
a technique that approximates model behavior with an interpretable 
(linear) model at the neighborhood around each individual prediction 
(Ribeiro et  al., 2016). Similarly, SHapley Additive exPlanations 
(SHAP) is a local explainer algorithm that uses a concept from game 
theory called Shapley values (Lundberg and Lee, 2017). Shapley values 
measure how much each feature contributes to the prediction by 
considering all possible combinations of features in a fair share 
manner. SHAP can work with any kind of model and can show the 
impact of each feature visually. Finally, some methods combine a 
stepwise forward strategy to identify a minimal subset of interpretable 
variables from a permutation-based score of importance (Genuer 
et al., 2015).

Individual Conditional Expectation (ICE) plots also provide a way 
to explore and understand the relationship between a specific input 
feature and the output of a model, while considering the influence of 
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other features (Tsamardinos et al., 2022). In an ICE plot, the x-axis 
represents the range of values for the chosen input feature. Each line 
in the plot corresponds to how the model prediction changes while 
varying all the remaining input features. In this way ICE plots help 
identify non-linear patterns, interactions, and heterogeneity in the 
model’s behavior across instances, aiding in model interpretation at 
the individual level.

Practical advice: Start with a simple, interpretable model; more 
complex models can be used to achieve better performance, for which 
model explanation techniques can be used, such as calculation of 
feature importances, LIME, SHAP values, and ICE plots.

3. Comparative evaluation of ML 
approaches

To showcase the effectiveness of various ML approaches in 
enhancing predictive performance, we  collected a set of CRC 
benchmark data on a two-class (healthy/cancer) classification problem. 
To this direction, we first evaluated the effect of typical preprocessing 
steps such as normalization and filtering. Then we  used AutoML, 
namely JADBio, to find the best performing and best interpretable 
pipelines in terms of feature selection and predictive modeling.

3.1. Description of the data

This dataset (Barbet et  al., 2023) gathers 2090 human stool 
samples characterized by shotgun metagenomic sequencing from 13 
public cohorts spanning nine countries (Table 3). This data provides 

the gut microbiota composition in healthy controls and patients with 
adenoma or CRC.

Data were prepared as follows. Sequencing data was downloaded 
from the European Nucleotide Archive. Reads were quality trimmed 
and filtered from sequencing adapters using fastp. Remaining 
contamination by the host genome was filtered out by mapping reads 
against the human reference genome (T2T-CHM13v2.0) with 
bowtie2. Microbial species identification and quantification was 
estimated according to both human gut reference gene catalog (IGC2, 
10.4 M genes, Wen et al., 2017) and human oral gene catalog (8.4 M 
genes, Le Chatelier et al., 2021) with the METEOR software (Pons 
et al., 2010), and clustered into Metagenomic Species Pangenomes 
taxonomically and functionally annotated (Plaza Oñate et al., 2019).

3.2. Evaluation of the preprocessing steps

We evaluated the effect of two typical preprocessing steps on the 
performance of various standard ML algorithms implemented in a 
caret workflow (Kuhn, 2015): RF—Random Forest, PLS—Partial least 
square, Earth—spline regression (can be applied to classification also), 
Pam—Partition around medoids (normally a clustering algorithm), 
Glmboost—Gradient Boosting with Component-wise Linear Models, 
Glmnet—Generalized linear model with elastic net penalty, GBM—
Gradient boosting machine. The data were split in a training set (75%) 
used to tune the hyperparameters of the models and a test set (25%) 
used to evaluate the model performance. The split of the data has been 
repeated 100 times (Fromentin et al., 2021).

We first applied a fixed threshold on abundance values (retained 
features with a total abundance across samples >5e-06). A variable 
threshold of prevalence across samples in [0–0.5], with 0.05 steps was 
applied to remove features with low prevalence. Figure 2 shows the 
sensitivity and specificity results for the two best performing models: 
GBM and RF. We observed that a small filtering slightly improved the 
performances both on accuracy and computing resources criteria. 
However, it is noteworthy that no filtering on prevalence at all is also 
a valid option in terms of performances. As expected, strong filtering 
on prevalence (>0.15–0.2) decreases the sensitivity for GBM and the 
specificity for RF. Additional analyses of other microbiome datasets 
(Supplementary material 1 and Supplementary Figure S1), showed 
that performance was not affected by 0.2 prevalence filter with regard 
to 0 prevalence filter in RF models. However, other models such as 
PLS-DA got better classification error rates when 0.2 prevalence filter 
was applied. The results from these additional datasets indicate that 
the effect on performance of the low-abundance filter depends both 
on the ML model applied and on the characteristics of each dataset, 
being the level of sparsity of the database a key factor to consider. All 
in all, this fact highlights the importance of including the 
low-abundance filter as another hyperparameter to tune while training 
the model by cross-validation strategies.

Figure 3 shows the sensitivity and specificity results for all the 
models with or without the CLR logratio transformation before the 
modeling process. We observed that for the majority of the models, 
the CLR transformation decreased the sensitivity of the models, and 
it was particularly striking for the Glmnet and Glmboost models. It 
only improved the sensitivity for the PLS and Earth models. It 
improved the specificity of the PLS and Glmboost models, 
nevertheless, RF and GBM remained the top performing models. 

TABLE 3  Compilation of datasets from nine distinct countries, including 
2,090 human stool samples characterized via shotgun metagenomic 
sequencing.

BioProject Country Nb all Nb CRC

PRJDB4176 Japan 645 286

PRJEB10878 China 128 74

PRJEB12449 USA 104 52

PRJEB27928 Germany 82 22

PRJEB6070 France 156 53

PRJEB6070 Germany 43 38

PRJEB7774 Austria 156 46

PRJNA389927 USA 56 26

PRJNA389927 Canada 28 2

PRJNA397112 India 110 0

PRJNA447983 Italy 140 61

PRJNA531273 India 30 30

PRJNA608088 China 18 6

PRJNA429097 China 194 98

PRJNA763023 China 200 100

All cohorts 9 countries 2090 894

19

https://doi.org/10.3389/fmicb.2023.1261889
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Papoutsoglou et al.� 10.3389/fmicb.2023.1261889

Frontiers in Microbiology 12 frontiersin.org

In contrast, results obtained from other datasets 
(Supplementary material 1 and Supplementary Figure S1) pointed out 
that, in general, CLR transformation rendered a better performance 
when compared to TSS normalization followed by logarithmic 
transformation. Again, RF was less affected by the type of 
normalization applied than PLS-DA. Taken together, as with threshold 
filtering, it is important to cross-validate transformation options in 
order to enhance the predictive performance and extract the best 
modeling pipeline.

3.3. Evaluation of feature selection and 
predictive modeling

To evaluate the performance of different ML pipelines we used the 
JADBio automl approach. JADBio is specifically designed for 

biomedical data and is able to fully automate the production of 
customizable ML pipelines that simultaneously integrate 
preprocessing, feature selection and predictive modeling algorithms 
(Table  4). Specifically, for preprocessing, we  performed 
standardization. For feature selection we evaluated LASSO regularized 
regression (Tibshirani, 1996) and the Statistical Equivalent Signatures 
(SES) algorithm (Lagani et al., 2017). Both methods can handle the 
high-dimensionality of microbiome data. Regarding sample size and 
expected signature size, LASSO tends to perform better when sample 
sizes are larger but returns a greater number of features. SES, on the 
other hand, drawing inspiration from causal modeling theory, 
demonstrates better performance at low sample sizes and leads to 
smaller feature subsets at the expense of predictive performance. SES 
also produces multiple signatures that exhibit statistically 
indistinguishable predictive performances. For modeling, 
we employed well known linear/interpretable algorithms such as ridge 

FIGURE 2

Sensitivity and specificity of the two best performing ML models (GBM and RF) on 100 data split repetitions applied on the CRC dataset with a range of 
filter on prevalence (shades of blue) or no filter on prevalence (gray).

FIGURE 3

Sensitivity and specificity of 7 ML models across 100 data split repetitions applied on the CRC dataset with a CLR logratio transformation before (blue) 
or no transformation (red).
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regression (Hoerl and Kennard, 1970) and decision trees (Breiman, 
2017) as well as non-linear ones such as random forests (Breiman, 
2001) and SVMs (Chang and Lin, 2011). To find the best model, 
we  employed grid search and the Generalized Cross-validation 
approach, while the BBC-CV algorithm was used to correct for testing 
multiple ML pipelines. More details about the architecture can 
be found in Tsamardinos et al. (2022).

Table  5 summarizes the results from analyzing the collected 
shotgun data. Initially, our aim was to uncover any classification bias 
from technical or demographic covariates, through feature selection. 
Indeed, when we  employed JADBio on the complete, all-cohorts, 
dataset we observed that the cohort ID/country exhibited predictive 
power, indicating inherent variations in gut species between different 
countries (Figure 4A). Furthermore, we found that the timepoint of 
measurement, the instrument model, and the westernization status of 
samples also possessed predictive value, pointing toward the existence 
of batch effects (the full description of the metadata features used in 
the models are provided in Supplementary Table S1).

To address these variabilities, we conducted a series of subsequent 
analyses by splitting the data into the different cohorts. Feature 
selection identified that the timepoint feature was predictive in the 
Japanese cohort, the instrument model in the German cohort and the 
westernization status in the Indian cohort (Table  5). Therefore, 
we repeated the analysis on the entire sample set after excluding the 
problematic samples coming from these cohorts. This time, the 
revised data we divided into two parts: one for training and the other 
for testing. The revised findings indicated the absence of latent 
variabilities, suggesting that our modifications successfully controlled 
for the previously observed effects.

The best performing pipeline on the revised data was a 
combination of SES and random forests, consistent with the majority 
of separate cohort analyses. A total of 596 different pipelines were 
evaluated by a repeated 10-fold CV approach (see 
Supplementary report for details). As shown in Figure 4B, pipelines 
incorporating SES for feature selection demonstrated higher average 
performance during training than those with LASSO. Among the 
predictive modeling algorithms tested, Random Forests exhibited the 
highest predictive performance, followed by Ridge Logistic Regression. 
Figure 5A illustrates the ROC curves of the best performing model. 
The achieved performance in terms of AUC on the test data was 0.758; 
on par with the training performance of 0.777 (C.I. [0.708, 0.822]). 
Figure 5B also presents the out-of-sample predictions during training.

In terms of feature selection, the best performing pipeline 
resulted in a signature comprising 70 features, primarily consisting 
of microbiome species, with the addition of gender. Figure  5C 
illustrates the importance of these features in predicting the 
outcome (see Supplementary Table S2 for the corresponding 
species names). While SES and RFs demonstrated superior 
performance in most of the analyses, Table 5 reveals the significant 
variation in predictive performances and generated signatures that 
was found. The detailed taxonomy of the species involved is 
provided in Supplementary Table S3. Variability in performance 
was also highlighted by Wirbel et  al. (2019) where only the 
predictive performance on several cohorts was examined. This 
suggests the need for further investigation into the specificity of 
these microbiome signatures. Interestingly, however, 20 species 
present in the revised dataset’s signature were also found in the 
signatures generated when analyzing each cohort independently, 
indicating their potential importance across diverse 
geographic communities.

Among the selected species in the revised dataset’s signature, their 
relevance is in agreement with previous reports in the literature 
regarding their predictive role in CRC. In particular, considering the 
top five most important species identified for the revised dataset, 
excluding gender (Figure  5C), Fusobacterium gonidiaformans 
(msp_1081) was detected in colorectal carcinoma relative to normal 
colon (Castellarin et  al., 2012; Kostic et  al., 2012), and found to 
be enriched in adenomas (Gevers et al., 2014). Several Clostridium 
species (msp_0578) have been associated with CRC (i.e., Clostridium 
symbiosum, Clostridium hylemonae, and Clostridium scindens) (Zeller 
et  al., 2014). In addition, an increased risk of CRC was found in 
patients with bacteremia from Clostridium septicum, Clostridium 
perfringens or other species, such as Fusobacterium nucleatum and 
Peptostreptococcus species (Kwong et al., 2018). Christensenellales 
(msp_0622) has shown to be associated with both host genetic status 
CRC and risk (Waters and Ley, 2019), while Streptococcus thermophilus 
(msp_0833) has been identified to be  depleted in patients with 
colorectal cancer (Qing et  al., 2021). Regarding Fusobacterium 
nucleatum subspecies animalis (msp_0610), also selected when 
independently analyzing the Austrian, French, German and Japanese 
cohorts, Fusobacterium nucleatum was associated with stages of 
colorectal neoplasia development, colorectal cancer and disease 
outcome (Flanagan et al., 2014).

Figure 5D visualizes how well the selected features separate the 
two classes on a low dimensional space representation. Furthermore, 
it indicates a few samples that could be considered as outliers and 
would need further investigation.

Figure 6A displays the ROC curves of the best interpretable model 
on both training and test sets. This model, based on Ridge Regression, 
demonstrates performance that is comparable to the best-performing 
model (training AUC 0.754, C.I. [0.693, 0.811], test AUC 0.731). The 
linear nature of the predictive algorithm enables direct interpretation 
of the generated model. In Figure  6B, the species selected by the 
interpretable model are showcased alongside their corresponding 
linear coefficient values in the log-odd formula.

For instance, the identified association of Peptostreptococcus 
stomatis (msp_1327) corroborates findings from the French cohort’s 
original data publication (Zeller et  al., 2014). Furthermore, while 
msp_0937 corresponds to an unclassified Duodenibacillus species, it is 
noteworthy that Duodenibacillus massiliensis is linked with treatment 

TABLE 4  Algorithms used for comparative evaluation of ML pipelines.

Algorithm Used for

Standardization Preprocessing

LASSO (Single) feature selection

SES (Multiple) feature selection

Decision trees Predictive modeling

Ridge regression Predictive modeling

Random forests Predictive modeling

Support vector machines Predictive modeling

Generalized cross-validation Performance estimation

Grid search with heuristics Configuration space search

BBC-CV Performance correction
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TABLE 5  Summarized results from the analysis of the collected CRC shotgun datasets with 2014 features using JADBio.

Cohort Samples Training 
AUC

Validation 
AUC

Feature 
selection

Predictive 
algorithm

Report 
link

Features

Austrian 109 0.90 SES RF Report 1

msp_0041, msp_0610, msp_1600, msp_1721, 

msp_0304,msp_0376, msp_0831, msp_0417, 

msp_0869, msp_1017, msp_0350, msp_1101a, 

msp_0717, msp_0215, msp_1176b, msp_1587a, 

msp_1195b

French 114 0.79 SES RF Report 2

msp_0024, msp_0554, msp_0006, msp_1158, 

msp_1327, msp_0610, msp_0800, msp_0168, 

msp_1402, msp_0350, msp_0835, msp_0317a, 

msp_1,193, msp_0541b, msp_1037, msp_1060ca, 

msp_1213b

Chinese 128 0.74 SES RF Report 3

age, msp_0033a, msp_0990, msp_1028cb, 

msp_0468, msp_0044, msp_0457, msp_0713, 

msp_0235, msp_0178, msp_1206, msp_0236, 

msp_0318, msp_0126, msp_0542, msp_0639, 

msp_0864, msp_1603c, msp_0154, msp_1901a, 

msp_1193b

Italian 113 0.63 SES RF Report 4

msp_1234, msp_0258, msp_0100, msp_0275, 

msp_1489c, msp_0562, msp_0199a, msp_0338, 

msp_0340, msp_0125b, msp_0369aa, msp_0215b, 

msp_0906b

Indian 140 1.00 LASSO RF Report 5
study_accession, age, msp_0027, msp_0128, 

msp_0258, msp_0585, msp_0841, msp_1459

German 125 0.98 SES RF Report 6

HQ_clean_read_counta, msp_1234, msp_0722, 

instrument_model, msp_0610, msp_1018, 

msp_1428, mapped_read_counta

USA 104 0.64 SES SVM Report 7

msp_0147, msp_1293, msp_1522, msp_0679a, 

msp_0035, msp_1,193, msp_0766, msp_0747, 

msp_1,038, msp_0083, msp_1850, msp_0566, 

msp_0180, msp_1069b, msp_1621, msp_1241, 

msp_0845, msp_0854a, msp_1110b

Japanese 577 0.69 SES RF Report 8

timepoint, msp_1327, msp_0003, msp_0749, 

msp_1315, msp_0132, msp_0935, msp_0436, 

msp_0574c, msp_0468, msp_0152, msp_0126, 

msp_1276, msp_1049, msp_1004, msp_1156, 

msp_0887, msp_0323, msp_0525, msp_0118, 

msp_1590c, msp_1028c, msp_0635, msp_0062, 

msp_0610

All cohorts 1,410 0.85 SES RF Report 9

study_accessiona, timepoint, age, msp_0610, 

msp_1327, msp_1112, msp_0454, msp_0668, 

msp_0910, msp_0129, msp_0128, msp_1,193, 

msp_0305, msp_0054, msp_0757, msp_0100, 

msp_1028c, msp_1682c, msp_0357, msp_1172, 

msp_0032, msp_0297, msp_0105, msp_1158, 

msp_0389, msp_0935, msp_1173c, msp_1946, 

msp_0546, msp_1234, msp_0574c, msp_0468, 

msp_0110, msp_0833, msp_0484, msp_1790, 

msp_1188, msp_0172, msp_0864, msp_1600, 

msp_0853c, msp_0831, msp_0258, msp_0077, 

msp_0126, msp_0062, msp_1156, msp_0204, 

msp_0034, msp_0542, instrument_modela, 

westerniseda, countrya

(Continued)
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response for patients with rectal cancer (Jang et al., 2020). Similarly, 
concerning the unknown msp_1245 (Parvimonas species), Parvimonas 
micra together with Fusobacterium nucleatum (msp_0574c), 
Peptostreptococcus stomatis (msp_1327), and Akkermansia muciniphila 
were found to be  over-represented in CRC patients compared to 
non-CRC controls (Osman et al., 2021). In another confirmatory study 
Peptostreptococcus anaerobius (msp_0935) has been implicated in 
modulating colorectal carcinogenesis and tumor immunity. 
Additionally, Prevotella intermedia (msp_1028) and Fusobacterium 
nucleatum (msp_0574c) were found to act synergistically, enhancing the 
migration and invasion of CRC cells (Long et al., 2019; Lo et al., 2022).

The sign of the coefficient indicates whether the species is considered 
a risk factor or not by the model. For instance, Ruthenibacterium 
lactatiformans (msp_0172) has been previously identified as putative 
candidate non-invasive biomarkers in CRC patients (Trivieri et al., 2020). 
Figure  6C illustrates how its abundance influences the prediction. 
Specifically, the greater the abundance, the more the risk for a sample to 
be  classified as a patient case (P). In contrast, species Clostridiales 
bacterium (msp_0835) is found to have a protective effect against CRC, 
as evidenced by its ICE plot (Figure 6D). The higher its abundance, the 
lower the probability to be in the patient class. Indeed, a recent study 
demonstrated the effectiveness of this species in both prophylactic and 
therapeutic contexts speculating its applicability to primary prevention 

in patient populations with a strong genetic predisposition or family 
history of CRC (Montalban-Arques et  al., 2021). Taken together, 
combining feature selection results with interpretable modeling and 
visualization techniques, meaningful conclusions can be drawn about the 
predictive significance of different species.

4. Discussion

Our objectives in this work have been to: (1) review the 
challenges for an analyst when performing predictive modeling of 
microbiome data, (2) create a comprehensive set of practical 
advices, and (3) explore opportunities for automating various 
aspects of ML analysis to construct pipelines suitable for clinicians 
and non-experts in translational applications. To achieve these 
goals, we  considered a typical ML workflow that starts after 
microbiome-related profiles are organized in a two-dimensional 
table format, such as OTUs, ASV, or MSP (metagenomic species) 
tables. This process involves multiple steps, including data 
preprocessing (e.g., normalization, filtering), feature selection, 
predictive modeling, and performance estimation. Our objective 
was to address the challenges associated with each of these steps 
considering diverse algorithms, their combinations, as well as our 

TABLE 5  (Continued)

Cohort Samples Training 
AUC

Validation 
AUC

Feature 
selection

Predictive 
algorithm

Report 
link

Features

Revised 

data (best 

perf.)

1,117 0.77 0.758 SES RF Report 10

msp_1081, gender, msp_0578, msp_0622, 

msp_0833, msp_0610, msp_0100, msp_1579c, 

msp_0676, msp_0236, msp_1010, msp_0317, 

msp_0757, msp_0910, msp_0496, msp_0574c, 

msp_1327, msp_1028c, msp_0938, msp_0126, 

msp_0129, msp_1188, msp_0172, msp_1069, 

msp_0257, msp_0835, msp_1324, msp_1682c, 

msp_0864, msp_1102, msp_1467, msp_1245, 

msp_0668, msp_1158, msp_0305, msp_0937, 

msp_1671c, msp_1790, msp_0110, msp_1754, 

msp_0062, msp_0814, msp_0853c, msp_1322, 

msp_1217, msp_1156, msp_1036, msp_0805, 

msp_1712, msp_1231, msp_0454, msp_0935, 

msp_1657, msp_1234, msp_0076, msp_1487, 

msp_1570, msp_1042, msp_0118, msp_1112, 

msp_0457, msp_1048, msp_0232, msp_0542, 

msp_0468, msp_0258, msp_1789, msp_1173c, 

msp_0347, msp_0089

Revised 

data (best 

inter.)

1,117 0.75 0.73 SES LR Report 11

msp_0100, msp_0118, msp_0126, msp_0129, 

msp_0172, msp_0257, msp_0258, msp_0317, 

msp_0468, msp_0542, msp_0574c, msp_0610, 

msp_0676, msp_0805, msp_0833, msp_0835, 

msp_0910, msp_0935, msp_0937, msp_1028c, 

msp_1112, msp_1156, msp_1158, msp_1188, 

msp_1231, msp_1245, msp_1327, msp_1570, 

msp_1754, msp_1789

Full description of the metadata and species features can be found in Supplementary Tables S1, S2. The variable health_status was set as the outcome to be predicted with classification (binary) 
as the analysis type. Samples from the same country were merged together. Detailed signatures, including the lists of selected features, can be accessed via the links to the respective JADBio 
analysis reports. Superscript letters denote statistical equivalence of features, i.e., replacing one feature with another feature labeled with the same superscript letter will, on average, yield the 
same predictive performance. RF, Random Forest; SVM, Support Vector Machine; LR, Logistic Regression.
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capacity to interpret and explain their results. Through the 
utilization of benchmark dataset(s) and automated machine 
learning techniques (AutoML), we  were able to derive several 
noteworthy conclusions regarding the optimal utilization of ML 
methods toward disease diagnosis, prognosis, and 
biomarker discovery.

In the context of data preprocessing, a major challenge lies in 
selecting the appropriate normalization and filtering approaches due 
to variations in sampling depth, data sparsity (represented by an 
excess of zeros in the tables), and data compositionality. To mitigate 
sampling variability, rarefaction is used to remove samples. However, 
this may decrease statistical power and does not address 
compositionality (McMurdie and Holmes, 2014). Alternatively, 
researchers incorporate the sampled variation as covariates in data 
analysis. On the other hand, sparsity hampers models that rely on 
Gaussian assumptions. Certain algorithms, like decision trees and 
random forests, can handle sparsity, while others may fail. Filtering 
rare features and removing near-zero variance ones is a successful 
strategy, outperforming imputation methods in the context of 
logarithmic transformations that can introduce aberrant observations 
and depend on imputation algorithm quality. Finally, regarding 

normalization, contemporary sequencing cannot capture the total 
number of bacterial species, only their proportions. Compositional 
analysis is the appropriate mathematical framework, but its 
application and impact on ML models are still actively researched 
(Greenacre et al., 2021; Hron et al., 2021). From our observations, 
the CLR transformation seems to be useful for the PLS regression, 
although it was not in the top performing models. For the other 
models, the CLR transformation globally decreased the 
performances. However, these observations are based on the specific 
data set used in our experiments, and further evaluation will 
be necessary to assess their generalizability to other data sets before 
providing general recommendations regarding the choice 
of transformations.

For feature selection and predictive modeling, the primary 
challenges revolve around the high dimensionality of the data and the 
complex interactions inherent to microbial species, including 
co-occurrence and partial correlation. Building models that 
incorporate the thousands of microbiome features in a multivariate 
manner while maintaining predictive performance with limited 
sample sizes is undeniably demanding. It requires the utilization of 
scalable methods that account for the intricate dependency structure 

FIGURE 4

(A) Features detected by feature selection that generate classification bias. (B) Comparative evaluation of tested pipelines.
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of microbiome data, as well as appropriate performance estimation 
protocols to generate an optimal final model. Neglecting these 
considerations can result in overestimated conclusions and misleading 
insights. Using the JADBio autoML approach our observations 
indicate that multivariate feature selection methods such as the 
Statistically Equivalent Signatures algorithm combined with Random 
Forests can yield optimal balance between performance and results 
interpretability and explainability. These suggest a good starting point 
for an analyst.

However, it must be acknowledged that no single ML pipeline 
can universally accommodate all predictive modeling scenarios. As 
demonstrated here, there are several algorithms that account for 

the biological, methodological, and technical challenges in 
microbiome data. Additionally, different ML methods with 
different strengths and limitations exist for addressing the 
dimensionality and complexity of the problem and the underlying 
patterns in the data. Therefore, a highly advisable approach is to 
explore a diverse range of methods at each stage of the ML pipeline, 
and communicate the results according to the open science 
principles to facilitate transparency, verification, and reuse. Then, 
only through rigorous performance evaluation can the optimal 
predictive model and biomarkers be  effectively identified, 
specifically tailored to address the particular microbiome problem 
at hand.

FIGURE 5

(A) Train (blue) and test (green) AUCROC after analyzing the revised dataset. ROC Curve considering CRC patients (P) as the positive class. (B) Out-of-
sample (training) predictions for Healthy (H) and CRC patients class (P). (C) Feature importance defined as the percentage drop in predictive 
performance when the feature is removed from the model. Gray lines indicate 95% confidence intervals. (D) Supervised PCA on the selected features 
depicts the model performance in separating the two classes and also outlier samples.
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The rapid development of machine learning (ML) techniques has opened up 
the data-dense field of microbiome research for novel therapeutic, diagnostic, 
and prognostic applications targeting a wide range of disorders, which could 
substantially improve healthcare practices in the era of precision medicine. 
However, several challenges must be addressed to exploit the benefits of ML in 
this field fully. In particular, there is a need to establish “gold standard” protocols 
for conducting ML analysis experiments and improve interactions between 
microbiome researchers and ML experts. The Machine Learning Techniques 
in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a 
European network established in 2019 to promote collaboration between 
discovery-oriented microbiome researchers and data-driven ML experts 
to optimize and standardize ML approaches for microbiome analysis. This 
perspective paper presents the key achievements of ML4Microbiome, which 
include identifying predictive and discriminatory ‘omics’ features, improving 
repeatability and comparability, developing automation procedures, and 
defining priority areas for the novel development of ML methods targeting the 
microbiome. The insights gained from ML4Microbiome will help to maximize 
the potential of ML in microbiome research and pave the way for new and 
improved healthcare practices.

KEYWORDS

microbiome, machine learning, artificial intelligence, standards, best practices

1. Introduction

In the recent decade, the human microbiome has been 
characterized in great detail in several large-scale studies as a 
critical player in many human diseases and conditions. As more 
associations between the microbiome and disease phenotypes are 
elucidated, the research focus is expected to shift towards 
identifying the microbiome-related biomarkers for disease 
diagnostics, prognostics, and therapeutics (Manor et al., 2020). 
Nevertheless, microbiome data analysis is challenging due to its 
intrinsic characteristics like compositional nature, high 
dimensionality (often more features than samples), technical 
variability, missing data, and integration needs. Another challenge 
in microbiome data analysis is the interpretation of statistical 
models, as microbiome data often contains many highly correlated 
variables. Machine Learning (ML) methods offer great potential 
to further progress microbiome science, but these obstacles first 
need to be  mitigated. Thus, a dynamic collaboration between 
microbiome and ML researchers is pivotal. Some initiatives have 
made more general efforts to provide ML guidelines and standard 
recommendations for data management, preprocessing, analysis 

and integration, like the ELIXIR Machine Learning Focus Group1 
(Walsh et  al., 2021) or the ISO committees (ISO/TC 276 
Biotechnology; ISO/IEC JTC 1/SC 42 Artificial intelligence; ISO/
IEC TS 4213:2022 Assessment of Machine Learning Classification 
Performance).2

Moreover, while not explicitly focused on ML, the ongoing 
International Human Microbiome Coordination and Support Action 
(IHMCSA3) maps the necessary steps for innovation and builds consensus 
on priorities and means for the future of microbiome science and its 
translation. This includes standardization of microbiome analysis methods, 
which in its extension, also includes ML. The adoption of FAIR principles 
(Findable, Accessible, Interoperable, Reproducible) by ML tools and 

1  https://elixir-europe.org/focus-groups/machine-learning

2  https://standards.globalspec.com/std/14568212/ISO/IEC%20TS%20

4213#:~:text=ISO%2FIEC%20TS%204213%20October%201%2C%202022%20

Information%20technology,performance%20of%20machine%20learning%20

models%2C%20systems%20and%20algorithms

3  https://humanmicrobiomeaction.eu/
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models is also being approached by FAIR4ML.4 However, these ML-focused 
initiatives are general and do not consider microbiome data or their 
characteristics. Scientific fields for which the study of human microbiota is 
essential, such as health and nutrition, have highlighted the need to join 
forces in the standardization and interoperability to integrate microbiome 
data with ML tools (Walsh et al., 2021; Balech et al., 2022). The European 
Cooperation in Science and Technology (COST) Action 
ML4Microbiome5 - Statistical and machine learning techniques in human 
microbiome studies (CA18131) - started in 2019 to create a productive 
symbiosis between discovery-oriented microbiome researchers and data-
driven ML experts to prompt the optimization and standardization of the 
best practice use of ML techniques for human microbiome research. Up to 
now, ML4Microbiome has gathered researchers from 35 different European 
countries, attracted and trained a large number of young scientists and 
published various scientific articles. The following sections discuss the 
Action’s network research topics, elaborate on their relevance to the 
research challenges, and briefly overview more relevant achievements.

1.1. The ML4Microbiome action plan and 
challenges

To accomplish its goals, the ML4Microbiome network has designed 
an operational plan based on the coordinated and integrated work of four 
working groups (WGs), each addressing specific objectives (Figure 1). 
Several specific technical challenges have been identified (Moreno-Indias 
et al., 2021). Sequence-based microbiome studies use different types of 
data (16S rRNA gene or ITS amplicons/shotgun metagenomics or 
metatranscriptomics). Due to their different origin and types, separate 
modeling approaches are required. Moreover, microbiome data have 
large inter-individual variability and elevated noise levels, which Gaussian 
or log-normal models do not approximate well, providing challenges for 

4  https://www.rd-alliance.org/groups/fair-machine-learning-fair4ml-ig

5  https://www.ml4microbiome.eu/

traditional statistical methodologies (Voigt et al., 2015). There are more 
features than samples/observations (e.g., 100 studied humans may each 
have 1,000 microbial species and 1,000,000 microbial genes). This makes 
the application of ML methods challenging due to the curse of 
dimensionality, whereby huge data sparseness compromises the 
identification of data patterns or rules. Microbiome features often exhibit 
a complex dependency structure (taxonomic hierarchy or genes 
co-varying in abundance as encoded on the same genome, plasmid or 
phage). The relative abundance of each taxon is inherently related to the 
abundance of all other taxa, making it difficult to identify differentially 
abundant taxa (Weiss et al., 2017).

Microbial communities are also highly diverse, with many 
low-abundance taxa present only in a few samples. This can lead to high 
sparsity levels in the data, making it difficult to estimate the abundance of 
rare taxa accurately. Microbiome data is often compositional because most 
current studies have access only to the relative abundance of one microbial 
taxon (Gloor et al., 2017). In such cases, the abundance of one taxonomic 
group is constrained by the abundance of other taxonomic groups in the 
sample. Analyzing microbiome data as compositional data requires 
specific statistical approaches that account for this characteristic and 
address its unique challenges. Class sizes may be imbalanced (e.g., fewer 
disease samples than controls) (Ahlawat et al., 2021). An imbalanced class 
distribution coupled with high dimensional data poses a significant 
drawback for applying ML algorithms and results (Kim and Kim, 2018).

1.2. The current state of ML applications for 
microbiome data analysis

To assess the state-of-the-art of ML applications in microbiome 
data analysis, Working Group 1 (WG1) conducted a literature review 
accessible across the web application Machine Learning meTagenomic 
REsearch Scraper (MoLTRES6). The main aim of the tool is to provide 

6  http://imdeafoodcompubio.com/index.php/moltres/

FIGURE 1

ML4Microbiome COST Action’s Working Groups. The figure shows the organization of the COST Action ML4Microbiome in four Working Groups (WGs), each 
committed to specific objectives. WG1 evaluated the state-of-the-art ML methods and software applied in human microbiome studies to define priority areas 
for novel machine learning and statistics applications that better address the specific challenges of human microbiome analysis. WG2 aimed to collect (from 
external projects and repositories) datasets describing microbiomes and characteristics of the underlying cohorts to test which ML methods are most robust 
and comparable, to provide more optimized parameters for the use of these methods, to develop novel ML methodologies and to implement a DREAM 
Challange on clinical data. WG3 investigated opportunities for automating the established Standard Operating Procedures (SOPs) into pipelines for translational 
use by clinicians and non-experts. WG4 goal was to bridge existing gaps between ML (bioinformaticians, statisticians, computer-science scientists) and 
microbiome experts through the organization of meetings, workshops, conferences, training schools, dissemination and communication activities.
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a user-friendly interface for centralized searching and storing ML 
studies on human microbiome data, encompassing feature selection, 
biomarker identification, disease prediction and treatment. The review 
highlighted a steady increase in the utilization of ML methods for 
human microbiome analysis in recent years. Most studies (>70%) 
using ML employed 16S rRNA gene amplicon sequencing data as the 
input data type, while 27% used only shotgun metagenome data. The 
most frequently used ML methods were random forest, logistic 
regression, and support vector machines. While the former method 
remained the most popular, the use of logistic regression and support 
vector machine algorithms has increased. These results were published 
by ML4Microbiome (Marcos-Zambrano et al., 2021), and subsequent 
updates by WG1 members were incorporated into MoLTRES.

1.3. Benchmark datasets and online 
repositories

When analyzing microbiome data, it is often helpful to create 
reference datasets to test existing or new ML tools, whether separate 
or combined. The importance of validation sets and gold standards is 
largely discussed in Papoutsoglou et al. (2023). Pasolli et al. (2016) 
have demonstrated that the performance of ML models may vary 
substantially depending on the disease addressed in the dataset. For 
this reason, Working Group 2 (WG2) and Working Group 3 (WG3) 
decided to establish a benchmark dataset based on a single disease for 
which a reasonable amount of public data was available. The choice 
has been made on colorectal cancer, for which 2090 human stool 
samples have been characterized by shotgun metagenomic sequencing 
from 13 public cohorts spanning nine countries. This data provides 
the gut microbiota composition in healthy controls and patients with 
adenoma or colorectal cancer. The shotgun dataset is publicly available 
(Barbet et al., 2022). To complement the shotgun-based benchmark 
dataset, a 16S rRNA gene sequencing dataset of samples from 
colorectal cancer patients and available metadata was curated by WG3 
members, including n = 709 samples from previous studies (Zackular 
et al., 2014; Zeller et al., 2014; Baxter et al., 2016). The final curated 
dataset is available in the Zenodo repository (Marcos-Zambrano 
Judith, 2022). WG2 was also responsible for defining and evaluating 
the ML4Microbiome DREAM Challenge.7 The challenge was designed 
to predict incident heart failure risk in a large population-based study 
of Finnish adults, FINRISK 2002 (Salosensaari et al., 2021), using a 
combination of gut microbiome data and clinical variables. The results 
of this DREAM Challenge, completed by 32 participants (seven 
teams), will be published separately (manuscript in preparation).

1.4. Optimization and standardization of 
machine learning methods - challenges 
and solutions

For the optimization and standardization of ML methods, WG3 
considered a typical ML workflow that starts after microbiome-related 
profiles are organized in a two-dimensional table format of features, 

7  https://www.synapse.org/#!Synapse:syn27130803/wiki/616705

such as MSP (Metagenomic Species) or Amplicon Sequence Variants 
(ASV) tables for shotgun or 16S rRNA amplicon data, respectively. 
This process involves the following steps, (a) data preprocessing (e.g., 
normalization, filtering), (b) feature selection, (c) predictive modeling, 
and (d) performance estimation. Our objective was to address the 
challenges associated with each of these steps considering diverse 
algorithms, their combinations, and our capacity to interpret and 
explain their results. Although computational simulations may help 
estimate expectations and variability under uncertain situations (see, 
e.g., Gao et al., 2023), we explored benchmark data from the public 
domain spanning 16 different cohorts from nine countries and 
derived several noteworthy conclusions.

In data preprocessing, a major challenge lies in selecting the 
appropriate approaches due to variations in sampling depth, data 
sparsity (represented by an excess of zeros in the tables) and data 
compositionality. To first mitigate sampling variability, rarefaction is 
sometimes used to remove samples. However, this has remained a 
controversial practice since rarefaction reduces statistical power 
(McMurdie and Holmes, 2014), but it also provides the means to deal 
with uncertainties related to variations in read counts that are otherwise 
challenging to control (Schloss, 2023). Alternatively, researchers 
incorporate the differences in library size (number of reads per sample) 
as covariates in the models designed to consider offsets. Sparsity further 
hampers models that rely on Gaussian assumptions (e.g., linear models), 
while other models do not have distributional assumptions (e.g., 
Random Forests, Boosting models). In addition, this sparsity can lead 
to near-zero variance predictors that turn out to be  zero variance 
predictors during the cross-validation process. Our results indicated 
that filtering out rare features and removing near-zero variance ones is 
a successful strategy, outperforming imputation methods in logarithmic 
transformations. Moreover, standard sequencing techniques cannot 
capture the total number of bacterial species but only their proportions. 
For this reason, compositional analysis is the appropriate mathematical 
framework (Gloor et al., 2017), but its application and impact on ML 
models are still actively investigated (Greenacre and Blasco, 2021). For 
example, we found that the CLR transformation can be useful; however, 
its generalizability to other data sets should be investigated. Therefore, 
due to the huge variability of approaches and frequently evolving 
methodologies, we  are against giving precise and definitive  
recommendations.

For feature selection and predictive modeling, the primary 
challenges revolve around the high dimensionality of the data and the 
complex interactions inherent to microbial species, including 
co-occurrence and partial correlation. Building models that 
incorporate the thousands of microbiome features in a multivariate 
manner (e.g., principal component regression, partial least squares 
models) while maintaining predictive performance is undeniably 
challenging. Boosting or Random Forest models often provided the 
best performances. Interestingly, using the JADBio autoML approach, 
we  observed that multivariate feature selection through the 
Statistically Equivalent Signatures algorithm combined with Random 
Forests could yield an optimal balance between performance and 
results interpretability and explainability (Tsamardinos et al., 2022). 
We  also emphasize that appropriate performance estimation 
protocols are crucial to avoid overestimated conclusions and 
misleading insights. A summary of methods that can be used for each 
one of the steps of the ML workflow is reported in Table  2 of 
Papoutsoglou et al. (2023).
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A novel multi-view learning method was developed based on 
boosting and multi-armed bandits. The goal was to simultaneously 
exploit (possibly incomplete) 16S and shotgun data about the same 
individuals, as well as the features identified through multiple 
preprocessing pipelines. The obtained results showed significant 
benefits towards an automated selection and exploitation of multiple 
views/pipelines for the analysis of microbiome data 
(manuscript submitted).

1.5. Community building, networking and 
training: the three key to success

The specific commitments of Working Group 4 (WG4) were to 
bring networking and training opportunities for emerging talents and 
thereby strengthen and build up an excellent scientific and 
technological community, including both ML and microbiome 
researchers. Providing people with opportunities (internal meetings, 
conferences and workshops) to discuss and present ideas and 
experiences was pivotal for establishing collaborations, developing 
new multidisciplinary interactions, attracting young researchers and 
providing them with opportunities for their scientific and professional 
career growth. Thanks to these activities, and despite the interference 
of the COVID-19 pandemic, the ML4Microbiome network expanded 
from the initial 24 member countries to 35 (55% from COST 
Inclusiveness Target Countries), and participants from 57 to 169, 
among which 48% represented by Young Researchers and Innovators 
(<40 years). Some could benefit from Short Term Scientific Mission 
(STMS) grants (16 in total) to work with research teams in different 
countries on ML4Microbiome-related projects with the view to 
publish the results of their activities in peer-reviewed journals.8

In terms of publication output, to date ML4Microbiome members 
have published work on specific ML applications for particular 
diseases, such as Cancer Diagnostics and Therapeutics (Cekikj et al., 
2022), classification of patients with Celiac Disease (Arcila-Galvis 
et al., 2022), Coronary Artery Disease Risk Prediction (Vilne et al., 
2022), novel paradigms in human gut microbiome metabolism 
(Bidkhori et al., 2021), Parkinson’s disease (Rosario et al., 2021), Type 
2 Diabetes (Ruuskanen et al., 2022), oral and related gut diseases (Di 
Stefano et al., 2023), along with systematic or scoping reviews on ML 
applications on microbiome data (Tonkovic et  al., 2020; Marcos-
Zambrano et al., 2021) and its challenges and solutions (Moreno-
Indias et al., 2021) of which all are available from the complete list of 
the Action’s publications on the ML4Microbiome website.

Training schools (TSs) were organized to provide young 
researchers with the proper background knowledge and hands-on 
training in MLs techniques applied to microbiome data. Four Training 
Schools were organized in four different countries, in which 19 
trainers and 125 attendants participated over three-five days. Plenary 
blended learning sessions with keynote speakers were offered, along 
with high-level lectures covering specific ML-microbiome topics 
complemented by practical sessions and workshops. The different 
scientific and geographical backgrounds enhanced multidisciplinary 
discussions and promoted knowledge exchange between academics 

8  https://www.ml4microbiome.eu/research-updates/publications-outputs/

and industry participants, leading to scientific publications (Deutsch 
et al., 2021; Deutsch and Stres, 2021; Deutsch et al., 2022). This also 
helped trainers learn more about the real needs of young researchers 
in such a complex multidisciplinary research field, further sharpening 
the training methods for subsequent TSs. As a result, a syllabus was 
created, funded by one of Action’s STMS, to incorporate ML for 
microbiome analysis into microbiome MSc courses at various 
institutes,9 which previously only addressed read processing, clustering 
methods, diversity analysis and statistical analysis (manuscript in 
preparation). All the training material produced by ML4Microbiome, 
STMS reports, and presentations are freely available from the Action’s 
website (see Footnote 5).

2. Discussion

Currently, microbiome research faces a new bottleneck: its 
translation into a clinical context, addressing risk, diagnosis/
prognosis, and monitoring the effectiveness of therapy. The benefits of 
such applications involve better methodologies for current 
bioinformatics challenges, such as species identification from 
microbiome sequencing data, robust methods for microbiome-
derived predictive models or statistical causal inference, and 
integration of microbiome data with other omics (Feldner-Busztin 
et al., 2023), among many others (and the possible impact of such 
applications in the clinic). Statistical modelling and analysis of 
microbiome-related omics data involve applying various techniques 
and ML algorithms, which ultimately aim to identify associations (and 
ideally causality) between microbial taxa, functional genes, 
metabolites, and host factors (e.g., omics and biochemical variables) 
with health and disease outcomes. We have outlined the challenges of 
such analysis and highlighted the importance of developing and 
optimizing statistical methods and pipelines to handle microbiome 
data’s unique properties for accurate and reproducible 
microbiome research.

Somewhat disappointingly, albeit not unexpected, there is no 
unique ML approach to extract the hidden meaningful information 
beyond the massive microbiome data. Instead, combinations of ML 
tools seem to be  the most promising approach coupled with 
knowledge of the parameters that need tuning. As we advance, the 
application of deep learning (DL), a particular component of ML, to 
microbiome analysis holds significant promise in understanding the 
intricate relationships between microbial communities and their 
functions, as well as their links to various diseases and phenotypes 
(Hernández Medina et al., 2022). We have, however, identified several 
challenges with implementing DL methods for microbiome data 
analysis, which can be extended to any ML model, that first need to 
be  addressed. Firstly, the availability (abundance) and quality of 
microbiome samples and metadata currently limit the collection of 
large and diverse datasets for the training and validation of DL 
models, which are even more dependent on large sample sizes. 
Additionally, there is the issue of interpretability and explainability 
of DL models, which can restrict the biological insights and 
hypotheses that can be derived from them. Since many microbiome 

9  https://microbiome.github.io/OMA/
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analysis applications are related to healthcare, the interpretation of 
the ML models becomes a priority issue, especially for non-ML 
experts. Without understanding how the decision was made and the 
specific reasons for the outcome, many physicians would hesitate to 
trust the ML results, which could have ethical or legal consequences. 
In response, Explainable AI (XAI) methods such as SHAP (Shapley 
Additive exPlanations), DeepSHAP, DeepLIFT, CXplain, and LIME 
(Lipton, 2016; Chen et al., 2022; Molnar, 2022) have been widely used 
in recent years. Analysis of microbiome data, such as personalized 
biomarker identification (Rynazal et  al., 2023) and accurate 
predictions of phenotypes (Carrieri et al., 2021), have also been used 
to improve the understanding of disease mechanisms and 
microbiome associations. Nevertheless, XAI has some limitations as 
many of its models are highly complex and possess many parameters, 
making it difficult to define the factors that affect the explanation. A 
tradeoff between explainability and accuracy, which depends on the 
application area, within which it is determined how critical the 
accuracy of the model is for the end user.

As ML advances, it is also crucial to consider its ethical 
implications, particularly its use in clinical practice. One significant 
ethical consideration in ML and microbiome research is the potential 
for biased or discriminatory algorithms. It is imperative to ensure 
that the data sets used to train ML models are diverse and 
representative of the studied population (Mehrabi et  al., 2021). 
Additionally, the sensitive nature of microbiome data, including 
health and genetic information and their associated metadata, raises 
privacy concerns and the need for informed consent (Shabani and 
Borry, 2018). Therefore, ethical guidelines for data collection, storage, 
and usage must be  implemented to protect individual rights and 
maintain the integrity and validity of the research (Knoppers and 
Chadwick, 2005). As such, ML-enabled microbiome research must 
be conducted responsibly and ethically to ensure that the benefits are 
equitable, sustainable, and safe (Anomaly, 2017). The outcomes 
generated by numerous studies have already impacted the 
microbiome research community. Nevertheless, further advancing 
the field requires increasing collaborative efforts between 
microbiologists and ML experts, including stakeholders in 
non-governmental organizations, health sectors and industry once 
more standardized ML-microbiome applications start to become 
available. The main objective of the COST Action ML4Microbiome 
has significantly improved these opportunities. Thanks to this 
initiative, we have sown the seeds for a dynamic, interconnected, 
cross-disciplinary community that has already contributed to 
advancing research in the field, but with more to come.
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Myasthenia gravis (MG) is a neuromuscular junction disease with a complex 
pathophysiology and clinical variation for which no clear biomarker has been 
discovered. We hypothesized that because changes in gut microbiome composition 
often occur in autoimmune diseases, the gut microbiome structures of patients with 
MG would differ from those without, and supervised machine learning (ML) analysis 
strategy could be trained using data from gut microbiota for diagnostic screening 
of MG. Genomic DNA from the stool samples of MG and those without were 
collected and established a sequencing library by constructing amplicon sequence 
variants (ASVs) and completing taxonomic classification of each representative 
DNA sequence. Four ML methods, namely least absolute shrinkage and selection 
operator, extreme gradient boosting (XGBoost), random forest, and classification 
and regression trees with nested leave-one-out cross-validation were trained using 
ASV taxon–based data and full ASV–based data to identify key ASVs in each data set. 
The results revealed XGBoost to have the best predicted performance. Overlapping 
key features extracted when XGBoost was trained using the full ASV–based and 
ASV taxon–based data were identified, and 31 high-importance ASVs (HIASVs) 
were obtained, assigned importance scores, and ranked. The most significant 
difference observed was in the abundance of bacteria in the Lachnospiraceae and 
Ruminococcaceae families. The 31 HIASVs were used to train the XGBoost algorithm 
to differentiate individuals with and without MG. The model had high diagnostic 
classification power and could accurately predict and identify patients with MG. In 
addition, the abundance of Lachnospiraceae was associated with limb weakness 
severity. In this study, we  discovered that the composition of gut microbiomes 
differed between MG and non-MG subjects. In addition, the proposed XGBoost 
model trained using 31 HIASVs had the most favorable performance with respect 
to analyzing gut microbiomes. These HIASVs selected by the ML model may serve 
as biomarkers for clinical use and mechanistic study in the future. Our proposed ML 
model can identify several taxonomic markers and effectively discriminate patients 
with MG from those without with a high accuracy, the ML strategy can be applied as 
a benchmark to conduct noninvasive screening of MG.

KEYWORDS

myasthenia gravis, amplicon sequence variants, gut microbiota, machine learning, 
extreme gradient boosting, leave one out cross validation
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1. Introduction

Myasthenia gravis (MG) is a neuromuscular junction disorder 
that occurs when autoantibodies bind to components of the 
postsynaptic muscle membrane. The most easily observed symptom 
is fluctuating skeletal muscle weakness (Gilhus, 2016). The 
development of immunomodulating treatments has significantly 
improved the prognosis for patients with MG (Farrugia and 
Goodfellow, 2020; Narayanaswami et  al., 2021). Although well-
established management options for MG are widely available, MG can 
be  difficult to identify because its clinical symptoms often vary 
considerably and may overlap with those of other neurological 
disorders. Furthermore, antibody testing, which is crucial for 
confirming a diagnosis of MG, can be expensive, time-consuming, 
and not readily available and has a high rate of false negatives (Gilhus, 
2016). In addition, relapse-related symptoms and their severity can 
vary greatly by person to person (Hehir and Silvestri, 2018). 
Otherwise, the severity of MG can be difficult to assess in patients with 
positive for acetylcholine receptor antibodies because no clear 
association has been established between the antibody titer and 
disease severity (Berrih-Aknin and Le Panse, 2014). No marker of MG 
has been discovered that can assist in the diagnosis, follow-up, therapy 
response monitoring, and clinical variability determination of 
the disease.

Research revealed that gut microbiomes may contain biomarkers 
that can be used to evaluate several neurological diseases, such as 
Parkinson’s disease (Lin et al., 2019). A growing body of evidence 
indicates that gut microbiota may be associated with immune function 
dysregulation, which can result in several autoimmune diseases 
(Pianta et al., 2017; Shahi et al., 2017; Gopalakrishnan et al., 2018; Qiu 
et al., 2018). Evidence also indicates that T-regulatory cells are present 
in large quantities in the intestinal mucosa and that microbial 
components and their metabolites may be involved in maintaining the 
homeostasis of the immune system (Chen and Tang, 2021). While 
several studies have demonstrated dysbiosis in autoimmune diseases, 
there remains a limited focus on neuromuscular disorders. Recently, 
there has been growing attention to the disturbance of microbiome 
composition and gut dysbiosis in MG, as well as its comorbidity with 
anxiety (Zhang et al., 2022; Kapoor et al., 2023). However, how gut 
microbiota alterations affect the course of such diseases remains 
unclear, and no method for identifying key features in gut microbiota 
has been discovered.

Machine learning (ML) methods, as a strategy of artificial 
intelligence (AI), that can successfully recognize patterns in clinical 
data, it can be efficiently used for triage, screening, diagnosis, and 
biomarker identification, and the joint use of manual and ML 
evaluations can offer more efficient and accurate results than the use 
of one method alone (Liu et al., 2019). Numerous studies have applied 
ML techniques to collect and analyze human microbiome data to 
elucidate the diverse taxonomies and functions of microbial 
communities and their effects on human health. However, no 
one-size-fits-all ML technique is available for analyzing gut 
microbiomes or determining which bacteria is most associated with 
MG. The identification of a simple screening test for the early 
detection of MG would allow for a timely diagnosis and the initiation 
of prompt treatment intervention.

Some studies have reported that the microbiota composition in 
the fecal samples of MG groups differed from those of healthy control 

groups (Moris et al., 2018; Qiu et al., 2018). Gut microbiota has been 
proposed as a potential diagnostic biomarker for MG therapies and 
early detection of progression (Kang et al., 2022; Thye et al., 2022). 
However, few studies have compared the feasibility and potential 
accuracy of applying an ML strategy to evaluate the gut microbiomes 
of individuals with MG. Our study hypothesized that the 
compositions of the gut microbiomes of individuals with and without 
MG would differ and that supervised ML models could be trained 
using gut microbiota data to provide diagnostic screening results for 
MG and predict clinical severity. Our study tested several ML 
analysis methods to identify the most favorable strategy for 
identifying MG. The results indicate that ML-based strategies can aid 
in identifying how microbiomes change in relation to MG and that 
the tree-based method extreme gradient boosting (XGBoost) 
performs the best (Chen and Guestrin, 2016). In addition, an 
ML-based support tool for measuring gut microbial populations 
was developed.

2. Materials and methods

2.1. Human subjects and sample/data 
collection

In this prospective study, 19 individuals with MG and 10 
individuals without were consecutively recruited from Fu-Jen Catholic 
University Hospital. Individuals were enrolled in the MG group if they 
(1) were given a diagnosis of MG on the basis of having the 
combination of symptoms and signs that are characteristic of muscle 
weakness with diurnal changes and either (2a) had a positive test 
result for specific autoantibodies or (2b) had a positive 
electrophysiological diagnosis obtained using single-fiber 
electromyography and repetitive nerve stimulation (Rousseff, 2021). 
None of the participants had received any abdominal chirurgic 
intervention; consumed antibiotics, probiotics, or antacids during the 
previous 6 months; or reported gastrointestinal symptoms during the 
previous year. This study was approved by the Research Ethic 
Committee of Fu-Jen Catholic University Hospital and written 
informed consent was obtained from each participant (No. 
FJUH109042). All experiments were completed in accordance with 
the Declaration of Helsinki’s Ethical Principles for Medical Research 
Involving Human Subjects and under a set of approved guidelines and 
regulations. The severity of MG was determined using quantitative 
MG (QMG), MG activities of daily living (MG-ADL), MG 
composition (MGC), and MG quality of life (MG-QoL) scores 
(Jaretzki et al., 2000). Using the categories of the QMG and MGC 
scales, we categorized the scores on these scales into ocular, bulbar, 
and limb groups. Figure 1 summarizes the overall study workflow.

2.2. Sample collection and processing

After the participants have completed the informed consent form 
and agreed to participate in the study, fecal samples from each 
volunteer were collected after enrollment. Volunteers self-collected 
Fresh stool samples after defecation in the hospital and immediately 
transferred the samples to a laboratory freezer at −80°C 
for cryopreservation.
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Each stage in the process, including the sample testing and 
polymerase chain reaction (PCR) and library creation and sequencing, 
can affect the quality of the data, and the accuracy of analytical 
findings is directly influenced by the quality of data. Therefore, quality 
control measures were implemented at each stage of the process to 
ensure data accuracy.

2.3. DNA extraction and 16S metagenomics 
sequencing

Genomic DNA was extracted from the samples using the 
EasyPrep Stool Genomic DNA Kit (Biotools, New Taipei City, 
Taiwan). The DNA concentration was determined and adjusted to 
5 ng/μL for subsequent processing. In accordance with the 16S 
Metagenomic Sequencing Library Preparation protocol (Illumina), 
the specific primer set 341F: 5’-CCTACGGGNGGCWGCAG-3′, 
806R: 5’-GACTACHVGGGTATCTAATCC-3′ was employed to 
amplify the variable regions V3 and V4 of the 16S rRNA gene. A PCR 
was conducted using KAPA HiFi HotStart ReadyMix (Roche) and 
12.5 ng of genomic DNA (gDNA) under the following conditions: 
95°C for 3 min, 25 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, 
and a final extension of 72°C for 5 min. The reaction was subsequently 
maintained at 4°C. The products of the PCR were evaluated using 
1.5% agarose gel, and samples with a bright main strip at approximately 
500 bp were selected for further library preparation. The selected 
samples were purified using AMPure XP beads.

A sequencing library was prepared using the 16S Metagenomic 
Sequencing Library Preparation procedure (Illumina). To summarize, 
the 16S rRNA V3–V4 region PCR amplicon was subjected to a 
secondary PCR, which was conducted using the Nextera XT Index Kit 
with dual indices and Illumina sequencing adapters from Illumina. 
The indexed PCR product was evaluated for quality by using the Qubit 
4.0 Fluorometer (Thermo Scientific) and a Qsep100™ system. The 
indexed PCR products were mixed in equal amounts to create a 
sequencing library. The library was sequenced on an Illumina MiSeq 
platform, which generated 300-bp paired reads.

2.4. Microbial community analysis and 
statistical analysis

Amplicon sequencing was performed using 300-bp paired-end 
raw reads, and each sample was demultiplexed on the basis of their 
barcode identification. Primer and adapter sequences were removed 
from the paired-end reads by using the QIIME2 cutadapt plugin 
(Martin, 2011). To construct amplicon sequence variants (ASVs), 
a denoising pipeline was applied using the QIIME2 DADA2 plugin 
(v2021.4) to implement quality filtering, dereplication, dataset-
specific error model learning, denoising, paired-end-read joining, 
and chimera removal (Callahan et  al., 2016). Trimming and 
filtering were performed with a maximum of two expected errors 
per read (maxEE = 2). The DADA2 algorithm was used to solve the 
problem of exact merged paired-end reads with an overlapping 
12-base pair near-zero error rate. The feature-classifier and 
algorithm of QIIME2 was employed to annotate the taxonomic 
classification of each representative sequence on the basis of 
information retrieved from the Silva database (Bokulich et  al., 
2018). To analyze the sequence similarities among the ASVs, 
multiple sequence alignment was conducted, with the QIIME2 
alignment MAFFT used against the Silva database (Katoh and 
Standley, 2013). A QIIME2 phylogeny fast tree was used to 
construct a phylogenetic tree with a set of sequences representative 
of the ASVs (Price et al., 2010).

2.5. Taxonomic analysis

The taxa that significantly differed between the MG and non-MG 
samples were identified, and an analysis of the overlap between the taxa 
of these samples was conducted. Significant biomarkers were identified 
through Linear discriminant analysis effect size (LEfSe) analysis 
(Segata et al., 2011). Subsequently, linear discriminant analysis (LDA) 
is applied for the bacterial taxa identified as significantly different to 
determine the effect size of each differentially abundant taxon. In the 
present study, taxa with an LDA score > 2 were considered significant.

FIGURE 1

Overall study workflow. MG, myasthenia gravis; BW, body weight; BH, body height; QMG, quantitative MG score; MGC, MG composite score; MG-ADL, 
MG activities of daily living score; ASV, amplicon sequence variants; ML, machine learning.
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2.6. Supervised ML modeling and proposed 
ML analytical strategy

This study applied four ML methods, namely least absolute 
shrinkage and selection operator (Lasso), XGBoost, random forest 
(RF), and classification and regression trees (CART). Because 
taxonomy or ASVs-based ML approaches provide different types of 
information, the present study proposed an ML analytical strategy 
that combines the benefits and valuable information of each approach 
that can be used to effectively screen key taxon features. Figure 2 
presents the proposed ML analytical strategy. In the strategy, two sets 
of data obtained using different approaches, namely ASV taxon–based 
data and full ASV–based data, are prepared. Four ML methods (Lasso, 
CART, XGBoost, and RF) and nested leave-one-out cross-validation 
(LOOCV) are applied to complete ML model building for each data 
set, and the model with the highest performance is selected. The key 
features of each data set are extracted, and the overlapping key features 
of the data sets are screened to obtain a final set of key features.

LOOCV was executed for the construction of each ML model. In 
essence, LOOCV is similar to k-fold cross-validation. The primary 
difference between the two is that k-fold cross-validation involves 
validation with one of several equally sized folds that have been 
randomly divided from the data whereas LOOCV involves using a single 
subset of the data for all rounds of the validation process (Vabalas et al., 
2019). Figure 3 illustrates the nested LOOCV process used in this study.

The performance of the model was evaluated on the basis of its 
accuracy (ACC), precision (PRE), sensitivity (SEN), specificity (SPE) 
and area under the receiver operating characteristic curve (AUC). The 
study experiments were conducted using Python (version 3.8.8) and 
Jupyter Notebook (version 6.3.0) softwares (Van Rossum and Drake, 
1995; Kluyver et  al., 2016). XGBoost was implemented using the 
XGBoost package (version 1.3.3) (Chen and Guestrin, 2016), and 
Lasso, CART, and RF were implemented using the scikit-learn package 
application programming interfaces (API) (version 0.24.2) (Pedregosa 
et al., 2011; Buitinck et al., 2013). LOOCV and hyperparameter tuning 
were implemented using the scikit-learn API (Pedregosa et al., 2011).

3. Results

Individuals who met the criteria for a diagnosis of MG were included 
in the present study. The mean age at enrollment was 51.5 years, and the 
majority of the participants were women (68%). The mean disease 
duration was 59.2 months. In addition, 36% of the patients with MG had 
a history of an MG crisis, and 21% had experienced life-threatening 
events at the onset of the disease. The clinical characteristics of the 19 
individuals in the MG groups and 10 individuals in the non-MG group 
were obtained from their medical records (Table 1). The two groups did 
not significantly differ with respect to their age, sex, body weight, and 
height. To investigate the bacterial gut microbiota associated with MG, 
we conducted high-throughput sequencing of the V3–V4 region of the 
16S ribosomal RNA gene. We obtained 1,544 ASV observations and 
used these ASVs to extract taxonomic information from the samples 
obtained from the MG and non-MG groups. A Venn diagram of the 
results that revealed 766 and 332 ASVs to be specific to individuals with 
and without MG, respectively, and 446 ASVs to be shared by individuals 
with and without MG (Figure 4). We also created cumulative bar charts 
for each taxonomic class (Supplementary Figure S1).

3.1. Differences in bacterial taxa between 
the MG and non-MG groups

To identify the significant differences in the gut microbiota 
between the MG and non-MG groups, we used LEfSe to identify eight 
taxonomic features with notable significant differences between the 
two groups (LDA > 2; Figures 5A,B). At the genus level, Roseburia, 
Oscillospira, and Mitsuokella were more abundant in the non-MG 
group (Figure 5A); at the class level, Coriobacteriia was more abundant 
in the MG group; and at the order level, Coriobacteriales was more 
abundant in the MG group. The abundances of several major bacterial 
taxa in the MG and non-MG groups and their phylogenetic 
relationships are presented in a cladogram in Figure  5B. The 
abundance of many species in the gut microbiomes of the MG and 
non-MG groups significantly differed. Figures  5C,D presents 
representative examples of the bacterial abundance at the family- and 
genus-levels in the two groups. These results support the hypothesis 
that the composition of gut microbiota of the MG and non-MG 
groups differed considerably.

FIGURE 2

Proposed machine learning (ML) analytical strategy. After amplicon 
sequence variants (ASVs) are obtained, two sets of data obtained 
through different approaches, namely an ASV taxon–based data set 
(blue boxes) and full ASV–based data set (green boxes), are prepared. 
For the ASV taxon–based data, taxon analysis is used to screen 1,544 
observed ASVs for key features. LEfSe is applied to identify taxonomic 
features with a linear discriminant analysis value of >2 to develop an 
ASV taxon–based data set. For the full ASV–based data, the 1,544 
ASVs are directly used without any modifications. After the ASV 
taxon–based and full ASV–based data sets are created, four ML 
methods (Lasso, CART, XGBoost, and RF) and leave-one-out cross-
validation (LOOCV) are applied, and the model with the best 
performance is selected. Key features are identified by applying the 
selected model to the key features identified in the aforementioned 
data sets. Because each approach provides different types of 
information, the overlapping key features identified in the two data 
sets are screened and collected to obtain a final set of key features. 
The output of key bacterial taxonomic features was used to identify 
the taxa associated with myasthenia gravis.
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FIGURE 3

Model building involving a nested leave-one-out cross-validation (LOOCV) structure. Data are split into 28 samples for training and 1 sample for 
testing. To tune the hyperparameters of the ML model, the training data set with 28 samples is further split into 27 samples for training and 1 sample for 
validation. Each sample is used once for validation until all 28 samples have been used to validate all potential hyperparameter sets. A tuned model is 
then constructed using the training data (28 samples) and the best hyperparameter set. The testing data are used to evaluate the performance of the 
tuned model. The aforementioned process constitutes one iteration and is repeated until each sample has been used once as testing data. Key features 
are then extracted from the tuned model.

TABLE 1  Characteristics of subjects with MG and non-MG groups.

Characteristic MG (n  =  19) Non-MG (n  =  10) p-value
Sex Female, n (%) 13 (68) 8 (80) 0.8212

Age (year) 51.5 ± 14.4 49.8 ± 13.9 0.7731

Height (cm) 161.4 ± 7.9 161.4 ± 4.7 0.9941

Weight (kg) 64.9 ± 15.9 63.7 ± 12.4 0.8432

BMI (kg/m2) 26.7 ± 4.4 24.3 ± 3.3 0.8141

Age at onset (age) 45.6 ± 14.9 – –

Disease duration (month) 59.2 ± 77.8 – –

Serology of AchR antibody, n (%) 18 (95)

History of MG crisis, n (%) 7 (36) – –

Life threatening at onset, n (%) 4 (21) – –

Thymic pathology – –

Thymoma, n (%) 8 (42)

Thymic hyperplasia, n (%) 1 (5)

Previous Thymectomy 6 (32) – –

MGFA clinical class, n (%) – –

Class II 12 (63)

Class III 4 (21)

Class IV 3 (16)

Daily Pyridostigmine dose (mg) 192 ± 114 – –

PSL dose per day (mg) 9.2 ± 10.5

IS usage, n (%) 2 (11) – –

MGQOL score 12.8 ± 13.7 – –

QMGS 10.3 ± 4.2 – –

QMGS – ocular 1.7 ± 1.4 – –

QMGS – bulbar 2.4 ± 2.2 – –

QMGS – limbs 5.1 ± 2.8 – –

MGC 8.5 ± 8.7 – –

MGC – ocular 1.7 ± 1.6 – –

MGC – bulbar 5.8 ± 6.9 – –

MGC – limbs 0.9 ± 1.6 – –

MG-ADL 4.74 ± 4.33 – –

Antibody titer (Nmol/L) 81.2 ± 70.8 – –

Anti-AChR Ab, antibody against acetylcholine receptor; Anti-MuSK Ab, antibody against Muscle-specific tyrosine kinase; dSN, double seronegative; AZA, treatment with azathioprine; MMF, 
treatment with mycophenolate; OT, treatment with tacrolimus; IVIG, treatment with intravenous immunoglobulin; PP, treatment with plasmapheresis; PSL, prednisolone.
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FIGURE 4

Comparison of the gut microbial composition among the two groups at ASV levels. A Venn diagram demonstrated a total of 1,544 ASVs, 446 were 
detected in both groups and 766, and 332 were unique to participants with (blue circle, n  =  19) and without (pink circle, n  =  10) MG, respectively.

3.2. Supervised ML analysis using enriched 
taxonomic features

To investigate the performance of ML methods based on different 
datasets, we trained supervised ML models with the taxonomic or 
ASV features for predictive classification and diagnostics of MG and 
non-MG. When enriched taxonomic features (ASV taxon–based data) 
were used for training, the four ML models were trained using eight 
taxonomic features (described above) to complete predictive 
classification and diagnosis of MG. Table 2 presents the performance 
results for the four ML models trained with ASV taxon–based data. 
As indicated in the table, XGBoost had the highest AUC (90.00), 
followed by RF (75.26), Lasso (67.89), and CART (35.26). Precision 
was used to measure the overall correctness of predictions of positive 
cases. The XGBoost model had a precision score of 100, indicating that 
a positive prediction by XGBoost is most likely correct. Overall, 
XGBoost had the highest performance when ASV taxon–based data 
were used for training and is thus promising as a means of correctly 
predicting positive cases.

3.3. Supervised ML analysis using ASV 
features

The four ML models were trained with all 1,544 ASV features (full 
ASV–based data) to investigate the effectiveness of diagnostic 
classifications made on the basis of all ASVs. Table 3 presents the 
results. Similar to the ASV taxon–based models, the full ASV–based 

models were such that XGBoost had the highest AUC score (87.89), 
followed by RF (63.68), Lasso (56.32), and CART (46.32). In the full 
ASV–based model, XGBoost had a promising precision score of 100. 
The results indicated that XGBoost had the highest performance when 
the full ASV–based data were used. A comparison of the AUCs of 
XGBoost when ASV taxon–based data (AUC = 90.00) and full ASV–
based data (AUC = 87.89) were used was conducted using the Delong 
test. The results revealed no statistical difference between the two 
(p = 0.43), indicating that XGBoost performed well regardless of which 
data set was used. Through the combination of two distinct datasets 
analysis, XGBoost emerges as the superior ML method for effectively 
distinguishing between MG and non-MG subjects. This robust 
outcome underscores the promising potential of ML methods in 
disease diagnosis within gut microbiomes.

3.4. XGBoost performance higher than RF 
on training data with enrich taxonomic and 
ASV features

To further assess the performance of XGBoost compared to 
traditional machine learning methods, we  utilized the receiver 
operating characteristic (ROC) curve for additional verification. 
The performance of XGBoost remained similar when different 
forms of data were used as inputs (Figure  6). For purposes of 
comparison, RF was also included because it is commonly used in 
gut microbiome–related studies (Lee and Rho, 2022). The 
comparison of the XGBoost and RF models when different types of 
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data were used (ASV taxon–based and full ASV–based data) 
revealed that XGBoost had a higher AUC than RF did, and the 
results were similar when the full ASV–based and ASV taxon–based 
data were used (Figure 6). In summary, XGBoost demonstrates high 
performance when trained using both general ASV data and key 
taxonomy features, making it a reliable tool for screening and 
diagnosing MG.

3.5. ML models trained with a combination 
of taxonomic and ASV features able to 
identify markers of MG

To improve the diagnostic classification performance of the ML 
model, we integrated the results obtained from both the full ASV–
based and ASV taxon–based datasets. The overlapping key features 

FIGURE 5

Taxonomic differences between the fecal microbiota of the MG and non-MG groups. (A) Cladogram created using linear discriminant analysis effect 
size (LEfSe) and presenting the phylogenetic distribution of the fecal microbiota of individuals with and without MG. (B) Linear discriminant analysis 
(LDA) and LEfSe revealed significant differences in the fecal microbiota of the MG (positive LDA score) and non-MG groups (negative LDA score). LDA 
scores (log10)  >  2 are presented. (C,D) Representative examples of the relative abundances of Lachnospiraceae and Roseburia in individuals with and 
without MG, with each bar representing the abundance in a given sample. Solid and dashed lines indicate the mean and median, respectively.

TABLE 2  ML analysis using taxonomic features (ASV taxon–based ML analysis).

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC

Lasso 75.86 80.00 84.21 60.00 67.89

CART 41.38 66.67 21.05 80.00 35.26

XGboost 82.76 100 73.68 100 90.00

RF 75.86 100 63.16 100 75.26

AUC, area under the curve.

TABLE 3  ML results when full ASV–based data (full ASV–based ML analysis).

Method Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC

Lasso 72.41 76.19 84.21 50.00 56.32

CART 65.52 71.43 78.95 40.00 46.32

XGboost 86.21 100 78.95 100 87.89

RF 58.62 100 36.84 100 63.68

AUC, area under the curve.
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FIGURE 6

ROC curve of XGBoost and random forest (RF) with different types of data. The horizontal axis indicates the false positive rate (1–SPE), and the vertical 
axis indicates the true positive rate (SEN). The results for XGBoost trained with the full ASV–based and ASV taxon–based data are indicated in blue and 
red, respectively, and the results for RF trained with the full ASV–based and ASV taxon–based data are indicated in orange and green, respectively. ASV, 
amplicon sequence variant; XGBoost, extreme gradient boosting; RF, random forest.

extracted when XGBoost was trained using the full ASV–based and 
ASV taxon–based data were identified and are presented in Figure 7. 
Thirty-one high-importance ASVs (HIASVs) were identified in the 
ML model when the full ASV–based and ASV taxon–based data were 
used. The HIASVs were assigned variable importance scores and 
ranked (Figure 8; Supplementary Tables S1, S2). All of the overlapping 
microorganisms belonged to the phylum Firmicutes. The findings 

revealed that the most significant difference between the gut 
microbiota of the individuals with and without MG was in the 
abundance of bacteria in the Lachnospiraceae and Ruminococcaceae 
families. The XGBoost algorithm was reapplied with the 31 HIASVs 
used to differentiate individuals with and without MG. In the XGBoost 
trained with the HIASVs, the dimensionality of the feature space was 
reduced, and the model had the highest AUC (90.53) and performed 
slightly better than the other ML models (Figure  9; 
Supplementary Table S3). The ML strategy we developed provided 
compelling evidence supporting our hypothesis, as it demonstrated 
high diagnostic classification power and generated accurate diagnostic 
screening results for MG.

3.6. Associations between gut microbiota 
and clinical characteristics of MG

To investigate the potential links between gut microbiome 
disruptions and MG clinical symptoms, a correlation analysis was 
conducted with a focus on the taxa of Firmicutes, Lachnospiraceae, 
Roseburia, and Eubacterium, the abundance of which was determined 
to significantly differ between the MG and non-MG groups. A heat 
map was used to present the spearman’s rank correlation coefficients 
of the 4 significant taxa and results on 22 clinical indices. 
We discovered that the abundance of Lachnospiraceae was generally 
associated with the severity of limb weakness, that is, with the limb 
portion of the QMG (Figure 10). These findings demonstrate that 
certain gut microbiota levels are associated with clinical parameters 

FIGURE 7

XGBoost feature selection results when the model was trained using 
full ASV–based and using ASV taxon–based data for comparison. 
The results revealed that of the 1,544 ASVs in total, 31 were selected 
by XGBoost when it was trained using the full ASV–based and ASV 
taxon–based data (red square), which indicated these were high-
importance ASVs (HIASVs).
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and have the potential to serve as valuable tools for assessing disease 
severity in the future.

