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High-throughput sequencing technologies are widely used to study microbial 
ecology across species and habitats in order to understand the impacts of microbial 
communities on host health, metabolism, and the environment. Due to the dynamic 
nature of microbial communities, longitudinal microbiome analyses play an essential 
role in these types of investigations. Key questions in microbiome studies aim at 
identifying specific microbial taxa, enterotypes, genes, or metabolites associated with 
specific outcomes, as well as potential factors that influence microbial communities. 

However, the characteristics of microbiome data, such as sparsity and skewedness, 
combined with the nature of data collection, reflected often as uneven sampling or 
missing data, make commonly employed statistical approaches to handle repeated 
measures in longitudinal studies inadequate. Therefore, many researchers have 
begun to investigate methods that could improve incorporating these features when 
studying clinical, host, metabolic, or environmental associations with longitudinal 
microbiome data. 

In addition to the inferential aspect, it is also becoming apparent that visualization of 
high dimensional data in a way which is both intelligible and comprehensive is another 
difficult challenge that microbiome researchers face. Visualization is crucial in both 
the analysis and understanding of metagenomic data. Researchers must create clear 
graphic representations that give biological insight without being overly complicated. 
Thus, this Research Topic seeks to both review and provide novels approaches 
that are being developed to integrate microbiome data and complex metadata into 
meaningful mathematical, statistical and computational models. We believe this 
topic is fundamental to understanding the importance of microbial communities 
and provides a useful reference for other investigators approaching the field.
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Editorial on the Research Topic

Novel Approaches in Microbiome Analyses and Data Visualization

Next generation sequencing technologies have allowed the study of microbial ecosystems at
previously unseen depths. In both ecology and human biology, there is a pressing quest to advance
our understanding of how microbial communities impact their host and their environment.
In particular, the majority of microbiome studies are aimed at identifying specific microbial
taxa, community profiles, genes, or metabolites which may be predictive of specific outcomes,
functions, or disease states. However, due to the complexity of microbiome data, the statistical
and computational analysis of these data present many challenges which may affect the validity
of commonly employed methods. Therefore, despite the fact that microbiome and bioinformatic
researchers often use widely accepted pipelines, the field remains wide open for improvement. In
this Research Topic, a few researchers have responded to the task of reviewing or describing novel
methodologies aimed at tackling the challenges of microbiome data and the respective metadata.
Only with the development of improved statistical and computational models can one really hope
to exploit microbiome based research to understand biological mechanisms, identify biomarkers of
disease, or delineate microbial interactions with their environment.

The largest challenge investigators face in developing statistical approaches to studymicrobiome
data is considering all of the constraints of microbiome data fully. Multiple researchers support
regarding microbiome data as compositional, meaning the data are usually described as relative
quantitative descriptions as parts of some whole, such as proportions or relative abundance.
Of course, this view is also partial since important information may be lost when adopting a
compositional perspective. However, intrinsic complications arise among commonly employed
techniques if microbiome data are examined using a non-compositional paradigm. Gloor et al.
reviews a number of recently proposed compositional data analyses methods for microbiome data,
and provides some caveats against a naïve use of statistical models if the data are not treated as
compositional.

One common problem among compositional microbiome data is that it is sparse and zero-
inflated. This compositional bias leads to false positives as well as underpowered statistical
associations when conducting multiple comparisons. A common strategy to handle excess zeros
is to add a small number called a pseudo count. Kaul et al. propose a novel method (ANCOM-
II) for handling zeros in microbiome data by first identifying the types of zeros in your data, then
comparing the abundance of taxa relative to a background or reference value which is present in
all specimens. Simulations of the authors’ methodology show improved control for false discovery
rate and higher statistical power compared to pseudo-counts. Another dilemma is that rare and low
abundant taxa naturally exist among microbiomes. Karpinets et al. attempt to reduce the burden
of filtering for the rare OTUs and overcome the difficulty of compositionality by treating the OTUs
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as qualitative variables. They explore the biological role of the
rare low abundance OTUs and analyze them by using association
networks (Anets) and show Anets have the potential to serve as a
unsupervised methodology for linking rare OTUs to associations
with environment or phenotypes.

Many methodologies naïvely separate themselves from the
biologic aspect of the data inasmuch that these are complex
interacting ecosystems with intertwined metabolic pathways,
different rates of growth etc. Pinto et al. construct an ordinary
differential equation (ODE) -based kinetic model incorporating
microbial growth equations and metabolic interactions among
bacteria using experimental data from gut microbe cultures.
Their model accurately predicted bacterial abundance as well
as metabolite consumption and production in a bioreactor
experiment.

Furthermore, many approaches do not take into consideration
phylogeny or relatedness of the organisms in order to make
associations. Zhai et al. suggest a variance component selection
scheme, or VC-lasso, for sparse and high-dimensional taxonomic
data analysis. They disperse individual OTUs into clusters at
phylogenetic levels, and translate the phylogenetic distance
information to kernel matrices, where they treat the taxonomic
clusters as multiple random effects in a variance component
model. Similarly, Xiao et al. also develop a methodology for
capturing clusteredmicrobiome signals dependent on phylogeny.
“glmmTree” is their novel prediction method based on a
generalized linear mixed model, which captures clustered
microbiome signals. In this framework, the effects of the
bacterial taxa are modeled as random with the correlation
structure dependent on a phylogenetic tree, whereas the effects
of predictive variables are treated as fixed. Another conundrum
is the concern that methodologies based on binning mapped
sequences can still be riddled with error due to subpar databases.
Currently OTU binning is the well accepted methodology, but
group specific signatures can be just as important for biomarker
discovery or disease association. Wang et al. recommend using
K-mers which provides an alignment free method to characterize
microbial communities.

There is a definite shortage of visualization or web based
tools that support the integration of taxonomic and functional
profiles. BURRITO, described by McNally et al. is a web based
tool for interactive visualization of microbiome multi-omic
data combined with taxonomic and functional information.
BURRITO visualizes the taxonomic and functional compositions
of multiple samples and underlines relationships between taxa
and function. Baksi et al. present a web based framework called
“TIME” (“Temporal Insights into Microbial Ecology”). TIME
allows for predicting taxa that might have a higher influence on
community structure in different conditions.

As substantial variability in microbiota communities can
be seen across subjects, and across time, the improvement of
longitudinal study design, and causal models is paramount to
associate a dynamic ecosystem with complicated environmental
and host factors. Many of the papers in this Research Topic
offer methods which address different issues that arise when
handling longitudinal data. The previously discussed web

based application, TIME, was developed specifically to identify
potential taxonomic markers from time series data (Baksi et
al.). In this program, longitudinal time points, and respective
metadata can be used to visualize temporal variations. Lee and
Sison-Mangus developed a Bayesian semiparametric generalized
linear regression model to investigate the effects of physical
and biological variables the abundance of microbes. This
model allows for borrowing information across OTUs, across
samples and across time points. Shields-Cutler et al. introduce
splinectomeR, an R package that uses smoothing splines
to summarize categorical variables for hypothesis testing in
longitudinal microbiome studies. Lastly, Wagner et al. propose
the use of a bi-exponential function to summarize and compare
diversity curves over time using hierarchical modeling. This
approach accounts for repeated measures on each subject in
order to compare and model alpha diversity indices over time.

Together, these original research articles and reviews
emphasize the difficulties faced when analyzing microbiome
data and the shortcomings of current statistical, computational
and visualization tactics. Currently, many researchers perform
all of their own coding and individual analyses without well-
defined descriptions of their methods or sharing of analysis
pipelines between laboratories. Thus, there is a pressing need
for consistent and harmonious data analysis procedures. As a
scientific community, microbiome researchers should not be
content with “status quo” when it comes to widely accepted
practices in microbiome analyses as they have many faults and
limitations. In the modern era of data sharing and web-based
tools scientists should be working together to compare results
between sites and cohorts, improve current techniques, as well
as validate methodologies. Only when the research community
ensures that novel approaches hold up to independent validation
across populations can we truly develop a microbiome analysis
paradigm which allows for reliable reproducibility of findings
across multiple institutions all over the world.
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Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers,

metagenomes or metatranscriptomes are commonplace and being used to study human

disease states, ecological differences between sites, and the built environment. There is

increasing awareness that microbiome datasets generated by HTS are compositional

because they have an arbitrary total imposed by the instrument. However, many

investigators are either unaware of this or assume specific properties of the compositional

data. The purpose of this review is to alert investigators to the dangers inherent in

ignoring the compositional nature of the data, and point out that HTS datasets derived

from microbiome studies can and should be treated as compositions at all stages of

analysis. We briefly introduce compositional data, illustrate the pathologies that occur

when compositional data are analyzed inappropriately, and finally give guidance and point

to resources and examples for the analysis of microbiome datasets using compositional

data analysis.

Keywords: microbiota, compositional data, high-throughput sequencing, correlation, Bayesian estimation, count

normalization, relative abundance

1. INTRODUCTION

The collection and analysis of microbiome datasets presents many challenges in the study design,
sample collection, storage, and sequencing phases, and these have been well reviewed (Robinson
et al., 2016). Many methods for the analysis of microbiome datasets assume that sequencing
data are equivalent to ecological data where the counts of reads assigned to organisms are often
normalized to a constant area or volume. Methods applied include count-based strategies such as
Bray-Curtis dissimilarity, zero-inflated Gaussianmodels and negative binomial models (McMurdie
and Holmes, 2014; Weiss et al., 2017).

In an ecological study it is possible for many different species to co-exist, and their absolute
abundance may be important. For example, in an area containing only tigers, it is important
to know if the population size is sufficient to maintain needed genetic diversity for long-term
survival (Shaffer, 1981). However, the abundance of one species may not influence the abundance
of another; the area may contain both tigers and ladybugs, and the migration of several ladybugs
into the area would not be expected to affect the number of tigers.

The assumption of true independence can not hold in high-throughput sequencing (HTS)
experiments because the sequencing instruments can deliver reads only up to the capacity of the
instrument. Thus, it is proper to think of these instruments as containing a fixed number of slots

7
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which must be filled. Returning to our tiger and ladybug
analogy, the migration of ladybugs into an area containing
a fixed number of slots that are already filled must displace
either tigers or ladybugs from the occupied slots. This analogy
extents, without restriction, to any number of taxa, and to any
fixed capacity instrument (Aitchison, 1986; Lovell et al., 2011;
Friedman and Alm, 2012; Fernandes et al., 2013, 2014; Lovell
et al., 2015; Mandal et al., 2015; Gloor et al., 2016a,b; Gloor and
Reid, 2016; Tsilimigras and Fodor, 2016). Thus, the total read
count observed in a HTS run is a fixed-size, random sample
of the relative abundance of the molecules in the underlying
ecosystem. Moreover, the count can not be related to the absolute
number of molecules in the input sample as shown in Figure 1.
This is implicitly acknowledged when microbiome datasets are
converted to relative abundance values, or normalized counts,
or are rarefied (McMurdie and Holmes, 2014; Weiss et al., 2017)
prior to analysis. Thus the number of reads obtained is irrelevant,
and contains only information on the precision of the estimate
(Fernandes et al., 2013). Data that are naturally described as
proportions or probabilities, or with a constant or irrelevant
sum, are referred to as compositional data. Compositional data
contains information about the relationships between the parts
(Aitchison, 1986; Pawlowsky-Glahn et al., 2015).

Data about a microbiome collected by high throughput
sequencing are often examined under the assumption that
sequencing is, in some way, counting the number of molecules
associated with the bacteria in the population, as illustrated by
the top barplot in Figure 1B. We can see the difference between
counts and compositions by comparing the data for the actual
counts for three samples in the top barplot with their proportions
in the bottom barplot. Note, that samples 2 and 3 in Figure 1B

have the same proportional abundances even though they have
different absolute counts prior to sequencing. The difference in
apparent direction of change is shown in Figure 1C and we can
observe that the relationship between absolute abundance in the
environment and the relative abundance after sequencing is not
predictable.

2. PROBLEMS WITH CURRENT METHODS
OF ANALYSIS

We will briefly outline the problems that arise when
compositional data are examined using a non-compositional
paradigm, stepping through the usual stages of analysis shown
in Figure 2. All these issues have been extensively reviewed
and debated in both the older and the more recent literature in
fields as diverse as economics, geology and ecology. Thus, rather
than present an exhaustive explanation of the problems, we will
outline the major issue and cite a few useful resources.

It is very difficult to collect exactly the same number
of sequence reads for each sample. This can be because of
differences in platform (e.g., MiSeq vs. HiSeq) or because of
technical difficulties in loading the same molar amounts of the
sequencing libraries on the instrument, or because of random
variation. The total number of counts observed (often referred to
as read depth) is a major confounder for distance or dissimilarity

FIGURE 1 | High-throughput sequencing data are compositional. (A)

illustrates that the data observed after sequencing a set of nucleic acids from a

bacterial population cannot inform on the absolute abundance of molecules.

The number of counts in a high throughput sequencing (HTS) dataset reflect

the proportion of counts per feature (OTU, gene, etc.) per sample, multiplied by

the sequencing depth. Therefore, only the relative abundances are available.

The bar plots in (B) show the difference between the count of molecules and

the proportion of molecules for two features, A (red) and B (gray) in three

samples. The top bar graphs show the total counts for three samples, and the

height of the color illustrates the total count of the feature. When the three

samples are sequenced we lose the absolute count information and only have

relative abundances, proportions, or “normalized counts” as shown in the

bottom bar graph. Note that features A and B in samples 2 and 3 appear with

the same relative abundances, even though the counts in the environment are

different. The table below in (C) shows real and perceived changes for each

sample if we transition from one sample to another.

calculations for multivariate ordinations derived from these
distances (McMurdie and Holmes, 2014). Initial attempts in the
microbiome field used “rarefaction” or subsampling of the read
counts of each sample to a common read depth to attempt to
correct this problem (Lozupone et al., 2011; Wong et al., 2016).
The use of subsampling has been questioned since it results in
a loss of information and precision (McMurdie and Holmes,
2014), and the practice of count normalization from the RNA-
seq field has been advocated instead. There are a number of
count normalization methods used and two, the trimmed mean
of M values (TMM) (Robinson and Oshlack, 2010), and the
median method (Anders and Huber, 2010) are similar to a log-
ratio transformations, but are less suitable in highly asymmetrical
or sparse datasets (Fernandes et al., 2013; Gloor et al., 2016a).
These transformations are further undesirable since the number
of counts observed by the instrument, by design, can not contain
any information on the actual number of molecules in the
environment, and because the investigator naturally interprets
the results as counts instead of log-ratios.

One of the first analysis steps in a traditional analysis,
following rarefaction or count normalization, is the calculation of
a distance or dissimilarity (DD) matrix from the data that is used
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FIGURE 2 | The standard microbiome analysis tool kit and the compositional

replacements. A simplified standard microbiome computational workflow is

illustrated. The initial normalization steps are not formally equivalent since

compositional data are inherently “normalized”, and read count normalization

is unnecessary. The other steps are functionally equivalent and substitute a

compositionally appropriate approach for one that is not.

for downstream analyses such as ordination, and discrimination.
Distances between features are non-linear when examined from
a Euclidian perspective (Martín-Fernández et al., 1998; Aitchison
et al., 2000) and many DD matrices are used that partially
address this problem. As noted above the total number of
reads in a sample is a strong confounding variable on all these
methods, indicating that the composition of the sample is not the
primary property being measured. However, apparently useful
DD matrices can be generated after normalization. Three DD
matrices dominate the literature; UniFrac (both the weighted and
unweighted variants) (Lozupone et al., 2011), Bray-Curtis and
Jensen-Shannon divergence, and while all have their uses, they do
not account for the compositional nature of the data. It should
be noted that the weighted UniFrac distance approach captures
important phylogenetic information, and a recent compositional
replacement has been developed (Silverman et al., 2017).

The major uses for the DD matrices are ordination and
clustering. Here, the shortcomings of these DD methods become
apparent. In addition to being sensitive to the total read depth
of a sample, DD methods largely discriminate between samples

based on the most relatively abundant features in the samples,
not on the features that are necessarily the most variable between
samples (Gorvitovskaia et al., 2016; Wong et al., 2016). This
can lead to the location of samples in an ordination changing
dramatically when different features are included or excluded
from the dataset, and to a lack of sensitivity in identifying outlier
samples (Wong et al., 2016).

Severe problems with correlation in compositional data were
first noted at the dawn of statistical practice by Pearson (1897)
and rediscovered in the context of microbiome studies (Lovell
et al., 2011; Friedman and Alm, 2012; Lovell et al., 2015; Kurtz
et al., 2015; Morton et al., 2017). Unfortunately, the effect cannot
be diluted away as has been recommended (Weiss et al., 2016).
Understanding that there is a correlation problem is crucial,
since unconstrained correlation or covariation are key concepts
for ordination, clustering, network analysis and differential
(relative) abundance determination. Compositional data have a
negative correlation bias and a different correlation structure
than the underlying count data. Even worse, compositional data
exhibit spurious correlation upon subsetting or aggregation. The
“Correlation” section in the Supplement shows that correlation is
not a reliable or a reproducible indicator of the underlying data
when dealing with compositional data.

Finally, differential (relative) abundance measures do not
account for compositionality (Fernandes et al., 2013; Mandal
et al., 2015; Gloor et al., 2016a). Large scale tool benchmarking
has revealed that differential (relative) abundance tools in
common use are sensitive to sparsity (Thorsen et al., 2016)
and consequently exhibit unacceptably high false positive
identification rates (Hawinkel et al., 2017).

In summary the analysis of compositional data using current
protocols has several challenges. However, as shown below these
issues can be addressed in a satisfactory way using tools that
account for the compositional nature of the data.

3. ANALYSIS OF HTS USING CODA
METHODS

Compositional datasets from HTS can be analyzed in a rigorous
manner by adapting tools from other fields (Van den Boogaart
and Tolosana-Delgado, 2013; Pawlowsky-Glahn et al., 2015) and
using new tools based on the same underlying foundations
(Fernandes et al., 2013; Erb and Notredame, 2016; Silverman
et al., 2017; Quinn et al., 2017). There are now examples in the
literature that provide guidance on how to do some or all of
these analyses on HTS datasets, including meta-transcriptomics
(Macklaim et al., 2013) and tag-sequencing (McMurrough et al.,
2014; Bian et al., 2017). We briefly review the approaches below.

The starting point for any compositional analyses is a ratio
transformation of the data. Ratio transformations capture the
relationships between the features in the dataset and these ratios
are the same whether the data are counts or proportions. Taking
the logarithm of these ratios, thus log-ratios, makes the data
symmetric and linearly related, and places the data in a log-ratio
coordinate space (Pawlowsky-Glahn et al., 2015). Thus, we can
obtain information about the log-ratio abundances of features
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relative to other features in the dataset, and this information is
directly relatable to the environment. We cannot get information
about the absolute abundances since this information is lost
during the sequencing process as explained in Figure 1. However,
log-ratios have the nice mathematical property that their sample
space is real numbers, and this represents a major advantage for
the application of standard statistical methods that have been
developed for real random variables.

Often the centered log-ratio (clr) transformation introduced
by Aitchison (1986) is used. Given an observation vector of D
“counted” features (taxa, operational taxonomic units or OTUs,
genes, etc.) in a sample, x = [x1, x2, ...xD], the clr transformation
for the sample can be obtained as follows:

xclr = [log(x1/G(x)), log(x2/G(x)) . . . log(xD/G(x))],

G(x) = D
√
x1 · x2 · ... · xD (1)

G(x) is the geometric mean of x. The clr transformed values
can be used as inputs for multivariate hypothesis testing using
tools such as MANOVA, regression etc. (Van den Boogaart
and Tolosana-Delgado, 2013) and for model building. The clr-
transformed values are scale-invariant; that is the same ratio is
expected to be obtained in a sample with few read counts or an
identical sample with many read counts, only the precision of
the clr estimate is affected. This is elaborated in the “Probability”
and “Log-ratio transformations” section in the Supplement, but
the consequence is that count normalization is unnecessary and
indeed, undesirable since information on precision is lost.

The G(x) cannot be determined for sparse data without
deleting, replacing or estimating the 0 count values. Fortunately,
there are acceptable methods of dealing with 0 count values as
both point estimates using zCompositions R package
(Palarea-Albaladejo and Martín-Fernández, 2015), and
as a probability distribution using ALDEx2 available on
Bioconductor. Converting the single estimate to a probability
vector prior to clr transformation produces a scale-invariant
measure since this accounts for the precision of the estimate
of the probabilities for each feature; we refer advanced readers
to the more technical literature (Jaynes and Bretthorst, 2003;
Fernandes et al., 2013; Gloor et al., 2016a) and the “Probability”
section of the Supplement for more information.

There are compositional replacements for distance
determination that is used for clustering and ordination.
The first is the philr phylogenetic transform (and R package)
based on balances (binary partitions) along an evolutionary tree
(Silverman et al., 2017) that is a replacement for the familiar
UniFrac distance metric. Distances determined by phylogenetic
transforms have the advantage that the binary partitions chosen
have a simple interpretation and the correlation structure of
the data is fully accounted for. However, the disadvantage is
that only the relationships between the chosen partitions can be
examined. A second distance metric is the Aitchison distance,
which is simply the Euclian distance between samples after
clr transformation, and the distances between samples are the
same as the phylogenetic ilr. The Aitchison distance is superior
to both the widely used Jensen-Shannon divergence and the
Bray-Curtis dissimilarity metrics, being more stable to subsetting

and aggregating of the data, and being a true linear distance
(Aitchison et al., 2000).

The replacement for β-diversity exploration of microbiome
data is the variance-based compositional principal component
(PCA) biplot (Aitchison, 1983; Aitchison and Greenacre, 2002)
where the relationship between inter-OTU variance and sample
distance can be observed (Gloor et al., 2016b). The compositional
biplot has several advantages over the principal co-ordinate
(PCoA) plots for β-diversity analysis. The results obtained are
very stable when the data are subset (Bian et al., 2017), meaning
that exploratory analysis is not driven simply by the presence
absence relationships in the data nor by excessive sparsity (Wong
et al., 2016; Morton et al., 2017). PCA plots can be substantially
more reproducible, since they do not depend upon an presumed
underlying tree that may need to be regenerated with each
data subset, or when new taxa need to be incorporated. This
simplicity facilitates exploratory data analysis. Compositional
PCA biplots display the relationships between OTUs and the
distances between samples on a common plot. It is possible to
glean substantial qualitative information regarding the quality
of the dataset and the relationships between groups with this
tool (Aitchison and Greenacre, 2002; Gloor et al., 2016b), and
examples are shown in the “Biplot” section of the Supplement.

