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Editorial on the Research Topic

Neuroimaging in psychiatry 2023: mood disorders
The field of neuroimaging has made significant progress in recent decades, significantly

influencing the understanding and treatment of psychiatric disorders, particularly mood

disorders such as major depressive disorder (MDD) and bipolar disorder (BD) (1–4). These

complex conditions, characterized by pervasive mood, affect, and behavioral symptoms,

have long been a challenge for diagnosis and treatment because of their multifactorial

etiology and the absence of definitive biomarkers (5). The role of neuroimaging in

psychiatry has expanded beyond traditional structural imaging techniques to encompass

a variety of advanced modalities, including functional magnetic resonance imaging (fMRI),

positron emission tomography (PET), diffusion tensor imaging (DTI), and magnetic

resonance spectroscopy (MRS) (6–8). These techniques have facilitated a more nuanced

understanding of the neural circuits implicated in mood disorders, elucidating

abnormalities in brain regions such as the prefrontal cortex, amygdala, hippocampus,

and anterior cingulate cortex (9). Neuroimaging has emerged as a crucial tool for

unraveling the neurobiological underpinnings of these disorders, providing insights that

are beginning to bridge the gap between clinical symptomatology and the basis of the

disorders (10–14). Functional studies on Major Depressive Disorderhave identified

hypoactivation in the dorsolateral prefrontal cortex (DLPFC) during tasks requiring

executive function and cognitive control, as well as hyperactivation of the amygdala in

response to negative emotional stimuli (15). These findings have been interpreted as

reflecting a dysregulated neural circuit, wherein diminished top-down control from the

prefrontal cortex fails to modulate hyperactive limbic structures, leading to the emotional

and cognitive disturbances characteristic of depression (16–20). Studies on MDD have

documented structural abnormalities such as reduced gray matter volume in the prefrontal

cortex and temporal lobes, as well as functional alterations in the ventral prefrontal cortex

and striatum (21, 22). Bipolar disorder, with its alternating episodes of mania and

depression, presents a more complex neuroimaging profile (12, 23). The Research Topic

brings together a diverse array of manuscripts that utilize neuroimaging to explore

structural and functional alterations in mood disorders. A central theme emerging across

the contributions is the identification of potential neurobiological biomarkers through

advanced imaging techniques, with a particular focus on distinguishing features of MDD

and BD (24–27). The Research Topic describes multiple aspects of neuroimaging, in
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particular diagnostic groups (MDD vs. BD), neuroimaging

techniques (fMRI, EEG), and insights into targeted brain areas.

In the context of diagnostic stratification, Schreiber et al.

identified a significant enlargement of the left vagus nerve cross-

sectional area (VN-CSA) in individuals with Major Depressive

Disorder (MDD), particularly among those with recurrent

episodes. This morphological alteration of the cervical vagus

nerve may serve as a novel imaging biomarker, offering potential

insights into the somatic underpinnings of depressive pathology.

Additionally, Estudillo-Guerra et al. revealed in their study a

trend indicating a higher perfusion imbalance in the left superior

and middle frontal gyrus during mania and the right superior and

middle frontal gyrus during euthymia phases in participants with

Bipolar Disorder Type I.

In the topic concerning neuroimaging techniques (fMRI, EEG),

Huang et al. compared functional and structural MRI abnormalities

between bipolar and unipolar depression. They found that the BD

group exhibited an increased fractional amplitude of low-frequency

fluctuation (fALFF) in the hippocampus compared with both the

healthy control (HC) and MDD groups.

Furthermore, Liu et al. proposed a multi-scale spatial–temporal

local sequential and global parallel convolutional model. This

method aimed to improve the diagnostic accuracy of Generalized

Anxiety Disorder, particularly in the context of mood instability,

using high-frequency electroencephalogram (EEG) signals.

In their investigation of Major Depressive Disorder (MDD)

using functional magnetic resonance imaging (fMRI), Endo et al.

identified specific dynamic brain activity patterns, referred to as

dynamic modes, that occurred with either increased or decreased

frequency in individuals with MDD compared to healthy controls.

These alterations suggest a disruption in the temporal organization

of neural networks, potentially reflecting impaired flexibility and

adaptability in brain function (28–30). Such findings contribute to

the growing body of evidence supporting the role of dynamic

functional connectivity as a potential state-sensitive biomarker in

mood disorders.

To complement the theme, Willinger et al. reported weakened

effective connectivity between the salience network and the default

mode network during the resting state in participants with

adolescent depression. They suggested that this pattern may

reflect a hierarchical imbalance between the default mode

network (DMN) and the salience network (SN).

Chen et al. using a machine learning approach, examined

abnormal voxel-mirrored homotopic connectivity in participants

with first-episode MDD. They found reduced functional

connectivity in the bilateral middle frontal gyrus, fusiform gyrus,

medial superior frontal gyrus, and precentral gyrus. These

alterations may be linked to depressive symptoms and could serve

as a potential biomarker of MDD.

Delving deeper into the discussion regarding the morphobiological

aspects of targeted brain areas, Liu et al. observed altered functional

activity in the right fusiform gyrus and the left superior temporal gyrus

in individuals with treatment-resistant depression following a dual-

target accelerated transcranial magnetic stimulation protocol.
Frontiers in Psychiatry 026
Examining structural alterations in participants with MDD,

Wang et al. reported a region-specific reduction in cortical

thickness, particularly within the left rostral middle frontal gyrus.

This thinning exhibited a significant negative correlation with

illness duration, suggesting a progressive neuroanatomical

deterioration associated with the chronicity of depressive

episodes. These findings underscore the potential of cortical

metrics, such as reductions in the rostral middle frontal gyrus, as

longitudinal markers of disease burden and progression in MDD.

Kijima et al. explored how fronto-striato network function is

reduced in participants with MDD highlighting that the reward

system network may be an important biological marker of MDD,

although careful consideration should be given to age and its

association with the severity of the disorder.

Finally, Cong et al. examined hippocampal subfield morphology

in participants with first-episode BD type II and major depressive

disorder within a drug-naïve Chinese cohort. They reported a

significant increase in hippocampal volume, particularly on the

left side, observed only in the MDD group compared with healthy

controls, and not in the BD-II group. This finding was specific to the

studied sample and requires replication in larger, independent

cohorts to confirm its validity.

Across the included studies, several key themes emerge, including

the potential of specific brain regions (DLPFC, hippocampus) and

connectivity patterns (DMN-SN interaction) as diagnostic and

therapeutic biomarkers, the utility of machine learning in

neuroimaging classification tasks, and the convergence of structural

and functional findings in delineating mood disorder subtypes In

conclusion, the most recent advances in neuroimaging technology

over the past two decades have greatly deepened our understanding of

the neurobiological basis of mood disorders (31–34). By revealing the

structural and functional abnormalities associated with MDD and BD,

these tools have not only improved diagnostic accuracy but also opened

new avenues for the creation of personalized medicine strategies. The

integration of neuroimaging with other emerging fields, such as

genomics, epigenetics, and machine learning, promises a more

nuanced approach to psychiatry, in which treatment can be tailored

to the individual’s unique neural and genetic profile. By continuing to

harness the power of neuroimaging, the convergence of technology and

neuroscience holds promise for the development of more effective and

personalized treatments for mood disorders, with the potential to

significantly improve clinical outcomes. While the findings discussed

in this Research Topic offer promising directions, it is essential to

emphasize that many of the identified alterations should be considered

potential biomarkers. Further validation in larger, longitudinal, and

translational studies is warranted to ascertain their clinical applicability

and reliability. Such scientific prudence remains vital to advancing the

field responsibly.
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Enlarged cross-sectional area of 
the left vagus nerve in patients 
with major depressive disorder
Lisa Sofie Schreiber 1†, David Wozniak 1†, Erik Scheller 1, 
Elise Böttcher 1, Johann Otto Pelz 2*‡ and Frank M. Schmidt 1‡

1 Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany, 
2 Department of Neurology, Leipzig University Hospital, Leipzig, Germany

Purpose: Autonomic dysfunction and a chronic low-grade inflammation are 
supposed to play a role in the etiology of major depressive disorder (MDD). The 
vagus nerves (VN) form a major part of the parasympathetic nervous system and 
of the gut-brain axis. They are supposed to exert anti-inflammatory and epithelial 
barrier protective effects in the gut. A reduced vagal activity was described in 
patients with MDD. We aimed to examine the VN in patients with MDD with high-
resolution ultrasound (HRUS) and hypothesized that the cross-sectional area 
(CSA) and the echogenicity of the VNs were altered in comparison to healthy 
controls.

Materials and methods: The echogenicity (gray scale mean) and the CSA of 
the cervical VNs at the level of the thyroid gland and both median nerves were 
examined with HRUS in 50 patients with MDD and 50 matched healthy controls.

Results: The left VN-CSA was significantly larger in the MDD group compared 
to the control group (1.7  ±  0.4  mm2 versus 1.5  ±  0.4  mm2; p =  0.045). The CSA of 
the right VN and both median nerves (MN) were similar between groups. In MDD 
subgroup analyses, recurrent depressive disorders were the main contributing 
factor for the left VN-CSA enlargement. Echogenicity was not altered in the VN 
and MN between groups.

Conclusion: The enlargement of the left VN-CSA in patients with MDD, and 
especially in these patients with recurrent depressive disorders, might turn out as 
a promising imaging biomarker. Longitudinal studies are warranted to examine 
whether the VNs-CSA change in the course of MDD.

KEYWORDS

major depressive disorder, vagus nerve, ultrasound, autonomic nervous system, 
gut-brain axis, inflammation, depression

Introduction

As the vagus nerves (VNs) are of particular importance in psychiatric and neurological disorders, 
sonographic research has witnessed a growing interest (1–3). The VNs constitute a crucial part of the 
parasympathetic autonomic nervous system (ANS). The functional imbalance between reduced VN 
activity and the sympathetic system results in autonomic dysfunction, comprising symptoms like 
palpitations, impairment of sleep, appetite, and gastrointestinal functioning in neuropsychiatric 
disorders, e.g., major depressive disorder (MDD) (4). Currently, antidepressant treatments, such as 
vagus nerve stimulation (VNS), where the left VN is used as a target for electrical stimulation, 
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emerged as an option in treatment-resistant depression (5). Meta-analyses 
also demonstrated a negative association between vagal activity and 
inflammatory markers (6). A lack of vagal inhibition of systemic 
inflammatory processes seems to play a key role in the low-grade 
inflammation pathogenesis approach of MDD (7). Moreover, the VNs 
form a central part of the gut-brain axis by linking the gut and abdominal 
organs with the central nervous system, thus, enabling a bidirectional 
communication (8). Disturbances of the microbiota and the gut-brain 
axis are also supposed to contribute to the etiology of depression and 
anxiety disorders (8, 9).

High-resolution ultrasound (HRUS) allows the reliable 
examinations of the VNs in vivo (10). Previous findings showed that 
sonomorphological VN alterations and autonomic function may 
correlate in healthy probands (11). Morphological alterations of the 
cervical VNs were described in different neurological disorders. An 
atrophy was found in patients with Parkinson’s Disease (PD) [e.g., (1, 
12)], while an enlargement of the VN-CSA was associated with 
autonomic dysfunction in patients with Guillain-Barré-Strohl 
syndrome (13).

So far, although there is cumulating evidence for a relevant role of 
the VNs in the etiology of MDD, there are no morphological 
examinations of the VNs in these patients in vivo. Thus, we aimed to 
examine the VNs in patients with MDD with HRUS and hypothesized 
that the CSA and the echogenicity of the VNs were altered in 
comparison to healthy controls.

Materials and methods

This study was performed according to the ethical standards laid 
down in the 1964 Declaration of Helsinki and its later amendment. It 
was approved by the local Ethics Committee of the Medical Faculty at 
the University of Leipzig (reference number 425/19-ek). All 
participants gave informed and written consent for participation in 
medical research.

Based on studies that examined the size of the VNs in 
predominantly neurodegenerative disorders where the differences 
in the CSA of the asymmetric VNs varied between 10% (in case 
of the right VN) and 20% (in case of the left VN) (1), we calculated 
that, using a two-tailed test, 53 patients with MDD had to 
be  examined to detect a difference in the CSA of 15% with a 
power of 0.8. The entire cohort comprised 100 adult subjects (50 
patients with MDD and 50 healthy controls) and was balanced 
according to sex and age (Table 1). Participants were recruited 
from 06/2020 to 09/2021 from the inpatient ward of the 
Department of Psychiatry and Psychotherapy, University of 
Leipzig Medical Center.

All patients had to fulfill the clinical criteria of depression 
(F32.1–F32.2 and F33.1–F33.3) as defined by the International 
Statistical Classification of Diseases and Related Health Problems, 
10th Revision. Diagnoses were confirmed during the treatment 
by psychiatric consultants.

Exclusion criteria were a medical history of polyneuropathy, 
epilepsy, neurodegenerative disorders, use of illegal substances, any 
addictive diseases, any psychiatric diagnoses in the control group, 
organic or psychotic psychiatric comorbidities, any relevant anxiety 
and / or obsessive compulsive disorders in the MDD group, a history 
of head injury, or acute somatic diagnoses during the time of 

examination. All participants underwent a profound neurological 
examination to exclude persons with clinically apparent yet hitherto 
unknown polyneuropathy or parkinsonism.

At the time point of study participation, all patients in the MDD 
group were on antidepressants and had psychotherapy. We did not 
assess how long and how often patients had psychotherapy before 
their participation in this study nor which kind of psychotherapy they 
had in before. We also did not assess the history of antidepressant 
intake before study participation.

To evaluate the severity of depression at the time of participation, 
all participants completed the Beck Depression Inventory (BDI) and 
Patient Health Questionnaire-15 (PHQ-15) with focus on 
somatic symptoms.

The HRUS examination was performed with an Aplio i800 
(Canon Medical Systems, Neuss, Germany) with a 24 MHz linear 
transducer. Briefly, both VNs, at the level of the thyroid gland, and, for 
control purpose, both median nerves (MN), 10 cm proximal to the 
wrist, were examined according to established protocols (10, 14) 
(Figure 1). Three B-mode images of each nerve and side were recorded 
and optimized regarding brightness, depth, and focus. The identified 
nerve was marked roughly with the marking tool of the ultrasound 
device, and the images were stored for offline measurement of the 
CSA. Post-examination offline measurements were performed with 
ImageJ (National Institutes of Health, Bethesda, Maryland, 
United  States; version 1.53a). The CSA was determined with a 
precision of 0.1 mm2. Further statics were calculated with the median 
of the 3 CSA values of each nerve and side, which is less likely to 
be distorted by outliers.

In order to determine the echogenicity of the nerves, the image 
with the median CSA was converted into an 8-bit black and white 
image in which each pixel is assigned a grayscale. The grayscales 
ranged from 0 (black) to 255 (white). An average value of the 
grayscales of all pixels within the CSA was calculated (grayscale mean, 
GSM). To determine the echogenicity independently of brightness 
settings of the ultrasound device, the GSM of the VN was set in 
relation to the GSM of the blood in the ipsilateral common carotid 
artery (CCA), which is physiologically hypoechoic and shows little 
heterogeneity. The GSM ratio (GSM-VN / GSM-CCA) was used for 
further statistics.

All measurements were done by the same rater who was blinded 
to the side of the nerve (left vs. right) and to group affiliation (control 
vs. MDD).

Statistical analyses were performed by using IBM SPSS Statistics 
(IBM Corporation, Armonk, New York, United States; version 27.0). 
To assess intra-rater agreement 20 images were re-measured 
(ICC-coefficient = 0.996, p < 0.001). CSA values of one rater were used 
for statistical analyses. For group comparison, the student’s t-test (for 
data with normal distribution) and Mann–Whitney U-test (for 
non-normal distribution) were used. Chi-square test was applied on 
group comparisons of nominally scaled data. Correlation coefficients 
were calculated using Pearson’s correlation (normal distribution, 
metric level), Spearman’s correlation (non-normal distribution, 
ordinal level) and Eta Coefficient (nominal and metric level). The 
subgroup analysis was performed using Kruskal-Wallis one-way 
ANOVA. Extreme outliers were excluded based on Tukey’s hinges 
(first quartile −3 * interquartile range (IQR) and third quartile +3 * 
IQR), visualized in boxplots (15). The significance level was set at 
p < 0.05.
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Results

Demographic data of patients with MDD and the control group 
were well-balanced in terms of sex, age, and height. Only the BMI was 
significantly higher in the MDD group. No significant differences for 
known cardiac arrythmia or diabetes mellitus in the medical history 
were found between both groups. BDI and PHQ-15 scores were 
significantly higher in the MDD group. In the MDD group, the 
current depressive episode persisted at the time of examination for a 
mean of 25 weeks (after exclusion of one extreme outlier of 400 weeks; 
Table 1).

In HRUS examinations, the left VN-CSA was significantly larger 
in the MDD group than in the control group (p = 0.045), while the 
right VN-CSA did not differ significantly between groups (Table 2). 
In the MDD group, no significant correlations were found between 
the duration of the depressive episode and the left VN-CSA (ρ = −0.12; 
p = 0.413) or right VN-CSA (ρ = 0.04; p = 0.785), the BDI score and the 
left VN-CSA (ρ = −0.184; p = 0.201) or the right VN-CSA (ρ = 0.009; 
p = 0.952), nor the PHQ-15 score and the left VN-CSA (ρ = −0.134; 
p = 0.353) or the right VN-CSA (ρ = 0.031; p = 0.833). The left and 
right MN-CSA were similar between the control group and the MDD 
group (Table 2).

FIGURE 1

Visualization of the vagus nerve (d) with embedded magnification. a: thyroid gland; b: common carotid artery; c: internal jugular vein; scale bar =  1  cm.

TABLE 1  Demographic data of patients with major depressive disorder (MDD) and healthy controls.

Characteristics MDD group (n =  50) Control group (n =  50) p-value

Male (n) 21 21 1.00°

Female (n) 29 29 1.00°

Age in years (mean, ± SD, range) 45 ± 16 (21–80) 46 ± 21 (22–80) 0.972#

Height in cm (mean, ± SD, range) 172 ± 10 (146–20) 173 ± 10 (153–192) 0.890+

BMI (kg/m2; mean, ± SD, range) 26.6 ± 5.7 (17.1–46.9) 24.5 ± 3.6 (19.5–38.0) 0.049#

Medical history of comorbidities

Cardiac arrythmia [n (%)] 5 (10%) 1 (2%) 0.092°

Diabetes mellitus [n (%)] 3 (6%) 1 (2%) 0.307°

Questionnaires

BDI score (median, range) 24.5 (6–46) 4 (0–20) 0.001#

PHQ-15 score (median, range) 13 (1–22) 4 (0–20) 0.001#

Duration of actual depressive episode in 

weeks (mean, SD, range)

25.39 ± 18.74*
0

4–80*

+Student’s t-test; #Mann–Whitney U-test; °Chi-square test; BMI, body mass index; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; SD, standard deviation. *One 
extreme outlier of 400 weeks duration was excluded.
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The MDD group was further stratified into two subgroups: first 
time diagnosis (FD; N = 18) and recurrent depressive disorder (RDD; 
N = 32; Table 3). Kruskal-Wallis one-way ANOVA revealed that the 
RDD subgroup contributed mainly to the significant enlargement of 
the left VN-CSA in comparison to the control group (p  = 0.03; 
Table 4). For the right VN-CSA, Kruskal-Wallis one-way ANOVA 
showed no significant differences between MDD subgroups and the 
control group (Table 4).

Regarding the echogenicity of the VNs, no significant differences 
were found between the control and the MDD group (Table 2), or its 
subgroups (Table  5). In both control and MDD group, a higher 
GSM-Index was measured for the right VN in comparison to the left 
VN (Mann–Whitney U-test p < 0.001; Table 2). In the MDD group, 
no significant correlation was found neither between the BDI score 
and the left (ρ = 0.143; p = 0.320) or the right GSM-Index (ρ = 0.201; 

TABLE 3  Demographic and high-resolution ultrasound data of subgroups of patients with major depressive disorder.

Characteristics FD group (n =  18) RDD group (n =  32)

Male (n) 7 14

Female (n) 11 18

Age in years (mean, ± SD, range) 39 ± 15 (22–64) 49 ± 17 (21–80)

Height in cm (mean, ± SD, range) 173 ± 11 (158–200) 172 ± 9 (146–191)

BMI (kg/m2; mean, ± SD, range) 24.2 ± 4.4 (17.1–31.8) 27.9 ± 5.9 (20.1–46.9)

Questionnaires

BDI score (median, range) 27.5 (6–44) 23 (8–46)

PHQ-15 score (median, range) 13 (1–22) 12.5 (1–21)

Duration of actual depressive episode in weeks (mean, ± SD) 28.8 ± 21.2* 23.6 ± 17.4

Ultrasound examination

VN-CSA left (mm2; mean, ± SD) 1.6 ± 0.4 1.7 ± 0.4

VN-CSA right (mm2; mean, ± SD) 1.9 ± 0.5 1.8 ± 0.5

MN-CSA left (mm2; mean, ± SD) 7.0 ± 1.6 6.9 ± 1.2

MN-CSA right (mm2; mean, ± SD) 6.9 ± 1.6 6.7 ± 1.2

VN GSM-Index left (mean, ± SD) 4.3 ± 2.4 4.6 ± 2.4

VN GSM-Index right (mean, ± SD) 5.7 ± 3.1 5.1 ± 5.4

FD, first time diagnosis; RDD, recurrent depressive disorder; SD, standard deviation; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; MN, median nerve; VN, 
vagus nerve; CSA, cross-sectional area; GSM, gray scale mean. *One extreme outlier of 400 weeks duration was excluded.

TABLE 4  Subgroup analysis with Kruskal-Wallis one-way ANOVA 
between major depressive disorder patients with first time diagnosis (FD), 
recurrent depressive disorder (RDD), and control group for left and right 
vagus nerve (VN) cross-sectional area (CSA).

Left VN-CSA Right VN-CSA

Adapted p-value Adapted p-value

Control group/RDD 0.03 1.00

Control group/FD 1.00 0.683

FD/RDD 0.386 1.00

TABLE 5  Subgroup analysis with Kruskal-Wallis one-way ANOVA between 
major depressive disorder patients with first time diagnosis (FD), 
recurrent depressive disorder (RDD), and control group for left and right 
vagus nerve (VN) gray scale mean (GSM) index.

Left VN-GSM-
index

Right VN-GSM-
index

Adapted p-value Adapted p-value

Control group/RDD 1.00 0.279

Control group/FD 1.00 1.00

FD/RDD 1.00 0.247

TABLE 2  High-resolution ultrasound data of patients with major depressive disorders (MDD) and healthy controls.

Variable MDD group Control group p-value

VN-CSA left (mm2) Mean, SD 1.7 ± 0.4 1.5 ± 0.4 0.045+

VN-CSA right (mm2) Mean, SD 1.8 ± 0.5 1.7 ± 0.5 0.269+

MN-CSA left (mm2) Mean, SD 6.9 ± 1.3 6.5 ± 1.2 0.079+

MN-CSA right (mm2) Mean, SD 6.8 ± 1.3 6.5 ± 1.2 0.063+

VN GSM-Index left Mean, SD 4.5 ± 2.4 5.3 ± 4.6 0.482#

VN GSM-Index right Mean, SD 5.3 ± 4.7 6.1 ± 5.9 0.328#

+Student’s t-test; #Mann–Whitney U-test; HRUS, high-resolution ultrasound; VN, vagus nerve; CSA, cross-sectional area; GSM, gray scale mean; SD, standard deviation.
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p  = 0.161), nor between PHQ-15 score and the left (ρ = −0.174; 
p = 0.277) or the right GSM-Index (ρ = 0.190; p = 0.186). In the whole 
study cohort, the right VN-CSA correlated significantly with the right 
GSM-Index (ρ = 0.227; p = 0.023), whereas the left VN-CSA and the 
left GSM-Index showed no significant correlation (ρ  = −0.057; 
p = 0.571).

Sex, age, BMI, height, cardiac arrythmia, and diabetes mellitus 
were not identified as covariates for the VN-CSA nor for the 
VN echogenicity.

Discussion

For the first time, this study revealed morphological changes of 
the cervical VNs in patients with MDD. The left VN-CSA was 
significantly enlarged in comparison to healthy subjects. Noteworthy, 
this enlargement of the left VN-CSA in patients with MDD was 
mainly driven by the subgroup of patients with recurrent 
depressive disorder.

Over the last decade, HRUS enabled the reliable examination 
of small nerves like the VN (10). A reduced VN-CSA was 
repeatedly measured in neurodegenerative disorders like PD or 
amyotrophic lateral sclerosis (1, 2, 12), while enlarged VN-CSA 
was described in inflammatory (13, 16, 17), but also in hereditary 
neuropathies (18). The enlarged left VN-CSA in patients with 
MDD and especially in the subgroup of patients with RDD might 
be due to a subtle inflammatory edema of the left VN. Other 
explanations like hereditary or inflammatory polyneuropathies 
(18) are unlikely because of the unaffected MNs, and participants 
with clinical signs of a polyneuropathy in the profound 
neurological examination were excluded from this study. 
Compression of nerves can also cause enlarged CSAs, however, 
during the HRUS examination the VN was visualized over its 
cervical course and no compression or entrapment was noted. 
Thus, the most probable explanation for the small (about 10%) 
but significant difference in the CSAs of the left VN remains a 
(chronic) inflammation which leads to an edema with subsequent 
VN enlargement. The VNs were also found to be  enlarged in 
patients with chronic inflammatory demyelinating 
polyradiculoneuropathy (CIDP) (17, 19). Interestingly, patients 
with CIDP may also show a subtle affection of the ANS with 
focus on parasympathetic cardiovascular fibers (20), and they 
may suffer from neuropsychiatric symptoms and disorders like 
pain, fatigue, and depression (21, 22). However, so far depressive 
symptoms in patients with inflammatory polyneuropathies are 
thought to be reactive due to the patients’ functional impairment 
and not to be  related to the inflammation of the peripheral 
nervous system or the VN (21).

The VNs with their afferent and efferent fibers also play a crucial 
role in connecting the gut and the brain. Recently, cumulate research 
suggested that a disturbance of the microbiota and the gut-brain axis 
might contribute to the etiology of depression (8, 9). In their review, 
Tan and colleagues argued that the immune response to gut 
microbiota translocation induced by a leaky gut may be responsible 
for the chronic inflammatory condition in depression. 
Pro-inflammatory cytokines like IL-2, IL-12, or TNF-α were 
repeatedly shown to be over-expressed in patients with MDD which 

points to a role of inflammation in the pathophysiology of MDD 
(23–28). The TNF-α inhibitor etanercept was effective in treatment-
resistant depression and reduced depression and anxiety in psoriasis 
patients (29, 30). Consequently, modulating inflammation and 
immune regulation in patients with MDD emerged as a potential drug 
target (31).

Furthermore, the VNs may exert anti-inflammatory and 
epithelial barrier protective effects in the gut (8). The interactions 
between the immune system and the central nervous system are 
characterized by a bidirectional communication that aims to specify 
the immune defense of the host (32). Physiologically, the afferents of 
the VNs can sense a peripheral infection and transmit this 
information to the central nervous system which is shielded from 
the rest of the body by the blood brain barrier (32). This information 
may then be  redirected to vagal efferents which can send anti-
inflammatory responses through the inhibition of pro-inflammatory 
cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, 
and the release of anti-inflammatory cytokines such as IL-10 (7, 33). 
This is also referred to as the “inflammatory reflex” of the VN (7, 33, 
34). Thus, an (ongoing) inflammation of the VNs could restrict vagal 
activity and might lead to a lack of vagal downregulation of 
inflammatory processes. A reduced vagal activity was repeatedly 
described in patients with MDD (35, 36), and was mitigated after the 
onset of antidepressant treatment (36). The MDD subgroup analysis 
showed that the enlargement of the left VN-CSA was mainly driven 
by the RDD subgroup. We  assume, that recurrent depressive 
episodes might trigger a chronification of vagal dysfunction by 
overstressing the anti-inflammatory functions of the VNs in the long 
term (37).

Considering side-specific effects of the VNs, in healthy subjects, 
Pelz et al. found an inverse correlation only between the left VN-CSA 
and parameters of parasympathetic activity (11). Left VN efferent 
neurons were also prominently involved in anti-inflammatory effects, 
at least in mice, where the selective stimulation of efferent cholinergic 
VN neurons originating in the left dorsal motor nucleus and 
projecting to the celiac-superior mesenteric ganglia significantly 
increased splenic nerve activity and inhibited TNF-α production (38). 
The so-called cholinergic anti-inflammatory pathway is exerted 
through vago-parasympathetic reflexes via the splenic nerve and vagal 
efferent neurons to enteric neurons resulting in a decrease of TNF-α 
(33). In humans, invasive VNS was approved for severe treatment-
resistant depression in 2005 by the US Food and Drug Administration. 
Usually, the left cervical VN is stimulated (5, 39). Recently, left VNS 
also emerged as a promising treatment approach for inflammatory 
bowel disease (40, 41).

So far, echogenicity of nerves was examined only in a few studies. 
Gamber and colleagues did not find a general difference in the nerves’ 
echogenicity between patients with CIDP and probands, but 
differences between the subgroups of clinically progressive CIDP 
patients compared to healthy controls and stable CIDP patients (42). 
No differences were found in the echogenicity of the VNs between 
MDD and controls. One explanation may be, that the epineurium is 
relatively prominent, in particular in the right VN. Thus, a change in 
echogenicity was probably mitigated by the hyperechoic epineurium. 
However, there was a significant side difference of the GSM Index 
between the left and the right VN within both the MDD and control 
group. The GSM Index of the left VN was significantly lower than the 
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right, i.e., the left VN was more hypoechoic, which could be a due to 
a lower number of fascicles in the left VN, which are sheathed by 
hyperechoic epineurium (10).

We found no significant correlation between MDD symptom 
severity and VN-CSA or echogenicity. BDI and PHQ-15 ask for 
symptoms within the last 2 weeks, which reflects rather acute than 
chronic symptoms. In our findings, the RDD subgroup contributed 
most to the alterations in VN-CSA. This may suggest that recurrent 
and chronic courses of MDD alters VN-CSA independently to its 
current symptom severity.

There are several limitations. Firstly, the MDD group was 
heterogenous, comprising patients with FD and RDD, with the RDD 
subgroup impacting the VN-CSA the most. Further HRUS investigations 
in MDD should focus on differences between first time, recurrent, and 
chronic depressive disorders. Moreover, it should be noted that the RDD 
subgroup presumably underwent a longer period of medical treatment, 
due to recurrent depressive episodes and long-term intake of 
antidepressants. We could not rule out that (especially the long-term-
treatment with) antidepressants had an influence on the VN alterations, 
as they may also have anti-inflammatory effects (43, 44). Secondly, the left 
VN-CSA enlargement was small and thus, it appears unlikely that the 
VN-CSA may serve as a biomarker for diagnosis or treatment response 
in MDD on an individual basis. Thirdly, no general procedure of 
determining echogenicity in HRUS images is established yet. But unlike 
previous studies (42), we adjusted echogenicity for individual factors 
during the HRUS examination like changes in gain, depth, and focus by 
calculating an index, rather than reporting raw values. Finally, there is an 
ongoing debate whether the sonographically measured VN-CSA reflects 
the anatomical size of the VN (45).

In conclusion, the enlargement of the left VN-CSA in patients 
with MDD, and especially in these patients with recurrent depressive 
disorders, might turn out as a promising imaging biomarker. Possible 
mechanisms could involve a dysregulation of inflammatory and anti-
inflammatory effects of the gut-brain axis. Further sonographic 
research is warranted, especially over the course of MDD to improve 
our understanding of the role of the VNs in affective disorders.
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Objective: To explore the interhemispheric information synergy ability of the 
brain in major depressive disorder (MDD) patients by applying the voxel-mirrored 
homotopic connectivity (VMHC) method and further explore the potential clinical 
diagnostic value of VMHC metric by a machine learning approach.

Methods: 52 healthy controls and 48 first-episode MDD patients were recruited 
in the study. We  performed neuropsychological tests and resting-state fMRI 
scanning on all subjects. The VMHC values of the symmetrical interhemispheric 
voxels in the whole brain were calculated. The VMHC alterations were compared 
between two groups, and the relationship between VMHC values and clinical 
variables was analyzed. Then, abnormal brain regions were selected as features 
to conduct the classification model by using the support vector machine (SVM) 
approach.

Results: Compared to the healthy controls, MDD patients exhibited decreased 
VMHC values in the bilateral middle frontal gyrus, fusiform gyrus, medial superior 
frontal gyrus and precentral gyrus. Furthermore, the VMHC value of the bilateral 
fusiform gyrus was positively correlated with the total Hamilton Depression Scale 
(HAMD). Moreover, SVM analysis displayed that a combination of all clusters 
demonstrated the highest area under the curve (AUC) of 0.87 with accuracy, 
sensitivity, and specificity values of 86.17%, 76.74%, and 94.12%, respectively.

Conclusion: MDD patients had reduced functional connectivity in the bilateral 
middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral 
gyrus, which may be related to depressive symptoms. The abnormality in these 
brain regions could represent potential imaging markers to distinguish MDD 
patients from healthy controls.

KEYWORDS

major depressive disorder, voxel-mirrored homotopic connectivity, support vector 
machine, functional magnetic resonance imaging, resting-state
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1. Introduction

As a common and debilitating mental disease, major depressive 
disorder (MDD) is characterized by persistently depressed mood, lack 
of interest, low energy, and cognitive impairment (1). It has high rates 
of occurrence, impairment and recurrence. Currently, there are more 
than around 350 million MDD patients worldwide, and the number 
of patients is still increasing annually (2). According to the World 
Health Organization, it is estimated that MDD can reach the first 
incidence rate among mental disorders in the world by 2030, which 
will seriously threaten economic development and social stability (3, 
4). Previous study showed that MDD was a systematic disease 
involving in multiple neural circuits, which may be related to genetic 
factors, environmental factors, psychological factors, and abnormal 
nerve development (5). Although many studies have been performed 
on the genetics, neurobiochemistry and neuroendocrinology of MDD 
(6–10), the pathogenesis is still unclear. The diagnosis of MDD is 
mainly based on the subjective feelings of patients and the evaluation 
of depression scales depending on the experience of clinicians. Hence, 
it is an urgent problem to explore the pathogenesis of MDD and find 
appropriate objective diagnostic markers.

The traditional imaging indicators of structural magnetic 
resonance imaging (MRI) are insufficient as markers for MDD 
diagnosis due to the lack of organic lesions. In recent years, resting-
state functional magnetic resonance imaging (rs-fMRI) has developed 
rapidly, providing new ideas. Rs-fMRI is a non-invasive brain imaging 
technology reflecting the brain functional activity by measuring the 
hemodynamic and metabolic changes based on blood oxygen level-
dependent (11). It has good repeatability and very high spatial 
resolution. Additionally, subjects do not need to perform specific tasks 
during the scanning progress. This technology can explore the 
pathogenesis of diseases from the perspective of neuroimaging and 
provide an effective means to find neuroimaging markers. Thus, it has 
been widely used in the research of neuropsychiatric diseases, such as 
bipolar disorder (12, 13), autism (14, 15), and Alzheimer’s disease (16, 
17). It can also be a particularly useful tool for investigating differences 
between MDD patients and healthy controls (HCs). Previous studies 
on MDD have revealed that there were structural and functional 
changes in many brain regions, mainly involving the altered prefrontal 
cortex, amygdala, hippocampus, corpus striatum, and other brain 
regions (18–22).

To date, common traditional imaging data analysis methods 
include amplitude of low-frequency fluctuation (ALFF), regional 
homogeneity (ReHo), degree centrality (DC) and so on. The methods 
are mainly utilized to observe brain functional changes in MDD 
patients from a local perspective. But voxel-mirror homotopic 
connectivity (VMHC) is a reliable and reproducible measurement 
from the whole brain level which has been developed rapidly recently 
(23). It has been applied for neuropsychiatric diseases, such as anxiety 
disorder (24), autism (25), addiction (26), obsessive-compulsive 
disorder (27, 28), and Schizophrenia (29). Through the method, the 
functional connections can be quantified between each voxel in the 
one hemisphere and the mirror voxel in the other hemisphere at 
resting state and the intensity reflects the synergy between the 
hemispheres. In other word, it mainly reflects the information 
exchange and coordination function between hemispheres by 
describing the high synchronization of spontaneous activities in the 
symmetrical regions of the left and right hemispheres. The good 

coordination of brain regions between hemispheres plays an important 
role in integrating cognitive and behavioral related brain functions. 
Therefore, the study of homotopic functional connection across the 
cerebral hemispheres might help to further understand the neural 
mechanisms of MDD.

As a supervised machine learning algorithm, support vector 
machine (SVM) has unique advantages in dealing with small-sample, 
high-dimensional, and nonlinear data problems for classification (30). 
It can determine the optimal segmentation hyperplane in the feature 
space of data samples to maximize the distance between the 
hyperplane and various types of samples based on the statistical 
learning theory and the principle of structural risk minimization. 
Compared to traditional statistical analysis techniques, it has a simple 
structure, optimal global solution and high generalization ability as a 
multivariate pattern analysis approach. Furthermore, it enables 
programs to learn from data sets and perform tasks without direct 
users input, which has been applied in the discriminant analysis of 
various neuropsychiatric diseases (31). As we all know, several studies 
have reported that VMHC method was applied for the different types 
of MDD (32–37). However, our study is the first to combine VMHC 
metric and SVM method to evaluate the classification ability in the 
first-episode MDD patients without prior assumptions.

In the present study, we  aimed to explore the possible 
neuroimaging mechanism of MDD and identify whether the altered 
brain regions could be used to discriminate between the first-episode 
MDD patients and HCs. Firstly, the VMHC approach was applied to 
identify the functional connectivity between the hemispheres. Next, 
we  used correlation analyses to reveal the relationship between 
abnormal homotopic connectivity and clinical characteristics. Finally, 
we discussed the VMHC value in altered brain regions as potential 
neuroimaging markers by the SVM method. The study will deepen 
our understanding of neural mechanism changes in MDD.

2. Methods

2.1. Participants

We recruited 48 first-episode MDD patients aged 18–55 years 
from the traditional Chinese medicine clinic and psychiatric 
department of Guangdong Sanjiu Brain Hospital, and 52 healthy 
volunteers from the community through advertisement. This study 
lasted from May 2017 to August 2018. Before the screening, all 
subjects signed a written statement of informed consent. This study 
received ethical approvals from the Ethics Committee of Guangdong 
Sanjiu Brain Hospital and the Ethics Committee of Southern 
Medical University. And it was registered on the Chinese clinical 
trial website (http://www.chictr.org.cn, registration number: 
ChiCTR-IPR-14005427).

All participants included in this study were right-handed. The 
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-
Text Revision (DSM-IV-TR) was used to make the diagnoses of the first-
episode MDD patients. The participants met the following inclusion 
criteria: (1) HAMD score of >20; (2) the course of disease of >2 weeks; 
(3) no psychiatric drugs intake; (4) no neurological or other psychiatric 
disorders and history of substance dependence; (5) no organic brain 
diseases; (6) no history of manic or hypomanic episodes; (7) no history 
of psychiatric illness among their first-degree relatives; and (8) no MRI 
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contraindications, such as electronic implants, various metals or 
claustrophobia. Pregnant and lactating women were also excluded.