4. Discussion

In this study, we discovered that the structures and composition 
of the gut microbiome were differed between MG and non-MG 
subjects. Among our research participants with MG, 21% had 
experienced a life-threatening episode upon diagnosis resulting in 
more severe morbidity. Additionally, 36% of the patients had a 
history of myasthenic crisis, indicating a potential risk of clinical 
deterioration in MG. Antibody titers are traditionally used to 
support MG evaluations but not directly correlation with clinical 
symptoms (Berrih-Aknin and Le Panse, 2014). Therefore, 
biomarkers to support MG diagnosis and disease severity screening 
must be identified. In the present study, the supervised ML model, 
XGBoost, was determined to have better performance with respect 
to analyzing gut microbiomes. This study’s use of LOOCV 
somewhat mitigated the study’s limitation of a small sample size and 
improved the reliability and generalizability of our findings. Our 
proposed ML model, which identifies several taxonomic markers, 
was able to effectively discriminate patients with MG from those 

without. Therefore, this approach has potential as a new form of ML 
analysis strategy for screening MG. In addition, we  identified 
overlapping ASVs that were identified when the ML model was 
trained using full ASV–based and using ASV taxon–based data to 
select 31 HIASVs. When the model was trained using these HIASVs, 
the AUC was better than it was when each data set alone was used 
for training. Our results reveal that microbiota in the families of 
Lachnospiraceae and Ruminococcaceae were the most abundant in 
individuals with MG. We  also identified microbiota potentially 
associated with symptoms of MG severity, that is, with limb 
weakness. The findings indicate that the proposed ML model based 
on microbiome data offers advantages and has high accuracy in 
identifying markers. Therefore, the model can be  a potential 
benchmark diagnostic tool that can identify the presence of MG and 
gut microbiota associated with MG’s severity through 
noninvasive analysis.

Changes in gut microbial composition were demonstrated to 
affect the immunology systems that regulate bodily function. Our 
study revealed the differences between the microbiomes of individuals 
with and without MG by determining the abundance of several 
microbiota. The microbiota of the family Lachnospiraceae, a member 
of the phylum Firmicutes and order Clostridiales, were determined to 
be significantly depleted (t test, p < 0.05). Our ML models based on 

FIGURE 8

Importance scores for 31 HIASVs for classifying the presence and absence of myasthenia gravis. A comparison of the ASV feature importance score is 
presented in the figure, with blue indicating an importance score assigned when XGBoost trained with full ASV–based data was used, orange indicating 
an importance score assigned when XGBoost trained with ASV taxon–based data was used, and red indicating the average of the importance scores 
assigned by the Full ASV–trained and ASV taxon–trained XGBoost models. The average score was used to rank the ASVs. ASV, amplicon sequence 
variant.
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FIGURE 9

Receiver operating characteristic curve for comparing variants of XGBoost trained using different data sets. After 31 ASVs were identified as important 
by both XGBoost models (i.e., the model trained using the full ASV–based and that trained using ASV taxon–based data), these high-importance ASVs 
were used to train XGBoost, and were determined to be able to distinguish individuals with and without MG with an AUC of 90.53 (red bar), which was 
higher than the AUCs of the XGBoost models trained using only full ASV–based and only ASV taxon–based data. MG, myasthenia gravis; ASV, amplicon 
sequence variant; XGBoost, extreme gradient boosting; AUC, area under the curve.

FIGURE 10

Association between gut microbiota and clinical indices of MG. Heat map of the Spearman’s rank correlation coefficient of 4 significant taxa as well as 
22 clinical indices. Red squares indicate positive associations between microbial species and clinical indices; blue squares indicate negative 
associations. Statistical significance is indicated within the squares (*p  <  0.05). The family Lachnospiraceae was associated with several clinical 
parameters. MG, myasthenia gravis; IS, immunosuppressant; MGQOL, MG quality of life; MGC, MG composite; QMGS, quantitative myasthenia gravis 
score; MG-ADL, MG activities of daily living.

different ASVs verified this finding, and feature selection revealed that 
the family Lachnospiraceae was the most crucial with respect to 
MG. Genera from the family Ruminococcaceae and Lachnospiraceae 

were determined to be the most crucial for determining a diagnosis of 
MG when the model was trained using the HIASVs. Lachnospiraceae 
and Ruminococcaceae were discovered to be the two most abundant 
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families of Clostridiales and have been reported to be associated with 
the maintenance of gut health and the production of short chain fatty 
acids (SCFAs) (Gopalakrishnan et al., 2018; Vojinovic et al., 2019). The 
two families are highly abundant in gut microbiota and were reported 
to be depleted in the gut environments of individuals with different 
autoimmune diseases (Biddle et al., 2013).

Lachnospiraceae has been indicated to potentially influence 
healthy gut activity, and literature reviews have revealed that different 
members of this family are associated with different diseases. 
Lachnospiraceae was reported to be involved in autoimmune disorders, 
such as multiple sclerosis and inflammatory bowel diseases (Baumgart 
et al., 2007; Shahi et al., 2017). However, the mechanisms underlying 
Lachnospiraceae’s regulation of immune responses and disease course 
remain unclear. A potential mechanism is the metabolism and 
production of SCFAs (Furusawa et al., 2013). This SCFA activity can 
modify the host immune system and function by lowering 
inflammatory marker levels and promoting regulatory T (Treg) cell 
accumulation (Atarashi et al., 2013). MG is an autoimmune condition 
because its pathogenesis involves disequilibrium between B cells and 
Treg cells, and patients with MG have a markedly lower abundance of 
Treg cells in their peripheral blood (Thiruppathi et al., 2012). The 
literature indicates that the abundance of Ruminococcaceae and 
Lachnospiraceae is negatively associated with these diseases (Biddle 
et al., 2013). A decrease in the abundance of Lachnospiraceae may lead 
to a reduction in Treg accumulation. New therapeutic strategies for 
treating MG should involve interventions focused on restoring 
Lachnospiraceae levels and thereby increasing Treg cell populations.

Many ML methods have been utilized in microbiota studies. ML 
can be used to perform numerous tasks, such as tracking phenotyping, 
classifying features, and identifying interactions and changes between 
microbiomes and other clinical variables (Gupta and Gupta, 2021; 
Marcos-Zambrano et al., 2021). Traditional ML models, including 
linear regression with Lasso and elastic nets, have been demonstrated 
to have higher performance in analyzing gut microbiome data and 
predicting dysbiosis (Pasolli et al., 2016; Lee and Rho, 2022). RF have 
also been used in microbiota studies. In RF models, trees are 
constructed to assist with decision-making and to group data into 
categories. In the current study, widely used ML models were used to 
select strategies for identifying the factors that influence MG risk (Lee 
and Rho, 2022). We applied XGBoost, an ensemble ML algorithm 
based on the decision tree method that can effectively match predicted 
outcomes (Chen and Guestrin, 2016). In XGBoost, many weak 
decision trees are integrated to form a model with strong predictive 
power. According to a study that compared common ML models, 
XGBoost, RF, and elastic nets have comparable performance when 
trained using microbiome data sets (Wang and Liu, 2020). In addition, 
XGBoost was reported to outperform a random model with respect 
to its cross-validation performance and to be able to forecast responses 
based on baseline microbiome data (Klimenko et  al., 2022). Our 
finding that the optimal data set for training XGBoost involved both 
taxonomic and ASV feature data related to MG is comparable to the 
findings of many other studies that have investigated the characteristics 
that predict risk. Our results increase the depth of the understanding 
of the ML-XGBoost algorithm’s potential for clinically supporting 
disease diagnosis on the basis of gut bacterial data. The proposed 
XGBoost-based model may be more useful as tool for identifying the 
features microbiomes features and have a better accuracy and AUC 
than RF and Lasso models. In the future, as the number of participants 

increases, we can persistently substantiate this hypothesis. XGBoost 
could be a potential useful method in ML-based microbiomes studies.

The ML model that was trained using different taxonomic 
features (i.e., the ASV taxon–based data) had the same performance 
as that trained using the full ASV–based data. We  identified the 
overlapping key features selected by these models to improve the ML 
model’s prediction power. Incorporating two sets of data to train an 
ML model using 31 HIASVs led to the model having the most 
accurate prediction. Most microbiome studies have used key 
operational taxonomic units to distinguish between study groups or 
used LDS-based taxonomic feature extraction to identify significantly 
different relative abundances between target groups. Our study 
combined genetic information (i.e., ASVs) and biological information 
(i.e., taxonomic features) to achieve more accurate prediction results. 
LOOCV was also applied and ensured that an unbiased estimate of 
the model’s performance was obtained because every instance in the 
data set is used for both training and validation. LOOCV is also more 
computationally expensive and particularly useful when the size of a 
data set is small. It allows for the data to be used to the fullest, for 
both training and validation (Cheng et al., 2017). Our use of LOOCV 
enabled us to improve the accuracy of the model’s performance and 
our ability to generalize our data. Furthermore, LOOCV can provide 
clear and interpretable results, which reduces study limitations.

Our findings are consistent with those of previous studies reporting 
a link between abnormalities in the gut microbiota and several 
autoimmune disorders (Qin et al., 2010; Chen et al., 2016; Zhou et al., 
2018). Nevertheless, many autoimmune diseases do not have similar 
patterns of microbial dysbiosis, and therefore, the changes in the 
microbiota of patients with MG may not be  generalizable to other 
autoimmune diseases. Studies have discovered that changes in gut 
microbiome composition can lead to inflammation that considerably 
affects immune responses in MG. A cohort study revealed that the gut 
microbiota of patients with MG was considerably altered, exhibiting a 
sharp decrease in the abundance of the bacterial taxa Clostridium 
correlated with a decrease in SCFA (Qiu et  al., 2018). Zheng et  al. 
demonstrated that individuals with MG often have significantly 
disturbed gut microbiomes and that this disturbance is associated with 
disease severity (Zheng et al., 2019). Another analysis revealed that MG 
is associated with a lower abundance of Verrucomicrobiaceae and 
Bifidobacteriaceae and an increased abundance of Bacteroidetes and 
Desulfovibrionaceae (Moris et al., 2018). Specially, Huang et al. found 
that AChR positive MG patients also experience changes in their oral 
microbiota (Huang et al., 2022). Our study identified bacterial genera 
for which the abundance differed in individuals with and without MG 
and applied two microbiomes-based ML models to identify key bacterial 
taxa. The findings may assist in improving the predictive outcomes of 
MG. In addition, LOOCV was used to improve the ML prediction 
performance. Most studies have used only OUTs or taxonomy data sets. 
A study reported that an ML model trained with OUTs to identify 
metabolite and microbiome markers was used to predict MG and that 
the model achieved an AUC of 0.76 (Moris et al., 2018). The model 
developed in our study achieved an AUC of 0.90 after being trained only 
with stool gut microbiome data. Stool gut microbiome data can be more 
easily and less expensively obtained than that of gut metabolites and 
metabolomes. Our findings demonstrate the potential of our proposed 
microbiome-based ML model as diagnostic support for identifying 
MG. The model can be further calibrated and the predictive capability 
can be improved by including more samples from different sources or 
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stratifying particular forms of MG and data from medical records in 
addition to gut microbiome data. Furthermore, the significant bacterial 
taxonomic features identified in our study may serve as novel 
biomarkers for clinical use and mechanistic study in the future.

ML has shown promise in predicting outcomes and identifying 
biomarkers for MG. A national study used an explainable ML-based 
model to accurately predict short-term outcomes in MG using various 
clinical parameters (Zhong et  al., 2023). The SHapley Additive 
exPlanations (SHAP) method allowed for assessing the impact of each 
factor on the outcome, making the results more interpretable and 
quantification. Supervise ML, the multinomial model has also 
successfully identified diagnostic biomarkers for neurological 
disorders, including MG, using big biological data such as genotyping, 
blood, and urine biochemistry data (Lam et al., 2022). During the 
COVID-19 pandemic, ML algorithms were utilized for telemedicine 
in MG, analyzing eye or body motions and vocalization for 
standardized data acquisition and real-time feedback (Garbey et al., 
2023). In contrast to the present work, the purpose of this study was 
aimed to investigate fecal specimens as a simple method for MG 
diagnostic screening despite the absence of patient blood or genetic 
data and the non-use of visual computing programs, these limitations 
did not impact the primary objectives of the research. Although 
interpretability ML was not utilized to assess the impact of various 
microorganisms on the outcomes, the study results still hold the 
potential to provide valuable information for MG diagnosis. Future 
studies may consider increasing the number of participants, 
incorporating blood and genetic data, and exploring the use of 
interpretable machine learning models to gain deeper insights into 
the influence of microbiota on MG.

Our study has some limitations. First, the numbers of recruited 
subjects were small and only from a single geographic region with lack 
of ancestry data, which limiting our ability to analyze potential 
confounding factors. Although we applied LOOCV to improve our 
model’s prediction, additional large, multi-national and multi-center 
cohort studies should be conducted to validate our results. Second, the 
medication status of the recruited patients with MG differed, which 
could have affected the microbial compositions of their guts. Third, 
we did not analyze the metabolome of the stool sample. Gut microbiotas 
changes cannot provide the total necessary quantitative functional state 
of the microbiomes (Zierer et al., 2018). Forth, we did not record the 
dietary status of the participants. Based on the literature review, dietary 
is indeed a crucial factor influencing gut microbiota composition 
(Leeming et al., 2019; Zhang, 2022). Therefore, future research should 
incorporate participants’ dietary records as a basis. Fifth, the proportion 
of males (32%) was relatively fewer in number. MG has been known to 
affect females more prominently (Jayam Trouth et al., 2012). The peaks 
was around at age 30 and 50 (Carr et al., 2010). Therefore, most of the 
research on MG and gut microbiota is based on female populations 
(Zheng et al., 2019; Tan et al., 2020). However, the limited number of 
male samples can be  considered a limitation in the search for 
biomarkers. Finally, our study did not determine whether dysbiosis is 
the consequence, cause, or both of MG. Future longitudinal, multi-
center, large cohort studies should be  conducted, combing the 
recording of dietary and the ancestry data with a focus on the 
pathophysiology of bacterial taxa involved in MG. Additional research 
should be  performed to identify the specific microbial species 
associated with MG and their corresponding metabolites to assist in 
defining targets for MG therapy.

5. Conclusion

Our study is the first to demonstrate the potential for using 
artificial intelligence through ML modeling to complete convenient 
diagnostic screening of MG on the basis of fecal microbiota 
composition. Our gut microbiome-based ML strategy can be used as a 
screening method to support the diagnosis and progression of MG. In 
addition, the combination ML-based feature selection approaches 
expand the knowledge on the biomarkers of MG. XGboost-based 
feature selection identified of HIASVs not only reduced the 
computational complexity of the ML model but also improved its 
diagnostic classification performance. These HIASVs may serve as 
novel biomarkers for clinical and mechanistic study in the future. 
Taken together, our findings provided a novel and user-friendly 
ML-based algorithm for explore critical microbiomes and diagnostic 
tools in MG. Future studies should prioritize conducting longitudinal, 
multi-center research to deepen the understanding of the mechanisms 
involved in the interactions of ASVs with hosts, which will aid in 
defining targets for MG therapy.
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Although metagenomic sequencing is now the preferred technique to study 
microbiome-host interactions, analyzing and interpreting microbiome 
sequencing data presents challenges primarily attributed to the statistical 
specificities of the data (e.g., sparse, over-dispersed, compositional, 
inter-variable dependency). This mini review explores preprocessing and 
transformation methods applied in recent human microbiome studies to 
address microbiome data analysis challenges. Our results indicate a limited 
adoption of transformation methods targeting the statistical characteristics 
of microbiome sequencing data. Instead, there is a prevalent usage of relative 
and normalization-based transformations that do not specifically account for 
the specific attributes of microbiome data. The information on preprocessing 
and transformations applied to the data before analysis was incomplete 
or missing in many publications, leading to reproducibility concerns, 
comparability issues, and questionable results. We  hope this mini review 
will provide researchers and newcomers to the field of human microbiome 
research with an up-to-date point of reference for various data transformation 
tools and assist them in choosing the most suitable transformation method 
based on their research questions, objectives, and data characteristics.
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1. Introduction

In recent decades, next-generation sequencing technologies have 
significantly impacted human microbiome research, allowing for a 
better understanding and characterization of microbiome-host 
interactions (Hadrich, 2020). Numerous 16S rRNA sequencing 
datasets are extended further by metagenomic sequencing of the 
whole microbial genome. The staggering increase in publications and 
datasets with an ever-increasing number of samples increased the 
need for more performant analysis approaches, such as advanced 
statistical methods and machine learning (ML) algorithms that can 
handle large-scale microbiome datasets and extract meaningful 
patterns, relationships, and associations. Before entering ML analysis 
microbiome raw data is preprocessed through several steps shown in 
Supplementary Figure S1.

ML models can be trained to predict the composition of microbial 
communities based on various input factors such as host genetics, diet, 
and environmental factors, which can help us understand the factors 
influencing microbial composition and its relation to human health 
(Gupta and Gupta, 2021; Hernández Medina et al., 2022). Despite the 
advantages, ML analysis of microbiome data is challenging due to 
inherent microbiome data characteristics (i.e., sparsity, 
compositionality, high dimensionality, dispersion), and new 
techniques are requested to address these challenges (Moreno-Indias 
et al., 2021; D’Elia et al., 2023).

Microbiome data is zero-inflated, which can be  due to the 
sequencing depth (i.e., sampling zeros) or the real absence of taxa (i.e., 
true zeros) (Silverman et al., 2020). Furthermore, variations in the 
abundance of one taxon affect all other taxa due to the constraint that 
the total counts equal the library size. Hence, the raw counts observed 
do not directly indicate the absolute abundances of individual taxa 
(Weiss et al., 2017; Lloréns-Rico et al., 2021; Swift et al., 2023), giving 
rise to compositional data. As a result, transforming microbiome 
sequencing data is essential in preparing the data for analysis and 
applying ML algorithms.

This mini review aims to provide a comprehensive overview of the 
preprocessing methods used in recent human microbiome studies to 
transform microbiome sequencing data before ML analysis. To collect 
information, we  conducted a scoping review based on the 
methodology outlined by Arksey and O’Malley (2005), combined with 
manual and automated literature searches following the approach 
outlined by Marcos-Zambrano et al. (2021). Papers included in the 
final review were published in peer-reviewed journals from January 
2011 to January 2022 and specifically analyzed human microbiome 
16S rRNA and shotgun metagenomic data through ML algorithms. 
As of December 2022, 3 reviewers had extracted findings on data 
preprocessing and transformation techniques from 95 published 
studies (Supplementary Table S1). In the subsequent sections, 
we present and discuss the findings and outcomes of our investigation.

2. Sequence preprocessing

Microbiome analysis starts with raw DNA sequencing reads or 
microbial taxa tables at different taxonomic resolutions, from Domain 
(i.e., Bacteria, Archaea, Eucarya) to strain and genome variants. 
Microbial taxa tables are created by processing raw sequences, known 
as sequence preprocessing. Both 16S rRNA sequencing and shotgun 

metagenomic sequencing generally involve preprocessing steps such 
as quality checking, trimming, filtering, removing, and merging 
(Travisany et al., 2015; Ryan et al., 2020). The key differences lie in the 
amplification of specific gene regions for 16S rRNA sequencing and 
the sequencing of entire genomes for shotgun metagenomics. The 
sequence preprocessing steps generally depend on the origin of the 
DNA sequences, sequence orientation, and sequencer type.

Quality scores are used for the recognition and removal of 
low-quality regions of sequence (trimming) or low-quality reads 
(filtration) and the determination of accurate consensus sequences 
(merging) (Bokulich et al., 2013). A widely adopted quality metric is 
the Phred quality score (Q) (Galkin et al., 2020). Then, leading, and 
trailing trimming are applied at the position of the read where the 
average score drastically changes and falls below the given threshold 
(Bolger et al., 2014). Typical sequence preprocessing techniques are: 
(1) reads filtering, if overall quality is very low (Amir et al., 2017); (2) 
minimal length filtering, for reads below a specified length; (3) barcode 
and adapter-trimming (Martin, 2011); (4) chimera filtering (Edgar 
et al., 2011); (5) phiX reads, commonly present in marker gene of 
Illumina sequence data (Callahan et al., 2016). A frequently used tool 
for shotgun aligning and taxonomic profiling is MetaPhlAn (Thomas 
et  al., 2019; Blanco-Míguez et  al., 2023). Shotgun metagenomics 
preprocessing generally requires a complex sequence of programs 
merged into pipelines to be used since there is no one-in-all software 
solution yet. The solution is usually found in automated pre-defined 
bioBakery Workflows (Beghini et  al., 2021) or Bbtools, namely, 
BBMerge and BBDuk (Bushnell et al., 2017; Galkin et al., 2020).

Before entering the feature selection step, additional filtering is 
performed on the raw data to reduce noise while keeping the most 
relevant taxa. In this step, microbiome low abundance features (e.g., 
<500 reads) and/or prevalence (e.g., <10%) per sample group or in the 
entire sample, are filtered out. Based on the resulting count matrix, the 
taxonomic level under consideration (i.e., family, genus, species) can 
be chosen at this stage, considering that going down to the species 
level would lead to strong zero inflation.

Feature selection is approached by many studies through 
predictive feature selection strategies that encompass statistical 
methods for assessing the significance of the associations between the 
microbiome features and the disease condition. These methods 
include univariate and multivariate statistical methods, and different 
ML algorithms (Chen et al., 2021; Jiang et al., 2022). Network-based 
methods have also been employed for selecting hub strains from 
co-occurrence networks before entering the ML task (Xu et al., 2021). 
It is crucial to keep in mind that when using these predictive feature 
selection methods, if the training dataset is not kept distinct from the 
test dataset throughout all preprocessing, modeling, and assessment 
phases, the model gains access to test set information prior to 
performance evaluation, resulting in data leakage (Kapoor and 
Narayanan, 2022). The most common ML solution for this problem is 
applying a cross-validation procedure, where the initial dataset is split 
into several folds, and in each split, different folds are proclaimed as 
learning or testing folds.

3. Transformation techniques

Typically, the ML analysis of microbiome data is performed 
after transformations are applied to raw reads to address statistical 
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challenges mainly associated with sparsity and the proportional 
nature of the generated sequencing data (Lloréns-Rico et al., 2021). 
Based on our review, the most common data transformation 
methods applied in recent human microbiome studies, in both 16 s 
RNA sequences and shotgun data, are the relative and 
normalization-based methods followed by compositional 
transformations such as Centered log-ratio (CLR), and Isometric 
log-ratio (ILR). Many reviewed publications (i.e., 28%) lack 
sufficient details about the data preprocessing techniques that have 
been applied or fail to mention if any preprocessing has been 
carried out leading to reproducibility issues and questionable 
results. In Figure 1, we present a TreeMap chart illustrating the 
frequencies of transformation methods applied across the 
analyzed papers.

Within the reviewed studies, a subset dedicated to problems of 
disease diagnosis and risk prediction (Fabijanić and Vlahoviček, 2016; 
Wu et al., 2020; Ruuskanen et al., 2021; Liu et al., 2022). Data analyzed 
in these studies, 16S rRNA sequencing data and shotgun data, are 
transformed through relative abundance, log transformations, z-score 
normalization, and CLR. In the following subsections, we  briefly 
discuss the normalization-based and compositional methods applied 
to microbiome data before ML analysis across the reviewed papers.

3.1. Normalization methods

Two predominant transformation methods applied to deal with 
uneven library sizes in sequencing microbiome data are relative 
abundance (Statnikov et al., 2013; Ning and Beiko, 2015; Wu et al., 
2018, 2021; Bogart et al., 2019; Gupta et al., 2019; Lo and Marculescu, 
2019; Vangay et al., 2019; Yachida et al., 2019; Fernández-Edreira et al., 
2021; Lloréns-Rico et al., 2021), and rarefaction (Stämmler et al., 2016; 

Weiss et al., 2017; Baksi et al., 2018), used to solve the problem of 
different sequencing depths (Murovec et al., 2021).

Other normalization-based methods applied frequently to 
microbiome data in the reviewed studies are: Log transformation, 
preferred when the data is heavily skewed (Lahti et al., 2013; Fabijanić 
and Vlahoviček, 2016; Eck et al., 2017; Tap et al., 2017; Flemer et al., 
2018; Wirbel et al., 2019; Hughes et al., 2020; Ryan et al., 2020; Fouladi 
et al., 2021; Jiang et al., 2021; Zhu et al., 2022). Total Sum Scaling (TSS) 
(Lê Cao et al., 2016; Lloréns-Rico et al., 2021) which divides each taxa 
count by the total number of counts in each individual sample; 
Minimum-Maximum normalization, used to retain the relationships 
between the original input data (Mulenga et al., 2021; Jiang et al., 
2022); Z-score normalization (Wirbel et al., 2019; Jiang et al., 2021; 
Mulenga et al., 2021) which transforms the data with mean zero and 
unit variance; the Square Root that can be successfully applied to 
count data that follow a Poisson distribution (Liu et al., 2011; Holmes 
et al., 2012); Inverse-Rank normalization used to normalize signals to 
approximate a normal distribution after removing the quality control 
sample (Ni et al., 2021).

3.2. Compositional transformations

Our review reveals a noticeable rise in the utilization of ML 
techniques within human microbiome research over recent years, 
while the adoption of compositional transformations in handling 
microbiome data remains relatively constrained. Nevertheless, an 
encouraging increasing trend in the application of compositional 
approaches between 2016 and 2021 is observed, as visually represented 
in Supplementary Figure S2. The following paragraphs delve into 
compositional transformations that have been employed in recent 
human microbiome studies, while in Table 1 we provide an overview 

FIGURE 1

TreeMap chart illustrating the percentage of reviewed papers that applied normalization-based or compositional transformation methods, as well as 
the papers without clear information on preprocessing or data transformation. The other-normalization category comprises inverse-rank 
normalization, Box-Cox transformation, rarefaction, minimum-maximum transformation, scaling by standard deviation, normalization by total read 
depth, etc.
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of the relevant literature and software tools necessary for the successful 
implementation of these methods.

Compositional data can be represented in a simplex space and 
analyzing them as absolute data with standard statistical techniques 
may lead to inappropriate results (Gloor et al., 2016; Quinn et al., 
2018). Aitchison (1982) first proposed the additive log-ratio 
transformation (ALR), to address compositionality then also the 
centered log-ratio (CLR) (Aitchison, 1986). His followers proposed 
further the isometric log-ratio (ILR) (Egozcue et al., 2003; Pawlowsky-
Glahn et al., 2015) and pivot log-ratio (PLR) (Filzmoser et al., 2018) 
transformations. The CLR transformation is applied more frequently 
in microbiome studies (Fabijanić and Vlahoviček, 2016; Lê Cao et al., 
2016; Wirbel et  al., 2019; Fukui et  al., 2020; Reiman et  al., 2021; 
Ruuskanen et al., 2021; Liu et al., 2022) than the ILR transformation 
(Kubinski et al., 2022), while the ALR was not applied in any of the 
studies included in the review.

Other compositional transformations that can be  applied in 
microbiome data are: Cumulative Sum Scaling (CSS) (Dhungel et al., 
2021; Lloréns-Rico et al., 2021), a particular representation of the 
relative information based on median-like quantiles; the Geometric 
mean of pairwise ratios (GMPR) transformation (Chen et al., 2018); 
the Trimmed mean of M-values (TMM) (Robinson et al., 2010); the 
Relative log expression (RLE) method (Robinson et al., 2010); the 
Variance-stabilizing transformation (VST) (Love et al., 2014).

4. Discussion

Transformations are essential for appropriately handling 
microbiome sequencing data, rectifying compositional issues, 
reducing noise, adhering to statistical assumptions, and enabling 
meaningful analysis and interpretation. The choice of 
transformation should depend on the specific characteristics of 
the data and the goals of the analysis. This mini review revealed 
substantial gaps in the process of microbiome data 
transformation. Relative transformations and other 
normalization-based methods that lead to or do not solve 
compositional issues (Lloréns-Rico et al., 2021) are frequently 
applied in recent human microbiome research.

Unlike compositional approaches (i.e., log ratios), 
normalization-based methods do not retrieve absolute scale from 
the relative data (Quinn et al., 2018). Nevertheless, when the raw 
data contains zero values, like in microbiome data, taking the 
logarithm results in negative infinity, distorting the data, and 
leading to invalid statistical inferences. To mitigate this issue, a 

pseudocount (i.e., small positive constant, ε) can be added to zero 
values before taking the logarithm. Selecting the right 
pseudocount in relation to the data’s scale holds significant 
importance when applying log transformations (Thorsen et al., 
2016). The scale of the ε, relative to the total read counts, should 
remain consistent across different data transformation methods 
applied (McKnight et  al., 2019) and should be  based on the 
context of the research problem and the scale of the data because 
the choice of ε can affect the results (Costea et al., 2014). Thus, it 
is essential to be mindful of the trade-offs between numerical 
stability and introducing additional bias due to the choice of ε.

Compositional transformations, ALR, CLR, and ILR log-ratio 
transformations, have different properties. The ALR 
transformation does not preserve distances because it is not 
isometric (Egozcue and Pawlowsky-Glahn, 2005), while CLR 
transformation keeps the distance, but the covariance and 
correlation matrix are singular because of the zero-sum of the 
transformed vectors (Quinn et al., 2018). In addition, aggregation 
of all components into the geometric mean can, in general, lead 
to the occurrence of false positives (Filzmoser and Walczak, 
2014), so identifying the original components with the 
corresponding CLR variables has some limitations, which could 
possibly be overcome by a proper weighting strategy (Štefelová 
et al., 2021). Recent studies suggest that for high-dimensional 
compositional data, the ALR transformation should be  a 
preferred choice for transforming variables because the 
interpretation of ALRs is easier than the ILR and CLR 
transformations (Greenacre et al., 2021). Besides log ratios, other 
transformations such as VST and ranked-based methods have 
been reported to successfully address microbiome data statistical 
specificities (Jeganathan and Holmes, 2021; Lloréns-Rico et al., 
2021). When working with spatial human microbiome data, 
which can reflect the microbial composition and abundance 
within specific locations in the body (Adade et  al., 2021), 
transformations for compositional spatial data that would 
improve ML techniques’ performance when dealing with this 
data can be considered. Greenacre (2010, 2011) explored a power 
transformation that converges toward the Aitchison log-ratio 
transformation when the power parameter becomes 0, while 
Clarotto et  al. (2022) propose the Isometric α-transformation 
(α-IT), which, unlike the ILR transformation, can successfully 
deal with zeros in the data.

Kubinski et  al. (2022) investigated the impact of various 
transformation techniques on the model’s predictive performance 
using gut microbiome data and highlighted the need to transform 16S 

TABLE 1  Compositional transformations that are applied to human microbiome 16S rRNA and shotgun data.

Method Bioconductor/R package Literature

Additive log-ratio Compositions Aitchison (1982, 1986) and van den Boogaart and Tolosana-Delgado (2008)

Centered log-ratio Compositions Pawlowsky-Glahn et al. (2015) and van den Boogaart and Tolosana-Delgado (2008)

Isometric log-ratio Compositions Egozcue et al. (2003) and van den Boogaart and Tolosana-Delgado (2008)

Geometric mean of pairwise ratios GMPR Chen et al. (2018)

Trimmed mean of M-values edgeR Robinson et al. (2010)

Relative log expression (RLE) edgeR Robinson et al. (2010)

Variance-stabilizing (VST) DESeq2 Love et al. (2014)
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rRNA data using compositional transformation techniques. Among 
the available options, the CLR transformation was identified as the 
most suitable, as it enables the assessment of each feature’s importance 
in the decision-making process of ML models. Another study by 
McKnight et al. (2019) examined the impact of log transformations 
commonly employed in normalization procedures. The authors 
demonstrated that log transformations could distort community 
comparisons by suppressing significant differences in common taxa 
while amplifying subtle differences in rare taxa.

Thus, despite the advantages, log-ratio approaches have their 
limitations and drawbacks and are not the only way to deal with 
compositionality. Quantitative transformations such as 
Quantitative Microbiota Profiling (QMP) (Vandeputte et  al., 
2017) and Absolute Counts Scaling (ACS) (Props et al., 2017; Jian 
et al., 2020) offer experimental approaches to address microbiome 
data proportional nature. QMP involves rarefying samples to 
achieve an even sampling depth and scaling them based on 
estimated microbial loads. On the other hand, ACS directly scales 
the relative sequencing counts using estimated microbial loads. 
Lloréns-Rico et  al. (2021) investigated the impact of 
computational and experimental techniques in addressing the 
issues arising from microbiome data features (i.e., 
compositionality and sparsity). They concluded that quantitative 
approaches outperform computational methods in addressing 
compositionality and sparsity. Authors claim that the quantitative 
approaches improve the identification of true positive 
associations while reducing the occurrence of false positives. The 
same study reports that when adopting quantitative methods is 
not feasible, computational methods that address 
compositionality perform better than relative methods. There are 
other examples in the literature where compositional methods are 
employed to transform microbiome data where the reader can 
find more details (Quinn and Erb, 2020; Yang and Zou, 2020; 
Greenacre et al., 2021; Yang et al., 2021; Papoutsoglou et al., 2023).

It is important to mention that in many cases the analysis of 
microbiome data can be performed on raw read counts rather than in 
transformed data. Zero-inflated negative binomial and Dirichlet-
multinomial models can fit microbiome raw data quite well (Xia et al., 
2018). For example, Zhang et al. (2017) applied on raw read counts a 
negative binomial mixed model that enables the identification of 
connections between the host, environmental variables, and 
the microbiome.

Finally, the lack of adequate information on data preprocessing 
and high reporting heterogeneity among papers highlight the need for 
standardized reporting guidelines, as also suggested by Mirzayi et al. 
(2021), where recommendations and guidelines are provided to help 
microbiome researchers properly report their findings through the 
‘Strengthening The Organization and Reporting of Microbiome 
Studies’ (STORMS), composed of a 17-item checklist each related with 
the typical sections of a scientific paper. The omission of preprocessing 
and transformations applied to the data can have several significant 
consequences such as reproducibility concerns, misinterpretation, 
comparability issues, and questionable results. To mitigate these 
consequences, it is essential for researchers to provide thorough 
documentation of their data preprocessing procedures in publications. 
Researchers should also consider sharing their code, scripts, or 
workflows used for data preprocessing, which can greatly enhance 
transparency and reproducibility.

5. Conclusions and final remarks

Our short review shows that the utilization of data 
transformations that address the proportional nature of 
microbiome sequencing data in human microbiome studies 
remains limited, with many researchers primarily opting for 
relative and normalization-based methods that do not specifically 
address microbiome data characteristics. There is a lack of 
transparency and clear explanations regarding data preprocessing 
and the choice of transformation methods among the reviewed 
papers while it is crucial to adhere to best practices and provide 
a detailed methodology for developing machine learning 
pipelines, particularly regarding data preprocessing.

This mini review does not intend to provide unequivocal 
recommendations in favor of one approach over another, instead, 
we encourage researchers to consider the characteristics of their 
data carefully and whether a particular transformation method is 
suitable for addressing their research questions and 
data characteristics.
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Numerous biological environments have been characterized with the advent of 
metagenomic sequencing using next generation sequencing which lays out the 
relative abundance values of microbial taxa. Modeling the human microbiome 
using machine learning models has the potential to identify microbial biomarkers 
and aid in the diagnosis of a variety of diseases such as inflammatory bowel 
disease, diabetes, colorectal cancer, and many others. The goal of this study is to 
develop an effective classification model for the analysis of metagenomic datasets 
associated with different diseases. In this way, we  aim to identify taxonomic 
biomarkers associated with these diseases and facilitate disease diagnosis. The 
microBiomeGSM tool presented in this work incorporates the pre-existing 
taxonomy information into a machine learning approach and challenges to solve 
the classification problem in metagenomics disease-associated datasets. Based 
on the G-S-M (Grouping-Scoring-Modeling) approach, species level information 
is used as features and classified by relating their taxonomic features at different 
levels, including genus, family, and order. Using four different disease associated 
metagenomics datasets, the performance of microBiomeGSM is comparatively 
evaluated with other feature selection methods such as Fast Correlation Based 
Filter (FCBF), Select K Best (SKB), Extreme Gradient Boosting (XGB), Conditional 
Mutual Information Maximization (CMIM), Maximum Likelihood and Minimum 
Redundancy (MRMR) and Information Gain (IG), also with other classifiers such 
as AdaBoost, Decision Tree, LogitBoost and Random Forest. microBiomeGSM 
achieved the highest results with an Area under the curve (AUC) value of 0.98% 
at the order taxonomic level for IBDMD dataset. Another significant output of 
microBiomeGSM is the list of taxonomic groups that are identified as important 
for the disease under study and the names of the species within these groups. The 
association between the detected species and the disease under investigation 
is confirmed by previous studies in the literature. The microBiomeGSM tool 
and other supplementary files are publicly available at: https://github.com/
malikyousef/microBiomeGSM.
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1 Introduction

A diverse community of trillions of microorganisms, including 
bacteria, archaea, viruses, as well as microbial eukaryotes like fungus, 
protozoa, and helminths, comprise the human microbiome. Human 
microbiome has an impact on overall human health and on 
homeostasis by influencing immunological function and by actively 
contributing to human metabolism (Marcos-Zambrano et al., 2021). 
Several disease-related conditions have been connected to a rupture 
in the stable interaction between gut epithelial cells and the gut 
microbiota (Petersen and Round, 2014). The number of microbiome-
related studies has significantly risen in the last 10 years, and large 
population studies such as the American Gut Project (McDonald 
et al., 2018), the metagenomics of the Human Intestinal Tract (Qin 
et  al., 2010), and the Human Microbiome Project (The Human 
Microbiome Project Consortium, 2012) have greatly expanded the 
amount of information currently accessible on the content and 
function of the human gut microbiome. The information from these 
studies is crucial for further research on host-microbiome linkages 
and how they relate to the commencement and evolution of many 
complicated diseases.

The community of microbes performs a variety of tasks for the 
host, including facilitating the uptake of nutrients (Martin et al., 2019), 
preserving homeostasis (Ohland and Jobin, 2015), fending off 
pathogens (Pickard et al., 2017), regulating immunological response 
(Mendes et al., 2019), among many others. Understanding these tasks 
and revealing the dialog between the bacterium and the host may help 
in developing plans for preserving the health status, treating diseases. 
In the last few decades, there has been an increased interest in 
researching microbial communities (and their associations) that live 
in various habitats, from the gut to the biosphere. Technological 
advancements lead to lower costs for 16S and metagenomic 
sequencing, greater sequencing resolution and depth (Levy and 
Myers, 2016). Synchronous development of brand-new techniques for 
high throughput characterization of different -omic data types, such 
as lipidomics, metabolomics, metagenomics, metatranscriptomics and 
metaproteomics (Muller, 2019) made this possible. However, it is a 
difficult task to experimentally detect the inter species microbe host 
associations due to several other difficulties relating to scale, scope, 
feasibility, and availability of samples for concurrent -omic readouts 
(Fritz et al., 2013). Computational approaches can circumvent some 
of these constraints, improving our knowledge of microbial 
associations (Dix et al., 2016).

The interactions between the host and the microbiome are critical 
factors affecting human health and disease. Therefore, recently there 
has been an exponential increase in microbiome studies. Many 
research efforts have been devoted to predicting disease based on 
taxonomic profiles derived from metagenomic sequencing data. In 
these studies, machine learning methods are used to predict the 
microbiome interactions associated with diseases. Beyond simply 
assessing their predictive capabilities using machine learning, these 
studies also highlight the importance of specific microbiomes as 
potential biomarkers for disease. In literature, there are numerous 
articles investigating microbiomes associated with three specific 
diseases: Colorectal Cancer (CRC), Type 2 Diabetes (T2D) and 
Inflammatory Bowel Disease (IBD). In particular, several studies 
aiming to uncover microbiomes related to T2D are summarized in 
Gao et al. (2018), Gurung et al. (2020), Cena et al. (2023), and Li 

R. et al. (2023). Microbiomes associated with CRC are reviewed in 
Huybrechts et al. (2020), Tabowei et al. (2022), Negrut et al. (2023), 
and Zwezerijnen-Jiwa et  al. (2023). The studies of Soueidan and 
Nikolski (2016), LaPierre et al. (2019), Marcos-Zambrano et al. (2021), 
Lim et al. (2022), Hsu et al. (2023), and Mah et al. (2023) reviews the 
microbiomes associated with IBD.

More specifically, Deschênes et  al. (2023) employed machine 
learning techniques to predict diseases by representing microbiomes 
using gene-based representations and taxonomic profiles. Through the 
creation of taxonomic profiles from shotgun metagenomic data, they 
identified significant taxa using their proposed methodology. They 
conducted experiments for five different diseases, namely type 2 
diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory 
bowel disease. For both IBD and CRC disease, the datasets used in 
Deschênes et al. (2023) are the same datasets used by the proposed 
approach in this study. In their study, they assessed the performance 
of nine distinct classifiers, including random forest, decision tree, two 
support vector machines with a linear kernel, random set coverage 
machine (rSCM), two logistic regressions, SVM with a radial basis 
function kernel (SVMrbf), and an ensemble algorithm derived from 
SCM (set coverage machine). For each dataset, they applied embedded 
feature selection techniques, such as random forest and ranking 
features based on resulting models, followed by machine learning 
model application. They reported improved classification performance 
for certain diseases by employing taxonomic profiling. The most 
effective results in taxonomic profiling were achieved using the 
random forest algorithm for liver cirrhosis, yielding an AUC of 88%. 
Their study demonstrated the effective use of converting microbiome 
data into taxonomic representation data for disease prediction. They 
reported that Lachnospiraceae microbiome is found as associated with 
T2D and it can be considered as a biomarker for this disease.

Sharma et  al. (2020) predicted disease states using machine 
learning methods by examining related Operational Taxonomic Units 
(OTUs) at the same phylum taxonomic level, exploiting the 
connections among OTUs at this taxonomic rank. Their investigation 
focused on the relationship between disease and the microbiome, 
utilizing shotgun datasets for two distinct diseases, T2D and Cirrhosis. 
The dataset they chose for T2D analysis is the same as the dataset used 
by our proposed tool. They applied their proposed method, which 
they called “TaxoNN,” to a dataset with 174 cases and 170 controls for 
T2D (Qin et al., 2012) and a dataset with 118 cases and 114 controls 
for cirrhosis (Qin et al., 2014). TaxoNN is a Deep Learning based 
multi-layered approach to group OTU information based on phylum 
clusters. It trains clusters containing OTUs that share the same phylum 
separately using Convolutional Neural Networks (CNNs). It combines 
features from each cluster to enhance prediction accuracy via an 
ensemble learning technique. Their proposed method was evaluated 
using six different classifiers, including Random Forest, Gaussian 
Bayes Classifier, Naive Bayes, Ridge Regression, Lasso Regression, and 
Support Vector Machines. The TaxoNN method yielded the highest 
result, achieving an AUC of 92% for cirrhosis and 75% for 
T2D. Moreover, TaxoNN identified microbiomes at the level of three 
dominant phyla (Firmicutes, Proteobacteria, and Actinobacteria) for 
both diseases, highlighting their impact on the diseases.

Giliberti et al. (2022) investigated the influence of the relative 
abundance of microbial taxa on host phenotype classification using 
human metagenomes. They employed machine learning methods to 
construct species-level taxonomic profiles and accurately detected the 
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presence of microbial taxa. In their evaluation scheme, they 
encompassed a total of 4,128 samples from 25 shotgun metagenomic 
datasets. Among the datasets used in their study, T2D dataset is same 
with the dataset used in this study. They also explored the effect on 
disease prediction using relative abundance values at three different 
taxonomic levels: genus, family, and order. Employing the Random 
Forest classification algorithm on species level dataset, they achieved 
the best performance for IBD dataset, across other datasets containing 
seven distinct disease categories (atherosclerotic cardiovascular 
disease, Alzheimer’s disease, Behçet’s disease, colorectal cancer, 
irritable bowel disease, type 1 diabetes, and type 2 diabetes). They 
identified statistically significant microbiomes for the diseases they 
identified. Among these microbiomes for these cases, the most 
significant result was obtained for Clostridium and this microbiome 
was followed by Streptococcus and Ruthenibacterium.

Pasolli et  al. (2016) investigated the utility of microbiomes in 
disease prediction using metagenomic datasets for five different 
diseases: liver cirrhosis, CRC, IBD, obesity, and T2D. Among the 
datasets used in this study, T2D dataset is also utilized within this 
study. They conducted species-level prediction using microbiome 
profiles at the species level derived from metagenomic data. Their 
analysis encompassed a total of 2,424 shotgun metagenomic data 
samples from eight distinct studies. Employing cross-validation 
techniques, they compared classification outcomes using two widely 
employed classifiers in metagenomic data analysis, Random Forest 
and Support Vector Machine. In addition to these classifiers, they also 
evaluated the effectiveness of elastic network, neural network, and 
multiple regression methods. In addition to predicting diseases using 
microbiome data, they highlighted prominent microbiomes related to 
these diseases. Notably, they identified the Peptostreptococcus 
microbiome for colorectal cancer, the Streptococcus microbiome for 
T2D, and the Lachnospiraceae microbiome for IBD as influential 
microbiomes in disease prediction. Collectively, these papers advance 
our understanding for the potential role of the microbiome in these 
diseases using a variety of approaches and analyzes.

Identifying microbial taxa that may cause disease development 
and identifying microbial taxa whose impact varies depending on 
their abundance is one of the major goals of human microbiome 
studies. Uncovering the influence of taxons can help to the 
investigation of disease development processes and hence can 
contribute to the emergence of new approaches for prevention of these 
diseases (Zhang W. et al., 2022). Computational methods dealing with 
microbial relative abundances face several challenges in drawing 
meaningful conclusions due to their complex data structures and 
properties. Traditional computational methods are inadequate to 
assess microbiome population effects in isolation and to produce 
effective results without considering the diversity of the human 
microbiome. Recent research has used machine learning (ML) 
approaches to evaluate data from the human microbiome, more 
specifically to identify and understand the diversity of taxonomy and 
function within microbial communities, and to assess the impact of 
these factors on human health (Topçuoğlu et al., 2020). The use of ML 
in microbiome studies can be summarized as follows:

	•	 ML models have been created to promote taxonomic 
representation and differentiation in microbiology.

	•	 ML has been used for disease prediction by inferring 
host phenotypes.

	•	 ML facilitates the characterization of disease-specific microbial 
signatures to classify patients based on microbial communities 
(Marcos-Zambrano et al., 2021).

In this paper, we present a novel approach, microBiomeGSM, to 
detect disease-associated taxonomic biomarkers by developing an 
efficient machine learning model based on the Grouping, Scoring and 
Modeling (G-S-M) approach. We  have analyzed taxonomically 
transformed microbiome sequencing datasets with our proposed 
machine learning method. In this way, we aim to reveal the impact of 
the identified taxonomic biomarkers on specific diseases. To this end, 
our study contributes to the diagnosis and treatment of the disease 
under investigation. The proposed approach is applied on 
metagenomic datasets associated with 4 different datasets; and the 
taxonomic groups that have an impact on disease under study are 
identified. In the data preprocessing step, the MetaPhlAn tool 
developed by Ditzler et al. (2015) is used to extract taxonomic data 
from microbiome sequencing data. In the first component (grouping 
component) of microBiomeGSM, the species identified in a sample 
are grouped according to the level of taxa known to be associated with 
them. In the second component (scoring component) of 
microBiomeGSM, importance scores are assigned to taxon groups 
using inherent machine learning techniques. The score is a predictor 
of how well a sample can be classified based on the abundance values 
of the species included in that taxon group. In the final (modeling) 
component of microBiomeGSM, three different outputs are generated. 
The first output is the performance metrics of the developed machine 
learning model. The second output is the list of important taxa groups 
associated with the disease under study, and these taxonomic features 
can be  considered as biomarkers. The third output is the species 
associated with the taxa groups. Performance evaluation of 
microBiomeGSM is assessed separately for each disease, and for 3 
different taxonomic levels (genus, family, order). Feature selection 
algorithms are applied to the same dataset in order to comparatively 
evaluate the performance of microBiomeGSM. The biological 
relevance of the identified taxon groups at genus, family, order levels 
for different diseases is discussed with reference to existing knowledge 
in the literature.

2 Materials and methods

2.1 Dataset

The data used in this study are obtained from the NCBI Sequence 
Read Archive (SRA045646, SRA050230) provided by Qin et al. (2012) 
for T2D; accession number PRJNA398089  in the SRA for the 
Integrative Human Microbiome Project for IBDMDB (Beghini et al., 
2021). IBD dataset is obtained from the MetaHit project (Marco-
Ramell et al., 2018) (ERA000116). The CRC metagenomic dataset 
containing 1,262 samples was created by Beghini et  al. (2021). 
Microbiome sequencing data is classified into disease states based on 
the metadata associated with them. To ensure data quality, we applied 
quality filtering to meet the standards outlined in the Human 
Microbiome Project Consortium SOP (2012), as referenced in Thomas 
et  al. (2019). This procedure allowed us to categorize the raw 
sequencing data according to relevant disease states, enabling our 
subsequent analyzes. The microbiome samples were associated with 
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TABLE 2  Statistical information about the numbers of features within a 
group, shown separately for each taxonomic level.

# Dataset
Genus 
(avg/

max/min)

Family 
(avg/

max/min)

Order 
(avg/max/

min)

1 CRC 3.51 /52/1 9.16 /76/1 18.71/202/ 1

2 IBDMDB 3.09 /34/1 7.50 /64/1 13.44/163/ 1

3 IBD 3.24 /61/1 8.22 /65/1 17.32/195/1

4 Type 2 diabetes 3.24 /61/1 8.22 /65/1 17.32/195/ 1

Sen is the sensitivity, Spe is the specificity, AUC is the Area Under the Curve.

the microbial species of origin (taxa) using the MetaPhlAn tool, and 
the relative abundance composition for each taxon was generated 
accordingly. These taxa and their relative abundances serve as features 
or variables in our machine learning approaches. MetaPhlAn first 
assigns reads to microbial clusters using clade-specific genes for 
assignment. It then presents the relative abundance of microbial taxa 
based on these readings. In this study, the assignment to microbial 
species of origin (taxa) was determined for each DNA sequence using 
the MetaPhlAn tool. The relative abundance value is normalized by 
dividing the number of reads for each taxonomic level by the total 
number of reads for only one sample. In this way, the taxonomic 
abundance values are expressed as real numbers in the range [0,1] 
with a sum of 1 for each sample. Samples with less than 1 million total 
reads were not included in our study. For each sample, we determined 
the diversity of disease-relevant microbiomes, where diversity 
represents the presence and relative abundance of microorganisms 
(Alatawi et al., 2022).

The four microbiome datasets used to evaluate the 
microBiomeGSM tool are listed in Table 1. The table presents the 
number of samples in each dataset and the number of samples that are 
labeled as positive. Positive samples refer to patients, while negative 
samples refer to controls. Each dataset contains the abundance values 
of the species, which we consider as features. We have considered 3 
taxonomic levels for creating the groups, i.e., genus, family, and order. 
For each dataset, the number of extracted groups is listed in the 
corresponding column, while ‘-’ denotes missing information.

Statistical information regarding the numbers of features in each 
group is given in Table 2. For each data set and for each taxonomic 
level (genus, family, and order), the average, maximum, and minimum 
numbers of features within a group are given.

Supplementary Table S1 shows the distribution of the groups 
based on their sizes for the IBDMDB dataset. The numbers in the table 
indicate the number of groups that have the specified number of 
species for that specific taxonomic level. There are 187, 77, and 43 

groups for genus, family and order levels, respectively. About 90% of 
the groups at the order level, about 90% of the groups at the family 
level, and about 97% of the groups at the genus level contain 20 or 
fewer species for the IBDMDB dataset.

2.2 microBiomeGSM

Our proposed method, microBiomeGSM, consists of three main 
components: Grouping, Scoring, and Modeling (G-S-M). The G-S-M 
approach has been used in other studies that consider the pre-existing 
biological knowledge (Yousef et al., 2019, 2021a,c, 2022a; Qumsiyeh 
et al., 2022; Yousef and Voskergian, 2022; Ersoz et al., 2023; Jabeer 
et  al., 2023). Additionally it was modified to integrate two-omics 
datasets such as the miRcorrNet and miRModuleNet tools (Yousef 
et al., 2021a, 2022b); and even to integrate 3 omics datasets such as 
3Mint tool (Unlu Yazici et  al., 2023). Interested readers can find 
further details about those approaches in our recent reviews (Yousef 
et al., 2021b; Kuzudisli et al., 2023).

Utilizing the G-S-M approach, microBiomeGSM performs a 
search to identify the most important taxonomic groups in disease-
associated metagenomic datasets. The relative abundance values of the 
species within the group can be checked for each sample; and the 
generated model decides whether the sample has the disease or not. 
By focusing on a specific taxonomic level, we can use the G component 
to find the most significant group for the disease under study. This 
approach provides the advantage of focusing on either the macroscopic 
or microscopic view of the most important group to distinguish 
between healthy samples and patient samples. An overview of the 
steps performed in microBiomeGSM is presented in Figure 1.

Let X be  the two-class dataset consisting of the species in the 
columns, and samples in the rows including the class labels (1 
denoting the disease state and 0 denoting the healthy state). To 
understand the approach in detail, let us assume that the taxonomic 
level is selected as “genus” for the “Select taxa rank” step in Figure 1. 
The input Xabd (abundance matrix) is first split into a training set 
(Xtrain) and a test set (Xtest) with a ratio of 80:20 based on the class 
labels. Denote by S the feature space of all species in Xabd and by Ugenus 
all unique genera for S. Grp{} denotes the selection function of each 
Ugenus in S, grouping all species on the basis of similar genuses. 
Grp{Ugenus

i for S} represents each genus in S, with all the species 
grouped by genus. For example, if we take Alistipes as one of the genus 
in Ugenus, we get the following when we apply the Grp function.

Grp{Ugenus
i}, where i = Alistipes and ∈ S.

Grp{Alistipes} = {alistipes_finegoldi, alistipes_indistinctus, 
alistipes_inops, alistipes_shahii}.

TABLE 1  The list of datasets used to test the model.

# Dataset # of Samples # of positives
# of features 

(Species)
# of Groups 

(Genus)
# of Groups 

(Family)
# of Groups 

(Order)

1 CRC 1,262 600 912 261 100 49

2 IBDMDB 1,638 1,209 579 187 77 43

3 IBD 382 148 1,456 448 177 84

4 T2D 290 155 1,456 448 177 84

Number of samples who have positive class label are shown in the second column. The number of features/Species is shown in the third column. Number of groups created at Order, Family 
and Genus taxonomic levels are listed at the 4-6th columns, respectively.
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Similarly, this approach is applied to all genuses that are present 
in Xabd, and a list of genus groups is created, as shown in Figure 1 after 
the select taxa rank step. This is repeated for the three taxonomic 
levels identified.

When Figure 1 is examined, firstly, in the grouping component G, 
for all the groups of genus, we partition Xtrain into sub data denoted as 
sub_dx. Following the earlier example of Alistipes, this group yields 
sub_dalistipes which is created from Xtrain. The sub_dalistipes contains the 
labels of the samples, but the feature space is restricted only to species 
within the Alistipes genus. This is applied to all different genera created 
in the prior step, so we have multiple subsets of data with a feature space 
specified by genus. Secondly, in the scoring step S, the generated sub_d 
is trained on a Random Forest classifier with 5-fold cross-validation 
with randomized stratified shuffling. Each sub_d is given a score equal 
to the mean of the accuracy over all foldings based on the prediction of 
the labels. Each sub_d is scored and then sorted based on the score. The 
top k groups with the highest score are used for the subsequent step. 
The value chosen for k is 10, but other values for k have been tested. 
Following the example of selecting genus as the taxonomic level, the 
top 10 genus groups that show strong discriminative ability are used to 
build the classification model. Thirdly, in the modeling component, the 
species from the top 10 genus groups are used to train a Random Forest 
model with 100-fold Monte Carlo Cross-Validation (MCCV). The top 

ranking set of species corresponding to the top ranked group is trained 
on Xtrain and then tested on Xtest. Then, the second set of species 
corresponding to the second highest scoring group is aggregated with 
the top scoring set of species; and then used to train and test the model. 
This process is repeated until all species in the top 10 ranked genus 
groups are aggregated; and used to train and test the classifier. This 
whole process is repeated 100 times, stratifying the initial Xabd and 
randomly splitting it into Xtrain and Xtest without replacement. The 
classification performance metrics are determined as the average of the 
metrics obtained in 100 folds. Similarly, the top ranked groups and the 
top ranked species are retained for each run.

2.3 Implementation of microBiomeGSM

The microBiomeGSM tool utilizes the pre-existing biological 
knowledge of the assignment of the species into different taxonomic 
levels, such as genus, family, and order. Experiments with the 
microBiomeGSM tool were conducted on the open-source KNIME 
platform (Berthold et al., 2009). This platform can handle a wide range 
of data types and operations. The user can configure the number of 
iterations, the rank function, and the number of iterations for 
MCCV. All rows with missing values are removed within the workflow.

FIGURE 1

G-S-M approach in microBiomeGSM. MCCV denotes Monte Carlo Cross-Validation.
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2.4 Application of feature selection and 
classifiers using metagenomic data

In metagenomics research, it is observed that in studies using 
taxonomic features, the number of observations used for training data 
is higher than the number of observations used for testing data. This 
situation is undesirable if studies are to produce more effective results, 
and researchers are proposing various methods of resolution, 
particularly feature selection methods. Although the process of feature 
selection in disease prediction problems based on metagenome data 
has not been well studied, the literature suggests that this process may 
be as important as the choice of a classification method (LaPierre et al., 
2019). The process of feature selection in metagenome-based disease 
prediction could help us learn more about disease development 
mechanisms. Therefore, further research in this direction is warranted. 
In metagenomics studies, in order to reduce the number of taxa, i.e., 
to select informative species (features), min Redundancy Max 
Relevance (mRMR) (Ding and Peng, 2005), Lasso (Tibshirani, 1996), 
Elastic Net (Zou and Hastie, 2005), and the iterative sure select 
algorithm (Duvallet et al., 2017) have been used extensively. Another 
feature selection method, called Fizzy, addresses the challenge of using 
classification techniques to identify important functional elements for 
downstream analysis (Ditzler et  al., 2015). Oudah and Henschel 
presented an alternative taxonomy-based method for feature selection 
(Oudah and Henschel, 2018). Bakir-Gungor et  al. (2021) applied 
CMIM (Fleuret and Ch, 2004), FCBF (Senliol et al., 2008), mRMR 
(Ding and Peng, 2005), and Select K best (SKB) (Pedregosa et al., 2011) 
to type 2 diabetes-associated metagenomics datasets and obtained 
powerful performance metrics (Bakir-Gungor et al., 2021). Jabeer et al. 
also proposed a robust classification method for evaluating colorectal 
cancer associated metagenomic datasets using a combination of 
feature selection methods and machine learning methods (Jabeer 
et al., 2022). Bakir-Gungor et al. (2022) also proposed a powerful 
method for IBD classification with fewer features by combining feature 
selection methods and machine learning methods (Bakir-Gungor 
et al., 2022). While these feature selection approaches have produced 
effective results in a variety of fields, they have only recently been 
applied to microbiome-based disease prediction problems.

In this study, we have comparatively evaluated microBiomeGSM 
with different classifiers and with different feature selection methods. 
As the feature selection methods, we have utilized Select K best (SKB), 
Fast Correlation Based Filter (FCBF), Extreme Gradient Boosting 
(XGBoost), Min Redundancy Max Relevance (mRMR), Information 
Gain (IG), and Conditional Mutual Information Maximization 
(CMIM). Wang and Liu (2020) compare the performance of classifiers 
with traditional methods and ensemble methods for disease prediction 
based on human microbiome data. They use Elastic Network and 
SVM as traditional methods and Random Forest and Extreme 
Gradient Boosting (XGBoost) as ensemble methods. In their study, 
they find that the XGBoost algorithm shows superior performance 
compared to other algorithms (Wang and Liu, 2020). In another study, 
Marcos-Zambrano et al. (2021) conducted an important review paper 
to reveal the links between the microbiome and diseases. In this study, 
which included information on the performance of machine learning 
methods, they found that the Support Vector Machines (SVM), 
Random Forest (RF), k-Nearest Neighbors (k-NN), and Logical 
Regression (LR) algorithms were widely used. They concluded that 
when selecting a machine learning algorithm, several factors should 

be considered such as the set of observations, the set of features, the 
type of data, and the quality of the data. They suggest using several 
different methods, comparing them, and choosing the one that 
provides the best performance value (Marcos-Zambrano et al., 2021).

2.5 microBiomeGSM model performance 
evaluation

Accuracy, F1 score, sensitivity, specificity, and AUC were used to 
evaluate the predictive performance of the proposed models. AUC 
score is a common measure for performance evaluation and a reliable 
metric for evaluating balanced datasets. Other metrics such as F1 
score, sensitivity, specificity, and accuracy, were used to evaluate the 
performance of the created models because the dataset for this study 
has an uneven distribution of classes. When a balance between 
precision and recall is desired and there is an uneven distribution of 
classes, the F1 score is a good option among the performance metrics 
(many true negatives). Several classifiers report the probability values 
for their predictions, which can also be considered as confidence values 
for the prediction. The AUC often uses this information to figure out 
how often incorrect predictions occur at different confidence levels. In 
real life, test results from positive and negative examples overlap. AUC 
illustrates how the threshold or cut-off value for identifying positive 
examples affects the relationship between recall and precision. In this 
study, all of the above-mentioned metrics were calculated as the mean 
of 100 times MCCV. After each iteration, we obtain lists of significant 
taxonomic groups and species associated with these taxa groups for a 
given disease. To assign scores to the entities in the taxonomic groups 
list and in the species lists, a prioritization approach is used. For this 
purpose, we integrated the RobustRankAggreg algorithm (Kolde et al., 
2012) and microBiomeGSM. RobustRankAggreg algorithm is available 
as an R package. Each entity (taxonomic group or species) in the lists 
is given a value of p by the RobustRankAggreg technique, indicating 
how highly ranked that entity. Using the RobustRankAggreg tool, 
microBiomeGSM outputs a list of species to which it has assigned a 
significance value (value of p) for a specific taxonomic group. Each taxa 
group is assigned a significance value and the species associated with 
that group are assigned the same value.

3 Results

The main objective of this study is to identify the microbial 
communities that are associated with specific diseases. In order to 
facilitate disease diagnosis, using metagenomic data we develop an 
efficient classification model based on taxonomic levels. In this section 
we  present our findings for four different datasets. Here we  also 
present comparative evaluation results against other existing methods.

3.1 Comparing varying group size for 
microBiomeGSM

One approach to evaluate model performance in the context of 
microBiomeGSM is to compare model performance between different 
values of the parameter k. k represents the number of groups (taxa) 
used in microBiomeGSM models. This approach can help researchers 
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determine the optimal value of k that balances model complexity and 
predictive power, ultimately leading to more effective and interpretable 
models in microbiome-related research. It provides insight into how 
the inclusion or exclusion of specific taxa affects the overall 
performance of microBiomeGSM models.

Supplementary Table S2 shows the performance metrics obtained 
with 100-fold MCCV for the aggregated top  10 groups for four 
different datasets compared at three different taxonomic levels (genus, 
family, order) for grouping. For the IBDMDB dataset, 
microBiomeGSM achieved an AUC of 93% using the top 1 group at 
the family level. Performance metrics are shown for the top 2 groups 
via combining species from the first and second highest scoring 
groups. We  obtained an AUC of 97% when the top  2 groups are 
combined at the family taxonomic level for the IBDMDB dataset. In 
this way, microBiomeGSM provides cumulative performance results 
for the top 10 highest scoring groups. For the IBDMDB dataset, the 
highest performance metric (an AUC of 98%) is obtained using the 
species from the top 10 groups at the order taxonomic level. For the 
IBD dataset, the highest performance metric (an AUC of 93%) is 
obtained using the species from the top  9 groups at the order 
taxonomic level. For the T2D dataset, the highest performance metric 
(an AUC of %74) is obtained using the species from the top 9 groups 
at the order taxonomic level. For the CRC dataset, the highest 
performance metric (an AUC of %83) is obtained using the species 

from the top 10 groups at the family taxonomic level. While examining 
other performance metrics (such as accuracy, sensitivity, specificity in 
Supplementary Table S2), it is noteworthy that satisfactory results are 
obtained with microBiomeGSM for each taxonomic level, especially 
for the IBDMDB dataset. The high sensitivity values that are reported 
for the CRC, IBDMDB, and IBD datasets display the success of the 
microBiomeGSM tool in terms of detecting the patient samples. In the 
CRC, IBDMDB, and IBD datasets, the strikingly high specificity 
values indicate that the microBiomeGSM tool correctly identifies the 
negative samples (i.e., individuals who do not have the disease). 
However, in the T2D dataset, the specificity rate appears to be relatively 
low compared to the other datasets. Nevertheless, the ability to detect 
negative samples remains at a reasonable level.

In addition, Figures 2, 3 show the sensitivity and specificity values 
obtained with the microBiomeGSM tool for all datasets. Figure 2 
shows the sensitivity values obtained using the microBiomeGSM tool 
across all datasets. One can notice from Figure 2A that for the CRC 
data set the highest sensitivity value (73%) is obtained for the order 
taxon level using 10 cumulative groups. In particular, the sensitivity 
values calculated for the IBDMDB dataset were quite impressive, 
especially in group 1 and group 6, both at the family taxon level, 
reaching 99% sensitivity value, as shown in Figure  2B. Figure  2C 
shows another impressive set of results for the IBD data set. In 
Figure 2C, we observe high values for sensitivity, in particular 87% 

FIGURE 2

Sensitivity values obtained at the family, order, and genus taxon levels for the top 10 significant groups across all 4 datasets. (A–D) Represents the 
results obtained in CRC, IBDMDB, IBD, T2D datasets, respectively.
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FIGURE 3

Specificity values at the order, genus, and family taxon level for the top 10 significant groups for all 4 disease datasets. (A–D) Represents the results 
obtained in CRC, IBDMDB, IBD, T2D datasets, respectively.

sensitivity at the taxon level in group 1. As shown in Figure 2D, the 
highest sensitivity value for the T2D data set is 69%. This result is 
obtained for the genus taxon level using 10 cumulative groups. A 
sensitivity value of 69% is also obtained for the family taxon level 
using 4 cumulative groups.

Figure  3 shows the specificity values obtained using the 
microBiomeGSM tool for all datasets. As shown in Figure 3A, the 
specificity value obtained for the CRC dataset is remarkable, reaching 
an impressive specificity value of 94% at the family taxon level for 1 
group. Figure 3B depicts that the highest specificity value obtained for 
the IBDMDB dataset is 93% for 1 group at the order taxon level. As 
displayed in Figure 3C, the highest specificity value obtained for the 
IBD dataset is 85% for the 4 cumulative groups at the order taxon 
level. The same result is also obtained at the order taxon level for the 
5 cumulative groups. One can notice in Figure 3D that the highest 
specificity value that is obtained for the T2D dataset is 71% for the 6 
cumulative groups at the order taxon level.

The number of significant groups used to train the model could 
affect the performance of microBiomeGSM. Table  3 shows the 
influence of the number of groups and the number of species at family, 
genus and order levels on four datasets. Table  3 presents the 
performance of the top 10 cumulative groups and top 1 group for each 
taxonomic level on different tested datasets. For the IBDMDB dataset, 
for the family taxonomic level, one can observe that the AUC increases 

by 5% when we consider the top 10 significant groups cumulatively, 
while we increase the number of species from 34 to 205. On the same 
dataset, an increase of 8% in AUC score is observed at the Genus 
taxonomic level via increasing the number of species from 34 to 119. 
For the same dataset, a decrease of 1% is observed at the Order 
taxonomic level. Order taxonomic level using the top group that 
includes 98 species achieves the highest AUC success rate of 98% for 
the IBDMDB dataset. Similarly, family taxonomic level using the 
top 10 combined groups achieves 97% AUC on the IBDMDB dataset, 
but these 10 combined groups include a much higher number of 
species (205 species). For the IBD dataset, the highest AUC value of 
91% was obtained using the microBiomeGSM tool. This value at the 
family taxonomic level was obtained by cumulatively combining 10 
groups, using an average of 260.4 species. For the T2D dataset, the 
highest AUC value of 72% was obtained using the microBiomeGSM 
tool. This value, obtained at the order taxanomic level, was obtained 
by combining 10 groups cumulatively. For 1 group, an average of 
138.28 species are used at the taxonomic level, while for 10 groups, an 
average of 596.99 species are used. For the CRC dataset, the highest 
AUC value of 87% was obtained using the microBiomeGSM tool. This 
value at the order taxanomic level was obtained by cumulatively 
combining 10 groups, using an average of 604 species.

microBiomeGSM reports important groups of features that are 
detected at different taxonomic levels for the disease under study. 
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Table  4 lists the top  10 important groups that are identified by 
microBiomeGSM for three different taxonomic levels on four different 
datasets. The identified features are ranked by their importance scores 
from high to low. The feature with the highest importance value is the 
strongest candidate to be  announced as potential taxonomic 
biomarker for the disease under investigation.

The microBiomeGSM tool lists a number of associated species for 
each identified group. The species included in the top  5 significant 
groups are listed in Supplementary Tables S3–S5 for family, order, and 
genus taxonomic levels, respectively for four different datasets. All 

species for the family, order, and genus taxonomic levels for the T2D, 
IBDMDB and CRC datasets can be found in Supplementary Tables S6–S14, 
respectively.

For the IBDMDB dataset, the changes in the AUC score when the 
number of groups is increased from 1 to 10 are shown in 
Supplementary Figure S1. For the IBDMDB dataset, a high AUC 
score is obtained at the order taxonomic level. When the number of 
groups was increased, the AUC score decreased relatively, and no 
significant change was observed after 5 groups. At the genus and 
family taxonomic levels, there is a significant increase in the AUC 

TABLE 3  The effect of the number of groups that are generated at different taxonomic levels on performance metrics for all dataset.

CRC

Taxonomic 
hierarchy

# of 
groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 239.11 0.78 0.84 0.72 0.79 0.84 0.76

Family 1 16.17 0.67 0.91 0.43 0.73 0.69 0.62

Genus 10 102.06 0.77 0.82 0.71 0.78 0.84 0.76

Genus 1 7.16 0.66 0.88 0.44 0.72 0.71 0.63

Order 10 604 0.82 0.86 0.78 0.82 0.87 0.81

Order 1 154.25 0.76 0.82 0.71 0.78 0.81 0.76

IBDMDB

Taxonomic 
hierarchy

# of 
Groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 205.76 0.95 0.98 0.87 0.95 0.97 0.93

Family 1 34 0.93 0.98 0.81 0.94 0.93 0.9

Genus 10 119.4 0.92 0.98 0.82 0.95 0.97 0.93

Genus 1 34 0.92 0.98 0.80 0.94 0.91 0.91

Order 10 341.22 0.93 0.97 0.86 0.95 0.98 0.93

Order 1 98 0.96 0.98 0.93 0.97 0.98 0.95

IBD

Taxonomic 
hierarchy

# of 
Groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 260.24 0.82 0.85 0.79 0.82 0.91 0.81

Family 1 51.59 0.78 0.78 0.78 0.78 0.86 0.78

Genus 10 121.78 0.81 0.83 0.79 0.81 0.88 0.8

Genus 1 12.26 0.7 0.67 0.74 0.69 0.78 0.73

Order 10 608.27 0.82 0.82 0.81 0.82 0.9 0.82

Order 1 174.86 0.81 0.82 0.8 0.81 0.9 0.81

T2D

Taxonomic 
hierarchy

# of 
groups

Average # 
of species

Accuracy Sen Spe F measure AUC Precision

Family 10 321.16 0.65 0.68 0.63 0.66 0.71 0.65

Family 1 39.86 0.59 0.71 0.47 0.63 0.63 0.58

Genus 10 129.8 0.64 0.64 0.64 0.64 0.69 0.65

Genus 1 15.94 0.56 0.62 0.49 0.58 0.58 0.55

Order 10 596.99 0.65 0.65 0.64 0.64 0.72 0.65

Order 1 138.28 0.59 0.67 0.52 0.62 0.64 0.59

The results in bold in table represent the best AUC results.
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TABLE 4  Top 10 groups identified by microBiomeGSM for different taxonomic levels, applied on all microbiome datasets.

