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Editorial on the Research Topic
Neuroimaging in psychiatry 2023: mood disorders

The field of neuroimaging has made significant progress in recent decades, significantly
influencing the understanding and treatment of psychiatric disorders, particularly mood
disorders such as major depressive disorder (MDD) and bipolar disorder (BD) (1-4). These
complex conditions, characterized by pervasive mood, affect, and behavioral symptoms,
have long been a challenge for diagnosis and treatment because of their multifactorial
etiology and the absence of definitive biomarkers (5). The role of neuroimaging in
psychiatry has expanded beyond traditional structural imaging techniques to encompass
a variety of advanced modalities, including functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), diffusion tensor imaging (DTI), and magnetic
resonance spectroscopy (MRS) (6-8). These techniques have facilitated a more nuanced
understanding of the neural circuits implicated in mood disorders, elucidating
abnormalities in brain regions such as the prefrontal cortex, amygdala, hippocampus,
and anterior cingulate cortex (9). Neuroimaging has emerged as a crucial tool for
unraveling the neurobiological underpinnings of these disorders, providing insights that
are beginning to bridge the gap between clinical symptomatology and the basis of the
disorders (10-14). Functional studies on Major Depressive Disorderhave identified
hypoactivation in the dorsolateral prefrontal cortex (DLPFC) during tasks requiring
executive function and cognitive control, as well as hyperactivation of the amygdala in
response to negative emotional stimuli (15). These findings have been interpreted as
reflecting a dysregulated neural circuit, wherein diminished top-down control from the
prefrontal cortex fails to modulate hyperactive limbic structures, leading to the emotional
and cognitive disturbances characteristic of depression (16-20). Studies on MDD have
documented structural abnormalities such as reduced gray matter volume in the prefrontal
cortex and temporal lobes, as well as functional alterations in the ventral prefrontal cortex
and striatum (21, 22). Bipolar disorder, with its alternating episodes of mania and
depression, presents a more complex neuroimaging profile (12, 23). The Research Topic
brings together a diverse array of manuscripts that utilize neuroimaging to explore
structural and functional alterations in mood disorders. A central theme emerging across
the contributions is the identification of potential neurobiological biomarkers through
advanced imaging techniques, with a particular focus on distinguishing features of MDD
and BD (24-27). The Research Topic describes multiple aspects of neuroimaging, in
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particular diagnostic groups (MDD vs. BD), neuroimaging
techniques (fMRI, EEG), and insights into targeted brain areas.

In the context of diagnostic stratification, Schreiber et al.
identified a significant enlargement of the left vagus nerve cross-
sectional area (VN-CSA) in individuals with Major Depressive
Disorder (MDD), particularly among those with recurrent
episodes. This morphological alteration of the cervical vagus
nerve may serve as a novel imaging biomarker, offering potential
insights into the somatic underpinnings of depressive pathology.

Additionally, Estudillo-Guerra et al. revealed in their study a
trend indicating a higher perfusion imbalance in the left superior
and middle frontal gyrus during mania and the right superior and
middle frontal gyrus during euthymia phases in participants with
Bipolar Disorder Type L

In the topic concerning neuroimaging techniques (fMRI, EEG),
Huang et al. compared functional and structural MRI abnormalities
between bipolar and unipolar depression. They found that the BD
group exhibited an increased fractional amplitude of low-frequency
fluctuation (fALFF) in the hippocampus compared with both the
healthy control (HC) and MDD groups.

Furthermore, Liu et al. proposed a multi-scale spatial-temporal
local sequential and global parallel convolutional model. This
method aimed to improve the diagnostic accuracy of Generalized
Anxiety Disorder, particularly in the context of mood instability,
using high-frequency electroencephalogram (EEG) signals.

In their investigation of Major Depressive Disorder (MDD)
using functional magnetic resonance imaging (fMRI), Endo et al.
identified specific dynamic brain activity patterns, referred to as
dynamic modes, that occurred with either increased or decreased
frequency in individuals with MDD compared to healthy controls.
These alterations suggest a disruption in the temporal organization
of neural networks, potentially reflecting impaired flexibility and
adaptability in brain function (28-30). Such findings contribute to
the growing body of evidence supporting the role of dynamic
functional connectivity as a potential state-sensitive biomarker in
mood disorders.

To complement the theme, Willinger et al. reported weakened
effective connectivity between the salience network and the default
mode network during the resting state in participants with
adolescent depression. They suggested that this pattern may
reflect a hierarchical imbalance between the default mode
network (DMN) and the salience network (SN).

Chen et al. using a machine learning approach, examined
abnormal voxel-mirrored homotopic connectivity in participants
with first-episode MDD. They found reduced functional
connectivity in the bilateral middle frontal gyrus, fusiform gyrus,
medial superior frontal gyrus, and precentral gyrus. These
alterations may be linked to depressive symptoms and could serve
as a potential biomarker of MDD.

Delving deeper into the discussion regarding the morphobiological
aspects of targeted brain areas, Liu et al. observed altered functional
activity in the right fusiform gyrus and the left superior temporal gyrus
in individuals with treatment-resistant depression following a dual-
target accelerated transcranial magnetic stimulation protocol.
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Examining structural alterations in participants with MDD,
Wang et al. reported a region-specific reduction in cortical
thickness, particularly within the left rostral middle frontal gyrus.
This thinning exhibited a significant negative correlation with
illness duration, suggesting a progressive neuroanatomical
deterioration associated with the chronicity of depressive
episodes. These findings underscore the potential of cortical
metrics, such as reductions in the rostral middle frontal gyrus, as
longitudinal markers of disease burden and progression in MDD.

Kijima et al. explored how fronto-striato network function is
reduced in participants with MDD highlighting that the reward
system network may be an important biological marker of MDD,
although careful consideration should be given to age and its
association with the severity of the disorder.

Finally, Cong et al. examined hippocampal subfield morphology
in participants with first-episode BD type II and major depressive
disorder within a drug-naive Chinese cohort. They reported a
significant increase in hippocampal volume, particularly on the
left side, observed only in the MDD group compared with healthy
controls, and not in the BD-II group. This finding was specific to the
studied sample and requires replication in larger, independent
cohorts to confirm its validity.

Across the included studies, several key themes emerge, including
the potential of specific brain regions (DLPFC, hippocampus) and
connectivity patterns (DMN-SN interaction) as diagnostic and
therapeutic biomarkers, the utility of machine learning in
neuroimaging classification tasks, and the convergence of structural
and functional findings in delineating mood disorder subtypes In
conclusion, the most recent advances in neuroimaging technology
over the past two decades have greatly deepened our understanding of
the neurobiological basis of mood disorders (31-34). By revealing the
structural and functional abnormalities associated with MDD and BD,
these tools have not only improved diagnostic accuracy but also opened
new avenues for the creation of personalized medicine strategies. The
integration of neuroimaging with other emerging fields, such as
genomics, epigenetics, and machine learning, promises a more
nuanced approach to psychiatry, in which treatment can be tailored
to the individual’s unique neural and genetic profile. By continuing to
harness the power of neuroimaging, the convergence of technology and
neuroscience holds promise for the development of more effective and
personalized treatments for mood disorders, with the potential to
significantly improve clinical outcomes. While the findings discussed
in this Research Topic offer promising directions, it is essential to
emphasize that many of the identified alterations should be considered
potential biomarkers. Further validation in larger, longitudinal, and
translational studies is warranted to ascertain their clinical applicability
and reliability. Such scientific prudence remains vital to advancing the
field responsibly.
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Purpose: Autonomic dysfunction and a chronic low-grade inflammation are
supposed to play a role in the etiology of major depressive disorder (MDD). The
vagus nerves (VN) form a major part of the parasympathetic nervous system and
of the gut-brain axis. They are supposed to exert anti-inflammatory and epithelial
barrier protective effects in the gut. A reduced vagal activity was described in
patients with MDD. We aimed to examine the VN in patients with MDD with high-
resolution ultrasound (HRUS) and hypothesized that the cross-sectional area
(CSA) and the echogenicity of the VNs were altered in comparison to healthy
controls.

Materials and methods: The echogenicity (gray scale mean) and the CSA of
the cervical VNs at the level of the thyroid gland and both median nerves were
examined with HRUS in 50 patients with MDD and 50 matched healthy controls.

Results: The left VN-CSA was significantly larger in the MDD group compared
to the control group (1.7 + 0.4 mm? versus 1.5+ 04 mm? p = 0.045). The CSA of
the right VN and both median nerves (MN) were similar between groups. In MDD
subgroup analyses, recurrent depressive disorders were the main contributing
factor for the left VN-CSA enlargement. Echogenicity was not altered in the VN
and MN between groups.

Conclusion: The enlargement of the left VN-CSA in patients with MDD, and
especially in these patients with recurrent depressive disorders, might turn out as
a promising imaging biomarker. Longitudinal studies are warranted to examine
whether the VNs-CSA change in the course of MDD.

major depressive disorder, vagus nerve, ultrasound, autonomic nervous system,
gut-brain axis, inflammation, depression

Introduction

As the vagus nerves (VNs) are of particular importance in psychiatric and neurological disorders,
sonographic research has witnessed a growing interest (1-3). The VNs constitute a crucial part of the
parasympathetic autonomic nervous system (ANS). The functional imbalance between reduced VN
activity and the sympathetic system results in autonomic dysfunction, comprising symptoms like
palpitations, impairment of sleep, appetite, and gastrointestinal functioning in neuropsychiatric
disorders, e.g., major depressive disorder (MDD) (4). Currently, antidepressant treatments, such as
vagus nerve stimulation (VNS), where the left VN is used as a target for electrical stimulation,
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emerged as an option in treatment-resistant depression (5). Meta-analyses
also demonstrated a negative association between vagal activity and
inflammatory markers (6). A lack of vagal inhibition of systemic
inflammatory processes seems to play a key role in the low-grade
inflammation pathogenesis approach of MDD (7). Moreover, the VNs
form a central part of the gut-brain axis by linking the gut and abdominal
organs with the central nervous system, thus, enabling a bidirectional
communication (8). Disturbances of the microbiota and the gut-brain
axis are also supposed to contribute to the etiology of depression and
anxiety disorders (8, 9).

High-resolution ultrasound (HRUS) allows the reliable
examinations of the VNs in vivo (10). Previous findings showed that
sonomorphological VN alterations and autonomic function may
correlate in healthy probands (11). Morphological alterations of the
cervical VNs were described in different neurological disorders. An
atrophy was found in patients with Parkinson’s Disease (PD) [e.g., (1,
12)], while an enlargement of the VN-CSA was associated with
autonomic dysfunction in patients with Guillain-Barré-Strohl
syndrome (13).

So far, although there is cumulating evidence for a relevant role of
the VNs in the etiology of MDD, there are no morphological
examinations of the VN in these patients in vivo. Thus, we aimed to
examine the VNs in patients with MDD with HRUS and hypothesized
that the CSA and the echogenicity of the VNs were altered in
comparison to healthy controls.

Materials and methods

This study was performed according to the ethical standards laid
down in the 1964 Declaration of Helsinki and its later amendment. It
was approved by the local Ethics Committee of the Medical Faculty at
the University of Leipzig (reference number 425/19-ek). All
participants gave informed and written consent for participation in
medical research.

Based on studies that examined the size of the VNs in
predominantly neurodegenerative disorders where the differences
in the CSA of the asymmetric VNs varied between 10% (in case
of the right VN) and 20% (in case of the left VN) (1), we calculated
that, using a two-tailed test, 53 patients with MDD had to
be examined to detect a difference in the CSA of 15% with a
power of 0.8. The entire cohort comprised 100 adult subjects (50
patients with MDD and 50 healthy controls) and was balanced
according to sex and age (Table 1). Participants were recruited
from 06/2020 to 09/2021 from the inpatient ward of the
Department of Psychiatry and Psychotherapy, University of
Leipzig Medical Center.

All patients had to fulfill the clinical criteria of depression
(F32.1-F32.2 and F33.1-F33.3) as defined by the International
Statistical Classification of Diseases and Related Health Problems,
10th Revision. Diagnoses were confirmed during the treatment
by psychiatric consultants.

Exclusion criteria were a medical history of polyneuropathy,
epilepsy, neurodegenerative disorders, use of illegal substances, any
addictive diseases, any psychiatric diagnoses in the control group,
organic or psychotic psychiatric comorbidities, any relevant anxiety
and / or obsessive compulsive disorders in the MDD group, a history
of head injury, or acute somatic diagnoses during the time of
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examination. All participants underwent a profound neurological
examination to exclude persons with clinically apparent yet hitherto
unknown polyneuropathy or parkinsonism.

At the time point of study participation, all patients in the MDD
group were on antidepressants and had psychotherapy. We did not
assess how long and how often patients had psychotherapy before
their participation in this study nor which kind of psychotherapy they
had in before. We also did not assess the history of antidepressant
intake before study participation.

To evaluate the severity of depression at the time of participation,
all participants completed the Beck Depression Inventory (BDI) and
Patient Health Questionnaire-15 (PHQ-15) with focus on
somatic symptoms.

The HRUS examination was performed with an Aplio i800
(Canon Medical Systems, Neuss, Germany) with a 24 MHz linear
transducer. Briefly, both VNs, at the level of the thyroid gland, and, for
control purpose, both median nerves (MN), 10cm proximal to the
wrist, were examined according to established protocols (10, 14)
(Figure 1). Three B-mode images of each nerve and side were recorded
and optimized regarding brightness, depth, and focus. The identified
nerve was marked roughly with the marking tool of the ultrasound
device, and the images were stored for offline measurement of the
CSA. Post-examination offline measurements were performed with
Image] (National Institutes of Health, Bethesda, Maryland,
United States; version 1.53a). The CSA was determined with a
precision of 0.1 mm?. Further statics were calculated with the median
of the 3 CSA values of each nerve and side, which is less likely to
be distorted by outliers.

In order to determine the echogenicity of the nerves, the image
with the median CSA was converted into an 8-bit black and white
image in which each pixel is assigned a grayscale. The grayscales
ranged from 0 (black) to 255 (white). An average value of the
grayscales of all pixels within the CSA was calculated (grayscale mean,
GSM). To determine the echogenicity independently of brightness
settings of the ultrasound device, the GSM of the VN was set in
relation to the GSM of the blood in the ipsilateral common carotid
artery (CCA), which is physiologically hypoechoic and shows little
heterogeneity. The GSM ratio (GSM-VN / GSM-CCA) was used for
further statistics.

All measurements were done by the same rater who was blinded
to the side of the nerve (left vs. right) and to group affiliation (control
vs. MDD).

Statistical analyses were performed by using IBM SPSS Statistics
(IBM Corporation, Armonk, New York, United States; version 27.0).
To assess intra-rater agreement 20 images were re-measured
(ICC-coefhicient=0.996, p <0.001). CSA values of one rater were used
for statistical analyses. For group comparison, the student’s ¢-test (for
data with normal distribution) and Mann-Whitney U-test (for
non-normal distribution) were used. Chi-square test was applied on
group comparisons of nominally scaled data. Correlation coefficients
were calculated using Pearson’s correlation (normal distribution,
metric level), Spearmans correlation (non-normal distribution,
ordinal level) and Eta Coefficient (nominal and metric level). The
subgroup analysis was performed using Kruskal-Wallis one-way
ANOVA. Extreme outliers were excluded based on Tukey’s hinges
(first quartile —3 * interquartile range (IQR) and third quartile +3 *
IQR), visualized in boxplots (15). The significance level was set at
p <0.05.
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TABLE 1 Demographic data of patients with major depressive disorder (MDD) and healthy controls.

21 21

Male (n)

Female (1) 29
Age in years (mean, + SD, range) 45+16 (21-80)
Height in cm (mean, + SD, range) 172+£10 (146-20)
BMI (kg/m? mean, + SD, range) 26.6+5.7 (17.1-46.9)

Medical history of comorbidities

Cardiac arrythmia [# (%)] 5(10%)
Diabetes mellitus [1 (%)] 3 (6%)
Questionnaires

BDI score (median, range) 24.5 (6-46)
PHQ-15 score (median, range) 13 (1-22)

Duration of actual depressive episode in 25.39+18.74%*

weeks (mean, SD, range) 4-80*

1.00°
29 1.00°
46+21 (22-80) 0.972*
173+10 (153-192) 0.890°"
24.5+3.6 (19.5-38.0) 0.049°
1(2%) 0.092°
1(2%) 0.307°
4(0-20) 0.001°
4(0-20) 0.001*

0

*Student’s t-test; #Mann-Whitney U-test; °Chi-square test; BMI, body mass index; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; SD, standard deviation. *One

extreme outlier of 400 weeks duration was excluded.

FIGURE 1

Visualization of the vagus nerve (d) with embedded magnification. a: thyroid gland; b: common carotid artery; c: internal jugular vein; scale bar =1cm.

Results

Demographic data of patients with MDD and the control group
were well-balanced in terms of sex, age, and height. Only the BMI was
significantly higher in the MDD group. No significant differences for
known cardiac arrythmia or diabetes mellitus in the medical history
were found between both groups. BDI and PHQ-15 scores were
significantly higher in the MDD group. In the MDD group, the
current depressive episode persisted at the time of examination for a
mean of 25 weeks (after exclusion of one extreme outlier of 400 weeks;
Table 1).

Frontiers in Psychiatry 1

In HRUS examinations, the left VN-CSA was significantly larger
in the MDD group than in the control group (p =0.045), while the
right VN-CSA did not differ significantly between groups (Table 2).
In the MDD group, no significant correlations were found between
the duration of the depressive episode and the left VN-CSA (p=—-0.12;
p =0.413) or right VN-CSA (p=0.04; p =0.785), the BDI score and the
left VN-CSA (p=—0.184; p =0.201) or the right VN-CSA (p=0.009;
p =0.952), nor the PHQ-15 score and the left VN-CSA (p=-0.134;
p =0.353) or the right VN-CSA (p=0.031; p =0.833). The left and
right MN-CSA were similar between the control group and the MDD
group (Table 2).
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TABLE 2 High-resolution ultrasound data of patients with major depressive disorders (MDD) and healthy controls.

10.3389/fpsyt.2023.1237983

Variable MDD group Control group p-value
VN-CSA left (mm?) Mean, SD 1.7+0.4 1.5+0.4 0.045*
VN-CSA right (mm?) Mean, SD 1.8+0.5 1.7+£0.5 0.269*
MN-CSA left (mm?) Mean, SD 6.9+1.3 6.5+1.2 0.079*
MN-CSA right (mm?) Mean, SD 6.8+1.3 6.5+1.2 0.063"
VN GSM-Index left Mean, SD 45+2.4 53+4.6 0.482°
VN GSM-Index right Mean, SD 53+4.7 6.1+5.9 0.328°

*Student’s t-test; #Mann-Whitney U-test; HRUS, high-resolution ultrasound; VN, vagus nerve; CSA, cross-sectional area; GSM, gray scale mean; SD, standard deviation.

TABLE 3 Demographic and high-resolution ultrasound data of subgroups of patients with major depressive disorder.

Characteristics

FD group (n =18)

RDD group (n =32)

Male (n)

14

Female (n)

11

18

Age in years (mean, + SD, range)

39+15 (22-64)

49+17 (21-80)

Height in cm (mean, + SD, range)

173 +11 (158-200)

172+9 (146-191)

BMI (kg/m? mean, + SD, range)

24.2+4.4(17.1-31.8)

27.9+5.9 (20.1-46.9)

Questionnaires

BDI score (median, range) 27.5 (6-44) 23 (8-46)
PHQ-15 score (median, range) 13 (1-22) 12.5 (1-21)
Duration of actual depressive episode in weeks (mean, + SD) 28.8£21.2% 23.6+17.4
Ultrasound examination

VN-CSA left (mm? mean, + SD) 1.6+0.4 1.7+0.4
VN-CSA right (mm? mean, + SD) 1.9+0.5 1.8+0.5
MN-CSA left (mm? mean, + SD) 7.0+1.6 6.9+1.2
MN-CSA right (mm? mean, + SD) 6.9+1.6 6.7+1.2
VN GSM-Index left (mean, + SD) 43+2.4 4.6+2.4
VN GSM-Index right (mean, + SD) 57+3.1 51+54

FD, first time diagnosis; RDD, recurrent depressive disorder; SD, standard deviation; BDI, Beck Depression Inventory; PHQ-15, Patient Health Questionnaire-15; MN, median nerve; VN,

vagus nerve; CSA, cross-sectional area; GSM, gray scale mean. *One extreme outlier of 400 weeks duration was excluded.

TABLE 4 Subgroup analysis with Kruskal-Wallis one-way ANOVA
between major depressive disorder patients with first time diagnosis (FD),
recurrent depressive disorder (RDD), and control group for left and right
vagus nerve (VN) cross-sectional area (CSA).

Left VN-CSA

Right VN-CSA

Adapted p-value = Adapted p-value

The MDD group was further stratified into two subgroups: first
time diagnosis (FD; N =18) and recurrent depressive disorder (RDD;
N =32; Table 3). Kruskal-Wallis one-way ANOVA revealed that the
RDD subgroup contributed mainly to the significant enlargement of
the left VN-CSA in comparison to the control group (p =0.03;
Table 4). For the right VN-CSA, Kruskal-Wallis one-way ANOVA
showed no significant differences between MDD subgroups and the
control group (Table 4).
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TABLE 5 Subgroup analysis with Kruskal-Wallis one-way ANOVA between
major depressive disorder patients with first time diagnosis (FD),
recurrent depressive disorder (RDD), and control group for left and right
vagus nerve (VN) gray scale mean (GSM) index.

Left VN-GSM-
index

Right VN-GSM-
index

Adapted p-value @ Adapted p-value
Control group/RDD 0.03 1.00
Control group/RDD 1.00 0.279
Control group/FD 1.00 0.683
Control group/FD 1.00 1.00
FD/RDD 0.386 1.00
FD/RDD 1.00 0.247

Regarding the echogenicity of the VN, no significant differences
were found between the control and the MDD group (Table 2), or its
subgroups (Table 5). In both control and MDD group, a higher
GSM-Index was measured for the right VN in comparison to the left
VN (Mann-Whitney U-test p <0.001; Table 2). In the MDD group,
no significant correlation was found neither between the BDI score
and the left (p=0.143; p =0.320) or the right GSM-Index (p=0.201;
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p =0.161), nor between PHQ-15 score and the left (p=—0.174;
p =0.277) or the right GSM-Index (p=0.190; p =0.186). In the whole
study cohort, the right VN-CSA correlated significantly with the right
GSM-Index (p =0.227; p= 0.023), whereas the left VN-CSA and the
—0.057;

left GSM-Index showed no significant correlation (p
p=0571).

Sex, age, BMI, height, cardiac arrythmia, and diabetes mellitus
were not identified as covariates for the VN-CSA nor for the
VN echogenicity.

Discussion

For the first time, this study revealed morphological changes of
the cervical VNs in patients with MDD. The left VN-CSA was
significantly enlarged in comparison to healthy subjects. Noteworthy,
this enlargement of the left VN-CSA in patients with MDD was
mainly driven by the subgroup of patients with recurrent
depressive disorder.

Over the last decade, HRUS enabled the reliable examination
of small nerves like the VN (10). A reduced VN-CSA was
repeatedly measured in neurodegenerative disorders like PD or
amyotrophic lateral sclerosis (1, 2, 12), while enlarged VN-CSA
was described in inflammatory (13, 16, 17), but also in hereditary
neuropathies (18). The enlarged left VN-CSA in patients with
MDD and especially in the subgroup of patients with RDD might
be due to a subtle inflammatory edema of the left VN. Other
explanations like hereditary or inflammatory polyneuropathies
(18) are unlikely because of the unaffected MNs, and participants
with clinical signs of a polyneuropathy in the profound
neurological examination were excluded from this study.
Compression of nerves can also cause enlarged CSAs, however,
during the HRUS examination the VN was visualized over its
cervical course and no compression or entrapment was noted.
Thus, the most probable explanation for the small (about 10%)
but significant difference in the CSAs of the left VN remains a
(chronic) inflammation which leads to an edema with subsequent
VN enlargement. The VNs were also found to be enlarged in
with
polyradiculoneuropathy (CIDP) (17, 19). Interestingly, patients
with CIDP may also show a subtle affection of the ANS with
focus on parasympathetic cardiovascular fibers (20), and they

patients chronic  inflammatory  demyelinating

may suffer from neuropsychiatric symptoms and disorders like
pain, fatigue, and depression (21, 22). However, so far depressive
symptoms in patients with inflammatory polyneuropathies are
thought to be reactive due to the patients’ functional impairment
and not to be related to the inflammation of the peripheral
nervous system or the VN (21).

The VNs with their afferent and efferent fibers also play a crucial
role in connecting the gut and the brain. Recently, cumulate research
suggested that a disturbance of the microbiota and the gut-brain axis
might contribute to the etiology of depression (8, 9). In their review,
Tan and colleagues argued that the immune response to gut
microbiota translocation induced by a leaky gut may be responsible
for the chronic inflammatory condition in depression.
Pro-inflammatory cytokines like IL-2, IL-12, or TNF-a were
repeatedly shown to be over-expressed in patients with MDD which
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points to a role of inflammation in the pathophysiology of MDD
(23-28). The TNF-a inhibitor etanercept was effective in treatment-
resistant depression and reduced depression and anxiety in psoriasis
patients (29, 30). Consequently, modulating inflammation and
immune regulation in patients with MDD emerged as a potential drug
target (31).

Furthermore, the VNs may exert anti-inflammatory and
epithelial barrier protective effects in the gut (8). The interactions
between the immune system and the central nervous system are
characterized by a bidirectional communication that aims to specify
the immune defense of the host (32). Physiologically, the afferents of
the VNs can sense a peripheral infection and transmit this
information to the central nervous system which is shielded from
the rest of the body by the blood brain barrier (32). This information
may then be redirected to vagal efferents which can send anti-
inflammatory responses through the inhibition of pro-inflammatory
cytokines such as tumor necrosis factor (TNF)-a, interleukin (IL)-1,
and the release of anti-inflammatory cytokines such as IL-10 (7, 33).
This is also referred to as the “inflammatory reflex” of the VN (7, 33,
34). Thus, an (ongoing) inflammation of the VNs could restrict vagal
activity and might lead to a lack of vagal downregulation of
inflammatory processes. A reduced vagal activity was repeatedly
described in patients with MDD (35, 36), and was mitigated after the
onset of antidepressant treatment (36). The MDD subgroup analysis
showed that the enlargement of the left VN-CSA was mainly driven
by the RDD subgroup. We assume, that recurrent depressive
episodes might trigger a chronification of vagal dysfunction by
overstressing the anti-inflammatory functions of the VNs in the long
term (37).

Considering side-specific effects of the VN, in healthy subjects,
Pelz et al. found an inverse correlation only between the left VN-CSA
and parameters of parasympathetic activity (11). Left VN efferent
neurons were also prominently involved in anti-inflammatory effects,
at least in mice, where the selective stimulation of efferent cholinergic
VN neurons originating in the left dorsal motor nucleus and
projecting to the celiac-superior mesenteric ganglia significantly
increased splenic nerve activity and inhibited TNF-a production (38).
The so-called cholinergic anti-inflammatory pathway is exerted
through vago-parasympathetic reflexes via the splenic nerve and vagal
efferent neurons to enteric neurons resulting in a decrease of TNF-a
(33). In humans, invasive VNS was approved for severe treatment-
resistant depression in 2005 by the US Food and Drug Administration.
Usually, the left cervical VN is stimulated (5, 39). Recently, left VNS
also emerged as a promising treatment approach for inflammatory
bowel disease (40, 41).

So far, echogenicity of nerves was examined only in a few studies.
Gamber and colleagues did not find a general difference in the nerves’
echogenicity between patients with CIDP and probands, but
differences between the subgroups of clinically progressive CIDP
patients compared to healthy controls and stable CIDP patients (42).
No differences were found in the echogenicity of the VNs between
MDD and controls. One explanation may be, that the epineurium is
relatively prominent, in particular in the right VN. Thus, a change in
echogenicity was probably mitigated by the hyperechoic epineurium.
However, there was a significant side difference of the GSM Index
between the left and the right VN within both the MDD and control
group. The GSM Index of the left VN was significantly lower than the
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right, i.e., the left VN was more hypoechoic, which could be a due to
a lower number of fascicles in the left VN, which are sheathed by
hyperechoic epineurium (10).

We found no significant correlation between MDD symptom
severity and VN-CSA or echogenicity. BDI and PHQ-15 ask for
symptoms within the last 2 weeks, which reflects rather acute than
chronic symptoms. In our findings, the RDD subgroup contributed
most to the alterations in VN-CSA. This may suggest that recurrent
and chronic courses of MDD alters VN-CSA independently to its
current symptom severity.

There are several limitations. Firstly, the MDD group was
heterogenous, comprising patients with FD and RDD, with the RDD
subgroup impacting the VN-CSA the most. Further HRUS investigations
in MDD should focus on differences between first time, recurrent, and
chronic depressive disorders. Moreover, it should be noted that the RDD
subgroup presumably underwent a longer period of medical treatment,
due to recurrent depressive episodes and long-term intake of
antidepressants. We could not rule out that (especially the long-term-
treatment with) antidepressants had an influence on the VN alterations,
as they may also have anti-inflammatory effects (43, 44). Secondly, the left
VN-CSA enlargement was small and thus, it appears unlikely that the
VN-CSA may serve as a biomarker for diagnosis or treatment response
in MDD on an individual basis. Thirdly, no general procedure of
determining echogenicity in HRUS images is established yet. But unlike
previous studies (42), we adjusted echogenicity for individual factors
during the HRUS examination like changes in gain, depth, and focus by
calculating an index, rather than reporting raw values. Finally, there is an
ongoing debate whether the sonographically measured VN-CSA reflects
the anatomical size of the VN (45).

In conclusion, the enlargement of the left VN-CSA in patients
with MDD, and especially in these patients with recurrent depressive
disorders, might turn out as a promising imaging biomarker. Possible
mechanisms could involve a dysregulation of inflammatory and anti-
inflammatory effects of the gut-brain axis. Further sonographic
research is warranted, especially over the course of MDD to improve
our understanding of the role of the VNs in affective disorders.
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Objective: To explore the interhemispheric information synergy ability of the
brain in major depressive disorder (MDD) patients by applying the voxel-mirrored
homotopic connectivity (VMHC) method and further explore the potential clinical
diagnostic value of VMHC metric by a machine learning approach.

Methods: 52 healthy controls and 48 first-episode MDD patients were recruited
in the study. We performed neuropsychological tests and resting-state fMRI
scanning on all subjects. The VMHC values of the symmetrical interhemispheric
voxels in the whole brain were calculated. The VMHC alterations were compared
between two groups, and the relationship between VMHC values and clinical
variables was analyzed. Then, abnormal brain regions were selected as features
to conduct the classification model by using the support vector machine (SVM)
approach.

Results: Compared to the healthy controls, MDD patients exhibited decreased
VMHC values in the bilateral middle frontal gyrus, fusiform gyrus, medial superior
frontal gyrus and precentral gyrus. Furthermore, the VMHC value of the bilateral
fusiform gyrus was positively correlated with the total Hamilton Depression Scale
(HAMD). Moreover, SVM analysis displayed that a combination of all clusters
demonstrated the highest area under the curve (AUC) of 0.87 with accuracy,
sensitivity, and specificity values of 86.17%, 76.74%, and 94.12%, respectively.

Conclusion: MDD patients had reduced functional connectivity in the bilateral
middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral
gyrus, which may be related to depressive symptoms. The abnormality in these
brain regions could represent potential imaging markers to distinguish MDD
patients from healthy controls.

KEYWORDS

major depressive disorder, voxel-mirrored homotopic connectivity, support vector
machine, functional magnetic resonance imaging, resting-state
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1. Introduction

As a common and debilitating mental disease, major depressive
disorder (MDD) is characterized by persistently depressed mood, lack
of interest, low energy, and cognitive impairment (1). It has high rates
of occurrence, impairment and recurrence. Currently, there are more
than around 350 million MDD patients worldwide, and the number
of patients is still increasing annually (2). According to the World
Health Organization, it is estimated that MDD can reach the first
incidence rate among mental disorders in the world by 2030, which
will seriously threaten economic development and social stability (3,
4). Previous study showed that MDD was a systematic disease
involving in multiple neural circuits, which may be related to genetic
factors, environmental factors, psychological factors, and abnormal
nerve development (5). Although many studies have been performed
on the genetics, neurobiochemistry and neuroendocrinology of MDD
(6-10), the pathogenesis is still unclear. The diagnosis of MDD is
mainly based on the subjective feelings of patients and the evaluation
of depression scales depending on the experience of clinicians. Hence,
it is an urgent problem to explore the pathogenesis of MDD and find
appropriate objective diagnostic markers.

The traditional imaging indicators of structural magnetic
resonance imaging (MRI) are insufficient as markers for MDD
diagnosis due to the lack of organic lesions. In recent years, resting-
state functional magnetic resonance imaging (rs-fMRI) has developed
rapidly, providing new ideas. Rs-fMRI is a non-invasive brain imaging
technology reflecting the brain functional activity by measuring the
hemodynamic and metabolic changes based on blood oxygen level-
dependent (11). It has good repeatability and very high spatial
resolution. Additionally, subjects do not need to perform specific tasks
during the scanning progress. This technology can explore the
pathogenesis of diseases from the perspective of neuroimaging and
provide an effective means to find neuroimaging markers. Thus, it has
been widely used in the research of neuropsychiatric diseases, such as
bipolar disorder (12, 13), autism (14, 15), and Alzheimer’s disease (16,
17). It can also be a particularly useful tool for investigating differences
between MDD patients and healthy controls (HCs). Previous studies
on MDD have revealed that there were structural and functional
changes in many brain regions, mainly involving the altered prefrontal
cortex, amygdala, hippocampus, corpus striatum, and other brain
regions (18-22).

To date, common traditional imaging data analysis methods
include amplitude of low-frequency fluctuation (ALFF), regional
homogeneity (ReHo), degree centrality (DC) and so on. The methods
are mainly utilized to observe brain functional changes in MDD
patients from a local perspective. But voxel-mirror homotopic
connectivity (VMHC) is a reliable and reproducible measurement
from the whole brain level which has been developed rapidly recently
(23). It has been applied for neuropsychiatric diseases, such as anxiety
disorder (24), autism (25), addiction (26), obsessive-compulsive
disorder (27, 28), and Schizophrenia (29). Through the method, the
functional connections can be quantified between each voxel in the
one hemisphere and the mirror voxel in the other hemisphere at
resting state and the intensity reflects the synergy between the
hemispheres. In other word, it mainly reflects the information
exchange and coordination function between hemispheres by
describing the high synchronization of spontaneous activities in the
symmetrical regions of the left and right hemispheres. The good
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coordination of brain regions between hemispheres plays an important
role in integrating cognitive and behavioral related brain functions.
Therefore, the study of homotopic functional connection across the
cerebral hemispheres might help to further understand the neural
mechanisms of MDD.

As a supervised machine learning algorithm, support vector
machine (SVM) has unique advantages in dealing with small-sample,
high-dimensional, and nonlinear data problems for classification (30).
It can determine the optimal segmentation hyperplane in the feature
space of data samples to maximize the distance between the
hyperplane and various types of samples based on the statistical
learning theory and the principle of structural risk minimization.
Compared to traditional statistical analysis techniques, it has a simple
structure, optimal global solution and high generalization ability as a
multivariate pattern analysis approach. Furthermore, it enables
programs to learn from data sets and perform tasks without direct
users input, which has been applied in the discriminant analysis of
various neuropsychiatric diseases (31). As we all know, several studies
have reported that VMHC method was applied for the different types
of MDD (32-37). However, our study is the first to combine VMHC
metric and SVM method to evaluate the classification ability in the
first-episode MDD patients without prior assumptions.

In the present study, we aimed to explore the possible
neuroimaging mechanism of MDD and identify whether the altered
brain regions could be used to discriminate between the first-episode
MDD patients and HCs. Firstly, the VMHC approach was applied to
identify the functional connectivity between the hemispheres. Next,
we used correlation analyses to reveal the relationship between
abnormal homotopic connectivity and clinical characteristics. Finally,
we discussed the VMHC value in altered brain regions as potential
neuroimaging markers by the SVM method. The study will deepen
our understanding of neural mechanism changes in MDD.

2. Methods
2.1. Participants

We recruited 48 first-episode MDD patients aged 18-55 years
from the traditional Chinese medicine clinic and psychiatric
department of Guangdong Sanjiu Brain Hospital, and 52 healthy
volunteers from the community through advertisement. This study
lasted from May 2017 to August 2018. Before the screening, all
subjects signed a written statement of informed consent. This study
received ethical approvals from the Ethics Committee of Guangdong
Sanjiu Brain Hospital and the Ethics Committee of Southern
Medical University. And it was registered on the Chinese clinical
trial website (http://www.chictr.org.cn, registration number:
ChiCTR-IPR-14005427).

All participants included in this study were right-handed. The
Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-
Text Revision (DSM-IV-TR) was used to make the diagnoses of the first-
episode MDD patients. The participants met the following inclusion
criteria: (1) HAMD score of >20; (2) the course of disease of >2 weeks;
(3) no psychiatric drugs intake; (4) no neurological or other psychiatric
disorders and history of substance dependence; (5) no organic brain
diseases; (6) no history of manic or hypomanic episodes; (7) no history
of psychiatric illness among their first-degree relatives; and (8) no MRI
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contraindications, such as electronic implants, various metals or
claustrophobia. Pregnant and lactating women were also excluded.
The HCs met the following inclusion criteria: (1) a comprehensive
physical examination conducted before the experiment with all
examination results being normal; (2) the total score of HAMD of <7;
(3) no mood disorders or neurological disorders; (4) no family history
of psychiatric illness among their first-degree relatives; (5) no drugs
(6) no MRI
contraindications. Furthermore, pregnant and lactating women were

intake 2weeks before the experiment; and

excluded. All subjects completed 24 items of the Hamilton Depression
Scale (HAMD-24) and Self-Rating Depression Scale (SDS).