The HCs met the following inclusion criteria: (1) a comprehensive 
physical examination conducted before the experiment with all 
examination results being normal; (2) the total score of HAMD of <7; 
(3) no mood disorders or neurological disorders; (4) no family history 
of psychiatric illness among their first-degree relatives; (5) no drugs 
intake 2 weeks before the experiment; and (6) no MRI 
contraindications. Furthermore, pregnant and lactating women were 
excluded. All subjects completed 24 items of the Hamilton Depression 
Scale (HAMD-24) and Self-Rating Depression Scale (SDS).

2.2. MRI data acquisition

In this study, the MRI imaging data was collected using a GE 3 T 
Signa HDXT superconducting magnetic resonance scanner. During the 
scanning process, all subjects were instructed to stay awake, lie flat and 
close their eyes without thinking as much as possible. Their heads were 
fixed with sponge pads to reduce head movement and equipped with 
sound insulation earplugs. The sagittal 3D-BRAVO sequence was used 
for brain 3D-T1WI scanning. The scanning parameters of structural 
phase were as follows: repetition time (TR) = 8.8 ms, time to Echo 
(TE) = 3.5 ms, field of view (FOV) = 256 mm × 256 mm, voxel 
size = 1 mm × 1 mm × 1 mm, flip angle = 13°, matrix = 256 × 256, slices 
number = 184. Gradient echo planar imaging pulse sequence was used 
to obtain rs-fMRI imaging data. The front and rear joint lines were taken 
as the scanning baseline, and oblique axial scanning was performed. The 
scanning range was from the parietal cranium to the foramen magnum 
of the subjects. The scanning took about eight minutes and the scanning 
parameters of functional phase were as follows: TR/TE = 2000 ms/30 ms, 
FOV = 24 cm × 24 cm, flip angle = 90°, slices number = 33, slice 
thickness = 5 mm, gap = 0.6 mm, matrix = 64 × 64, time points = 240.

2.3. Data preprocessing

RESTplus v1.25 (38) and SPM12 software1 were used for data 
preprocessing based on MATLAB R2017b platform. The preprocessing 
steps included: (1) converting DICOM format data to NIFTI format 
data; (2) removing the first 10 time points to minimize the impact from 
the initial signal volatility; (3) taking the middle slice as a reference for 
slice timing; (4) realigning for head movement correction; (5) spatial 
normalizing by using an echo planner imaging (EPI) template 
developed by the Canadian Montreal Neuroscience Institute; (6) 
smoothing by using the 6 × 6 × 6 mm3 Gaussian smoothing kernel for 
improving the signal to noise ratio of data; (7) detrending; (8) nuisance 
covariates regression including the head movement by using Friston 
24 parameter (39); and (9) bandpass filtering to reduce the impact of 
low-frequency drift and high-frequency noise (0.01–0.08 Hz). One HC 
and five MDD patients were excluded due to excessive head movements 
that the translation was >2.5 mm, or rotation was >2.5° in each 
direction during the scanning process. Consequently, 43 patients and 
51 HCs were included in the statistical analyses.

1  https://www.fil.ion.ucl.ac.uk/spm/

2.4. VMHC calculation

VMHC analysis was performed based on the DPARSF 6.2 
software (40). Firstly, the time series of each voxel were extracted in 
the one hemisphere of the participants. And then, Pearson correlation 
coefficient was calculated between the time series and the 
corresponding time series in the symmetric hemisphere. Subsequently, 
the obtained correlation coefficient was converted to a Z value through 
Fisher Z transformation in order to generate the VMHC map of the 
entire brain for each participant. Finally, the average VMHC value of 
each participant can be extracted for group comparison.

2.5. Statistical analysis

Clinical and neuroimaging data were compared between MDD 
patients and HCs. SPSS 25.0 software (Chicago, IL) was used to 
analyze the clinical data of the participants. We analyzed neuroimaging 
data utilizing RESTplus v1.25 software on MATLAB r2017b platform. 
The continuous data according with the normal distribution and 
homogeneity of variance were analyzed by two independent sample 
t-test, and the categorical data was analyzed by χ2 test. The mean and 
standard deviation were expressed for continuous data. Whereas the 
median and interquartile range were expressed for counting data. 
We used the gender, age, and education of subjects as covariates for 
rs-fMRI data if the two groups differed statistically from one another. 
The test results were corrected by Gaussian random field (GRF) 
multiple comparison correction. We considered that voxel p of <0.005 
and cluster p of <0.05 were statistically significant. The VMHC values 
of abnormal brain regions were extracted for further correlation 
analysis and classification.

As a supervised machine learning, the SVM method is a common 
way to explore the best boundaries between two categories and to solve 
binary classification problems. The method was applied to test whether 
extracted VMHC could discriminate between MDD patients and 
healthy controls. The categorization procedure included training and 
testing. First, abnormal VMHC were utilized as features to establish 
the hyperplane and the radial basis function (RBF) kernel was applied 
in the SVM model. The best parameters for the training dataset, 
including c (penalty coefficient) and g (gamma), were chosen by the 
grid search approach. Second, an optimal hyperplane which developed 
from the training data was applied to a new testing dataset in order to 
assess the performance of the classification. We used a “leave-one-out” 
method to produce results with the best levels of accuracy, sensitivity 
and specificity by the LIBSVM software package in MATLAB r2017b 
platform. The predictive performance of the SVM model was shown 
by the area under the receiver operating curve (AUC).

3. Results

3.1. Clinical characteristics

Demographic and clinical characteristics between the two groups 
were presented in Table 1. The age and sex composition ratios did not 
significantly differ between the two groups (p > 0.05), but there were 
significant differences in the education level, HAMD-24, and SDS 
(p < 0.05).

18

https://doi.org/10.3389/fpsyt.2023.1241670
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.fil.ion.ucl.ac.uk/spm/


Chen et al.� 10.3389/fpsyt.2023.1241670

Frontiers in Psychiatry 04 frontiersin.org

3.2. VMHC comparison

Individual whole-brain VMHC values of MDD patients were 
compared between MDD patients and HCs. Additionally, we took the 
education level as a covariate in the statistical analysis of rs-fMRI data. 
MDD patients had lower VMHC values in the bilateral middle frontal 
gyrus (MFG), fusiform gyrus (FG), medial superior frontal gyrus 
(MSFG) and precentral gyrus (PG) (GRF correction, voxel p < 0.005, 
cluster p < 0.05, cluster size >64) relative to HCs, as shown in Table 2 
and Figure 1.

3.3. Correlations analyses

Figure 2 showed the correlation analysis between the VMHC and 
clinical characteristics. The VMHC values of different brain regions of 
all subjects were extracted by using RESTplus V1.25 software based on 
MATLAB r2017b platform. A positive correlation was observed 
between the VMHC value of the bilateral fusiform gyrus and HAMD 
(r = 0.3723, p = 0.014).

3.4. Support vector machine

The decreased VMHC values of these four brain regions in MDD 
patients were analyzed by the SVM method. The four clusters were 
used as features separately or together. The receiver operating curves 
(AUCs) of models were as follows: MFG of 0.86, FG of 0.82, MSFG of 
0.79 and PG of 0.76. The decreased VMHC in the MFG showed the 
highest diagnostic accuracy of 81.91%, with a sensitivity of 74.42% 
and a specificity of 88.24%. Based on the results of the SVM, the 
combination of decreased VMHC in the four clusters produced the 
highest AUC of 0.87, with an accuracy of 86.17%, a sensitivity of 
76.74%, and specificity of 94.12% together (See Table 3 and Figure 3).

4. Discussion

Our research compared the brain activity of MDD patients with 
that of HCs using the VMHC method. The results showed that 
compared to the HCs, the MDD group had decreased VMHC in the 
bilateral MFG, FG, MSFG, and PG which represented the decreased 
synchronization and information exchange. Additionally, a positive 
correlation was found between VMHC value of the bilateral FG and 
HAMD scores in MDD patients. Based on the SVM results, a 
combination of decreased VMHC value in the four clusters had 
relatively the highest AUC, sensitivity, specificity and accuracy.

The MSFG and the MFG are both important components of the 
prefrontal cortex which participate in a variety of neural functions. The 
MSFG is responsible for working memory, stress perception, regulation 
of loss aversion and behavior (41). Stress perception refers to the ability 
to perceive various negative external factors, which often serves as an 
important factor in predicting the occurrence of depression. The 
involvement of the MFG in emotional processing is related to 
psychological resilience (42, 43). The MSFG and MFG are important 
components of the default network and frontal parietal network. The 
default network plays an important role in emotional processing, self-
referencing psychological activities and recalling previous experiences 
(44, 45). And the frontoparietal network is an important cognitive 
functional network that participates in controlling and regulating 
cognitive activities in the brain (46). The depressed patients showed 
substantial changes in the BOLD signal in the left MSFG relative to HCs 
(47) and the MSFG was demonstrated a high level of diagnostic 
accuracy in the late-life depression (48). Additionally, Lan et al. observed 
that MDD group had higher fALFF value in the right MFG (49). The 
MDD patients with somatic symptoms exhibited lower ReHo value in 
the right MFG (50) and the depressive patients had less pronounced 
activation of MFG in response to both positive and negative images 
(51). Several studies found that the abnormal interhemispheric 
homotopic functional connectivity in the bilateral MSFG and MFG in 
different types of depressive group, such as MDD with and without 
anhedonia, recurrent MDD and MDD with gastrointestinal symptoms 
(52–54). We also discovered that first-episode MDD group had lower 
VMHC in the MSFG and MFG compared to HCs. This indicated the 
importance of the homotopic connectivity between these two brain 
regions in the pathogenesis of depression.

The FG, known as the lateral occipitotemporal gyrus, is the cerebral 
cortex between the temporal lobe and the occipital lobe (55). The FG, as 
a crucial component of the visual recognition network, is mainly 
responsible for the perception and processing of emotion during face 
stimulus presentation. It involves in higher-order vision processing and 

TABLE 2  Abnormal brain regions in the MDD patients compared to HCs.

Regions Cluster 
size

Peak T 
value

MNI Coordinate 
(mm)

X Y Z

MFG 1773 −5.5839 ±42 24 42

FG 236 −4.9282 ±27 −78 −15

MSFG 131 −5.3559 ±9 60 18

PG 117 −4.7597 ±48 −18 42

MFG, middle frontal gyrus; FG, fusiform gyrus; MSFG, medial superior frontal gyrus; PG, 
precentral gyrus (voxel p < 0.005, cluster p < 0.05, GRF correction, cluster size > 64 voxels).

TABLE 1  Demographics and clinical characteristics of all subjects.

Group Age (years) Gender 
(male/female)

Education 
(years)

Duration 
(weeks)

HAMD SDS

HCs 28.92 ± 7.12 22/29 13.02 ± 2.96 NA 2.53 ± 1.71 25.65 ± 3.70

MDD 31.12 ± 10.35 20/23 11.53 ± 2.50 33.95 ± 41.60 28.14 ± 3.03 75.26 ± 3.78

t/χ2 −1.176 0.107 2.635 NA −49.214 −64.094

p value 0.243 0.743 0.01 NA < 0.0001 < 0.0001

Data are presented as Mean ± SD; N/A, not applicate.

19

https://doi.org/10.3389/fpsyt.2023.1241670
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Chen et al.� 10.3389/fpsyt.2023.1241670

Frontiers in Psychiatry 05 frontiersin.org

is probably most well-known for its involvement in visual face 
processing, although it also plays an important role in the visual 
processing of body parts, objects, places and word forms (56). K and V 
et al. reported that MDD patients had abnormal volume in the FG 
related to alexithymia in comparison with healthy controls (57). And the 
patients with MDD have shown significantly decreased local gyrification 
index in the right FG and decreased functional connectivity between the 
right FG, right superior temporal gyrus and sensorimotor areas 
(precentral and postcentral gyrus) (58). Moreover, Korgaonkar et al. 

revealed decreased fractional anisotropy in the temporal lobe involving 
the FG in melancholic MDD (59). Subjects with cognitive vulnerability 
to depression have the increased ALFF in the left FG (60) and increased 
fALFF value in the FG was related to some depressive symptoms in 
MDD patients (61). Otherwise, one study showed that MDD group had 
decreased ReHo values were seen in the right FG compared with HCs 
(62). The MDD patients exhibited that significant decreased VMHC in 
the FG and a negative correlation was found between VMHC of the FG 
and illness duration relative to healthy controls (32, 34). Interestingly, the 

FIGURE 1

Brain regions showing significantly different VMHC values between two groups. Cold colors indicate decreased VMHC values (voxel p  <  0.005, cluster 
p  <  0.05, GRF correction, cluster size >64 voxels).

FIGURE 2

Correlation between the VMHC value in the bilateral fusiform gyrus and HAMD. (A) The location of bilateral fusiform gyrus in the whole brain. (B) The 
result of correlation analysis.
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VMHC value of the bilateral FG was positively correlated with the 
HAMD in our study. This may be  the transitional stage of 
decompensatory period. The consistency and synergy of bilateral FG was 
enhanced with the more severe depression, which may be related to the 
compensatory enhancement of information exchange and integration.

The PG was part of the central executive network. Several studies 
have suggested that the PG changed in patients with depression. 
L. Wang et al. observed that MDD patients had the significant altered 
ALFF and fALFF value in the precentral gyrus (63). There were 
significant negative correlations between the abnormal fALFF in the 
right precentral gyrus and the change of Beck Scale for Suicidal Ideation 
at baseline and between the abnormal ALFF in the right precentral 
gyrus and the change in HAMD. Furthermore, reduced ReHo value in 
the right precentral gyrus have been reported in the unipolar depression 
group (64). The somatic depression also exhibited that lower ReHo 
value in the left precentral gyrus and ReHo value in the left precentral 
gyrus was positively correlated with cognitive factor scores of the 
HAMD-17 compared to non-somatic depression (50). Additionally, 
Shan et al. found that the melancholic patients displayed the decreased 
VMHC value in the precentral gyrus and the SVM analysis results 
showed that the VMHC value between the bilateral precentral gyrus 
may serve as underlying imaging indicators to distinguish melancholic 
patients from non-melancholic MDD (36). The Treatment Resistant 
Depression group had significantly lower VMHC values in the 
precentral gyrus as compared to the treatment sensitive depression 
group (33). Our results revealed that the first-episode MDD patients 
exhibited aberrant VMHC value in the precentral gyrus, which was 
roughly consistent with the previous findings even though different 

types of depression. Decreased coordination was discovered throughout 
other brain areas, involving in bilateral insular, putamen, posterior 
cingulate cortex, cuneus and superior temporal gyrus (35, 65, 66). The 
different results may be related to the sample size, the severity and 
course of depression, medication or other interventions, multiple 
comparison correction methods and statistical threshold.

At present, clinical symptoms are mostly used for MDD diagnosis. 
Machine learning is an objective measurement that may might 
increase the accuracy of MDD diagnostic reliability. The ROC analysis 
was carried out to assess the effectiveness of the SVM classifier. The 
SVM model in our study showed good performance for MDD, with 
an accuracy of 86.17%, sensitivity of 76.74%, specificity of 94.12% and 
AUC of 0.87 based on the leave-one-out cross validation technique. As 
a result, aberrant VMHC signal values in these brain regions may serve 
as potential imaging markers for discriminating MDD patients from 
HC. This study had some limitations. Firstly, the sample size was small, 
which might reduce the statistical effectiveness and affect the stability 
of the results. Secondly, the study had a cross-sectional design, lacking 
longitudinal observation of depression. These patients can be followed 
up to elaborate on the pathological mechanism of the disease in the 
future. Thirdly, a weak correlation existed between the depression 
scales and the VMHC value. This may be related to the small sample 
size and the depression levels of the included patients. In conclusion, 
we found the altered VMHC of the MFG, FG, MSFG, and PG in MDD 
patients, indicating that the impairment of these brain areas may 
contribute to the pathogenesis of depression. In the future, we can 
combine T1 and DTI technology to further explore the neuroimaging 
mechanism of depression from a multimodal perspective.

FIGURE 3

Visualization of classifications based on VMHC values through the support vector machine method. (A) The optimal parameters selection of SVM 
models by the grid search method (3D view). (B) The SVM parameters selection results with contour map (2D view). (C) Receiver operating curves 
assessing SVM performance.

TABLE 3  SVM classification performances.

Regions Best c Best g Accuracy (%) Sensitivity (%) Specificity (%) AUC

MFG 0.5 8 81.91 74.42 88.24 0.86

FG 512 32 80.85 76.74 84.31 0.82

MSFG 0.25 8 76.60 65.12 86.27 0.79

PG 32 512 76.60 79.07 74.51 0.76

All 32,768 0.0156 86.17 76.74 94.12 0.87

MFG, middle frontal gyrus; FG, fusiform gyrus; MSFG, medial superior frontal gyrus; PG, precentral gyrus. A combination of all clusters built the best SVM model. The best c was 32,768; The 
best g was 0.0156; The AUC of best model was 0.87.
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5. Conclusion

In our study, MDD patients exhibited decreased VMHC value in 
the MFG, FG, MSFG and PG. The VMHC value of FG was positively 
correlated with the total HAMD scores. Moreover, SVM analysis 
results showed that a combination of the VMHC values of all clusters 
demonstrated the highest area under the curve (AUC), which may 
be a potential neuroimaging marker for the MDD. According to this 
study, it highlighted the importance of decreased coordination 
between hemispheres in these brain regions into the pathophysiology 
of MDD and VMHC values could also serve as a potential imaging 
biomarker for diagnosing MDD.
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Is brain perfusion correlated to 
switching mood states and 
cognitive impairment in bipolar 
disorder type I? A longitudinal 
study using perfusion imaging 
approach
Maria Anayali Estudillo-Guerra 1,2†, Clas Linnman 3†, Victor Galvez 4, 
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1 Clínica de Trastornos del Afecto, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City, Mexico, 
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Mexico City, Mexico, 6 Neuromodulation Center and Center for Clinical Research Learning, Spaulding 
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Nacional Autónoma de México, Mexico City, Mexico

Type I  Bipolar disorder (BD-I) is a neuropsychiatric disorder characterized by 
manic or mixed-featured episodes, impaired cognitive functioning, and persistent 
work and social functioning impairment. This study aimed to investigate within-
subject; (i) differences in brain perfusion using Single-photon emission computed 
tomography (SPECT) between manic and euthymic states in BD-I patients; (ii) 
explore potential associations between altered brain perfusion and cognitive status; 
and (iii) examine the relationship between cerebral perfusion and mania symptom 
ratings. Seventeen adult patients diagnosed with BD-I in a manic episode were 
recruited, and clinical assessments, cognitive tests, and brain perfusion studies 
were conducted at baseline (mania state) and a follow-up visit 6  months later. The 
results showed cognitive impairment during the manic episode, which persisted 
during the euthymic state at follow-up. However, no significant changes in brain 
perfusion were observed between the manic and euthymic states. During mania, 
trends toward decreased perfusion in the left cerebellum and right superior parietal 
lobule were noted. Additionally, trends indicated a higher perfusion imbalance in 
the left superior and middle frontal gyrus during mania and the right superior and 
middle frontal gyrus during euthymia. No significant correlations existed between 
brain perfusion, mania symptom ratings, and cognitive performance, indicating 
that symptomatology might represent more than neural hemodynamics. These 
findings suggest that cognitive impairment may persist in BD-I patients and 
highlight the need for therapeutic interventions targeting cognitive deficits. 
More extensive studies with extended follow-up periods are warranted further to 
investigate brain perfusion and cognitive functioning in BD-I patients.

KEYWORDS

bipolar disorder, SPECT, brain imaging, cognitive function, neuroimaging, nuclear 
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1. Introduction

Type I Bipolar disorder (BD-I) is a common neuropsychiatric 
disorder with a lifetime worldwide prevalence of approximately 1% 
(1). It is characterized by at least one lifetime manic or mixed-featured 
episode, and it may be  accompanied by impaired attentional 
processing, executive function, verbal memory, and persistently 
impaired work and social functioning (2, 3); these deficits can 
be observed in all stages, including euthymia (phase of normality 
between episodes of mania or depression) (4–6). Brain lesions 
evidence shows that mania occurs in up to 30% of BD-I patients with 
basal ganglia calcification, associated with right-sided destructive 
lesions and with the left-sided epileptogenic lesion, deriving a laterality 
imbalance (7). However, functional neuroimaging studies have found 
previous alterations in limbic structures and prefrontal areas, possibly 
related to cognitive impairment (8). Nonetheless, the current evidence 
to determine this relationship is inconclusive because it is based 
chiefly on cross-sectional designs in various patient groups. This 
approach limits comparison (and correlations) between the different 
clinical states due to inter-subject differences (9).

Longitudinal studies investigating subjects during manic, 
euthymic, and depressed episodes promise to capture disease-specific 
within-subject alterations, as the switch between mood states is a 
hallmark of BD-I patients. Such designs are challenging, and only a 
few studies show images of subjects across mood episodes (10–14), 
and these studies used Magnetic Resonance Imaging to study 
functional activation and connectivity changes. Cerebral blood flow 
(CBF) abnormalities have been previously described in patients with 
Major Depressive Disorder (MDD) and Schizophrenia (15–17). A 
systematic review of 33 studies compared CBF findings in BD and 
healthy control subjects (HC) at rest and in response to cognitive and 
emotional tasks; the most consistent finding was reduced CBF in BD 
in the cingulate gyrus, frontal, and anterior temporal regions during 
either depressive or manic stages, compared to healthy controls. 
However, longitudinal measures of CBF across mood states are rare: 
Most relevant to the present study, in longitudinal studies contrasting 
symptomatic (mania or depression) with euthymia, a right–left 
asymmetry in anterior temporal lobes was observed in the pathological 
mood states (18) A review of perfusion-weighted magnetic resonance 
imaging studies in BD found results that supported the presence of 
hyper-perfusion in the cingulate cortex and frontotemporal regions, 
as well as the company of hypo-perfusion in the cerebellum in BD 
subjects when compared with HC and subjects with unipolar 
depression (19). A study of perfusion fluctuation and perfusion 
connectivity in BD subjects measured by dynamic arterial spin 
labeling found that BD subjects exhibited significantly increased 
perfusion fluctuations in the left fusiform and inferior temporal 
regions and marginally increased perfusion fluctuations in the right 
temporal pole and inferior temporal areas, and increased perfusion 
connectivity between anterior cingulate cortex and the occipitoparietal 
cortex. Positive symptoms were negatively associated with anterior 
cingulate cortex perfusion connectivity to the right orbitofrontal and 
superior frontal regions and right orbitofrontal and inferior frontal 
regions (20).

Regarding possible changes in brain perfusion, as they relate to 
genitive function, prior results have been mixed: Regarding CBF in 
relation to cognitive and emotional tasks comparing BD and HC 
subjects, it was found that decreased CBF in BD group during memory 

tasks, increased CBF in prefrontal and limbic regions in BD group and 
parietal and premotor areas of HC group during serial reaction time 
tasks, decreased CBF in the dorsolateral prefrontal cortex in BD group 
during verbal learning tasks, as well as increased CBF in dorsal 
anterior cingulate cortex regions and decreased CBF in left frontal 
pole in BD group during decision-making tasks. No differences were 
found between the groups in studies that used color-word inhibition 
and verbal fluency tasks. In studies without a HC group, a correlation 
was found between worse performance on memory and verbal 
learning and low frontal CBF; also, the psychomotor performance was 
related to greater anterior temporal CBF in baseline CBF and 
subsequent cognitive performance with increased CBF in left inferior 
opercular frontal gyrus in a before and after 4-week cognitive training 
study. Correlations between CBF and cognitive performance were 
reported, noting that lower CBF was associated with poorer 
performance on measured memory tasks, verbal learning, response 
inhibition, and complex abstraction.

In a previous study, we began exploring cognitive status and brain 
perfusion (measured by SPECT) during a manic episode in 10 patients 
with BD-, reporting a positive association between cognitive 
functioning impairments (verbal learning, verbal fluency, and 
processing speed) with perfusion in the right temporal pole and a 
negative association with perfusion in the orbitofrontal cortex and 
subgenual cingulate cortex, from right hemisphere (21). We expand 
on these results using a larger sample size, longitudinal design, and 
quantitative voxel-wise neuroimaging analysis.

The present study aimed to describe within-subject differences in 
brain perfusion between mania and euthymia; specifically, we explored 
if the switch from mania to euthymia incurred changes in the laterality 
of perfusion, with the hypothesis that the mania state would 
be associated with a higher imbalance in perfusion, favoring relatively 
higher perfusion of the left cerebrum, based on prior neuroimaging 
reports (7, 22). Additionally, we  sought to explore potential 
associations between altered brain perfusion reductions in CBF in 
cingulate, frontal, and anterior temporal regions, as per the prior 
literature and cognitive status, capitalizing on the within-subject 
design. Lastly, we  characterized the relationship between cerebral 
perfusion and mania symptom ratings in the whole sample.

2. Methods

2.1. Subjects

Between March 2015 and March 2019, we  recruited 17 adult 
patients diagnosed with BD-I undergoing a moderate or severe manic 
episode according to the Young Mania Scale (YMRS; YMRS 
score ≥ 20) (23, 24), in the National Institute of Psychiatry Ramón de 
la Fuente Muñiz (INPRFM). Participants were diagnosed according 
to the DSM IV-TR criteria (25) by an experienced psychiatrist using 
the South and Central America version of the International 
Neuropsychiatric Interview (MINI) (26). We included participants 
with BD-I diagnoses of no longer than 5 years, without current 
pharmacological treatment, and with no history of electroconvulsive 
therapy for at least 6 months before the initial evaluation. Patients with 
a score ≥ 19 on the Montgomery-Asberg Depression Scale for 
Depression (MADRS) (27), with neuropsychiatric comorbidities, 
uncontrolled medical conditions, alcohol or other substance use, as 
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well as pregnant or lactating women, were excluded. This study was 
approved by the Institutional Ethical Review Board of the National 
Institute of Psychiatry “Ramón de la Fuente Muñiz.” According to the 
Institution’s guidelines, all participants or legal representatives 
received a study explanation and signed informed consent before 
entering the study.

2.2. Clinical and cognitive assessments

A complete medical history, a physical examination, a 
hematological biochemical evaluation (blood biometry, blood 
chemistry, liver function, and thyroid function), a general urine 
examination, and an electrocardiogram were obtained for each 
participant. Regarding cognitive functioning, we assessed immediate 
verbal learning, fluency, and processing speed. Ten subjects were 
evaluated using the Immediate Verbal Learning Test (VLT-I), the 
Verbal Fluency Test (VFT), and the Processing Speed Test (PST) 
subtests of the Cognitive Impairment in Psychiatry (SCIP-S) Screen 
Scale Spanish version (28). Seven subjects were assessed using the 
Hopkins Verbal Learning Test-Revised (HVLT-R) (29) to assess 
immediate verbal learning, the animal categorical fluency test to assess 
verbal fluency, and the Brief Assessment of Cognition in 
Schizophrenia-Symbol Coding test (BACS-SC) (30) to assess 
processing speed. These assessments were performed at baseline 
(mania state) and follow-up visits 6 months later. The test scores were 
normalized and standardized according to each instrument’s cut 
points using the following formula: a/b = c/x.

2.3. Neuroimaging protocol

Perfusion studies were performed on participants in a manic state 
at the INPRFM. The protocol was performed during the resting state 
using two-head SPECT–CT (PRECEDENCE-Philips). A 
radiopharmaceutical 925 MBq of Tc99m-ethyl cysteine iReimer 
(Neurolite R Accesofarm) was administered for 40–45 min.

2.4. Statistical analysis

For the descriptive analysis of categorical variables, absolute and 
relative frequencies were obtained. For quantitative variables, means, 
medians, and their respective dispersion measures were calculated. 
The normality of the distribution was evaluated graphically and 
through the Shapiro–Wilk test. The Spearman rank correlation 
(correlation between cognitive domains and clinical variables) was 
performed. A p < 0.05 was considered statistically significant with a 
95% confidence interval. Due to the exploratory nature of this analysis, 
we did not correct by multiple comparisons to avoid the type II error. 
The analysis was performed in the statistical software Stata 
(version 15.0).

The brain imaging data were modeled in SPM 12 using a multiple 
linear regression approach. Individual subjects’ mania- and 
euthymia—SPECT perfusion images were co-registered to compute 
an average image. This average was normalized to MNI space, and 
transformations were applied to the mania- and euthymia images, 
thus avoiding an order bias in co-registration. The spatially normalized 

images were further smoothed with a 16 mm full-width-half-max 
filter. The preprocessed images were entered in a repeated measures 
t-test model, controlling for scan global intensities using an 
ANCOVA regressor.

To analyze laterality effects (the main aim of this study), the raw 
mania and euthymia-perfusion images were right–left flipped, 
co-registered to the non-flipped average, and preprocessed as above. 
Changes in the laterality of perfusion between mania and euthymia 
were determined by contrasting non-flipped and converted perfusion 
images in mania versus those in euthymia. Lastly, we utilized the 
entire sample of subjects evaluated in the mania state to assess the 
potential correlations between brain perfusion and cognitive 
outcomes, as well as with symptoms, as rated on the YMRS scale.

For all analyses, the cluster forming threshold was set at p < 0.001, 
and significance was set at p < 0.05, corrected by family-wise error rate. 
Trends for clusters with more than five contiguous voxels at p < 0.001, 
not surviving correction for multiple comparisons, are also reported.

In addition to the above analysis, we further explored results using 
threshold-free cluster enhancement (TFCE), an approach introduced 
to increase the sensitivity of voxel-based analyses applying 5,000 
permutations and optimizing voxel-level thresholding (31), and by 
defining regions of interest based on prior literature in the cingulate, 
frontal lobe, and the temporal poles, determined using the 
WFU. pickatlas tool (32) and the A.A.L. library (33).

3. Results

3.1. Participants and ratings

We included 17 patients in the study, 14 women and three men. 
The mean age was 41.2 (SD = 15. 09; Table 1). The cognitive domains 
of immediate verbal learning, verbal fluency, and processing speed 
demonstrated performance below the typical threshold at baseline 
(Table 2). Additionally, there was no observed correlation between 
YMRS scores and cognitive functioning.

During the follow-up, 6 months later, eight out of the 17 patients 
were evaluated (nine participants discontinued their participation due 
to personal reasons and time availability). An expected significant 
difference between baseline and follow-up measurements was found 
in YMRS scores (p < 0.001). No differences were found between the 
cognitive outcomes and the rest of the clinical assessments, even 

TABLE 1  Clinical and sociodemographic characteristics.

Variable n %

Sex Women 14 82.3

Men 3 17.6

Mean Min-Max

Age 37 20–67

Years of schooling 13.47 5–19

Duration of the last manic episode 

(weeks)

4.02 1–16

Time since diagnosis (years) 2.5 0–4

Number of previous episodes of mania 1.29 1–3

Number of prior episodes of depression 1.11 0–4
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though all subjects were euthymic, and none of them were depressed 
according to the MADRS scores. As no significant changes in 
cognition were discerned between the mania and the euthymia, 
we did not pursue the planned correlation analyses of changes in 
cognition about changes in perfusion. Pharmacological treatment a 
follow-up are described in Supplementary Table 1.

Brain perfusion was not significantly different between the mania 
and the euthymia state. However, at a less stringent threshold (p < 0.001, 
not corrected for multiple comparisons), a trend toward decreased 
perfusion in the mania state was observed in the left cerebellum and 
the right superior parietal lobule, see Table 3 and Figure 1.

The TFCE and ROI approaches did not yield any further 
significant findings.

3.2. Laterality of mania

There were no significant differences in perfusion laterality 
imbalance, contrasting the mania and euthymic states. At a less 
stringent threshold (p < 0.001, not corrected for multiple comparisons), 
a trend was observed in that the mania state was associated with a 
relative imbalance suggesting higher perfusion in the left superior and 
middle frontal gyrus, see Table 3. Similarly, the right superior and 

middle frontal gyrus observed a trend toward more significant 
asymmetry in the euthymia state.

3.3. Relation between perfusion and mania 
ratings

For the entire sample evaluated only in the mania state (n = 17), 
there were no significant correlations to the YMRS scale. At a less 
stringent threshold (p < 0.001, not corrected for multiple comparisons), 
a trend was observed toward a positive correlation between YMRS 
ratings and perfusion of the left occipital fusiform gyrus (Table 3).

4. Discussion

This study aimed (i) to investigate the differences in brain 
perfusion between manic and euthymic states in BD-I patients, (ii) to 
explore potential associations between altered brain perfusion and 
cognitive status, (iii) and examine the relationship between cerebral 
perfusion and mania symptom ratings. We  detected cognitive 
impairment during the manic episode, which persisted during the 
euthymic state at follow-up. However, no significant changes in brain 
perfusion were observed between the manic and euthymic states. 
We discuss each of these findings below.

4.1. Cognitive function in BD patients 
during mania

During the manic episode, immediate verbal learning, fluency, and 
processing speed were found below the normalized values for each 
subscale. These results agree with those reported in a systematic review, 
where it was found that during the manic episode, patients showed 
significant dysfunctions in attention, language, memory, and executive 
functions (13). However, in the eight subjects who also participated in 
our follow-up visit, we  did not observe any changes in cognitive 
function between the manic episode and euthymia, suggesting that 
cognitive function did not improve in euthymia in BD-I (4, 35).

4.2. Changes in brain perfusion

There were no significant changes in measured cerebral perfusion 
between the manic state at follow-up euthymia. Several trends were, 
however, observed, with reduced perfusion of the right parietal cortex 
during mania and evidence of more significant left–right perfusion 
imbalance during mania, particularly in the left superior and middle 
frontal gyrus. We  note that these trends correspond to a general 
pattern of mania associated with right-hemisphere hypofunction and 
left-hemisphere hyperfunction (7, 22), ad hoc to our hypothesis; yet, 
these trends should be interpreted cautiously.

We also did not observe significant correlations between the YMRS 
score and cerebral perfusion in the mania state. A trend toward a 
negative correlation between YMRS ratings and perfusion of the left 
occipital fusiform gyrus was observed. Only a few data implicate 
selective disturbances in the occipital cortex in BD-I, possibly 
indicating that this trend should be explored in more detail (36, 37).

TABLE 2  Clinical and cognitive functioning.

SCALES The score 
during the 
episode of 

Mania 
n  =  17

Score on 
6-month 
follow-up 

n  =  8

Interpretation 
of the results

Stocking 
(min-max)

Stocking 
(min-max)

MADRS 5.17 (0–14) 5.82 (0–11) ≥ 35: Severe depression

20–34: Moderate 

depression

7–19: Mild depression

≤ 6: Depression in 

recovery

YMRS 32.82 (20–56) 1.87 (0–4) ≤6: Euthymia

7–20: Mixed episode

>20: Manic episode

BPRS 32.17 (20–47) 25.12 (21–28) 0–9: Absence of the 

disorder.

10–20: Mild disorder

≥21: Severe disorder

Normal values*

Immediate 

verbal 

learning

18.32 (7–27) 17.12 (9–25) <21

Verbal fluency 16.35 (6–28) 19.12 (12–27) <19

Processing 

speed

9.95 (5–15.8) 9.62 (5–14) <12

MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, Young Mania Rating Scale; 
BPRS, Brief Psychiatry Rating Scale; SCIP-I, screen for cognitive impairment in psychiatry. 
*Reference values are taken from Rojo et al. (34).
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4.3. Cognitive functioning and clinical 
variables at 6-month follow-up

This study found that, even if the manic symptoms improved, 
cognitive functioning 6 months later was still impaired. These findings 
coincide with those found in a prior meta-analysis in which patients 

with euthymia showed impairment in verbal learning functions and 
immediate and delayed verbal memory, as well as in tests of executive 
functions related to problem-solving, verbal interference, and 
attention change tasks. It should be noted that this systematic review 
only included cross-sectional studies of patients in different phases of 
BD. without follow-up (9).

TABLE 3  Brain perfusion results.

Analysis Contrast Cluster 
size

T Z (eq) p(unc) MNI Brain 
region

x y z

Repeated t-test 

on perfusion Mania < euthymia

6 9.7 3.98 < 0.001 20 −52 38 Right precuneus

28 8.35 3.77 < 0.001 −28 −52 38

Left superior 

parietal lobule

27 6.78 3.48 < 0.001 −8 −74 −45

Left cerebellum 

lobule VIII-X

5 6.05 3.31 < 0.001 12 −41 45 Right precuneus

28 8.35 3.77 < 0.001 −28 −52 38

Left superior 

parietal lobule

Laterality-by-

state

Mania (left vs. 

right) > Euthymia (left 

vs. right)

42 4.81 3.77 < 0.001 −20 42 26

Left superior 

and middle 

frontal gyrus

7 4.11 3.38 < 0.001 −35 22 −12

Left anterior 

insula

Mania (left vs. 

right) < euthymia (left 

vs. right) 27 4.58 3.65 < 0.001 23 44 26

Right superior 

and middle 

frontal gyrus

Symptom 

correlation

Positive correlates to 

YMRS 40 4.18 3.31 < 0.001 −33 −79 −10

Left occipital 

fusiform gyrus

YMRS, young mania rating scale; MNI, coordinate system of the Montreal Neurological Institute and Hospital.

FIGURE 1

Within-subject analysis contrasting eight subjects with BD-1 assessed during mania and at 6  month follow-up. Blue regions indicate lower cerebral 
perfusion during mania as compared to euthymia at T  >  5.2 (p  <  0.001 not corrected for multiple comparisons). The color bar indicates within-subject 
t-test t-values. Created with BioRender.com.
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Some factors have been studied to explain the persistent cognitive 
impairment in BD-I patients, such as the number and severity of 
episodes, considering chronic patients or patients having a history of 
multiple episodes suffer from more significant cognitive deficits, age at 
illness onset, presence of psychotic symptoms, years of stabilization, and 
pharmacological treatment, since medication may negatively affect 
cognitive performance (38). However, the population sample 
we examined had less than 5 years since BD-I diagnosis, with an average 
of 2.5 years and 1.29 throughout their lifetime; this suggests that cognitive 
impairment may start early during the disorder. Other studies have found 
that cognitive impairment may be an endophenotype for BD, as evidence 
shows that psychomotor speed and response inhibition are observed in 
unaffected relatives and offspring of BD-I patients (39). Furthermore, 
some studies have found that cognitive deficits are still evident in 
euthymic medication-free patients (35). Around two-thirds of BD-I 
patients experience cognitive problems, directly impacting their ability 
to function socially and occupationally. Moreover, a pattern of cognitive 
decline may increase the likelihood of recurring episodes (40).

Open and controlled studies have been made to investigate the 
outcomes of cognitive rehabilitation interventions for BD patients. 
Some of these interventions have shown promising results in reducing 
depressive symptoms and improving executive functions (41). 
However, more research on cognitive impairments is needed to 
expand treatment options.

We found no significant correlation between brain perfusion and 
YMRS score or cognitive performance at baseline or follow-up. The 
limited sample size might explain this, but in light of recent large-
scale, complex phenotypes like mania symptoms or cognition may not 
lend themselves to simple linear relationships (42).

4.4. Clinical significance

A significant decrease in the YMRS scale score and overall clinical 
improvement was found at follow-up. However, we found no difference 
in cognitive performance. BD is accompanied by neurotoxic processes 
that can accelerate the mechanisms of normal aging (43). Neurostructural, 
alterations in oxidative stress and amyloid metabolism, immune 
dysregulation, immunosenescence, neurotrophic deficiencies, and 
telomere shortening have been found in patients with BD-I (44–47). 
Although these results could be associated with the pharmacological 
treatment of the patient or with the recovery of global and cognitive 
functioning after a manic episode, perhaps taking more than 6 months, 
it is also possible that cognitive alterations are persistent traits, present 
even without affective symptoms (11, 39, 48, 49).