CRC

# Taxonomic levels

Rank Family Order Genus
1 PEPTOSTREPTOCOCCACEAE CLOSTRIDIALES PARVIMONAS

2 PEPTONIPHILACEAE TISSIERELLALES PEPTOSTREPTOCOCCUS

3 FUSOBACTERIACEAE BACTEROIDALES FUSOBACTERIUM

4 BACILLALES_UNCLASSIFIED FUSOBACTERIALES GEMELLA

5 VEILLONELLACEAE BACILLALES DIALISTER

6 LACHNOSPIRACEAE VEILLONELLALES LACHNOCLOSTRIDIUM

7 ERYSIPELOTRICHACEAE ERYSIPELOTRICHALES PREVOTELLA

8 RUMINOCOCCACEAE LACTOBACILLALES STREPTOCOCCUS

9 PREVOTELLACEAE ACTINOMYCETALES PORPHYROMONAS

10 STREPTOCOCCACEAE DESULFOVIBRIONALES SOLOBACTERIUM

IBDMDB

# Taxonomic levels

Rank Family Order Genus
1 BACTEROIDACEAE BACTEROIDALES BACTEROIDES

2 LACHNOSPIRACEAE CLOSTRIDIALES ALISTIPES

3 RUMINOCOCCACEAE FIRMICUTES_UNCLASSIFIED EUBACTERIUM

4 RIKENELLACEAE VEILLONELLALES ROSEBURIA

5 FIRMICUTES_UNCLASSIFIED BURKHOLDERIALES FIRMICUTES_UNCLASSIFIED

6 TANNERELLACEAE METHANOMASSILIICOCCALES PARABACTEROIDES

7 EUBACTERIACEAE DESULFOVIBRIONALES RUMINOCOCCUS

8 CLOSTRIDIACEAE ERYSIPELOTRICHALES COPROCOCCUS

9 VEILLONELLACEAE BIFIDOBACTERIALES BLAUTIA

10 ODORIBACTERACEAE EGGERTHELLALES CLOSTRIDIUM

IBD

# Taxonomic levels

Rank Family Order Genus
1 LACHNOSPIRACEAE CLOSTRIDIALES BLAUTIA

2 BIFIDOBACTERIACEAE CORIOBACTERIALES BIFIDOBACTERIUM

3 CORIOBACTERIACEAE BIFIDOBACTERIALES EUBACTERIUM

4 RUMINOCOCCACEAE ERYSIPELOTRICHALES DOREA

5 ERYSIPELOTRICHACEAE BACTEROIDALES COLLINSELLA

6 CLOSTRIDIALES_FAMILY_XIII_INCERTAE_SEDIS LACTOBACILLALES PEPTOSTREPTOCOCCUS

7 EUBACTERIACEAE SELENOMONADALES COPROCOCCUS

8 PEPTOSTREPTOCOCCACEAE VERRUCOMICROBIALES ERYSIPELOTRICHACEAE_NONAME

9 CARNOBACTERIACEAE CANDIDATUS_SACCHARIBACTERIA_NONAME LACHNOSPIRACEAE_NONAME

10 CLOSTRIDIACEAE BACILLALES BACTEROIDES

T2D

# Taxonomic levels

Rank Family Order Genus
1 LACHNOSPIRACEAE CLOSTRIDIALES EUBACTERIUM

2 BIFIDOBACTERIACEAE BIFIDOBACTERIALES BIFIDOBACTERIUM

3 RUMINOCOCCACEAE CORIOBACTERIALES BLAUTIA

4 EUBACTERIACEAE BACTEROIDALES DOREA

5 CORIOBACTERIACEAE LACTOBACILLALES LACHNOSPIRACEAE_NONAME

6 CLOSTRIDIALES_FAMILY_XIII_INCERTAE_SEDIS ERYSIPELOTRICHALES RUMINOCOCCUS

7 ERYSIPELOTRICHACEAE SELENOMONADALES COPROCOCCUS

8 PEPTOSTREPTOCOCCACEAE VERRUCOMICROBIALES PEPTOSTREPTOCOCCUS

9 CARNOBACTERIACEAE METHANOBACTERIALES ERYSIPELOTRICHACEAE_NONAME

10 BACTEROIDACEAE BACILLALES GRANULICATELLA
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score until 5 groups are combined and no significant change after 
5 groups.

3.2 Comparing against traditional machine 
learning methods

Our Grouping-Scoring-Modeling (G-S-M) approach emerges as 
a paradigm shift from traditional feature selection methods. Instead 
of pinpointing individual informative features, the GSM methodology 
groups these features. These groups are then scored, and a classification 
model is built using these top-ranking feature conglomerates. The 
versatility of the GSM method, as detailed in our prior work (Yousef 
et al., 2021b), lies in its adaptability. Groups can be created either by 
computational/statistical methods or by using domain-specific 
knowledge. In order to use the GSM strategy for a given dataset, a 
deep domain expertise is required to skillfully define these groups, 
which makes each application different. The modifications required to 
tailor the G-S-M approach to the unique needs of microbiome 
research highlight the adaptability of the G-S-M method and the 
novelty of our current study.

We have comparatively evaluated the performance of 
microBiomeGSM against 4 different classifiers and 6 different feature 

selection methods using the same datasets. All algorithms are run with 
default parameters. The developed approach and feature selection 
methods were executed multiple times, and the results were averaged 
and shared. Table 5 shows the performance of the different feature 
selection algorithms and different classifiers on the same disease 
associated microbiome datasets. In these experiments, the number of 
features was set to 100. The best result for the IBDMDB dataset is 
obtained by using the XGBoost feature selection algorithm in 
combination with the Random Forest classification algorithm with 
98% AUC. For the CRC dataset, the best result is obtained by using 
the XGBoost feature selection algorithm in combination with the 
Random Forest classification algorithm with an AUC of 85%. For the 
IBD dataset, the best result is obtained using the Random Forest 
classification algorithm with 92% AUC and the SKB feature selection 
algorithm. For the T2D dataset, the best result is obtained by using the 
XGBoost feature selection algorithm in combination with the Random 
Forest classification algorithm with 70% AUC.

We would like to note that the primary objective of 
microBiomeGSM is not to compete with other feature selection 
methods (FS). Even if microBiomeGSM’s performance is on par with 
or slightly less favorable than other FS methods, its fundamental 
contribution lies in identifying the most informative microbiomes. 
These microbiomes play a pivotal role in aiding researchers in gaining 

TABLE 5  Area under the curve (AUC) results obtained using 100 features for different feature selection methods and classifiers for all dataset.

CRC

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0.75 ± 0.02 0.71 ± 0.05 0.78 ± 0.04 0.71 ± 0.05 0.63 ± 0.06 0.77 ± 0.04

DT 0.67 ± 0.04 0.64 ± 0.04 0.69 ± 0.04 0.63 ± 0.06 0.61 ± 0.04 0.65 ± 0.05

Logitboost 0.76 ± 0.04 0.72 ± 0.05 0.78 ± 0.06 0.70 ± 0.04 0.64 ± 0.06 0.76 ± 0.05

RF 0.82 ± 0.03 0.79 ± 0.04 0.85 ± 0.03 0.77 ± 0.05 0.74 ± 0.04 0.80 ± 0.03

IBDMDB

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0.89 ± 0.04 0.90 ± 0.03 0.89 ± 0.06 0.49 ± 0.08 0.51 ± 0.08 0.51 ± 0.08

DT 0.83 ± 0.03 0.82 ± 0.04 0.84 ± 0.03 0.46 ± 0.07 0.50 ± 0.07 0.50 ± 0.06

Logitboost 0.89 ± 0.04 0.91 ± 0.03 0.86 ± 0.06 0.50 ± 0.06 0.51 ± 0.08 0.49 ± 0.08

RF 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.46 ± 0.1 0.54 ± 0.08 0.52 ± 0.07

IBD

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0,90 ± 0.07 0,89 ± 0.03 0,91 ± 0.03 0,51 ± 0.06 0,51 ± 0.03 0,66 ± 0.08

DT 0,78 ± 0.08 0,70 ± 0.08 0,73 ± 0.07 0,53 ± 0.08 0,51 ± 0.04 0,56 ± 0.09

Logitboost 0,90 ± 0.04 0,90 ± 0.05 0,92 ± 0.05 0,55 ± 0.1 0,53 ± 0.05 0,59 ± 0.1

RF 0,92 ± 0.03 0,88 ± 0.06 0,91 ± 0.04 0,53 ± 0.09 0,55 ± 0.07 0,63 ± 0.11

T2D

Model SKB IG XGB FCBF MRMR CMIM

Adaboost 0,56 ± 0.12 0,60 ± 0.05 0,64 ± 0.07 0,50 ± 0.10 0,5 ± 0.01 0,50 ± 0.12

DT 0,52 ± 0.08 0,52 ± 0.08 0,53 ± 0.05 0,41 ± 0.10 0,51 ± 0.02 0,49 ± 0.10

Logitboost 0,55 ± 0.10 0,58 ± 0.09 0,62 ± 0.10 0,48 ± 0.08 0,50 ± 0.01 0,51 ± 0.11

RF 0,62 ± 0.11 0,62 ± 0.07 0,70 ± 0.06 0,49 ± 0.08 0,51 ± 0.03 0,54 ± 0.10

The results in bold in table represent the best AUC results for the respective disease (CRC, IBDMDB, IBD, T2D).
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TABLE 6  Evaluation metrics obtained with microBiomeGSM on four datasets for different taxonomic levels, compared with traditional classifiers using 
all features.

CRC

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 912 0.72 ± 0.06 0.79 ± 0.09 0.66 ± 0.17 0.7 ± 0.09 0.78 ± 0.04

DT 912 0.68 ± 0.09 0.75 ± 0.12 0.62 ± 0.26 0.66 ± 0.09 0.7 ± 0.04

LogitBoost 912 0.73 ± 0.06 0.78 ± 0.09 0.68 ± 0.18 0.71 ± 0.09 0.78 ± 0.04

RF 912 0.78 ± 0.05 0.82 ± 0.08 0.75 ± 0.14 0.76 ± 0.09 0.86 ± 0.03

microBiomeGSM: family 292.88 ± 16.09 0.74 ± 0.65 0.7 ± 0.39 0.77 ± 0.91 0.75 ± 0.83 0.81 ± 0.67

microBiomeGSM: genus 161.21 ± 5.17 0.74 ± 0.67 0.69 ± 0.41 0.79 ± 0.92 0.76 ± 0.84 0.8 ± 0.68

microBiomeGSM: order 607.5 ± 188.32 0.73 ± 0.69 0.72 ± 0.66 0.75 ± 0.73 0.74 ± 0.71 0.81 ± 0.77

IBDMDB

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 579 0.92 ± 0.02 0.97 ± 0.02 0.79 ± 0.1 0.93 ± 0.03 0.94 ± 0.01

DT 579 0.91 ± 0.02 0.94 ± 0.01 0.84 ± 0.05 0.94 ± 0.02 0.89 ± 0.02

LogitBoost 579 0.92 ± 0.01 0.98 ± 0.01 0.76 ± 0.07 0.92 ± 0.02 0.91 ± 0.04

RF 579 0.98 ± 0.01 1 ± 0 0.93 ± 0.06 0.98 ± 0.02 0.98 ± 0.01

microBiomeGSM: Family 205.76 ± 16.23 0.94 ± 0.02 0.98 ± 0.01 0.86 ± 0.05 0.93 ± 0.05 0.97 ± 0.02

microBiomeGSM: Genus 119.4 ± 15.87 0.93 ± 0.02 0.98 ± 0.01 0.85 ± 0.05 0.93 ± 0.05 0.97 ± 0.02

microBiomeGSM: Order 341.22 ± 15.6 0.93 ± 0.02 0.97 ± 0.02 0.86 ± 0.06 0.93 ± 0.06 0.98 ± 0.03

IBD

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 1,456 0.88 ± 0.04 0.85 ± 0.12 0.89 ± 0.05 0.84 ± 0.05 0.9 ± 0.04

DT 1,456 0.75 ± 0.05 0.72 ± 0.09 0.78 ± 0.06 0.67 ± 0.08 0.75 ± 0.06

LogitBoost 1,456 0.85 ± 0.04 0.81 ± 0.1 0.87 ± 0.07 0.8 ± 0.09 0.88 ± 0.04

RF 1,456 0.87 ± 0.05 0.91 ± 0.1 0.84 ± 0.05 0.78 ± 0.06 0.92 ± 0.05

microBiomeGSM: Family 260.24 ± 26.92 0.82 ± 0.06 0.85 ± 0.07 0.79 ± 0.1 0.81 ± 0.13 0.91 ± 0.07

microBiomeGSM: Genus 121.78 ± 27.83 0.81 ± 0.06 0.83 ± 0.06 0.79 ± 0.1 0.8 ± 0.12 0.88 ± 0.08

microBiomeGSM: Order 608.27 ± 24.22 0.82 ± 0.07 0.82 ± 0.08 0.81 ± 0.09 0.82 ± 0.15 0.9 ± 0.08

T2D

Model # of Species Accuracy Sensitivity Specificity Precision AUC

AdaBoost 1,456 0.68 ± 0.08 0.91 ± 0.08 0.39 ± 0.26 0.67 ± 0.09 0.66 ± 0.1

DT 1,456 0.57 ± 0.05 0.98 ± 0.06 0.06 ± 0.19 0.57 ± 0.06 0.57 ± 0.09

LogitBoost 1,456 0.67 ± 0.08 0.93 ± 0.08 0.36 ± 0.24 0.65 ± 0.08 0.65 ± 0.1

RF 1,456 0.72 ± 0.09 0.91 ± 0.09 0.48 ± 0.29 0.71 ± 0.12 0.75 ± 0.1

microBiomeGSM: family 321.16 ± 36.31 0.65 ± 0.08 0.68 ± 0.09 0.63 ± 0.11 0.65 ± 0.15 0.71 ± 0.08

microBiomeGSM: genus 129.8 ± 35.03 0.64 ± 0.09 0.64 ± 0.1 0.64 ± 0.13 0.65 ± 0.18 0.69 ± 0.09

microBiomeGSM: order 596.99 ± 35.14 0.65 ± 0.08 0.65 ± 0.09 0.64 ± 0.12 0.65 ± 0.17 0.72 ± 0.09

a deeper understanding of the biological underpinnings of the disease 
under investigation. In essence, microBiomeGSM’s value lies in its 
ability to contribute to the advancement of biological knowledge, 
rather than merely outperforming other feature selection techniques.

Table 6 shows the performance metrics of microBiomeGSM for 
each taxonomic level for four different datasets. The # of species 
column shows the number of species (features/variables) used to train 

and test the model. Since the number of species changes in each 
iteration of MCCV, we also report the standard deviation. Performance 
metrics are reported as the average of 100 iterations with the 
corresponding standard deviation. For the CRC dataset, among 
different classifiers the RF algorithm has the highest performance for 
all calculated metrics including the accuracy, sensitivity, specificity, 
precision, and AUC metric. The AdaBoost, LogitBoost and DT models 
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show lower performance compared to the RF model. The performance 
metrics of these three algorithms are similar but not as high as RF 
model. At the order taxonomic level, the mean values of the 
performance metrics are stable and the standard deviations are low. 
This indicates that the order level is a more appropriate choice for 
CRC classification. Comparing the RF model and the microBiomeGSM 
model, similar performance metrics are obtained for the CRC dataset, 
but it is worth mentioning that the number of features used in the 
proposed tool is lower. In other words, for the CRC dataset the 
microBiomeGSM model can accurately classify using fewer taxonomic 
features. For the IBDMDB dataset, among different classifiers the RF 
algorithm has the highest accuracy, sensitivity, specificity, precision, 
and AUC values. In particular, RF model achieved very high sensitivity 
and AUC values. For the IBDMDB dataset, the microBiomeGSM tool 
achieves an AUC of 98% for the order taxon level, the same 
performance metrics as obtained by the RF classification algorithm. 
However, the microBiomeGSM tool uses 341 features for the order 
taxon level, while the RF model uses 579 features. For IBD dataset, the 
RF algorithm generates the highest performance on several metrics, 
including accuracy, sensitivity, specificity, precision, and AUC. It 
performs particularly well on sensitivity and AUC. In our analysis, 
microBiomeGSM achieved an impressive AUC value of 91% at the 
family taxon level. Equally remarkable is the similar performance of 
the RF classification algorithm (an AUC of 92%) for the same task. 
However, it is important to highlight an important difference between 
these two approaches. For IBD dataset the RF classification algorithm 
achieved an AUC of 92% by using a much larger set of features (1,456 
features) for the classification task. For the same dataset, the 
microBiomeGSM tool also showed remarkable performance (an AUC 
value of 91%). In stark contrast, microBiomeGSM achieved nearly 
equivalent AUC performance while using a much smaller set of 
features, only 260 features. This divergence in feature usage highlights 
the effectiveness and potential advantages of the microBiomeGSM 
tool in extracting meaningful information from microbiome data 
while optimizing computational resources. For T2D dataset, the RF 
classification algorithm outperforms other classification algorithms 
on several performance metrics including accuracy, sensitivity, 
specificity, precision and AUC. microBiomeGSM achieved an AUC 
value of 72% at the order taxon level. Interestingly, a similar level of 
performance is observed using the RF classification algorithm, which 
achieves an AUC value of 75%. However, it is important to note that 
the underlying mechanisms of these two methods are very different. 
The RF classification algorithm achieves this AUC value by 
incorporating a much larger set of features, 1,456 features, into its 
classification process. In contrast, the microBiomeGSM tool achieves 
comparable AUC metric by using a leaner set of 596 features. This 
difference in feature usage is worth highlighting as it shows that the 
microBiomeGSM tool is able to deliver competitive results with a 
lower computational load, making it an efficient and resource-efficient 
choice for the classification task at hand. These results highlight the 
nuanced trade-offs in selecting the appropriate tool or algorithm for 
the specific data analysis requirements.

As shown in Table 7, the performance of our proposed method 
varies depending on the taxonomic level considered. For the order 
taxonomic level, for all tested datasets, the proposed method 
outperforms other models in terms of the AUC score, except for the 
RF classifier. Similarly, for all datasets, at the family and genus 
taxonomic levels, the AUC values are also highly competitive, 

outperforming those of the other four machine learning algorithms 
used in this study, with the sole exception of the RF classifier. These 
results highlight the robust performance of our method across 
different taxonomic levels. A remarkable performance of our proposed 
method was observed when it is applied on the IBDMDB dataset. 
Here, we obtained an exceptionally high AUC value of 0.98 ± 0.03 at 
the order taxonomic level using a 100-fold MCCV approach. This 
remarkable result demonstrates the exceptional performance and the 
potential of the microBiomeGSM tool.

4 Discussion

The microbiome is considered as a crucial component of the 
human body and it is increasingly associated with numerous aspects 
of development and health. There is growing evidence that the 
microbiota is essential for understanding, diagnosing, and treating 
human diseases. In particular, alterations in the gut microbiome 
community have been linked to a variety of diseases, including CRC 
(Song et al., 2020), T2D (Salamon et al., 2018) and IBD (Alam et al., 
2020). Several research efforts relied on sample-level feature 
abundance data to identify predictive microbiome biomarkers using 
machine learning. In this study, we  proposed to perform more 
effective disease classification and prediction with fewer features. To 
this end, we  developed microBiomeGSM to solve this problem 
compared to tools that perform predictions with a large amount of 
data. The success of microBiomeGSM can be  explained with the 
following features of the G-S-M approach:

	•	 For the grouping component of microBiomeGSM, only the 
features at the similar taxonomic levels are considered.

	•	 microBiomeGSM uses efficient classifiers for the scoring 
component to identify the key groups for each taxonomic level;

	•	 For the modeling component, significant taxonomic groups are 
considered cumulatively using effective classifiers.

Via analyzing metagenomic data, this study aims to solve the 
problem of disease diagnosis using existing taxonomic knowledge; 
and finally introduces a tool called microBiomeGSM. The proposed 
tool is based on the G-S-M (Grouping-Scoring-Modeling) approach 
and uses species-level information by grouping taxonomic features at 
different taxonomic levels such as genus, family, and order. The 
performance of microBiomeGSM on four different disease-associated 
metagenomic datasets was evaluated in comparison to other feature 
selection methods such as Fast Correlation Based Filter (FCBF), Select 
Best K (SKB), Extreme Gradient Boosting (XGB), Conditional Mutual 
Information Maximization (CMIM), Maximum Likelihood and 
Minimum Redundancy (MRMR), and Information Gain (IG).

The presented microBiomeGSM approach offers several 
advantages in the field of disease diagnosis via analyzing metagenomic 
datasets. One significant benefit is its ability to efficiently identify 
disease-associated taxonomic biomarkers through a robust machine 
learning model based on the Grouping, Scoring, and Modeling 
(G-S-M) methodology. Differently from existing approaches, 
microBiomeGSM identifies groups of important taxons and detects 
important species within that taxon for the disease under study. 
Hence, this innovative approach enables the extraction of valuable 
insights from microbiome data, shedding light on the influence of 
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specific taxonomic biomarkers on the disease under investigation. 
Furthermore, the performance evaluation across different diseases, 
different taxonomic levels (genus, family, order); and the comparative 
assessment with different feature selection algorithms exhibits the 
reliability of microBiomeGSM. Finally, the discussions on the 
biological relevance of the findings of the proposed approach, via 
drawing evidence from the existing literature, provide valuable context 
for the identified taxon groups for the disease under study, making 
microBiomeGSM an informative tool in disease research. Our tool’s 
significance transcends its mere application; it holds the potential for 
pioneering discoveries. It is geared to discern not isolated microbial 
entities but entire assemblages of species, paving the way for profound 
biological interpretations. By spotlighting groups of bacteria and 
viruses in lieu of singular entities, our tool offers a holistic view, 
potentially identifying microbial communities implicated in 
specific diseases.

With this study, we would also like to motivate biologists and the 
microbiome community to redesign their grouping methods instead 
of using individual feature selection approaches. We envision that in 
the future, various biological datasets, including multi-omics, will 
be used to redefine the groupings. Such innovative grouping strategies, 
complemented by modeling, promise to provide profound insights 
into the molecular mechanisms of diseases and the role of 
microorganisms in disease development.

4.1 Biological interpretations of 
microBiomeGSM’s findings

This section discusses the biological relevance of the features 
discovered by microBiomeGSM at different taxonomic levels for all 
tested datasets. T2D is a metabolic disease characterized by high 
glucose levels in blood and caused primarily by cellular resistance to 
the activity of insulin (Sedighi et al., 2017). There are several studies 
in the literature that have demonstrated the relation of different 
microorganisms at the genus, family, and order levels with T2D 
development. For the T2D dataset, the top 10 microbiomes identified 
by our method at the genus, family, order levels and the relevant 
literature can be summarized in Supplementary Table S15. On the 
other hand, inflammatory bowel diseases (IBDs), which include 
primarily ulcerative colitis and Crohn’s disease, but also non-infectious 
inflammation of the bowel, have puzzled gastroenterologists and 
immunologists alike since their first modern descriptions around 
some 75–100 years ago (Ni et al., 2018; Bakir-Gungor et al., 2022). For 
the IBDMDB dataset, the top  10 microbiomes identified by our 
method at the genus, family, and order levels and the relevant literature 
can be summarized in Supplementary Table S15. CRC is a prevalent 
malignancy affecting the colon and rectum. It constitutes 
approximately 10% of all newly diagnosed cancer cases worldwide (Li 
X. et al., 2023). For the CRC dataset, the top 10 microbiomes identified 
by our method at the genus, family, and order levels and the relevant 
literature can be summarized in Supplementary Table S15.

Numerous studies have investigated the relationship between 
microbiomes and diseases like T2D, CRC, and IBD using similar 
datasets as used within this study. Upon examination of these studies, 
it becomes evident that while their experimental designs may vary, 
they consistently yield comparable results when it comes to identifying 
microbiomes linked to these diseases. These findings align with the T
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important microbiomes identified by microBiomeGSM for T2D, 
CRC, and IBD, showcasing the tool’s effectiveness in accurately 
identifying relevant microbiomes associated with these diseases. 
These congruent findings reinforce the reliability and validity of the 
microbiome associations detected by the microBiomeGSM tool. It 
also underscores the tool’s capacity to identify microbiomes that are 
consistently linked to specific diseases, providing valuable insights for 
disease characterization and prediction. Hassouneh et  al. (2021) 
conducted a series of experiments aimed at uncovering microbiomes 
associated with IBD. In their analysis using the same dataset as used 
by the microBiomeGSM tool, they observed differences in 
Clostridium microbiota among IBD patients. Additionally, another 
microbiome identified for IBD in their study is Ruminococcus. 
Remarkably, these microbiomes align with the important microbiomes 
detected for the IBD disease by the microBiomeGSM tool. This 
correspondence in findings highlights the capacity of 
microBiomeGSM in identifying relevant microbiomes linked to 
IBD. Zhang Y. et  al. (2022) conducted a study with the goal of 
identifying disease-associated microbiome species for Inflammatory 
Bowel Disease Microbiome Database (IBDMDB), employing the same 
dataset (PRJNA289734) as used in microBiomeGSM. In their 
research, they highlighted the significance of the Bacteroides 
microbiome. Interestingly, the Bacteroides microbiome is also 
identified as one of the important microbiomes by the 
microBiomeGSM tool proposed in our study. This alignment in 
findings underscores the effectiveness of microBiomeGSM in 
recognizing key microbiomes associated with diseases like IBD. Bai 
et al. (2022) conducted a series of experiments aimed at identifying 
microbiomes associated with T2D. In their research, they utilized the 
SRA4565 data for T2D and highlighted the significance of the 
methanobacteriales microbiome. Notably, methanobacteriales is 
among the top  10 microbiomes identified by the proposed 
microBiomeGSM tool. This convergence of findings underscores the 
effectiveness and utility of the proposed tool in uncovering 
microbiome associations with diseases like T2D. Forslund et al. (2015) 
conducted experiments utilizing the same T2D dataset employed by 
microBiomeGSM to investigate microbiomes associated with 
T2D. Upon close examination of their experiments, they underscored 
the significance of the Clostridiales microbiome in relation to T2D 
disease. Interestingly, Clostridiales also emerges as one of the 
important microbiomes identified by microBiomeGSM. This 
convergence in findings highlights the relevance and effectiveness of 
microBiomeGSM in identifying crucial microbiomes associated with 
T2D. Ma et  al. (2021) conducted a study that investigated the 
microbiomes associated with CRC using the same dataset as in our 
study. Among the various microbiomes they examined, the Prevotella 
microbiome stood out as strongly linked to CRC. This association 
aligns with the findings of microBiomeGSM, underscoring the 
significance of the Prevotella microbiome in the context of 
characterizing CRC. Chen et al. (2023) conducted research using the 
same dataset to investigate microbiomes in the context of colorectal 
cancer, akin to the proposed microBiomeGSM tool. Similar to the 
findings of microBiomeGSM, their study also identified 
Peptostreptococcus, Fusobacterium, and Porphyromonas 
microbiomes as valuable and effective biomarkers for CRC. This 
convergence in results underscores the potential significance of these 
specific microbiomes in CRC characterization and their importance 
as potential biomarkers for the disease.

In summary, via analyzing the raw microbiome data of specific 
diseases, this study aims to identify taxonomic biomarkers that may 
have a role in the associated diseases. Three different taxon levels 
(genus, family, and order) are studied and disease prediction is 
performed by building effective machine learning models using the 
G-S-M approach. Four different datasets are analyzed and the 
identified microorganisms at genus, family and order levels are 
compared with the existing literature.

4.2 Limitation of the study

The quality and the scope of our study have been significantly 
influenced by several primary limiting factors. These factors 
encompass the nature of the data set, the tools employed for data 
preprocessing, the specific taxon groups considered, and the overall 
volume of data under examination. First and foremost, the data set 
itself plays a pivotal role in shaping the outcomes and conclusions of 
our study. Its size, diversity, and representativeness directly impact the 
generalizability of our findings. Furthermore, the quality of data, its 
sources, and any potential biases within the dataset significantly affect 
the reliability of our results. Equally significant is the role of the tools 
employed for data preprocessing. The choices made in data cleaning, 
feature selection, and data transformation can introduce variability 
and influence the robustness of our analytical pipeline. It is paramount 
to acknowledge how these preprocessing steps can shape the study’s 
outcomes. Additionally, our study’s focus on specific taxon groups 
within the dataset should be  considered. The selection of these 
taxonomic levels and the criteria used for their inclusion or exclusion 
has bearing on the granularity and relevance of our findings. Finally, 
the number of data points utilized in our analysis is another crucial 
factor. A larger dataset provides a broader and potentially more 
representative sample, which can enhance the reliability and statistical 
power of our results. Conversely, a smaller dataset may limit the 
generalizability of our conclusions. A comprehensive understanding 
of these limiting factors is essential for contextualizing our study’s 
outcomes and conclusions.

5 Conclusion

Over the past two decades, the number of microbiome studies has 
increased rapidly thanks to the advances in next generation 
sequencing (NGS) technologies. Lower costs and increasing 
computational power have enabled us to obtain enormous amounts 
of data on the diversity and function of a host or habitat’s microbiome. 
Identifying and accounting for effective taxons in microbiome and 
disease classification can accelerate disease diagnosis, prognosis, and 
treatment. Here, we  use an efficient machine learning model to 
identify taxonomic biomarkers that can diagnose diseases. The 
microBiomeGSM enables researchers to explore the diversity of 
contributions to disease development by examining metagenomic 
data at different taxonomic levels. While analyzing microbiome 
datasets, the microBiomeGSM tool that we  present in this study 
exploits the existing biological knowledge about the taxonomic 
hierarchy of the species at different levels, such as genus, family, and 
order. Our results showed that via analyzing different microbiome 
datasets associated with different diseases, microBiomeGSM builds 
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effective machine learning models to facilitate the diagnosis of 
diseases. It is anticipated that this study will be a guide for future 
studies and will guide and improve the studies to be conducted on this 
topic. With this study, we  hope to highlight the importance of 
taxonomic groups in microbiome-based disease prediction and to 
facilitate the diagnosis of disease using these taxonomic groups.
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The human microbiome has become an area of intense research due to its 
potential impact on human health. However, the analysis and interpretation 
of this data have proven to be  challenging due to its complexity and high 
dimensionality. Machine learning (ML) algorithms can process vast amounts 
of data to uncover informative patterns and relationships within the data, even 
with limited prior knowledge. Therefore, there has been a rapid growth in the 
development of software specifically designed for the analysis and interpretation 
of microbiome data using ML techniques. These software incorporate a wide 
range of ML algorithms for clustering, classification, regression, or feature 
selection, to identify microbial patterns and relationships within the data and 
generate predictive models. This rapid development with a constant need for 
new developments and integration of new features require efforts into compile, 
catalog and classify these tools to create infrastructures and services with easy, 
transparent, and trustable standards. Here we review the state-of-the-art for ML 
tools applied in human microbiome studies, performed as part of the COST Action 
ML4Microbiome activities. This scoping review focuses on ML based software 
and framework resources currently available for the analysis of microbiome data 
in humans. The aim is to support microbiologists and biomedical scientists to 
go deeper into specialized resources that integrate ML techniques and facilitate 
future benchmarking to create standards for the analysis of microbiome data. 
The software resources are organized based on the type of analysis they were 
developed for and the ML techniques they implement. A description of each 
software with examples of usage is provided including comments about pitfalls 
and lacks in the usage of software based on ML methods in relation to microbiome 
data that need to be considered by developers and users. This review represents 
an extensive compilation to date, offering valuable insights and guidance for 
researchers interested in leveraging ML approaches for microbiome analysis.

KEYWORDS

microbiome, machine learning, software, feature generation, feature analysis, data 
integration, microbial gene prediction, microbial metabolic modeling

1 Introduction

The great development during the last decades in high-
throughput technologies has allowed outstanding advances in 
different areas of knowledge like genomics (The 1000 Genomes 
Project Consortium et al., 2015), epigenomics (Stunnenberg et al., 

2016), biodiversity (Lewin et al., 2018) or diseases (Boycott et al., 
2019; Zhang et al., 2019). Microbiology has been paramount/highly 
integral here, in particular due to the reduction of costs and easy 
access have led to the creation of large volumes of data. Keystone 
microbiome projects like the Human Microbiome Project (The 
Human Microbiome Project Consortium, 2012), and the American 
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Gut Project (McDonald et al., 2018) have collected 16S rRNA gene 
sequences for more than 31,000 and 15,000 human microbiome 
samples, respectively (date: 08/05/2023), whereas other general 
microbiome sequencing data repositories like MGnify include more 
than 147,000 human samples (date: 08/05/2023). This enormous 
volume of data has allowed the application of machine learning (ML) 
techniques in human research to support the classification of 
microbial DNA sequences, microbiome-related stratification of 
subjects, and the inference of host phenotypes in disease prediction/
severity (Goodswen et al., 2021; Marcos-Zambrano et al., 2021; Yadav 
and Chauhan, 2022). The technology can provide useful and hidden 
patterns of information from large, noisy complex data like the 
microbiome. However, a number of challenges in the application of 
ML techniques in microbiology need to be addressed in terms of data 
type and quality, model interpretability, high dimensionality, or 
standards in development and deployment of ML techniques that 
have been reviewed elsewhere (Goodswen et al., 2021; Moreno-Indias 
et al., 2021).

Microbiome data has a high level of individual variation and can 
be  influenced by known and unknown host-related processes. 
Therefore, ML can typically detect informative and hidden patterns 
in the data that might be with limited prior knowledge of the system 
in question. These algorithms can be divided into different categories, 
including supervised, unsupervised, semi-supervised and 
reinforcement learning (Sarker, 2021), whereof supervised and 
unsupervised methods are the most applied in human microbiome 
studies (Ghannam and Techtmann, 2021; Goodswen et al., 2021; 
Marcos-Zambrano et  al., 2021). Previous work by the COST 
(European Cooperation in Science and Technology) Action CA18131 
on Statistical and Machine Learning Techniques in Human Microbiome 
Studies (ML4Microbiome) has outlined the existing ML algorithms 
relevant for microbiome analysis (Marcos-Zambrano et al., 2021).

The complexity of microbiome interactions with the host, health 
outcomes, and the environment can be  approached with the 
integration of different ML techniques and the exponentially 
growing body of microbiome data for a wide variety of applications 
in humans (Marcos-Zambrano et al., 2021). This is leading to the 
development of a wide array of specific software and frameworks 
that integrate different ML methods considering the different 
typologies of microbiome data. Microbiologists and biomedical 
scientists have a huge collection of tools to get the most out of their 
microbiome data, however, these tools are fragmented and dispersed 
among different repositories and publications. Frameworks for ML 
methods do not cover all different steps for microbiome analysis and 
the user often needs to combine different methods into a data 
science workflow to complete the analysis. Therefore, selecting the 
software and tools for microbiome data analysis requires diving into 
multiple repositories and resources being a time-consuming task at 
the rate at which these developments are growing in recent years.

Here, our aim is to go beyond the application of ML techniques 
in the microbiome field, extensively reviewed in the last few years 
(Ghannam and Techtmann, 2021; Goodswen et al., 2021; Marcos-
Zambrano et al., 2021), and focus on a scoping review of ML-based 
software and framework resources currently available for the analysis 
of microbiome data in human studies. A description of each software 
with examples of usage is provided including comments about 
pitfalls and lacks in the application of ML methods in relation to 
microbiome data that need to be  considered in software 

development. For a better understanding, the different pieces of 
software are organized by the type of analysis for which they were 
developed and the ML methods implemented. As far as we know, 
this is the most extensive catalog to date that intends to help 
microbiologists and biomedical scientists who are starting or wish 
to go deeper into specialized resources that integrate ML techniques 
for the analysis of microbiome data.

1.1 Specific software for ML applications in 
microbiome studies

In Supplementary Table 1 we summarize the most commonly 
used ML software for microbiome data analysis including the 
applicability (one application or more), availability of source code, 
last version, number of citations based on the Scopus database (this 
gives an idea about the level of usage), type of tool (level of 
deployment) and availability (public/commercial) for all the software 
and tools included. Each publication has been associated with the 
URL (pointed in the text) to the software described therein.1 Next, 
the software was evaluated in terms of the technologies used and the 
main ML tasks performed by the software. This allowed us to verify 
the most common ML tasks, the technologies used, and the change 
in the technologies used in recent years.

In Figure 1, we summarize the typical software stack used for 
microbiome tools over the years for given ML tasks. The thickness of 
the line indicates the number of publications divided into “year” - 
“programming language” and “programming language” - “ML task.” 
In recent years there has been a significant increase in the popularity 
of solutions created in interpreted programming languages (mainly 
Python and R) in relation to compiled programming languages (such 
as C/C++ or Java). With the exception of solutions written in the Perl 
interpreter, which has lost its popularity significantly over the years. 
There is a growing number of solutions using tensorflow for deep 
learning in microbiome research.

It should be noted that tool authors moved away from publishing 
software only in compiled (closed source) form (this trend could 
be observed until 2013 in our data), as closed source distribution of 
scientific software made verification impossible and contradicted the 
ideas of open science.

The last remark concerns the availability of the software after 
years, most likely due to the academic funding and career structure. 
Our observations show that as much as 11.5% of projects created 
between 2005 and 2022 are no longer maintained2 - and the software 
can only be found in the Internet Web archive.

In Figure 2 we present a series of specialized ML software and tools 
used to facilitate several microbiome research steps. These steps include 
feature generation, where raw 16 s rRNA and shotgun sequencing data 
are processed and transformed into interpretable microbial units; data 

1  Up to 11.5% of the URLs were pointing to non-existent or outdated pages - 

in this case, the link to the software was checked with the Internet Archive 

(https://web.archive.org) to find a page corresponding to the described 

software.

2  The url provided in the publication to the software points to non-existent 

resources, and there is no redirection to a new page.
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integration, where disparate datasets are combined for comprehensive 
analysis; and feature analysis, where a variety of tools are employed to 
perform time series analysis, gene prediction, metabolic modeling, 
disease prediction, and comparative metagenomics. These software and 
tools, discussed in detail in the next sections, can empower researchers 
to uncover the intricate dynamics within microbiomes and advance 
their understanding of their roles in human health. The emphasis is on 
ML software, and hence quite a number of very popular software in 
microbiome studies (Metaphlan, KneadData, and Kraken2,) would not 
be mentioned, due to omitting ML approaches.

Furthermore, we provide a comprehensive interactive table in the 
Supplementary materials that summarizes available software and tools 
for analyzing different types of microbiome data, organized according 
to their primary application (code accessible at https://github.com/
laurichi13/Toolbox-ML-software).

2 ML-software for feature generation

In microbiome analysis features are usually generated by using 
two learning approaches: clustering and classification. Clustering is an 
unsupervised approach (an approach without a teacher) where the 
system forms groups of inputs (or clusters) according to the explicit 
or implicit rule and given a particular set of patterns or cost function 
(Duda et al., 2001). On the other hand, classification involves learning 
from a set of patterns whose category is known (i.e., supervised 

approach) and applying it to a set of patterns with unknown category, 
without any grouping.

2.1 Feature generation and taxonomic 
assignment from 16S rRNA gene 
sequencing

Human (and environmental) microbial analyses are often 
performed using 16S rRNA gene sequencing. This is possible as the 
16S rRNA gene is highly conserved and universally present across 
prokaryotes. The 16S rRNA gene analysis implies using primers to 
amplify the hypervariable regions of the 16S rRNA gene (ranging from 
V1 to V9; frequently targeted for bacteria are the V3, V4, and V3-V4 
regions; Nguyen et al., 2016).

Amplicon Sequence Variants (ASVs) provide a precise resolution 
of sequence variations without imposing arbitrary dissimilarity 
limits, unlike Operational Taxonomic Units (OTUs), which are 
commonly used in 16S rRNA data processing (Eren et al., 2013). ASV 
techniques utilize Illumina-scale amplicon data and can identify 
sequence differences as small as one nucleotide. They infer the 
biological sequences in the sample while considering amplification 
and sequencing errors (Callahan et al., 2017). On the other hand, 
OTUs cluster sequences based on similarity and assign representative 
sequences to proxy microbial taxa (Westcott et  al., 2017; Wei 
et al., 2021).

FIGURE 1

The relationship between the year of publication (left), programming lenguage (centre), and ML task (right) is depicted for the most commonly used 
software in microbiome analysis. The thickness of the line represents the quantity of software projects associated with a particular relationship (a 
project may have multiple relationships of given kind i.e., a software may be written in C and Python).
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FIGURE 2

Comprehensive overview of the most commonly ML-based software applications employed in microbiome data analysis. These software tools are 
categorized based on their primary application into feature generation, feature analysis, and data integration. It is worth noting that numerous software 
options are applicable to both 16S rRNA gene sequencing data and shotgun metagenomics. Detailed descriptions of these software tools can be found 
in subsequent sections of the manuscript.
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2.2 Clustering of sequences (reads) for 
OTU/ASV assignment

Several clustering methods have been proposed, and several 
reviews are available with a solid methodological overview, 
limitations, performance comparison, and guidance in the selection 
of an appropriate clustering algorithm (Chen et al., 2013; Nguyen 
et al., 2016; Wei et al., 2021). Without the intention to provide a 
thorough evaluation of different OTU clustering methods, we here 
provide available tools for the generation of OTU tables, aiming to 
indicate the advantages and limitations of clustering approaches and 
resulting OTU features in general.

In contrast to the clustering-based OTU approach, the generation 
of ASVs can be described as a denoising method (Chiarello et al., 
2022), where the algorithm gathers exact sequence variants de novo 
with little room for mismatches and determines their abundance. 
Based on the inferred ASVs, an error model is calculated for the 
dataset to compare highly similar reads in order to statistically exclude 
sequencing errors. This is based on the assumption that true biological 
sequences occur in higher frequencies than sequences emerging from 
sequencing errors. Moreover, unlike de novo clustered OTU, the 
identity of an ASV keeps its validity outside of the data set from which 
it was derived, thereby also simplifying meta-analyses of multiple data 
sets (Callahan et al., 2017). However, some limitations inherent to 
OTU-based methods such as multiple copies of the target region 
within an organism (e.g., 16S rRNA gene copy numbers) and the 
restricted information content of short reads also apply to ASV-based 
methods and should be considered in the interpretation of results.

2.2.1 Hierarchical clustering
Creating clusters of data with similar characteristics is an 

approach to finding structure in data. Hierarchical clustering is an 
unsupervised learning technique for grouping similar objects into 
clusters. It creates a hierarchy of clusters based on similarity features 
within the data. Hierarchical clustering can be divided into two types: 
agglomerative (bottom-up) and divisive (top-down). The dendrogram 
construction depends on the type of linkage (i.e., the definition of 
distance between the clusters) used. The typical choices for OTU 
clustering are single linkage (which calculates the distance between 
the two closest objects belonging to each cluster, or nearest neighbor), 
complete linkage (which in turn is based on the distance between the 
two most distant objects, or furthest neighbor) and average linkage 
(unweighted-pair group), which is a compromise between the nearest 
neighbor logic of single linkage (Zhang et  al., 2013). Once a 
hierarchical tree is constructed, the meaningful clusters can 
be defined by cutting the tree at a user-specified similarity threshold 
and merging all the sequences with higher similarity in the same 
OTU. Among these methods, the most familiar ones are Dotur 
(Schloss and Handelsman, 2005), based on Multiple Sequence 
Alignments, Mothur (Schloss et al., 2009), based on Needleman-
Wunsch alignments against a pre-aligned reference database and 
ESPRIT (Sun et al., 2009), which implements a complete-linkage 
hierarchical clustering and minimizes the memory usage by adopting 
a k-mer distance for faster identification of very similar sequence 
pairs, producing sparse distance matrix. In hierarchical approaches, 
the number of sequences to be  compared (N) determines the 
computational complexity [O(N2)], which usually renders these 
approaches more intensive as stated by the authors.

2.2.2 Heuristic clustering of sequences
Heuristic clustering attempts to improve speed and scalability, 

avoiding exhaustive pairwise distance computation, and using a 
greedy strategy to form clusters based on an initial set of cluster seeds 
(Wei et al., 2021). Given a set of sequences, a subsequence is selected 
as a seed of a new OTU cluster. This subsequence is then compared to 
all remaining sequences of the given set of sequences. All sequences 
at the distance below the threshold with respect to any of the seeds are 
added to the corresponding OTU and removed from the sequence set. 
If no similar seed is found, a new cluster seed is formed from the 
query sequence. The performance of these methods is as well related 
to the selection of seeds. Some representative examples are Uclust 
(Edgar, 2010) and CD-HIT (Li et al., 2001; Li and Godzik, 2006). 
GramCluster (Russell et al., 2010) indexes the input dataset by a suffix 
tree for efficiency. Uparse (Edgar, 2013), an improvement of 
USEARCH (Edgar, 2010) and OTUCLUST (Albanese et al., 2015) rely 
on high quality sequences only, including steps for quality filtering, 
trimming, and chimera filtering. Swarm (Mahé et al., 2014) uses an 
agglomerative, unsupervised, single-linkage clustering algorithm that 
avoids the use of a global threshold. Each amplicon can be seen as a 
point in the discrete amplicon space, where its nearest neighbours 
have one nucleotide difference. User set parameter d is considered a 
tolerable similarity threshold, so that d-neighbours in the amplicon 
space are all amplicons with d nucleotide differences. Clustering 
amplicons starts from a seed, collecting all of its d-neighbours, and 
continues iteratively from these subseeds until natural cluster limits 
are reached, where no d-neighbours of any subseed can be added. In 
such a discrete amplicon space, amplicon clusters (OTUs) should 
be clearly separated contiguous regions, and the procedures ensures 
that all similar amplicons (i.e., amplicons close in the space) belong to 
the same cluster. DNACLUST (Ghodsi et al., 2011) adopts a greedy 
approach but improves the speed using filtering based on k-mers. 
There is an open-source 64-bit program VSEARCH (Rognes et al., 
2016) which can be used instead of USEARCH, for which the source 
code and 64-bit versions are not publicly available.

2.2.3 Model-based clustering
These methods attempt to circumvent the overestimation of OTUs 

due to the limitations of choosing an a priori similarity threshold 
(Chroneos, 2010; Huse et al., 2010). Setting a (hard) similarity threshold 
value directly affects clustering process and the resulting sequences’ 
partition, while using the probabilistic distance description fits better the 
nature of real data. The model-based methods, such as CROP (Hao et al., 
2011) for example, tend to use Gaussian probabilistic distribution, 
indirectly targeting a certain similarity threshold, but being more flexible 
and thus more robust to sequencing errors and sequence variations. 
Moreover, the model based approaches imply very careful selection of 
model parameters, which is usually given as an optimization problem 
limiting the probabilistic parameter search to the parameter subspace in 
which the clustering results correspond to the desired partitions and to 
real number of OTUs (Hao et al., 2011). Other methods are BEBaC 
(Cheng et al., 2012), which is based on the calculation of an unnormalized 
posterior probability for an arbitrary partition of the reads, and BACDNAS 
(Jääskinen et al., 2014), which models sequences by Markov chains.

2.2.4 Network-based models
They start from a graph construction which requires a full 

distance matrix between sequences, which involves computational 
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burden, both memory and time consumption. Given this distance 
matrix, a weighted network is constructed and then a graph-based 
clustering method, based on the modularity community detection 
method, can be  used for OTU picking (Wei et  al., 2021). Some 
representative methods are: M-pick (Wang et al., 2013), MtHc (Wei 
and Zhang, 2015), and DMclust (Wei et al., 2017).

All of the clustering methods rely on similarity metrics and 
similarity thresholds used, which impact the output and quality of 
clustering. The selection of similarity measures is crucial, and research 
evidence indicates lots of criticism towards using percent sequence 
similarity in the OTU picking process (White et al., 2010; Schloss and 
Westcott, 2011). The reader is referred to Nguyen et al. (2016) for 
more insight into the problems of using sequence similarity for 
defining OTUs, which analyzes results obtained using three different 
dissimilarity metrics.

2.3 Taxonomic assignment of OTU/ASV

The procedures mentioned above for OTU/ASV clustering do not 
focus on species that constitute a sample. This is the goal of diversity 
profiling and taxonomic assignment. Diversity profiling aims to 
investigate the microbial community structure by providing an 
abundance of different taxa. The taxonomic assignment focuses on 
knowing which taxon belongs to each read or assembled contig. 
We can find two main kinds of software concerning these objectives: 
Naïve Bayes and Bayesian methods.

2.3.1 Bayesian methods
The RDP classifier (Wang et al., 2007; Cole et al., 2009) relies on a 

reference sequence database that contains relevant species, and then 
assigns a class label to each read by the naïve Bayesian algorithm based 
on k-mer occurrence. Moreover, we can find NBC (Rosen et al., 2011) 
and the classifier FCP (Parks et al., 2011), which also implement a 
naïve Bayesian framework. pplacer (Matsen et al., 2010), is a software 
package for phylogenetic placement and subsequent visualization, 
which offers a full probabilistic and Bayesian framework to locate a 
query sentence in a reference phylogeny so that a taxon identifier can 
be assigned to the query sequence.

Through QIIME2 (Bolyen et al., 2019) plugin q2-feature-classifier 
(Bokulich et al., 2018a), it is now also possible to train an almost 
arbitrary classifier from the Python library Scikit-learn and use it to 
predict the taxonomy. The real shift in taxonomic assignment came 
with (Kaehler et  al., 2019), when the increase in the species-level 
classification accuracy is achieved by incorporating environment-
specific taxonomic abundance information. Classifiers for amplicon 
sequences, like Naive Bayes, assume that all species in the reference 
database are equally likely to be  observed (Kaehler et  al., 2019). 
However, in practice, the equal probabilities (or the uniform weights) 
assumption is not fulfilled resulting in reduced accuracy. As the 
authors explain (Kaehler et al., 2019), the accuracy is less if weight 
distribution is closer to uniform than if it is further. In QIIME2 it is 
implemented as a preprocessing step through its plugin q2-clawback. 
The plugin is used for assembling taxonomic weights, which are 
further used as input into taxonomic classification.

There are a few analysis methods for microbiome amplicon data 
that analyze the obtained data without having to pre-process the raw 
reads generated by sequencing to create feature tables of ASVs. 

Read2Pheno is a deep learning framework to predict phenotype from 
all the reads in a set of biological samples (Zhao et al., 2021). The 
software performs alignment-free microbial 16S rDNA sequence 
analysis to achieve read- and sample-level environmental prediction 
and extracts interesting sequence features using convolutional neural 
networks (CNN), recurrent neural networks, and attention mechanisms.

2.4 Feature table generation from 
microbiome shotgun sequencing data

In contrast to amplicon sequencing (e.g., of 16S rRNA genes), 
shotgun metagenomics involves sequencing of all or most microbial 
DNA in a sample. The DNA is cut into short fragments which are 
separately sequenced as compared to amplifying a particular genomic 
region, resulting in a large set of short DNA sequences (i.e., reads) that 
originates from different chromosomal regions from numerous 
genomes. Some of these reads are from genomic loci of taxonomic 
significance (like the 16S rRNA gene), while others are of coding 
sequences that reveal information about the biological processes 
encoded in the genome (Sharpton, 2014).

The analysis of metagenomic sequencing data involves numerous 
challenges. First, metagenomic data is relatively complex and large, 
rendering the processing more difficult. Furthermore, reads only 
partially reflect most genomes because most communities are too 
diverse. Because of the massive quantity of genomic information 
examined, metagenomic analysis typically requires a large volume of 
data to get relevant conclusions. This requirement may cause 
computing issues (both in terms of space and time). Fortunately, these 
algorithms are continuously advancing, making metagenomic analysis 
more accessible and efficient.

2.5 Taxonomic classification of short 
sequence reads

There are different types of ML methods used for the taxonomic 
classification of short sequence reads in metagenomic sequencing 
data. Model-based methods include Phymm and PhymmBL (Brady 
and Salzberg, 2009), which use interpolated Markov models to 
phylogenetically classify short sequence fragments. PhyloPythia and 
PhyloPythiaS (McHardy et al., 2007; Patil et al., 2012) use support 
vector machine classifiers based on k-mer frequencies to assign reads 
to pre-existing taxa. The CSSS method (Borozan et al., 2015) applies 
the nearest neighbor algorithm to assign taxonomic ranks to both 
bacterial and viral communities.

Deep learning models based on artificial neural networks that add 
several hidden layers and several neurons within each layer, are also 
used for taxonomic classification of short sequence reads in 
metagenomic sequencing data. These models are computationally 
expensive but often have high accuracy, and are good at capturing 
complex biological systems. TAC-ELM (Rasheed and Rangwala, 2012) 
is a composition-based method that uses a neural network-based 
model. LookingGlass (Hoarfrost et  al., 2022) is a deep learning 
biological language model designed to capture the functional diversity 
of the microbial world by encoding contextually aware representations 
of short DNA reads. The model takes into account the order in which 
sequences appear and thus produces contextually relevant embeddings 
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of biological sequences from microbial communities. Generated 
embeddings are able to differentiate sequences with different 
molecular functions, identify homologous sequences and differentiate 
sequences from disparate environmental contexts. Furthermore, 
LookingGlass may be fine-tuned by transfer learning to perform a 
variety of different tasks such as to identify novel oxidoreductases, to 
predict enzyme optimal temperature, and to recognize the reading 
frames of DNA sequence fragments. Liang and colleagues (Liang et al., 
2020) developed a deep learning-based framework, DeepMicrobes, 
for taxonomic classification of short metagenomics sequencing reads 
that identifies potential uncultured species signatures in inflammatory 
bowel disease. This model achieved comparable accuracy in 
abundance estimation at the genus level when compared to state-of-
the-art tools. The pipeline developed by Ma et al. (2021; MT-CNN) is 
based on a multi-task learning model that can perform both 
taxonomic assignment and estimation of genomic region for assigned 
reads for human viruses, together with a naïve Bayesian network 
which takes into consideration both the taxonomic assignments and 
the genomic coverage for the ranking of likely human viruses from 
sequence data. Ren et al. (2020) and Tampuu et al. (2019) proposed 
other deep learning-based approaches for classifying viruses from 
metagenomic reads. Shang and Sun (2021) presented CHEER, a tree-
structure CNN pipeline for taxonomic classification of viral 
metagenomic data. PathoFact (de Nies et  al., 2021) uses hidden 
Markov models and a random forest model in combination with the 
deep learning based DeepARG (Arango-Argoty et al., 2018) to predict 
virulence factors and antimicrobial resistance genes, while Mantis 
(Queirós et al., 2021) is a protein function annotation tool that uses 
database identifiers intersection and natural language processing 
based on text mining of protein function descriptions to integrate 
knowledge from multiple reference data sources into a single 
consensus-driven annotation.

2.6 Binning metagenome-assembled 
genomes

Binning is the computational process of assigning each read to a 
group called a bin, where each bin is expected to contain reads from 
the same taxon. Despite the existence of some alignment-based 
techniques (not covered in this review), the majority of 
computational tools for binning are currently in use in sequence 
k-mer composition. In fact, even when only dinucleotides (dimers) 
are taken into account, the distribution of k-mer composition is 
stable across a single genome and varies between genomes, as noted 
by Kariin and Burge (1995).

Binning is frequently used in environmental and human studies 
with the aim of establishing the taxonomic profile of a given sample. 
We  distinguish between binning and taxonomic classification of 
amplicon sequences primarily based on the input data: whereas the 
latter is used in targeted studies, binning deals with assembled contigs 
from metagenomic reads from any genomic region of any sampled 
genome. Thus, binning is the method of choice for analyzing complex 
communities to determine near complete metagenome-assembled 
genomes (MAGs). However, almost all currently used techniques were 
created for bacterial communities, with MetaVir (Roux et al., 2011) 
being a notable exception as it focuses on the analysis of viromes. 
Other communities, like fungi, are frequently analyzed using ad hoc 

techniques or software tools intended for bacteria [see, for example, 
(Lindahl et al., 2013; Orellana, 2013)].

There are several binning tools available that use different methods 
as reviewed by Yang et al. (2021). For instance, VAMB (Nissen et al., 
2021) uses deep learning in the form of variational autoencoders, 
while SemiBin (Pan et al., 2022) uses deep siamese neural networks in 
a semi-supervised approach. SolidBin (Wang et al., 2019) is based on 
semi-supervised spectral clustering, and METAMVGL (Zhang and 
Zhang, 2021) is a multi-view graph-based metagenomic contig 
binning algorithm. MetaDecoder (Liu C. -C. et al., 2022) is using a 
two-layer model based on Gaussian mixture models. Binny (Hickl 
et al., 2022) uses k-mer composition and coverage by metagenomic 
reads for iterative, nonlinear dimension reduction of genomic 
signatures as well as subsequent automated contig clustering with 
cluster assessment using lineage-specific marker gene sets. MaxBin2 
(Wu et  al., 2016) and CONCOCT (Alneberg et  al., 2014) employ 
tetranucleotide frequencies (TNFs) and read depths to group together 
scaffolds. MaxBin2 utilizes an expectation–maximization algorithm 
to estimate the distances between scaffolds, while CONCOCT 
leverages Gaussian mixture models to cluster the scaffolds. However, 
there is no one-size-fits-all solution for metagenome binning, and 
ensemble-based tools like the binning module in MetaWRAP 
(Uritskiy et al., 2018) offer a promising approach to amalgamating 
binning results from various tools.

3 Analysis of features derived from 
amplicon or shotgun metagenomics:

3.1 Comparative metagenomics

This section includes techniques that label entire samples by 
examining features derived from each amplicon or shotgun DNA 
fragment from the sample (k-mers or OTU/ASV frequencies), 
sometimes supplemented with additional information (e.g., metadata, 
phylogenetics, class labels etc.). A common application of this 
classification in biomedical settings is phenotype analysis based on 
metagenomic fragments (Soueidan and Nikolski, 2016).

MetaPhyl (Tanaseichuk et  al., 2014) is a two-phase heuristic 
algorithm for separating short paired-end reads from different 
genomes in a metagenomic dataset. The algorithm is based on the 
observation that most of the l-mers belong to unique genomes when 
l is sufficiently large. In the first stage of the algorithm, groups of 
l-mers are produced, each of which is associated with a single 
genome. Clusters are combined based on information from l-mer 
repeats during the second phase. Read assignments are made using 
these final clusters. The algorithm can handle very short reads and 
sequencing errors.

The study by Cui and Zhang (2013) employed R-SVM, which 
utilized generalized recursive Support vector machines (SVMs) to 
conduct feature selection and discrimination of human metagenome 
samples from control and inflammatory bowel disease patients. This 
alignment-free supervised classification approach can effectively 
differentiate between metagenomic samples belonging to predefined 
categories by selecting distinctive sequence features. The authors 
demonstrated the potential of utilizing metagenomic sequence 
features of microbiomes in the human body to investigate particular 
health conditions through supervised ML techniques.
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DectICO (Ding et al., 2015) is a feature extraction, and dynamic 
selection-based supervised metagenomic classification method that 
can correctly classify metagenomic samples without relying on 
known microbial genomes and reads alignment. The tool combines 
SVM as the learning algorithm, intrinsic correlation of 
oligonucleotides (ICO), which generalizes the k-mer frequencies to 
describe samples, and kernel partial least squares for feature selection. 
When long k-mers are considered, the authors contend that DectICO 
performs better than other sequence-composition-based 
classification methods.

METAGENassist (Arndt et al., 2012) is a web server to make 
comparative metagenomics accessible to microbiologists. Users can 
upload their bacterial census, either amplified 16S rRNA data or 
shotgun metagenomic data, along with metadata (e.g., environmental, 
culture, and host conditions). All statistical analyses are performed 
by combining and normalizing user-submitted taxonomic profile 
data and automatically mapped phenotypic information (e.g., oxygen 
requirements, temperature range, habitat, host type, pathogenicity, 
disease association etc.) from METAGENassist’s phenotypic database. 
A variety of univariate methods are available for feature ranking 
regarding the significance of their changes due to the different 
conditions under study (e.g., fold change analysis, t-tests, Mann–
Whitney tests, ANOVA, Kruskal–Wallis tests). Multivariate methods, 
namely, principal component analysis (PCA) and partial least squares 
discriminant analysis (PLS-DA), can be  used for dimension 
reduction, visualization, classification, and feature identification. 
Hierarchical and partitional clustering methods are available to 
identify groups of samples regarding their feature abundance profiles, 
given their similarity based on a defined distance measure. For the 
prediction of attribute labels and the identification of important 
features (i.e., taxa or mapped phenotypes) METAGENAssist offers 
two methods, random forest and recursive SVM feature selection and 
sample classification (R-SVM). Mian (Jin et  al., 2022) is another 
interactive web-based microbiome data table visualization and ML 
platform. Users can upload their metagenomic data as well as 
accompanying metadata, taxonomic mappings, phylogenetic tree or 
gene expression data. Mian allows users to preprocess their data, 
calculate alpha and beta diversity measures, apply feature selection 
methods and train ML models such as linear regressors, random 
forest or multilayer perceptrons. All tools are easy to tune and 
configure, and users will also be able to obtain common statistical 
measures as well as different plots for data visualization.

MetaDistance (Liu et  al., 2011) is a MATLAB toolbox that 
comprehends the relationship between clinical phenotypes and 
microbiota profiles by developing new supervised learning tools. 
Instance-based [K-Nearest Neighbors (KNN)] and model-based (SVM) 
learning techniques have been combined to create the sparse distance 
learning approach (MetaDistance) that the authors have proposed for 
multi-class classification. The suggested approach is capable of class 
prediction and taxon identification in tandem. It can perform multi-
class classification while not exacerbating any existing class imbalance. 
Additionally, this approach estimates only a few parameters, and 
specifically, the number of these parameters is equal to the number of 
features (input variables) in the dataset. This means that the model 
complexity is kept relatively low, which can be  advantageous in 
scenarios with limited data or to prevent overfitting. It is very effective 
for metagenomic data issues, which frequently have small sample sizes, 
high dimensions, and unbalanced classifications with numerous classes.

3.2 Disease classification and feature 
prediction

The human microbiome is unique to each person and has been 
linked to various diseases, making it essential to associate the 
microbiome with the host’s disease state (Yadav and Chauhan, 2022). 
The disease status may be  influenced by the presence of specific 
microbe species, their abundance, phylogenetic relationships, 
intermicrobial interactions, and microbial metabolites. ML models 
can be  useful for this task because they account for the complex 
dependencies between microbial community members and can 
identify disease profiles and microbial biomarkers with limited prior 
knowledge. Abundance values of microorganisms, functional 
annotations of metagenomes, and k-mer abundances from raw reads 
are common features used for disease prediction (Bakir-Gungor et al., 
2022). Microbial abundance profiles are commonly used as a feature 
in disease classification. This field is still in its early stages, and several 
ML approaches have been developed for classification based on 
disease-associated microbiome composition data (Bakir-Gungor et al., 
2021). Here, we  present several ML approaches designed for 
classification purposes given the disease-associated data about 
microbiome composition.

MetAML (Metagenomic prediction Analysis based on Machine 
Learning) is a computational tool for disease detection using gut 
metagenomic data. Here, SVMs, RFs, Lasso, Elastic Net, and other 
classifiers are implemented in this ML software framework for 
metagenome-based prediction tasks (Pasolli et  al., 2016). Cross-
validation allows for quantitative evaluation of model precision and 
adaptability to the general population. Evaluation metrics commonly 
used to measure the model’s performance include accuracy, 
sensitivity, specificity, precision, F1 score, AUC, among others 
(Table 1). MetAML has been tested on metagenomic case–control 
datasets from five different diseases, demonstrating potential for 

TABLE 1  Commonly used metrics to assess the performance and 
effectiveness of machine learning models.

Metric Definition

Accuracy Measures the overall correctness of the predictions made by a 

model. It is the ratio of the correctly predicted instances to the 

total number of instances in the dataset.

Sensitivity 

(Recall or 

true positive 

rate)

Quantifies the proportion of actual positive instances that are 

correctly identified as positive by the model. It is the ratio of true 

positive predictions to the sum of true positives and false 

negatives.

Specificity Represents the ability of a model to identify negative instances 

correctly. It is the ratio of true negative predictions to the sum of 

true negatives and false positives.

Precision Indicates the proportion of correctly predicted positive instances 

out of the total instances predicted as positive by the model.

F1 score Is the harmonic mean of precision and sensitivity and provides a 

balanced evaluation of a model’s performance.

AUC (Area 

Under the 

ROC Curve)

The ROC curve plots the true positive rate against the false 

positive rate at various classification thresholds. AUC represents 

the area under this curve and is a measure of the model’s ability 

to discriminate between positive and negative instances.
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disease detection from gut metagenomic data. It has also been used 
in a study by Thomas et  al. (2019), where ML models based on 
MetAML were developed to predict colorectal cancer using 
metagenome dataset. The models evaluated the prediction accuracies 
of the gut microbiome for colorectal cancer detection across 
populations and successfully identified consistent microbiome 
biomarkers and accurate disease-predictive models.

PopPhy-CNN (Reiman et al., 2020) is a convolutional neural 
network (CNN) that predicts the host’s disease status using their 
microbiome samples. PopPhy-CNN involves transforming the 
phylogenetic tree and microbial abundance data into a structured 
matrix format. This matrix, enriched with evolutionary information, 
is then used as input for a CNN model to make predictions about 
the host’s disease status. The incorporation of biological knowledge 
through this process contributes to the model’s superior 
performance compared to other methods in binary classification 
and multi-class datasets. PopPhy-CNN models were more 
competitive than RF, SVMs, LASSO, 1D-CNN, MLPNN, and 
Ph-CNN models across nine moderately sized metagenomic 
datasets for binary classification (Qin et al., 2012, 2014; Karlsson 
et al., 2013; le Chatelier et al., 2013; Sokol et al., 2017). According to 
authors, PopPhy-CNN can deliver reliable performance with 
minimal training data and shows the best results for multi-class 
biological and synthetic datasets.

Met2Img (Hai Nguyen et  al., 2019) is a disease prediction 
method that uses Synthetic Image Representations of Metagenomic 
data and CNN. The authors use a rectified linear unit (ReLU) 
activation function and transform each sample into an image 
containing coloured pixels representing the microbes and their 
relative quantities. The resulting images are subsequently used as 
features for the neural network. The authors evaluated the method 
using six metagenomic datasets, including five disease types and 
more than 1,000 samples. They reported encouraging results and 
held applicability across diverse omics data scenarios, including 
integrative contexts (i.e., taxonomic levels, CNN structure 
optimization, dimensionality reduction: effective colormaps, and 
GPU efficiency).

RegMIL is a Multiple Instance Learning (MIL) method that 
predicts phenotypes from metagenomic data. This approach employs 
a rapid, hash-based clustering technique referred as Canopy 
clustering to score instances in the training set. These scores estimate 
the contribution of an instance (sequence) to the disease. The 
instance scores of the training set are used to train a two-layer neural 
network-based regression model to score instances in the test set. In 
the end, one histogram-based bag-level feature representation by 
taking contributions of each instance to train a classifier (Rahman 
and Rangwala, 2018). RegMIL was shown to predict a person’s health 
status with high accuracy when evaluated with liver cirrhosis and IBS 
datasets, outperforming other tools like MetAML (Rahman and 
Rangwala, 2018).

mAML is an automated ML tool specifically designed for 
classification tasks performed on metagenomic data. The tool was 
developed in Python and the entire pipeline can be run through a 
web server, although it is also available to download and run locally. 
mAML preprocesses the data, performs grid-search for 
hyperparameter tuning, and provides several performance metrics 
for the classification task set by the user. The web-based tool allows 
the user to personalize each of these tasks. The mAML pipeline 

exhibits various benefits: (i) it can effectively and automatically 
construct an optimized, interpretable and resilient model for a 
microbiome-based classification task; (ii) it is implemented on a 
web- based platform (the mAML web server); (iii) the pipeline can 
be employed for both binary and multiclass classification tasks; (iv) 
it is data- driven and can readily be extended to encompass multi-
omics data or other data types, given the availability of domain 
specific datasets (Yang and Zou, 2020). The authors evaluated 
mAML on 13 different metagenomic datasets, including binary and 
multi-class data. The models generated by mAML outperformed 
other models such as Support Vector Classifiers or logistic regression 
(Fierer et al., 2010; Wu et al., 2011; Qin et al., 2014; Montassier et al., 
2016), demonstrating the method’s robustness. This method has 
been applied to predict carboxylate production from 16S rRNA gene 
dynamics (Liu B. et al., 2022).

DeepMicro is a deep learning method that is focused on the 
extraction of features from high dimensional microbiome data (more 
specifically extracted abundance and strain profile). It was shown to 
be more accurate than MetAML in transforming high-dimensional 
metagenomic data into a reliable low-dimensional representation for 
supervised or unsupervised learning (Curry et  al., 2021). It was 
developed with disease prediction in mind, but has other applications. 
This approach could improve model performance for predictive 
problems using microbiome data, such as drug response prediction, 
forensic human identification, and food allergy prediction (Oh and 
Zhang, 2020).

DeepLatentMicrobiome which has an artificial neural network 
(ANN) architecture based on heterogeneous autoencoders (García-
Jiménez et al., 2021), uses phenotypic features as well as environmental 
features (like temperature, precipitation, plant age, maize line and 
maize variety) to predict current or future microbiome compositions 
and can help scientists develop microbiome-engineering strategies 
with limited resources. Autoencoders are trained for each data source 
independently (thus acquiring heterogeneous autoencoders).

MetaNN (Lo and Marculescu, 2019) is a neural network-based 
technique that addresses challenges related to over-fitting and high 
dimensionality in metagenomic data, leading to improved 
classification accuracy. The method involves removing taxa that 
appear in less than 10% of the samples and generating additional 
samples using a negative binomial distribution to augment the 
training set. A neural network is then trained on the augmented 
dataset, resulting in superior performance compared to other ML 
models such as Random Forests, SVM and CNN, as demonstrated in 
evaluations by the authors Lo & Marculescu in 2019 using both 
synthetic and real datasets.

SIAMCAT is an R-based software that combines ML, statistical 
modeling, and advanced visualization approaches to enable 
comparative metagenomic studies. The tool provides normalization 
methods, cross-validation schemes, and implementation of various 
ML approaches such as LASSO (Tibshirani, 1996), Elastic Net (Zou 
and Hastie, 2005), and RF (Ho, 1995), among others. The trained 
models can then be used to make predictions based on the provided 
metagenomic data, and their performance can be measured using 
AUROC. According to Wirbel et al. (2021), SIAMCAT allows users to 
apply robust and verified ML models to their datasets, allowing 
pre-processing and normalization of the datasets depending on 
metagenomic data properties. It has been used in various studies, 
including those involving the classification of oral microbiome data 
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(de Jesus et al., 2021) and the assessment of the association between 
microbiome composition and clinical responses to immune 
checkpoint inhibitor treatment (Lee et  al., 2022). In the study 
developed by Kartal et al. (2022), it was discussed if fecal and salivary 
microbiota could be  used as predictors of pancreatic 
ductal adenocarcinoma.

Namco is an R Shiny application designed for microbiome 
research that provides a wide range of data analysis tasks, including 
raw data processing, basic statistics (distribution of dominant taxa 
among groups), creation of heatmaps using different ordination 
methods, diversity analysis, network analysis, and ML (Dietrich et al., 
2022). Among the latter, Namco offers users the ability to develop 
classification models using random forest to predict outcomes such as 
disease state or treatment response. The most important features in 
the classification are identified as biomarker candidates. The tool also 
enables time-series analysis and clustering to investigate microbial 
changes in response to treatment across different host development 
stages or over time.

LEfSe is a method for identifying metagenomic biomarkers that 
can explain differences between phenotypic classes. This method 
uses linear discriminant analysis (LDA) effect size (LEfSe; Segata 
et al., 2011). It is based on the non-parametric factorial Kruskal-
Wallis sum-rank test to determine the statistical significance of 
differences found across classes. Biological consistency is then 
assessed using the Wilcoxon rank-sum test, and the effect size of 
each differentially abundant feature is estimated via LDA. Firstly, the 
Kruskal-Wallis test is employed to scrutinize all features and 
determine if there are dissimilarities in their distribution among 
different classes. Subsequently, features that contravene the null 
hypothesis undergo further analysis using the Wilcoxon test. This 
test compares all pairwise combinations between subclasses in 
different classes to ascertain if they conform to the general trend of 
the class. The resultant subset of vectors is then employed to establish 
an LDA model that ranks the features based on their relative 
differences among classes. Ultimately, the output is a list of 
discriminative features that are in line with the subclass grouping 
within classes and are ranked based on their effect size in 
distinguishing between classes.

MarkerML is a web server that employs interpretable ML and 
statistical testing to discover important metagenomic features 
(Nagpal et al., 2022). Its main goal is to identify marker-features, 
which can contrast comparable states and help in decision-making. 
Model interpretability is achieved by incorporating Shapley Additive 
exPlanations (SHAP)-based (Lundberg and Lee, 2017) analyses to 
detect predictive marker features. MarkerML also implements 
statistical testing methods to contextualize marker-feature discovery 
in metagenomic datasets, such as ANCOM-BC (Lin and Peddada, 
2020; Lin et al., 2022) or ALDEx2 (Fernandes et al., 2013, 2014; 
Gloor et al., 2016). It also offers features such as access to databases 
(e.g., Taxonomic, KEGG, COG, PFAM), normalization options, 
feature selection, and multiple ML algorithms (e.g., XGBoost, 
Random Forests, Logistic Regression; Nagpal et al., 2022). MarkerML 
relies on class comparison and prediction for biomarker discovery, 
achieved by analyzing differential abundance and ML techniques, 
respectively.

Selbal is an algorithm whose objective is to find a microbial 
signature, i.e., a model defined by a group of microbial taxa whose 
pattern of abundance is predictive or associated with an outcome 

variable of interest (Rivera-Pinto et al., 2018). It uses the Selbal model 
selection method to find two groups of taxa whose relative abundance 
(referred as “balance”) sufficiently explains the target response variable 
(Rivera-Pinto et al., 2018). The algorithm iteratively runs multiple 
regressions while including a new taxon in the model each time. The 
two taxa whose balance is most closely connected to the response are 
the first ones that selbal selects. This approach has been used to 
differentiate between polycystic and non-polycystic ovary syndrome 
women (Lüll et al., 2021).

coda4microbiome (Calle et al., 2023) is an improved version of 
Selbal, which uses elastic-net penalization for joint variable selection 
in the all-pairs log-ratio model (i.e., the model that considers as 
explanatory variables all pairwise log-ratios of features). It 
outperforms Selbal by being more computationally efficient and 
allowing for different weights in the microbial signatures. While 
selbal uses forward selection, coda4microbiome applies elastic-net 
penalization on the “all-pairs log-ratio model” to perform joint 
variable selection. After reparameterization, the results are expressed 
as a microbial signature consisting of two taxa groups that are 
associated with the phenotype. coda4microbiome’s signatures are 
more versatile than selbal’s, as they allow different weights for taxa 
in each group, while selbal assigns the same weight to all taxa in each 
group. Coda4microbiome has also been implemented for both cross-
sectional and longitudinal studies. The website of the project 
contains several tutorials.3 Other log-ratio based approaches for 
analyzing microbiome data include CodaCore (Gordon-Rodriguez 
et al., 2021) and the R package amalgam (Quinn and Erb, 2020), 
which aim to identify predictive balances or amalgams in a stepwise 
additive fashion. Some log-ratio based approaches in microbiome 
data analysis try to improve predictive accuracy by considering 
log-ratios that can contain several original features. However, many 
methods rely on pairwise log-ratios or additive log-ratios, which 
only involve two features. For example, the easyCoda R package 
includes three options for choosing pairwise log-ratios in a 
regression setting (Coenders and Greenacre, 2022), while the 
logratiolasso R package proposes a log-ratio LASSO model that aims 
to produce a sparse model from the all-pairs log-ratio model (Bates 
and Tibshirani, 2019).