2.2. MRI data acquisition

In this study, the MRI imaging data was collected using a GE 3T
Signa HDXT superconducting magnetic resonance scanner. During the
scanning process, all subjects were instructed to stay awake, lie flat and
close their eyes without thinking as much as possible. Their heads were
fixed with sponge pads to reduce head movement and equipped with
sound insulation earplugs. The sagittal 3D-BRAVO sequence was used
for brain 3D-T1WI scanning. The scanning parameters of structural
phase were as follows: repetition time (TR)=8.8ms, time to Echo
(TE)=3.5ms, field (FOV)=256mm x 256 mm,
size=1mmx 1 mmx I mm, flip angle=13°, matrix=256x 256, slices

of view voxel
number = 184. Gradient echo planar imaging pulse sequence was used
to obtain rs-fMRI imaging data. The front and rear joint lines were taken
as the scanning baseline, and oblique axial scanning was performed. The
scanning range was from the parietal cranium to the foramen magnum
of the subjects. The scanning took about eight minutes and the scanning
parameters of functional phase were as follows: TR/TE=2000ms/30 ms,
FOV=24cmx24cm, flip angle=90° slices number=33, slice
thickness=5mm, gap =0.6 mm, matrix = 64 X 64, time points=240.

2.3. Data preprocessing

RESTplus v1.25 (38) and SPM12 software' were used for data
preprocessing based on MATLAB R2017b platform. The preprocessing
steps included: (1) converting DICOM format data to NIFTT format
data; (2) removing the first 10 time points to minimize the impact from
the initial signal volatility; (3) taking the middle slice as a reference for
slice timing; (4) realigning for head movement correction; (5) spatial
normalizing by using an echo planner imaging (EPI) template
developed by the Canadian Montreal Neuroscience Institute; (6)
smoothing by using the 6 x 6 x 6 mm® Gaussian smoothing kernel for
improving the signal to noise ratio of data; (7) detrending; (8) nuisance
covariates regression including the head movement by using Friston
24 parameter (39); and (9) bandpass filtering to reduce the impact of
low-frequency drift and high-frequency noise (0.01-0.08 Hz). One HC
and five MDD patients were excluded due to excessive head movements
that the translation was >2.5mm, or rotation was >2.5° in each
direction during the scanning process. Consequently, 43 patients and
51 HCs were included in the statistical analyses.

1 https://www.fil.ion.ucl.ac.uk/spm/

Frontiers in Psychiatry

10.3389/fpsyt.2023.1241670

2.4. VMHC calculation

VMHC analysis was performed based on the DPARSF 6.2
software (40). Firstly, the time series of each voxel were extracted in
the one hemisphere of the participants. And then, Pearson correlation
coefficient was calculated between the time series and the
corresponding time series in the symmetric hemisphere. Subsequently,
the obtained correlation coeflicient was converted to a Z value through
Fisher Z transformation in order to generate the VMHC map of the
entire brain for each participant. Finally, the average VMHC value of
each participant can be extracted for group comparison.

2.5. Statistical analysis

Clinical and neuroimaging data were compared between MDD
patients and HCs. SPSS 25.0 software (Chicago, IL) was used to
analyze the clinical data of the participants. We analyzed neuroimaging
data utilizing RESTplus v1.25 software on MATLAB r2017b platform.
The continuous data according with the normal distribution and
homogeneity of variance were analyzed by two independent sample
t-test, and the categorical data was analyzed by y2 test. The mean and
standard deviation were expressed for continuous data. Whereas the
median and interquartile range were expressed for counting data.
We used the gender, age, and education of subjects as covariates for
rs-fMRI data if the two groups differed statistically from one another.
The test results were corrected by Gaussian random field (GRF)
multiple comparison correction. We considered that voxel p of <0.005
and cluster p of <0.05 were statistically significant. The VMHC values
of abnormal brain regions were extracted for further correlation
analysis and classification.

As a supervised machine learning, the SVM method is a common
way to explore the best boundaries between two categories and to solve
binary classification problems. The method was applied to test whether
extracted VMHC could discriminate between MDD patients and
healthy controls. The categorization procedure included training and
testing. First, abnormal VMHC were utilized as features to establish
the hyperplane and the radial basis function (RBF) kernel was applied
in the SVM model. The best parameters for the training dataset,
including c (penalty coeflicient) and g (gamma), were chosen by the
grid search approach. Second, an optimal hyperplane which developed
from the training data was applied to a new testing dataset in order to
assess the performance of the classification. We used a “leave-one-out”
method to produce results with the best levels of accuracy, sensitivity
and specificity by the LIBSVM software package in MATLAB r2017b
platform. The predictive performance of the SVM model was shown
by the area under the receiver operating curve (AUC).

3. Results
3.1. Clinical characteristics

Demographic and clinical characteristics between the two groups
were presented in Table 1. The age and sex composition ratios did not
significantly differ between the two groups (p>0.05), but there were
significant differences in the education level, HAMD-24, and SDS
(p<0.05).
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TABLE 1 Demographics and clinical characteristics of all subjects.

Age (years) Gender Education Duration
(male/female) WEELS) (weeks)
HCs 28.92+7.12 22/29 13.02+2.96 NA 253171 25.65+3.70
MDD 311241035 20/23 11.53+2.50 33.95+41.60 28.14+3.03 75.26+3.78
t/y? ~1.176 0.107 2635 NA —49.214 —64.094
p value 0.243 0.743 0.01 NA <0.0001 <0.0001

Data are presented as Mean + SD; N/A, not applicate.

3.2. VMHC comparison

Individual whole-brain VMHC values of MDD patients were
compared between MDD patients and HCs. Additionally, we took the
education level as a covariate in the statistical analysis of rs-fMRI data.
MDD patients had lower VMHC values in the bilateral middle frontal
gyrus (MFQG), fusiform gyrus (FG), medial superior frontal gyrus
(MSEG) and precentral gyrus (PG) (GRF correction, voxel p <0.005,
cluster p<0.05, cluster size >64) relative to HCs, as shown in Table 2
and Figure 1.

3.3. Correlations analyses

Figure 2 showed the correlation analysis between the VMHC and
clinical characteristics. The VMHC values of different brain regions of
all subjects were extracted by using RESTplus V1.25 software based on
MATLAB r2017b platform. A positive correlation was observed
between the VMHC value of the bilateral fusiform gyrus and HAMD
(r=0.3723, p=0.014).

3.4. Support vector machine

The decreased VMHC values of these four brain regions in MDD
patients were analyzed by the SVM method. The four clusters were
used as features separately or together. The receiver operating curves
(AUCs) of models were as follows: MFG of 0.86, FG of 0.82, MSFG of
0.79 and PG of 0.76. The decreased VMHC in the MFG showed the
highest diagnostic accuracy of 81.91%, with a sensitivity of 74.42%
and a specificity of 88.24%. Based on the results of the SVM, the
combination of decreased VMHC in the four clusters produced the
highest AUC of 0.87, with an accuracy of 86.17%, a sensitivity of
76.74%, and specificity of 94.12% together (See Table 3 and Figure 3).

4. Discussion

Our research compared the brain activity of MDD patients with
that of HCs using the VMHC method. The results showed that
compared to the HCs, the MDD group had decreased VMHC in the
bilateral MFG, FG, MSFG, and PG which represented the decreased
synchronization and information exchange. Additionally, a positive
correlation was found between VMHC value of the bilateral FG and
HAMD scores in MDD patients. Based on the SVM results, a
combination of decreased VMHC value in the four clusters had
relatively the highest AUC, sensitivity, specificity and accuracy.
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TABLE 2 Abnormal brain regions in the MDD patients compared to HCs.

Peak T
value

MNI Coordinate
(mm)

Cluster
size

Regions

MFG 1773 —5.5839 +42 24 42
FG 236 —4.9282 +27 -78 =15
MSFG 131 —5.3559 +9 60 18
PG 117 —4.7597 +48 -18 42

MFG, middle frontal gyrus; FG, fusiform gyrus; MSFG, medial superior frontal gyrus; PG,
precentral gyrus (voxel p <0.005, cluster p <0.05, GRF correction, cluster size >64 voxels).

The MSFG and the MFG are both important components of the
prefrontal cortex which participate in a variety of neural functions. The
MSEG is responsible for working memory, stress perception, regulation
of loss aversion and behavior (41). Stress perception refers to the ability
to perceive various negative external factors, which often serves as an
important factor in predicting the occurrence of depression. The
involvement of the MFG in emotional processing is related to
psychological resilience (42, 43). The MSFG and MFG are important
components of the default network and frontal parietal network. The
default network plays an important role in emotional processing, self-
referencing psychological activities and recalling previous experiences
(44, 45). And the frontoparietal network is an important cognitive
functional network that participates in controlling and regulating
cognitive activities in the brain (46). The depressed patients showed
substantial changes in the BOLD signal in the left MSFG relative to HCs
(47) and the MSFG was demonstrated a high level of diagnostic
accuracy in the late-life depression (48). Additionally, Lan et al. observed
that MDD group had higher fALFF value in the right MFG (49). The
MDD patients with somatic symptoms exhibited lower ReHo value in
the right MFG (50) and the depressive patients had less pronounced
activation of MFG in response to both positive and negative images
(51). Several studies found that the abnormal interhemispheric
homotopic functional connectivity in the bilateral MSFG and MFG in
different types of depressive group, such as MDD with and without
anhedonia, recurrent MDD and MDD with gastrointestinal symptoms
(52-54). We also discovered that first-episode MDD group had lower
VMHC in the MSFG and MFG compared to HCs. This indicated the
importance of the homotopic connectivity between these two brain
regions in the pathogenesis of depression.

The FG, known as the lateral occipitotemporal gyrus, is the cerebral
cortex between the temporal lobe and the occipital lobe (55). The FG, as
a crucial component of the visual recognition network, is mainly
responsible for the perception and processing of emotion during face
stimulus presentation. It involves in higher-order vision processing and
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FIGURE 1

p <0.05, GRF correction, cluster size >64 voxels).

Brain regions showing significantly different VMHC values between two groups. Cold colors indicate decreased VMHC values (voxel p <0.005, cluster
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is probably most well-known for its involvement in visual face
processing, although it also plays an important role in the visual
processing of body parts, objects, places and word forms (56). K and V
et al. reported that MDD patients had abnormal volume in the FG
related to alexithymia in comparison with healthy controls (57). And the
patients with MDD have shown significantly decreased local gyrification
index in the right FG and decreased functional connectivity between the
right FG, right superior temporal gyrus and sensorimotor areas
(precentral and postcentral gyrus) (58). Moreover, Korgaonkar et al.
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revealed decreased fractional anisotropy in the temporal lobe involving
the FG in melancholic MDD (59). Subjects with cognitive vulnerability
to depression have the increased ALFF in the left FG (60) and increased
fALFF value in the FG was related to some depressive symptoms in
MDD patients (61). Otherwise, one study showed that MDD group had
decreased ReHo values were seen in the right FG compared with HCs
(62). The MDD patients exhibited that significant decreased VMHC in
the FG and a negative correlation was found between VMHC of the FG
and illness duration relative to healthy controls (32, 34). Interestingly, the
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TABLE 3 SVM classification performances.

10.3389/fpsyt.2023.1241670

Regions Accuracy (%) Sensitivity (%) Specificity (%) AUC

MFG 0.5 8 81.91 74.42 88.24 0.86
FG 512 32 80.85 76.74 84.31 0.82
MSFG 025 8 76.60 65.12 86.27 0.79
PG 32 512 76.60 79.07 74.51 0.76
All 32,768 0.0156 86.17 76.74 94.12 0.87

MFG, middle frontal gyrus; FG, fusiform gyrus; MSFG, medial superior frontal gyrus; PG, precentral gyrus. A combination of all clusters built the best SVM model. The best ¢ was 32,768; The

best g was 0.0156; The AUC of best model was 0.87.
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Visualization of classifications based on VMHC values through the support vector machine method. (A) The optimal parameters selection of SVM
models by the grid search method (3D view). (B) The SVM parameters selection results with contour map (2D view). (C) Receiver operating curves

06
False Positive Rate

07 08 09 1

VMHC value of the bilateral FG was positively correlated with the
HAMD in our study. This may be the transitional stage of
decompensatory period. The consistency and synergy of bilateral FG was
enhanced with the more severe depression, which may be related to the
compensatory enhancement of information exchange and integration.
The PG was part of the central executive network. Several studies
have suggested that the PG changed in patients with depression.
L. Wang et al. observed that MDD patients had the significant altered
ALFF and fALFF value in the precentral gyrus (63). There were
significant negative correlations between the abnormal fALFF in the
right precentral gyrus and the change of Beck Scale for Suicidal Ideation
at baseline and between the abnormal ALFF in the right precentral
gyrus and the change in HAMD. Furthermore, reduced ReHo value in
the right precentral gyrus have been reported in the unipolar depression
group (64). The somatic depression also exhibited that lower ReHo
value in the left precentral gyrus and ReHo value in the left precentral
gyrus was positively correlated with cognitive factor scores of the
HAMD-17 compared to non-somatic depression (50). Additionally,
Shan et al. found that the melancholic patients displayed the decreased
VMHC value in the precentral gyrus and the SVM analysis results
showed that the VMHC value between the bilateral precentral gyrus
may serve as underlying imaging indicators to distinguish melancholic
patients from non-melancholic MDD (36). The Treatment Resistant
Depression group had significantly lower VMHC values in the
precentral gyrus as compared to the treatment sensitive depression
group (33). Our results revealed that the first-episode MDD patients
exhibited aberrant VMHC value in the precentral gyrus, which was
roughly consistent with the previous findings even though different
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types of depression. Decreased coordination was discovered throughout
other brain areas, involving in bilateral insular, putamen, posterior
cingulate cortex, cuneus and superior temporal gyrus (35, 65, 66). The
different results may be related to the sample size, the severity and
course of depression, medication or other interventions, multiple
comparison correction methods and statistical threshold.

At present, clinical symptoms are mostly used for MDD diagnosis.
Machine learning is an objective measurement that may might
increase the accuracy of MDD diagnostic reliability. The ROC analysis
was carried out to assess the effectiveness of the SVM classifier. The
SVM model in our study showed good performance for MDD, with
an accuracy of 86.17%, sensitivity of 76.74%, specificity of 94.12% and
AUC of 0.87 based on the leave-one-out cross validation technique. As
a result, aberrant VMHC signal values in these brain regions may serve
as potential imaging markers for discriminating MDD patients from
HC. This study had some limitations. Firstly, the sample size was small,
which might reduce the statistical effectiveness and affect the stability
of the results. Secondly, the study had a cross-sectional design, lacking
longitudinal observation of depression. These patients can be followed
up to elaborate on the pathological mechanism of the disease in the
future. Thirdly, a weak correlation existed between the depression
scales and the VMHC value. This may be related to the small sample
size and the depression levels of the included patients. In conclusion,
we found the altered VMHC of the MFG, FG, MSFG, and PG in MDD
patients, indicating that the impairment of these brain areas may
contribute to the pathogenesis of depression. In the future, we can
combine T1 and DTI technology to further explore the neuroimaging
mechanism of depression from a multimodal perspective.
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5. Conclusion

In our study, MDD patients exhibited decreased VMHC value in
the MFG, FG, MSFG and PG. The VMHC value of FG was positively
correlated with the total HAMD scores. Moreover, SVM analysis
results showed that a combination of the VMHC values of all clusters
demonstrated the highest area under the curve (AUC), which may
be a potential neuroimaging marker for the MDD. According to this
study, it highlighted the importance of decreased coordination
between hemispheres in these brain regions into the pathophysiology
of MDD and VMHC values could also serve as a potential imaging
biomarker for diagnosing MDD.
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Type | Bipolar disorder (BD-I) is a neuropsychiatric disorder characterized by
manic or mixed-featured episodes, impaired cognitive functioning, and persistent
work and social functioning impairment. This study aimed to investigate within-
subject; (i) differences in brain perfusion using Single-photon emission computed
tomography (SPECT) between manic and euthymic states in BD-| patients; (ii)
explore potentialassociations between altered brain perfusion and cognitive status;
and (iii) examine the relationship between cerebral perfusion and mania symptom
ratings. Seventeen adult patients diagnosed with BD-I in a manic episode were
recruited, and clinical assessments, cognitive tests, and brain perfusion studies
were conducted at baseline (mania state) and a follow-up visit 6 months later. The
results showed cognitive impairment during the manic episode, which persisted
during the euthymic state at follow-up. However, no significant changes in brain
perfusion were observed between the manic and euthymic states. During mania,
trends toward decreased perfusion in the left cerebellum and right superior parietal
lobule were noted. Additionally, trends indicated a higher perfusion imbalance in
the left superior and middle frontal gyrus during mania and the right superior and
middle frontal gyrus during euthymia. No significant correlations existed between
brain perfusion, mania symptom ratings, and cognitive performance, indicating
that symptomatology might represent more than neural hemodynamics. These
findings suggest that cognitive impairment may persist in BD-I patients and
highlight the need for therapeutic interventions targeting cognitive deficits.
More extensive studies with extended follow-up periods are warranted further to
investigate brain perfusion and cognitive functioning in BD-| patients.

KEYWORDS

bipolar disorder, SPECT, brain imaging, cognitive function, neuroimaging, nuclear
medicine
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1. Introduction

Type I Bipolar disorder (BD-I) is a common neuropsychiatric
disorder with a lifetime worldwide prevalence of approximately 1%
(1). Itis characterized by at least one lifetime manic or mixed-featured
episode, and it may be accompanied by impaired attentional
processing, executive function, verbal memory, and persistently
impaired work and social functioning (2, 3); these deficits can
be observed in all stages, including euthymia (phase of normality
between episodes of mania or depression) (4-6). Brain lesions
evidence shows that mania occurs in up to 30% of BD-I patients with
basal ganglia calcification, associated with right-sided destructive
lesions and with the left-sided epileptogenic lesion, deriving a laterality
imbalance (7). However, functional neuroimaging studies have found
previous alterations in limbic structures and prefrontal areas, possibly
related to cognitive impairment (8). Nonetheless, the current evidence
to determine this relationship is inconclusive because it is based
chiefly on cross-sectional designs in various patient groups. This
approach limits comparison (and correlations) between the different
clinical states due to inter-subject differences (9).

Longitudinal studies investigating subjects during manic,
euthymic, and depressed episodes promise to capture disease-specific
within-subject alterations, as the switch between mood states is a
hallmark of BD-I patients. Such designs are challenging, and only a
few studies show images of subjects across mood episodes (10-14),
and these studies used Magnetic Resonance Imaging to study
functional activation and connectivity changes. Cerebral blood flow
(CBF) abnormalities have been previously described in patients with
Major Depressive Disorder (MDD) and Schizophrenia (15-17). A
systematic review of 33 studies compared CBF findings in BD and
healthy control subjects (HC) at rest and in response to cognitive and
emotional tasks; the most consistent finding was reduced CBF in BD
in the cingulate gyrus, frontal, and anterior temporal regions during
either depressive or manic stages, compared to healthy controls.
However, longitudinal measures of CBF across mood states are rare:
Most relevant to the present study, in longitudinal studies contrasting
symptomatic (mania or depression) with euthymia, a right-left
asymmetry in anterior temporal lobes was observed in the pathological
mood states (18) A review of perfusion-weighted magnetic resonance
imaging studies in BD found results that supported the presence of
hyper-perfusion in the cingulate cortex and frontotemporal regions,
as well as the company of hypo-perfusion in the cerebellum in BD
subjects when compared with HC and subjects with unipolar
depression (19). A study of perfusion fluctuation and perfusion
connectivity in BD subjects measured by dynamic arterial spin
labeling found that BD subjects exhibited significantly increased
perfusion fluctuations in the left fusiform and inferior temporal
regions and marginally increased perfusion fluctuations in the right
temporal pole and inferior temporal areas, and increased perfusion
connectivity between anterior cingulate cortex and the occipitoparietal
cortex. Positive symptoms were negatively associated with anterior
cingulate cortex perfusion connectivity to the right orbitofrontal and
superior frontal regions and right orbitofrontal and inferior frontal
regions (20).

Regarding possible changes in brain perfusion, as they relate to
genitive function, prior results have been mixed: Regarding CBF in
relation to cognitive and emotional tasks comparing BD and HC
subjects, it was found that decreased CBF in BD group during memory
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tasks, increased CBF in prefrontal and limbic regions in BD group and
parietal and premotor areas of HC group during serial reaction time
tasks, decreased CBF in the dorsolateral prefrontal cortex in BD group
during verbal learning tasks, as well as increased CBF in dorsal
anterior cingulate cortex regions and decreased CBF in left frontal
pole in BD group during decision-making tasks. No differences were
found between the groups in studies that used color-word inhibition
and verbal fluency tasks. In studies without a HC group, a correlation
was found between worse performance on memory and verbal
learning and low frontal CBF; also, the psychomotor performance was
related to greater anterior temporal CBF in baseline CBF and
subsequent cognitive performance with increased CBF in left inferior
opercular frontal gyrus in a before and after 4-week cognitive training
study. Correlations between CBF and cognitive performance were
reported, noting that lower CBF was associated with poorer
performance on measured memory tasks, verbal learning, response
inhibition, and complex abstraction.

In a previous study, we began exploring cognitive status and brain
perfusion (measured by SPECT) during a manic episode in 10 patients
with BD-, reporting a positive association between cognitive
functioning impairments (verbal learning, verbal fluency, and
processing speed) with perfusion in the right temporal pole and a
negative association with perfusion in the orbitofrontal cortex and
subgenual cingulate cortex, from right hemisphere (21). We expand
on these results using a larger sample size, longitudinal design, and
quantitative voxel-wise neuroimaging analysis.

The present study aimed to describe within-subject differences in
brain perfusion between mania and euthymia; specifically, we explored
if the switch from mania to euthymia incurred changes in the laterality
of perfusion, with the hypothesis that the mania state would
be associated with a higher imbalance in perfusion, favoring relatively
higher perfusion of the left cerebrum, based on prior neuroimaging
reports (7, 22). Additionally, we sought to explore potential
associations between altered brain perfusion reductions in CBF in
cingulate, frontal, and anterior temporal regions, as per the prior
literature and cognitive status, capitalizing on the within-subject
design. Lastly, we characterized the relationship between cerebral
perfusion and mania symptom ratings in the whole sample.

2. Methods
2.1. Subjects

Between March 2015 and March 2019, we recruited 17 adult
patients diagnosed with BD-I undergoing a moderate or severe manic
episode according to the Young Mania Scale (YMRS; YMRS
score >20) (23, 24), in the National Institute of Psychiatry Ramoén de
la Fuente Muniz (INPRFM). Participants were diagnosed according
to the DSM IV-TR criteria (25) by an experienced psychiatrist using
the South and Central America version of the International
Neuropsychiatric Interview (MINI) (26). We included participants
with BD-I diagnoses of no longer than 5years, without current
pharmacological treatment, and with no history of electroconvulsive
therapy for at least 6 months before the initial evaluation. Patients with
a score>19 on the Montgomery-Asberg Depression Scale for
Depression (MADRS) (27), with neuropsychiatric comorbidities,
uncontrolled medical conditions, alcohol or other substance use, as
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well as pregnant or lactating women, were excluded. This study was
approved by the Institutional Ethical Review Board of the National
Institute of Psychiatry “Ramoén de la Fuente Muniz” According to the
Institution’s guidelines, all participants or legal representatives
received a study explanation and signed informed consent before
entering the study.

2.2. Clinical and cognitive assessments

A complete medical history, a physical examination, a
hematological biochemical evaluation (blood biometry, blood
chemistry, liver function, and thyroid function), a general urine
examination, and an electrocardiogram were obtained for each
participant. Regarding cognitive functioning, we assessed immediate
verbal learning, fluency, and processing speed. Ten subjects were
evaluated using the Immediate Verbal Learning Test (VLT-I), the
Verbal Fluency Test (VFT), and the Processing Speed Test (PST)
subtests of the Cognitive Impairment in Psychiatry (SCIP-S) Screen
Scale Spanish version (28). Seven subjects were assessed using the
Hopkins Verbal Learning Test-Revised (HVLT-R) (29) to assess
immediate verbal learning, the animal categorical fluency test to assess
verbal fluency, and the Brief Assessment of Cognition in
Schizophrenia-Symbol Coding test (BACS-SC) (30) to assess
processing speed. These assessments were performed at baseline
(mania state) and follow-up visits 6 months later. The test scores were
normalized and standardized according to each instruments cut
points using the following formula: a/b=c/x.

2.3. Neuroimaging protocol

Perfusion studies were performed on participants in a manic state
at the INPRFM. The protocol was performed during the resting state
two-head SPECT-CT (PRECEDENCE-Philips). A
radiopharmaceutical 925MBq of Tc99m-ethyl cysteine iReimer

using

(Neurolite R Accesofarm) was administered for 40-45 min.

2.4. Statistical analysis

For the descriptive analysis of categorical variables, absolute and
relative frequencies were obtained. For quantitative variables, means,
medians, and their respective dispersion measures were calculated.
The normality of the distribution was evaluated graphically and
through the Shapiro-Wilk test. The Spearman rank correlation
(correlation between cognitive domains and clinical variables) was
performed. A p<0.05 was considered statistically significant with a
95% confidence interval. Due to the exploratory nature of this analysis,
we did not correct by multiple comparisons to avoid the type II error.
The analysis was performed in the statistical software Stata
(version 15.0).

The brain imaging data were modeled in SPM 12 using a multiple
linear regression approach. Individual subjects mania- and
euthymia—SPECT perfusion images were co-registered to compute
an average image. This average was normalized to MNI space, and
transformations were applied to the mania- and euthymia images,
thus avoiding an order bias in co-registration. The spatially normalized

Frontiers in Psychiatry

27

10.3389/fpsyt.2023.1244134

images were further smoothed with a 16 mm full-width-half-max
filter. The preprocessed images were entered in a repeated measures
t-test model, controlling for scan global intensities using an
ANCOVA regressor.

To analyze laterality effects (the main aim of this study), the raw
mania and euthymia-perfusion images were right-left flipped,
co-registered to the non-flipped average, and preprocessed as above.
Changes in the laterality of perfusion between mania and euthymia
were determined by contrasting non-flipped and converted perfusion
images in mania versus those in euthymia. Lastly, we utilized the
entire sample of subjects evaluated in the mania state to assess the
potential correlations between brain perfusion and cognitive
outcomes, as well as with symptoms, as rated on the YMRS scale.

For all analyses, the cluster forming threshold was set at p <0.001,
and significance was set at p <0.05, corrected by family-wise error rate.
Trends for clusters with more than five contiguous voxels at p<0.001,
not surviving correction for multiple comparisons, are also reported.

In addition to the above analysis, we further explored results using
threshold-free cluster enhancement (TFCE), an approach introduced
to increase the sensitivity of voxel-based analyses applying 5,000
permutations and optimizing voxel-level thresholding (31), and by
defining regions of interest based on prior literature in the cingulate,
frontal lobe, and the temporal poles, determined using the
WEFU. pickatlas tool (32) and the A.A.L. library (33).

3. Results
3.1. Participants and ratings

We included 17 patients in the study, 14 women and three men.
The mean age was 41.2 (SD=15. 09; Table 1). The cognitive domains
of immediate verbal learning, verbal fluency, and processing speed
demonstrated performance below the typical threshold at baseline
(Table 2). Additionally, there was no observed correlation between
YMRS scores and cognitive functioning.

During the follow-up, 6 months later, eight out of the 17 patients
were evaluated (nine participants discontinued their participation due
to personal reasons and time availability). An expected significant
difference between baseline and follow-up measurements was found
in YMRS scores (p<0.001). No differences were found between the
cognitive outcomes and the rest of the clinical assessments, even

TABLE 1 Clinical and sociodemographic characteristics.

Variable ‘ n ‘ %
Sex ‘Women 14 82.3
Men 3 17.6
Mean Min-Max
Age 37 20-67
Years of schooling 13.47 5-19
Duration of the last manic episode 4.02 1-16
(weeks)
Time since diagnosis (years) 2.5 0-4
Number of previous episodes of mania 1.29 1-3
Number of prior episodes of depression 1.11 0-4
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TABLE 2 Clinical and cognitive functioning.

SCALES The score Scoreon  Interpretation
during the 6-month  of the results
episode of = follow-up

Mania n=8
n=17
Stocking Stocking
(min-max) = (min-max)

MADRS 5.17 (0-14) 5.82(0-11) > 35: Severe depression
20-34: Moderate
depression
7-19: Mild depression
< 6: Depression in
recovery

YMRS 32.82 (20-56) 1.87 (0-4) <6: Euthymia
7-20: Mixed episode
>20: Manic episode

BPRS 32.17 (20-47) 2512 (21-28) | 0-9: Absence of the
disorder.

10-20: Mild disorder
>21: Severe disorder
Normal values*

Immediate 18.32 (7-27) 17.12 (9-25) <21

verbal

learning

Verbal fluency 16.35 (6-28) 19.12 (12-27) <19

Processing 9.95 (5-15.8) 9.62 (5-14) <12

speed

MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, Young Mania Rating Scale;
BPRS, Brief Psychiatry Rating Scale; SCIP-1, screen for cognitive impairment in psychiatry.
*Reference values are taken from Rojo et al. (34).

though all subjects were euthymic, and none of them were depressed
according to the MADRS scores. As no significant changes in
cognition were discerned between the mania and the euthymia,
we did not pursue the planned correlation analyses of changes in
cognition about changes in perfusion. Pharmacological treatment a
follow-up are described in Supplementary Table 1.

Brain perfusion was not significantly different between the mania
and the euthymia state. However, at a less stringent threshold (p <0.001,
not corrected for multiple comparisons), a trend toward decreased
perfusion in the mania state was observed in the left cerebellum and
the right superior parietal lobule, see Table 3 and Figure 1.

The TFCE and ROI approaches did not yield any further
significant findings.

3.2. Laterality of mania

There were no significant differences in perfusion laterality
imbalance, contrasting the mania and euthymic states. At a less
stringent threshold (p <0.001, not corrected for multiple comparisons),
a trend was observed in that the mania state was associated with a
relative imbalance suggesting higher perfusion in the left superior and
middle frontal gyrus, see Table 3. Similarly, the right superior and
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middle frontal gyrus observed a trend toward more significant
asymmetry in the euthymia state.

3.3. Relation between perfusion and mania
ratings

For the entire sample evaluated only in the mania state (n=17),
there were no significant correlations to the YMRS scale. At a less
stringent threshold (p <0.001, not corrected for multiple comparisons),
a trend was observed toward a positive correlation between YMRS
ratings and perfusion of the left occipital fusiform gyrus (Table 3).

4. Discussion

This study aimed (i) to investigate the differences in brain
perfusion between manic and euthymic states in BD-I patients, (ii) to
explore potential associations between altered brain perfusion and
cognitive status, (iii) and examine the relationship between cerebral
perfusion and mania symptom ratings. We detected cognitive
impairment during the manic episode, which persisted during the
euthymic state at follow-up. However, no significant changes in brain
perfusion were observed between the manic and euthymic states.
We discuss each of these findings below.

4.1. Cognitive function in BD patients
during mania

During the manic episode, immediate verbal learning, fluency, and
processing speed were found below the normalized values for each
subscale. These results agree with those reported in a systematic review,
where it was found that during the manic episode, patients showed
significant dysfunctions in attention, language, memory, and executive
functions (13). However, in the eight subjects who also participated in
our follow-up visit, we did not observe any changes in cognitive
function between the manic episode and euthymia, suggesting that
cognitive function did not improve in euthymia in BD-I (4, 35).

4.2. Changes in brain perfusion

There were no significant changes in measured cerebral perfusion
between the manic state at follow-up euthymia. Several trends were,
however, observed, with reduced perfusion of the right parietal cortex
during mania and evidence of more significant left-right perfusion
imbalance during mania, particularly in the left superior and middle
frontal gyrus. We note that these trends correspond to a general
pattern of mania associated with right-hemisphere hypofunction and
left-hemisphere hyperfunction (7, 22), ad hoc to our hypothesis; yet,
these trends should be interpreted cautiously.

We also did not observe significant correlations between the YMRS
score and cerebral perfusion in the mania state. A trend toward a
negative correlation between YMRS ratings and perfusion of the left
occipital fusiform gyrus was observed. Only a few data implicate
selective disturbances in the occipital cortex in BD-I, possibly
indicating that this trend should be explored in more detail (36, 37).
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TABLE 3 Brain perfusion results.

Analysis Contrast Cluster Z (eq) p(unc) Brain
size region

6 9.7 3.98 <0.001 20 =52 38 Right precuneus
Left superior
28 8.35 3.77 <0.001 —28 =52 38 parietal lobule

Left cerebellum

27 6.78 3.48 <0.001 -8 —74 —45 lobule VIII-X

5 6.05 331 <0.001 12 —41 45 Right precuneus
Repeated t-test Left superior
on perfusion Mania < euthymia 28 8.35 3.77 <0.001 -28 —52 38 parietal lobule

Left superior

and middle

Mania (left vs. 42 4.81 3.77 <0.001 -20 42 26 frontal gyrus

right) > Euthymia (left Left anterior

vs. right) 7 4.11 3.38 <0.001 -35 22 -12 insula

Mania (left vs. Right superior
Laterality-by- right) < euthymia (left and middle
state vs. right) 27 4.58 3.65 <0.001 23 44 26 frontal gyrus
Symptom Positive correlates to Left occipital
correlation YMRS 40 4.18 331 <0.001 —-33 =79 -10 fusiform gyrus

YMRS, young mania rating scale; MNI, coordinate system of the Montreal Neurological Institute and Hospital.

T values

MNI X=20

MNI Z=38

FIGURE 1

Within-subject analysis contrasting eight subjects with BD-1 assessed during mania and at 6 month follow-up. Blue regions indicate lower cerebral
perfusion during mania as compared to euthymia at T>5.2 (p <0.001 not corrected for multiple comparisons). The color bar indicates within-subject
t-test t-values. Created with BioRender.com.

4.3, COg nitive fu nctioning and clinical with euthymia showed impairment in verbal learning functions and

variables at 6-month follow-u P immediate and delayed verbal memory, as well as in tests of executive

functions related to problem-solving, verbal interference, and

This study found that, even if the manic symptoms improved,  attention change tasks. It should be noted that this systematic review

cognitive functioning 6 months later was still impaired. These findings  only included cross-sectional studies of patients in different phases of
coincide with those found in a prior meta-analysis in which patients ~ BD. without follow-up (9).

Frontiers in Psychiatry 29 frontiersin.org


https://doi.org/10.3389/fpsyt.2023.1244134
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.BioRender.com

Estudillo-Guerra et al.

Some factors have been studied to explain the persistent cognitive
impairment in BD-I patients, such as the number and severity of
episodes, considering chronic patients or patients having a history of
multiple episodes suffer from more significant cognitive deficits, age at
illness onset, presence of psychotic symptoms, years of stabilization, and
pharmacological treatment, since medication may negatively affect
cognitive performance (38). However, the population sample
we examined had less than 5years since BD-I diagnosis, with an average
of 2.5years and 1.29 throughout their lifetime; this suggests that cognitive
impairment may start early during the disorder. Other studies have found
that cognitive impairment may be an endophenotype for BD, as evidence
shows that psychomotor speed and response inhibition are observed in
unaffected relatives and offspring of BD-I patients (39). Furthermore,
some studies have found that cognitive deficits are still evident in
euthymic medication-free patients (35). Around two-thirds of BD-I
patients experience cognitive problems, directly impacting their ability
to function socially and occupationally. Moreover, a pattern of cognitive
decline may increase the likelihood of recurring episodes (40).

Open and controlled studies have been made to investigate the
outcomes of cognitive rehabilitation interventions for BD patients.
Some of these interventions have shown promising results in reducing
depressive symptoms and improving executive functions (41).
However, more research on cognitive impairments is needed to
expand treatment options.

We found no significant correlation between brain perfusion and
YMRS score or cognitive performance at baseline or follow-up. The
limited sample size might explain this, but in light of recent large-
scale, complex phenotypes like mania symptoms or cognition may not
lend themselves to simple linear relationships (42).

4.4, Clinical significance

A significant decrease in the YMRS scale score and overall clinical
improvement was found at follow-up. However, we found no difference
in cognitive performance. BD is accompanied by neurotoxic processes
that can accelerate the mechanisms of normal aging (43). Neurostructural,
alterations in oxidative stress and amyloid metabolism, immune
dysregulation, immunosenescence, neurotrophic deficiencies, and
telomere shortening have been found in patients with BD-I (44-47).
Although these results could be associated with the pharmacological
treatment of the patient or with the recovery of global and cognitive
functioning after a manic episode, perhaps taking more than 6 months,
it is also possible that cognitive alterations are persistent traits, present
even without affective symptoms (11, 39, 48, 49).

Our outcomes highlight the relevance of developing new therapeutic
strategies aimed at improving and maintaining the cognitive functioning
of these patients, as well as possible neuroanatomical targets to direct
treatments based on the clinical state of the patients. There is no currently
available robust evidence of therapeutic interventions targeting cognitive
deficits. Regarding pharmacotherapy; lurasidone, vortioxetine, omega-3
fatty acids, modafinil, vitamin D, and aspirin are currently under
investigation in BD-I (3). Functional remediation appears as an excellent
option to alleviate psychosocial outcomes in bipolar patients, with an effect
that seems to remain in the long term. However, current evidence is
insufficient and additional studies are required to prevent neurocognitive
impairment and the associated disability in BD patients (50).
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4.5, Strengths and limitations

Some of the limitations of this study were having a small sample
size and the high rate of loss to follow-up (47%). It was impossible to
control the pharmacological treatment of patients after the manic
episode; this is shown in Supplementary Table 1. Two sets of
instruments were used to assess cognitive function among the
participants, and scores and cut points were calculated proportionally
according to the SCIP-S sub-scores. However, this is one of the few
studies that have tracked BD-I patients longitudinally and evaluated
brain perfusion and cognitive functioning, which may provide more
information about the pathophysiology of cognitive impairment
in BD-L

5. Conclusion

This study found limited evidence of alterations in brain
perfusion during manic episodes, partly supporting BD-I’s laterality
hypothesis. There was evidence of cognitive impairment during
mania, and although patients changed to euthymia, their cognitive
functioning did not improve after 6 months. Studies in larger
populations with extended follow-up periods are needed to explore
brain perfusion and cognitive functioning changes in patients
with BD-I.
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Distinguishing functional and
structural MRI abnormalities
between bipolar and unipolar
depression

Shiging Huang', Xiaoxia Wen', Zhiling Liu, Cuiyun Li,
Yuqiu He, Jiaquan Liang* and Wei Huang*

Department of Psychiatry, The Third People’'s Hospital of Foshan, Foshan, Guangdong, China

Background: This study aims to investigate the underlying characteristics
of spontaneous brain activity by analyzing the volumes of the hippocampus
and parahippocampal gyrus, as well as the fractional amplitude of low-
frequency fluctuation (fALFF) and regional homogeneity (ReHo), in order to
differentiate between bipolar disorder (BD) and unipolar depressive disorder.