Our outcomes highlight the relevance of developing new therapeutic 
strategies aimed at improving and maintaining the cognitive functioning 
of these patients, as well as possible neuroanatomical targets to direct 
treatments based on the clinical state of the patients. There is no currently 
available robust evidence of therapeutic interventions targeting cognitive 
deficits. Regarding pharmacotherapy, lurasidone, vortioxetine, omega-3 
fatty acids, modafinil, vitamin D, and aspirin are currently under 
investigation in BD-I (3). Functional remediation appears as an excellent 
option to alleviate psychosocial outcomes in bipolar patients, with an effect 
that seems to remain in the long term. However, current evidence is 
insufficient and additional studies are required to prevent neurocognitive 
impairment and the associated disability in BD patients (50).

4.5. Strengths and limitations

Some of the limitations of this study were having a small sample 
size and the high rate of loss to follow-up (47%). It was impossible to 
control the pharmacological treatment of patients after the manic 
episode; this is shown in Supplementary Table  1. Two sets of 
instruments were used to assess cognitive function among the 
participants, and scores and cut points were calculated proportionally 
according to the SCIP-S sub-scores. However, this is one of the few 
studies that have tracked BD-I patients longitudinally and evaluated 
brain perfusion and cognitive functioning, which may provide more 
information about the pathophysiology of cognitive impairment 
in BD-I.

5. Conclusion

This study found limited evidence of alterations in brain 
perfusion during manic episodes, partly supporting BD-I’s laterality 
hypothesis. There was evidence of cognitive impairment during 
mania, and although patients changed to euthymia, their cognitive 
functioning did not improve after 6 months. Studies in larger 
populations with extended follow-up periods are needed to explore 
brain perfusion and cognitive functioning changes in patients 
with BD-I.
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Distinguishing functional and 
structural MRI abnormalities 
between bipolar and unipolar 
depression
Shiqing Huang †, Xiaoxia Wen †, Zhiling Liu , Cuiyun Li , 
Yuqiu He , Jiaquan Liang * and Wei Huang *

Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China

Background: This study aims to investigate the underlying characteristics 
of spontaneous brain activity by analyzing the volumes of the hippocampus 
and parahippocampal gyrus, as well as the fractional amplitude of low-
frequency fluctuation (fALFF) and regional homogeneity (ReHo), in order to 
differentiate between bipolar disorder (BD) and unipolar depressive disorder.

Methods: A total of 46 healthy controls, 58 patients with major depressive 
disorder (MDD), and 61 patients with BD participated in the study and 
underwent resting-state functional magnetic resonance imaging (rs-
fMRI) scans. The researchers calculated the differences in volume, fALFF, 
and ReHo values among the three groups. Additionally, they conducted 
correlation analyses to examine the relationships between clinical variables 
and the aforementioned brain measures.

Results: The results showed that the BD group exhibited increased fALFF in 
the hippocampus compared to the healthy control (HC) and MDD groups. 
Furthermore, the ReHo values in the hippocampus and parahippocampal 
gyrus were significantly higher in the BD group compared to the HC group. 
The findings from the person correlation analysis indicated a positive 
relationship between ReHo values in the hippocampus and both HAMD and 
HAMA scores. Moreover, there was no correlation between the volumes, 
fALFF, and ReHo values in the hippocampus and parahippocampal gyrus, 
and cognitive function levels (RBANS).

Conclusion: Taken together, these aberrant patterns of intrinsic brain activity 
in the hippocampus and parahippocampal gyrus may serve as quantitative 
indicators for distinguishing between BD and unipolar depression.

KEYWORDS

bipolar disorder, major depressive disorder, fractional amplitude of low frequency 
fluctuation, regional homogeneity, magnetic resonance imaging – high field

Introduction

Bipolar disorder (BD) is a complex psychiatric condition characterized by 
alternating episodes of depression and manic or hypomanic states (1), often 
accompanied by cognitive impairments and impulsive behaviors related to emotions 
(2). The challenge lies in differentiating BD from major depressive disorder (MDD) 
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(3), as symptoms of depression in BD can often be mistaken for 
MDD. Unfortunately, misdiagnosis is common, with many BD 
patients being incorrectly identified as having MDD for extended 
periods of time (4). This can have serious consequences, including 
worsened manic symptoms, decreased quality of life, and an 
increased risk of suicide (5). To ensure accurate diagnosis, 
clinicians need to be aware of the comorbidities associated with BD 
and develop means to distinguish it from other disorders. 
Differentiating between bipolar and unipolar depression based 
solely on clinical observations can be  challenging, leading 
researchers to explore neural markers through neuroimaging in 
order to distinguish between the two (6). Therefore, it is necessary 
to identify biomarkers associated with bipolar depression and 
develop clinically applicable diagnostic tools to shed light on its 
potential pathogenesis (7).

The regulation of emotions is closely linked to the hippocampus 
and parahippocampal gyrus (8), and these brain regions are also 
involved in cognitive functioning (9). Some studies have revealed 
abnormal brain activity in the hippocampus among BD patients and 
those at high risk of developing the disorder (10, 11). The 
hippocampus, a key component of the limbic system, is known to 
be  involved in various cognitive functions, such as memory 
formation, consolidation, and retrieval (12). Alterations in 
hippocampal structure and function have been consistently 
observed in both depression and bipolar disorder, suggesting that 
these disorders may have shared underlying pathophysiology (13). 
The parahippocampal gyrus, which borders the hippocampus, is 
involved in sensory processing, attention, and spatial navigation. It 
also plays a role in the regulation of emotions and has been reported 
to exhibit changes in patients with mood disorders (14). 
Furthermore, a meta-analysis has reported functional and/or 
structural abnormalities in both the hippocampus and 
parahippocampal gyrus, suggesting that these regions are vulnerable 
in individuals with BD and may be  responsible for early 
impairments in declarative memory (15). Therefore, investigating 
the hippocampus and parahippocampal gyrus in bipolar and 
unipolar depression may provide valuable insights into the 
underlying neural mechanisms associated with these conditions. By 
examining these regions, we can potentially identify biomarkers or 
diagnostic indicators that distinguish between these two major 
mood disorders, as well as understand the neural substrates of 
cognitive and affective symptoms. Thus, the choice of these specific 
brain regions for study is crucial in the pursuit of developing more 
targeted and effective treatments for bipolar and unipolar 
depression. Further depth in explaining the selection of the 
hippocampus and parahippocampal gyrus in research involving 
these disorders will enhance the understanding of their role in the 
pathophysiology and treatment of mood disorders.

In the last decades, functional magnetic resonance imaging 
(fMRI) has allowed to explore brain function both during the 
performance of a task and at rest. Particularly, resting-state fMRI has 
been widely used to analyze the differences in spontaneous brain 
activity and functional connectivity of various brain regions through 
various measures, including fractional Amplitude of Low-Frequency 
Fluctuations (fALFF) and Regional Homogeneity (ReHo) (16). The 
fALFF is a method for quantifying spontaneous brain activity by 
measuring the intensity fluctuation of fMRI signals with specific 
frequencies in a given region of interest (17). It reflects the 

synchronization of neuronal oscillations within a region and has been 
used to investigate various neurological and psychiatric disorders (18). 
ReHo is another fMRI-based method for evaluating functional 
coherence within regions of interest. It measures the similarity of 
fMRI signal time series within a given region by calculating the 
correlation coefficient of fMRI signal fluctuations over specified 
periods of time (19). ReHo has been used to investigate cognitive 
processes, emotional regulation, and neurological disorders (20).

Given these findings, this study aims to investigate the diagnosis 
of bipolar and unipolar depression by integrating results from 
psychological assessments, fMRI scans, and cognitive evaluations. 
We  hypothesize that functional abnormalities and cognitive 
differences in the hippocampus and parahippocampal gyrus can serve 
as distinguishing features between unipolar depression and bipolar 
depression. Therefore, we propose to examine data from the Hamilton 
Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale 
(HAMA), fMRI scans, Repeatable Battery for the Assessment of 
Neuropsychological Status (RBANS) scores, and the ten cognitive 
domains of the RBANS scale. The aim of this study is to offer valuable 
perspectives for future studies on the diagnosis of bipolar depression 
and unipolar depressive disorders, contributing to a more 
comprehensive understanding of these conditions and informing 
more effective treatments.

Method

Participants

Participants (both MDD and BD groups) were recruited from the 
Third People’s Hospital of Foshan. Patients were diagnosed according 
to the Structure interview of Diagnostic and Statistical Manual-5th 
edition (DSM-5). Notably, all BD patients were in a depressive phase 
(We used the 24-item HAMD for assessing depressive symptoms) (3). 
Healthy control (HC) participants were selected from local 
communities, matching the MDD and BD participants in terms of age, 
gender, education, and other relevant factors. Ethics Number: 
FSSY-LS202201.

Inclusion and exclusion criteria

Inclusion criteria for participants included being of Han 
nationality, right-handedness, having a first-episode drug-naïve 
mental illness, and no family history or underlying diseases. Diagnosis 
criteria for MDD or BD were based on the DSM-5. Exclusion criteria 
comprised contraindications to fMRI acquisition, the presence of 
brain organic or other physical diseases, substance abuse (including 
drugs and alcohol), traumatic brain injuries, and nervous system 
diseases, among others.

Scale assessment

Participants underwent assessment using the Hamilton 
Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale 
(HAMA), and RBANS scores. The HAMD questionnaire assessed the 
severity of the disease, while RBANS scores aimed at evaluating 
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cognitive function. The RBANS scale is a comprehensive 
neuropsychological assessment tool designed to evaluate a broad 
range of cognitive functions in adults (21). The scale consists of a 
series of standardized tests and tasks that aim to assess various 
cognitive domains, including attention, memory, language, executive 
functions, and visual–spatial abilities. These tasks are designed to 
be repeated and can be administered over multiple sessions to assess 
changes in cognitive performance over time. The scale provides 
quantitative scores that allow clinicians and researchers to compare an 
individual’s cognitive performance to established norms based on age, 
education, and other relevant factors (22).

MRI acquisition

MRI acquisition was conducted using a General Electric 3 T 
Excite HD scanner. The scan parameters were as follows: Time 
repetition (TR)/Echo time (TE) = 8.6/3.3 ms, Flip angle (FA) = 9°, Field 
of view (FOV) = 256 mm * 256 mm, layer thickness = 1 mm, slice 
number = 172. For resting brain function MRI acquisition, parameters 
were TR/TE = 2000/30 ms, FA = 90°, FOV = 240 mm * 240 mm, layer 
thickness = 4 mm, number of layers = 36, and layer spacing = 1 mm.

Fractional amplitude of Low-frequency 
fluctuations analysis

The fALFF analysis was conducted following a previously 
established methodology (23). Essentially, the energy of each 
frequency within the low-frequency range (0.01 Hz < f < 0.1 Hz) 
was divided by the energy of each frequency across the entire 
frequency range to calculate the fALFF value for each voxel. This 
value was then normalized by dividing it by the average amplitude 
of the entire brain signal to account for overall level differences 
in fALFF.

Regional homogeneity analysis

ReHo analysis involved clustering twenty-seven voxels and 
applying the Kendall consistency coefficient (KCC) to measure the 
similarity between a voxel and its twenty-six neighboring voxels. The 
DPARSF software’s standard brain model was used to obtain KCC 
maps for each subject. Subsequently, the KCC value for each voxel was 
normalized by dividing it by the average value from the standard brain 
model, resulting in standardized mean ReHo maps. These maps were 
then smoothed.

Data Preprocessing and processing

To ensure comprehensive assessments, all participants were 
requested to complete scale evaluations and fMRI data collection on 
the same day. Upon completion, fMRI images were visually examined 
to guarantee their quality and eliminate any unwanted artifacts or 
noise. Subsequently, the fMRI data was normalized to the MNI-152 
template employing SPM8, and functional MRI data was registered to 
the structural fMRI using the registration tool in SPM8. To achieve 

higher precision, the fMRI data was resampled to a resolution of 2 mm 
x 2 mm x 2 mm. To further enhance the data quality, ffMRI data was 
smoothed using a Gaussian kernel with a full-width at half-maximum 
(FWHM) of 8 mm.

The data processing assistant for Resting-State fMRI (DPARSF), 
SPM8, and cat12 software were employed to preprocess the fMRI data. 
This included measuring the volume of the hippocampus and 
parahippocampal gyrus and analyzing the neural activity in these 
regions using fALFF and ReHo. Finally, the ReHo maps underwent 
spatial smoothening through the utilization of an 8 mm full-width at 
half maximum Gaussian kernel.

Statistical analyses

Statistical analyses were conducted using SPSS 24.00. The 
Kolmogorov–Smirnov test assessed the probability distribution of 
each group, and the results of all groups showed that they all obeyed 
normal distribution. The significance between groups was calculated 
by one-way analysis of variance (ANOVA) followed by a post hoc test, 
and all values are presented as means ± standard deviation (SD). 
Pearson correlation analysis was used to examine the relationships 
between hippocampal/parahippocampal gyrus volume and functional 
values and clinical data. Finally, p-values were corrected for 
multiple comparisons.

Results

Patient characteristics

A total of 165 participants were recruited for this study, including 
healthy controls (n = 46), patients with MDD (n = 58), and patients 
with BD (n = 61). There were no significant differences in age, gender, 
body mass index (BMI), and years of education among the HC, MDD, 
and BD groups (Table  1). However, the BD group exhibited 
significantly lower scores in various cognitive domains, including 
immediate memory (learning and story memory), attention (coding 
and digit span), and delayed memory (list recognition, story recall, 
and figure recall), compared to the HC and MDD groups. Moreover, 
the BD group had lower attention (digit span) scores compared to the 
HC group. There were no significant differences in visuospatial 
construction and language among the HC, MDD, and BD groups 
(Table 2; Figure 1).

Hippocampus and Parahippocampal gyrus 
findings

In terms of volume, the right hippocampus volume was increased 
in the MDD group (p < 0.001), while in the BD group, it was decreased 
(p < 0.01) compared to the MDD group. However, there was no 
significant difference in right hippocampus volume between the HC 
and BD groups. In terms of functional measures, the BD group 
exhibited increased fALFF values in the hippocampus (left and right) 
compared to both the HC and MDD groups (p < 0.01). In addition, the 
BD group showed significantly increased regional homogeneity 
(ReHo) values in the hippocampus (left and right) and 
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parahippocampal gyrus (left and right) compared to the HC group 
(p < 0.01). Moreover, the BD group demonstrated significantly higher 
ReHo values in the right hippocampus compared to the MDD group 
(p < 0.01).

Pearson correlation analysis

The results of Pearson correlation analysis revealed several 
significant associations (Table 3). Specifically, the ReHo values in 

TABLE 1  Description and comparison of Clinical Scales among Healthy Control, Major Depressive Disorder, and Bipolar Disorder Groups.

HC MDD BD Statistics

Participants 46 58 61

Age (years) 32.20 ± 10.36 29.29 ± 12.44 30.05 ± 9.11 F = 0.136; p = 0.375

Gender (M/F) 19/27 23/35 23/38 χ2 = 0.241; p = 0.969

BMI 22.24 ± 3.43 22.23 ± 3.85 23.29 ± 3.76 F = 0.220; p = 0.217

Education

Below 9 years, n 14 15 19 χ2 = 0.293; p = 0.864

9 years and above, n 32 43 42

HAMD score 2.5 ± 3.67 23.53 ± 7.40** 14.07 ± 9.29**## F = 102.3; P**<0.001, P##<0.001

HAMA score 2.02 ± 2.59 16.04 ± 5.53** 9.87 ± 7.43**## F = 74.3; P**<0.001, P##<0.001

RBANS 190.2 ± 39.50 181.2 ± 35.58 156.8 ± 33.14**## F = 12.84; P**<0.001, P##<0.001

Immediate memory (Learning) 27.63 ± 7.03 26.22 ± 6.49 21.89 ± 6.36**## F = 11.45; P**<0.001, P##<0.001

Immediate memory (Story Memory) 14.41 ± 5.96 13.05 ± 5.66 9.41 ± 4.66**## F = 12.70; P**<0.001, P##<0.001

Visuospatial Construction 17.76 ± 2.41 18.47 ± 2.38 17.31 ± 3.32 F = 2.602; p = 0.077

Language 18.28 ± 4.34 17.36 ± 4.70 16.52 ± 4.44 F = 2.00; p = 0.139

Attention (Digit span) 14.13 ± 2.18 13.52 ± 2.68 12.75 ± 5.54* F = 4.069; P* = 0.015

Attention (Coding) 49.80 ± 14.15 46.57 ± 13.20 40.43 ± 13.46**# F = 6.721; P** = 0.002, P# = 0.039

Delayed memory (List Recall) 6.61 ± 3.11 5.88 ± 2.94 4.66 ± 2.53** F = 6.523; P** = 0.002

Delayed memory (List Recognition) 19.54 ± 1.05 19.38 ± 1.18 18.64 ± 1.73**# F = 6.833; P** = 0.003, P# = 0.011

Delayed memory (Story Recall) 7.52 ± 3.74 7.14 ± 3.70 4.46 ± 2.98**## F = 13.17; P**<0.001, P##<0.001

Delayed memory (Figure Recall) 14.46 ± 4.71 13.59 ± 4.26 10.70 ± 4.97**# F = 9.908; P**<0.001, P# = 0.003

HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; BMI: Body Mass Index; HAMD: Hamilton Depression Scale; HAMA: Hamilton Anxiety Scale; RBANS: Repeatable 
Battery for the Assessment of Neuropsychological Status; *p < 0.05, **p < 0.01 compared to HC group; #p < 0.05, ##p < 0.01 compared to MDD group.

TABLE 2  Comparison of MRI data among HC, MDD and BD.

HC MDD BD

Volume (cm3)

Hippocampus (Left) 3.69 ± 0.36 3.69 ± 0.36 3.70 ± 0.31

Hippocampus (Right) 3.62 ± 0.35 3.88 ± 0.34** 3.61 ± 0.30##

Parahippocampal gyrus (Left) 3.46 ± 0.31 3.37 ± 0.31 3.48 ± 0.32

Parahippocampal gyrus (Right) 4.04 ± 0.42 3.89 ± 0.39 4.00 ± 0.39

FALFF (a.u.)

Hippocampus (Left) −0.64 ± 0.17 −0.66 ± 0.15 −0.57 ± 0.16*##

Hippocampus (Right) −0.63 ± 0.16 −0.61 ± 0.18 −0.50 ± 0.17**##

Parahippocampal gyrus (Left) −0.52 ± 0.25 −0.47 ± 0.23 −0.45 ± 0.24

Parahippocampal gyrus (Right) −0.51 ± 0.21 −0.47 ± 0.21 −0.42 ± 0.22

ReHo (a.u.)

Hippocampus (Left) −0.81 ± 0.19 −0.88 ± 0.14 −0.75 ± 0.15##

Hippocampus (Right) −0.88 ± 0.17 −0.85 ± 0.15 −0.75 ± 0.16**##

Parahippocampal gyrus (Left) −0.56 ± 0.18 −0.61 ± 0.18 −0.50 ± 0.20##

Parahippocampal gyrus (Right) −0.61 ± 0.17 −0.66 ± 0.20 −0.54 ± 0.18##

HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; FALFF: fractional amplitude of low frequency fluctuation; ReHo: regional homogeneity; The fALFF and ReHo 
values were measured in normalized unit arbitrary unit (a.u.). *p < 0.05, **p < 0.01 compared to HC group; #p < 0.05, ##p < 0.01 compared to MDD group.
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the right hippocampus were positively correlated with HAMD 
scores (r = 0.32, p = 0.046) and HAMA scores (r = 0.27, p = 0.04). 
However, there were no significant correlations found between 
the volume, fALFF, and ReHo of the hippocampus (left and right) 
and parahippocampal gyrus (left and right) with total 
RBANS scores.

Moreover, the volume of the left parahippocampal gyrus exhibited 
negative correlations with immediate memory (learning) (r = −0.25, 
p = 0.037), language (r = −0.29, p = 0.02), and attention (coding) 
(r = −0.32, p = 0.03). On the other hand, the volume of the right 
parahippocampal gyrus showed a positive correlation with 
visuospatial construction (r = 0.29, p = 0.04).

In terms of functional measures, the fALFF value of the right 
hippocampus was positively correlated with immediate memory 
(story memory) (r = 0.27, p = 0.035) and delayed memory (story recall) 
(r = 0.27, p = 0.03). Additionally, the ReHo value of the left 
hippocampus was found to have negative correlations with delayed 
memory (list recall) (r = −0.34, p = 0.03) and delayed memory (list 
recognition) (r = −0.41, p = 0.02). Lastly, the ReHo value of the left 
parahippocampal gyrus exhibited a positive correlation with 
immediate memory (learning) (r = 0.32, p = 0.04). Further analysis 
with Bonferroni correction showed that there was no significance 

among the volume, fALFF, and ReHo of the hippocampus (left and 
right) and parahippocampal gyrus (left and right).

Discussion

This study utilizes rsMRI technology and automatic segmentation 
tools to unveil insights into the gray matter volume and brain function 
indicators of the hippocampus and parahippocampal gyrus in 
individuals with Bipolar Disorder (BD). Additionally, we conducted 
correlation analyses with the severity of the disorder and cognitive 
function. Our findings underscore that cognitive impairment in 
Bipolar Depression is significantly more pronounced when compared 
to both Healthy Controls (HC) and Major Depressive Disorder 
(MDD) patients. Moreover, we  established a strong connection 
between specific functions of the hippocampus, parahippocampal 
gyrus, cognitive function, and disease severity.

Cognitive dysfunction has consistently emerged as a prominent 
feature in both MDD and BD (24). This impairment is intricately 
linked to overall functional outcomes and plays a crucial role in 
disease prognosis (25). Previous reports have indicated that BD 
patients exhibit more severe cognitive deficits compared to MDD 

FIGURE 1

Comparison of MRI data among HC, MDD and BD. (A) The volume of Hippocampus (Left, Right) and Parahippocampal gyrus (Left, Right); (B) The fALFF 
of Hippocampus (Left, Right) and Parahippocampal gyrus (Left, Right); (C) The ReHo of Hippocampus (Left, Right) and Parahippocampal gyrus (Left, 
Right); HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; fALFF: fractional amplitude of low frequency fluctuation; Reho: 
regional homogeneity; *p  <  0.05, **p  <  0.01 compared to HC group; #p  <  0.05, ##p  <  0.01 compared to MDD group.
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TABLE 3  Pearson correlation analysis of the indicators in the hippocampus and parahippocampal gyrus with the severity of BD and cognitive function.

Volume FALFF ReHo

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

HAMD r −0.03 0.02 −0.002 0.04 0.06 0.02 0.03 0.04 −0.08 0.32 −0.09 −0.01

P 0.84 0.87 0.99 0.76 0.63 0.88 0.85 0.78 0.53 0.046* 0.49 0.92

HAMA r −0.04 −0.03 −0.02 0.005 0.08 0.004 0.1 0.06 −0.08 0.27 −0.13 0.008

P 0.78 0.85 0.9 0.97 0.54 0.98 0.44 0.66 0.56 0.04* 0.34 0.95

RBNAS r −0.03 −0.004 −0.17 −0.08 −0.14 0.09 0.02 0.06 −0.19 −0.01 0.08 −0.005

P 0.8 0.98 0.19 0.53 0.27 0.48 0.88 0.66 0.14 0.93 0.54 0.97

Immediate 

memory 

(Learning) r −0.1 −0.009 −0.25 −0.17 −0.11 0.09 0.12 0.19 −0.12 0.03 0.32 0.08

P 0.45 0.95 0.037* 0.2 0.41 0.51 0.34 0.15 0.36 0.8 0.04* 0.53

Immediate 

memory 

(Story 

Memory) r 0.02 0.009 0.04 0.02 −0.04 0.27 0.02 0.018 −0.22 0.19 −0.04 −0.03

P 0.86 0.95 0.74 0.86 0.77 0.035* 0.87 0.89 0.086 0.15 0.74 0.81

Visuospatial 

Construction r 0.19 0.18 0.19 0.29 −0.22 −0.1 0.003 −0.08 −0.18 −0.02 −0.02 0.05

P 0.14 0.17 0.14 0.04* 0.09 0.44 0.98 0.52 0.16 0.85 0.89 0.68

Language r −0.11 −0.12 −0.29 −0.18 −0.03 0.17 0.06 0.17 −0.04 0.01 −0.01 −0.06

P 0.42 0.36 0.02* 0.17 0.8 0.19 0.65 0.19 0.74 0.93 0.92 0.65

Attention 

(Digit Span) r 0.17 0.16 0.1 0.16 −0.16 −0.04 −0.06 −0.1 −0.17 0.03 0.03 −0.05

P 0.2 0.2 0.46 0.23 0.22 0.75 0.63 0.47 0.2 0.84 0.79 0.71

Attention 

(Coding) r −0.08 −0.05 −0.32 −0.13 −0.11 −0.03 −0.07 −0.004 −0.09 −0.12 0.09

0.01

P 0.57 0.68 0.03* 0.31 0.38 0.81 0.6 0.97 0.5 0.36 0.47 0.92

Delayed 

memory (List 

Recall)

r 0.03 −0.03 −0.07 −0.06 −0.18 0.05 0.14 0.08 −0.34 0.01 0.01 −0.09

(Continued)
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Volume FALFF ReHo

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

Hippocampus 

(Left)

Hippocampus 

(Right)

Parahippocampal 

gyrus (Left)

Parahippocampal 

gyrus (Right)

P 0.82 0.84 0.6 0.65 0.18 0.69 0.27 0.53 0.03* 0.91 0.91 0.5

Delayed 

memory 

(List 

Recognition)

r −0.11 −0.08 −0.14 −0.07 0.05 0.11 0.12 0.13 −0.41 −0.07 0.002 −0.05

P 0.39 0.55 0.28 0.62 0.7 0.4 0.36 0.32 0.02* 0.58 0.99 0.72

Delayed 

memory 

(Story 

Recall)

r −0.04 −0.02 −0.11 −0.09 −0.04 0.27 −0.01 0.03 −0.09 0.15 −0.01 −0.09

P 0.79 0.9 0.38 0.51 0.78 0.03* 0.93 0.83 0.5 0.24 0.93 0.5

Delayed 

memory 

(Figure 

Recall)

r 0.02 0.08 −0.03 0.02 −0.12 0.05 0.007 −0.02 −0.17 −0.05 0.04 0.02

P 0.88 0.54 0.81 0.86 0.35 0.73 0.96 0.88 0.2 0.71 0.74 0.89

HAMD: Hamilton Depression Scale; HAMA: Hamilton Anxiety Scale; RBANS: Repeatable Battery for the Assessment of Neuropsychological Status.

TABLE 3  (Continued)
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patients (26). Our study confirms these observations, demonstrating 
that BD patients experience more pronounced cognitive dysfunction 
than HC and MDD groups. Specifically, the BD group displayed 
significant disparities in immediate memory, attention, and delayed 
memory when compared to the HC group, aligning with earlier 
research (27). It’s important to note that there were no significant 
cognitive impairments detected in any of the MDD groups, potentially 
attributed to the relatively small sample size of MDD patients.

MRI studies in the context of psychiatric disorders have 
consistently reported abnormal hippocampal volumes, influenced by 
various factors (28). Some studies suggest that structural changes in 
the hippocampus are state-dependent, occurring during acute phases 
of MDD and returning to normal after remission (29). Conversely, 
exercise has been associated with increased hippocampal volume (30). 
Our study reveals a significant increase in the right hippocampal 
volume of MDD patients, while no significant differences were 
observed in the BD group compared to the HC group. This suggests 
that factors such as age, medication, exercise, and others may exert 
influence on hippocampal volume (30).

Previous research has noted abnormal brain activity in BD 
patients, closely linked to their cognitive function, potentially serving 
as a means to differentiate BD from MDD patients (31). Significant 
differences were observed in brain regions encompassing the ventral 
and dorsolateral prefrontal cortex, insula, and putamen (32). However, 
there have been limited studies examining the global neural activity 
characteristics of the hippocampus and parahippocampal gyrus in BD 
and MDD patients using fALFF and ReHo values. In our study, 
we  compared fALFF and ReHo, which provide insights into the 
strength and synchronization of local neural signals in the 
hippocampus and parahippocampal gyrus. Our results indicated that 
BD patients exhibited enhanced neural activity in the hippocampus 
(both left and right) compared to the HC and MDD groups. 
Furthermore, in terms of synchronization, both the hippocampus (left 
and right) and parahippocampal gyrus (left and right) showed 
elevated ReHo in BD patients when compared to the HC and MDD 
groups. These findings align with functional imaging studies that have 
highlighted abnormal brain activation in the hippocampus and 
parahippocampal gyrus during attention, emotional, and memory-
related tasks. This consistency with neuropsychological findings, 
which reveal cognitive impairments during acute emotional episodes 
and significant declarative memory impairment during remission (33, 
34), suggests that abnormal activity in the hippocampus and 
parahippocampal gyrus, as cognitive control regions, could potentially 
serve as biomarkers for distinguishing between BD and MDD.

In our study, we conducted Pearson correlation analyses between 
hippocampal and parahippocampal gyrus volumes, fALFF, ReHo, and 
cognitive function in BD patients. Interestingly, we found that the 
volumes of the hippocampus and parahippocampal gyrus showed no 
significant differences concerning HAMD, HAMA, and RBANS 
scores, contradicting some previous findings (14, 35). This discrepancy 
may be  attributed to the specific characteristics of our study 
participants, who exhibited a relatively short course of BD with no 
functional abnormalities during the MRI process (36, 37). Regarding 
cognitive processes, previous research has emphasized the centrality 
of the hippocampus (38, 39). Our results supported this notion by 
revealing the involvement of the hippocampus in memory and 
attention functions. Additionally, we  found a positive correlation 
between fALFF values in the hippocampus and parahippocampal 

gyrus and immediate and delayed memory, consistent with previous 
studies (40, 41). Furthermore, our study explored the less-studied 
Pearson correlation between hippocampal ReHo values and depressive 
scores, revealing a positive correlation between hippocampal ReHo 
values and HAMD and HAMA scores.

Nonetheless, several limitations warrant consideration in our 
study. One limitation of the present study is the lack of assessment 
regarding potential protective factors through psychotherapy and 
counseling intervention. Although individuals often utilize these 
non-pharmacological treatments without prescription to prevent or 
alleviate symptoms at the onset of mental illness (42), such information 
was not collected or analyzed in our study. Consequently, the potential 
influence of these protective factors on the observed MRI 
abnormalities remains unknown. Future research should consider 
incorporating measures of psychotherapy and counseling intervention 
to provide a more comprehensive understanding of their potential 
impact on functional and structural MRI abnormalities in bipolar and 
unipolar depression. Secondly, the uncontrolled effects of medications, 
despite general alignment with prior research, remain a limitation. 
Although the patients were drug-naïve, they may have been prescribed 
medications or other medical conditions. Additionally, the MDD 
patients included in our study exhibited a younger onset age compared 
to BD patients, which represents an atypical feature of depressive 
episodes and is considered a risk factor for BD (43). Lastly, our 
relatively small sample size, while comparable to previous studies, may 
limit the generalizability of our findings (44). Future research should 
endeavor to combine clinical phenotypes and employ longitudinal 
methods to replicate our results and provide more conclusive evidence.

Conclusion

In conclusion, our study reveals distinctive intrinsic activity 
patterns in the hippocampus and parahippocampal gyrus of BD 
patients when compared to MDD and HC patients. These patterns 
may signify different underlying pathophysiological mechanisms in 
BD. Changes in fALFF and ReHo observed in the hippocampus and 
parahippocampal gyrus between BD and MDD patients are strongly 
associated with cognitive functions. Furthermore, the notable 
abnormal spontaneous neural activity detected in these regions may 
serve as a potential neural basis for distinguishing between bipolar 
depression and unipolar depression. Consequently, abnormal intrinsic 
brain activity opens up a new avenue for future research, shedding 
light on neuroimaging-based biomarkers for differentiating bipolar 
depression from unipolar depression.
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Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the 
rise in modern society. It is crucial to achieve precise diagnosis of GAD for 
improving the treatments and averting exacerbation. Although a growing 
number of researchers beginning to explore the deep learning algorithms for 
detecting mental disorders, there is a dearth of reports concerning precise 
GAD diagnosis. This study proposes a multi-scale spatial–temporal local 
sequential and global parallel convolutional model, named MSTCNN, which 
designed to achieve highly accurate GAD diagnosis using high-frequency 
electroencephalogram (EEG) signals. To this end, 10-min resting EEG data 
were collected from 45 GAD patients and 36 healthy controls (HC). Various 
frequency bands were extracted from the EEG data as the inputs of the 
MSTCNN. The results demonstrate that the proposed MSTCNN, combined 
with the attention mechanism of Squeeze-and-Excitation Networks, achieves 
outstanding classification performance for GAD detection, with an accuracy 
of 99.48% within the 4–30 Hz EEG data, which is competitively related to state-
of-art methods in terms of GAD classification. Furthermore, our research 
unveils an intriguing revelation regarding the pivotal role of high-frequency 
band in GAD diagnosis. As the frequency band increases, diagnostic accuracy 
improves. Notably, high-frequency EEG data ranging from 10–30 Hz exhibited 
an accuracy rate of 99.47%, paralleling the performance of the broader 
4–30 Hz band. In summary, these findings move a step forward towards the 
practical application of automatic diagnosis of GAD and provide basic theory 
and technical support for the development of future clinical diagnosis system.

KEYWORDS

generalized anxiety disorder (GAD), electroencephalogram (EEG), convolutional 
neural network (CNN), attention mechanisms, deep learning

1 Introduction

Generalized Anxiety Disorder (GAD) is a common psychiatric disorder characterized 
by persistent anxiety, irritability, sleep disturbances, and nervousness (1). In addition, 
patients with GAD often have physical symptoms such as palpitations, dry mouth, and 
excessive sweating (2). Recently, the incidence of GAD has significantly increased and has 
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become a global health issue. It is reported that the global rate of the 
people with anxiety disorder was 26% in 2020, and the growth rate has 
accelerated compared to previous years (3). The lifetime prevalence 
rate of GAD in the general population is as high as 5% (4). Females 
have a much higher probability of developing this disorder compared 
to males (5). GAD not only brings negative impacts on the 
psychological and physical health of patients but also has the potential 
to seriously affect their daily functioning, social interaction, and 
quality of life.

The etiological factor of GAD is exceedingly intricate, 
encompassing the interplay of genetic, biological, and psychosocial 
factors (6, 7). The complex etiologies of GAD emphasize the need for 
a targeted treatment approach. Therefore, timeous diagnosis combined 
with effective treatment is crucial to avoid GAD becoming more 
severe and harder to treat (8). Currently, clinical diagnosis of GAD 
mainly relies on clinical assessment and subjective scales (9). These 
methods are highly subjective and rely heavily on accurate diagnosis 
by the psychiatrists and accurate self-reporting by the patients, which 
may easily lead to inconsistency and inaccuracy in diagnosis and 
assessing efficacy. Therefore, it is crucial to seek objective and precise 
diagnostic methods for GAD.

With the continuous developments of psychiatric neuroscience, a 
range of neuroimaging techniques have been applied to the study of 
psychiatric diseases including electroencephalogram (EEG) (10, 11), 
magnetoencephalography (MEG) (12), near-infrared spectroscopy 
(NIRS) (13), and functional magnetic resonance imaging (fMRI) (14). 
Among these techniques, EEG has excellent timing resolution and 
high time sensitivity, while being non-invasive and simple to operate 
(15, 16). EEG can record and measure the brain activity, offering 
valuable insights into its dynamic functioning (17). In recent years, the 
application of EEG to GAD has been continuously explored to help 
uncover the complex neuro-electrophysiological mechanism and 
provide more effective detection methods. Previous studies have 
utilized EEG to observe changes in the brain of GAD patients, such as 
increased brain activity (18) and alterations in brain network structure 
(19). Furthermore, by extracting various types of EEG features, such 
as functional connectivity (19), power spectral density (20), and 
correlation dimension (21), researchers found significant differences 
in features between GAD patients and healthy controls. Until now, 
EEG has been widely used to assist in the diagnosis of various 
psychiatric disorders, such as anxiety (22, 23), depression (24, 25), 
obsessive-compulsive disorder (26, 27), Alzheimer’s (28, 29), 
schizophrenia (30, 31). These studies imply that EEG is a valuable and 
promising neuroimaging technique in the diagnosis of GAD.

Prior research related to mental disorder detection that combines 
artificial intelligence and EEG can be  mainly divided into two 
categories. On the one hand, some researchers extract diverse EEG 
features (32–34), utilizing machine learning models for classification. 
This strategy strongly relies on the classification performances of the 
extracted features and the adaptability of the machine learning 
models. On the other hand, existence of researchers building deep 
learning models and using EEG signals as the inputs for classification. 
Deep learning can overcome the shortcomings of high feature 
dependence and limited shallow models. It streamlines processing by 
enabling automated end-to-end learning, integrating feature 
extraction and classification. Deep learning has demonstrated 
significant success in the processing of complex data (35). Due to the 
excellent end-to-end learning and ability to effectively utilize data 

hierarchies, convolutional neural network (CNN) has emerged as a 
widely favored architecture in deep learning-EEG research (36). For 
instance, Abdulhakim employed three different deep learning models: 
CNN, long short term memory (LSTM), CNN + LSTM, and achieved 
the highest accuracy of 92.86% for social anxiety disorder 
identification with CNN + LSTM model (37). Although the 
combination of EEG and deep learning has shown remarkable success 
in variety of fields (38–40), according to our previous survey, it is 
rarely utilized in GAD diagnosis, which highlights the urgent need for 
enhanced diagnostic methods in this specific domain.

Given the challenging low signal-to-noise ratio of EEG signals and 
complex spatiotemporal dynamic patterns, the importance of feature 
extraction in deep learning is magnified. As an efficient and rapid EEG 
signal feature extraction tool, CNN plays a powerful role in the field 
of EEG signal analysis. For EEG signals, traditional time-frequency 
domain feature extraction methods encounter challenges to fully 
capture the intricate details. Consequently, adopting the spatial–
temporal joint feature extraction method has a stronger signal 
representation ability in CNN model (41). Moreover, multi-scale 
convolution of CNN has been emphasized in EEG feature extraction. 
This technique can capture different levels of features at different 
scales, thereby enhancing the characterization ability of the model. 
Researchers have successfully applied multi-scale convolution to 
feature extraction, yielding favorable outcomes (42–44). For instance, 
Wu et al. introduced a parallel multi-scale filter bank CNN for EEG 
classification, and achieved excellent classification performance (44). 
To further elevate CNN performance, multi-scale convolution was 
introduced into the spatial–temporal feature extraction for 
GAD diagnosis.

In this study, we propose an end-to-end deep learning model 
architecture called MSTCNN based on multi-scale spatial–temporal 
convolution to facilitate in the precise diagnosis of GAD. To ensure 
the effectiveness of MSTCNN, we conducted a sequence of ablation 
experiments to validate the efficacy of our selection strategy in model 
design. In addition, we  try to use MSTCNN to reveal the key 
frequency bands of GAD, which helps us understand the potential 
differences of GAD in different frequency bands of EEG signals. Our 
research strives to present a viable approach for the precise 
diagnosis of GAD.