As noted above, the correlation is unreliable in compositional
datasets because of the negative correlation bias and the
instability of correlation to subsetting the data. This is explained
more fully in the supplement (Pearson, 1897; Aitchison, 1986)
but these problems are observed with all non-compositional
correlation methods (Ortego and Egozcue, 2013). Unfortunately,
correlation cannot be subjected to a principled process to
determine the optimal method as has been advocated recently
(Weiss et al., 2016).

There are several more rigorous approaches that can be
applied to analyze correlation in microbiome datasets, including
SPARCC (Friedman and Alm, 2012) and SPieCeasi (Kurtz et al.,
2015), both of which assume a sparse data matrix, and the φ

(Lovell et al., 2015) and ρ (Erb andNotredame, 2016)metrics (the
published versions of which required a non-sparse matrix). These
latter two metrics have been incorporated into the R package
propr, that includes an adaptation allowing the calculation of
the metrics with sparse data that gives an expected value of
ρ (E(ρ)), that approaches 1 if the two features have exactly
constant ratios in the data (Lovell et al., 2015; Quinn et al., 2017).
Supplementary Figure 2 shows that the expected value of ρ is
much more stable to subsetting than are familiar correlation
metrics, and becomes more reproducible as the value of E(ρ)
approaches 1, thus indicating greater precision in estimation as
correlation becomes stronger. However, determining an optimal
and general approach for correlation in compositional datasets
is an open research problem. Supplementary Figures 2–5 have a
more extended explanation of the correlation problem and the
use of E(ρ) as a proposed solution.

Differential (relative) abundance of OTUs between groups
in compositional data is often examined using purpose-built
tools that compare the difference in relative abundance across
samples, and recently tools adapted from the domain of RNA-
seq have been suggested. Unfortunately, these approaches do
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not account for the compositional nature of the data, and so
can be particularly sensitive to the negative correlation bias and
large variability of such datasets (Fernandes et al., 2013). Indeed
benchmarking suggests that traditional tools exhibit different
false positive rates with different levels of sparsity (Thorsen et al.,
2016), and that the false positive rates can be up to 20× higher
than expected (Hawinkel et al., 2017).

Tools based on an approximate compositional foundation
are available. The ANCOM tool performs statistical tests on
point estimates of data transformed by an additive log ratio,
where (presumed) invariant taxa are chosen as the denominator
(Mandal et al., 2015). ANCOM is being incorporated into the
popular QIIME suite of microbiome analysis tools (Weiss et al.,
2017). The ALDEx2 tool performs statistical tests on the clr
values from a modelled probability distribution of the dataset
(Supplementary data Equations 1–4), and reports the expected
values of parametric and non-parametric statistical tests along
with effect-size estimates. This approach reduces the false-
positive identification problem to near 0 in real and modelled
microbiome datasets with little effect of sensitivity (Thorsen
et al., 2016) and is observed to be relatively insensitive to change
when the data are subset (Fernandes et al., 2014). There are
many examples in the literature on its use (Macklaim et al.,
2013; McMurrough et al., 2014; Bian et al., 2017) and in the
Supplementary.

In summary, the analysis of compositional data by traditional
methods can appear to give satisfactory results. However, these
results can be misleading and unpredictable. Compositionally-
appropriate tools exist as drop-in replacements at each stage of
the analysis as shown in Figure 2, and interested readers are

directed to the supplementary and to other published examples
(Macklaim et al., 2013; Fernandes et al., 2014; McMurrough et al.,
2014; Lovell et al., 2015; Mandal et al., 2015; McMillan et al.,
2015; Gloor and Reid, 2016; Gloor et al., 2016b; Bian et al.,
2017; Silverman et al., 2017; Quinn et al., 2017), and the similar
correspondence analysis implemented in the phyloseq package
(McMurdie and Holmes, 2013).
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Motivation: An important feature of microbiome count data is the presence of a large

number of zeros. A common strategy to handle these excess zeros is to add a small

number called pseudo-count (e.g., 1). Other strategies include using various probability

models to model the excess zero counts. Although adding a pseudo-count is simple and

widely used, as demonstrated in this paper, it is not ideal. On the other hand, methods

that model excess zeros using a probability model often make an implicit assumption that

all zeros can be explained by a common probability models. As described in this article,

this is not always recommended as there are potentially three types/sources of zeros in

a microbiome data. The purpose of this paper is to develop a simple methodology to

identify and accomodate three different types of zeros and to test hypotheses regarding

the relative abundance of taxa in two or more experimental groups. Another major

contribution of this paper is to perform constrained (directional or ordered) inference when

there are more than two ordered experimental groups (e.g., subjects ordered by diet or

age groups or environmental exposure groups). As far as we know this is the first paper

that addresses such problems in the analysis of microbiome data.

Results: Using extensive simulation studies, we demonstrate that the proposed

methodology not only controls the false discovery rate at a desired level of significance

while competing well in terms of power with DESeq2, a popular procedure derived from

RNASeq literature. As expected, the method using pseudo-counts tends to be very

conservative and the classical t-test that ignores the underlying simplex structure in the

data has an inflated FDR.

Keywords: Microbiome data, Aitchisons log-ratio, bootstrap, covariates, cross-sectional data, false discovery rate

(FDR)

1. INTRODUCTION

Microbial count data are represented using operational taxonomic units (OTUs) from 16S rRNA
studies. For each specimen (e.g. fecal sample) drawn from an ecosystem (e.g. gut), the number of
occurrences of each OTU is measured and the resulting OTU table is summarized to obtain relative
abundance for bacterial taxa in a specimen. These OTU counts may be summarized at any level of
the bacterial phylogeny, e.g., species, genus, family, order, etc. Throughout this paper we use the
generic term “taxa” to denote a particular phylogenetic classification. Since the relative abundances
of taxa in a specimen sum to 1, these are compositional data and they reside in a simplex rather than
the entire Euclidean space. Another important feature of these microbiome data is that not all taxa
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may be present in each sample, i.e., some of the OTUs
may take zero values. Using such microbial compositional
data, researchers are interested in understanding the interplay
between microbiome, diet, genome and human health (Clemente
et al., 2012; den Besten et al., 2013). Accordingly, there is an
urgent need for statistical methods for analyzing these complex
microbial count data. This is an active area of research and
a variety of statistical and computational methods have been
proposed in the literature to answer a variety of scientific
questions. For a review one may refer to Li (2015) and Mandal
et al. (2015). The latter described in detail various statistical
parameters associated with microbial compositional data and
discuss which are estimable, and hence testable, and which are
not. They proposed Aitchison’s log-ratio based methodology
(Aitchison, 1982, 1985, 1986) called ANCOM for comparing the
taxa abundance at the ecosystem level in two or more groups or
populations. Earlier, Xia et al. (2013) also considered Aitchison’s
log-ratio based methodology for microbiome data and proposed
a penalized likelihood based methodology to select covariates
influencing microbiome expression.

Excess zeros in microbiome data present a challenge when
analyzing these data, specifically when comparing two or more
experimental groups. A common strategy to handle these excess
zeros is to add a small number called pseudo-count (e.g., 1, cf.
Xia et al., 2013; Mandal et al., 2015). Although adding a pseudo-
count appears to be a reasonable and a simple strategy, it is ad-
hoc. Other strategies include modeling excess zeros using various
probability models (Paulson et al., 2013; Chen and Li, 2016).
However, such models often make an implicit assumption that
all zeros can be explained by a common probability model. As
described in this article, this is not always the case as there
are potentially three different sources of zeros in microbiome
data. The first major contribution of this paper is a method
which identifies the three major types or sources of zeros in
microbiome data. The second major contribution of this paper
is to compare the mean relative abundance of taxa in two or
more groups while taking into consideration the compositional
structure and the type of zeros in the data. Unlike ANCOM
(Mandal et al., 2015), which compares the taxa abundance in the
ecosystem of two or more groups, the proposed methodology
compares the abundance of taxa relative to a background value.
The method is general enough that the reference background
value can be a specific taxon the user is interested in or it can
be some suitable background value specific to each specimen,
such as the geometric mean (Aitchison’s centered log-ratios). The
main idea is to normalize data within each specimen so that any
background values within the specimen are eliminated. This idea
is analogous to what is often done in gene expression studies. If a
particular taxon is used as the reference taxon or reference value
, then we assume that the taxon is present in all specimens. Thus
the normalizing variable is same across all specimens. From our
experience, in practice this condition is not particularly stringent,
especially if the researcher is interested in studyingmicrobiome at
the genus or a higher level of the phylogenetic tree. For example,
in the Yatsunenko et al. (2012) study consisting of 531 samples
over three geographical locations (US, Venezuela and Malawi)
there exist at least one taxon (at the genus level) that is present

in all samples. These data are discussed later in this manuscript.
If no such taxon exists, then the proposed methodology can
be implemented using the geometric mean as the reference to
correct for the background abundance levels of each specimen.

In some applications researchers are interested in performing
inferences regarding mean relative abundances of individual
taxon in the ecosystems of more than two ordered groups.
For example, one may be interested in comparing the mean
relative abundances of individual taxon in subjects ordered by
different levels of fat intake or levels of dietary supplements
or subjects belong to different age groups etc. In all such
situations the classical two-sided tests are not as informative
or powerful as the constrained inference (or order restrictions)
based tests (Farnan et al., 2014; Jelsema and Peddada, 2016).
Since the proposed methodology converts the simplex data to
Euclidean space data, constrained inference theory developed in
Farnan et al. (2014) is directly applicable to the present setting.
Thus the third major contribution of this paper is to perform
constrained inference when there are more than two ordered
experimental groups. As far as we know this is the first paper
that addresses such problems in the analysis of microbiome data.
Owing to the generality of Farnan et. al. methodology to (a)
cross-sectional as well as repeatedmeasures/longitudinal designs,
(b) detecting trends in the relative abundances of taxa in two
or more ordered experimental groups such as in time course
experiments, dose-response studies or when comparing subjects
at stages of disease, (c) multiple pairwise comparisons of several
experimental groups against a pre-specified control group, the
methodology described in this paper is therefore very broadly
applicable. Thus, the proposed methodology can be used for
testing a wide range of hypotheses while controlling for false
discovery rate (FDR) at the desired nominal level. Extensive
simulations are performed to demonstrate that the proposed
methodology controls the FDR in a variety settings considered
in the simulation study while enjoying higher power than some
commonly used methods including those based on pseudo-
counts. We illustrate the methodology using the global gut data
of Yatsunenko et al. (2012).

2. NOTATION AND PROBLEM
FORMULATION

Suppose a sample of nj specimens are drawn from the jth

experimental group, j = 1, 2, . . . , J. On each specimen suppose
the abundance of p taxa are obtained. Here the word “taxa”
could be at any level of the bacterial phylogeny, e.g., species,
genus, family, order, etc., or just the counts of OTU categories
themselves. Let zijk denote the observed abundance of kth taxon,

k = 1, 2, . . . , p, in the ith specimen from the jth experimental
group. In vector notation we have zij = (zij1, . . . , zijp). For
simplicity of exposition throughout this paper, we shall take
nj = n, j = 1, 2, . . . , J even though the methodology does
not require the design to be balanced. As explained in Mandal
et al. (2015), unlike most commonly encountered biological
data, the basic counts of OTU categories within each specimen
cannot be regarded as absolute values but only relative values
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as they depend upon the sampling depth corresponding to each
specimen. In other words, it does not make sense to compare the
expected value of the observed counts between two experimental
groups. To draw any meaningful inferences regarding the taxa
abundance in two or more groups one needs to “normalize” the
data within each specimen. Since classical inference, such as t-
tests or ANOVA are not valid in the present context due to
the simplex constraint, following Aitchison (1980) and Mandal
et al. (2015) worked with log-ratios of relative abundances within
each specimen. This is equivalent to computing log-ratios of
abundances of each taxon relative to a “reference value.” Thus, for
the ith specimen in the jth experimental group, one may consider
the following expression to normalize the data zijk:

log zijk − fij(zij1, . . . , zijp), (2.1)

using some pre-specified “reference value” fij(zij1, . . . , zijp). For
example, fij(zij1, ..., zijp) = log zijb, where zijb is the count
corresponding to a pre-specified reference taxon b. Alternatively,
using the non-zero values zijk, k = 1, 2, ..., p, the user may

choose fij(zij1, . . . , zijp) = r−1
∑

{k : zijk 6=0} log zijk, where r is the

number of non-zero components in (zij1, zij2, . . . , zijp)
′, i.e., the

logarithm of the geometric mean of the OTU counts within each
experimental group j = 1, . . . , J (Aittchisons centered log-ratio).

Although the above normalization procedure eliminates the
effect of the library size within specimen, it does not account for
differences in the library sizes across specimens. To deal with this,
we make another correction to the above normalization step. We
make the assumption that all specimens within an experimental
group are a random sample from a common population of
specimens so that the observed background value for a given
specimen is a random realization from a common population
of all background values. Thus we have the following one-way
ANOVAmodel describing the observed background value:

fij(zij1, . . . , zijp) = µj + εij, (2.2)

where µj is the fixed effect due to the experimental group
j = 1, . . . , J and εij ∼ N (0, σε) is a random variable that
captures variation due to the sampling depth. This quantity
can then be predicted by the residual ε̂ij = fij(zij1, . . . , zijp) −
1
n

∑

i∈jth group fij(zij1, . . . , zijp) which can be interpreted as the best

linear unbiased predictor (BLUP) in the assumed model.
Hence in place of the typical normalization (2.1), we

normalize the raw abundances using the following normalized
formula:

yijk = log zijk −
(

fij(zij1, ..., zijp)− µ̂j

)

(2.3)

where µ̂j = 1
n

∑

i∈jth group fij(zij1, ..., zijp). This normalization

procedure can be easily extended to the case when there are
covariates present in the model. Of course, in the above formula,
all logarithms are calculated under the assumption that there are
no zero values. However, as mentioned earlier, this is not true
with the microbiome data. We address this problem in the next
section.

3. ZEROS

A special feature of a microbiome data matrix is that it is higly
sparse, i.e., a very high proportion of data entries are zero (absent
taxa). For example, at the genera level, nearly 80% of the data
matrix in the Global gut data of Yatsunenko et al. (2012) are
zero. Furthermore, corresponding to a given taxon, the counts
may vary from 0 to the order of 105 across samples within an
experimental group. In this section we develop a pre-processing
step that not only helps us potentially understand the different
types of zeros in the data but address them accordingly.

3.1. Outlier Zeros
For a given taxon k in the jth group, we declare the sample i to
be an “outlier zero” if its count is zero and is declared to be an
outlier by the methodology described below. In our assessment,
this taxon is recorded as zero due to some extraneous reasons but
not because it is below detection limits due to sampling depth.
Thus, as far as taxon k is concerned, the ith sample within group j
is an outlier.

We first convert the count data into continuous scale by
adding a pseudo-count of 1 and normalize the data using the
transformation pseudo-count (2.3). Let yij = (yij1, ..., yijp) denote

the p dimensional vector for ith observation in the jth group, then
for each j, k, we model yijk using the following mixture of normal
distributions. Since our outlier detection algorithm is applied to
each experimental group j and each taxon k, for simplicity of
exposition, we drop the subscript j and k from the following:

yi ∼
i.i.d πN (µ1, σ1)+ (1− π)N (µ2, σ2), i = 1, . . . , n (3.1)

The main idea of our methodology is that when means of
the two normal distributions N (µ1, σ1) and N (µ2, σ2) in the
above mixture are “well separated and the left cluster, i.e. cluster
corresponding to mean µ1, forms only a small fraction of the
total number of observations of the group, i.e. π is small, then
it is reasonable to assume that the left cluster is a collection of
outlier observations in the group and the observed zero might be
a potential outlier. On the other hand, if the two groups are not
well separated then the observed zero may not be an outlier zero
but zero due to other reasons. Such zeros are handled later in this
section.
Identification of two clusters: For a given taxon within a group,
we declare that its distribution is a mixture of two “distant”
normal distributions if the following two criteria are satisfied:

1. Separation: The 97.5th percentile of the first distribution
does not overlap with the 2.5th percentile of the second
distribution, i.e., µ1 + 1.96σ1 < µ2 − 1.96σ2.

2. Frequency: One distribution is “c % heavier” than other, i.e.,
π < c for some pre-specified c.

The above determinations, along with the estimation of
parameters π ,µ1,µ2, σ1, σ2 of the mixture (3.1) can be
performed efficiently by an algorithm due to Peddada andHwang
(2002). We refer to the data cells identified by this mechanism as
“outlier zeros” which are ignorable entries (replaced by NA in the
data).
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3.2. Structural Zeros
In many cases, because of the nature of the experimental groups,
some taxa are not supposed to be present in samples obtained
from some groups but may be present in others. For example,
babies exposed to antibiotics may be devoid of some taxa in their
fecal samples, which are present in healthy babies not exposed
to antibiotics. Although, in theory the antibiotics exposed babies
are expected to be completely devoid to some taxa, due to
variability in the exposure and other factors, such taxa may not
be 100% missing in the antibiotics exposed babies. Suppose p
represents the proportion of non-zero taxa across all specimens
in an experimental group. Then we expect p to be close to zero,
if not exactly zero, in experimental groups where the taxon is
not expected to be present. We refer to such zeros as structural
zeros. For the jth taxon in the kth experimental group, let p̂jk =
∑n

i=1 zijk
/

n. Then we declare the taxon to have a structural zero
value if either of the following is true.

1. p̂jk = 0

2. p̂jk − 1.96
√

p̂jk(1− p̂jk)/n ≤ 0.

Taxa that are identified as structural zeros in any given group
are ignored from all future analyses for that group. Thus, for
example, if in a study there are three experimental groups and
if a particular taxon t is declared to have structural zero in Group
1 but not in Groups 2 and 3, then we automatically declare that
taxon t is differentially abundant in Group 2 relative to Group
1 as well as in Group 3 relative to Group 1. We then compare
the relative abundance of t between Groups 2 and 3 using the
methodology developed in this paper.

3.3. Sampling Zeros
If an observed zero in the data does not qualify as an outlier zero
or as a structural zero, then we declare such a zero to be sampling
zero, perhaps caused by the sampling depth. In other words,
these zeros are potentially due to the fact the taxon is relatively
a rare taxon compared to other taxa in the specimen and due
to technological (or other) reasons it was not observed. These
sampling zeros are imputed by using a small pseudo-count value
(e.g., 1) before analyzing the data. More generally, an imputation
approach could also be applied to these left over zeros, however
this is outside the scope of this manuscript.

To summarize, using the above process, we obtain a modified
data set where; (a) samples with structural zeros are suitably
removed from the data matrix, (b) the outlier zeros are treated as
missing at random (MAR) in the sense of Rubin (1976) and the
corresponding entries are replaced as “NA”, and (c) the sampling
zeros are imputed as 1.

4. ANALYSIS OF TWO OR MORE GROUPS

In rest of this paper, we work with normalized data y described in
Equation (2.3) after suitably dealing with zeros as described in the
previous section. For the kth taxon in the jth experimental group,
for i = 1, 2 . . . , n, let µjk = E(yijk) and σ 2

jk
= Var(yijk). Using

the zeros corrected data, we obtain the following unconstrained
estimators for µjk and σ 2

jk
, for j = 1, 2, . . . , J and k = 1, 2, . . . , p:

µ̂jk =

∑n
i=1 1[yijk 6= NA]yijk

∑n
i=1 1[yijk 6= NA]

,

σ̂ 2
jk =

∑n
i=1 1[yijk 6= NA](yijk − µ̂)2
∑n

i=1 1[yijk 6= NA]− 1
(4.1)

In many applications, researchers are interested in comparing
taxa relative abundances in two or more experimental groups.
Depending upon the scientific question, one may perform a
wide range of analyses. In this section we describe four different
classes of analyses one may perform. In each case the statistical
parameters of interest are µjk, j = 1, 2, . . . , J, k = 1, 2, . . . , p.

Note that, by construction, within each group j,
∑p

k=1
µjk = 0.

Hence without loss of generality, we limit rest of the discussion

to the first p− 1 taxa because µjp = −
∑p−1

k=1
µjk.

4.1. H1: Two-Sided Global Hypotheses
Since the data yijk belong to the Euclidean space, therefore for
each taxon k, k = 1, 2, . . . , p − 1, we can use standard linear
model based methodology to test such hypotheses on the group
means µ1k,µ2k, . . . ,µGk. adjusting for any covariates present in
the data. If there are repeated measures or longitudinal data, then
one can invoke the standard linear mixed effects models theory
and test two-sided global hypotheses such as:

H0 : µ1k = µ2k = . . . = µJk

Vs.

µrk 6= µsk,

for some r 6= s. The p-values obtained for each taxon k,
k = 1, 2, . . . , p − 1, can be corrected for multiple testing
using a suitable multiple testing correction procedure, such as
Bonferroni or Benjamini-Hochberg (BH), depending upon the
criterion of interest, namely, the Familywise error rate (FWER)
or the false discovery rate (FDR).

4.2. H2: Directional Multiple Pairwise
Testing
For each taxon k, k = 1, 2, . . . , p − 1, often researchers
are not interested in testing the global hypotheses H1 but
are interested in pairwise comparisons among some (or all)
pre-specified experimental groups. Furthermore, within each
pairwise comparison, a researcher may be interested in knowing
if the (relative) abundance of a taxon increased or decreased
from one group to the other. For example, a researcher may
be interested in testing whether there is a greater (relative)
abundance of Bifidobacterium Sp. in vaginally born babies who
were never exposed to antibiotics during the first four months
of life, than vaginally born babies who received at least one
dose of antibiotics during the first four months. To draw such
directional inferences in pairwise comparisons while controlling
for the overall false discovery rate, one may apply the mdFDR
(mixed directional FDR) controlling procedure introduced in
Guo et al. (2010). When there are no covariates present,
the Guo et al. (2010) procedure is available in the software
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ORIOGEN4.1. https://www.niehs.nih.gov/research/atniehs/labs/
bb/staff/peddada/.