Methods: A total of 46 healthy controls, 58 patients with major depressive
disorder (MDD), and 61 patients with BD participated in the study and
underwent resting-state functional magnetic resonance imaging (rs-
fMRI) scans. The researchers calculated the differences in volume, fALFF,
and ReHo values among the three groups. Additionally, they conducted
correlation analyses to examine the relationships between clinical variables
and the aforementioned brain measures.

Results: The results showed that the BD group exhibited increased fALFF in
the hippocampus compared to the healthy control (HC) and MDD groups.
Furthermore, the ReHo values in the hippocampus and parahippocampal
gyrus were significantly higher in the BD group compared to the HC group.
The findings from the person correlation analysis indicated a positive
relationship between ReHo values in the hippocampus and both HAMD and
HAMA scores. Moreover, there was no correlation between the volumes,
fALFF, and ReHo values in the hippocampus and parahippocampal gyrus,
and cognitive function levels (RBANS).

Conclusion: Taken together, these aberrant patterns of intrinsic brain activity
in the hippocampus and parahippocampal gyrus may serve as quantitative
indicators for distinguishing between BD and unipolar depression.

KEYWORDS

bipolar disorder, major depressive disorder, fractional amplitude of low frequency
fluctuation, regional homogeneity, magnetic resonance imaging — high field

Introduction

Bipolar disorder (BD) is a complex psychiatric condition characterized by
alternating episodes of depression and manic or hypomanic states (1), often
accompanied by cognitive impairments and impulsive behaviors related to emotions
(2). The challenge lies in differentiating BD from major depressive disorder (MDD)
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(3), as symptoms of depression in BD can often be mistaken for
MDD. Unfortunately, misdiagnosis is common, with many BD
patients being incorrectly identified as having MDD for extended
periods of time (4). This can have serious consequences, including
worsened manic symptoms, decreased quality of life, and an
increased risk of suicide (5). To ensure accurate diagnosis,
clinicians need to be aware of the comorbidities associated with BD
and develop means to distinguish it from other disorders.
Differentiating between bipolar and unipolar depression based
solely on clinical observations can be challenging, leading
researchers to explore neural markers through neuroimaging in
order to distinguish between the two (6). Therefore, it is necessary
to identify biomarkers associated with bipolar depression and
develop clinically applicable diagnostic tools to shed light on its
potential pathogenesis (7).

The regulation of emotions is closely linked to the hippocampus
and parahippocampal gyrus (8), and these brain regions are also
involved in cognitive functioning (9). Some studies have revealed
abnormal brain activity in the hippocampus among BD patients and
those at high risk of developing the disorder (10, 11). The
hippocampus, a key component of the limbic system, is known to
be involved in various cognitive functions, such as memory
formation, consolidation, and retrieval (12). Alterations in
hippocampal structure and function have been consistently
observed in both depression and bipolar disorder, suggesting that
these disorders may have shared underlying pathophysiology (13).
The parahippocampal gyrus, which borders the hippocampus, is
involved in sensory processing, attention, and spatial navigation. It
also plays a role in the regulation of emotions and has been reported
to exhibit changes in patients with mood disorders (14).
Furthermore, a meta-analysis has reported functional and/or
in both the
parahippocampal gyrus, suggesting that these regions are vulnerable

structural abnormalities hippocampus and
in individuals with BD and may be responsible for early
impairments in declarative memory (15). Therefore, investigating
the hippocampus and parahippocampal gyrus in bipolar and
unipolar depression may provide valuable insights into the
underlying neural mechanisms associated with these conditions. By
examining these regions, we can potentially identify biomarkers or
diagnostic indicators that distinguish between these two major
mood disorders, as well as understand the neural substrates of
cognitive and affective symptoms. Thus, the choice of these specific
brain regions for study is crucial in the pursuit of developing more
targeted and effective treatments for bipolar and unipolar
depression. Further depth in explaining the selection of the
hippocampus and parahippocampal gyrus in research involving
these disorders will enhance the understanding of their role in the
pathophysiology and treatment of mood disorders.

In the last decades, functional magnetic resonance imaging
(fMRI) has allowed to explore brain function both during the
performance of a task and at rest. Particularly, resting-state fMRI has
been widely used to analyze the differences in spontaneous brain
activity and functional connectivity of various brain regions through
various measures, including fractional Amplitude of Low-Frequency
Fluctuations (fALFF) and Regional Homogeneity (ReHo) (16). The
fALFF is a method for quantifying spontaneous brain activity by
measuring the intensity fluctuation of fMRI signals with specific
frequencies in a given region of interest (17). It reflects the
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synchronization of neuronal oscillations within a region and has been
used to investigate various neurological and psychiatric disorders (18).
ReHo is another fMRI-based method for evaluating functional
coherence within regions of interest. It measures the similarity of
fMRI signal time series within a given region by calculating the
correlation coefficient of fMRI signal fluctuations over specified
periods of time (19). ReHo has been used to investigate cognitive
processes, emotional regulation, and neurological disorders (20).

Given these findings, this study aims to investigate the diagnosis
of bipolar and unipolar depression by integrating results from
psychological assessments, fMRI scans, and cognitive evaluations.
We hypothesize that functional abnormalities and cognitive
differences in the hippocampus and parahippocampal gyrus can serve
as distinguishing features between unipolar depression and bipolar
depression. Therefore, we propose to examine data from the Hamilton
Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale
(HAMA), fMRI scans, Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) scores, and the ten cognitive
domains of the RBANS scale. The aim of this study is to offer valuable
perspectives for future studies on the diagnosis of bipolar depression
and unipolar depressive disorders, contributing to a more
comprehensive understanding of these conditions and informing
more effective treatments.

Method
Participants

Participants (both MDD and BD groups) were recruited from the
Third People’s Hospital of Foshan. Patients were diagnosed according
to the Structure interview of Diagnostic and Statistical Manual-5th
edition (DSM-5). Notably, all BD patients were in a depressive phase
(We used the 24-item HAMD for assessing depressive symptoms) (3).
Healthy control (HC) participants were selected from local
communities, matching the MDD and BD participants in terms of age,
gender, education, and other relevant factors. Ethics Number:
FSSY-L§202201.

Inclusion and exclusion criteria

Inclusion criteria for participants included being of Han
nationality, right-handedness, having a first-episode drug-naive
mental illness, and no family history or underlying diseases. Diagnosis
criteria for MDD or BD were based on the DSM-5. Exclusion criteria
comprised contraindications to fMRI acquisition, the presence of
brain organic or other physical diseases, substance abuse (including
drugs and alcohol), traumatic brain injuries, and nervous system
diseases, among others.

Scale assessment

Participants underwent assessment using the Hamilton
Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale
(HAMA), and RBANS scores. The HAMD questionnaire assessed the
severity of the disease, while RBANS scores aimed at evaluating
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cognitive function. The RBANS scale is a comprehensive
neuropsychological assessment tool designed to evaluate a broad
range of cognitive functions in adults (21). The scale consists of a
series of standardized tests and tasks that aim to assess various
cognitive domains, including attention, memory, language, executive
functions, and visual-spatial abilities. These tasks are designed to
be repeated and can be administered over multiple sessions to assess
changes in cognitive performance over time. The scale provides
quantitative scores that allow clinicians and researchers to compare an
individual’s cognitive performance to established norms based on age,
education, and other relevant factors (22).

MRI acquisition

MRI acquisition was conducted using a General Electric 3T
Excite HD scanner. The scan parameters were as follows: Time
repetition (TR)/Echo time (TE)=8.6/3.3 ms, Flip angle (FA) =9°, Field
of view (FOV)=256mm * 256mm, layer thickness=1mm, slice
number = 172. For resting brain function MRI acquisition, parameters
were TR/TE=2000/30 ms, FA=90°, FOV =240mm * 240 mm, layer
thickness =4 mm, number of layers = 36, and layer spacing=1mm.

Fractional amplitude of Low-frequency
fluctuations analysis

The fALFF analysis was conducted following a previously
established methodology (23). Essentially, the energy of each
frequency within the low-frequency range (0.01 Hz< f< 0.1 Hz)
was divided by the energy of each frequency across the entire
frequency range to calculate the fALFF value for each voxel. This
value was then normalized by dividing it by the average amplitude
of the entire brain signal to account for overall level differences
in fALFE.

Regional homogeneity analysis

ReHo analysis involved clustering twenty-seven voxels and
applying the Kendall consistency coeflicient (KCC) to measure the
similarity between a voxel and its twenty-six neighboring voxels. The
DPARSEF software’s standard brain model was used to obtain KCC
maps for each subject. Subsequently, the KCC value for each voxel was
normalized by dividing it by the average value from the standard brain
model, resulting in standardized mean ReHo maps. These maps were
then smoothed.

Data Preprocessing and processing

To ensure comprehensive assessments, all participants were
requested to complete scale evaluations and fMRI data collection on
the same day. Upon completion, fMRI images were visually examined
to guarantee their quality and eliminate any unwanted artifacts or
noise. Subsequently, the fMRI data was normalized to the MNI-152
template employing SPM8, and functional MRI data was registered to
the structural fMRI using the registration tool in SPM8. To achieve
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higher precision, the fMRI data was resampled to a resolution of 2mm
x 2mm x 2mm. To further enhance the data quality, fIMRI data was
smoothed using a Gaussian kernel with a full-width at half-maximum
(FWHM) of 8 mm.

The data processing assistant for Resting-State fMRI (DPARSF),
SPMB8, and cat12 software were employed to preprocess the fMRI data.
This included measuring the volume of the hippocampus and
parahippocampal gyrus and analyzing the neural activity in these
regions using fALFF and ReHo. Finally, the ReHo maps underwent
spatial smoothening through the utilization of an 8 mm full-width at
half maximum Gaussian kernel.

Statistical analyses

Statistical analyses were conducted using SPSS 24.00. The
Kolmogorov-Smirnov test assessed the probability distribution of
each group, and the results of all groups showed that they all obeyed
normal distribution. The significance between groups was calculated
by one-way analysis of variance (ANOVA) followed by a post hoc test,
and all values are presented as means * standard deviation (SD).
Pearson correlation analysis was used to examine the relationships
between hippocampal/parahippocampal gyrus volume and functional
values and clinical data. Finally, p-values were corrected for
multiple comparisons.

Results
Patient characteristics

A total of 165 participants were recruited for this study, including
healthy controls (n=46), patients with MDD (n=58), and patients
with BD (n=61). There were no significant differences in age, gender,
body mass index (BMI), and years of education among the HC, MDD,
and BD groups (Table 1). However, the BD group exhibited
significantly lower scores in various cognitive domains, including
immediate memory (learning and story memory), attention (coding
and digit span), and delayed memory (list recognition, story recall,
and figure recall), compared to the HC and MDD groups. Moreover,
the BD group had lower attention (digit span) scores compared to the
HC group. There were no significant differences in visuospatial
construction and language among the HC, MDD, and BD groups
(Table 2; Figure 1).

Hippocampus and Parahippocampal gyrus
findings

In terms of volume, the right hippocampus volume was increased
in the MDD group (p <0.001), while in the BD group, it was decreased
(p<0.01) compared to the MDD group. However, there was no
significant difference in right hippocampus volume between the HC
and BD groups. In terms of functional measures, the BD group
exhibited increased fALFF values in the hippocampus (left and right)
compared to both the HC and MDD groups (p <0.01). In addition, the
BD group showed significantly increased regional homogeneity

(ReHo) values in the hippocampus (left and right) and
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TABLE 1 Description and comparison of Clinical Scales among Healthy Control, Major Depressive Disorder, and Bipolar Disorder Groups.

HC MDD BD Statistics
Participants 46 58 61
Age (years) 32.20+£10.36 29.29+12.44 30.05+9.11 F=0.136; p =0.375
Gender (M/F) 19/27 23/35 23/38 %2=0.241; p =0.969
BMI 22.24+3.43 22.23+3.85 23.29+3.76 F=0.220; p=0.217
Education
Below 9years, n 14 15 19 ¥2=0.293; p =0.864
9years and above, n 32 43 42
HAMD score 2.5+3.67 23.53+7.40%* 14.07 £9.29%%* F=102.3; P**<0.001, P*<0.001
HAMA score 2.02+2.59 16.04 +5.53%* 9.87 £7.43%* F =74.3; P**#<0.001, P**<0.001
RBANS 190.2+39.50 181.2+35.58 156.8 +33.14%*% F =12.84; P*#<0.001, P**<0.001
Immediate memory (Learning) 27.63+7.03 26.22+6.49 21.89+6.36%* F =11.45; P*#<0.001, P**<0.001
Immediate memory (Story Memory) 14.41+5.96 13.05+5.66 9.41 £4.66%** F =12.70; P*¥<0.001, P**<0.001
Visuospatial Construction 17.76 £2.41 18.47+2.38 17.31+3.32 F=2.602; p=0.077
Language 18.28+4.34 17.36 +£4.70 16.52+4.44 F=2.00;p=0.139
Attention (Digit span) 14.13+2.18 13.52+2.68 12.75+5.54% F =4.069; P* =0.015
Attention (Coding) 49.80+14.15 46.57+13.20 40.43 +13.46%*" F=6.721; P¥* =0.002, P" =0.039
Delayed memory (List Recall) 6.61+3.11 5.88+2.94 4.66+2.53%% F =6.523; P** =0.002
Delayed memory (List Recognition) 19.54+1.05 19.38+1.18 18.64+1.73%%" F =6.833; P** =0.003, P" =0.011
Delayed memory (Story Recall) 7.52+3.74 7.14+3.70 4.46 £2.98%*" F=13.17; P*#<0.001, P*<0.001
Delayed memory (Figure Recall) 14.46£4.71 13.59+4.26 10.70 £4.97%%* F=9.908; P**<0.001, P* =0.003

HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; BMI: Body Mass Index; HAMD: Hamilton Depression Scale; HAMA: Hamilton Anxiety Scale; RBANS: Repeatable
Battery for the Assessment of Neuropsychological Status; *p <0.05, **p <0.01 compared to HC group; #p <0.05, ##p <0.01 compared to MDD group.

TABLE 2 Comparison of MRI data among HC, MDD and BD.

HC MDD BD
Volume (cm?)
Hippocampus (Left) 3.69+0.36 3.69+0.36 3.70+0.31
Hippocampus (Right) 3.62+0.35 3.88+0.34%* 3.61+0.307
Parahippocampal gyrus (Left) 3.46+0.31 3.37+0.31 3.48+0.32
Parahippocampal gyrus (Right) 4.04+0.42 3.89+0.39 4.00£0.39
FALFF (a.u.)
Hippocampus (Left) —0.64+0.17 —0.66+0.15 —0.57+0.16%*
Hippocampus (Right) —0.63+0.16 —0.61+£0.18 —0.50+0.177%**
Parahippocampal gyrus (Left) —0.52+0.25 —0.47+0.23 —0.45+0.24
Parahippocampal gyrus (Right) —0.51+0.21 —0.47+0.21 —0.42+0.22
ReHo (a.u.)
Hippocampus (Left) —0.81+0.19 —0.88+0.14 —0.75+0.15*
Hippocampus (Right) —0.88+0.17 —0.85+0.15 —0.75+0.16%**
Parahippocampal gyrus (Left) —0.56+0.18 —0.61+£0.18 —0.50+0.20*
Parahippocampal gyrus (Right) -0.61£0.17 —0.66+0.20 —0.54+0.18*

HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; FALFF: fractional amplitude of low frequency fluctuation; ReHo: regional homogeneity; The fALFF and ReHo
values were measured in normalized unit arbitrary unit (a.u.). *p <0.05, **p <0.01 compared to HC group; #p <0.05, ##p <0.01 compared to MDD group.

parahippocampal gyrus (left and right) compared to the HC group Pearson correlation analysis

(p<0.01). Moreover, the BD group demonstrated significantly higher

ReHo values in the right hippocampus compared to the MDD group The results of Pearson correlation analysis revealed several
(p<0.01). significant associations (Table 3). Specifically, the ReHo values in
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FIGURE 1
Comparison of MRI data among HC, MDD and BD. (A) The volume of Hippocampus (Left, Right) and Parahippocampal gyrus (Left, Right); (B) The fALFF
of Hippocampus (Left, Right) and Parahippocampal gyrus (Left, Right); (C) The ReHo of Hippocampus (Left, Right) and Parahippocampal gyrus (Left,
Right); HC: healthy control; MDD: major depressive disorder; BD: bipolar disorder; fALFF: fractional amplitude of low frequency fluctuation; Reho:
regional homogeneity; *p < 0.05, **p < 0.01 compared to HC group; *p <0.05, #*p < 0.01 compared to MDD group.

the right hippocampus were positively correlated with HAMD
scores (r=0.32, p=0.046) and HAMA scores (r=0.27, p=0.04).
However, there were no significant correlations found between
the volume, fALFF, and ReHo of the hippocampus (left and right)
and parahippocampal gyrus (left and right) with total
RBANS scores.

Moreover, the volume of the left parahippocampal gyrus exhibited
negative correlations with immediate memory (learning) (r=-0.25,
p=0.037), language (r=-0.29, p=0.02), and attention (coding)
(r=—0.32, p=0.03). On the other hand, the volume of the right
parahippocampal gyrus showed a positive correlation with
visuospatial construction (r=0.29, p=0.04).

In terms of functional measures, the fALFF value of the right
hippocampus was positively correlated with immediate memory
(story memory) (r=0.27, p=0.035) and delayed memory (story recall)
(r=0.27, p=0.03). Additionally, the ReHo value of the left
hippocampus was found to have negative correlations with delayed
memory (list recall) (r=—0.34, p=0.03) and delayed memory (list
recognition) (r=-0.41, p=0.02). Lastly, the ReHo value of the left
parahippocampal gyrus exhibited a positive correlation with
immediate memory (learning) (r=0.32, p=0.04). Further analysis
with Bonferroni correction showed that there was no significance

Frontiers in Psychiatry

among the volume, fALFF, and ReHo of the hippocampus (left and
right) and parahippocampal gyrus (left and right).

Discussion

This study utilizes rsMRI technology and automatic segmentation
tools to unveil insights into the gray matter volume and brain function
indicators of the hippocampus and parahippocampal gyrus in
individuals with Bipolar Disorder (BD). Additionally, we conducted
correlation analyses with the severity of the disorder and cognitive
function. Our findings underscore that cognitive impairment in
Bipolar Depression is significantly more pronounced when compared
to both Healthy Controls (HC) and Major Depressive Disorder
(MDD) patients. Moreover, we established a strong connection
between specific functions of the hippocampus, parahippocampal
gyrus, cognitive function, and disease severity.

Cognitive dysfunction has consistently emerged as a prominent
feature in both MDD and BD (24). This impairment is intricately
linked to overall functional outcomes and plays a crucial role in
disease prognosis (25). Previous reports have indicated that BD
patients exhibit more severe cognitive deficits compared to MDD
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TABLE 3 Pearson correlation analysis of the indicators in the hippocampus and parahippocampal gyrus with the severity of BD and cognitive function.

Volume FALFF ReHo

Hippocampus = Hippocampus @ Parahippocampal @ Parahippocampal Hippocampus Hippocampus @ Parahippocampal Parahippocampal = Hippocampus = Hippocampus Parahippocampal @ Parahippocampal

(Left) (Right) gyrus (Left) gyrus (Right) (Left) (Right) gyrus (Left) gyrus (Right) (Left) (Right) gyrus (Left) gyrus (Right)
HAMD r —0.03 0.02 —0.002 0.04 0.06 0.02 0.03 0.04 —0.08 0.32 —0.09 —0.01
P 0.84 0.87 0.99 0.76 0.63 0.88 0.85 0.78 0.53 0.046* 0.49 0.92
HAMA r —0.04 —0.03 —0.02 0.005 0.08 0.004 0.1 0.06 —0.08 0.27 —0.13 0.008
P 0.78 0.85 0.9 0.97 0.54 0.98 0.44 0.66 0.56 0.04* 0.34 0.95
RBNAS r —0.03 —0.004 -=0.17 —0.08 —0.14 0.09 0.02 0.06 -0.19 —0.01 0.08 —0.005
P 0.8 0.98 0.19 0.53 0.27 0.48 0.88 0.66 0.14 0.93 0.54 0.97
Immediate
memory
(Learning) r —0.1 —0.009 —0.25 —0.17 —0.11 0.09 0.12 0.19 —0.12 0.03 0.32 0.08
P 0.45 0.95 0.037%* 0.2 0.41 0.51 0.34 0.15 0.36 0.8 0.04* 0.53
Immediate
memory
(Story
Memory) T 0.02 0.009 0.04 0.02 —0.04 0.27 0.02 0.018 —0.22 0.19 —0.04 —0.03
P 0.86 0.95 0.74 0.86 0.77 0.035* 0.87 0.89 0.086 0.15 0.74 0.81
Visuospatial
Construction r 0.19 0.18 0.19 0.29 —0.22 —0.1 0.003 —0.08 —0.18 —0.02 —0.02 0.05
P 0.14 0.17 0.14 0.04* 0.09 0.44 0.98 0.52 0.16 0.85 0.89 0.68
Language r —0.11 —=0.12 -0.29 —0.18 —0.03 0.17 0.06 0.17 —0.04 0.01 —0.01 —0.06
P 0.42 0.36 0.02* 0.17 0.8 0.19 0.65 0.19 0.74 0.93 0.92 0.65
Attention
(Digit Span) T 0.17 0.16 0.1 0.16 —0.16 —0.04 —0.06 —0.1 —0.17 0.03 0.03 —0.05
P 0.2 0.2 0.46 0.23 0.22 0.75 0.63 0.47 0.2 0.84 0.79 0.71
Attention 0.01
(Coding) r —0.08 —0.05 -0.32 —0.13 —0.11 -0.03 -0.07 —0.004 -0.09 —0.12 0.09
P 0.57 0.68 0.03* 0.31 0.38 0.81 0.6 0.97 0.5 0.36 0.47 0.92
Delayed r 0.03 —0.03 —0.07 —0.06 —0.18 0.05 0.14 0.08 —0.34 0.01 0.01 —0.09
memory (List
Recall)

(Continued)
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TABLE 3 (Continued)

Hippocampus

Volume

Hippocampus Parahippocampal

Parahippocampal

FALFF

Hippocampus = Hippocampus Parahippocampal Parahippocampal Hippocampus

Hippocampus

ReHo

Parahippocampal

Parahippocampal

(Left) (Right) gyrus (Left) gyrus (Right) (Left) (Right) gyrus (Left) gyrus (Right) (Left) (Right) gyrus (Left) gyrus (Right)

P 0.82 0.84 0.6 0.65 0.18 0.69 0.27 0.53 0.03* 091 0.91 0.5
Delayed T —0.11 —0.08 —0.14 —0.07 0.05 0.11 0.12 0.13 —0.41 —0.07 0.002 —0.05
memory
(List
Recognition)

P 0.39 0.55 0.28 0.62 0.7 0.4 0.36 0.32 0.02* 0.58 0.99 0.72
Delayed T —0.04 —0.02 —0.11 —0.09 —0.04 0.27 —0.01 0.03 —0.09 0.15 —0.01 —0.09
memory
(Story
Recall)

P 0.79 0.9 0.38 0.51 0.78 0.03* 0.93 0.83 0.5 0.24 0.93 0.5
Delayed T 0.02 0.08 —0.03 0.02 —0.12 0.05 0.007 —0.02 —0.17 —0.05 0.04 0.02
memory
(Figure
Recall)

P 0.88 0.54 0.81 0.86 0.35 0.73 0.96 0.88 0.2 0.71 0.74 0.89

HAMD: Hamilton Depression Scale; HAMA: Hamilton Anxiety Scale; RBANS: Repeatable Battery for the Assessment of Neuropsychological Status.
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patients (26). Our study confirms these observations, demonstrating
that BD patients experience more pronounced cognitive dysfunction
than HC and MDD groups. Specifically, the BD group displayed
significant disparities in immediate memory, attention, and delayed
memory when compared to the HC group, aligning with earlier
research (27). It's important to note that there were no significant
cognitive impairments detected in any of the MDD groups, potentially
attributed to the relatively small sample size of MDD patients.

MRI studies in the context of psychiatric disorders have
consistently reported abnormal hippocampal volumes, influenced by
various factors (28). Some studies suggest that structural changes in
the hippocampus are state-dependent, occurring during acute phases
of MDD and returning to normal after remission (29). Conversely,
exercise has been associated with increased hippocampal volume (30).
Our study reveals a significant increase in the right hippocampal
volume of MDD patients, while no significant differences were
observed in the BD group compared to the HC group. This suggests
that factors such as age, medication, exercise, and others may exert
influence on hippocampal volume (30).

Previous research has noted abnormal brain activity in BD
patients, closely linked to their cognitive function, potentially serving
as a means to differentiate BD from MDD patients (31). Significant
differences were observed in brain regions encompassing the ventral
and dorsolateral prefrontal cortex, insula, and putamen (32). However,
there have been limited studies examining the global neural activity
characteristics of the hippocampus and parahippocampal gyrus in BD
and MDD patients using fALFF and ReHo values. In our study,
we compared fALFF and ReHo, which provide insights into the
strength and synchronization of local neural signals in the
hippocampus and parahippocampal gyrus. Our results indicated that
BD patients exhibited enhanced neural activity in the hippocampus
(both left and right) compared to the HC and MDD groups.
Furthermore, in terms of synchronization, both the hippocampus (left
and right) and parahippocampal gyrus (left and right) showed
elevated ReHo in BD patients when compared to the HC and MDD
groups. These findings align with functional imaging studies that have
highlighted abnormal brain activation in the hippocampus and
parahippocampal gyrus during attention, emotional, and memory-
related tasks. This consistency with neuropsychological findings,
which reveal cognitive impairments during acute emotional episodes
and significant declarative memory impairment during remission (33,
34), suggests that abnormal activity in the hippocampus and
parahippocampal gyrus, as cognitive control regions, could potentially
serve as biomarkers for distinguishing between BD and MDD.

In our study, we conducted Pearson correlation analyses between
hippocampal and parahippocampal gyrus volumes, fALFF, ReHo, and
cognitive function in BD patients. Interestingly, we found that the
volumes of the hippocampus and parahippocampal gyrus showed no
significant differences concerning HAMD, HAMA, and RBANS
scores, contradicting some previous findings (14, 35). This discrepancy
may be attributed to the specific characteristics of our study
participants, who exhibited a relatively short course of BD with no
functional abnormalities during the MRI process (36, 37). Regarding
cognitive processes, previous research has emphasized the centrality
of the hippocampus (38, 39). Our results supported this notion by
revealing the involvement of the hippocampus in memory and
attention functions. Additionally, we found a positive correlation
between fALFF values in the hippocampus and parahippocampal
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gyrus and immediate and delayed memory, consistent with previous
studies (40, 41). Furthermore, our study explored the less-studied
Pearson correlation between hippocampal ReHo values and depressive
scores, revealing a positive correlation between hippocampal ReHo
values and HAMD and HAMA scores.

Nonetheless, several limitations warrant consideration in our
study. One limitation of the present study is the lack of assessment
regarding potential protective factors through psychotherapy and
counseling intervention. Although individuals often utilize these
non-pharmacological treatments without prescription to prevent or
alleviate symptoms at the onset of mental illness (42), such information
was not collected or analyzed in our study. Consequently, the potential
influence of these protective factors on the observed MRI
abnormalities remains unknown. Future research should consider
incorporating measures of psychotherapy and counseling intervention
to provide a more comprehensive understanding of their potential
impact on functional and structural MRI abnormalities in bipolar and
unipolar depression. Secondly, the uncontrolled effects of medications,
despite general alignment with prior research, remain a limitation.
Although the patients were drug-naive, they may have been prescribed
medications or other medical conditions. Additionally, the MDD
patients included in our study exhibited a younger onset age compared
to BD patients, which represents an atypical feature of depressive
episodes and is considered a risk factor for BD (43). Lastly, our
relatively small sample size, while comparable to previous studies, may
limit the generalizability of our findings (44). Future research should
endeavor to combine clinical phenotypes and employ longitudinal
methods to replicate our results and provide more conclusive evidence.

Conclusion

In conclusion, our study reveals distinctive intrinsic activity
patterns in the hippocampus and parahippocampal gyrus of BD
patients when compared to MDD and HC patients. These patterns
may signify different underlying pathophysiological mechanisms in
BD. Changes in fALFF and ReHo observed in the hippocampus and
parahippocampal gyrus between BD and MDD patients are strongly
associated with cognitive functions. Furthermore, the notable
abnormal spontaneous neural activity detected in these regions may
serve as a potential neural basis for distinguishing between bipolar
depression and unipolar depression. Consequently, abnormal intrinsic
brain activity opens up a new avenue for future research, shedding
light on neuroimaging-based biomarkers for differentiating bipolar
depression from unipolar depression.
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Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the
rise in modern society. It is crucial to achieve precise diagnosis of GAD for
improving the treatments and averting exacerbation. Although a growing
number of researchers beginning to explore the deep learning algorithms for
detecting mental disorders, there is a dearth of reports concerning precise
GAD diagnosis. This study proposes a multi-scale spatial-temporal local
sequential and global parallel convolutional model, named MSTCNN, which
designed to achieve highly accurate GAD diagnosis using high-frequency
electroencephalogram (EEG) signals. To this end, 10-min resting EEG data
were collected from 45 GAD patients and 36 healthy controls (HC). Various
frequency bands were extracted from the EEG data as the inputs of the
MSTCNN. The results demonstrate that the proposed MSTCNN, combined
with the attention mechanism of Squeeze-and-Excitation Networks, achieves
outstanding classification performance for GAD detection, with an accuracy
of 99.48% within the 4-30Hz EEG data, which is competitively related to state-
of-art methods in terms of GAD classification. Furthermore, our research
unveils an intriguing revelation regarding the pivotal role of high-frequency
band in GAD diagnosis. As the frequency band increases, diagnostic accuracy
improves. Notably, high-frequency EEG data ranging from 10-30 Hz exhibited
an accuracy rate of 99.47%, paralleling the performance of the broader
4-30Hz band. In summary, these findings move a step forward towards the
practical application of automatic diagnosis of GAD and provide basic theory
and technical support for the development of future clinical diagnosis system.

KEYWORDS

generalized anxiety disorder (GAD), electroencephalogram (EEG), convolutional
neural network (CNN), attention mechanisms, deep learning

1 Introduction

Generalized Anxiety Disorder (GAD) is a common psychiatric disorder characterized
by persistent anxiety, irritability, sleep disturbances, and nervousness (1). In addition,
patients with GAD often have physical symptoms such as palpitations, dry mouth, and
excessive sweating (2). Recently, the incidence of GAD has significantly increased and has

43 frontiersin.org


https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2023.1310323﻿&domain=pdf&date_stamp=2023-12-21
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1310323/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1310323/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1310323/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1310323/full
mailto:zyxjhey@sina.com
mailto:xu_xingjuan@sina.com
https://doi.org/10.3389/fpsyt.2023.1310323
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2023.1310323

Liu et al.

become a global health issue. It is reported that the global rate of the
people with anxiety disorder was 26% in 2020, and the growth rate has
accelerated compared to previous years (3). The lifetime prevalence
rate of GAD in the general population is as high as 5% (4). Females
have a much higher probability of developing this disorder compared
to males (5). GAD not only brings negative impacts on the
psychological and physical health of patients but also has the potential
to seriously affect their daily functioning, social interaction, and
quality of life.

The etiological factor of GAD is exceedingly intricate,
encompassing the interplay of genetic, biological, and psychosocial
factors (6, 7). The complex etiologies of GAD emphasize the need for
a targeted treatment approach. Therefore, timeous diagnosis combined
with effective treatment is crucial to avoid GAD becoming more
severe and harder to treat (8). Currently, clinical diagnosis of GAD
mainly relies on clinical assessment and subjective scales (9). These
methods are highly subjective and rely heavily on accurate diagnosis
by the psychiatrists and accurate self-reporting by the patients, which
may easily lead to inconsistency and inaccuracy in diagnosis and
assessing efficacy. Therefore, it is crucial to seek objective and precise
diagnostic methods for GAD.

With the continuous developments of psychiatric neuroscience, a
range of neuroimaging techniques have been applied to the study of
psychiatric diseases including electroencephalogram (EEG) (10, 11),
magnetoencephalography (MEG) (12), near-infrared spectroscopy
(NIRS) (13), and functional magnetic resonance imaging (fMRI) (14).
Among these techniques, EEG has excellent timing resolution and
high time sensitivity, while being non-invasive and simple to operate
(15, 16). EEG can record and measure the brain activity, offering
valuable insights into its dynamic functioning (17). In recent years, the
application of EEG to GAD has been continuously explored to help
uncover the complex neuro-electrophysiological mechanism and
provide more effective detection methods. Previous studies have
utilized EEG to observe changes in the brain of GAD patients, such as
increased brain activity (18) and alterations in brain network structure
(19). Furthermore, by extracting various types of EEG features, such
as functional connectivity (19), power spectral density (20), and
correlation dimension (21), researchers found significant differences
in features between GAD patients and healthy controls. Until now,
EEG has been widely used to assist in the diagnosis of various
psychiatric disorders, such as anxiety (22, 23), depression (24, 25),
obsessive-compulsive disorder (26, 27), Alzheimers (28, 29),
schizophrenia (30, 31). These studies imply that EEG is a valuable and
promising neuroimaging technique in the diagnosis of GAD.

Prior research related to mental disorder detection that combines
artificial intelligence and EEG can be mainly divided into two
categories. On the one hand, some researchers extract diverse EEG
features (32-34), utilizing machine learning models for classification.
This strategy strongly relies on the classification performances of the
extracted features and the adaptability of the machine learning
models. On the other hand, existence of researchers building deep
learning models and using EEG signals as the inputs for classification.
Deep learning can overcome the shortcomings of high feature
dependence and limited shallow models. It streamlines processing by
enabling automated end-to-end learning, integrating feature
extraction and classification. Deep learning has demonstrated
significant success in the processing of complex data (35). Due to the
excellent end-to-end learning and ability to effectively utilize data
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hierarchies, convolutional neural network (CNN) has emerged as a
widely favored architecture in deep learning-EEG research (36). For
instance, Abdulhakim employed three different deep learning models:
CNN, long short term memory (LSTM), CNN + LSTM, and achieved
the highest accuracy of 92.86% for social anxiety disorder
identification with CNN+LSTM model (37). Although the
combination of EEG and deep learning has shown remarkable success
in variety of fields (38-40), according to our previous survey, it is
rarely utilized in GAD diagnosis, which highlights the urgent need for
enhanced diagnostic methods in this specific domain.

Given the challenging low signal-to-noise ratio of EEG signals and
complex spatiotemporal dynamic patterns, the importance of feature
extraction in deep learning is magnified. As an efficient and rapid EEG
signal feature extraction tool, CNN plays a powerful role in the field
of EEG signal analysis. For EEG signals, traditional time-frequency
domain feature extraction methods encounter challenges to fully
capture the intricate details. Consequently, adopting the spatial-
temporal joint feature extraction method has a stronger signal
representation ability in CNN model (41). Moreover, multi-scale
convolution of CNN has been emphasized in EEG feature extraction.
This technique can capture different levels of features at different
scales, thereby enhancing the characterization ability of the model.
Researchers have successfully applied multi-scale convolution to
feature extraction, yielding favorable outcomes (42-44). For instance,
Wau et al. introduced a parallel multi-scale filter bank CNN for EEG
classification, and achieved excellent classification performance (44).
To further elevate CNN performance, multi-scale convolution was
introduced into the spatial-temporal feature extraction for
GAD diagnosis.

In this study, we propose an end-to-end deep learning model
architecture called MSTCNN based on multi-scale spatial-temporal
convolution to facilitate in the precise diagnosis of GAD. To ensure
the effectiveness of MSTCNN, we conducted a sequence of ablation
experiments to validate the efficacy of our selection strategy in model
design. In addition, we try to use MSTCNN to reveal the key
frequency bands of GAD, which helps us understand the potential
differences of GAD in different frequency bands of EEG signals. Our
research strives to present a viable approach for the precise
diagnosis of GAD.

2 Materials and methods

2.1 Subjects

A total of 45 patients with GAD (13 males, 32 females, age:
22-55years, 41.8 £ 9.4 years) and 36 healthy controls (HC) (11 males,
25 females, age: 21-57 years, 36.9 + 11.3 years) were enrolled in this
study, and there was no statistically significant difference in age
between GAD and HC. All patients were diagnosed by the specialized
psychiatrists and meet the DSM-5-TR criteria for GAD diagnosis.
And all subjects should complete the questionnaire of Hamilton
Anxiety Rating Scale (HAMA) and meet the following criteria:
HAMA scores >14 for GAD; HAMA scores <7 for HC. Additionally,
GAD patients had no other comorbidities (such as depression and
other disorders). The average HAMA score in the GAD group was
27.1+9.0, and in the HC group was 2.3+0.9. Moreover, each
participant was required to meet stringent EEG data collection
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requirements: (1) no other psychiatric disorders and brain damage;
(2) right-handed; (3) no drug and alcohol abuse; (4) not stay up late
the day before the EEG data collection; (5) no smoking, coffee and
strong tea before eight hours of EEG data collection. The entire
experiment received approval from the Ethics Committee of Zhejiang
Normal University, and all participants provided a written informed
consent form before the experiment.

2.2 EEG data collection and preprocessing

Participants were asked to close eyes, stay awake and stationary,
and reduce head and body movements and eye movements to reduce
interference from ocular and electromyography. Every participant
would record clinical resting EEG for 10 min. The EEG acquisition
device is Nicolet EEG TS215605. Following the international 10-20
system, 16 electrodes were chosen, namely Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, E8, T7, T8, P7, and P8. The reference electrode
refers to the left and right mastoid electrodes. The sampling frequency
is 250 Hz, and the impedance of each electrode is controlled below
5kQ. The whole experiment took place within the professional EEG
laboratory of the local hospital.