2 Materials and methods

2.1 Subjects

A total of 45 patients with GAD (13 males, 32 females, age: 
22–55 years, 41.8 ± 9.4 years) and 36 healthy controls (HC) (11 males, 
25 females, age: 21–57 years, 36.9 ± 11.3 years) were enrolled in this 
study, and there was no statistically significant difference in age 
between GAD and HC. All patients were diagnosed by the specialized 
psychiatrists and meet the DSM-5-TR criteria for GAD diagnosis. 
And all subjects should complete the questionnaire of Hamilton 
Anxiety Rating Scale (HAMA) and meet the following criteria: 
HAMA scores ≥14 for GAD; HAMA scores ≤7 for HC. Additionally, 
GAD patients had no other comorbidities (such as depression and 
other disorders). The average HAMA score in the GAD group was 
27.1 ± 9.0, and in the HC group was 2.3 ± 0.9. Moreover, each 
participant was required to meet stringent EEG data collection 
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requirements: (1) no other psychiatric disorders and brain damage; 
(2) right-handed; (3) no drug and alcohol abuse; (4) not stay up late 
the day before the EEG data collection; (5) no smoking, coffee and 
strong tea before eight hours of EEG data collection. The entire 
experiment received approval from the Ethics Committee of Zhejiang 
Normal University, and all participants provided a written informed 
consent form before the experiment.

2.2 EEG data collection and preprocessing

Participants were asked to close eyes, stay awake and stationary, 
and reduce head and body movements and eye movements to reduce 
interference from ocular and electromyography. Every participant 
would record clinical resting EEG for 10 min. The EEG acquisition 
device is Nicolet EEG TS215605. Following the international 10–20 
system, 16 electrodes were chosen, namely Fp1, Fp2, F3, F4, C3, C4, 
P3, P4, O1, O2, F7, F8, T7, T8, P7, and P8. The reference electrode 
refers to the left and right mastoid electrodes. The sampling frequency 
is 250 Hz, and the impedance of each electrode is controlled below 
5kΩ. The whole experiment took place within the professional EEG 
laboratory of the local hospital.

Then, the EEGLAB embedded in MATLAB R2021a was used to 
preprocess EEG. Firstly, the original EEG signal was down-sampled 

from 250 Hz to 125 Hz, and the signal was filtered by 4–30 Hz 
bandpass using a 4-order Butterworth filter. Secondly, fast independent 
component analysis (ICA) was used to remove EEG artifacts. Then, 
4 s of continuous EEG signals were extracted as an EEG sample, 
resulting in a total of 5,371 samples for GAD and 4,018 samples for 
HC. Finally, the same bandpass filter was used to divide the EEG 
signal into five basic bands: Theta (4–8 Hz), Alpha1 (8–10 Hz), Alpha2 
(10–13 Hz), Beta1 (13–20 Hz), Beta2 (20–30 Hz), and three extended 
bands: 13-30 Hz, 10-30 Hz, 8-30 Hz.

2.3 MSTCNN model

In this study, we proposed an innovative deep learning model 
named MSTCNN for GAD detection, which incorporates multi-scale 
spatial–temporal local sequential and global parallel convolutions. 
This architecture is further enhanced through the integration of an 
attention mechanism strategy. Its basic flow is shown in Figure 1. 
Detailed parameters of MSTCNN can be  found in Table  1. The 
framework of MSTCNN can be divided into a feature extraction layer 
and a feature classification layer. (1) The feature extraction layer aims 
to learn and extract the most representative features from the original 
EEG signal, capturing the crucial information of the input data to 
provide support for subsequent classification tasks. This layer includes 

FIGURE 1

The corresponding network architecture of the MSTCNN. (A) represents the input of raw EEG signal at 4–30  Hz. (B) represents the input of different 
frequency bands for comparison.
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spatiotemporal feature extraction, spatial feature extraction, and 
attention mechanism modules. The spatiotemporal feature extraction 
layer adopts multi-scale convolution, which helps to effectively extract 
spatiotemporal features at different scales. The spatial feature 
extraction layer is used to extract spatial features and reduce the 
dimensionality of the data. Prior to being fed into the fully connected 
layer, attention mechanism modules are added to enhance attention 
to important features and further improve model performance. (2) 
The feature classification layer primarily consists of nonlinear 
function, Dropout and pooling layer, which is used to enhance the 
nonlinear expressive ability, mitigate overfitting risks, and reduce 
data dimensionality.

2.3.1 Feature extraction layer
Here, the multi-scale spatial and temporal feature extraction 

convolutions are combined to maximize the utilization of the 
spatiotemporal information in the EEG data. As shown in Figure 2, In 
order to obtain the best feature extraction layer structure, numerous 
ablation experiments, including five feature extraction modules within 
the multi-scale convolution structure, were designed to validate the 

efficacy of our proposed model for comparison. We  conducted 
in-depth analysis on the spatiotemporal feature extraction module, 
and tried different combinations based on temporal convolution (44). 
In addition, batch normalization is introduced to enhance the 
consistency and stability of the model between different samples, and 
ReLU activation function is used to help the model better learn 
nonlinear features and improve the expression ability of the model. 
With these improvements, we expected to improve the performance 
and robustness of the model.

2.3.1.1 Convolution + batch normalization + ReLU 
structure

Convolution + batch normalization + ReLU is a common feature 
extraction combination in deep learning, and has been successfully 
applied in some popular frameworks. The batch normalization layer 
speeds up the convergence of the network by normalizing each mini-
batch. It reduces the internal covariance movement of each layer of 
input data and fixes its range to a smaller range, which helps the 
network learn effective feature representations faster. ReLU introduces 
a nonlinear activation function in the network, which does not cause 

TABLE 1  Parameters of proposed MSTCNN architecture.

Layer Filters Size Stride Output Padding

Input (16, 500)

Reshape (1, 16, 500)

SpaConv1 10 (8, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv1 20 (1, 64) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv2 10 (6, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv2 20 (1, 40) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv3 10 (4, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv3 20 (1, 26) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

SpaConv4 10 (2, 1) (1, 1) (10, 16, 500) Same

BatchNorm (ReLU) (10, 16, 500)

TemConv4 20 (1, 16) (1, 1) (20, 16, 500) Same

BatchNorm (ReLU) (20, 16, 500)

Concat (80, 16, 500)

SpaConv5 20 (16, 1) (1, 1) (20, 1, 500) 0

BatchNorm (20, 1, 500)

Square (20, 1, 500)

AveragePool (1, 75) (1, 15) (20, 1, 29) 0

Log (20, 1, 29)

Dropout (20, 1, 29)

Attention (20, 1, 29)

Flatten 580

Classifier 580 2
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gradient vanishing problems and can propagate gradients better than 
traditional activation functions such as sigmoid and tanh. The 
combined structure of Convolution + batch normalization + ReLU 
can accelerate convergence, improve generalization, mitigate gradient 
vanishing problems, and amplify the network’s expressiveness. 
Through the incorporation of batch normalization and ReLU modules 
after temporal convolution (Figure 2A), the model becomes more 
robust and has stronger feature extraction capabilities, as shown in 
Figure 2B.

2.3.1.2 Spatial–temporal convolution
Temporal convolution can capture the temporal characteristics of 

the temporal evolution information, and the spatial convolution can 
capture the spatial characteristics between different channels. There 
are complex dynamic interactions between different brain regions in 
EEG signals, and spatiotemporal convolution can more effectively 
capture the dynamic connections and interactions between different 
channels in EEG signals than relying solely on temporal convolution. 
When the input is Channel × Time, a single convolution is employed 
to extract spatiotemporal features, only so that the kernel size is 
greater than 1 in both the temporal dimension and spatial dimension 
of the extracted features (i.e., C > 1 & T > 1, where C represents the 
kernel size of the spatial dimension and T represents the kernel size of 
the temporal dimension). Here, we referred to the Inception structure 

(multiple kernels of different sizes are used in the space–time 
dimension to capture features at different scales and levels of 
abstraction) as shown in Figure  2C. However, the results of 
spatiotemporal feature extraction using a single convolution prove to 
be suboptimal. In order to improve spatiotemporal feature extraction, 
we explored how to add spatiotemporal convolution to the model to 
obtain better results. Inspired by the idea of SqueezeNeXt model that 
decomposing 3 × 3 convolutional layers into 3 × 1 and 1 × 3 
convolutional layers (45), the C × T of the original convolutional layer 
is decomposed into C × 1 and 1 × T. This decomposition scheme can 
not only reduce the number of parameters, increase the width and 
depth of the network, and capture long-range dependencies, but also 
increase the nonlinear feature extraction capability, thereby improving 
the efficiency and performance of the model.

By using two convolutions to extract spatial and temporal features, 
two different connection strategies were emerged. In the first way, the 
temporal features are extracted first, and then the spatial features are 
extracted, as shown in Figure  2D; In the second way, the spatial 
features are extracted first, followed by the temporal features, as shown 
in Figure  2E. Among them, in the first connection method, the 
temporal convolution section uses 10 filters with filter sizes of 64, 40, 
26,16, and the spatial convolution part uses 20 filters with filter sizes 
of 8, 6, 4, 2, respectively. In the second connection method, 10 filters 
are used in the spatial convolution section and 20 filters are used in 

FIGURE 2

Five feature extraction structures. BR means adding BatchNorm and ReLU functions after the convolution. (A) TemConv: Temporal convolution. 
(B) TemConv+BR: temporal convolution followed by BR. (C) TemSpaConv+BR: temporal convolution and spatial convolution share a same 
convolution kernel and combined with BR. (D) TemConv+SpaConv+BR: temporal convolution followed by the spatial convolution and combined with 
BR. (E) SpaConv+TemConv+BR: spatial convolution followed by the temporal convolution and combined with BR.
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the temporal convolution section, and the filter size is consistent with 
the above.

In addition, the model also contains a layer of spatial feature 
convolution after the spatiotemporal feature convolution. This layer 
extracts spatial features while reducing the dimension of the feature 
map. Through such a design, we  anticipated the model to 
comprehensively capture the spatiotemporal features in EEG signals, 
efficiently decrease computational complexity, and enhance the 
model’s overall performance and efficiency.

2.3.1.3 Attention mechanism
Attention mechanism is a technology that emulates human 

attention processes, which has grown in significance within the 
domains of natural language processing and deep learning in 
recent years (46). The technology enables machines to handle 
large-scale data and complex tasks more intelligently by simulating 
human focus and the ability to selectively process information. At 
present, the attention mechanism has become a widely used tool 
for deep learning (47, 48). Integrating the attention mechanism 
module into the convolutional network can help it automatically 
select and focus on important features in the data, and improve 
the model’s ability to extract and represent key information. In 
this study, we  employed three commonly used attention 
mechanisms: Squeeze-and-Excitation Networks (SE) (49), 
Convolutional Block Attention Module (CBAM) (50), and 
Efficient Channel Attention (ECA) (51). Among them, the 
relevant parameters of SE are set to: reduction = 1; the relevant 
parameters of CBAM are set to: reduction = 1, kernel_size = 7; and 
the relevant parameters of ECA are set to: kernel_size = 3. The 
principles of each of the three attention mechanisms are 
detailed below.

2.3.1.3.1 SE
SE (Squeeze-and-Excitation Networks) is a convolutional neural 

network model designed to enhance the model’s ability to pay 
attention to crucial features from the input data. The core idea of SE is 
to add an attention module channel on top of the CNN. The module 
consists of two pivotal parts: a squeeze segment and an excitation 
segment, and its framework is shown in Figure 3.

Squeeze: SE uses global average pooling to compress each 
channel’s feature map into a scalar, which reduces the dimension of 
the feature map and captures global statistics between channels. If the 
input is a feature map X C H W∈ × × , the compressed feature map is 
Z

C∈ × × 1 1 , ZC  is the c-th element of Z can be  calculated as 
Equation (1):

	
( ) ( )

1 1

1 ,
= =

= =
× ∑∑

H W
C sq C C

i j
Z F X X i j

H W
	

(1)

Fsq represents the squeeze operation, where H and W denote the 
feature map’s height and width. In our EEG data, the channel and time 
correspond, respectively. X i,jC ( ) stands for the value on the feature 
map with a height dimension of i and a width dimension of j.

Excitation: to take advantage of the information gathered by 
squeeze, use excitation operations to capture channel dependencies. 
The excitation operation mainly obtains the attention weight S by 
nonlinear mapping by input of the compressed feature Z to the fully 
connected layer can be calculated as Equation (2):

	 ( ) ( )( )2 1σ δ= =exS F Z W W Z
	 (2)

Fex represents the excitation operation, δ  represent to the ReLU 
function, W C r C

1∈
× /  and W C C r

2∈
× / , r is the reduction radio. W1 

and W2 are the weight parameters of the descending and ascending fully 
connected layer, and the σ represents the Sigmoid function, which limits 
the input value to the range of 0 and 1. The final output XC is derived 
from the feature map XC rescaling transformation as Equation (3):

	 ( ), ·= =C scale C C C CX F X S S X
	 (3)

2.3.1.3.2 CBAM
Convolutional Block Attention Module (CBAM) contains two 

submodules: the channel attention module (CAM) and the spatial 
attention module (SAM), as is depicted in Figure 4. CAM and SAM are 
used to strengthen the model’s attention capability to different channels 
and different spatial locations of the input feature map, respectively.

CAM: This module first obtains the average and maximum values 
of each channel by averaging pooling and maximizing pooling 
operations on the input feature map. These values are then processed 
by a hidden layer of Multilayer Perceptron (MLP) to learn and 
generate weights for each channel. Finally, the sum and merge of each 
element to obtain the channel attention degree M FC ( ). For the input 
feature map F C H W∈ × × , after passing through the CAM 
M FC

C( )∈ × × 1 1 can be calculated as Equation (4):

	
( ) ( )( ) ( )( )( )σ= +CM F MLP AvgPool F MLP MaxPool F

	(4)

FIGURE 3

Structure of SE. Fscale represents channel-wise multiplication.
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AvgPool  signifies the average pooling operation, MaxPool  
signifies the maximum pooling operation, MLP stands for multilayer 
perceptron, and σ  refers to the Sigmoid function.

SAM: This module is mainly concerned with the location of 
the information, which complements the CAM. To calculate 
spatial attention, the SAM uses average pooling and maximum 
pooling across the channel axis with convolution to generate 
spatial feature maps. Unlike channel attention, spatial attention 
does not use MLP, but instead employs convolution to process 
spatial feature maps. For input feature map F C H W

1∈
× × , after 

passing through the SAM M FS
H W

1
1( )∈ × ×  can be calculated as 

Equation (5):

	
( ) ( ) ( )( )( )7 7

1 1 1;σ ×=   SM F f AvgPool F MaxPool F
	

(5)

Where f  stands for the convolution operation, 7 × 7 is the 
convolution kernel size, and σ  refers to the Sigmoid function.

The final output feature map is calculated by CAM and SAM. The 
output map M FC ( ) after CAM is multiplied element by element with 
the input feature map F to generate feature F1, and F1 is multiplied 
element by element with the output diagramM FS 1( ) after SAM to 
generate the final output feature map F2.

2.3.1.3.3 ECA
Efficient Channel Attention (ECA) is commonly used in image 

classification tasks based on SE, as shown in Figure 5. The core idea of 
ECA is to use one-dimensional convolution operations to model 
relationships between channels instead of traditional fully connected 
layer operations, which can significantly reduce calculations, model 
parameters, and improve the calculation efficiency of the model. 
Similar to SE, ECA uses global average pooling (GAP) to aggregate 
spatial information for channels. Then, by performing a 
one-dimensional convolution operation on the feature map after 
global average pooling, all channels share learning parameters and 
quickly extract the relationship between channels, thereby enhancing 

FIGURE 4

Structure of CBAM.

FIGURE 5

Structure of ECA.
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the performance of channel attention which can be  calculated as 
Equation (6):

	
ω σ= ( )( )( )C D GAP Xk1

	 (6)

C D1  stands for one-dimensional convolution operation, k is the 
one-dimensional convolution kernel size, and σ  is the Sigmoid 
function. The use of one-dimensional convolution not only reduces 
model complexity, but also ensures efficiency and effectiveness 
through local cross-channel interaction. Finally, ω  is multiplied by X 
element by element results in the final feature map X.

2.3.2 Feature classification layer
The input of the feature classification layer is the feature map 

obtained after passing through the spatial feature convolutional 
layer. There are four steps in this layer. Firstly, the input feature map 
undergoes the application of the nonlinear function Square, and 
then downsampling is performed through the average pooling layer 
to reduce the dimensionality of the feature map while retaining the 
main feature information. Secondly, the nonlinear function Log for 
activation is used to extract features related to EEG bands after the 
averaging pooling layer. Thirdly, the dropout layer is introduced to 
prevent the model from overfitting. The dropout layer can randomly 
omit the output of some neurons during training, thereby reducing 
the dependence between neurons. Ultimately, the fully connected 
layer is utilized to finalize the classification.

2.4 Network training

For the MSTCNN model, the batch size was set as 32 and the 
200 epochs were trained for early stopping. Early stopping strategy 
was triggered when the value of the loss function no longer 
decreases in 10 consecutive epochs. CrossEntropy was chosen as 
the loss function, and AdamW optimizer was used for gradient 
optimization. In terms of the MSTCNN’s learning rate, the 
warm-up strategy was adopted shown in Figure 6, which starts 

with the learning rate set to 8e-5, gradually increases to 1e-3 after 
10 warm-up rounds, and finally gradually decreases to 3e-5. By 
employing the learning rate warm-up strategy, the training speed 
can be accelerated, and the convergence and performance of the 
network can be improved. Applying a larger learning rate in the 
initial epochs can help the model find the global optimal solution 
or regions closer to the optimal solution in the parameter space 
more quickly. As the train continues execution, the learning rate 
gradually decreases, which is conducive to the training of 
stable networks.

2.5 Evaluation methods

Use cross-validation to evaluate the model’s performance and 
generalization ability. Nine folds of data were used for training and 
one fold of data for testing. Accuracy, Precision, Recall, and F1Score 
were computed to evaluate model performance as Equations (7–10). 
Specifically, True Positives (TP) indicates positive samples correctly 
classified, False Positives (FP) indicates negative samples incorrectly 
classified as positive, True Negatives (TN) indicates negative samples 
correctly classified, and False Negatives (FN) indicates positive 
samples incorrectly classified as negative.

	
Accuracy TP TN

TP TN FP FN
=

+
+ + + 	

(7)

	
Precision TP

TP FP
=

+ 	
(8)

	
Recall TP

TP FN
=

+ 	
(9)

	
F Score TP

TP FP FN1

2

2
=

+ + 	
(10)

FIGURE 6

Learning rate setting during model training with warming strategy. Total trained in 200 epochs.

50

https://doi.org/10.3389/fpsyt.2023.1310323
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al.� 10.3389/fpsyt.2023.1310323

Frontiers in Psychiatry 09 frontiersin.org

3 Results

The results of different multi-scale convolutional structures 
for GAD detection are given in Table  1. The model with only 
temporal convolution obtained an accuracy of 96.75%, a precision 
of 96.69%, a recall of 97.68% and a F1Score of 97.18%. In order to 
enhance the generalization ability and nonlinear expression ability 
of the multi-scale CNN model in convolutional feature extraction, 
Convolution + batch normalization + ReLU structure was added 
in the model. The accuracy improved to 98.25%. Therefore, all 
other comparison models adopted the Convolution + batch 
normalization + ReLU structure. Further, we introduced spatial 
convolution and explored different combinations of temporal and 
spatial convolution for comparisons. The results showed that the 
combination with spatial + temporal convolutions (named 
MSTCNN) yielded superior performance, achieving an accuracy 
of 99.19%, a precision of 99.45%, a recall of 99.14% and a F1Score 
of 99.29%.

Several classic models also used to verify the effectiveness of our 
model. The compared models of EEGNet, multi-resolution CNN 
(MRCNN), and CNN-LSTM, yielded average accuracies of 
94.34 ± 0.75%, 96.35 ± 0.42%, and 97.26 ± 0.86% on our datasets, 
respectively. The specific classification evaluation indicators of each 
model are shown in Table 2.

Based on our proposed convolutional structure (SpaConv + 
TemConv + BR), three commonly used attention mechanisms (SE, 
CBAM, and ECA) were added into the model. As shown in Table 3, 

our MSTCNN model shows performance improvement following 
the inclusion of attention mechanisms and yielded more stable 
results. In particular, the improvement effect of the SE attention 
mechanism was the most significant, with the highest accuracy 
of 99.48%.

Besides, the impacts of five different frequency bands (Theta, 
Alpha1, Alpha2, Beta1, and Beta2) were explored on the 
classification of GAD and HC with MSTCNN-SE model. As 
indicated in Table 4, the accuracy of the Theta band and the Alpha1 
band is lower with a classification accuracy of less than 90%. With 
the increase of frequency band, the classification accuracy also 
gradually improved, and the highest classification accuracy of 
97.45% was achieved on the Beta2 band.

Based on the results of Table  4, that is, high accuracy can 
be  obtained with the high-frequency EEG rhythm. Three high-
frequency EEG bands, including 13-30 Hz, 10-30 Hz, and 8-30 Hz, 
were extracted for GAD diagnosis. The results are presented in 
Table  5. It shows that 10-30 Hz can gain consistent accuracy 
compared with 4-30 Hz, which has no statistically significant 
difference (see Table 6).

4 Discussion

This study proposed a novel end-to-end multi-scale Spatial–
Temporal local sequential and global parallel convolutional neural 
network called MSTCNN and applied it to diagnose GAD by 

TABLE 2  Classification performances of different convolution methods.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

TemConv 96.75 ± 0.68 96.69 ± 1.20 97.68 ± 0.65 97.18 ± 0.56

TemConv + BR 98.25 ± 0.35 98.19 ± 0.51 98.76 ± 0.47 98.47 ± 0.31

TemSpaConv + BR 97.43 ± 0.85 98.19 ± 0.99 97.33 ± 1.56 97.75 ± 0.73

TemConv + SpaConv + BR 98.64 ± 0.32 98.75 ± 0.71 98.88 ± 0.52 98.81 ± 0.26

SpaConv + TemConv + BR 

(MSTCNN)
99.19 ± 0.40 99.45 ± 0.47 99.14 ± 0.49 99.29 ± 0.34

“TemConv” means temporal convolution. “BR” means adding BatchNorm and ReLU functions after the convolution. “TemSpaConv” means that the temporal convolution and the 
spatial convolution are in the same convolutional kernel. “TemConv + SpaConv” means the temporal convolution followed by the spatial convolution. “SpaConv + TemConv” means the 
spatial convolution followed by the temporal convolution. The bold values provided in the table represent the best results compared with others.

TABLE 3  Classification performances of classical deep learning models.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

EEGNet (52) 94.34 ± 0.75 95.80 ± 1.23 94.26 ± 2.02 95.00 ± 0.71

MRCNN (53) 96.35 ± 0.42 96.28 ± 1.22 97.40 ± 1.46 96.82 ± 0.44

CNN-LSTM (54) 97.26 ± 0.86 98.32 ± 1.01 96.89 ± 2.14 97.57 ± 0.81

Our model 99.19 ± 0.40 99.45 ± 0.47 99.14 ± 0.49 99.29 ± 0.34

The bold values provided in the table represent the best results compared with others.

TABLE 4  Classification performances of different attention mechanisms.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

MSTCNN-SE 99.48 ± 0.23 99.66 ± 0.23 99.43 ± 0.28 99.55 ± 0.20

MSTCNN-CBAM 99.34 ± 0.38 99.31 ± 0.54 99.54 ± 0.33 99.42 ± 0.33

MSTCNN-ECA 99.46 ± 0.20 99.61 ± 0.22 99.44 ± 0.46 99.52 ± 0.18

MSTCNN-SE/CBAM/ECA means adding SE Attention, CBAM Attention, or ECA Attention for MSTCNN model. The bold values provided in the table represent the best results compared 
with others.
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utilizing multichannel EEG signals. The main findings are as 
follows. Firstly, the proposed MSTCNN combined with SE 
attention mechanism obtained an excellent classification 
performance on the collected EEG data, with an accuracy of 
99.48%, a precision of 99.66%, a recall rate of 99.43%, and a F1 
Score of 99.55%. Secondly, an interesting phenomenon was 
stumbled upon: the high-frequency band holds significant 
importance in diagnosing GAD, and higher frequency band can 
obtain higher accuracy in GAD recognition. Notably, the accuracy 
of the 10-30 Hz band is consistent with the 4-30 Hz band. Detailed 
discussion will be presented next.

4.1 Best classification performance from 
MSTCNN model

When applying deep learning to extract features from EEG 
signals, researchers mostly focus on multi-scale convolution in 
the temporal domain and ignore the spatial relationships between 
channels (42–44). Introducing multi-scale spatial convolution 
can extract spatial features more efficiently, thereby improving 
model performance. In this study, we explored the method of 
multi-scale spatial–temporal convolution and found that the 
spatial axis decomposition idea of splitting a single convolution 
kernel into two convolutions can achieve better results. This idea 
can not only effectively reduce the complexity of the model and 
decrease the risk of overfitting, but also improve the 
computational efficiency (45). Furthermore, we compared the 
effects of convolutional sequences with different spatial and 
temporal convolutions. It has been presented in Table 1 that the 
accuracy of spatial convolution combined with temporal 
convolution is 0.55% higher than that of temporal convolution 
combined with spatial convolution. Since there is spatial 
convolution after the spatial–temporal convolution module, it 
can effectively avoid redundant operations in the 
spatial dimension.

We also tried to validate the effectiveness and accuracy of our 
proposed MSTCNN Model for GAD detection. On the one hand, 
some classical deep learning models was used to compare with 

our models. Among them, EEGNet is a concise deep learning 
model commonly used to process EEG data, which can efficiently 
extract features and use them for classification (52). In our study, 
EEGNet model obtained an accuracy of 94.34%. Next, we tried 
the MRCNN model proposed by Eldel et al. for sleep EEG data 
(53), and its accuracy in our classification task reached 96.35%. 
Finally, CNN-LSTM model proposed by Wang et  al. (54) was 
used to classify our data, and obtained an accuracy of 97.26%. 
The above results indicate that the multi-scale spatial–temporal 
convolution strategy proposed in this study outperforms 
conventional deep learning models, leading to exceptional 
achievements. On the other hand, our results were compared 
with other similar studies. Park et al. used machine learning in 
major psychiatric disorders based on resting EEG and obtained 
an accuracy of 91.03% (55). Al-Ezzi et al. used a deep learning 
model (CNN-LSTM) for three different degrees of anxiety and 
HC based on task-state EEG data, and obtained the accuracy of 
92.86%, 92.86%, 96.43%, and 89.29%, respectively (37). Mohan 
et al. used CNN to discriminate depressed and anxiety patients 
based on EEG and obtained an accuracy of 97.6% (56). It is worth 
mentioning that our previous study, combining features 
extraction and machine learning model, obtained an accuracy of 
97.83% for GAD and HC (20). MSTCNN model, to the best of 
our knowledge, has achieved the highest accuracy for GAD and 
HC detection compared with advanced models and existed 
studies. In summary, MSTCNN has outstanding advantages in 
classification performance. These findings not only verify the 
effectiveness of our proposed model, but also provide support for 
its potential advantages in subsequent clinical application for 
GAD diagnosis.

4.2 MSTCNN improved with attention 
mechanisms

EEG signals contain a wealth of information, which poses 
challenges to signal processing, feature extraction, and 
classification. To efficiently extract features and obtain excellent 
classification performance, the attention mechanisms were 

TABLE 6  Classification performances of extended frequency bands with MSTCNN-SE model.

Frequency band Accuracy (%) Precision (%) Recall (%) F1 Score (%)

13–30 Hz 98.90 ± 0.29 99.13 ± 0.34 98.95 ± 0.56 99.04 ± 0.25

10–30 Hz 99.47 ± 0.24 99.48 ± 0.37 99.59 ± 0.28 99.54 ± 0.20

8–30 Hz 99.42 ± 0.26 99.48 ± 0.47 99.52 ± 0.29 99.50 ± 0.22

The bold values provided in the table represent the best results compared with others.

TABLE 5  Classification performances of different frequency bands with MSTCNN-SE model.

Frequency band Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Theta 88.09 ± 1.09 89.08 ± 2.30 90.34 ± 2.16 89.66 ± 0.99

Alpha1 86.35 ± 1.12 88.53 ± 1.93 87.52 ± 2.17 87.99 ± 1.10

Alpha2 93.56 ± 0.76 93.45 ± 1.05 95.46 ± 1.54 94.43 ± 0.67

Beta1 96.26 ± 0.48 96.69 ± 1.08 96.79 ± 0.72 96.73 ± 0.41

Beta2 97.45 ± 0.43 98.08 ± 0.86 97.46 ± 1.19 97.76 ± 0.41
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employed in combination with MSTCNN. Specifically, 
we  incorporated and evaluated three widely used attention 
mechanisms (SE, CBAM, and ECA) into the convolution. At 
present, the attention mechanism has gradually become a boom 
in deep learning, and an increasing number of researchers are 
applying it to EEG signal processing. Deng et al. (57) improved 
the accuracy of major depressive disorder classification from 
91.24% to 94.37% by adding SE attention mechanism to 
one-dimensional convolution. Chen et al. used CBAM attention 
for ResNet34  in emotion recognition task, and the accuracy 
increased by 5.54% compared with ResNet34 (58). Jia et al. (59) 
proposed a spectral-temporal convolutional neural network with 
ECA attention, and the classification results showed that there 
was also a significant increase for the classification performance. 
By introducing these attention mechanisms, MSTCNN model can 
focus on more important features, further optimize the feature 
extraction process and enhance the performance and stability of 
the model.

4.3 Deep learning reveal the key 
frequency band for GAD diagnosis

Previous studies have reported a clear correlation between 
EEG rhythms and alternate EEG features in GAD patients (60). 
Additionally, our previous research has pointed to the importance 
of beta rhythms in GAD (20). Significantly higher accuracy was 
obtained for Beta rhythms in the high-frequency band compared 
to Theta and Alpha in the low-frequency band. Beta rhythms are 
associated with functions such as attention, cognitive control, 
and emotion regulation in the brain (61). Given that GAD often 
accompanies mood fluctuations, which may be the reason why 
beta sub-bands are prone to exhibit high accuracy in GAD and 
HC classification. In summary, different frequency bands had a 
significant impact on the classification results of GAD. A more 
universal regularity is that the higher the frequency range, the 
better the GAD classification performance.

Based on the above findings, we  attempted to expand the 
frequency bands to further explore key frequency bands for 
distinguishing GAD. Three extended frequency bands are 
extracted in this study: 13–30 Hz, 10–30 Hz, and 8–30 Hz. In 
contrast to the results of Beta2, the classification accuracy is 
considerably improved when using the 10-30 Hz frequency band 
with the accuracy of 99.47%, which has no statistical difference 
with the accuracy of the 4-30 Hz frequency band (F = 0.0099, 
p = 0.92; which was tested by one-way analysis of variance. If p is 
less than 0.05, there is a significant difference between groups. 
Otherwise, there is no significant difference). Wen et al. used the 
CNN model and EEG signals to identify cognitive impairment 
diseases, and also achieved the highest classification accuracy 
through three frequency band combinations (10–30 Hz) 
compared with other combinations (62). To the best of our 
knowledge, no prior research has utilized deep learning methods 
to explore the impact of different combined frequency bands on 
GAD classification. Our current results provide preliminary 
evidence supporting the importance of high-frequency bands in 
GAD identification and highlight the prominent advantages of 

the 10-30 Hz band. These findings will contribute to a more 
comprehensive understanding of the relationship between EEG 
frequency bands and GAD, and provide a new insight for the 
GAD diagnosis. The excellent classification performances of 
GAD detection at high frequencies can provide guidance for 
subsequent practical applications. For instance, we may choose 
to filter out low frequencies to effectively mitigate the noise and 
interference stemming from those bands when developing an 
EEG-based system for GAD diagnosis.

4.4 Limitation

Although the MSTCNN proposed in this study has 
demonstrated impressive capabilities in the identification of GAD 
and HC, it still has come with certain limitations. Firstly, the main 
manifestation is the sample size utilized in the study is relatively 
limited (45 participants for GAD and 36 participants for HC), 
which limits our effective verification of the robustness and 
generalization ability of the model. Secondly, our deep learning 
model appears to lack reasonable interpretability for GAD 
diagnosis. Thirdly, in real-life scenarios, the process in which 
hospitals collect EEG data may be some discrepancies, such as 
different EEG acquisition equipment and inaccurate placement of 
electrodes, which may lead to diagnostic performance decline. To 
more comprehensively evaluate the performance and 
generalization ability of the model, we will try to use more diverse 
data sources and explore deep learning model interpretability in 
follow-up studies.

5 Conclusion

In this study, an end-to-end deep learning MSTCNN model 
was proposed for the precise diagnosis of GAD based on EEG 
signals. Three widely used attention mechanisms were applied on 
MSTCNN model for the improvements of the classification 
performances. And different frequency bands were extracted to 
explore key frequency band in GAD diagnosis. Notably, MSTCNN 
combined with the attention mechanism of Squeeze-and-
Excitation Networks achieved an excellent classification 
performance, to the best of our knowledge, with the highest 
accuracy of 99.48%. More interestingly, it is found that higher 
frequency band can obtain higher accuracy in GAD recognition. 
The accuracy of the high-frequency band with 10-30 Hz has no 
statistical difference with the accuracy of the 4-30 Hz frequency 
band. This finding could simplify the signal processing process 
and reduce the complexity of low-frequency EEG data processing. 
In sum, this work can have a positive impact on the precise 
diagnosis of GAD and move a step forward towards the automatic 
diagnostic system of GAD.
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A neuroimaging study of brain 
activity alterations in 
treatment-resistant depression 
after a dual target accelerated 
transcranial magnetic 
stimulation
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1 Department of Clinical Medicine, Zunyi Medical University, Zunyi, China, 2 Department of 
Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, China, 3 Department of 
Psychiatry, University of Cambridge, Cambridge, United Kingdom

In this study, we designed a new transcranial magnetic stimulation (TMS) 
protocol using a dual-target accelerated transcranial magnetic stimulation 
(aTMS) for patients with treatment resistant depression (TRD). There are 58 
TRD patients were recruited from the Second People’s Hospital of Guizhou 
Province, who were, respectively, received dual-target (real continuous theta 
burst stimulation (cTBS) at right orbitofrontal cortex (OFC) and real repetitive 
transcranial magnetic stimulation (rTMS) at left dorsolateral prefrontal 
cortex (DLPFC)), single- target (sham cTBS at right OFC and real rTMS at left 
DLPFC), and sham stimulation (sham cTBS at right OFC and sham rTMS at 
left DLPFC). Resting-state functional magnetic resonance imaging (rs-fMRI) 
was acquired before and after aTMS treatment to compare characteristics 
of brain activities by use of amplitude of low-frequency fluctuations (ALFF), 
fractional low-frequency fluctuations (fALFF) and functional connectivity 
(FC). At the same time, Hamilton Depression Scale-24 (HAMD24) were 
conducted to assess the effect. HAMD24 scores reduced significantly in dual 
group comparing to the single and sham group. Dual-target stimulation 
decreased not only the ALFF values of right fusiform gyrus (FG) and fALFF 
values of the left superior temporal gyrus (STG), but also the FC between 
the right FG and the bilateral middle frontal gyrus (MFG), left triangular part 
of inferior frontal gyrus (IFG). Higher fALFF value in left STG at baseline 
may predict better reaction for bilateral arTMS. Dual-targe stimulation 
can significantly change resting-state brain activities and help to improve 
depressive symptoms.

KEYWORDS

treatment-resistant depression, transcranial magnetic stimulation, resting-state 
functional magnetic resonance imaging, amplitude of low-frequency fluctuations, 
fractional amplitude of low-frequency fluctuations, functional connectivity
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1 Introduction

Depression, manifested as marked and persistent low mood that 
is not commensurate with the environment, is a serious global public 
health problem. In recent years, with the increasing pressures of 
modern life and continuous improvement in disease diagnosis skill, it 
is found that the population of patients suffering from depression is 
consistently expanding worldwide. According to a World Health 
Organization (WHO) report (1), there are approximately 350 million 
patients with depression of different ages currently. This highly 
prevalent disorder also has high rates of disability, recurrence, 
mortality, and heritability (2, 3). As a result, individuals, family, and 
society need to face the huge economic and emotional burden 
imposed by the recurrence and sequelae of depression. Given the 
damage to the public, improving treatments and extending the long-
term prognosis of depressive patients are urgently needed.

At present, the main treatment methods for depression include 
medication psychotherapy and physical therapy. However, 
approximately one-third to two-thirds of patients still do not 
respond to medication, which is known as treatment-resistant 
depression (TRD) patients (4–7). TRD is typically defined as low 
efficacy of two or more antidepressants with different chemical 
structures at adequate dosages and courses (8–10). Therefore, in 
recent years, researchers have begun to explore another method, 
especially physical one, to improve capacity for treating TRD. Some 
of these studies reported that nonpharmacological treatments have 
a durable effect than medication (11–13). Among the 
nonpharmacological therapies, transcranial magnetic stimulation 
(TMS) is a safe, non-invasive, and painless way that was approved 
by the U.S. Food and Drug Administration (FDA) in 2008 for the 
treatment of depression (14). However, traditional repetitive 
transcranial magnetic stimulation (rTMS) treatment usually takes 
several weeks and shows limited efficacy. To further improve the 
treatment efficiency and exclude the influence of other factors, such 
as drugs and psychotherapy, some researchers have begun to pay 
their attention to accelerated repetitive transcranial magnetic 
stimulation (arTMS). Because it could compress the treatment cycle 
from weeks into a few days while maintaining safety and 
effectiveness, arTMS not only greatly reduces the suffering of 
patients but also decreases the time required for treatment and 
improves efficiency (15).

The brain of human is a complicated structure, because different 
brain regions perform their own functions and coordinate to 
complete complex functions, such as perception, processing, and 
action execution etc. Quite a few numbers of studies have been 
committing to detect some brain areas as the stimulation targets 
which are related to the effect of TMS and to improve the efficacy of 
TMS for treating TRD by using different stimulation parameters. At 
present, the FDA has approved the TMS targeted at the left 
dorsolateral prefrontal cortex (DLPFC), which is a key area in 
depressive symptoms and shown to be  hypoactive in major 
depressive disorder, for the treatment of depression (16–18). The 
efficacy of this traditional protocol is limited even though it takes 
several weeks. Considering that the effect of current treatment 
protocols is still limited, it is needed to explore more possible 
programs. Some new studies showed that bilateral rTMS treatment 
was more effective for treating depressive symptoms than unilateral, 
sham stimulation or medicine only (19, 20). We noticed that the 

lateral orbitofrontal cortex (lOFC), related to non-reward system, is 
implicated in the rumination of sad events and memories in 
depression patients this indicated that the lOFC is a crucial target 
for the improvement of depression (21–25). Thus, this study 
researched the effect of a new stimulation protocol targeted at the 
left DLPFC and right lOFC and the changed of functional magnetic 
resonance imaging (fMRI) before and after the treatment.

Resting-state functional magnetic resonance imaging (rs-fMRI) 
has been used to explore the spontaneous activity in brains and 
neurobiological mechanisms in depressed patients by diverse analysis 
methods which have been mainly divided into the functional 
segregation and integration (26–28). The former includes amplitude 
of low-frequency fluctuations (ALFF), fractional amplitude of 
low-frequency fluctuations (fALFF), etc. In 2007, Zang et al. suggested 
that the ALFF, which assessed oscillation by measuring the blood-
oxygen-level dependent (BOLD) signals in the low-frequency range 
(0.01 ~ 0.08 Hz) based on the voxel level, reflected spontaneous neural 
activity in specific brain areas (29). Compared with other methods of 
analysis, fractional amplitude of low-frequency fluctuations (fALFF) 
is a more useful way for measuring the spontaneous activity of the 
resting brain with fewer physiological noise and nonspecific signals 
(30). The later embraces graph theory, seed-based analysis, 
independent component analysis (ICA) and so on (26). Graph theory 
describe the relationship between nodes and edges depend on node 
degree, centrality, average path length, etc. (31–34), where nodes can 
be  the electrodes and channels of electroencephalogram and 
magnetoencephalography or the common region of interest (ROI) 
defined on structural and functional template, while the edge refers to 
connections between the nodes (35). Seed-based analysis mainly 
focuses on the correlation between one ROI to another one refers to 
the synchronous activity between different brain regions and indicates 
whether these two brain regions are related in terms of function (26, 
29). ICA helps to extract different networks and analysis simultaneous 
voxel to voxel interactions among networks (26, 28). In this study, our 
team will analyze the differences in brain activity of depressive patients 
before and after receiving different arTMS from the both perspectives 
of separation and integration.