DMMM/DBMC is a Dirichlet Multinomial Mixture Model 
(DMMM) tool that can be used in both unsupervised and supervised 
settings to identify clusters in microbiome datasets and act as a Bayes 
classifier. It is implemented in the R package DirichletMultinomial 
(Holmes et al., 2012) and was extended by Gao et al. (2017) to include 
automatic feature selection, resulting in better classification accuracy 
than DMMM and random forest.

mikropml is an R package that follows best practices for machine 
learning, producing trained models, performance metrics, and feature 
importances (Topçuoğlu et al., 2021). It includes data preprocessing, 
model training, and selection, as well as hyperparameter tuning. The 
package has been used to classify colorectal cancer patients and 
identify variables associated with bacterial infections (Topçuoğlu 
et al., 2021). The tool has also been applied to test ML models for 
associations between microbiome composition and diseases like 
Clostridium difficile infections, producing significant results in 

3  https://malucalle.github.io/coda4microbiome/
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multiple studies (Lapp et  al., 2021; Armour et  al., 2022; Lesniak 
et al., 2022).

3.3 Gene prediction

Metagenomic studies aim to understand the metabolic and 
functional diversity of microbial communities and detect differences 
among them. However, establishing a complete geneset for each 
species in a sample is currently unfeasible. Gene prediction is a 
valuable tool in functional profiling, as it identifies patterns in DNA 
sequences that correspond to transcription and translation machinery. 
Here we present some of the most used algorithms including not-ML 
based prediction models.

Hidden Markov models (HMM) are commonly used in gene 
prediction, with several methods available. MetaGene (Noguchi et al., 
2006) uses logistic regression models based on GC content and 
di-codon frequencies to differentiate between gene-coding and 
non-gene coding open reading frames (ORFs). MetaGeneAnnotator 
(Noguchi et al., 2008) extends this approach by integrating species-
specific patterns of ribosome binding sites to improve translation start 
site prediction.

Model-based methods are commonly used in gene prediction, 
and there are several notable examples. MetaGeneMark (Zhu et al., 
2010) is based on Hidden Markov models that are applicable to short 
DNA fragments. It uses training prokaryotic genomes to estimate 
polynomial and logistic approximations of oligonucleotide 
frequencies as a function of GC content. FragGeneScan (Rho et al., 
2010) and Glimmer-MG (Kelley et al., 2012) both use Interpolated 
Markov Models to distinguish coding areas from non-coding 
DNA. Orphelia (Hoff et  al., 2008, 2009) instead uses linear 
discriminants for mono-codon usage, di-codon usage, and translation 
initiation sites to extract characteristics from sequences, and also 
incorporates a neural network trained on random sub-sequences of 
genomes from the reference database to classify ORFs as protein-
coding or not.

CNN-MGP (Al-Ajlan and El Allali, 2019) is a successful deep 
learning-based method for gene prediction. CNN-MGP avoids 
manual feature extraction and selection by predicting genes directly 
from raw DNA sequences. This method demonstrates the power of 
deep learning in accurate gene prediction. GeMoMa (Keilwagen et al., 
2019) leverages evolutionary information from gene models in 
reference species to predict gene models in target species using amino 
acid sequence conservation, intron position conservation, and 
RNA-seq data. It is a homology-based gene prediction program.

Balrog (Bacterial Annotation by Learned Representation Of 
Genes; Sommer and Salzberg, 2021) is a model of prokaryotic genes 
based on a data-driven approach to gene finding with minimal hand-
tuned heuristics. By training a single gene model on nearly all available 
high-quality prokaryotic gene data, this model matches the sensitivity 
of widely used gene finders.

ML-based methods have proven useful for metagenomic gene 
prediction. Meta-MFDL (Zhang et al., 2017) is a notable example 
that utilizes deep stacking networks to combine features such as 
monocodon usage, monoamino acid usage, ORF length coverage, 
and Z-curve features. This model has shown robustness and high 
accuracy in identifying metagenomic genes, outperforming other 
prediction models.

MetaGUN (Liu et al., 2013) is an ML-based method that uses 
SVM classifiers to identify protein-coding sequences in metagenomic 
fragments. MetaGUN uses entropy density profiles of codon usage, 
translation initiation site scores, and open reading frame length as 
input patterns.

3.4 Metabolic modeling

The metabolic activities carried out by the bacteria forming the 
gut microbiome are relevant for gut homeostasis and overall host 
health and physiology. These activities might not always be affected 
by taxonomic changes, and therefore it is essential to characterize 
microbiome-metabolome interactions. This will help to understand 
how shifts in the gut microbiome composition may affect host 
health, which in turn is crucial for the treatment and prevention of 
chronic diseases. In this section, we will describe methods that have 
been developed to characterize the metabolic activity of 
the microbiome.

Early modeling approaches focused on converting metagenomic 
features to metabolomic features due to the lack of comprehensive 
metabolomic profiles. The Predicted Relative Metabolic Turnover 
(PRMT) method (Larsen et  al., 2011), originally developed for a 
marine metagenome, predicts metabolite consumption or production 
based on the enzymatic activities present in a metagenome. Briefly, it 
leverages information from KEGG and MG-RAST (reactions and EC 
numbers, respectively) to generate an environmental metabolomic 
matrix (EMM), estimates enzymatic activity based on number of 
sequences, and calculates a PRMT-score for each metabolite in the 
EMM (Larsen et al., 2011).

MIMOSA adapts this methodology in a multi-omic framework 
that combines taxonomic and metabolomic profiles in the context 
of the human microbiome (Noecker et al., 2016). This framework 
first infers community gene content based on taxonomic data and 
available and inferred genomic information. Then, making use of 
the PRMT method, it predicts the communitywide uptake or 
production of each metabolite, and estimates how species and 
genes might be  contributing to these activities. Similarly to 
MIMOSA, Mangosteen is a metabolome prediction pipeline that 
relies on relationships between KEGG/BioCyc reactions and their 
associated molecular compounds (Yin et al., 2020).

However, with the increasing availability of both metagenomic 
and metabolomic data, numerous ML models have been developed 
to map metagenomic features to metabolites. These methods 
overcome the main limitation of reference-based methods, which 
are dependent on the quality of the queried databases. For instance, 
MelonnPan uses Elastic net regularization to predict community 
metabolomes from taxonomic profiles (Mallick et al., 2019). This 
approach has been used to predict metabolites in new microbial 
communities based on metagenomic data, shedding light on the 
functional role of microbiota in cardiovascular diseases (Liu 
et al., 2020).

Another ML-based approach, MiMeNet, is a multi-layer 
perceptron neural network that models microbe-metabolite 
relationships and the metabolomic profile of microbial communities 
from metagenomic taxonomic or functional features. This approach 
allows for scalability in handling large amounts of metagenomic and 
metabolomic features and leads to more robust predictive models by 
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simultaneously learning metabolites and enhancing the transfer of 
information (Reiman et al., 2021).

Metage2Metabo (M2M) is another software tool that simulates 
the metabolism of the gut microbiota and describes the metabolic 
relationships between the species’ metabolic genes to establish how 
they complement each other in metabolic terms. M2M uses reference 
genomes or MAGs to construct genome-scale metabolic networks, 
which are then analyzed to detect metabolic capabilities and metabolic 
cooperation potential. Once this is carried out, M2M calculates the 
minimum number of species needed to perform a metabolic role of 
interest and the key species associated with that role (Belcour et al., 
2020). M2M relies on the genome-scale metabolic network generating 
tool Pathway Tools (Karp et al., 2016).

Other approaches focus on constraint-based stoichiometric 
modeling using flux balance analysis (Orth et al., 2010) to determine 
the rate at which metabolites are being exchanged within the 
community (Thiele et  al., 2013; Baldini et  al., 2019; Heinken and 
Thiele, 2022). Constraint-based reconstruction and analysis (COBRA 
toolbox) is a software package for MATLAB, which allows for the 
creation and analysis of genome-scale metabolic models (Heirendt 
et al., 2019). It is reliant on the COBRA method which is a well-
described set of strategies to employ when using metabolic modeling 
(Heirendt et al., 2019). Currently, the COBRA Toolbox is in its third 
edition and aims to simulate the relationship between genotype and 
phenotype through mathematical modeling (Heirendt et al., 2019). 
The Python COBRApy was developed as a framework allowing to 
model complex biological processes using COBRA methods (Ebrahim 
et al., 2013).

COBRA modeling has been used to create personalized human 
microbiome models and stratify them based on structure and 
function, which has been used to treat conditions such as 
inflammatory bowel disease and colorectal cancer (Heinken et al., 
2021). It also supports other computational methods used for 
metabolome predictions with microbial data. For instance, MMinte 
(Mendes-Soares et al., 2016) relies on ModelSEED (Henry et al., 2010) 
and COBRApy (Ebrahim et al., 2013) for metabolic modeling and flux 
balance analysis (Mendes-Soares et al., 2016). This pipeline predicts 
metabolic interactions among microbial species in a community from 
16S rRNA amplicon sequence data and association networks. It allows 
us to identify related genomes, reconstruct metabolic models, assess 
growth under specific metabolic conditions, analyze pairwise 
interactions, and generate a network of interactions (Mendes-Soares 
et al., 2016).

The COBRA method has also been used to construct organ-
resolved whole-body human metabolic models, enabling simulations 
of both human and microbiome-human interactions (Heinken et al., 
2020). In addition to the COBRA toolbox, the Microbiome Modeling 
Toolbox (Baldini et al., 2019) is a suite of MATLAB-based tools for 
building and analyzing microbe-microbe and personalized 
microbiome models. This toolbox generates, simulates, and interprets 
interactions between microbes and the host, as well as sample-specific 
microbial community models, using metagenomically derived data 
(Baldini et al., 2019). The updated version of the toolbox includes the 
mgPipe module, which facilitates the generation of personalized 
microbiome models from a vast collection of microbial metabolic 
reconstructions, such as the AGORA resource, containing over 7,000 
microbial reconstructions (Magnúsdóttir et al., 2017; Heinken et al., 
2020; Heinken and Thiele, 2022). The AGORA resource is also used 

by other tools, including the second version of MIMOSA (Noecker 
et al., 2016). Finally, MICOM is a customizable metabolic model of 
the human gut microbiome. Through COBRApy, it calculates growth 
rates based on metagenomic and dietary characteristics, allowing for 
the generation of personalized metabolic models for individual 
metagenomic samples (Diener et al., 2020).

3.5 Time-series analysis

Time-series data analysis is essential for understanding the 
structure and dynamics of microbial communities. However, it 
requires specialized statistical considerations distinct from those used 
in comparative microbiome studies to address ecological questions. 
To facilitate this, some software packages have been developed that 
use ML algorithms to analyze time-series data.

One such package is QIIME2 plugin q2-longitudinal (Bokulich 
et  al., 2018b), designed for the analysis and visualization of 
longitudinal microbiome studies. This QIIME2 plugin incorporates 
various methods for paired difference and distance testing, linear 
mixed-effects models, nonparametric microbial interdependence, 
feature selection and volatility analysis, and interactive visualization. 
The feature-volatility action uses random forests to identify features 
that change over time and predict different states.

Another package is Seqtime, an R package that provides 
functions to analyze sequencing data time-series and simulate 
community dynamics (Faust et al., 2018). Additionally, the Anuran 
toolbox helps identify conserved or unique patterns across multiple 
networks over time, and whether biological networks have set 
operations that have different outcomes than expected by chance 
(Röttjers et al., 2021).

4 Data integration

The complexity and heterogeneity of the metagenomics datasets, 
which include various types, scales, and distributions, make it 
challenging to extract useful information from them in the context of 
omics data mining. One of the main obstacles to the successful use of 
ML techniques in metagenomics analysis is the integration of such a 
wide variety of heterogeneous data.

Picard et  al. (2021) classified integration approaches into 
horizontal and vertical categories. Within the vertical integration 
strategies, further divisions include early, mixed, intermediate, late, 
and hierarchical approaches. Early and intermediate integration 
strategies enable the analysis of datasets within the context of their 
relationships with other datasets, leading to additional insights. 
However, early integration is challenging for most ML models, while 
intermediate integration often relies on unsupervised matrix 
factorization, which lacks the incorporation of pre-existing 
biological knowledge. Late integration involves applying ML models 
separately to each dataset and then combining their predictions. 
Hierarchical integration considers the interaction between different 
layers of omics data explicitly, but its implementation is currently in 
its early stages.

Most of the integration approaches implemented in software 
packages are based on mixed integration, which typically first modifies 
and transforms each dataset using different ML models. This enables 
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them to reduce data complexity and heterogeneity, as well as to facilitate 
subsequent integration and analysis of datasets. Here we collect some 
of the ML software used for metagenomics data integration:

There are several software packages available for metagenomics 
data integration. mixOmics (Rohart et al., 2017a) for example, is an R 
package that provides a wide range of multivariate methods for data 
exploration, sizing, and visualization, including integration platforms 
that investigate relationships between heterogeneous omics data (in 
terms of types, scales and distributions). Its multivariate projection-
based methods are computationally efficient for processing large omics 
datasets and provide flexibility in analyzing biological datasets by using 
relaxed assumptions about the distribution of the data. MixOmics R 
includes both supervised and unsupervised frameworks as well as 
feature selection. Other frameworks, like DIABLO (Singh et al., 2019) 
and MINT (Rohart et al., 2017b), enable the integration of datasets to 
identify relevant relationships and significant patterns in heterogeneous 
data for better exploration of complex metagenomic data.

Kernel methods allow data scientists to model non-linear 
relationships between the data points with low computational 
complexity, thanks to the so-called ‘kernel trick’. These have already 
been used to extend well-known algorithms such as PCA, linear DA 
and ridge regression (Cabassi and Kirk, 2020). A consensus multiple 
kernels is based on ideas similar to STATIS as an exploratory method 
designed to integrate multi-block datasets when the blocks are 
measured on the same samples (Mariette and Villa-Vialaneix, 2018). 
MixKernel (Mariette and Villa-Vialaneix, 2018) is another R package 
that offers methods for integrating heterogeneous types of data, 
focusing on kernel fusion methods for unsupervised exploratory 
analysis. Its kernel methods allow data scientists to model non-linear 
relationships between the data points with low computational 
complexity, thanks to the so-called kernel trick. KernInt (Ramon et al., 
2021) is a kernel framework for integrating supervised and 
unsupervised analyses in spatiotemporal metagenomic datasets, using 
a kernel framework to unify supervised and unsupervised microbiome 
analyses, focusing on spatial and temporal integration, including the 
retrieval of microbial signatures.

4.1 General software for machine learning 
applications

A variety of ML software tools are available, with the majority 
being open source. Goodswen et  al. (2021) and co-authors have 
compiled a brief list of general ML software tools to be applied in 
microbiome data. We  have here extended this list in 
Supplementary Table  2 to include additional relevant general ML 
software for microbiology data analysis. These tools are primarily 
based on Python and R frameworks that contain collections of 
software libraries (packages) and require some basic programming 
knowledge for optimal use. However, some ML tools like WEKA, 
KNIME Analytics Platform, and Orange Data Mining, can be used 
through a GUI without extensive coding or programming expertise.

4.2 Commercial approaches and solutions

We identified more than 240 companies (in >350 locations) 
worldwide based on an online database of companies applying or 

offering microbiome analysis (Microbiome Employers, 2022) 
complemented with search engine results.

The companies’ activities ranged from clinical research and the 
study of diagnostic and therapeutic effects in healthcare to the 
implementation of microbiome data analysis in agriculture, nutritional 
supplements and pharmaceuticals. The majority of these address 
microbiome analysis for therapeutics/pharmacy. Three typical 
examples are the discovery of novel molecules for therapeutics, 
agriculture, and nutrition (Adapsyn Bioscience, 2022), the prediction 
of viable biomarkers and therapeutic candidates against immunologic 
disorders (Pragmabio, 2022) and microbiome tests as a diagnostic 
application in medicine and cosmetics (Atlas Biomed, 2022).

For obvious reasons not to disclose proprietary knowledge or 
internal processes, the companies were mostly not willing to disclose 
details on their use of ML. With that said, 60 companies do apply ML 
according to stated keywords like ‘Machine Learning’, ‘AI’, or ‘Deep 
Learning’ in a given context on their websites. More detailed 
information about the used algorithms were, however, normally not 
available. The companies offering microbiome analyses and integrating 
ML methods either do this as part of a sequencing service (e.g., 
CosmosID, www.cosmosid.com) or consider microbiome analyses as 
a part of a more thorough analysis. Good examples of the latter with 
a “microbiome-subsection” in their product portfolio are Ardigen4 
with a precision medicine service or AstarteMedical5 with their digital 
tools and diagnostics to improve pediatric outcomes. A more general 
approach is followed by EagleGenomics6 which offers a platform-
driven whole microbiome analysis ecosystem.

4.3 Challenges of ML to consider in 
software development for microbiome 
applications

4.3.1 Bias and variance
Almost all ML approaches introduce some bias (Quinn, 2021) in 

the training phase, i.e., assumptions on the model “shape” and on the 
data distribution made during the construction of the model. When 
such assumptions hold, the model tends to be highly accurate, both in 
the training set and in the testing set, but when such assumptions are 
violated, such bias can lead the method to miss, ignore or discard 
relevant relations between descriptive features and the target feature. 
Approaches that exhibit a high bias can therefore lead to underfitting.

On the other hand, ML approaches can also generate variance 
errors, specifically, when they are very sensitive to small fluctuations 
in the training set. This issue can ultimately push the algorithm to 
specifically model the random noise present in the training data. 
When this occurs, the learned model is very accurate on the training 
set but poorly generalizable to the unseen data of the testing set 
(overfitting). These phenomena, in the specific context of microbiome 
data, have been recently emphasized in some papers (Lin and 
Peddada, 2020; Nearing et al., 2021; Wirbel et al., 2021).

It is noteworthy that the above-mentioned phenomena occur in 
almost all the application domains, not only when analyzing 

4  https://ardigen.com/

5  https://astartemedical.com/

6  www.eaglegenomics.com
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microbiome data, and the possible solutions tend to be common to 
those generally adopted in other contexts. However, since the first 
attempts at the adoption of ML approaches to microbiome data 
analysis are very recent, the context is probably not mature enough for 
the adoption of methods with a high bias. Solutions like multi-view 
learning, semi-supervised learning and transfer learning can 
be profitably used to alleviate such problems.

4.4 Impact of dataset size on the model 
accuracy

In general, the availability of large amounts of data in available 
repositories such as NCBI,7 METAHIT,8 Human Microbiome Project,9 
ExperimentHub,10 etc., increases the chance of learning accurate ML 
models, and the impact of the dataset size on the model accuracy 
depends on the data source. However, it varies on the basis of the 
specific problem at hand. For example, fewer data are required if there 
are clear patterns within the data, if they are easily separable (in the 
case of classification tasks), or if simple (e.g., linear) relationships can 
be identified between descriptive and target attributes (in the case of 
regression tasks). In addition, some ML algorithms inherently require 
huge amounts of data due to their complexity (e.g., the number of 
parameters to optimize): simpler methods, such as linear regression 
and decision trees, typically need less training examples than solutions 
based on deep learning.

In microbiome research, the number of available samples is 
usually very limited due to sequencing costs and logistical challenges 
of sample collection. This aspect limits the adoption of complex 
approaches, although very promising according to the results achieved 
in other contexts. A possible solution to alleviate this issue would 
consist in relying on approaches that are able to exploit the knowledge 
coming from other contexts with huge amounts of labeled examples, 
such as transfer learning methods (Pio et al., 2022), or that can exploit 
both labeled and unlabeled examples (which may be less expensive to 
gather) in a semi-supervised learning setting (Chapelle et al., 2010), 
also based on multi-view learning (Ceci et al., 2015).

4.5 Data quality

Even when large data sets are available, there is no guarantee that 
the available data sample represents the whole population, without 
(selection or other kinds of) biases. In addition, available data sets may 
also include examples with (i) incorrect labels, (ii) missing or wrong 
values in the descriptive features, possibly due to measurement errors, 
(iii) highly dimensional and very sparse representation, due to the 
usual scarce availability of individuals with respect to the large 
availability of (also incomplete) generated features. The presence of 
one or more of such issues requires the adoption of pre-processing 
techniques. However, general-purpose methods may introduce 

7  https://www.ncbi.nlm.nih.gov/

8  https://www.gutmicrobiotaforhealth.com/metahit/

9  https://hmpdacc.org/

10  https://bioconductor.org/packages/release/bioc/html/

ExperimentHub.html

additional noise or remove/discard relevant information, which 
suggests the need to focus on specific approaches for handling the 
peculiarities of microbiome data.

Another possible solution would consist in integrating multiple 
data sources, or in combining multiple pre-processing methods, in an 
ensemble or multi-view fashion. This is also confirmed by Curry et al. 
(2021), who states “A major source of future advancement in 
phenotype-prediction would be the result of discovering new data 
sources or feature types that have complementary predictive power, 
then utilizing the appropriate model structures for leveraging 
additional information.” This approach can turn out to be effective 
also in the case we use features generated using existing methods 
(such as OTU, ASV, Metagenome-profiling, etc.) since it provides an 
automatic and data-driven way to merge feature contributions.

5 Interpretability and explainability

The interpretability of the results of the analysis of microbiome 
data is a very difficult task (Feng et al., 2015; Yu et al., 2017). In order 
to support this activity, the ML community is recently giving 
attention to the problem of model interpretability, and explainability 
of the predictions. This is motivated by the fact that ML models are 
adopted in critical decision environments, like security, health and 
biology, which cannot generally accept a blind output of an automated 
system. The importance of such an issue has been perceived even 
more recently, due to the general spread of neural network 
architectures to solve several ML tasks, which are generally very 
accurate but inherently not interpretable. This issue is present also in 
the context of microbiome data (Carrieri et al., 2021), especially when 
they are adopted for diagnostics purposes. Therefore, together with 
the design and development of accurate ML methods, able to work 
with sparse, high-dimensional, and noisy data, the effort of the 
research community should focus on the design of methods able to 
learn explainable models, in order to generally increase their 
acceptance in the biomedical field.

6 Conclusion

ML techniques are powerful methods for analyzing the huge 
amount of data that is being generated in the human microbiome 
field (Marcos-Zambrano et al., 2021; Moreno-Indias et al., 2021). 
As discussed in this manuscript, its application is leading to a rapid 
growth of specific ML tools to support and facilitate the different 
steps in the analysis and interpretation of microbiome data. These 
software developments democratize access to ML techniques, 
making them more accessible and easier to use for a wide range of 
organizations and researchers. However, the shortcomings and 
challenges of the ML application in human data, reviewed 
extensively by the COST (European Cooperation in Science and 
Technology) Action CA18131 on Statistical and Machine Learning 
Techniques in Human Microbiome Studies (ML4Microbiome) in 
Marcos-Zambrano et al. (2021) and Moreno-Indias et al. (2021), 
along with the fragmentation and dispersion of the ML software 
and microbiome data require further efforts to create federated 
infrastructures and services, as stated by the European Open 
Science Cloud (European Commission Directorate General for 
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Research and Innovation. and EOSC Executive Board, 2021) or 
ELIXIR (Balech et al., 2022), to exploit complex human microbiome 
data accelerating innovation, and ensuring that the benefits of ML 
are distributed more broadly across society, these tools can help 
drive progress and create a more equitable and sustainable future. 
Hence, ML4Microbiome contributes to this aim with a very valuable 
resource to microbiologists and biomedical scientists identifying 
and cataloguing the ML software available, facilitating and 
supporting the analysis and interpretation of large human 
microbiome datasets. This paper is part of a series of publications 
that emerged from the efforts of COST Action ML4 Microbiome. 
Other articles will address challenges (ID 1257002), data 
transformation (ID 1261889, ID 1250909), and best practices. The 
primary focus of this particular article is to gather and present a 
comprehensive range of ML resources and tools that are available 
for metagenomic analysis. In the future, benchmarking efforts by 
the community will be  required to evaluate the performance, 
accessibility and user experience of these tools to provide non ML 
expert users with easy, transparent, and trustable standards. As the 
availability of methods and the vast number of workflow choices 
spanning unique combinations of preprocessing, feature selection, 
ML algorithm, parameterization, optimization, and other technical 
details often have remarkable effects on the analysis outcomes, the 
field benefits from independent benchmarking of alternative 
machine learning approaches. Independent competitions and 
community challenges provide one route for this. A recent example 
of this is the Heart Failure Prediction Microbiome FINRISK 
DREAM challenge (FINRISK, 2022), which was organized by the 
ML4microbiome COST action to identify optimal strategies for 
microbiome-based prospective risk prediction for heart failure 
using large-scale population cohort data sets and which results will 
be published soon. In addition, It will be required that software 
developers follow Findable, Accessible, Interoperable and Reusable 
(FAIR) principles for a more efficient use of resources, get more 
accurate results and better decision-making.
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Although MALDI-TOF mass spectrometry (MS) is widely known as a rapid and 
cost-effective reference method for identifying microorganisms, its commercial 
databases face limitations in accurately distinguishing specific subspecies of 
Bifidobacterium. This study aimed to explore the potential of MALDI-TOF MS 
protein profiles, coupled with prediction methods, to differentiate between 
Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum 
subsp. longum (B. longum). The investigation involved the analysis of mass spectra 
of 59 B. longum strains and 41 B. infantis strains, leading to the identification 
of five distinct biomarker peaks, specifically at m/z 2,929, 4,408, 5,381, 5,394, 
and 8,817, using Recurrent Feature Elimination (RFE). To facilate classification 
between B. longum and B. infantis based on the mass spectra, machine learning 
models were developed, employing algorithms such as logistic regression (LR), 
random forest (RF), and support vector machine (SVM). The evaluation of the mass 
spectrometry data showed that the RF model exhibited the highest performace, 
boasting an impressive AUC of 0.984. This model outperformed other algorithms 
in terms of accuracy and sensitivity. Furthermore, when employing a voting 
mechanism on multi-mass spectrometry data for strain identificaton, the RF 
model achieved the highest accuracy of 96.67%. The outcomes of this research 
hold the significant potential for commercial applications, enabling the rapid 
and precise discrimination of B. longum and B. infantis using MALDI-TOF MS in 
conjunction with machine learning. Additionally, the approach proposed in this 
study carries substantial implications across various industries, such as probiotics 
and pharmaceuticals, where the precise differentiation of specific subspecies is 
essential for product development and quality control.

KEYWORDS

Bifidobacterium longum subspecies, MALDI-TOF MS, machine learning, identification,  
B. longum, B. infantis

1 Introduction

Bifidobacterium longum subsp. infantis (B. infantis) and Bifidobacterium longum subsp. 
longum (B. longum), the most abundant Bifidobacterium species in the intestinal flora of infants, 
are essential for their immune development. Human breast milk contains a large amount of 
human milk oligosaccharides (HMOs), which cannot be digested by infant due to a lack of 
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necessary glucosidases. However, the positive effects of HMOs on 
newborns’ health are attributed to the “beneficial” microorganisms 
that specialize in metabolizing HMOs. In contrast to B. longum, 
B. infantis typically harbors all the genes required for utilizing HMOs 
(Duar et al., 2020) and can digest various types of HMOs, including 
3′-SL, 6′-SL, 2′-FL, 3′-FL, LNnT, and LacNAc (Zhang et al., 2022). The 
absence of Bifidobacterium and HMO utilization genes in the gut 
microbiota is associated with inflammation and immune imbalances 
in early life (Henrick et al., 2021). B. infantis is commonly found in 
breastfed infants in countries with a low prevalence of immune-
mediated diseases, such as Bangladesh (Vatanen et  al., 2022) and 
Malawi, but is rare in Europe and North America (Casaburi et al., 
2021). However, supplementation with B. infantis EVC001, by 
remodelling the gut microbiome of breastfed infants, reduced 
intestinal inflammation (Henrick et al., 2019), decreased intestinal 
Th2 and Th17 cytokines and up-regulated IFNβ, favouring immune 
development in early life (Henrick et al., 2021). Therefore, accurate 
identification of B. longum and B. infantis is essential for efficient 
screening, functional studies and application development of 
B. infantis.

The current methods used to identify Bifidobacteria include PCR, 
SNP, cgMLST, and MALDI-TOF MS. MALDI-TOF MS is particularly 
advantageous due to its high throughput, fast speed, and low cost, 
making it widely used for identifying clinical pathogenic 
microorganisms and general microorganisms (Gato et  al., 2021; 
Heilbronner and Foster, 2021; Wang H. Y. et al., 2022). However, the 
successful identification of bacteria using MALDI-TOF MS heavily 
relies on databases that contain spectra of known organisms and most 
of the biomarker peaks are in the range m/z 2,000–10,000 (Carvalho 
et al., 2022; Topić Popović et al., 2023). Most commercial databases 
only identify bacteria at the species level and lack the ability to 
accurately differentiate closely related subspecies, such as B. longum 
and B. infantis. Although six biomarker peaks have been reported to 
differentiate between B. longum and B. infantis, these peaks have not 
been commercially applied due to their high mass peaks (>15,000 m/z) 
(Sato et  al., 2011), low reproducibility, and lack of availability in 
commercial databases. Recently, machine learning techniques have 
been used to accurately identify strains that cannot be distinguished 
using commercial databases by analyzing protein mass spectra 
obtained through MALDI-TOF MS (Weis et  al., 2022; Kim 
et al., 2023).

Machine learning (ML) technology encompasses various 
algorithms such as random forest (RF), support vector machines 
(SVM), logistic regression (LR) and decision trees (DT) (Weis et al., 
2020). ML enables rapid and precise identification of species-specific 
biomarkers from MALDI-TOF MS spectra, which has been widely 
implemented to analyze microbial signatures and construct 
classification models. Recently, the combination of MALDI-TOF MS 
and ML has gained popularity in classifying clinically pathogenic and 
drug-resistant bacteria, including Escherichia coli (van Oosten and 
Klein, 2020), Staphylococcus aureus (Rodríguez-Temporal et al., 2022), 
Klebsiella pneumoniae (Yu et al., 2023), Brucella melitensis (Dematheis 
et  al., 2022), and Campylobacter spp. (Feucherolles et  al., 2021). 
However, there is a lack of identification schemes for Bifidobacterium 
subspecies within a specific taxon in these studies. Hence, there is an 
urgent need to develop a combined machine learning and 
MALDI-TOF MS method for rapid and accurate identification of 
Bifidobacterium subspecies.

In the present study, we first screened for robust variations in 
subspecies-specific features between B. longum and B. infantis based 
on MALDI-TOF MS analysis and a combination of machine learning 
methods such as LR, SVM, and RF (Figure 1). The objective of this 
research was to develop a fast classification tool using Machine-
learning-combined MALDI-TOF MS to accurately distinguish 
between B. longum and B. infantis.

2 Results

2.1 Molecular identification by PCR and 
phylogenetic analysis

Specific primers-based PCR could differentiate between B. longum 
and B infantis. Thus, this method was employed to confirm the 
taxonomic classification of all the strains in study. The specificity and 
sensitivity of the PCR assay using specific primers for distinguishing 
the two subspecies were confirmed by successfully differentiation of 
11 representative strains. Out of the 89 isolates analyzed, 54 were 
identified as B. longum and 35 were identified as B. infantis. For 
additional confirmation, SNP information obtained from 100 genome 
sequences were utilized to construct a phylogenetic tree. The tree 
effectively separated the sequences into two distinct branches. The 
phylogenetic tree revealed that 59 B. longum strains, comprising 
five typical strains and 54 isolates, clustered together with a blue 
background, while 41 B. infantis strains formed a distinct group 
with a red background (Figure 2). These findings underscore the 
efficacy of using phylogenetic tree features for precise 
classification and identification of B. longum and B. infantis, which 
align with the outcomes obtained from specific PCR genotyping 
(Supplementary Table S1).

2.2 Identification of mass spectra for 
strains

Mass spectrometry results indicated the presence of numerous 
identical mass spectral peaks for both B. longum and B. infantis, 
making accurate differentiation challenging when relying solely on 
commercial databases (Figure 3A; Supplementary Table S1). However, 
further analysis unveiled six species-specific peaks that exhibited a 
high degree of conservation and could serve as potential biomarkers 
for identification. As shown in Figures 3B–D, peaks at m/z 4448.52 
(94.9%, 56/59), 5394.35 (100.0%), and 8789.47 (100.0%) were 
exclusively found in the spectrogram of B. longum. Conversely, peaks 
at m/z 4408.42 (95.1%, 39/41), 5381.06, and 8817.28 (100.0%) were 
observed solely in the spectrogram of B. infantis. These findings reveal 
the potential of MALDI-TOF MS to differentiate between B. longum 
and B. infantis based on specific peaks with the protein 
fingerprint profile.

2.3 Discovery and identification of protein 
biomarkers by MALDI-TOF MS

To investigate the applicability of MALDI-TOF MS for 
discriminating B. longum and B. infantis, we performed redundant 
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removal, smoothing, and alignment of 400 spectra from 100 strains 
using OpenMS software. We identified some potential characteristic 
peaks and constructed a mass spectrometry data matrix for further 
analysis. To further investigate the distinguishing features, we performed 
a more specific heatmap clustering analysis of the mass spectrometry 
data matrix (Figure 4A). Then we performed the principal component 
analysis (PCA) of the mass spectrum data matrix obtained from the 
above method. The PCA plot clearly showed the distinct clustering 
patterns of the two subspecies (Figure 4B), indicating their potential for 
differentiation. Finally, 18 potential discriminatory peaks were 
identified, with 11 peaks specific to the B. infantis, including the 
3,088 m/z, 3,573 m/z, 4,408 m/z, 5,338 m/z, 5,381 m/z, 6,820 m/z, 
6,910 m/z, 8,131 m/z, 8,817 m/z, 9,963 m/z, 10,360 m/z. B. longum with 
seven specific peaks, respectively, are located at the 2,929 m/z, 3,152 m/z, 
4,448 m/z, 4,479 m/z, 5,394 m/z, 7,051 m/z, 8,789 m/z. These 
discriminatory peaks are expected to serve as potential features for 
constructing the classifiers. Furthermore, to assess the importance of 
features, we analyzed between 18 feature peaks and drew bar graphs 
(Figure  4C) and found higher SHAP values for feature peaks at 
4408 m/z, 5,381 m/z, 5,394 m/z and 8,817 m/z. This suggests that these 
peaks seem particularly well suited for building classifiers.

To gain insights into the identities of these characteristic peaks, 
we conducted a comparison between the experimental m/z values and 
genomic data. This analysis suggested that the ion peaks at m/z 5,381 
and 5,394 corresponded to the 50S ribosomal protein L34. 
Additionally, peaks at m/z 8,817 and 7,051 were associated with 50S 
ribosomal proteins L27 and L30, respectively. The peak at 4408 m/z 
indicated the presence of the 30S ribosomal protein S5. Moreover, 
we  identified matches with proteins from the DUF (domain of 
unknown function) family, including m/z 4,479, 8,789, and 9,963. 
Proteins belonging to the DUF family are characterized by a conserved 
EYA motif and a length ranging from 66 to 95 amino acids. However, 
their functional roles remain elusive due to the lack of annotation.

The 18 feature peaks obtained above were conducted recursive 
feature elimination using a logistic regression algorithm with cross-
validation to determine the optimal feature set. Figure 5A illustrated 
that the highest cross-validation score of 0.945 was achieved when 
using five features. These five optimal features include m/z 2,929, 
4,408, 5,381, 5,394, and 8,817. Among them, m/z 2,929 and 5,394 were 
characteristic peaks of B. longum, while the remaining peaks were 
specific to B. infantis. The significance of the five selected features was 
presented using a boxplot (Figure 5B), and the results indicated that 

FIGURE 1

Experimental flow chart of Bifidobacterium longum subspecies discrimination based on MALDI-TOF MS and machine learning in this study.
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the p-values of the five features, as determined by Fisher’s exact test, 
were all less than 0.001. In addition, individual ROC curves were 
plotted for the five selected features (Figure 5C). The AUC values 
ranged from 0.777 for m/z 2,929 to 0.917 for m/z 5,381. It indicates 
that the features obtained after recursive elimination can contribute to 
achieving the best classification performance.

2.4 Construction of the machine learning 
models

We developed three commonly used machine learning models: 
LR, SVM, and RF, for microbial discrimination. The dataset utilized 
for model construction consisted of 100 strains, with their subspecies 

verified through PCR and phylogenetic analysis. This dataset was 
randomly divided into a training set for building the models and a test 
set for evaluation their performance. Based on the results obtained 
from the test set, we calculated performance metrics such as sensitivity, 
specificity, accuracy, Youden coefficient, and AUC value (see Table 1).

The classification performance parameters of the three models are 
shown in Table 2. Among them, RF achieved the highest accuracy, 
AUC, and Youden coefficient, all equal to 1.0, indicating its superior 
ability to discriminate between the two subspecies. The sensitivity of 
all three models was 1.0, which means that they could correctly 
identify all the positive cases. The RF model demonstrated the highest 
specificity with a value of 1.0, whereas the LR and SVM models 
exhibited a specificity of 0.931. The RF model also has the highest 
AUC value of 1.0, demonstrating excellent classification performance. 

FIGURE 2

Identification of 41 B. infantis strains and 59 B. longum strains based on the phylogenetic analysis. The red and blue background represent B. infantis or 
B. longum strains, respectively.
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The SVM model’s AUC was slightly better than that of the LR model, 
with values of 0.995, and 0.993, respectively. The Youden coefficient, 
reflecting the overall efficiency of the RF model, was 1.0, while for the 
SVM and LR models, it was 0.931.

2.5 Assessment of practical application of 
the machine learning model

An external dataset comprising 240 spectra obtained from 60 
Bifidobacterium longum strains was collected. These isolates were 

obtained under identical experimental conditions. To validate the 
model’s effectiveness, the three trained models were utilized to predict 
the subspecies of these 60 strains.

Among the three models, both LR and SVM model exhibited a 
specificity of 0.983, while it was 0.967 for the RF model. However, the 
LR model demonstrated a higher sensitivity (0.942) compared to the 
SVM model (0.883) and the RF model (0.900). Regarding accuracy, the 
RF model outperformed the SVM model and the LR model, achieving 
an accuracy rate of 0.954. To provide a more intuitive comparison of 
the models performance, we plotted the ROC curve (Figure 6A) and 
calculate the AUC values. All three models exhibited very similar AUC 

FIGURE 3

MALDI-TOF MS and species-specific peaks of B. longum (Orange) and B. infantis (Purple). The y-axis represents the intensity of the peaks, while the 
x-axis represents the m/z values; (A) depicts stowage diagram of B. longum and B. infantis; (B−D) display enlarged views of subspecies-specific peaks 
as depicted in A.
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values, accurately measured at 0.984. The RF model had the highest 
Youden index (0.908), surpassing the SVM model (0.867) and the LR 
model (0.883). Figure 6B illustrated the distribution of prediction 
scores indicating the likelihood of being B. infantis strains for the two 
subspecies, as determined by the three models.

Based on the four data points results, we established the prediction 
conditions for the strain subspecies model. A confusion matrix for 

external strain identification was calculated based on the voting results 
(Figure 6C). Specific PCR test results and phylogenetic analysis results 
(Figure 6D) showed consistency. The results from specific PCR tests 
and phylogenetic analysis (Figure  6D) were consistent with these 
findings (Supplementary Table S1). Among them, in the LR model, 
the identification of B. longum was in line with PCR and phylogenetic 
results. However, for the B. infantis, specifically YGMCC0271, 

FIGURE 4

Unsupervised analysis and feature importance evaluation. (A) After mass spectral alignment, heat maps were plotted and clustered based on the 
absence/presence of common characteristic peaks in the top 50% of effective p values within subspecies. (B) PCA of Bifidobacterium longum subsp. 
Each dot on the PCA plot represents the average spectrum of each strain, blue for B. longum, and red for B. infantis. (C) Assessment of feature 
importance in a RF model for distinguishing between B. longum and B. infantis.
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YGMCC0192, and YGMCC0550, there was inconsistency, with an 
accuracy of 95%. In the SVM model, the identification of 
YGMCC0618, YGMCC0063, and YGMCC0038 did not align with 
PCR and phylogenetic results, resulting in an accuracy rate of 95%. 
Lastly, in the RF model, the identification of YGMCC0063 and 
YGMCC0120 differed from PCR and SNP results, achieving an 
accuracy rate of 96.67%. Based on the external strain identification 
results, the RF model emerged as the optimal choice.

3 Discussion

Genome-based taxonomy is a more standard method of 
classifying microorganisms than traditional methods (Parks et al., 

2018). However, it is time-consuming, expensive, and labor-
intensive, and fails to meet the demand for rapid and high-
throughput identification of microorganisms. In recent years, 
MALDI-TOF MS has gained increasing importance in clinical 
microbial taxonomy as a fast, high-throughput, and robust method 
for microbial identification. It relies on the detection of microbial 
housekeeping and ribosomal proteins (Kim et al., 2022a; Haider 
et  al., 2023). Nonetheless, while MALDI-TOF MS can identify 
bacteria at the species level, it struggles to accurately distinguish 
closely related species or subspecies. Machine learning algorithms 
have the capability to identify specific information in mass 
spectrometry data and analyze relationships among different 
features, enabling more precise analysis (Weis et  al., 2020). By 
combining machine learning with MALDI-TOF MS, it becomes 

FIGURE 5

Recursive feature elimination. Line plot of 18 characteristic peaks and cross-validation fractions after REFCV (A), and boxplot of mass-to-charge ratio 
and relative intensity of 5 optimal characteristic peaks between the two subspecies of Bifidobacterium longum (**** represents the p value of the 
difference  <  0.0001). (B). ROC curve and AUC value of the five optimal characteristic peaks (C).
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possible to accurately identify closely related microorganisms at 
the subspecies level (De Bruyne et al., 2011; Rodríguez-Temporal 
et al., 2023). Recent studies have demonstrated the application of 
machine learning techniques in overcoming the limitations of mass 
spectrometry, such as detecting antibiotic-resistant microorganisms 
(Yoon and Jeong, 2021), analyzing antimicrobial resistance 
(Feucherolles et  al., 2021), and distinguishing closely related 
species. By utilizing features obtained from MALDI-TOF MS, 
SVM algorithms have successfully differentiated clinically resistant 
strains of carbapenem, methicillin, and β-lactam antibiotics, as 
well as predicted resistance phenotypes with high accuracy (Ho 
et al., 2017; Wang J. et al., 2022). Furthermore, the combination of 
MALDI-TOF MS and machine learning is commonly used to 
distinguish closely related foodborne microorganisms. For 
example, an SVM-RBF model achieved a prediction accuracy of 
approximately 100% in accurately identifying W. cibaria and 
W. confusa (Kim et al., 2023).

In our research, we have found that distinguishing closely related 
species using MALDI-TOF MS can be  challenging due to the 
similarities in their protein fingerprints. MALDI-TOF MS generates 
a report of the ten closest matches for an unknown species based on 
mass spectra and the consistency of reference strains in the database. 
However, when different species within the same genus or different 

subspecies within the same species have high scores among the top ten 
matches, accurately identifying the microorganism becomes difficult. 
Previous studies have attempted to distinguish between 
Bifidobacterium longum subspecies (Kim et  al., 2022b) and 
Bifidobacterium animalis subspecies (Jahan et  al., 2021) using 
MALDI-TOF MS. However, these studies had limitations in terms of 
sample size, unsystematic markers, and lack of validation data, and 
have not been commercially applied. In this study, our focus was 
specifically on identifying B. longum and B. infantis using 
MALDI-TOF MS. We discovered that commercial databases were 
unable to accurately differentiate between these two subspecies, which 
aligns with previous findings (Yahiaoui et al., 2020; Jahan et al., 2021; 
Kim et al., 2022b).

The aim of this study was to evaluate the ability of MALDI-TOF 
MS combined with machine-learning methods to rapidly and 
accurately discriminate between the closely related B. longum and 
B. infantis. We employed advanced machine learning algorithms and 
a larger sample size to enhance statistical significance. We ensured 
systematic biomarker collection and data analysis to improve the 
reliability and repeatability of our findings. We examined 400 mass 
spectra from 100 Bifidobacterium longum strains and used a logistic 
regression model with recursive feature elimination to identify the five 
most significant mass peaks. Among these peaks, the masses at 2929 

TABLE 1  Frequencies and assignments of species-specific peaks for B. longum and B. infantis.

Experimental m/z Presence of peak (%) Theoretical m/z Possible presence of protein

B. longum B. infantis

2,929 77.97 (46/59) 7.32 (3/41) 2,932 Hypothetical protein

3,088 23.72 (14/59) 82.93 (34/41) 3,088 NAD(P)-binding domain-containing protein

3,152 69.49 (41/59) 12.20 (5/41) 3,150 Integrase partial

3,573 30.50 (18/59) 95.12 (39/41) 3,573 Restriction endonuclease

4,408 0.00 (0/59) 95.12 (39/41) 4,406 30S ribosomal protein S5 partial

4,448 55.93 (33/59) 29.27 (12/41) 4,447 50S ribosomal protein L9 partial

4,479 74.58 (44/59) 19.51 (8/41) 4,480 DUF600 family protein partial

5,338 6.78 (4/59) 80.49 (33/41) 5,338 Permease

5,381 10.17 (6/59) 100.0 (41/41) 5,377 50S ribosomal

5,394 81.36 (48/59) 0.00 (0/41) 5,391 Protein L34

6,820 28.81 (17/59) 78.05 (32/41) 6,822 Transporter drug/metabolite exporter family

6,910 38.98 (23/59) 97.56 (40/41) 6,910 Transposase

7,051 67.80 (40/59) 14.63 (6/41) 7,051 50S ribosomal protein L30

8,131 0.00 (0/59) 63.41 (26/41) 8,135 IS3 family transposase partial

8,817 13.56 (8/59) 87.80 (36/41) 8,816 50S ribosomal protein L27

8,789 79.66 (47/59) 2.44 (1/41) 8,789 DUF905 domain-containing protein

9,963 28.81 (17/59) 92.68 (38/41) 9,963 DUF4244 domain-containing protein

10,360 30.50 (18/59) 92.68 (38/41) 10,364 50S ribosomal protein L13 partial

TABLE 2  Model result metrics for three machine learning models in validation dataset.

Machine learning models Specificity Sensibility Youden AUC Accuracy

LR 0.931 1.000 0.931 0.993 0.958

SVM 0.931 1.000 0.931 0.995 0.958

RF 1.000 1.000 1.000 1.000 1.000
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and 5,394 m/z were specific to B. longum, while the masses at 4408, 
5381, and 8,817 m/z were specific to B. infantis. These mass peaks can 
potentially serve as biomarkers for distinguishing between these two 
species. Using these biomarkers, we  developed machine learning 
models employing LR, RF, and SVM algorithms. All three models 
exhibited excellent performance in identifying the spectrogram, with 
the RF model demonstrating high accuracy in discriminating between 
B. longum and B. infantis. Furthermore, after evaluating mass 
spectrum identification results through voting, the RF model achieved 
the highest accuracy in practical strain identification applications (see 
Table 3).

4 Materials and methods

4.1 Bacterial strains

Twelve reference strains and eighty-nine strains of Bifidobacterium 
longum subspecies, isolated at Beijing Yujing Pharmaceutical Co., Ltd., 
were selected to explore potential biomarkers (Table  4). The 
bifidobacterial strains were incubated for 48 h at 37°C under anaerobic 
conditions. E. coli ATCC 25922 incubated for 24 h at 37°C in Luria-
Bertani (Solarbio, Beijing, China) agar was applied to external 
calibration of MALDI-TOF MS.

FIGURE 6

Model evaluation in test dataset. (A) ROC curves and AUC of three machine learning models in the test dataset. (B) Boxplot of the verification score of 
the three machine learning models on the spectral data of the external test set. (C) Confusion matrix of external strain identification results for three 
models. (D) Cluster analysis of isolated B. infantis or B. longum strains used for external validation set based on phylogenetic analysis. The red and blue 
background represnt B. infantis or B. longum strains, respectively.
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4.2 MALDI-TOF MS analysis

Proteins from B. longum and B. infantis were extracted using the 
ethanol-formic acid-extraction method (Cuénod et  al., 2023). 
Concisely, fresh bacterial culture was suspended in 300 μL of ddH2O 
to which 900 μL of ethanol was added. The bacterial suspension was 
centrifuged at high speed (10,000× g) for 2 min, the supernatant was 
removed to completely discard the residual ethanol and recentrifuged. 
The resulting pellet was resuspended in 20 μL of 70% formic acid to 
which an equal volume of acetonitrile was added. After centrifugation 
at 10,000× g for 2 min, 1 μL of each supernatant was transferred to the 
96-position MALDI-TOF target plate, allowed to air dry, and then 
overlaid with 1 μL of the matrix solution (10 mg/mL of α-cyano-4-
hydroxy-cinnamic acid (HCCA) in 50% (v/v) acetonitrile with 2.5% 
(v/v) trifluoroacetic acid).

The mass spectra were acquired using an EXS2000 
MALDI-TOF MS (Zybio Inc., Chongqing, China) equipped with 
a 200 Hz smart-beam solid-state laser and operated in positive 
linear mode (Xiong et al., 2023). Mass spectra were automatically 
recorded within a mass range of 2–20 kDa with a total of 200 laser 
shots. E. coli ATCC 25922 was used for mass calibration and 
instrument parameter optimization, with an average deviation of 
molecular weight less than 300 ppm after correction. MS data were 
analyzed using MDT Master (version 1.1). log scores ≥2.0 were 
accepted for the identification at the species level, and log scores 
<2.0 and ≥ 1.7 were used for identification at the genus level or the 

presumptive species level. Log scores below 1.7 were considered 
unreliable. For establishing stable machine learning models, four 
high-quality mass spectra (log scores ≥2.3, stable benchmarks, 
abundant protein peaks, and uniform distribution) were selected 
in each strain.

4.3 Species identification based on PCR 
and genomics sequences

For the identification of the isolates, genomic DNA was extracted 
using Easy Pure Bacteria Genomic DNA Kit (Trans, Beijing, China) 
in accordance with the manufacturer’s instructions. Then, 1 μL of 
supernatant was used for the following PCR reaction, the reaction 
mixture contained 10 μL of SapphireAmp® Fast PCR Master Mix 
(TaKaRa, Beijing, China), 0.5 μL of each primer (10 μM), 1 μL of DNA 
template, and 8 μL of ddH2O. Specific primers were listed in Table 5. 

TABLE 4  Strain information used in this study.

Bacterial strains Origins

Reference strains

 � Bifidobacterium longum subsp. longum (B. longum)

ATCC 15707
1ATCC

ATCC BAA999

CGMCC 10452
2CGMCC

CGMCC 2265

Bi05 3IFF

 � Bifidobacterium longum subsp. infantis (B. infantis)

ATCC 15697 ATCC

CGMCC 1.15639
CGMCC

CGMCC 18410

Bi26 IFF

EVC001 4Evolve

M-63 5MORINAGA

 � Escherichia coli ATCC 25922 ATCC

Isolates (7N)

 � Bifidobacterium longum subspecies (149) 6YGMCC

1ATCC, American type culture collection;2CGMCC, China General Microbiological Culture Collection Center;3IFF, International Flavors & Fragrances Inc.;4Evolve, Infinant 
Health™;5MORINAGA, Morinaga Milk Industry Co., Ltd.;6YGMCC, Beijing Yujing Pharmaceutical Co., Ltd.;7N, Number of isolates.

TABLE 5  Specific primer information used in this study.

Target Primer Sequence (5′–3′) Size (bp)

B. longum
B.lon_831_F TTCCAGTTGATCGCATGGTC

831
B.lon_831_R GGGAAGCCGTATCTCTACGA

B. infantis
B.inf_832_F TTCCAGTTGATCGCATGGTC

832
B.inf_832_R GGAAACCCCATCTCTGGGAT

TABLE 3  Model result parameters for three machine learning models on an test dataset.

Machine learning models Specificity Sensibility Youden AUC Accuracy

LR 0.983 0.900 0.883 0.984 0.942

SVM 0.983 0.883 0.867 0.984 0.933

RF 0.967 0.942 0.908 0.984 0.954
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PCR reactions were conducted as follows: one cycle of initial 
denaturation at 98°C for 3 min, followed by 35 cycles of 98°C for 10 s, 
55°C for 10 s, and 72°C for 5 s, and a final extension at 72°C for 2 min. 
The PCR products were observed by an Agarose gel imaging system 
(Tanon, Shanghai, China).

Total 149 unknown Bifidobacterium longum strains were 
cultured anaerobically at 37°C for 24 h, then the cultured liquid 
(50 mL) was centrifuged at 12,000 × g and 4°C for 10 min to collect 
the cell biomass. Genomic DNA of 149 unknown Bifidobacterium 
longum strains were extracted using a Wizard® Genomic DNA 
Purification Kit (Promega, United States). Purified genomic DNA 
was quantified using a TBS-380 fluorometer (Turner BioSystems 
Inc., Sunnyvale, CA, United  States). High-quality DNA 
(OD260/280 = 1.8–2.0, ≥10 μg) was used for further research. 
Genomic DNA was sequenced using Illumina sequencing 
(Illumina, Inc.). The data generated from Illumina platforms were 
used for bioinformatics analysis.

The phylogenetic analysis included the comparison of genomic 
sequences from 5 standard strains of B. infantis, 6 standard strains of 
B. longum, and an additional 149 unknown B. longum strains from our 
laboratory. These sequences were compared with the genomic 
sequence of ASM19655v1, which served as the reference genome. The 
analysis was performed using the Parsnp software, focusing on the 
core genome (Treangen et al., 2014; Wang et al., 2023). The iTOL 
(Interactive Tree of Life) tool was utilized to visualize and explore the 
phylogenetic tree (Letunic and Bork, 2019; Pereira et  al., 2023), 
facilitating the identification and classification of B. longum subspecies 
based on their phylogenetic positions.

4.4 Genomic data mining and identification 
of biomarker proteins

To investigate the significance of using unique peaks from mass 
spectrum data as biomarkers, we conducted genomic data mining 
using publicly available databases. The genome sequences of 
B. longum and B. infantis were obtained from the National Center 
for Biotechnology Information (NCBI) database. To annotate the 
selected protein biomarkers, the web-based ProtParam tool1 was 
utilized to calculate their theoretical molecular weights based on 
the translated amino acid sequences. Subsequently, a custom script 
was employed to filter and align the selected proteins, identifying 
the most relevant proteins enriched in the vicinity of the 
characteristic peaks.

4.5 Model construction and verification

4.5.1 Data preprocess
The MS data obtained using openMS (v2.8) software exhibited 

high quality, allowing for alignment of peaks obtained from different 
batches. The processed peak map data matrix was subjected to PCA 
to access the potential of the features. In addition, a heatmap was 
drawn for cluster analysis using the R language (v4.2.2). After 

1  https://web.expasy.org/protparam/

obtaining the cluster branches of the potential feature peaks, the 
importance parameters of the features and evaluate the importance of 
the features.

The dataset consisting of 400 spectra from 59 B. longum and 41 
B. infantis was randomly divided into 70% training and 30% test 
datasets. The data of subspecies type was binarized, with 0 
representing the long subspecies and 1 representing the infant 
subspecies. All peaks (features) were scaled using Min-Max scalar 
to ensure variables at different scales contributed equally to the 
model fitting process.

4.5.2 Classifier model construction
Firstly, feature selection was carried by a meta-converter approach 

based on a logistic regression classifier with scikit-learn (v1.3.0). 
Recursive feature elimination with 5x cross-validation (RFECV) was 
applied to discard irrelevant features and improve the model’s 
generalization ability.

Secondly, SHAP (SHapley Additive exPlanations) was used to 
interpret predictions. SHAP is a unified framework that assigns 
importance values to each feature for a specific prediction and 
identifies which feature is most important, facilitating the 
understanding of a machine learning model’s decision-making process 
(Lundberg and Lee, 2017).

Thirdly, three machine learning algorithms including random 
forest (RF), logistic regression (LR), and support vector machine 
(SVM) were used to construct the distinguishing models using the 
scikit-learn package. The performances of the models were 
evaluated by generating the confusion matrix on the test dataset. 
The ROC curve was plotted using the Matplotlib package, and the 
area under the subject operating characteristic curve (AUROC) 
was calculated as a measure of classifier performance. The Youden 
index was utilized to determine the optimal cutoff threshold and 
calculate the sensitivity, specificity, and accuracy metrics for 
the model.

To assess the practical applicability of the model in strain 
identification, we performed an external validation using a new 
dataset. Each strain in this dataset was accompanied by four mass 
spectra collected under identical experimental conditions. 
Subsequently, we  compared the identification outcomes 
with those obtained through specific PCR detection and 
phylogenetic analysis.

5 Conclusion

In our research, we successfully demonstrated the effectiveness of 
combining MALDI-TOF-MS with machine learning to accurately 
discriminate between B. longum and B. infantis. We  identified 
everything from protein fingerprints to potential biomarkers, and 
developed three spectral map identification models using the ML 
algorithm, and finally evaluated the various performance metrics and 
voted to find the optimal algorithm. The algorithm is highly reliable 
and accurate in distinguishing the two subspecies. This approach has 
the potential to be applied in various industries, such as the food or 
pharmaceutical industry, for rapid and cost-effective identification of 
B. longum and B. infantis. Furthermore, the identification strategy 
presented in this study can also be  extended to other closely 
related species.
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Objective: Carcinoid syndrome (CS) commonly results from neuroendocrine 
tumors. While active substances are recognized as the main causes of the 
typical symptoms such as diarrhea and skin flush, the cause-and-effect 
relationship between gut microbiota abundance and CS remains unclear.

Methods: The Single Nucleotide Polymorphisms (SNPs) related to gut 
microbiota abundance and CS were obtained from the GWAS summary 
data. The inverse variance weighted (IVW) method was used to assess 
the causal relationship between gut microbiota abundance and CS. 
Additionally, the MR-Egger, Weighted Median model, and Weighted 
model were employed as supplementary approaches. The heterogeneity 
function of the TwoSampleMR package was utilized to assess whether 
SNPs exhibit heterogeneity. The Egger intercept and Presso test were 
used to assess whether SNPs exhibit pleiotropy. The Leave-One-Out 
test was employed to evaluate the sensitivity of SNPs. The Steiger test 
was utilized to examine whether SNPs have a reverse causal relationship. 
A bidirectional mendelian randomization (MR) study was conducted 
to elucidate the inferred cause-and-effect relationship between gut 
microbiota abundance and CS.

Results: The IVW results indicated a causal relationship between 6 gut 
microbiota taxa and CS. Among the 6 gut microbiota taxa, the genus 
Anaerofilum (IVW OR: 0.3606, 95%CI: 0.1554–0.8367, p-value: 0.0175) 
exhibited a protective effect against CS. On the other hand, the family 
Coriobacteriaceae (IVW OR: 3.4572, 95%CI: 1.0571–11.3066, p-value: 
0.0402), the genus Enterorhabdus (IVW OR: 4.2496, 95%CI: 1.3314–
13.5640, p-value: 0.0146), the genus Ruminiclostridium6 (IVW OR: 4.0116, 
95%CI: 1.2711–12.6604, p-value: 0.0178), the genus Veillonella (IVW OR: 
3.7023, 95%CI: 1.0155–13.4980, p-value: 0.0473) and genus Holdemanella 
(IVW OR: 2.2400, 95%CI: 1.0376–4.8358, p-value: 0.0400) demonstrated 
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a detrimental effect on CS. The CS was not found to have a reverse causal 
relationship with the above 6 gut microbiota taxa.

Conclusion: Six microbiota taxa were found to have a causal relationship 
with CS, and further randomized controlled trials are needed for verification.

KEYWORDS

cause-and-effect relationship, gut microbiota abundance, carcinoid syndrome, 
active substances, Mendelian randomization study

Background

Carcinoid syndrome (CS) refers to a series of symptoms 
mediated by various biologically active substances secreted by 
neuroendocrine tumors (NETs), which mainly located in the 
gastrointestinal tract and lungs. The two most common 
manifestations of this syndrome are diarrhea and facial flushing 
(Vitale, et al., 2023). While some researchers have uncovered that the 
release of active substances such as serotonin (5-hydroxytryptamine, 
5-HT), histamine, kinins, prostaglandins, and tachykinins was a 
significant factor in causing CS, the mechanisms behind the 
occurrence of CS remain unclear (Gade et al., 2020). According to 
relevant reports, the frequency of CS in NETs patients has increased 
from 11 to 19% (Halperin et al., 2017). Among the population of 
patients experiencing CS, those who experience diarrhea and facial 
flushing can reach as high as 80 to 85% (von der Ohe et al., 1993). 
Diarrhea is typically the initial symptom in patients with CS, 
sometimes occurring dozens of times per day. It is often the most 
distressing symptom experienced by CS patients, significantly 
reducing their quality of lives and increasing healthcare costs 
(Kimbrough et  al., 2019; Perrier et  al., 2023). Therefore, early 
management and intervention for CS are important.

Both 5-HT and the 5-HT pathway play a crucial role in the 
pathogenesis of CS (Fanciulli et al., 2020). Most CS patients exhibit 
alterations in tryptophan metabolism, which typically results in 
elevated concentrations of 5-HT, thereby activating the 5-HT 
pathway (Kvols and Reubi, 1993). Consequently, telotristat ethyl, an 
inhibitor of 5-HT synthesis, has been approved for treating refractory 
diarrhea in CS, highlighting the significance of the 5-HT pathway in 
CS (Fanciulli et  al., 2020). In CS patients, 5-HT can stimulate 
intestinal motility and secretion, leading to increased bowel 
frequency and reduced stool viscosity (Hendrix et al., 1957; von der 
Ohe et al., 1993). Additionally, other bioactive substances such as 
prostaglandins also induce intestinal motility and enhance fluid 
secretion in the gastrointestinal tract, causing diarrhea (Metz et al., 
1981). Researchers indicated that substances like prostaglandins, 
histamine, and substance P can disrupt intestinal secretion and 
motility, leading to the release of gastrin from enterochromaffin cells 
in the small intestine. Elevated levels of gastrin can contribute to the 
cyclic nature of diarrhea (de Celis Ferrari et al., 2018). Moreover, 
histamine and substance P can cause vasodilation of skin capillaries, 
resulting in flushing of the skin (Grahame-Smith, 1987). In 
observations of skin flushing in CS, Schaffalitzky De Muckadell et al. 
(1986) found increasing concentrations of neurokinin A, neurokinin 
K, and tachykinin-like peptides. This finding underscored the role of 
tachykinins in CS. Researchers have reported the presence of 

substance P, a potent vasodilator, in carcinoid tumor tissue 
(Ratzenhofer et  al., 1981). Evidence also suggested that injecting 
substance P into healthy individuals can cause transient facial 
flushing (Schaffalitzky De Muckadell et  al., 1986). This finding 
implied that substance P might be  one of the underlying factors 
contributing to skin flushing in CS. Currently, tryptophan 
hydroxylase inhibitors and somatostatin analogs are widely used for 
CS treatment. However, drug resistance and poor tolerability are 
frequently reported (de Celis Ferrari et al., 2018; Gade et al., 2020). 
Therefore, there is an urgent need to establish the potential causative 
relationships in CS, to offer more comprehensive strategies for 
its treatment.

The intestinal microbiota refers to the community of bacteria, 
viruses, archaea, fungi, and protozoa that inhabit in the 
gastrointestinal tract. Numerous studies indicated that tryptophan 
metabolites play a significant role in regulating gastrointestinal 
function (Bosi et  al., 2020). On the other hand, the intestinal 
microbiota plays a crucial role in promoting the production of 
5-HT. Research has found that metabolites of Clostridium species can 
upregulate the expression of tryptophan hydroxylase (Tph) gene in 
enterochromaffin cells, thereby promoting the production of 
5-HT. Microbiota-specific metabolites such as short-chain fatty acids, 
alpha-tocopherol, tyramine, and p-aminobenzoate can stimulate the 
expression of TPH1 and the release of 5-HT (Yano et al., 2015). In 
addition, microbes within the human intestines can also produce and 
degrade histamine (Sanchez-Perez et al., 2022). The gut microbiota 
and its metabolic product, acetate, can activate the innate immune 
pathway in intestinal endocrine cells, thereby increasing the secretion 
of endocrine peptides such as tachykinins (Tumurkhuu et al., 2018). 
All these findings indicated a potential correlation between gut 
microbiota and CS, yet currently, there is scarce research focused on 
this aspect.

Mendelian randomization (MR) study is an analytical method 
that utilizes genetic variations associated with exposure as 
instrumental variables to assess potential causal relationships 
between exposures and outcomes. MR takes advantage of alleles that 
are randomly segregated during meiotic gamete formation. Since 
genetic variations precede disease progression and are not influenced 
by postnatal lifestyle and environmental factors, MR can minimize 
the impact of confounding factors to a great extent (Sekula 
et al., 2016).

In this study, a large-scale genome-wide association study 
(GWAS) dataset was employed to conduct a bidirectional MR analysis, 
investigating the potential causal relationship between gut microbiota 
and CS. This approach addresses the existing research gaps in the field 
and the results will offer novel strategies for the treatment of CS.
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Materials and methods

Data sources

The gut microbiota abundance data in relation to CS were sourced 
from the IEU Open GWAS project database,1 a database of 
246,376,709,462 genetic associations from 42,351 GWAS summary 
datasets, for querying or download. An exploration was undertaken 
within the GWAS summary data, utilizing the search query “gut 
microbiota abundance,” which yielded a total of 211 outcomes. After 
excluding 15 records that were categorized as “unknown,” 196 relevant 
results were finally used.

The study of large-scale association analyses identified host factors 
influencing human gut microbiome composition was curated and 
analyzed by MiBioGen consortium. This study included genome-wide 
genotypes and 16S fecal microbiome data from 18,340 individuals (24 
cohorts). This study included a total of 211 bacterial taxonomic units, 
involving 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla 
(Kurilshikov et al., 2021; MiBioGen consortium, 2023).

The summary data for Genome-Wide Association Study (GWAS) 
on CS was obtained from the FinnGen biobank analysis round 5. The 
dataset comprised 16,380,446 SNPs, with 211,123 controls and 161 
cases, as reported in the 2021 publication. The participants included 
individuals of European descent, encompassing both males 
and females.

Screening of instrumental variables

In the context of MR study, it is generally required to adhere to 
three foundational prerequisite assumptions, specifically: (1) the 
assumption of associativity, (2) the presumption of independence, and 
(3) the principle of exclusivity (Smith and Ebrahim, 2003).

The assumption of associativity entails that the selected 
instrumental variables are closely correlated with the exposure of 
interest, allowing us to confidently employ them as substitutes for the 
exposure. Typically, we use criteria such as p < 1e−05, r2 = 0.001, and 
Kb = 10,000 as three fundamental thresholds (Sanna et  al., 2019). 
Furthermore, in order to ensure the reliability of these screened 
instrumental variables, the application of an F-test can be employed 
to eliminate weak instruments. Weak instruments are commonly 
defined by an F-statistic value of less than 10. The formula to calculate 
F-statistic value is as follow:

F Beta
SE

= 







2
 (Casas et al., 2006).

Among them, Beta refers to the effect size of the SNP on the 
exposure, and SE (Standard error) refers to the standard error of Beta. 
The assumption of independence in MR refers to the genetic variants 
(genotypes or genetic variations) being unrelated to other factors that 
could potentially affect the outcomes when they are randomly 
allocated. The assumption of independence necessitates that the 
distribution of genotypes among participants is random and not 
influenced by other possible confounding factors.

1  https://gwas.mrcieu.ac.uk/

The assumption of exclusivity refers to the genetic variants 
(genotypes or genetic variations) being allocated among participants 
in a mutually exclusive manner, with each participant being assigned 
to a specific genotype only. This assumption ensures that genotypes 
do not overlap or coexist among participants, thereby allowing the 
association between genotypes and exposure to be  accurately 
interpreted and assessed.

To ensure the enforcement of the aforementioned-assumptions, 
we subjected the selected instrumental variables (IVs) to tests for 
horizontal pleiotropy and heterogeneity. For the assessment of 
pleiotropy, we  utilized the Egger intercept and MR Presso test. 
Heterogeneity assessment was carried out using the heterogeneity 
function of the TwoSampleMR package in R language 4.3.1. 
Furthermore, we conducted Steiger test to ascertain the exclusion of 
SNPs with reverse causal relationships. Leave-one-out sensitivity 
analysis was employed to evaluate the stability of each SNP’s influence 
on the outcome.

Statistical analysis

IVW is used as the primary method to assess the causal 
relationship between gut microbiota abundance and CS. The strength 
of IVW lies in its ability to provide a more robust outcome; if a SNP 
in the instrumental variables is invalid, it can introduce bias to the 
results (Burgess et  al., 2016). Additionally, we  employed three 
alternative methods: MR-Egger regression, weighted median model, 
and weighted mode. MR-Egger regression is a technique that refines 
the IVW method. It takes into consideration the intercept term in the 
regression model to detect and correct for pleiotropy effects. It relies 
on the assumptions of the InSIDE (Instrument Strength Independent 
of Direct Effect) and NOME (No Measurement Error) principles 
(Bowden et al., 2015). Weighted median model and weighted mode 
share similarities in using the reciprocal of outcome variance as 
weights. The difference lies in their methods of aggregation. The 
weighted median model employs a weighted median approach, while 
the weighted mode employs a weighted mode approach.

Results

Characteristics of SNPs

According to the filtering criteria of p < 1e−05, r2 = 0.001, and 
Kb = 10,000, a total of 224, 434, 512, 486, 498, 280, and 125 SNPs were, 
respectively, obtained from the class, family, genus1, genus2, genus3, 
order, and phylum of the gut microbiota. Additionally, from the 
outcome “Carcinoid symptom,” 179, 339, 413, 395, 391, 217, and 103 
SNPs were extracted for analysis. The F-values of all instrumental 
variables were greater than 10, indicating no weak instrumental 
variables in this study. The detail of the characteristics of SNPs were 
shown in Supplementary Table S1.

Mendelian randomization analysis

The IVW results indicated that a total of 8 types of gut 
microbiota are associated with CS. As the IVW results of Gut 
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microbiota abundance (class Coriobacteriia id.809), Gut microbiota 
abundance (family Coriobacteriaceae id.811), and Gut microbiota 
abundance (order Coriobacteriales id.810) were consistent, for a 
more precise outcome, we retained only the lowest taxonomic level, 
Gut microbiota abundance (family Coriobacteriaceae id.811), for 
presentation. This yielded a total of 6 gut microbiota types that are 
correlated with CS.

Specifically, we found that genus Anaerofilum (IVW odds ratio 
[OR] = 0.3606, 95% confidence interval [CI]: 0.1554–0.8367, 
p = 0.0175) had a protective effect on CS. While family 
Coriobacteriaceae (IVW OR = 3.4572, 95%CI: 1.0571–11.3066, 
p = 0.0402), genus Enterorhabdus (IVW OR = 4.2496, 95%CI: 1.3314–
13.5640, p value: 0.0146), genus Ruminiclostridium6 (IVW OR: 
4.0116, 95%CI: 1.2711–12.6604, p value: 0.0178), genus Veillonella 
(IVW OR: 3.7023, 95%CI: 1.0155–13.4980, p value: 0.0473) and genus 
Holdemanella (IVW OR: 2.2400, 95%CI: 1.0376–4.8358, p value: 
0.0400) demonstrated a detrimental effect on CS (Figure  1 and 
Supplementary Table S2). The forest plot displayed the odds ratio 
(OR) and 95% confidence interval for each SNP, followed by the 
aggregation of all SNPs using IVW and MR Egger 
(Supplementary Figure S1). The scatter plot illustrated the effect 
distribution of all SNPs, demonstrating trends for four different MR 
analysis methods (Supplementary Figure S2).

The heterogeneity test indicated that there was no heterogeneity 
in the above results for the SNPs. The funnel plot showed that all SNPs 
are distributed evenly on both sides of a straight line, which confirms 
this observation (Supplementary Table S3 and 
Supplementary Figure S3). The Egger intercept and MR presso test 
indicated the absence of pleiotropy in the above results for the SNPs, 
demonstrating the reliability of this study (Supplementary Tables S4, S5). 
The Leave-one-out sensitivity analysis was conducted by excluding 
individual SNPs to assess the overall effect change, and no single SNP 
was found to have a significant impact on the outcome 
(Supplementary Figure S4). Lastly, we did not observe a reverse causal 
relationship between CS and the afore-mentioned gut microbiota.

Discussion

This study represented the inaugural attempt to investigate the 
causal relationship between gut microbiota and carcinoid syndrome 

(CS) utilizing a bidirectional MR analysis. The findings indicated the 
presence of causal associations between 6 specific gut microbiota taxa 
and CS, while no reverse causal relationship exists between CS and gut 
microbiota. At present, there was no prior research delved into the 
relationship between gut microbiota and CS.

CS is a collection of clinical symptoms caused by excessive 
secretion of mediators such as serotonin (5-HT), substance P, 
histamine, and prostaglandins (Yano et al., 2015). Research has shown 
a close correlation between gut microbiota and certain bioactive 
substances, but the relationship between gut microbiota and CS 
remains unclear. A prior study indicated that microbial metabolites in 
the gut, such as short-chain fatty acids, α-tocopherol, tyramine, and 
p-aminobenzoate, can stimulate the release of 5-HT (Yano et  al., 
2015). Moreover, the human gut microbiota can both produce and 
degrade histamine (Sanchez-Perez et  al., 2022). These studies 
highlighted a potential correlation between gut microbiota and CS; 
however, further evidence is needed to confirm this association. This 
study employed MR analysis to reveal causal relationships between 6 
specific gut microbiota taxa and CS, addressing the gaps in existing 
research and contributing to the refinement of therapeutic 
approaches for CS.