Then, the EEGLAB embedded in MATLAB R2021a was used to
preprocess EEG. Firstly, the original EEG signal was down-sampled

10.3389/fpsyt.2023.1310323

from 250Hz to 125Hz, and the signal was filtered by 4-30Hz
bandpass using a 4-order Butterworth filter. Secondly, fast independent
component analysis (ICA) was used to remove EEG artifacts. Then,
4s of continuous EEG signals were extracted as an EEG sample,
resulting in a total of 5,371 samples for GAD and 4,018 samples for
HC. Finally, the same bandpass filter was used to divide the EEG
signal into five basic bands: Theta (4-8 Hz), Alphal (8-10Hz), Alpha2
(10-13Hz), Betal (13-20Hz), Beta2 (20-30 Hz), and three extended
bands: 13-30 Hz, 10-30 Hz, 8-30 Hz.

2.3 MSTCNN model

In this study, we proposed an innovative deep learning model
named MSTCNN for GAD detection, which incorporates multi-scale
spatial-temporal local sequential and global parallel convolutions.
This architecture is further enhanced through the integration of an
attention mechanism strategy. Its basic flow is shown in Figure 1.
Detailed parameters of MSTCNN can be found in Table 1. The
framework of MSTCNN can be divided into a feature extraction layer
and a feature classification layer. (1) The feature extraction layer aims
to learn and extract the most representative features from the original
EEG signal, capturing the crucial information of the input data to
provide support for subsequent classification tasks. This layer includes

frequency bands for comparison.
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FIGURE 1

The corresponding network architecture of the MSTCNN. (A) represents the input of raw EEG signal at 4—-30 Hz. (B) represents the input of different
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TABLE 1 Parameters of proposed MSTCNN architecture.

10.3389/fpsyt.2023.1310323

Filters Stride Padding
Input (16, 500)
Reshape (1, 16, 500)
SpaConvl 10 (8,1) (1,1) (10, 16, 500) Same
BatchNorm (ReLU) (10, 16, 500)
TemConvl1 20 (1, 64) (1,1) (20, 16, 500) Same
BatchNorm (ReLU) (20, 16, 500)
SpaConv2 10 6, 1) (1, 1) (10, 16, 500) Same
BatchNorm (ReLU) (10, 16, 500)
TemConv2 20 (1, 40) (1,1) (20, 16, 500) Same
BatchNorm (ReLU) (20, 16, 500)
SpaConv3 10 (4,1) (1,1) (10, 16, 500) Same
BatchNorm (ReLU) (10, 16, 500)
TemConv3 20 (1,26) (1, 1) (20, 16, 500) Same
BatchNorm (ReLU) (20, 16, 500)
SpaConv4 10 2,1) (1, 1) (10, 16, 500) Same
BatchNorm (ReLU) (10, 16, 500)
TemConv4 20 (1, 16) (1,1) (20, 16, 500) Same
BatchNorm (ReLU) (20, 16, 500)
Concat (80, 16, 500)
SpaConv5 20 (16, 1) (1,1) (20, 1, 500) 0
BatchNorm (20, 1, 500)
Square (20, 1, 500)
AveragePool (1, 75) (1,15) (20, 1,29) 0
Log (20,1, 29)
Dropout (20, 1, 29)
Attention (20, 1,29)
Flatten 580
Classifier 580 2

spatiotemporal feature extraction, spatial feature extraction, and
attention mechanism modules. The spatiotemporal feature extraction
layer adopts multi-scale convolution, which helps to effectively extract
spatiotemporal features at different scales. The spatial feature
extraction layer is used to extract spatial features and reduce the
dimensionality of the data. Prior to being fed into the fully connected
layer, attention mechanism modules are added to enhance attention
to important features and further improve model performance. (2)
The feature classification layer primarily consists of nonlinear
function, Dropout and pooling layer, which is used to enhance the
nonlinear expressive ability, mitigate overfitting risks, and reduce
data dimensionality.

2.3.1 Feature extraction layer

Here, the multi-scale spatial and temporal feature extraction
convolutions are combined to maximize the utilization of the
spatiotemporal information in the EEG data. As shown in Figure 2, In
order to obtain the best feature extraction layer structure, numerous
ablation experiments, including five feature extraction modules within
the multi-scale convolution structure, were designed to validate the
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efficacy of our proposed model for comparison. We conducted
in-depth analysis on the spatiotemporal feature extraction module,
and tried different combinations based on temporal convolution (44).
In addition, batch normalization is introduced to enhance the
consistency and stability of the model between different samples, and
ReLU activation function is used to help the model better learn
nonlinear features and improve the expression ability of the model.
With these improvements, we expected to improve the performance
and robustness of the model.

2.3.1.1 Convolution + batch normalization + RelLU
structure

Convolution + batch normalization + ReLU is a common feature
extraction combination in deep learning, and has been successfully
applied in some popular frameworks. The batch normalization layer
speeds up the convergence of the network by normalizing each mini-
batch. It reduces the internal covariance movement of each layer of
input data and fixes its range to a smaller range, which helps the
network learn effective feature representations faster. ReLU introduces
a nonlinear activation function in the network, which does not cause
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FIGURE 2
Five feature extraction structures. BR means adding BatchNorm and ReLU functions after the convolution. (A) TemConv: Temporal convolution.
(B) TemConv+BR: temporal convolution followed by BR. (C) TemSpaConv+BR: temporal convolution and spatial convolution share a same
convolution kernel and combined with BR. (D) TemConv+SpaConv+BR: temporal convolution followed by the spatial convolution and combined with
BR. (E) SpaConv+TemConv+BR: spatial convolution followed by the temporal convolution and combined with BR.

gradient vanishing problems and can propagate gradients better than
traditional activation functions such as sigmoid and tanh. The
combined structure of Convolution + batch normalization + ReLU
can accelerate convergence, improve generalization, mitigate gradient
vanishing problems, and amplify the network’s expressiveness.
Through the incorporation of batch normalization and ReLU modules
after temporal convolution (Figure 2A), the model becomes more
robust and has stronger feature extraction capabilities, as shown in
Figure 2B.

2.3.1.2 Spatial-temporal convolution

Temporal convolution can capture the temporal characteristics of
the temporal evolution information, and the spatial convolution can
capture the spatial characteristics between different channels. There
are complex dynamic interactions between different brain regions in
EEG signals, and spatiotemporal convolution can more effectively
capture the dynamic connections and interactions between different
channels in EEG signals than relying solely on temporal convolution.
When the input is Channel x Time, a single convolution is employed
to extract spatiotemporal features, only so that the kernel size is
greater than 1 in both the temporal dimension and spatial dimension
of the extracted features (i.e., C>1 & T> 1, where C represents the
kernel size of the spatial dimension and T represents the kernel size of
the temporal dimension). Here, we referred to the Inception structure
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(multiple kernels of different sizes are used in the space-time
dimension to capture features at different scales and levels of
abstraction) as shown in Figure 2C. However, the results of
spatiotemporal feature extraction using a single convolution prove to
be suboptimal. In order to improve spatiotemporal feature extraction,
we explored how to add spatiotemporal convolution to the model to
obtain better results. Inspired by the idea of SqueezeNeXt model that
decomposing 3x3 convolutional layers into 3x1 and 1x3
convolutional layers (45), the Cx T of the original convolutional layer
is decomposed into Cx 1 and 1 x T. This decomposition scheme can
not only reduce the number of parameters, increase the width and
depth of the network, and capture long-range dependencies, but also
increase the nonlinear feature extraction capability, thereby improving
the efficiency and performance of the model.

By using two convolutions to extract spatial and temporal features,
two different connection strategies were emerged. In the first way, the
temporal features are extracted first, and then the spatial features are
extracted, as shown in Figure 2D; In the second way, the spatial
features are extracted first, followed by the temporal features, as shown
in Figure 2E. Among them, in the first connection method, the
temporal convolution section uses 10 filters with filter sizes of 64, 40,
26,16, and the spatial convolution part uses 20 filters with filter sizes
of 8, 6, 4, 2, respectively. In the second connection method, 10 filters
are used in the spatial convolution section and 20 filters are used in
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the temporal convolution section, and the filter size is consistent with
the above.

In addition, the model also contains a layer of spatial feature
convolution after the spatiotemporal feature convolution. This layer
extracts spatial features while reducing the dimension of the feature
map. Through such a design, we anticipated the model to
comprehensively capture the spatiotemporal features in EEG signals,
efficiently decrease computational complexity, and enhance the
model’s overall performance and efficiency.

2.3.1.3 Attention mechanism

Attention mechanism is a technology that emulates human
attention processes, which has grown in significance within the
domains of natural language processing and deep learning in
recent years (46). The technology enables machines to handle
large-scale data and complex tasks more intelligently by simulating
human focus and the ability to selectively process information. At
present, the attention mechanism has become a widely used tool
for deep learning (47, 48). Integrating the attention mechanism
module into the convolutional network can help it automatically
select and focus on important features in the data, and improve
the model’s ability to extract and represent key information. In
this study, we employed three commonly used attention
mechanisms: Squeeze-and-Excitation Networks (SE) (49),
Convolutional Block Attention Module (CBAM) (50), and
Efficient Channel Attention (ECA) (51). Among them, the
relevant parameters of SE are set to: reduction = 1; the relevant
parameters of CBAM are set to: reduction =1, kernel_size =7; and
the relevant parameters of ECA are set to: kernel_size=3. The
principles of each of the three attention mechanisms are
detailed below.

2.3.1.3.1 SE

SE (Squeeze-and-Excitation Networks) is a convolutional neural
network model designed to enhance the model’s ability to pay
attention to crucial features from the input data. The core idea of SE is
to add an attention module channel on top of the CNN. The module
consists of two pivotal parts: a squeeze segment and an excitation
segment, and its framework is shown in Figure 3.

Squeeze: SE uses global average pooling to compress each
channel’s feature map into a scalar, which reduces the dimension of
the feature map and captures global statistics between channels. If the
input is a feature map X € REOMW the compressed feature map is
Ze RCXM, Zc is the c-th element of Z can be calculated as
Equation (1):

10.3389/fpsyt.2023.1310323

1 H W
Ze = Fyg(Xc) =72 2 2 X (i) (1)
i=1j=1

Fsq represents the squeeze operation, where H and W denote the
feature map’s height and width. In our EEG data, the channel and time
correspond, respectively. Xc (i,j) stands for the value on the feature
map with a height dimension of i and a width dimension of j.

Excitation: to take advantage of the information gathered by
squeeze, use excitation operations to capture channel dependencies.
The excitation operation mainly obtains the attention weight S by
nonlinear mapping by input of the compressed feature Z to the fully
connected layer can be calculated as Equation (2):

S = Fox (2) = o (15 (M2)) &)

Fex represents the excitation operation, § represent to the ReLU
function, Wj € RE™C and W, e RCXC/r, r is the reduction radio. W;
and W, are the weight parameters of the descending and ascending fully
connected layer, and the o represents the Sigmoid function, which limits
the input value to the range of 0 and 1. The final output X¢ is derived
from the feature map X ¢ rescaling transformation as Equation (3):

X¢ = Fyeate(Xc.Sc)=ScXe (3)

2.3.1.3.2 CBAM

Convolutional Block Attention Module (CBAM) contains two
submodules: the channel attention module (CAM) and the spatial
attention module (SAM), as is depicted in Figure 4. CAM and SAM are
used to strengthen the model’s attention capability to different channels
and different spatial locations of the input feature map, respectively.

CAM: This module first obtains the average and maximum values
of each channel by averaging pooling and maximizing pooling
operations on the input feature map. These values are then processed
by a hidden layer of Multilayer Perceptron (MLP) to learn and
generate weights for each channel. Finally, the sum and merge of each
element to obtain the channel attention degree M (F). For the input
feature map Fe REOW - after passing through the CAM
Mc (F) e RE™ ¢an be calculated as Equation (4):

Mc(F)=o(MLP(AvgPool (F))+ MLP(MaxPool (F))) ()

FIGURE 3
Structure of SE. Fgeale represents channel-wise multiplication.
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AvgPool signifies the average pooling operation, MaxPool
signifies the maximum pooling operation, MLP stands for multilayer
perceptron, and o refers to the Sigmoid function.

SAM: This module is mainly concerned with the location of
the information, which complements the CAM. To calculate
spatial attention, the SAM uses average pooling and maximum
pooling across the channel axis with convolution to generate
spatial feature maps. Unlike channel attention, spatial attention
does not use MLP, but instead employs convolution to process
spatial feature maps. For input feature map F € ROV “after
passing through the SAM Mg (F;) e RPEW can be calculated as
Equation (5):

M (Fl) _ O_(f7><7 (I:Angool(Fi );MaxPool(F1 )])) (5)

Where f stands for the convolution operation, 7x7 is the
convolution kernel size, and & refers to the Sigmoid function.
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The final output feature map is calculated by CAM and SAM. The
output map Mc (F) after CAM is multiplied element by element with
the input feature map F to generate feature F, and F is multiplied
element by element with the output diagram Mg (F ) after SAM to
generate the final output feature map F,.

2.3.1.3.3ECA

Efficient Channel Attention (ECA) is commonly used in image
classification tasks based on SE, as shown in Figure 5. The core idea of
ECA is to use one-dimensional convolution operations to model
relationships between channels instead of traditional fully connected
layer operations, which can significantly reduce calculations, model
parameters, and improve the calculation efficiency of the model.
Similar to SE, ECA uses global average pooling (GAP) to aggregate
spatial information for channels. Then, by performing a
one-dimensional convolution operation on the feature map after
global average pooling, all channels share learning parameters and
quickly extract the relationship between channels, thereby enhancing
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the performance of channel attention which can be calculated as
Equation (6):

o =0 (C1D; (GAP(X))) (6)

CID stands for one-dimensional convolution operation, k is the
one-dimensional convolution kernel size, and o is the Sigmoid
function. The use of one-dimensional convolution not only reduces
model complexity, but also ensures efficiency and effectiveness
through local cross-channel interaction. Finally,  is multiplied by X
element by element results in the final feature map X.

2.3.2 Feature classification layer

The input of the feature classification layer is the feature map
obtained after passing through the spatial feature convolutional
layer. There are four steps in this layer. Firstly, the input feature map
undergoes the application of the nonlinear function Square, and
then downsampling is performed through the average pooling layer
to reduce the dimensionality of the feature map while retaining the
main feature information. Secondly, the nonlinear function Log for
activation is used to extract features related to EEG bands after the
averaging pooling layer. Thirdly, the dropout layer is introduced to
prevent the model from overfitting. The dropout layer can randomly

10.3389/fpsyt.2023.1310323

with the learning rate set to 8e-5, gradually increases to le-3 after
10 warm-up rounds, and finally gradually decreases to 3e-5. By
employing the learning rate warm-up strategy, the training speed
can be accelerated, and the convergence and performance of the
network can be improved. Applying a larger learning rate in the
initial epochs can help the model find the global optimal solution
or regions closer to the optimal solution in the parameter space
more quickly. As the train continues execution, the learning rate
gradually decreases, which is conducive to the training of
stable networks.

2.5 Evaluation methods

Use cross-validation to evaluate the model’s performance and
generalization ability. Nine folds of data were used for training and
one fold of data for testing. Accuracy, Precision, Recall, and F,Score
were computed to evaluate model performance as Equations (7-10).
Specifically, True Positives (TP) indicates positive samples correctly
classified, False Positives (FP) indicates negative samples incorrectly
classified as positive, True Negatives (TN) indicates negative samples
correctly classified, and False Negatives (FN) indicates positive
samples incorrectly classified as negative.

omit the output of some neurons during training, thereby reducing Accuracy = TP+TN o
the dependence between neurons. Ultimately, the fully connected TP+TN +FP+FN
layer is utilized to finalize the classification.
Precision = _TIr
2.4 Network training TP+ FP ®)
For the MSTCNN model, the batch size was set as 32 and the
200 epochs were trained for early stopping. Early stopping strategy Recall = P
was triggered when the value of the loss function no longer TP+ FN ©)
decreases in 10 consecutive epochs. CrossEntropy was chosen as
the loss function, and AdamW optimizer was used for gradient
optimization. In terms of the MSTCNN’s learning rate, the F Score = 2TP
warm-up strategy was adopted shown in Figure 6, which starts ! 2TP + FP+ FN (10)
le31
8e-4
8
<
R~ Gedt
an
g
£ doaf
Q
—
2e-4
00 25 50 75 100 125 150 175 200
epoch
FIGURE 6
Learning rate setting during model training with warming strategy. Total trained in 200 epochs.
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3 Results

The results of different multi-scale convolutional structures
for GAD detection are given in Table 1. The model with only
temporal convolution obtained an accuracy of 96.75%, a precision
0f 96.69%, a recall of 97.68% and a F,Score of 97.18%. In order to
enhance the generalization ability and nonlinear expression ability
of the multi-scale CNN model in convolutional feature extraction,
Convolution + batch normalization + ReLU structure was added
in the model. The accuracy improved to 98.25%. Therefore, all
other comparison models adopted the Convolution + batch
normalization + ReLU structure. Further, we introduced spatial
convolution and explored different combinations of temporal and
spatial convolution for comparisons. The results showed that the
combination with spatial + temporal convolutions (named
MSTCNN) yielded superior performance, achieving an accuracy
0f 99.19%, a precision of 99.45%, a recall of 99.14% and a F,Score
0f 99.29%.

Several classic models also used to verify the effectiveness of our
model. The compared models of EEGNet, multi-resolution CNN
(MRCNN), and CNN-LSTM, yielded average accuracies of
94.34+0.75%, 96.35+0.42%, and 97.26 +0.86% on our datasets,
respectively. The specific classification evaluation indicators of each
model are shown in Table 2.

Based on our proposed convolutional structure (SpaConv +
TemConv + BR), three commonly used attention mechanisms (SE,
CBAM, and ECA) were added into the model. As shown in Table 3,

TABLE 2 Classification performances of different convolution methods.

10.3389/fpsyt.2023.1310323

our MSTCNN model shows performance improvement following
the inclusion of attention mechanisms and yielded more stable
results. In particular, the improvement effect of the SE attention
mechanism was the most significant, with the highest accuracy
0f 99.48%.

Besides, the impacts of five different frequency bands (Theta,
Alphal, Alpha2, Betal, and Beta2) were explored on the
classification of GAD and HC with MSTCNN-SE model. As
indicated in Table 4, the accuracy of the Theta band and the Alphal
band is lower with a classification accuracy of less than 90%. With
the increase of frequency band, the classification accuracy also
gradually improved, and the highest classification accuracy of
97.45% was achieved on the Beta2 band.

Based on the results of Table 4, that is, high accuracy can
be obtained with the high-frequency EEG rhythm. Three high-
frequency EEG bands, including 13-30 Hz, 10-30 Hz, and 8-30 Hz,
were extracted for GAD diagnosis. The results are presented in
Table 5. It shows that 10-30Hz can gain consistent accuracy
compared with 4-30Hz, which has no statistically significant
difference (see Table 6).

4 Discussion

This study proposed a novel end-to-end multi-scale Spatial-
Temporal local sequential and global parallel convolutional neural
network called MSTCNN and applied it to diagnose GAD by

Models Accuracy (%) Precision (%) Recall (%) F, Score (%)
TemConv 96.75+0.68 96.69+£1.20 97.68£0.65 97.18+0.56
TemConv + BR 98.25+0.35 98.19+£0.51 98.76 £0.47 98.47+0.31
TemSpaConv + BR 97.43+0.85 98.19+£0.99 97.33+£1.56 97.75+0.73
TemConv + SpaConv + BR 98.64+0.32 98.75+0.71 98.88+0.52 98.81+0.26
SpaConv + TemConv + BR

99.19+0.40 99.45+0.47 99.14+0.49 99.29+0.34
(MSTCNN)

“TemConv” means temporal convolution. “BR” means adding BatchNorm and ReLU functions after the convolution. “TemSpaConv” means that the temporal convolution and the
spatial convolution are in the same convolutional kernel. “TemConv + SpaConv” means the temporal convolution followed by the spatial convolution. “SpaConv + TemConv” means the
spatial convolution followed by the temporal convolution. The bold values provided in the table represent the best results compared with others.

TABLE 3 Classification performances of classical deep learning models.

Models Accuracy (%) Precision (%) Recall (%) F, Score (%)
EEGNet (52) 94.34+0.75 95.80+1.23 94.26+2.02 95.00+0.71
MRCNN (53) 96.35+0.42 96.28+£1.22 97.40+1.46 96.82+0.44
CNN-LSTM (54) 97.26+0.86 98.32+1.01 96.89+2.14 97.57+0.81
Our model 99.19:+0.40 99.45+0.47 99.14+0.49 99.29:+0.34
The bold values provided in the table represent the best results compared with others.
TABLE 4 Classification performances of different attention mechanisms.
Models Accuracy (%) Precision (%) Recall (%) F, Score (%)
MSTCNN-SE 99.48+0.23 99.66+0.23 99.43+0.28 99.55+0.20
MSTCNN-CBAM 99.34+0.38 99.31+0.54 99.54+0.33 99.42+0.33
MSTCNN-ECA 99.46+0.20 99.61+0.22 99.44+0.46 99.52+0.18

MSTCNN-SE/CBAM/ECA means adding SE Attention, CBAM Attention, or ECA Attention for MSTCNN model. The bold values provided in the table represent the best results compared
with others.
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TABLE 5 Classification performances of different frequency bands with MSTCNN-SE model.

Frequency band Accuracy (%)

Precision (%)

Recall (%) F, Score (%)

Theta 88.09+1.09 89.08+2.30 90.34+2.16 89.66+0.99
Alphal 86.35+1.12 88.53+£1.93 87.52+£2.17 87.99+£1.10
Alpha2 93.56+0.76 93.45+1.05 95.46+1.54 94.43+0.67
Betal 96.26+0.48 96.69+1.08 96.79+0.72 96.73+£0.41
Beta2 97.45+0.43 98.08+0.86 97.46£1.19 97.76 £0.41
TABLE 6 Classification performances of extended frequency bands with MSTCNN-SE model.
Frequency band Accuracy (%) Precision (%) Recall (%) F;, Score (%)
13-30Hz 98.90+0.29 99.13+£0.34 98.95+0.56 99.04+0.25
10-30Hz 99.47+£0.24 99.48+0.37 99.59+0.28 99.54+0.20
8-30Hz 99.42+0.26 99.48+0.47 99.52+0.29 99.50+0.22

The bold values provided in the table represent the best results compared with others.

utilizing multichannel EEG signals. The main findings are as
follows. Firstly, the proposed MSTCNN combined with SE
attention mechanism obtained an excellent classification
performance on the collected EEG data, with an accuracy of
99.48%, a precision of 99.66%, a recall rate of 99.43%, and a F1
Score of 99.55%. Secondly, an interesting phenomenon was
stumbled upon: the high-frequency band holds significant
importance in diagnosing GAD, and higher frequency band can
obtain higher accuracy in GAD recognition. Notably, the accuracy
of the 10-30 Hz band is consistent with the 4-30 Hz band. Detailed
discussion will be presented next.

4.1 Best classification performance from
MSTCNN model

When applying deep learning to extract features from EEG
signals, researchers mostly focus on multi-scale convolution in
the temporal domain and ignore the spatial relationships between
channels (42-44). Introducing multi-scale spatial convolution
can extract spatial features more efficiently, thereby improving
model performance. In this study, we explored the method of
multi-scale spatial-temporal convolution and found that the
spatial axis decomposition idea of splitting a single convolution
kernel into two convolutions can achieve better results. This idea
can not only effectively reduce the complexity of the model and
decrease the risk of overfitting, but also improve the
computational efficiency (45). Furthermore, we compared the
effects of convolutional sequences with different spatial and
temporal convolutions. It has been presented in Table 1 that the
accuracy of spatial convolution combined with temporal
convolution is 0.55% higher than that of temporal convolution
combined with spatial convolution. Since there is spatial
convolution after the spatial-temporal convolution module, it
can effectively avoid redundant operations in the
spatial dimension.

We also tried to validate the effectiveness and accuracy of our
proposed MSTCNN Model for GAD detection. On the one hand,

some classical deep learning models was used to compare with
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our models. Among them, EEGNet is a concise deep learning
model commonly used to process EEG data, which can efficiently
extract features and use them for classification (52). In our study,
EEGNet model obtained an accuracy of 94.34%. Next, we tried
the MRCNN model proposed by Eldel et al. for sleep EEG data
(53), and its accuracy in our classification task reached 96.35%.
Finally, CNN-LSTM model proposed by Wang et al. (54) was
used to classify our data, and obtained an accuracy of 97.26%.
The above results indicate that the multi-scale spatial-temporal
convolution strategy proposed in this study outperforms
conventional deep learning models, leading to exceptional
achievements. On the other hand, our results were compared
with other similar studies. Park et al. used machine learning in
major psychiatric disorders based on resting EEG and obtained
an accuracy of 91.03% (55). Al-Ezzi et al. used a deep learning
model (CNN-LSTM) for three different degrees of anxiety and
HC based on task-state EEG data, and obtained the accuracy of
92.86%, 92.86%, 96.43%, and 89.29%, respectively (37). Mohan
et al. used CNN to discriminate depressed and anxiety patients
based on EEG and obtained an accuracy of 97.6% (56). It is worth
mentioning that our previous study, combining features
extraction and machine learning model, obtained an accuracy of
97.83% for GAD and HC (20). MSTCNN model, to the best of
our knowledge, has achieved the highest accuracy for GAD and
HC detection compared with advanced models and existed
studies. In summary, MSTCNN has outstanding advantages in
classification performance. These findings not only verify the
effectiveness of our proposed model, but also provide support for
its potential advantages in subsequent clinical application for
GAD diagnosis.

4.2 MSTCNN improved with attention
mechanisms

EEG signals contain a wealth of information, which poses
challenges to signal processing, feature extraction, and
classification. To efficiently extract features and obtain excellent
classification performance, the attention mechanisms were
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combination with MSTCNN.
we incorporated and evaluated three widely used attention
mechanisms (SE, CBAM, and ECA) into the convolution. At
present, the attention mechanism has gradually become a boom

employed in Specifically,

in deep learning, and an increasing number of researchers are
applying it to EEG signal processing. Deng et al. (57) improved
the accuracy of major depressive disorder classification from
91.24% to 94.37% by adding SE attention mechanism to
one-dimensional convolution. Chen et al. used CBAM attention
for ResNet34 in emotion recognition task, and the accuracy
increased by 5.54% compared with ResNet34 (58). Jia et al. (59)
proposed a spectral-temporal convolutional neural network with
ECA attention, and the classification results showed that there
was also a significant increase for the classification performance.
By introducing these attention mechanisms, MSTCNN model can
focus on more important features, further optimize the feature
extraction process and enhance the performance and stability of
the model.

4.3 Deep learning reveal the key
frequency band for GAD diagnosis

Previous studies have reported a clear correlation between
EEG rhythms and alternate EEG features in GAD patients (60).
Additionally, our previous research has pointed to the importance
of beta rhythms in GAD (20). Significantly higher accuracy was
obtained for Beta rhythms in the high-frequency band compared
to Theta and Alpha in the low-frequency band. Beta rhythms are
associated with functions such as attention, cognitive control,
and emotion regulation in the brain (61). Given that GAD often
accompanies mood fluctuations, which may be the reason why
beta sub-bands are prone to exhibit high accuracy in GAD and
HC classification. In summary, different frequency bands had a
significant impact on the classification results of GAD. A more
universal regularity is that the higher the frequency range, the
better the GAD classification performance.

Based on the above findings, we attempted to expand the
frequency bands to further explore key frequency bands for
distinguishing GAD. Three extended frequency bands are
extracted in this study: 13-30Hz, 10-30 Hz, and 8-30Hz. In
contrast to the results of Beta2, the classification accuracy is
considerably improved when using the 10-30 Hz frequency band
with the accuracy of 99.47%, which has no statistical difference
with the accuracy of the 4-30 Hz frequency band (F=0.0099,
p=0.92; which was tested by one-way analysis of variance. If p is
less than 0.05, there is a significant difference between groups.
Otherwise, there is no significant difference). Wen et al. used the
CNN model and EEG signals to identify cognitive impairment
diseases, and also achieved the highest classification accuracy
through three frequency band combinations (10-30Hz)
compared with other combinations (62). To the best of our
knowledge, no prior research has utilized deep learning methods
to explore the impact of different combined frequency bands on
GAD classification. Our current results provide preliminary
evidence supporting the importance of high-frequency bands in
GAD identification and highlight the prominent advantages of
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the 10-30 Hz band. These findings will contribute to a more
comprehensive understanding of the relationship between EEG
frequency bands and GAD, and provide a new insight for the
GAD diagnosis. The excellent classification performances of
GAD detection at high frequencies can provide guidance for
subsequent practical applications. For instance, we may choose
to filter out low frequencies to effectively mitigate the noise and
interference stemming from those bands when developing an
EEG-based system for GAD diagnosis.

4.4 Limitation

Although the MSTCNN proposed in this study has
demonstrated impressive capabilities in the identification of GAD
and HC, it still has come with certain limitations. Firstly, the main
manifestation is the sample size utilized in the study is relatively
limited (45 participants for GAD and 36 participants for HC),
which limits our effective verification of the robustness and
generalization ability of the model. Secondly, our deep learning
model appears to lack reasonable interpretability for GAD
diagnosis. Thirdly, in real-life scenarios, the process in which
hospitals collect EEG data may be some discrepancies, such as
different EEG acquisition equipment and inaccurate placement of
electrodes, which may lead to diagnostic performance decline. To
more comprehensively evaluate the performance and
generalization ability of the model, we will try to use more diverse
data sources and explore deep learning model interpretability in

follow-up studies.

5 Conclusion

In this study, an end-to-end deep learning MSTCNN model
was proposed for the precise diagnosis of GAD based on EEG
signals. Three widely used attention mechanisms were applied on
MSTCNN model for the improvements of the classification
performances. And different frequency bands were extracted to
explore key frequency band in GAD diagnosis. Notably, MSTCNN
combined with the attention mechanism of Squeeze-and-
Excitation Networks achieved an excellent classification
performance, to the best of our knowledge, with the highest
accuracy of 99.48%. More interestingly, it is found that higher
frequency band can obtain higher accuracy in GAD recognition.
The accuracy of the high-frequency band with 10-30 Hz has no
statistical difference with the accuracy of the 4-30 Hz frequency
band. This finding could simplify the signal processing process
and reduce the complexity of low-frequency EEG data processing.
In sum, this work can have a positive impact on the precise
diagnosis of GAD and move a step forward towards the automatic
diagnostic system of GAD.
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A neuroimaging study of brain
activity alterations in
treatment-resistant depression
after a dual target accelerated
transcranial magnetic
stimulation
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Hailun Cui?

!Department of Clinical Medicine, Zunyi Medical University, Zunyi, China, 2Department of
Psychiatry, The Second People's Hospital of Guizhou Province, Guiyang, China, *Department of
Psychiatry, University of Cambridge, Cambridge, United Kingdom

In this study, we designed a new transcranial magnetic stimulation (TMS)
protocol using a dual-target accelerated transcranial magnetic stimulation
(@TMS) for patients with treatment resistant depression (TRD). There are 58
TRD patients were recruited from the Second People's Hospital of Guizhou
Province, who were, respectively, received dual-target (real continuous theta
burst stimulation (cTBS) at right orbitofrontal cortex (OFC) and real repetitive
transcranial magnetic stimulation (rTMS) at left dorsolateral prefrontal
cortex (DLPFQ)), single- target (sham cTBS at right OFC and real rTMS at left
DLPFC), and sham stimulation (sham cTBS at right OFC and sham rTMS at
left DLPFC). Resting-state functional magnetic resonance imaging (rs-fMRI)
was acquired before and after aTMS treatment to compare characteristics
of brain activities by use of amplitude of low-frequency fluctuations (ALFF),
fractional low-frequency fluctuations (fALFF) and functional connectivity
(FC). At the same time, Hamilton Depression Scale-24 (HAMD,,) were
conducted to assess the effect. HAMD,, scores reduced significantly in dual
group comparing to the single and sham group. Dual-target stimulation
decreased not only the ALFF values of right fusiform gyrus (FG) and fALFF
values of the left superior temporal gyrus (STG), but also the FC between
the right FG and the bilateral middle frontal gyrus (MFG), left triangular part
of inferior frontal gyrus (IFG). Higher fALFF value in left STG at baseline
may predict better reaction for bilateral arTMS. Dual-targe stimulation
can significantly change resting-state brain activities and help to improve
depressive symptoms.

KEYWORDS

treatment-resistant depression, transcranial magnetic stimulation, resting-state
functional magnetic resonance imaging, amplitude of low-frequency fluctuations,
fractional amplitude of low-frequency fluctuations, functional connectivity

56 frontiersin.org


https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2023.1321660﻿&domain=pdf&date_stamp=2024-01-15
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1321660/full
mailto:doctor_sue@yeah.net
https://doi.org/10.3389/fpsyt.2023.1321660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2023.1321660

Liu et al.

1 Introduction

Depression, manifested as marked and persistent low mood that
is not commensurate with the environment, is a serious global public
health problem. In recent years, with the increasing pressures of
modern life and continuous improvement in disease diagnosis skill, it
is found that the population of patients suffering from depression is
consistently expanding worldwide. According to a World Health
Organization (WHO) report (1), there are approximately 350 million
patients with depression of different ages currently. This highly
prevalent disorder also has high rates of disability, recurrence,
mortality, and heritability (2, 3). As a result, individuals, family, and
society need to face the huge economic and emotional burden
imposed by the recurrence and sequelae of depression. Given the
damage to the public, improving treatments and extending the long-
term prognosis of depressive patients are urgently needed.

At present, the main treatment methods for depression include
medication psychotherapy and physical therapy. However,
approximately one-third to two-thirds of patients still do not
respond to medication, which is known as treatment-resistant
depression (TRD) patients (4-7). TRD is typically defined as low
efficacy of two or more antidepressants with different chemical
structures at adequate dosages and courses (8-10). Therefore, in
recent years, researchers have begun to explore another method,
especially physical one, to improve capacity for treating TRD. Some
of these studies reported that nonpharmacological treatments have
effect than medication (11-13). the
nonpharmacological therapies, transcranial magnetic stimulation

a durable Among
(TMS) is a safe, non-invasive, and painless way that was approved
by the U.S. Food and Drug Administration (FDA) in 2008 for the
treatment of depression (14). However, traditional repetitive
transcranial magnetic stimulation (rTMS) treatment usually takes
several weeks and shows limited efficacy. To further improve the
treatment efficiency and exclude the influence of other factors, such
as drugs and psychotherapy, some researchers have begun to pay
their attention to accelerated repetitive transcranial magnetic
stimulation (arTMS). Because it could compress the treatment cycle
from weeks into a few days while maintaining safety and
effectiveness, arTMS not only greatly reduces the suffering of
patients but also decreases the time required for treatment and
improves efficiency (15).

The brain of human is a complicated structure, because different
brain regions perform their own functions and coordinate to
complete complex functions, such as perception, processing, and
action execution etc. Quite a few numbers of studies have been
committing to detect some brain areas as the stimulation targets
which are related to the effect of TMS and to improve the efficacy of
TMS for treating TRD by using different stimulation parameters. At
present, the FDA has approved the TMS targeted at the left
dorsolateral prefrontal cortex (DLPFC), which is a key area in
depressive symptoms and shown to be hypoactive in major
depressive disorder, for the treatment of depression (16-18). The
efficacy of this traditional protocol is limited even though it takes
several weeks. Considering that the effect of current treatment
protocols is still limited, it is needed to explore more possible
programs. Some new studies showed that bilateral rTMS treatment
was more effective for treating depressive symptoms than unilateral,
sham stimulation or medicine only (19, 20). We noticed that the
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lateral orbitofrontal cortex (IOFC), related to non-reward system, is
implicated in the rumination of sad events and memories in
depression patients this indicated that the IOFC is a crucial target
for the improvement of depression (21-25). Thus, this study
researched the effect of a new stimulation protocol targeted at the
left DLPFC and right IOFC and the changed of functional magnetic
resonance imaging (fMRI) before and after the treatment.

Resting-state functional magnetic resonance imaging (rs-fMRI)
has been used to explore the spontaneous activity in brains and
neurobiological mechanisms in depressed patients by diverse analysis
methods which have been mainly divided into the functional
segregation and integration (26-28). The former includes amplitude
of low-frequency fluctuations (ALFF), fractional amplitude of
low-frequency fluctuations (fALFF), etc. In 2007, Zang et al. suggested
that the ALFE which assessed oscillation by measuring the blood-
oxygen-level dependent (BOLD) signals in the low-frequency range
(0.01 ~0.08 Hz) based on the voxel level, reflected spontaneous neural
activity in specific brain areas (29). Compared with other methods of
analysis, fractional amplitude of low-frequency fluctuations (FALFF)
is a more useful way for measuring the spontaneous activity of the
resting brain with fewer physiological noise and nonspecific signals
(30). The later embraces graph theory, seed-based analysis,
independent component analysis (ICA) and so on (26). Graph theory
describe the relationship between nodes and edges depend on node
degree, centrality, average path length, etc. (31-34), where nodes can
be the electrodes and channels of electroencephalogram and
magnetoencephalography or the common region of interest (ROI)
defined on structural and functional template, while the edge refers to
connections between the nodes (35). Seed-based analysis mainly
focuses on the correlation between one ROI to another one refers to
the synchronous activity between different brain regions and indicates
whether these two brain regions are related in terms of function (26,
29). ICA helps to extract different networks and analysis simultaneous
voxel to voxel interactions among networks (26, 28). In this study, our
team will analyze the differences in brain activity of depressive patients
before and after receiving different arTMS from the both perspectives
of separation and integration.

We conducted arTMS treatment for the TRD patients aimed at left
DLPFC and right IOFC, a brain area related to the reward mechanisms,
and collected brain functional images of subjects before and after
treatment using rs-fMRI. Then, the neural activity was evaluated by
ALFE fALFE and FC value before and after arTMS.