4.3. H3: Directional Multiple Pairwise
Testing against a Specific Experimental
Group
Hypotheses H2 deals pairwise comparisons among some pre-
specified subset (or all) experimental groups. However, there
are instances where researchers may be interested in testing
all experimental groups against one pre-specified experimental
group, such as, for example the control group. In such cases
the power of Guo et al. (2010) procedure can be improved by
appealing to the Dunnett’s type test derived in Grandhi et al.
(2016). The R-code for the method is provided in Grandhi et al.
(2016).

4.4. H4: Testing for Patterns
In some applications, a researcher may not be specifically
interested in pairwise comparisons, but may be interested in
detecting overall trends/patterns in the relative abundance of a
taxon over multiple ordered (or partially ordered) experimental
groups. Order (or partial order) among experimental groups
arises when the experimental groups represent time or dose or
stages of disease etc.

For example, researchers may be interested in understanding
the trends in (relative) abundance of taxa across four partially
ordered groups, namely, (G1) Vaginally born babies who were
not exposed to any antibiotics during the first four months after
birth, (G2) Vaginally born babies who were exposed to at least
one dose of antibiotics during the first four months of after
birth, (G3) C-Section born babies who were not exposed to any
antibiotics during the first four months after birth and (G4) C-
Section born babies who were exposed to at least one dose of
antibiotics during the first four months of after birth. In this
case, groups G1 and G4 are the extreme groups in terms of
gut microbial environment. In G1 there are no interventions,
and in G4 there are two interventions (C-section and antibiotics
exposure). Groups G2 and G3 are intermediate groups with
one intervention each (either C-Section or antibiotics exposure).
Although, groups G2 and G3 are intermediate to G1 and G4, the
order betweenG2 andG3 is uncertain and hence we have a partial
ordering among the four groups.

A study design such as the one in this example can be
represented using the Figure 1C, called a simple loop order,
where, for each taxon, the researcher is interested in obtaining
two sets of patterns, namely, pattern over G1, G2, and G4 and
a pattern over G1, G3, and G4. Note that members within
each set are completely ordered in terms of baby’s exposure to
interventions. When groups are ordered, one may be interested
in identifying taxa whose mean relative abundance increases
(or decreases) as we go from one extreme group (e.g., Group
1) to the other extreme group (e.g., Group 4) within each set.
Such monotonic patterns, increasing or decreasing, are called
the simple order (Figure 1A). More, precisely, for each taxon,
k = 1, 2, . . . , p− 1, one may be interested in testing the following

hypotheses:

H10 : µ1k = µ2k = µ4k

Vs.

H1a :{µ1k ≤ µ2k ≤ µ4k}
⋃

{µ1k ≥ µ2k ≥ µ4k},

and

H20 : µ1k = µ3k = µ4k

Vs.

H2a :{µ1k ≤ µ3k ≤ µ4k}
⋃

{µ1k ≥ µ3k ≥ µ4k}.

In some applications one may be interested in identifying taxa
that have an umbrella shaped pattern as in Figure 1B.

As observed above, rather than using some arbitrary
parametric functions, one can describe various patterns or trends
using mathematical inequalities, called order restrictions. To
determine the best pattern or trend for each taxon we adopt
the strategy in Peddada et al. (2003), where a similar problem
was considered for time-course gene expression data. For each
taxon, we test the null hypothesis that there is no change in
mean relative abundance (in log scale) over all the experimental
groups against the alternative hypothesis which is the union of
all patterns of interest. For each pattern we construct a suitable
order restricted test and the final test statistic is taken to be the
maximum of all test statistics. The null distribution of the test
statistic is derived using the residual bootstrap based procedure
developed in Farnan et al. (2014) which is implemented in the
package called constrained linear mixed effects (CLME), an R
code developed by Casey Jelsema and is described in Jelsema and
Peddada (2016). The R code allows for modeling covariates as
well as longitudinal/repeated measurements data. Since there are

FIGURE 1 | Illustration of hypotheses H1a and H2a testing for trends amongst

groups.
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a large number of taxa, we perform multiple testing corrections
using the BH procedure to control for the overall FDR. As in
Peddada et al. (2003), if for a taxon, the null hypothesis is rejected
at the desired level of significance (FDR ≤ α), then we assign
the pattern with largest value of the test statistic. Thus, we are
essentially adopting the ORIOGEN methodology developed in
Peddada et al. (2003) to the present context.

5. NUMERICAL RESULTS

We evaluate the performance of our proposed methodology,
which we refer to as ANCOM-II, using two distinct simulation
studies. The first is inspired by a real data set collected by
Yatsunenko et al. (2012). This setup also allows for all three
kinds of zeros described in the paper. The second is based
on a negative binomial distribution, which is commonly used
to model OTU count data of microbiome studies. The results
of the proposed method are obtained by filtering outlier zeros
at a threshold of c = 0.15. We compare the proposed with
methodology with three other methods, namely, DESeq2 (Love,
Huber and Anders 2014), t-test based on sample proportions
(Prop-T) and t-test based on data transformed via (2.3) after
adding a pseudo-count of 1 to each entry (Pseudo-C). Note that
a comparison between ANCOM-II and the Pseudo-C method
provides numerical results on how our assessment of zeros
impacts the analysis. We also provide a user friendly R code
in the supplementary materials to implement the proposed
methodology described in this section.

5.1. Simulation Study Based on Real Data
This simulation study is based on the OTU count data (at
the genus level) corresponding to the US group provided in
Yatsunenko et al. (2012). We constructed two groups, namely,
cases and controls (J = 2). Each group consisting of 175
subjects and 200 taxa. Among these 200 taxa, 100 are taken to be
differentially abundant. As detailed below, our simulation study
allows for all three forms of zeros discussed in the paper.

Step 1 Generate a simple random sample of 175 subjects from
the US group in Yatsunenko et al. (2012) data. Process the data
as described in Section 2 by taking the genus Bifidobacterium as
the reference taxon for the transformation (2.3). This provides
us with a 175 × 661 data matrix. Let m = (m1, ...,m200) denote
the vector of 200 column means which are highest in magnitude
obtained after normalization of (2.3).

Step 2 (Outlier zeros) Using the vector m simulate 175 case
and control samples using a bimodal distribution as follows. For
i = 1, .., 175

yi1k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3, 1),

k = 1, ..., 100

yi2k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3, 1),

k = 1, ..., 50

yi2k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3+ δ, 1),

k = 51, ..., 100.

For each simulated repetition π is chosen uniformly between
(0.85,0.95).
Step 3 (Sampling zeros) Using the vector m simulate 175 case
and control samples with a unimodal distribution. For i =

1, .., 175

yi1k ∼iid N (mk, 1), k = 101, ..., 175

yi2k ∼iid N (mk, 1), k = 101, ..., 125

yi2k ∼iid N (mk + δ, 1), k = 126, ..., 175

Step 4 (Structural zeros) Create 175 case and control samples
for taxa that are structurally zero in the control group. For i =
1, .., 175, k = 176, ..., 200, set yi1k = 0 and yi2k = N (mk, 1) with
probability 0.01.
Step 5 Back transform the above continuous scale data to the
count scale by inverting the transformation (2.3) and rounding
the observations. Specifically, using the transformation

zijk = eyijk
[

zijb
/(

∏

i

zijb
)1/n

]

here zijb represents the counts of “Bifidobacterium” taxa in the
subset of the global gut data described in Step 1. In the above
steps, all values between (0,1) are rounded to zero counts. Thus,
although we are generating continuous random variables, with
a positive probability we generate zeros. Recall that in Step 2

samples are generated from amixture of two independent normal
distributions. The observations corresponding to zero counts
are induced by the first component of the mixture distribution.
Since the two components are independently generated, the zero
observations are not dependent on the taxa itself (assuming
that the true distribution of the taxa is given by the second
component). Thus, these zeros, by design, represent observations
that aremissing at random.On the other hand, the zeros obtained
in Step 3 are from a single distribution, and are zero because zijk
with values between 0 and 1 are set to 0.

Step 6 Apply the three methods on the above simulated count
data. Repeat Steps 1 through 6 and estimate the false discovery
rate (FDR) and power of each method.

The left and right panels of Figure 2 provides the estimated
FDR and power of the four methods, respectively. Here the shift
parameter of Steps 2 and 3 is set to δ = 0.5. In this setting, on
average (red dot), our proposed method, DESeq2 and Pseudo-C
appear to control the FDR at the nominal level of 0.05. However,
in terms of power our method appears to outperform the rest.
In Figure 3, we further examine the effect of a varying shift
parameter δ. We compare the powers of the four methods for
100 distinct values of δ ∈ (0, 0.5). Once again we note that the
proposed method ANCOM-II, tends to have larger power than
the others. Specifically, a comparison between ANCOM-II and
the Pseudo-C method emphasizes the importance of identifying
the various sources of zeros and dealing with them accordingly,
rather than using a constant pseudo-count for all observed zeros.
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5.2. Simulation based on Negative Binomial
Distribution
In this section we investigate the performance of the four
methods by generating data according to negative binomial (NB)
distribution as follows. For j = 1, 2, k = 1, ..., 200, we generate,

zijk ∼ NB(µjk, sjk), i = 1, .., 100 (5.1)

where µjk, sjk are the mean and dispersion parameters of the
negative binomial distribution respectively, in all cases we set
sjk = µ2

jk
. The control samples are generated for j = 1 and

k = 1, .., 200 by choosing µjk from a uniform distribution over
(1,1500). The case samples are generated by shifting the mean
of the first one hundred taxa. Thus,for j = 2, k = 1, .., 100
set µjk = µ1k + 5k. The remaining k = 101, ..., 200 micorbes
for group j = 2 are generated with the same mean parameters
as the control samples. Furthermore we induce additional zeros
in the data set by multiplying the previously generated counts
with independent Bernoulli random variables wijk = 0 with
probability 1 − πjk where πjk is chosen uniformly between
(0.8,1). This simulation experiment is repeated 100 times and
the FDR and power comparison results are reported in Figure 4.
From these simulation results we note that only ANCOM-II and
Pseudo-C have estimated FDR at or below the nominal level
of 0.05. Furthermore, between the two methods, ANCOM-II
enjoys higher power. DESeq2 and Prop-T have unacceptably high
estimated FDR.

6. ANALYSIS OF GLOBAL HUMAN GUT
MICROBIOME DATA

We illustrate ANCOM-II using global human gut microbiome
data of Yatsunenko et al. (2012). The data consists of microbial
taxa counts obtained from 317 subjects from US, 99 from
Venezuela and 114 fromMalawi. We used Bifidobacterium as the
reference taxon because it was present in all samples.

Let Si denote the set of genera with i countries having
structural zeros. According to our method, by taking c = 0.15
we found that out of 661 genera, 262 belong to S0, 86 belong

to S1, 95 belong to S2 and 218 belong to S3. Depending upon
the set a genus belongs to, the method tests suitable hypotheses
as outlined below (the corresponding R code is provided in the
supplementary materials).

Hypotheses 1. For genera j ∈ S0 we test the following hypothesis

H0j : µUS,j = µVenezuela,j = µMalawi,j, against

Haj :

{

µUS,j ≤ µVenezuela,j ≤ µMalawi,j

}

∪
{

µUS,j ≤ µVenezuela,j ≥ µMalawi,j

}

∪
{

µUS,j ≥ µVenezuela,j ≤ µMalawi,j

}

∪
{

µUS,j ≥ µVenezuela,j ≥ µMalawi,j

}

Hypotheses 2a. For genera j ∈ S1, when a taxon is structurally
zero in Malawi data we test the following hypothesis

H0j : µUS,j = µVenezuela,j against

Haj :

{

µUS,j ≤ µVenezuela,j

}

∪
{

µUS,j ≥ µVenezuela,j

}

FIGURE 3 | Power comparisons among ANCOM II, DESeq2, Prop-T, and

Pseudo-C, for different values of δ ∈ (0, 0.5).

FIGURE 2 | FDR (Left) and Power (Right) comparisons among ANCOM II, DESeq2, Prop-T, and Pseudo-C. Power comparisons are for δ = 0.5.
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FIGURE 4 | FDR (Left) and Power (Right) comparisons among ANCOM II, DESeq2, Prop-T, and Pseudo-C for simulation based on negative binomial distribution.

Hypotheses 2b. For genera j ∈ S1, when a taxon is structurally
zero in Venezuela data we test the following hypothesis

H0j : µUS,j = µMalawi,j against

Haj :

{

µUS,j ≤ µMalawi,j

}

∪
{

µUS,j ≥ µMalawi,j

}

Hypotheses 2c. For genera j ∈ S1, when a taxon is structurally
zero in US data we test the following hypothesis

H0j : µVenezuela,j = µMalawi,j against

Haj :

{

µVenezuela,j ≤ µMalawi,j

}

∪
{

µVenezuela,j ≥ µMalawi,j

}

Hypotheses 3. For genera j ∈ S2 , which is structurally zero
in Malawi and Venezuela data, we declare it to be differentially
abundant (relative to a reference taxon) in the US compared to
the other two countries. A similar conclusion is arrived for the
other two possibilities.

Hypotheses 4. All genera belonging to thisset are discarded
because they are considered to be absent in all three data sets.

Using the above approach ANCOM-II, relative to
Bifidobacterium identified a total of 83 differentially abundant
genera. Furthermore, ANCOM-II identified patterns of relative
abundance of genera over the three countries. For genera in
set S0 that are significant we discovered 34 genera belong
to the phylum Firmicutes, followed by Proteobacteria (25),
Actinobacteria (6), Tenericutes (5), Bacteroidetes (5) and others.
Only 1 genera in set S1 (absent in Malawi) was found significant
and belonged to the phylum Proteobacteria. Numbers within
parenthesis represent the number genera within each phylum
that were significant. We note that, the second highest number of
differentially abundant genera belonged to phyla Proteobacteria.
This is surprising given that this is typically one of the smaller
phyla in the gut microbiome. This phylum consists of a large
number of opportunistic pathogenic bacteria and an increased
abundance of Proteobacteria is known to be associated with the
disease necrotizing enterocolitis (NEC) Wang et al. (2009); Mai
et al. (2011) and Inflammatory Bowel Disease (IBD), [Balfour

Sartor and Mazmanian (2012)]. The genera in this phylum were
observed to be uniformly lower in the US group as compared
to the other two. A total of 29 taxa were present in US but
structurally zero in Venezuela and Malawi, 53 were present in
Venezuela but structurally zero in US and Malawi, lastly 13 were
present in Malawi but structurally zero in Venezuela and US. In
addition to ANCOM-II, we also applied DESeq2, Prop-T and
Pseudo - C methods to these data. The results are summarized in
the Venn diagram provided in Figure 5.

For comparison purposes, we re-analyzed the data using
ANCOM-II but using the geometric mean (GM) of all non-zero
taxa within subject as the reference, instead of Bifidobacterium.
All taxa identified using Bifidobacterium as the reference taxon
were a subset of taxa identified by the geometric mean as the
reference taxon. The results are summarized in the Venn diagram
in Figure 5.

7. DISCUSSION

One of the challenges when dealing with compositional
microbiome data is the presence of a large frequency of
zero counts. At the moment there is no generally applicable
methodology for comparing relative abundances of taxa among
two or more populations/groups in presence of excess zero
counts. In this article we took the first step toward identifying
different types of zero counts and provided a strategy to deal
with them. We take a principled approach to these data by
classifying these zero counts into three different types. Inspired
by gene expression studies, we proposed a simple method to
“normalize” the data to eliminate specimen level effects. To
deal with specimen specific background value, one may use a
taxon that is present in all specimens, such as Bifidobacterium
in the example considered in this paper, or one can use
the geometric mean of taxa within the specimen. From our
empirical studies, the choice of the background does not seem
to affect the FDR, but could impact the power. Using this
framework, a variety of statistical tests can be carried over
from the literature depending upon the scientific question and
hypotheses of interest. In this paper we describe four different
types of statistical tests that are of common interest. Methodology
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FIGURE 5 | (Left) Venn diagram illustrating overlapping features detected by different procedures. (Right) overlapping features detected by assuming

Bifidobacterium as normalizer or the geometric mean of all taxa as the normalizer.

developed in this paper, called ANCOM - II, is a general
procedure that is not only applicable to cross-sectional as well
as longitudinal designs, but in each case it can be used for
detecting trends and patterns in a taxon over two or more
groups. Our simulation study suggests that the methodology
controls the overall false discovery rate while maintaining
high power. In addition, since the methodology is based on
residual bootstrap, it does not make any major distributional
assumptions. For testing non-directional alternative hypotheses
(hypothesis H1), ANCOM-II can be implemented using the R-
code accompanying this paper. If no covariates are present and
if there are no repeated measurements, then using residuals
calculated in Equation (2.2) ANCOM-II can be implemented for
testing directional alternatives H2, H3 by applying ORIOGEN.
However, if covariates are present and if there are repeated
measurements then ANCOM-II can be implemented for testing
directional alternatives H2, H3 by applying CLME. At the
moment we do not have a unified user friendly code that would
be suitable for all scenarios described above. A general purpose
software is being developed and we hope to release it in the near
future.
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Studies of microbial communities by targeted sequencing of rRNA genes lead to
recovering numerous rare low-abundance taxa with unknown biological roles. We
propose to study associations of such rare organisms with their environments by a
computational framework based on transformation of the data into qualitative variables.
Namely, we analyze the sparse table of putative species or OTUs (operational taxonomic
units) and samples generated in such studies, also known as an OTU table, by collecting
statistics on co-occurrences of the species and on shared species richness across
samples. Based on the statistics we built two association networks, of the rare putative
species and of the samples respectively, using a known computational technique,
Association networks (Anets) developed for analysis of qualitative data. Clusters of
samples and clusters of OTUs are then integrated and combined with metadata of the
study to produce a map of associated putative species in their environments. We tested
and validated the framework on two types of microbiomes, of human body sites and
that of the Populus tree root systems. We show that in both studies the associations of
OTUs can separate samples according to environmental or physiological characteristics
of the studied systems.

Keywords: metagenome, microbiome, unsupervised analysis, alpha and beta diversity, sparse data, Anets,
qualitative data

INTRODUCTION

The rare low-abundance microbial species, which have been referred to as the “rare biosphere”
(Sogin et al., 2006), have attracted increasing attention in the recent literature because of their
unknown ecology and potential evolutionary and ecological importance (Youssef et al., 2010;
Pedros-Alio, 2012; Coveley et al., 2015; Lynch and Neufeld, 2015; Sharon et al., 2015; Jousset
et al., 2017). Although sequencing errors and undersampling of OTUs may contribute to extent
of the “rare biosphere,” the advent of new bioinformatics tools (Schloss and Westcott, 2011;
Preheim et al., 2013; Edgar and Flyvbjerg, 2015; Sharon et al., 2015; Callahan et al., 2016) as well
as experimental and technological approaches (Jousset et al., 2017) are increasingly compelling
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of the presence and complexity of these rare taxa. Biological
explanations (Pedros-Alio, 2012; Coveley et al., 2015; Lynch and
Neufeld, 2015; Jousset et al., 2017) and other factors, such as poor
taxonomic resolution of short reads, especially for closely related
species or those poorly represented in the genomic database,
incomplete or inadequate sampling, dispersal limitation, spatial
and temporal partitioning of the environment, and the nestedness
of ecological mutualistic networks, may contribute to such results
(Bascompte et al., 2003; Youssef et al., 2010; Rosindell et al.,
2011; Unterseher et al., 2011; James et al., 2012; Mi et al., 2012;
Pedros-Alio, 2012; Suweis et al., 2013).

The numerous rare OTUs are a typical output of 16S rRNA
amplicon sequencing studies, especially those with many and
diverse samples. The resultant sparse datasets present a challenge
for common statistical tools. The data matrix produced by such
studies are usually comprised of species-like groups (rows) and
their abundances calculated as the number of sequencing reads
representing each species across multiple samples (columns).
The species-like groups are typically inferred by a conventional
aggregation of sequences into OTUs based on a sequence identity
threshold or, in more recent work, by amplicon sequence variants
(ASVs) (Callahan et al., 2016; Callahan, 2017). In both cases, most
species-like groups could be representative of species-specialists;
they are not only low in abundance in a given sample, but are also
rare across samples and environments. Known computational
tools for analyzing the sparse data often address the sparsity
problem by filtering out very rare species or by collapsing species
to a higher-level hierarchy. Although the aggregation reduces
sparsity (dominance of zeros in the dataset) of the data, the
OTUs-level insights into the structure of microbiome will be lost.
By excluding the rare OTUs, such as those found in less than
30% of samples, we also may lose information. It is not clear how
extensive this loss might be.

In addition to sparsity, the 16S rRNA gene sequencing
data have other challenges including their compositionality
and dimensionality (essentially greater number of OTUs than
the number of samples). The data compositionality means
that we don’t know the real OTU abundances and have to
deal with proportions of species relative to their sum in each
sample. Several methods have been proposed to address the
challenges (McMurdie and Holmes, 2014; Tsilimigras and Fodor,
2016). The most recent methods proposed to infer species–
species relationships from the 16S rRNA amplicon datasets
include Compositionality Corrected by REnormalization and
PErmutation (CCREPE) (Faust et al., 2012), metagenomeSeq
(Paulson et al., 2013), Sparse Correlations for Compositional
data (SparCC) (Friedman and Alm, 2012), a mixture model
framework (McMurdie and Holmes, 2014), SParse InversE
Covariance Estimation for Ecological Association Inference
(SpiecEasi) (Kurtz et al., 2015), and gCoda (Fang et al., 2017).
Each of the tools addresses dimensionality and compositionality
challenges of the datasets using different computational
approaches. The cumulative sum scaling normalization and the
zero-inflated Gaussian distribution mixture model are used in
metagenomeSeq to account for biases resulting from under-
sampling when selecting the differential abundant OTUs. The
log-ratio transformation and the variance are used in SparCC to

overcome compositionality of the data. The data dimensionality
and compositionality are even more efficiently addressed by
SpiecEasi and gCoda using the data transformation borrowed
from the compositional data analysis and then inferring the
interaction graph from the transformed data by neighborhood
selection or by sparse inverse covariance selection.