We conducted arTMS treatment for the TRD patients aimed at left 
DLPFC and right lOFC, a brain area related to the reward mechanisms, 
and collected brain functional images of subjects before and after 
treatment using rs-fMRI. Then, the neural activity was evaluated by 
ALFF, fALFF, and FC value before and after arTMS.

2 Methods

2.1 Participants and groups

This study was approved by the Ethics Committee of the Second 
People’s Hospital of Guizhou Province. From August 2021 to July 
2022, 60 patients with TRD were recruited from this hospital. Subjects 
or their legal guardians agreed to participate in this study and signed 
the informed consent form. This trial was prospectively registered in 
the China Clinical Trial Registry (Registration number: 
ChiCTR2100049002).

The inclusion criteria were as follows: (1) met criteria of the 
Diagnostic and Statistical Manual of Mental Disorders, fifth edition 
(DSM-V) diagnostic for MDD; (2) were right-handed; (3) were 18 to 
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60 years old (regardless of sex); (4) had an HAMD24 score ≥ 21; (5) 
previously received a full course of two or more antidepressant drugs 
at a sufficient dosage but achieved little or no treatment response; and 
(6) signed informed consent form.

The exclusion criteria were as follows: (1) with psychotic 
symptoms or any other mental disorders; (2) with symptoms caused 
by organic diseases or medications; (3) with severe organic disease; or 
(4) with contraindications for TMS or MRI, such as a history of 
epilepsy, pregnancy within 3 months, an artificial heart valve or 
a pacemaker.

2.2 Intervention

In this study, we adopted the following arTMS treatment protocol 
to reduce the traditional 4–5 weeks period of stimulation to 5 days by 
delivering multiple stimulations per day. The specific procedure was 
as follows: first, cTBS at 5 Hz was applied to the right OFC for a total 
of 48 s, which included 600 pulses and a resting motor threshold 
(RMT) of 100% ± 10%. Then, high-frequency repetitive transcranial 
magnetic stimulation (HF-rTMS) at 20 Hz was applied to the left 
DLPFC for 90 s, which included 1,800 pulses and an RMT of 
100% ± 10%. The above stimulations were performed 4 times a day, 
with 50-min intervals between each series, for 5 consecutive days. 
Thus, the right OFC target received a total of 12,000 pulses, and the 
left DLPFC target received a total of 36,000 pulses during the 
full course.

Patients in these three groups received different arTMS 
stimulations with the same parameters described above. In the dual 
group, real stimulation was applied to both the right OFC and left 
DLPFC. However, in the single group, the subjects received sham 
stimulation treatment with a fake figure-eight coil that mimicked the 
real one at right OFC and received real stimulation at the left 
DLPFC. In the sham group, the subjects received sham stimulation 
treatment with a fake figure-eight coil at both the right OFC and 
left DLPFC.

2.3 Assessment indicators

All subjects completed the Hamilton Depression Scale-24 
(HAMD24), which is widely used in clinical diagnosis because of its 
good reliability and validity, before and after arTMS intervention, 
1 week after intervention, and 4 weeks after intervention to assess the 
depressive symptoms. Before and after arTMS, resting-state fMRI was 
used to observe spontaneous brain activity in fALFF and fALFF in 
different brain regions. Then, regions with significant differences after 
arTMS were selected as regions of interest (ROIs), and with this as the 
center, ROI of r = 6 mm was used as the seed point, and the voxel-wise 
functional connectivity of TRD depression patients was calculated.

2.4 Image acquisition

The acquisition of rs-fMRI image data in this study was completed 
by professional technicians with intermediate or higher professional 
titles in the imaging department in an examination room. The data 
were collected by a high-field magnetic resonance scanner from GE 

(manufacturer’s model: SIGNA HDe) (Coil: General Electric, 
Madison, WI, USA).

During the scan, all patients were asked to remain calm and 
awake; keep their eyes closed; and refrain from moving their head. The 
collection of rs-fMRI data in this study utilized the following two 
specific scanning sequences: (1) 3D-T1-weighted whole-brain 
structure imaging with a fast spoiled gradient echo (FSPGR) sequence 
(slices = 116, slice thickness = 1.2 mm, repetition time (TR) = 12.536 ms, 
echo time (TE) = 5.432 ms, inversion time = 350, flip angle (FA) = 20°, 
and matrix = 256 × 256). (2) resting-state fMRI using a gradient echo 
and echo planer imaging (GRE-EPI) sequence (slices = 28, slice 
thickness = 3.5 mm, TR = 2,500 ms, TE = 40 ms, time points = 300, 
FA = 90°, and matrix = 80 × 80).

2.5 Rs-fMRI data processing

Related data were analyzed by Data Processing and Analysis for 
Brain Imaging (DPABI) software (36), which was based on the 
MATLAB_2013b environment. The following 12 steps were used: (1) 
conversion from DICOM to NIFTI, (2) removal of the first ten time 
points to reduce inaccuracy resulting from head movement or other 
factors at the beginning of scans, (3) slice timing correction to 
preventing interference between adjacent slices by adopting interval 
scanning, (4) realignment (checking and correcting the head motion), 
(5) nuisance regression (removing another covariate), (6) 
transformation to Montreal Neurological Institute (MNI) space, (7) 
detrending (removing the noise of the machine), (8) smoothing 
(reducing the effects of spatial noise and reducing differences in brain 
structure between subjects), (9) calculation of ALFF (0.01–0.08 Hz) 
and fALFF values to reflect the spontaneous resting-state activity of 
each different brain region (ALFF and fALFF maps were standardized 
by z score-transformation into zALFF and zfALFF maps), (10) quality 
control (evaluating the quality of images and excluding the subjects 
whose images did not meet the quality requirements), and (11) 
calculation of FC (brain regions with the cluster voxels size >40 in the 
corrected ALFF and fALFF results were selected as ROIs for further 
analysis of the FC between the ROIs and whole brain).

2.6 Statistical analysis

SPSS 29.0 software was used to perform the chi-square test to 
assess the influence of sex on the three groups, and one-way analysis 
of variance (ANOVA) was performed to explore the influence of age, 
education level and HAMD24 scores of the three groups. A p value 
less than or equal to 0.05 was considered statistically significant. 
We extracted the time courses of brain regions with abnormal ALFF 
and fALFF values and then conducted correlation analysis in SPSS 
software to calculate the Pearson correlation coefficient between the 
difference in HAMD24 scores (∆HAMD24) with ALFF or fALFF.

The DPABI software (36) was used to perform statistical analysis 
of images with the following steps: (1) paired t test: To calculate ALFF 
and fALFF values and to identify ROIs that significantly differed at 
pre-TMS and post-TMS in the three groups, we applied the paired t 
test in DPABI software (36). (2) Multiple comparisons: gaussian 
random field (GRF) correction with a voxel p value of 0.002 and 
cluster p value of 0.1 was used to determine two-tailed significant 
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differences to reduce the probability of type I error. (3) The brain 
regions with cluster voxels size greater than 40 were selected.

2.7 Visualization

The REST V1.8 software1 (37) and BrainNet Viewer2 (38) were 
used to visualize the results of brain activity and networks.

3 Results

A total of 60 participants were enrolled, but 2 subjects did not 
complete the full treatment course. Finally, 58 patients (46 females and 
12 males, aged 18–56 years) had received 5-day treatment and 4-week 
follow-up. All included subjects, who were marched for gender, age, and 
education level, were randomly divided into three groups as follows by 
computer randomization sequences: the dual target group (dual group) 
(19 subjects, aged 27.58 ± 9.605 years), single target group (single group) 
(19 subjects, aged 26.32 ± 8.845 years) and sham stimulus group (sham 
group) (20 subjects, aged 28.70 ± 10.887 years) (Table 1).

3.1 HAMD24 analysis

At baseline, the HAMD24 scores in the dual, single, and sham groups 
were not significantly different (p > 0.05). After 5 days of aTMS treatment, 
the HAMD24 scores were reduced in these three groups. Additionally, 
this decrease persisted at 1 week and even 4 weeks after aTMS treatment. 
After the treatment, the reduction rates in HAMD24 scores in dual, single 
and sham group were 41.67% ± 0.239, 29.70% ± 0.368 and 13.43% ± 0.151, 
respectively. At 1 week after treatment, the rate were decreased by 

1  http://www.restfmri.net

2  http://www.nitrc.org/projects/bnv/

53.24% ± 0.231, 37.72% ± 0.350 and 27.00% ± 0.162, respectively. At 
4 weeks after treatment, the rates were decreased by 55.47% ± 0.219, 
47.17% ± 0.333 and 32.49% ± 0.211, respectively. These reduction rates of 
HAMD24 scores in three groups were significant different (p < 0.05). 
Additionally, the reduction rate was faster and greater in the dual group 
than in the other two groups (Table 1, Figure 1).

3.2 ALFF and fALFF analysis

After comparing the post- and pre-TMS images by the paired 
t-test, the ALFF value in the right fusiform gyrus (FG) (peak MNI 
coordinate: 33, −78, −18) of the dual group was found to decrease 
after aTMS. Additionally, the left superior temporal gyrus (STG) (peak 
MNI coordinate: −57, −36, 6) in the dual group had a lower fALFF 
value after aTMS. In both the single and sham groups, there were no 
significant changes in ALFF and fALFF values in the whole brain 
before and after aTMS (Table 2, Figures 2A,B, 3A,B).

3.3 ROI analysis

The peak MNI coordinates for the ALFF and fALFF values (33, 
−78, −18 and − 57, −36, 6) were selected as ROIs to explore the FC 
between these two ROIs with whole brain. We found that in the dual 
group, after 5 days of aTMS treatment, the FC between ROI1 (33, −78, 
−18) and the right middle frontal gyrus (MFG), left MFG, left 
triangular part of inferior frontal gyrus (IFG) decreased. There was no 
significant difference in the FC between ROI2 (−57, −36, 6) and the 
other brain regions before and after treatment (Table  2, 
Figures 2C, 3C–E).

3.4 Correlation analysis

The fALFF value of the left STG at baseline in the dual group was 
negatively correlated with the difference between HAMD24 scores 

TABLE 1  Comparison of HAMD24 scores among dual, single and sham groups.

Variables dual (n  =  19) Mean  ±  SD single (n  =  19) Mean  ±  SD sham (n  =  20) Mean  ±  SD p value

Age (years) 27.58 ± 9.605 26.32 ± 8.845 28.70 ± 10.887 0.752a

Gender (male/female) 4/15 3/16 5/15 0.776b

Education (years) 4.80 ± 6.815 4.66 ± 5.800 2.38 ± 1.804 0.272 a

HAMD24 (pre) 49.16 ± 10.150 45.16 ± 10.156 50.80 ± 9.134 0.194a

HAMD24 (Post) 29.11 ± 12.405 30.42 ± 10.543 43.50 ± 8.618 <0.001a,

HAMD24 (1 week) 23.26 ± 11.685 26.68 ± 9.563 37.15 ± 10.266 <0.001a,

HAMD24 (4 weeks) 22.21 ± 12.196 22.58 ± 9.353 34.80 ± 12.685 0.001a

reduction (before-after)c 41.67% ± 0.239 29.70% ± 0.368 13.43% ± 0.151 0.006a

reduction (before-1 week after)d 53.24% ± 0.231 37.72% ± 0.350 27.00% ± 0.162 0.010a

reduction (before-4 weeks after)e 55.47% ± 0.219 47.17% ± 0.333 32.49% ± 0.211 0.025a

SD, Standard Deviation; HAMD24, Hamilton Depression Scales-24.
aThe p value for one-way ANOVA.
bThe p value for Chi-square test.
cReduction rate of HAMD24 scores for before and after treatment = ((pre-post)/pre).
dReduction rate of HAMD24 scores for before and 1 week after treatment = ((pre-1 week)/pre).
eReduction rate of HAMD24 scores for before and 4 weeks after treatment = ((pre-4 weeks)/pre).
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before and after treatment (∆HAMD24 score) (r = −0.455, p = 0.050, 
Pearson correlation), and the ALFF value of the right FG was not 
significantly correlated with ∆HAMD24 score (Figure 4).

4 Discussion

The current study investigated the features of spontaneous brain 
activity in TRD pre- and post-aTMS treatment at different targets 
using rs-fMRI. Specifically, we researched the efficacy and safety of 
aTMS for TRD by performing bilateral, unilateral, or sham stimulation 
at left DLPFC and right OFC and then analyzed the ALFF, fALFF and 
FC values of different brain regions in those three groups before and 
after aTMS treatment.

The DLPFC is a key region of the executive control network 
(ECN) that is associated with the regulation of attention, decision-
making, working memory, and cognitive control. Therefore, 
researchers believe that applying high-frequency stimulation to the 
left DLPFC could help reduce depressive symptoms and further 
improve the mood of patients with depression (39). Additionally, the 

OFC is also associated with emotions since it is reacting to reward 
values (40–42). A series of studies found that the OFC is a vital brain 
area for reward and is activated by unpleasant aversive stimuli. After 
the aTMS at these two targets, the depressed symptoms of TRD 
patients get significantly improved. These regions thus could be the 
strong candidate targets for stimulation to treat depression, 
particularly for the patients with TRD (43–46). Specifically, we found 
that both dual and single target stimulation reduced HAMD24 scores 
in the short term, indicating that both these two schemes of aTMS 
treatment can improve the symptoms of patients with TRD. Because 
the TMS could produce a strong magnetic field with repeated pulses 
that passes through the scalp and skull beneath the coil to enhance or 
weaken activity in corresponding brain area by different models of 
stimulation. According to the differences of frequencies, TMS 
stimulations are divided into low-frequency stimulation (≤ 1 Hz) and 
high-frequency stimulation (> 5 Hz) (47). The former and continuous 
theta burst stimulation (cTBS) or the latter and intermittent theta 
burst stimulation (iTBS) respectively execute inhibitory or excitatory 
effects on the brain cortex. An increasing number of related studies 
have also proven the effectiveness of TMS for depression. Such as a 

FIGURE 1

(A) The HAMD24 reduction rate from post- to pre-treatment, 1  week after treatment to post-treatment and 4  weeks after treatment to 1  week after 
treatment in the dual group. (B) The HAMD24 reduction rate from post- to pre-treatment, 1  week after treatment to post-treatment and 4  weeks after 
treatment to 1  week after treatment in the single group. (C) The HAMD24 reduction rate from post- to pre-treatment, 1  week after treatment to post-
treatment and 4  weeks after treatment to 1  week after treatment in the sham group. (D) The average HAMD24 scores of pre-treatment, post- 
treatment, 1  week and 4  weeks after treatment in dual, single and sham groups.
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FIGURE 2

(A) The differences of ALFF from post- to pre- treatment in the dual group. (B) The differences of fALFF from post- to pre- treatment in the dual group. 
(C) The differences of FC from post- to pre- treatment in the dual group. (Cluster p  <  0.05, GRF corrected) (Cluster p  <  0.05, GRF corrected).

TABLE 2  Brain regions alterations of ALFF, fALFF, and FC in TRD patients after arTMS in dual group.*

Brain regions Left/Right Peak MNI coordinate Clusters (voxel) Peak T value

x y z

Post < hoc

ALFF

Fusiform Gyrus a R 33 −78 −18 41 −5.5831

fALFF

Superior Temporal Gyrus b L −57 −36 6 42 −6.4519

FC of seed1: right fusiform gyrus (Peak MNI: 33–78 -18)

Middle Frontal Gyrus c R 36 21 39 71 −4.7969

Middle frontal gyrusc L −39 15 57 59 −6.3005

Inferior frontal gyrus, 

triangular partc
L −51 21 24 52 −5.8810

FC of seed2: left superior temporal gyrus (Peak MNI: −57 -36 6)

NONE

ALFF, Low-frequency Fluctuation; fALFF, Fractional Amplitude of Low-frequency Fluctuations. FC, Functional Connectivity. MNI, Montreal Neurological Institute. HAMD24, Hamilton 
Depression Scale-24. The peak MNI coordinate represent the peak points with most significant differences in the brain areas.
Gaussian Random Field (GRF) correction: voxel p value = 0.002, cluster p value = 0.1, two tail (Z > 2.3, cluster p = 0.05, one tail).
*There was no significant result in both single and sham group after the GRF correction.
aThe result of ALFF analysis.
bThe result of fALFF analysis.
cThe result of ROI analysis with the seed of right Fusiform Gyrus.
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meta-analysis (48) that included 15 published articles on the use of 
repetitive transcranial magnetic stimulation (rTMS) to treat 
depression from 2001 to 2010 concluded that compared with sham 

stimulation, real rTMS targeting the left and right DLPFC with high- 
and low-frequency stimulation was effective in the treatment of 
depression. Besides, a recent study showed that the response rates to 

FIGURE 3

(A) The ALFF analysis revealed significant reductions in the right fusiform gyrus after treatment. (B) The fALFF analysis revealed significant reductions in 
the left superior temporal gyrus after treatment with GRF correction. (C–E) The FC of ROI1 (33, −78, −18) with the bilateral middle frontal gyrus and 
triangular part of inferior frontal gyrus had decreased after treatment. Cool colors represent decreased value, while warm colors represent increased 
value. These differences were obtained by paired t-test in the dual group.

FIGURE 4

The fALFF value at baseline of the left superior gyrus in the dual group was negatively correlated with the difference between HAMD24 scores before 
and after treatment (∆HAMD24 score). (r  =  −0.455, p  =  0.050, Pearson correlation).
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rTMS of patients with major depressive disorder (MDD) were 40 to 
50%, and the remission rates were 25 to 30% (49). In our study, the 
dual group showed a faster and greater decrease than the single and 
sham group. In addition, after dual target stimulation, at 1 week after 
the treatment and at 4 weeks after the treatment, the reduction rates 
in HAMD24 scores were also increasingly greater in the dual group 
than that in the other two groups. Importantly, both dual and single 
target stimulation showed good safety and tolerability. In this study, 
none of the subjects experienced adverse reactions, such as severe 
headache, seizures, or hearing loss, during treatment.

Additionally, we used the ALFF to observe the fluctuation of 
the average amplitude of voxels in the frequency range of 0.01–
0.08 Hz; this value directly indicates changes in the amplitude of 
the BOLD signal and reflects the spontaneous activity of brain 
regions (28). In this study, we found that after dual target aTMS, 
the ALFF value of the right FG was significantly lower than that 
before treatment. This finding is consistent with the results of a 
previous rs-fMRI study that revealed patients with depression tend 
to be with higher ALFF values in the right FG (50). Numerous 
rs-fMRI studies have found that changes in the FG of patients with 
depression suggested that the neurological activity of this brain 
region is altered, which may be the basis of depression (51–53). As 
well known, the FG is a part of the visual recognition network and 
temporal cortex, which is at the same time responsible for facial 
recognition and the deep processing of visual information as well 
as negative cognition and emotion. So, it may be the area to display 
the earliest signs of abnormal emotional processing in patients 
with depression (54–56). Besides, abnormal spontaneous brain 
activity of the FG may indicate impaired understanding and 
memory of language as well as recognition of facial features in 
MDD patients, which may lead to negative cognition and affect in 
both learning and life (57).

We also found that after aTMS treatment the FC of the right 
FG was decreased. Specifically, the FC between the right FG and 
bialetral MFG and left triangular part of IFG was decreased after 
treatment. Shan et al. also found that the FC of the right FG was 
abnormal in patients with depression, which may produce mood 
disorders (58, 59). And this kind of abnormal FC of right FG 
mainly focused on the frontal lobe which could divide into the 
supra, middle, and lower folds (60). Because it is one of the areas 
involved in the higher functional activities of the human brain, 
influencing social behavior, planning, language formation, working 
memory, language search, extraction, naming and other functional 
activities, it is closely related to many mental diseases. In addition, 
a study by Liu et al. also suggested that spontaneous brain activity 
in the right MFG of patients with depression is significantly 
correlated with depressive symptoms (61). One of our previous 
studies also indicated that the changed of the FC between right 
praecuneus and MFG was related to improvement of depressive 
symptoms after cognitive-behavioral therapy combined with drugs 
(62). The MFG is a core area of the DLPFC, which plays a key role 
in emotional supervision and cognitive processing (63). 
Hyperactivities in this area was observed in depressive patients 
compared to controls (64). As a part of DLPFC, the left IFG is 
extensively involved in language processing, working memory and 
cognitive control (65–68). When the processing of negative 
emotions increases, it can specifically inhibit the overworked 

limbic system by connecting with the orbitofrontal cortex, so that 
negative emotion processing is reduced (69). Conversely, when the 
processing of negative emotions is reduced, the functional 
connectivity between these two brains decreases.

The fALFF, obtained by dividing the energy of the low-frequency 
signal by the energy of the entire frequency band, is a common indicator 
of resting-state fMRI and can reduce the influence of noise in the data 
(70). Hence, in this study, we also used fALFF to observe the effective 
reduction of the intensity of spontaneous neuronal activity in brain 
regions. Related studies found that the fALFF of the left STG in patients 
with depression was significantly increased (71, 72). After aTMS, 
we found that the fALFF of the left STG, decreased compared to that at 
baseline in the dual group, which is consistent with the results of other 
studies (73, 74). Moreover, fALFF value of the left STG at baseline in the 
dual group was negatively correlated with the ∆HAMD24 score before 
and after treatment. Some fMRI studies also have showed alterations in 
the STG in patients with depression (73, 74). The STG is a critical part 
of temporal lobe which is mainly responsible for not only processing 
auditory information but also advanced neural activities such as social 
cognition (75), Some studies have found that the STG and its adjacent 
cerebral cortex played an important role in processing information 
related to individual communication (such as eye gaze direction, facial 
expression, and lip movements). Thus, it may be mainly responsible for 
the dynamic processing of facial features, which is more important 
during individual communication (76).

The STG and FG, as part of the temporal-occipital junction, were 
reported to be more sensitive to negative emotional information (77). 
And after this kind of protocol of aTMS treatment, it took a short 
period to improve the abnormal ALFF values and FC in FG as well as 
abnormal fALFF valued in STG and then to reduce this sensitivity, 
thereby helping to improve the negative mood of patients with TRD.

5 Conclusion

This study has demonstrated that the efficacy of the dual target 
treatment was better than that of the single-target and sham treatments. 
In addition, we also demonstrated that the functional disorder of the 
right FG and left STG, which could be significantly improved after 
aTMS treatment, may be  the pathological bases of emotional and 
cognitive disorder in depression. And these areas may indicate the 
potential marker of efficacy of dual target aTMS treatment. Particularly, 
higher baseline fALFF values in the left STG may suggest better 
response for dual target aTMS treatment. These findings may help 
improve the understanding of neurobiological mechanism of TRD.

6 Limitations and future directions

This study has the following limitations: firstly, the sample size is 
small which should be further expanded in future studies. Secondly, a 
precise navigation system was not used. This may result in some errors 
due to insufficient anatomical data support and failure to consider 
individual differences. Thirdly, it wasn’t made an assessment of what 
might be a protective factor through psychotherapy and counseling 
intervention during the survey. In future research, we will further 
improve these shortcomings.
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Regional decreases of cortical 
thickness in major depressive 
disorder and their correlation 
with illness duration: a 
case-control study
Fukun Wang 1*†, Xiaofang Hou 2†, Xiao Guo 1*, Chen Zang 2, 
Gang Wu 2 and Jingjing Zhao 2

1 General Committee Office, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China, 
2 Laboratory of Magnetic Resonance, Zhumadian Second People’s Hospital, Zhengzhou, Henan, China

Background: Alterations in brain structure and function in major depressive 
disorder (MDD) have been identified in a number of studies, but findings 
regarding cortical thickness were various and inconsistent. Our current study 
aims to explore the differences in cortical thickness between individuals with 
MDD and healthy controls (HC) in a Chinese population.

Methods: We investigated T1-weighted brain magnetic resonance imaging 
data from 61 participants (31 MDD and 30 HC). The cortical thickness between 
the two groups and analyzed correlations between cortical thickness and 
demographic variables in the MDD group for regions with significant between-
group differences were conducted.

Results: Compared with the HC group, patients with MDD had significantly 
decreased cortical thickness, in left pars triangularis, left pars orbitalis, left rostral 
middle frontal gyrus, left supramarginal gyrus, right parahippocampal gyrus, 
right lingual gyrus, right fusiform and right inferior parietal gyrus. The cortical 
thickness of left rostral middle frontal gyrus was negatively correlated (r  =  −0.47, 
p  =  0.028) with the illness duration in patients with MDD.

Conclusion: Our study distinguished that cortical thickness decreases in 
numerous brain regions both in the left and right hemisphere in individuals 
with MDD, and the negative correlation between the cortical thickness of left 
rostral middle frontal gyrus illness duration. Our current findings are valuable 
in providing neural markers to identify MDD and understanding the potential 
pathophysiology of mood disorders.

KEYWORDS

cortical thickness, major depressive disorder, left supramarginal gyrus, brain magnetic 
resonance imaging, T1
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1 Introduction

Major depressive disorder (MDD) is becoming the most 
burdensome mental disorder globally. The illness involves a depressed 
mood or loss of pleasure or interest in activities for long periods of 
time (1). Many alterations of behavioral symptoms are involved 
during the development process of MDD, including various fields 
related to emotions, motivation, cognition, and physiology (2). 
Although ongoing efforts to increase knowledge and skills for 
healthcare providers and clinical researchers, the pathogenies and 
pathophysiological processes of MDD are not fully understood (3). 
The existing evidence suggests that MDD may involve multiple levels 
of changes in genetics, biochemistry, imaging, and psychology. Due to 
neuroimaging research can reflect changes in the brain structure and 
function of MDD patients more intuitively, increasing studies are 
using this technology to explore the pathological mechanisms of MDD.

Cortical thickness refers to the component of gray matter volume, 
which is an index of cell density and health in the cerebral cortex (4). 
Thus, the alteration of cortical thickness represents an important 
signature for understanding emotional regulation of depression 
among all the neuroimaging approaches. For example, region-wise 
analysis reported that abnormal changes in the cortical thickness of 
the limbic system, such as the orbitofrontal lobe, cingulate gyrus, and 
other brain regions in untreated individuals with MDD, which may 
be related to abnormal emotional management and known as frontal 
limbic model of MDD (5). Temporal cortical thickness abnormalities 
were also reported in mood disorders (6). Two meta-analyses found 
that decreased cortical thickness in the orbitofrontal and temporal 
cortex of MDD (7, 8). A pilot study reported antidepressant treatment 
increased cortical thickness of the left medial OFC in adolescents with 
major depression (9). Several studies have also pointed out the 
increases in cortical thickness of specific brain regions in MDD. Qiu 
and colleagues reported cortical thickness in the right hemisphere in 
first-episode, treatment-naïve, mid-life MDD patients (10). Increased 
cortical thickness of several brain regions in the default mode network 
(DMN) of individuals with MDD was also reported in the meta-
analysis (7). Specifically, Li et.al found that increased cortical thickness 
of posterior cingulate cortex, right ventromedial prefrontal cortex, and 
anterior cingulate cortex, and decreased cortical thickness in 
orbitofrontal cortex (gyrus rectus and orbital segment of superior 
frontal gyrus) and temporal cortex in medication-free patients 
with MDD.

Thus, to date, the existing studies related to cortical thickness in 
individuals with MDD are not well clarified. Results have been 
somewhat inconsistent across different studies. Our current study 
aims to explore the differences in cortical thickness of individuals with 
MDD and healthy controls in a Chinese population. According to the 
previous evidence, we hypothesize that the individuals with MDD will 
have thinner cortices in the frontal, temporal, limbic system, and 
parietal lobes (e.g., middle frontal gyrus and orbitofrontal cortex).

2 Methods

2.1 Ethical approval

The authors assert that all procedures contributing to this work 
comply with the ethical standards of the relevant national and 

institutional committees on human experimentation and with the 
Helsinki Declaration of 1975, as revised in 2008. All procedures 
involving human subjects/patients were approved by the Medical 
Ethics Committee of Zhumadian Second People’s Hospital in Henan 
Province (Approval no. IRB-2020-006-02). All participants provided 
written informed consent prior to participation.

2.2 Participants

All participants of this study were recruited from Zhumadian 
Second People’s Hospital in Henan Province. A total of 30 individuals 
diagnosed with MDD and 31 age and sex-matched healthy controls 
were included in the data analysis. All patients with MDD were 
recruited during a depressive episode, which were diagnosed by two 
professional and experienced psychiatrists. The inclusion criteria for 
MDD are as follows:(1) individuals meeting the diagnosis of major 
depressive disorder according to the Diagnostic and Statistical Manual 
of Mental Disorders, 5th edition(DSM-5); (2) Hamilton Depression 
Scale(HAMD)-24-item version scores≥20; (3) the patients taking 
medication were on a stable dose for at least 6 weeks or were 
unmedicated for at least 4 weeks; (4) 18–60 years old without gender 
not limited; and (5) primary school or above education level. The 
healthy controls had no history of mental illness or severe physical 
illness and no family history of mental illness. The exclusion criteria 
of all participants were as follows: (1) any history of neurological 
diseases, intellectual disability, other physical diseases, or 
comorbidities of other disorders; (2) any other mental disorders; (3) 
pregnancy or breastfeeding; and (4) head trauma resulting in loss of 
consciousness. The basic information of all participants can be seen in 
Table 1. There were only twenty-two patients with MDD having the 
illness duration, and eighteen patients having body mass index scores.

2.3 Image acquisition

The structural T1 images of all participants were scanned by using 
the 3D BRAVO with the following parameters: TR/ TE =6.77/2.49 ms, 
flip angle = 7o, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm3, 
188 slices.

TABLE 1  Demographic information of participants.

Variable MDD (n =  30) HC (n =  31) p-value

Age (years, 

mean ± SD)

35.67 ± 9.47 36.53 ± 9.21 0.720

Gender (female/

male)

17/13 18/13 0.912

Illness duration 

(months, 

mean ± SD)

35.55 ± 47.81 – –

Body mass index 

(kg/m2, 

mean ± SD)

22.63 ± 2.82 – –

MDD, major depressive disorder; HC, healthy control; SD, standard deviation.
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2.4 Preprocessing of T1 images

The T1 images were automatically preprocessed using the 
Computational Anatomy Toolbox version r1932.1 Briefly, the bias field 
correction was firstly performed for the T1 images, which were then 
segmented into gray matter, white matter and CSF. After removing 
brain stem and cerebellum, the cortical thickness was computed by 
using a projection scheme (11), which resulted in individual cortical 
thickness maps. This projection-based thickness estimation is fast and 
robust, which has been applied in other studies of neuropsychiatric 
disorders (12, 13). The individual maps of cortical thickness cannot 
be compared because they have a different number of vertexes. Thus, 
those maps were then warped and registered to standard space 
(fsaverage), thus, enabling matching of cortical locations among 
individuals across the whole surface. The registered cortical thickness 
maps were then smoothed with 12 mm full width at half maximum 
for statistical analysis.

2.5 Statistical analysis

The differences in gender and age between patients with MDD 
and HC were performed by using the chi-square test and two-sample 
t-test separately. The two-tailed two-sample t-test was also used to 
investigate the difference in cortical thickness at the vertex level 
between MDD patients and HC. The multiple comparisons were 
corrected using the false discovery rate (FDR) with q < 0.05.

If there were some brain areas that survived the FDR correction, 
mean cortical thickness of those brain areas was extracted for patients 
with MDD, and was used to compute the association with illness 
duration and body mass index by using Pearson correlation analysis. 
The statistical level of p < 0.05 was considered significant.

3 Results

The basic information of included participants is shown in 
Table  1. The average age of MDD group and HC group are 
35.67 ± 9.47 years old and 36.53 ± 9.21, respectively. In total, seventeen 
females and thirteen males were included in the MDD group, and 
eighteen females and thirteen males were included in HC group. There 
was no significant difference (p > 0.05) in age and gender between 
patients with MDD and HC.

A two-sample t-test revealed that patients with MDD had 
significantly (FDR with q < 0.05) decreased cortical thickness, 
compared with HC, in left pars triangularis, left pars orbitalis, left 
rostral middle frontal gyrus, left supramarginal gyrus, right 
parahippocampal gyrus, right lingual gyrus, right fusiform and right 
inferior parietal gyrus (Figure 1 and Table 2). There were no brain 
areas showing increased cortical thickness in patients with MDD.

In addition, we found that the cortical thickness of left rostral 
middle frontal gyrus was negatively correlated (r = −0.47, p = 0.028) 
with the illness duration in patients with MDD (Figure  2). 
We  conducted a sensitivity analysis to explore the relationship 

1  https://neuro-jena.github.io/cat/

between the course of the disease and cortical thickness after excluding 
a value of very long illness duration, and the results showed that the 
difference was still statistically significant (r  = −0.43, p = 0.047, 
Supplementary Figure S1). We did not find significant correlation 
between cortical thickness of those brain areas and body mass index.

4 Discussion

By utilizing T1 weighted anatomical magnetic resonance imaging 
(MRI) images, we investigated the changes in cortical thickness in 
individuals with MDD. The main findings of current study are as 
follows: (1) four left hemisphere brain regions (i.e., pars triangularis, 
pars orbitalis, rostral middle frontal gyrus, and supramarginal gyrus) 
were found to have thinner cortical thickness in individuals with 
MDD when compared to HC; (2) the decreases in cortical thickness 
of three right hemisphere brain regions (i.e., parahippocampal gyrus, 
lingual gyrus, fusiform, and inferior parietal gyrus) was also reported 
in MDD; and (3) the cortical thickness of left rostral middle frontal 
gyrus was negatively correlated with the illness duration in individuals 
with MDD. The results reported in our study provided new evidence 
for exploring alterations in the brain structure of MDD.

Consistent with the abnormal cortical thickness observed in 
previous studies, we  observed a decrease in cortical thickness in 
several regions of the left hemisphere of the brain. It is worth noting 
that we have found that left rostral middle frontal gyrus was negatively 
correlated with the illness duration in individuals with MDD. The 
rostral middle frontal gyrus is partly located in dorsolateral prefrontal 
cortex and the control network of brain (14), and it plays an important 
role in dysfunctional emotional processing, frontal executive function, 
working memory, and problem solving (14). Consistent with our 
results, a study focused on the thickness and depression reported that 
the cortical thickness of rostral middle frontal gyrus was negatively 
related to positive emotions at small effect sizes (accounting for 
0.2–2.4% of variance; p-fdr: 0.0051–0.1900) (15). Song and colleagues 
reported that left rostral middle frontal gyrus thickness was negatively 
correlated with genetic risk score at 0.05 threshold (corrected p < 0.05), 
and mediates the relationship between genetic risk and neuroticism 
traits (16). Another study focused on the brain imaging of bipolar 
disorder also found significantly thinned left rostral middle frontal 
gyrus in individuals with patients when compared with the healthy 
controls (d = −0.276; p = 2.99 × 10−19) (17). Our findings and the above 
evidence suggested that left rostral middle frontal gyrus is a potential 
hallmark to distinguish mood disorders, and may be  negatively 
correlated to the positive emotions, genetic risk score and illness 
duration of depression. However, some studies have proposed 
inconsistent views. Qiu et  al. and van Eijndhoven et  al. reported 
increased cortical thickness in right rostral middle frontal gyrus in 
first-episode, medication-free MDD patients (5, 10). Reynolds and 
colleagues found both right and left rostral middle frontal gyrus were 
thicker in youth with MDD than in controls (p = 0.009; Left – controls: 
2.74 ± 0.28, MDD: 2.94 ± 0.25; Right – controls: 2.77 ± 0.26, MDD: 
2.80 ± 0.28) (18). Thus, characteristics of rostral middle frontal gyrus 
in MDD patients can be explored through meta-analysis, and it is also 
worthy of further confirmation by large samples.

Left pars triangularis is located in ventrolateral prefrontal cortex, 
and it has been reported to be  related to cognitive control (19). 
Consistent with our findings, a case–control study also reported 
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thinner cortical thickness of left pars triangularis in MDD group when 
compared with HC group (20). Functional MRI data analysis with a 
semantic task indicated that left inferior frontal cortex (pars 
triangularis) contributed to the classification of depression and 
controls (21).

We also found a joint region of left pars triangularis+ pars 
orbitalis+rostral middle frontal gyrus had a decrease in cortical 
thickness in individuals with MDD. Similar to pars triangularis, pars 
orbitalis also plays important roles in the language production 
network (22). We did not find much evidence to focus on changes in 
the pars orbitalis brain region and its function in MDD. A brain 
structure study with children and adolescents suggests that it may 

be higher impulsivity, but not depressive symptoms, was associated 
with reduced cortical thickness in the pars orbitalis (23). Moreover, 
the cortical thickness of left supramarginal gyrus was inconsistently 
reported in previous studies (4, 10, 24, 25). The potential roles of left 
supramarginal gyrus in MDD also need to be further clarified.

Regarding the brain regions mentioned in the right hemisphere 
with cortical thickness decreases in our results, to the best of our 
knowledge, previous studies have focused more on exploring changes 
in their functional connections. For example, a case–control study 
reported late-life depression exhibited lower intrinsic functional 
connectivity in right inferior parietal gyrus and other right fronto-
parietal network (FPN) (26), However, another study included 25 

FIGURE 1

Decreased cortical thickness in patients with MDD compared with HC. The multiple comparisons were corrected using FDR with q  <  0.05. MDD, major 
depressive disorder; HC, healthy controls; PT, pars triangularis; POr, pars orbitalis; RMFG, rostral middle frontal gyrus; SMG, supramarginal gyrus; PHIP, 
parahippocampal gyrus; LG, lingual gyrus; FS, fusiform; IPG, inferior parietal gyrus.

TABLE 2  Brain areas where the cortical thickness was significantly decreased in patients with MDD.

Brain regions Number of 
vertex

Cluster size 
(mm2)

MNI coordinate t-value Effect size 
(Cohen’s d)

X Y Z

Left PT+ POr + RMFG 390 231.09 −47 36 −4 −4.76 1.22

Left RMFG 59 32.08 −41 35 22 −2.43 0.62

Left SMG 94 41.83 −61 −28 22 −4.16 1.07

Left PT 35 12.40 −34 26 8 −4.1 1.05

Right PHIP+ LG+ FS 394 209.2 33 −56 −8 −4.51 1.16

Right IPG 73 29.41 50 −47 22 −4.36 1.12

MDD, major depressive disorder; PT, pars triangularis; POr, pars orbitalis; RMFG, rostral middle frontal gyrus; SMG, supramarginal gyrus; PHIP, parahippocampal gyrus; LG, lingual gyrus; 
FS, fusiform; IPG, inferior parietal gyrus.
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patients with recurrent depression found functional connectivity was 
considerably decreased in right inferior parietal gyrus after 8 weeks 
treatment (27). Few studies have pointed out the causes and rules of 
the structural and functional changes of right inferior parietal gyrus 
in patients with depression. The existing evidence suggests that right 
inferior parietal gyrus might be  a crucial hub in transferring 
information between these abnormal regions (26).