2 Methods
2.1 Participants and groups

This study was approved by the Ethics Committee of the Second
People’s Hospital of Guizhou Province. From August 2021 to July
2022, 60 patients with TRD were recruited from this hospital. Subjects
or their legal guardians agreed to participate in this study and signed
the informed consent form. This trial was prospectively registered in
the China Clinical Trial
ChiCTR2100049002).

The inclusion criteria were as follows: (1) met criteria of the
Diagnostic and Statistical Manual of Mental Disorders, fifth edition
(DSM-V) diagnostic for MDD; (2) were right-handed; (3) were 18 to

Registry  (Registration number:
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60years old (regardless of sex); (4) had an HAMD24 score >21; (5)
previously received a full course of two or more antidepressant drugs
at a sufficient dosage but achieved little or no treatment response; and
(6) signed informed consent form.

The exclusion criteria were as follows: (1) with psychotic
symptoms or any other mental disorders; (2) with symptoms caused
by organic diseases or medications; (3) with severe organic disease; or
(4) with contraindications for TMS or MRI, such as a history of
epilepsy, pregnancy within 3months, an artificial heart valve or
a pacemaker.

2.2 Intervention

In this study, we adopted the following arTMS treatment protocol
to reduce the traditional 4-5 weeks period of stimulation to 5 days by
delivering multiple stimulations per day. The specific procedure was
as follows: first, cTBS at 5 Hz was applied to the right OFC for a total
of 48s, which included 600 pulses and a resting motor threshold
(RMT) of 100% + 10%. Then, high-frequency repetitive transcranial
magnetic stimulation (HF-rTMS) at 20Hz was applied to the left
DLPEC for 90s, which included 1,800 pulses and an RMT of
100% +10%. The above stimulations were performed 4 times a day,
with 50-min intervals between each series, for 5 consecutive days.
Thus, the right OFC target received a total of 12,000 pulses, and the
left DLPFC target received a total of 36,000 pulses during the
full course.

Patients in these three groups received different arTMS
stimulations with the same parameters described above. In the dual
group, real stimulation was applied to both the right OFC and left
DLPFC. However, in the single group, the subjects received sham
stimulation treatment with a fake figure-eight coil that mimicked the
real one at right OFC and received real stimulation at the left
DLPEC. In the sham group, the subjects received sham stimulation
treatment with a fake figure-eight coil at both the right OFC and
left DLPFC.

2.3 Assessment indicators

All subjects completed the Hamilton Depression Scale-24
(HAMD24), which is widely used in clinical diagnosis because of its
good reliability and validity, before and after arTMS intervention,
1 week after intervention, and 4 weeks after intervention to assess the
depressive symptoms. Before and after arTMS, resting-state fMRI was
used to observe spontaneous brain activity in fALFF and fALFF in
different brain regions. Then, regions with significant differences after
arTMS were selected as regions of interest (ROIs), and with this as the
center, ROI of r=6 mm was used as the seed point, and the voxel-wise
functional connectivity of TRD depression patients was calculated.

2.4 Image acquisition

The acquisition of rs-fMRI image data in this study was completed
by professional technicians with intermediate or higher professional
titles in the imaging department in an examination room. The data
were collected by a high-field magnetic resonance scanner from GE
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(manufacturer’s model: SIGNA HDe) (Coil: General Electric,
Madison, WI, USA).

During the scan, all patients were asked to remain calm and
awake; keep their eyes closed; and refrain from moving their head. The
collection of rs-fMRI data in this study utilized the following two
specific scanning sequences: (1) 3D-T1-weighted whole-brain
structure imaging with a fast spoiled gradient echo (FSPGR) sequence
(slices =116, slice thickness = 1.2 mm, repetition time (TR) = 12.536 ms,
echo time (TE) =5.432 ms, inversion time = 350, flip angle (FA) =20°,
and matrix =256 X 256). (2) resting-state fMRI using a gradient echo
and echo planer imaging (GRE-EPI) sequence (slices=28, slice
thickness=3.5mm, TR=2,500ms, TE=40ms, time points=300,
FA =90°, and matrix =80 x 80).

2.5 Rs-fMRI data processing

Related data were analyzed by Data Processing and Analysis for
Brain Imaging (DPABI) software (36), which was based on the
MATLAB_2013b environment. The following 12 steps were used: (1)
conversion from DICOM to NIFTTI, (2) removal of the first ten time
points to reduce inaccuracy resulting from head movement or other
factors at the beginning of scans, (3) slice timing correction to
preventing interference between adjacent slices by adopting interval
scanning, (4) realignment (checking and correcting the head motion),
(5) nuisance regression (removing another covariate), (6)
transformation to Montreal Neurological Institute (MNI) space, (7)
detrending (removing the noise of the machine), (8) smoothing
(reducing the effects of spatial noise and reducing differences in brain
structure between subjects), (9) calculation of ALFF (0.01-0.08 Hz)
and fALFF values to reflect the spontaneous resting-state activity of
each different brain region (ALFF and fALFF maps were standardized
by z score-transformation into zZALFF and zfALFF maps), (10) quality
control (evaluating the quality of images and excluding the subjects
whose images did not meet the quality requirements), and (11)
calculation of FC (brain regions with the cluster voxels size >40 in the
corrected ALFF and fALFF results were selected as ROIs for further

analysis of the FC between the ROIs and whole brain).

2.6 Statistical analysis

SPSS 29.0 software was used to perform the chi-square test to
assess the influence of sex on the three groups, and one-way analysis
of variance (ANOVA) was performed to explore the influence of age,
education level and HAMD?24 scores of the three groups. A p value
less than or equal to 0.05 was considered statistically significant.
We extracted the time courses of brain regions with abnormal ALFF
and fALFF values and then conducted correlation analysis in SPSS
software to calculate the Pearson correlation coefficient between the
difference in HAMD24 scores (AHAMD?24) with ALFF or fALFF.

The DPABI software (36) was used to perform statistical analysis
of images with the following steps: (1) paired ¢ test: To calculate ALFF
and fALFF values and to identify ROIs that significantly differed at
pre-TMS and post-TMS in the three groups, we applied the paired t
test in DPABI software (36). (2) Multiple comparisons: gaussian
random field (GRF) correction with a voxel p value of 0.002 and
cluster p value of 0.1 was used to determine two-tailed significant
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TABLE 1 Comparison of HAMD24 scores among dual, single and sham groups.

Variables dual (n=19) Mean +SD single (n=19) Mean+SD  sham (n=20) Mean + SD p value
Age (years) 27.58+9.605 26.32+8.845 28.70+10.887 0.752*
Gender (male/female) 4/15 3/16 5/15 0.776°
Education (years) 4.80+6.815 4.66+5.800 2.38+1.804 0.272*
HAMD,, (pre) 49.16+£10.150 45.16+£10.156 50.80+9.134 0.194*
HAMD,, (Post) 29.11+£12.405 30.42+10.543 43.50£8.618 <0.001*
HAMD,, (1 week) 23.26+11.685 26.68+9.563 37.15+10.266 <0.001*
HAMD,, (4 weeks) 22.21+£12.196 22.58+9.353 34.80+12.685 0.001*
reduction (before-after)* 41.67%+0.239 29.70% +0.368 13.43%+0.151 0.006*
reduction (before-1week after)? 53.24%+0.231 37.72% +0.350 27.00% +0.162 0.010*
reduction (before-4 weeks after) 55.47%+0.219 47.17%+0.333 32.49%+0.211 0.025*

SD, Standard Deviation; HAMD24, Hamilton Depression Scales-24.

“The p value for one-way ANOVA.

"The p value for Chi-square test.

“Reduction rate of HAMD24 scores for before and after treatment = ((pre-post)/pre).

Reduction rate of HAMD24 scores for before and 1 week after treatment = ((pre-1 week)/pre).
“Reduction rate of HAMD24 scores for before and 4 weeks after treatment = ((pre-4 weeks)/pre).

differences to reduce the probability of type I error. (3) The brain
regions with cluster voxels size greater than 40 were selected.

2.7 Visualization

The REST V1.8 software' (37) and BrainNet Viewer? (38) were
used to visualize the results of brain activity and networks.

3 Results

A total of 60 participants were enrolled, but 2 subjects did not
complete the full treatment course. Finally, 58 patients (46 females and
12 males, aged 18-56years) had received 5-day treatment and 4-week
follow-up. All included subjects, who were marched for gender, age, and
education level, were randomly divided into three groups as follows by
computer randomization sequences: the dual target group (dual group)
(19 subjects, aged 27.58 £9.605 years), single target group (single group)
(19 subjects, aged 26.32 +8.845 years) and sham stimulus group (sham
group) (20 subjects, aged 28.70+ 10.887 years) (Table 1).

3.1 HAMD24 analysis

At baseline, the HAMD24 scores in the dual, single, and sham groups
were not significantly different (p>0.05). After 5days of aTMS treatment,
the HAMD24 scores were reduced in these three groups. Additionally,
this decrease persisted at 1 week and even 4 weeks after aTMS treatment.
After the treatment, the reduction rates in HAMD24 scores in dual, single
and sham group were 41.67%+0.239, 29.70%+0.368 and 13.43%+0.151,
respectively. At 1week after treatment, the rate were decreased by

1 http://www.restfmri.net
2 http://www.nitrc.org/projects/bnv/
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53.24%+0.231, 37.72%+0.350 and 27.00%+0.162, respectively. At
4weeks after treatment, the rates were decreased by 55.47%+0.219,
47.17%+0.333 and 32.49%+0.211, respectively. These reduction rates of
HAMD24 scores in three groups were significant different (p <0.05).
Additionally, the reduction rate was faster and greater in the dual group
than in the other two groups (Table 1, Figure 1).

3.2 ALFF and fALFF analysis

After comparing the post- and pre-TMS images by the paired
t-test, the ALFF value in the right fusiform gyrus (FG) (peak MNI
coordinate: 33, —78, —18) of the dual group was found to decrease
after aTMS. Additionally, the left superior temporal gyrus (STG) (peak
MNI coordinate: —57, —36, 6) in the dual group had a lower fALFF
value after aTMS. In both the single and sham groups, there were no
significant changes in ALFF and fALFF values in the whole brain
before and after aTMS (Table 2, Figures 2A,B, 3A,B).

3.3 ROl analysis

The peak MNI coordinates for the ALFF and fALFF values (33,
—78, —18 and — 57, —36, 6) were selected as ROIs to explore the FC
between these two ROIs with whole brain. We found that in the dual
group, after 5days of aTMS treatment, the FC between ROI1 (33, —78,
—18) and the right middle frontal gyrus (MFG), left MFG, left
triangular part of inferior frontal gyrus (IFG) decreased. There was no
significant difference in the FC between ROI2 (-57, —36, 6) and the
other brain regions before and after treatment (Table 2,
Figures 2C, 3C-E).

3.4 Correlation analysis

The fALFF value of the left STG at baseline in the dual group was
negatively correlated with the difference between HAMD24 scores
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FIGURE 1
(A) The HAMD24 reduction rate from post- to pre-treatment, 1 week after treatment to post-treatment and 4 weeks after treatment to 1 week after
treatment in the dual group. (B) The HAMD24 reduction rate from post- to pre-treatment, 1 week after treatment to post-treatment and 4 weeks after
treatment to 1 week after treatment in the single group. (C) The HAMD?24 reduction rate from post- to pre-treatment, 1 week after treatment to post-
treatment and 4 weeks after treatment to 1 week after treatment in the sham group. (D) The average HAMD?24 scores of pre-treatment, post-
treatment, 1week and 4 weeks after treatment in dual, single and sham groups.

before and after treatment (AHAMD24 score) (r=—0.455, p=0.050,
Pearson correlation), and the ALFF value of the right FG was not
significantly correlated with AHAMD?24 score (Figure 4).

4 Discussion

The current study investigated the features of spontaneous brain
activity in TRD pre- and post-aTMS treatment at different targets
using rs-fMRI. Specifically, we researched the efficacy and safety of
aTMS for TRD by performing bilateral, unilateral, or sham stimulation
at left DLPFC and right OFC and then analyzed the ALFF, fALFF and
FC values of different brain regions in those three groups before and
after aTMS treatment.

The DLPEC is a key region of the executive control network
(ECN) that is associated with the regulation of attention, decision-
making, working memory, and cognitive control. Therefore,
researchers believe that applying high-frequency stimulation to the
left DLPFC could help reduce depressive symptoms and further
improve the mood of patients with depression (39). Additionally, the
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OEFC is also associated with emotions since it is reacting to reward
values (40-42). A series of studies found that the OFC is a vital brain
area for reward and is activated by unpleasant aversive stimuli. After
the aTMS at these two targets, the depressed symptoms of TRD
patients get significantly improved. These regions thus could be the
strong candidate targets for stimulation to treat depression,
particularly for the patients with TRD (43-46). Specifically, we found
that both dual and single target stimulation reduced HAMD24 scores
in the short term, indicating that both these two schemes of aTMS
treatment can improve the symptoms of patients with TRD. Because
the TMS could produce a strong magnetic field with repeated pulses
that passes through the scalp and skull beneath the coil to enhance or
weaken activity in corresponding brain area by different models of
stimulation. According to the differences of frequencies, TMS
stimulations are divided into low-frequency stimulation (< 1 Hz) and
high-frequency stimulation (> 5Hz) (47). The former and continuous
theta burst stimulation (cTBS) or the latter and intermittent theta
burst stimulation (iTBS) respectively execute inhibitory or excitatory
effects on the brain cortex. An increasing number of related studies
have also proven the effectiveness of TMS for depression. Such as a
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TABLE 2 Brain regions alterations of ALFF, fALFF, and FC in TRD patients after arTMS in dual group.*

Left/Right Peak MNI coo Clusters (voxel) Peak T value

Post < hoc

ALFF

Fusiform Gyrus * R 33 —78 —-18 41 —5.5831
fALFF

Superior Temporal Gyrus ® L —57 -36 6 42 —6.4519

FC of seed]1: right fusiform gyrus (Peak MNI: 33-78 -18)
Middle Frontal Gyrus ¢ R 36 21 39 71 —4.7969
Middle frontal gyrus® L -39 15 57 59 —6.3005

Inferior frontal gyrus,
L —51 21 24 52 —5.8810
triangular part®

FC of seed2: left superior temporal gyrus (Peak MNI: —57 -36 6)
NONE

ALFF, Low-frequency Fluctuation; fALFE, Fractional Amplitude of Low-frequency Fluctuations. FC, Functional Connectivity. MNI, Montreal Neurological Institute. HAMD24, Hamilton
Depression Scale-24. The peak MNI coordinate represent the peak points with most significant differences in the brain areas.

Gaussian Random Field (GRF) correction: voxel p value=0.002, cluster p value=0.1, two tail (Z>2.3, cluster p=0.05, one tail).

*There was no significant result in both single and sham group after the GRF correction.

“The result of ALFF analysis.

"The result of fALFF analysis.

“The result of ROI analysis with the seed of right Fusiform Gyrus.

FIGURE 2
(A) The differences of ALFF from post- to pre- treatment in the dual group. (B) The differences of fALFF from post- to pre- treatment in the dual group.
(C) The differences of FC from post- to pre- treatment in the dual group. (Cluster p <0.05, GRF corrected) (Cluster p <0.05, GRF corrected)
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FIGURE 3
(A) The ALFF analysis revealed significant reductions in the right fusiform gyrus after treatment. (B) The fALFF analysis revealed significant reductions in

the left superior temporal gyrus after treatment with GRF correction. (C—E) The FC of ROI1 (33, —78, —18) with the bilateral middle frontal gyrus and
triangular part of inferior frontal gyrus had decreased after treatment. Cool colors represent decreased value, while warm colors represent increased

value. These differences were obtained by paired t-test in the dual group.

r=-4.55 p=0.05
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FIGURE 4
The fALFF value at baseline of the left superior gyrus in the dual group was negatively correlated with the difference between HAMD,, scores before

and after treatment (AHAMD,, score). (r = —0.455, p = 0.050, Pearson correlation).

stimulation, real rTMS targeting the left and right DLPFC with high-
and low-frequency stimulation was effective in the treatment of
depression. Besides, a recent study showed that the response rates to

meta-analysis (48) that included 15 published articles on the use of
repetitive transcranial magnetic stimulation (rTMS) to treat
depression from 2001 to 2010 concluded that compared with sham
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r'TMS of patients with major depressive disorder (MDD) were 40 to
50%, and the remission rates were 25 to 30% (49). In our study, the
dual group showed a faster and greater decrease than the single and
sham group. In addition, after dual target stimulation, at 1 week after
the treatment and at 4 weeks after the treatment, the reduction rates
in HAMD24 scores were also increasingly greater in the dual group
than that in the other two groups. Importantly, both dual and single
target stimulation showed good safety and tolerability. In this study,
none of the subjects experienced adverse reactions, such as severe
headache, seizures, or hearing loss, during treatment.

Additionally, we used the ALFF to observe the fluctuation of
the average amplitude of voxels in the frequency range of 0.01-
0.08 Hz; this value directly indicates changes in the amplitude of
the BOLD signal and reflects the spontaneous activity of brain
regions (28). In this study, we found that after dual target aTMS,
the ALFF value of the right FG was significantly lower than that
before treatment. This finding is consistent with the results of a
previous rs-fMRI study that revealed patients with depression tend
to be with higher ALFF values in the right FG (50). Numerous
rs-fMRI studies have found that changes in the FG of patients with
depression suggested that the neurological activity of this brain
region is altered, which may be the basis of depression (51-53). As
well known, the FG is a part of the visual recognition network and
temporal cortex, which is at the same time responsible for facial
recognition and the deep processing of visual information as well
as negative cognition and emotion. So, it may be the area to display
the earliest signs of abnormal emotional processing in patients
with depression (54-56). Besides, abnormal spontaneous brain
activity of the FG may indicate impaired understanding and
memory of language as well as recognition of facial features in
MDD patients, which may lead to negative cognition and affect in
both learning and life (57).

We also found that after aTMS treatment the FC of the right
FG was decreased. Specifically, the FC between the right FG and
bialetral MFG and left triangular part of IFG was decreased after
treatment. Shan et al. also found that the FC of the right FG was
abnormal in patients with depression, which may produce mood
disorders (58, 59). And this kind of abnormal FC of right FG
mainly focused on the frontal lobe which could divide into the
supra, middle, and lower folds (60). Because it is one of the areas
involved in the higher functional activities of the human brain,
influencing social behavior, planning, language formation, working
memory, language search, extraction, naming and other functional
activities, it is closely related to many mental diseases. In addition,
a study by Liu et al. also suggested that spontaneous brain activity
in the right MFG of patients with depression is significantly
correlated with depressive symptoms (61). One of our previous
studies also indicated that the changed of the FC between right
praecuneus and MFG was related to improvement of depressive
symptoms after cognitive-behavioral therapy combined with drugs
(62). The MFG is a core area of the DLPFC, which plays a key role
in emotional supervision and cognitive processing (63).
Hyperactivities in this area was observed in depressive patients
compared to controls (64). As a part of DLPFC, the left IFG is
extensively involved in language processing, working memory and
cognitive control (65-68). When the processing of negative
emotions increases, it can specifically inhibit the overworked
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limbic system by connecting with the orbitofrontal cortex, so that
negative emotion processing is reduced (69). Conversely, when the
processing of negative emotions is reduced, the functional
connectivity between these two brains decreases.

The fALFE obtained by dividing the energy of the low-frequency
signal by the energy of the entire frequency band, is a common indicator
of resting-state f/MRI and can reduce the influence of noise in the data
(70). Hence, in this study, we also used fALFF to observe the effective
reduction of the intensity of spontaneous neuronal activity in brain
regions. Related studies found that the fALFF of the left STG in patients
with depression was significantly increased (71, 72). After aTMS,
we found that the fALFF of the left STG, decreased compared to that at
baseline in the dual group, which is consistent with the results of other
studies (73, 74). Moreover, fALFF value of the left STG at baseline in the
dual group was negatively correlated with the AHAMD?24 score before
and after treatment. Some fMRI studies also have showed alterations in
the STG in patients with depression (73, 74). The STG is a critical part
of temporal lobe which is mainly responsible for not only processing
auditory information but also advanced neural activities such as social
cognition (75), Some studies have found that the STG and its adjacent
cerebral cortex played an important role in processing information
related to individual communication (such as eye gaze direction, facial
expression, and lip movements). Thus, it may be mainly responsible for
the dynamic processing of facial features, which is more important
during individual communication (76).

The STG and FG, as part of the temporal-occipital junction, were
reported to be more sensitive to negative emotional information (77).
And after this kind of protocol of aTMS treatment, it took a short
period to improve the abnormal ALFF values and FC in FG as well as
abnormal fALFF valued in STG and then to reduce this sensitivity,
thereby helping to improve the negative mood of patients with TRD.

5 Conclusion

This study has demonstrated that the efficacy of the dual target
treatment was better than that of the single-target and sham treatments.
In addition, we also demonstrated that the functional disorder of the
right FG and left STG, which could be significantly improved after
aTMS treatment, may be the pathological bases of emotional and
cognitive disorder in depression. And these areas may indicate the
potential marker of efficacy of dual target aTMS treatment. Particularly,
higher baseline fALFF values in the left STG may suggest better
response for dual target aTMS treatment. These findings may help
improve the understanding of neurobiological mechanism of TRD.

6 Limitations and future directions

This study has the following limitations: firstly, the sample size is
small which should be further expanded in future studies. Secondly, a
precise navigation system was not used. This may result in some errors
due to insufficient anatomical data support and failure to consider
individual differences. Thirdly, it wasn’t made an assessment of what
might be a protective factor through psychotherapy and counseling
intervention during the survey. In future research, we will further
improve these shortcomings.
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Regional decreases of cortical
thickness in major depressive
disorder and their correlation
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case-control study
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2Laboratory of Magnetic Resonance, Zhumadian Second People's Hospital, Zhengzhou, Henan, China

Background: Alterations in brain structure and function in major depressive
disorder (MDD) have been identified in a number of studies, but findings
regarding cortical thickness were various and inconsistent. Our current study
aims to explore the differences in cortical thickness between individuals with
MDD and healthy controls (HC) in a Chinese population.

Methods: We investigated T1-weighted brain magnetic resonance imaging
data from 61 participants (31 MDD and 30 HC). The cortical thickness between
the two groups and analyzed correlations between cortical thickness and
demographic variables in the MDD group for regions with significant between-
group differences were conducted.

Results: Compared with the HC group, patients with MDD had significantly
decreased cortical thickness, in left pars triangularis, left pars orbitalis, left rostral
middle frontal gyrus, left supramarginal gyrus, right parahippocampal gyrus,
right lingual gyrus, right fusiform and right inferior parietal gyrus. The cortical
thickness of left rostral middle frontal gyrus was negatively correlated (r=-0.47,
p =0.028) with the illness duration in patients with MDD.

Conclusion: Our study distinguished that cortical thickness decreases in
numerous brain regions both in the left and right hemisphere in individuals
with MDD, and the negative correlation between the cortical thickness of left
rostral middle frontal gyrus illness duration. Our current findings are valuable
in providing neural markers to identify MDD and understanding the potential
pathophysiology of mood disorders.

KEYWORDS

cortical thickness, major depressive disorder, left supramarginal gyrus, brain magnetic
resonance imaging, T1
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1 Introduction

Major depressive disorder (MDD) is becoming the most
burdensome mental disorder globally. The illness involves a depressed
mood or loss of pleasure or interest in activities for long periods of
time (1). Many alterations of behavioral symptoms are involved
during the development process of MDD, including various fields
related to emotions, motivation, cognition, and physiology (2).
Although ongoing efforts to increase knowledge and skills for
healthcare providers and clinical researchers, the pathogenies and
pathophysiological processes of MDD are not fully understood (3).
The existing evidence suggests that MDD may involve multiple levels
of changes in genetics, biochemistry, imaging, and psychology. Due to
neuroimaging research can reflect changes in the brain structure and
function of MDD patients more intuitively, increasing studies are
using this technology to explore the pathological mechanisms of MDD.

Cortical thickness refers to the component of gray matter volume,
which is an index of cell density and health in the cerebral cortex (4).
Thus, the alteration of cortical thickness represents an important
signature for understanding emotional regulation of depression
among all the neuroimaging approaches. For example, region-wise
analysis reported that abnormal changes in the cortical thickness of
the limbic system, such as the orbitofrontal lobe, cingulate gyrus, and
other brain regions in untreated individuals with MDD, which may
be related to abnormal emotional management and known as frontal
limbic model of MDD (5). Temporal cortical thickness abnormalities
were also reported in mood disorders (6). Two meta-analyses found
that decreased cortical thickness in the orbitofrontal and temporal
cortex of MDD (7, 8). A pilot study reported antidepressant treatment
increased cortical thickness of the left medial OFC in adolescents with
major depression (9). Several studies have also pointed out the
increases in cortical thickness of specific brain regions in MDD. Qiu
and colleagues reported cortical thickness in the right hemisphere in
first-episode, treatment-naive, mid-life MDD patients (10). Increased
cortical thickness of several brain regions in the default mode network
(DMN) of individuals with MDD was also reported in the meta-
analysis (7). Specifically, Li et.al found that increased cortical thickness
of posterior cingulate cortex, right ventromedial prefrontal cortex, and
anterior cingulate cortex, and decreased cortical thickness in
orbitofrontal cortex (gyrus rectus and orbital segment of superior
frontal gyrus) and temporal cortex in medication-free patients
with MDD.

Thus, to date, the existing studies related to cortical thickness in
individuals with MDD are not well clarified. Results have been
somewhat inconsistent across different studies. Our current study
aims to explore the differences in cortical thickness of individuals with
MDD and healthy controls in a Chinese population. According to the
previous evidence, we hypothesize that the individuals with MDD will
have thinner cortices in the frontal, temporal, limbic system, and
parietal lobes (e.g., middle frontal gyrus and orbitofrontal cortex).

2 Methods
2.1 Ethical approval

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and
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institutional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human subjects/patients were approved by the Medical
Ethics Committee of Zhumadian Second People’s Hospital in Henan
Province (Approval no. IRB-2020-006-02). All participants provided
written informed consent prior to participation.

2.2 Participants

All participants of this study were recruited from Zhumadian
Second People’s Hospital in Henan Province. A total of 30 individuals
diagnosed with MDD and 31 age and sex-matched healthy controls
were included in the data analysis. All patients with MDD were
recruited during a depressive episode, which were diagnosed by two
professional and experienced psychiatrists. The inclusion criteria for
MDD are as follows:(1) individuals meeting the diagnosis of major
depressive disorder according to the Diagnostic and Statistical Manual
of Mental Disorders, 5th edition(DSM-5); (2) Hamilton Depression
Scale(HAMD)-24-item version scores>20; (3) the patients taking
medication were on a stable dose for at least 6weeks or were
unmedicated for at least 4 weeks; (4) 18-60years old without gender
not limited; and (5) primary school or above education level. The
healthy controls had no history of mental illness or severe physical
illness and no family history of mental illness. The exclusion criteria
of all participants were as follows: (1) any history of neurological
diseases, intellectual disability, other physical diseases, or
comorbidities of other disorders; (2) any other mental disorders; (3)
pregnancy or breastfeeding; and (4) head trauma resulting in loss of
consciousness. The basic information of all participants can be seen in
Table 1. There were only twenty-two patients with MDD having the

illness duration, and eighteen patients having body mass index scores.

2.3 Image acquisition

The structural T1 images of all participants were scanned by using
the 3D BRAVO with the following parameters: TR/ TE =6.77/2.49 ms,
flip angle=70, matrix size=256x256, voxel size=1x1x1mm3,
188 slices.

TABLE 1 Demographic information of participants.

Variable MDD (n =30) HC (n=31) p-value
Age (years, 35.67+9.47 36.53+9.21 0.720
mean + SD)

Gender (female/ 17/13 18/13 0.912
male)

Illness duration 35.55+47.81 - -
(months,

mean +SD)

Body mass index 22.63+2.82 - -
(kg/m?,

mean + SD)

MDD, major depressive disorder; HC, healthy control; SD, standard deviation.
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2.4 Preprocessing of T1 images

The T1 images were automatically preprocessed using the
Computational Anatomy Toolbox version r1932." Briefly, the bias field
correction was firstly performed for the T1 images, which were then
segmented into gray matter, white matter and CSE. After removing
brain stem and cerebellum, the cortical thickness was computed by
using a projection scheme (11), which resulted in individual cortical
thickness maps. This projection-based thickness estimation is fast and
robust, which has been applied in other studies of neuropsychiatric
disorders (12, 13). The individual maps of cortical thickness cannot
be compared because they have a different number of vertexes. Thus,
those maps were then warped and registered to standard space
(fsaverage), thus, enabling matching of cortical locations among
individuals across the whole surface. The registered cortical thickness
maps were then smoothed with 12 mm full width at half maximum
for statistical analysis.

2.5 Statistical analysis

The differences in gender and age between patients with MDD
and HC were performed by using the chi-square test and two-sample
t-test separately. The two-tailed two-sample ¢-test was also used to
investigate the difference in cortical thickness at the vertex level
between MDD patients and HC. The multiple comparisons were
corrected using the false discovery rate (FDR) with q<0.05.

If there were some brain areas that survived the FDR correction,
mean cortical thickness of those brain areas was extracted for patients
with MDD, and was used to compute the association with illness
duration and body mass index by using Pearson correlation analysis.
The statistical level of p <0.05 was considered significant.

3 Results

The basic information of included participants is shown in
Table 1. The average age of MDD group and HC group are
35.67+£9.47 years old and 36.53 +9.21, respectively. In total, seventeen
females and thirteen males were included in the MDD group, and
eighteen females and thirteen males were included in HC group. There
was no significant difference (p>0.05) in age and gender between
patients with MDD and HC.

A two-sample t-test revealed that patients with MDD had
significantly (FDR with ¢<0.05) decreased cortical thickness,
compared with HC, in left pars triangularis, left pars orbitalis, left
rostral middle frontal gyrus, left supramarginal gyrus, right
parahippocampal gyrus, right lingual gyrus, right fusiform and right
inferior parietal gyrus (Figure 1 and Table 2). There were no brain
areas showing increased cortical thickness in patients with MDD.

In addition, we found that the cortical thickness of left rostral
middle frontal gyrus was negatively correlated (r=—-0.47, p=0.028)
with the illness duration in patients with MDD (Figure 2).
We conducted a sensitivity analysis to explore the relationship

1 https://neuro-jena.github.io/cat/
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between the course of the disease and cortical thickness after excluding
a value of very long illness duration, and the results showed that the
difference was still statistically significant (r =-0.43, p=0.047,
Supplementary Figure S1). We did not find significant correlation
between cortical thickness of those brain areas and body mass index.

4 Discussion

By utilizing T1 weighted anatomical magnetic resonance imaging
(MRI) images, we investigated the changes in cortical thickness in
individuals with MDD. The main findings of current study are as
follows: (1) four left hemisphere brain regions (i.e., pars triangularis,
pars orbitalis, rostral middle frontal gyrus, and supramarginal gyrus)
were found to have thinner cortical thickness in individuals with
MDD when compared to HC; (2) the decreases in cortical thickness
of three right hemisphere brain regions (i.e., parahippocampal gyrus,
lingual gyrus, fusiform, and inferior parietal gyrus) was also reported
in MDD; and (3) the cortical thickness of left rostral middle frontal
gyrus was negatively correlated with the illness duration in individuals
with MDD. The results reported in our study provided new evidence
for exploring alterations in the brain structure of MDD.

Consistent with the abnormal cortical thickness observed in
previous studies, we observed a decrease in cortical thickness in
several regions of the left hemisphere of the brain. It is worth noting
that we have found that left rostral middle frontal gyrus was negatively
correlated with the illness duration in individuals with MDD. The
rostral middle frontal gyrus is partly located in dorsolateral prefrontal
cortex and the control network of brain (14), and it plays an important
role in dysfunctional emotional processing, frontal executive function,
working memory, and problem solving (14). Consistent with our
results, a study focused on the thickness and depression reported that
the cortical thickness of rostral middle frontal gyrus was negatively
related to positive emotions at small effect sizes (accounting for
0.2-2.4% of variance; p-fdr: 0.0051-0.1900) (15). Song and colleagues
reported that left rostral middle frontal gyrus thickness was negatively
correlated with genetic risk score at 0.05 threshold (corrected p <0.05),
and mediates the relationship between genetic risk and neuroticism
traits (16). Another study focused on the brain imaging of bipolar
disorder also found significantly thinned left rostral middle frontal
gyrus in individuals with patients when compared with the healthy
controls (d=—0.276; p=2.99x 107"°) (17). Our findings and the above
evidence suggested that left rostral middle frontal gyrus is a potential
hallmark to distinguish mood disorders, and may be negatively
correlated to the positive emotions, genetic risk score and illness
duration of depression. However, some studies have proposed
inconsistent views. Qiu et al. and van Eijndhoven et al. reported
increased cortical thickness in right rostral middle frontal gyrus in
first-episode, medication-free MDD patients (5, 10). Reynolds and
colleagues found both right and left rostral middle frontal gyrus were
thicker in youth with MDD than in controls (p =0.009; Left - controls:
2.74 £ 0.28, MDD: 2.94 £ 0.25; Right - controls: 2.77 + 0.26, MDD:
2.80 £ 0.28) (18). Thus, characteristics of rostral middle frontal gyrus
in MDD patients can be explored through meta-analysis, and it is also
worthy of further confirmation by large samples.

Left pars triangularis is located in ventrolateral prefrontal cortex,
and it has been reported to be related to cognitive control (19).
Consistent with our findings, a case-control study also reported
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FIGURE 1

HC > MDD

Decreased cortical thickness in patients with MDD compared with HC. The multiple comparisons were corrected using FDR with g <0.05. MDD, major
depressive disorder; HC, healthy controls; PT, pars triangularis; POr, pars orbitalis; RMFG, rostral middle frontal gyrus; SMG, supramarginal gyrus; PHIP,
parahippocampal gyrus; LG, lingual gyrus; FS, fusiform; IPG, inferior parietal gyrus.

TABLE 2 Brain areas where the cortical thickness was significantly decreased in patients with MDD.

Brain regions Number of Cluster size MNI coordinate t-value Effect size
vertex (mm?) Y (Cohen’s d)

Left PT+ POr+RMFG 390 231.09 —47 36 —4 -4.76 1.22

Left RMFG 59 32.08 —41 35 22 —2.43 0.62

Left SMG 94 41.83 —61 -28 22 —4.16 1.07

Left PT 35 12.40 —34 26 8 —4.1 1.05

Right PHIP+ LG+ FS 394 209.2 33 —56 -8 —451 1.16

Right IPG 73 29.41 50 —47 22 —436 112

MDD, major depressive disorder; PT, pars triangularis; PO, pars orbitalis; RMFG, rostral middle frontal gyrus; SMG, supramarginal gyrus; PHIP, parahippocampal gyrus; LG, lingual gyrus;

FS, fusiform; IPG, inferior parietal gyrus.

thinner cortical thickness of left pars triangularis in MDD group when
compared with HC group (20). Functional MRI data analysis with a
semantic task indicated that left inferior frontal cortex (pars
triangularis) contributed to the classification of depression and
controls (21).

We also found a joint region of left pars triangularis+ pars
orbitalis+rostral middle frontal gyrus had a decrease in cortical
thickness in individuals with MDD. Similar to pars triangularis, pars
orbitalis also plays important roles in the language production
network (22). We did not find much evidence to focus on changes in
the pars orbitalis brain region and its function in MDD. A brain
structure study with children and adolescents suggests that it may
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be higher impulsivity, but not depressive symptoms, was associated
with reduced cortical thickness in the pars orbitalis (23). Moreover,
the cortical thickness of left supramarginal gyrus was inconsistently
reported in previous studies (4, 10, 24, 25). The potential roles of left
supramarginal gyrus in MDD also need to be further clarified.
Regarding the brain regions mentioned in the right hemisphere
with cortical thickness decreases in our results, to the best of our
knowledge, previous studies have focused more on exploring changes
in their functional connections. For example, a case—control study
reported late-life depression exhibited lower intrinsic functional
connectivity in right inferior parietal gyrus and other right fronto-
parietal network (FPN) (26), However, another study included 25
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FIGURE 2

The negative correlation between cortical thickness of left RMFG and
illness duration in patients with MDD. MDD, major depressive
disorder; RMFG, rostral middle frontal gyrus.

patients with recurrent depression found functional connectivity was
considerably decreased in right inferior parietal gyrus after 8 weeks
treatment (27). Few studies have pointed out the causes and rules of
the structural and functional changes of right inferior parietal gyrus
in patients with depression. The existing evidence suggests that right
inferior parietal gyrus might be a crucial hub in transferring
information between these abnormal regions (26).

Our results also reported a decrease in cortical thickness of the
occipito-temporal cluster (i.e., right parahippocampal gyrus+ lingual
gyrus+ fusiform) in MDD. Similarly, a study with an overlapping twin
and sibling sample reported the reduction of surface area in an
occipito-temporal cluster, which comprised part of the right lingual,
fusiform and parahippocampal gyri (28). The decrease of cortical
thickness the right fusiform in MDD cases with comorbid generalized
anxiety were also reported previously (29). The meta-analysis by the
ENIGMA-MDD group also found a significant reduction of right
lingual gyrus surface area, but nonsignificant association for fusiform
or parahippocampal, in adolescent depression (30). Previous evidence
pointed out the reduced cortical thickness of occipito-temporal cluster
may be associated with visual memory and attention deficits in
depression (31). The right lingual gyrus may be associated with
cognitive functions in MDD. The evidence from ENIGMA-MDD
group and other studies points to differences in orbitofrontal and
cingulate cortexes between MDD and healthy controls (30, 32).
However, our study did not provide such evidence, which is not
surprising. This may be due to the significant heterogeneity in both
clinical manifestations and brain structure among patients with
MDD. The underlying reasons for the structural and functional
alterations of these brain regions deserve further exploration.