All abovementioned tools, however, analyze the OTU table
after filtering out most rare OTUs (Supplementary Figures S1A–
D). In case of SparCC, the filtering is the most stringent because
the algorithm employs log-transformations of the read counts.
The basic assumption of the approach is that all OTUs are
present in the dataset; therefore small values must be assigned
to undetected OTUs to include them in the analysis. The
percentage of rare OTUs may be even greater in studies with
large number of samples or when sampling takes place in more
diverse environments, such as the Human Microbiome Project
(HMP) dataset and the Populus Root Microbiome (PRM) dataset
(Supplementary Figures S1E,F). In the study we have made an
attempt to explore the biological role of the rare low-abundance
OTUs in these two environments using existing data from
Human body sites (2012) and from Populus roots (Shakya et al.,
2013). To reduce the burden of filtering for the rare OTUs and
overcome the problem of compositionality we treat the OTUs
as qualitative variables and apply an analytical tool specific for
analysis of such datasets.

RESULTS

Approach
Our initial analysis of the Human and Populus microbiome
datasets reveals that both datasets are in agreement with the
well-known occupancy–abundance relationship (Gaston, 1996),
which positively links the species abundances and the number
of sites/samples they occupy. We find that in both datasets,
OTUs that are more common across samples are also more
abundant, and rare OTUs across samples are usually less
abundant (Figures 1A,B). Notably, the number of common
abundant OTUs is extremely small in the datasets. Considering
this observation we decided to treat the rare OTUs as qualitative
data by replacing the putative species abundances with the
presence/absence call (0/1 values). Although in this approach
we lose information on abundances, at the same time, the
resulting dataset will not be compositional. In addition, we get
the chance to transform the data to collect additional statistics
on co-occurrences of species with each other and to quantify
interdependencies of the species. The quantification is based on
an assumption that rare OTUs (putative species) are associated
because they are dependent upon one another in each studied
environment. They may be dependent metabolically, when
metabolites produced by one species are consumed by another
species. They also may have similar optimal growth conditions or
offer complementary functions to support microbial community
as a whole (Jousset et al., 2017). All these factors may lead to co-
occurrences of the rare OTUs in the samples. We quantify the
co-dependence of OTUs by calculating a co-occurrence profile of
each OTU with all other OTUs in the data and by interrogating
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FIGURE 1 | Occupancy–abundance relationship. (A) Human Microbiome Project (HMP) dataset (43140 OTUs × 2910 Samples). (B) Populus Root Microbiome
(PRM) dataset (24434 OTUs × 83 Samples).

FIGURE 2 | Computational framework used in the study to explore
associations of rare species.

similarities of the emerged profiles for each pair of OTUs. We
performed the calculations by applying a previously developed
statistical tool, Association Network (Anets) (Karpinets et al.,
2012), used for discovering of associations in qualitative datasets1

and refer to the resultant network as Anets-OTUs.
In addition to that Network, we also build the network

of samples, Anets-Samples, using the same algorithm. By
combining both networks we produce a map where associated
OTUs and associated samples are clustered according to their
presence/absence. This map can be further compared with
characteristics of the studied environments. An overview of this
computational framework is shown in Figure 2 and details of the
implementation are provided in Supplementary Data Sheet S1.

1https://sourceforge.net/projects/Anets/

We also used a simulated dataset (Figure 3A) to illustrate
and explain computations underlying the proposed framework.
In this study, we have two synthetic microbial communities with
four associated species (circles) in the first community and four
associated species (triangles) in the second community. Species in
each community are co-dependent, and therefore more often co-
occur in their parent environment. We made 12 random samples
of species from the communities and organized the sampling
results as an OTU table (Figure 3B) with species/OTUs in rows
and samples in columns. All species identified in the samples are
rare; they are found only in 2–5 out of 12 samples. Thus, we
replaced the species abundances with the presence/absence (1/0)
values.

Association Network of Species
To generate the Anets-OTUs we first transform the OTU table to
produce a new table where rows and columns consist of OTUs
and each cell shows the number of samples where two OTUs co-
occur in the data (Figure 3C). The transformed table, therefore,
gives us the co-occurrence profiles for each OTU with the rest.
We further use these profiles to infer pair-wise associations of
the OTUs (Figure 3D). Although the input of the approach
is OTU table with 1/0 values instead of counts, the statistics
collected in the transformed table produces continuous variables.
The Anets program provides three options to quantify the pair-
wise similarities of the profiles. The options include Spearman
correlation (default), Pearson correlation, and cosine (Jaccard
index). While alternative similarity metrics may be appropriate
for particular datasets, in these studies we found that the Pearson
correlation coefficient was most robust for identifying association
networks. We calculate the Pearson correlation to measure
similarity of the profiles for each pair of OTUs and consider
the OTUs associated if the correlation coefficient R > = 0.30.
The selected pairs of OTUs predict the network (Anets-OTUs)
of seven species with seven associations separated into two
clusters/communities (Figure 3E). The species inferred by the
Anets-OTUs in each cluster correspond to two communities
provided in the mock study (Figure 3A). The algorithm did not
recover only one species from the Environment 1 of the study.
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FIGURE 3 | Generating Anets-OTUs using the simulated study. (A) A simulated study of two synthetic microbial communities: four species shown by colored (red,
green, blue, brown) circles (Community 1), and four different species shown by colored (red, green, blue, brown) triangles (Community 2). The same color of the
species indicates their close taxonomic relationship. To introduce noise in sampling, two species from the second community were added to the first community, and
one species from the first community was added to the second community. Six samples were taken to identify species in each community and to generate an OTU
table with the species abundances. (B) OTU table of the simulated study. (C) The table of co-occurrences for each pair of OTUs. Values of the table show the
number of samples where each pair of species co-occurs. (D) Pair-wise similarities of the co-occurrence profiles for each pair of species. Red colored associations
were used to generate Anets-OTUs. (E) Anets-OTUs. (F) The table of the shared species richness for each pair of samples. Values of the table show how many
OTUs are shared for each pair of samples. (G) Pair-wise similarities of the shared species richness profiles for each pair of samples. Red colored associations were
used to generate Anets-Samples. (H) Anets-Samples. (I) A map of the associated species and samples.
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While, the calculations described in this small illustrative
dataset can be implemented in Excel, in case of real datasets,
with many samples and OTUs, the calculations can be performed
using the Anets program (Karpinets et al., 2012). The program
also calculates the p-value for each association using the Monte-
Carlo simulation. The associated species, therefore, can be
selected using a p-values threshold. The Anets-OTUs produced
for the mock study is small and doesn’t require clustering. For
the real dataset, different algorithms and software tools can be
used to cluster the network as described in Supplementary Data
Sheet S1.

Association Network of Samples
A similar algorithm was used to generate the associations of
samples (Figures 3F–H). In this case we transform the OTU table
to produce a new table where both rows and columns consist
of samples and each cell represents the number of shared OTUs
for each pair of samples. The ecological interpretation of the
number is the shared species richness for a pair of samples. We
consider two samples associated if they have a similar profile of
the shared species richness values across all samples in the dataset.
Such indirect similarity can establish an association between each
pair of samples even if the majority of species in the samples
are not common. Computationally, the algorithm generating the
Anets-Samples (Figures 3F–H) is similar to the algorithm of
the Anets-OTUs (Figures 3C–E). As before, the transposed table
is used to compute profiles of shared species richness values
for the samples (Figure 3F) followed by estimation of pair-wise
correlations (Figure 3G) and clustering (Figure 3H). As we can
see in the Figure 3H, the clustering recovers associations among
9 out of 12 samples in the illustrative study. The final step of
the framework is an integration of the results obtained by Anets-
OTUs and Anets-Samples by building a presence/absence map of
the associated species and samples (Figure 3I).

Applying the Approach to Experimental
Datasets
In order to test our methodology, we employed the described
framework to analyze two well- established and published
experimental datasets from a study of Human Microbiome
Project Consortium, 2012 and from a study of the PRM (Shakya
et al., 2013). In each of these datasets, 16S or 28S rRNA amplicon
sequencing was used to profile the microbiome in different
environments. By applying our methodology in an unsupervised
manner to build a map of associated OTUs and samples, we were
able to test how well the inter-sample associations reproduced
their observed phenotype in the environment, with the added
advantage of studying associations of rare OTUs underlying the
grouping of samples.

Populus Root Microbiome
The dataset (Shakya et al., 2013) includes 2999 fungal OTUs and
24435 bacterial OTUs identified in 84 samples taken in May and
in September from two geographical locations, Tennessee (TN)
and North Carolina (NC) associated with the roots of Eastern
Cottonwood (Populus deltoides) trees at along two different
rivers. The study also collected a set of soil properties and

host characteristics for each of the 23 sampling locations; we
used these metadata to examine their relationships with the
associations of samples discovered by the Anets-Samples.

Examination of the OTU table from the study reveals that
common species (found in ∼60% of samples) or generalists in
Populus root are represented by only 61 OTUs, or 0.22% of
total number of OTUs in the dataset. As expected, the majority
of OTUs had low-abundance and was rare (Figure 1B). After
applying the Anets-OTUs algorithm to the OTU table we found
six large associations of OTUs (p-value < 0.05). A further
enrichment analysis (see section “Materials and Methods”)
attributed each association to a location, TN and NC, and to a
sampling season, May or September (Figure 4A). This analysis
revealed that communities of low-abundance OTUs, were
underlying groups of samples based on known environmental
factors from the study. To further confirm the grouping we built
a heat map of the associated OTUs (horizontal axis) across all
samples (vertical axis) organized by the geographical location and
season and sampling (Figure 4B). While, it can be appreciated
that many rare Anets-OTUs are present across all samples, some
of them often co-occur in samples from a particular location
or a season. The largest microbial association includes OTUs
found in Populus rhizosphere in any season and in any location.
Some associations are more common for TN or NC, and some
associations are more common in September or May. This
pattern suggests a tight link between the identified associations
of the rare OTUs and a particular environmental factor. We
noticed, for example, that a fungal OTU representing the genus
Inocybe was found only in the NC cluster. Indeed, species of
the genera have been tied to their environments rather than
their hosts more than other fungal species (Cripps, 1997). Our
results are consistent with this experimental observation; they
also indicate that the other fungal genera in the cluster, such as
Ceratobasidium, have similar biological characteristics.

The analysis confirms that clustering at low taxonomic levels
may be crucial in discriminating different environments. We
find that although OTUs in each of the associations often
belong to the same phyla, they are more distinct at lower
taxonomic levels, such as order (Supplementary Tables S1A,B).
For example, microbial communities of Populus roots in both
locations, TN and NC, include phylums Proteobacteria with less
number of OTUs in NC (Supplementary Table S1A). At the
level of order, however, the Proteobacteria in NC had greater
richness (10 orders) when compared with TN (seven orders), and
included Rhodocyclales, Syntrophobacterales, Rhodobacterales,
and Burkholderiales orders that were not observed in TN.
Microbial communities in both locations, TN and NC, also
included numerous species from phylum Acidobacteria. The
microbial community in TN, however, was dominated by the
order Solibacterales; this taxa, however, was not found in NC.
This example clearly demonstrates that by analyzing the dataset
at the level of OTUs and collapsing them after linking their
associations to environments may be a better strategy for
exploration of subtle difference among microbiomes in similar
environments.

By applying the Anets-Samples algorithm to the OTU table
we revealed two distinct clusters of samples in the PRM dataset
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FIGURE 4 | Associations of rare species and samples in PRM study. (A) Communities of associated fungal and bacterial OTUs discovered by the Anets-OTUs
algorithm in rhizoshpere of Populus deltoides. Nodes in the network indicate OTUs and edges indicate pair-wise association between them. The node color shows
the community (cluster) assignment inferred by clustering. (B) Presence–absence map of the associated OTUs; the cell color is red if OTU is present in the sample
and it is black if OTU is absent. OTUs are grouped according to the microbial communities inferred by Anets-OTUs and sorted by mean abundance; samples are
grouped according to clusters inferred by Anets-Samples and sorted by the shared richness. (C) Two associations of Populus rhizoshpere samples with the shared
species richness revealed by Anets-Samples; color indicates samples taken in NC (red) and in TN (green). (D) Hierarchical clustering of the soil properties; brackets
indicate three cluster of soil samples with distinct soil properties: green bracket indicates the cluster of soil samples that correspond to the association of rhizosphere
samples in TN, red bracket indicates the cluster of soil samples that correspond to the association of rhizosphere samples in NC, black bracket and black squares
indicate samples that don’t found as associated by Anets-Samples.
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(Figure 4C). Within each cluster, all samples had similar profiles
of the shared species richness across all samples (p < 0.01).
Furthermore, there was a clear association with metadata
of the study, with the first cluster representing a subset of
samples from TN, and the second cluster representing a subset
of samples from NC. Eight samples did not associate with
either cluster. These results mirror the results of Shakya et al.
(2013) that used variance partitioning of transformed datasets
to show that watershed (TN vs. NC), season, and sampling
site within a watershed, respectively, had the greatest effect on
community structure followed by other factors. To determine
other environmental factors contributing to the separation of
samples in two clusters we examined the variance partitioning
of the bacterial OTUs within each cluster with respect to host
and soil properties, geographic locations, seasons, and diversity
of corresponding fungal community. The analysis was performed
the same way as in the original study (see section “Materials
and Methods”). A large proportion of variance (67.8%) of
the bacterial OTUs across all samples was unexplained in the
original study, whereas only 9% of variance was explained by
soil properties. In contrast, among the samples that were selected
by the Anets-Samples as significantly associated, only 25% of
variance remained unexplained, while the greatest proportion
of the variance (30.1%) was attributed to the studied soil
properties (Supplementary Figure S2). The expected proportion
of the variance estimated by the permutation test, via a random
selection of the same number of samples, would be only
19%.

To examine the effect of soil on the separation of samples
in more detail we hierarchically clustered 16 soil properties
measured in the study and found that two associations
discovered by the Anets-Samples in Populus deltoides rhizosphere
(Figure 4C), correspond to two distinct soil clusters inferred
from the soil properties (Figure 4D). This relationship was not
found in the original study and again suggesting the importance
of rare microbial species for differentiating subtle environmental
conditions in addition to the traditional methods that more
heavily weight species abundance and dominant taxa. In case of
PRM we observe that a set of TN samples found as associated
by Anets share relatively greater Zn, Mn, and Ca contents in
the soil and a greater soil pH. A set of associated NC samples
share relatively low values of these soil characteristics. Those
samples, either from TN or NC, that are not identified by Anets-
Samples as significantly associated, have a variable content of
the soil properties as well as relatively greater sand content
and lower clay and organic matter contents than the associated
samples. The results point to the soil properties as a crucial
factor underlying similarity of microbial communities in Populus
deltoides rhizosphere.

Microbiomes of Human Body Sites
The HMP dataset has been characterized in several publications
(Faust et al., 2012; Project, 2012; Aagaard et al., 2013) and
includes samples obtained from 18 different body sites of 180
healthy men and women. As noted before (Figure 1A), the
majority of OTUs in the dataset is rare and has low-abundance.
Considering the large size of the OTU table produced in the

study we started the analysis with the construction of the Anets-
Samples (Figures 3F–H) to find associations (clusters) of samples
with similar profiles of the shared species richness and to discard
samples-outliers. Most samples (74%) in the dataset were found
to be associated (p-value < 0.01) with at least one other sample in
the network. Visualization and clustering of the network using
the Markov clustering algorithm (MCL) (Van Dongen, 2008)
revealed seven large disconnected component and 206 clusters
(Supplementary Figure S3). We next used an enrichment analysis
(see section “Materials and Methods”) to annotate the inferred
clusters by sample metadata (sex of the human subject, body site,
and sub-site) and to assign significantly enriched body sites and
sub-sites to the clusters. Figure 5A shows components of the
network comprised of oral and skin samples colored according
to sub-sites. Samples that belonged to a particular subsite tended
to cluster together according to the Figure and to the enrichment
analysis. Thus, the Anets-Samples allowed us to predict origin
of samples from different oral sub-sites, such as keratinized
gingiva, buccal mucosa, hard palate, saliva, throat, and tongue.
There were also several distinct associations of samples originated
from multiple skin subsides. Interestingly, one association of
samples (cluster 16 in Figure 5A) was comprised of male human
subjects.

We further focused the analysis on 314 skin samples that
represent three distinct, disconnected in the Anets-Samples,
clusters labeled by black ovals in Figure 5A. To reveal
communities of microbial OTUs discriminating these clusters we
built the Anets-OTUs using, as input, an OTU table comprised
of these 314 samples in columns and 43140 OTUs in rows.
The generated Anets-OTUs included 412 associated OTUs (p-
value < 0.001); and subsequent clustering of the network
revealed four major microbial communities (Figure 5B). The
enrichment analysis showed statistically significant links between
the communities and the Anets-Samples clusters (Supplementary
Table S2). The map generated from the initial dataset by
extracting abundance values of the associating OTUs further
confirmed the links (Figure 5C). Importantly, the three distinct
clusters of samples, originated from skin of different human
subjects, have significant differences in microbial communities
at the OTU level, although most OTUs contributing to the
difference belonged to the genus Propionibacterium. Indeed,
microbial community 1 comprised of OTUs of the genus
Propionibacterium (Figure 5B) was significantly enriched in
Anets-Samples clusters 2 and 10 (Figure 5A), but not in
Anets-Samples cluster 16 (Figure 5A). Microbial community
2 comprised of a distinct set of OTUs from the same
genus (Figure 5B) was significantly enriched only in Anets-
Samples cluster 2 (Figure 5A). The third microbial community
comprised of OTUs of the genera Propionibacterium and
Actinomycetales (Figure 5B) was enriched in Anets-Samples
cluster 10 (Figure 5A), and the fourth microbial community
(OTUs from the genera Staphylococcus and Propionibacterium)
was enriched in Anets-Samples cluster 16 comprised of male
human subjects. The p-value 0.01 (Fisher exact test) was used
as the significance threshold in the enrichment analysis. Thus,
the OTU level clustering was important to discriminate microbial
communities of the clustered samples.
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FIGURE 5 | Associations of rare species and samples in the HMP study. (A) Associations of oral and skin samples. Samples in the networks are represented by filled
circles colored according to the sampling sub sites in the HMP study. Edges between circles indicate significant association between samples in terms of the shared
species richness. Red and black ovals label associations predicted by clustering of the Anets-Samples. Name of each cluster was inferred by the enrichment
analysis as described in Section “Materials and Methods.” Black ovals indicate clusters (2, 10, and 16) that were further analyzed by the Anets-OTUs algorithm.
(B) Associations of rare species discovered by Anets-OTUs in samples comprised clusters 2, 10, and 16. Small components of the network are not included. OTUs
are represented by nodes (filled circles) where color indicates different clusters inferred by Markov clustering. The largest clusters are referred as communities. Edges
between nodes represent significant associations (p < 0.001) between a pair of OTUs. They are labeled by black ovals and have associated bar charts showing the
number of OTUs from most abundant taxonomic ranks labeled as G (Genus) and O (Order). (C) Heat map of abundances (in terms of sequencing reads) of
associating microbial OTUs (horizontal axis) in three distinct clusters of samples (vertical axis) collected from the human skin. OTUs are grouped according to the
microbial communities inferred by Anets-OTUs and sorted by mean abundance; samples are grouped according to clusters inferred by Anets-Samples and sorted
by the shared richness. Each cell shows the number of OTU reads. Color of cells in the map shows the number of reads representing the OTUs in the sample: 10
reads or more (dark orange), from 1 to 10 reads (light orange), and not represented by reads (gray). Cluster IDs indicated in (A,B) are shown in vertical and horizontal
bars of the heat map respectively.
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FIGURE 6 | Principal coordinates analysis (PCoA) plots and Anets-Samples for oral samples with or without rare OTUs. (A) PCoA plot generated by including rare
OTUs. (B) PCoA plot generated by excluding rare OTUs. (C) Anets-Samples generated by including rare OTUs. (D) Anets-Samples generated by excluding rare
OTUs. Large clusters (more than 10 samples) are bordered by rectangles.

Validation of the Anets Algorithm
We use 1250 oral samples of HMP to investigate the robustness
and limitations of the Anets algorithm, to compare it with other
methods and to explore potential biases and confounding factors.

Library Size as Potential Confounding Factor
The Library Size (LS) affects the number of identified rare species
and, therefore, may introduce a technical bias in the OTU
table if there are significant differences in LSs among studied
environments. We explore this affect using known annotations
of oral samples by subsites. Specifically, pair-wise comparisons
were performed among all the subsites in terms of the library
size and then in terms of the number of rare OTUs. We find that

log-transformed values of the library size in the oral samples have
a normal distribution (Supplementary Figure S4). Significant
differences between average values (Wilcoxon test) were observed
for 2 out of 15 pair-wise comparisons (Supplementary Figure S5),
and only for one comparison, “Tongue dorsum” versus “Hard
palate,” the difference in LS is also associated with the significantly
different number of rare species (Supplementary Table S3). In
general, most rare OTUs are the least abundant and the mean
number of such OTUs is significantly different in 60% subsite
pairs (Supplementary Figure S6 and Supplementary Table S3).
When we consider less rare OTUs we find a significant increase
in the mean abundance of the OTUs (Supplementary Figure
S6) and significant decrease in the % of subsite pairs that are
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significantly different in terms of the number of rare OTUs, from
60 (occupancy threshold 1%) to 40, 20, and 13% (occupancy
threshold 5, 10, and 25%, respectively) (Supplementary Table
S3). According to the results, the LS may be a confounding
factor in the analysis of rare OTUs, although the different
LS doesn’t necessary translate to different number of rare
species, at least for oral subsites. There is a clear trend for
oral subsites to be less different in terms of the number of
rare OTUs when we increase the occupancy threshold. This
trend, however, doesn’t associate with different LSs of the
subsites.