Our results also reported a decrease in cortical thickness of the 
occipito-temporal cluster (i.e., right parahippocampal gyrus+ lingual 
gyrus+ fusiform) in MDD. Similarly, a study with an overlapping twin 
and sibling sample reported the reduction of surface area in an 
occipito-temporal cluster, which comprised part of the right lingual, 
fusiform and parahippocampal gyri (28). The decrease of cortical 
thickness the right fusiform in MDD cases with comorbid generalized 
anxiety were also reported previously (29). The meta-analysis by the 
ENIGMA-MDD group also found a significant reduction of right 
lingual gyrus surface area, but nonsignificant association for fusiform 
or parahippocampal, in adolescent depression (30). Previous evidence 
pointed out the reduced cortical thickness of occipito-temporal cluster 
may be  associated with visual memory and attention deficits in 
depression (31). The right lingual gyrus may be  associated with 
cognitive functions in MDD. The evidence from ENIGMA-MDD 
group and other studies points to differences in orbitofrontal and 
cingulate cortexes between MDD and healthy controls (30, 32). 
However, our study did not provide such evidence, which is not 
surprising. This may be due to the significant heterogeneity in both 
clinical manifestations and brain structure among patients with 
MDD. The underlying reasons for the structural and functional 
alterations of these brain regions deserve further exploration.

The current study demonstrated a decrease in cortical thickness 
in several brain regions of individuals with MDD in a Chinese 
population, which provides new evidence for the neuroimaging 
approaches to mood disorders. However, several limitations should 
be noted in the present psychiatric neuroimaging study. Firstly, our 
study is based on a single institutional database, a certain degree of 

selection bias may limit our extrapolation of results. Secondly, the 
information on BMI was only collected in MDD group, while the 
medication records of patients were not available from our collected 
data. The evidence from ENIGMA-MDD group reported obesity 
(BMI > 30) was significantly associated with both mass univariate 
and multivariate pattern recognition analyses independent of MDD 
diagnostics (33). Their results suggested a neurobiological 
interaction between obesity and brain structure under physiological 
and pathological brain conditions. Thus, obesity may affects the 
brain just as much as a neuropsychiatric condition would and 
should be treated taking this into account. However, our study did 
not find association between BMI and with brain cortical thickness 
in MDD. We think this may be related to our small sample size and 
limited number of overweight and obese individuals in current 
study. In our study sample, only 8 out of all 30 depressed patients 
met the criteria for overweight, and no study subjects met the 
criteria for obesity. Since the BMI of our study subjects is generally 
within the normal range, it may require more individuals with 
ultra-high BMI to determine alterations in brain cortical thickness. 
Thirdly, our study is a cross-sectional study, so we cannot determine 
whether the brain structure of MDD undergoes changes 
after treatment.

Moreover, our sample consists of first-episode and recurrent 
patients, we cannot exclude the potential influence of the previous 
treatment effects and their influence on reported findings. 
Additionally, we  did not control for other information, such as 
maternal status, professional activity, and manual laterality, and 
we also did not control that the research subject must be right-handed. 
These variables should be considered in future studies. Many residue 
confounders might as well affect the findings of the study. Larger 
samples and longitudinal research are needed to explore whether the 
decrease in cortical thickness in MDD patients can be  improved 
through drug treatment in the future.

5 Conclusion

Our findings serve as a supplement to the evidence of alterations 
in cortical thickness among individuals with MDD in the Chinese 
population. In summary, our study distinguished that cortical 
thickness decreases in numerous brain regions (i.e., pars triangularis, 
pars orbitalis, rostral middle frontal gyrus, and supramarginal gyrus 
of the left hemisphere; and parahippocampal gyrus, lingual gyrus, 
fusiform, and inferior parietal gyrus of the right hemisphere) in 
individuals with MDD. Moreover, the cortical thickness of left rostral 
middle frontal gyrus was negatively correlated with the illness 
duration of the disorder. Our current findings are valuable in 
providing neural markers to identify MDD, which contribute to the 
clinical diagnosis of affective disorders and further improve our 
understanding of the potential pathophysiology of MDD.
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FIGURE 2

The negative correlation between cortical thickness of left RMFG and 
illness duration in patients with MDD. MDD, major depressive 
disorder; RMFG, rostral middle frontal gyrus.
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Manifold alteration between
major depressive disorder and
healthy control subjects using
dynamic mode decomposition in
resting-state fMRI data
Hidenori Endo1,2*, Shigeyuki Ikeda1,2,3, Kenichiro Harada4,
Hirotaka Yamagata4, Toshio Matsubara4, Koji Matsuo5,
Yoshinobu Kawahara1,6 and Okito Yamashita1,2

1Center for Advanced Intelligence Projects, RIKEN, Tokyo, Japan, 2Department of Computational
Brain Imaging, Advanced Telecommunications Research Institute International (ATR) Neural
Information Analysis Laboratories, Kyoto, Japan, 3Faculty of Engineering, University of Toyama,
Toyama, Japan, 4Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University
Graduate School of Medicine, Yamaguchi, Japan, 5Department of Psychiatry, Faculty of Medicine,
Saitama Medical University, Saitama, Japan, 6Graduate School of Information Science and
Technology, Osaka University, Osaka, Japan
Background: The World Health Organization has reported that approximately

300 million individuals suffer from the mood disorder known as MDD. Non-

invasive measurement techniques have been utilized to reveal the mechanism of

MDD, with rsfMRI being the predominant method. The previous functional

connectivity and energy landscape studies have shown the difference in the

coactivation patterns between MDD and HCs. However, these studies did not

consider oscillatory temporal dynamics.

Methods: In this study, the dynamic mode decomposition, a method to compute

a set of coherent spatial patterns associated with the oscillation frequency and

temporal decay rate, was employed to investigate the alteration of the

occurrence of dynamic modes between MDD and HCs. Specifically, The BOLD

signals of each subject were transformed into dynamic modes representing

coherent spatial patterns and discrete-time eigenvalues to capture temporal

variations using dynamic mode decomposition. All the dynamic modes were

disentangled into a two-dimensional manifold using t-SNE. Density estimation

and density ratio estimation were applied to the two-dimensional manifolds after

the two-dimensional manifold was split based on HCs and MDD.

Results: The dynamic modes that uniquely emerged in the MDD were not

observed. Instead, we have found some dynamic modes that have shown

increased or reduced occurrence in MDD compared with HCs. The reduced

dynamic modes were associated with the visual and saliency networks while the

increased dynamic modes were associated with the default mode and sensory-

motor networks.
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Conclusion: To the best of our knowledge, this study showed initial evidence of

the alteration of occurrence of the dynamic modes between MDD and HCs. To

deepen understanding of how the alteration of the dynamic modes emerges

from the structure, it is vital to investigate the relationship between the dynamic

modes, cortical thickness, and surface areas.
KEYWORDS

resting-state fMRI, dynamic mode decomposition, major depressive disorder, manifold,
density ratio estimation
1 Introduction

The World Health Organization has reported that

approximately 300 million individuals suffer from the mood

disorder known as major depressive disorder (MDD). MDD gives

rise to psychological symptoms, such as despondent moods and

negative cognitions, as well as physical symptoms, such as sleep

disturbances and fatigue in mild cases, and even suicide in severe

cases (1). Neurotransmitter reuptake inhibitors, such as selective

serotonin reuptake inhibitors and transcranial magnetic stimulation

through electrical stimulation, have been employed in the treatment

of MDD (2–4). Although these treatments are effective, there are

patients whose depressive symptoms improve only partially or not

at all (5). Therefore, the mechanisms underlying MDD need to

be elucidated.

Non-invasive measurement techniques have been utilized to

reveal the mechanism of MDD, with resting-state functional

magnetic resonance imaging (rsfMRI) being the predominant

method (6). To evaluate dynamic changes in blood oxygenation

level-dependent (BOLD) signals using rsfMRI, static functional

connectivity (sFC), dynamic functional connectivity (dFC), and

energy landscape (EL) were employed as indices to portray the

dynamics of whole-brain networks. sFC captures the static

relationships of spontaneous fluctuations that represent

correlations over the entire duration (7, 8), whereas dFC captures

time-resolved spontaneous fluctuations in which functional

connectivity (FC) changes over a short time (9–11). Evaluation of

the static and dynamic relationships of spontaneous fluctuations in

the whole-brain network has revealed that MDD exhibits abnormal

connections in FC, such as the default mode network (DMN),

control executive network (CEN), and salience network (SN) when

compared with healthy controls (HCs) (12–16). Analyzing sFC

involves calculating the correlation between two independent

regions for all pairs (17). Even if a pair of regions is not directly

structurally interconnected, their sFC can exhibit a strong

correlation if both regions receive input from a third region (18).

Hence, it is imperative to simultaneously represent the dynamics of

whole-brain networks based on neural activity across multiple

regions. This is where EL emerges, which utilizes a pairwise

maximum entropy model to represent the dynamics of the whole-
0275
brain network in terms of the activity within each region and the

interactions between two or more regions (19). Moreover, by

defining the functional network between subjects in terms of

energy, it is possible to evaluate the transition from one stable

state to another through the unstable states. Notably, MDD tends to

sink to specific states, and it is difficult to transition from one stable

state to another compared to HCs (20). Although EL excels in

stability analysis across subjects, some issues require prior

assignment of a functional network to each region and

binarization of BOLD signals. In common with sFC, dFC, and

EL, analyzing components of the BOLD signal above 0.1 Hz is a

challenging problem. Therefore, in terms of interactions across

multiple regions, a methodology is required to evaluate the sinking

into specific states under conditions free from functional network

assignment and binarization.

The dynamic mode decomposition (DMD) is a data-driven and

equation-independent approach for analyzing fluid dynamics (21).

DMD calculates eigenvectors and corresponding eigenvalues of the

approximate linear transformation expressing the time evolution of

multidimensional time-series data. Eigenvectors were called

dynamic modes (DMs) representing coherent spatial patterns and

the corresponding eigenvalues were called discrete-time eigenvalues

representing the frequency and time evolution such as growth and

decay. In other words, multiple coherent DMs coexist at a certain

time in multidimensional time-series data and corresponding

temporal characteristics are identified. EL analysis assigns a

functional network to each region, binarizes the BOLD signal, fits

it with a Boltzmann distribution, determines relationships between

activity patterns and energy, and assigns one state on EL at a certain

time in multidimensional time-series data (22). Here, since the

BOLD signals exhibit wave superposition, it is necessary to analyze

stability under conditions where multiple states coexist at a certain

time. DMD was successful and recent studies have applied DMD to

BOLD signals, a type of fluid that exhibits nonlinear spatiotemporal

changes (23–26). This study applied DMD to the BOLD signals

across all frequency bands of HCs and MDD. Subsequently, the

spatial patterns, frequencies, and temporal changes across all

subjects were analyzed in terms of stability.

Analysis of a large dataset of psychiatric disorders based on

rsfMRI (27) using DMD revealed that the number of DMs associated
frontiersin.org
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with MDD decreased in visual networks (VN) and SN, while it

increased in DMN and sensory-motor networks (SMN) when

compared to HCs. Interestingly, DMs’ differences between MDD

and HCs were identified not only within the 0.01–0.1 Hz range in

standard rsfMRI analysis but also extending beyond 0.1 Hz. Applying

t-distribution stochastic neighbor embedding (t-SNE) (28) to DMs

enables the disentangling of the intricate curved surfaces spanned by

DMs into a two-dimensional manifold, allowing for the evaluation of

stability across subjects. Subsequently, DMs resembling resting-state

networks (RSNs) were identified by evaluating the probability density

ratio between HCs andMDD using a two-dimensional manifold. The

amplitudes of the DMs resembling the VN and SNwere similar to the

spatial patterns associated with cortical thickness and surface area

abnormalities in MDD (29).
2 Materials and methods

In this study, we applied DMD to BOLD signals and devised a

method for extracting DMs based on the probability density ratio

between HCs and MDD on two-dimensional manifolds using t-

SNE (Figure 1). First, the BOLD signals of each subject were

transformed into DMs representing coherent spatial patterns and

discrete-time eigenvalues to capture temporal variations using

DMD. Second, all the DMs were disentangled into a two-

dimensional manifold using t-SNE. Finally, density estimation

and density ratio estimation were applied to the two-dimensional

manifolds after the two-dimensional manifold was split based on

the HCs and MDD. The results revealed that MDD tended to sink

into specific DMs in contrast to HCs.
2.1 Dataset

We used the Japanese Strategic Research Program for the

Promotion of Brain Science (SRPBS) dataset (27) (https://
Frontiers in Psychiatry 0376
bicr.atr.jp/decnefpro/data/), along with additional datasets

obtained from various projects. Supplementary Table 1 describes

the protocols at each site, and Supplementary Table 2 describes the

subject information at each site.

The datasets were collected from the Center of Innovation at

Hiroshima University (COI) and the University of Tokyo (UTO),

Hiroshima Kajikawa Hospital (HKH), Hiroshima Rehabilitation

Center (HRC), Hiroshima University Hospital (HUH), and

Yamaguchi University (UYA). COI and UTO follow the unified

protocol but HKH, HRC, HUH, and UYA follow non-unified

protocols. The total number of HCs and MDD was 543 and 302,

respectively, with Beck Depression Inventory-II (BDI-II) scores of

7.5 ± 6.3 and 28.1 ± 10.5, respectively.
2.2 BOLD signals preprocessing

BOLD signals were preprocessed using fMRIPrep version

1.0.8 (http://fmriprep.readthedocs.io/en/1.0.8/workflows.html)

(30). The first 10 s of the data were discarded to allow for T1

equilibration. The preprocessing steps included slice-timing

correction, realignment, coregistration, distortion correction

using a field map, segmentation of T1-weighted structural

images, normalization to Montreal Neurological Institute space,

and spatial smoothing with an isotropic Gaussian kernel of 6 mm

full width at half maximum. “Fieldmap-less” distortion correction

was performed for the test dataset due to the lack of field

map data.
2.3 Preprocess of ROI time series for DMD

It is necessary to mitigate the effects of the protocols and

physiological noise. BOLD signal extraction was performed using

Glasser’s 360 regions of interest (ROI) (31), which excluded the

cerebellum and contained little white matter.
FIGURE 1

Overview of the analysis procedure. First, each subject’s blood oxygenation level-dependent (BOLD) signals were extracted using Glasser’s 360
regions of interest (ROI). Second, the BOLD signals were decomposed into dynamic modes (DMs) and discrete-time eigenvalues using the one-
stacked time-delay coordinates dynamic mode decomposition (tdcDMD). Third, all DMs were disentangled into the two-dimensional manifold using
t-distributed stochastic neighbor embedding (t-SNE). Fourth, density estimation was performed to visualize the features that major depressive
disorder (MDD) sink into the specific DMs compared to healthy controls (HCs). Finally, density ratio distributions between HCs and MDD were
calculated using relative unconstrained least-squares importance fitting (RuLSIF).
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Nilearn’s NiftiLabelsMasker function (https://nilearn.github.io/

stable/index.html) was used for the BOLD signal extraction.

Detrending was applied to eliminate long-term variations, and

BOLD signals were normalized using z-scores to mitigate the

effects of the protocols. When analyzed using the DMD, the

frequencies were computed for each DM. Therefore, band-pass

filtering was not applied.

Confounding factors must be removed when extracting BOLD

signals. The fit _transform function was applied to remove

confounding factors for the 12 regression parameters (six motion

parameters, average signals over the whole brain, and five

anatomical CompCor components).
2.4 One-stacked time-delay
coordinates DMD

BOLD signals were decomposed into DMs and discrete-time

eigenvalues. Time-delay coordinates DMD (tdcDMD) is a method

used for decomposing standing waves into spatiotemporal patterns

with high accuracy (21); tdcDMD was performed using the dmd.py

function in the DMD toolbox (https://github.com/erichson/

DMDpack). As described in a previous study (26), the BOLD

signals of each subject were converted into DMs. As shown in

Equation 1, the BOLD signal matrix X was composed of rows

representing the number of ROI, Nroi and columns representing the

number of measurements, NT.

X = ½ x1 x2 ⋯ xNT
�, (1)

where xk( ∈ RNroi) represents the BOLD signals at time k. The

following matrices were constructed from the BOLD signal matrix

X as shown in Equations 2, 3.

X1 = ½ x1 x2 ⋯ xNT−1 �, (2)

X2 = ½ x2 x3 ⋯ xNT
�, (3)

where X2 represents the matrix with X1 shifted back one

observation. Subsequently, xk+1 was stacked on xk as shown in

Equations 4, 5.

X1aug =
x1 x2 ⋯ xNT−2

x2 x3 ⋯ xNT−1

" #
, (4)

X2aug =
x2 x3 ⋯ xNT−1

x3 x4 ⋯ xNT

" #
, (5)

X2augwas predicted using X1aug so X2aug ≈ AX1aug .

A = X2augX
†
1aug , (6)

where the dagger represents the generalized inverse. Singular

value decomposition was applied to X1aug .

X1aug = USV*, (7)
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where U ,  S,  and  V represent the left singular, singular value,

and right singular matrices of X1aug , respectively. As shown in

Equation 8, the matrix A is rewritten by substituting Equation 7 into

Equation 6.

A = X2augVS−1U*, (8)

the proper orthogonal decomposition was applied to A.

~A = U*AU = U*X2augVS−1, (9)

then eigen decomposition was applied to ~A.

~AW = WL, (10)

where W and  L represent the eigenvector and eigenvalue

matrices of ~A, respectively. X2augVS−1 was multiplied from

the left in Equation 10 and Equation 9 was substituted into

Equation 10.

AX2augVS−1W = X2augVS−1WL,   (11)

where ~A is the similar matrix of A, so they have the same

eigenvalue matrix L but different eigenvector matrices. In

comparing Equations 10, 11, X2augVS−1W can be regarded as the

eigenvector matrix of A. Finally, the eigen decomposition of A was

reconstructed usingW and L and the dynamic mode matrix F was

calculated as shown in Equation 12.

F = X2augVS−1W , (12)

the i-th column of F, which we denote by fi( ∈ C2Nroi ), is the i-

th eigenvector of A. The i-th diagonal element of L, which we

denote by li( ∈ C), is the i-th eigenvalue of A. The phase and

amplitude of li mean the frequency and decay rate of the

corresponding mode. The frequency fi corresponding to the

dynamic mode fi and the eigenvalue li is described as following

Equation 13.

fi =
imag( ln (li))

2pDt , (13)

where Dt, ln( · ) and imag( · ) represent the temporal resolution

in each protocol, natural logarithm, and the imaginary part of a

complex number.
2.5 Two-dimensional manifold with t-SNE

When analyzed using the DMD, pairs of DMs with identical

amplitudes but antiphases emerged. Moreover, DMs representing

brain states describe intricate curved surfaces in a multidimensional

space. In a previous study (26), the modified K-means clustering

algorithm was applied to DMs and treated DMs with identical

amplitudes and antiphases. However, this approach failed to

disentangle intricate curved surfaces in a multidimensional space.

Hence, this study employed t-SNE (28) to disentangle the intricate

curved surfaces spanned by DMs.
frontiersin.org
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The initial 360 rows, which are inherently independent of the

720 rows of the DMs, were used to employ a one-stacked tdcDMD.

Subsequently, the DMs were separated into their real and imaginary

components, stacked together, and applied to t-SNE. When t-SNE

was applied to all DMs of both HCs andMDD, the perplexity varied

from 30 to 10,000. A value of 2,000 was visually selected to achieve

maximum separation between peaks within the two-dimensional

man i f o l d wh i l e k e ep i n g r andom_s t a t e fi x ed . The

sklearn.manifold.TSNE function in Python was employed, with all

parameters set to their default values except perplexity

and random_state.
2.6 Kernel density estimation

It is crucial to select the optimal perplexity at which the peaks

within the two-dimensional manifold achieve maximum

separation. Hence, we separated the peaks by performing a kernel

density estimation on a two-dimensional manifold. The formula for

estimating the probability density r at a given point y, estimated

from points xi(i = 1,  2,  …,  n) of DMs on the two-dimensional

manifold is expressed as following Equation 14:

r(y) =o
n

i
K(y − xi; h), (14)

where kernel K is the Gaussian kernel and bandwidth h is set to

the Scotts factor. Scipy.stats.gaussian_kde function in Python was

used (32).
2.7 Kernel density ratio estimation

The probability density was estimated using kernel density

estimation on the two-dimensional manifolds obtained by

applying t-SNE. Consequently, the distinction between HCs and

MDD was revealed as a different balance in the proportion of DMs

rather than the emergence of unknown DMs. Hence, we estimated

the probability density ratio between HCs and MDD using a

relatively unconstrained least-squares importance fitting (RuLSIF)

(33). In terms of estimation accuracy, it is more precise to directly

estimate the density ratio between HCs and MDD than to indirectly

estimate the density ratio by estimating HCs and MDD’s densities

separately and dividing HCs and MDD’s densities. To improve the

estimation accuracy, various methods have been developed to

directly estimate the density ratio without going through the

density estimation process. RuLSIF was chosen for this study

because its Python code is publicly available and its calculation

speed is fast.

The optimal parameters were automatically selected in the

range of coefficient a = 0, the regularization parameter h = 0:10,  

0:09,  …,   0:01, and Gaussian kernel width s = 1:2,   1:0,   0:8.

RuLSIF was performed using the toolbox (https://github.com/

hoxo-m/densratio_py).

To estimate the density ratio of the area where the HCs’ density

was higher than the MDD’s density, the HCs’ manifold was used as

the denominator, and the MDD’s manifold was used as the
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numerator. To estimate the density ratio for the area where the

MDD’s density was higher than the HCs’ density, the MDD’s

manifold was used as the denominator, and the HCs’ manifold

was used as the numerator.
2.8 Plotting dynamic modes, histogram of
frequency, and discrete-time eigenvalues
greater than 95% significance level

Kernel density ratio estimation was used to calculate the

probability density ratio between HCs and MDD. However, the

specific regions exhibiting significant differences in terms of density

ratio between HCs and MDD remain unknown. To solve this

problem, permutation tests were performed to clarify areas higher

than the 95% significance level and to plot the mean amplitude and

phase of the DMs, a histogram of frequency, and discrete-time

eigenvalues within the significant areas.

First, we randomized the labels of the HCs and MDD in a two-

dimensional manifold. Second, with fixed parameters (a ,  s ,  h) =
(0,   1:0,   0:01), RuLSIF was performed to calculate the maximum

peak value, repeating this process 100 times. Third, we applied the

density-based spatial clustering of applications with noise

(DBSCAN) (34) to cluster points within areas that exhibited

maximum peak values higher than the 95th percentile. Finally, we

plotted the mean amplitudes and phases of the DMs, frequency

histograms, and discrete-time eigenvalues l associated with each

cluster. For the density ratios pMDD(x)=pHCs(x) and pHCs(x)=pMDD

(x), the DBSCAN parameters were set as (eps,  min   samples) =

(1,   100)   and   (0:15,   300), respectively. Points that were not

assigned to a cluster were excluded.
3 Results

3.1 Applying t-SNE, density estimation, and
density ratio estimation to the DMs

First, the two-dimensional manifold was calculated by applying

t-SNE to all DMs across all subjects and was visualized after

separating the HCs and MDD (Figure 2A: HCs, B: MDD).

Second, the perplexity was varied from 30 to 10,000 and

consequently set to 2,000 to maximally separate the peaks in the

two-dimensional manifold. Finally, kernel density estimation was

performed to clarify the distribution features exhibited by the two-

dimensional manifold (Figure 2C: HCs, D: MDD).

In the HCs, the peaks displayed a relatively uniform distribution

(Figure 2C). Conversely, in the MDD group, the peaks exhibited a

bias toward the upper right, lower left, and central areas

(Figure 2D). In other words, MDD tended to sink more into

specific DMs than HCs. In addition, the edge of the MDD

manifold appeared slightly wider than that of the HCs manifold

at the elliptical periphery. To assess these features, density ratio

estimation was performed by applying RuLSIF to the two-

dimensional manifolds.
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3.2 DM’s features in the clusters

The density ratio was calculated using HCs as the denominator

and MDD as the numerator (Figure 2E). Similarly, the density ratio

was calculated using the MDD as the denominator and HCs as the

numerator (Figure 2F). The colored bars represent the value of the

density ratios. For parameter search, a = 0, the regularization

parameter h varied from 0.10 to 0.01, and the Gaussian kernel

width s took values of 1.2, 1.0, and 0.8. As a result, h = 0:01 and

s = 1:0 were selected. After performing the density ratio

estimation, it was necessary to determine the significant areas.

Therefore, a permutation test was performed with a = 0,  h =

0:01,  and  s = 1:0. The labels of HCs and MDD across all DMs

were shuffled, and density ratio estimation was applied to calculate

the maximum peak value 100 times (Supplementary Figure S1).

Subsequently, areas above the 95th percentile of the maximum peak

value were calculated (Supplementary Figures S2A, B) and clustered

using DBSCAN (Supplementary Figures S2C, D).

Glass brain plots depicting the amplitude and phase of the mean

DMs, histograms of frequency, and discrete-time eigenvalues within

clusters in the MDD/HCs (Figure 3) and HCs/MDD (Figure 4)

cases are presented. Because DMs appear in pairs with modes of

identical amplitude and an anti-phase relationship, DMs at

symmetric locations are paired (Figure 2E 1-2, Figure 2F 4-5,

and 6-7).

In the MDD/HCs case, the glass brain plots of DM1 and DM2

were similar to those of DMN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM1 and
Frontiers in Psychiatry 0679
DM2. The glass brain plots of DM3 were similar to those of the

SMN. The discrete-time eigenvalues were relatively numerous

inside the unit circle, indicating not only stability but also

convergence in DM3. Additionally, because both the DMN and

SMN were concurrently active in DM2, the frequency histogram

was likely to show an intermediate distribution between the

distributions in DM1 and DM3.

In the HCs/MDD case, the glass brain plots of DM4 and DM5

were similar to those of the VN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM4 and

DM5. The histogram of the frequency showed a peak at

approximately 0.03 Hz. The glass-brain plots of DM6 and DM7

were similar to those of the SN. The discrete-time eigenvalues were

distributed along the unit circle, indicating stability in DM6 and

DM7. The histogram of the frequency showed a peak at

approximately 0.15 Hz. The small number of DMs in DM7 likely

resulted in a negative bias of the phase and scattering of the

frequency histogram.
4 Discussion

We devised a methodology for estimating brain-state stability

across subjects by applying DMD to BOLD signals; t-SNE was

applied to the DMs to disentangle the intricate curved surface

spanned by the DMs into a two-dimensional manifold (Figure 2).

Density ratio estimation was then performed on the two-

dimensional manifolds of HCs and MDD (Figures 2E, F).
A B

D E F

C

FIGURE 2

Two-dimensional manifolds of HCs (A) and MDD (B) with t-SNE, kernel density estimation of HCs (C) and MDD (D), and density ratio distribution
estimated by relative unconstrained least-squares importance fitting (RuLSIF) in the case of MDD/HCs (E) and HCs/MDD (F). The points on the two-
dimensional manifold indicate DMs (A, B). The curved lines on the density estimation indicate contour lines (C, D). The red numbers indicate the
peak number. In the MDD/HCs case, the peaks located at the far left and far right were not assigned numbers due to their lack of significance at the
95% confidence level (E, F). MDD/HCs shows increased DMs in MDD, and HCs/MDD shows reduced DMs in MDD.
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Consequently, it was revealed that MDD did not cause the

emergence of unknown DMs distinct from HCs but sank into

specific DMs, such as DM1, DM2, and DM3.

In machine learning using DMD, there are two important aspects

of comparing HCs and MDD. One is interpretability in terms of

physiology and the other is classification performance for biomarker.

Therefore, individual-level classification between HCs and MDD was

performed to demonstrate usability to the biomarker development

(Supplementary Figure S6). As a result, when evaluated using 10-fold

cross-validation (Supplementary Figure S7), the balanced accuracy
Frontiers in Psychiatry 0780
(Bacc) was slightly better than that in the previous study (12) using

sFC (Supplementary Figure S8).
4.1 Dynamic modes and cortical
abnormalities of MDD

The spatial patterns of reduced DMs corresponded to the

patterns observed in the cortical thickness and surface area

abnormalities (29). Specifically, DM6 and DM7 exhibited spatial
FIGURE 3

Mean DMs’ amplitude, phase, histogram of frequency, discrete-time eigenvalue l in each MDD/HCs cluster. The left numbers correspond to the
peak numbers in Figure 2. DM1 resembles the default mode network (DMN), has a low frequency, and is stable. DM2 resembles DMN, has a flat
frequency, and is stable. DM3 resembles a sensory-motor network (SMN), has high frequency, and tends to converge.
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patterns similar to the reductions in cortical thickness observed in

adult MDD, whereas DM4 and DM5 displayed spatial patterns

resembling the reductions in cortical surface area observed in

adolescent MDD. Therefore, the reduction in DM4, DM5, DM6,

and DM7 levels plays a key role in elucidating the mechanisms

of MDD.
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Widespread abnormalities have been discovered in MDD, from

microscopic phenomena such as the genome and molecular

pathways to macroscopic phenomena such as BOLD signals.

Microscopic mutations are environmentally influenced, promote

synaptic degeneration with inflammation, lead to mesoscopic

neuronal firing abnormalities weighted by the neurotransmitter
FIGURE 4

Mean DM’s amplitude, phase, histogram of frequency, discrete-time eigenvalue l in each HCs/MDD cluster. The left numbers correspond to the
peak numbers in Figure 2. DM4 resembles a visual network (VN), has a low frequency, and is stable. DM 5 resembles a VN, has a low frequency, and
is stable. DM6 resembles a salience network (SN), has a high frequency, and is stable. DM 7 resembles an SN, has a high frequency, and is stable.
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map, and result in macroscopic abnormalities, such as BOLD

signals (35–39). Related to mesoscopic phenomena, some

abnormalities are observed in the reuptake of neurotransmitters,

such as serotonin, dopamine, norepinephrine, and GABA (40–42)

resulting in neurotransmitter concentrations in plasma metabolism

(43). Related to macroscopic phenomena, MDD exhibits reduced

cortical thickness and surface area compared with HCs (29). As if to

connect these two different scale phenomena, both the cortical

abnormalities and receptor maps share similar spatial patterns (44,

45). These combined abnormalities likely resulted in sinking into

specific DMs, such as DM1, DM2, and DM3. Hence, if a subject

transitions from HCs to MDD, it is plausible that MDD would

submerge into these particular DMs alongside reductions in cortical

thickness and surface area, as well as neurotransmitter

reuptake abnormalities.

As a first step in integrating multiple pieces of information that

reflect different aspects of MDD, it is vital to investigate the

relationship between alterations in stability based on DMs and

reductions in cortical thickness and surface area using large

datasets. In a comprehensive study on white matter alterations in

HCs and MDD, fractional anisotropy was found to be decreased in

adult MDD but not significantly different in adolescent MDD

compared to HCs (46). Conversely, adolescent MDD exhibited

decreased cortical surface areas, particularly in regions such as the

orbitofrontal cortex and lateral occipital cortex, when compared to

HCs (29). Therefore, in addition to examining the structural

connectivity based on the fiber structure in the white matter, it is

essential to consider stability measures based on reduced cortical

surface areas in both HCs and MDD. Notably, sFC can be well

explained (approximately 0.9) by geometric modes (GMs) derived

from the cortical geometric structure in HCs (47), suggesting that

GMs could serve as a valuable stability indicator based on

brain structure.

The integration of multiple indicators will be effective in

psychiatric care. A combination of temporally stable trait

biomarkers and temporally variable state biomarkers is necessary

for early diagnosis and intervention using mechanism-based

treatments (48). Therefore, structural connectivity and GMs, as

temporally stable trait biomarkers, are employed as criteria for

assessing stability. Additionally, DMs serve as temporally variable

state biomarkers for evaluating the current cortical stability. The

integration of the stability associated with cortical structural and

geometric alterations and BOLD signals may shed light on

previously unknown mechanisms underlying MDD.
4.2 Inconsistency with the previous studies

In MDD, negative emotions are associated with increased

activity in the DMN (49) and motor impairment is associated

with slow gait and slumped posture (50). Consequently, DM1 and

DM2, resembling the DMN, probably emerged for experiencing

negative emotions, and DM3, resembling the SMN, probably

emerged for experiencing movement difficulties.

In the EL-based method (20), non-melancholic MDD tended to

sink into the left CEN, whereas melancholic MDD tended to sink
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into both the left CEN and dorsal DMN states. In contrast, in the

DMD-based method, the MDD sinks into brain states resembling

the DMN and SMN. These differences can be attributed to the

following three factors. First, the binarization process affects the

results. In the DMD-based method, the strong amplitudes of all

DMs, except for DM3, were approximately 0.03 in regions

associated with the DMN, VN, and SN, and medium amplitudes

were approximately 0.01 in regions associated with the SMN. In

contrast, the strongest amplitudes of DM3 were associated with the

SMN, but the amplitude value was only 0.003, which is

approximately 1/10 compared with the other DMs. Conversely,

the EL-based method requires the binarization of BOLD signals

after functional network assignment to a specific region. This

binarization process may have led to an outcome in which

regions with amplitudes smaller than the average were considered

inactive. Second, the larger number of subjects in our study may

lead to more robust results than the previous study. This study

included 845 subjects, whereas the previous study included 262

subjects. Lastly, regarding the subtype of MDD, this study did not

differentiate between non-melancholic and melancholic MDD,

whereas previous studies analyzed these subtypes separately.

These methodological discrepancies and different numbers of

subjects may account for the sinking into different states between

the DMD- and EL-based methods.

In a large dataset study using the sFC (13), hypoconnectivities were

observed within the SMN and SN, as well as between the SMN, SN,

dorsal attention network (DAN), and VN in MDD. However, no

significant differences were found between the DMN and fronto-

parietal networks (FPN). In contrast, this study identified

abnormalities in the DMN, SMN, VN, and SN but no abnormalities

in the DAN. A previous study using the same dataset showed that there

were only a few abnormal FCs related to the DAN andmany abnormal

FCs related to the DMN (12). It is worth noting that the DMN and

DAN exhibit an inverse correlation, wherein DAN activation leads to

DMN suppression (51). Therefore, it is possible that the subjects in this

study activated the DMN, while those in the larger dataset study used

an sFC-activated DAN (13).
4.3 Relationships among DMs’ spatial
pattern, histogram of frequency, and
discrete-time eigenvalue

The amplitude of DM3 exhibited a spatial pattern resembling

that of the SMN and was approximately 0.003, which was

approximately 1/10 smaller than the amplitudes of the other

DMs. The amplitudes in DM6 and DM7 were stronger in the SN

and slightly stronger in the SMN than in the other DMs. The

amplitudes of DM1 and DM2 were stronger in the DMN and

slightly stronger in the SMN. Consequently, the SMN tended to

appear more frequently in conjunction with other networks.

Furthermore, the observation that the SMN tended to co-occur

with low-frequency DM1 and DM2, as well as high-frequency DM6

and DM7, suggests that DM3 transmitted information across a

broad range of frequencies, resulting in a smoother frequency

distribution compared to the other DMs.
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A comparative study investigating empirical and simulated sFC

and dFC proposed that SMN serves as a driver of cortical dynamics

(52). The SMN probably exhibits weak amplitudes and a wide

frequency range across all DMs because of its role as a driver in

cortical dynamics.
4.4 Limitation of the current method

t-SNE was employed to disentangle the intricate curved surfaces

spanned by the DMs and analyze the inter-subject stability. However,

the method used in the study encountered two problems. First, the

computation time was considerable, requiring approximately one week

to apply t-SNE to approximately 160,000 DMs, search for the optimal

perplexity, estimate the density ratio using RuLSIF, and calculate the

clusters based on permutation tests. Consequently, the search for

optimal parameters was limited to perplexity during the t-SNE. It is

noteworthy that t-SNE encompasses additional parameters, including

the early exaggeration factor, learning rate, angle, and random_state,

which also influence the manifold. These parameters were determined

using a heuristic method (53) in the sklearn.manifold. Second, memory

usage has become a serious concern as increasing the perplexity of t-

SNE consumes up to approximately 100 GB. To analyze larger datasets,

alternative methods such as deep learning or other approaches need to

be developed.

When performing rsfMRI, some subjects rarely lacked BOLD

signals in the cerebellum. Additionally, BOLD signals from the

white matter often contain significant noise. To avoid these issues,

the stability analysis between HCs and MDD in this study utilized

Glasser ’s 360 ROI, which excludes the cerebellum and

predominantly consists of gray matter. Therefore, to analyze

intersubject stability using ROI that includes the cerebellum and

white matter, alternative methods such as deep learning or other

approaches need to be developed instead of this method.

Supplementary Figure S5 shows the normalized number of

DMs for each protocol, which was obtained by dividing the

number of DMs in the cluster by the total number of DMs in the

protocol. The COI and UTO employed a unified protocol, whereas

HKH, HUH, HRC, and UYA employed independent protocols.

However, the normalized histogram of site in COI tended to be

closer to UYA and HKH, while the normalized histogram of site in

UTO tended to be closer to HUH and HRC. Supplementary Table 1

showed that Siemens manufactured COI, UYA, and HKH while GE

manufactured UTO, HUH, and HRC. The inter-protocol

differences in DM6 and DM7 were more dependent on

manufacturers such as Siemens and GE than on protocol

unification (Supplementary Table 1). In a previous study on

physiological noise (54), the approximately 0.2 Hz component of

BOLD signals was affected by respiration. In addition, the FD values

of DM 6 and 7 were higher than those of other DMs, as shown in

Supplementary Figures S3, S4. However, the Bacc in the case of

using all frequencies was higher than that of using 0.01–0.08 Hz, as
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shown in Supplementary Figure S8. Thus, as in previous research

(26), there are more spontaneous fluctuations representing cortical

dynamics than noise associated with respiration, head movement,

and manufacture.
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Fronto-striato network
function is reduced in
major depressive disorder
Reoto Kijima1, Keita Watanabe2, Naomichi Okamoto1,
Atsuko Ikenouchi1, Hirofumi Tesen1, Shingo Kakeda3

and Reiji Yoshimura1*

1Department of Psychiatry, University of Occupational and Environmental Health, Fukuoka, Japan,
2Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan, 3Department of
Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
Introduction:Major depressive disorder (MDD) is a major cause of poor quality of

life and disability and is highly prevalent worldwide. Various pathological

mechanisms are implicated in MDD, including the reward system. The human

brain is equipped with a reward system that is involved in aspects such as

motivation, pleasure, and learning. Several studies including a meta-analysis

have been reported on the reward system network and MDD. However, to our

knowledge, no studies have examined the relationship between the reward

system network of drug-naïve, first-episode MDD patients and the detailed

symptoms of MDD or age. The fronto-striato network (FSN) is closely related

to the reward system network. The present study primarily aimed to elucidate

this point.

Methods: A total of 89 drug-naïve first-episode MDD patients and 82 healthy

controls (HCs) patients were enrolled in the study. The correlation between the

FSN and age and the interaction between age and illness in the FSN were

investigated in 75 patients in the MDD group and 79 patients in the HC group

with available information on the FSN and age. In addition, the association

between the FSN and the total scores on the 17-item Hamilton Rating Scale

for Depression (HAMD-17) and scores in each symptom item was analyzed in 76

MDD subjects with information on the FSN and HAMD-17. The significance of

each result was evaluated according to a p-value of <0.05.

Results: Age was inversely correlated with the FSN (p=2.14e-11) in the HC group

but not in the MDD group (p=0.79). FSN varied with the presence of MDD and

with age, particularly showing an interaction with MDD and age (p=1.04e-08).