Our study revealed the causal relationships between a total of 6 
specific gut microbiota taxa and CS. Among them, genus 
Anaerofilum was the only protective bacterial group identified in 
CS. Research indicated that the expression of functional genes in 
genus Anaerofilum effectively promoted the tryptophan-indole 
metabolic pathway in the intestines (Sun M. et  al., 2020; Sun 
X. Z. et  al., 2020). In vitro experiments have demonstrated that 
adding a certain concentration of indole induces the expression of 
tight junction proteins in intestinal epithelial cells, thereby restoring 
intestinal barrier function (Sun M. et al., 2020; Sun X. Z. et al., 2020). 
Intestinal barrier function is primarily provided by the tight 
junctions of adjacent epithelial cells (Camilleri et al., 2017), and 
disruption of tight junction function has been observed to lead to 
diarrhea in animal models (Halliez et al., 2016). Additionally, aside 
from the indole pathway, tryptophan also participates in the 
kynurenine pathway and the serotonin (5-HT) pathway. Prior 
studies showed that nearly all CS patients experience abnormal 
tryptophan metabolism, leading to a significant increase in blood 
5-HT concentrations. 5-HT and its metabolites are believed to play 
a crucial role in the development of typical symptoms in CS patients 

FIGURE 1

The IVW results of 6 gut microbiota against CS.
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(Fanciulli et al., 2020). These symptoms include diarrhea (von der 
Ohe et al., 1993; Boutzios and Kaltsas, 2015), intestinal obstruction, 
and others (Connolly and Pellikka, 2006; Hannah-Shmouni et al., 
2016). Therefore, the protective effect of genus Anaerofilum in CS 
may primarily exist in two aspects: On the one hand, genus 
Anaerofilum directly reduces the occurrence of diarrhea by 
promoting the tryptophan-indole metabolic pathway to repair the 
intestinal barrier; On the other hand, the active tryptophan-indole 
pathway effectively inhibits the tryptophan-5-HT pathway, reducing 
intestinal motility and secretory reflex, thereby indirectly improving 
diarrhea symptoms.

In addition to the genus Anaerofilum, we identified 5 other gut 
microbial populations as risk factors for CS. In a murine model, it was 
discovered that genus Enterorhabdus showed a positive correlation 
with tryptophan levels and inhibited the indoleamine pathway of 
tryptophan metabolism (Deng et  al., 2021). As mentioned above, 
inhibiting the indoleamine pathway of tryptophan metabolism can 
indirectly increase the concentration of 5-HT. Additionally, the genus 
Enterorhabdus is also associated with intestinal barrier function. A 
study indicated that the genus Enterorhabdus can increase the 
production of lyso-phosphatidylcholine, thereby promoting the 
release of pro-inflammatory cytokines and damaging the intestinal 
epithelial barrier of murine (Tang et al., 2021).

The family Coriobacteriaceae was a significant risk factor for 
inducing CS. Research has shown that Coriobacteriaceae UCG-002 
can produce cytotoxic compounds such as phenol and p-cresol, 
consequently altering epithelial permeability and reducing epithelial 
barrier function (Saito et al., 2018; Yu et al., 2023). Simultaneously, 
Tian et al. (2023) also observed an increased relative abundance of 
Coriobacteriaceae UCG-002  in cases of intestinal damage, and a 
positive correlation between Coriobacteriaceae UCG-002 and the 
inflammatory cytokine TNF-α. TNF-α, a type of tumor necrosis factor 
(TNF), inhibits the Wnt/β-catenin pathway, thereby compromising 
the stability of intestinal epithelium (Wu et al., 2020). Therefore, the 
family Coriobacteriaceae may potentially exacerbate certain 
symptoms in patients with carcinoid syndrome by inducing the 
production of various harmful mediators that damage the epithelial 
barrier function.

In a MR study exploring the relationship between gut microbiota 
and asthma, genus Ruminiclostridium 6 was found to be associated 
with the incidence of moderate to severe asthma (Li et al., 2023). 
Bronchial asthma is a heterogeneous disease characterized by chronic 
inflammation of the airways (Kaczynska et al., 2021). Certain cells 
such as eosinophils, neutrophils, and endogenous inflammatory 
mediators like leukotrienes and histamine participate in the 
inflammatory processes in the airways (Barnes, 2008). Additionally, 
many regulatory peptides such as kinins are shown to be involved in 
the regulation of asthma-related inflammation and airway 
hyperresponsiveness (Kaczynska et al., 2018; Pavon-Romero et al., 
2021). Interestingly, about 20% of CS patients also experience 
bronchoconstriction mediated by kinins and bradykinins 
(Cunningham et al., 2008).

In addition to the previously mentioned 5-HT and bradykinin, 
histamine also plays a significant role in CS. Researchers suggested 
that histamine might be a potential mediator for the facial flushing 
and bronchospasm symptoms observed in patients with colorectal CS 
(de Celis Ferrari, et  al., 2018). The pathogenic bacterium genus 

Veillonella was confirmed to have a strong ability to induce mast cells 
to release histamine (Nygren and Dahlen, 1981). Furthermore, in 
fecal samples from individuals with higher asthma frequencies, genus 
Veillonella was found to be  enriched, and metabolic profiling 
indicated the importance of histidine metabolism in the asthma 
process, which leads to the formation of histamine upon histidine 
decarboxylation (Lee-Sarwar et  al., 2022). Therefore, genus 
Veillonella might exacerbate the development of CS by inducing 
histamine production.

The genus Holdemanella is also identified as a risk factor for 
CS. However, at present, there are no reports linking this genus to 
endocrine mediators associated with CS. Hu et al. (2020) discovered 
that the expression of tight junction proteins in the ileum was 
significantly increased, and the relative abundance of genus 
Holdemanella in the gut microbiota was reduced in a weaned piglet 
model supplemented with catechin. Therefore, we speculated that 
genus Holdemanella might exacerbate diarrhea symptoms in 
patients with CS by potentially affecting intestinal mucosal 
barrier function.

Conclusion

In conclusion, this study utilized a bidirectional mendelian 
randomization analysis and identified 6 gut microbial populations that 
are causally associated with carcinoid syndrome. This research 
represented the first instance of uncovering a causal link between gut 
microbiota and CS, offering a novel strategy for its treatment. Further 
validation through additional randomized controlled trails are 
warranted in the future to solidify these findings.
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Background: In the evolving landscape of microbiology and microbiome analysis,

the integration of machine learning is crucial for understanding complexmicrobial

interactions, and predicting and recognizing novel functionalities within extensive

datasets. However, the e�ectiveness of these methods in microbiology faces

challenges due to the complex and heterogeneous nature of microbial data,

further complicated by low signal-to-noise ratios, context-dependency, and a

significant shortage of appropriately labeled datasets. This study introduces the

ProkBERT model family, a collection of large language models, designed for

genomic tasks. It provides a generalizable sequence representation for nucleotide

sequences, learned from unlabeled genome data. This approach helps overcome

the above-mentioned limitations in the field, thereby improving our understanding

of microbial ecosystems and their impact on health and disease.

Methods: ProkBERT models are based on transfer learning and self-supervised

methodologies, enabling them to use the abundant yet complex microbial data

e�ectively. The introduction of the novel Local Context-Aware (LCA) tokenization

technique marks a significant advancement, allowing ProkBERT to overcome

the contextual limitations of traditional transformer models. This methodology

not only retains rich local context but also demonstrates remarkable adaptability

across various bioinformatics tasks.

Results: In practical applications such as promoter prediction and phage

identification, the ProkBERT models show superior performance. For promoter

prediction tasks, the top-performing model achieved a Matthews Correlation

Coe�cient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage

identification, ProkBERT models consistently outperformed established tools like

VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore

the models’ exceptional accuracy and generalizability in both supervised and

unsupervised tasks.

Conclusions: The ProkBERT model family is a compact yet powerful tool in the

field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses

and its adaptability across a spectrum of tasks marks a significant advancement

in machine learning applications in microbiology. The models are available

on GitHub (https://github.com/nbrg-ppcu/prokbert) and HuggingFace (https://

huggingface.co/nerualbioinfo) providing an accessible tool for the community.

KEYWORDS

genomic language models, language models, promoter, phage, BERT, transformer

models, LCA tokenization, machine learning in microbiology
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1 Introduction

Numerous tasks in bioinformatics involve classifying or

labeling sequence data such as predicting genes (Lukashin and

Borodovsky, 1998; Delcher et al., 1999; Sommer and Salzberg,

2021), annotating sequence features (Aziz et al., 2008; Seemann,

2014; Tatusova et al., 2016; Meyer et al., 2019), etc. A significant

challenge in this field is deriving efficient vector representations

from these sequences (Zhang et al., 2023). Classification tasks

related to sequences—like classifying assembled contigs intoMAGs

(metagenome-assembled-genomes) or analyzing AMR-associated

genes—are often addressed by initially categorizing the data

into bins or using simple composition-based representations,

such as k-mer frequency distributions. A common method

involves converting sequences into a basic presence-absence vector,

indicating whether a particular genome contains specific sequence

features like mutations, motifs, or other patterns. However, a

drawback of this method is that proximity in this representation

space doesn’t always imply semantic similarity. Another prevalent

representation uses hidden Markov models (Durbin et al., 1998),

where the model parameters encapsulate the essential properties of

the sequences. Yet, integrating such models with machine learning

algorithms like support vector machines or random forests can be

complex. Despite this, hidden Markov models have demonstrated

their effectiveness in classification tasks and provide highest quality

annotations (Zdobnov and Apweiler, 2001; Cantalapiedra et al.,

2021).

Neural network-based representations have distinct

advantages, primarily their compatibility with a wide range

of machine-learning tools, including autoML and statistical

frameworks. Past research has highlighted the effectiveness of

neural network representations for sequences, with a variety of

classification tasks addressed using networks such as CNNs and

RNNs (Min et al., 2017). These networks have been employed

in areas like motif discovery, gene-expression prediction (Kelley

et al., 2018) splicing site recognition (Ji et al., 2021), and promoter

identification, as detailed in several comprehensive reviews (Min

et al., 2017; Sapoval et al., 2022; Zhang et al., 2023). However,

convolutional neural networks face challenges, like the need

for extensive labeled sequence data. They are also task-specific,

limiting their applicability to other scenarios outside their training

focus. A significant bottleneck in integrating neural networks

into bioinformatics has been the scarcity of adequate labeled

data. Recent advancements in machine learning, inspired by

breakthroughs in natural language processing, image analysis

(Han et al., 2022), and protein structure prediction (Alipanahi

et al., 2015; Jumper et al., 2021), have introduced new paradigms.

Transformer-based architectures, especially large language models

(Devlin et al., 2019; Brown et al., 2020a; Raffel et al., 2020), offer

versatile representations—often termed “reusable” or “fundamental

models.” Among the recent training approaches is the fine-tuning

paradigm, which divides the training process into two phases:

pretraining and fine-tuning. Pretraining demands vast amounts of

self-labeled data, while fine-tuning can, in some instances, operate

with minimal, or even no examples.

In bioinformatics, there exists a paradoxical challenge. On one

hand, there’s an abundance of sequence data available, especially in

public repositories like the SRA (sequence read arhive). The volume

of this data is expanding exponentially, and as sequencing and other

data-producing technologies become more affordable, this growth

trend is likely to persist. These data repositories are akin to hidden

treasures. Yet, they remain under-analyzed and underprocessed.

Researchers often focus primarily on specific mutations, neglecting

other valuable aspects of the data. Conversely, while there’s an

abundance of raw sequence data, there’s a scarcity of labeled data.

The accompanying metadata is frequently limited, and given the

high cost of experiments, only a handful of samples, typically

ranging from 3–15, are available within a specific group or stratum.

It’s also worth noting that labeling criteria can differ significantly

across projects.

Recognizing these challenges, there is a compelling need

for innovative methods that can harness the vast repositories

of raw sequence data and navigate the complexity of labeling

inconsistencies. It is in this context that our research contributes

a novel solution. The development and application of our

genomic language model family aims to address the mentioned

issues, providing a robust, adaptable, and efficient tool for

sequence classification.

While the concept of pretrained models isn’t new, several

have emerged recently, such as DNABERT (Ji et al., 2021; Zhou

et al., 2023), Nucleotide Transformer (Dalla-Torre et al., 2023),

and LookingGlass (Hoarfrost et al., 2022). However, a common

limitation among these methods is their primary focus on human

sequences or their restricted context size.

In the pretraining phase, the objective is to derive a general

representation that captures the semantic relationships between

objects, which in this context means obtaining a nuanced

representation of sequence data. Typically, achieving this requires

billions of samples, yet the volume of available sequence data far

surpasses this number. We trained our genomic language models

on an extensive corpus of available sequence data, encompassing

bacteria, archaea, viruses, and fungi. Subsequently, we fine-tuned

our models to tackle specific classification tasks, including the

recognition of promoters and phages.

The ProkBERT family encompasses a series of models tailored

to meet the intricate demands of microbial sequence classification,

analysis, and visualization. The versatility of the ProkBERT models

is manifested through their diverse applications:

1. Zero-shot learning: This approach allows for clustering of

sequences by leveraging the embeddings directly produced by

the model, eliminating the necessity for explicit fine-tuning.

2. Sequence classification: ProkBERT models can be seamlessly

fine-tuned, whether for token-specific or comprehensive

sequence-based classification tasks.

With these capabilities, the ProkBERT family aims to bridge

the current gaps in the field, offering a robust toolset for diverse

bioinformatics challenges.

2 Materials and methods

In this study, we used the transfer-learning paradigm for

sequence classification based on transformer-based architectures.
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The first phase involves pretraining on a large amount of sequence

data, allowing the model to learn general sequence patterns.

Once this foundation is established, we move to the fine-tuning

phase where the model is adapted to specific tasks or datasets.

The following sections provide a step-by-step description of our

methods, from preparing raw sequence data to the specifics

of both pretraining and fine-tuning. Figure 1 illustrates the

training process.

In the development of the ProkBERT family, the initial step

involves pretraining the model on a vast corpus of data. During this

pretraining phase, the model aims to tackle the Masked Language

Modeling task. In this task, specific portions of the sequence are

masked, and the model’s objective is to predict these masked

sections, optimizing the likelihood of the missing parts using cross-

entropy as the loss function. The model typically receives input

in the form of a vectorized representation of the sequence. A

notable constraint of standard transformers is their limited input

size. Though various solutions have been suggested to address this

limitation, the maximum token size is typically restricted up to 4kb,

significantly smaller than the average bacterial genome, but much

larger than an average gene.

Fine-tuning nucleotide sequences is a technique used to adapt

pre-trained models to specialized tasks or specific datasets. The

first step involves segmenting raw sequences into chunks, usually

ranging from 0.1–1kb in size, to optimize the model’s learning

capability (Pan and Yang, 2009). Using weights from a pre-trained

model, the system benefits from the knowledge obtained from

comprehensive training on extensive datasets (Vaswani et al., 2017;

Devlin et al., 2019). This initialization helps in quicker convergence

and improved performance. After this initialization, the model

undergoes training on the desired dataset, adjusting to its specific

patterns and details. The outcome of this procedure allows the

model to produce labeled sequences or tokens, which can be used

for various annotation or prediction purposes (Brown et al., 2020b).

2.1 Sequence data

2.1.1 Sequence segmentation and tokenization
The first step is processing the sequence data. While there

are many parallels between sequence data processing and natural

language processing, drawing direct analogies can be challenging.

For instance, determining what constitutes a ’sentence’ in the

realm of nucleotide and protein sequences doesn’t have a direct

counterpart in natural language. Additionally, the input size for

neural networks is inherently limited. Figure 2 illustrates the

strategy employed to vectorize the sequences.

Initially, the input sequence is segmented into smaller chunks.

We employed two approaches for this:

1. Contiguous sampling, where contigs are divided into multiple

non-overlapping segments; and

2. Random sampling, which involves fragmenting the input

sequence into various segments at random.

Following segmentation, the next phase is encoding the

sequence into a simpler vector format. The primary question

revolves around defining the fundamental building block for a

token. Various solutions have been suggested, the most widely

strategy is applying one-hot-encoding (Sapoval et al., 2022), but

DNA-BERT (Ji et al., 2021) applies the maximal overlapping k-

mer strategy, meanwhile others relies on nucleotide level mapping

(Dalla-Torre et al., 2023).

This phase is termed tokenization. We introduce a method

termed Local Context-Aware tokenization (LCA), where individual

elements consist of overlapping k-mers. Two principal parameters

dominate this approach: k-mer size and shift. For k = 1, the

tokenization resorts to a basic character-based approach, with a

typical example illustrated in Figure 2. Employing overlapping k-

mers can lead to enhanced classification performance. A greater

shift value allows the model to use a broader context while reducing

computational demands, while having the information-rich local

context as well.

As an example for LCA tokenization, let’s take the

sequence {AAGTCCAGGATCAAGATT} and a k-mer size

of 6, and shift=1 as LCA parameters [see Figure 2C (b)].

In that particular case the tokens will be the following:

{AAGTCC,AGTCCA,GTCCAG,TCCAGG, ...,AAGATT}. The

k-mers are then mapped into numerical ids, which will be

the input for ProkBERT. As another example with k = 6

and shift=2, the tokenized segments will be the following:

{AAGTCC,GTCCAG,CCAGGA, ...,AAGATT}. If the sequence

length is odd, then the last charcter won’t be used. One of the main

advantages of the approach is that with the same number of tokens

it is possible to cover a larger context, therefore it is possible to

considerably reduce the computational and memory requirements,

which is the typical bottleneck of the transformer architecture.

In this study, we propose models with a k-mer size

of 6 (termed ProkBERT-mini), k-mer size of 1 (dubbed

ProkBERT-mini-c), and a variant supporting a larger context

window, named ProkBERT-mini-long, which relies on a k-

mer size of 6 with a shift= 2.

2.1.2 Training data
The dataset was retrieved from the NCBI RefSeq database

(O’Leary et al., 2016; Li et al., 2021) on January 6th, 2023. It

included reference or representative genomes from bacteria,

viruses, archaea, and fungi. After filtering, the sequence database

consisted of 976,878 unique contigs derived from 17,178

assemblies. These assemblies represent 3,882 distinct genera,

amounting to approximately 0.18 petabase pairs. The segment

databases was created by sampling fixed lengths of [256, 512, 1024]

or, in other instances, variable lengths aiming for an approximate

coverage of 1.

Tokenization was performed using various k-

mer sizes and shift parameters. The compiled

database was then stored in the Hierarchical

Data Format (HDF). Collectively, the training

database held roughly 200 billion tokens for each

segmented dataset.

For transparency and further research, all training data is

available at zenodo 10.5281/zenodo.10057832.
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FIGURE 1

A schematic overview of the training process. Starting with raw sequence data, it undergoes preprocessing and vectorization. The model is then

fine-tuned, beginning with weights from a pretrained model, to address the specific classification task. The output showcases classified sequences or

tokens, predicted labels, scores, and a visualization highlighting underlying sequence patterns and explanations.

FIGURE 2

Preprocessing of sequences. The sequences are initially segmented into chunks ranging between 0–1 kb. Two segmentation strategies can be

employed: (A) Contiguous segmentation where the sequence is split into non-overlapping parts; (B) Random segmentation where segments of

varying lengths are randomly sampled from the original contig. The third part (C) outlines the tokenization process of the segments: (a) Splitting

segments into non-overlapping tokens; (b) Creating maximally overlapping k-mers; (c) Generating partially overlapping k-mers by shifting with a

fixed size.

2.2 Pretraining and learning sequence
representations

2.2.1 Transformer model selection and
parameters

In our study, we employed the MegatronBert model (Shoeybi

et al., 2019), a variant of the BERT architecture (Devlin et al.,

2019), optimized for large-scale training. The architecture overview

is presented in Supplementary Figure S1. The key attributes of

our models can be seen in Table 1. The mini and mini-long

models share a common vocabulary of 4,101 k-mers. In contrast,

the mini-c model is distinct, using a smaller set comprising

only 9 items, including special tokens (i.e., [CLS], [SEP]) and

nucleotides (A, C, T, G). All models employ a learnable relative

key-value positional embedding, which maps input vectors into

a 384-dimensional space. The mini and mini-long models

support maximum sequence lengths of 1024 bp and 2048

bp, respectively. Across all models, the intermediate layers of

the encoder use the GELU activation function, expanding the

input dimensions to 3,072 before compressing them back to

384 dimensions. The Masked Language Modeling (MLM) head,

a standard component in each model, decodes from 384 to

4,101 dimensions, adapted to the varying vocabulary sizes. To

ensure efficient parallel computations, we encapsulated the entire

architecture within a DataParallel wrapper, thus optimizing GPU

utilization. For implementation, all models were developed using

the PyTorch version 2.01 framework and the Hugging Face library

version 4.33.2.
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TABLE 1 A comprehensive overview of model parameters across varied

configurations.

Mini Mini-c Mini-long

Parameters 20,6 m 24,9 m 26,6 m

Tokenizer 6-mer, shift=1 1-mer 6-mer, shift=2

Layers 6 6 6

Attention heads 6 6 6

Max. context size (bp) 1027 nt 1022 nt 4096 nt

Training data 206,65 billion 206,65 billion 206,65 billion

2.2.2 Training process
2.2.2.1 Masked Language Modeling objective

modifications

While Masked Language Modeling (MLM) acts as the

primary pre-training objective for BERT models (Bidirectional

Encoder Representations from Transformers) as established

by Devlin et al. (2019), our implementation has slight variations.

In the traditional BERT approach, a certain percentage of

input tokens are randomly masked, and the model predicts

these based on their context. Typically, about 15% of tokens

undergo masking. However, due to our usage of overlapping

k-mers, masking becomes more intricate. If a k-mer of size

k = 6 is masked, we need to ensure at least six tokens

are also masked to prevent trivial restoration from context

and locality.

For an input sequence of tokens x and a binary mask vector

m—where 1 indicates a masked token and 0 indicates an unmasked

token—the model outputs predicted vectors y. As for the noise

application on masked tokens, probabilities p1, p2, and p3 define

different noise strategies. In our model, when a token is masked,

it is substituted with the special [MASK] token with a probability

of p1. Alternatively, with a probability p2, it can be replaced with

a random k-mer from our vocabulary. Lastly, there’s a p3 chance

that the masked k-mer will remain as it is. Conventionally, these

probabilities are set at 0.8, 0.1, and 0.1, respectively.

The MLM objective aims to minimize the negative log

likelihood over all masked positions, as described by the equation:

LMLM(x,m, l) = −
∑

i :mi=1

log yi[li]

Where yi[li] denotes the predicted probability of the true label

li for the masked position i. This objective, coupled with the

noise injection strategy, ensures that the model learns bidirectional

representations, thus becomes capable of understanding and

generating contextually relevant tokens.

When dealing with overlapping k-mers, simple token masking

becomes insufficient. If a single k-mer token is masked, all

overlapping k-mers related to that token must also be masked. This

is crucial because when a k-mer is not masked and subsequently

restored, it might inadvertently provide contextual information

about its neighbors. Such a situation would enable the trivial

restoration of adjacent masked k-mers. In essence, one unmasked

k-mer could potentially “leak” enough information to unmask

its neighboring tokens. For examples, as presented in Figure 2C

(Overlapping tokeniization), if only the second token “AGTCCA”

is masked, it can be fully restored from its neighboring tokens:

“AAGTCC” and “GTCCAG.”

This overlapping nature of k-mers posed unique challenges.

As a result, we had to dynamically adjust the MLM parameters

and the lengths of sequence segments during the pretraining

phase. Additionally, when multiple contiguous k-mers were

masked together, the probability associated with the MLM had

to be recalibrated. This was necessary to ensure that the actual

proportion of the sequence being masked was consistent with our

intended masking ratio.

2.2.2.2 Training phases and configuration

Initially, we employed parameters that allowed complete

sequence restoration (k-mer of k = 6) by masking only five

continuous tokens (with p1 = 0.9) and manipulating 15% of

the tokens. Once a loss threshold of 1 was attained, the MLM

parameters were adjusted to heighten the masking complexity. We

implemented various masking lengths, such as 2 nucleotides for k-

mer of k = 6 and 2 characters for k = 1. Training data in the first

phase had a fixed length of 128nt segments. The succeeding phase

used variable-length datasets: with a probability of 0.5 a full-length

segments, and with a probability of 0.5 a segment between 30–512

bp was selected into the the batch. The termination criterion for

training was no further improvement or performance decrease, in

both the MLM and promoter tasks. Models underwent training for

roughly one batch each. We opted for batch sizes that spanned

around 0.5–2 million bp sequences. Computations were executed

onHPC-VEGA and Komondor platforms with Nvidia-A100 GPUs,

leveraging slurm, pytorch distributed, and multiple GPU nodes.

2.2.3 Evaluating the pretrained model
We evaluted the masking performance of the models

using the ESKAPE pathogens, namely Enterococcus faecium

(GCF_009734005.1), Staphylococcus aureus (GCF_000013425.1),

Klebsiella pneumoniae (GCF_000240185.1), Acinetobacter

baumannii (GCF_008632635.1), Pseudomonas aeruginosa

PAO1 (GCF_000006765.1), and Escherichia coli str. K-12

(GCF_000005845.2), because of their high clinical importance.

First we investigated how the genomic structure is reflected in the

embeddings, on different sequence features (i.e. CDS, intergenic,

pseudo-genes, etc.). Next we measured how well the models can

perform in masking.

2.2.4 Analysis of encoder outputs
In deep learning, an encoder typically processes input data

(such as a sequence of tokens) and produces a dense vector

representation for each token. These dense vectors, often referred

to as embeddings or encoded vectors, capture the semantic

information of the input tokens.

Given an input sequence S with T tokens, i.e.,

S = {s1, s2, . . . , sT}
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FIGURE 3

LCA Tokenization and corrupted sequence restoration. The figure illustrates how the corruption of a character at sequence level a�ects the initial

vector representations of the seqment with respect to the di�erent tokenization methods. The 7th nucleotide is unknown or masked, and those

k-mers that overlap with that position are masked. As a result, when k = 6 and s = 2 not only the 7th character is hidden, but the 8th as well.

the encoder produces a sequence of vectors:

E = {e1, e2, . . . , eT}

where ei represents the embedded vector for the token si. In case

of multiple inputs or batches, if we have a batch of size B with

each sequence containing T tokens, the encoder’s output would

be a 3D tensor of shape (B,T,D) where D is the dimensionality

of the embeddings.

Once we have the encoded vectors, there are several ways to

aggregate or pool them to get a single representation for the entire

sequence as shown in Supplementary Figure S1. Here are some

common pooling methods:

• Mean Pooling: Average the vectors: emean = 1
T

∑T
i=1 ei.

• Sum Pooling: Sum the vectors: esum =
∑T

i=1 ei.

• Max Pooling: Max value per dimension: emax[j] =
maxTi=1 ei[j].

• Min Pooling: Min value per dimension: emin[j] =
minTi=1 ei[j].

For batches, these pooling operations are applied

independently for each input sequence in the batch. The provided

NCBI annotations were preprocessed and extended. Intergenic

regions were defined as non-annotated genomic features with

respect to the strand. We retained the CDS, intergenic, pseudo-

genes, ncRNA features, while the rare or infrequently used

features (such as riboswitch, binding_site, tmRNA, etc.) were

excluded from the analysis. This was followed by sampling

segments of various lengths from each genomic region. We

sampled a maximum of 2000 sequence features from each

contig, considering the strand, to evaluate strand-specific biases

as well.

Then, we randomly corrupted a segment 10,000 times, i.e., a

character was replaced with “*” and tokens containing “*” were

mapped to the [MASK] token as illustrated on Figure 3.

The sampled segment database is available at Zenodo

10.5281/zenodo.10057832.

2.3 Application I: bacterial promoter
prediction

The first task our models were evaluated on involved

distinguishing between promoter and non-promoter sequences in

bacteria. A sequence is labeled “1” if identified as a promoter and

“0” otherwise. The next section gives an overview of the dataset

structure and details about its constructions.

2.3.1 Dataset overview
The known promoters, referred to as positive samples, are

primarily drawn from the Prokaryotic Promoter Database (PPD,

Su et al., 2021), which contains experimentally validated promoter

sequences from 75 organisms. Figure 4 illustrates the composition

and source of our dataset, segregating prokaryotic promoters from

non-promoters and including an independent test set based on

E.coli sigma70 promoters.

2.3.1.1 Data partitioning and utilization

To ensure comprehensive evaluation, the dataset was split

into three parts, divided randomly into training, validation, and

testing datasets.

1. Training set: Constitutes 80% of the total data and is pivotal for

initial model development and training.

Frontiers inMicrobiology 06 frontiersin.org123

https://doi.org/10.3389/fmicb.2023.1331233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ligeti et al. 10.3389/fmicb.2023.1331233

FIGURE 4

Schematic of the promoter dataset. This figure provides a visual representation of the sequence sources and their distribution within the study. The

dataset comprises known promoter sequences from 75 organisms, retrieved from the Prokaryotic Promoter Database (PPD), alongside

non-promoter sequences obtained from the NCBI RefSeq database (specifically sampled from CDS regions). It also includes non-promoter

sequences constructed via higher and zero-order Markov chains that mirror compositional characteristics of known promoters. Additionally, an

independent test set, focusing on E. coli sigma70 promoters, was employed, curated by Cassiano and Silva-Rocha (2020). A balanced distribution

approach was adopted to even out the number of positive and negative samples, with the dataset being systematically divided into training,

validation, and test subsets. This stratification underpins a thorough evaluation of the model e�cacy.

2. Validation set: Comprises 10% of the data, aiding in fine-tuning

model parameters and preventing overfitting.

3. Test set: Forms the remaining 10% of the data, crucial for

unbiased model performance evaluation.

2.3.1.2 Dataset construction for multispecies train, test

and validation sets

The prokaryotic promoter sequences are typically 81 bp

long, ensuring compatibility with most tools’ input prerequisites,

particularly around the putative TSS region interval [−60,+20].

Our positive dataset encompasses promoter sequences from

various species, predominantly found on both chromosomes

and plasmids. Promoters included in the independent test set,

based on exact match, were excluded from the training data.

Species and contigs were mapped to NCBI assembly and sequence

accessions. To curate comprehensive non-promoter sequences

(negative samples), we employed three strategies:

1. Using non-promoter sequences (CDS–Coding Sequences).

2. Random sequences generated with a 3rd-order Markov chain.

3. Pure random sequences (0-order Markov chain) as proposed by

Cassiano and Silva-Rocha (2020).

The distribution of this composite dataset was 40% CDS,

40% Markov-derived random sequences, and 20% pure random

sequences (0-order Markov chain). One practical application of

promoter detection in coding sequences is to check whether an

unintentional promoter is injected or can be located inside a

modified or designed coding sequence region, causing disruption.

To cover this use-case, we incorporated the coding regions into our

training and evaluation dataset. The CDS sequences were extracted

from the genomic sequences of contigs, based on annotations from

NCBI. The 81 bp long CDS region samples were selected based

on the NCBI-provided annotations for the available contigs with

respect to the underlying species. The promoter regions often

contain AT-rich sequences, i.e., TATA box. To capture and model

the AT-rich regions, we applied 3rd and 0 order Markov chains to

generate sequence examples that reflect the compositional property

of known promoters.

A 3rd-order Markov chain predicts the next nucleotide in a

sequence based on the states of the previous three nucleotides.

Formally, the probability of observing a nucleotide xi given the

nucleotides at positions xi−3, xi−2, and xi−1 is:

P(xi|xi−3, xi−2, xi−1)

For DNA sequences, this yields 44 = 256 possible nucleotide

combinations. Such higher-order modeling can more effectively

capture intricate sequence patterns and dependencies than lower-

order models (Durbin et al., 1998). However, estimating transition

probabilities requires extensive data due to the increased number of

states (Koski and Noble, 2001). We determined these probabilities

using promoter sequences, to which we added the reverse

complement of each promoter. Subsequently, random promoter

sequences were generated using these models.

We have a second, independent test for assessing model

performance and referred to Cassiano and Silva-Rocha (2020)’s

dataset comprising E. coli sigma70 sequences. The positive,

well-recognized samples came from Regulon DB (Santos-

Zavaleta et al., 2019). Cassiano and Silva-Rocha (2020) evaluated

various tools using an experimentally validated E. coli K-12

promoter set dependent on sigma70, sourced from Regulon

DB 10.5 (Santos-Zavaleta et al., 2019). Given the extensive

documentation of sigma70-dependent promoters in bacteria,

only these were considered. They used a positive dataset of 865

high-evidence sequences from Regulon DB and a negative set

of 1,000 sequences mimicking the nucleotide distribution of the

natural sequences. We ensured no overlap existed within the

promoter datasets.
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The promoter dataset is available as a Zenodo and Hugging

Face dataset.

2.3.2 Training for promoter prediction
We employed a fine-tuning paradigm to evaluate our model.

Our proposed binary classification model extends the Megatron

BERT architecture (Shoeybi et al., 2019), tailored specifically

for binary classification tasks. Let X represent the sequence of

input embeddings, with fBERT(X) denoting the transformation by

Megatron BERT. Given an input sequence of length T, this model

transforms X into a sequence output S with dimensions T ×
hidden_size, where S = fBERT(X). Unlike the conventional BERT

model, which classifies sequences based on the special [CLS]

token representing the “sentence,” our approach emphasizes

integrating representations of all tokens using a weighting scheme

as shown in Supplementary Figure S1.

To obtain a fixed-size representation from the variable-length

sequence S, we devised a weighting mechanism. The sequence

S undergoes a transformation through a linear layer to yield a

sequence of weightsW:

W = softmax(W1S
T + b1)

Here, W1 is a matrix sized hidden_size × 1 and b1 is a bias

term. The softmax operation ensures W forms a valid probability

distribution over sequence positions. The model then computes a

weighted sum of the sequence representations:

P =
T∑

i=1

wisi

Where wi and si represent the weight and the sequence

representation at the ith position, respectively. Subsequently,

P is processed by a dropout layer with a probability of

hidden_dropout_prob to produce P′. This results in the final

classification logits L.

Datasets, comprising training, validation, and testing subsets,

were appropriately tokenized and adapted for ProkBERT

processing. For optimization, the AdamW variant was chosen with

parameters α ∈ {0.0001, 0.0004, 0.0008}, β1 = 0.95, β2 = 0.98,

and ǫ = 5 × 10−5. A linear learning rate scheduler with warmup

was utilized. The model underwent training for two epochs,

with a batch size of 128 per GPU (NVIDIA A100-40GB GPUs)

using the pytorch data distributed framework (nvcc). Additional

configurations included a weight decay of 0.01.

2.4 Application II: phage sequence analysis

Bacteriophages have a significant role in the microbiome,

influencing host dynamics and serving as essential agents for

horizontal gene transfer (De la Cruz and Davies, 2000). Through

this mechanism, they aid in the transfer of antibiotic resistance and

virulence genes, promoting evolutionary processes. Understanding

the diversity of phages is crucial for tackling challenges like

climate change and diseases (Jansson and Wu, 2023). These phages

exhibit distinct patterns in both healthy and diseased microbiomes

(Yang et al., 2023). The correlation between the human virome and

various health conditions, such as cancer, inflammatory bowel

diseases, and diabetes, has been documented (Zhao et al., 2017;

Han et al., 2018; Nakatsu et al., 2018; Fernandes et al., 2019;

Liang et al., 2020; Zuo et al., 2022). However, deeper research is

needed to discern causality and their impact on microbial and host

biological processes.

Despite the abundance of phages (Bai et al., 2022a), accurately

quantifying and characterizing them remains a challenge. One

primary limitation is the restricted number of viral sequences

in databases like NCBI RefSeq. Additionally, the categorization

of viral taxonomy is still a topic of discussion (Walker et al.,

2022). Though there have been recent efforts to expand databases

(Zhang et al., 2022; Camargo et al., 2023), the overall understanding

of viral diversity is still not complete (Yan et al., 2023). We

have assembled a unique phage sequence database using recently

published genomic data.

Another challenge is the life cycle of phages; temperate phages

might integrate their genomes into bacterial chromosomes and

are often annotated as bacterial genomes, leading to potential

misidentification. Current databases also show biases toward

certain genera (Schackart III et al., 2023), which can skew

benchmarking and the evaluation of different methods. To address

this, we used a balanced benchmarking approach, ensuring each

viral group corresponds to their predicted host genus, minimizing

bias. We also compared viral genomes to their respective hosts,

a more demanding classification task, such as distinguishing a

Salmonella phage from its host genome compared to marine

cyanobacteria. For our study, we selected a specific number of

phages for testing, ensuring there is no overlap between training

and testing sets at the species level.

2.4.1 Phage dataset description
To train and assess our prediction models, we assembled a

comprehensive phage sequence database from diverse sources. As

of 9th July, 2023, we procured viral sequences and annotations

from the RefSeq database (O’Leary et al., 2016; Li et al., 2021).

By isolating entries labeled “phage,” we obtained 6,075 contigs.

Our database was further enriched with the inclusion of Ren et al.

(2020), a dataset validated through the TemPhD method (Zhang

et al., 2022), adding another 192,326 phage contigs extracted from

148,229 assemblies.

To address sequence redundancy present in both the RefSeq

and TemPhD databases, we applied the CD-HIT algorithm (Li and

Godzik, 2006; Fu et al., 2012) (using CD-HIT-EST with a default

word size of 5).While several clustering thresholds (0.99, 0.95, 0.90)

were experimented with and found to produce similar outcomes,

we settled on a threshold of 0.99. This process resulted in a refined

set of 40,512 distinct phage sequences, with an average length of

approximately 43,356 base pairs, culminating in a total of 3.5 billion

base pairs. Notably, these sequences target a wide spectrum of 660

bacterial genera. Subsequent to sequence curation, phage sequences

were mapped to their respective bacterial hosts to formulate

a balanced training dataset, ensuring equitable representation

between phages and their hosts. This step is imperative, given

the distinct distributions observed between bacterial sequences
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and their phage counterparts. In numerous instances, due to

ambiguities in species-level identification or gaps in taxonomic

data, host mapping was executed at broader taxonomic strata,

predominantly at the genus level.

In our examination of bacteriophage-host associations at

the genus level, several bacterial genera stood out, showcasing

pronounced phage interactions. Salmonella, a main cause of

food-related sicknesses (Popoff et al., 2004), stands out with an

impressive association of 24,182 phages, spanning a cumulative

length of over a billion base pairs (1,026,930,954 bp) and an average

phage length of 42,467 bp. Following closely, the common gut

bacterium, Escherichia (Tenaillon et al., 2012), is linked with 8,820

phages, accumulating a total length of 408,866,394 bp. The genus

Klebsiella, notorious for its role in various infections (Paczosa

and Mecsas, 2016), associates with 4,904 phages. Genera such

as Listeria (Vázquez-Boland et al., 2011), Staphylococcus (Lowy,

1998), and Pseudomonas (Driscoll et al., 2007), each with distinct

clinical significance, exhibit rich phage interactions. Notably,

Mycobacterium (Cole et al., 1998), consisting of pathogens like

the tuberculosis-causing bacterium, shows associations with 2,156

phages. Many of these bacterial genera are benign and even

beneficial under normal conditions, they also include species that

can cause severe diseases in humans, especially when there’s an

imbalance in the body’s natural flora or when antibiotic resistance

develops. Monitoring phage interactions with these bacteria offers

potential pathways for therapeutic interventions and a deeper

understanding of microbial ecology in human health.

Additionally, balanced databases were created, stratified by

the host genus level, to mitigate the effect of underrepresented

or overrepresented phages, such as Salmonella. The reverse-

complement sequences were included. The final dataset

encompasses a total of 660 unique bacterial genera. Undersampling

was performed with a threshold of 20,027,298 bp for 25 genera,

while the others were upsampled with a maximum coverage of 5x,

obtaining random samples of shorter fragments from the contigs.

Random segmentation and sampling were carried out as previously

described. The bacterial assemblies were randomly selected from

the NCBI database, prioritizing higher-quality assemblies. Many of

them were not included in the pretraining dataset. Subsequently,

we constructed a database with various sequence lengths: 256, 512,

1024, and 2048 bps. The train-test-validation split was executed in

a 0.8, 0.1, and 0.1 proportion at the phage sequence level.

For comparison with alternative methods and tools, we had to

subsample our test set (N = 10, 000) to conduct the evaluation

within a reasonable timeframe.

2.4.2 Model training for phage sequence analysis
The task was formulated as binary classification, similarly to

the promoters. Phage sequence classification was approached in a

manner analogous to the promoter training. Given the extensive

size of the dataset, preprocessing was conducted beforehand,

segmenting sequences into various lengths: 256, 512, 1,024, and

2,048 bps. For both mini and mini-c models, the training

process was partitioned into three distinct phases. An initial grid

search was executed to optimize learning rates, and base models

were trained for an hour. The parameter yielding the highest

Matthews Correlation Coefficient (MCC) was selected. The model

was then trained using segment lengths of 256 bps for half an

epoch, followed by 512 bps for another half epoch, and concluding

with two epochs for 1024 bps segments. The training regimen

for the mini-long model was similar, albeit commencing with

512 bps segments, then transitioning to 1024 bps, and finally to

2048 bps segments. Model optimization employed the settings

delineated previously.

2.5 Applied metrics

MCC (Matthews Correlation Coefficient): Used for binary

classifications and defined as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP is true positives, TN is true negatives, FP is false positives,

and FN is false negatives. The coefficient ranges from −1 (total

disagreement) to 1 (perfect agreement).

F1 Score: The harmonic mean of precision and recall, given by:

F1 = 2×
Precision× Recall

Precision+ Recall

with

Precision =
TP

TP + FP

and

Recall (Sensitivity) =
TP

TP + FN

Accuracy: Represents the proportion of correctly predicted

instances to the total, defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity (Recall): The proportion of actual positives

correctly identified:

Sensitivity =
TP

TP + FN

Specificity: The proportion of actual negatives

correctly identified:

Specificity =
TN

TN + FP

ROC-AUC (Receiver Operating Characteristic - Area Under

Curve): Evaluates the model’s discriminative ability between

positive and negative classes. It’s the area under the ROC curve,

which plots Sensitivity against 1−Specificity for various thresholds.

The silhouette score is a measure used to calculate the

goodness of a clustering algorithm. It indicates how close each

sample in one cluster is to the samples in the neighboring clusters,

with values ranging from –1 to 1, where a high value indicates that

the sample is well matched to its own cluster and poorly matched

to neighboring clusters (Rousseeuw, 1987).
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Equation for the silhouette score s(i) for a single sample:

s(i) =
b(i)− a(i)

max{a(i), b(i)}

Where:

• a(i) is the average distance from the i-th sample to the other

samples in the same cluster.

• b(i) is the smallest average distance from the i-th sample to

samples in a different cluster, minimized over clusters.

3 Results and discussion

3.1 ProkBERT’s learned representations
capture genomic structure and phylogeny

We assessed the zero-shot capabilities of our models by

examining their proficiency in predicting genomic features

based solely on embedding vectors, in a manner akin to

Nucleotide Transformers and related methodologies. Figure 5

presents the UMAP projection of these embedded vector

representations. Employing the UMAP technique, we reduced the

dimensionality of genomic segments and derived embeddings.

These were then evaluated using silhouette scores across the

three models: ProkBERT-mini, ProkBERT-mini-c, and

ProkBERT-mini-long.

Our primary objective was to discern if the representations of

sequence segments from ESKAPE pathogens could be distinctly

categorized. Indeed, Figure 5 exhibits clear delineation among

known genomic features, including CDS (coding sequences),

intergenic regions, ncRNA, and pseudogenes. It’s important to

note that these models were not explicitly trained to differentiate

these sequence features; the representations were solely derived

through pretraining. For the critical genomic comparison

between “intergenic” and “CDS” regions, the silhouette scores

obtained were 0.4925, 0.5766, and 0.3352 across the respective

models, emphasizing a consistent and clear distinction between

these features. Regarding non-coding RNA representations, the

silhouette scores for “ncRNA” vs. “CDS” were 0.1537, 0.2935,

and 0.2192, while for “ncRNA” vs. “intergenic,” they were 0.1648,

0.1302, and 0.3109, further affirming the assertion that ncRNAs

cluster distinctly. Pseudogenes, as anticipated, exhibited some

overlap with ’CDS’, notably in the ProkBERT-mini model with

a score of −0.0358. Yet, when compared with ’ncRNA’, a distinct

separation was observed, as evidenced by scores of 0.1630, 0.2365,

and 0.1636.

This analysis aligns with biological knowledge, where

pseudogenes are expected to be more similar to CDS, while

ncRNAs, which have different functions and characteristics, form

distinct clusters from CDS and intergenic regions. All three models

appear to produce similar clustering results for the given pairs of

genomic features.

The embeddings prominently display the genomic intricacies

of ESKAPE pathogens. Notably, Klebsiella pneumoniae and

Escherichia coli, both members of the Enterobacteriaceae family,

exhibit close proximity in the embedding space, echoing potential

genomic kinship or shared evolutionary paths. This observation is

further corroborated by the low silhouette scores across the models.

In contrast, species like Pseudomonas aeruginosa manifest as more

distinct clusters, emphasizing their genetic disparities. Intriguing

overlaps, such as those between differently labeled Acinetobacter

baumannii entities, highlight potential challenges in the data or

shared genomic features. Combined, the UMAP visualizations

and silhouette scores provide a profound insight into species-

specific genomic embeddings, revealing both shared and distinct

genomic signatures.

3.2 ProkBERT can e�ciently recover
corrupted sequences

In evaluating the models’ capabilities in the masking task,

we used random masking across various genomic segments,

such as CDS, ncRNA, intergenic, and pseudogenes, detailed

in Table 2. We measured performance with metrics like ROC-

AUC and average reference rank. However, a direct model

comparison presents challenges. Notably, ProkBERT-mini-c

boasts a significantly smaller vocabulary size (9) in comparison

to ProkBERT-mini and ProkBERT-mini-long (4101) This

allows ProkBERT-mini-c to achieve higher rankings, like top3,

with relative ease as it encompasses nearly the entire vocabulary

(there are 4 nucleotides). Also, the local context’s representation in

ProkBERT-mini-long is less dense, making the restoration of

the masked nucleotides harder in contrast to the others.

For sequences spanning 1,024 nucleotides, ProkBERT-mini

exhibited a commendable AUC of 0.9998, accompanied by top 1

and top 3 prediction accuracies of 51.69% and 92.27%, respectively.

Concurrently, ProkBERT-mini-c achieved an AUC of 0.9586,

with top 1 and top 3 accuracies at 51.28% and 92.22%. However,

ProkBERT-mini-long reported slightly subdued figures, with

an AUC of 0.9992 and top 1 and top 3 accuracies of 27.68% and

55.89%. This underscores the efficacy of the ProkBERT model

family in handling genomic tasks. A salient observation from our

analysis is that a model’s prediction proficiency is intrinsically tied

to the contextual size.

In our next assessment some performance nuances became

evident across various genomic regions. The prokbert-mini

model consistently stood out, especially within the Coding

Sequence (CDS) and Intergenic domains. For these regions, it

achieved an unmatched ROC-AUC of 0.9998. Specifically, within

the CDS region, the model attained a Top1 accuracy of 50.33%,

a Top3 accuracy of 91.87%, and an average reference rank of

0.811. In the Intergenic sections, these figures were 48.97%, 91.12%,

and 0.843, respectively. The prokbert-mini-c model also

exhibited commendable performance.Within the CDS regions, this

model reached a Top1 accuracy of 50.65%, a Top3 accuracy of

91.91%, and an average reference rank of 0.802. For the Intergenic

regions, the metrics were 48.84%, 91.39%, and 0.839 respectively.

Despite the achievements of the aforementionedmodels, challenges

persisted across all models in the non-coding RNA (ncRNA)

domains. Even the top-performing prokbert-mini saw its

Top1 accuracy drop to 32.46%, with an average reference rank

increasing to 1.202. Contrastingly, the prokbert-mini-long,

despite its detailed design, exhibited reduced accuracies, with
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FIGURE 5

UMAP embeddings of genomic segment representations. The figure presents the two-dimensional UMAP projections of embedded vector

representations for various genomic features, derived from the ProkBERT-mini, ProkBERT-mini-c, and ProkBERT-mini-longmodels. The

distinct clusters highlight the models’ ability to di�erentiate between features such as CDS (coding sequences), intergenic regions, ncRNA, and

pseudogenes, even without explicit training for feature di�erentiation. (B) The segments are colored according to species, indicating that cluster

structure reflects the phylogenic similarities. (A) Sequence embeddings of the di�erent regions. (B) Sequence embeddings of the di�erent species of

ESKAPE pathogens.

TABLE 2 Masking performance of the ProkBERT family.

Model L Avg. Ref. Rank Avg. Top1 Avg. Top3 Avg. AUC

ProkBERT-mini 128 0.9315 0.4497 0.8960 0.9998

ProkBERT-mini-c 128 0.9429 0.4391 0.8965 0.9504

ProkBERT-mini-long 128 3.9432 0.2164 0.4781 0.9991

ProkBERT-mini 256 0.8433 0.4848 0.9130 0.9998

ProkBERT-mini-c 256 0.8262 0.4928 0.9151 0.9565

ProkBERT-mini-long 256 3.5072 0.2470 0.5258 0.9992

ProkBERT-mini 512 0.8098 0.5056 0.9179 0.9998

ProkBERT-mini-c 512 0.7983 0.5116 0.9203 0.9580

ProkBERT-mini-long 512 3.3026 0.2669 0.5435 0.9992

ProkBERT-mini 1024 0.7825 0.5169 0.9227 0.9998

ProkBERT-mini-c 1024 0.7868 0.5128 0.9222 0.9586

ProkBERT-mini-long 1024 3.2082 0.2768 0.5589 0.9992

Bold numbers indicate the best results per category.
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TABLE 3 Evaluation of promoter prediction tools on E-coli sigma70 dataset (Transposed).

Tool Accuracy MCC Sensitivity Specificity

ProkBERT-mini 0.87 0.74 0.90 0.85

ProkBERT-mini-c 0.87 0.73 0.88 0.85

ProkBERT-mini-long 0.87 0.74 0.89 0.85

CNNProm 0.72 0.50 0.95 0.51

iPro70-FMWin 0.76 0.53 0.84 0.69

70ProPred 0.74 0.51 0.90 0.60

iPromoter-2L 0.64 0.37 0.94 0.37

Multiply 0.50 0.05 0.81 0.23

bTSSfinder 0.46 -0.07 0.48 0.45

BPROM 0.56 0.10 0.20 0.87

IBPP 0.50 -0.03 0.26 0.71

Promotech 0.71 0.43 0.49 0.90

Sigma70Pred 0.66 0.42 0.95 0.41

iPromoter-BnCNN 0.55 0.27 0.99 0.18

MULTiPly 0.54 0.19 0.92 0.22

Bold numbers indicate the best results per category.

Top1 and Top3 accuracies of 25.18% and 52.66% across all labels,

hinting at potential inefficiencies or overfitting. Collectively, these

findings underscore the importance of tailored model architectures

for genomic sequences and highlight the complexities of various

genomic regions, laying a foundation for future targeted deep

learning strategies in genomics.

3.3 ProkBERT performs accurately and
robustly in promoter sequence recognition

Identifying promoters, which are crucial in initiating the

transcription process, is fundamental to understanding gene

regulation in bacteria. Our initial fine-tuning task focused on

the identification of these genomic regions, primarily through

a binary classification approach that distinguishes sequences as

either promoters or non-promoters. Although this method is

widely used, various alternative strategies have been explored.

A significant limitation of current techniques, as highlighted by

Chevez-Guardado and Peña-Castillo (2021), is their reliance on

training with a limited range of species, mainly E. coli, but also

including Bacillus subtilis and a few other key species.

As illustrated in Figure 1, our training began with a pretrained

model followed by training using cross-entropy loss minimization.

We evaluated the training outcomes on two datasets: a test set

curated by Cassiano and Silva-Rocha (2020), and another one

comprising mixed species. The models’ performance on the first

dataset can be seen in Table 3.

Cassiano and Silva-Rocha (2020) had previously gauged

the efficacy of several well-established tools, including BPROM

(Salamov and Solovyevand, 2011), bTSSfinder (Shahmuradov

et al., 2017), BacPP (de Avila e Silva et al., 2011), CNNProm

(Umarov and Solovyev, 2017), IBBP (Wang et al., 2018), Virtual

Footprint, iPro70-FMWin (Rahman et al., 2019), 70ProPred (He

et al., 2018), iPromoter-2L (Liu et al., 2018), and MULTiPly

(Zhang et al., 2019). Additionally, we incorporated newer tools

like Promotech (Chevez-Guardado and Peña-Castillo, 2021) and

iPromoter-BnCNN (Amin et al., 2020). These tools encompass

a broad spectrum of techniques. For instance, BPROM and

bTSSfinder exploit conserved and promoter element motifs. BacPP

and CNNProm use neural networks for promoter predictions in E.

coli and other bacteria based on transformed nucleotide sequences.

IBBP adopts a unique image-based approach combined with

logistic regression and various sequence-based features. Tools like

70ProPred, iPro70-FMWin, MULTiPly, and iPromoter-2L leverage

SVM, logistic regression, and random forest methodologies,

drawing upon extracted sequence features such as physicochemical

properties and k-mer compositions.

The results are presented in Table 3. The ProkBERT family

models exhibit remarkably consistent performance across the

metrics assessed.With respect to accuracy, all three tools achieve an

impressive score of 0.87, marking them among the top performers

in promoter prediction. This suggests that, regardless of the specific

version, the underlying methodology used in the mini series is

robust and effective.

When evaluating the balance between true and false

predictions using MCC both ProkBERT-mini and

ProkBERT-mini-long slightly edge out ProkBERT-mini-c

with an MCC of 0.74 compared to 0.73 for mini-c. Although the

difference is marginal, it might indicate subtle refinements in the

mini-long approach. In terms of sensitivity, which focuses on

the ability to correctly identify promoters, ProkBERT-mini leads

with a score of 0.90, closely followed by ProkBERT-mini-long

at 0.89 and ProkBERT-mini-c at 0.88. This hierarchy, albeit

with small differences, highlights the minute improvements
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achieved in the mini and mini-long versions. Lastly, for

specificity, all three versions achieve an identical score of 0.85. This

uniformity underscores the consistency in their ability to correctly

identify non-promoters. In summary, while the performance across

the mini versions is largely comparable, ProkBERT-mini and

ProkBERT-mini-long display marginal advantages in certain

metrics, hinting at potential refinements in these versions.

The Promotech tool demonstrates a mixed performance

across the metrics. With an accuracy of 0.71, it correctly

predicts the presence or absence of promoters 71% of the time.

While this accuracy is lower than the top-performing tools like

ProkBERT-mini and its variants, it is significantly better than

the lower-performing tools such as Multiply and bTSSfinder.

Sensitivity for Promotech is 0.49, suggesting that it correctly

identifies nearly half of the actual promoters. However, its most

remarkable performance metric is its specificity, with a score of

0.90. This means Promotech is adept at identifying non-promoters,

correctly classifying them 90% of the time.

Among the methods assessed, CNNProm, Sigma70Pred,

iPromoter-BnCNN, and iPromoter-2L exhibit notably high

sensitivity scores, signifying their pronounced ability to correctly

identify promoters. Specifically, iPromoter-BnCNN leads with

an exceptional sensitivity of 0.99, closely trailed by Sigma70Pred

at 0.95, CNNProm at 0.95, and iPromoter-2L at 0.94. Such high

sensitivity scores indicate these models’ potential in minimizing

false negatives, which is crucial in applications where missing an

actual promoter can have significant implications. However, it’s

vital to interpret these results with caution. The high sensitivity

scores, especially of iPromoter-BnCNN and Sigma70Pred, come at

the expense of specificity. For instance, iPromoter-BnCNN has a

notably low specificity of 0.18, implying a substantial rate of false

positives. Similarly, Sigma70Pred has a specificity of 0.41. This

suggests that while these models are adept at identifying promoters,

they often misclassify non-promoters as promoters. An essential

factor to consider in this evaluation is the training data. Given that

these models were trained on E. coli data, their performance might

be biased when evaluated on the same or closely related datasets.

This lack of independence between training and testing data can

lead to overly optimistic performance metrics, as the models might

merely be recalling patterns they’ve already seen, rather than

generalizing to novel, unseen data.

Next, we evaluated our models’ performance on a test set

encompassing a broad mix of promoters, extending beyond just E.

coli. The results are shown in Figure 6.1

The trio of tools in the ProkBERT family – mini, mini-c,

and mini-long – consistently exhibited strong performance

across the metrics analyzed. In terms of accuracy, all three

achieved scores between 0.79 and 0.81, solidifying their position

among leading promoter prediction tools. This uniformity

in results points to a reliable methodology underlying the

ProkBERT family. Using the Matthews Correlation Coefficient

(MCC) as a measure of prediction balance, ProkBERT-mini

1 The selection of competitors for the second test set took into account the

larger size of the dataset, which posed practical challenges for established

methods optimized for smaller sequences, resulting in processing issues and

longer evaluation times.

and ProkBERT-mini-long both slightly outperformed

ProkBERT-mini-c with MCC values of 0.63 and 0.62

respectively, against the 0.57 of mini-c. Considering sensitivity,

ProkBERT-mini achieved the highest score of 0.81, with

ProkBERT-mini-long and ProkBERT-mini-c trailing at

0.79 and 0.75, respectively. This order reiterates the nuanced

enhancements in the models. With regard to specificity,

ProkBERT-mini-long stood out with a score of 0.83, whereas

ProkBERT-mini and ProkBERT-mini-c both scored 0.82,

reflecting their adeptness at accurate non-promoter classification.

Of the tools assessed, both Sigma70Pred and iPromoter-

BnCNN show moderate performance in sensitivity, with

iPromoter-BnCNN taking the lead at 0.66 and Sigma70Pred

following at 0.52. Promotech displayed a varied metric

performance. With an accuracy rate of 61%, it identifies promoters

correctly in a majority of instances. Its sensitivity value of

0.29 signifies its capability to detect roughly one-third of true

promoters. Yet, its high specificity of 0.93 reveals its proficiency at

negating non-promoters.

Promoter prediction is an intricate task that requires a

balance between sensitivity and specificity. The consistently strong

performance of the ProkBERT family highlights their reliability

in this domain. Yet, the selection of a tool should be made

after weighing the potential implications of both false positives

and negatives.

3.4 ProkBERT swiftly and accurately
identifies phage sequences, even in
challenging settings

Various tools have addressed phage sequence identification,

each employing distinct strategies. These methods can be

categorized into: (i) homology or marker-based tools like

VirSorter2 (Guo et al., 2021) and VIBRANT (Kieft et al., 2020), (ii)

alignment-free methods, for instance, DeepVirFinder (Ren et al.,

2020) and INHERIT (Bai et al., 2022b). The first category leans

on existing annotations, databases, and sequences. In contrast,

alignment-free methods are less influenced by existing knowledge,

offering broader applicability and greater reliability with imperfect

sequence data (Wu et al., 2023). We assessed our classification

accuracy against INHERIT, VirSorter2, and DeepVirFinder (Ren

et al., 2020). Notably, INHERIT employs a DNABert architecture

for classification, akin to ours, drawing inspiration from DNABert

(Ji et al., 2021).

In genomic studies, discerning phage-related segments

becomes increasingly challenging as the segment length diminishes

(Guo et al., 2021). This study rigorously evaluates six distinct phage

classification methodologies over a range of sequence lengths,

leveraging the accuracy and MCC as primary performance metrics.

For the shortest fragments (256bp), VirSorter was unable

to process the test set. Among the evaluated methods, the

ProkBERT models—mini, mini-c, mini-long—

consistently emerged as top performers across varying lengths,

as depicted in Figure 7. Specifically, ProkBERT-mini excels

with shorter sequences, achieving the highest accuracy for 256

bp fragments. This high accuracy does not come at the cost
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FIGURE 6

Promoter prediction performance metrics on a diverse test set. A comparative analysis of various promoter prediction tools, showcasing their

performance across key metrics including accuracy, F1 score, MCC, sensitivity, and specificity. The tools evaluated include ProkBERT-mini,
ProkBERT-mini-c, ProkBERT-mini-long, Promotech, Sigma70Pred, iPromoter-BnCNN, and MULTiPly.

FIGURE 7

ProkBERT identifies phage sequences accurately and rapidly. (A) Method comparison over varying sequence lengths based on two essential

performance metrics: accuracy and MCC. (B) Scatter plots illustrating the relationship between evaluation time (on a logarithmic scale) and the

mentioned performance metrics. The size of each point signifies the sequence length. Evaluation time encompasses model loading, sequence

preprocessing, and inference phases. (A) Comparison of methods across di�erent sequence lengths. (B) Comparison of evaluation time and

performance metrics.
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of increased false positives or negatives, as evidenced by its

comparable MCC values. In contrast, DeepVirFinder, ranking fifth,

indicates potential optimization areas for such short sequences.

While ProkBERT-mini consistently ranks highest for lengths

up to 1,024 bps, ProkBERT-mini-c closely follows, signifying

its stability and reliability. Notably, the maximum sequence

length that ProkBERT-mini and ProkBERT-mini-c

can process is limited to 1024bps, introducing the specialized

ProkBERT-mini-long for extended sequences. This model

showcases its prowess with 2kb sequences, achieving an accuracy

of 92.90% and anMCC of 0.859. Virsorter2, despite initial struggles

with shorter sequences, exhibits significant improvements

for longer fragments. However, both DeepVirFinder and

INHERIT show limited enhancements with increased sequence

lengths, suggesting these methods might not capitalize on the

additional information longer sequences provide as effectively

as their counterparts. In conclusion, ProkBERT-mini and

ProkBERT-mini-long clearly stand out as top-performing

models across various sequence lengths. While other methods may

have their merits, they simply don’t match the consistency and

robustness offered by the ProkBERT models.

In phage classification, sensitivity signifies the proportion of

actual phage sequences that are correctly identified. Conversely,

specificity represents the proportion of non-phage sequences

accurately discerned. A method exhibiting high sensitivity

effectively identifies most phage sequences, while high specificity

indicates minimal misclassification of non-phage sequences as

phage-related. Supplementary Figure S2 presents the comparative

results of the models in terms of specificity and sensitivity.

Interestingly, longer sequences tend to decrease the specificity

for VirSorter2. This trend suggests that VirSorter2 might

misclassify non-phage sequences more frequently as the sequence

length increases. A concurrent analysis of sensitivity and

specificity reveals nuances in method performance. For example,

ProkBERT-mini consistently achieves top ranks in sensitivity

but displays variable results in specificity. On the other hand,

Virsorter2, despite its strong specificity, especially with extended

sequences, requires enhancements in its sensitivity. Notably,

several methods, including DeepVirFinder, ProkBERT-mini,

ProkBERT-mini-long, and ProkBERT-mini-c,

consistently maintain high specificity. Their narrow interquartile

ranges around upper values underscore their consistent,

reliable performance.

Next, we scrutinized the relationship between evaluation time

and prediction performance. It’s important to note that the

evaluation time encompasses not just the prediction interval but

also includes sequence preprocessing and model loading durations.

The ProkBERT family shines in terms of both swiftness and

efficacy. These methods, regardless of sequence length, consistently

register evaluation durations under 10 seconds, making them

invaluable for applications necessitating real-time predictions.

Specifically, for 2kb sequences, ProkBERT-mini-long records

a commendable accuracy of nearly 92.9%. Its Matthews Correlation

Coefficient (MCC), a reliable metric of prediction prowess, stands

at approximately 0.859 for the same sequence length. In contrast,

both VirSorter2 and DeepVirFinder manifest protracted evaluation

phases, with the latency amplifying as sequences lengthen.

Remarkably, VirSorter2 demands an evaluation span surpassing

1,000 seconds for 2kb sequences. While assessing accuracy,

DeepVirFinder exhibits suboptimal performance, especially with

succinct sequences like 256 bp, where it achieves a mere 75%.

However, it’s essential to acknowledge that VirSorter2 extends

beyond mere classification; it offers comprehensive annotations, a

process inherently time-intensive.

In essence, the ProkBERT family represents a synergy

of rapidity and reliability. Concurrently, other contenders

like VirSorter2, DeepVirFinder, and INHERIT unveil distinct

advantages, coupled with potential avenues for refinement.

4 Conclusion

In bioinformatics, there has always been a keen interest

in developing tools that can offer precise and context-sensitive

interpretations of sequences. Meeting this demand, we introduced

the ProkBERTmodel family. These innovative models benefit from

transfer learning (Pan and Yang, 2009), a method showing promise

in a variety of applications. A standout feature of ProkBERT is

its ability to harness vast amounts of unlabeled sequence data

through self-supervised learning (He et al., 2020). This approach

equips ProkBERT to handle challenges like limited labeled data, a

problem that has often hindered traditional models such as CNNs,

RNNs, and LSTMs (Cho et al., 2014; LeCun et al., 2015). Another

strength of ProkBERT is its adaptability; it performs well in

different scenarios, from those with sparse data to classic supervised

learning tasks (Snell et al., 2017). When we compare ProkBERT to

older models that largely depend on expansive datasets, it’s clear

that ProkBERT ushers in a more adaptable approach for sequence

analysis in prokaryotic microbiome studies.

Our results affirm the robust generalization capabilities of

the ProkBERT family. The learned representations are not only

consistent but also harmonize well with established biological

understanding. Specifically, the embeddings effectively delineate

genomic features such as coding sequences (CDS), intergenic

regions, and non-coding RNAs (ncRNA). Beyond capturing

genomic attributes, the embeddings also encapsulate phylogenetic

relationships. A case in point is the close proximity in the

embedding space between Klebsiella pneumoniae and Escherichia

coli, both belonging to the Enterobacteriaceae family.

We validated the versatility of the ProkBERT model

family by applying it to two challenging problems: promoter

sequence prediction and phage identification. Promoters play

an instrumental role in transcriptomic regulation. Leveraging

the transfer-learning paradigm, ProkBERT adeptly addressed

the promoter prediction challenge, even when fine-tuned on

multi-species datasets. This adaptability addresses a significant

gap, as many conventional bioinformatics tools tend to be species-

specific, often overlooking microbial diversity. In comprehensive

benchmarks against prominent tools, including Multiply,

Promotech, and i-Promoter2L, ProkBERT consistently outclassed

both traditional machine learning and deep learning counterparts.

For instance, in E. coli promoter recognition, it achieved an

accuracy of 0.87 and an MCC of 0.74, and even in a mixed-species

context, the accuracy was 0.81 with an MCC of 0.62. Additionally,
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our findings underscore the robustness of the training, with

the ProkBERT-mini variant demonstrating resilience against

variations in optimization parameters, such as learning rate.

Our evaluations demonstrate the prowess of ProkBERT

in classifying phage sequences. Remarkably, it achieves high

sensitivity and specificity even in challenging cases where available

sequence information is limited. However, this exercise also

highlights an inherent limitation of ProkBERT, and more broadly

of transformer models: the restricted context window size. While

transformer architectures are adept at capturing long-range

interactions (Lin et al., 2022), they typically have a limited view

of only a few kilobases. In comparative benchmarks with varying

sequence lengths, ProkBERT consistently surpassed established

tools like VirSorter2 and DeepVirFinder. For instance, it attained

an accuracy of 92.90% and anMCC of 0.859 in multiple benchmark

studies. Intriguingly, ProkBERT even outperformed a DNA-BERT-

based model, which employs a BERT architecture and vectorization

strategy similar to ours.

Discussing model variants, both ProkBERT-mini and

ProkBERT-mini-c have a maximum context size of 1kb,

while ProkBERT-mini-long extends this to 2kb. Notably,

ProkBERT-mini-long manages to use longer sequence

information without compromising on prediction performance

or demanding additional computational resources, thanks to the

LCA tokenization strategy. Our results indicate that the local

context information offered by ProkBERT-mini-long and

ProkBERT-mini enhances robustness, giving them an edge over

ProkBERT-mini-c.

ProkBERT’s superiority is not limited to prediction

accuracy; it also excels in terms of inference speed. Variants

such as ProkBERT-mini, ProkBERT-mini-long,

and ProkBERT-mini-c consistently deliver outstanding

performance, both in terms of evaluation speed and accuracy.

Regardless of the sequence length, these models typically complete

evaluations in under 10 seconds, making them exceptionally suited

for real-time applications (Vaswani et al., 2017).

The vector representations generated by ProkBERT can be

seamlessly integrated with traditional machine learning tools,

paving the way for innovative hybrid methodologies. Being an

encoder architecture, ProkBERT’s ability to produce embeddings

for nucleotide sequences enables the direct incorporation of

sequence information into more complex classifiers. This fusion

of traditional and deep learning methods represents a promising

frontier in bioinformatics. Furthermore, insights from natural

language processing research suggest that the most informative

representations may not always emerge from the final layer of a

model (Rae et al., 2021). This underscores the need for future

studies to delve deeper into the optimal layers for sequence

representation extraction in bioinformatics models.

ProkBERT distinguishes itself by being both compact and

powerful, embodying a blend of efficiency and accessibility. One

prevailing challenge with contemporary large language models

like GPT (Radford et al., 2019), BERT (Devlin et al., 2019),

and T5 (Raffel et al., 2019) is their enormity. Models with

hundreds of millions or even billions of parameters not only

demand substantial computational resources but also complicate

training and hyperparameter optimization processes. In stark

contrast, ProkBERT is designed with a lean parameter count

of approximately 20 million. This design choice ensures that it

can comfortably fit within the memory constraints of modest

GPUs. As a result, even researchers without access to high-

performance computing setups or top-tier GPUs can utilize

ProkBERT. Platforms like Google Colab, which offer free but

limited GPU computation, become viable environments for

training and evaluation tasks with ProkBERT.

As we present the findings of our study, it’s important

to recognize certain limitations and identify areas for future

enhancement. These include: (i) creation of larger models: The

effectiveness of our current models can be further improved by

scaling up. Larger models are likely to capture more complex

patterns, which is particularly beneficial for handling diverse and

extensive datasets. (ii) Increasing context size: Expanding the

context size in our models could lead to a better understanding

of longer sequence dependencies. This enhancement is crucial for

the accurate interpretation of biological sequences. (iii) Building

new datasets: The development of new, comprehensive datasets

is an ongoing necessity. These datasets should not only be

larger in size but also more diverse, ensuring the robustness and

wide applicability of our models. (iv) Diversity in sequencing

applications: Despite our progress, the question of diversity in

sequence applications remains. This includes broadening the range

of sequences our models can recognize and applying them to

a variety of biological phenomena. (v) Further applications and

descriptions: Future research should also aim to add and describe

additional applications. This would involve applying our models

to new sequence analysis tasks, expanding the scope and utility

of our work. Each of these points represents a critical area for

improvement and further research. Addressing these limitations

will enable us to develop more comprehensive and versatile tools

in the field of bioinformatics.

In essence, our findings highlight ProkBERT’s capability

to learn detailed and adaptable vector representations for

sequences. These representations hold promise not only

for current analytical challenges but also for emergent and

unforeseen sequence classification tasks in the future. Amidst

the challenges of understanding microbial communities,

ProkBERT stands as a transformative tool, elucidating the

complex interplay of genes and organisms in the microbiome with

remarkable precision.
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The presented study protocol outlines a comprehensive investigation into the 
interplay among the human microbiota, volatilome, and disease biomarkers, 
with a specific focus on Behçet’s disease (BD) using methods based on 
explainable artificial intelligence. The protocol is structured in three phases. 
During the initial three-month clinical study, participants will be  divided into 
control and experimental groups. The experimental groups will receive a soluble 
fiber-based dietary supplement alongside standard therapy. Data collection will 
encompass oral and fecal microbiota, breath samples, clinical characteristics, 
laboratory parameters, and dietary habits. The subsequent biological data 
analysis will involve gas chromatography, mass spectrometry, and metagenetic 
analysis to examine the volatilome and microbiota composition of salivary and 
fecal samples. Additionally, chemical characterization of breath samples will 
be  performed. The third phase introduces Explainable Artificial Intelligence 
(XAI) for the analysis of the collected data. This novel approach aims to evaluate 
eubiosis and dysbiosis conditions, identify markers associated with BD, dietary 
habits, and the supplement. Primary objectives include establishing correlations 
between microbiota, volatilome, phenotypic BD characteristics, and identifying 
patient groups with shared features. The study aims to identify taxonomic units 
and metabolic markers predicting clinical outcomes, assess the supplement’s 
impact, and investigate the relationship between dietary habits and patient 
outcomes. This protocol contributes to understanding the microbiome’s role 
in health and disease and pioneers an XAI-driven approach for personalized BD 
management. With 70 recruited BD patients, XAI algorithms will analyze multi-
modal clinical data, potentially revolutionizing BD management and paving the 
way for improved patient outcomes.
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1 Introduction

Human microbiome is the set of all the microorganisms that live 
in symbiosis with the human body, including bacteria, fungi, viruses 
and archaea. It has been found that, in a standard 70 kg male, bacteria 
are as numerous as somatic cells (Sender et al., 2016), but, due to their 
small dimensions, they contribute only 3% of the whole human body 
weight (Flint, 2012). Nevertheless, microbial communities are 
essential to keep the human body healthy. They synthesize some 
vitamins that our genes are not able to LeBlanc et al. (2013), help in 
the digestive processes (McConnell et al., 2008), teach the immune 
system how to recognize pathogens or cancer cells and even produce 
anti-inflammatory or anti-cancer compounds to defeat them 
(Nakkarach et al., 2021). The study of the human microbiome has 
demonstrated that microbial cell gene number in the human body are 
150 times larger than our own genome (Zhu et al., 2010; Grice and 
Segre, 2012) and radically different collections of microbes have been 
found between different people. Scarce knowledge about what are the 
causes of these variations and what regulates them has been achieved. 
A very impactful issue is that no understanding on how the human 
microbiome modification has influence on wellness, conservation of 
health, starting and rise of diseases has been reached (Gilbert et al., 
2018; Mandrioli et al., 2019). However, a correlation between changes 
in the microbiome, its metabolome and interaction with the immune, 
endocrine and nervous systems and the appearance of a wide 
spectrum of diseases [e.g., inflammatory bowel disease (Frank et al., 
2007; Gevers et al., 2014; Ni et al., 2017), cancer (Kostic et al., 2013) 
or depressive disorders (Jiang et al., 2015; Zheng et al., 2016)] has been 
detected. This finding indicates the possibility of treating this kind of 
illness by manipulation of such a microbial community. Variations in 
human oral or intestinal microbiome and its volatilome can mirror 
host lifestyle and affect the levels of diseases biomarkers (Vernocchi 
et al., 2020). The comprehension of the relationships between host 
microbiome and phenotypes is of fundamental importance to 
understand health or disease states. Similarly, chemical 
characterization of human breath and the identification of volatile 
organic compounds (VOCs) patterns linked to a specific disease, can 
provide information on the health state of a patient and allow early 
diagnosis of chronic diseases or the monitoring of the patient’s health 
state along therapeutic follow-up. In fact, VOCs are final products of 
cellular metabolic processes and their nature and/or concentration in 
human breath change along with metabolic pathways when a 
pathologic state onsets (Mozdiak et al., 2019).