The current study demonstrated a decrease in cortical thickness
in several brain regions of individuals with MDD in a Chinese
population, which provides new evidence for the neuroimaging
approaches to mood disorders. However, several limitations should
be noted in the present psychiatric neuroimaging study. Firstly, our
study is based on a single institutional database, a certain degree of
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selection bias may limit our extrapolation of results. Secondly, the
information on BMI was only collected in MDD group, while the
medication records of patients were not available from our collected
data. The evidence from ENIGMA-MDD group reported obesity
(BMI > 30) was significantly associated with both mass univariate
and multivariate pattern recognition analyses independent of MDD
diagnostics (33). Their results suggested a neurobiological
interaction between obesity and brain structure under physiological
and pathological brain conditions. Thus, obesity may affects the
brain just as much as a neuropsychiatric condition would and
should be treated taking this into account. However, our study did
not find association between BMI and with brain cortical thickness
in MDD. We think this may be related to our small sample size and
limited number of overweight and obese individuals in current
study. In our study sample, only 8 out of all 30 depressed patients
met the criteria for overweight, and no study subjects met the
criteria for obesity. Since the BMI of our study subjects is generally
within the normal range, it may require more individuals with
ultra-high BMI to determine alterations in brain cortical thickness.
Thirdly, our study is a cross-sectional study, so we cannot determine
whether the brain structure of MDD undergoes changes
after treatment.

Moreover, our sample consists of first-episode and recurrent
patients, we cannot exclude the potential influence of the previous
treatment effects and their influence on reported findings.
Additionally, we did not control for other information, such as
maternal status, professional activity, and manual laterality, and
we also did not control that the research subject must be right-handed.
These variables should be considered in future studies. Many residue
confounders might as well affect the findings of the study. Larger
samples and longitudinal research are needed to explore whether the
decrease in cortical thickness in MDD patients can be improved
through drug treatment in the future.

5 Conclusion

Our findings serve as a supplement to the evidence of alterations
in cortical thickness among individuals with MDD in the Chinese
population. In summary, our study distinguished that cortical
thickness decreases in numerous brain regions (i.e., pars triangularis,
pars orbitalis, rostral middle frontal gyrus, and supramarginal gyrus
of the left hemisphere; and parahippocampal gyrus, lingual gyrus,
fusiform, and inferior parietal gyrus of the right hemisphere) in
individuals with MDD. Moreover, the cortical thickness of left rostral
middle frontal gyrus was negatively correlated with the illness
duration of the disorder. Our current findings are valuable in
providing neural markers to identify MDD, which contribute to the
clinical diagnosis of affective disorders and further improve our
understanding of the potential pathophysiology of MDD.
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Background: The World Health Organization has reported that approximately
300 million individuals suffer from the mood disorder known as MDD. Non-
invasive measurement techniques have been utilized to reveal the mechanism of
MDD, with rsfMRI being the predominant method. The previous functional
connectivity and energy landscape studies have shown the difference in the
coactivation patterns between MDD and HCs. However, these studies did not
consider oscillatory temporal dynamics.

Methods: In this study, the dynamic mode decomposition, a method to compute
a set of coherent spatial patterns associated with the oscillation frequency and
temporal decay rate, was employed to investigate the alteration of the
occurrence of dynamic modes between MDD and HCs. Specifically, The BOLD
signals of each subject were transformed into dynamic modes representing
coherent spatial patterns and discrete-time eigenvalues to capture temporal
variations using dynamic mode decomposition. All the dynamic modes were
disentangled into a two-dimensional manifold using t-SNE. Density estimation
and density ratio estimation were applied to the two-dimensional manifolds after
the two-dimensional manifold was split based on HCs and MDD.

Results: The dynamic modes that uniquely emerged in the MDD were not
observed. Instead, we have found some dynamic modes that have shown
increased or reduced occurrence in MDD compared with HCs. The reduced
dynamic modes were associated with the visual and saliency networks while the
increased dynamic modes were associated with the default mode and sensory-
motor networks.
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Conclusion: To the best of our knowledge, this study showed initial evidence of
the alteration of occurrence of the dynamic modes between MDD and HCs. To
deepen understanding of how the alteration of the dynamic modes emerges
from the structure, it is vital to investigate the relationship between the dynamic
modes, cortical thickness, and surface areas.

KEYWORDS

resting-state fMRI, dynamic mode decomposition, major depressive disorder, manifold,
density ratio estimation

1 Introduction

The World Health Organization has reported that
approximately 300 million individuals suffer from the mood
disorder known as major depressive disorder (MDD). MDD gives
rise to psychological symptoms, such as despondent moods and
negative cognitions, as well as physical symptoms, such as sleep
disturbances and fatigue in mild cases, and even suicide in severe
cases (1). Neurotransmitter reuptake inhibitors, such as selective
serotonin reuptake inhibitors and transcranial magnetic stimulation
through electrical stimulation, have been employed in the treatment
of MDD (2-4). Although these treatments are effective, there are
patients whose depressive symptoms improve only partially or not
at all (5). Therefore, the mechanisms underlying MDD need to
be elucidated.

Non-invasive measurement techniques have been utilized to
reveal the mechanism of MDD, with resting-state functional
magnetic resonance imaging (rsfMRI) being the predominant
method (6). To evaluate dynamic changes in blood oxygenation
level-dependent (BOLD) signals using rsfMRI, static functional
connectivity (sFC), dynamic functional connectivity (dFC), and
energy landscape (EL) were employed as indices to portray the
dynamics of whole-brain networks. sFC captures the static
relationships of spontaneous fluctuations that represent
correlations over the entire duration (7, 8), whereas dFC captures
time-resolved spontaneous fluctuations in which functional
connectivity (FC) changes over a short time (9-11). Evaluation of
the static and dynamic relationships of spontaneous fluctuations in
the whole-brain network has revealed that MDD exhibits abnormal
connections in FC, such as the default mode network (DMN),
control executive network (CEN), and salience network (SN) when
compared with healthy controls (HCs) (12-16). Analyzing sFC
involves calculating the correlation between two independent
regions for all pairs (17). Even if a pair of regions is not directly
structurally interconnected, their sFC can exhibit a strong
correlation if both regions receive input from a third region (18).
Hence, it is imperative to simultaneously represent the dynamics of
whole-brain networks based on neural activity across multiple
regions. This is where EL emerges, which utilizes a pairwise
maximum entropy model to represent the dynamics of the whole-
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brain network in terms of the activity within each region and the
interactions between two or more regions (19). Moreover, by
defining the functional network between subjects in terms of
energy, it is possible to evaluate the transition from one stable
state to another through the unstable states. Notably, MDD tends to
sink to specific states, and it is difficult to transition from one stable
state to another compared to HCs (20). Although EL excels in
stability analysis across subjects, some issues require prior
assignment of a functional network to each region and
binarization of BOLD signals. In common with sFC, dFC, and
EL, analyzing components of the BOLD signal above 0.1 Hz is a
challenging problem. Therefore, in terms of interactions across
multiple regions, a methodology is required to evaluate the sinking
into specific states under conditions free from functional network
assignment and binarization.

The dynamic mode decomposition (DMD) is a data-driven and
equation-independent approach for analyzing fluid dynamics (21).
DMD calculates eigenvectors and corresponding eigenvalues of the
approximate linear transformation expressing the time evolution of
multidimensional time-series data. Eigenvectors were called
dynamic modes (DMs) representing coherent spatial patterns and
the corresponding eigenvalues were called discrete-time eigenvalues
representing the frequency and time evolution such as growth and
decay. In other words, multiple coherent DMs coexist at a certain
time in multidimensional time-series data and corresponding
temporal characteristics are identified. EL analysis assigns a
functional network to each region, binarizes the BOLD signal, fits
it with a Boltzmann distribution, determines relationships between
activity patterns and energy, and assigns one state on EL at a certain
time in multidimensional time-series data (22). Here, since the
BOLD signals exhibit wave superposition, it is necessary to analyze
stability under conditions where multiple states coexist at a certain
time. DMD was successful and recent studies have applied DMD to
BOLD signals, a type of fluid that exhibits nonlinear spatiotemporal
changes (23-26). This study applied DMD to the BOLD signals
across all frequency bands of HCs and MDD. Subsequently, the
spatial patterns, frequencies, and temporal changes across all
subjects were analyzed in terms of stability.

Analysis of a large dataset of psychiatric disorders based on
rsfMRI (27) using DMD revealed that the number of DMs associated
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with MDD decreased in visual networks (VN) and SN, while it
increased in DMN and sensory-motor networks (SMN) when
compared to HCs. Interestingly, DMs’ differences between MDD
and HCs were identified not only within the 0.01-0.1 Hz range in
standard rsfMRI analysis but also extending beyond 0.1 Hz. Applying
t-distribution stochastic neighbor embedding (t-SNE) (28) to DMs
enables the disentangling of the intricate curved surfaces spanned by
DM into a two-dimensional manifold, allowing for the evaluation of
stability across subjects. Subsequently, DMs resembling resting-state
networks (RSNs) were identified by evaluating the probability density
ratio between HCs and MDD using a two-dimensional manifold. The
amplitudes of the DMs resembling the VN and SN were similar to the
spatial patterns associated with cortical thickness and surface area
abnormalities in MDD (29).

2 Materials and methods

In this study, we applied DMD to BOLD signals and devised a
method for extracting DMs based on the probability density ratio
between HCs and MDD on two-dimensional manifolds using t-
SNE (Figure 1). First, the BOLD signals of each subject were
transformed into DMs representing coherent spatial patterns and
discrete-time eigenvalues to capture temporal variations using
DMD. Second, all the DMs were disentangled into a two-
dimensional manifold using t-SNE. Finally, density estimation
and density ratio estimation were applied to the two-dimensional
manifolds after the two-dimensional manifold was split based on
the HCs and MDD. The results revealed that MDD tended to sink
into specific DMs in contrast to HCs.

2.1 Dataset

We used the Japanese Strategic Research Program for the
Promotion of Brain Science (SRPBS) dataset (27) (https://
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bicr.atr.jp/decnefpro/data/), along with additional datasets
obtained from various projects. Supplementary Table 1 describes
the protocols at each site, and Supplementary Table 2 describes the
subject information at each site.

The datasets were collected from the Center of Innovation at
Hiroshima University (COI) and the University of Tokyo (UTO),
Hiroshima Kajikawa Hospital (HKH), Hiroshima Rehabilitation
Center (HRC), Hiroshima University Hospital (HUH), and
Yamaguchi University (UYA). COI and UTO follow the unified
protocol but HKH, HRC, HUH, and UYA follow non-unified
protocols. The total number of HCs and MDD was 543 and 302,
respectively, with Beck Depression Inventory-II (BDI-II) scores of
7.5 £ 6.3 and 28.1 £ 10.5, respectively.

2.2 BOLD signals preprocessing

BOLD signals were preprocessed using fMRIPrep version
1.0.8 (http://fmriprep.readthedocs.io/en/1.0.8/workflows.html)
(30). The first 10 s of the data were discarded to allow for T1
equilibration. The preprocessing steps included slice-timing
correction, realignment, coregistration, distortion correction
using a field map, segmentation of T1-weighted structural
images, normalization to Montreal Neurological Institute space,
and spatial smoothing with an isotropic Gaussian kernel of 6 mm
full width at half maximum. “Fieldmap-less” distortion correction
was performed for the test dataset due to the lack of field
map data.

2.3 Preprocess of ROI time series for DMD

It is necessary to mitigate the effects of the protocols and
physiological noise. BOLD signal extraction was performed using
Glasser’s 360 regions of interest (ROI) (31), which excluded the
cerebellum and contained little white matter.

Density

estimationa

H

Density ratio
estimation

Overview of the analysis procedure. First, each subject’s blood oxygenation level-dependent (BOLD) signals were extracted using Glasser’'s 360
regions of interest (ROI). Second, the BOLD signals were decomposed into dynamic modes (DMs) and discrete-time eigenvalues using the one-
stacked time-delay coordinates dynamic mode decomposition (tdcDMD). Third, all DMs were disentangled into the two-dimensional manifold using
t-distributed stochastic neighbor embedding (t-SNE). Fourth, density estimation was performed to visualize the features that major depressive
disorder (MDD) sink into the specific DMs compared to healthy controls (HCs). Finally, density ratio distributions between HCs and MDD were
calculated using relative unconstrained least-squares importance fitting (RULSIF).
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Nilearn’s NiftiLabelsMasker function (https://nilearn.github.io/
stable/index.html) was used for the BOLD signal extraction.
Detrending was applied to eliminate long-term variations, and
BOLD signals were normalized using z-scores to mitigate the
effects of the protocols. When analyzed using the DMD, the
frequencies were computed for each DM. Therefore, band-pass
filtering was not applied.

Confounding factors must be removed when extracting BOLD
signals. The fit _transform function was applied to remove
confounding factors for the 12 regression parameters (six motion
parameters, average signals over the whole brain, and five
anatomical CompCor components).

2.4 One-stacked time-delay
coordinates DMD

BOLD signals were decomposed into DMs and discrete-time
eigenvalues. Time-delay coordinates DMD (tdcDMD) is a method
used for decomposing standing waves into spatiotemporal patterns
with high accuracy (21); tdcDMD was performed using the dmd.py
function in the DMD toolbox (https://github.com/erichson/
DMDpack). As described in a previous study (26), the BOLD
signals of each subject were converted into DMs. As shown in
Equation 1, the BOLD signal matrix X was composed of rows
representing the number of ROI, N,,; and columns representing the
number of measurements, Nry.

1

where x;( € RV) represents the BOLD signals at time k. The
following matrices were constructed from the BOLD signal matrix

X = [xl Xy o xNT],

X as shown in Equations 2, 3.

Xl = [xl X (2)

s XNl ],

3)

X, =[x x3 - XNy ],

where X, represents the matrix with X; shifted back one
observation. Subsequently, x;,,; was stacked on x; as shown in
Equations 4, 5.

X1 Xp 0t XNp—2
Xiaug = , 4)
Xy X3 0t XNp-1
Xy X3 o0t XNp-1
quug = > (5)
x3 x4 CERY 'xNT
Xoaugwas predicted using X, 50 Xpaue = AX gy
— T
A= XZangIaug’ (6)

where the dagger represents the generalized inverse. Singular
value decomposition was applied to X4,

Xy = UEV*, )
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where U, Z, and V represent the left singular, singular value,
and right singular matrices of Xj,,,, respectively. As shown in
Equation 8, the matrix A is rewritten by substituting Equation 7 into

Equation 6.
A =X, VEUY, (8)
the proper orthogonal decomposition was applied to A.
A =UYAU = U*X,,, VE™!, (9)
then eigen decomposition was applied to A.
AW = WA, (10)

where Wand A represent the eigenvector and eigenvalue
matrices of A, respectively. Xz,mgVZ_1 was multiplied from
the left in Equation 10 and Equation 9 was substituted into
Equation 10.

AXopug VE'W = X5, VE' WA, (11)

where A is the similar matrix of A, so they have the same
eigenvalue matrix A but different eigenvector matrices. In
comparing Equations 10, 11, XZaugVZ'IW can be regarded as the
eigenvector matrix of A. Finally, the eigen decomposition of A was
reconstructed using W and A and the dynamic mode matrix ® was
calculated as shown in Equation 12.

D= X0 VE'W, (12)

the i-th column of @, which we denote by ¢;( & Cwi), is the i-
th eigenvector of A. The i-th diagonal element of A, which we
denote by 4;( € C), is the i-th eigenvalue of A. The phase and
amplitude of A; mean the frequency and decay rate of the
corresponding mode. The frequency f; corresponding to the
dynamic mode ¢; and the eigenvalue A; is described as following
Equation 13.

imag(ln (A;))

2mAt > (13)

fi =

where At, In(-) and imag( - ) represent the temporal resolution

in each protocol, natural logarithm, and the imaginary part of a
complex number.

2.5 Two-dimensional manifold with t-SNE

When analyzed using the DMD, pairs of DMs with identical
amplitudes but antiphases emerged. Moreover, DMs representing
brain states describe intricate curved surfaces in a multidimensional
space. In a previous study (26), the modified K-means clustering
algorithm was applied to DMs and treated DMs with identical
amplitudes and antiphases. However, this approach failed to
disentangle intricate curved surfaces in a multidimensional space.
Hence, this study employed t-SNE (28) to disentangle the intricate
curved surfaces spanned by DMs.
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The initial 360 rows, which are inherently independent of the
720 rows of the DMs, were used to employ a one-stacked tdcDMD.
Subsequently, the DMs were separated into their real and imaginary
components, stacked together, and applied to t-SNE. When t-SNE
was applied to all DMs of both HCs and MDD, the perplexity varied
from 30 to 10,000. A value of 2,000 was visually selected to achieve
maximum separation between peaks within the two-dimensional
manifold while keeping random_state fixed. The
sklearn.manifold. TSNE function in Python was employed, with all
parameters set to their default values except perplexity
and random_ state.

2.6 Kernel density estimation

It is crucial to select the optimal perplexity at which the peaks
within the two-dimensional manifold achieve maximum
separation. Hence, we separated the peaks by performing a kernel
density estimation on a two-dimensional manifold. The formula for
estimating the probability density p at a given point y, estimated
from points x;(i =1, 2, ..., n) of DMs on the two-dimensional
manifold is expressed as following Equation 14:

PO = SK( - x5, (9)

where kernel K is the Gaussian kernel and bandwidth £ is set to
the Scotts factor. Scipy.stats.gaussian_kde function in Python was
used (32).

2.7 Kernel density ratio estimation

The probability density was estimated using kernel density
estimation on the two-dimensional manifolds obtained by
applying t-SNE. Consequently, the distinction between HCs and
MDD was revealed as a different balance in the proportion of DMs
rather than the emergence of unknown DMs. Hence, we estimated
the probability density ratio between HCs and MDD using a
relatively unconstrained least-squares importance fitting (RuLSIF)
(33). In terms of estimation accuracy, it is more precise to directly
estimate the density ratio between HCs and MDD than to indirectly
estimate the density ratio by estimating HCs and MDD’s densities
separately and dividing HCs and MDD’s densities. To improve the
estimation accuracy, various methods have been developed to
directly estimate the density ratio without going through the
density estimation process. RuLSIF was chosen for this study
because its Python code is publicly available and its calculation
speed is fast.

The optimal parameters were automatically selected in the
range of coefficient o = 0, the regularization parameter 1 = 0.10,
0.09, ..., 0.01, and Gaussian kernel width o =1.2, 1.0, 0.8.
RuLSIF was performed using the toolbox (https://github.com/
hoxo-m/densratio_py).

To estimate the density ratio of the area where the HCs density
was higher than the MDD’s density, the HCs” manifold was used as
the denominator, and the MDD’s manifold was used as the
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numerator. To estimate the density ratio for the area where the
MDD’s density was higher than the HCs’ density, the MDD’s
manifold was used as the denominator, and the HCs’ manifold
was used as the numerator.

2.8 Plotting dynamic modes, histogram of
frequency, and discrete-time eigenvalues
greater than 95% significance level

Kernel density ratio estimation was used to calculate the
probability density ratio between HCs and MDD. However, the
specific regions exhibiting significant differences in terms of density
ratio between HCs and MDD remain unknown. To solve this
problem, permutation tests were performed to clarify areas higher
than the 95% significance level and to plot the mean amplitude and
phase of the DMs, a histogram of frequency, and discrete-time
eigenvalues within the significant areas.

First, we randomized the labels of the HCs and MDD in a two-
dimensional manifold. Second, with fixed parameters (o, o, 1) =
(0, 1.0, 0.01), RuLSIF was performed to calculate the maximum
peak value, repeating this process 100 times. Third, we applied the
density-based spatial clustering of applications with noise
(DBSCAN) (34) to cluster points within areas that exhibited
maximum peak values higher than the 95th percentile. Finally, we
plotted the mean amplitudes and phases of the DMs, frequency
histograms, and discrete-time eigenvalues A associated with each
cluster. For the density ratios pypp(x)/prcs(%) and prcs(x)/pvpp
(x), the DBSCAN parameters were set as (eps, min samples) =
(1, 100) and (0.15, 300), respectively. Points that were not
assigned to a cluster were excluded.

3 Results

3.1 Applying t-SNE, density estimation, and
density ratio estimation to the DMs

First, the two-dimensional manifold was calculated by applying
t-SNE to all DMs across all subjects and was visualized after
separating the HCs and MDD (Figure 2A: HCs, B: MDD).
Second, the perplexity was varied from 30 to 10,000 and
consequently set to 2,000 to maximally separate the peaks in the
two-dimensional manifold. Finally, kernel density estimation was
performed to clarify the distribution features exhibited by the two-
dimensional manifold (Figure 2C: HCs, D: MDD).

In the HCs, the peaks displayed a relatively uniform distribution
(Figure 2C). Conversely, in the MDD group, the peaks exhibited a
bias toward the upper right, lower left, and central areas
(Figure 2D). In other words, MDD tended to sink more into
specific DMs than HCs. In addition, the edge of the MDD
manifold appeared slightly wider than that of the HCs manifold
at the elliptical periphery. To assess these features, density ratio
estimation was performed by applying RuLSIF to the two-

dimensional manifolds.
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Two-dimensional manifolds of HCs (A) and MDD (B) with t-SNE, kernel density estimation of HCs (C) and MDD (D), and density ratio distribution
estimated by relative unconstrained least-squares importance fitting (RULSIF) in the case of MDD/HCs (E) and HCs/MDD (F). The points on the two-
dimensional manifold indicate DMs (A, B). The curved lines on the density estimation indicate contour lines (C, D). The red numbers indicate the
peak number. In the MDD/HCs case, the peaks located at the far left and far right were not assigned numbers due to their lack of significance at the
95% confidence level (E, F). MDD/HCs shows increased DMs in MDD, and HCs/MDD shows reduced DMs in MDD.

3.2 DM’s features in the clusters

The density ratio was calculated using HCs as the denominator
and MDD as the numerator (Figure 2E). Similarly, the density ratio
was calculated using the MDD as the denominator and HCs as the
numerator (Figure 2F). The colored bars represent the value of the
density ratios. For parameter search, o =0, the regularization
parameter 7 varied from 0.10 to 0.01, and the Gaussian kernel
width o took values of 1.2, 1.0, and 0.8. As a result, 7= 0.01 and
0 =1.0 were selected. After performing the density ratio
estimation, it was necessary to determine the significant areas.
Therefore, a permutation test was performed with a =0, 1=
0.01, and o = 1.0. The labels of HCs and MDD across all DMs
were shuffled, and density ratio estimation was applied to calculate
the maximum peak value 100 times (Supplementary Figure S1).
Subsequently, areas above the 95th percentile of the maximum peak
value were calculated (Supplementary Figures S2A, B) and clustered
using DBSCAN (Supplementary Figures S2C, D).

Glass brain plots depicting the amplitude and phase of the mean
DMs, histograms of frequency, and discrete-time eigenvalues within
clusters in the MDD/HCs (Figure 3) and HCs/MDD (Figure 4)
cases are presented. Because DMs appear in pairs with modes of
identical amplitude and an anti-phase relationship, DMs at
symmetric locations are paired (Figure 2E 1-2, Figure 2F 4-5,
and 6-7).

In the MDD/HC:s case, the glass brain plots of DM1 and DM2
were similar to those of DMN. The discrete-time eigenvalues were
distributed along the unit circle, indicating stability in DM1 and
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DM2. The glass brain plots of DM3 were similar to those of the
SMN. The discrete-time eigenvalues were relatively numerous
inside the unit circle, indicating not only stability but also
convergence in DM3. Additionally, because both the DMN and
SMN were concurrently active in DM2, the frequency histogram
was likely to show an intermediate distribution between the
distributions in DM1 and DM3.

In the HCs/MDD case, the glass brain plots of DM4 and DM5
were similar to those of the VN. The discrete-time eigenvalues were
distributed along the unit circle, indicating stability in DM4 and
DMS5. The histogram of the frequency showed a peak at
approximately 0.03 Hz. The glass-brain plots of DM6 and DM7
were similar to those of the SN. The discrete-time eigenvalues were
distributed along the unit circle, indicating stability in DM6 and
DM?7. The histogram of the frequency showed a peak at
approximately 0.15 Hz. The small number of DMs in DM7 likely
resulted in a negative bias of the phase and scattering of the
frequency histogram.

4 Discussion

We devised a methodology for estimating brain-state stability
across subjects by applying DMD to BOLD signals; t-SNE was
applied to the DMs to disentangle the intricate curved surface
spanned by the DMs into a two-dimensional manifold (Figure 2).
Density ratio estimation was then performed on the two-
dimensional manifolds of HCs and MDD (Figures 2E, F).
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Mean DMs’ amplitude, phase, histogram of frequency, discrete-time eigenvalue 4 in each MDD/HCs cluster. The left numbers correspond to the
peak numbers in Figure 2. DM1 resembles the default mode network (DMN), has a low frequency, and is stable. DM2 resembles DMN, has a flat
frequency, and is stable. DM3 resembles a sensory-motor network (SMN), has high frequency, and tends to converge.

Consequently, it was revealed that MDD did not cause the
emergence of unknown DMs distinct from HCs but sank into
specific DMs, such as DM1, DM2, and DM3.

In machine learning using DMD, there are two important aspects
of comparing HCs and MDD. One is interpretability in terms of
physiology and the other is classification performance for biomarker.
Therefore, individual-level classification between HCs and MDD was
performed to demonstrate usability to the biomarker development
(Supplementary Figure S6). As a result, when evaluated using 10-fold
cross-validation (Supplementary Figure S7), the balanced accuracy
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(Bacc) was slightly better than that in the previous study (12) using
sFC (Supplementary Figure S8).

4.1 Dynamic modes and cortical
abnormalities of MDD

The spatial patterns of reduced DMs corresponded to the

patterns observed in the cortical thickness and surface area
abnormalities (29). Specifically, DM6 and DM7 exhibited spatial
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HCs/MDD glass brain plot of DMs, histogram of frequency, and A
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Mean DM’s amplitude, phase, histogram of frequency, discrete-time eigenvalue 4 in each HCs/MDD cluster. The left numbers correspond to the
peak numbers in Figure 2. DM4 resembles a visual network (VN), has a low frequency, and is stable. DM 5 resembles a VN, has a low frequency, and
is stable. DM6 resembles a salience network (SN), has a high frequency, and is stable. DM 7 resembles an SN, has a high frequency, and is stable.

patterns similar to the reductions in cortical thickness observed in Widespread abnormalities have been discovered in MDD, from

adult MDD, whereas DM4 and DM5 displayed spatial patterns  microscopic phenomena such as the genome and molecular
resembling the reductions in cortical surface area observed in  pathways to macroscopic phenomena such as BOLD signals.
adolescent MDD. Therefore, the reduction in DM4, DM5, DM6,  Microscopic mutations are environmentally influenced, promote

and DM7 levels plays a key role in elucidating the mechanisms  synaptic degeneration with inflammation, lead to mesoscopic
of MDD. neuronal firing abnormalities weighted by the neurotransmitter
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map, and result in macroscopic abnormalities, such as BOLD
signals (35-39). Related to mesoscopic phenomena, some
abnormalities are observed in the reuptake of neurotransmitters,
such as serotonin, dopamine, norepinephrine, and GABA (40-42)
resulting in neurotransmitter concentrations in plasma metabolism
(43). Related to macroscopic phenomena, MDD exhibits reduced
cortical thickness and surface area compared with HCs (29). As if to
connect these two different scale phenomena, both the cortical
abnormalities and receptor maps share similar spatial patterns (44,
45). These combined abnormalities likely resulted in sinking into
specific DMs, such as DM1, DM2, and DM3. Hence, if a subject
transitions from HCs to MDD, it is plausible that MDD would
submerge into these particular DMs alongside reductions in cortical
thickness and surface area, as well as neurotransmitter
reuptake abnormalities.

As a first step in integrating multiple pieces of information that
reflect different aspects of MDD, it is vital to investigate the
relationship between alterations in stability based on DMs and
reductions in cortical thickness and surface area using large
datasets. In a comprehensive study on white matter alterations in
HCs and MDD, fractional anisotropy was found to be decreased in
adult MDD but not significantly different in adolescent MDD
compared to HCs (46). Conversely, adolescent MDD exhibited
decreased cortical surface areas, particularly in regions such as the
orbitofrontal cortex and lateral occipital cortex, when compared to
HCs (29). Therefore, in addition to examining the structural
connectivity based on the fiber structure in the white matter, it is
essential to consider stability measures based on reduced cortical
surface areas in both HCs and MDD. Notably, sFC can be well
explained (approximately 0.9) by geometric modes (GMs) derived
from the cortical geometric structure in HCs (47), suggesting that
GMs could serve as a valuable stability indicator based on
brain structure.

The integration of multiple indicators will be effective in
psychiatric care. A combination of temporally stable trait
biomarkers and temporally variable state biomarkers is necessary
for early diagnosis and intervention using mechanism-based
treatments (48). Therefore, structural connectivity and GMs, as
temporally stable trait biomarkers, are employed as criteria for
assessing stability. Additionally, DMs serve as temporally variable
state biomarkers for evaluating the current cortical stability. The
integration of the stability associated with cortical structural and
geometric alterations and BOLD signals may shed light on
previously unknown mechanisms underlying MDD.

4.2 Inconsistency with the previous studies

In MDD, negative emotions are associated with increased
activity in the DMN (49) and motor impairment is associated
with slow gait and slumped posture (50). Consequently, DM1 and
DM2, resembling the DMN, probably emerged for experiencing
negative emotions, and DM3, resembling the SMN, probably
emerged for experiencing movement difficulties.

In the EL-based method (20), non-melancholic MDD tended to
sink into the left CEN, whereas melancholic MDD tended to sink
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into both the left CEN and dorsal DMN states. In contrast, in the
DMD-based method, the MDD sinks into brain states resembling
the DMN and SMN. These differences can be attributed to the
following three factors. First, the binarization process affects the
results. In the DMD-based method, the strong amplitudes of all
DMs, except for DM3, were approximately 0.03 in regions
associated with the DMN, VN, and SN, and medium amplitudes
were approximately 0.01 in regions associated with the SMN. In
contrast, the strongest amplitudes of DM3 were associated with the
SMN, but the amplitude value was only 0.003, which is
approximately 1/10 compared with the other DMs. Conversely,
the EL-based method requires the binarization of BOLD signals
after functional network assignment to a specific region. This
binarization process may have led to an outcome in which
regions with amplitudes smaller than the average were considered
inactive. Second, the larger number of subjects in our study may
lead to more robust results than the previous study. This study
included 845 subjects, whereas the previous study included 262
subjects. Lastly, regarding the subtype of MDD, this study did not
differentiate between non-melancholic and melancholic MDD,
whereas previous studies analyzed these subtypes separately.
These methodological discrepancies and different numbers of
subjects may account for the sinking into different states between
the DMD- and EL-based methods.

In a large dataset study using the sFC (13), hypoconnectivities were
observed within the SMN and SN, as well as between the SMN, SN,
dorsal attention network (DAN), and VN in MDD. However, no
significant differences were found between the DMN and fronto-
parietal networks (FPN). In contrast, this study identified
abnormalities in the DMN, SMN, VN, and SN but no abnormalities
in the DAN. A previous study using the same dataset showed that there
were only a few abnormal FCs related to the DAN and many abnormal
FCs related to the DMN (12). It is worth noting that the DMN and
DAN exhibit an inverse correlation, wherein DAN activation leads to
DMN suppression (51). Therefore, it is possible that the subjects in this
study activated the DMN, while those in the larger dataset study used
an sFC-activated DAN (13).

4.3 Relationships among DMs’ spatial
pattern, histogram of frequency, and
discrete-time eigenvalue

The amplitude of DM3 exhibited a spatial pattern resembling
that of the SMN and was approximately 0.003, which was
approximately 1/10 smaller than the amplitudes of the other
DMs. The amplitudes in DM6 and DM7 were stronger in the SN
and slightly stronger in the SMN than in the other DMs. The
amplitudes of DM1 and DM2 were stronger in the DMN and
slightly stronger in the SMN. Consequently, the SMN tended to
appear more frequently in conjunction with other networks.
Furthermore, the observation that the SMN tended to co-occur
with low-frequency DM1 and DM2, as well as high-frequency DM6
and DM7, suggests that DM3 transmitted information across a
broad range of frequencies, resulting in a smoother frequency
distribution compared to the other DMs.
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A comparative study investigating empirical and simulated sFC
and dFC proposed that SMN serves as a driver of cortical dynamics
(52). The SMN probably exhibits weak amplitudes and a wide
frequency range across all DMs because of its role as a driver in
cortical dynamics.

4.4 Limitation of the current method

t-SNE was employed to disentangle the intricate curved surfaces
spanned by the DMs and analyze the inter-subject stability. However,
the method used in the study encountered two problems. First, the
computation time was considerable, requiring approximately one week
to apply t-SNE to approximately 160,000 DMs, search for the optimal
perplexity, estimate the density ratio using RuLSIF, and calculate the
clusters based on permutation tests. Consequently, the search for
optimal parameters was limited to perplexity during the t-SNE. It is
noteworthy that t-SNE encompasses additional parameters, including
the early exaggeration factor, learning rate, angle, and random_state,
which also influence the manifold. These parameters were determined
using a heuristic method (53) in the sklearn.manifold. Second, memory
usage has become a serious concern as increasing the perplexity of t-
SNE consumes up to approximately 100 GB. To analyze larger datasets,
alternative methods such as deep learning or other approaches need to
be developed.

When performing rsfMRI, some subjects rarely lacked BOLD
signals in the cerebellum. Additionally, BOLD signals from the
white matter often contain significant noise. To avoid these issues,
the stability analysis between HCs and MDD in this study utilized
Glasser’s 360 ROI, which excludes the cerebellum and
predominantly consists of gray matter. Therefore, to analyze
intersubject stability using ROI that includes the cerebellum and
white matter, alternative methods such as deep learning or other
approaches need to be developed instead of this method.

Supplementary Figure S5 shows the normalized number of
DMs for each protocol, which was obtained by dividing the
number of DMs in the cluster by the total number of DMs in the
protocol. The COI and UTO employed a unified protocol, whereas
HKH, HUH, HRC, and UYA employed independent protocols.
However, the normalized histogram of site in COI tended to be
closer to UYA and HKH, while the normalized histogram of site in
UTO tended to be closer to HUH and HRC. Supplementary Table 1
showed that Siemens manufactured COI, UYA, and HKH while GE
manufactured UTO, HUH, and HRC. The inter-protocol
differences in DM6 and DM7 were more dependent on
manufacturers such as Siemens and GE than on protocol
unification (Supplementary Table 1). In a previous study on
physiological noise (54), the approximately 0.2 Hz component of
BOLD signals was affected by respiration. In addition, the FD values
of DM 6 and 7 were higher than those of other DMs, as shown in
Supplementary Figures S3, S4. However, the Bacc in the case of
using all frequencies was higher than that of using 0.01-0.08 Hz, as

Frontiers in Psychiatry

10.3389/fpsyt.2024.1288808

shown in Supplementary Figure S8. Thus, as in previous research
(26), there are more spontaneous fluctuations representing cortical
dynamics than noise associated with respiration, head movement,
and manufacture.
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Introduction: Major depressive disorder (MDD) is a major cause of poor quality of
life and disability and is highly prevalent worldwide. Various pathological
mechanisms are implicated in MDD, including the reward system. The human
brain is equipped with a reward system that is involved in aspects such as
motivation, pleasure, and learning. Several studies including a meta-analysis
have been reported on the reward system network and MDD. However, to our
knowledge, no studies have examined the relationship between the reward
system network of drug-naive, first-episode MDD patients and the detailed
symptoms of MDD or age. The fronto-striato network (FSN) is closely related
to the reward system network. The present study primarily aimed to elucidate
this point.

Methods: A total of 89 drug-naive first-episode MDD patients and 82 healthy
controls (HCs) patients were enrolled in the study. The correlation between the
FSN and age and the interaction between age and illness in the FSN were
investigated in 75 patients in the MDD group and 79 patients in the HC group
with available information on the FSN and age. In addition, the association
between the FSN and the total scores on the 17-item Hamilton Rating Scale
for Depression (HAMD-17) and scores in each symptom item was analyzed in 76
MDD subjects with information on the FSN and HAMD-17. The significance of
each result was evaluated according to a p-value of <0.05.

Results: Age was inversely correlated with the FSN (p=2.14e-11) in the HC group
but not in the MDD group (p=0.79). FSN varied with the presence of MDD and
with age, particularly showing an interaction with MDD and age (p=1.04e-08).
Specifically, age and the presence or absence of MDD each affected FSN, but the
effect of age on FSN changed in the presence of depression. FSN did not
correlate with total HAMD-17 scores or scores in each item.

Discussion: The reward system may be dysfunctional in patients with MDD. In
addition, the effect could be greater in younger patients. Meanwhile, there is no
correlation between the function of the reward system and the severity of MDD
or the severity of each symptom. Thus, the reward system network may be an
important biological marker of MDD, although careful consideration should be
given to age and its association with the severity of the disorder.
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Conclusion: The reward system function is decreased in MDD patients, and this
decrease may be more pronounced in younger patients, although further
research is still needed.

KEYWORDS

major depression, reward system, striatum, prefrontal cortex, first episode

1 Introduction

Major depressive disorder (MDD), which presents with symptoms
including depressed mood, decreased interest in activities, and reduced
experience of pleasure, is a leading cause of reduced quality of life and
disability. According to the World Health Organization, depression
affects more than 300 million people worldwide, accounting for
approximately 4.4% of the population (1). It is multifaceted and
involves a combination of genetic, environmental, and
neurobiological factors. For example, altered neurotransmission and
abnormalities in the hypothalamus—pituitary—adrenal axis related to
chronic stress, inflammation, reduced neural plasticity, and network
dysfunction have been reported (2).

Humans and many other animals have a neural circuit called the
reward system that is activated when a need is satisfied or is expected
to be satisfied and produces a pleasant sensation in the individual.
The reward system is involved in key components of behavior such as
motivation, pleasure, and learning (3). The reward system uses
dopamine as its primary neurotransmitter (4), and it consists of a
network involving the ventral tegmental area of the midbrain, nucleus
accumbens and posterior striatum of the basal ganglia, amygdala, and
cingulate cortex of the limbic system, and frontal association areas
among other areas of the frontal lobe (5, 6). The basal ganglia are
involved in reward responses, behavioral choices, learning, and
memory (7), while the frontal lobes are involved in reward-based
decision-making, cognitive control, and emotion regulation (8).