Importance of Rare OTUs for Anets-Samples
Construction
We further explore how important rare and common taxa for
correct grouping of samples. We separated species identified in
1250 oral samples to two groups, rare (occupancy is between
0.5 and 25% samples) and common (occupancy > 25%). Then
we generated three OTU tables; comprised of only rare OTUs,
rare and common OTUs, and only common OTUs. We find
that considering only rare OTUs we reduce the resolution of
the Principal coordinates analysis (PCoA) plot (Supplementary
Figure S7A). In case of Anets-Samples (Supplementary Figure
S7B), we actually increase the resolution and were able to detect a
batch effect among oral samples. The effect was probably masked
by the presence of common species because we didn’t observe the
effect if we use OTU table with only common OTUs (Figure 6D)
or with common and rare OTUs (Figure 6C). In spite of the
batch effect, the grouping of samples within the large batch
(Supplementary Figure S7B) was consistent with the studied oral
subsites, although not as evident as for Anets-Samples based on
a combined set of rare and common OTUs (Figure 6D). The
PCoA plots generated for OTU tables by including or excluding
the rare OTUs were rather similar (Figures 6A,B) suggesting
that we will not significantly effect the interpretation of the
results by excluding rare species in the PCoA. However, by
excluding the rare species when building Anets (Figure 6D),
we essentially decrease our chance to cluster samples according
to subsides (Figures 6C,D, right sides) and also decrease the
number of associated samples (p > 0.05) from 1082 (87%) to
981 (78%). The results demonstrate high sensitivity of the Anets
algorithm to signals from both, rare and more abundant, OTUs.
The result is not surprising. To build Anets we have to collect
additional statistics on co-occurrence of species with the rest
and on the shared species richness to establish the pair-wise
associations in Anets-Samples and in Anets-OTUs. By excluding
some species, either less abundant or more abundant, we loose
information important for the analysis and impair the results.
Building Anets after filtering common species, however, may
allow us to see biases obscured by the presence of common
taxa.

Topological Differences Between Networks
Generated Using Anets and Unweighted UniFrac
Distances
UniFrac is widely used distance metric incorporating
phylogenetic information to compare microbial communities.

All taxa, common and rare, are included in calculation of the
distance. The metric, therefore, may be an alternative way
to construct the network of samples by incorporating the
phylogenetic signals from rare species. We have compared
the network of samples generated by Anets with those based
on the Unweighted UniFrac (UUF) distances. The ‘phyloseq’
package (McMurdie and Holmes, 2013) was used to calculate
the UUF distance for each pair of oral samples. Two networks
were generated with thresholds for the distance to be equal 0.95
and 0.98. We chose these thresholds because we find it difficult
to break the UniFrac-based networks into clusters because of
low clustering coefficients and high centralization if compared
with the Anets-Samples (Supplementary Table S4). We could
increase the clustering coefficient and reduce centralization by
increasing the distance measure but it also reduced the number
of nodes in the UUF network. Using a looser threshold (0.95)
we had 1243 nodes that were vastly interconnected by 68284
edges into one large cluster (Supplementary Figure S8). By
increasing the distance threshold to 0.98 we generated a network
with 868 samples and 6457 edges and a greater clustering
coefficient (Figure 7B). The generated clusters, however, were
not as consistent with the annotation of subsites as in case of
Anets-Samples network (Figure 7A). Although in general all
three networks showed the same trend of separation of subsites
‘keratinized gingiva’ and ‘bunccal mucosa’ from ‘saliva,’ ‘tongue
dorsum,’ and ‘throat,’ it was easier to cluster the Anets-based
network, and, importantly, many large clusters in the Anets
network were enriched with samples originated from the same
subsite (Figure 7A, right side). The comparison reveals a distinct
topology of the Anets network if compared with UUF-based
networks and a better association of the topological structure
with oral subsites. The more centralized topology of the UUF-
based network may be suitable for a global overview of the
samples. The Anets-based network may perform better if we
want a greater level of detail and more granularity in grouping
the samples.

Robustness of the Anets Algorithm
Several different factors including sampling strategy and sample
handling, the choice of universal 16S rRNA gene PCR primers,
DNA extraction methods, amplification artifacts, such as
chimeras, and computational methods employed to produce the
OTU table from sequencing reads may contribute to different
results in the 16S rRNA gene profiling studies. All of them can
affect the number of rare species and the produced Anets. To
evaluate the robustness of the algorithm we explore changes
in the structure of Anets based on OTU tables constructed
by different processing pipeline, by different 16S rRNA gene
variable region for sequencing, and by a different subset of
oral samples. Namely, we consider three different OTU tables
produced for oral samples by two commonly used 16S rRNA
amplicon data processing pipelines, MOTHUR (Schloss et al.,
2009) and QIIME (Caporaso et al., 2010) that utilize different
algorithms to construct the OTU table. The former OTU table
was produced by a high quality-filtering MOTHUR pipeline
(Schloss et al., 2011) with low overall chimera rate. The formation
of the chimeric sequences is a well-known factor contributing
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FIGURE 7 | Networks of oral samples and their clustering by the Markov clustering algorithm (MCL) with the same parameters. (A) The network was generated
using Anets-Samples algorithm. The large clusters (more than 10 samples) are bordered by rectangles. (B) The network was generated using Unweighted UniFrac
(UUF) distances as measure of pair-wise similarity of the samples (nodes) with the threshold 0.98.

to erroneous OTUs and to overrated species richness (Ashelford
et al., 2005). We also compared OTU tables generated by QIIME
pipeline from sequencing of 16S rRNA gene variable regions 1–
3, referred as HMP v13 (Q), and variable regions 3–5, referred
as HMPv35(Q). These three OTU tables were generated for
the same subset of 1250 oral samples. In addition, we included
an OTU table (QIIME pipeline, v35) produced for a different
subset of 1025 oral samples in the comparison. We refer to the
table as HMPv35(Q) validation. The tables were downloaded
from the NIH Human Microbiome Project websites and were
comprised of different number of OTUs, from 8640 OTUs in
HMPv13(M) to 26399 OTUs in HMPv35(Q) Validation. Most
OTUs (95–97%) in the tables were rare OTUs (found in less than
25% samples). The Anets-Samples was generated for each OTU
table and visualized by Cytoscape using the same parameters.
Comparison of the produced networks reveals not only their
similar statistical characteristics (Supplementary Table S5), but
also a similar trend in grouping of samples among subtypes
(Figure 8). The MOTHUR and QIIME networks, however, were
surprisingly different in their ability to separate different subsites
(Figures 8A,B). The MOTHUR network performed well in
separating tongue dorsum and throat from other subsites, but
not as good in separating keratinized gingiva and buccal mucosa,
while the QIIME v13 network performed better in separating
keratinized gingiva and buccal mucosa from other subsites, and
not as good for tongue dorsum and throat. The difference persists
when we run Anets with different parameters. An interesting

symmetrical structure, related to the batch effect, was revealed
in the Anets-samples produced for OTU table HMPv35(Q)
(Figure 8C). The upper part of the network represents samples
sequenced by J. Craig Venter Institute (JCVI) and the lower part
representing samples sequenced by other sequencing centers.
Importantly, each side of the network demonstrated similar
grouping of samples into subtypes regardless of the batch
affect. The network generated for a different subset of oral
samples, HMPv35(Q) Validation, reveal a similar batch effect
with separation of samples into subsites within each batch. Based
on the results we conclude that the Anets algorithm recover
similar groupings of samples from OTU tables produced by two
commonly used 16S rRNA amplicon data processing pipelines
regardless of the observed batch effects and type of sequencing
(v13 or v35) as well as from an OTU table comprised of different
samples from the same environments.

DISCUSSION

In this proof of concept study we aimed to demonstrate the
use of the Anets-based computational framework for linking
associations of rare OTUs to their environment. Results of
the study demonstrate that a combination of the Anets-
OTUs and Anets-Samples has a potential to serve as a
powerful unsupervised methods for discovering relationships
and associations of rare species from phylogenetic marker gene
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FIGURE 8 | Anets-Samples generated for different OTU tables comprised of oral samples. (A) OTU table generated by QIIME pipeline from sequencing of 16S rRNA
gene variable regions 1–3. (B) OTU table generated by MOTHUR pipeline from sequencing of 16S rRNA gene variable regions 1–3. (C) OTU table generated by
QIIME pipeline from sequencing of 16S rRNA gene variable regions 3–5. (D) OTU table generated by QIIME pipeline from sequencing of 16S rRNA gene variable
regions 3–5 of a distinct set of oral samples.

datasets used in microbiome studies. Applying the framework
to analyses of microbiomes in Populus roots and on Human
body sites we were able to reproduce associations of samples in
these complex environment and associations of species that were
consistent with the existing metadata and the analyses described
in the previous literature. In case of Human microbiomes we were
able to identify associations of co-dependent rare OTUs and link
them to sub-sides of the human body. Similar observations were
reported by Ding and Schloss (Ding and Schloss, 2014) using the
Dirichlet multinomial mixture models (Holmes et al., 2012).

An important observation from the analysis of Populus
and Human microbiomes by the approach is a close link
between the rare microbial OTUs and specific environmental
conditions. To explain the importance of rare putative species
for classification of the environments we propose that the high-
abundance OTUs are common among sampled environments

because the environments have some common conditions
stimulating outgrowth of the same putative species. The rare low-
abundance OTUs are rare because each of these environments
also has some specific conditions or microenvironments.
These specific microenvironmental conditions may stimulate
the growth species represented by rare OTUs. Although they
are rare, they may be crucial for recovering the micro-
environmental differences in microbiomes of the environments.
It is possible that these rare OTUs, therefore, may be a better
computational target for quantification of subtle differences
among most variable properties of the environments, and
their presence/absence pattern can be used for additional
comprehensive classification of samples from the environments.
New approaches to ‘denoising’ sequencing data that avoid
collapsing OTUs to higher taxonomic levels or a priori OTU
similarity thresholds, such as ASVs approach (Callahan, 2017),
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might also further increase the ability to recover the micro-
environmental differences among samples.

Although the results show the importance of rare OTUs in
discriminating oral subsites and in revealing batch effects, they
don’t prove that the rare OTUs are real. Further experimental
studies are necessary to provide a direct evidence of their
existence. Models of microbial communities where a signal from
rare species can be captured and compared with signals from
common species would be also helpful to explore rare species and
to validate the approach. There are, however, some challenges in
developing a realistic model of microbial communities. Available
computational tools, such as “SPIEC-EASI” R package (Kurtz
et al., 2015) generate a synthetic OTU data using a random
selection of species. The randomness contradicts the major
assumption of the Anets algorithm that the selection of species
in the sample is not random. In addition, the OTU tables
simulated by a random selection don’t necessary conform to the
occupancy–abundance relationship (Gaston, 1996) observed in
real settings.

The transformation of OTU table into the OTU
presence/absence values for analysis by Anets places some
limitations and constraints on the approach. One such constraint
is the presence of many common OTUs, such as found in more
than ∼75% samples. The loss of abundance data is another
limitation. The information can be important for understanding
dominant taxa and their interdependencies with each other and
members of the rare biosphere. Another important condition
for successful application of the approach is the species co-
dependence in the studied environments. The condition is
important to observe similar co-occurrence profiles for the
associated OTUs and to simplify their clustering. Although this
assumption is consistent with known metabolic and functional
dependences of microbial species in different environments
(Jousset et al., 2017), these dependences are not always the major
factors that discriminate environments in a particular study.

Further studies are necessary to validate the proposed
framework, to extend it by incorporating additional statistical
tools, to provide guidelines on setting parameters for the
Anets-Samples and Anets-OTUs, to explore different measures
of similarity and their cutoffs, and to clarify limitations of
the approach. Further work is also necessary to streamline
all calculations in a package. At this point, the computations
proposed in the framework are implemented by different
programs, such as Anets (Karpinets et al., 2012), Cytoscape
(Smoot et al., 2011), mcl (Markov clustering) (Van Dongen,
2008), as well as by simple in-house scripts written in R (see
“Operating Procedure to generate Anets” in Supplementary Data
Sheet S1). Importantly, the Anets program was implemented for a
single processor to cope with a data of small scale and complexity.
The program will be slow in processing large OTU tables
generated by increasingly complex datasets. It is important to
increase scalability of the algorithm by parallelizing independent
computation steps and by designing efficient representation of
the sparse data for better memory management.

We have thus taken the first initial steps in incorporating the
“rare biosphere” of microbial community data and linking their
contribution to environmental and phenotypic characteristics via

the Anets algorithm. More interesting relationships may be found
by this approach as the rate of accumulation of microbial data
in different environments continues to increase and the cost of
sequencing continues to decrease. We believe that the Anets
technique holds unexplored potential for an in-depth analysis
of the data. The approach is useful to reveal inherent patterns
in the data without a priori knowledge of factors influencing
the microbial communities as well as to visualize the patterns as
networks or maps.

MATERIALS AND METHODS

Mock Dataset
The dataset was generated manually to illustrate the ANETs
approach, and represents an oversimplified case of two artificial
environments populated by eight hypothetical species. The
environments were randomly sampled in 12 locations as
described in Figure 3A in more detail. The major goal of the
dataset was to provide an intuitive illustration of the proposed
framework.

Populus Root Microbiome Dataset
The dataset was described by Shakya et al. (2013). It includes
84 samples that represent a combined (fungal and bacterial)
microbiome in rhizoshpere (46 samples) and endosphere (38
samples) of 23 mature Populus deltoids trees growing in
Tennessee (11 trees) and North Carolina (12 trees) taken in May
(23 rhizosphere samples and 21 endosphere samples) and in
September (23 rhizosphere samples and 17 endosphere samples).
Bacterial (16S rRNA) and fungal (28S rRNA) genes from the
samples were sequenced to estimate the abundance of fungal
and bacterial OTUs and their association with plant phenotypic,
genotypic, and environmental parameters. We initially explore
abundance–occupancy relationships in the dataset using all
rhizosphere and endosphere samples of the study (Figure 2) and
then focused our further analysis on 46 rhizosphere samples.
The OTU table for these samples was processed using the
Anets tool in two ways: (1) to build the association network of
OTUs, Anets-OTUs, and (2) to build the association network
of samples, Anets-Samples. The Anets-Samples was generated
using the Pearson correlation as the measure of association for
each pair of samples and a p-value threshold equal 0.01. The
Anets-OTUs was generated using OTUs that occurred in 10 or
more samples. This threshold was necessary to reduce time and
memory used by the Anets program for processing the data.
The p-value threshold was set to 0.05. Markov clustering (Van
Dongen, 2008) with the inflation value 1.8 was used to cluster
the networks, and Cytoscape (Smoot et al., 2011) was used
to visualize the networks. Soil properties for samples collected
near 23 trees were analyzed using hierarchical clustering. All
soil parameters were normalized before the clustering using
the average value of the parameter and its standard deviation.
The hierarchical clustering of soil samples was performed using
Pearson correlation as the similarity metric and centroid linkage
as the clustering method. The analysis was implemented using
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the Cluster 3 program (Eisen et al., 1998). The Java Treeview2

was used to visualize the clusters. The ‘vegan’ R package
(Dixon, 2003), function ‘capscale,’ was used to calculate variance
partitioning the same way as in the initial study (Shakya et al.,
2013).

Human Microbiome Dataset
The dataset was downloaded from the HMP website http://www.
hmpdacc.org/HMQCP/. The dataset is based on the analysis of
16S rRNA gene variable regions 1–3 (V13) and includes 2910
samples obtained from 18 different body sites of 180 healthy
men and women. Each site was represented by 145–190 samples,
except the vagina (87–89 samples). The data is described in
more detail by the Human Microbiome consortia publications
(Project, 2012). The input for the analysis was the OTU
table generated by the project from sequencing reads by the
QIIME (Quantitative Insights Into Microbial Ecology) software
(Caporaso et al., 2010). The table is comprised of 43140 OTUs
and 2910 samples. For the cluster enrichment analysis we used
publically available sample metadata, sex of the participant and
body site.

The downloaded OTU table was processed using the Anets-
Samples algorithm to build the association network of samples.
The network was generated using the Pearson correlation as
the measure of association for each pair of samples and the
p-value threshold 0.01. The p-values were calculated using a
Monte Carlo simulation approach as described before (Karpinets
et al., 2012). The network was visualized using edge-weighted
(by p-value) spring embedded layout in Cytoscape (Smoot et al.,
2011). The Anets-OTUs was generated for a subset of 314
skin samples selected by the analysis as significantly associated
(clusters with IDs 2, 10, and 16 in Figure 2). The OTUs
table of the samples was used as input for the Anets-OTUs
algorithm with the following parameters: the minimum number
of samples per OTU is 15, and a p-value threshold is 0.001. The
stringent thresholds were important to limit memory use and
the processing time for the Anets program. Markov clustering
(Van Dongen, 2008) with the inflation value 1.8 was used to
cluster the networks, and Cytoscape (Smoot et al., 2011) was used
to visualize the networks and the clustering results. An edge-
weighted (by p-value) spring embedded layout was used for the
network visualization.

Enrichment Analysis
The analysis was used to find samples enriched in each
cluster of OTUs in the Anets-OTUs and to find phenotypic
or environmental characteristics enriched in each clusters of
samples in the Anets-Samples. In both cases the analysis was done
using the Fisher’s exact test to examine independence of rows and
columns in a two-dimensional contingency table generated by the
following algorithms.

We identified samples enriched in the cluster of OTUs (Anets-
OTUs) by linking each clustered OTU to the sample and finding
those samples that have the greatest representation by OTUs
within the cluster. We used the fisher.test() function in R to

2http://sourceforge.net/projects/jtreeview/

calculate probability that the number of OTUs representing a
sample in the cluster is significantly greater than the number
expected by randomly selecting OTUs in the cluster from a
set of all associated OTUs, regardless of sample of origin. All
associated OTUs were found as a set of unique OTUs associated
significantly (p-value < 0.05) with at least one other OTU in
the Anets-OTUs. We classified the associated OTUs in two
ways: if the OTU belongs to the sample or not, and if the
OTU belongs to the cluster or not. Using this classification
we created the contingency table with the number of the
sample’s OTUs in the cluster, the number of associated OTUs
in the sample, the number of OTUs in the cluster that are
not from the sample, and the number of associated OTUs that
are not found in the sample. Because we performed several
statistical tests simultaneously on the same data set, p-values
calculated by the Fisher exact were adjusted using Bonferroni
correction.

Specific characteristics (such as soil conditions in the
Populus rhizosphere dataset or body subsites in the HMP
dataset) enriched in the cluster of samples (Anets-Samples)
were identified by linking each sample to the characteristics
and revealing the characteristics represented by the greatest
number of samples within the cluster. We used the Fisher’s
exact test to calculate probabilities that number of samples
representing a characteristic within the cluster is significantly
greater than the number expected by randomly selecting samples
into the cluster from a set of all associated samples. In this
case the background of the comparison was a set of all
associated samples; they were classified for each cluster and each
characteristic to create the contingency table as (i) representing
the environmental/phenotypic characteristic or not and (ii)
belonging to the cluster or not.

Generating Networks and Their
Statistics for Validation
All datasets for validation were downloaded from the HMP
website from the link https://www.hmpdacc.org/hmp/HMMCP/
for 16S rRNA amplicon datasets processed by QQIME and
the link https://www.hmpdacc.org/hmp/HMQCP/ for datasets
processed by MOTHUR software package using a high stringency
approach (Schloss et al., 2011). The ‘phyloseq’ R package
(McMurdie and Holmes, 2013) was used to download the
datasets, to create OTU tables for oral samples for comparisons,
to filter OTUs by occupancy, to generate the UUF distances
(default parameters) and to produce PCoA plots (distance
measure was set to ‘binary’). The Anets-Samples were generated
using Pearson correlation as measure of similarity and setting
p-value threshold to 0.05. The networks were loaded into
Cytoscape software, visualized using spring embedded layout
without edge weighting and clustered using MCL algorithm
by a Cytoscape plugin ‘clusterMaker2’3 by setting the inflation
value to 2.0. Another Cytoscape plugin ‘Network Analyzer’4 was
used to explore topology of the networks and to produce their
statistics.

3http://www.rbvi.ucsf.edu/cytoscape/clusterMaker2/
4http://apps.cytoscape.org/apps/networkanalyzer
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The gut microbiome is a complex microbial community that has a significant influence
on the host. Microbial interactions in the gut are mediated by dietary substrates,
especially complex polysaccharides. In this environment, breakdown products from
larger carbohydrates and short chain fatty acids are commonly shared among
gut microbes. Understanding the forces that guide microbiome development and
composition is important to determine its role in health and in the intervention of
the gut microbiome as a therapeutic tool. Recently, modeling approaches such
as genome-scale models and time-series analyses have been useful to predict
microbial interactions. In this study, a bottom-up approach was followed to develop
a mathematical model based on microbial growth equations that incorporate metabolic
sharing and inhibition. The model was developed using experimental in vitro data from
a system comprising four microorganisms of the infant gut microbiome (Bifidobacterium
longum subsp. infantis, Lactobacillus acidophilus, Escherichia coli, and Bacteroides
vulgatus), one substrate (fructooligosaccharides, FOS), and evaluating two metabolic
products (acetate and lactate). After parameter optimization, the model accurately
predicted bacterial abundance in co-cultures from mono-culture data. In addition, a
good correlation was observed between the experimental data with predicted FOS
consumption and acid production. B. infantis and L. acidophilus were dominant under
these conditions. Further model validation included cultures with the four-species in
a bioreactor using FOS. The model was able to predict the predominance of the
two aforementioned species, as well as depletion of acetate and lactate. Finally, the
model was tested for parameter identifiability and sensitivity. These results suggest that
variations in microbial abundance and activities in the infant gut were mainly explained
by metabolic interactions, and could be properly modeled using Monod kinetics with
metabolic interactions. The model could be scaled to include data from larger consortia,
or be applied to microbial communities where sharing metabolic resources is important
in shaping bacterial abundance. Moreover, the model could be useful in designing
microbial consortia with desired properties such as higher acid production.