Data from human microbiome and breath are inherently complex, 
noisy and highly variable because several factors such as diet, sex, 
hormonal status, drugs, habits, etc. could affect them. So, non-standard 
analytical methodologies are needed to extract their clinical and 
scientific potential. Nowadays, a lot of Artificial Intelligence (AI) 
methods, such as Machine Learning (ML) or complex networks, are 
available to catch this complexity. In particular, AI methods use 
several layers of linear and/or non-linear calculating units to 

understand the data they manipulate and to learn “patterns” from the 
same data. This learning can be used to classify the observations or to 
make predictions on them (Hassabis et al., 2017; Amodeo et al., 2021). 
The specific AI model to be used is chosen according to its capability 
to maximize prediction accuracy but requires, on the other hand, an 
increased complexity of the model itself, that makes it less interpretable 
(Shaban-Nejad et al., 2021) (e.g., “black boxes”). To overcome these 
drawbacks, coming from more complex models, and to adapt ML 
utilization to clinical contexts, eXplainable Artificial Intelligence 
(XAI) techniques have been introduced, that provide explanations for 
decisions the algorithm takes and for the risk scores calculated for 
every subject studied. Such a gain in interpretability for the chosen 
model is converted in the possibility to understand the main reasons 
standing behind a prediction and to point out the factors that majorly 
affect clinical risk scores at individual level. This approach is perfectly 
placed in an innovative concept of Personalized Medicine that requires 
the help of AI techniques.

The target of the proposed study is the Behçet Disease (BD), also 
known as Silk Road disease, a rare, complex and multi-systemic 
chronic vasculitis, characterized by mucocutaneous, articular, vascular 
and ocular lesions and also by central nervous system (CNS) 
symptoms. The most recurring signs of this disease are relapsing 
genital and oral aphthae (that can also spread in the whole digestive 
tract), ocular pathologies (>50% of cases), arthralgia and/or arthritis 
(45% of cases), venous system vasculitis and thrombosis. If thromboses 
occur in the arterial system, they usually involve pulmonary vessels. 
Neurological signs (neuro-BD) are frequent (>20%); they often occur 
1–10 years after the first symptoms, and include headache, 
hemiparesis, behavior alterations and sphincter dysfunctions. 
Nowadays, BD etiology is still not clear and cannot be traced back to 
a single root cause: the overactivation of the innate immune system, 
typical of this disease, seems to be  caused by an altered T-cells 
homeostasis, but it is common thought that also some components of 
the human microbiome can promote an abnormal adaptive immune 
response, in presence of a favorable genetic background (Rodrìguez-
Carrio et  al., 2021). In fact, several studies have linked BD to an 
intestinal or oral microbiota dysbiosis: in particular, a decrease in 
number of butyrate-producing bacteria, associated to a lower level of 
butyrate in fecal samples of patients has been noted (Consolandi et al., 
2015). As concerning gut, butyrate is involved in regulatory T cells 
differentiation (Furusawa et al., 2013) and in the release inhibition of 
pro-inflammatory cytokines (Weng et al., 2007). Low production of 
butyrate in patients suffering from BD may cause both reduced T-reg 
responses and T-cells immune-pathological responses activation, as 
suggested by the prevalence of T helper cells Th1 and Th17 in patients 
affected by BD (Alpsoy, 2016). Influencing intestinal microbiota, with 
factors such as the diet, can have a role in correcting intestinal 
dysbiosis and in reducing the severity of BD active phases. The 
evidence collected in the last decade highlight that adhering to dietary 
patterns which include high content of fibers can be linked to a better 
intestinal microbiota equilibrium; such a condition is favorable for 
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short chain fatty acid (SCFA) producer bacteria and unfavorable for 
bacteria species associated to a pro-inflammatory pattern (Fu et al., 
2020). Microbiota associated with dietary patterns rich in fibers was 
found to be positively correlated with high levels of SCFA (acetate, 
propionate, butyrate). Intestinal microbiota produces SCFA during 
indigestible polysaccharides (fibers) fermentation; these acid 
compounds have a well-documented protective role against several 
pathologies (Ho et al., 2018). To the best of our knowledge, a well-
defined diet plan for BD does not exist, and the general advice is to 
follow a balanced diet and to maintain an ideal weight. Nevertheless, 
the just mentioned studies allow us to speculate that following a diet 
rich in fiber can correct intestinal dysbiosis, which is involved in the 
BD pathogenetic mechanism, and stimulate butyrate endogenous 
production from intestinal microbiota, bringing to a potential 
improvement of clinical manifestations.

Keeping all these evidence in mind, the proposed study is aimed 
to: (i) establish correlations between oral and intestinal microbiota, 
fecal and salivary volatilome, breath and phenotypic features of 
human hosts, affected by BD, active and/or in remission; (ii) identify, 
through cluster analysis methods of metabolites, different groups of 
patients affected by BD; (iii) identify some taxonomic units of oral and 
fecal microbiota and metabolic markers that majorly contribute to the 
prediction of different clinical outcomes (e.g., number of active 
mucosal lesions, remission following the Behçet Disease Current 
Activity Form (BDCAF)); (iv) identify, with XAI methods 
(Bellantuono et al., 2022), some personalized metabolic markers that, 
for each patient, contribute to the prediction of his/her clinical 
outcome (personalized medicine); (v) evaluate the effects of soluble 
fiber intake (inulin) on eubiosis/dysbiosis conditions of oral and 
intestinal microbiota and on endogenous production of butyrate; and 
(vi) establish correlations between eating habits and clinical outcome 
of patients.

2 Methods and analysis

2.1 Study design

The project we are going to propose will be performed in three 
different sub-activities. The first sub-activity includes a two-arm 
randomized study (duration: 3 months): patients in the control arm 
will keep on assuming the standard therapy while patients in the 
treatment arm will assume soluble inulin-type fructans (inulin 90% 
from Cichorium intybus L.; Farmalabor S.r.l., Canosa di Puglia, Italy), 
along with the standard therapy. At the starting of study and 3 months 
later, for each patient, the following samples and data will be collected:

	 i	 samples for the assessment of oral/fecal microbiota;
	 ii	 breath samples;
	 iii	 clinical data such as Body Mass Index (BMI), disease duration, 

clinical phenotype and ocular, articular or 
mucocutaneous involvement;

	 iv	 laboratory data such as Erythrocyte Sedimentation Rate (ESR) 
and C-reactive protein (CRP);

	 v	 information on breath components;
	 vi	 information about eating habits, inviting patients to keep a 

food diary that can provide detailed descriptions on type and 
quantity of food and beverages consumed.

Furthermore, the second sub-activity will consist of:

	 i	 analysis of volatilome in breath samples and microbiota in 
saliva and fecal samples;

	 ii	 analysis of bacterial community taxonomic composition in 
fecal and saliva samples;

	 iii	 chemical characterization of breath samples.

Volatile metabolites (volatilome) chemical characterization in 
breath samples will be  determined through gas-chromatography 
coupled with mass spectrometry (GC–MS). For quality assurance in 
sampling phase and avoid any environmental contamination of breath 
samples, the end-tidal fraction of the exhaled breath will be collected 
by an automated device named Mistral (Predict srl) and directly 
transfer onto suitable adsorbent cartridges (Bio-monitoring steel tube, 
Markes International Ltd., UK) that will be preconditioned at 330°C 
for 30 min with pure helium (99.999%), analyzed to verify VOCs 
background level and properly stored at 4°C until use. Once collected 
onto the adsorbent cartridges, VOCs will thermally desorb and 
analyze by means a thermal desorber (UNITY-2, Markes International 
Ltd.) coupled with a gas chromatograph (GC 7890, Agilent 
Technologies) and a mass selective detector (MS 5975, Agilent 
Technologies). The analytical methodology for VOCs characterization 
in breath samples has been already optimized and validated in 
previously published studies (Di Gilio et  al., 2020a,b). With the 
purpose to emphasize the chemical information related to human 
metabolomics and identify the most part of endogenous VOCs of 
interest (not exclusively those included in standard mix) a semi-
quantitative analysis based on compound abundances will 
be performed. More specifically, the GC–MS chromatograms will 
be analyzed using the GC–MS post-run analysis software (Agilent 
Mass Hunter Qualitative Analysis-Agilent Technologies Ltd., Santa 
Clara, USA) integrating only the peaks with intensity higher than 5 
times than baseline and VOCs compounds will be identified through 
spectral library matching (Compounds library of the National 
Institute of Standards and Technology, Gaithersburg, MD 20899–
1070, USA) and through comparison with GC–MS chromatograms 
obtained by analysis of standard solutions of 44 VOCs (Ultra Scientific 
Cus-5997). Microbiota composition study will be performed through 
metagenetic analysis of rRNA16S gene (V3 and V4 regions). A 
negative control for sequencing will be included in the workflow of 
16S amplification and library preparation, consisting of all the reagents 
included in the sample processing and without the sample, to ensure 
that no contamination took place. Libraries will be quantified using a 
Qubit fluorometer (Invitrogen Co., Carlsbad, CA, USA) and pooled, 
including the Phix control library, to an equimolar amount (4 nM final 
concentration). FastQ file quality will be assessed by using FastQC 
software and analyzed by using the QIIME2 dedicated pipeline1 
microbiome platform (version 2020.8). Denoising will be computed 
with the q2-deblur QIIME plugin. Taxonomy will be inferred with the 
QIIME-compatible database Silva v.138 SSU, using an amplicon 
sequence variant (ASV) table based on error-corrected reads 
(Calabrese et  al., 2022; Vacca et  al., 2022, 2023). Finally, the last 
sub-activity is devoted to the implementation of XAI methods: the 

1  https://qiime2.org
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data obtained with the previous sub-activities will be analyzed with 
innovative AI methods. The aim will be to evaluate the conditions of 
eubiosis/dysbiosis and to identify potential microbial and metabolic 
markers linked to BD, to eating habits of patients and to a soluble fiber 
dietary supplement administration. The estimated project duration 
should be 18 months, including the enrollment time.

2.2 Study population

The study will be conducted on patients with BD, active or in 
remission according to BCDAF, aged from 18 to 65, after having 
signed the informed consent for participating in the study and for 
assuming inulin. Exclusion criteria will include pregnancy and 
breastfeeding, serious concomitant diseases or instability conditions 
(such as autoimmune diseases, chronic viral infections, malignant 
cancers), recent myocardial infarction (MI), chronic liver diseases and 
inflammatory bowel diseases (IBD) and recent (last 6 months) or 
current participation to slimming programs or assumption of weight 
loss drugs.

2.3 Interventional method

The fiber dietary supplement will be administered randomly to half 
of the study patients, in open-label mode. The BD patients will receive 
either inulin supplementation or placebo. The participants were 
recommended to consume the powder during the breakfast by mixing it 
to 150 mL of warm water and then stirring up the powder until dissolved.

At the starting point and 3 months later, for each BD patients will 
be collected: samples for the assessment of oral/fecal microbiota, breath 
samples, BMI, disease duration, clinical phenotype and ocular, articular 
or mucocutaneous involvement and information about eating habits. 
Patients in the treatment arm will assume 5 g per day of inulin in 
addition to their ordinary diet and in a randomized order. The 5 g dose 
was chosen after considering the amounts of prebiotics that would 
be  sufficient to induce positive and significant changes in the gut 
microbiota, but low enough to avoid adverse effects and minimize 
gastrointestinal discomfort (Bouhnik et al., 1999; Kolida et al., 2007).

All data obtained, will be analyzed with innovative AI methods, 
in order to evaluate the conditions of eubiosis/dysbiosis and to identify 
potential microbial and metabolic markers linked to BD, to eating 
habits of patients and to a soluble fiber dietary 
supplement administration.

2.4 Sample size estimation

To evaluate the differences, in terms of beta-diversity, in the whole 
microbial population, calculating the mean presence of operative 
taxonomic units (OTUs) between two groups with α = 0.05, 1-β = 0.80, 
final effect size = 0.80, the enrollment of 26 patients is needed. Taking 
into account a 20% dropout rate, an amount of 35 patients for each 
group is needed, with a total number of 70 patients for the whole 
study. For the univariate logistic regression with significance level 
1-β = 0.80 and α = 0.05, the target is to detect a shift of the probability 
(P0) (Y = 1) from the value of 0.10 regarding the mean value of X to the 

value of 0.30 when X is increased by a standard deviation above its 
mean value. This outcome corresponds to an Odd Ratio (OR) of about 
3.80, which requires a total sample size of 90 patients to provide a 
two-tail significance test. In the end, a total of 70 patients has been 
taken into account as the minimum number necessary for the study, 
because it will be needed to implement multivariate models for the 
adjustments. In fact, considering an expected squared multiple 
correlation coefficient between the covariates of about 0.30, to 
be  included into the multivariate models, the minimum sample 
dimension increases to 70 patients for the two-tail significance test. 
Finally, a group of 70 patients with BD, classified according to ISG 
and/or ICBD criteria, will be selected for this study. The features of 
this cohort are the following: 15/70 patients with mucocutaneous 
involvement (active or in remission, according to Behçet’s Disease 
Current Activity Form criteria) and 55/70 patients with articular 
involvement (active or in remission).

2.5 Outcome measure

In the initial phase of our study, our primary focus lies in a data-
driven analysis designed to distinguish, at the 3-month period, two 
distinct patient groups based on microbiota and volatilome profiles. 
The first group undergoes traditional treatment with soluble fiber 
intake (inulin), while the other receives only traditional treatment. 
This outcome is propelled by the application of Explainable Artificial 
Intelligence (XAI) techniques, aiming to uncover the pivotal features 
contributing to the differentiation between the two groups. Our 
investigation extends to understanding the global and local 
importance of these features, providing insights into the personalized 
metabolic responses to treatment.

The outcome measures considered are summarized in Table 1. 
Integrating these biological and clinical parameters using a data-
driven approach, our objective is to paint a comprehensive picture of 
the personalized metabolic markers associated with Behçet’s disease. 
This dual-phase evaluation not only enriches our understanding of 
microbiome and metabolome nexus with the disease but also lays the 
groundwork for targeted interventions and more detailed 
treatment strategies.

2.6 Adverse events

Symptoms relating to gastrointestinal discomfort (abdominal 
discomfort, diarrhea, constipation, bloating, and flatulence) are 

TABLE 1  Biological and clinical outcome measures considered in the 
presented protocol study.

Biological 
outcome 
measures

Erythrocyte sedimentation rate (ESR)

C-reactive protein (CRP)

Clinical 

outcome 

measures

Behçet’s Disease Current Activity Form (BDCAF) – measure 

of disease activity

Krause Total Severity Score – measure of disease severity

Short-form (SF)-36 quality of life (QoL) scale – measure of 

disease QoL
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widely reported in human prebiotic feeding studies, but they 
remain very mild at recommended intakes (Rumessen et al., 1990; 
Gibson et al., 1995). Based on the literature, 16 g of inulin-type 
fructans per day induces no or only minor gastrointestinal 
symptoms in healthy or diseased adults (Cani et al., 2009; Birkeland 
et al., 2020). Taking potential side effects into consideration, 5 g 
dose was preferred over higher doses due to a 
precautionary principle.

2.7 Data recording and data monitoring

Follow-up assessments and data collection will be undertaken at 
the U.O.C. Reumatologia Universitaria of the Policlinico Hospital, 
Bari, Italy, by trial personnel.

2.8 Data analysis

Data collected by investigators will include volatilome, oral/fecal 
microbiota, body mass index (BMI), disease duration, clinical 
phenotype and ocular, articular or mucocutaneous involvement.

The microbiota can be characterized in three different ways: 
alpha diversity metrics, relative abundance of phylotypes for each 
specimen and community state types (CST). Alpha diversity 
metrics, which represent the variety and richness of organisms in a 
specimen, and relative abundance of microbes will be  analyzed 
through supervised machine learning algorithms as Random Forest 
or XGBoost classifiers. Supervised machine learning is a category 
of machine learning where the algorithm is trained on a labeled 
dataset, which means that each example in the training data is 
associated with the correct output or target. The algorithm learns to 
make predictions or decisions based on input data by generalizing 
from the labeled examples it has seen during training. Moreover, 
the XAI algorithm “SHapley Additive exPlanations” (SHAP) will 
be  used to detect for each patient, which features are more 
important for the ML algorithm in its classification (Bellantuono 
et al., 2023; Novielli et al., 2023). SHAP is an algorithm used in 
machine learning to explain the predictions made by complex 
models, particularly for models like XGBoost, Random Forest, 
neural networks, and others. It provides interpretable explanations 
for individual predictions, helping users understand why a 
particular prediction was made. The third characterization, i.e., 
CST, which groups samples according to the composition of the 
microbiota, will be analyzed through the application of complex 
networks (CN). This mathematical method, also known as complex 
systems or complex networks theory, is a branch of network science 
that studies systems characterized by a large number of 
interconnected components or nodes, and the patterns and 
properties that emerge from these connections. In our case, 
interactions between microbiome and its host are complex 
phenomena, and to better understand this kind of complex 
interactions and to map microbiome behavior is of fundamental 
importance to have the possibility to model these interactions 
through CN. Modules of this complex biological network are key 
organizational elements for the network itself. To detect modular 
organizational structures of a complex network, community 
detection unsupervised algorithms will be used.

2.9 Comprehensive methodology for data 
challenges

To ensure a robust evaluation of our models, we will implement a 
cross-validation strategy. Cross-validation involves partitioning the 
dataset into subsets, training the model on some of these subsets, and 
testing it on the remaining subset. This process will be  repeated 
multiple times, and the performance metrics will be averaged. This 
approach ensures that our models generalize well and helps 
prevent overfitting.

To handle the possible presence of missing values, we will adopt a 
two-fold approach:

	 1	 Variable Selection: Variables with a relatively low percentage of 
missing values (below a defined threshold, e.g., 30%) will 
be considered to maintain data quality.

	 2	 Imputation Techniques: For variables exceeding the threshold, 
established imputation techniques will be  employed. 
Additionally, we will use imputation methods such as replacing 
missing values with the mean or maximum of the respective 
variable. Importantly, these techniques will be  applied 
separately to the training and testing datasets to prevent data 
leakage and ensure model generalization to unseen data.

We would also like to highlight the utility of the XGBoost 
algorithm, which inherently handles missing values in tree algorithms 
by learning branch directions during training.

To handle the potential limitation in the number of available 
patterns compared to the number of features considered, which could 
lead to overfitting, we  will address the issue through the 
implementation of two robust techniques: data augmentation and 
feature reduction.

	 1	 Data Augmentation: The data augmentation strategy aims to 
artificially amplify the quantity of training samples for deep 
learning models, emulating the distribution of the original 
dataset. This becomes especially advantageous when 
confronted with the constraint of a limited size in the training 
dataset. By introducing more diverse instances, it facilitates the 
model in generalizing more effectively, tackling the challenge 
posed by smaller training datasets. Essentially, it functions as a 
preprocessing technique and a type of regularization, 
significantly enhancing model performance and mitigating the 
risk of overfitting. Furthermore, the integration of Generative 
Adversarial Networks (GANs) into data augmentation further 
expands its capabilities. GANs can be employed to simulate 
data, generating synthetic instances that closely resemble real 
data. This innovative use of GANs not only augments the 
dataset but also introduces a layer of complexity and realism, 
ultimately contributing to the model’s ability to generalize and 
perform effectively across diverse scenarios (Creswell 
et al., 2018).

	 2	 Feature Reduction: Feature reduction is a crucial aspect of our 
approach. Techniques such as Principal Component Analysis 
(PCA) (Song et al., 2010) and wrapper methods like Boruta 
(Kursa et al., 2010; Bellantuono et al., 2023) will be employed. 
These methods effectively reduce the dimensionality of the 
feature space, allowing us to train models even with a limited 
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number of instances. This not only aids in computational 
efficiency but also contributes to model interpretability.

2.10 Ethics approval

This study has been approved by Comitato Etico Indipendente, 
Azienda Ospedaliero-Universitaria ‘Consorziale Policlinico’ on 
February 2023 (prot. n. 0023249|09/03/2023).

3 Discussion

3.1 Choice of treatment

Behçet’s disease is a rare, chronic, autoimmune disorder that can 
affect blood vessels throughout the body. It is named after the Turkish 
dermatologist, Hulusi Behçet, who first described the condition in 
1937. This disease primarily involves inflammation of blood vessels 
(vasculitis) and can affect various parts of the body. The overactivation 
of the innate immune system, typical of this disease, seems to be caused 
by an altered T-cells homeostasis, but it is common thought that also 
some components of the human microbiome can promote an abnormal 
adaptive immune response, in presence of a favorable genetic 
background. Behçet’s disease is more common in certain regions, such 
as the Mediterranean, Middle East, and Asia, but it can affect people of 
any ethnicity. Diagnosis is often based on clinical symptoms and may 
require ruling out other similar conditions. Treatment typically focuses 
on managing symptoms and reducing inflammation.

The gut microbiome has been a subject of extensive research in 
the context of immunological diseases. A recent study showed that a 
peculiar dysbiosis of the GM is present also in individuals with BS, 
mainly represented by a depletion of SCFA-producing bacteria, 
especially of butyrate (Pagliai et al., 2020). Several trials previously 
showed that inulin-type fructans supplemented in doses varying 
between 5 and 30 g per day may increase the SCFA levels and enrich 
microbial diversity in healthy and diseased people (Gibson et al., 1995; 
Ramirez-Farias et al., 2008; Calabrese et al., 2022; Vacca et al., 2023). 
Thus, the aim of the present project is to conduct a trial to investigate 
whether a supplement of inulin could be  beneficial for the gut 
microbiome and metabolome to the amelioration of the clinical 
symptoms and disease severity in individuals with BS. In support, a 
previous proof-of-concept study demonstrated that butyrate-enriched 
diets modulate the redox state of the blood and promote fibrin 
degradation, which is impaired by a neutrophil-dependent mechanism 
in BS (Becatti et  al., 2016). However, the same study reported no 
significant effects on gut microbiota composition and SCFA 
production, suggesting that more effective dietary interventions are 
needed (Emmi et al., 2021).

3.2 Anticipated results

This will be the first study that tries to understand the complex 
relationships between diet, intestinal microbiota and human breath in 
patients affected by BD through an innovative approach based on AI 
methods (Golob et al., 2023; Novielli et al., 2023; Papoutsoglou et al., 
2023). Such an understanding can represent a significant step forward 

toward the comprehension of pathogenetic mechanism at the basis of 
BD onset and the identification of microbial, metabolic and 
immunological factors and therapeutic biomarkers able to control 
treatment outcome and to better understand how the such a treatment 
can modify microbiome. In fact, intestinal dysbiosis has been linked 
to inflammatory diseases (Douzandeh-Mobarrez and Kariminik, 
2019) and recent studies have demonstrated that therapeutic treatment 
in rare rheumatological diseases can modify subclinical intestinal 
inflammation and dysbiosis (Manasson et al., 2020), highlighting the 
bidirectional nature of this correspondence. Furthermore, this study 
will evaluate for the first time with multivariate models if microbiome 
and breath modulation through the diet can improve disease activity 
in patients with BD under treatment. This analysis could enable us to 
find valuable markers to identify responders and non responders, 
allowing treatment optimization and a personalized therapeutic 
approach. This study could be also useful to analyze diet effects on BD 
activation and/or remission. Going into details, network approach 
thought for this study is aimed to catch functional structure of 
dynamic processes happening between microbiome and human host, 
to identify the coexistence of different microorganisms, to trace 
relationships between microorganisms and to identify cohesive groups 
that play fundamental roles in maintaining functional relationships in 
the global network during the treatment. Identification and 
quantification of some of the topological properties of the network 
modules can provide important information on microbiome 
interactions and on their relationship with possible disorders and 
anomalies in inflammatory and pathological states. Specifically, 
co-occurrence patterns and identified polymicrobial interactions will 
be  related with other clinical and phenotypical data to detect 
correlations between network functional and structural properties and 
biological and pathological profiles in different starting conditions. 
This integrative approach is completely innovative, since it will allow 
to highlight some connectivity patterns linked to inflammatory states, 
pathologies, etiological agents and even the organisms responsible for 
pathology transmission.

In our study protocol, we propose groundbreaking methodologies 
for personalized understanding of Behçet’s disease. One avenue of 
exploration involves the utilization of breath analysis to identify 
distinct Volatile Organic Compounds (VOCs) patterns in exhaled 
breath (Di Gilio et  al., 2020a). By harnessing the capabilities of 
artificial intelligence algorithms, we aim to explore the nexus between 
microbiome and metabolome offering a non-invasive and efficient 
approach for Behçet’s disease management. Here, machine learning 
takes center stage, enabling us to unravel complex patterns within the 
oral microbiome. The goal is to uncover unique microbiome 
signatures associated with Behçet’s disease, laying the groundwork for 
a personalized medicine approach. This exploration promises not only 
a deeper understanding of the disease but also the potential for 
tailored interventions based on individualized oral microbiome and 
metabolome profiles (Bellando-Randone et al., 2021).

In the third facet of our study, we introduce the application of 
explainable artificial intelligence to analyze microbiome and 
volatilome data related. This innovative approach addresses the 
limitations of traditional machine learning methods, offering a clear 
and interpretable understanding of disease-associated microbiome 
and metabolome biomarkers. By incorporating local explanation 
embeddings and an unsupervised clustering method, we  could 
anticipate the identification of distinct subgroups among subjects 
(Novielli et al., 2023). These perspectives open the door to personalized 
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interventions, marking a significant stride toward a more nuanced and 
effective treatment paradigm for Behçet’s disease.

4 Conclusion

The protocol presents a promising and innovative approach to 
understanding BD, with potential implications for personalized 
treatment strategies, using eXplainable Artificial Intelligence.

The versatility of the selected analysis methods makes it possible 
to apply this approach to other types of complex diseases.
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Metagenomics, Metabolomics, and Metaproteomics have significantly advanced

our knowledge of microbial communities by providing culture-independent

insights into their composition and functional potential. However, a critical

challenge in this field is the lack of standard and comprehensive metadata

associated with raw data, hindering the ability to perform robust data

stratifications and consider confounding factors. In this comprehensive review,

we categorize publicly available microbiome data into five types: shotgun

sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and

metaproteomic data. We explore the importance of metadata for data reuse

and address the challenges in collecting standardized metadata. We also,

assess the limitations in metadata collection of existing public repositories

collecting metagenomic data. This review emphasizes the vital role of metadata

in interpreting and comparing datasets and highlights the need for standardized

metadata protocols to fully leveragemetagenomic data’s potential. Furthermore,

we explore future directions of implementation of Machine Learning (ML) in

metadata retrieval, o�ering promising avenues for a deeper understanding

of microbial communities and their ecological roles. Leveraging these tools

will enhance our insights into microbial functional capabilities and ecological

dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role

in ML models development.
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1 Introduction

Human microbiome research has made significant progress in recent years, with

a growing amount of metagenomic, metabolomic, and metaproteomic data that holds

immense potential for hypothesis testing, meta-analyses, and disease diagnosis (Gilbert

et al., 2018). However, several challenges hinder researchers from fully harnessing these

resources, including the substantial time investments required, difficulties in accessing

metadata, the demand for computational resources and bioinformatic expertise, and

inconsistencies in annotation and formatting among individual studies (Pasolli et al., 2017).
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Recently, several reviews and surveys have been published

on the application of multi-omics approaches, particularly in

the context of microbiome research. Marcos-Zambrano et al.

(2021) focused on the application of machine learning (ML)

techniques in human microbiome studies, covering topics such

as features selection, biomarkers identification, disease prediction,

and treatments. Hernández Medina et al. (2022) and Mathieu

et al. (2022) overviewed how the latest microbiome studies

harness the inductive prowess of ML and deep learning (DL)

methods and considering how microbiome data peculiarities (i.e.,

compositionality, sparsity, and high-dimensionality)—necessitates

adequate handling. Another noteworthy review article by Quince

et al. (2017) emphasized best practices for shotgun metagenomic

studies, discussed the identification and management of various

technical limitations encountered during experimental approaches

and provided an overview of implementing computational

pipelines for shotgun data analysis. In a comprehensive discussion

of experimental considerations for omics-based microbiome

studies, Mallick et al. (2017) listed bioinformatics analysis tools

tailored explicitly for metagenomics and metatranscriptomics and

also touched upon the challenges associated with integrated multi-

omic analyses. Nyholm et al. (2020) provided a perspective article

that summarized the application of the holo-omics approach in

biological research. They focused on holo-omics use cases in studies

related to host-microbiota interactions, with an emphasis on

exploring applications across various fields rather than engaging in

a debate about available tools and methods. In a recent perspective

Huttenhower et al. (2023) described how microbiome data sharing

faces challenges due to its complexity and interdisciplinary nature.

While best practices exist, they are not always widely adopted due

to the effort involved. The need for microbiome-specific resources

and recognition of data sharing efforts should be prioritized for

progressing this field.

While these reviews and studies have significantly contributed

to our understanding of microbiome research, there appears to be

a noticeable gap in the public domain. Specifically, there seems

to be a lack of comprehensive review articles that emphasize the

critical importance of metadata in optimizing the implementation

of ML and other advanced techniques within microbiome studies.

Predictive models relying on artificial intelligence (AI) and ML

tools have proven to be invaluable for gaining insights from

the vast quantities of metagenomic data generated in laboratory.

These tools also play a crucial role in unraveling the ecology and

behavior of microbial taxa under study. AI and ML contribute

to informed decision-making, effective management strategies,

and conservation planning by providing a deeper understanding

of microorganisms.

We aim to fill critical gaps in the existing microbiome research

literature, with a specific focus on implementing machine learning

(ML) techniques for microbiome classification while utilizing

sample/rawmetadata or diseasemetadata (pathological conditions)

for each study and systematically reprocessing and reanalyzing

the data. Unlike previous reviews, we highlight the importance

of integrated metadata analysis, which involves discussing both

experimental considerations (e.g., study design, sample collection,

and sample processing steps) and bioinformatics considerations

(e.g., managing diverse data types, assessing computational

demands, selecting integration approaches, and analysis tools). We

delve into the current landscape of metagenomic, metabolomic,

and metaproteomic data analysis within microbial communities

and concentrate on integratedmetadata derived frommetagenomic

microbial community analyses. This review may be of interest

to a broad range of researchers in the microbiome field,

including those with expertise in ML, DL, and bioinformatics. We

anticipate that our work will help to accelerate the development

and implementation of advanced ML-based approaches for

microbiome classification and disease diagnosis.

2 Exploring the diversity of
microbiome data types and challenges
in data analysis

2.1 “Omics” data types: understanding five
distinct categories

Recent advances in next-generation sequencing (NGS)

technology have enabled the generation of vast amounts of

metagenomic data. Each of these data types provides unique

insights into different aspects of the molecular world, and

advances in high-throughput technologies and data science

have made it increasingly possible to leverage all of these data

types simultaneously (La Reau et al., 2023). Metagenomic

sequences obtained with different sequencing strategies can

be analyzed to answer a variety of questions: What is the

relationship between the resolution of bacterial composition

and the total number of obtained reads? To what extent

do different sequencing methodologies selectively capture

bacterial genera, resulting in exclusive identification by one

strategy but not the other? To what degree do the sequencing

approaches diverge in their capacity to explain relevant

insights into specific experimental conditions? Moreover,

other omics applications have been used to investigate the

complexity in microbial communities, namely, metabolomics

and metaproteomics. This wealth of data can be broadly

categorized into five distinct types: shotgun sequencing,

amplicon sequencing, metatranscriptomic data, metabolomic,

and metaproteomic data.

2.1.1 DNA-metabarcoding: profiling microbial
communities

The most commonly used approach to analyze microbiota

is DNA-metabarcoding (also known as amplicon-based

metagenomics). In metabarcoding, samples are characterized

using reads obtained through the selective amplification of marker

genes, like the evolutionarily conserved 16S rRNA gene or the

ITS region. 16S rRNA gene profiling allow us to characterize the

taxonomic composition of prokaryotic communities while ITS

(ITS1 or ITS2) has been suggested for fungi (Santamaria et al.,

2012, 2018; Tangaro et al., 2021). Nonetheless, there are three main

limitations in Amplicon Sequencing: (I) Taxonomic resolution and

the ability to profile non-bacterial members of the community,

such as Eukaryotes in the environment. The conservation of the
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16S rRNA gene and the length of the amplicon product restrict the

achievable taxonomic resolution. This means that certain closely

related taxa may be difficult to differentiate based solely on the

16S rRNA gene sequence. Approaches based on the long reads

sequencing (e.g. Oxford Nanopore and Pacific Biosciences), able to

cover the whole 16S rRNA and ITS regions, are promising in reach

species level taxonomic resolution (Johnson et al., 2019; Notario

et al., 2023). (II) Inherent limitations in functional profiling:

this approach attempts to estimate functional capacity using the

16S rRNA gene, it inherently lacks the ability to directly analyze

the functional potential of microbes or microbial genes. Tools

exist able to infer functional capabilities based on the taxonomic

profiles such as Tax4Fun2 (Asshauer et al., 2015; Wemheuer

et al., 2020) and the phylogenetic investigation of communities by

reconstruction of unobserved states with PICRUSt (Langille et al.,

2013) and PICRUSt2 (Douglas et al., 2020), but the accuracy and

resolution of these predictions are limited. (III) PCR amplification

and its effects: PCR-based marker gene surveys are vulnerable

to a multitude of factors that can introduce errors and bias into

microbiome studies. These factors, extensively documented in

the literature (Nearing et al., 2021), encompass: undersampling,

differential extraction contamination, storage bias, amplification

parameters and quality of the starting template. Undersampling

refers to the risk to obtain an incomplete representation of the

microbial community due to limited sampling. Contamination

from DNA introduced during laboratory experiment through

reagents and equipment, known as contaminating DNA from

reagents, is another concern. The sample storage conditions under

which samples are kept can significantly impact the quality and

quantity of DNA. The amplification parameters employed in PCR,

including enzyme choice, annealing temperature, amplification

time, ramp rates, and cycle number, can introduce variability

and errors. Variations in the starting template concentration can

also affect the outcomes of amplification. Furthermore, DNA

properties such as GC content and secondary structure, known

as template properties, can influence amplification efficiency.

Errors may be introduced by primer mismatches or degeneracies,

where primer sequences may not perfectly match target sequences.

Polymerase errors during DNA polymerization in the PCR process

contribute to the issue (Berden et al., 2022). Challenges also arise

from chimeric reads, which are formed from hybrid sequences

originating from different templates during amplification (Haas

et al., 2011). Random errors, unpredictable in nature, can emerge

during the PCR process, while systematic PCR errors may be

associated with specific primer pairs or conditions. It’s crucial to

recognize that sequencing itself introduces errors, with Illumina

sequencing posing particular challenges due to its imaging-based

nature (Pienaar et al., 2006). These potential sources of error

and bias has led to concerns about the accuracy, reproducibility,

and potential contamination in microbiome studies (Gohl et al.,

2016). Nonetheless, despite the need for PCR amplification,

16S rRNA gene profiling requires a relatively low number

of sequenced reads per sample (∼100,000) to maximize the

identification of rare taxa. This makes it a cost-effective alternative

compared to shotgun metagenomic sequencing (Peterson et al.,

2021).

2.1.2 Shotgun sequencing data: unveiling
microbial abundance and functionality

Metagenomics experiments in the context of microbial

communities employ a shotgun sequencing approach, which

involves the isolation of DNA from the sample, its preparation

for sequencing, and subsequent deep sequencing. Shotgun

metagenomic (SM) data enable high resolution in estimation of

taxon abundance from phylum (Sunagawa et al., 2013), to strain

level (Scholz et al., 2016) within the original sample. In addition to

taxonomic profiling, shotgun sequencing data is used for studying

the functional potential of the human microbiome (Li et al., 2022).

In the analysis of SM data, the sequencing depth serves as a crucial

factor for understanding how it might affect the results. This impact

is particularly evident when sequencing depth is insufficient, or the

sample size is inadequate. A study by Li et al. (2022) reported that

15 million or higher depth as the optimal minimum sequencing to

explore species level composition formetagenome-wide association

studies (MWAS). The shotgun sequencing method has distinct

advantages over targeted sequencing techniques, such as 16S rRNA

gene sequencing. Shotgun sequencing is known for its relatively

unbiased nature, making it a suitable choice for capturing the

genomes of diverse species, regardless their phylogenetic origin

(Lu et al., 2017). In addition, recent studies by La Reau et al.

(2023) have revealed that shallow shotgun sequencing produced

lower technical variation and higher taxonomic resolution than 16S

rDNA sequencing at a much lower cost than deep SM sequencing.

There are several challenges and recommendations reported

in SM sequencing: (I) Human DNA Contamination and Skewed

Ratios: Challenges arise from shotgun sequencing approaches due

to their propensity to generate reads in proportion to the relative

concentrations of DNA within the sample. This often leads to an

extremely skewed ratio of microbial to human DNA, resulting in

human sequencing reads dominating within samples. For instance,

stool samples typically consist of <10% human DNA, whereas

samples obtained from sources like saliva, throat, buccal mucosa,

and vaginal swabs can contain more than 90% of reads aligned

to the human genome (Lloyd-Price et al., 2017). (II) Removing

host-derived DNA for accurate microbial analysis: Host-derived

reads should be removed from the metagenomic data before

downstream analysis by using available bioinformatic tools to avoid

bias in microbial quantification (Pereira-Marques et al., 2019). (III)

Distinguishing active from inactive microbial populations: A major

limitation of SM is that this technique does not allow distinguishing

between active (alive) and inactive (dead) microbial populations

and whether the predicted genes are actually expressed and under

what conditions.

However, some potential sources of bias are common to both

SM and meta barcoding. For instance, DNA extraction methods

can significantly impact the results. In addition, in the case of SM,

it is crucial to consider the differences in sequencing total DNA

through a PCR-free or PCR-enriched protocol. In this case, PCR

bias is also common to both strategies. These biases can influence

the resolution of bacterial composition, the selective capture of

bacterial genera, and the capacity to elucidate insights into specific

experimental conditions using different sequencingmethodologies.

Understanding and addressing these biases are crucial for accurate
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and reliable interpretation of metagenomic data (McLaren et al.,

2019).

2.1.3 Metatranscriptomic insights: revealing
microbial activity

Metatranscriptomics is the study of the transcriptional activity

of microbes and microbial populations, which is particularly

useful for functionally investigate the gut microbiota. It is a

powerful tool for understanding the active states of microbes,

their genes, and the different expressed pathways, as well as for

detecting and understanding the microbial role in pathological

conditions. We can gain insights into the gene expression patterns

of pathogenic microorganisms and their interactions with the host

by examining the RNA transcripts present in a host microbiome.

This information can aid in the early detection and diagnosis of

infectious diseases, as well as in monitoring treatment efficacy and

disease outcomes (Bashiardes et al., 2016).

However, there are some limitations to metatranscriptomic

analysis in disease detection. First, the complexity of the microbial

community and the varying abundance of different transcripts

can make it challenging to assess their source from pathogenic

or commensal microorganisms. Additionally, technical biases and

limitations in sequencing technologies (i.e. reads length) may affect

the sensitivity and accuracy of detecting low-abundance transcripts.

Furthermore, the interpretation of metatranscriptomic data in the

context of disease requires careful consideration of various factors

such as the host immune status, sample collection techniques, and

potential confounding factors. Standardized protocols for sample

collection, RNA extraction, and data analysis are essential to ensure

reproducibility and reliability of results.

Despite these challenges, metatranscriptomic analysis holds

great promise for understanding host-microbe interactions in

disease (Bashiardes et al., 2016), discover novel microbial

interactions (Bikel et al., 2015), detect regulatory antisense RNA

(Bao et al., 2015), and track expression of genes and determine the

relationship between viruses and their host (Moniruzzaman et al.,

2017). Advancements in sequencing technologies, bioinformatics

tools, and data integration approaches will continue to enhance our

ability to harness metatranscriptomics for accurate and informative

disease diagnosis and monitoring (Shakya et al., 2019).

2.1.4 Metabolomic signatures: unraveling
interactions through metabolites

Metabolomics is an investigative approach focused on the

analysis of small molecules (<1.5 kDa), commonly known as

metabolites, within various biological samples such as urine,

serum, plasma, feces, and saliva. It is challenging to differentiate

between features originating from microbes and those from the

host or environment, so it is crucial to have clear links between

these features and the corresponding microbial profiles from

the specimen. These data become most valuable when closely

connected to the corresponding microbial profiles from the source

specimen. Also, this method aims to identify and characterize

metabolites in these samples, thereby enabling the development

of distinctive metabolic profiles for individuals or populations.

These profiles are reflective of a complex interplay between genetic,

environmental, and microbial factors.

Metabolomics encompasses two key approaches targeted and

untargeted. Targeted metabolomics focuses on specific known

metabolites, commonly used for validating biomarkers or studying

the effects of interventions like drug treatments or dietary

changes. It offers high sensitivity and precision but is confined

to the predetermined metabolites on the target list. Untargeted

metabolomics aims to identify and quantify all metabolites present

in a sample, enabling the discovery of newmetabolites, biomarkers,

and pathways. While less precise than targeted metabolomics, this

method provides a wider coverage of metabolites, shedding light on

complex biological interactions involving genetic, environmental,

and microbial factors. Distinguishing between features from

microbes, the host, or the environment is challenging, requiring

clear associations between these features and the respective

microbial profiles from the specimen for accurate interpretation

(Bingol, 2018; Yang et al., 2019).

A noteworthy illustration of this concept can be found in

the examination of bioactive microbial metabolites, specifically

short-chain fatty acids (SCFAs), which includes propionate,

butyrate, and acetate. These SCFAs have been implicated in

the development and progression of several diseases, including

inflammatory bowel disease (IBD) and colorectal cancer (Storr

et al., 2013). Additionally, there are other metabolites like bile acids,

sphingolipids, and tryptophan derivatives, all of which exhibit

evidence of microbial interactions and bioactivity within the gut

environment (Mallick et al., 2019).

Recent studies by Muller et al. (2021) have demonstrated that it

is possible to differentiate between individuals with IBD and those

without, as well as distinguish between specific subtypes of IBD

(ulcerative colitis and Crohn’s disease) by employing ML pipeline

and metabolic profiling techniques. This highlights the potential

of metabolomics in contributing to our understanding of the

underlying metabolic alterations associated with various diseases

and conditions. Notably, these alterations include metabolites

closely associated with critical microbial pathways like bile acid

transformations and polyamines metabolism.

Noteworthy, obtaining, processing, and comparing

microbiome-metabolome datasets frommultiple studies is typically

a cumbersome, extremely challenging, and time-consuming

process. Initial challenges include downloading the data associated

with each study, which are often missing or incomplete, and

linking microbiome, metabolome, and metadata sample identifiers

in each study. While sharing raw and/or processed metagenomics

data is common and relatively standardized in terms of formats

and online open-access repositories, metabolomics data is much

less standardized and often not being shared in microbiome

studies. Once all the raw data have been obtained, they need to

be jointly re-processed, which often requires additional expertise

or the use of a variety of bioinformatic methods. Making sure

taxon and metabolite identifiers can be mapped and compared

across datasets is another critical challenge and may require careful

and tedious curation efforts. Schorn et al. have recently addressed

some of these challenges by releasing a community resource for

linking raw genomic/metagenomic data with metabolomic data

(Schorn et al., 2021), yet, this resource requires proficiency in
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processing raw data sources and is targeted primarily at identifying

and confirming novel links between biosynthetic gene clusters and

metabolites (Muller et al., 2022). Regarding metabolomics raw

data, the European repository MetaboloLights (Yurekten et al.,

2023) currently contains 85 microbiome studies (out of 1,397,

accessed 1/1/2024) and it is interesting to note how currently in

the EMBL-EBI ENA (European Nucleotide Archive) repository are

available 146,583 datasets, highlighting the limited amount of raw

metabolomic data available (Yuan et al., 2023).

2.1.5 Metaproteomics: revealing the proteome
complexity

The gut microbiome, a highly intricate ecosystem comprising

trillions of microorganisms, presents a challenge for conventional

DNA-based approaches (Li L. et al., 2023). These methods often

fall short in elucidating the functional aspects of the microbiome,

unable to confirm whether predicted genes are actively expressed,

under what conditions, or to what extent (Park and Graveley, 2007;

Verberkmoes et al., 2009).Moreover, the viability and activity status

of the microbial cells remain uncertain. Meta-transcriptomics

(described above), although offering a solution by assessing RNA

expression as an indicator of gene activity, encounters challenges

related to the fate of expressed RNAs, ranging from protein

production to degradation or epigenetic silencing (Holoch and

Moazed, 2015; Yang et al., 2016). These limitations can be overcome

by directly assessing proteins.

Addressing these limitations, metaproteomic emerges as a

promising avenue, utilizing liquid chromatography–tandem mass

spectrometry (LC-MS/MS) to delve into protein functions. Unlike

DNA and RNAmethods, metaproteomic directly assesses proteins,

providing insights into microbial diversity and dynamic host-

microbiota interactions in the human gastrointestinal tract. This

technique aids in unraveling molecular mechanisms associated

with both homeostasis and disease pathogenesis (Lee et al., 2017).

In other words, metaproteomic is a large-scale characterization of

the entire protein complement and was initially used to study the

microbial function of environmental samples, like soil, activated

sludge, and acid mine drainage (Long et al., 2020).

Despite its potential, metaproteomic faces challenges, notably

in the depth of analysis due to the absence of a suitable

database. Taxonomic diversity calculators, commonly used in gut

microbiome studies, prove insufficient in assessing functional

states. The need for a functional perspective becomes evident, as

diversity alone does not necessarily correlate with the microbiome’s

functionality (Li L. et al., 2023).

Among metaproteomic studies, a mass spectrometry-based

shotgun proteomics approach is employed. This technique involves

the detection and identification of all proteins in a cell mixture

without gel-based separation or de novo sequencing. Peptides

resulting from enzymatic digestion of the proteome are separated

by liquid chromatography and analyzed through tandem mass

spectrometers. The resulting information is then compared

against peptide databases derived from genome sequences.

While shotgun metaproteomic has shown success in studies

involving microbial communities with low diversity, adapting this

approach to more complex environments, such as the human gut

microbiome, remains technically challenging. This method has

been demonstrated in few studies, including those focused on acid

mine drainage systems, endosymbionts, and sewage sludge water.

Indeed, in the ProteomeXchange (Vizcaíno et al., 2014; Deutsch

et al., 2017, 2022) repository, 211 studies out of 31,443 (0.7%,

data accessed on 1/1/2024) regards microbiome investigations.

However, challenges persist, and further advancements are needed

to overcome technical limitations in analyzing complex microbial

communities (Verberkmoes et al., 2009). The pursuit of a

comprehensive understanding of metaproteomics is strongly

recommended, with a key reference available in Xiong et al. (2015).

Erickson et al. (2012) described the simultaneous application of SM

and metaproteomics to identify potential functional signatures in

Crohn Disease (CD).

Table 1 summarizes the advantages, disadvantages, capabilities,

and recommended use of metagenomic data types.

3 Machine learning for microbiome
data analysis

In microbiome studies, there is a wide range of questions yet

to be solved; these question follows how microbial communities

and specific microbes within those community’s cause, respond

to, or contribute to disease. Do various diseases exhibit unique

gut microbiome alterations? Are some conditions associated

with pathogen intrusion, while others demonstrate a decline

in beneficial bacterial populations? Can we pinpoint microbial

biomarkers consistently enriched or diminished in a given disorder

across diverse patient populations? Several recent studies have

highlighted the advantages of implementing the ML pipeline on

SM data to understand microbial taxa, identify signatures for

disease identification and diagnose complex medical conditions,

particularly for gut microbiome-related diseases. These studies

demonstrate the following key benefits: (I) Improved Classification

Accuracy to taxa associated with IBD: Mihajlović et al. (2021)

employed a random forest (RF) model to classify Inflammatory

Bowel Disease (IBD), achieving an average F1 score of 91%.

This underscores the robust connection between IBD and the

gut microbiome, showcasing how ML can enhance diagnostic

accuracy in complex diseases. (II) Access the microbial taxa

signature from SM data: Liñares-Blanco et al. (2022) generated

a metagenomic signature using RF, effectively identifying IBD

from fecal samples. The model achieved AUC scores of 0.74

and 0.76 for different IBD subtypes, Ulcerative Colitis (UC)

and Crohn’s Disease (CD), respectively, highlighting the utility

of ML in subtype-specific diagnosis. Bakir-Gungor et al. (2021)

utilized machine learning, specifically the RF method, to develop

a classification model for Type 2 Diabetes (T2D) diagnosis and

revealing that a subset of 15 commonly selected features had a

significant impact on minimizing the microbiota required for T2D

diagnosis, thereby reducing time and cost, showcasing the efficiency

ofML in biomarker selection. (III) Biomarker discovery and patient

subgrouping: Another study by Bakir-Gungor et al. (2022) aimed to

identify biomarkers associated with human gut microbiota during

IBD. Supervised and unsupervised ML models were employed

to (i) aid IBD diagnosis, (ii) discover IBD-associated biomarkers,

and (iii) Identify patient subgroups using clustering approaches.
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TABLE 1 Assessing metagenomic data types: advantages, disadvantages, capabilities, and recommended applications.

Data type Definition Capabilities∗ Advantages Disadvantage Recommended use

Shotgun- metagenomics Whole-genome sequencing of all

genomes in a sample, including DNA

from bacteria, fungi, viruses, and the

host organism

• High resolution,

• Moderate selectivity

• High capacity

• Can identify all members of a

microbial community, including

novel and rare taxa.

• Can be used to study gene

expression and metabolic activity.

• Expensive, time-consuming,

• May not be able to identify all

bacterial genera at equal efficiency.

• Difficult to assemble and analyze

complex metagenomes.

• May not be able to detect

low-abundance taxa.

• Studying the diversity and

composition of microbial

communities, identifying new

species and strains of microbes,

• Investigating the functional

potential of a

microbial community

Amplicon- sequencing Targeted sequencing of a specific

gene or region of DNA from a sample

• Low resolution,

• High selectivity

• Medium capacity

• Can be used to target specific

bacterial genera or genes.

• Is relatively inexpensive and fast

to generate

• Cannot identify all members of a

microbial community

• Biased toward certain

bacterial genera

• Profiling the abundance of specific

bacterial taxa in a community,

Tracking changes in the microbial

community over time, Identifying

bacterial pathogens

Meta- transcriptomics Whole-transcriptome sequencing of

all RNA transcripts in a sample,

including RNA from bacteria, fungi,

viruses, and the host organism

• High resolution,

• Moderate selectivity

• High capacity

• Can be used to study gene

expression and metabolic activity

at a high resolution.

• Expensive, time-consuming, May

not be feasible to identify all

bacterial genera at equal efficiency.

• Difficult to analyze, as it is not

always clear which genes are being

expressed by which bacteria

• Studying the functional potential

of a microbial community,

Identifying differentially expressed

genes.

• Investigating the response of a

microbial community to

environmental stimuli

Metabolomics Identification and quantification of

all metabolites in a sample

• Low resolution

• Low selectivity

• High capacity

• Can be used to study the metabolic

activity of a microbial community

• Can be used to identify

novel metabolites.

• Cannot identify all members of a

microbial community.

• Biased toward certain metabolites.

• Difficult to identify and quantify

all of the metabolites present in

a sample

• Studying the metabolic potential

of a microbial community,

Identifying biomarkers of disease

• Analyze interaction between

microbes and their environment

Metaproteomics Study of the entire protein collection

(proteome) of a microbial

community

• Low resolution • High-throughput,

sensitive, quantitative

• Expensive, time-consuming,

difficult to interpret results

• Study microbial communities,

detect pathogens, and monitor

environmental changes.

Capabilities∗ : - Resolution, The ability to distinguish between different microbes or genes; Selectivity, The ability to target specific microbes or genes for analysis; Capacity, The amount of data that can be generated and analyzed.
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Random Forest outperformed other classifiers, shedding light on

potential microbiome-mediated mechanisms of IBD and offering

insights for microbiome-based diagnostics. Another study by

Zeller et al. (2014) aimed to detect early-stage colorectal cancer

(CRC) by employing metagenomic sequencing of fecal samples to

identify distinctive taxonomicmarkers distinguishing CRC patients

from those without tumors. CRC-associated changes in the fecal

microbiome reflected, at least in part, the microbial community

composition within tumors, indicating potential tumor-related

host-microbe interactions. The analysis also revealed a metabolic

shift from fiber degradation in controls to host carbohydrate

and amino acid utilization in CRC patients, accompanied by

increased lipopolysaccharide metabolism. IV) Geospatial Microbial

Provenance: In a recent study Bhattacharya et al. (2022)

implemented ML to enable geospatial microbial provenance.

Researchers delved into the assessment of geographical specificity

within environmental metagenomes. Primary objective was to

discern unique microbial signatures that could be attributed to

specific cities, relying on taxonomic classifications as the basis

for differentiation. The outcomes of this comprehensive analysis

unveiled a remarkable level of accuracy in pinpointing the origin

of metagenomic data. The accuracy rates for classifying samples

by city ranged impressively from 85 to 89%, while continental

classification exhibited an even higher accuracy level, fluctuating

between 90 and 94%. Leung et al. (2022) proposed an integration of

metagenomics, metabolomics, and clinical data to classify enrolled

participants based on their NAFLD (nonalcoholic liver disease)

status and liver fat accumulation, and reaching an overall AUROC

score of about 93%.

Also,ML offers a significant advantage over traditional statistics

in the field of microbial ecology, where conventional statistical

methods have been the norm for data summarization, hypothesis

testing, and interpreting interactions within microbial datasets.

The primary objective is to predict specific phenotypes, such as

disease states or age, based on microbiome data. One fundamental

distinction between statistical models and ML lies in their primary

objectives: statistical models aim to describe and infer relationships

between variables, whereas ML is tailored to optimize predictive

accuracy on external datasets. To illustrate, supervisedML typically

employs a learning step on a training dataset with labeled data

patterns associated with specific outcomes, while a separate test

dataset with unlabeled data is used to evaluate the model’s

performance. Finally, a validation dataset could be employed

to further evaluate the obtained model, when unseen data (i.e.

data not used neither for training nor for testing) are used. In

contrast, statistical models primarily focus on understanding how

values relate to outcomes, often without the need to partition the

data for performance evaluation. ML possesses several advantages

over classical statistics in microbial ecology research. It excels

in detecting subtle variations in microbial community structure

and can pinpoint particular bacterial taxa that play a pivotal

role in predicting specific outcomes. Additionally, ML can model

complex, non-linear combinations of bacterial count data and

environmental parameters, which closely resemble real-world

systems. This obviates the need for intricate data transformations

or preprocessing, which can be challenging when dealing with

molecular data.

Widening this aspect, ML approaches emerge as tool for multi-

omics data integration. The aim of multi-omics (or integrative

omics) approaches is to extract substantial evidence from large-

scale data by identifying, classifying, and quantifying different

biological molecules involved in complex structure, such tissues

or microbial communities (Vailati-Riboni et al., 2017). An

interesting application of multi-omics approaches was proposed

by Monteleone et al. (2021) in which they linked microbiota

composition and metabolites in Anorexia Nervosa (AN). This

condition in characterized by weight loss/regain cycles. Authors

characterize both the microbiota and the metabolome in the

underweight and regain phases, identifying a perturbation in gut

microbiota of AN female’s patients compared to healthy ones, and

an association to specific metabolites.

3.1 Utilization of publicly available
microbiome data in research studies

The rapid advancement of NGS technology has led to

an exponential growth in the volume of data housed within

publicly accessible repositories like the GenBank by the National

Center for Biotechnology Information (NCBI), the Metagenomic

Rapid Annotations using Subsystems Technology (MG-RAST), the

European Nucleotide Archive (ENA), and the DNA Data Bank

of Japan (DDBJ), among others. These repositories are invaluable

resources that store vast amounts of DNA sequences (Eckert

et al., 2020). Utilizing these raw sequences, made available to

the public, enables the application of cutting-edge ML and DL

techniques for extensive data analysis. In this section, we aim to

provide an insightful overview of the current trends in metadata

analysis through the use of publicly accessible raw data and

associated metadata.

Pasolli et al. (2016) conducted an extensive analysis of

metagenomic data, involving 2,424 publicly available datasets. They

introduced an ML-based framework for predicting microbiome-

phenotype associations, focusing on species-level abundances

and strain-specific markers. Cross-validation revealed strong

disease prediction capabilities, especially when using strain-

specific markers. Interestingly, including “control” samples from

other studies in training sets improved predictions. Streptococcus

anginosus was identified as a potential marker for general

microbiome dysbiosis rather than specific diseases. This work

advances our understanding of microbial dysbiosis and provides a

publicly accessible software framework and data.

Duvallet et al. (2017) gathered data from 28 published case-

control 16S rDNA amplicon sequencing gut microbiome datasets,

encompassing 10 different disease states. Their objective was to

explore whether consistent and disease-specific alterations in gut

microbial communities could be identified across various studies

of the same disease. Notably, some diseases, like colorectal cancer

(CRC), exhibited an abundance of disease-associated bacteria,

while others, such as IBD, were characterized by a depletion

of beneficial bacteria. Specific conditions like diarrhea displayed

substantial shifts in the overall microbial community, often

involving numerous associated microbes, while most conditions
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showed only a few microbial associations this study identify unique

patterns of dysbiosis shared across multiple disease states in the

human gutmicrobiome, characterized by variations in the direction

(i.e., the proportion of disease-enriched vs. disease-depleted

genera) and the scope (i.e., the total number of genera showing

differences between cases and controls) of disease-associated

shifts. Pietrucci et al. (2022) investigated the possible association

among gut-microbiome and Autism Spectrum Disorder (ASD)

by using metabarcoding data from eight different project and 6

different geographical location. The applied several ML approaches

and demonstrated their potential in overcoming limitation of

classical statistical approaches and perform features selection in

complex datasets.

Gupta et al. (2020) introduced the Gut Microbiome Health

Index (GMHI), for assessing health status based on the species-

level taxonomic profile of stool shotgun metagenome samples.

GMHI evaluates the likelihood of disease presence, independently

of clinical diagnosis, by comparing the relative abundances of

microbial species associated with positive and negative health

conditions. They implemented a mathematical index identified

from a comprehensive dataset of 4,347 publicly available human

stool metagenomes across various disease states.When they applied

to large-scale dataset, GMHI effectively distinguishes between

healthy and non-healthy groups, as compared to traditional

ecological indices like Shannon diversity and richness. In Lam

and Ye (2022) a network-based approach was implemented with

aim to build a microbial association networks upon a subset of

the Gupta et al. (2020) data. Additionally, they focused the more

on analyzing diseases individually rather than a disease-agnostic

approach, to better characterize microbial community traits in each

disease. Lam and Ye (2022) by focusing on microbial community

interactions in both healthy and diseased microbiomes, aimed at

identifying factors for the stratification of disease states and the

identification of potential microbial risk factors beyond individual

species. Furthermore, to gain insights into community interactions

across phenotypes, they also introduce a newmetric called “module

resilience” to study the retention of microbial community modules

in microbial interaction networks.

Casimiro-Soriguer et al. (2022) performed a meta-analysis of

1,042 fecal metagenomic samples from seven publicly available

studies. They applied ML pipeline based on functional profiles,

instead of the conventional taxonomic profiles, to produce a highly

accurate predictor of CRC with the aim to discriminate samples

with adenoma, which makes this approach very promising for

CRC prevention by detecting early stages in which intervention

is easier and more effective. In addition, ML is used to extract

features relevant to the classification, which reveals basic molecular

mechanisms accounting for the changes undergone by the

microbiome functional landscape in the transition from healthy gut

to adenoma and CRC conditions.

Lugli et al. (2023) investigated the genetic diversity within

bacterial taxa constituting the infant gut microbiome by utilizing

the vast collection of publicly available shotgun metagenomic

data and associated metadata from multiple global studies,

encompassing infants from birth up to the age of 3 years.

The extensive dataset, comprising 10,935 metagenomic profiles,

enabled the identification of critical bacterial signatures within

the infant microbiome, linked to distinct community-state types.

Additionally, in the study metabolic reconstructions of these

infant microbiomes shed light on the functional attributes of

these predominant microorganisms during the early years of

life, revealing potential correlations with health states from both

metagenomic and metatranscriptomic perspectives.

Nelkner et al. (2023) conducted a meta-analysis using data

from 16 primary studies, examining microbial communities in

agricultural soils across Europe. They aimed to understand

how European soil characteristics influence microbial community

composition, particularly focusing on Thaumarchaeota members.

Their analysis used publicly available metagenome sequencing

data to assess microbial abundance at different taxonomic

levels. This study highlights the significance of standardized

metadata reporting and the benefits of open data sharing in the

scientific community.

Key studies in microbiome research emphasize the significance

of utilizing publicly available metagenomic data (Pasolli et al., 2016;

Gupta et al., 2020; Lam and Ye, 2022; Lugli et al., 2023), which,

when combined with metadata from different studies, facilitate the

validation and confirmation of research findings. It also promotes

data sharing, allowing scientists to build upon each other’s work

and develop comprehensive insights into complex phenomena.

3.2 Challenges to implementing machine
learning

One key challenge is the interpretability of ML models,

which often function as “black boxes” without clear mechanistic

understanding. Interpretable ML approaches, such as deep forest

algorithms and methods that incorporate prior knowledge like

microbial interaction networks, are emerging to address this

issue (Räz, 2024). The second barrier is the scarcity of large,

high-quality, and correctly labeled microbiome datasets needed

to train ML models effectively (Schloss, 2018). Additionally,

ensuring data quality through techniques like deduplication, class

balancing, outlier removal, and imputation is crucial. Lastly,

selecting, evaluating, and tuning the right ML model for a specific

task can be challenging, but a rich ecosystem of libraries and

frameworks, as well as synthetic microbiome datasets, can aid in

model development and benchmarking (Hernández Medina et al.,

2022).

The challenges faced by ML in terms of metadata can

be analogously compared to the complexities encountered in

taxonomic annotation of bacteria, as discussed in the previous

article by Mathieu et al. (2022). Definition and standardization

of metadata: Over the past two decades, there has been a

growing need for establishing not just standards for collecting and

processing metagenomic data but also for developing well-defined

methods for preparing metadata. This is essential to ensure the

reusability of data and to train ML models for comprehensive

and interdisciplinary microbiome analysis, as highlighted by

Cernava et al. (2022). As bacterial species definitions are based

on laboratory protocol and experiments, their relevant metadata

including technical and analytical methods, must be well-defined
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and standardized in ML. The lack of clear metadata definitions can

lead to difficulties in classifying bacterial species and organizing raw

read data to perform effective statistical tasks. Data heterogeneity:

Similar to the high DNA heterogeneity observed in bacterial

species, metadata can vary greatly across different datasets and

sources. This data heterogeneity poses challenges in integrating and

comparing information when metadata standards are inconsistent.

Moreover, considering we’ve only accessed a fraction of bacterial

diversity on Earth, metadata used in ML may be incomplete

and fail to capture the full spectrum of information needed

for robust model training. Datasets may lack essential metadata

attributes, making it challenging to build accurate models. Data

representation: Just as metagenomic assembled genomes (MAGs)

may not resemble complete genomes, metadata representation

can be inconsistent or not following a standard format. This

can make it difficult to interpret and utilize metadata for

ML purposes. Taxonomy and classification: Similarly, integrating

MAGs into metagenomic classifiers is complex due to their

ambiguous taxonomy affiliations. In machine learning, associating

metadata with specific categories or labels can be challenging when

dealing with data that doesn’t neatly fit into predefined classes.

Integration with Models: Just as MAGs are not fully integrated into

taxonomy, metadata may not always seamlessly integrate with ML

models. It requires careful preprocessing and feature engineering to

incorporate metadata effectively into the modeling process.

Yilmaz et al. (2011) introduced minimum information

standard about metagenomic sequence (MIMS) and the minimum

information about marker gene sequence (MIMARKS). Those are

two widely used standards for reporting metagenomic and DNA

metabarcoding data. These standards provide checklists of essential

information for sharing data, such as the sample type, collection

method, sequencing platform, and data processing steps.

In addition to MIMS and MIMARKS, there are a number

of other standards that can be used to report specific types

of metadata, such as the environmental package (E-Package): a

standard for reporting environmental metadata associated with

metagenomic samples (Logares et al., 2012) and the human

microbiome project (HMP) data analysis pipeline: A standard for

reporting metadata associated with human microbiome studies

(Huttenhower et al., 2012) and microbiome quality assurance

(MQA) a protocol for reporting quality control metrics for

metagenomic and DNA metabarcoding data (Lassalle et al., 2018).

The adoption of these standards makes microbiome data findable,

accessible and, reusable for other researchers. This is essential for

accelerating progress in metagenomics and DNA metabarcoding

research (ten Hoopen et al., 2017).

The technologic advancements in instrumentation toward

high-throughput and high-resolution methods in metabolomics,

have supported the accumulation of big data across laboratories

that needs a support regarding data and metadata deposition

(Haug et al., 2017). TheMetabolomic Standard Initiative (MSI) and

COSMOS (COordination of Standards in MetabOlomicS) (Salek

et al., 2015) are constantly supporting the definition of minimum

standards in metabolomic data deposition by implementing the

MSI Core Information for Metabolomics Reporting (CIMR)

(Sumner et al., 2007). Moreover, COSMOS is actively engaging

publishers to promote the requirements for authors to deposit

metabolomics results, as is required for other “omics” disciplines

(Salek et al., 2013). As an outcome of the COSMOS initiative,

in 2014 the MetabolomeXchange database and repository was

launched. It aggregates data from the major providers, namely

MetaboLights (Yurekten et al., 2023), Metabolomics Workbench

(Sud et al., 2016), and Metabolomic Repository Bordeaux, to

facilitate the access and reusability of metabolomic datasets and

associated metadata (Ferry-Dumazet et al., 2011).

Similarly to what happened for NGS data, proteomics

and metaproteomics data release (both raw and processed)

was initially driven by journals guidelines, and resulting in a

lack of minimal associated metadata (e.g. experimental design,

peptide identification and quantification, protein identifications

and protein ratios) (Olsen and Mann, 2011). In this context, the

ProteomeXchange (Vizcaíno et al., 2014; Deutsch et al., 2017, 2022)

international consortium aims to overcome data and metadata

deposition issues by exploiting the cooperation of primary [PRIDE

(Perez-Riverol et al., 2021) and PASSEL (Farrah et al., 2012)]

and secondary [PeptideAtlas (Desiere et al., 2006) and UniProt

(The UniProt Consortium, 2023)] resources, bioinformaticians,

researchers and also representatives from journals active in the

field, and offering a framework for consistent and user-friendly

data deposition.

3.3 Limitation of ML/AI application to
microbiome data analysis

Training by using a feature count table consisting of vectors

composed of the relative representation of each taxon or MAGs in

the sample is the most common approach to develop a predictive

model (Figure 1), which is followed by normalizing the raw counts

using an appropriate approach accounting for sparsity and data

compositionality (Gloor et al., 2017; Casimiro-Soriguer et al., 2022).

However, the implementation of ML comes with its own set of

limitations, potential errors and common challenges associated

with applying ML to this input data:

3.3.1 Data quality and pre-processing
Due to the high dimensionality, sparsity, and noise of

metagenomic data, a significant challenge arises during the

normalization process to feed into the ML model. Non-biological

zeros are a prevalent phenomenon observed in both 16S rRNA

and SM datasets (Jiang et al., 2021). The abundance distributions

of taxa are distorted by these zeros, which can be attributed

to three distinct categories: biological, technical, and sampling

zeros (Brill et al., 2022). Biological zeros correspond to actual

zero abundances of taxa that do not exist in the microbiome

samples. In contrast, technical zeros and sampling zeros are non-

biological zeros with distinct origins. Technical zeros result from

pre-sequencing experimental artifacts, such as DNA degradation

during library preparation and inefficient sequence amplification

driven by factors like GC content bias (Silverman et al., 2020).

On the other hand, sampling zeros stems from limitations in

sequencing depths. Addressing the intricacies associated with these

zero categories is imperative for robust ML model construction.
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FIGURE 1

Comprehensive framework for metagenomic data documentation and metadata analysis.

In addition, a typical dataset may contain a few hundred training

instances but thousands of OTUs/ASVs (i.e., features); this large

number of features can greatly challenge the classification accuracy

of any method and compound the problem of choosing the

important features to focus on.

3.3.2 Biological complexity
The microbiome is variable between individuals and time. This

biological variability can make it challenging to identify universal

patterns or develop generalizable models (Kodikara et al., 2022;

Vinciotti et al., 2023). Also, the taxonomic and functional variability

of microbial communities can exhibit significant differences

across different environments, making it difficult to establish

consistent associations.

3.3.3 Interpretability
Complex machine learning models, such as deep neural

networks, might lack interpretability, making it challenging to

understand the biological significance of the learned patterns as

these models may not be able to generalize to new, unseen data

(Linardatos et al., 2021). Interpretable models are often preferred

in microbiome research to gain insights into the relationships

between microbial features and expected outcomes (Bengtsson-

Palme, 2020).

3.3.4 Overfitting and generalization
Due to the high dimensionality of microbiome data, models

may be overfitting to noise and contain many spurious correlations

in the training data (Walsh et al., 2023). To prevent overfitting, we

can use several techniques, such as early stopping, regularization,

and data augmentation (Balestriero et al., 2022). Early stopping

involves stopping the training process before the model has fully

converged, while regularization involves adding a penalty term

to the loss function that discourages the model from overfitting

(Schmidt, 2023).

Imbalance dataset and cross-validation issues may lead

to optimistic estimates of model performance. In this case

recommended to use methods like stratified cross-validation
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techniques to account for class imbalances in microbiome datasets

(Gou et al., 2020; Casimiro-Soriguer et al., 2022; Watson, 2022).

3.3.5 Batch e�ects and confounding variables
Batch Effects are very common, and this often introduces

systematic differences between the measurements of different

batches of experimental such as sites/between laboratories, sample

preservation protocols, storage conditions, DNA/RNA isolation

methods and kits (Ling et al., 2022; Li Y. et al., 2023), sequencing

methods can introduce batch effects, which may confound the

true biological signals. Combining data from different batches

without carefully removing batch effects can give rise to misleading

interpretations of taxonomical classificational and ML model

interpretations. Therefore, it is necessary to identify and remove

the batch effects before proceeding to the downstream analysis and

proper normalization and batch correction techniques are essential

(Luo et al., 2010) and multiple approaches for batch effect removal

have been reported (Alter et al., 2000; Benito et al., 2004; Ling et al.,

2022).

Confounding Variables such as diet, medication, and lifestyle

can influence the microbiome composition (Li Y. et al., 2023).

Failure to account for confounding variables may lead to spurious

associations (Al Bander et al., 2020).

Feature Selection and Dimensionality Reduction are used

to face the sparsity of microbiome data issue, which makes it

challenging to identify important features and patterns through the

input data (Lee et al., 2023). Feature selection or dimensionality

reduction techniques must be applied during model training.

3.3.6 Model validation and reproducibility
Lack of independent datasets for validation, testing, or failure

to reproduce results can undermine the reliability of ML in

microbiome analysis (Rojas-Velazquez et al., 2024).

Pammi et al. (2023) reviewed the use of artificial intelligence

in integrating “multi-omic” and compared metagenomics analysis

approaches, highlighting the effectiveness of statistically equivalent

signatures for feature selection and random forest modeling in

achieving accurate disease diagnosis and biomarker discovery in

colorectal cancer patients.

4 Understanding metadata: data about
data

Metadata is “data about data” (Cernava et al., 2022) refers to

contextual information associated with metagenomic experimental

data offering a comprehensive understanding of the sample’s

background. In microbiome research, metadata’s definition varies

based on the type of metagenomic sample under analysis. For

instance, metadata for a human gut sample will differ from

that of an ocean sample, yet both serve to contextualize the

data. Metadata plays a pivotal role in providing context by

describing various aspects of the sample, including collection

time points, geographical location, biome type, environmental or

experimental conditions, and sample pre-processing steps (Leipzig

et al., 2021). The structure of metadata can vary by study, but it

typically includes features such as chemical data (e.g., pH, salinity),

physical data (e.g., temperature, incident light), sample collection

time points, host condition (disease/healthy), diet variations,

antibiotic exposure, and geographical location (Nassar et al., 2022).

Moreover, metadata should encompass information on sampling

methods, sample size, and sample preparation techniques. Precise

metadata annotation is crucial for detailing the sample source,

tissue collection methods, environmental characteristics, and

additional specifics like DNA extraction protocols, sequencing

library preparation methods, and sequencing depth. In essence,

metadata enriches metagenomic data by providing the critical

context needed for analysis and interpretation inmicrobiome result

(Nassar et al., 2022).

4.1 The significance of comprehensive
metadata in microbiome research

The collection and utilization of various metadata elements

in microbiome research are of paramount importance. These

elements encompass a wide array of information, from the

characterization of the microbiome’s natural environment

(ecoregion) to the specific host organism (host microbiome) and

even human-made environments (engineered microbiome). For

a microbiome study, metadata exists at multiple stages along the

path from sampling to analysis of omics data as shown (Figure 2).

This metadata falls into twomain categories: assay metadata, which

encompass technical details like machine type, assay date, and

reagent kits, and biological metadata, which describe experimental

aspects like sample conditions, exposure to drugs, animal housing

conditions, or host genetic information. The absence of such

information may affect downstream statistical analysis and even

qualitative interpretation challenging or impossible.

4.1.1 Sample metadata
Information about provenance and characteristics of the

samples: when it was collected (e.g., date and time), where it

was collected from (e.g., latitude, longitude, elevation/depth, site

name, country, etc.), what kind of sample it was (e.g., soil,

seawater, feces/stool), and the properties of the environment during

collection (e.g., temperature, salinity, pH) or if sample is clinical

then phenotypic condition (e.g., age, sex, disease state/normal)

from which the sample was taken and the nature of the sample

material itself all contribute valuable context to microbial studies

(Wood-Charlson et al., 2020; Vangay et al., 2021).