The pathophysiology of MDD is unlikely to result from a single
brain region or neurotransmitter system, and MDD is now
conceptualized as a multidimensional system-level disorder
affecting discrete but functionally integrated pathways (9). One
important factor of this has been suggested to be a possible
abnormality in the neural circuitry of MDD. Particularly, a link
between MDD and the reward system has been noted. Neuroimaging
studies have pointed to dysfunctions in the prefrontal cortex and
striatum, which regulate the limbic system and brainstem structures
involved in mediating emotional behavior, during the development of
MDD (10). In addition, patients with MDD have reduced strength of

Abbreviations: fMRI, functional magnetic resonance imaging; FSN, fronto-
striato network; HAMD-17, 17-item Hamilton Rating Scale for Depression;
HCs, healthy controls; ICA, Independent Component Analysis; MDD, major

depressive disorder.
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functional connections between the ventral striatum and the ventral
medial prefrontal and anterior cingulate cortices (11), which may be
related to abnormalities in reward processing, motivation, and
anhedonia. There are five cortico-basal ganglia loop circuits,
namely, the motor loop, oculomotor loop, dorsolateral prefrontal
loop, lateral orbitofrontal loop, and anterior cingulate gyrus loop
circuits (12, 13). A recent meta-analysis demonstrated dysfunctions
of reward processing behavior in MDD, demonstrating that
depression was associated with small to moderate reward-
processing impairments and of varying magnitudes across several
reward-processing subdomains (14). This is important because the
cognitive and neural mechanisms underlying reward processing and
its subdomains are relatively well understood (14). Therefore, the
reward system function may be a biological marker for MDD, and
interventions that improve the reward system function may be
effective in treating MDD. Further, the reward system may be a
new therapeutic target. We previously used structural imaging to
investigate the structural covariance network in the brain and
extracted the fronto-striato network (FSN) (15). This network
consists of the striatum and prefrontal cortex and is closely
associated with the reward system (16).

Although an association between MDD and the reward system
based on the fronto-striato-parietal network has been suggested, to
our best knowledge, no study has investigated the effects of first-
onset, drug-naive MDD and age on the fronto-striato-parietal
network. Recent evidence supports that the eftect of age goes
beyond the prefrontal cortex and includes adaptive connectivity
changes in the fronto-striato-parietal network (17). Thus, age may
influence the FSN. Therefore, this study aimed to investigate the
influence of MDD and age on FSN, as well as the association
between FSN and the severity of MDD and each symptom, using
the structural connectivity method in first-episode, medication-
naive MDD patients and healthy subjects.

2 Materials and methods
2.1 Participants
MDD patients were recruited from the university hospital of the

University of Occupational and Environmental Health, Japan.
Consecutive patients presenting at the Occupational and Medical
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University Hospital with a first episode of MDD and no medication use
were recruited. MDD was diagnosed through a fully structured clinical
interview using the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition, Text Revision Research Edition, and the
Structured Clinical Interview for DSM Disorders Non-Patient Version.
The inclusion criterion was never meeting the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, Text Revision criteria for
Axis T disorders during a psychiatrist interview. The exclusion criteria
were as follows (1): mild cognitive impairment as assessed using the
Mini-Mental State Examination (2); Mini-Mental State Examination
scores of <27 (3); history of neurological disease or the presence of Axis
I (e.g., schizophrenia, other affective disorders) or Axis II (e.g.,
personality disorders, mental retardation) psychiatric disorders (4);
comorbid substance use disorders; and (5) unwillingness to provide
informed consent. Depression severity was assessed using the 17-item
Hamilton Rating Scale for Depression (HAMD-17) (18). None of the
MDD patients in the study had a previous episode of mood disorder.
Healthy controls (HCs) were recruited from the neighborhood; the HC
group had never been diagnosed with a mental illness based on the
findings of the SCID.

This study was approved by the Ethical Review Board of our
institution and was conducted in accordance with the principles of
the Declaration of Helsinki. Written informed consent was obtained
from all patients prior to their participation in this study.

2.2 MRI acquisition

Magnetic resonance imaging was performed using a 3T MR system
(Signa EXCITE 3T; GE Healthcare, Waukesha, WI, USA) equipped
with an eight-channel brain phased-array coil. Rather than assessing
functional connectivity at rest, this study utilized a structural covariance
network based on brain structural imaging. The original T1 images
were acquired using three-dimensional (3D) fast-spoiled gradient-
recalled acquisition in a steady state. The acquisition parameters
were set as follows: repetition time, 10 ms; echo time, 4.1 ms;
inversion time, 700 ms; flip angle, 10°% field-of-view, 24 cmj; section
thickness, 1.2 mm; and resolution, 0.9 x 0.9 x 1.2 mm. All images
underwent correction for image distortion due to gradient non-

10.3389/fpsyt.2024.1336370

linearity using the Grad Warp software program (19) and for
intensity inhomogeneity with the “N3” function (20).

2.3 Network extraction

In this study, 3D T1-weighted images were used to analyze the
structural covariance network. we initially employed a data-driven
approach using the network extraction method described in our
previous study. This method leverages Source-based Morphometry
and Independent Component Analysis (ICA) to identify naturally
occurring covariance patterns across brain regions. First, gray matter
segmentation, normalization, and modulation were analyzed using
Statistical Parametric Mapping 12 (Institute of Neurology, London,
UK) software, employing a fully automated method as described by
Ashburner (21, 22). The resulting modulated gray matter images
were smoothed using an 8-mm full-width-at-half-maximum
Gaussian kernel. Subsequently, the GIFT toolbox (https://
icatb.sourceforge.io/groupica.htm) with minimum length was
employed to estimate the independent components from all
modulated gray matter images of HCs and patients with MDD.
ICA was performed using a neural network algorithm (Infomax), and
reliability was ensured by repeating the ICA 20 times using the
ICASSO algorithm (https://research.ics.aalto.fi/ica/icasso/). The
source matrix was used to determine the association between IC
and voxels, whereas the mixing matrix included a loading coefficient
to illustrate the relationship between each subject and each
component. Sixteen networks were extracted based on the required
minimum description length. The source matrix was then converted
back into a 3D image to visualize structural networks, scaled to unit
standard deviations (Z maps), and defined as |Z|>2.5. A
neuroradiologist reached a consensus to delineate the network
representing the FSN (Figure 1). To improve the quality of the
network images, a detailed list of coordinates and regions for each
network was added (Table 1). This clarified the specific brain regions
and their coordinates for each network, including the FSN, and
ensured that the reward network was accurately represented. This
also clarified the distinction between ventral-frontal-striatal and

dorsal-frontal-striatal areas.

FIGURE 1

The structural covariance network of the fronto-striato network with |Z|>2.5. The red/yellow colors correspond to regions in which the voxel

volumes show a positive correlation
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TABLE 1 Structural covariance networks.

Anatomical Volume  Max z-value for left/right
regions (cc) hemisphere

left/right (Talairach coordinates x,

Y. 2)

Transverse 1.0/1.0 11.9 (-42, -30, 13)/5.1 (46, -23, 11)
temporal gyrus
Superior 11.5/6.7 11.5 (-43, -31, 17)/6.5 (53, -10, 3)
temporal gyrus
Insula 3.8/3.6 10.6 (-46, -31, 20)/6.1 (45, -27, 19)
Inferior 4.5/2.6 8.4 (-52, -35, 24)/6.2 (52, -29, 24)
parietal lobule
Postcentral gyrus 1.7/2.6 8.3 (-52, -27, 18)/5.5 (55, -28, 21)
Sub-gyral 1.8/0.6 6.7 (-40, -34, 22)/4.9 (42, -27, 22)
Precentral gyrus 0.8/3.0 4.7 (-46, -13, 8)/4.9 (55, -7, 6)
Middle 2.1/0.4 4.4 (-56, -5, -5)/4.6 (58, -2, -4)
temporal gyrus

2.4 Statistical analysis

Pearson’s correlation coefficient was used to examine the
correlation between the FSN and age in the MDD and HC
groups. In addition, in each group, FSN was used as the
dependent variable and age and sex as independent variables, and
multiple regression analysis was performed to check the p-value,
thereby adjusting for the effect of sex in the two groups. We also
analyzed the interaction of age and disease status in relation to FSN
after adjusting for sex. Spearman’s correlation coefficient was used
to examine the correlation between the FSN and each HAMD-17
item. To eliminate the problem of multiple comparisons, the results
were processed using the Benjamini-Hochberg method. All
statistical analyses were performed using EZR software version
4.0.2 (Developer: Kanda, Y.; Address: Saitama Medical Center,
Jichi Medical University, Saitama, Japan), with p-values less than
0.05 considered statistically significant.

3 Results

A total of 89 patients with drug-naive first-episode MDD and 82
HCs were enrolled. Overall, 75 patients in the MDD group and 79
individuals in the HC group for whom information on age and FSN
was available were included in the analysis of the correlation between
FSN and age and the interaction between age and disease on FSN. To
analyze the association between the FSN and HAMD-17, 76 patients in
the MDD group with information on the FSN and HAMD-17 were
included. The primary background factors are listed in Table 2.

3.1 Effects of depression and age on FSN

Figure 2 shows the results of the correlation analysis between
age and FSN in the HC and MDD groups. Age was significantly
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TABLE 2 Background characteristics of patients with MDD and

healthy controls.

MDD

patients (n=89)

Healthy
controls (n=82)

p Value

Age (years) 54.78 + 16.23 (n=86) 35.40 + 12.05 (n=82) <0.01*
Males/females =~ 39/47 56/26 0.03*
FSN -0.24 £ 0.93 (n=77) 0.23 + 1.02 (n=79) 0.03*
Total 21.71 + 7.32 (n=83) -

HAMD-17

score

(0-52)

*Statistically significant (p<0.05).
MDD, major depressive disorder; FSN, fronto-striato network; HAMD-17, 17-item Hamilton
Rating Scale for Depression.

correlated with FSN in the HC group but not in the MDD group.
Age had a significant effect on FSN in the HC group even after
adjustment for sex, while age had no significant effect on FSN in the
MDD group even after such adjustment (Table 3). The effects of age
and the presence of disease on FSN are shown in Table 4. There was
a significant interaction between age and presence of disease.

3.2 Correlation of FSN with total HAMD-17
score and each HAMD-17 item score

There was no correlation between FSN and the total HAMD-17
scores or each item score (Table 5).

4 Discussion

This study compared the relationship of FSN with age between
healthy subjects and patients with depression and analyzed the
effects of the presence of MDD, age, and their interactions on FSN.
The results showed an inverse relationship between FSN and age in
HCs, whereas this relationship did not exist in patients with MDD.
Furthermore, the FSN was significantly affected by both the
presence of disease and age, indicating a significant interaction
between the two.

The inverse relationship between FSN and age in HCs suggests
that the function of this network diminishes with age. A previous
study, in which network extraction was performed by functional
magnetic resonance imaging (fMRI), also found a negative
association between age and brain network connectivity,
including the default mode network that contains the superior
and middle frontal gyri, posterior cingulate, middle temporal gyrus,
and superior parietal region (23). Meanwhile, the FSN is involved in
reward processing, motivation, and decision-making in patients
with MDD. However, this inverse correlation was not found in
patients with MDD in the current study. This indicates that the
younger the patient with MDD, the lower the FSN function and the
lower the age-related correlation. Considering the inverse
correlation found in HCs, these results suggest that in MDD, the
FSN function is lower in younger patients and this phenomenon is
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FIGURE 2

10.3389/fpsyt.2024.1336370

Age

2+

Correlation between FSN and age. (A) There is an inverse correlation between FSN and age (correlation coefficient=0.666, p<0.01) in the HC group.
(B) There is no inverse correlation between FSN and age (p=0.79) in the MDD group (bottom row). FSN, fronto-striato network; HC, healthy

controls; MDD, major depressive disorders.

no longer present as aging progresses. This indicates that MDD has
a neurobiological basis and that abnormalities in the FSN, which are
assumed to be related to the reward system, contribute to depressive
symptoms. Further, FSN dysfunction may be a biological marker for
the diagnosis for MDD. A large amount of evidence indicates a link
between MDD and the reward system. Blood flow differences have
been observed in regions associated with the dopaminergic system
(24), and the levels of homovanillic acid, a dopamine metabolite, are
decreased in the cerebrospinal fluid and transvenous plasma of
patients with MDD (25, 26). The noted changes in central
dopaminergic function in MDD provide indirect evidence of
dysfunction of the reward system in MDD.

fMRI studies have demonstrated that dopaminergic neurons
project from the ventral tegmental area of the midbrain to several
brain regions, including the nucleus accumbens (25, 26). One fMRI
study showed that MDD patients on long-term medication have
reduced responses to reward learning signals, particularly in the
ventral striatum and anterior cingulate gyrus (27). Functional
neuroimaging studies of patients with MDD have shown that
ventral striatal regions, such as the nucleus accumbens, are less
active, and orbitofrontal cortex activity is elevated during reward
tasks (28). The reward system is a network of multiple regions, and
reports indicate that all regions comprising the reward system are
altered in patients with MDD, providing indirect evidence for
reward system dysfunction in MDD. The reward system is
considered a network in the brain, and some studies have
indicated to a link between MDD and the reward system
network. A resting-state fMRI study focused on the nucleus
accumbens-based reward system circuitry in patients with MDD
confirmed the important role of reduced functional coupling in the
reward network in the neuropathology of MDD (29). Our report
focused on how age affected the association between MDD and the
reward network, and the findings may help in further
understanding the relationship between MDD and reward system
dysfunction. The interaction between age and the presence of
disease shown in this study indicated that MDD may have a
specific effect on age-dependent changes in the FSN. This
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underscores the importance of considering age in the treatment
and management of MDD and suggests the possible need for an
individualized approach for patients with depression in different
age groups.

The current study also found that the FSN was not correlated
with the total HAMD-17 score or each item score in MDD patients.
The ability to predict when and where rewards will occur plays an
important role in human positive behavior. Neuroimaging studies
suggest that the amygdala, orbitofrontal cortex, and ventral striatum
are involved in reward prediction (30, 31). To select a different
behavior from multiple behavioral options, the predicted rewards
associated with each behavior must be compared and evaluated, and
the behavior with the highest reward among the predicted rewards
must be selected. Involvement of the orbitofrontal cortex has also
been suggested for this selection (7). Given the involvement of the
reward system in motivating behavioral choices, it appears that
dysfunction of the reward system may make it difficult for subjects
to motivate their behavior. In addition, the ventral tegmental area of
the midbrain projects dopamine neurons to the striatum and
prefrontal cortex, as well as to the amygdala and hippocampus,
which are involved in emotion (32). From this perspective, FSN
may be associated with depressive mood, a core symptom of
depression. Loss of pleasure is a major symptom of MDD (33).
However, a recent systematic review of fMRI-based studies indicates
that impairment of the reward system, as indicated by
hypoactivation of the striatum and blunted frontal lobe
sensitivity, is associated with impaired reward processing in MDD
(34). This suggests that impairment of the reward system is
associated with depressive mood and loss of pleasure, which are
core symptoms of depression.

However, the present study found no correlation between FSN
and total HAMD-17 scores or individual item scores in MDD
patients. MDD is a highly heterogeneous syndrome based on a
complex pathology with a wide variety of phenotypes. Particularly,
although the FSN plays an important role in the pathophysiology
and symptoms of depression, it may also work in complex
associations (or collaborations) with other neural networks to
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TABLE 3 Effect of age and sex on FSN.

Estimate Standard error t Value
Age 0.002283 0.006306 -0.342 0.733
Sex -0.157289 0.211776 -0.743 0.460

Estimate standard error t value
Age -0.56556 0.007161 -7.898 1.73e-11%
Sex -0.186593 0.184593 -1.011 ‘ 0.315 ‘

*Statistically significant (p<0.05).
MDD, major depressive disorder; FSN, fronto-striato network; HAMD-17, 17-item Hamilton
Rating Scale for Depression.

create various phenotypes of depression. Our previous study found
no significant differences in the salience, medial temporal lobe,
default mode, medial temporal lobe, default mode, and central
executive network between the MDD and HC groups (15). This
could be one of the reasons for the lack of association with the total
HAMD-17 score and each item score in the current study. The
present results may reflect that the pathophysiology of depression is
due to dysfunction of multiple brain networks and not only of the
FSN (35). The association of brain structure and function with
complex behaviors should be investigated in large-scale studies to
ensure reliability (36). Considering the previous studies on the
association between reward system network impairment and
depressive symptoms, it is possible that the current study did not
have an adequate sample size, which may have affected the results.

4.1 Limitations

This study had several limitations. As this was a cross-sectional
study that enrolled a small number of patients, the temporal
relationship between depressive symptoms and the frontal-basal
ganglia network remains unknown. Some of the MDD subjects in
this study received psychotherapeutic treatments such as cognitive-
behavioral therapy and dynamic psychotherapy, and these
treatments may have influenced the results. Considering that the
relationship between brain structure and function and complex

TABLE 4 Effects of age, sex, and presence of depression on FSN.

Estimate Standard p
error Value
Age -0.056486 0.007722 -7.315 1.47e-11%
Depression -2.608625 0.436544 -5.976 1.62e-08*
Sex -0.171657 0.139890 1227 0.222
Age: 0.058825 0.009700 6.064 1.04e-08*
Depression

*Statistically significant (p<0.01).
MDD, major depressive disorder; FSN, fronto-striato network.

Frontiers in Psychiatry

10.3389/fpsyt.2024.1336370

TABLE 5 Correlation between FSN and HAMD-17 total score/each item.

Correlation

coefficient
Total -0.00545 0.962
Depressed mood -0.261 0.0226
Feelings of guilt -0.0902 0.438
Suicide -0.191 0.0981
Insomnia - early 0.115 0.322
Insomnia - middle 0.196 0.0892
Insomnia - late 0.11 0.345
Work and activities -0.28 0.0144
Retardation - psychomotor
Agitation 0.0847 0.467
Anxiety - psychological -0.117 0.314
Anxiety - somatic 0.0317 0.786
Somatic symptoms GI -0.173 0.135
Somatic symptoms - General 0.146 0.208
Sexual dysfunction - 0.115 0.323
menstrual disturbance
Hypochondria 0.33 0.00364
Weight loss by history 0.00895 0.939
Insight 0.184 0.111

p-Value adjusted by Bonferroni method=0.00278.
HAMD-17, 17-item Hamilton Rating Scale for Depression.

behavior should be investigated using large-scale studies to ensure
reliability (36), the sample size was not sufficient in the current
study. In addition, the FNS was determined through subjective
visual assessment in the study subjects in whom the brain volumes
were highly interlinked. Although the FSN is classified into five loop
circuits (12, 13), it is unclear which circuit the present network falls
into. Although the results indicated a significant difference in age
between the HC and MDD groups, the analysis of the correlation
between FSN and age in each group did not consider the imbalance
in age between the two groups. This may have affected the
conclusions. The current study did not obtain information on the
duration of MDD symptoms. Although the disease duration would
not be long because the patients only had their first episode and
were untreated, the duration may still have influenced the results. In
addition, although the frontal-basal ganglia network includes the
nucleus accumbens and the prefrontal cortex, which are parts of the
reward system, it may also include other areas that are not related to
the reward system. Therefore, the representativeness of the frontal
lobe-basal ganglia network as an evaluative value of the reward
system has not been fully elucidated. In addition, the correlations
were weak, and the present study intended to demonstrate
correlations, not causality. Further studies are required to
ascertain whether these correlations are clinically meaningful or
therapeutically useful.
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4.2 Conclusion

The function of the reward system is decreased in patients with
MDD, and the extent of this decrease may be more pronounced in
younger patients. Meanwhile, the overall severity of MDD and each
severity are not related to the decline in reward system function.
However, age may need to be taken into consideration. In addition,
the usefulness of using the severity of the disease may need to be
carefully judged. Further studies are needed to validate these findings.
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Weakened effective connectivity
between salience network

and default mode network
during resting state in
adolescent depression

David Willinger**, Isabelle Haberling®, Iva Ilioska®,
Gregor Berger?', Susanne Walitza? and Silvia Brem™**

‘Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry
Zurich, University of Zurich, Zurich, Switzerland, ?Neuroscience Center Zurich, University of Zurich
and ETH Zurich, Zurich, Switzerland, *Department of Psychology and Psychodynamics, Karl
Landsteiner University of Health Sciences, Krems an der Donau, Austria, “Department of Cognitive
Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical
Centre, Nijmegen, Netherlands

Adolescent major depressive disorder (MDD) is associated with altered resting-
state connectivity between the default mode network (DMN) and the salience
network (SN), which are involved in self-referential processing and detecting and
filtering salient stimuli, respectively. Using spectral dynamical causal modelling,
we investigated the effective connectivity and input sensitivity between key
nodes of these networks in 30 adolescents with MDD and 32 healthy controls
while undergoing resting-state fMRI. We found that the DMN received weaker
inhibition from the SN and that the medial prefrontal cortex and the anterior
cingulate cortex showed reduced self-inhibition in MDD, making them more
prone to external influences. Moreover, we found that selective serotonin
reuptake inhibitor (SSRI) intake was associated with decreased and increased
self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest
that adolescent MDD is characterized by a hierarchical imbalance between the
DMN and the SN, which could affect the integration of emotional and self-related
information. We propose that SSRIs may help restore network function by
modulating excitatory/inhibitory balance in the DMN and the SN. Our study
highlights the potential of prefrontal-amygdala interactions as a biomarker and a
therapeutic target for adolescent depression.
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1 Introduction

Major depressive disorder (MDD) is a common and debilitating
condition with onset peaking in adolescence (1) which is estimated
to have a lifetime prevalence of approximately 11% (2). Adolescent
MDD exerts detrimental effects on physical and mental health,
impairing academic, occupational, and social functioning.
Additionally, it elevates the risk of recurrent MDD episodes in
adulthood, co-occurring psychiatric and medical conditions, such
as anxiety disorders, and suicide, the second leading cause of
mortality in individuals aged 15 to 19 years (3, 4). The underlying
neurobiological factors of the emergence and early trajectory of
MDD in adolescence remain poorly understood, despite the known
adverse consequences of this disorder.

Previous studies have reported several changes of large-scale
functional brain networks in adult and adolescent depression.
Large-scale networks are defined as a distributed set of brain
regions that show a temporal correlation during a task or
spontaneous thought (i.e., rest (5)). They are thought to support
embedding predictions and prediction errors which dynamically
adjust the brain’s internal generative models based on sensory
inputs and prior expectations (6, 7). These models have a
hierarchical structure, meaning that higher-level processing
regions generate predictions that are sent to lower-level regions,
where they are compared with the incoming sensory data. The
prediction error - the mismatch between predictions and data - is
propagated back to the higher-level regions to update the models
(7). During rest, it has been proposed that the dynamic fluctuations
quantified as connectivity in large-scale networks represent an
optimization of generative models for future interactions (8).

Multiple studies found that connectivity of the default mode
network (DMN) is affected in MDD. Core nodes of the DMN, the
medial prefrontal cortex (MPFC) and posterior cingulate cortex
(PCC) have shown alterations in children and adults with or at risk
for MDD (9-14). A recent longitudinal study linked altered
developmental trajectory of DMN connectivity to depressive
symptoms in youth (15), indicating that clinically relevant
alterations manifest relatively early in brain development. In
addition, there is compelling evidence that core nodes of the
affective network (the amygdala) and the ventral attention
network [dorsal anterior cingulate cortex, ACC (16)] - together
forming the salience network [SN (17)] - show aberrant
connectivity in adolescent (11, 18-22) and adult MDD (13, 14).

These alterations in large-scale networks are intriguingly
aligned with the concepts of predictive processing and their
potential role in the aetiology of depressive symptoms. It has
been assumed that those network changes represent the neural
manifestation of the predictive biases and altered perception
characteristic of depression, further connecting the theoretical
framework with the observed neurobiology (23, 24). As
individuals with MDD tend to anticipate negative events more
frequently than positive ones, the connectivity changes of core
nodes of the DMN become crucial. The DMN’s involvement in self-
referential processing and its role in maintaining the most abstract
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predictions of the internal models could contribute to the formation
of these biased predictions (24-26). The SN’s role in regulating
attention (27) and encoding the relevance of both external and
internal stimuli could in turn influence the selection of which
sensory prediction errors to attend to by modulating the gain on
prediction error signals orginating from the sensory periphery (28).
Additionally, aberrant connectivity within core nodes of the SN
might amplify the attentional focus on (negative) prediction errors.
This could lead to a vicious cycle where heightened sensitivity to
negative information reinforces maladaptive perception.

Furthermore, the intricate interactions between these large-
scale networks, as proposed by the triple-network model (29),
might be pivotal in understanding the emergence and persistence
of depressive symptomatology. Altered connectivity between these
networks, not only underlie maladaptive self-referential processing
and emotional regulation but also hinder the brain’s ability to
effectively update its internal model and adapt to external cues. This
insensitivity to external cues, driven by skewed predictions and
impaired network communication, likely contributes to the
cognitive and emotional symptoms commonly observed in
depression (24, 30). More specifically, altered amygdala function
has been suggested to contribute to maladaptive weighting of
relevance (i.e., loss of precision or heightened uncertainty about
relevance) of incoming bottom-up signals in depression (19, 24, 28,
31). The resulting imprecision of bottom-up signals may entail
failure of updating the internal model and their dismissal which
may underlie symptoms such as rumination (24). In light of this,
there is evidence of reduced connectivity between the amygdala and
other SN regions in adolescent depression (32) which could indicate
impaired detection and integration of relevant sensory signals that
challenge the models’ prediction. Altered connectivity between
DMN and SN (e.g., the dorsal ACC, 16) could in turn be
interpreted as altered precision over the predictions of the
internal model, contributing to a “locked-in state” of negative
thoughts (28). Altogether, current evidence suggests that the
interactions between intrinsic brain networks, the DMN and the
SN, might be closely linked to depression and contribute to the
cardinal symptoms of rumination and negative mood.

The goal of the current study was to examine the functional
integration of DMN and SN in adolescent depression. We used
spectral dynamic causal modelling (spDCM; (33)) in the Parametric
Empirical Bayes (PEB) framework to study the effective
connectivity of the DMN and the important nodes of the SN
during rest using multi-echo fMRI. Spectral DCM allows to
model the directed relationships between brain networks and
determines regions that are driving activity in other regions and
their respective input sensitivity or excitatory-inhibitory balance
(i.e., interregional self-inhibition or synaptic gain). In the predictive
coding framework the excitatory-inhibitory balance reflects the
precision of prediction errors encoded in the excitability of
superficial pyramidal cells that is affected by both classical
neuromodulators and inhibitory interneurons - lending the self-
inhibition parameter to a straight-forward interpretation in terms
of efficiency of information processing and network synchrony (i.e.,
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a higher the self-inhibition reduces the influence of other
regions) (34).

We investigated connectivity between the MPFC and PCC
comprising the principal nodes of the DMN, and the dorsal ACC
and bilateral amygdalae as part of the SN. The primary hypothesis of
our study was that the effective resting-state connectivity between the
amygdalae and the default mode network is altered in adolescents
with MDD (14, 19). In addition, we hypothesised that the amygdalae
show hypoconnectivity within the SN (32). Finally, we expected a
decrease in the self-inhibition parameters of the spDCM, which
regulate the excitatory-inhibitory balance of the regions. Such a
decrease would lead to more excitability within the DMN regions,
indicating aberrant encoding of precision (24, 33, 35).

TABLE 1 Clinical and demographic characteristics of study participants.

10.3389/fpsyt.2024.1386984

2 Materials and methods

2.1 Participants

Thirty MDD patients and 32 healthy individuals matched for
age, 1Q, sex, and handedness participated in this study (Table 1).
To assess the participants, a semistructured clinical interview
was administered using either the Schedule for Affective Disorders
and Schizophrenia for School-Age Children-Present and Lifetime
Version (Kiddie-SADS, 36) or the Mini-International
Neuropsychiatric Interview for Children and Adolescents (MINI-
KID, 37). Criteria for the diagnosis of MDD in accordance with both
the International Classification of Diseases (ICD-10) and the

Controls MDD Test statistic p value?
Age (years), range (min-max) 16.2 (1.9), 16.1 (1.4), U=553.5 425
11.2-18.8 12.8-18.7
Sex (males), No. (%) 10 (30%) 10 (33%) $2(1)=0.07 796
Handedness (right), No. (%) 32 (97%) 28 (93%) X2(1)=0.46 .500
In-scanner movement (FD, mm) 0.16 (0.06) 0.17 (0.06) t(61)=0.69 0.492
CD-RISC 72.9 (10.1) 38.6 (15.6) t(58)=10.16 <.001
CDI 8.4 (6.6) 29.6 (9.3) U=38.0 <.001
Anhedonia 2.3 (2.2) 10.5 (2.8) U=135 <.001
Negative mood 2.2 (2.0) 6.4 (2.4) U=88.0 <.001
Negative self-esteem 1.0 (1.2) 5.0 (1.7) U=42.0 <.001
Ineftectiveness 1.2 (1.2) 5.0 (1.9) U=54.5 <.001
Interpersonal problems 1.1 (1.2) 3.7 (1.5) U=74.5 <.001
Stomach 0.6 (0.6) 1.1 (0.8) U=301.5 018
RIAS IQ 104.5 (6.9) 108.0 (8.7) t(60)=-1.75 .079
PSS 22.4 (6.6) 28.8 (7.7) t(57)=-3.44 .001
SDQ 8.8 (5.3) 16.3 (5.6) t(56)=-5.26 <001
WISC-IV Digitspan (forward) 8.9 (2.1) 8.8 (2.0) 1(60)=0.32 747
WISC-IV Digitspan (backward) 8.6 (1.6) 9.4 (2.0) t(60)=-1.70 .094
WISC-IV Mosaic 57.0 (5.7) 59.0 (6.2) t(56)=-1.27 .208
Current Medication, No. (%)
No medication NA 10 (33%) NA NA
SSRI NA 18 (60%) NA NA
Dual-action antidepressantb NA 2 (7%) NA NA
NERI NA 2 (7%) NA NA
Antipsychotic® NA 2 (7%) NA NA
Methylphenidate NA 2 (7%) NA NA

Data are presented as mean (SD) if not indicated otherwise.

CD-RISC, Connor-Davidson Resilience Scale; CDI, Children Depression Inventory; FD, framewise displacement; RIAS, Reynolds Intellectual Assessment Scales; PSS, Perceived Stress Scale;
SDQ-K, Strength and Difficulty Questionnaire for Children; WISC, Wechsler Intelligence Scale for Children.

“Uncorrected p values for between-group comparisons; significance threshold p<.05.
PSerotonin-noradrenalin reuptake inhibitor.
“Used for behavioral control.
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Diagnostic and Statistical Manual of Mental Disorders (DSM-5) were
met by all patients, as determined by the Kiddie-SADS or MINI-KID,
respectively. Inclusion criteria for study participation encompassed
individuals within the age range of 8 to 18 years. Exclusion criteria
encompassed any contraindication for magnetic resonance imaging
(MRI) and, for the control group, the absence of any prevailing
psychiatric axis-1 diagnosis. All participants gave their written
informed consent and were financially reimbursed at the end of the
study. Patients received psychotherapy as needed during the study.
This study was approved by the ethics committee of the Canton of
Zurich and was conducted in accordance with the Declaration
of Helsinki.

2.2 Imaging and preprocessing

Image data acquisition was conducted on an Achieva 3T scanner
(Philips Medical Systems, Best, the Netherlands) using a 32-channel
head coil array. We acquired a T1-weighted structural scan of each
subject [MP-RAGE, aligned at AC-PC, flip angle = 9°, voxel size = 1.05
x 1.05 x 1.2mm>, field of view = 270 x 253mm?, 170 sagittal slices].
Subsequently, T2*-weighted images were acquired using a multi-echo
multi-slice echo-planar images sequence [200 volumes per session,
TR = 2300ms, TE = 13,31,49ms, 33 slices, voxel size = 3.75 x 3.75 x
3.79mm°, matrix size = 64 x 64px, flip angle = 80°, gap = 0.39mm,
SENSE-factor = 2, MB-factor = 2] during a ~6 minute resting state with
eyes open. During preprocessing, the volumes corresponding to the
three echoes were separately despiked (spmup_despike.m, https://
github.com/CPernet/spmup/wiki/spmup_despike.m) and slice-time
corrected using SPM12. The motion parameters were calculated
from the first echo and applied to the remaining echoes using
mcFLIRT from the FSL toolbox (38). TEDANA, that is part of the
Multi Echo Independent Component Analysis (MEICA) package
[https://afni.nimh.nih.gov/pub/dist/src/pkundu/meica.py (39)], was
used to perform state-of-the-art TE-dependent ICA-based denoising
and T2* weighted averaging of optimally combined echoes and fully
leverage all available data — particularly in ventral regions (40). The
denoised images were coregistered to the structural scan and
normalized to the Montreal Neurological Institute (MNI)-152
template space using the deformation fields derived from
segmentation. Finally, we applied spatial smoothing using a
6mm full-width-half-maximum kernel to the functional
images. Subsequently, a general linear model was created
including the motion parameters and discrete cosine transform for
band-pass-filtering (frequency range 0.08-0.01 Hz). An inspection of
the mean framewise displacement (FD; 41) in patients and controls
showed no evidence of differences in head motion between groups, ¢
(60)=0.003, p = .99, no individual subject showed a mean FD in excess
of 0.27mm.

2.3 Timeseries extraction and
statistical analysis

The coordinates for extraction of regional signals for the
spDCM analysis were based on the literature (42, 43). We created
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spherical search volumes (r=8mm) for the network nodes of the
MPEC (x=-1, y=54, z=27mm MNI) and the PCC (x=0, y=-52,
z=7mm MNI), the dorsal ACC (x=0, y=21, z=36mm MNI), and the
bilateral amygdalae (AMY; x= * 19, y=-2, z=-2lmm MNI). We
centered the spherical ROI around each participant’s maximum
within the search volume and extracted the first eigenvariate of the
time course of active voxels (p <.05, uncorrected). Realignment
parameters obtained during preprocessing were partialed out.

We applied spectral dynamic causal modelling (spDCM) to
estimate intrinsic effective connectivity from resting state fMRI data
(44). SpDCM is a method that models the cross-spectra of the blood
oxygenation level dependency (BOLD) signals, which are a more
comprehensive measure of connectivity than the conventional zero-
lag correlation. SpDCM allows us to determine the directed
connectivity strengths between brain regions that drive their
activity, as well as their input sensitivity or synaptic gain, which
corresponds to the excitatory/inhibitory balance of each region.

We set up a fully connected model on all interregional
connections. The analysis was conducted within the PEB
framework where the full DCM model was estimated in an
empirical Bayesian inversion scheme for each participant (45).
Group effects on the DCM parameters (i.e., connectivity
strengths) were analysed with a second-level PEB model to find
group differences between patients and controls within the specified
brain network. We used a Bayesian model reduction procedure to
discard the model parameters not contributing to the model
evidence in a greedy-search. This procedure stops when it
removes a connection that decreases the model evidence. We
analyzed the average intrinsic connectivity with group as
predictor and sex, age, and handedness as covariates. To
investigate potential effects of selective serotonine reuptake
inhibitor (SSRI) intake in the eighteen patients on SSRIs, we
added an additional regressor for SSRI intake to the PEB model.
One patient was excluded from this analysis due to not disclosing
their medication status. Group-level parameters were determined
by averaging the best 256 nested models, weighted by their posterior
probability. Parameters were considered significant when exceeding
a 95% posterior probability of being present, based on the model
evidence. As a last step, to validate our results, we used leave-one-
out cross-validation (LOOCV; spm_dcm_loo.m) and assessed the
predictive validity of the individual parameters of the connectivity
model. To this end, we used the list of class probabilities for each
subject and used it to retrieve the Receiver Operating Characteristic
(ROC) curve and the Area Under the Curve (AUC) - the
probability of a correct classification — with 95% confidence
bounds across the cross-validation runs.

3 Results

3.1 Demographics and clinical symptoms
Patients and controls did not differ significantly in age, sex, IQ,

handedness, or in-scanner movement (p >.05). They differed in

clinical symptom scales: patients scored significantly higher on the
Child Depression Inventory (p <.001), Connor-Davidson Resilience
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Scale (p <.001), Perceived Stress Scale (p = .001) and the Strength
and Difficulty Questionnaire (p <.001). In-scanner movement
during the scan measured as framewise displacement did not
differ between the groups (p = 0.492). Sample characteristics and
test results are summarized in Table 1.

3.2 Spectral DCM model structure
across groups

The overall model structure across groups revealed by spDCM was
primarily characterized by the directed negative coupling between SN

10.3389/fpsyt.2024.1386984

and DMN (Table 2, Figure 1A). In particular, we found significant
connectivity from the IAMY and PCC (expected value = —0.314 Hz,
PP = 1.00) and MPFC (expected value = —0.234 Hz, PP = 1.00) and
from rAMY to PCC (expected value = —0.425 Hz, PP = 1.00) and
MPEFC (expected value = —0.234 Hz, PP = 1.00). A unidirectional
inhibitory connection from the ACC to the PCC portion of the DMN
was also significant across both groups (expected value = —0.222 Hz,
PP = 1.00). Connectivity within SN was characterized by functional
coupling from the IAMY to rAMY (expected value = 0.234 Hz, PP =
1.00) and from the rAMY to the ACC (expected value = —0.149 Hz,
PP =1.00). Other connections were pruned from the model as they did
not contribute significantly to the model evidence (Table 2, Figure 1A).

TABLE 2 Connectivity strength (posterior probability) during resting state obtained by Bayesian model averaging of PEB model parameters.

Connection type Common MDD SSRI Sex Age Handed.
Endogenous parameters

PCC—IAMY - - - - - -
PCC—rAMY - - - - - -
PCC—MPEC - - - - - -
PCC—ACC - - - - - -
MPFC—PCC - - - -0.080 0.058 (1) -
MPFC—ACC - - - - - -
MPEC—IAMY - - - - - -
MPEC—rAMY - - - - - -
ACC—PCC -0.222 (1) - - - - 0.198 (1)
ACC—MPFC - - - - - -
ACC—IAMY - - - - - -
ACC—TAMY - - - - - -
IAMY—PCC -0.314 (1) 0.111 (1) - -0.09 - -
IAMY—MPEC -0.229 (1) 0.098 (1) - - -0.061 -
IAMY—ACC - - - - - -
IAMY—rAMY 0.234 (1) - - - - -
rAMY—PCC -0.425 (1) 0.167 (1) - - - -
rAMY—MPEC -0.234 (1) 0.094 (1) - - - -
rAMY—ACC -0.149 (1) - - - -0.062 (1) -
rAMY—IAMY - - - - - _
Self-inhibition parameters

IAMY—IAMY 0.603 (1) - - - - -
rAMY—rAMY 0.760 (1) - - - 0.047 (1) -
ACC—ACC 0.134 (1) 0217 (1) -0.175 (1) - - -
MPEC—MPEC 0.331 (1) -0.119 (1) 0.128 (1) 0.107 - -
PCC—PCC -0.280 (1) - 0.166 (1) - - -

Between-region connections are in units of Hz. Self-inhibition parameters, where the source and target are the same, are the log of scaling parameters that multiply up or down the default value
~0.5Hz. Posterior probabilities are given in the brackets. n = 61. IAMY, left amygdala; rAMY, right amygdala; ACC, anterior cingulate cortex; MPFC, medial prefrontal cortex; PCC, posterior

cingulate cortex.