Keywords: metabolic interaction, gut microbiome diet, prebiotics, mathematical modeling,
fructooligosaccharides (FOS)
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INTRODUCTION

The human colonic microbiome is a complex microbial
community that has a significant impact on host health.
This is a diverse community that reaches high cell densities
and includes four dominant phyla (Bacteroidetes, Firmicutes,
Actinobacteria and Proteobacteria) (Lozupone et al., 2012; Qin
et al., 2013). The gut microbiome coexists with the host and
deploys important functions that impact host metabolism and gut
physiology (Rajilić-Stojanović and de Vos, 2014). Even though
its composition is variable among people (Goodrich et al., 2014),
the functions these microorganisms performed are basically
conserved (Lozupone et al., 2012; Qin et al., 2013). In certain
cases, imbalances in the composition of the microbiome are a
contributing factor to the onset of inflammatory bowel diseases
as well as autoimmune and metabolic (Greenblum et al., 2012;
Sevelsted et al., 2015; Marchesi et al., 2016; Tamburini et al.,
2016; Cox et al., 2017). How the microbiome assembles in
the first months of life appears to be important later in life
(Tamburini et al., 2016). One important factor shaping the early
microbiome is the type of feeding (Qin et al., 2013; Rajilić-
Stojanović and de Vos, 2014). Human breast milk contains
large amounts of oligosaccharides (HMO), which are selectively
utilized by beneficial gut microbes. Bifidobacterium species such
as B. longum subsp. infantis display multiple adaptations to utilize
these substrates (Thomson et al., 2017). Lactobacilli are also
abundant in the infant gut microbiome (Bäckhed et al., 2015).
In contrast, formula-fed infants have a distinct microbiome
composition, not dominated by Bifidobacterium and with a
higher representation of members of Bacteroides (B. fragilis,
B. vulgatus) and Enterobacteria (Escherichia coli, Klebsiella spp.)
(Bäckhed et al., 2015). The activity of these microbes results in
high amounts of acetate and lactate in infant feces, resulting in an
acidic pH (Cinquin et al., 2004; Tamburini et al., 2016).

Microbial interactions are important for the assembly and
functioning of the gut microbiome. Dominant ecological
interactions found in the gut microbiome are competition
and cooperation (Faust and Raes, 2012). These interactions
broadly represent the sum of all physical, chemical and
microbiological activities that microorganisms exert upon others
(Roume et al., 2015; Vogt et al., 2015; Hecht et al., 2016; Rakoff-
Nahoum et al., 2016). Considering that diet is a major driver
guiding gut microbiome composition, microbial interactions
are influenced by dietary compounds (Cameron et al., 2014;
Medina et al., 2017; Tuncil et al., 2017). Cross-feeding of
fermentation breakdown products of the microbiome appears
to be common among gut species (Rogowski et al., 2015).
This has been shown for example in the utilization of mucin
and sialylated milk oligosaccharides between B. bifidum and
B. breve (Egan et al., 2014a,b), or during fructan consumption
between bifidobacteria and butyrate- producing bacteria (Moens
et al., 2016). Cross-feeding is also observed when metabolic end
products from one microorganism, such as amino acids or short
chain fatty acids (SCFA), are used by another microorganism
(Egan et al., 2014a; Moens et al., 2016). For example, lactate
and acetate are end products of lactic acid bacteria, which
could be utilized by butyrate-producing bacteria such as

Faecalibacterium prausnitzii and Eubacterium rectale (Louis and
Flint, 2017).

Modeling-based approaches have been recently developed
to study and predict the composition and interactions in
the gut microbiome (Magnúsdóttir et al., 2016). These
include ecological-statistic models, genome-scale metabolic
reconstructions (GSM) and ordinary differential equation
(ODE)-based kinetic models (Trosvik et al., 2010a; Kettle et al.,
2015). A Generalized Additive Model (GAM) (Hastie and
Tibshirani, 1990) consists of a statistic regression technique
that has been used in time-series analysis of ecological data
to characterize and estimate cross-feeding and competition
between microorganisms. GAMs do not need any assumption
about functional relationships in the group for its formulation.
However, they could be affected by overfitting when many
parameters are needed for matching the data (Wood, 2008;
Trosvik et al., 2010b). GAMs usually require a post cross-
validation process to curate the model (Ward, 2014). After
proper calibration and validation, these models provide accurate
predictions by interpolation (Trosvik et al., 2010b).

Lately, GSMs have been successfully applied to explore
microbial interactions among gut microbes (Magnúsdóttir et al.,
2016). They require an extensive database for reconstruction,
editing and gap-filling of full metabolic pathways (Thiele et al.,
2014). Several techniques based on orthology, topology and
stoichiometry of biological reactions facilitate the draft design
and curation process (Thiele and Palsson, 2010). Characteristic
features of the species to be reconstructed must be first
identified (Kanehisa, 2006). After curation and defining specific
environments and constraints, microbial interactions can be
obtained for a few species (Thiele et al., 2013).

Recently, a kinetic model constructed from experimental data
of gut microbes in a bioreactor was presented, aimed to model
the dynamic behavior of the gut microbiome (Kettle et al., 2015).
The analysis required a metabolic pathway input and a matrix
describing the compounds produced during the fermentation,
to generate an ODE system for simulation of microbiome
abundance (Walker et al., 2011). Here, microbiome complexity
was simplified assigning gut microbes to ten bacterial functional
groups (BFGs), based on metabolic properties such as similar
breakdown of complex substrates or similar SCFA production
or consumption patterns (Kettle et al., 2015). The model
showed a good fit with experimental data, which corresponded
to a continuous flow bioreactor inoculated with human fecal
microbiota.

In order to help understanding the forces dominating gut
microbiome structure and composition, here we developed and
assessed a mathematical model based on microbial growth
equations, taking into account metabolic interactions among
bacteria. We focused on the interactions of four gut microbes,
Bifidobacterium longum subsp. infantis, Lactobacillus acidophilus,
Bacteroides vulgatus and Escherichia coli, during their growth
in vitro using fructooligosaccharides (FOS) as substrate. FOS is a
well studied prebiotic with degree of polymerization of fructose
of 3–6 units (Roberfroid et al., 2010). Experimental data was
obtained from co-culture experiments, which were used later
to construct and calibrate the model, including the impact of
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metabolic inhibition or stimulation on bacterial growth. The
model was finally validated using additional experimental data
of the consortium of the four species on FOS using a biological
reactor.

MATERIALS AND METHODS

Microorganisms and Media
Microorganisms used in this study were obtained from the
UC Davis, Department of Viticulture and Enology Culture
Collection (L. acidophilus ATCC 4356, B. infantis ATCC 15697,
Escherichia coli K12), and the American Type Culture Collection
(Bacteroides vulgatus ATCC 8482; Manassas, VA, United States).
Bacteria were, respectively, cultured at 37◦C for 24 h in de
Man–Rogosa–Sharp (MRS), MRS supplemented with 0.05%
L-cysteine-HCl (Loba Chemie, India), LB broth, or Reinforced
Clostridium Medium (Becton-Dickinson) supplemented
with 1 g/L L-cysteine. All bacteria excepting E. coli were
routinely grown under anaerobic conditions in an anaerobic jar
(Anaerocult, Merck, Germany) with anaerobic packs (Gaspak
EM, Becton Dickinson). All media were pre-reduced in an
anaerobic jar overnight before inoculation, and prior to each
assay bacteria were sub-cultured twice.

Co-culture Batch Experiments
Combinations of L. acidophilus (La), E. coli (Ec), B. vulgatus (Bv)
and B. infantis (Bi) were prepared in co-culture experiments.
Culture media used was a modified version of previously
described ZMB (Zhang et al., 2009), which was supplemented
with hemin (0.01 g/L, Sigma–Aldrich, St. Louis, MO,
United States) and L-cysteine-HCl (0.5 g/L, Sigma–Aldrich,
St. Louis, MO, United States). Single amino acid groups in ZMB
were replaced by Bacto-Tryptone (at 28 g/L). Carbon sources
used were either lactose (10 g/L; Lyngby, Denmark) or FOS
(10 g/L; Raftilose Synergy 1, Orafti, Malvern, PA, United States)
as carbon source. Single cultures of B. infantis (Bi), B. vulgatus
(Bv), E. coli (Ec) and L. acidophilus (La); and co-cultures BiBv,
BiEc, BiLa, BvEc, BvLa and EcLa were prepared. An experiment
with all bacteria (All) and a negative control with no bacteria
were included. Fresh overnight cultures of each microorganism
were washed in sterile mZMB, and 1 mL of each overnight
culture was used to inoculate 10 mL of mZMB containing FOS.
This experiment was performed in duplicate. Volumes of 200 µL
of inoculated mZMB were placed in 96 well sterile microplates,
covered with 30 µL of sterile mineral oil, and incubated in
anaerobic jars at 37◦C for either 24, 48, or 72 h. In parallel,
growth was monitored every 12 h in a microplate reader (Tecan
Infinite M200 PRO, Switzerland). Samples were recovered from
each microplate and centrifuged at 12000 × g for 2 min. Pellets
and supernatants were stored at−20◦C until use.

Quantification of Bacterial Abundance by
qPCR
Total DNA from each sample was purified using the UltraClean R©

Microbial DNA Isolation Kit (Mo Bio Laboratories, Carlsbad,

CA, United States), following manufacturer instructions and
using a Disruptor Genie (Scientific Industries, Inc., Bohemia,
NY, United States). Extracted DNA was quantified using
a NanoQuant Plate in the Tecan Infinite M200 PRO plate
reader, and diluted to 1 ng/µL to be used in qPCR reactions.
For qPCR we used 0.2 µM of the following primers: for Bv,
Bacteroidetes primer F (5′-GGTGTCGGCTTAAGTGCCAT-3′)
and Bacteroidetes primer R (5′-CGGACGTAAGGGCCG
TGC-3′); for Bi, Blon_0883F (5′-AGTTCGGCTCCAAAGAC
CTG-3′) and Blon_0883R (5′-CATGCCTCGATACGGTCGAA),
targeting an ABC solute binding protein; for Ec, Eco1457F
(5′-CATTGACGTTACCCGCAGAAGAAG) and Eco1652R
(5′-CTCTACGAGACTCAAGCTTGC-3′) (Kassinen et al., 2004);
and for La, LACTO_F (5′-TGGAAACAGRTGCTAATACCG-
3′) and LACTO_R (5′-GTCCATTGTGGAAGATTCCC-3′)
(Bartosch et al., 2004). qPCR reactions were performed using
the qPCR PowerUp SYBR Green Master Mix in MicroAmp Fast
Optical plates (Applied Biosystems, United States), and using
a StepOnePlus Real-Time PCR System (Applied Biosystems,
United States). Reactions were carried out for 2 min at 50◦C,
2 min at 95◦C and 40 cycles of 3 s at 95◦C and 30 s at 62◦C.
Absolute quantification was performed including a standard
curve using DNA from a pure culture of each species, with
dilutions starting from 1 ng/µL to 0.1 pg/µL. To convert
bacterial DNA concentrations into cell genome numbers, the
following equation was used (equation 1).

Cell copies/mL =

Avogadro N◦ (1/mol) · DNA quantity (g/mL) ·

Genome 16S copy number

Genome size (pb) · 660(
g

mol )

Batch Bioreactor Culturing
Four independent batch co-culture experiments were performed
in a 250 mL bioreactor (Mini-bio Applikon Biotechnology,
Netherlands), using mZMB as culture media supplemented with
FOS at 1%. In these experiments, the four microorganisms (Bi-
La-Ec-Bv) were inoculated at an initial OD630 of 0.05. The
bioreactor has two six-bladed Rushton turbines and operated
at 100 rpm. The temperature was set at 37◦C and the pH was
maintained at 5.5 with automatic injection of 3N HCl and 3N
NaOH. The dissolved oxygen concentration was set at 1 ppm
by purging N2 (99.99% grade) before inoculation and during
the lag phase. The foam level was controlled adding 100 µL
antifoam in the inoculum (Polydimethylsiloxane base, Winkler,
Chile). Two milliliter from the bioreactor were obtained every 2 h
and centrifuged at 4000 × g for 5 min. Supernatants were stored
at−20◦C for carbohydrate and SCFA quantification. Pellets were
stored for DNA extraction, quantified and diluted to 10 ng/µL
for qPCR assays as described above in an AriaMx Realtime PCR
System (Agilent Technologies, Santa Clara, CA, United States).

Sample Analysis
Total carbohydrate quantification was performed using the
phenol-sulfuric acid method (Tuomivaara et al., 2015). Acetate
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and lactate were quantified by HPLC using an Aminex HPX-
87H ion exchange carbohydrate-organic acid column (Bio-Rad,
United States) at 35◦C with a flow rate of 0.450 mL/min (H2SO4
5 mM, mobile phase) on a LaChrom L-700 HPLC system
(Hitachi, Japan), equipped with a Diode Array and a Refractive
Index detectors as described previously (Mendoza et al., 2017).

Model Development
The equations used in the model are described in the Model
development section in Supplementary Material. The model,
the parameter identifiability and sensitivity analysis codes are
also presented in Supplementary Material. As input for the
determination of the parameters, mono-culture and paired
co-culture abundance data are required, in addition to an
estimation of acetate and lactate produced and carbohydrate
consumed under these conditions. To simplify the analysis, some
assumptions were taken into account: (a) an inhibition term was
added to Monod kinetics (Model development, Supplementary
Material); (b) a microorganism will prefer the consumption
of the main carbon sources (glucose, lactose), over other
intermediates produced during the fermentation; (c) the ability
of a microorganism to produce or consume an intermediate was
determined from its metabolic pathway and the literature, and
later confirmed experimentally in mono-cultures.

RESULTS

Model Description
In this work a kinetic black-box model was developed, aimed
to predict the abundance of a bacterial population, substrate
consumption and SCFA production, based on mono and co-
culture data (Figure 1). The model is based on microbial
growth equations, but it also considers the metabolic influence
of one microorganism on another. This could be considered as a
feedback control mechanism (Figure 1).

Parameter Settings in Mono-culture
For single microorganisms, the general model consisted of 5
ODEs (Equations 2, 4, 5, and 6 in Supplementary Material),
17 parameters and constitutive Monod-like inhibition equations
(Sacher et al., 2011). Mono-culture parameters (Table 1) were set
as described in the Parameter fitting section in the Supplementary
Material. 96 well-plates mono-cultures of Bi, Bv, Ec and La
were prepared, in a semi-synthetic media (mZMB) and using
FOS as the sole carbon source. Bacterial abundance, FOS
consumption and acetate and lactate produced were measured
to fit model parameters. An average of eight parameters were
set for each bacterium (Table 1), which were found by the
optimization task. The calculated error in the assay is shown
in Supplementary Table S1. For any microorganism and under
all conditions, parameter Ks (half-velocity constant) appeared
insensitive.

Paired Co-culture and Parameter Fitting
The model was later expanded to include the metabolic
interaction between two microorganisms. This model consists

FIGURE 1 | Model general representation. Initial substrate and product
concentrations and lag phase are used as input (black bars). Microbial growth,
consumption, and acid production are considered to interact with other
bacteria. Final outputs are observed substrate, acids, and biomass.

of 7 ODEs, 17 parameters per bacteria and two interaction
parameters per co-culture. Every parameter not calibrated in
mono-culture was set in this step. In order to fit the co-culture
parameters, all paired combinations of microorganisms were
cultured in FOS and analyzed as described above. Figure 2A
shows the percentage of change in abundance for all six paired
combinations, determined experimentally. As a comparison,
Figure 2B shows these percentage changes according to the
fitted models. Most of the times, the model was able to
predict well the changes in abundance in all co-cultures.
Experimentally, initial Ec cell numbers were higher than the
other microorganisms. However, during growth Bi and La
recovered in part their levels compared to Ec (Figures 2A,B).
Co-culture data allowed the prediction of Bv predominance over
La and Bi during growth on FOS, which was also observed
experimentally.

Figures 3A,B compares the experimental consumption of
FOS by the co-cultures with the values simulated with the
fitted model. Most experimental and simulated combinations
showed total carbohydrate depletion between 24 and 48 h. In
general the model indicated a faster consumption compared
to experimental data. One important exception was the BvLa
paired co-culture, in which not all of the carbohydrate was
consumed. This behavior was not captured by the model, which
assumed that since both bacteria reached 100% consumption
in single culture, the same rule should apply to their
combination.

Figure 4A shows the concentration of acetate produced over
time. In certain cases the model predicted the experimental
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TABLE 1 | Parameters found via scatter search in mono-culture and then used in co-culture optimization.

Parameter description Unit B. infantis B. vulgatus E. coli L. acidophilus

Kd h−1 0.0139 0.0045∗ 0.0001∗ 0.0461

Ks g 0.0412∗ 0.0203∗ 0.0190∗ 0.0027∗

µmax h−1 0.3344 0.3574 0.5063 0.4282

Yxs
gbiomass

gsubstrates
0.4268∗ 0.0054 0.8812 0.1561

Ia g 29.9727 3.8514 3.4468 0.1723

Il g 14.8256 48.8576∗ 8.4569 17.4298

Ms
gsubstrates
gbiomass

∗h−1 0.0003 0.0001 0.0055 0.0001

Yax
gbiomass
gacetate

2.0165 5.1489∗ 4.8884 1∗

Y lx
gbiomass
glactate

10.2774 10.5967 1∗ 1.5487∗

Ksa g 0.0874∗ 0.0231 8.6831 1∗

Ksl g 0.0615 6.2647 0∗ 0.3547

βmaxA h−1 0.4687 0.1322 0.284525∗ 0∗

βmaxL h−1 0.1497 0.0006∗ 0∗ 0.0011∗

µmaxA h−1 0∗ 0∗ 0.1139 0∗

µmaxL h−1 0∗ 0.0242 0∗ 0.0074∗

YxA
gbiomass
gacetate

1∗ 1∗ 0.3076 1∗

YxL
gbiomass
glactate

1∗ 0.0247 1∗ 1∗

Set parameters are indicated by (∗).

FIGURE 2 | Changes in bacterial population during growth on FOS, expressed as percentage of the co-culture in time. (A) experimental data of co-cultures; (B)
model estimation of abundance in co-cultures; (C) abundance of the four-species co-culture in microplates, experimental (Left) and estimated by the model (Right);
(D) abundance in the four-species co-culture in the bioreactor during growth on FOS, experimental (Left) and estimated by the model (Right).

behavior of acetate production. Bi combinations displayed larger
acetate amounts compared to other co-cultures, and in certain
cases the model predicted higher values than what was observed.
Interestingly, the model predicted that acetate production in
co-culture BiEc will have a peak and later decrease. This was
also observed experimentally, but at a different time and different
intensity (Figure 4A). These results indicate that Bi growth is an
important parameter for sensitivity assays.

Figure 5A displays the concentration of lactate in co-cultures.
A good agreement between observed and predicted data was
obtained in co-cultures BiLa, BiEc and LaEc. Combinations
BiBv and BvLa were predicted to produce lactate because of

Bi and La activities; however, lactate amounts were negligible
and not reproduced well by the model. In addition, BvEc
co-culture showed production of lactate, but the model
assumptions and structure did not consider this situation.
The error calculated (equation 10 in Supplementary Material)
for the parameter fitting process is shown in Supplementary
Table S1.

The parameters determined in paired co-cultures are shown
in Table 1. The interaction parameters in Table 2 indicate
the influence of one microorganism on another’s growth rate.
A negative value indicates that one microorganism favors
another’s growth, while a positive term indicates inhibition.
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FIGURE 3 | Heat map representing FOS concentration in co-cultures and its prediction by the model. (A) FOS concentration in paired co-cultures. (B) Model
estimation of FOS concentration in paired co-cultures; (C) experimental and predicted FOS concentration in the four-species co-culture in microplates; (D)
experimental and predicted FOS concentration in the four-species co-culture in the bioreactor.

FIGURE 4 | Acetate production and estimation by the model. (A) Experimental data in paired co-cultures, compared to values predicted by the model; (B)
experimental and predicted acetate values of the consortium in microplate assay; (C) experimental and predicted acetate values of the consortium in the bioreactor.

Values near 0 suggest a greater interaction effect, while values
near the limit indicate there is no effect on the other bacteria.
A strong inhibition was found from Ec to Bv, and in general the
effects observed were positive or neutral.

Model Validation Using Bacterial
Consortia
Finally, the model was validated using independent experimental
data from co-culture of the four microorganisms using FOS as the
sole carbon source. The experiment was set in microplates and
analyzed as discussed above. To test the validity of the model in
another set-up, the consortium was additionally cultured on FOS

in a 250 mL pH/oxygen controlled stirred bioreactor. This batch
system offers a much more controlled and reproducible anaerobic
environment, which also provides much faster growth compared
to microplates.

Figure 2C shows percentage abundance data obtained for
each member of the consortium in microplate assays. The initial
levels of Bv were much lower compared to the other three
microorganisms. Interestingly, the amounts of La, Ec and Bi
in the well-plates cultures were closely predicted by the model.
Under these conditions, Bi dominated the co-culture using FOS,
followed by La. A good prediction was also observed for the total
carbohydrate concentration in spent media (Figure 3C). Finally,
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FIGURE 5 | Lactate production and estimation by the model. (A) Experimental data in paired co-cultures, compared to values predicted by the model; (B)
experimental and predicted lactate values of the consortium in microplate assay; (C) experimental and predicted lactate values of the consortium in the bioreactor.

TABLE 2 | Interaction parameters (efji in equation 8, Supplementary Material)
found in co-cultures by the model.

B. infantis B. vulgatus E. coli L. acidophilus

B. infantis – 99.99 16.33 45.05

B. vulgatus −40.52 – 0.16 1.99

E. coli −37.56 −57.14 – −26.61

L. acidophilus −70.23 −32.74 −99.99 –

Negative values indicate growth stimulation, and positive indicates a negative effect
on growth. Values near 0 indicate a stronger effect.

the amounts of acetate and lactate appeared overestimated by the
model (Figures 4B, 5B).

As expected, growth of the consortium in the bioreactor
resolved in a shorter time compared to the assays above
(Figure 2D). Therefore, time was linearly adjusted for
comparison and integration in the model. As in microplates, we
observed a predominance of Bi and La. This observation was
sustained during the course of the fermentation. Interestingly, the
model was also able to predict this predominance (Figure 2D).
In addition, both the model and data showed a full consumption
of FOS at 12 h (Figure 3D). Finally, a good agreement of
acetate and lactate amounts between the experimental evidence
and the model was obtained (Figures 4C, 5C). Since La was
a good competitor during growth on FOS in the bioreactor,
lactate concentrations appeared higher compared to previous
experiments (Figures 5A–C). The parameters that define the
production of lactate and acetate in Bi appear to be important
in the four-bacterium co-culture, considering the predominance
of Bi.