Specifically, age and the presence or absence of MDD each affected FSN, but the

effect of age on FSN changed in the presence of depression. FSN did not

correlate with total HAMD-17 scores or scores in each item.

Discussion: The reward system may be dysfunctional in patients with MDD. In

addition, the effect could be greater in younger patients. Meanwhile, there is no

correlation between the function of the reward system and the severity of MDD

or the severity of each symptom. Thus, the reward system network may be an

important biological marker of MDD, although careful consideration should be

given to age and its association with the severity of the disorder.
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Conclusion: The reward system function is decreased in MDD patients, and this

decrease may be more pronounced in younger patients, although further

research is still needed.
KEYWORDS

major depression, reward system, striatum, prefrontal cortex, first episode
1 Introduction

Major depressive disorder (MDD), which presents with symptoms

including depressed mood, decreased interest in activities, and reduced

experience of pleasure, is a leading cause of reduced quality of life and

disability. According to the World Health Organization, depression

affects more than 300 million people worldwide, accounting for

approximately 4.4% of the population (1). It is multifaceted and

involves a combination of genetic, environmental, and

neurobiological factors. For example, altered neurotransmission and

abnormalities in the hypothalamus–pituitary–adrenal axis related to

chronic stress, inflammation, reduced neural plasticity, and network

dysfunction have been reported (2).

Humans and many other animals have a neural circuit called the

reward system that is activated when a need is satisfied or is expected

to be satisfied and produces a pleasant sensation in the individual.

The reward system is involved in key components of behavior such as

motivation, pleasure, and learning (3). The reward system uses

dopamine as its primary neurotransmitter (4), and it consists of a

network involving the ventral tegmental area of the midbrain, nucleus

accumbens and posterior striatum of the basal ganglia, amygdala, and

cingulate cortex of the limbic system, and frontal association areas

among other areas of the frontal lobe (5, 6). The basal ganglia are

involved in reward responses, behavioral choices, learning, and

memory (7), while the frontal lobes are involved in reward-based

decision-making, cognitive control, and emotion regulation (8).

The pathophysiology of MDD is unlikely to result from a single

brain region or neurotransmitter system, and MDD is now

conceptualized as a multidimensional system-level disorder

affecting discrete but functionally integrated pathways (9). One

important factor of this has been suggested to be a possible

abnormality in the neural circuitry of MDD. Particularly, a link

between MDD and the reward system has been noted. Neuroimaging

studies have pointed to dysfunctions in the prefrontal cortex and

striatum, which regulate the limbic system and brainstem structures

involved inmediating emotional behavior, during the development of

MDD (10). In addition, patients with MDD have reduced strength of
imaging; FSN, fronto-

Scale for Depression;

Analysis; MDD, major
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functional connections between the ventral striatum and the ventral

medial prefrontal and anterior cingulate cortices (11), which may be

related to abnormalities in reward processing, motivation, and

anhedonia. There are five cortico-basal ganglia loop circuits,

namely, the motor loop, oculomotor loop, dorsolateral prefrontal

loop, lateral orbitofrontal loop, and anterior cingulate gyrus loop

circuits (12, 13). A recent meta-analysis demonstrated dysfunctions

of reward processing behavior in MDD, demonstrating that

depression was associated with small to moderate reward-

processing impairments and of varying magnitudes across several

reward-processing subdomains (14). This is important because the

cognitive and neural mechanisms underlying reward processing and

its subdomains are relatively well understood (14). Therefore, the

reward system function may be a biological marker for MDD, and

interventions that improve the reward system function may be

effective in treating MDD. Further, the reward system may be a

new therapeutic target. We previously used structural imaging to

investigate the structural covariance network in the brain and

extracted the fronto-striato network (FSN) (15). This network

consists of the striatum and prefrontal cortex and is closely

associated with the reward system (16).

Although an association between MDD and the reward system

based on the fronto-striato-parietal network has been suggested, to

our best knowledge, no study has investigated the effects of first-

onset, drug-naive MDD and age on the fronto-striato-parietal

network. Recent evidence supports that the effect of age goes

beyond the prefrontal cortex and includes adaptive connectivity

changes in the fronto-striato-parietal network (17). Thus, age may

influence the FSN. Therefore, this study aimed to investigate the

influence of MDD and age on FSN, as well as the association

between FSN and the severity of MDD and each symptom, using

the structural connectivity method in first-episode, medication-

naïve MDD patients and healthy subjects.
2 Materials and methods

2.1 Participants

MDD patients were recruited from the university hospital of the

University of Occupational and Environmental Health, Japan.

Consecutive patients presenting at the Occupational and Medical
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University Hospital with a first episode ofMDD and nomedication use

were recruited. MDD was diagnosed through a fully structured clinical

interview using the Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition, Text Revision Research Edition, and the

Structured Clinical Interview for DSMDisorders Non-Patient Version.

The inclusion criterion was never meeting the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition, Text Revision criteria for

Axis I disorders during a psychiatrist interview. The exclusion criteria

were as follows (1): mild cognitive impairment as assessed using the

Mini-Mental State Examination (2); Mini-Mental State Examination

scores of <27 (3); history of neurological disease or the presence of Axis

I (e.g., schizophrenia, other affective disorders) or Axis II (e.g.,

personality disorders, mental retardation) psychiatric disorders (4);

comorbid substance use disorders; and (5) unwillingness to provide

informed consent. Depression severity was assessed using the 17-item

Hamilton Rating Scale for Depression (HAMD-17) (18). None of the

MDD patients in the study had a previous episode of mood disorder.

Healthy controls (HCs) were recruited from the neighborhood; the HC

group had never been diagnosed with a mental illness based on the

findings of the SCID.

This study was approved by the Ethical Review Board of our

institution and was conducted in accordance with the principles of

the Declaration of Helsinki. Written informed consent was obtained

from all patients prior to their participation in this study.
2.2 MRI acquisition

Magnetic resonance imaging was performed using a 3TMR system

(Signa EXCITE 3T; GE Healthcare, Waukesha, WI, USA) equipped

with an eight-channel brain phased-array coil. Rather than assessing

functional connectivity at rest, this study utilized a structural covariance

network based on brain structural imaging. The original T1 images

were acquired using three-dimensional (3D) fast-spoiled gradient-

recalled acquisition in a steady state. The acquisition parameters

were set as follows: repetition time, 10 ms; echo time, 4.1 ms;

inversion time, 700 ms; flip angle, 10°; field-of-view, 24 cm; section

thickness, 1.2 mm; and resolution, 0.9 × 0.9 × 1.2 mm. All images

underwent correction for image distortion due to gradient non-
Frontiers in Psychiatry 0388
linearity using the Grad Warp software program (19) and for

intensity inhomogeneity with the “N3” function (20).
2.3 Network extraction

In this study, 3D T1-weighted images were used to analyze the

structural covariance network. we initially employed a data-driven

approach using the network extraction method described in our

previous study. This method leverages Source-based Morphometry

and Independent Component Analysis (ICA) to identify naturally

occurring covariance patterns across brain regions. First, gray matter

segmentation, normalization, and modulation were analyzed using

Statistical Parametric Mapping 12 (Institute of Neurology, London,

UK) software, employing a fully automated method as described by

Ashburner (21, 22). The resulting modulated gray matter images

were smoothed using an 8-mm full-width-at-half-maximum

Gaussian kernel. Subsequently, the GIFT toolbox (https://

icatb.sourceforge.io/groupica.htm) with minimum length was

employed to estimate the independent components from all

modulated gray matter images of HCs and patients with MDD.

ICA was performed using a neural network algorithm (Infomax), and

reliability was ensured by repeating the ICA 20 times using the

ICASSO algorithm (https://research.ics.aalto.fi/ica/icasso/). The

source matrix was used to determine the association between IC

and voxels, whereas the mixing matrix included a loading coefficient

to illustrate the relationship between each subject and each

component. Sixteen networks were extracted based on the required

minimum description length. The source matrix was then converted

back into a 3D image to visualize structural networks, scaled to unit

standard deviations (Z maps), and defined as |Z|>2.5. A

neuroradiologist reached a consensus to delineate the network

representing the FSN (Figure 1). To improve the quality of the

network images, a detailed list of coordinates and regions for each

network was added (Table 1). This clarified the specific brain regions

and their coordinates for each network, including the FSN, and

ensured that the reward network was accurately represented. This

also clarified the distinction between ventral-frontal-striatal and

dorsal-frontal-striatal areas.
FIGURE 1

The structural covariance network of the fronto-striato network with |Z|>2.5. The red/yellow colors correspond to regions in which the voxel
volumes show a positive correlation.
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2.4 Statistical analysis

Pearson’s correlation coefficient was used to examine the

correlation between the FSN and age in the MDD and HC

groups. In addition, in each group, FSN was used as the

dependent variable and age and sex as independent variables, and

multiple regression analysis was performed to check the p-value,

thereby adjusting for the effect of sex in the two groups. We also

analyzed the interaction of age and disease status in relation to FSN

after adjusting for sex. Spearman’s correlation coefficient was used

to examine the correlation between the FSN and each HAMD-17

item. To eliminate the problem of multiple comparisons, the results

were processed using the Benjamini–Hochberg method. All

statistical analyses were performed using EZR software version

4.0.2 (Developer: Kanda, Y.; Address: Saitama Medical Center,

Jichi Medical University, Saitama, Japan), with p-values less than

0.05 considered statistically significant.
3 Results

A total of 89 patients with drug-naïve first-episode MDD and 82

HCs were enrolled. Overall, 75 patients in the MDD group and 79

individuals in the HC group for whom information on age and FSN

was available were included in the analysis of the correlation between

FSN and age and the interaction between age and disease on FSN. To

analyze the association between the FSN and HAMD-17, 76 patients in

the MDD group with information on the FSN and HAMD-17 were

included. The primary background factors are listed in Table 2.
3.1 Effects of depression and age on FSN

Figure 2 shows the results of the correlation analysis between

age and FSN in the HC and MDD groups. Age was significantly
Frontiers in Psychiatry 0489
correlated with FSN in the HC group but not in the MDD group.

Age had a significant effect on FSN in the HC group even after

adjustment for sex, while age had no significant effect on FSN in the

MDD group even after such adjustment (Table 3). The effects of age

and the presence of disease on FSN are shown in Table 4. There was

a significant interaction between age and presence of disease.
3.2 Correlation of FSN with total HAMD-17
score and each HAMD-17 item score

There was no correlation between FSN and the total HAMD-17

scores or each item score (Table 5).
4 Discussion

This study compared the relationship of FSN with age between

healthy subjects and patients with depression and analyzed the

effects of the presence of MDD, age, and their interactions on FSN.

The results showed an inverse relationship between FSN and age in

HCs, whereas this relationship did not exist in patients with MDD.

Furthermore, the FSN was significantly affected by both the

presence of disease and age, indicating a significant interaction

between the two.

The inverse relationship between FSN and age in HCs suggests

that the function of this network diminishes with age. A previous

study, in which network extraction was performed by functional

magnetic resonance imaging (fMRI), also found a negative

association between age and brain network connectivity,

including the default mode network that contains the superior

and middle frontal gyri, posterior cingulate, middle temporal gyrus,

and superior parietal region (23). Meanwhile, the FSN is involved in

reward processing, motivation, and decision-making in patients

with MDD. However, this inverse correlation was not found in

patients with MDD in the current study. This indicates that the

younger the patient with MDD, the lower the FSN function and the

lower the age-related correlation. Considering the inverse

correlation found in HCs, these results suggest that in MDD, the

FSN function is lower in younger patients and this phenomenon is
TABLE 1 Structural covariance networks.

Anatomical
regions

Volume
(cc)
left/right

Max z-value for left/right
hemisphere
(Talairach coordinates x,
y, z)

Transverse
temporal gyrus

1.0/1.0 11.9 (-42, -30, 13)/5.1 (46, –23, 11)

Superior
temporal gyrus

11.5/6.7 11.5 (-43, -31, 17)/6.5 (53, -10, 3)

Insula 3.8/3.6 10.6 (-46, -31, 20)/6.1 (45, -27, 19)

Inferior
parietal lobule

4.5/2.6 8.4 (-52, -35, 24)/6.2 (52, -29, 24)

Postcentral gyrus 1.7/2.6 8.3 (-52, -27, 18)/5.5 (55, -28, 21)

Sub-gyral 1.8/0.6 6.7 (-40, -34, 22)/4.9 (42, -27, 22)

Precentral gyrus 0.8/3.0 4.7 (-46, -13, 8)/4.9 (55, -7, 6)

Middle
temporal gyrus

2.1/0.4 4.4 (-56, -5, -5)/4.6 (58, -2, -4)
TABLE 2 Background characteristics of patients with MDD and
healthy controls.

MDD
patients (n=89)

Healthy
controls (n=82)

p Value

Age (years) 54.78 ± 16.23 (n=86) 35.40 ± 12.05 (n=82) <0.01*

Males/females 39/47 56/26 0.03*

FSN -0.24 ± 0.93 (n=77) 0.23 ± 1.02 (n=79) 0.03*

Total
HAMD-17
score
(0–52)

21.71 ± 7.32 (n=83) −
fro
*Statistically significant (p<0.05).
MDD, major depressive disorder; FSN, fronto-striato network; HAMD-17, 17-item Hamilton
Rating Scale for Depression.
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no longer present as aging progresses. This indicates that MDD has

a neurobiological basis and that abnormalities in the FSN, which are

assumed to be related to the reward system, contribute to depressive

symptoms. Further, FSN dysfunction may be a biological marker for

the diagnosis for MDD. A large amount of evidence indicates a link

between MDD and the reward system. Blood flow differences have

been observed in regions associated with the dopaminergic system

(24), and the levels of homovanillic acid, a dopamine metabolite, are

decreased in the cerebrospinal fluid and transvenous plasma of

patients with MDD (25, 26). The noted changes in central

dopaminergic function in MDD provide indirect evidence of

dysfunction of the reward system in MDD.

fMRI studies have demonstrated that dopaminergic neurons

project from the ventral tegmental area of the midbrain to several

brain regions, including the nucleus accumbens (25, 26). One fMRI

study showed that MDD patients on long-term medication have

reduced responses to reward learning signals, particularly in the

ventral striatum and anterior cingulate gyrus (27). Functional

neuroimaging studies of patients with MDD have shown that

ventral striatal regions, such as the nucleus accumbens, are less

active, and orbitofrontal cortex activity is elevated during reward

tasks (28). The reward system is a network of multiple regions, and

reports indicate that all regions comprising the reward system are

altered in patients with MDD, providing indirect evidence for

reward system dysfunction in MDD. The reward system is

considered a network in the brain, and some studies have

indicated to a link between MDD and the reward system

network. A resting-state fMRI study focused on the nucleus

accumbens-based reward system circuitry in patients with MDD

confirmed the important role of reduced functional coupling in the

reward network in the neuropathology of MDD (29). Our report

focused on how age affected the association between MDD and the

reward network, and the findings may help in further

understanding the relationship between MDD and reward system

dysfunction. The interaction between age and the presence of

disease shown in this study indicated that MDD may have a

specific effect on age-dependent changes in the FSN. This
Frontiers in Psychiatry 0590
underscores the importance of considering age in the treatment

and management of MDD and suggests the possible need for an

individualized approach for patients with depression in different

age groups.

The current study also found that the FSN was not correlated

with the total HAMD-17 score or each item score in MDD patients.

The ability to predict when and where rewards will occur plays an

important role in human positive behavior. Neuroimaging studies

suggest that the amygdala, orbitofrontal cortex, and ventral striatum

are involved in reward prediction (30, 31). To select a different

behavior from multiple behavioral options, the predicted rewards

associated with each behavior must be compared and evaluated, and

the behavior with the highest reward among the predicted rewards

must be selected. Involvement of the orbitofrontal cortex has also

been suggested for this selection (7). Given the involvement of the

reward system in motivating behavioral choices, it appears that

dysfunction of the reward system may make it difficult for subjects

to motivate their behavior. In addition, the ventral tegmental area of

the midbrain projects dopamine neurons to the striatum and

prefrontal cortex, as well as to the amygdala and hippocampus,

which are involved in emotion (32). From this perspective, FSN

may be associated with depressive mood, a core symptom of

depression. Loss of pleasure is a major symptom of MDD (33).

However, a recent systematic review of fMRI-based studies indicates

that impairment of the reward system, as indicated by

hypoactivation of the striatum and blunted frontal lobe

sensitivity, is associated with impaired reward processing in MDD

(34). This suggests that impairment of the reward system is

associated with depressive mood and loss of pleasure, which are

core symptoms of depression.

However, the present study found no correlation between FSN

and total HAMD-17 scores or individual item scores in MDD

patients. MDD is a highly heterogeneous syndrome based on a

complex pathology with a wide variety of phenotypes. Particularly,

although the FSN plays an important role in the pathophysiology

and symptoms of depression, it may also work in complex

associations (or collaborations) with other neural networks to
A B

FIGURE 2

Correlation between FSN and age. (A) There is an inverse correlation between FSN and age (correlation coefficient=0.666, p<0.01) in the HC group.
(B) There is no inverse correlation between FSN and age (p=0.79) in the MDD group (bottom row). FSN, fronto-striato network; HC, healthy
controls; MDD, major depressive disorders.
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create various phenotypes of depression. Our previous study found

no significant differences in the salience, medial temporal lobe,

default mode, medial temporal lobe, default mode, and central

executive network between the MDD and HC groups (15). This

could be one of the reasons for the lack of association with the total

HAMD-17 score and each item score in the current study. The

present results may reflect that the pathophysiology of depression is

due to dysfunction of multiple brain networks and not only of the

FSN (35). The association of brain structure and function with

complex behaviors should be investigated in large-scale studies to

ensure reliability (36). Considering the previous studies on the

association between reward system network impairment and

depressive symptoms, it is possible that the current study did not

have an adequate sample size, which may have affected the results.
4.1 Limitations

This study had several limitations. As this was a cross-sectional

study that enrolled a small number of patients, the temporal

relationship between depressive symptoms and the frontal-basal

ganglia network remains unknown. Some of the MDD subjects in

this study received psychotherapeutic treatments such as cognitive-

behavioral therapy and dynamic psychotherapy, and these

treatments may have influenced the results. Considering that the

relationship between brain structure and function and complex
Frontiers in Psychiatry 0691
behavior should be investigated using large-scale studies to ensure

reliability (36), the sample size was not sufficient in the current

study. In addition, the FNS was determined through subjective

visual assessment in the study subjects in whom the brain volumes

were highly interlinked. Although the FSN is classified into five loop

circuits (12, 13), it is unclear which circuit the present network falls

into. Although the results indicated a significant difference in age

between the HC and MDD groups, the analysis of the correlation

between FSN and age in each group did not consider the imbalance

in age between the two groups. This may have affected the

conclusions. The current study did not obtain information on the

duration of MDD symptoms. Although the disease duration would

not be long because the patients only had their first episode and

were untreated, the duration may still have influenced the results. In

addition, although the frontal-basal ganglia network includes the

nucleus accumbens and the prefrontal cortex, which are parts of the

reward system, it may also include other areas that are not related to

the reward system. Therefore, the representativeness of the frontal

lobe-basal ganglia network as an evaluative value of the reward

system has not been fully elucidated. In addition, the correlations

were weak, and the present study intended to demonstrate

correlations, not causality. Further studies are required to

ascertain whether these correlations are clinically meaningful or

therapeutically useful.
TABLE 5 Correlation between FSN and HAMD-17 total score/each item.

Correlation
coefficient

p
Value

Total -0.00545 0.962

Depressed mood -0.261 0.0226

Feelings of guilt -0.0902 0.438

Suicide -0.191 0.0981

Insomnia - early 0.115 0.322

Insomnia - middle 0.196 0.0892

Insomnia - late 0.11 0.345

Work and activities -0.28 0.0144

Retardation - psychomotor

Agitation 0.0847 0.467

Anxiety - psychological -0.117 0.314

Anxiety - somatic 0.0317 0.786

Somatic symptoms GI -0.173 0.135

Somatic symptoms - General 0.146 0.208

Sexual dysfunction -
menstrual disturbance

0.115 0.323

Hypochondria 0.33 0.00364

Weight loss by history 0.00895 0.939

Insight 0.184 0.111
fron
p-Value adjusted by Bonferroni method=0.00278.
HAMD-17, 17-item Hamilton Rating Scale for Depression.
TABLE 4 Effects of age, sex, and presence of depression on FSN.

Estimate Standard
error

t
Value

p
Value

Age -0.056486 0.007722 -7.315 1.47e-11*

Depression -2.608625 0.436544 -5.976 1.62e-08*

Sex -0.171657 0.139890 -1.227 0.222

Age:
Depression

0.058825 0.009700 6.064 1.04e-08*
*Statistically significant (p<0.01).
MDD, major depressive disorder; FSN, fronto-striato network.
TABLE 3 Effect of age and sex on FSN.

MDD

Estimate Standard error t Value p Value

Age 0.002283 0.006306 -0.342 0.733

Sex -0.157289 0.211776 -0.743 0.460

HC

Estimate standard error t value p-value

Age -0.56556 0.007161 -7.898 1.73e-11*

Sex -0.186593 0.184593 -1.011 0.315
*Statistically significant (p<0.05).
MDD, major depressive disorder; FSN, fronto-striato network; HAMD-17, 17-item Hamilton
Rating Scale for Depression.
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4.2 Conclusion

The function of the reward system is decreased in patients with

MDD, and the extent of this decrease may be more pronounced in

younger patients. Meanwhile, the overall severity of MDD and each

severity are not related to the decline in reward system function.

However, age may need to be taken into consideration. In addition,

the usefulness of using the severity of the disease may need to be

carefully judged. Further studies are needed to validate these findings.
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Weakened effective connectivity
between salience network
and default mode network
during resting state in
adolescent depression
David Willinger1,2,3*, Isabelle Häberling1, Iva Ilioska4,
Gregor Berger1, Susanne Walitza1,2 and Silvia Brem1,2*

1Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry
Zurich, University of Zurich, Zurich, Switzerland, 2Neuroscience Center Zurich, University of Zurich
and ETH Zurich, Zurich, Switzerland, 3Department of Psychology and Psychodynamics, Karl
Landsteiner University of Health Sciences, Krems an der Donau, Austria, 4Department of Cognitive
Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical
Centre, Nijmegen, Netherlands
Adolescent major depressive disorder (MDD) is associated with altered resting-

state connectivity between the default mode network (DMN) and the salience

network (SN), which are involved in self-referential processing and detecting and

filtering salient stimuli, respectively. Using spectral dynamical causal modelling,

we investigated the effective connectivity and input sensitivity between key

nodes of these networks in 30 adolescents with MDD and 32 healthy controls

while undergoing resting-state fMRI. We found that the DMN received weaker

inhibition from the SN and that the medial prefrontal cortex and the anterior

cingulate cortex showed reduced self-inhibition in MDD, making them more

prone to external influences. Moreover, we found that selective serotonin

reuptake inhibitor (SSRI) intake was associated with decreased and increased

self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest

that adolescent MDD is characterized by a hierarchical imbalance between the

DMN and the SN, which could affect the integration of emotional and self-related

information. We propose that SSRIs may help restore network function by

modulating excitatory/inhibitory balance in the DMN and the SN. Our study

highlights the potential of prefrontal-amygdala interactions as a biomarker and a

therapeutic target for adolescent depression.
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1 Introduction

Major depressive disorder (MDD) is a common and debilitating

condition with onset peaking in adolescence (1) which is estimated

to have a lifetime prevalence of approximately 11% (2). Adolescent

MDD exerts detrimental effects on physical and mental health,

impairing academic, occupational, and social functioning.

Additionally, it elevates the risk of recurrent MDD episodes in

adulthood, co-occurring psychiatric and medical conditions, such

as anxiety disorders, and suicide, the second leading cause of

mortality in individuals aged 15 to 19 years (3, 4). The underlying

neurobiological factors of the emergence and early trajectory of

MDD in adolescence remain poorly understood, despite the known

adverse consequences of this disorder.

Previous studies have reported several changes of large-scale

functional brain networks in adult and adolescent depression.

Large-scale networks are defined as a distributed set of brain

regions that show a temporal correlation during a task or

spontaneous thought (i.e., rest (5)). They are thought to support

embedding predictions and prediction errors which dynamically

adjust the brain’s internal generative models based on sensory

inputs and prior expectations (6, 7). These models have a

hierarchical structure, meaning that higher-level processing

regions generate predictions that are sent to lower-level regions,

where they are compared with the incoming sensory data. The

prediction error – the mismatch between predictions and data – is

propagated back to the higher-level regions to update the models

(7). During rest, it has been proposed that the dynamic fluctuations

quantified as connectivity in large-scale networks represent an

optimization of generative models for future interactions (8).

Multiple studies found that connectivity of the default mode

network (DMN) is affected in MDD. Core nodes of the DMN, the

medial prefrontal cortex (MPFC) and posterior cingulate cortex

(PCC) have shown alterations in children and adults with or at risk

for MDD (9–14). A recent longitudinal study linked altered

developmental trajectory of DMN connectivity to depressive

symptoms in youth (15), indicating that clinically relevant

alterations manifest relatively early in brain development. In

addition, there is compelling evidence that core nodes of the

affective network (the amygdala) and the ventral attention

network [dorsal anterior cingulate cortex, ACC (16)] – together

forming the salience network [SN (17)] – show aberrant

connectivity in adolescent (11, 18–22) and adult MDD (13, 14).

These alterations in large-scale networks are intriguingly

aligned with the concepts of predictive processing and their

potential role in the aetiology of depressive symptoms. It has

been assumed that those network changes represent the neural

manifestation of the predictive biases and altered perception

characteristic of depression, further connecting the theoretical

framework with the observed neurobiology (23, 24). As

individuals with MDD tend to anticipate negative events more

frequently than positive ones, the connectivity changes of core

nodes of the DMN become crucial. The DMN’s involvement in self-

referential processing and its role in maintaining the most abstract
Frontiers in Psychiatry 0295
predictions of the internal models could contribute to the formation

of these biased predictions (24–26). The SN’s role in regulating

attention (27) and encoding the relevance of both external and

internal stimuli could in turn influence the selection of which

sensory prediction errors to attend to by modulating the gain on

prediction error signals orginating from the sensory periphery (28).

Additionally, aberrant connectivity within core nodes of the SN

might amplify the attentional focus on (negative) prediction errors.

This could lead to a vicious cycle where heightened sensitivity to

negative information reinforces maladaptive perception.

Furthermore, the intricate interactions between these large-

scale networks, as proposed by the triple-network model (29),

might be pivotal in understanding the emergence and persistence

of depressive symptomatology. Altered connectivity between these

networks, not only underlie maladaptive self-referential processing

and emotional regulation but also hinder the brain’s ability to

effectively update its internal model and adapt to external cues. This

insensitivity to external cues, driven by skewed predictions and

impaired network communication, likely contributes to the

cognitive and emotional symptoms commonly observed in

depression (24, 30). More specifically, altered amygdala function

has been suggested to contribute to maladaptive weighting of

relevance (i.e., loss of precision or heightened uncertainty about

relevance) of incoming bottom-up signals in depression (19, 24, 28,

31). The resulting imprecision of bottom-up signals may entail

failure of updating the internal model and their dismissal which

may underlie symptoms such as rumination (24). In light of this,

there is evidence of reduced connectivity between the amygdala and

other SN regions in adolescent depression (32) which could indicate

impaired detection and integration of relevant sensory signals that

challenge the models’ prediction. Altered connectivity between

DMN and SN (e.g., the dorsal ACC, 16) could in turn be

interpreted as altered precision over the predictions of the

internal model, contributing to a “locked-in state” of negative

thoughts (28). Altogether, current evidence suggests that the

interactions between intrinsic brain networks, the DMN and the

SN, might be closely linked to depression and contribute to the

cardinal symptoms of rumination and negative mood.

The goal of the current study was to examine the functional

integration of DMN and SN in adolescent depression. We used

spectral dynamic causal modelling (spDCM; (33)) in the Parametric

Empirical Bayes (PEB) framework to study the effective

connectivity of the DMN and the important nodes of the SN

during rest using multi-echo fMRI. Spectral DCM allows to

model the directed relationships between brain networks and

determines regions that are driving activity in other regions and

their respective input sensitivity or excitatory-inhibitory balance

(i.e., interregional self-inhibition or synaptic gain). In the predictive

coding framework the excitatory-inhibitory balance reflects the

precision of prediction errors encoded in the excitability of

superficial pyramidal cells that is affected by both classical

neuromodulators and inhibitory interneurons – lending the self-

inhibition parameter to a straight-forward interpretation in terms

of efficiency of information processing and network synchrony (i.e.,
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1386984
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Willinger et al. 10.3389/fpsyt.2024.1386984
a higher the self-inhibition reduces the influence of other

regions) (34).

We investigated connectivity between the MPFC and PCC

comprising the principal nodes of the DMN, and the dorsal ACC

and bilateral amygdalae as part of the SN. The primary hypothesis of

our study was that the effective resting-state connectivity between the

amygdalae and the default mode network is altered in adolescents

with MDD (14, 19). In addition, we hypothesised that the amygdalae

show hypoconnectivity within the SN (32). Finally, we expected a

decrease in the self-inhibition parameters of the spDCM, which

regulate the excitatory-inhibitory balance of the regions. Such a

decrease would lead to more excitability within the DMN regions,

indicating aberrant encoding of precision (24, 33, 35).
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2 Materials and methods

2.1 Participants

Thirty MDD patients and 32 healthy individuals matched for

age, IQ, sex, and handedness participated in this study (Table 1).

To assess the participants, a semistructured clinical interview

was administered using either the Schedule for Affective Disorders

and Schizophrenia for School-Age Children–Present and Lifetime

Version (Kiddie-SADS, 36) or the Mini-International

Neuropsychiatric Interview for Children and Adolescents (MINI-

KID, 37). Criteria for the diagnosis of MDD in accordance with both

the International Classification of Diseases (ICD-10) and the
TABLE 1 Clinical and demographic characteristics of study participants.

Controls MDD Test statistic p valuea

Age (years), range (min-max) 16.2 (1.9),
11.2-18.8

16.1 (1.4),
12.8-18.7

U=553.5 .425

Sex (males), No. (%) 10 (30%) 10 (33%) c2(1)=0.07 .796

Handedness (right), No. (%) 32 (97%) 28 (93%) c2(1)=0.46 .500

In-scanner movement (FD, mm) 0.16 (0.06) 0.17 (0.06) t(61)=0.69 0.492

CD-RISC 72.9 (10.1) 38.6 (15.6) t(58)=10.16 <.001

CDI 8.4 (6.6) 29.6 (9.3) U=38.0 <.001

Anhedonia 2.3 (2.2) 10.5 (2.8) U=13.5 <.001

Negative mood 2.2 (2.0) 6.4 (2.4) U=88.0 <.001

Negative self-esteem 1.0 (1.2) 5.0 (1.7) U=42.0 <.001

Ineffectiveness 1.2 (1.2) 5.0 (1.9) U=54.5 <.001

Interpersonal problems 1.1 (1.2) 3.7 (1.5) U=74.5 <.001

Stomach 0.6 (0.6) 1.1 (0.8) U=301.5 .018

RIAS IQ 104.5 (6.9) 108.0 (8.7) t(60)=-1.75 .079

PSS 22.4 (6.6) 28.8 (7.7) t(57)=-3.44 .001

SDQ 8.8 (5.3) 16.3 (5.6) t(56)=-5.26 <.001

WISC-IV Digitspan (forward) 8.9 (2.1) 8.8 (2.0) t(60)=0.32 .747

WISC-IV Digitspan (backward) 8.6 (1.6) 9.4 (2.0) t(60)=-1.70 .094

WISC-IV Mosaic 57.0 (5.7) 59.0 (6.2) t(56)=-1.27 .208

Current Medication, No. (%)

No medication NA 10 (33%) NA NA

SSRI NA 18 (60%) NA NA

Dual-action antidepressantb NA 2 (7%) NA NA

NERI NA 2 (7%) NA NA

Antipsychoticc NA 2 (7%) NA NA

Methylphenidate NA 2 (7%) NA NA
Data are presented as mean (SD) if not indicated otherwise.
CD-RISC, Connor-Davidson Resilience Scale; CDI, Children Depression Inventory; FD, framewise displacement; RIAS, Reynolds Intellectual Assessment Scales; PSS, Perceived Stress Scale;
SDQ-K, Strength and Difficulty Questionnaire for Children; WISC, Wechsler Intelligence Scale for Children.
aUncorrected p values for between-group comparisons; significance threshold p<.05.
bSerotonin-noradrenalin reuptake inhibitor.
cUsed for behavioral control.
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Diagnostic and Statistical Manual of Mental Disorders (DSM-5) were

met by all patients, as determined by the Kiddie-SADS or MINI-KID,

respectively. Inclusion criteria for study participation encompassed

individuals within the age range of 8 to 18 years. Exclusion criteria

encompassed any contraindication for magnetic resonance imaging

(MRI) and, for the control group, the absence of any prevailing

psychiatric axis-1 diagnosis. All participants gave their written

informed consent and were financially reimbursed at the end of the

study. Patients received psychotherapy as needed during the study.

This study was approved by the ethics committee of the Canton of

Zurich and was conducted in accordance with the Declaration

of Helsinki.
2.2 Imaging and preprocessing

Image data acquisition was conducted on an Achieva 3T scanner

(Philips Medical Systems, Best, the Netherlands) using a 32-channel

head coil array. We acquired a T1-weighted structural scan of each

subject [MP-RAGE, aligned at AC-PC, flip angle = 9°, voxel size = 1.05

× 1.05 × 1.2mm3, field of view = 270 × 253mm2, 170 sagittal slices].

Subsequently, T2*-weighted images were acquired using a multi-echo

multi-slice echo-planar images sequence [200 volumes per session,

TR = 2300ms, TE = 13,31,49ms, 33 slices, voxel size = 3.75 × 3.75 ×

3.79mm3, matrix size = 64 × 64px, flip angle = 80°, gap = 0.39mm,

SENSE-factor = 2,MB-factor = 2] during a ~6minute resting state with

eyes open. During preprocessing, the volumes corresponding to the

three echoes were separately despiked (spmup_despike.m, https://

github.com/CPernet/spmup/wiki/spmup_despike.m) and slice-time

corrected using SPM12. The motion parameters were calculated

from the first echo and applied to the remaining echoes using

mcFLIRT from the FSL toolbox (38). TEDANA, that is part of the

Multi Echo Independent Component Analysis (MEICA) package

[https://afni.nimh.nih.gov/pub/dist/src/pkundu/meica.py (39)], was

used to perform state-of-the-art TE-dependent ICA-based denoising

and T2* weighted averaging of optimally combined echoes and fully

leverage all available data – particularly in ventral regions (40). The

denoised images were coregistered to the structural scan and

normalized to the Montreal Neurological Institute (MNI)-152

template space using the deformation fields derived from

segmentation. Finally, we applied spatial smoothing using a

6mm full-width-half-maximum kernel to the functional

images. Subsequently, a general linear model was created

including the motion parameters and discrete cosine transform for

band-pass-filtering (frequency range 0.08–0.01 Hz). An inspection of

the mean framewise displacement (FD; 41) in patients and controls

showed no evidence of differences in head motion between groups, t

(60)= 0.003, p = .99, no individual subject showed a mean FD in excess

of 0.27mm.
2.3 Timeseries extraction and
statistical analysis

The coordinates for extraction of regional signals for the

spDCM analysis were based on the literature (42, 43). We created
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spherical search volumes (r=8mm) for the network nodes of the

MPFC (x=-1, y=54, z=27mm MNI) and the PCC (x=0, y=-52,

z=7mmMNI), the dorsal ACC (x=0, y=21, z=36mmMNI), and the

bilateral amygdalae (AMY; x= ± 19, y=-2, z=-21mm MNI). We

centered the spherical ROI around each participant’s maximum

within the search volume and extracted the first eigenvariate of the

time course of active voxels (p <.05, uncorrected). Realignment

parameters obtained during preprocessing were partialed out.

We applied spectral dynamic causal modelling (spDCM) to

estimate intrinsic effective connectivity from resting state fMRI data

(44). SpDCM is a method that models the cross-spectra of the blood

oxygenation level dependency (BOLD) signals, which are a more

comprehensive measure of connectivity than the conventional zero-

lag correlation. SpDCM allows us to determine the directed

connectivity strengths between brain regions that drive their

activity, as well as their input sensitivity or synaptic gain, which

corresponds to the excitatory/inhibitory balance of each region.

We set up a fully connected model on all interregional

connections. The analysis was conducted within the PEB

framework where the full DCM model was estimated in an

empirical Bayesian inversion scheme for each participant (45).

Group effects on the DCM parameters (i.e., connectivity

strengths) were analysed with a second-level PEB model to find

group differences between patients and controls within the specified

brain network. We used a Bayesian model reduction procedure to

discard the model parameters not contributing to the model

evidence in a greedy-search. This procedure stops when it

removes a connection that decreases the model evidence. We

analyzed the average intrinsic connectivity with group as

predictor and sex, age, and handedness as covariates. To

investigate potential effects of selective serotonine reuptake

inhibitor (SSRI) intake in the eighteen patients on SSRIs, we

added an additional regressor for SSRI intake to the PEB model.

One patient was excluded from this analysis due to not disclosing

their medication status. Group-level parameters were determined

by averaging the best 256 nested models, weighted by their posterior

probability. Parameters were considered significant when exceeding

a 95% posterior probability of being present, based on the model

evidence. As a last step, to validate our results, we used leave-one-

out cross-validation (LOOCV; spm_dcm_loo.m) and assessed the

predictive validity of the individual parameters of the connectivity

model. To this end, we used the list of class probabilities for each

subject and used it to retrieve the Receiver Operating Characteristic

(ROC) curve and the Area Under the Curve (AUC) – the

probability of a correct classification – with 95% confidence

bounds across the cross-validation runs.
3 Results

3.1 Demographics and clinical symptoms

Patients and controls did not differ significantly in age, sex, IQ,

handedness, or in-scanner movement (p >.05). They differed in

clinical symptom scales: patients scored significantly higher on the

Child Depression Inventory (p <.001), Connor-Davidson Resilience
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Scale (p <.001), Perceived Stress Scale (p = .001) and the Strength

and Difficulty Questionnaire (p <.001). In-scanner movement

during the scan measured as framewise displacement did not

differ between the groups (p = 0.492). Sample characteristics and

test results are summarized in Table 1.
3.2 Spectral DCM model structure
across groups

The overall model structure across groups revealed by spDCMwas

primarily characterized by the directed negative coupling between SN
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and DMN (Table 2, Figure 1A). In particular, we found significant

connectivity from the lAMY and PCC (expected value = −0.314 Hz,

PP = 1.00) and MPFC (expected value = −0.234 Hz, PP = 1.00) and

from rAMY to PCC (expected value = −0.425 Hz, PP = 1.00) and

MPFC (expected value = −0.234 Hz, PP = 1.00). A unidirectional

inhibitory connection from the ACC to the PCC portion of the DMN

was also significant across both groups (expected value = −0.222 Hz,

PP = 1.00). Connectivity within SN was characterized by functional

coupling from the lAMY to rAMY (expected value = 0.234 Hz, PP =

1.00) and from the rAMY to the ACC (expected value = −0.149 Hz,

PP = 1.00). Other connections were pruned from themodel as they did

not contribute significantly to the model evidence (Table 2, Figure 1A).
TABLE 2 Connectivity strength (posterior probability) during resting state obtained by Bayesian model averaging of PEB model parameters.

Connection type Common MDD SSRI Sex Age Handed.