4.1.2 Experimental metadata
It is subjected to preparation steps for nucleotide sequence

analysis or metabolome/metaproteome. Information about

experimental preparation of the original sample (Gohl et al.,

2016; Vangay et al., 2021). A sample could be split (aliquoted)

and processed through multiple preparation methods; therefore,

there could be multiple sets of preparation metadata for a single

set of samples such as controlled or treated. For DNA sequencing

preparation metadata include the type of DNA, extraction
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FIGURE 2

This figure provides an overview of the microbiome workflow for studying microbial communities using shotgun sequencing, 16S rRNA gene

sequencing, metatranscriptomics, metaproteomics, and metabolomics. The figure illustrates the process of sample collection from various sites and

then proceeds through di�erent experimental procedures, bioinformatics pipelines, and ML analyses. The figure was created with https://www.

biorender.com/.

protocol, conditions used for sequencing (e.g., primers, library

kits, sequencing instrumentation, and parameters), and where the

raw sequence data sets are accessible. The information required to

properly describe metabolome and metaproteome data are even

more complex and workflows profoundly change according to the

used platforms and technologies (Rechenberger et al., 2019).

4.1.3 Data pre-processing metadata
Data about the properties and downstream processing of the

raw reads data, including software/tools parameters and version.

For example, if DNA sequences were generated, this could include

the sequence properties (e.g., sequence lengths, sequences per

sample, and total base pairs, total percentage of GC content,

percentage of sequence duplication), quality control and filtering

(e.g., sequencing depth, adapter trimming, quality trimming and

filtering, dereplicating, and chimera sequence removal), assembly

parameters (e.g., assembly tool, binning tool, and finishing

strategy), reference genome used (version and source), gene

annotation (e.g., gene calling tool and annotation database), and

other processing parameters (Roy et al., 2018).

4.1.4 Feature metadata
Data about features detected in the raw data, rather than

about the samples themselves. For example, if amplicon sequencing

was performed, feature metadata might include information (e.g.,

taxonomy, reference genome sequences with version information

and source, and sequence identifiers) about the OTUs or ASVs

generated in the OTU-picking or denoising algorithm, respectively.

If metabolomics analysis was done, feature metadata might include

information (e.g., mass spectrometry (MS2) fragments produced

or candidates for identification) about the metabolites detected.

Obtaining key metadata from sample collection to data analysis

would greatly improve reproducibility. For metaproteomics, it

might include identified proteins and related pathways.
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4.2 FAIR data principles in metagenomics
and machine learning

The FAIR Data Principles are a set of guidelines for making

data more findable (F), accessible (A), interoperable (I), and

reusable (R). These principles are important for both data

sharing and machine learning, as they help to ensure that

data is discoverable, accessible, and compatible with different

machine learning algorithms and tools (Wilkinson et al., 2016).

In the context of metagenomics and machine learning, the FAIR

Data Principles can be applied to the following: Findability:

Metagenomic data should be deposited in public databases, such

as the NCBI Sequence Read Archive (SRA) or the European

Nucleotide Archive (ENA). These databases provide unique

identifiers and searchable metadata for each dataset, making it

access the data they need. Accessibility: Metagenomic data should

be accessible to researchers using standardized protocols, such as

hypertext transfer protocol (HTTP) or file transfer protocol (FTP).

This ensures that researchers can access the data regardless of

their computing environment. Interoperability: Metagenomic data

should be stored in a format that is compatible with different

machine learning algorithms and tools. This allows researchers to

easily use the data to train and evaluate machine learning models.

Reusability: Metagenomic data should be released with clear and

accessible data usage licenses. This consents researchers to reuse

the data for their own research without having to concern about

copyright or other restrictions (ten Hoopen et al., 2017; Vesteghem

et al., 2020).

4.3 Metadata standardization: ensuring
data accuracy

Despite the critical nature of metadata, metadata collection

is often poorly standardized and error prone. Tabular formats

(such as Microsoft Excel) continue to be popular options for

metadata collection and record-keeping, yet freeform text entry

without validation is prone to errors (e.g., misspellings, incorrect

data, missing data, and inconsistent values) (Schloss, 2018). These

issues can emerge within a single study and are even more

likely across multiple studies. For example, with standardized

metadata, experimental results from different labs can be grouped

together for combined studies with a scope that can extend

beyond what can be done from a single lab (Thompson et al.,

2020). It also lays the foundation for researchers to quickly

find previous experiments of interest to them. Situations may

arise where obtaining precise coordinates for certain locations

becomes a complex endeavor. These challenges can stem from

various factors, including governmental restrictions imposed in

specific countries or regions, intellectual property protection, or

concerns related to data privacy and property rights. These issues

are particularly prominent in datasets associated with potentially

sensitive subjects, such as high levels of pathogens or antibiotic

resistance genes (Serwecińska, 2020). In some cases, private

landowners may be unwilling to disclose the exact locations of their

facilities. They might wish to avoid negative associations with their

business operations, especially in situations where their facilities

are associated with research findings concerning pathogens or

antibiotic resistance genes. Moreover, researchers in the industrial

sector may be hesitant to make data on specific field sites publicly

available. This averseness may be motivated by the fact that these

sites are involved in testing new plant cultivars and breeding

efforts. The proprietary nature of their work and the competitive

landscape could drive this concern. In the realm of biological data

and microbiome research, there is a growing awareness of the

need to protect the collection coordinates of endangered species,

including those listed on conservation red lists (Zhu et al., 2021).

This keen concern is rooted in efforts to combat poaching and

illegal collection of these species. As a result, there is an ongoing

debate regarding how to balance the imperative of protecting these

species with the need for scientific data sharing (Levesque, 2017).

Lastly, governmental organizations may also have reservations

about disclosing precise locations of sites deemed geopolitically

important or contaminated. Such disclosures could have difficulties

for national security, public safety, or environmental concerns.

4.4 Navigating metadata challenges in
metagenome databases

4.4.1 Lack of Metadata
One major limitation of existing public repositories and

specialized metagenomic databases (e.g., NCBI, ENA, SRA,

MGnify, MG-RAST, NMDC, QIITA) is the often incomplete

and inconsistent metadata associated with metagenomic samples.

Metadata it is frequently missing or inadequately annotated,

making it challenging to perform cross-study comparisons

effectively. Lack of Standardization: Metagenome databases suffer

from a lack of standardized metadata. Metadata across different

studies and databases may use varying terminologies, formats, and

ontologies, leading to difficulties in harmonizing and integrating

data for meaningful analysis. Difficulty of Metadata Annotation:

Manually annotating metadata for metagenomic samples is a

labor-intensive and time-consuming process (Kasmanas et al.,

2020). While some efforts have been made to standardize

metadata using controlled vocabularies and ontologies, these

approaches are not always comprehensive or flexible enough to

capture the diversity of sample origins, particularly in engineered

environments (Cernava et al., 2022). Inefficient Sample Retrieval:

Retrieving samples of interest from existing metagenome databases

can be incompetent and challenging. The lack of standardized

metadata and user-friendly search interfaces makes it difficult for

researchers to select relevant samples based on specific criteria,

such as host characteristics or environmental factors (Clark

et al., 2022). Limited Cross-Study Comparisons: The inconsistent

and incomplete metadata in metagenome databases hinder the

ability to perform meaningful cross-study comparisons (Nassar

et al., 2022). This limitation restricts the potential for meta-

analyses and the discovery of patterns or associations that may

not be evident in individual studies. Dependence on Manual

Annotation: Many existing efforts to improve metadata quality rely

heavily on manual annotation, which is not scalable to handle

the exponentially increasing volume of metagenomic data. This

limitation can lead to delays in data availability and the inability
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to keep up with the pace of data generation (Kasmanas et al.,

2020). Complexity for Non-Bioinformaticians: Some databases that

offer comprehensive metadata are not easily accessible to non-

bioinformaticians. For example, metadata stored as ExpressionSet

objects in R environments can create complexity for researchers

who are not proficient in bioinformatics. Limited Support for

Specific Environments: Hierarchical ontology relationships may

not adequately describe diverse and specific environments, such

as engineered environments. Existing controlled vocabularies and

ontologies may lack the necessary granularity to capture the

full range of sample origins. Inflexible Ontology Relationships:

Some databases rely on hierarchical ontology relationships, which

can be inflexible and may not accommodate the complexity

and diversity of environmental descriptions adequately (Romano

et al., 2011). The limitations of existing metagenome databases

primarily revolve around the challenges related to metadata

quality, standardization, and accessibility. These limitations hinder

the full potential of metagenomic data analysis and the ability

to perform comprehensive cross-study comparisons and meta-

analyses. The development of automated methods for metadata

extraction and more user-friendly interfaces is essential to address

these limitations and unlock the full value of metagenomic datasets.

4.5 Root causes of annotation errors in
public databases

Despite some notable progress in data-sharing policies and

practices, accurate and reliable annotation of metagenomic data

in public repositories is crucial for dry laboratory researchers and

their subsequent applications. In public databases such as NCBI,

European Nucleotide Archive (ENA) (Yuan et al., 2023), Sequence

Read Archive (SRA) (Katz et al., 2022), MGnify (Richardson et al.,

2023), MG-RAST (Meyer et al., 2008), and National Microbiome

Data Collaborative (NMDC) (Wood-Charlson et al., 2020), the

reliability of annotations heavily relies on the metadata provided

by researchers during the submission of sequencing data. However,

following are listed several root causes that have been identified

that contribute to annotation errors within these databases. (i)

User metadata submission errors: Researchers are responsible for

submitting metadata that describes the characteristics of their

raw/processed sequence, including the name of the model or host

organism, pathological conditions (diseased/healthy), biomaterial

provider, collection date and time, tissue or samples, developmental

stage, and geographical location. However, if researchers make

errors or inaccurately assign metadata, it can lead to miss-

annotation of sequences and associated data. For example, if

a researcher studying soybeans from soybean roots mistakenly

assigns the organism’s name as Glycine max instead of Glycine

soja, all sequences tied to that metadata will be incorrectly

labeled as Glycine max, leading to potential misinterpretation and

inaccurate analyses (Nassar et al., 2022). (ii) Contamination errors

in biological samples: During sample collection and processing,

contamination from unintended sources can occur, resulting in

the misidentification of organisms or genetic material. If such

contamination goes unnoticed or unaddressed, it can lead to

incorrect annotations in the public databases. For instance, if

a sample intended for sequencing a specific organism becomes

contaminated with genetic material from different organisms

(usually microbials), the resulting sequences may be incorrectly

labeled and associated with the wrong organism in the database

(Schnoes et al., 2009). (iii) Bioinformatic tools inaccuracies can

lead to erroneous annotations. Different bioinformatics tools and

algorithms are utilized to process and annotate sequencing raw

data. However, these methods can introduce errors or biases

that propagate throughout the database. Imprecise algorithms or

incomplete reference databases and versions can result in miss-

annotations or missing annotations for specific sequences, further

compromising the reliability of the database (Schnoes et al., 2009).

4.6 Challenges and debates in data release
protocols: balancing recognition and
access

Despite developments in data-sharing policies and practices,

many genomic datasets remain restricted even after approval for

public release. This conflicts with the terms of funding agencies,

which support data dissemination for science and society progress.

The lack of clear and comprehensive guidelines for data usage

compounds the issue (Schnoes et al., 2009). Public domain data

release protocols acknowledge the tension between unrestricted

access and data producers desire for recognition through first

publication rights. This conflict has led to multiple interpretations,

fuelling an ongoing debate about how publicly available data

should be used. The pressure to be the first to uncover significant

discoveries can lead to data withholding until after publication,

hindering broader dissemination (Tenopir et al., 2020). Even

after publication, challenges persist, including time constraints in

preparing data for sharing, legal and privacy considerations, and

concerns about misinterpretation or misuse. Researchers often face

difficulty locating the data they need, devoting up to 50-80% of their

time to these obstacles (Eckert et al., 2020). Vangay et al. (2021)

sustained identifying and addressing the root causes of annotation

errors in public databases is essential for maintaining data integrity

and ensuring the accuracy of downstream analyses and research

applications. By taking into consideration of the factors that

contribute to miss-annotations, efforts can be directed toward

implementing quality control measures, improving metadata

validation processes, enhancing contamination detection methods,

and refining computational tools to minimize errors and improve

the reliability of public databases.

4.7 Privacy concerns in metagenomics:
uncovering personal information

The availability of open-access metagenomic datasets provides

a valuable resource for studying health- and disease-associated

signatures of microbial communities. However, an ongoing debate

within microbiome research revolves around addressing privacy

concerns to protection of personal information (Guccione et al.,

2023). Franzosa et al. (2015) investigated the human microbiome

by utilizing metagenomic codes. These metagenomic codes were
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designed to identify individuals based on specific microbial taxa

or genes that are distinct and consistent across different body sites.

Combining insights from microbial ecology and computer science,

researchers discovered that it is possible to distinguish individuals

from groups of hundreds based solely on their microbiomes,

with over 80% accuracy even after a year, particularly notable in

the case of the gut microbiome (Franzosa et al., 2015). While

this underscores the fascinating individuality of human microbial

signatures, it also raises significant privacy concerns for participants

in microbiome research projects, highlighting the need for robust

privacy safeguards in the handling of such health data (Chuong

et al., 2017).

In Japan Tomofuji et al. (2023), uncovered a potential

concern about metagenomic data obtained from human fecal

samples. Specifically, they achieved a remarkable 93.7% accuracy in

predicting biological gender by analyzing the read depth of non-

pseudo-autosomal regions of sex chromosomes. This report has

significant effects, especially in the context of human microbiome

studies, where it can help rectifymislabelled samples and contribute

to the field of human genetics. However, the accurate prediction of

genetic sex bearing privacy concerns, particularly for individuals

who may not wish to disclose this information. This concern

is especially relevant to transgender individuals, who may face

varying degrees of legal protection worldwide. To address these

privacy issues, methods for removing human DNA reads from

metagenomic data were developed during the National Institutes

of Health’s Human Microbiome Project (Wagner et al., 2016). It

is worth noting that sex prediction based on DNA extracted from

fecal samples had previously been predominantly conducted for

wild animals using PCR amplification of marker genes (Guccione

et al., 2023).

Furthermore, another study demonstrates sensitivity

in identifying matched genotype data and accurately

predicted ancestral backgrounds in samples. Ancestral

backgrounds were defined as American, European, African,

East Asian, and South Asian (Tomofuji et al., 2023). These

findings highlight the importance of considering the ethical

implications and privacy concerns when utilizing open-source

microbiome data.

4.8 Improving metadata quality in
microbiome research

Metadata is essential for the interpretation, reproducibility,

and reuse of microbiome data. However, metadata quality is often

variable, which can hinder research progress. To improve metadata

quality, we can consider employing Manual and Automated

curation. The first one is the most accurate approach, but it is

also the most time-consuming and expensive. The latter employs

ML approaches and other techniques to extract metadata from raw

sample data. It is the most scalable approach, but it can be less

accurate than the first one. One example of an automated curation

approach is the ML framework developed by Nassar et al. (2022)

that automatically extracts important metadata from a vast number

of metagenomics studies found in the Europe PMC literature

repository. This integration allows for the continual enhancement

of current metadata in ENA and MGnify metagenomics studies by

sourcing information from research articles. As a result, theMGnify

database now displays these annotations, providing information

on metadata like health status, disease conditions, geographic

locations, and sequencing methods. Gonçalves and Musen (2019)

study shed light on the varying quality of metadata available in

prominent databases such as NCBI’s BioSample and the European

Bioinformatics Institute’s BioSamples. One of the contributing

factors to this variability is the infrequent use of controlled

vocabularies during themetadata submission process. Additionally,

the allowance for the creation of user-defined attributes has resulted

in a proliferation of heterogeneity within the metadata landscape.

This diversity often poses challenges for researchers, making it

difficult to harness the full potential of information within a

specific dataset or across multiple datasets (Gonçalves and Musen,

2019).

Klie et al. (2021) aimed to enhance the metadata coverage of

SRA BioSample entries using deep learning-based named entity

recognition (NER). The study achieved high prediction accuracies

for certain metadata categories when extracting information from

sample titles (TITLEs). It is worthy to note, they processed all the

available BioSample up to May 2018, and Genus/Specie and strains

generally refers to processed samples. However, lower accuracies

and the absence of predictions for other metadata categories

underscored existing issues with the current metadata annotations

in BioSample. These findings demonstrate the effectiveness of

recurrent neural networks for NER-based metadata prediction

and suggest the potential of such models to expand metadata

coverage in BioSample, reducing the reliance on manual curation

(Klie et al., 2021). Below some additional thoughts on the

future directions of machine learning for metadata retrieval in

metagenomics. Firstly, ML algorithms (De et al., 2022; Nassar

et al., 2022; Raghavendra Nayaka and Ranjan, 2023) could be

developed to extract metadata from scientific literature, abstracts,

and environmental monitoring data. This would allow researchers

to extract more reliable metadata with less effort. Secondly, ML

algorithms could be used to develop new metadata standards that

are tailored to specific research questions. This would help to ensure

that metadata is collected in a way that is most useful for the

scientific community.

5 Metadata exploitation for robust ML
models

During development of ML-based classifiers, the incorporation

of metadata emerges as a crucial factor for accurate predictions

and robust model development. A series of studies mark the

significance of considering host associated metadata elements,

ranging from geographical location to dietary habits and

perinatal factors, host genetic factor (Lopera-Maya et al., 2022;

New et al., 2022) shedding light on microbial compositions.

Below we have highlighted examples of why researchers

should consider host associated factors to train supervised

predictive ML model for better generalization capability on the

unseen dataset.

Frontiers inMicrobiology 15 frontiersin.org159

https://doi.org/10.3389/fmicb.2024.1343572
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kumar et al. 10.3389/fmicb.2024.1343572

5.1 Changes in the gut microbiome: from
infancy to adulthood and beyond

Studies have shown that the gut microbiome of infants

undergoes significant changes during the first 3 years of life,

with differences observed between populations and influenced by

factors, such as delivery mode. Yatsunenko et al. (2012) compared

fecal samples from Amerindians in Venezuela and residents

of U.S. metropolitan areas, finding that the gut microbiome

exhibited similar functional maturation patterns across the initial

3 years of life across populations. Palmer et al. (2007) also,

observed substantial variation in the composition of gut bacteria

in infants during the first year of life, with reduced variation

within twin pairs and decreased variation with age. Orrhage and

Nord (1999) emphasized the impact of delivery mode on the

infant microbiome (Fanaro et al., 2003; Penders et al., 2006;

Yatsunenko et al., 2012). Studies have shown that cesarean section

(CS) results in a different microbiota compared to vaginal delivery

(VD) (Bennet and Nord, 1987; Hällström et al., 2004; Elovitz

et al., 2019). Cheng et al. (2022) emphasized the importance of

further investigation to comprehensively delineate the multifaceted

factors shaping microbiota dynamics during maternal-neonatal

interactions, extending beyond traditional perinatal considerations.

Gudnadottir et al. (2022) employed the network-meta-analysis

method and revealed that the microbiome demonstrates predictive

potential for preterm birth and emphasizes the significance of

specific microbial compositions in the vaginal microbiome as

potential indicators for the likelihood of preterm birth.

Odamaki et al. (2016) and Meng et al. (2022) delved into the

alterations in gut microbiota across different age groups and their

associations with gut inflammation, particularly during the sexual

maturity stage in healthy individuals. As individuals progress in

age, there is a significant increase in the relative abundance of

Firmicutes, accompanied by a concurrent decrease in the relative

abundance of Bacteroides. The study further identified a positive

correlation between body weight and the Firmicutes:Bacteroides

ratio, shedding light on potential associations between microbiota

composition and physiological parameters.

In addition to the age-related patterns identified in gut

microbiota, the investigation also observed variations in microbial

compositions across different body sites, including the vagina, skin,

oral cavity, and respiratory tract. Detailed information on these

variations is available at (Hou et al., 2022).

Kim et al. (2020) outlined that gender constitutes a

significant variable shaping the composition of the gut

microbiota. Furthermore, an investigation involving male

and female germ-free C57BL/6J mice, Wang et al. (2016) and

Zhao et al. (2019) revealed distinctive microbial preferences

in the intestines of male and female mice. Despite these

findings highlighting the relevance of gender in microbiota

dynamics, a comprehensive understanding of this association

remains elusive.

Cheng et al. (2022) emphasized geographical location as a

paramount variable influencing the overall structure of maternal

and neonatal microbiota, especially evident in two distinct

populations from Asia and Europe. Elsherbiny et al. (2022) in

Egypt elucidated the impact of geographical location on the gut

microbiota in children with Type-1 Diabetes Mellitus, revealing

differences in alpha diversity between controls and diabetic groups.

The Chinese healthy gut project (Ren et al., 2023), outlined

on the correlation between gut microbiota and various dietary

and lifestyle factors among healthy individuals in China. Notably,

lifestyle phenotypes, including sleep procrastination, negative

mood, and drinking habits, exhibited substantial influence on gut

microbiota composition, with these factors showing the largest

effect sizes.

5.1.1 Role of diets
Noble et al. (2021) investigated the impact of sugar-sweetened

beverage consumption during adolescence on the gut microbiome,

which was linked to alterations in hippocampal function, as already

demonstrated by David et al. (2014). Vujkovic-Cvijin et al. (2020)

identified unexpected sources of gut microbiota variance, including

alcohol consumption frequency and bowel movement quality.

Singh and Mittal (2020) and Gacesa et al. (2022) comprehensively

reviewed the profound impact of diet on the pathophysiology of

mental disorders, highlighting its crucial role in shaping mental

health outcomes. Ren et al. (2023) delved into the effects of

dietary factors on the structure of the gut microbiota, while

Manor et al. (2020) highlighted the composition-specific nature

of host-microbe associations, providing insights into the intricate

connections between microbiome composition, clinical markers,

and lifestyle factors.

5.1.2 Medication and antibiotic exposure
BMI and insulin level: Bäckhed et al. (2004) has illuminated

a substantial connection between the gut microbiota and the

regulation of body weight. Also, Ridaura et al. (2013) demonstrated

weight gain in germ-free mice following gut microbiota transplants

from individuals with obesity. These findings highlight the intricate

relationship between gut microbiota composition and its role

in regulating body weight. Gupta et al. (2020) emphasized the

use of BMI scores to classify underweight, overweight, or obese

individuals. Evans et al. (2014) shows that physical activity could

shifts in the composition of the gut microbiome in animal

models (Kang et al., 2014) but the robustness of this association

at population-level remains uncertain. Concerning antibiotics,

two cohort studies, utilizing a difference-in-differences approach,

demonstrated that antibiotic exposure in infancy altered the relative

abundance of off-target species and antibiotic resistance genes

(Ramirez et al., 2020; Ribeiro et al., 2020; Lebeaux et al., 2022;

Patangia et al., 2022).

In the realm of machine learning challenges, MetAML, an ML-

based classifier, revealed variable results between prediction tasks,

cautioning against potential overestimation of disease prediction

due to confounding factors like active antibiotic treatment (Pasolli

et al., 2016).

Abdul Rahman et al. (2023) developed supervised and

unsupervised ML models to predict colorectal cancer using global

dietary data, encompassing both younger and older adults from

seven major countries (Canada, India, Italy, South Korea, Mexico,

Sweden, and the United States) and diverse sociodemographic
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factors. Su et al. (2022) show that the limitation of using a

combined public dataset did not specify the co-morbidities and

antibiotics; thus, model performance depends on the exclusion of

these metadata.

5.2 Future direction

Previous studies show that the composition of the human

gut microbiome varies significantly among individuals. This

variability suggests that incorporating metadata, including

confounding factors and dietary information, into ML models

is highly beneficial. Figure 1 illustrates a potential approach for

integrating metadata information alongside microbiome features.

This integrated analysis can lead to novel research questions,

refine sample and feature selection, and improve the robustness

of predictive statistical and ML models, e.g. develop ML model to

predict the phenotype of a host organism. The interplay between

ML and metadata is crucial for effective model implementation.

Incorporating host metadata into microbiota studies can ensure

that groups are well-matched, enhancing the reliability and

reproducibility of studies investigating diseases or phenotypes

associated with distinct pathological, physiological, lifestyle, or

dietary traits.

6 Conclusion

Integrated metadata analysis is essential for maximizing the

potential of ML and other advanced techniques in microbiome

research. While recent advances in metagenomics, metabolomics,

and metaproteomics have generated a wealth of publicly available

data, its comprehensive utilization is hindered by several

challenges, including the need for substantial time investments,

accessibility issues with metadata, computational resource

requirements, and the need for specialized bioinformatic expertise.

As widely discussed in the previous sections, the inclusion of

metadata information in ML models development is crucial to

avoid erroneous outcomes. Metadata become essential to attenuate

the negative impact of confounding factors, both technical and

biological. Moreover, either when multi-omics data integration

is considered, the inclusion of clinical metadata about enrolled

subjects emerge as a source of knowledge leveraging the models

accuracy, as demonstrated by Leung et al. (2022). Indeed, this

review highlights the importance of integrated metadata analysis in

microbiome research. By combining microbial data with sample-

specific information, researchers can gain a deeper understanding

of the microbial communities that inhabit the human body and

their role in health and disease. This knowledge can be used

to develop new diagnostic and therapeutic strategies. However,

integrated metadata analysis is also challenging due to issues

related to data management, computational demands, integration

approaches, and the selection of appropriate analysis tools. To

fully leverage the potential of integrated metadata analysis in

microbiome research, it is essential to address these challenges

through the development of new tools and resources, as well as the

training of researchers in the necessary skills.
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1Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo
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Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy,
4Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy

Background: Colorectal cancer (CRC) is a type of tumor caused by the

uncontrolled growth of cells in the mucosa lining the last part of the

intestine. Emerging evidence underscores an association between CRC and

gut microbiome dysbiosis. The high mortality rate of this cancer has

made it necessary to develop new early diagnostic methods. Machine

learning (ML) techniques can represent a solution to evaluate the interaction

between intestinal microbiota and host physiology. Through explained artificial

intelligence (XAI) it is possible to evaluate the individual contributions ofmicrobial

taxonomic markers for each subject. Our work also implements the Shapley

Method Additive Explanations (SHAP) algorithm to identify for each subject which

parameters are important in the context of CRC.

Results: The proposed study aimed to implement an explainable artificial

intelligence framework using both gut microbiota data and demographic

information from subjects to classify a cohort of control subjects from those

with CRC. Our analysis revealed an association between gut microbiota and

this disease. We compared three machine learning algorithms, and the Random

Forest (RF) algorithm emerged as the best classifier, with a precision of

0.729 ± 0.038 and an area under the Precision-Recall curve of 0.668 ±
0.016. Additionally, SHAP analysis highlighted the most crucial variables in

the model’s decision-making, facilitating the identification of specific bacteria

linked to CRC. Our results confirmed the role of certain bacteria, such

as Fusobacterium, Peptostreptococcus, and Parvimonas, whose abundance

appears notably associated with the disease, as well as bacteria whose presence

is linked to a non-diseased state.

Discussion: These findings emphasizes the potential of leveraging gut

microbiota data within an explainable AI framework for CRC classification. The

significant association observed aligns with existing knowledge. The precision

exhibited by the RF algorithm reinforces its suitability for such classification

tasks. The SHAP analysis not only enhanced interpretability but identified specific

bacteria crucial in CRC determination. This approach opens avenues for targeted
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interventions based on microbial signatures. Further exploration is warranted

to deepen our understanding of the intricate interplay between microbiota and

health, providing insights for refined diagnostic and therapeutic strategies.

KEYWORDS

machine learning, explainable artificial intelligence, colorectal cancer, microbiome,

biomarker identification, microbiota, precision medicine

1 Introduction

Colorectal cancer (CRC) stands as the third most prevalent

cancer globally (Morgan et al., 2023), claiming a significant toll in

cancer-related fatalities. The high mortality is due to the abnormal

growth of cells with the capacity to invade tissues and spread

to other parts of the body. Most colorectal cancers are due to

lifestyle and advanced age and only a few cases are attributable to

hereditary genetic diseases. Its incidence is constantly increasing,

and in-depth understanding of the pathogenetic mechanisms, early

diagnosis and innovative therapeutic options have become crucial

imperatives to address this growing challenge. The complexity of

colorectal cancer is highlighted by the diversity of pathological

pathways involved and the variability in response to treatments.

The prevailing gold standard for CRC diagnosis, colonoscopy, is

burdened by invasiveness and discomfort. However, resistance to

conventional treatments, post-surgical recurrence and the need to

improve access to care, especially in disadvantaged communities

make it necessary to open up to personalized therapies and more

targeted management strategies. A non-standardized approach

keep in mind the peculiar molecular characteristics of each tumor

and the patient’s individual responses to therapies. Hence, the

pressing demand for non-invasive, cost-effective early detection

methods persists. Non-invasive therapies take on particular

relevance with a view to reducing physical and psychological stress

on patients, reducing the recovery period and improving the quality

of life post-treatment.

The gut microbiota, a complex community of microorganisms

that colonize the gastrointestinal tract, has emerged as a critical

player in the regulation of intestinal homeostasis and the

modulation of local immune responses. In recent years, a growing

body of scientific evidence has highlighted the critical role of

the intestinal microbiota in the pathogenesis and development

of colorectal cancer. The dynamic interactions between the

microbiota and the intestinal mucosa play a key role in maintaining

a physiological environment and preventing the onset of cellular

alterations. However, dysbiosis or imbalances in the composition

of the microbiota can contribute to carcinogenesis, promoting

chronic inflammation, the production of carcinogenic metabolites

and alteration of the mucosal barrier. Certain bacteria, like

Fusobacterium nucleatum and Parvimonas micra, are notably more

abundant in CRC patients, often linked to the disease’s development

(Yachida et al., 2019; Löwenmark et al., 2020;Wu et al., 2021). These

findings drive the exploration of using fecal biomarkers for CRC

diagnosis. Understanding the central role of the gut microbiota

in the context of colorectal cancer could guide the development

of personalized strategies for disease management, exploiting the

TABLE 1 Summary table of the datasets used in the analysis.

Dataset Control CRC Metadata

Baxter et al. (2016) 171 120 Gender, age,

BMI, country

Zackular et al.

(2014)

30 30 Gender, age,

BMI, country

Zeller et al. (2014) 50 41 Gender, age,

BMI, country

TOTAL 251 191 Gender, age,

BMI, country

therapeutic potential of microbial manipulation. Harnessing the

power of machine learning (ML) (Amodeo et al., 2021; Bellando-

Randone et al., 2021; Rynazal et al., 2023; Golob et al., 2024),

our study crafts a comprehensive framework to scrutinize fecal

microbiome data gleaned from both healthy subjects and those

afflicted with CRC. This framework intricately involves data

preprocessing, feature extraction, feature selection, and model

construction, employing an array of ML algorithms. To ensure

transparency and interpretability in our study, we embrace the

principles of Explainable Artificial Intelligence (XAI) (Lombardi

et al., 2021a,b; Bellantuono et al., 2023; Novielli et al., 2023).

XAI not only enhances the trustworthiness of our models but

also empowers clinicians to understand the rationale behind each

prediction. This is particularly crucial in the context of personalized

CRC management, where treatment decisions need to be aligned

with the unique characteristics of each patient. The impact of

gut microbiota on CRC analyzed through machine learning,

coupled with transparent explanations afforded by XAI, holds the

potential to develop how to diagnose andmanage colorectal cancer,

fostering a new era of precision medicine that is both effective and

readily comprehensible.

2 Materials

In this study, we used three different dataset of three different

works (Zackular et al., 2014; Zeller et al., 2014; Baxter et al.,

2016). For each of them, we considered the control patient

(NC) and the CRC ones. These datasets collect 442 human stool

samples characterized by 16S metagenomic sequencing of the

V4 region of the 16S rRNA, from different countries: Canada

(CA), France (FRA), United States of America (USA). These

dataset provide information regarding the abundance of the

gut microbiota in NC patients and CRC ones at genus level.
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FIGURE 1

Boxplot of two classes (patients and controls) of the (A) age and (B) BMI. The symbol * denotes the significance level determined by the

Mann-Whitney U rank test for comparing two distributions. **Stands for p-value less or equal then 0.01. ****stands for p-value less or equal then

0.0001.

TABLE 2 Demographic characteristics of the study participants.

CRC (191) Control
(251)

p-value

Gender 114M / 77 F 101M / 150 F < 0.01

Country 2 CA / 41 FRA

/ 148 USA

3 CA / 50 FRA

/ 198 USA

0.892

The Fisher’s exact test was performed for gender and country.

Moreover, each of them is characterized with four metadata

features: gender, age, body mass index (BMI), country, as reported

in Table 1.

Information about the distribution of age and BMI for both

patients and controls are showed respectively in Figures 1A, B,

while the demographic characteristics of the entire dataset is

reported in Table 2. In the Supplementary Table S1 is reported the

information related to the metadata of each subject involved in

the analysis.

3 Methods

The workflow begins with the preprocessing of microbiome

data, followed by the construction of an explainable machine

learning model. The performance of three classifiers—XGBoost,

Random Forest, and Support Vector Machine—was rigorously

compared through a 20-repeated 5-fold Stratified Cross Validation.

Finally, we explore the functionality of the optimal classifier

using the XAI approach. This includes collecting SHAP values for

different (feature, prediction) pairs and averaging them across the

20 repetitions of the model CV. Figure 2 outlines the Artificial

Intelligence procedure implemented in this study to develop a

Machine Learning classifier for distinguishing between control and

CRC samples.

3.1 Preprocessing of the microbiome
samples

Preprocessing of microbiome data is a crucial step in the

analysis pipeline (Ibrahimi et al., 2023; Papoutsoglou et al.,

2023). The microbiome data undergo several preprocessing steps.

Firstly, a filtration of taxonomic units is conducted, focusing on

removing non-informative features or taxa that are biologically

irrelevant or potential contaminants (Cao et al., 2021). This

involves applying thresholds based on abundance/prevalence,

variance, or correlation. In our case, low-abundance or prevalence

filtering eliminates features present in <10% of the samples.

The subsequent step involves normalization, aiming to address

variability in sampling depth and data sparsity. One approach for

data normalization is through transformation methods, wherein

values are replaced with their normalized counterparts. Given that

microbiome datasets are inherently compositional, these methods

adhere to Aitchison’s methodology for compositional data. They

transform feature counts into log-ratios within each sample,

utilizing an additive, centered log-ratio transformation (Aitchison,

1982; Egozcue et al., 2003).

3.2 Machine learning classifier

3.2.1 XGBoost
The XGBoost algorithm employs a collective of decision trees

trained through an iterative gradient boosting process. This process

involves addressing critical points within decision trees at each

step through subsequent trees. Addressing the challenge of missing

values, XGBoost employs sparsity-aware split finding (Chen and

Guestrin, 2016). This technique leverages data sparsity patterns in

a unified manner, determining the optimal direction in the event

of a missing feature necessary for a split. In the quest for optimal

performance in classification under cross-validation conditions, we

explore various XGBoost parameters:
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FIGURE 2

Schematic flowchart of the analysis.

• max depth ǫ {None, 3, 5},

• col sample bytree ǫ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},

• n estimators ǫ {50, 100, 150, 200, 250}.

The implementation of the XGBoost algorithm utilizes the

Python (version 3.11.5) package xgboost (version 2.0.2).

3.2.2 Random forest
The Random Forest (RF) algorithm entails an ensemble of

decision trees derived through resampling the training dataset

with repetitions (bootstrapping) (Breiman, 2001). This process,

along with the randomization of features during training, ensures

low mutual correlation between RF trees. Decision trees generate

independent predictions for each observation, and their collective

outcomes are aggregated through either averaging (for regression)

or majority voting (for classification). Noteworthy characteristics

of RF algorithms include easy tunability, a minimal number

of parameters, resilience against overfitting, the ability to assess

feature importance during training, and an unbiased estimation

of generalization error. In this study, we aimed to optimize

the control/crc classification in cross-validation mode by varying

specific RF parameters, including:

• max depth {ǫ None, 3, 5},

• n estimators ǫ {50, 100, 150, 200, 250}.

The RF algorithm implementation utilized the Python (version

3.11.5) package scikit-learn (version 1.3.0) (Pedregosa et al., 2011).

3.2.3 Support vector machine
The Support Vector Machine (SVM) operates by determining

the optimal boundary between two or more classes in the data

space through the minimization of a loss function known as

Hinge Loss, augmented with a penalty term (Cortes and Vapnik,

1995). In this algorithm, only a limited set of input observations,

termed support vectors, actively contribute to delineating the

boundary between classes. The SVM algorithm iterates by treating

misclassified instances as support vectors, with their contribution

to the loss being proportional to their distance from the boundary.

This approach ensures that the loss is influenced solely by a

subset of input observations, facilitating an efficient estimation

of optimal parameters. For the optimization of control/CRC

classification under cross-validation conditions, we vary the

following SVM parameters:

• C ǫ {1, 5, 10, 20},

• Gamma ǫ {0.001, 0.01, 1}.

The SVM algorithm is implemented using the Python (version

3.11.5) package scikit-learn (version 1.3.0) (Pedregosa et al., 2011).
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TABLE 3 Comparison between evaluation metrics of XGBoost (XGB),

Random Forest (RF), and Support Vector Machine (SVM) classifiers.

ACC F1 PREC AUC
ROC

AUPRC

XGB 0.652 (0.017) 0.567 (0.022) 0.613 (0.022) 0.701 (0.015) 0.639 (0.021)

RF 0.673 (0.015) 0.507 (0.030) 0.729 (0.038) 0.699 (0.011) 0.668 (0.016)

SVM 0.633 (0.025) 0.478 (0.091) 0.613 (0.032) 0.663 (0.036) 0.597 (0.037)

The mean values accompanied by the standard deviation are shown. The highest values for

each metric are indicated in bold, and the second-highest values are underscored.

3.3 Evaluation metrics

In the realm of classification machine learning, the selection

of appropriate evaluation metrics is crucial for assessing the

performance of models. These metrics provide quantitative

measures of a model’s ability to correctly classify instances and are

essential tools for comparing and optimizing different algorithms.

In order to obtain statistically robust results, a 5-fold cross-

validation was applied to partition the dataset, where each fold was

used as a test set while the remaining four as training ones (Schaffer,

1993). An hyperparameter tuning was conducted with a random

search by using the RandomizedSearchCV function of the python

library scikit-learn (Bergstra and Bengio, 2012), implemented with

a nested 3-fold cross- validation to avoid bias in the estimation

of test error (Varma and Simon, 2006). The entire process was

repeated 20 times, by dividing the dataset with different partitions

between each repetition.

The metrics used to evaluate the performance of models were

(Venerito et al., 2022):

• Accuracy: The accuracy is the proportion of correct

predictions (both true positives and true negatives) among

the total number predictions.

• Recall: The recall is a metric evaluating the frequency

with which a machine learning model accurately recognizes

positive instances (true positives) among all the actual positive

samples. It is calculated by dividing the number of true

positives by the total number of elements that actually belong

to the positive class.

• Precision: The precision is a metric assessing how often

a machine learning model predicts the positive class. It

is computed by dividing the number of accurate positive

predictions (true positives) by the total instances predicted

as positive by the model (sum of true positives and

false positives).

• F1 score: The F1 score is the harmonic mean of the precision

and recall.

• AUC ROC: The area under the Receiver Operating

Characteristic (ROC) curve;

• AUPRC: The area under the Precision-Recall (PR) curve.

We considered as positive instances those ones belonging to the

CRC class.

For the evaluation of the best classifier, the one with the highest

AUPRC will be chosen. This metric is well-suited for assessing the

discriminative power of a classifier in the presence of an imbalanced

dataset, where the number of positive cases is greater than the

number of negative cases (Ozenne et al., 2015).

3.4 SHAP algorithm

The eXplainable Artificial Intelligence (XAI) framework

encompasses a variety of techniques united by their shared focus

on informativeness, uncertainty estimation, generalization, and

transparency. In this study, we employ the SHAP local explanation

algorithm to uncover the significance of features in classifying

control/CRC samples. Serving as a local, model-agnostic post-hoc

explainer, the SHAP algorithm derives inspiration from Shapley

(SHAP) values rooted in cooperative game theory (Lundberg and

Lee, 2017; Lundberg et al., 2020). It constructs interpretable linear

models for individual samples, highlighting the contribution of

each feature to the sample’s prediction. The computation of SHAP

values involves assessing the difference in model output predictions

with and without specific features, considering all conceivable

feature subsets. As a result, the model requires retraining on all

subsets F of the complete set S of features (F⊆ S). The SHAP value

for the jth feature of the instance x is determined by aggregating it

across all possible subsets (Equation 1):

Φj(x) =
∑

F⊆S−{j}

|F|!(|S| − |F| − 1)!

|S|!
[fx(F ∪ j)− fx(F)] (1)

where |F |! represents the permutations of features in the subset

F, (|S| - |F |− 1)! the permutations of features in the subset S - (F⊆
{j}) and |S|! is the total number of feature permutations.

The SHAP value calculation is implemented in the Python

(version 3.11.5) package shap (version 0.43.0). For RF and XGBoost

models, we utilized the TreeExplainer function with the “feature

perturbation” parameter set to “interventional.” This approach

is tailored to disrupt dependencies between features, aligning

with the principles outlined in causal inference (Janzing et al.,

2020). By adopting this parameter configuration, our objective

was to alleviate the impact of highly correlated predictors, thereby

mitigating potential misinterpretations and ensuring a more

robust analysis.

4 Results

The objective of this study was to investigate changes in the gut

microbiota among individuals with CRC in comparison to control

subjects. To unveil these alterations, a machine learning-based

classification model was employed, and the contribution of features

was analyzed. Our attention will be directed toward the outcomes

of the Artificial Intelligence workflow, specifically examining the

classification performance of various Machine Learning algorithms

and the prevalence of bacteroides that exerts the most significant

influence on predictions.
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FIGURE 3

(A) Average ROC Curve with standard deviation over 20 model runs; (B) Average PR Curve with standard deviation over 20 model runs.

4.1 Feature engineering

The dataset utilized in this study consists of abundance tables

representing microbial communities from the V4 region of the

16S rRNA, collected at the genus level. Starting with an initial

dataset comprising 462 features (microbial communities), the

data cleaning process, as described in the methods, reduced the

total number of features to 164. Following the centered log-

ratio transformation for each sample, additional variables were

incorporated, including country, age, BMI, and gender. This

resulting dataset served as the input for the machine learning

classification framework.

4.2 Classification CRC/control

A comprehensive correlation analysis was conducted among

all features considered as inputs to the ML classifier and the

output target class. The outcomes of this analysis are presented in

Supplementary Figure S1, where the top features are displayed in

descending order based on their correlation coefficients with the

target class. Despite observing statistically significant correlations

among the features, it is noteworthy that the maximum correlation

does not exceed 0.3. This implies that a univariate analysis

approach for classifier creation is not suitable, necessitating a

multivariate approach. The limited strength of individual feature

correlations underscores the need for constructing multivariate ML

classification models to capture the intricate relationships within

the dataset and achieve a more comprehensive understanding of

the predictive factors associated with the target class.

Within this study, the efficacy of three supervised machine

learning algorithms—XGB, RF, and a SVM—was assessed. The

optimal classifier emerged as the one exhibiting the highest

AUPRC, averaged across the 20 repetitions of the 5-fold cross-

validation. As outlined in Table 3, the RF model proved to be the

most proficient, excelling in terms of accuracy, precision and area

under the precision-recall curve.

Figure 3 illustrates the RF classification model’s performance,

assessed through the Receiver Operating Characteristic (ROC)

curve (Figure 3A), showcasing an Area Under the Curve (AUC)

value of 0.699± 0.011 and through the Precision-Recall (PR) curve

(Figure 3B) with an AUC of 0.668 ± 0.016. The plots showcase the

average curves derived from 20 repetitions of the Cross-Validation,

accompanied by their standard deviation.

In Supplementary Figures S2–S4, we present the analysis of

parameter stability during the tuning phase of nested cross-

validation. These figures illustrate, across multiple repetitions, the

frequency with which a particular parameter was selected as the

best parameter for our models. This in-depth examination provides

valuable insights into the robustness and consistency of the chosen

parameters throughout the nested cross-validation process.

4.3 Explainability

Model explainability involves understanding how algorithms

discern the relationship between inputs and outputs. While

complex non-linear models achieve superior performance, their

interpretability is often compromised. This lack of interpretability

limits their application in biomedical research, where a thorough

understanding of the classification process is crucial. Feature

importance methods aim to quantify the contribution of each

feature to the model’s predictions. Global methods provide an

overarching ranking of features, while local methods illuminate the

contribution of each feature to a specific prediction. In Figure 4,

global feature importance is illustrated using various methods.

In Figure 4A, the RandomForest embedded feature importance

is presented. The importance of a feature is computed as the

(normalized) total reduction of the criterion brought about by that

feature, commonly referred to as the Gini importance.

Figure 4B showcases the feature importance based on SHAP

values. Essentially, this method constructs an interpretable linear

model around each test instance and estimates feature importance

at the local level. The plot in Figure 4B reveals the most important

features for classification according to the SHAP algorithm. Shapley

values are calculated by averaging across all iterations of the

algorithm for each subject, considering the 20 repetitions. This

summary plot provides an insightful overview of each feature’s

relative impact on the model’s predictions, contributing to a
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FIGURE 4

The images display the top 20 features ranked by their importance. (A) RF embedded feature importance. The boxplots represent the distributions of

the feature importance coe�cient calculated across all validation folds of the model. (B) SHAP summary plot depicting Shapley values for each

feature. Each point represents a subject’s Shapley value, with the y-axis indicating the corresponding feature and the x-axis representing the Shapley

value. The color gradient reflects feature values, ranging from low to high, while features are ordered by mean importance, with more important

features positioned toward the top.

Frontiers inMicrobiology 07 frontiersin.org172

https://doi.org/10.3389/fmicb.2024.1348974
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Novielli et al. 10.3389/fmicb.2024.1348974

thorough understanding of the overall importance and influence

of different features in the analysis.

The Figure 4B indicates the presence of bacteria, such as

Porphiromonas, with a high relative abundance (highlighted in red

points on the summary plot) on the positive side of the x-axis,

while a low relative abundance (highlighted in blue points) is more

prevalent on the negative side. This suggests that a higher relative

abundance of these bacteria is generally associated with a higher

probability value for CRC, while a lower relative abundance is

linked to a lower probability value for CRC. Conversely, bacteria

like Lachnospira exhibit the opposite pattern, implying that a high

abundance of this genus is correlated with a lower probability

of CRC. These nuanced insights into the direction of effects are

not discernible using global explanation methods like RF’s built-in

feature importance. Notably, the importance rankings of features

obtained from both RF and SHAP values show substantial overlap

(Jaccard Index = 0.67), highlighting the robustness and stability of

the model. Furthermore, the SHAP summary plot highlights that

among the top 20 most significant variables, Age, Gender, and BMI

are included.

We have extended our explainability analysis to include the

other two models (SVM and XGBoost). Due to computational

constraints, we limited the number of repetitions for SVM to 5.

The SHAP summary plots for these models are now available in

the Supplementary Figure S5. Additionally the Table 4 illustrates

the overlap coefficient (Vijaymeena and Kavitha, 2016) between

the SHAP values of the three models. Notably, we observed a

higher degree of overlap between the Shapley values of the two

top-performing models, RF and XGBoost.

Figure 5 displays the dependence plots for the top two variables

according to the SHAP summary plot. Notably, the dependence

of marginal contributions for a specific variable varies with the

fluctuations in the variable itself. Specifically, in the depicted

dependence plots, an increase in the values of Fusobacterium

(Figure 5A) or Porphyromonas (Figure 5B) corresponds to a rise

in the associated SHAP values. Consequently, elevated values of

these variables play a significant role in the algorithm’s decision to

classify an instance as CRC. Moreover, the color code represents

the abundance of another bacterium. In Figures 5A, B can be

observed the correlation of Fusobacterium with Peptostreptococcus

and Porphyromonas, respectively.

5 Discussion

In our research, we have crafted an Artificial Intelligence

workflow adept at deciphering the human microbiome within

a cohort of control and CRC subjects, offering a highly

dependable prediction of CRC outcomes. A notable strength

lies in the entirely data-driven implementation of the classifier.

Additionally, the preprocessing pipeline impartially eliminates

less informative bacteria without relying on diagnostic labels

associated with the microbiome. Beyond its precision, the top

classifier yields predictions that are readily interpretable. XAI

analysis results reveal a discernible pattern aligning with established

knowledge, highlighting some bacterial genera among the 20 most

significant features, known for their association with CRC in

existing literature.

TABLE 4 Overlap coe�cient between the top 20 most important

features, as determined by SHAP, across the three ML models.

RF 0.55

XGBoost 0.40 0.75

SVM RF

Among the foremost 20 features, Fusobacterium,

Porphyromonas, Peptostreptococcus, and Parvimonas have emerged

as potential microbiological markers that could significantly

improve the accuracy of colorectal cancer (CRC) diagnoses (Chen

et al., 2022).

Figure 5 offers insight into the connection between specific

bacterial genera and CRC. The observed positive correlation

between the relative abundance of well-documented bacteria like

Fusobacterium and Porphyromonas and SHAP values suggests their

influence on the model’s predictions. This correlation hints at the

biological relevance of these taxa in the context of CRC. Essentially,

a higher abundance of these bacteria appears to positively impact

the model’s attribution of the positive class (cancer) during

output explanation. The visual representation in Figure 5 aids

in understanding the model’s decision-making from a biological

standpoint (Zhou et al., 2018; Koliarakis et al., 2019).

The recognition of abundant bacteria originating from the

oral cavity, including Fusobacterium, Peptostreptococcus, and

Parvimonas, indicates a dynamic symbiotic metacommunity

intricately linked to the initiation of colorectal cancer (CRC).

Within the human body, a symbiotic relationship with the

microbiota exists, where polymicrobial communities inhabit

cavities such as the oral and intestinal regions. Despite these areas

being anatomically separated with distinct microbiota colonization,

there are indications that bacteria from the oral cavity may migrate

to the colon (Koliarakis et al., 2019). Fusobacterium has been

associated with genetic and epigenetic abnormalities in colorectal

cancer (CRC) tissues, including microsatellite instability (MSI).

In the tumorigenesis and progression of CRC, Fusobacterium

has the potential to enhance proliferation and metabolism, alter

the immune microenvironment, and promote metastasis and

chemoresistance. It may serve as a biomarker for identifying

individuals at high risk for CRC (Wang and Fang, 2023).

According to our study, a high concentration of bacteria from

the Lachnospiraceae family is associated with a lower likelihood

of CRC. This spurious association has been observed in previous

works, including (Hexun et al., 2023; Zhang et al., 2023), and this

could be linked to the mechanism whereby a high concentration of

these bacteria may promote heightened immune surveillance, thus

controlling colorectal cancer progression and counteracting it.

Additionally, from the summary plot, we observe another

pattern well-documented in the literature. There are studies

indicating that certain bacteria of the Clostridiales order, including

Eubacterium eligens, Eubacterium ventriosum, and Anaerostipes,

are significantly reduced in CRC patients compared to control

subjects (Montalban-Arques et al., 2021). This is evident in

Figure 4B, where corresponding to these commensal bacteria,

the high concentration of these bacteria (red points on the

plot) is associated with negative SHAP values, indicating that
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FIGURE 5

SHAP dependence plot for (A) Fusobacterium and Peptostreptococcus. (B) Porphyromonas and Fusobacterium.

the model assigns a low probability of classifying these subjects

as CRC.

Regarding demographic descriptors, age, gender, and BMI

have emerged as important features. Higher age, male gender,

and elevated BMI appear to be positively associated with CRC.

These findings are widely accepted and supported by scientific

literature, where obesity is recognized as a factor associated with the

development of this tumor, along with advancing age. Age exhibits

a consistent trend with expected associations: longer lifespans

correspond to a higher risk of having CRC (Murphy et al., 2011;

Ye et al., 2020; Elangovan et al., 2021).

In addition to the strengths mentioned above, we performed

a comprehensive analysis of explainability across the three models

employed in our study. This analysis, as can be observed

in Figure 4B and in Supplementary Figure S5, demonstrates the

comparability of explainability results in terms of both the most

important features and the correlation between feature values and

their corresponding Shap values. Notably, the positive/negative

correlations observed between SHAP values and the abundance of

specific features persist consistently across all three models.

This consistency in the interpretability of our models enhances

the robustness of our findings.

The presented study acknowledges certain limitations that

we aim to address in future research efforts. While the

classification performance provides valuable insights, there is

the potential for further optimization. This could be attributed

to the presence of other factors associated with colorectal

cancer, such as hereditary factors and smoking, which were not

considered in our analysis. Furthermore, the utilized database,

obtained through 16S rRNA sequencing, provides a limited

taxonomic resolution compared to Shotgun sequencing. A finer

taxonomic resolution might have contributed to a more precise

analysis and potentially identified stronger associations with

the disease.

In the realm of CRC research, our study takes a distinctive

approach by applying XAI techniques to unravel the intricate

relationship between the human microbiome and CRC. Utilizing

SHAP in microbiome research for predicting CRC outcomes

enhances the transparency of our model and introduces a

new perspective for the application of XAI in personalized

medicine. Our identification of microbiological markers

and taxonomic units associated with CRC risk contributes

to the understanding of disease mechanisms and has the

potential to inform diagnostic and therapeutic strategies. By

acknowledging demographic descriptors alongside microbiome

features, our work ensures a comprehensive approach that can be

applicable across diverse patient populations. In recognizing the

challenges and limitations of our study, we aim to guide future

investigations, emphasizing our commitment to advancing both

the scientific understanding of CRC and the practical applications

of contemporary technologies.

6 Conclusion

This study has enabled the identification of bacteria that

significantly influence the discrimination between healthy and

diseased individuals through Explainable Artificial Intelligence

(XAI), suggesting the identification of new disease biomarkers.

Additionally, the use of explainable artificial intelligence

models can support making these models more transparent and

interpretable, allowing for the appreciation, understanding, and

utilization of the microbiota composition for each individual.

By employing such the proposed method for each subject,

an assessment of the microbiota can be conducted, with

the aim of implementing actions to evaluate its modification,

if necessary.
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Identifying the origin of a food product holds paramount importance in ensuring

food safety, quality, and authenticity. Knowing where a food item comes from

provides crucial information about its production methods, handling practices,

and potential exposure to contaminants. Machine learning techniques play a

pivotal role in this process by enabling the analysis of complex data sets to

uncover patterns and associations that can reveal the geographical source of a

food item. This study aims to investigate the potential use of explainable artificial

intelligence for identifying the food origin. The case of study of Mozzarella di

Bufala Campana PDO has been considered by examining the composition of

the microbiota in each samples. Three di�erent supervised machine learning

algorithms have been compared and the best classifier model is represented

by Random Forest with an Area Under the Curve (AUC) value of 0.93 and the

top accuracy of 0.87. Machine learningmodels e�ectively classify origin, o�ering

innovative ways to authenticate regional products and support local economies.

Further research can explore microbiota analysis and extend applicability to

diverse food products and contexts for enhanced accuracy and broader impact.

KEYWORDS

explainable artificial intelligence, machine learning, microbiome, food origin, PDO

1 Introduction

With the burgeoning demand for high-quality, region-specific products, the need

to ensure the origin and treceability of food products plays a pivotal role in ensuring

authenticity, quality, and safety in the global food supply chain (Gallo et al., 2021).

The concepts of food traceability and origin are closely interlinked and hold pivotal

significance in ensuring food safety and transparency throughout the production

process but also supports local economies and encourages sustainable agricultural

practices. They are integral in guaranteeing that foods are safe, genuine, and adhere

to quality standards. Traceability refers to the ability to follow the journey of a

product along the entire supply chain, encompassing detailed information about its

production, processing, packaging, distribution, and sale (del Rio-Lavín et al., 2023).
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On the other hand, the origin of food products indicates the specific

location where they were cultivated, manufactured, or processed.

Understanding the origin of a food item is essential for various

reasons, including ensuring its safety, quality, and sustainability.

Presently, determining the origin of a food product relies on

diverse methods and tools. Collaboration among producers,

distributors, and other stakeholders in the supply chain is crucial

to ensuring transparency and accuracy in disclosing the origin

of food products (Corallo et al., 2020). Some food products may

acquire origin certifications, such as the Protected Designation of

Origin (PDO) in Europe or other regional certifications, which

verify that the product originates from a specific geographical

area and complies with designated standards (Badia-Melis et al.,

2015). Analyzing the intricate ecosystem of microorganisms

inhabiting food, known as the food microbiota, can be a useful

tool for understanding the safety, quality, and characteristics

of food products of foods. This diverse microbial community,

comprising bacteria, fungi, and viruses, is influenced by various

factors such as geographical location, production methods, and

processing techniques. A fundamental aspect of harnessing

the food microbiota for product origin lies in its dynamic

composition, which reflects the unique environmental conditions

and production practices of each food item. By scrutinizing the

microbiota composition of food samples, distinctive microbial

signatures indicative of their origin or production environment

can be discerned. Recent advancements in molecular biology

and sequencing technologies have revolutionized our ability to

characterize the food microbiota with unprecedented precision

and speed. High-throughput sequencing methods, including next-

generation sequencing, facilitate rapid and accurate identification

of microbial species present in food samples (Reuter et al.,

2015). Comparative analysis of microbiota profiles among

different food samples enables the identification of subtle

variations that serve as valuable markers for product origin.

Specific microbial strains or community structures may be

linked to particular regions or production facilities, offering

distinctive identifiers for food products. Moreover, the food

microbiota serves as a sentinel for monitoring food quality

and safety along the supply chain (Guidone et al., 2016).

Alterations in microbial composition or abundance can signal

potential contamination or spoilage incidents, enabling prompt

interventions to mitigate risks and uphold food safety standards.

In addition to conventional laboratory techniques, emerging

methodologies such as metagenomics and metatranscriptomics

provide comprehensive insights into the food microbiota. These

cutting-edge approaches enable holistic analysis of all microbial

genetic material within a sample, facilitating deeper understanding

of microbial dynamics and functions (Cao et al., 2021). The use

of machine learning in food classification and origin represents a

significant step forward in ensuring the safety and authenticity of

food products. Firstly, machine learning enables the development

of predictive models that can differentiate between different

types of foods based on specific characteristics. By leveraging

machine learning algorithms, it becomes possible to process

vast amounts of data, including information on production

practices, environmental factors, and biochemical compositions,

to accurately predict the origin of a food product. For example,

using data from chemical, sensory, or genetic analyses, models can

be trained to recognize the presence of contaminants or identify

the geographical origin of a food. Furthermore, the application

of machine learning to food classification offers numerous

opportunities to enhance food safety, ensure product authenticity,

and optimize the identification of food origin. The integration of

machine learning and microbiota offers an innovative approach

to understanding the complexity of interactions between the

microbiome and food. By analyzing microbiome data using

machine learning algorithms, it is possible to identify patterns

and associations that can be valuable for enabling the develop

preventive strategies to reduce risks and improve the nutritional

quality of foods. The application of machine learning techniques

in the field of food microbiota presents multiple opportunities

to analyze large amounts of microbiological data, identify

patterns and associations between microbial composition and food

characteristics, predict food quality and safety, to understanding

microbial dynamics and search for solutions to promote health

(Bellantuono et al., 2023; Papoutsoglou et al., 2023). Through

data analysis and the development of predictive models, crucial

challenges in the food industry can be addressed, promoting

greater transparency and trust among consumers. Explainable

Artificial Intelligence (XAI) algorithms are useful to make artificial

intelligence (AI) models understandable and interpretable to

humans, because many machine learning and AI models often

operate as “black boxes,” making it difficult to understand how

and why they produce certain predictions or decisions. The goal

of XAI is to provide explanations and insights into the operation

of AI models, enabling users to understand the reasons behind

their predictions or decisions. This is particularly important in

contexts where transparency, accountability, and trust in AI are

crucial. In Explainable Artificial Intelligence (XAI), trustworthiness

plays a role in ensuring the reliability and transparency of AI

models. It refers to the degree of confidence and faith users

have in the explanations provided by the model regarding its

predictions and decision-making processes. XAI techniques may

include SHapley Additive exPlanations (SHAP) analysis that seek

to translate the internal workings of AI models into understandable

human explanations (Novielli et al., 2024). This research delves into

the crucial realm of preserving and authenticating the geographical

origin of Mozzarella di Bufala Campana PDO, specifically focusing

on the provinces of Salerno and Caserta. The characteristic that

will be used for data analysis is the abundance of bacteria

present in the microbiota of the samples. This information will

be crucial for identifying any patterns or correlations between

bacterial composition and the geographical origin of Mozzarella di

Bufala PDO. By utilizing data analysis techniques such as machine

learning (Monaco et al., 2021; Papoutsoglou et al., 2023), it will be

possible to create predictivemodels capable of accurately classifying

the geographical origin of each sample based on microbiota

information. This approach will provide a trustworthy assessment

of the mozzarella’s origins, thereby contributing to food quality

and safety.
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2 Materials

The data utilized in this study, decripted in Table 1 stems

from the microbiological analysis of the microbiome of 65 samples

of Mozzarella di Bufala PDO originating from 30 dairies in the

province of Salerno and 35 dairies in the province of Caserta. These

samples underwent thorough examination in the laboratories of

the Microbiology Division within the Department of Agricultural

Sciences at the University of Naples Federico II. All dairies were

located within the PDO area produced traditional Mozzarella di

Bufala according to the PDO regulation. Total DNA was extracted

using the Qiagen Power Soil Pro kit. Metagenomic libraries were

prepared using the Nextera XT Index Kit (Illumina, San Diego,

California, United States), then whole metagenome sequencing was

performed on an IlluminaNovaSeq platform, leading to 2× 150 bp,

paired-end reads. Reads were quality-checked and filtered through

Prinseq-lite v. 0.20.4, using parameters “-trim_qual_right 5" and “-

min_len 60.” An average of 25M of paired-end reads were obtained

(2 × 150 bp) for each sample. Raw reads were pre-processed

and filtered as previously described (De Filippis et al., 2021).

Briefly, contamination from host reads was removed using the

Human Sequence Removal pipeline developed within the Human

Microbiome Project by using the Best Match Tagger (BMtagger)

mapping reads against the Bubalus bubalis (Mediterranean breed)

genome (accession number: GCA003121395.1). Then, non-host

reads were quality-filtered using PRINSEQ v. 0.20.4 (Schmieder

and Edwards, 2011). Bases having a Phred score <15 were

trimmed and those<75 bpwere discarded. High-quality reads were

further processed to obtain microbiome taxonomic profiles using

MetaPhlAn v. 4.0 (Blanco-Míguez et al., 2023).

Our analysis encompasses a diverse set of samples, reflecting

the regional diversity of Mozzarella di Bufala PDO production

across different dairies in the provinces of Salerno and Caserta.

The 65 samples provide a robust dataset for investigating variations

in microbial composition, offering valuable insights into the

distinctive qualities of Mozzarella di Bufala PDO from different

geographic origins. The species abundance data unveils the relative

prevalence of microbial species, offering insights into the intricate

microbiome of Mozzarella di Bufala PDO. This information is

organized in a tabular format, where each row corresponds to a

specific sample, and each column represents a distinct microbial

species. To enhance our understanding of the origin of each

Mozzarella di Bufala PDO sample, we include details about the

respective cheese dairy, specifying both the dairy name and its

geographic origin. Each sample presents 139 output variables,

each representing the abundance of a specific bacterium. In the

context of your analysis on the microbiome of Mozzarella di

Bufala PDO, these output variables likely reflect the proportions

or relative quantities of different types of bacteria present in

each sample. The type of bacteria and their relative abundance

in each sample could have significant implications for the quality

and sensory characteristics of the product. Since many samples

have abundance values equal to zero, indicating the absence of

the bacteria, a preprocessing step was performed. In this pre-

processing step, columns with more than 70% zero values were

removed, reducing the total number of columns to 23. In order to

conduct a robust analysis, the initial dataset has been strategically

TABLE 1 Description of samples and input variables.

Type of samples Diary from Campania
region

n samples from Salerno 30

n samples from Caserta 35

Type of input variables Microbiome relative abundance

n input variables for each sample 139

partitioned into a validation dataset and a test dataset to. This

partitioning is designed to ensure a representative and unbiased

evaluation of the models developed during the study (Ibrahimi

et al., 2023). The validation dataset consists of 22 samples from the

province of Salerno and 33 samples from the province of Caserta.

This division allows for the exploration of regional variations

within the microbiome of Mozzarella di Bufala PDO, considering

the distinctive characteristics of these geographical locations. The

validation set was then used to assess three different classifiers

through a five-fold cross-validation repeated 20 times (Schaffer,

1993), and the performance of the best classifier (Random Forest,

RF) was analyzed. Following that, the trained model was tested on

the test dataset, and its performance was evaluated on this separate

set of samples.

The independent test dataset, on the other hand, comprises

eight samples from Salerno and two samples fromCaserta. Notably,

these 10 test samples are collected on the same day from the same

dairy as the samples present in the validation set. By adopting this

partitioning strategy, we aim to develop a model that not only

captures the nuances of the training dataset but also demonstrates

robust predictive abilities when faced with previously unseen

samples.

3 Methods

The main steps of our analysis are outlined in the flowcharts

in Figure 1. It provides a comprehensive overview of the model’s

performance during both the training and validation phases, as

well as in the subsequent testing phase, allowing for an overall

evaluation of its predictive capabilities.

3.1 Machine learning based classification

To assess the classification of these samples, three distinct

supervised machine learning methods were employed: Random

Forest, XGBoost, and Multi-Layer Perceptron (MLP). The

identification of the optimal classifier was based on both accuracy

and Area Under the Curve (AUC ).

3.1.1 Random forest classifier
The Random Forest Classifier represents a sophisticated

ensemble learning algorithm within the realm of machine learning

(Chaudhary et al., 2016). Envisioned as a confluence of decision
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FIGURE 1

The flowchart outlines the steps of the conducted analysis. The validation set was used to assess three di�erent classifiers through a five-fold

repeated 20 times cross-validation, and the performance of the best classifier (Random Forest, RF) was analyzed. Following that, the trained model

was tested on the test dataset, and its performance was evaluated on this separate set of samples.

trees, it operates on the principle of aggregating predictions from

diverse models to augment stability and overall performance. The

ensemble is constituted by an assembly of decision trees, each

meticulously trained on a distinct subset of the training dataset

through the lens of bootstrap sampling a method characterized

by its sampling with replacement. The algorithm’s efficacy is

derived from the varied nature of decision trees. This diversity,

arising from the differential subsets of data upon which each

tree is trained, mitigates the risk of overfitting, fostering a robust

model. In the predictive phase, each decision tree contributes

its prediction, and the final class is determined through a

majoritarian consensus. This collective decision-making process

amplifies the model’s resilience and generalization capabilities

(Breiman, 2001).

3.1.2 EXtreme gradient boosting classifier
EXtreme Gradient Boosting (XGBoost) is a widely-used

machine learning algorithm for regression and classification

problems renowned for its prowess in diverse applications,

particularly excelling in the realm of structured or tabular data

and supervised learning scenarios (Shwartz-Ziv and Armon, 2022).

XGBoost has been extensively used in data science and machine

learning competitions due to its ability to achieve excellent

performance on a wide range of problems and datasets. It’s also

known for its flexibility and ability to handle large amounts of

data. Positioned within the domain of ensemble learning, XGBoost

elevates traditional gradient boosting algorithms to new heights.

XGBoost typically builds an ensemble of decision trees, where

each tree contributes to the final prediction. The combination

of multiple trees enhances the model’s predictive capabilities.

XGBoost supports built-in cross-validation, enabling robust model

evaluation and parameter tuning for optimal performance.

XGBoost has an high predictive accuracy. By constructing an

ensemble of models, each correcting the errors of the others, it

can provide more accurate predictions compared to many other

algorithms. It also incorporates regularization techniques that help

manage the issue of overfitting, keeping the model general and

adaptable to new data (Chen and Guestrin, 2016).

3.1.3 Multi-layer perceptron classifier
The Multi-Layer Perceptron (MLP) stands as a sophisticated

architecture within the domain of artificial neural networks,

prominently featured in the landscape of machine learning. It

is distinguished by its layered composition, comprising an input

layer, one or more hidden layers, and an output layer. Each layer

encompasses interconnected nodes, or artificial neurons, where

the transmission of information follows a feedforward trajectory,

progressing from the input layer through the hidden layers and

culminating in the output layer. In a Multi-Layer Perceptron

(MLP), input nodes constitute the initial layer of the neural

network and serve as the units through which data is introduced

into the system. Each input node represents a specific feature

or variable from the dataset intended for model training. The

hidden layers are intermediary layers between the input and

output layers, responsible for capturing and learning complex

patterns and representations within the input data. These layers

contribute to the model’s ability to discern intricate relationships

that may not be immediately apparent in the raw features.

Output nodes constitute the final layer of the neural network

and are responsible for producing the model’s predictions or

outcomes. The configuration and characteristics of the output

layer depend on the nature of the task, whether it involves

classification, regression, or other specific objectives (Ruck et al.,

1990).

3.2 Evaluation metrics

Evaluation metrics are crucial tools for assessing the

performance and effectiveness of machine learning models

(Ferrer, 2022). These metrics provide quantitative measures

that help quantify how well a model is performing on a

given task. The choice of evaluation metrics depends on the

nature of the problem (classification, regression, etc.) and the

specific goals of the analysis. Here are some commonly used

evaluation metrics:

• Accuracy:
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The proportion of correctly classified instances among the

total instances

ACC =
TP + TN

TP + FP + TN + FN
(1)

• Sensitivity:

The fraction of true positive predictions out of all actual

positive instances

SENS =
TP

TP + FN
(2)

• Specificity:

Specificity is the proportion of actual negatives correctly

identified by the model out of the total number of actual

negatives.

SPEC =
TN

FP + TN
(3)

• Precision:

The fraction of true positive predictions out of all positive

predictions

PREC =
TP

TP + FP
(4)

• Area Under the ROC Curve (AUC-ROC):

The Receiver Operating Characteristic (ROC) curve and

Area Under the Curve (AUC) are assessment tools employed

to gauge the effectiveness of a binary classification model.

The ROC curve presents a graphical depiction of how

sensitivity (true positives) and specificity (true negatives)

change across various classification thresholds. Essentially, it

illustrates the balance between accurately identifying positive

and negative instances by the model. The AUC quantifies

the overall performance of the model by measuring the area

under the ROC curve: a value closer to 1 signifies superior

model performance, while a value around 0.5 suggests

random classification. In summary, these metrics are vital for

evaluating and contrasting the classification ability of binary

models (Ozenne et al., 2015).

3.3 Explainable artificial intelligence
methods

Explainable Artificial Intelligence (XAI) is a crucial aspect

in the development of AI systems, focused on making artificial

intelligence (AI) models understandable and interpretable to

humans. A specific method employed for XAI is the SHapley

Additive exPlanations (SHAP) (Arrieta et al., 2020). SHAP values

are used to evaluate the impact of individual features on the model’s

performance, particularly on a validation set. Mathematically, the

SHAP value for a specific feature (j) is calculated based on the

inclusion or exclusion of that feature from the model as:

8j(x) =
∑

F⊆S−{j}

|F|!(|S| − |F| − 1)!

|S|!
[fx(F ∪ j)− fx(F)] (5)

where 8j(x) represents the SHAP value of feature j for the

prediction of themodel f given the input x, S is the set of all features,

F ⊆ S − {j} represents all possible subsets of features excluding

feature j, |F|!(|S|−|F|−1)!
|S|! is a weight parameter that multiplies all

of the permutations of S! by the potential permutations of the

remaining class that doesn’t belong to S, while fx(F ∪ j) and fx(F)

denote respectively the model’s prediction when feature j is added

to the subset F and when it is absent (Lundberg and Lee, 2017). We

also averaged the ten realizations of SHAP values in order to obtain

a single representative SHAP vector.

The SHAP value measures how much including feature

j changes the model’s prediction compared to the prediction

without feature j, averaged over all possible combinations of

features. Positive SHAP values indicate that the feature contributes

positively to the prediction, while negative values indicate a

negative contribution. The SHAP values provide a quantitative

measure of the contribution of each feature to the model’s output,

enabling a more interpretable understanding of how individual

features influence the algorithm’s decision-making process. This

transparency is crucial for building trust in AI systems and

facilitating their use in various real-world applications where

interpretability is essential (Janzing et al., 2020). This approach

contributes to the trustworthiness and applicability of our findings,

enhancing the overall validity of the study’s outcomes in the context

of Mozzarella di Bufala PDO from Salerno and Caserta.

4 Results

This study aims to investigate the potential use of explainable

artificial intelligence for identifying the food origin. The case of

study of Mozzarella di Bufala Campana PDO has been considered

by examining the composition of the microbiota in 65 samples.

This study involved evaluating the effectiveness of three

supervised machine learning algorithms, namely XGBoost,

Random Forest, and a complex Multi-Layer Perceptron

network. The analysis revealed that the Random Forest classifier

outperformed the others, demonstrating the highest Area Under

the Curve (AUC) value of 0.93 ± 0.10 and the top accuracy score

of 0.87 ± 0.11. Table 2 provides a comprehensive comparison of

the three models based on their AUC and accuracy scores.

4.1 Machine learning analysis

The results are illustrated in the confusion matrix in Table 3,

obtained following a five-fold repeated 20 times cross-validation

procedure on the validation set. This methodology allows us

TABLE 2 Comparison between evaluation metrics of XGBoost (XGB),

Random Forest (RF), and Multi-Layer Perceptron (MLP) classifiers.

Classifier Accuracy AUC

XGB 0.82± 0.12 0.87± 0.11

RF 0.87± 0.11 0.93± 0.10

MLP 0.68± 0.13 0.78± 0.11
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to assess the effectiveness of our algorithm in a robust and

reliable manner. In Figure 2 it is possible to observe the

boxplot displaying the trend evaluation metrics, including accuracy

(Equation 1), specificity (Equation 3), sensitivity (Equation 2) and

TABLE 3 Confusion matrix depicts predicted values against actual values.

Actual class Predicted class

Caserta Salerno

Caserta 29 4

Salerno 3 19

In this instance, 29 samples from Caserta and 19 from Salerno are correctly classified, while

four samples from Caserta and three from Salerno are misclassified.

FIGURE 2

Boxplot of the distributions of evaluation metrics (accuracy,

specificity, sensitivity and precision) following five-fold

cross-validation repeated 20 times.

precision (Equation 4), obtained through a five-fold repeated cross-

validation scheme.