Finally, we performed a simple additional simulation to test
the prediction capabilities of the model where a bacteriostatic
agent is used against each member of the consortium (Figure 6).
In every co-culture where Bi was able to grow, it predominated

over the others (Figures 6B–D). On the other hand, if Bi was
inhibited, Ec predominated in the co-culture (Figure 6A).

Parameter Identifiability Analysis
Parameter identifiability was used to find correlations between
parameters (Parameter identifiability in Supplementary
Material). This analysis is important for further reducing the
number of fitted parameters by setting one of them and defining
the other as a function. Inspection of the parameter covariance
matrix is one way to find which parameters allow the model to be
identifiable. As shown in Figure 7, highlighted cells display a high
correlation (positive or negative). Usually parameters inside a
cluster have a high correlation. In this case, this could be observed
for all parameters from the same microorganism. For example,
production of acetate and lactate in Bi are directly correlated,
while some correlations between microorganisms were found.
La’s parameters (Ysx – biomass yield, µmax – Maximum growth
rate, Ia – Acetate inhibition constant, Il – Lactate inhibition
constant) are inversely correlated to Ec bacterial parameters
such as growth and inhibition constants. This suggests that the
higher the La growth, the lower the E. coli biomass yield and
higher inhibition. Several parameters associated to Bv growth
were mostly directly correlated to Ec growth, indicating a more
neutral or cooperative interaction.

Parameter Sensitivity Analysis
This analysis allows the determination of the influence of every
parameter in each differential equation of the model. As shown in
Figure 8, the effects of the parameters initially set are important
in every ODE, due to the fact that Bi appears as the dominant
microorganism in the consortium (Figures 2C,D). Specifically,
the second parameter of the model (Bi’s µmax) has the highest
influence on every other microorganism and their metabolic
equations. Parameters K3 and K4 (Bi’s inhibition constants of
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FIGURE 6 | Simulation of the effect of a bacteriostatic agents on the consortium. These agents are simulated to be directed and inhibit the growth of each member
of the consortium. (A) Bifidobacterium infantis is unable to grow; (B) Bacteroides vulgatus is unable to grow; (C) Escherichia coli is unable to grow; (D) Lactobacillus
acidophilus is unable to grow.

FIGURE 7 | Parameter model identifiability. Correlation values between each parameter in the model was calculated (for each microorganism including interaction).
Only >|0.95| values are highlighted; red values are inversely correlated, while blue values are directly correlated. Parameters on both axes are indicated in Table 1.

acetate and lactate) also display a large influence on other
microorganisms. In order to analyze the effects of the sensitive
parameters found in the previous assay, Figure 9 shows the
average and standard deviation after 5000 iterations of randomly
changing a parameter by 5% in its amount. The strongest effect of
changing the value of Bi’s µmax is on Ec cell numbers (Figure 9A),
variable that can vary around 4% the value. On the other
hand, a change in a parameter could also imply an advance or
delay in the kinetics. Figure 9B shows the change in the FOS
consumption kinetics due to effects of higher or lower values of
Bi’s lactate inhibition constant. Here we observed that changing
the parameter only altered the dynamics of the ODE. Finally,

Figure 9C shows the last case found in the sensitivity analysis,
a parameter that is not sensitive to any differential equation. For
example, measured Bv was not affected even after changing 50%
parameter 25 (Ec substrate yield Ysx).

DISCUSSION

The gut microbiome is a complex microbial community that
modulates several host responses. This connection to host health
makes it important to understand what forces guide microbiome
composition and cause it to drift to an altered or dysbiotic
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FIGURE 8 | Model parameter average sensitivity. Sensitivity (Y-axis) of each parameter (X-axis) for every ODE is shown. xi represents every ODE described in the
model (x1 = dS/dt, x2 = dA/dt, x3 = dL/dt, x4 = dX1/dt, x5 = dX1m/dt, x6 = dX2/dt, x7 = dX2m/dt, x8 = dX3/dt, x9 = dX3m/dt, x10 =

dX4/dt, x11 = dX4m/dt), where S: substrate; A: acetate; L: lactate. X: live biomass; Xm: total biomass. Parameters are in the same order in Figure 6.

microbiome (Cox et al., 2017). The interest in determining and
predicting key factors in the establishment and maintenance of
the gut microbiome is the major goal of several works (Trosvik
et al., 2010a; Greenblum et al., 2012; Kettle et al., 2015; Shashkova
et al., 2016).

Diet is a major modulator of the composition of the gut
microbiome, and the nature of these substrates probably dictates
which species predominate. In this study we evaluated if a
mathematical model capturing metabolic interactions is able
to recapitulate the composition and functions of a consortium
of species of the gut microbiome. For this, we chose four
representative bacteria of the infant gut microbiome, and using
experimental data from mono and co-culture, a model was
developed, calibrated and validated. Using a bioreactor, the
developed model was assessed in a more controlled environment.

The system was studied during growth on FOS, a major
prebiotic present in infant formula (Roberfroid et al., 2010).
All members of the consortium display the ability to use this
substrate (Roberfroid et al., 2010), including E. coli which could
use small amounts of mono or disaccharides found in FOS.
Moreover, different molecular mechanisms for FOS consumption
have been described (Barrangou et al., 2003). In general the
predictions by the model followed the in vitro behavior of the
consortium, either in paired co-cultures, and growing the four-
species consortium either in microplates or in a more controlled
environment such as a biological reactor. This indicates that the
model is able to predict changes in the bacterial abundance using
only co-culture data for calibration.

It is very possible that interactions and parameters determined
in this study are dependent on which prebiotic is used. FOS

are commonly added to infant formula, but in combination
with galactooligosaccharides (GOS), another important prebiotic
(Garrido et al., 2013). Breast milk contains large concentrations of
HMO, which are also a large catalog of oligosaccharides derived
from lactose (Thomson et al., 2017). Moreover, the gut epithelium
is covered with a mucin layer, containing oligosaccharides that
could be used as carbon source by infant gut bacteria (Tailford
et al., 2015). In a more realistic situation probably all these
carbohydrates contribute to shape microbial interactions in
different ways, since their chemical structure selects for specific
microbial strains endowed with the cognate molecular machinery
for utilization. However, if metabolic interactions are key in
shaping microbiome composition, we could hypothesize that a
mathematical model including these interactions could predict
microbiome composition when other substrates are used.

We observed a good fit between experimental data and
modeling results. This suggests that inhibitions observed in
certain cases could be due to acetate and lactate production,
variables that were quantified and included in the mathematical
model. Both the reactor and the microplates had an initial pH
of 5.5, however, pH was not regulated in the latter system.
Considering this, similar results in both systems could also
indicate that results obtained are independent of the pH.

A general good agreement was also observed for acid
production and carbohydrate consumption. For Bi in mono-
cultures and co-cultures where it predominates, the amounts
of acetate and lactate produced are near a 3:2 ratio (Garrido
et al., 2013). This was also observed during the growth of the
consortium in the bioreactor. Acetate production by Ec was
overestimated by the model (0.21 g of acetate per 1 g of FOS
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FIGURE 9 | Variation of the ODEs values (g/L) over time due a 5% change in
the parameters in 5000 iterations. (A) worst case scenario, with parameter 2
(Bi’s µmax) affecting measured Ec ODE; (B) a change in kinetics scenario, with
parameter 4 (Bi’s lactate inhibition constant), affecting FOS consumption; (C)
a non-sensitive parameter (measured Bv ODE), for example to Ec substrate
yield.

consumed). In general Ec was thought to benefit from other
microorganism activities in that it uses mono or disaccharides
released to the media (Table 2) (Ravcheev et al., 2013; Vuoristo
et al., 2015). Another possibility might be protein fermentation by
Ec (Lulit and Strohl, 1990). Lactate production of La determined
by the model was around 0.63 g per 1 g of substrate, a similar yield
in lactose reported (Fu and Mathews, 1999).

In some co-cultures, the concentration of either acetate or
lactate was overestimated. This was evident in Bi co-cultures
whenever it predominated. Parameters of the model could be
much better estimated in experiments with improved resolution
and more frequent measurements. Since the model in co-cultures
defines the intervals where the parameters are most sensitive,
it is possible that an increase in the number of samples would
reduce the variation of underestimated parameters. The time
points where the substrate is being fully consumed are critical,
and microorganisms could find another substrate for growth (for
secondary fermenters) or entering to a stationary phase. Also, for
Bacteroides and Escherichia cultures, the microbial concentration
could be overestimated by some intrinsic pathways of these
genera (Neis et al., 2015; Vuoristo et al., 2015).

Moreover, while acetate and lactate are major metabolic
products in this system, a more complete picture could be
obtained if the model included other metabolites. Adding more
equations of utilization and inhibition by metabolites such
as ethanol, propionate, butyrate and amino acids could be
important. Amino acid cross-feeding between Bacteroides and
Lactobacillus supports bacterial growth in vitro and in silico
(Magnúsdóttir et al., 2016).

The analysis of bacteriostatic agent effects on the culture
suggested that Bi should be predominant if other bacteria are
inhibited. However, when Bi is inhibited, La or Bv should
grow more than Ec, because of their glycolytic properties
(Ravcheev et al., 2013). This is a limitation of the model,
probably due to missing functions that describe the breakdown
of complex carbohydrates by Bv, or the protein fermentation
as a carbon source of bacteria. In addition, further work could
corroborate these hypotheses by adding the respective antibiotic
and measuring the same variables used in this work.

A possible application of this initial ODE-based model is that
it could be used to predict microbial composition in the gut
based on diet, at least in simpler microbiome communities. This
work indicates that it is possible to have a good approach to this
goal if metabolic interactions are included. Moreover, bacterial
composition of a microbiome could eventually be optimized,
for example to increase production of acetate and lactate. These
two acids are important modulators of health outcomes in the
gut. For example acetate has been shown to prevent pathogen
colonization (Fukuda et al., 2011), and lactate in the adult gut
microbiome is used by butyrate-producing bacteria (Moens et al.,
2016), a health-promoting SCFA (Louis and Flint, 2017).

Finally, this model could be useful to study interactions using a
more complex set of species of gut microbiome species. In general
these results could be important to predict the composition
of microbial communities where metabolic interactions are
relevant. Considering the flexibility of incorporating product
equations and growth inhibitions to the model, this model
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could be used to find microbial consortia with desired metabolic
properties such as maximized acid production.
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High-throughput sequencing technology has enabled population-based studies of the

role of the human microbiome in disease etiology and exposure response. Microbiome

data are summarized as counts or composition of the bacterial taxa at different taxonomic

levels. An important problem is to identify the bacterial taxa that are associated with

a response. One method is to test the association of specific taxon with phenotypes

in a linear mixed effect model, which incorporates phylogenetic information among

bacterial communities. Another type of approaches consider all taxa in a joint model

and achieves selection via penalization method, which ignores phylogenetic information.

In this paper, we consider regression analysis by treating bacterial taxa at different level as

multiple random effects. For each taxon, a kernel matrix is calculated based on distance

measures in the phylogenetic tree and acts as one variance component in the joint

model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and

selection operator) penalty on variance components. Our method integrates biological

information into the variable selection problem and greatly improves selection accuracies.

Simulation studies demonstrate the superiority of our methods versus existing methods,

for example, group-lasso. Finally, we apply our method to a longitudinal microbiome

study of Human Immunodeficiency Virus (HIV) infected patients. We implement our

method using the high performance computing language Julia. Software and detailed

documentation are freely available at https://github.com/JingZhai63/VCselection.

Keywords: Human Immunodeficiency Virus (HIV), lasso, longitudinal study, lung microbiome, MM-algorithm,

variance component models, variable selection

1. INTRODUCTION

The advent of high-throughput sequencing technologies has produced extensive microbial
community data, which reveals the impact of human microbes on health and various
diseases (Mardis, 2008; Haas et al., 2011; Hodkinson and Grice, 2015; Kuleshov et al., 2016; Wang
and Jia, 2016). Microbial community data collected from oral, skin, and gastrointestinal tract
samples have received early attention (Eckburg et al., 2005; Gill et al., 2006; Turnbaugh et al., 2009;
Dewhirst et al., 2010; Grice and Segre, 2011). Studies of the respiratory tract microbiome did not
start until the discovery of microbiome in the lungs of both healthy (Erb-Downward et al., 2011;
Morris et al., 2013; Twigg III et al., 2013) and diseased populations (Zemanick et al., 2011; Lozupone
et al., 2013) using culture-independent techniques. A pulmonary microbiome dataset was sampled
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longitudinally from 30 HIV-infected individuals after starting
highly active antiretroviral therapy (HAART). The objective is
to study how the pulmonary microbiome impacts lung function
of advanced HIV patients after HAART (Garcia et al., 2013;
Lozupone et al., 2013; Twigg III et al., 2016).

After microbiome sequences have been acquired, they are
usually clustered into Operational Taxonomic Units (OTUs):
groups of sequences that correspond to taxonomic clusters or
monophyletic groups (Caporaso et al., 2010). The abundance
of an OTU is defined as the number of sequences in that
OTU. The microbial community is then described by a list of
OTUs, their abundances, and a phylogenetic tree. Regression
methods have been a powerful tool to identify clusters of OTUs
that are associated with or predictive of host phenotypes (Zhao
et al., 2015; Wang and Zhao, 2016; Wang et al., 2017).
Microbiome data presents several challenges. First microbiome
abundances are sparse and the number of OTUs is usually
much bigger than sample size. In our longitudinal data set,
there are 2,964 OTUs and only two of them have abundance
greater than 5%. When OTUs are included as predictors
for clinical phenotypes in a regression model, regularizations
are often used to overcome ill-conditioning. For example,
Lin et al. (2014) proposed a linear log-contrast model with
ℓ1 regularization. Another possible strategy to overcome the
sparsity of microbial data is to cluster multiple OTUs into
their higher phylogenetic levels, e.g., genus, order, and phylum.
Shi et al. (2016) extended Lin et al.’s (2014) model to allow
selecting taxa at different higher taxonomic ranks. However, both
methods overlook the distance information in the phylogenetic
tree. A network-constrained sparse regression is proposed to
achieve better prediction performance through a Laplacian
regularization (Chen et al., 2012b, 2015b). Another popular
approach for sparse linear regression is the group-wise selection
scheme, group-lasso, which selects an entire group for inclusion
or exclusion (Yuan and Lin, 2006; Garcia et al., 2013; Simon
et al., 2013; Yang and Zou, 2015). Therefore, group-lasso is a
natural tool for incorporating group information defined by
the phylogenetic tree, but still misses fine level information. To
encourage hierarchically close species to have similar effects on
the phenotype, Wang and Zhao (2016) and Wang et al. (2017)
both used tree topology information and fused variables that stay
closer in a tree. However, this assumption may be violated. For
example, the bacteriaClostridia, some species in this class convert
dietary fiber into anti-inflammatory short-chain fatty acids, while
others cause severe colitis. We, therefore, need a method that
can incorporate biologically meaningful cluster information,
phylogenetic distance, or tree information, can encourage sparse
feature selection, and can handle possible adverse effect within
clusters.

By modeling microbiome cluster effects as random effects,
Zhai et al. (2017b) proposed a variance component model

y = Xβ + Zb+

L
∑

l

hl + ε

b ∼ N (0, σ 2
d In), hl ∼ N (0, σ 2

glK l), ε ∼ N (0, σ 2
e In), (1)

where y, X, and ε are the vertically stacked vectors/matrices
of yi, Xi, and εi. The yi is an ni × 1 vector of ni repeated
measures of the quantitative phenotype for an individual i. Xi is
the ni × p covariates. The εi is an ni × 1 vector of the random
error. Zi = (1, . . . , 1)′ is an ni × 1 design matrix linking the
vector of random effects bi to yi. Z is a block diagonal matrix
with Zi on its diagonal. β is a p × 1 vector of fixed effects. The
b = (bi) is the subject-specific random effects. L is the total
number of microbiome taxonomic clusters,N is the total number
of individuals and

∑N
i= 1 ni is the total number of observations.

In model (Equation 1), hl is the random effects generated by
microbiome taxa l with covariance σ 2

gl
K l. K l is a positive-definite

kernel matrix derived from a distance matrix that is calculated
based on the OTU abundances of taxa in the phylogenetic tree.
Two common distance matrices are UniFrac Distance (Lozupone
and Knight, 2005) and Bray-Curtis dissimilarity (Bray and Curtis,
1957). Therefore,

Var(y) = σ 2
dZ
′Z +

L
∑

l=1

σ 2
gl
K l + σ 2

e In, (2)

where σ 2
gl
and σ 2

d
are the phenotypic variance from microbiome

clusters and between subject variance from repeated
measurements. σ 2

e is the within-subject variance that cannot be
explained by either microbiome or repeated measurements. To
identify associated microbiome taxa at different phylogeny levels
is to select non-zero variance components at different phylogeny
levels.

In this article, we adopt a penalized likelihood approach
by regularizing variance components based on linear mixed
effect models: variance component lasso selection (VC-lasso).
We incorporate the phylogenetic tree information by using
kernel matrices. We reduce the dimensionality of large and
very sparse OTU abundances within a cluster by translating
them into a random effect. Furthermore, our method can
be applied to a longitudinal design, where an unpenalized
variance component that captures the correlation of repeated
measurements is included. Our Majorization-Minimization
(MM) algorithm for variance component selection guarantees
estimation and selection computational efficiency (Hunter and
Lange, 2004; Hunter and Li, 2005; Zhou et al., 2011, 2015; Lange,
2016). Many statistical methods have been proposed related to
the selection of random effects. Ibrahim et al. (2011) considered
jointly selecting fixed and random effect in mixed effect model
using the maximum likelihood with the smoothly clipped
absolute deviation (SCAD) and adaptive lasso penalization. Fan
and Li (2012) proposed a group variable selection strategy to
select and estimate important random effects. Hui et al. (2017)
extended this strategy to generalized linear mixed model by
combining the penalized quasi-likelihood (PQL) estimation with
sparsity-inducing penalties on the fixed and random coefficients.
However, none of these methods can be easily extended to
microbiome data and none of them use variance component
regularization.

The rest of this paper is organized as follows. We introduce
the variance component lasso selection method in section 2.
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Section 3 conducts comparative simulation studies. Section 4
presents simulation and real data analysis results. We conclude
with a discussion in section 5.

2. METHODS

2.1. Lasso Penalized Log-Likelihood
We consider model (Equation 2) with model parameters β and
σ 2 = (σ 2

1 , . . . , σ
2
m). The log-likelihood of our model is:

L(β , σ 2; y,X) = −
1

2
ln det(V)−

1

2
(Y − Xβ)′V−1(Y − Xβ),

(3)

where

V =

m
∑

i= 1

σ 2
i V i.

For the selection of non-zero variance components among a
large number of variance components, we estimate the regression
parameter β and σ 2 by minimizing the lasso penalized log-
likelihood function

pl(β , σ 2; y,X, λ) = −L(β , σ 2)+ λ

m
∑

i= 1

ciσi, (4)

subject to nonnegativity constraint σi ≥ 0. The first part
−L(β , σ 2) of the penalized function (Equation 4) is the negative
log-likelihood defined in Equation (3). The second part is
the lasso penalty to enforce shrinkage of high-dimensional
components. We do not penalize fixed effects β . λ is the
tuning parameter controlling model complexity; ci ∈ {0, 1}
allows differential shrinkage of specific variance components.
For example, when modeling longitudinal phenotypes with
random intercept model, the corresponding variance component
is unpenalized and always stays in the model. ci can be chosen
using different weighting schemes based on prior knowledge such
as functional annotations.

2.2. Minimization of Penalized Likelihood
via MM Algorithm
Minimizing the penalized negative log-likelihood is challenging
due to non-convexity. Based on the Majorization-Minimization
(MM) algorithm (Lange et al., 2000; Hunter and Lange, 2004),
Zhou et al. (2015) proposed a strategy for maximizing the log-
likelihood Equation (3) by alternate updating β and variance
components σ 2. We follow the same strategy to solve the lasso
penalized likelihood estimation problem (Algorithm 1).

Given σ 2(t), updating β is a general least squares problem with
solution

β(t+1) =
(

X′V−(t)X
)−1

X′V−(t)y, (5)

where V−(t) represents the tth-step update of V−1. Given β(t),
updating the variance components σ 2 invokes the MM principle.
To minimize the objective function pl(θ), where θ = (β , σ 2),

Algorithm 1: MM algorithm for minimizing lasso
penalized likelihood (Equation 4).

Data: y, X, V1, . . . ,Vm, λ

Result: β̂ , σ̂ 2 such that pl(β , σ 2) = −L(β , σ 2) +
λ

∑m
i= 1 ciσi is minimized.

1 Initialize σ
(0)
i > 0. i = 1, . . . , m repeat

2 V(t) ←
∑m

i= 1 σ
2(t)
i V i;

3 β(t)← argminβ (y − Xβ)′V−(t)(y − Xβ);

σ
(t+1)
i ← σ

(t)
i by finding polynomial roots of

P(·) = 0, i = 1, . . . ,m

P
(

σ
(t+1)
i

)

= σ
4(t+1)
i tr

(

V−(t)V i

)

+ λσ
3(t+1)
i

− σ
4(t)
i

(

y− Xβ(t)
)′
V−(t)V iV

−(t)
(

y − Xβ(t)
)

until4 objective function pl converges;

the majorization step operates by creating a surrogate function
g(θ |θ (t)) that satisfies two conditions

dominance condition : pl(θ) ≤ g(θ |θ (t)) for all θ

tangent condition: pl(θ (t)) = g(θ (t)|θ (t)).

The second M of the MM principle minimizes the surrogate
function to produce the next iterate θ (t+1). Then we have

pl(θ (t+1)) ≤ g(θ (t+1)|θ (t)) ≤ g(θ (t)|θ (t)) = pl(θ (t)).