Endogenous parameters

PCC→lAMY – – – – – –

PCC→rAMY – – – – – –

PCC→MPFC – – – – – –

PCC→ACC – – – – – –

MPFC→PCC – – – -0.080 0.058 (1) –

MPFC→ACC – – – – – –

MPFC→lAMY – – – – – –

MPFC→rAMY – – – – – –

ACC→PCC -0.222 (1) – – – – 0.198 (1)

ACC→MPFC – – – – – –

ACC→lAMY – – – – – –

ACC→rAMY – – – – – –

lAMY→PCC -0.314 (1) 0.111 (1) – -0.09 – –

lAMY→MPFC -0.229 (1) 0.098 (1) – – -0.061 –

lAMY→ACC – – – – – –

lAMY→rAMY 0.234 (1) – – – – –

rAMY→PCC -0.425 (1) 0.167 (1) – – – –

rAMY→MPFC -0.234 (1) 0.094 (1) – – – –

rAMY→ACC -0.149 (1) – – – -0.062 (1) –

rAMY→lAMY – – – – – –

Self-inhibition parameters

lAMY→lAMY 0.603 (1) – – – – –

rAMY→rAMY 0.760 (1) – – – 0.047 (1) –

ACC→ACC 0.134 (1) -0.217 (1) -0.175 (1) – – –

MPFC→MPFC 0.331 (1) -0.119 (1) 0.128 (1) 0.107 – –

PCC→PCC -0.280 (1) – 0.166 (1) – – –
Between-region connections are in units of Hz. Self-inhibition parameters, where the source and target are the same, are the log of scaling parameters that multiply up or down the default value
−0.5Hz. Posterior probabilities are given in the brackets. n = 61. lAMY, left amygdala; rAMY, right amygdala; ACC, anterior cingulate cortex; MPFC, medial prefrontal cortex; PCC, posterior
cingulate cortex.
“–” means “Pruned from the full model”.
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3.3 Aberrant connectivity from amygdala
to default mode network in depression

We found evidence that connectivity in patients is significantly

altered compared to healthy controls. Most prominently, the

connections between bilateral amygdalae and both nodes of the

DMN were affected (Figure 1B). Participants with MDD exhibited

weaker inhibitory (more positive) connectivity between lAMY and

DMN (MPFC: expected value of group difference = 0.098 Hz,

posterior probability, PP = 1.00; PCC: expected value of group

difference = 0.111 Hz, PP = 1.00), and rAMY and DMN (MPFC:

expected value of group difference = 0.094 Hz, PP = 1.00, PCC:

expected value of group difference = 0.167 Hz, PP = 1.00).

Furthermore, the self-inhibition of both MPFC (expected value of

group difference = −0.119, PP = 1.00) and ACC (expected value of

group difference = -0.217, PP = 1.00) was decreased in patients. A

LOOCV within the PEB framework showed that patients were

identified significantly better than random classification [area under

the curve, AUC = 0.76, 95% CI (0.62 0.86), Figure 2]. When

performing an LOOCV for the individual parameters, the ACC

self-connection [AUC = 0.73, 95% CI (0.59 0.84)] was a significant

predictor for diagnostic status.
3.4 Connectivity for selective serotonin
reuptake inhibitors

An exploratory analysis of effects of SSRI intake revealed that

the self-inhibition of both nodes of the DMN increased (MPFC:

expected value of difference = 0.128 Hz, PP = 1.00; PCC: expected

value of difference = 0.166 Hz, PP = 1.00) whereas self-inhibition of

the ACC in the SN decreased (expected value of difference = -0.175

Hz, PP = 1.00, Figure 1C). The lower this parameter, the more

readily the region is excited by the network inputs, i.e., patients
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receiving SSRIs during the study had increased input sensitivity in

the ACC but decreased sensitivity in the DMN.
4 Discussion

The aim of this study was to compare brain connectivity of

adolescents with MDD and matched healthy controls using spDCM

during resting state. In our study cohort comprising 30 MDD
A B C

FIGURE 1

Spectral DCM analysis during resting state. (A) The common effect reflects the average connectivity and model structure across all participants.
(B) Connectivity differences between controls and patients were found between amygdala and the core nodes of the DMN, as well as the self-
inhibition parameters of MPFC and ACC. The latter regions were disinhibited (i.e. more sensitive to input) compared to healthy controls. (C) Patients
taking SSRI showed decreased self-inhibition in the ACC and increased self-inhibition in the MPFC and PCC compared to patients not taking SSRIs.
Detailled results are reported in Table 2. ACC, anterior cingulate cortex; DMN, default mode network; HC, healthy controls; lAMY, left amygdala;
MDD, major depressive disorder; MPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; Pp, posterior probability; SSRI, selective serotonin
reuptake inhibitor; rAMY, right amygdala; SN, salience network.
FIGURE 2

Predicting the diagnostic status using the spDCM connectivity
parameters. The receiver operating characteristic (ROC) curve
depicted here represents the outcome of a leave-one-out cross-
validation procedure applied to the DCM analysis. The curve
illustrates the trade-off between sensitivity and specificity for the
predictive model across different thresholds. The area under the
curve (AUC) serves as a statistical measure of the model’s ability to
correctly classify a new participant as having MDD or not. An AUC of
1 indicates perfect predictive accuracy, whereas an AUC of 0.5
suggests no discriminative power, equivalent to random chance.
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patients, we conducted our analysis with a subset of 29 participants

(excluding one patient), along with 32 healthy controls, as we

examined the resting-state effective connectivity between principal

nodes of the DMN and SN. Consistent with the growing literature

that MDD is associated with a dysfunction of interactions of large-

scale networks (46), our results indicate that altered effective

connectivity within and between DMN and SN is a core feature

of adolescent MDD. A leave-one-out cross-validation analysis

showed that the effect size of DMN-SN interactions is sufficiently

large to provide higher than chance prediction of diagnostic status

in patients and healthy controls.

Corroborating our first hypothesis, we found that patients

showed consistent weaker inhibition between the SN – particularly

bilateral amygdalae – and the two principal nodes of the DMN

(MPFC, PCC). This finding is in agreement with previous studies that

report increased connectivity between the SN and the DMN in adult

(9–14) and adolescent MDD patients (11, 18–22). Dysregulation of

the affective brain during rest (i.e., weaker inhibitory bottom-up

connectivity from SN to DMN) has been suggested to lead to

excessive “emotional coloring” of thoughts and to symptoms such

as rumination, negative affect, and an excessive self-focus (19). This is

in line with the idea that altered large-scale network connectivity

between the DMN and the SN is associated with maladaptive self-

referential processing and emotional regulation in the triple-network

model (29). Moreover, it has been suggested that depression is

associated with differential integration of salience or precision

signals (i.e., attentional control in the terms of predictive brain) in

the brain (14). In particular, the amygdala is thought to carry

information related to uncertainty about the predicted sensory

input to the cortex (28, 31, 47, 48). In accordance with predicitive

processing theory, these results could therefore indicate that

amygdala-DMN dysregulation reflect a failure to estimate the

precision for incoming sensory data for allostatic regulation and

thereby sustaining depressive symptoms (24). Although research is

only beginning to unveil the underlying neurobiological mechanisms

of predictive processing, our findings suggest that changes in

amygdala-DMN connectivity play a pivotal role in adolescent

depression in accordance with earlier work (11, 18, 19).

Second, our results show that patients had a weaker self-

inhibition of the ACC. Reduced self-inhibition might be

interpreted as loss of precision. The self-inhibition parameter

indicates how strongly a region inhibits its own activity when it

receives inputs from other regions. In conjunction with the overall

inhibitory connection from the rAMY to the ACC, this is consistent

with a previous functional connectivity study conducted by

Pannekoek et al. (21), who reported increased negative

connectivity between the rAMY and ACC. The ACC plays a

pivotal role in visceromotor control, serving as a hub that can

initiate appropriate actions when the brain detects sensory

prediction errors arising from either external stimuli or the

internal milieu (28). In this context, the stronger inhibition

observed from the amygdala to the ACC in patients might be

linked to altered processing dynamics of behavioral control.

Specifically, a heightened inhibition could impede the ACC’s

capacity to effectively detect and respond to prediction errors,

which are crucial for guiding adaptive behavioral adjustments.
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Besides the ACC, the MPFC also showed an increase in

excitability in patients, exacerbating aberrant bottom-up

influences from the amygdalae on its function.

The predictive coding theory posits that the excitatory-

inhibitory balance primarily moderated by neuromodulatory

systems and GABAergic interneurons governs the the precision of

prediction errors in the superficial pyramidal neurons within a

hierarchical cortical network (6, 24). Prediction errors are signals

that measure the mismatch between priors on upper levels and

sensed information on lower levels, which are thought to be crucial

for learning and updating internal models of the environment. By

modulating the gain or excitability of superficial pyramidal cells

within a region, self-connections modulate the precision of the

prediction error. A loss of synaptic gain control in a given area

could reduce the precision of information encoded within a region,

and diminish its influence over lower level areas. In our model, this

would correspond to a loss of influence (i.e., precision) of the more

abstract priors in cortical high level areas (MPFC and ACC) over

the more concrete bottom-up sensory data. Together with weaker

amygdalar inhibition of the DMN, we suspect that imprecise prior

beliefs will shift the weight in cortical updating to ascending

autonomic information. In terms of this framework, this might

represent a critical loss of precise encoding of uncertainty und

would entail a model of the world that looks less predictable and

more surprising – a take with remarkable parallels to the learned

helplessness theory (49).

Interestingly, for patients who received SSRIs, self-inhibition in

the ACC was further decreased compared to patients who did not

receive SSRI treatment. This altered synaptic gain by SSRIs is

believed to represent a mechanism by which SSRIs can improve

clinical outcomes (50). By enhancing the excitability or sensitivity of

the ACC to external input, such as from the amygdala, SSRIs may

facilitate the learning and updating of internal models of the

environment, and promote the resolution of uncertainties,

facilitating the regaining of control over internal beliefs and

reducing the weight on bottom-up signals. Moreover, patients

who received SSRIs had comparable levels of self-inhibition in the

MPFC to healthy controls, in contrast to patients who did not

receive SSRI treatment. This observation may indicate restored

synaptic gain and increased network efficiency in MDD patients,

potentially aiding in regaining control over precision estimates of

internal beliefs. A recent study of brain connectivity in adolescent

MDD reported that SSRI treatment responders have a distinct

connectivity profile compared to healthy controls and non-

responders (11). Specifically, they exhibited greater DMN-SN

inhibition (MPFC, ACC) and greater within-SN inhibition

(amygdala, ACC), which appeared to facilitate the response to

SSRI treatment. These findings suggest that brain connectivity

could serve as a valuable marker for predicting and monitoring

treatment response in MDD. However, the precise mechanisms and

implications of SSRI-induced changes in brain connectivity remain

unclear and warrant further investigation.

Given the complex interactions between the multiple

neurotransmitter systems (e.g., serotonin, dopamine, GABA,

glutamate) on the synaptic level, it is impossible to disentangle

individual contributions with spDCM that investigates neuronal
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ensembles. Nevertheless, several studies suggest reduction of GABA

levels in the prefrontal cortex signalling in adolescent (51) and adult

depression (52, 53). Animal studies show that the modulation of

GABAergic interneurons can reestablish the excitation-inhibition

balance (54) and that chronic SSRI treatment can stimulate the

neurogenesis of GABAergic interneurons (55). Further evidence for

this interpretation stems from the growing literature of ketamine in

depression, that implicate the ACC as key target for the mood

enhancing effect (56). Although the exact mechanism of

antidepressant effect of ketamine remains unknown to date, it has

been suggested that the blocking of NMDA receptor on GABA

interneurons – and thereby attenuating GABA inhibition, which in

turn leads to activation of pyramidal cells and promotes the release

of brain-derived neurotrophic factor – might be critical for the

alleviation of symptoms in adults (57) and adolescents (58). Yet,

scrutinizing the individual contributions of neurotransmitters

remains a difficult challenge, because of the intricate interactions

on the synaptic level and multiple receptor subtypes expressed on

GABAergic interneurons.

This study reveals new insights into the intrinsic brain

connectivity in adolescents with MDD, however, it is not without

limitations. Although our sample size is rather common for

neuroimaging studies, it also reflects the recruitment challenges

for this particular patient group. We used cross-validation

procedures in our analysis to ensure the generalizability of results,

nevertheless, future studies should replicate our results in larger

cohorts to enhance the robustness of our findings and allow for

more nuanced analyses. Second, to confirm clinical utility of these

connectivity-based measures, longitudinal studies are required to

study the change of symptoms alongside with changes in

connectivity. The aforementioned study by (11) was the first to

follow adolescent MDD patients to investigate treatment effects on

effective connectivity longitudinally. Still, more studies that assess

brain connectivity in parallel with treatment multiple times will be

needed to understand the trajectories of symptoms in relation to

neurobiological changes. Furthermore, in this study we focussed on

the interactions between the DMN and the SN. Previous network

models also implicate other large-scale networks (e.g. the cognitive

control network, CCN, or reward network, RN) in depression (46).

Understanding how neurodevelopmental trajectories between the

DMN, SN, CCN, or RN affect mood will be pivotal for a

comprehensive model of the disorder. Lastly, the scope of our

study did not extend to the assessment of counseling interventions,

which are distinct from psychotherapy in both accessibility and

methodology. Future research should aim to include these

interventions to better understand their potential in enhancing

mental health outcomes.

In conclusion, this study sheds new light on the neurobiology of

mechanisms in adolescent depression. We highlight the importance

of the effective connectivity between – and within – DMN and SN

during resting state in adolescent MDD. This connectivity pattern

might represent a potential neurobiological marker of adolescent

MDD and may be used to measure and predict depression. Our

results suggest a new direction for studying mental health problems

in adolescents and their respective treatments.
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Hippocampal subfield
morphology from first episodes
of bipolar disorder type II and
major depressive disorder in a
drug naïve Chinese cohort
Enzhao Cong1,2, Yingyan Zhong1, Mengyue Wu3, Haiying Chen1,
Yiyun Cai1, Zheng Ling1, Yun Wang1, Hui Wen1, Yao Hu1,
Huifeng Zhang1, Yan Li1, Xiaohua Liu1, Pingfang Zhong4,
Weijie Lai5, Yifeng Xu1* and Yan Wu1*

1Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
2Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China, 3X-LANCE
Lab, Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, AI
Institute Shanghai Jiao Tong University, Shanghai, China, 4Affective Disorder Department, Lincang
Psychiatric Hospital, Lincang, China, 5Psychiatric Department, Zhangzhou Fukang Hospital,
Zhangzhou, China
Introduction: Symptoms during the onset of major depressive disorder [MDD]

and bipolar disorder type II [BD-II] are similar. The difference of hippocampus

subregion could be a biological marker to distinguish MDD from BD-II.

Methods: We recruited 61 drug-naïve patients with a first-episode MDD and BD-II

episode and 30 healthy controls (HC) to participate in amagnetic resonance imaging

[MRI] study. We built a general linear model (one-way analysis of covariance) with 22

hippocampal subfields and two total hippocampal volumes as dependent variables,

and the diagnosis of MDD, BD-II, and HC as independent variables. We performed

pair-wise comparisons of hippocampal subfield volumes between MDD and HC,

BD-II and MDD, BD-II and HC with post hoc for primary analysis.

Results: Weidentifiedthree regions thatdifferedsignificantly in sizebetweenpatients

and controls. The left hippocampal fissure, the hippocampal–amygdaloid transition

area (HATA), and the right subiculumbodywere all significantly larger in patients with

MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal

volume increased significantly, especially on the left side comparing toHC.However,

we found differences between MDD and BD-II were not statistically significant. The

volume of the left HATA and right subiculum body in BD-II was larger.

Conclusions: The sample size of this study is relatively small, as it is a cross-

sectional comparative study. In both MDD and BD-II groups, the volume of more

left subregions appeared to increase. The left subregions were severely injured in

the development of depressive disorder.
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1 Introduction

The characteristics of depressive episodes of bipolar disorder

type II [BD-II] are very similar to those of a major depressive

disorder [MDD]. However the prevalence of BD-II is 4.5% less than

that of MDD (16.2%) (1) and easily misdiagnosed in early episodes

(2). The difficulty in identifying the first episode of depression in

BD-II increases the possibility of misdiagnosis (2, 3). This

misdiagnosis affects the choice of treatment options, and BD-II

depressive episodes are often accompanied by anxiety

characteristics and a high risk of self-injury and suicide (4, 5). If a

depressive episode of BD-II is misdiagnosed as a depressive episode

of MDD and then they were prescribed antidepressants, it can lead

to mixed episodes or manic episodes, increasing the risk of suicide

(6, 7). Therefore, early identification of depressive episodes of BD-II

and intervention are very important. Exploration of the biological

markers of BD-II lays the foundation for early diagnosis and

intervention (8). Being able to distinguish BD-II from MDD early

in the course of the disease would allow the provision of appropriate

and effective treatment (9, 10). In this paper we set out to find

biomarkers that would distinguish BD-II from MDD.

We chose to examine the hippocampus because of earlier

findings suggesting that the size of the hippocampus might alter

with changes in mood, and that cellular and molecular mechanisms

associated with mood disorders were localised to specific

hippocampal subfields (11). The hippocampus has important

functions in the regulation of emotion and declarative memory

(12). It has been shown that the volume of the hippocampus is

smaller in MDD (13–18) and also smaller in bipolar disorder (19,

20). However, few studies have compared hippocampal

substructures in MDD with BD-II depression (21, 22). A series of

articles including Cao et al., and an ENIGMA Consortium study

found that hippocampal volume was significantly reduced and

changed in patients with bipolar disorder type I [BD-I] (11, 23,

24) or in a bipolar disorder affected group including BD-I and BD-II

(25). However, there are few articles exploring specifically BD-II

depressive episodes which are similar to episodes of MDD.

Exploring the differences between these is very important and

leads to an exploration of important markers for differentiation.

Some researchers found that hippocampal subfield volume

reductions were more prominent in patients with MDD than with

BD-II (26), while others found patients with BD-II had reduced

volumes of the hippocampal subfields compared with those with

MDD, especially in the left CA4, GCL, ML and both sides of the

hippocampal tail (11)). Furthermore, the duration of bipolar

disorder was negatively correlated with the volume of the

hippocampal subfields, which evidenced the neuroprogressive

nature of BD-II (24, 26). The specific reduction of the

hippocampal subfield in MDD is found in the cornu ammonis

and dentate gyrus (27). The differences of hippocampal subfields

between MDD and BD-II are helpful in understanding

hippocampal neuroplasticity in them (27) and in discriminating

them through structural MRI data (28).

Some researchers believe that BD-II is a progressive

neurodegenerative change (Schneider, DelBello et al., 2012; Abe,

Ching et al., 2022) and bipolar disorder progresses at the same time
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as the volume of the hippocampus shrinks (Cao, Bauer et al., 2016

(29). For BD-II, the CA1 area in the hippocampus is believed to be

reduced, which may be an important sign of severe mental disorder

(30). However, in these studies, the fact that patients were

undergoing treatment and the severity of the disorder were not

considered, and the recurrence of the disorder and the specific type

of BD were often regarded as unimportant factors, with notably few

studies exploring the impact of the early development stage of BD-II

on the hippocampus.

In this paper we hypothesize that: 1). We hypothesize that

patients with BD-II will have same changes in the volume of left

hippocampus as in patients with MDD comparing to controls. 2)

There may be differences in the brain structure of patients with BD-

II compared with patients with MDD. 3) Specifically, we asked

whether for BD-II there may be less dominant reduction in some

subregions of the hippocampus, such as cornu ammonis 1 [CA1] or

granule cell-molecular layer-dentate gyrus [GC-ML-DG].
2 Methods

2.1 Participants

A total of 30 patients with the first episode of BD-II depression

(18-60 years old), and 28 patients with the first episode of MDD (18-

60 years old) were recruited from the ShanghaiMental Health Center,

in Shanghai, in the People’s Republic of China between January and

December 2021. Using the patient edition of the Structured Clinical

Interview for DSM-IV Axis I Disorders (SCID-I/P) patients were

evaluated to see whether they met the diagnostic criteria for of BD-II

and MDD(Those patients with BD-II currently have moderate or

severe depressive symptoms. When reviewing their medical history,

they have had mild manic episodes and were diagnosed with bipolar

disorder. At the time of enrollment, the patients were still

experiencing depressive symptoms.). Before the patients were

further evaluated, their clinical symptoms were assessed according

to the 24-item Hamilton Depression Rating Scale [often abbreviated

to HRSD, HDRS or Ham-D) (31) and Hypomania Checklist [HCL-

32) (32) but only for BD-II. The diagnosis was reviewed by an

attending psychiatrist and deputy chief-psychiatrist to confirm that

the diagnosis was consistent. For bipolar disorder, only patients with

BD-II depression were enrolled. Inclusion criteria: age 18-60 years,

right hand-dominant, meeting DSM-IV diagnosis criteria for MDD

or BD-II; and drug-naïve patients with first-episode depression; for

MDD patients, a total HDRS score of >20, and for BD-II, an HCL-32

score of >13 and an HDRS score of >20. Exclusion criteria: 1) Patient

history of another DSM-IV Axis I disorder (e.g. schizophrenia,

schizo-affective disorder or mental retardation). 2) Serious or

unstable physical diseases such as tumours or cardiovascular

disease, alcohol/substance abuse or any other severe physical

disease. 3) Primary neurological diseases such as vascular disease or

cognitive impairment. 4) Contraindications for MRI scanning

including metal implants, dental braces or fear of claustrophobia.

5) Being in receipt of medication or physical therapy before

enrolment. HC were age-matched and their HDRS score was

checked to ensure that it was < 20 at the time recruitment
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advertisements were put up in the community by the study doctor co-

ordinating the case group. HCs needed to meet the following criteria:

1) 18-60 years old. 2) Met the criteria of the non-patient edition of the

Structured Clinical Interview for DSM-IV Axis Disorders (SCID-

NP). 3) They were not suffering from any current or past physical

disease. 4) They had no family history of psychiatric illness. Everyone

who participated in the study completed the informed consent form

correctly. The project was approved by the Ethics Committee of the

Shanghai Mental Health Center (approval No. 2020-55). The study

was conducted according to the ethical principles set out in theWorld

Medical Association’s (WMA) Declaration of Helsinki.
2.2 Image acquisition

MRI images were acquired for all subjects using a 3T scanner

(MAGNETOM Verio; Siemens Healthineers, Erlangen, Germany)

using a 32-channel head coil at the Shanghai Mental Center. A foam

pad was put under the patient’s head to prevent head movement.

Structural images were acquired using a whole-brain three-

dimensional sagittal T1-weighted scan, with the following

parameters: sagittal acquisition; repetition time/echo time: 2300

ms/2.96 ms; inversion time: 900ms; flip angle: 9°; field of view:

256×256 mm; resolution: 1 × 1 mm; slice thickness: 1 mm (isotropic

voxel of 1 mm).
2.3 Image processing

AT1-weighted image performed visual quality control on artefacts,

preprocessing by the standard Recon-all pipeline overview implanted

in FreeSurfer v7.0. We used the automatic procedures of hippocampal

subfield segmentation and volumetric measurements of participant T1

images developed by T1-weighted MRI. The volume of hippocampus

was further pre-processed using the standard FreeSurfer recon-all

pipeline (version 7.0) (https://surfer.nmr.mgh.harvard.edu/fswiki/

HippocampalSubfieldsAndNucleiOfAmygdala) (33). The

hippocampus is divided into twenty-two subregions: the hippocampus

proper, the hippocampal head, the hippocampal tail, subiculum head

and body, cornu ammonis 1 body and head, parasubiculum,

presubiculum body and head, cornu ammonis 2/3 body and head

(CA2/3-body, CA2/3 head), cornu ammonis 4 body and head (CA4-

body, CA4 head), granule cell-molecular layer-dentate gyrus (GC-ML-

DG) body and head (GC-ML-DG-body, GC-ML-DG-head), the

molecular layer hippocampus body and head (molecular-layer-HP-

body and head), hippocampal–amygdaloid transition area (HATA),

fimbria. Before further analysis, the hippocampal volume was corrected

relative to intracranial volume (ICV).
2.4 Statistical analyses

IBM SPSS statistics for Windows, Version 19.0 (Armonk, NY,

USA) was used for analysis of demographic and volume of

subregions of the hippocampus.
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We built a general linear model (one-way analysis of

covariance) approach with the following variables: 42

hippocampal subfields and two total hippocampal volumes as

dependent variables, and the diagnosis of MDD, BD-II, HC as an

independent variable; the variables of age, sex, and total intracranial

cavity volume (TICV) were covariates. We performed the pair-wise

comparisons of hippocampal subfield volumes between MDD and

HC, BD-II and MDD, MDD and BD-II with post hoc for primary

analysis. The Bonferroni correction for this analysis and post-hoc

pair-wise comparisons was applied to minimize type-1 error risk (P

<0.05/44 = 0.001136). For demographic and clinical characteristics,

we used an independent samples t-test to get the difference of

HDRS, HCL-32 and family salary between MDD and BD-II. We

applied the chi-squared tests on the distribution of sex of the MDD

and BD-II group.
3 Results

3.1 Demographic data and characteristics

A total of 91 subjects (25 subjects with MDD, 36 with BD-II and

30 with healthy controls) was recruited to this study. Information

regarding the sex, age, and other demographic features of subjects is

given in Table 1. There were no significant differences in age (P =

0.052) or gender (P = 0.117) between MDD and BD-II. However,

there was a significant difference in depressive symptom scores (P =

0.019) and HCL-32 scores (p = <0.001) between MDD and BD-

II (Table 1).
3.2 Hippocampal subfield volume
differences between BD-II and
healthy controls

Table 2 lists the regions we examined and shows results for

comparisons between healthy controls and patients with BD-II. We

tested 22 regions on the left side and the right side, as well as the

total volume of the hippocampus. Although many of these

measurements are correlated, we decided to treat each test as an

independent analysis and thus set a Bonferroni corrected 5%

significance threshold of P = < 0.001 (0.05/44). We found that 2

results exceeded this threshold including the left HATA and right

subiculum body.
3.3 Hippocampal subfield volume
differences between MDD and
healthy controls

Table 2 shows results of comparisons between patients with

MDD and HC. Since the measurements are the same as those

collected for the analysis of BD-II, we applied the same significance

thresholds. We found 3 results that exceeded the Bonferroni

corrected threshold. We observed a significantly larger volume of
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the left hippocampal fissure and left HATA and the right subiculum

body in MDD compared with the HC (Figure 1).
3.4 Hippocampal subfield volume
differences between MDD and BD-II

We found no significant differences in any hippocampal

measure between MDD, and BD-II.
4 Discussion

4.1 Summary of main findings in this study

We studied the difference of the hippocampal substructure

between MDD and BD and HC, and compared the hippocampal

substructure between MDD and BD-II. We found that a) in theBD-

II, the hippocampal volume of the left HATA and right subiculum

body was significantly increased. b) In MDD, the volume of the left

hippocampal fissure, left HATA and right subiculum-body

increased significantly. c) We found no significant difference in

hippocampal substructure between MDD and BD-II.
4.2 Comparison with previous studies

When comparing the volume of the hippocampus in MDD to

HC, most studies found that the volume is reduced (13, 17, 34, 35).

We found that the volume of left HATA and right subiculum-body

increased in patients with MDD (36). Previous studies have found

that the left hippocampus is more reduced (36, 37), and we had

similar findings showing that the left hippocampal body and the left

HATA are most influenced. Yao found that subiculum and CA1

subregions of the bilateral hippocampus are prone to atrophy (17).

Some researchers found a reduction in the volume of the

hippocampal tail bilaterally, right hippocampal head and right

hippocampus proper in MDD patients (14), showing that the

right hippocampus is influenced too. However, most studies

included patients with long term depression, or who were in
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remission. Previous studies have found that the volume of the left

hippocampal protrusion decreased after the first or repeated

episodes of MDD (13). Few studies involved the first episode of

MDDwith drug naïve patients. We found that an increase in the left

hippocampal fissure, left HATA and right subiculum-body of the

hippocampus might be characteristic of early-stage depression.

For BD-II, in this study we found that more subfields of the

hippocampus are influenced from the left side to the right side,

including the left HATA and right subiculum body, findings which

are similar to previous studies. Some researchers found that the

most affected sizes were in volume differences between BD-II and

HC in the molecular layer, the hippocampal tail, cornu ammonis

(CA4), and cornu ammonis (CA1) (11, 19). There are specific

changes in subregions of the hippocampus in depressive episodes of

bipolar disorder, such as cornu ammonis 1 (CA1), cornu ammonis

4 (CA4) (11, 30), the granule cell layer (GCL), molecular layer (ML),

subiculum (sub). However, one study found that the volume of

these subregions was increased, perhaps because of confounders

such as medication, alcohol and illicit substance use, illness stage

and the age of onset (19). Cao et al., recruited BD-I and BD-II

disorder patients who were receiving treatment (11). They found

that patients with BD (including BD-I and BD-II), had reduced

volumes of hippocampal subfields, specifically in the left CA4, GCL,

ML and both sides of the hippocampal tail, compared with healthy

subjects. Another study recruited adolescent BD patients with adult

BD, and found no reduction in the size of the hippocampus (38).

They recruited subjects who were mainly young people with BD-II.

Although some researchers found that BD-I has a severer reduction

in hippocampal subfields than BD-II (11, 30), we still need to pay

attention to the confounding effects on the hippocampus of the

disease episode, progression and medicine treatment. Our study

found that BD-II produced an increase in the volume of left HATA

and right subiculum body of the hippocampal subregions in the

early stage particularly with drug-naïve and young patient groups.

We did not find any difference between MDD and bipolar

disorder. Cao found that the hippocampal subfields were more

affected in BD-I compared with BD-II and MDD (11). Kyu-Man

Han et al., found similar results and showed that no significant

volume differences were observed between MDD and BD (26). Kyu-

Man Han’s study only recruited subjects who were euthymic or in a
TABLE 1 Demographic information for all participants.

N Mean
Standard
deviation t P-value

HAMD MD 25 35.440 10.508 2.416 0.019

BD II 36 28.583 11.165

HCL-32 MD 25 9.960 2.879 <0.001

BD II 36 23.056 6.155

Age MD 25 25.240 5.532 -1.984 0.052

BD II 36 28.610 7.129
P-values for age, HAMD, and HCL-32 scores were obtained using an independent t-test.
BD: bipolar disorder; MDD: major depressive disorder; Ham-D: 24 item Hamilton Depression Scale; HCL-32: Hypomania Check List.
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TABLE 2 Hippocampal Differences between MDD,BD-II and healthy controls.

All groups BD vs HC MDD vs HC MDD vs BPD

F P t P t P t P

Hippocampal tail L 0.807 0.45 1.178 0.243 0.916 0.364 0.134 0.894

Subiculum body L 3.543 0.033 1.809 0.075 2.69 0.01 -0.843 0.403

CA1 body L 5.791 0.004 2.606 0.011 3.097 0.003 -0.73 0.468

Subiculum head L 0.773 0.465 -0.093 0.926 1.04 0.303 -1.069 0.289

Hippocampal fissure L 7.733 0.001 2.475 0.016 4.657 <0.001 -1.546 0.127

Presubiculum head L 3.869 0.025 0.587 0.559 2.479 0.018 -2.057 0.044

CA1 head L 2.154 0.122 0.401 0.69 2.083 0.042 -1.551 0.126

Presubiculum body L 1.283 0.282 0.291 0.772 1.535 0.131 -1.332 0.188

Parasubiculum L 1.903 0.155 1.417 0.161 1.86 0.068 -0.643 0.522

Molecular layer HP
head L 1.138 0.325 0.372 0.711 1.555 0.126 -1.08 0.284

Molecular layer HP
body L 5.548 0.005 2.515 0.014 3.168 0.003 -0.67 0.505

GC ML DG head L 1.714 0.186 1.522 0.133 1.753 0.085 -0.284 0.778

CA3 body L 3.045 0.053 2.191 0.032 1.819 0.075 0.651 0.518

GC ML DG body L 2.207 0.116 1.96 0.054 1.685 0.098 -0.134 0.894

CA4 head L 1.819 0.168 1.499 0.139 1.806 0.077 -0.438 0.663

CA4 body L 1.788 0.173 1.771 0.081 1.469 0.148 0.068 0.946

Fimbria L 1.28 0.283 0.101 0.92 1.639 0.107 -1.316 0.193

CA3 head L 2.368 0.1 1.909 0.061 1.956 0.056 -0.055 0.956

HATA L 14.616 <0.001 4.116 1.21E-04 5.948 <0.001 -1.526 0.132

Whole hippocampal
body L 5.167 0.008 2.214 0.03 3.167 0.003 -1.019 0.312

Whole hippocampal
head L 2.496 0.088 1.008 0.317 2.413 0.019 -1.297 0.2

Whole hippocampus L 3.39 0.038 1.632 0.108 2.666 0.01 -1.066 0.291

Hippocampal tail R 1.543 0.219 1.434 0.156 1.472 0.147 -0.216 0.83

Subiculum body R 9.296 <0.001 3.423 1.09E-03 4.455 <0.001 -0.564 0.575

CA1 body R 2.605 0.08 1.763 0.083 1.987 0.052 -0.614 0.542

Subiculum head R 1.346 0.266 -0.577 0.566 1.003 0.32 -1.606 0.114

Hippocampalfissure R 2.07 0.132 0.257 0.798 2.062 0.044 -1.6 0.115

Presubiculum head R 2.341 0.102 0.985 0.328 2.08 0.042 -1.306 0.197

CA1 head R 0.683 0.508 0.646 0.52 1.136 0.261 -0.615 0.541

Presubiculum body R 2.419 0.095 0.683 0.497 2.113 0.039 -1.58 0.119

Parasubiculum R 5.585 0.005 2.661 0.01 3.301 0.002 -1.032 0.306

Molecular layer HP
head R 1.04 0.358 0.481 0.632 1.367 0.177 -1.019 0.312

Molecular layer HP
body R 3.758 0.027 2.021 0.047 2.563 0.013 -0.737 0.464

GC ML DG head R 1.376 0.258 1.048 0.299 1.647 0.106 -0.708 0.482

(Continued)
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depressive state. Another difference is that their study was

conducted on patients with BD including BD-I and BD-II.who

were already taking medicine (26). BD-I and BD-II may have

different effects on the volume change of the hippocampus, so we
Frontiers in Psychiatry 06109
should treat them differently. It is possible that the type of bipolar

disorder, the effects of medicine, the episode and duration of the

illness, and the number of episodes may affect the size of the

hippocampus (11). In future, it will be necessary to compare the
TABLE 2 Continued

All groups BD vs HC MDD vs HC MDD vs BPD

F P t P t P t P

CA3 body R 0.256 0.775 0.685 0.496 0.541 0.59 0.042 0.966

GC ML DG body R 0.95 0.391 1.071 0.288 1.24 0.22 -0.386 0.701

CA4 head R 1.357 0.263 1.137 0.26 1.621 0.111 -0.589 0.558

CA4 body R 0.29 0.749 0.37 0.713 0.744 0.46 -0.446 0.657

Fimbria R 1.11 0.334 1.665 0.101 0.86 0.394 0.417 0.678

CA3 head R 1.868 0.16 1.338 0.186 1.893 0.064 -0.727 0.47

HATA R 2.904 0.06 1.489 0.142 2.436 0.018 -1.073 0.288

Wholehippocampal
body R 4.724 0.011 2.267 0.027 2.976 0.004 -0.799 0.427

Whole hippocampal
head R 1.695 0.19 0.868 0.389 1.822 0.074 -1.086 0.282

Whole hippocampus R 2.993 0.055 1.626 0.109 2.371 0.021 -0.935 0.353

Hippocampal tail L 0.807 0.45 1.178 0.243 0.916 0.364 0.134 0.894

Subiculum body L 3.543 0.033 1.809 0.075 2.69 0.01 -0.843 0.403
Bonferroni correction was applied: P <0.05/44 = 0.001136.
Significant hippocampal subfield volume differences appear in bold.
MDD, major depressive disorder; BD, bipolar disorder; HC, healthy controls; CA, cornu ammonis.
FIGURE 1

Illustration of hippocampal subfield segmentation by FreeSurfer V7.0.
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differences in the hippocampus in the early, middle and multiple

episodes of BD-II seen in this study.
4.3 Implications

Although we found no significant difference between BD-II and

MDD in the hippocampal subregions, there were more extensive

changes on the left side in MDD. One implication is that there is

more extensive cognitive impairment during the onset of MDD,

such as decreased working memory (39, 40) and episode memory.

Some studies show that the cognitive dimension of MDD is

more extensive.

This study only compares the symptoms of MDD and BD-II,

and in doing so it found significant differences. It attempts to

explore the differences in symptom-related hippocampal

subregions. However, no significant difference was seen in the

subregion of the hippocampus between the two diseases. Analysis

of the results suggests that: the sample size is relatively small, and

that we need to expand the sample to explore whether there is a

linear relationship between the more serious depressive symptoms

and the smaller hippocampal volume in MDD. In BD-II, there is no

such linear relationship.

Our study recruited subjects with the first onset of depression and

BD-II, and our findings suggest that the increase of hippocampal

volume may be an early pathological change. Many studies are based

on the hippocampal contractile changes of recurrent or mixed

episodes of bipolar disorder (11, 26). Our study suggests that

changes in hippocampal enlargement may be related to

inflammatory response (41, 42) in the early stage of the disease.

Moreover, the inflammatory response of MDDmay bemore obvious,

which needs more basic research to see whether this is so.
4.4 Limitations

Our study had the following limitations: 1) our power to detect

an effect is limited by our small sample size. In a recent large meta-

analysis of imaging data from patients with MDD, Schmaal et al.

(43) estimated that 545 subjects per group would be needed to

provide 80% power to detect difference in hippocampal volume at P-

value=0.05. At this point we can only caution that ours is an

exploratory study, generat ing hypotheses for further

investigation.2) Our subjects were not matched for gender; Bipolar

I is more common in men, while BD is more common in women

(44). 3) Mixed episodes or rapid cycling of bipolar disorder is more

likely to increase the risk of suicide, and such episodes cannot be

evaluated. In this study, we did not assess whether patients with

bipolar disorder had more frequent episodes or mixed episodes of

BD, and which kind of clinical characteristics of bipolar disorder II

were more likely to develop mixed episodes. 4) This study is cross-

sectional. Only 20% of patients with bipolar disorder depressive

episodes were diagnosed with bipolar disorder in the first year, and
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the diagnosis was often delayed for 5-10 years (45). This is possible

because a diagnosis of BD is difficult to make early in the course of

the disorder. In this study, the patients with first-episode MDD

before the age of 30 could not be ruled out from BD-II. It will be

necessary to conduct follow-up studies on patients with MDD to see

if they develop BD in the next 5-10 years. 5) Hippocampal volume

has a close relationship with cognition. This study did not include

level of education as a covariate, and follow-up studies need to

comprehensively assess the impact of this. 6) The age of onset and

the prolonged duration of the disorder are not included the current

study and should be discussed in future studies as influencing

factors.7) the diagnostic system in this study used DSM-IV, and it

should be updated in the future study and the related psychotherapy

situation could be recorded when the participants were interviewed.

8) A limitation of this study is that it examined only the

hippocampus. Future work should study more extensively the

brain regions involved in regulating emotional stability.
5 Conclusion

From the data in this study, it can be concluded that there is no

significant difference in subregions of the hippocampus between

BD-II and MDD in the early development of BD-II. In the early

stage of MDD, the volume of the hippocampal subregions including

the left hippocampal fissure, left HATA and right subiculum-body

regions are increased, possibly influencing working memory and

episodic memory.
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