« »

-” means “Pruned from the full model”.
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FIGURE 1

Spectral DCM analysis during resting state. (A) The common effect reflects the average connectivity and model structure across all participants.

(B) Connectivity differences between controls and patients were found between amygdala and the core nodes of the DMN, as well as the self-
inhibition parameters of MPFC and ACC. The latter regions were disinhibited (i.e. more sensitive to input) compared to healthy controls. (C) Patients
taking SSRI showed decreased self-inhibition in the ACC and increased self-inhibition in the MPFC and PCC compared to patients not taking SSRIs.
Detailled results are reported in Table 2. ACC, anterior cingulate cortex; DMN, default mode network; HC, healthy controls; IAMY, left amygdala;
MDD, major depressive disorder; MPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; Pp, posterior probability; SSRI, selective serotonin

reuptake inhibitor; rAMY, right amygdala; SN, salience network

3.3 Aberrant connectivity from amygdala
to default mode network in depression

We found evidence that connectivity in patients is significantly
altered compared to healthy controls. Most prominently, the
connections between bilateral amygdalae and both nodes of the
DMN were affected (Figure 1B). Participants with MDD exhibited
weaker inhibitory (more positive) connectivity between IAMY and
DMN (MPEC: expected value of group difference = 0.098 Hz,
posterior probability, PP = 1.00; PCC: expected value of group
difference = 0.111 Hz, PP = 1.00), and rAMY and DMN (MPFC:
expected value of group difference = 0.094 Hz, PP = 1.00, PCC:
expected value of group difference = 0.167 Hz, PP = 1.00).
Furthermore, the self-inhibition of both MPFC (expected value of
group difference = -0.119, PP = 1.00) and ACC (expected value of
group difference = -0.217, PP = 1.00) was decreased in patients. A
LOOCV within the PEB framework showed that patients were
identified significantly better than random classification [area under
the curve, AUC = 0.76, 95% CI (0.62 0.86), Figure 2]. When
performing an LOOCYV for the individual parameters, the ACC
self-connection [AUC = 0.73, 95% CI (0.59 0.84)] was a significant
predictor for diagnostic status.

3.4 Connectivity for selective serotonin
reuptake inhibitors

An exploratory analysis of effects of SSRI intake revealed that
the self-inhibition of both nodes of the DMN increased (MPFC:
expected value of difference = 0.128 Hz, PP = 1.00; PCC: expected
value of difference = 0.166 Hz, PP = 1.00) whereas self-inhibition of
the ACC in the SN decreased (expected value of difference = -0.175
Hz, PP = 1.00, Figure 1C). The lower this parameter, the more
readily the region is excited by the network inputs, i.e., patients
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receiving SSRIs during the study had increased input sensitivity in
the ACC but decreased sensitivity in the DMN.

4 Discussion

The aim of this study was to compare brain connectivity of
adolescents with MDD and matched healthy controls using spDCM
during resting state. In our study cohort comprising 30 MDD
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FIGURE 2

Predicting the diagnostic status using the spDCM connectivity
parameters. The receiver operating characteristic (ROC) curve
depicted here represents the outcome of a leave-one-out cross-
validation procedure applied to the DCM analysis. The curve
illustrates the trade-off between sensitivity and specificity for the
predictive model across different thresholds. The area under the
curve (AUC) serves as a statistical measure of the model’s ability to
correctly classify a new participant as having MDD or not. An AUC of
1 indicates perfect predictive accuracy, whereas an AUC of 0.5
suggests no discriminative power, equivalent to random chance.
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patients, we conducted our analysis with a subset of 29 participants
(excluding one patient), along with 32 healthy controls, as we
examined the resting-state effective connectivity between principal
nodes of the DMN and SN. Consistent with the growing literature
that MDD is associated with a dysfunction of interactions of large-
scale networks (46), our results indicate that altered effective
connectivity within and between DMN and SN is a core feature
of adolescent MDD. A leave-one-out cross-validation analysis
showed that the effect size of DMN-SN interactions is sufficiently
large to provide higher than chance prediction of diagnostic status
in patients and healthy controls.

Corroborating our first hypothesis, we found that patients
showed consistent weaker inhibition between the SN - particularly
bilateral amygdalae — and the two principal nodes of the DMN
(MPEC, PCC). This finding is in agreement with previous studies that
report increased connectivity between the SN and the DMN in adult
(9-14) and adolescent MDD patients (11, 18-22). Dysregulation of
the affective brain during rest (i.e., weaker inhibitory bottom-up
connectivity from SN to DMN) has been suggested to lead to
excessive “emotional coloring” of thoughts and to symptoms such
as rumination, negative affect, and an excessive self-focus (19). This is
in line with the idea that altered large-scale network connectivity
between the DMN and the SN is associated with maladaptive self-
referential processing and emotional regulation in the triple-network
model (29). Moreover, it has been suggested that depression is
associated with differential integration of salience or precision
signals (i.e., attentional control in the terms of predictive brain) in
the brain (14). In particular, the amygdala is thought to carry
information related to uncertainty about the predicted sensory
input to the cortex (28, 31, 47, 48). In accordance with predicitive
processing theory, these results could therefore indicate that
amygdala-DMN dysregulation reflect a failure to estimate the
precision for incoming sensory data for allostatic regulation and
thereby sustaining depressive symptoms (24). Although research is
only beginning to unveil the underlying neurobiological mechanisms
of predictive processing, our findings suggest that changes in
amygdala-DMN connectivity play a pivotal role in adolescent
depression in accordance with earlier work (11, 18, 19).

Second, our results show that patients had a weaker self-
inhibition of the ACC. Reduced self-inhibition might be
interpreted as loss of precision. The self-inhibition parameter
indicates how strongly a region inhibits its own activity when it
receives inputs from other regions. In conjunction with the overall
inhibitory connection from the rAMY to the ACC, this is consistent
with a previous functional connectivity study conducted by
Pannekoek et al. (21), who reported increased negative
connectivity between the rAMY and ACC. The ACC plays a
pivotal role in visceromotor control, serving as a hub that can
initiate appropriate actions when the brain detects sensory
prediction errors arising from either external stimuli or the
internal milieu (28). In this context, the stronger inhibition
observed from the amygdala to the ACC in patients might be
linked to altered processing dynamics of behavioral control.
Specifically, a heightened inhibition could impede the ACC’s
capacity to effectively detect and respond to prediction errors,
which are crucial for guiding adaptive behavioral adjustments.
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Besides the ACC, the MPFC also showed an increase in
excitability in patients, exacerbating aberrant bottom-up
influences from the amygdalae on its function.

The predictive coding theory posits that the excitatory-
inhibitory balance primarily moderated by neuromodulatory
systems and GABAergic interneurons governs the the precision of
prediction errors in the superficial pyramidal neurons within a
hierarchical cortical network (6, 24). Prediction errors are signals
that measure the mismatch between priors on upper levels and
sensed information on lower levels, which are thought to be crucial
for learning and updating internal models of the environment. By
modulating the gain or excitability of superficial pyramidal cells
within a region, self-connections modulate the precision of the
prediction error. A loss of synaptic gain control in a given area
could reduce the precision of information encoded within a region,
and diminish its influence over lower level areas. In our model, this
would correspond to a loss of influence (i.e., precision) of the more
abstract priors in cortical high level areas (MPFC and ACC) over
the more concrete bottom-up sensory data. Together with weaker
amygdalar inhibition of the DMN, we suspect that imprecise prior
beliefs will shift the weight in cortical updating to ascending
autonomic information. In terms of this framework, this might
represent a critical loss of precise encoding of uncertainty und
would entail a model of the world that looks less predictable and
more surprising — a take with remarkable parallels to the learned
helplessness theory (49).

Interestingly, for patients who received SSRIs, self-inhibition in
the ACC was further decreased compared to patients who did not
receive SSRI treatment. This altered synaptic gain by SSRIs is
believed to represent a mechanism by which SSRIs can improve
clinical outcomes (50). By enhancing the excitability or sensitivity of
the ACC to external input, such as from the amygdala, SSRIs may
facilitate the learning and updating of internal models of the
environment, and promote the resolution of uncertainties,
facilitating the regaining of control over internal beliefs and
reducing the weight on bottom-up signals. Moreover, patients
who received SSRIs had comparable levels of self-inhibition in the
MPEC to healthy controls, in contrast to patients who did not
receive SSRI treatment. This observation may indicate restored
synaptic gain and increased network efficiency in MDD patients,
potentially aiding in regaining control over precision estimates of
internal beliefs. A recent study of brain connectivity in adolescent
MDD reported that SSRI treatment responders have a distinct
connectivity profile compared to healthy controls and non-
responders (11). Specifically, they exhibited greater DMN-SN
inhibition (MPFC, ACC) and greater within-SN inhibition
(amygdala, ACC), which appeared to facilitate the response to
SSRI treatment. These findings suggest that brain connectivity
could serve as a valuable marker for predicting and monitoring
treatment response in MDD. However, the precise mechanisms and
implications of SSRI-induced changes in brain connectivity remain
unclear and warrant further investigation.

Given the complex interactions between the multiple
neurotransmitter systems (e.g., serotonin, dopamine, GABA,
glutamate) on the synaptic level, it is impossible to disentangle
individual contributions with spDCM that investigates neuronal
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ensembles. Nevertheless, several studies suggest reduction of GABA
levels in the prefrontal cortex signalling in adolescent (51) and adult
depression (52, 53). Animal studies show that the modulation of
GABAergic interneurons can reestablish the excitation-inhibition
balance (54) and that chronic SSRI treatment can stimulate the
neurogenesis of GABAergic interneurons (55). Further evidence for
this interpretation stems from the growing literature of ketamine in
depression, that implicate the ACC as key target for the mood
enhancing effect (56). Although the exact mechanism of
antidepressant effect of ketamine remains unknown to date, it has
been suggested that the blocking of NMDA receptor on GABA
interneurons - and thereby attenuating GABA inhibition, which in
turn leads to activation of pyramidal cells and promotes the release
of brain-derived neurotrophic factor — might be critical for the
alleviation of symptoms in adults (57) and adolescents (58). Yet,
scrutinizing the individual contributions of neurotransmitters
remains a difficult challenge, because of the intricate interactions
on the synaptic level and multiple receptor subtypes expressed on
GABAergic interneurons.

This study reveals new insights into the intrinsic brain
connectivity in adolescents with MDD, however, it is not without
limitations. Although our sample size is rather common for
neuroimaging studies, it also reflects the recruitment challenges
for this particular patient group. We used cross-validation
procedures in our analysis to ensure the generalizability of results,
nevertheless, future studies should replicate our results in larger
cohorts to enhance the robustness of our findings and allow for
more nuanced analyses. Second, to confirm clinical utility of these
connectivity-based measures, longitudinal studies are required to
study the change of symptoms alongside with changes in
connectivity. The aforementioned study by (11) was the first to
follow adolescent MDD patients to investigate treatment effects on
effective connectivity longitudinally. Still, more studies that assess
brain connectivity in parallel with treatment multiple times will be
needed to understand the trajectories of symptoms in relation to
neurobiological changes. Furthermore, in this study we focussed on
the interactions between the DMN and the SN. Previous network
models also implicate other large-scale networks (e.g. the cognitive
control network, CCN, or reward network, RN) in depression (46).
Understanding how neurodevelopmental trajectories between the
DMN, SN, CCN, or RN affect mood will be pivotal for a
comprehensive model of the disorder. Lastly, the scope of our
study did not extend to the assessment of counseling interventions,
which are distinct from psychotherapy in both accessibility and
methodology. Future research should aim to include these
interventions to better understand their potential in enhancing
mental health outcomes.

In conclusion, this study sheds new light on the neurobiology of
mechanisms in adolescent depression. We highlight the importance
of the effective connectivity between - and within - DMN and SN
during resting state in adolescent MDD. This connectivity pattern
might represent a potential neurobiological marker of adolescent
MDD and may be used to measure and predict depression. Our
results suggest a new direction for studying mental health problems
in adolescents and their respective treatments.
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Psychiatric Hospital, Lincang, China, *Psychiatric Department, Zhangzhou Fukang Hospital,
Zhangzhou, China

Introduction: Symptoms during the onset of major depressive disorder [MDD]
and bipolar disorder type Il [BD-I1I] are similar. The difference of hippocampus
subregion could be a biological marker to distinguish MDD from BD-II.

Methods: We recruited 61 drug-naive patients with a first-episode MDD and BD-I
episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging
[MRI] study. We built a general linear model (one-way analysis of covariance) with 22
hippocampal subfields and two total hippocampal volumes as dependent variables,
and the diagnosis of MDD, BD-Il, and HC as independent variables. We performed
pair-wise comparisons of hippocampal subfield volumes between MDD and HC,
BD-Il and MDD, BD-Il and HC with post hoc for primary analysis.

Results: We identified three regions that differed significantly in size between patients
and controls. The left hippocampal fissure, the hippocampal—-amygdaloid transition
area (HATA), and the right subiculum body were all significantly larger in patients with
MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal
volume increased significantly, especially on the left side comparing to HC. However,
we found differences between MDD and BD-II were not statistically significant. The
volume of the left HATA and right subiculum body in BD-Il was larger.

Conclusions: The sample size of this study is relatively small, as it is a cross-
sectional comparative study. In both MDD and BD-II groups, the volume of more
left subregions appeared to increase. The left subregions were severely injured in
the development of depressive disorder.

KEYWORDS

BD-I1l, MDD, hippocampus, subregions, magnetic resonance imaging
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1 Introduction

The characteristics of depressive episodes of bipolar disorder
type II [BD-II] are very similar to those of a major depressive
disorder [MDD]. However the prevalence of BD-II is 4.5% less than
that of MDD (16.2%) (1) and easily misdiagnosed in early episodes
(2). The difficulty in identifying the first episode of depression in
BD-II increases the possibility of misdiagnosis (2, 3). This
misdiagnosis affects the choice of treatment options, and BD-II
depressive episodes are often accompanied by anxiety
characteristics and a high risk of self-injury and suicide (4, 5). If a
depressive episode of BD-II is misdiagnosed as a depressive episode
of MDD and then they were prescribed antidepressants, it can lead
to mixed episodes or manic episodes, increasing the risk of suicide
(6, 7). Therefore, early identification of depressive episodes of BD-II
and intervention are very important. Exploration of the biological
markers of BD-II lays the foundation for early diagnosis and
intervention (8). Being able to distinguish BD-II from MDD early
in the course of the disease would allow the provision of appropriate
and effective treatment (9, 10). In this paper we set out to find
biomarkers that would distinguish BD-II from MDD.

We chose to examine the hippocampus because of earlier
findings suggesting that the size of the hippocampus might alter
with changes in mood, and that cellular and molecular mechanisms
associated with mood disorders were localised to specific
hippocampal subfields (11). The hippocampus has important
functions in the regulation of emotion and declarative memory
(12). It has been shown that the volume of the hippocampus is
smaller in MDD (13-18) and also smaller in bipolar disorder (19,
20). However, few studies have compared hippocampal
substructures in MDD with BD-II depression (21, 22). A series of
articles including Cao et al., and an ENIGMA Consortium study
found that hippocampal volume was significantly reduced and
changed in patients with bipolar disorder type I [BD-I] (11, 23,
24) or in a bipolar disorder affected group including BD-I and BD-II
(25). However, there are few articles exploring specifically BD-II
depressive episodes which are similar to episodes of MDD.
Exploring the differences between these is very important and
leads to an exploration of important markers for differentiation.

Some researchers found that hippocampal subfield volume
reductions were more prominent in patients with MDD than with
BD-II (26), while others found patients with BD-II had reduced
volumes of the hippocampal subfields compared with those with
MDD, especially in the left CA4, GCL, ML and both sides of the
hippocampal tail (11)). Furthermore, the duration of bipolar
disorder was negatively correlated with the volume of the
hippocampal subfields, which evidenced the neuroprogressive
nature of BD-II (24, 26). The specific reduction of the
hippocampal subfield in MDD is found in the cornu ammonis
and dentate gyrus (27). The differences of hippocampal subfields
between MDD and BD-II are helpful in understanding
hippocampal neuroplasticity in them (27) and in discriminating
them through structural MRI data (28).

Some researchers believe that BD-II is a progressive
neurodegenerative change (Schneider, DelBello et al., 2012; Abe,
Ching et al., 2022) and bipolar disorder progresses at the same time
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as the volume of the hippocampus shrinks (Cao, Bauer et al., 2016
(29). For BD-II, the CA1 area in the hippocampus is believed to be
reduced, which may be an important sign of severe mental disorder
(30). However, in these studies, the fact that patients were
undergoing treatment and the severity of the disorder were not
considered, and the recurrence of the disorder and the specific type
of BD were often regarded as unimportant factors, with notably few
studies exploring the impact of the early development stage of BD-II
on the hippocampus.

In this paper we hypothesize that: 1). We hypothesize that
patients with BD-II will have same changes in the volume of left
hippocampus as in patients with MDD comparing to controls. 2)
There may be differences in the brain structure of patients with BD-
II compared with patients with MDD. 3) Specifically, we asked
whether for BD-II there may be less dominant reduction in some
subregions of the hippocampus, such as cornu ammonis 1 [CA1] or
granule cell-molecular layer-dentate gyrus [GC-ML-DG].

2 Methods
2.1 Participants

A total of 30 patients with the first episode of BD-II depression
(18-60 years old), and 28 patients with the first episode of MDD (18-
60 years old) were recruited from the Shanghai Mental Health Center,
in Shanghai, in the People’s Republic of China between January and
December 2021. Using the patient edition of the Structured Clinical
Interview for DSM-IV Axis I Disorders (SCID-I/P) patients were
evaluated to see whether they met the diagnostic criteria for of BD-II
and MDD(Those patients with BD-II currently have moderate or
severe depressive symptoms. When reviewing their medical history,
they have had mild manic episodes and were diagnosed with bipolar
disorder. At the time of enrollment, the patients were still
experiencing depressive symptoms.). Before the patients were
further evaluated, their clinical symptoms were assessed according
to the 24-item Hamilton Depression Rating Scale [often abbreviated
to HRSD, HDRS or Ham-D) (31) and Hypomania Checklist [HCL-
32) (32) but only for BD-II. The diagnosis was reviewed by an
attending psychiatrist and deputy chief-psychiatrist to confirm that
the diagnosis was consistent. For bipolar disorder, only patients with
BD-II depression were enrolled. Inclusion criteria: age 18-60 years,
right hand-dominant, meeting DSM-IV diagnosis criteria for MDD
or BD-II; and drug-naive patients with first-episode depression; for
MDD patients, a total HDRS score of >20, and for BD-II, an HCL-32
score of >13 and an HDRS score of >20. Exclusion criteria: 1) Patient
history of another DSM-IV Axis I disorder (e.g. schizophrenia,
schizo-affective disorder or mental retardation). 2) Serious or
unstable physical diseases such as tumours or cardiovascular
disease, alcohol/substance abuse or any other severe physical
disease. 3) Primary neurological diseases such as vascular disease or
cognitive impairment. 4) Contraindications for MRI scanning
including metal implants, dental braces or fear of claustrophobia.
5) Being in receipt of medication or physical therapy before
enrolment. HC were age-matched and their HDRS score was
checked to ensure that it was < 20 at the time recruitment
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advertisements were put up in the community by the study doctor co-
ordinating the case group. HCs needed to meet the following criteria:
1) 18-60 years old. 2) Met the criteria of the non-patient edition of the
Structured Clinical Interview for DSM-IV Axis Disorders (SCID-
NP). 3) They were not suffering from any current or past physical
disease. 4) They had no family history of psychiatric illness. Everyone
who participated in the study completed the informed consent form
correctly. The project was approved by the Ethics Committee of the
Shanghai Mental Health Center (approval No. 2020-55). The study
was conducted according to the ethical principles set out in the World
Medical Association’s (WMA) Declaration of Helsinki.

2.2 Image acquisition

MRI images were acquired for all subjects using a 3T scanner
(MAGNETOM Verio; Siemens Healthineers, Erlangen, Germany)
using a 32-channel head coil at the Shanghai Mental Center. A foam
pad was put under the patient’s head to prevent head movement.
Structural images were acquired using a whole-brain three-
dimensional sagittal T1-weighted scan, with the following
parameters: sagittal acquisition; repetition time/echo time: 2300
ms/2.96 ms; inversion time: 900ms; flip angle: 9°% field of view:
256x256 mm; resolution: 1 x 1 mmy; slice thickness: 1 mm (isotropic
voxel of 1 mm).

2.3 Image processing

A T1-weighted image performed visual quality control on artefacts,
preprocessing by the standard Recon-all pipeline overview implanted
in FreeSurfer v7.0. We used the automatic procedures of hippocampal
subfield segmentation and volumetric measurements of participant T1
images developed by T1-weighted MRI. The volume of hippocampus
was further pre-processed using the standard FreeSurfer recon-all
pipeline (version 7.0) (https://surfer.nmr.mgh.harvard.edu/fswiki/
HippocampalSubfieldsAndNucleiOfAmygdala) (33). The
hippocampus is divided into twenty-two subregions: the hippocampus
proper, the hippocampal head, the hippocampal tail, subiculum head
and body, cornu ammonis 1 body and head, parasubiculum,
presubiculum body and head, cornu ammonis 2/3 body and head
(CA2/3-body, CA2/3 head), cornu ammonis 4 body and head (CA4-
body, CA4 head), granule cell-molecular layer-dentate gyrus (GC-ML-
DG) body and head (GC-ML-DG-body, GC-ML-DG-head), the
molecular layer hippocampus body and head (molecular-layer-HP-
body and head), hippocampal-amygdaloid transition area (HATA),
fimbria. Before further analysis, the hippocampal volume was corrected
relative to intracranial volume (ICV).

2.4 Statistical analyses
IBM SPSS statistics for Windows, Version 19.0 (Armonk, NY,

USA) was used for analysis of demographic and volume of
subregions of the hippocampus.
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We built a general linear model (one-way analysis of
covariance) approach with the following variables: 42
hippocampal subfields and two total hippocampal volumes as
dependent variables, and the diagnosis of MDD, BD-II, HC as an
independent variable; the variables of age, sex, and total intracranial
cavity volume (TICV) were covariates. We performed the pair-wise
comparisons of hippocampal subfield volumes between MDD and
HC, BD-II and MDD, MDD and BD-II with post hoc for primary
analysis. The Bonferroni correction for this analysis and post-hoc
pair-wise comparisons was applied to minimize type-1 error risk (P
<0.05/44 = 0.001136). For demographic and clinical characteristics,
we used an independent samples t-test to get the difference of
HDRS, HCL-32 and family salary between MDD and BD-II. We
applied the chi-squared tests on the distribution of sex of the MDD
and BD-II group.

3 Results
3.1 Demographic data and characteristics

A total of 91 subjects (25 subjects with MDD, 36 with BD-II and
30 with healthy controls) was recruited to this study. Information
regarding the sex, age, and other demographic features of subjects is
given in Table 1. There were no significant differences in age (P =
0.052) or gender (P = 0.117) between MDD and BD-II. However,
there was a significant difference in depressive symptom scores (P =
0.019) and HCL-32 scores (p = <0.001) between MDD and BD-
II (Table 1).

3.2 Hippocampal subfield volume
differences between BD-Il and
healthy controls

Table 2 lists the regions we examined and shows results for
comparisons between healthy controls and patients with BD-II. We
tested 22 regions on the left side and the right side, as well as the
total volume of the hippocampus. Although many of these
measurements are correlated, we decided to treat each test as an
independent analysis and thus set a Bonferroni corrected 5%
significance threshold of P = < 0.001 (0.05/44). We found that 2
results exceeded this threshold including the left HATA and right
subiculum body.

3.3 Hippocampal subfield volume
differences between MDD and
healthy controls

Table 2 shows results of comparisons between patients with
MDD and HC. Since the measurements are the same as those
collected for the analysis of BD-II, we applied the same significance
thresholds. We found 3 results that exceeded the Bonferroni
corrected threshold. We observed a significantly larger volume of
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TABLE 1 Demographic information for all participants.

10.3389/fpsyt.2024.1438144

Standard
I\ Mean deviation P-value
HAMD MD 25 35.440 10.508 2416 0.019
BD II 36 28.583 11.165
HCL-32 MD 25 9.960 2.879 <0.001
BD II 36 23.056 6.155
Age MD 25 25.240 5.532 -1.984 0.052
BD II 36 28.610 7.129

P-values for age, HAMD, and HCL-32 scores were obtained using an independent t-test.

BD: bipolar disorder; MDD: major depressive disorder; Ham-D: 24 item Hamilton Depression Scale; HCL-32: Hypomania Check List.

the left hippocampal fissure and left HATA and the right subiculum
body in MDD compared with the HC (Figure 1).

3.4 Hippocampal subfield volume
differences between MDD and BD-II

We found no significant differences in any hippocampal
measure between MDD, and BD-IL

4 Discussion
4.1 Summary of main findings in this study

We studied the difference of the hippocampal substructure
between MDD and BD and HC, and compared the hippocampal
substructure between MDD and BD-II. We found that a) in theBD-
11, the hippocampal volume of the left HATA and right subiculum
body was significantly increased. b) In MDD, the volume of the left
hippocampal fissure, left HATA and right subiculum-body
increased significantly. ¢) We found no significant difference in
hippocampal substructure between MDD and BD-IL

4.2 Comparison with previous studies

When comparing the volume of the hippocampus in MDD to
HC, most studies found that the volume is reduced (13, 17, 34, 35).
We found that the volume of left HATA and right subiculum-body
increased in patients with MDD (36). Previous studies have found
that the left hippocampus is more reduced (36, 37), and we had
similar findings showing that the left hippocampal body and the left
HATA are most influenced. Yao found that subiculum and CAl
subregions of the bilateral hippocampus are prone to atrophy (17).
Some researchers found a reduction in the volume of the
hippocampal tail bilaterally, right hippocampal head and right
hippocampus proper in MDD patients (14), showing that the
right hippocampus is influenced too. However, most studies
included patients with long term depression, or who were in
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remission. Previous studies have found that the volume of the left
hippocampal protrusion decreased after the first or repeated
episodes of MDD (13). Few studies involved the first episode of
MDD with drug naive patients. We found that an increase in the left
hippocampal fissure, left HATA and right subiculum-body of the
hippocampus might be characteristic of early-stage depression.
For BD-II, in this study we found that more subfields of the
hippocampus are influenced from the left side to the right side,
including the left HATA and right subiculum body, findings which
are similar to previous studies. Some researchers found that the
most affected sizes were in volume differences between BD-II and
HC in the molecular layer, the hippocampal tail, cornu ammonis
(CA4), and cornu ammonis (CA1l) (11, 19). There are specific
changes in subregions of the hippocampus in depressive episodes of
bipolar disorder, such as cornu ammonis 1 (CA1), cornu ammonis
4 (CA4) (11, 30), the granule cell layer (GCL), molecular layer (ML),
subiculum (sub). However, one study found that the volume of
these subregions was increased, perhaps because of confounders
such as medication, alcohol and illicit substance use, illness stage
and the age of onset (19). Cao et al, recruited BD-I and BD-II
disorder patients who were receiving treatment (11). They found
that patients with BD (including BD-I and BD-II), had reduced
volumes of hippocampal subfields, specifically in the left CA4, GCL,
ML and both sides of the hippocampal tail, compared with healthy
subjects. Another study recruited adolescent BD patients with adult
BD, and found no reduction in the size of the hippocampus (38).
They recruited subjects who were mainly young people with BD-II.
Although some researchers found that BD-I has a severer reduction
in hippocampal subfields than BD-II (11, 30), we still need to pay
attention to the confounding effects on the hippocampus of the
disease episode, progression and medicine treatment. Our study
found that BD-II produced an increase in the volume of left HATA
and right subiculum body of the hippocampal subregions in the
early stage particularly with drug-naive and young patient groups.
We did not find any difference between MDD and bipolar
disorder. Cao found that the hippocampal subfields were more
affected in BD-I compared with BD-II and MDD (11). Kyu-Man
Han et al, found similar results and showed that no significant
volume differences were observed between MDD and BD (26). Kyu-
Man Han’s study only recruited subjects who were euthymic or in a
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TABLE 2 Hippocampal Differences between MDD,BD-Il and healthy controls.

10.3389/fpsyt.2024.1438144

All groups BD vs HC MDD vs HC MDD vs BPD

F P
Hippocampal tail L 0.807 0.45 1.178 0.243 0.916 0.364 0.134 0.894
Subiculum body L 3.543 0.033 1.809 0.075 2.69 0.01 -0.843 0.403
CALl body L 5.791 0.004 2.606 0.011 3.097 0.003 -0.73 0.468
Subiculum head L 0.773 0.465 -0.093 0.926 1.04 0.303 -1.069 0.289
Hippocampal fissure L 7.733 0.001 2.475 0.016 4.657 <0.001 -1.546 0.127
Presubiculum head L 3.869 0.025 0.587 0.559 2.479 0.018 -2.057 0.044
CAl head L 2.154 0.122 0.401 0.69 2.083 0.042 -1.551 0.126
Presubiculum body L 1.283 0.282 0.291 0.772 1.535 0.131 -1.332 0.188
Parasubiculum L 1.903 0.155 1.417 0.161 1.86 0.068 -0.643 0.522
Molecular layer HP
head L 1.138 0.325 0.372 0.711 1.555 0.126 -1.08 0.284
Molecular layer HP
body L 5.548 0.005 2.515 0.014 3.168 0.003 -0.67 0.505
GC ML DG head L 1.714 0.186 1.522 0.133 1.753 0.085 -0.284 0.778
CA3 body L 3.045 0.053 2.191 0.032 1.819 0.075 0.651 0.518
GC ML DG body L 2.207 0.116 1.96 0.054 1.685 0.098 -0.134 0.894
CA4 head L 1.819 0.168 1.499 0.139 1.806 0.077 -0.438 0.663
CA4 body L 1.788 0.173 1.771 0.081 1.469 0.148 0.068 0.946
Fimbria L 1.28 0.283 0.101 0.92 1.639 0.107 -1.316 0.193
CA3 head L 2.368 0.1 1.909 0.061 1.956 0.056 -0.055 0.956
HATA L 14.616 <0.001 4.116 1.21E-04 5.948 <0.001 -1.526 0.132
Whole hippocampal
body L 5.167 0.008 2.214 0.03 3.167 0.003 -1.019 0.312
Whole hippocampal
head L 2496 0.088 1.008 0.317 2413 0.019 -1.297 0.2
Whole hippocampus L 3.39 0.038 1.632 0.108 2.666 0.01 -1.066 0.291
Hippocampal tail R 1.543 0.219 1.434 0.156 1.472 0.147 -0.216 0.83
Subiculum body R 9.296 <0.001 3.423 1.09E-03 4.455 <0.001 -0.564 0.575
CALl body R 2.605 0.08 1.763 0.083 1.987 0.052 -0.614 0.542
Subiculum head R 1.346 0.266 -0.577 0.566 1.003 0.32 -1.606 0.114
Hippocampalfissure R 2.07 0.132 0.257 0.798 2.062 0.044 -1.6 0.115
Presubiculum head R 2.341 0.102 0.985 0.328 2.08 0.042 -1.306 0.197
CAl head R 0.683 0.508 0.646 0.52 1.136 0.261 -0.615 0.541
Presubiculum body R 2419 0.095 0.683 0.497 2.113 0.039 -1.58 0.119
Parasubiculum R 5.585 0.005 2.661 0.01 3.301 0.002 -1.032 0.306
Molecular layer HP
head R 1.04 0.358 0.481 0.632 1.367 0.177 -1.019 0.312
Molecular layer HP
body R 3.758 0.027 2.021 0.047 2.563 0.013 -0.737 0.464
GC ML DG head R 1.376 0.258 1.048 0.299 1.647 0.106 -0.708 0.482

(Continued)
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TABLE 2 Continued

10.3389/fpsyt.2024.1438144

MDD vs HC

MDD vs BPD

All groups

F
CA3 body R 0.256 0.775 0.685
GC ML DG body R 0.95 0.391 1.071
CA4 head R 1.357 0.263 1.137
CA4 body R 0.29 0.749 0.37
Fimbria R 1.11 0.334 1.665
CA3 head R 1.868 0.16 1.338
HATA R 2.904 0.06 1.489
‘Wholehippocampal
body R 4.724 0.011 2.267
Whole hippocampal
head R 1.695 0.19 0.868
Whole hippocampus R 2.993 0.055 1.626
Hippocampal tail L 0.807 0.45 1.178
Subiculum body L 3.543 0.033 1.809

Bonferroni correction was applied: P <0.05/44 = 0.001136.
Significant hippocampal subfield volume differences appear in bold.

0.496 0.541 0.59 0.042 0.966
0.288 1.24 0.22 -0.386 0.701
0.26 1.621 0.111 -0.589 0.558
0.713 0.744 0.46 -0.446 0.657
0.101 0.86 0.394 0.417 0.678
0.186 1.893 0.064 -0.727 0.47

0.142 2.436 0.018 -1.073 0.288
0.027 2.976 0.004 -0.799 0.427
0.389 1.822 0.074 -1.086 0.282
0.109 2.371 0.021 -0.935 0.353
0.243 0.916 0.364 0.134 0.894
0.075 2.69 0.01 -0.843 0.403

MDD, major depressive disorder; BD, bipolar disorder; HC, healthy controls; CA, cornu ammonis.

depressive state. Another difference is that their study was
conducted on patients with BD including BD-I and BD-IL.who
were already taking medicine (26). BD-I and BD-II may have
different effects on the volume change of the hippocampus, so we

FIGURE 1
[llustration of hippocampal subfield segmentation by FreeSurfer V7.0.
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should treat them differently. It is possible that the type of bipolar
disorder, the effects of medicine, the episode and duration of the
illness, and the number of episodes may affect the size of the
hippocampus (11). In future, it will be necessary to compare the

] 203 parasubiculum
211 HATA
212 fimbria
M 215 hippocampal_fissure
226 HP_tail
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differences in the hippocampus in the early, middle and multiple
episodes of BD-II seen in this study.

4.3 Implications

Although we found no significant difference between BD-II and
MDD in the hippocampal subregions, there were more extensive
changes on the left side in MDD. One implication is that there is
more extensive cognitive impairment during the onset of MDD,
such as decreased working memory (39, 40) and episode memory.
Some studies show that the cognitive dimension of MDD is
more extensive.

This study only compares the symptoms of MDD and BD-II,
and in doing so it found significant differences. It attempts to
explore the differences in symptom-related hippocampal
subregions. However, no significant difference was seen in the
subregion of the hippocampus between the two diseases. Analysis
of the results suggests that: the sample size is relatively small, and
that we need to expand the sample to explore whether there is a
linear relationship between the more serious depressive symptoms
and the smaller hippocampal volume in MDD. In BD-IJ, there is no
such linear relationship.

Our study recruited subjects with the first onset of depression and
BD-IL, and our findings suggest that the increase of hippocampal
volume may be an early pathological change. Many studies are based
on the hippocampal contractile changes of recurrent or mixed
episodes of bipolar disorder (11, 26). Our study suggests that
changes in hippocampal enlargement may be related to
inflammatory response (41, 42) in the early stage of the disease.
Moreover, the inflammatory response of MDD may be more obvious,
which needs more basic research to see whether this is so.

4.4 Limitations

Our study had the following limitations: 1) our power to detect
an effect is limited by our small sample size. In a recent large meta-
analysis of imaging data from patients with MDD, Schmaal et al.
(43) estimated that 545 subjects per group would be needed to
provide 80% power to detect difference in hippocampal volume at P-
value=0.05. At this point we can only caution that ours is an
exploratory study, generating hypotheses for further
investigation.2) Our subjects were not matched for gender; Bipolar
I is more common in men, while BD is more common in women
(44). 3) Mixed episodes or rapid cycling of bipolar disorder is more
likely to increase the risk of suicide, and such episodes cannot be
evaluated. In this study, we did not assess whether patients with
bipolar disorder had more frequent episodes or mixed episodes of
BD, and which kind of clinical characteristics of bipolar disorder II
were more likely to develop mixed episodes. 4) This study is cross-
sectional. Only 20% of patients with bipolar disorder depressive
episodes were diagnosed with bipolar disorder in the first year, and
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the diagnosis was often delayed for 5-10 years (45). This is possible
because a diagnosis of BD is difficult to make early in the course of
the disorder. In this study, the patients with first-episode MDD
before the age of 30 could not be ruled out from BD-IL It will be
necessary to conduct follow-up studies on patients with MDD to see
if they develop BD in the next 5-10 years. 5) Hippocampal volume
has a close relationship with cognition. This study did not include
level of education as a covariate, and follow-up studies need to
comprehensively assess the impact of this. 6) The age of onset and
the prolonged duration of the disorder are not included the current
study and should be discussed in future studies as influencing
factors.7) the diagnostic system in this study used DSM-1IV, and it
should be updated in the future study and the related psychotherapy
situation could be recorded when the participants were interviewed.
8) A limitation of this study is that it examined only the
hippocampus. Future work should study more extensively the
brain regions involved in regulating emotional stability.

5 Conclusion

From the data in this study, it can be concluded that there is no
significant difference in subregions of the hippocampus between
BD-II and MDD in the early development of BD-II. In the early
stage of MDD, the volume of the hippocampal subregions including
the left hippocampal fissure, left HATA and right subiculum-body
regions are increased, possibly influencing working memory and
episodic memory.
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