The confusion matrix highlights the algorithm’s ability to

correctly classify observations based on the geographical origin

of the samples, divided between the Salerno and Caserta areas.

We observe that the algorithm achieved an accuracy of 87.87% in

correctly identifying samples from the Salerno area and 86.36%

for those from the Caserta area. These results indicate a good

capability of our machine learning model in distinguishing the

geographical origin of Mozzarella di Bufala Campana PDO based

on the microbiota structure. The accuracy in both cases is quite

high, suggesting that the model generalizes well to new data and

could be used as a supportive tool in determining the geographical

origin of unknown samples.

The Receiver Operating Characteristic curve in the Figure 3

defines AUC score, measuring the area under this curve, is 0.93 ±
0.10 and it suggests a high accuracy in classifying samples based on

their geographical origin, affirming the robustness of the model’s

performance.

After conducting cross-validation, the outcomes were then

utilized to compute feature importance employing SHapley

Additive exPlanations (SHAP), as expressed in Equation (5). The

SHAP ranking plot is a graph that displays the importance of

features in machine learning models using SHAP and features are

arranged along the y-axis based on their importance, with the most

important features at the top and the least important ones at the

bottom. Each colored point represents a single data instance, and

the horizontal position of the point indicates the value of the shap

for that specific instance. The color of the point indicates the value

of the feature: higher values are represented in warm colors (red),

while lower values are represented in cool colors (blue). Through

a SHAP analysis, the 20 most important feature were identified,

deriving from the analysis of the microbiota 65 samples. In the

FIGURE 3

ROC curve depicts the classification model’s ability to vary the trade-o� between sensitivity (True Positive Rate) and specificity (1 – False Positive

Rate).

Frontiers inMicrobiology 06 frontiersin.org182

https://doi.org/10.3389/fmicb.2024.1393243
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Magarelli et al. 10.3389/fmicb.2024.1393243

FIGURE 4

The SHapley Additive exPlanations (SHAP) summary plot provides an overview of the importance of features in contributing to model predictions. In

this type of plot, each point represents a data instance, and the horizontal position of the point indicates how much the e�ect of a specific feature

contributes to the change in prediction compared to the model’s average prediction. The color of the point represents the value of the feature, with

darker colors indicating higher values.

SHAP plot in Figure 4 it is evident how certain features, such as

Lactococcus lactis and Moraxella osloensis, contribute significantly

to the model’s prediction. The feature Lactobacillus helveticus is

important for the model’s interpretability, as the colored points

are well distinguished, and red points indicate that high values of

that bacterium have influenced Salerno class, and vice versa. This

suggests that these elements play a crucial role in the geographical

discrimination of the samples.

The results of the Shap analysis highlight the fact that two

Phyla are most represented (Firmicutes and Proteobacteria). The

taxonomy of each sample of SHAP analysis is descripted in Table 4.

Lactobacillaceae is represented by five bacteria, Moraxella family

is represented by four bacteria, while Lactococcaceae family is

represented by three bacteria. Starting from the taxonomic group

of the genus, it can be seen that there is a significant diversity of

microbes, even if the Lactococcus genus and Lacotbacillus genus is

represented three times each other.

A possible application of the classification model is to execute

it on the previously selected test dataset. In testing the model, a

dataset consisting of 10 samples from the same study was utilized,

including two from Caserta and eight from Salerno. These samples

were previously excluded during the model training phase. The

confusion matrix of the test, depicted in the figure, provides a

detailed overview of the model’s performance on this specific test

dataset. It is particularly noteworthy that all samples from Caserta

were correctly classified by the model. On the other hand, only

one sample from Salerno was misclassified. This result suggests a

significant accuracy in the model’s ability to discriminate between

the two production locations, with a particularly high success rate

for samples from Caserta. The confusion matrix in Table 5 offers
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TABLE 4 Classification of the first 20 bacteria deriving from the Shap analysis.

Phylum Class Order Family Genus Species

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus lactis

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Moraxella Moraxella osloensis

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus helveticus

Firmicutes Bacilli Bacillales Staphylococcaceae Macrococcus Macrococcus caseolyticus

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter johnsonii

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus delbrueckii

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus Streptococcus thermophilus

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus fermentum

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus piscium

Actinobacteria Actinobacteria Micrococcales Micrococcaceae Rothia Unclassified bacterium

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia Escherichia coli

Firmicutes Bacilli Lactobacillales Lactococcaceae Lactococcus Lactococcus raffinolactis

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonadaceae Pseudomonadaceae fragi

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter Psychrobacter pasteurii

Bacteroidetes Flavobacteriia Flavobacteriales Weeksellaceae Chryseobacterium Chryseobacterium haifense

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter junii

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus Unclassified bacterium

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonadaceae Pseudomonadaceae

fluorescens

Firmicutes Bacilli Lactobacillales Lactobacillaceae Pediococcus Pediococcus parvulus

Firmicutes Bacilli Bacillales Bacillaceae Exiguobacterium Exiguobacterium indicum

The Phylum, Class, Order, Family, Genus and Species columns indicate the classification of each bacteria.

TABLE 5 Confusion matrix depicts predicted values against actual values.

Actual class Predicted class

Caserta Salerno

Caserta 2 0

Salerno 1 7

In this instance, seven samples from Salerno and two from Caserta are correctly classified,

while only one sample from Salerno is misclassified.

a detailed assessment of the model’s performance on the specific

test dataset.

5 Discussion

Mozzarella di Bufala Campana PDO is a designation that

certifies the mozzarella is produced in the Campania region,

Italy, and follows traditional production methods and established

quality standards to preserve its authenticity and excellence. The

PDO protects the product name from imitations and assures

buyers that they are purchasing a genuine product produced

according to the traditional specifications of the designated area.

Recognizing the correct origin is crucial to preserving the diversity

and excellence of local productions. Protection against imitations

and counterfeits, guaranteed by the PDO, helps maintain the

product’s reputation and preserves its cultural history. Ultimately,

correctly identifying the origin of PDO mozzarella not only

ensures product quality but also contributes to preserving the

cultural and gastronomic heritage associated with this unique

Italian specialty.

Indeed, the integration of machine learning (ML) and

explainable artificial intelligence (XAI) techniques holds significant

value in various contexts, including the analysis of biological

data such as microbiota and metabolomics. Machine learning

facilitates the creation of accurate predictive models based on

microbiological data, aiding in the authentication and protection

of PDO products like Mozzarella di Bufala Campana. XAI

techniques ensure transparency and interpretability, reinforcing

trust among consumers, regulators, and industry stakeholders. This

combination not only enhances the certification of food origin

but also strengthens the preservation of cultural and gastronomic

heritage associated with traditional foods. Overall, microbiota

analysis plays a vital role in ensuring the authenticity, quality, and

safety of food products like Mozzarella di Bufala Campana PDO.

In this study, each sample exhibits a relative abundance of various

microbial species, which are not present in all samples. The most

prevalent genera are Pseudomonas, Lactobacillus, Streptococcus, and

Acinetobacter. The cheese-making process of Mozzarella di Bufala

Campana is a combination of high-quality ingredients and specific

procedures, with particular attention to the crucial role played by

natural whey containing thermophilic lactic bacteria. The presence
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of thermophilic lactic bacteria is interesting because they survive

at high temperatures during the processing, thus contributing

to the uniqueness of Mozzarella di Bufala Campana (Levante

et al., 2023). The ecological complexity of these thermophilic

lactic bacteria is an aspect that can be studied in detail to

better understand the fermentation process and the production

of this traditional cheese. Research conducted has shown that,

despite ecological complexity, only certain thermophilic lactic acid

bacteria (LAB), namely Streptococcus thermophilus, Lactobacillus

delbrueckii, and Lactobacillus helveticus, are the main players in

the curd fermentation. This is one of the peculiarities that helps

preserve the unique characteristics of the cheese and protects local

producers from imitations and counterfeits. It also assures buyers

that they are purchasing an authentic and high-quality product,

respecting the long history and reputation of Mozzarella di Bufala

Campana as a traditional and artisanal product (Pisano et al.,

2016).

6 Conclusion

This paper is an example of how an XAI analysis can be

applied with trustworthiness in the context of discriminating the

geographical origin of PDO Mozzarella di Bufala Campana based

on microbiota bacterial abundance. This validates the approach

employed in our study and confirms that certain bacteria can

be considered reliable indicators of geographical origin. The

predictive models developed using machine learning techniques

have proven to be effective in classifying the geographical origin

of mozzarella samples. These results provides strong support

for food traceability, enabling consumers to make informed

choices and ensuring that products are authentic and safe.

The results obtained have significant implications for the food

industry as they offer an innovative and reliable method to

authenticate and protect high-quality regional products. This

can contribute to strengthening consumer confidence in food

products and supporting local economies through the promotion

of sustainable agricultural practices. Further research could delve

deeper into microbiota analysis and assess the effectiveness of other

analytical techniques in improving the accuracy of predictions

regarding the geographical origin of food products. Machine

learning facilitates the creation of robust predictive models

capable of accurately identifying the origin of food products

based on microbiological data. Furthermore, XAI techniques

provide transparency and interpretability, enabling stakeholders

to understand how these models arrive at their conclusions.

This combination not only ensures the trustworthiness of

predictions but also fosters trust among consumers, regulators,

and industry professionals. Moving forward, further research

could delve deeper into microbiota analysis and explore the

effectiveness of additional analytical techniques in enhancing

the accuracy of predictions regarding the geographical origin

of food products. Additionally, investigating the application of

these approaches in diverse contexts and food products would

expand the scope and applicability of our findings, driving

continual advancements in food traceability and quality assurance

practices.
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In this study, we present MetaBakery (http://metabakery.fe.uni-lj.si), an integrated 
application designed as a framework for synergistically executing the bioBakery 
workflow and associated utilities. MetaBakery streamlines the processing of any 
number of paired or unpaired fastq files, or a mixture of both, with optional 
compression (gzip, zip, bzip2, xz, or mixed) within a single run. MetaBakery 
uses programs such as KneadData (https://github.com/bioBakery/kneaddata), 
MetaPhlAn, HUMAnN and StrainPhlAn as well as integrated utilities and extends 
the original functionality of bioBakery. In particular, it includes MelonnPan for 
the prediction of metabolites and Mothur for calculation of microbial alpha 
diversity. Written in Python 3 and C++ the whole pipeline was encapsulated as 
Singularity container for efficient execution on various computing infrastructures, 
including large High-Performance Computing clusters. MetaBakery facilitates 
crash recovery, efficient re-execution upon parameter changes, and processing 
of large data sets through subset handling and is offered in three editions with 
bioBakery ingredients versions 4, 3 and 2 as versatile, transparent and well 
documented within the MetaBakery Users’ Manual (http://metabakery.fe.uni-lj.
si/metabakery_manual.pdf). It provides automatic handling of command line 
parameters, file formats and comprehensive hierarchical storage of output 
to simplify navigation and debugging. MetaBakery filters out potential human 
contamination and excludes samples with low read counts. It calculates 
estimates of alpha diversity and represents a comprehensive and augmented re-
implementation of the bioBakery workflow. The robustness and flexibility of the 
system enables efficient exploration of changing parameters and input datasets, 
increasing its utility for microbiome analysis. Furthermore, we have shown that 
the MetaBakery tool can be used in modern biostatistical and machine learning 
approaches including large-scale microbiome studies.
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1 Introduction

Numerous decisions are made by health care providers in 
medicine on the basis of a multivariate set of descriptors estimating 
probability that a specific disease is present in an individual (diagnostic 
context) or a specific condition is going to occur in the near future 
(prognostic context). In the former diagnostic case the probability that 
a particular disease may be present is useful for directing patients for 
further testing or start of immediate treatment next to exclusion of 
certain causes of observed symptoms. In the latter prognostic context 
predictions can be utilized to plan therapeutic decisions based on the 
risk for developing medical condition within specific timeframe and 
to stratify participants in intervention trials (Collins et  al., 2015; 
Moons et al., 2015). In either context, the combined information from 
multiple predictors observed and measured in an individual sample 
are utilized due to the fact that information from a single predictor is 
often insufficient to provide reliable estimates of diagnostic or 
prognostic value. Therefore multivariable models are being developed, 
validated with the aim to assist doctors and individuals in estimating 
probabilities and potentially guide their decision making (Collins 
et al., 2015; Moons et al., 2015).

However, recently the quality of reporting of prediction model 
studies was shown to be poor, therefore several initiatives such as 
TRIPOD (Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis Initiative) (Collins et al., 2015), 
SPIRIT-AI (Standard Protocol Items: Recommendations for 
Interventional Trials-Artificial Intelligence) (Cruz Rivera et  al., 
2020a,b), CONSORT-AI (Consolidated Standards of Reporting Trials-
Artificial Intelligence) (Liu et al., 2020a,b) were initiated to name a 
few. In addition, FAIR guiding principles for research software 
(Findable, Accessible, Interoperable, Reusable) were introduced in 
2022 (Barker et al., 2022; Loftus et al., 2022). This marked a significant 
milestone for the research community, acknowledging the growing 
importance of research software globally. These principles also 
established guidelines outlining minimum requirements for reporting 
algorithms in healthcare, emphasizing qualities such as explainability, 
dynamism, precision, autonomy, fairness, and reproducibility (Loftus 
et al., 2022).

Finally, good data management is the key leading to knowledge 
discovery and innovation, data integration and reuse by the 
community after the publication process. FAIR guiding principles for 
scientific data management (Wilkinson et  al., 2016) put specific 
emphasis on enhancing the ability of machines to automatically use 
the data and support its reuse by the community to maximize the 
added value. These principles also take into consideration sharing 
conditional on privacy considerations (GDPR), claims of proprietary 
control, practical constraints, access privileges, and the quality of 
accompanying metadata (Boeckhout et al., 2018).

Recently, two larger scale reports were published describing fecal 
microbiome-based machine learning for multi-class disease diagnosis 

(Gupta et  al., 2020; Su et  al., 2022) utilizing species-level gut 
microbiome information layer derived metagenomics sequencing 
runs. Detecting early signs of disease before specific diagnostic 
symptoms appear is crucial, particularly using biological samples that 
allow detailed characterization and can be collected noninvasively and 
regularly. This presents a promising opportunity for developing 
straightforward prescreening tests to aid both doctors and individuals 
in decision-making. However, these connections between human 
health and the accompanying microbiome must be based on real-
world conditions observed in the population, ensuring reliability and 
robustness across various human subjects, conditions, 
sub-populations, and other factors.

In addition to scientific research, also the industry for (human) 
microbiome-targeted products is faced with several challenges related 
to reproducibility and scientific rigor, which can impact the reliability 
and validity of research findings and the development of microbiome-
based products. The primary challenges in microbiome research 
include the absence of standardized methods and protocols for sample 
collection, processing, sequencing, and data analysis. Variability in 
samples affected by host genetics, environmental factors, diet, lifestyle, 
and other confounding factors all add to complexity. Additionally, 
limited data sharing and transparency, including controlled access to 
organized raw data, metadata, and analysis pipelines with respective 
hyperparameters hinder independent validation of results and the 
advancement of scientific rigor in this field (Pray et al., 2013; Sinha 
et al., 2015; Ma et al., 2018; D’Elia et al., 2023; Ruxton et al., 2023).

Broad data sharing policies now enforce the repurposing of 
existing data from published studies. This serves as real-world data for 
discovering widely applicable principles and methodologies, 
generating hypotheses, and validating results. By integrating diverse 
large datasets from thousands of participants across numerous 
countries, this approach offers a holistic view at a scale that surpasses 
single publication datasets.

Existing methods are designed based on the strong assumption 
that the data with sufficient sample size and accurate and detailed 
metadata information is available to design groups or train models. 
The current metadata of a considerable number of sequencing samples 
is incomplete, misleading, or not publicly available (Kumar et  al., 
2024), which may lead to these methods being infeasible or causing 
bias in biomarker inference. Moreover, their intrinsic design in using 
known phenotype information makes them incapable of revealing 
new subtypes or stages of diseases (Liu et al., 2022). The taxonomic 
analysis alone may induce spurious biomarkers since diverse microbial 
communities from different patients can perform remarkably similar 
functional capabilities as shown before.

Identification of biomarkers at the level of taxonomy although 
utilizing species information does not make use of all other layers of 
information derived from metagenomics, namely alpha diversity, 
functional genes, enzymatic reactions, metabolic pathways, 
metabolites that hence remain unexplored. In addition, the gap 
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between analyses of data using various generations of the same 
software remains underappreciated source of additional error, as 
textual information remains cited throughout the published literature 
while the underlying data re-analyses utilizing different versions of 
software and underlying databases may support advanced conclusions. 
Finally, the overall complexity of programs and the supporting 
databases constitutes another barrier for their deployment on high 
performance computing (HPC) or cloud computing. To fill this gap, 
we provide advances on many fronts, by (i) building a reproducible, 
stable, HPC ready, singularity image integrating the necessary plethora 
of heavy duty tools from bioBakery, mothur and MelonPann origin 
(Schloss et al., 2009; Segata et al., 2012; Truong et al., 2015; Pasolli 
et al., 2017; Franzosa et al., 2018; McIver et al., 2018; Mallick et al., 
2019; Schloss, 2020; Beghini et al., 2021), (ii) analyzing previously 
utilized datasets (Gupta et  al., 2020) in conjunction with not yet 
integrated datasets of clinical relevance (Youngblut and Ley, 2021), 
(iii) extending the analyses to novel layers of information (functional 
genes, enzymatic reactions, metabolic pathways, metabolites), (iv) 
assembling metadata from various studies, and (v) organizing the data 
into a complete machine learning dataset amenable for 70% of data 
for training and unseen 30% for validation. Finally, (vi) the meta 
integration of bioBakery v2, v3 and v4 versions of workflows of 
original publications enables anyone to back-map the mismatch 
between the original publications and advancement of algorithms and 
databases. In total, 4,976 publicly available samples pooled across 
multiple studies exploring 17 disease types in relation to healthy 
cohorts reported from 15 countries before, were analyzed. The wealth 
of data, rigorous analytical approach in data deconvolution and ML 
provide significant novel insight and actionable models for recognition 
of medical conditions over a large international dataset.

2 Materials and methods

2.1 Multi-study integration of human gut 
metagenomes

Data collection was commenced as described and detailed before 
(Gupta et  al., 2020; Supplementary Table S1). In short, published 
studies with publicly available WGS metagenome data of human stool 
(gut microbiome) and corresponding subject metadata were included. 
Also, where multiple samples were taken per individual across 
different time-points only the baseline first or so-called baseline 
samples reported in the original study were utilized. To keep up with 
the same stringency as in the original study, studies reporting on diet 
or medical interventions or children (<10 years of age) were excluded, 
in addition to samples collected from disease controls but not marked 
as healthy or without diagnose assignment in the original study. The 
primary criteria for data selection included the number of samples, 
comparable sequencing depth, the quality of QC-ed sequences, and 
availability of corresponding metadata.

Metadata were synchronized for Healthy group across complete 
dataset with respect to their BMI and assigned the following 
categories, irrespective of their initial classification in the original 
studies: underweight (BMI < 18.5), overweight (BMI ≥ 25 and < 30), or 
obese (BMI ≥ 30). Consequently, stool metagenome data were 
renamed as underweight, overweight, or obese in our analysis. In 
addition, the .fastq files from the following additional projects were 

included: (i) a subset of the Flemish Gut Flora Project dataset was 
acquired to explore the efficiency of fecal microbiome data layers in 
classification of depression based on fecal metagenomic data and 
metadata (age, sex, BMI, BSS, RAND) of 150 subjects (M  = 50, 
SD = 12,96, 38% male) – 80 with depression and 70 healthy controls 
(Valles-Colomer et  al., 2019); (ii) samples of the PreTerm project 
(n = 24) (Deutsch et al., 2022a); (iii) samples of the PlanHab project 
(n = 54) (Šket et al., 2017a,b, 2018, 2020); and (iv) 22 wildcard users 
(volunteers providing their own .fastq files and necessary metadata; 
utilized for validation).

Raw sequence files (.fastq files) were downloaded from the EBI 
(European bioinformatics Institute) next to NCBI Sequence Read 
Archive and European Nucleotide Archive databases (Gupta et al., 
2020) (Supplementary Table S1). Flemish Gut Flora Project data were 
requested from the Lifelines cohort study1 following the prescribed 
standard protocol for data access. Shotgun sequencing data and 
metadata are available at the EGA (accession no. EGAS00001003298). 
Subsequent requests for access to data need to be directed to Flemish 
Gut Flora consortium.

2.2 Sequence data analysis

All datasets were preprocessed utilizing Slovenian HPC cluster 
SLING/VEGA infrastructure2, 3 (accessed 28.2.2024) and Austrian 
HPC MACH24 (accessed 28.2.2024.) running Singularity-integrated 
MetaBakery V3. In total, 1.5 million CPU-hours were utilized to 
perform quality trimming and deconvolute the sequence information 
into taxonomy, diversity, functional gene, enzymatic reaction and 
metabolic pathway data layers next to relaxation network predicted 
metabolites (Figure 1).

In this study we prepared MetaBakery5, 6 as a skeleton application 
for a synergistic execution of the bioBakery worklow of programs 
(McIver et al., 2018)7 along with their supporting utilities. Arbitrary 
number of paired or unpaired fastq files or intermixed serves as input 
for MetaBakery, either uncompressed or compressed (gzip, zip, bzip2, 
xz, or mixed) within a single MetaBakery run. The fastq inputs are 
preprocessed using the KneadData8 or skipped for already 
preprocessed data. The inputs are then subjected to the main analyzing 
programs: MetaPhlAn (Truong et  al., 2015; Blanco-Míguez et  al., 
2023), HUMAnN (Beghini et al., 2021) and StrainPhlAn (Truong 
et al., 2015; Beghini et al., 2021) along with their supporting utilities 
(count feature, regroup table, renorm table and join tables). The 
original bioBakery functionality was enriched by the integration of 
MelonnPan (Mallick et  al., 2019) for metabolite prediction and 
Mothur (Schloss et  al., 2009) for calculation of microbial alpha 
diversity. The entire pipeline is executed in a nearly single-click way 
once input files are put in a directory; a config file may optionally 

1  https://lifelines.nl/lifelines-research/access-to-lifelines

2  https://en-vegadocs.vega.izum.si/

3  https://www.sling.si/en/sling-2/

4  https://www.uibk.ac.at/zid/systeme/hpc-systeme/mach2/

5  http://metabakery.fe.uni-lj.si

6  http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

7  https://huttenhower.sph.harvard.edu/biobakery_workflows/

8  https://github.com/bioBakery/kneaddata
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be specified to tailor the execution. The pipeline automatically inspects 
the computer’s configuration to tune for an efficient execution 
(Supplementary Figure S1).

The skeleton application within MetaBakery is written in the 
Python 3 programming language and consists of more than twenty 
thousand lines of Python code, as well as some utilities written in the 
C++ programming language for increased efficiency. To achieve 
efficient running of a number of interdependent programs, an entirely 
new underlying framework called ExeFlow was developed building 
from the GUMPP skeleton application (Murovec et  al., 2021). To 
enable its direct adoption for large HPC clusters MetaBakery was 
packed as Singularity container (Kurtzer et al., 2017; Sochat, 2017; 
Sochat et  al., 2017) to integrate and preconfigure all embedded 
programs along with their and our own supporting utilities and the 
relevant databases (Table 1).

Singularity technology was shown to be  far better suited for 
running on high-performance computing facilities compared to other 
container technologies, like, e.g., Docker (Dirk, 2014) in addition to 
the fact that it is often the only supported container technology on 
such large systems.

In addition to improved usability and performance, 
MetaBakery offers additional benefits (Supplementary Figure S2). 
The results of all intermediate steps are stored in a specially crafted 
repository (on a local disk), where each result is associated with its 
full context, which includes the results of its predecessors and the 
full set of relevant parameters. On one hand, this enables crash 
recovery and prompt continuation of processing in the case of a 
workflow termination (operating system crash, power failure, full 

hard disk); this feature is offered by the bioBakery (Beghini et al., 
2021) workflows as well. In addition, MetaBakery enables efficient 
re-execution of the workflow with different parameters and/or 
extended or reduced input data sets. Upon MetaBakery’s 
re-execution, the available results from an arbitrary number of 
previous runs are instantly retrieved from the repository. Only new 
steps are subjected to actual processing. This system opens up the 
possibility to efficiently experiment with modified parameters or 
input datasets to observe their effects on the final results. Reuse of 
the past results is completely automatic and transparent. For 
example, if after a complete MetaBakery’s run, a user inspects the 
results and wants to alter some parameters of the HUMAnN step, 
then results of previous KneadData, MetaPhlAn and StrainPhlAn 
runs are instantly retrieved from the repository. This does not hold 
only for the next-to-the-last run, but for an arbitrary number of 
past runs. In a similar way, subsets of inputs (paired-end or 
single-end fastq files) may be freely added or removed between 
different MetaBakery runs, and only the affected processing steps 
are recalculated.

MetaBakery also provides a crucial feature for processing large 
human, non-human or environmental metagenomics projects 
(consisting of hundreds of fastq files or more). Such datasets can 
only be  processed in a reasonable amount of time on HPC 
platforms. However, HPC policies often prohibit, or at least 
penalize tasks with long wall times required to process such large 
input sets. To alleviate this difficulty, MetaBakery provides the 
ability to split an input dataset into an arbitrary number of subsets 
(by means of grouping files, not by splitting individual fastq files). 

FIGURE 1

Basic schematic representation of the MetaBakery approach. Highlights: all integrated programs and databases are fully preconfigured; external 
databases may be used instead of the built-in ones; efficient utilization of computing resources; suitable for autonomous and batch execution; suitable 
for High-Performance Computing facilities; automatic crash recovery; possibility of splitting large datasets into manageable chunks and processing 
them separately [on different computers and/or high performance computing (HPC) systems]; transparent handling of paired and unpaired reads 
(possibly intermixed); transparent handling of major compression formats (.gz, .zip, .bz2, .xz), possibly intermixed; automatic handling of command-
line parameters for included programs; experienced users can prescribe custom parameters; efficient restarts with changed parameters and input sets; 
complete screen and configuration dumping for easy documentation; easy access to command lines, exit codes and messages of programs; versions 
V4, V3 and V2 of bioBakery programs; only meaningful output files are presented to a user.
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The only restriction is that in the case of paired reads, the 
associated R1.fastq and R2.fastq files remain in the same subset. In 
the extreme case, each subset may consist of only a single unpaired 
fastq file or a single R1_R2 fastq pair. These subsets can 
be processed separately on different computers or HPC nodes, even 
in different parts of the world. The collected partial results can 
be  subjected to MetaBakery by activating its special mode of 
operation, in which the final results are reconstructed from the 
partial ones as if the entire input set had been processed in a single 
MetaBakery run. The reconstruction consists of all post-processing 
steps, such us: count feature, regroup table, renorm table and join 
tables, as well as extended features like Mothur calculations and 
prediction of metabolites with MelonnPan. In addition to 
bioBakery enabled databases, a custom built STRUO2 database 
(Youngblut and Ley, 2021) can be  utilized as an external 
component metaBakery.

MetaBakery is offered in three editions. The first edition 
contains version 4 of the BioBakery programs (MetaPhlAn 4, 
HUMAnN 3.6 – to be  replaced by version 4 when available, 
StrainPhlAn 4, along with associated utilities and appropriate 
databases). The second edition contains version 3 of the BioBakery 
programs (MetaPhlAn 3, HUMAnN 3, StrainPhlAn 3, with 
appropriate utilities and databases) (Suzek et al. 2007, 2015). The 
third edition consists of version 2 of the BioBakery programs 
(MetaPhlAn V2.7.7, HUMAnN 2.8.1, StrainPhlAn 1.2.0, together 
with the associated utilities and databases).

In summary, MetaBakery is suitable for standalone execution 
on both commodity hardware and high-performance computing 
facilities. All command-line parameters and intermediate file 
formats are handled automatically by the system, so the end user 
does not have to deal with these technical details. Nevertheless, 
experienced users can, if they wish, specify their own parameters 
for each included program to fine-tune its execution. To facilitate 

documentation of analyses and subsequent review of executions, 
MetaBakery stores an exact verbatim copy of its screen output as 
part of a final report. In addition, the actual command lines, 
standard output streams (stdout), standard error streams (stderr), 
and exit codes for each program are stored hierarchically on a disk 
for ease of navigation, review and debugging. The analysis setup is 
assisted by optional configuration files, where a complete workflow 
configuration is prescribed, which also aids in documenting a 
particular run. All features and mentioned use cases are explained 
in a user-friendly MetaBakery Users’ Manual9 and configuration 
file template.10 MetaBakery highlights are summarized in Table 2.

The following additional decision steps were taken in analogy 
with Gupta et al. (2020) when processing datasets with MetaBakery: 
(i) potential human contamination was filtered by removing reads 
that aligned to the human genome (reference genome hg19), in 
addition to repetitive elements; (ii) stool metagenome samples of 
low read count after quality filtration (<1 M reads) were excluded 
from our analysis; (iii) the alpha diversity estimates (n = 35) were 
calculated from biome formatted taxonomy profiles in mothur 
(Schloss et  al., 2009). As a result of all the extended additions, 
MetaBakery acts as re-implementation of the BioBakery workflow 
(https://huttenhower.sph.harvard.edu/biobakery_workflows/) 
integrating three versions of tools (V2, V3 and V4) to deliver 
various microbiome layers of information: (i) taxonomy (Bacteria, 
Archaea, Fungi, Protozoa, and Viruses), (ii) alpha diversity 
estimates; (iii) functional genes, (iv) enzymatic reactions, (v) 
metabolic pathways, and (vi) predicted metabolites, that are 
utilized next to subject (patient or healthy) metadata.

9  http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

10  http://metabakery.fe.uni-lj.si/config_template.txt

TABLE 1  MetaBakery ingredients by its edition enabling comparison of results obtained from various versions of the same utilities.

MetaBakery V2 MetaBakery V3 MetaBakery V4

Program databases

KneadData 0.12 KneadData 0.12 KneadData 0.12

human_hg38_RefMrna (default) human_hg38_RefMrna (default) human_hg38_RefMrna (default)

hg37dec_v0.1 (default) hg37dec_v0.1 (default) hg37dec_v0.1 (default)

mouse_C57BL_6NJ mouse_C57BL_6NJ mouse_C57BL_6NJ

SILVA_128_LSUParc_SSUParc_

ribosomal_RNA

SILVA_128_LSUParc_SSUParc_ribosomal_

RNA

SILVA_128_LSUParc_SSUParc_ribosomal_

RNA

Program database

MetaPhlAn 2.7.7 MetaPhlAn 3.1 MetaPhlAn 4.0.6

v20_m200 v31_CHOCOPhlAn_201901 vJan21_CHOCOPhlAnSGB 202,103

Program databases

HUMAnN 2.8.1 HUMAnN 3.1.1 HUMAnN 3.6.1

CHOCOPhlAn 0.1.1 CHOCOPhlAn 201901b CHOCOPhlAn_201901_v31

UniRef90 1.1 (both, full and EC 

filtered)

UniRef90 201901b (both, full and EC 

filtered) UniRef90 201901b (both, full and EC filtered)

UniRef50 1.1 (both, full and EC 

filtered)

UniRef50 201901b (both, full and EC 

filtered) UniRef50 201901b (both, full and EC filtered)

Program StrainPhlAn 1.2.0 StrainPhlAn 3.1.0 StrainPhlAn 4.0.6

Program MelonnPan MelonnPan MelonnPan

Program Mothur 1.46.1 Mothur 1.46.1 Mothur 1.46.1
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2.3 Data content

The entire pipeline was used on two different datasets focusing on 
human microbiome studies: (i) smaller dataset [depression data; 
[(Valles-Colomer et  al., 2019); accession no. EGAS00001003298] 
consisting of n = 80 samples from patients with depression and n = 70 
healthy controls] and (ii) larger dataset (n = 4,976 samples - healthy 
controls and patients with different diseases such as ACVD, ankylosing 
spondylitis, colorectal adenoma, colorectal cancer, Crohn’s disease, 
impaired glucose tolerance, IBD, obesity, liver cirrhisos, NAFLD, 
overweight, rheumatoid arthiritis, type 2 diabetes, symptomatic 
atherosclerosis, ulcerative colitis and underweight) (Gupta et al., 2020; 
Deutsch et al., 2022a). Both datasets were previously published in 
scientific journals to ensure the comparability and efficiency of the 
MetaBakery tool.

In total, 4,976 samples were processed in this study within 1.5 mio 
CPU-hours at SLING/VEGA HPC cluster11 (accessed 28.2.2024).

The resulting six data matrices (taxonomy, diversity, functional 
genes, enzymatic reactions, metabolic pathways and predicted 
metabolites) were matched with the corresponding human subject 
metadata matrix and prepared for subsequent machine learning step.

The analyses were run on complete data. Sequences for 4,976 
individuals with different diseases and healthy cohorts as control 
group were downloaded. Bioinformatics was completed with our 
Singularity implemented pipeline and produced the following 
information tables: (i) taxonomy table (2,408 variables, file size 0.03 
Gb); (ii) gene families (11,451,445 variables, file size 134 Gb); (iii) 
enzymatic reactions (622,447 variables, file size 8 Gb); (iv) metabolic 
pathways (47,536 variables, file size 0.6 Gb); (v) predicted 
metabolites (80 variables, 0.008 Gb); (vi) diversity estimates (35 
variables, file size 0.005 Gb); (vii) participant metadata (10 variables, 
0.003 Gb).

11  https://en-vegadocs.vega.izum.si/

The compilation of all these variables for almost 5,000 samples 
produced a matrix with 13 million rows, exhibiting all of the 
characteristics of microbiome data (Marcos-Zambrano et al., 2021, 2023; 
Moreno-Indias et al., 2021; Ibrahimi et al., 2023; Papoutsoglou et al., 
2023). Contrary to previous approaches (Gupta et al., 2020; Su et al., 
2022) that involved significant data reduction steps using arbitrary 
assumptions (i.e., average OTU abundance <0.15, prevalence >5%) 
we did not involve such steps as there is no previous guidance on how to 
set the values in other information layers (diversity, functional gene, 
enzymatic reactions, metabolic pathways, predicted metabolites) or 
whether the same settings are transferable between information layers or 
which variables represent noise within or between multiclass categories.

Benjamini–Hochberg correction was used to control for multiple 
testing, and results were considered significant at false discovery rate 
(FDR) < 0.05 as described before in our past studies (Šket et  al., 
2017a,b, 2018, 2020; Murovec et al., 2020, 2021; Deutsch et al., 2021, 
2022a,b; Deutsch and Stres, 2021).

2.4 Machine learning

Automated machine learning, Just Add Data Bio (JADBio), an 
Amazon cloud based machine learning platform for analyzing 
potential biomarkers (Tsamardinos et al., 2022), was used to search for 
biomarkers on both datasets. The JADBIO platform was developed for 
predictive modeling and providing high-quality predictive models for 
diagnostics using state-of-the-art statistical and machine learning 
methods. Personal analytic biases and methodological statistical 
errors were eliminated from the analysis by autonomously exploring 
different settings in the modeling steps, resulting in more convincing 
discovered features to distinguish between different groups. JADBIO 
with extensive tuning effort and six CPUs was used to model different 
dataset choices in addition to the features observed in samples of all 
groups from different projects by splitting the total data into a training 
set and a test set in a 70:30 ratio. The training set was used to train the 
model and the test set was used to evaluate the model (Deutsch et al., 
2022a). The modeling step was evaluated using 12 different 
performance metrics (AUC, mean average precision, accuracy, F1 
score, Matthews correlation, precision, true-positive rate, specificity, 
true-positive, true-negative, false-positive, and false-negative). In all 
cases, 10-fold cross-validation without drop (with a maximum of 20 
repeats) was performed. 1,000–3,000 different model configurations 
(with different feature selection and predictive algorithms with 
different hyperparameters) were used and up to 100,000 different 
models were trained per each of the six datasets. The largest dataset 
representing the gene family data set was reduced to obtain rows with 
less than 25% zeros per row.

3 Results and discussion

3.1 MetaBakery development, streamlining 
and large-scale utilization

MetaBakery represents an integrated ready-made system that 
shortcuts the nontrivial need for technical details of installing and 
configuring the included programs, libraries and databases. 
Nevertheless, the high level of flexibility is retained as the integrated 

TABLE 2  MetaBakery highlights.

All integrated programs and databases are fully preconfigured.

External databases may be used instead of the built-in ones (not for V2).

Efficient utilization of computing resources.

Suitable for autonomous and batch execution.

Suitable for High-Performance Computing (HPC) facilities.

Automatic crash recovery.

Possibility of splitting large datasets into manageable chunks and

processing them separately (possibly on different computers and/or HPC systems).

Transparent handling of paired and unpaired reads (possibly intermixed).

Transparent handling of major compression formats (gz, zip, bz2, xz),

possibly intermixed.

Automatic handling of programs’ command-line parameters.

Experienced users can prescribe custom parameters.

Efficient restarts with changed parameters and input sets.

Complete screen and configuration dumping for easy documentation.

Easy access to command lines, exit codes and messages of programs.

V4, V3 and V2 versions of BioBakery programs.

Only meaningful output files are presented to a user.
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databases can be freely substituted by advanced users, amended with 
configuration setting options available to them12, 13 (Schloss et al., 
2009; Segata et  al., 2012; Truong et  al., 2015; Pasolli et  al., 2017; 
Franzosa et al., 2018; McIver et al., 2018; Mallick et al., 2019; Schloss, 
2020; Beghini et al., 2021).

The pipeline handles parallelism differently than the bioBakery as 
CPUs are always allocated to all running tasks guided by performance 
parameters (determined by empirical measurements in this study) 
that indicate the use of CPUs and disk by individual programs to 
execute as many tasks as possible in parallel without overloading the 
underlying hardware. Single-threaded or less efficiently parallelized 
programs no longer take up an entire group of CPUs for themselves, 
since they are executed evenly on all CPUs in parallel with other 
processing steps. Better resource utilization thus results from the 
simultaneous execution of multiple programs on the same set of CPUs 
which is of special importance when dealing with short HPC wall 
times. The built-in performance parameters are fully configurable 
although MetaBakery’s default settings were determined by empirical 
measurements on various pieces of hardware: (i) HPC nodes with 
varying numbers of CPUs from 256 down to 16, (ii) a desktop 
computer with dual XEON processor with 64 hyper-threaded 
processors, and (iii) less powerful desktop computers with 12 and 8 
CPUs. Hence, based on the test results our MetaBakery was 
programmed to tune itself to perform out-of-the-box on the entire 
hardware spectrum (Supplementary Figure S2).

12  http://metabakery.fe.uni-lj.si/metabakery_manual.pdf

13  http://metabakery.fe.uni-lj.si/config_template.txt

MetaBakery is offered in three editions. The first edition contains 
version 4 of the BioBakery programs (MetaPhlAn 4, HUMAnN 3.6 
– to be replaced by version 4 when available, StrainPhlAn 4, along 
with associated utilities and appropriate databases). The second 
edition contains version 3 of the BioBakery programs (MetaPhlAn 3, 
HUMAnN 3, StrainPhlAn 3, with appropriate utilities and databases). 
The third edition consists of version 2 of the BioBakery programs 
(MetaPhlAn V2.7.7, HUMAnN 2.8.1, StrainPhlAn 1.2.0, together 
with the associated utilities and databases).

3.2 Large scale computing results: 4976 
taxonomy layers

Our data integration resulted in utilization of 4,976 samples 
encompassing healthy and 16 disease states from 35 studies of 15 
countries. In our first data analysis we focused on delineation between 
the two groups, namely the healthy on one side and a group of disease 
states on the other. Overall taxonomy classification efficiency enabled 
us to build a relatively simple and effective model without any specific 
filtering as also deployed before in the past studies (Gupta et al., 2020) 
based on taxonomy information only. In essence, we were able to 
utilize taxonomy information to clearly separate healthy from the 
diseased states (Figure 2 and Supplementary Figure S3).

In our second analysis we  focused on multiclass problem of 
distinguishing various disease states among themselves. Classification 
models for many of the disease states based on taxonomy only 
utilizing rather modest numbers of samples also showed the clear 
need for larger cohorts on the one side, however clearly provided the 
necessary information that the signal can readily be detected in such 

FIGURE 2

(A) Receiver operating characteristic (ROC) curve (AUC  =  0.959) for class “Yes”  =  diseased. (B) Uniform manifold approximation and projection (UMAP) 
attempts to learn the high-dimensional manifold on which the original data lays, and then maps it down to two dimensions. UMAP plots provides a 
visual aid for assessing relationships among samples.
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small size data as well, guiding future larger-scale data integration 
(Figure 3).

Diversity metrics utilizing 35 indices were integrated as one of 
the outputs of the MetaBakery pipeline. For this purpose, the 
standard diversity calculators from Mothur (Schloss et al., 2009) 
were integrated into the MetaBakery pipeline, which combine the 
entire analytical concept of modern microbiology in one pipeline 
(Supplementary Figure S4), extending the so far amplicon centered 
approach to metagenomics in a streamlined way.

3.3 Large scale computing results: 
depression dataset

In our third analysis we focused on depression dataset, utilizing 
data integration of taxonomy, diversity, functional genes, enzymatic 
reactions, metabolic pathways and metabolites. Overall, variables were 
tested for information content that would separate healthy from the 
clinically depressed participants. We  took a two-step approach to 
model the depression data. In the first step, taxonomy data (852 
variables), gene family data (596,146 variables), enzymatic reactions 
(237,025 variables), metabolic pathways (14,525 variables), and 
predicted metabolites (80 variables) were modeled individually. In the 
second step, only the most important features were then modeled on 
the merged dataset (97 variables). In addition, taxonomy data from 3 
different MetaPhlAn versions were also modeled (MetaPhlAn 2.0–972 
variables, MetaPhlAn 3.0–859 variables, and MetaPhlAn 4.0–4,249 
variables) (Supplementary Table S2). A binary classification was used 
to distinguish between healthy and depressed individuals.

At the taxonomy level, 23 features (MetaBakery version 2.0), 22 
features (Metbakery version 3.0), and 25 features (Metbakery version 
4.0) were found to be the most significant in distinguishing depression 
patients from healthy individuals (Supplementary Figure S5). Because 
the AUC was highest in MetaBakery 3.0, the corresponding functional 
data were used to build more successful models at the functional 

fingerprint level (gene families, enzymatic reactions, metabolic 
pathways, predicted metabolites). Nine genes, 25 enzymatic reactions, 
16 metabolic pathways, and 25 predicted metabolites were discovered 
in each corresponding data set using JADBio ML 
(Supplementary Figure S6). In the last step, a subset of the significant 
features from the first step was used to improve the model. And the 
logistic ridge model with an AUC of 0.967 was constructed to 
distinguish patients with depression from healthy individuals 
(Figure 4).

4 Conclusion

In this study, we presented MetaBakery,14 an integrated application 
designed as a framework for synergistically executing the bioBakery 
workflow (Franzosa et al., 2018; McIver et al., 2018; Beghini et al., 
2021) and associated utilities. MetaBakery streamlines the processing 
of any number of paired or unpaired fastq files, or a mixture of both, 
with optional compression (gzip, zip, bzip2, xz, or mixed) within a 
single run. MetaBakery uses programs such as KneadData,15 
MetaPhlAn, HUMAnN and StrainPhlAn as well as integrated utilities 
and extends the original functionality of bioBakery. In particular, it 
includes MelonnPan for the prediction of metabolites and Mothur for 
calculation of microbial alpha diversity. Written in Python 3 and C++, 
this near single-click pipeline encapsulated as Singularity container 
leverages the ExeFlow framework for efficient execution on various 
computing infrastructures, including large High-Performance 
Computing (HPC) clusters. MetaBakery facilitates crash recovery, 
efficient re-execution upon parameter changes, and processing of large 
data sets through subset handling. MetaBakery is offered in three 

14  http://metabakery.fe.uni-lj.si

15  https://github.com/bioBakery/kneaddata

FIGURE 3

Representation of multiclass classification based on AUC curves utilizing taxonomy data layer only and different diseases. TPR, true positive rate; FPR, 
false positive rate.

194

https://doi.org/10.3389/fmicb.2024.1426465
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://metabakery.fe.uni-lj.si
https://github.com/bioBakery/kneaddata


Murovec et al.� 10.3389/fmicb.2024.1426465

Frontiers in Microbiology 09 frontiersin.org

editions with bioBakery ingredients versions 4, 3 and 2. MetaBakery 
is versatile, transparent and well documented, with functions 
described in the MetaBakery Users’ Manual.16 It provides automatic 
handling of command line parameters, file formats and comprehensive 
hierarchical storage of output to simplify navigation and debugging. 
MetaBakery filters out potential human contamination and excludes 
samples with low read counts. It calculates estimates of alpha diversity 
and represents a comprehensive and augmented re-implementation 
of the bioBakery workflow. The robustness and flexibility of the system 
enables efficient exploration of changing parameters and input 
datasets, increasing its utility for microbiome analysis. Furthermore, 
we  have shown that MetaBakery tool can be  used in modern 
biostatistical and machine learning approaches including large-scale 
microbiome studies, potentially providing completely new insights 
into the microbial world.
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This study aimed to compare the microbiome profiles of patients with colorectal 
cancer (CRC, n = 380) and colorectal adenomas (CRA, n = 110) against generally 
healthy participants (n = 2,461) from various studies. The overarching objective was 
to conduct a real-life experiment and develop a robust machine learning model 
applicable to the general population. A total of 2,951 stool samples underwent a 
comprehensive analysis using the in-house MetaBakery pipeline. This included 
various data matrices such as microbial taxonomy, functional genes, enzymatic 
reactions, metabolic pathways, and predicted metabolites. The study found no 
statistically significant difference in microbial diversity among individuals. However, 
distinct clusters were identified for healthy, CRC, and CRA groups through linear 
discriminant analysis (LDA). Machine learning analysis demonstrated consistent 
model performance, indicating the potential of microbiome layers (microbial taxa, 
functional genes, enzymatic reactions, and metabolic pathways) as prediagnostic 
indicators for CRC and CRA. Notable biomarkers on the taxonomy level and 
microbial functionality (gene families, enzymatic reactions, and metabolic pathways) 
associated with CRC were identified. The research presents promising avenues for 
practical clinical applications, with potential validation on external clinical datasets in 
future studies.

KEYWORDS

gut microbiome, machine learning, colorectal cancer, colorectal adenoma, 
metagenomics, functional microbiome

1 Introduction

The prevalence of colorectal carcinoma (CRC) as the third most common nongender-
related cancer and its associated mortality after lung cancer is of great concern (Sung et al., 
2021). With an aging population leading to an expected 80% increase in global incidence over 
the next two decades, understanding sporadic colorectal cancers has become increasingly 
important (Karsa et al., 2010). These non-hereditary colorectal cancers account for 70–87% of 
cases, with genetics accounting for only a fraction of disease incidence (Frank et al., 2017). The 
lack of a clear genetic link underscores the potential influence of other factors, including 
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lifestyle and environmental components, as co-determinants of 
disease (Siegel et al., 2014). Certain risk factors such as age, tobacco 
and alcohol use, physical inactivity, increased body weight, and dietary 
habits have been associated with CRC, but clarification of these 
associations remains an ongoing challenge (Huxley et  al., 2009; 
Johnson et al., 2013).

The human gut microbiome, which encompasses the microbial 
communities in the intestinal tract, is becoming increasingly 
important because of its role in human disease (Pasolli et al., 2016). 
Supported by evidence that bacterial organisms trigger carcinogenic 
mechanisms, the role of the gut microbiome in the development of 
CRC has been proposed (Wong and Yu, 2023). The association of 
Fusobacterium nucleatum with CRC was revealed by amplicon 
sequencing of the 16S ribosomal RNA (rRNA) gene and later 
confirmed as causative in animal models CRC (Kostic et al., 2012, 
2013; Rubinstein et al., 2013). While 16S rRNA gene studies revealed 
such associations, metagenomic sequencing studies revealed a smaller 
number of CRC-associated microbial species and functional activities. 
However, the consistency and prognostic potential of these high-
resolution microbial signatures across different cohorts and study 
designs remain uncertain. Although the use of the gut microbiome for 
CRC diagnostics has been proposed, its validation in multiple 
independent studies is still pending (Zackular et al., 2014; Zeller et al., 
2014; Feng et al., 2015; Baxter et al., 2016; Yu et al., 2017).

Therefore, there remains a need to establish and validate links 
between the human gut microbiome and CRC across different 
populations, cohorts, and microbiome tools. While some cross-cohort 
studies have been based on 16S rRNA gene studies, this technique has 
its own limitations (Durazzi et  al., 2021). The advent of whole-
metagenome shotgun datasets for CRC cohorts facilitates a 
comprehensive exploration of the CRC-associated microbiome that 
includes strain-level precision and meta-analytic prediction strategies. 
Therefore, extensive cross-cohort studies are essential for an unbiased 
and robust assessment of the relationship between CRC and the 
gut microbiome.

While sequencing of gene amplicons for microbial identification, 
especially 16S rRNA sequencing, remains a priority, metagenomic 
analysis by genome-wide shotgun sequencing is becoming increasingly 
important. It was shown before that with shotgun sequencing entire 
microbial community can be  screened (including viruses, fungi), 
especially the less abundant taxa, which can also be  biologically 
important. On the other hand, with shotgun sequencing, microbial 
genes and metabolic pathways can be detected. In contrast, amplicon 
sequencing only allows for the prediction of microbial genes and 
metabolic pathways (Durazzi et  al., 2021). Shotgun sequencing 
integrates function, taxonomy and phylogeny and provides insights 
into the structure and function of the microbial community. It allows 
us to identify not only taxonomic units, but also genes, enzymatic 
reactions and metabolic pathways involved in microbial functionality. 
Given that there are 150 times more microbial genes than human 
genes, shotgun sequencing will soon enable us to understand the 
mechanisms behind the association of the microbiota with various 
diseases, including CRC (Qin et al., 2010; Wang et al., 2015).

The aim of this study was to compare the microbiome of patients 
with colorectal cancer and colorectal adenomas with that of generally 
healthy participants from different studies. With this goal in mind, 
we  sought to conduct a real-life experiment and create a robust 
machine learning model that can be applied to the general population.

In a typical procedure for building a disease classifier, a certain 
number of individuals with and without a disease are sampled by 
some research group in order to obtain data for machine learning. The 
pool of sampled individuals is necessarily limited, by means of which 
their diversity is less than satisfactory. Hence, the resulting machine-
learning model is necessarily overfitted to the very participants in a 
study. In contrast, the study in this article was conduct on as large 
dataset as it was possible to constellate from available sampled data 
from all over the world. The aim was to incorporate as rich diversity 
of a broad population into the resulting machine learning model. With 
this regard, it is reasonable to expect that at least some confounding 
factors are removed from the obtained disease classifier.

2 Methods

2.1 Data

Paired read sequences from 2,461 healthy participants, 380 CRC 
patients and 110 CRA individuals were downloaded from publicly 
available datasets studying different associations of different diseases 
and healthy controls. The main data selection criteria were the number 
of samples, depth of sequencing, the quality of resulting QC-ed 
sequences and the availability of metadata. Healthy individuals were 
defined as those who were reported as not having any overt disease 
not adverse symptoms at the time of the original study. The list of 
available datasets used in this study is available in 
Supplementary Table S1. The same dataset was used in study 
representing gut microbiome health index (Gupta et al., 2020). With 
a larger, healthy cohort, the aim was to consider the substantial 
variability of the human gut microbiome among healthy individuals 
(He et al., 2018).

2.2 Sequence processing

Paired-end reads were obtained from publicly available datasets 
using download procedures of European Nucleotide Archive1 
(Supplementary Table S1; Supplementary material: Extended 
discussion) and analyzed using our custom metagenomics sequence 
processing pipeline MetaBakery (currently in preparation, Deutsch 
et al., 2022a). MetaBakery is a new implementation of the BioBakery 
workflow (Beghini et al., 2021) and includes tools such as KneadData 
v0.12.02 with contaminant databases human_hg38_refMrna and 
hg37dec_v0.1 for quality control, MetaPhlAn 3.1.0 with database 
mpa_v31_CHOCOPhlAn_201901 for taxonomic analysis (for 
bacteria, archaea, fungi, protozoa and viruses) (Beghini et al., 2021) 
and HUMAnN 3.1.1 (Beghini et  al., 2021) with databases 
full_chocophlan.v201901_v31 and uniref90_201901b_full for 
inferring functional genes, enzymatic reactions and metabolic 
pathways. In addition, MelonnPan 0.99.0 (Mallick et al., 2019) was 
used for the prediction of microbial metabolites. MetaBakery is 

1  https://ena-docs.readthedocs.io/en/latest/retrieval/file-download.html

2  https://huttenhower.sph.harvard.edu/kneaddata/, accessed October 

10, 2023.
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containerized as a Singularity image and optimized for high 
performance clustering processing of large numbers of samples. For 
diversity assessment, Mothur 1.46.1 was integrated as part of 
MetaBakery pipeline utilizing biome format for diversity calculators 
(n = 35) (Schloss et al., 2009; Schloss, 2020). For this study no hand-
crafted command-line parameters were used for executing the above-
mentioned programs. If not instructed differently, the MetaBakery 
pipeline executes each program with its default parameters, as they 
apply to execution within the bioBakery workflow.

Minor steps of the analyses with MetaBakery were performed on 
a dual Xeon system with 32 CPU cores (64 hyperthreads), 512 GB 
RAM and 6 TB SATA hard disk at the Faculty of Electrical Engineering, 
University of Ljubljana, Slovenia. HPC system Vega at the Institute of 
Information Science3 and the HPC infrastructure Leo3, Leo4e of the 
University of Innsbruck, Austria, were utilized for heavy duty 
processing. In total, 980,000 CPUh were consumed.

2.3 Statistical analysis

Python 3.94 (Van Rossum and Drake, 2009) served as the basis for 
our statistical analysis. We used the non-parametric Mann–Whitney 
test integrated in the scipy.stats library (Virtanen et  al., 2020) to 
accurately determine the statistical significance between groups in 
terms of diversity and the features identified in the auto machine-
learning (autoML) analysis. These features were selected by an 
automatic machine learning analysis based on taxonomic signatures, 
gene families, enzymatic reactions, metabolic pathways and predicted 
metabolites in the different groups (CRC, CRA, healthy). We used the 
Python libraries matplotlib (Hunter, 2007) and seaborn (Waskom, 
2021) to visualize our results. The scikit-learn library (Pedregosa et al., 
2011) in Python facilitated the linear discriminant analysis (LDA), 
while the preprocessing was done using the StandardScaler method. 
Using the LDA method, we visualized and interpreted the differences 
between three different clusters: CRC, CRA and healthy participants. 
These observations were based on taxonomic signatures, gene families, 
enzymatic reactions, metabolic pathways and predicted metabolites, 
leading to a comprehensive understanding of the data. In addition 
UMAP clustering was performed using JADBIO machine learning 
(Tsamardinos et al., 2022).

2.4 Automated machine learning

The web-based machine learning platform “Just Add Data Bio” 
(JADBIO, Ver. 1.4.105) was used to investigate potential biomarkers 
(Tsamardinos et al., 2022). A two-stage methodology was used for the 
analysis. First, the models were trained individually for each 
component of the data matrix, i.e., for taxonomy, functional genes, 
enzymatic reactions, metabolic pathways and predicted metabolites. 
Subsequently, an integration step was performed in which all 
significant features were merged, and the model was retrained. 
JADBIO was developed for predictive modeling and uses advanced 

3  www.izum.si

4  https://www.python.org/, accessed October 10, 2023.

statistical and machine learning techniques to create robust diagnostic 
predictive models. The analysis was systematically performed to rule 
out personal analytical bias and methodological statistical errors by 
autonomously examining different modeling settings (Deutsch and 
Stres, 2021; Murovec et  al., 2021; Deutsch, 2022; Deutsch et  al., 
2022a,b). This process led to the identification of key features that 
allow effective discrimination between different groups. Using 
considerable computational resources and careful parameter tuning, 
JADBIO was used to model different dataset variations. The data was 
preprocessed to retain all rows (representing taxonomical features, 
gene families, enzymatic reactions and metabolic pathways) with at 
least 1,250 non-zero values, aiming to exclude the influence of large 
proportion of zeroes in the dataset. More than 2000 different model 
configurations were used to find the best possible model per every 
data matrix (Supplementary Table S2). All steps involving machine 
learning were used as implemented in JADBIO. Different model 
configurations were tested with different preprocessing steps, feature 
selectors, feature selection hyperparamters, predictive algorithms and 
hyperparameters were tested (Supplementary Table S2; 
Supplementary material: Extended discussion). The analysis included 
features extracted from samples of different projects and groups, with 
the data split 70:30 into training and test datasets. The training dataset 
was used to develop the model, while the test dataset evaluated its 
performance (Deutsch and Stres, 2021; Murovec et al., 2021; Deutsch, 
2022; Deutsch et al., 2022a,b). Receiver operating characteristic curves 
(ROC) were generated for all groups studied to evaluate the model. 
These curves graphically represented the trade-off between the rate of 
true-positive findings (sensitivity) and the rate of false-positive 
findings (1-specificity). Individual conditional expectation plots (ICE) 
were used for depth to illustrate the differential contribution of each 
feature to the predictive power of the model. Progressive feature 
inclusion plots were also created to provide insight into the impact of 
feature inclusion on model performance.

3 Results

3.1 Diversity

The in-house analytical pipeline MetaBakery (in preparation, 
Deutsch et al., 2022a) was used to preprocess the sequence data with 
integrated tool KneadData5 and to analyze the sequences at the level 
of taxonomy [MetaPhlAn3 (Beghini et al., 2021)], diversity [Mothur 
(Schloss et  al., 2009)], functional genes, enzymatic reactions and 
metabolic pathways [HUMAnN3 (Beghini et al., 2021)] and predicted 
metabolites [MelonnPan (Mallick et al., 2019)]. Sequences from 2,461 
healthy individuals, 380 CRC patients and 110 individuals with 
confirmed CRA were used for the analysis. A total of 1839 taxonomic 
units (kingdoms, phyla, clades, orders, families, genera and species) 
including archaea, bacteria, protozoa and viruses, 80,372 gene 
families, 34,008 enzymatic reactions, 31,555 metabolic pathways and 
81 predicted metabolites were identified and analyzed in the human 
gut microbiota. 19 different diversity metrics were used to compare all 

5  https://huttenhower.sph.harvard.edu/kneaddata/, accessed October 

10, 2023.
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three groups and determine the presence of differences. Although in 
most cases the diversity metrics were higher in the CRC and CRA 
groups, these differences were not significant, including the Shannon 
diversity index (Figure 1) as determined by the Mann–Whitney test 
(Supplementary Table S3; Supplementary Figure S1).

3.2 LDA analysis

Using the scikit-learn Python library, linear discriminant analysis 
(LDA) was used to explore potential differences between healthy 
individuals, CRA and CRC patients in the five data matrices 
(taxonomy, functional genes, enzymatic reactions, metabolic pathways 
and predicted metabolites). As shown in Figure 2, LDA clustering 
effectively discriminates between CRC, CRA and healthy individuals 
based on four different metagenomic fingerprints (taxonomy in 
Figure  2A, functional genes in Figure  2B, enzymatic reactions in 
Figure 2C and metabolic pathways in Figure 2D). However, no clear 
LDA cluster separation was observed for the predicted metabolites 
(Supplementary Figure S2). In addition, UMAP analysis was 
performed using JADBIO (Supplementary Figure S3).

3.3 Machine learning results

Although clear separation was observed in only four datasets 
(taxonomy, genes, enzymatic reactions and metabolic pathways), all 
five metagenomics data matrices (taxonomy data, functional genes, 
enzymatic reactions, metabolic pathways and predicted metabolites) 
were used for automatic machine learning using the JADBIO 

web-based tool. All matrices were prepared such that rows with at 
least 1,250 non-zero entries were retained in the dataset.

Based on the 1839 categories describing the taxonomic data of 
four different kingdoms (Archaea, Bacteria, Protozoa and Viruses), 
the models were trained using extensive tuning effort in search of 
biologically meaningful distinguishing features between all three 
groups. All important features were representative of the Bacteria 
kingdom and the best performing model was Classification Random 
Forest training 1,000 trees with deviance splitting criterion, minimum 
leaf size = 2, splits = 1, alpha = 1 and variables to split = 1.0 sqrt (nvars) 
according to JADBIO, after testing more than 2000 different 
configurations. More than 25 features were selected as the most 
appropriate to achieve the best possible differentiation between all 
three groups (AUC = 0.817), but the first ten taxonomic units can 
achieve more than 95% successful performance for differentiation 
(Figure 3A; Supplementary Figure S4; Supplementary Table S4). This 
model was tested with all 25 selected features using test data and 
achieved a performance of AUC = 0.787.

HUMAnN3 (Beghini et al., 2021), integrated in our MetaBakery 
pipeline, was used to assess the functional potential of the microbiome. 
Functional genes were determined using the UniRef database (Suzek 
et al., 2007, 2015). 80.372 functional genes were discovered in the 
samples and 70% of the total dataset was used to find the best possible 
model. The best possible model was Classification Random Forest 
training 1,000 trees with deviance splitting criterion, minimum leaf 
size = 3, splits = 1, alpha = 1 and variables to split = 0.577 sqrt (nvars) 
with an area under the curve value of 0.815 (Figure 3B). From the 
entire pool of genes, 25 of them were selected as the most important 
features for differentiation. However, a classification performance of 
100% was achieved with the first 15 of them (Supplementary Figure S5). 

FIGURE 1

Boxplots representing Shannon diversity metrics for healthy individuals and patients with colorectal cancer or colorectal adenoma.
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The model was tested on 30% of the entire dataset and achieved an 
accuracy of AUC = 0.822.

The aggregation of functional gene information into enzymatic 
reactions (Figure 3C) led us to model 34,008 enzymatic reactions. The 
best model was Classification Random Forest training 1,000 trees with 
deviance splitting criterion, minimum leaf size = 1, splits = 1, alpha = 1 
and variables to split = 0.577 sqrt (nvars), with an Area under the 
Curve (AUC) value of 0.825. 25 different features were identified as 
the most important for discrimination and the first 18 of them can 
achieve a prediction performance of 100% (Supplementary Figure S5; 
Supplementary Table S4). The model was tested and achieved a 
performance with an AUC value of 0.812.

The aggregation of enzymatic reactions into metabolic pathways 
(Figure 3D) led to the modeling of 31,555 metabolic pathways. The 
best model was Classification Random Forest training 100 trees with 
deviance splitting criterion, minimum leaf size = 2, splits = 1, alpha = 1 
and variables to split = 0.577 sqrt (nvars), with an area under the curve 
(AUC) value of 0.799.25 different features were identified as the most 
important for discrimination and the first 13 of them can reach a 
prediction performance of 100% (Supplementary Figure S6; 
Supplementary Table S4). The model was tested on the test dataset and 
achieved a performance with an AUC value of 0.768.

The LDA analysis and clustering visualizations have already 
shown that the lowest expected performance can be obtained when 
modeling the predicted metabolite data obtained with the MelonnPan 
tool (Mallick et al., 2019). This was also confirmed with Classification 
Random Forest training 1,000 trees with deviance splitting criterion, 

minimum leaf size = 2, splits = 1, alpha = 1 and variables to split = 1.0 
sqrt (nvars) as the best prediction algorithm based on 81 predicted 
metabolites. However, the performance of this model was low 
(AUC = 0.621). The performance on the test dataset was even lower 
(AUC = 0.606) (Supplementary Figures S7, S8; 
Supplementary Table S4).

All features identified by JADBIO through automatic machine 
learning were also tested using the Mann–Whitney statistics to check 
correctness and significance between groups for each feature. Most 
comparisons for each feature in the areas of taxonomy, functional 
genes, enzymatic reactions, and metabolic pathways were statistically 
significant, especially when comparing CRC and healthy controls. 
Comparisons of CRA and healthy controls on the one hand or CRC 
and CRA on the other were less significant. The differences in the 
selected predicted metabolites were not significant 
(Supplementary Table S5).

In the final step of the machine learning analysis, the most 
important features were integrated into a data set and the machine 
learning was repeated on this reduced data set. Classification Random 
Forest trained 1,000 trees with deviance splitting criterion, minimum 
leaf size = 3, splits = 1, alpha = 1 and variables to split 0.816 sqrt was 
selected as the most successful for aggressive feature selection and 25 
out of 120 features were selected as the most important for 
classification (5 belong to taxonomy–kingdom bacteria, 12 to gene 
families, 5 to enzymatic reactions and 3 to metabolic pathways). None 
of the predicted metabolites from the first step were selected in the 
second step. The final performance of this model was 0.87 (AUC).

FIGURE 2

LDA scores plots of components one and two for healthy (red), patients with CRC (green) and CRA (blue): (A) taxonomy, (B) gene families, 
(C) enzymatic reactions, and (D) metabolic pathways.
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4 Discussion

A total of 2,951 stool samples from different studies, including 
healthy individuals as well as those with CRC and CRA, were 
subjected to comparative analysis. Our MetaBakery pipeline was used 
for sequence processing. Comprehensive data matrices were used that 
included various features such as microbial taxonomy (1839 
taxonomic units), functional genes (80,372 genes), enzymatic 
reactions (34,008 enzymes), metabolic pathways (31,555 metabolic 
pathways), and predicted metabolites (81 metabolites). In addition, 
we integrated 19 different diversity matrices calculated using methods 
consistent with Mothur’s approach.

We showed that there is no statistically significant difference in 
microbial diversity in patients with colorectal cancer (CRC). These 
results are consistent with some other studies suggesting that 
microbial diversity and richness may increase in colorectal cancer 
patients (Feng et al., 2015; Thomas et al., 2019; Qi et al., 2022; Liu 
J. et  al., 2023). To further investigate possible differences, we first 
performed a comprehensive analysis of the entire dataset using linear 
discriminant analysis (LDA) to identify possible clusters. Significant 
differences emerged in four different metagenomic data matrices 
(taxonomy, functional genes, enzymatic reactions and metabolic 
pathways), which formed separate clusters for each group (healthy, 
CRC, CRA). A clear difference was seen between the healthy and CRC 
patient groups. However, the CRA patients were consistently 
positioned between the healthy controls and the CRC patients, 

emphasizing that CRA represents a closer step to the development of 
CRC in terms of the composition of the microbiome. CRA is 
considered as a stage 0 in development of intramucosal carcinoma and 
can progress into malignant forms, which is also known as an 
adenoma-carcinoma sequence. The most important question here is 
whether the change in the microbiome is the consequence of the 
development of the disease or whether the disease is a consequence of 
the change in the microbiome. Given the obvious differences observed 
in LDA analysis between healthy microbiomes, CRC and CRA 
samples, machine learning (ML) analysis was performed. Datasets 
from different studies were used to represent real-world scenarios and 
achieve a level of variability that corresponds to natural conditions 
rather than exerting excessive control.

We obtained consistent model performance with AUC values 
around 0.8 for all data inputs. In this study, we present several groups 
of microbial taxa, functional genes, enzymatic reactions and metabolic 
pathways that offer potential for the prediagnostic evaluation of CRC 
and CRA that represent an early stage in the development of 
CRC. Several CRC biomarker species were independently identified 
in the different studies by univariate statistics (Segata et al., 2011): 
Fusobacterium nucleatum, Solobacterium moorei, Porphyromonas 
asaccharolytica, Parvimonas micra, Peptostreptococcus stomatis and 
Parvimonas ssp. (Kostic et  al., 2012, 2013; Thomas et  al., 2019; 
Mizutani et al., 2020; Qi et al., 2022). In our study different groups of 
taxa, from phylum to genera, were identified important for 
distinguishing between different conditions (health, CRC or CRA). 

FIGURE 3

ROC plots for classification between healthy individuals (green), CRC (orange) and CRA (blue) patients based on taxonomy (A), functional genes (B), 
enzymatic reactions, (C) and metabolic pathways (D).

203

https://doi.org/10.3389/fmicb.2024.1426407
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Murovec et al.� 10.3389/fmicb.2024.1426407

Frontiers in Microbiology 07 frontiersin.org

Many previous studies focused exclusively on a binary classification 
including only colorectal cancers and healthy individuals, which may 
have introduced bias. The detection of individuals with CRA, a 
precursor of CRC, is important from a diagnostic point of view.

In recent years, research into the functionality of the microbiome 
has become increasingly important. The emergence of microbial 
metagenomics has highlighted that data modeling must also 
be approached from the perspective of microbial functionality, as the 
ratio of human to microbial genes is 1:150 (Qin et al., 2010). This shift 
is crucial as it provides a better understanding of overall microbial 
functionality rather than microbial taxonomy (Deschênes et al., 2023). 
Furthermore, it promises to reveal why certain components of the 
microbiome may be  associated with the occurrence of various 
diseases. With this in mind, our investigations extend to microbial 
functional potential, which includes functional genes, enzymatic 
reactions, metabolic pathways and predicted metabolites.

Our initial focus on functional genes, enzymatic reactions and 
metabolic pathways has led to promising results and moderate 
classification accuracy. Based on the UniRef database (Suzek et al., 
2007, 2015), 15 different gene families were discovered that are 
important for classification between all three groups. Most of the 
discovered gene families belong to the human gut microbiota. 
Moreover, for example, the gene family A0A015S3B6|unclassified 
belongs to the protein of Bacteroides fragilis, which has also been 
previously mentioned as one of the biomarker candidates for CRC 
(Pandey et  al., 2023). The gene family A0A078RCV9 belongs to 
Phocaeicola vulgatus, (formerly Bacteroides vulgatus, which was 
already associated with CRC in 1995) (Moore and Moore, 1995; Lucas 
et  al., 2017; Vu et  al., 2022). The gene families A0A174XNP7 
(belonging to Flavonifractor plautii) and A0A174Q9G9 (Bacteroides 
intestinalis) have been associated with colorectal cancer patients in 
India (Gupta et al., 2019).

The most important enzymatic reaction is 3.5.1.88-RXN 
according to feature selection, which belongs to Holdemanella 
biformis, one of the species that can act anti-oncogenically through the 
production of SCFAs (Zagato et al., 2020). Reaction 3.4.21.92-RXN 
belongs to Lawsonibacter asaccharolyticus, previously associated with 
acetate, a potential therapeutic agent in the treatment of colorectal 
cancer (Marques et al., 2013; Sahuri-Arisoylu et al., 2021; Dong et al., 
2023). Reatcion 3.2.1.1-RXN belongs to Clostridium sp. CAG_58, the 
most important taxon from the taxonomic data feature selection, was 
previously associated with adiposity. Higher obesity has generally 
been associated with an increased likelihood of CRC (Bull et al., 2020; 
Asnicar et  al., 2021). Reaction 2.5.1.64-RXN belongs to Klebsiella 
oxytoca, another microbial species that has been isolated from patients 
with CRC and is one of the reasons for the increased inflammation in 
these patients due to biofilm formation (Abbas et al., 2020). One of the 
most interesting features discovered in the enzymatic reactions was 
2.3.1.180-RXN belonging to Fusobacterium nucleatum, which, as 
mentioned above, was one of the most important species-level 
biomarkers observed in other studies (Kostic et al., 2012, 2013). Even 
though we did not observe this species at the taxonomic level, we did 
observe this reaction. Reaction 2PGADEHYDRAT-RXN was also 
identified and belongs to Collinsella aerofaciens, a microbe observed 
in the stool of patients with elevated blood levels (Chénard et al., 2020).

MetaCyc (Caspi et  al., 2020) metabolic pathways were also 
identified as important features for classification. The most important 
feature in this regard was ARO-PWY: chorismate biosynthesis 

I. Chorismate is also a precursor of tryptophan. It was observed that 
the reduction in the amount of tryptophan is proportional to the poor 
quality of life of colorectal cancer patients (Zhang et al., 2019). The 
next metabolic pathway was ARGSYN-PWY: L-arginine biosynthesis 
I. It was observed that supplementation with L-arginine can alleviate 
intestinal inflammation. Increased intestinal inflammation was 
observed to be associated with the initiation and progression of CRC 
(Zhang et al., 2021; Liu Y. et al., 2023). Arginine was also observed to 
have significant diagnostic value for CRC patients (Yi et al., 2023).

However, the AUC values for the predicted metabolites were lower 
compared to other data matrices. Pantothenate was observed to be the 
most important feature. Pantothenate was previously observed as an 
important metabolite for the diagnosis of CRC patients (Yi et al., 
2023). Putrescine, the second most important feature, is a polyamine 
that is basically involved in all steps of tumorigenesis (Sánchez-
Alcoholado et al., 2021).

Although there are still no definitive explanations for many 
discovered genes, enzymes and metabolic pathways, this uncertainty 
will decrease over time. For example, it is expected that questions about 
the significance of a particular metabolic pathway for the classification 
of a particular disease will be clarified. We have also ventured into the 
prediction of metabolites using relaxation networks such as those 
included in MelonnPan. Although the results were statistically 
insignificant, it is plausible that subsequent iterations of this tool or 
similar tools could improve the prediction of metabolites. This potential 
breakthrough could facilitate the linking of metabolite predictions with 
results from fecal or blood metabolome analyses (Šket et  al., 2020; 
Deutsch et al., 2022a). Such an integrated approach could reveal new 
dimensions in the understanding of microbe-host relationships, 
enriching our knowledge and potentially paving the way for practical 
clinical applications. With the approach outlined in this study, we have 
shown that it is possible to develop robust prediagnostic methods for 
colorectal cancer detection based on microbial fingerprints (Cammarota 
et al., 2020; Su et al., 2022; Zhou et al., 2024) integrating all layers of 
information (taxonomy, diversity, functional genes, enzymatic reactions, 
metabolic pathways, metabolites). One of the limitations mirroring the 
current status of the research in this fields and of our study is the lack of 
external clinical datasets of sufficient high quality of sequences and 
metadata to validate our models. However, with the advent of novel 
datasets the models created in this study could be used in larger studies 
in the future to evaluate the results obtained. Nevertheless, the research 
presented here provides one of the first important steps toward efficient, 
reproducible and tractable classification of CRC and CRA samples in a 
form of prediagnostic informative tool.
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