Therefore, when the surrogate function is minimized, the
objective function f (θ) is driven downhill. We combine two
followingmajorizations to construct the surrogate function. First,
with all V i being positive semidefinite, Zhou et al. (2015) show
that

V(t)V−1V(t) =

( m
∑

i= 1

σ
2(t)
i V i

)( m
∑

i= 1

σ 2
i V i

)−1( m
∑

i= 1

σ
2(t)
i V i

)

�

m
∑

i= 1

σ
2(t)
i

∑

j σ
2(t)
j

(

∑

j σ
2(t)
j

σ
2(t)
i

σ
2(t)
i V i

)

(

∑

j σ
2(t)
j

σ
2(t)
i

σ 2
i V i

)−1(
∑

j σ
2(t)
j

σ
2(t)
i

σ
2(t)
i V i

)

=

m
∑

i= 1

σ
4(t)
i

σ 2
i

V iV
−1
i V i =

m
∑

i= 1

σ
4(t)
i

σ 2
i

V i,

leading to the first majorization

(y − Xβ)′V−1(y− Xβ)

� (y − Xβ)′V−(t)
( m

∑

i= 1

σ
4(t)
i

σ 2
i

V i

)

V−(t)(y− Xβ). (6)
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It separates the variance components σ 2
1 , . . . , σ

2
m in the quadratic

term of the log-likelihood function (Equation 4). By the
supporting hyperplane inequality, the second majorization is

ln detV ≤ ln detV(t) + tr
[

V−(t)
(

V − V(t)
)]

, (7)

which separates σ 2
1 , . . . , σ

2
m in the log-determinant term of

Equation (4). The overall majorization g(σ 2|σ 2(t)) of pl(β , σ 2) is
obtained by combining Equations (6) and (7)

g
(

σ 2|σ 2(t)) =
1

2
tr

(

V−(t)V
)

+
1

2

(

y− Xβ(t)
)′
V−(t) (8)

( m
∑

i= 1

σ
4(t)
i

σ 2
i

V i

)

V−(t)
(

y − Xβ(t)
)

+ λ

m
∑

i= 1

σi + s(t)

=

m
∑

i= 1

[

σ 2
i

2
tr

(

V−(t)V i

)

+
σ
4(t)
i

2σ 2
i

(

y− Xβ(t)
)′

V−(t)V iV
−(t)

(

y − Xβ(t)
)

+ λσi

]

+ s(t),

where s(t) is an irrelevant constant term.
We minimize the surrogate function (Equation 8) by setting

the derivative of g(σ 2|σ 2(t)) to zero. The update σ
(t+1)
i for

variance component σ
(t)
i is chosen among the positive roots of

the polynomial

P

(

σ
(t+1)
i

)

= σ
4(t+1)
i tr

(

V−(t)V i

)

+ λσ
3(t+1)
i

− σ
4(t)
i

(

y − Xβ(t)
)′
V−(t)V iV

−(t)
(

y − Xβ(t)
)

or 0, whichever yields the largest objective value. The alternating
updates repeat until

| pl
(

β(t+1), σ 2(t+1)
)

− pl
(

β(t), σ 2(t)
)

|< tol ∗ (| pl
(

β(t), σ 2(t)
)

| + 1),

where tol is the pre-specified tolerance. The default tolerance
is 10−4.

2.3. Tuning Parameter Selection
The tuning parameter λ in the penalized likelihood estimation
is chosen by a 5-fold cross-validation procedure based on
g-Measure =

√

sensitivity ∗ specificity. g-Measure is an
indicator of the model selection accuracy. g-Measure = 1
indicates the best accuracy and g-Measure = 0 the worst (Zhai
et al., 2017a). It can counteract the imbalance between the
number of of irrelevant and relevant clusters. Therefore, we
present g-Measure instead of sensitivity (true positive rate) and
specificity (true negative rate) alone (Supplementary Material
section 3). Akaike Information Criterion (AIC) (Akaike, 1998)
and Schwarzs Bayesian Information Criterion (BIC) (Schwarz
et al., 1978) are used in the real data analysis. Performance
comparisons between cross-validation andAIC/BIC are provided
in the Supplementary Material section 4.

2.4. Software Implementation
We implement our method using the high performance
computing language Julia. UniFrac distance
matrices are computed using our Julia package
PhylogeneticDistance.

TABLE 1 | Simulation parameter configurations.

Non-zero variance

components

Cluster/kernel Design σ2
g
† Method

Scenario 1: Selection under different sample sizes

n = 20, 50, 100;

simulated count data

l = 1, 2,

3, 4, 5

genus;

KW

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 2: Selection under different number of non-zero variance components

n = 50; simulated

count data

(i) l = 20, 30;

(ii) l = 1, 2,

3, 4, 5;

(iii) l = 1, 2,

3, . . . , 15;

genus;

KW

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 3: Selection under different UniFrac distance kernels

n = 50; simulated

count data

l = 1, 2,

3, 4, 5

genus;

KW , KUW ,

KVAW , K0,

K0.5

longitudinal;

cross-sectional

1, 5,

25, 100

VC-lasso

group-lasso

Scenario 4: Selection under fixed effect model

n = 50; simulated

count data

l = 20, 30;

l = 1, 2,

3, 4, 5;

l = 1, 2,

3, . . . , 15;

genus;

KW

cross-sectional 1, 5,

25, 100

VC-lasso

group-lasso

Throughout simulations, σ 2
e = 1, β1 = β2 = 0.1. We use σ 2

d = 0.6 and 3 repeated measurements in the longitudinal design. We use σ 2
d = 0 for the cross-sectional design. Group-lasso

is performed only in the cross-sectional design.
†
The non-zero variance components are assumed to have equal effect strength in each simulation setting.
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3. SIMULATION

In this section, we conduct simulation studies to evaluate the
variable selection and prediction performance of VC-lasso and
compare the results with the conventional method group-lasso
as implemented in the gglasso package (Yang and Zou,
2015). Phenotypes are simulated based on one real pulmonary
microbiome dataset and one simulated longitudinal microbiome
dataset. We first describe real and simulated microbiome
abundance data, phylogenetic tree, and then detail our four
phenotype simulation schemes (Table 1).

The real pulmonary microbiome data has been discussed in
Twigg III et al. (2016). Thirty individuals were recruited. During
up to three-years follow-up, lung functions and microbiome
composition were measured 2–4 times for each individual.
The longitudinal microbiome taxonomic data is summarized as
2,964 OTUs with a phylogenetic tree (Twigg III et al., 2016).
Longitudinal microbiome abundance data is generated by a Zero-
Inflated Beta Random Effect model using R package ZIBR in
SupplementaryMaterial section 2 (Chen and Li, 2016). For cross-
sectional design, we generate taxonomic data using a Dirichlet-
Multinomial (DM) model (Chen et al., 2012a). Simulation
parameters, such as proportion of each OTU and the overall
dispersion, are estimated from our real pulmonary microbiome
abundance data.

Given simulated microbiome count data and taxonomic
information, we classify 2,353 of 2,964 OTUs to 30 genera (taxa
clusters) and the remaining 611 of 2,964 OTUs are grouped
into the 31st cluster named other (Table 2). As described in
Supplementary Material section 1, UniFrac distance matrices (D)
of the 31 clusters are computed and converted to kernel matrices
as

K = −
1

2
(I −

11′

n
)D2(I −

11′

n
) (9)

followed by a positive definiteness correction (Chen and Li, 2013;
Zhao et al., 2015). All of the microbiome kernel matrices K are
scaled to have unit Frobenius norm.

Phenotypes are simulated based on the following scenarios.

3.1. Scenario 1: Selection Under Different
Sample Size
Longitudinal and cross-sectional responses are generated by

y ∼ N (X1β1 + X2β2, σ 2
dZZ

′ +

L
∑

l=1

σ 2
glK l + σ 2

e I), (10)

where σ 2
gl

> 0 for l = 1, . . . , 5 and σ 2
gl
= 0 otherwise.

The total number of variance components for microbiome
clusters is L = 31. The true model has five non-zero variance
components including Anaerococcus, Atopobium, Actinomyces,
Campylobacter, and Capnocytophaga. We compare the selection
performance at three sample sizes: n = 20, 50, 100. For cross-
sectional design, responses are simulated by setting σ 2

d
= 0.

TABLE 2 | List of 31 Genera.

Genus Phylum No of OTU Mean Reads

1 Actinomyces Actinobacteria 150 230.59

2 Anaerococcus Firmicutes 17 2.90

3 Atopobium Actinobacteria 22 40.83

4 Campylobacter Proteobacteria 31 51.05

5 Capnocytophaga Bacteroidetes 31 70.81

6 Catonella Firmicutes 22 40.09

7 Corynebacterium Actinobacteria 47 12.22

8 Flavobacterium Bacteroidetes 25 5.08

9 Fusobacterium Fusobacteria 55 174.29

10 Gemella Firmicutes 17 72.11

11 Lactobacillus Firmicutes 33 141.10

12 Leptotrichia Fusobacteria 15 12.40

13 Megasphaera Firmicutes 14 36.99

14 Methylobacterium Proteobacteria 11 2.88

15 Neisseria Proteobacteria 18 109.61

16 OD1_genera_incertae_sedis OD1 75 0.92

17 Parvimonas Firmicutes 20 76.46

18 Peptoniphilus Firmicutes 11 1.16

19 Porphyromonas Bacteroidetes 42 134.41

20 Prevotella Bacteroidetes 304 833.35

21 Rothia Actinobacteria 16 49.83

22 Selenomonas Firmicutes 50 16.16

23 Sneathia Fusobacteria 12 37.09

24 Sphingomonas Proteobacteria 14 0.61

25 SR1_genera_incertae_sedis SR1 17 5.95

26 Streptococcus Firmicutes 66 1,107.81

27 TM7_genera_incertae_sedis TM7 61 40.54

28 Treponema Spirochaetes 60 51.62

29 Unclassified Unclassified† 1,068 258.65

30 Veillonella Firmicutes 29 370.85

31 Others Others 611 1,009.88

Summary of phylum information, the number of OTUs, and the average abundance

(across sample and time points) within each genus from the pulmonary microbiome

dataset are shown.
†
The genus unclassified may belong to phylum unclassified or other 12 phyla.

3.2. Scenario 2: Selection Under Different
Numbers of Non-zero Variance
Components
The sample size is fixed at n = 50 in this scenario. Responses are
generated bymodel (Equation 10) with different numbers of non-
zero variance components. In Supplementary Material section 5,
VC-lasso is evaluated when the number of variance components
in the model is large.

(1) 2 non-zero variance components: σ 2
g20

> 0, σ 2
g30

> 0, and

σ 2
gl
= 0 otherwise. Two associated genera are prevolleta and

veillonella.
(2) 5 non-zero variance components: σ 2

gl
> 0 for l =

1, 2, . . . , 5 and σ 2
gl
= 0 otherwise. Associated clusters are

Anaerococcus, Atopobium, Actinomyces, Campylobacter, and
Capnocytophaga.
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FIGURE 1 | Scenario 1: Estimated g-Measure of both VC-lasso and group-lasso under different sample sizes for models with 5 non-zero variance components in a

cross-sectional design. Three sample sizes, n = 20, 50, 100, are compared and σ2
d
= 0.

FIGURE 2 | Scenario 1: Estimated g-Measure of VC-lasso under different sample sizes for models with 5 non-zero variance components in a longitudinal design.

Three sample sizes, n = 20, 50, 100, are compared and σ2
d
= 0.6.

(3) 15 non-zero variance components: σ 2
gl

> 0 for l = 1, 2, . . . ,

15 and σ 2
gl
= 0 otherwise. Associated clusters, including

Actinomyces, Anaerococcus, . . ., and Neisseria are listed in
Table 2.

3.3. Scenario 3: Selection Under Different
UniFrac Distance Kernels
The sample size is fixed at n = 50 with 5 non-zero
variance components. We compare the selection performance
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FIGURE 3 | Scenario 2: Estimated g-Measure of both VC-lasso and group-lasso under different number of non-zero variance components in a cross-sectional

design. The number of non-zero variance components (VCs) are set to 2 (A), 5 (B), 15 (C), sample size is n = 50, and σ2
d
= 0.

FIGURE 4 | Scenario 2: Estimated g-Measure of VC-lasso under different number of non-zero variance components in a longitudinal design. Three different numbers

of non-zero variance components (VCs), 2, 5, 15, are shown, sample size is set to n = 50 and σ2
d
= 0.6.
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using kernels defined by 5 different distance measures: variance
adjusted weighted UniFrac distance (KVAW) Chang et al., 2011),
generalized UniFrac distance (K0, K0.5) (Chen et al., 2012a),
unweighted UniFrac distance (KUW) (Lozupone and Knight,
2005), and weighted UniFrac distance (KW) (Lozupone et al.,
2007).

3.4. Scenario 4: Selection Under Fixed
Effect Model
We again use the sample size n = 50 and vary the number of
clusters containing signal. Responses are simulated by a fixed
effect model

y ∼ N (X1β1 + X2β2 + G∗1γ1 + G∗2γ2 + . . .

+ G∗uγu, σ 2
e I), (11)

where G∗1 , G∗2 , . . . ,G
∗
u are OTU count matrices of different

clusters scaled by their sample maximum. u is the total number of

clusters with effects that ranges from 2 to 15. Fixed effect vector
γ l for cluster l are generated from γ l ∼ N (0, σ 2

gl
I) and are fixed

for each simulation replicate.
We applied VC-lasso to scenarios 1-3 using both longitudinal

and cross-sectional designs. Scenario 4 is performed using a
cross-sectional design only. We compare our approach with
group-lasso (R package gglasso) in all 4 scenarios for cross-
sectional design because the gglasso package cannot handle
longitudinal data.

We set the within-individual variance σ 2
e = 1 throughout

simulations. The between individual variance of random
intercept is set to σ 2

d
= 0.6 for longitudinal design and σ 2

d
= 0

otherwise (Twigg III et al., 2016). The effect strength is set to
σ 2
g = 1, 5, 25, 100 (Chen et al., 2015a). We set the non-zero

variance components to have the same effect strength under each
setting, therefore omit subscript l. Two covariates X1 and X2 are
generated from the standard normal distribution and effect sizes
are set to β1 = β2 = 0.1. 1000 Monte Carlo simulation replicates

FIGURE 5 | Scenario 3: Estimated g-Measure of both VC-lasso and group-lasso under different UniFrac distance kernels in a cross-sectional design. Five different

kernels, KUW , KVAW , K0, K0.5 and KW , and two methods, VC-lasso and group-lasso, are displayed in a cross-sectional design. Four effect strengths, 1 (A), 5 (B),

25 (C), and 100 (D) are shown. There are 5 non-zero variance components, sample size is n = 50, and σ2
d
= 0.
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are generated. We split each dataset to training (80%) and testing
(20%). Five-fold cross-validation is performed in training set to
estimate the optimal λ∗. Selection performance is evaluated and
reported by applying λ∗ to the testing set.

4. RESULTS

4.1. Analysis of Simulated Data
The simulation results are summarized in Figures 1–9 including
variable selection performance under different sample sizes
(Figures 1, 2), different numbers of non-zero variance
components (Figures 3, 4), and different UniFrac distance
measures (Figures 5, 6) for both cross-sectional and longitudinal
designs. Comparisons between VC-lasso and group-lasso are
shown in all cross-sectional simulation studies.

The trajectories of g-Measure versus tuning parameter λ from
cross-validation is presented in Figure 9. g-Measures remain
stable or slightly decrease as λ getting larger under moderate
effect size when σ 2

g = 1 and 5. It starts to decrease when λ is
greater than 0.6. Figure 9 suggests that the trajectories of tuning
criteria is generally consistent across sample sizes, effect sizes, and
study designs.

4.1.1. Scenario 1: Selection Under Different Sample

Sizes

Figures 1, 2, 8A display performance of selection (g-Measure)
and prediction (area under the receiver operating characteristic
curve, AUROC). In Figure 1, we compare VC-lasso (blue bar)
and group-lasso (red bar) using cross-sectional design. In

Figure 2, we compare the g-Measure of VC-lasso under different
sample sizes using a longitudinal design. For both cross-sectional
and longitudinal designs, g-Measure of VC-lasso boosts with
increased sample size and effect sizes. Except for the third quartile
of g-Measure over 1,000 replicates for sample size, n = 20,
VC-lasso always outperforms group-lasso in this scenario.

Area under receiver operating characteristic (AUROC) is used
to evaluate the prediction performance (Figure 8A) when effect
size is fixed at σ 2

g = 25. Larger AUROC represents better
prediction ability. For VC-lasso, AUROC increases with sample
size under cross-sectional design. For longitudinal study, n = 50
has similar AUROC with n = 100, which indicates the optimal
prediction we can receive under this simulation setting. The
AUROCof group-lasso (red bar) is similar under different sample
sizes and shows no advantages compared to the VC-lasso.

4.1.2. Scenario 2: Selection Under Different Number

of Non-zero Variance Components

Figures 3, 4, 8B show simulation results for the selection under
different number of non-zero variance components. Specifically,
Figure 3 shows g-Measure for both VC-lasso and group-lasso in
a cross-sectional design, while Figure 4 presents g-Measure for
VC-lasso in a longitudinal design.

In Figures 3, 4, the performance of VC-lasso selection
improves when effect size increases. For a model with 2 non-
zero variance components, the true discovery rate (TDR, or
sensitivity) is either 0, 0.5 or 1.0, which lead to a large variation
of the g-Measure (Figure 3A). As more non-zero variance

FIGURE 6 | Scenario 3: Estimated g-Measure of VC-lasso under different UniFrac distance kernels in a longitudinal design.Five different kernels, KUW ,KVAW , K0,

K0.5 and KW , are compared. There are 5 non-zero variance components. Sample size is n = 50 and σ2
d
= 0.6.
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FIGURE 7 | Scenario 4: Estimated g-Measure of VC-lasso and group-lasso under fixed effect model in a cross-sectional design. There are 2 (A), 5 (B), 15 (C) clusters

with signals. Sample size is n = 50 and σ2
d
= 0.

FIGURE 8 | Scenario 1 & 2: AUROC. The AUROC is presented as the mean ± 95% confidence interval based on 1,000 simulation replicates for each simulation

scenario when σ2
g = 25. (A) Scenario 1; (B) Scenario 2.

components are included, in Figure 3B,C the trajectory of g-
Measures becomes smoother. The g-Measures of VC-lasso are
higher than the group-lasso in most simulation settings except
that group-lasso has larger third quartile when σ 2

g = 1 in

Figure 3A and σ 2
g = 5 in Figure 3C. As shown in Figure 8B,

VC-lasso has a better prediction ability with an increased number
of non-zero variance components. Compared with our method,
group-lasso is uncompetitive in predictive ability.
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FIGURE 9 | Trajectories of estimated g-Measure as a function of tuning parameter λ (scenario 1 & 2). Estimated g-Measure is displayed as the mean of 5-fold

cross-validation under sample sizes, n = 20 (A,D), 50 (B,E), 100 (C,F), or 2 (G,J), 5 (H,K), 15 (I,L) non-zero variance components (VCs) in both cross-sectional and

longitudinal designs.

4.1.3. Scenario 3: Selection Under Different UniFrac

Distance Kernels

We compare the g-Measure of five different kernels in
Figures 5, 6 for the cross-sectional and longitudinal design,
respectively. Using longitudinal simulated data, the box-plot of
g-Measure shows that the five kernels have similar performance
except that the KW has the lowest third quartile and K0 has
the lowest first quartile when σ 2

g is large. Under the same effect

strength (σ 2
g ) in the cross-sectional design (Figure 5), the g-

Measure of five kernels are almost identical except that K0 has
slightly smaller g-Measure and wider range than other kernels.
For example, K0 has the lowest first quartile in Figures 5B.
This suggests that the kernels computed from different UniFrac
distance play a minor part in the selection performance and

our method is superior to group-lasso regardless of kernel
types.

4.1.4. Scenario 4: Selection Under Fixed Effect Model

Figure 7 has a distinctive pattern from the above scenarios.
For the case that only two microbiome clusters contain signals
(Prevotella and Veillonella), both methods do not perform well
(Figure 7A). In Figures 7B,C, g-Measures for both methods
improve with increased effect sizes and VC-lasso outplays group-
lasso with σ 2

g = 1. For σ 2
g = 5, 25, average and median

g-Measure of VC-lasso across simulation replicates outperform
group-lasso. Besides, we notice that the range of g-Measure for
VC-lasso becomes smaller as signal strengths increase, suggesting
the prediction performance stabilizes as the association with the
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TABLE 3 | Analysis of Forced expiratory volume in one second (FEV1) at genus level in the real pulmonary microbiome cohort using variance component lasso selection

(VC-lasso) and exact tests.

VC-lasso Exact tests

Rank Genus Phylum info eRLRT eLRT eScore

Baseline 1 Corynebacterium Actinobacteria 0.28 0.30 0.30

2 TM7_genera_incertae_sedis TM7 1.00 1.00 1.00

3 Anaerococcus Firmicutes 0.06 0.06 0.07

4 Neisseria Proteobacteria 1.00 1.00 1.00

5 Treponema Spirochaetes 0.13 0.14 0.14

Longitudinal 1 Corynebacterium Actinobacteria 1.00 – 1.00

2 Actinomyces Actinobacteria 0.00 – 0.01

3 Prevotella Bacteroidetes 0.01 – 0.01

4 TM7_genera_incertae_sedis TM7 1.00 – 1.00

5 Porphyromonas Bacteroidetes 0.00 – 0.00

6 Megasphaera Firmicutes 0.06 – 0.06

The phylum information is provided for selected genera. Tuning parameter λ∗ for baseline and longitudinal data is set to 0.01 and 0.2, respectively. Rank represents the order of genera

that appear in the solution path. Results of eLRT are omitted as it is equivalent to eRLRT in a longitudinal design.

TABLE 4 | Analysis of forced expiratory flow (FEF) at genus level in the real pulmonary microbiome cohort using variance component lasso selection (VC-lasso) and exact

tests.

VC-lasso Exact tests

Rank Genus Phylum info eRLRT eLRT eScore

Baseline – – – – –

Longitudinal 1 Methylobacterium Proteobacteria 1.00 – 1.00

4 Prevotella Bacteroidetes <0.01 – <0.01

2 Rothia Actinobacteria 0.01 – 0.03

3 Campylobacter Proteobacteria 0.03 – 0.03

5 TM7_genera_incertae_sedis TM7 0.00 – 0.01

6 Corynebacterium Actinobacteria 0.32 – 0.31

The phylum information is provided for selected genus. Tuning parameter λ∗ = 0.035 for longitudinal data. Rank represents the order of genera that appear in the solution path. No

genus is chosen using baseline data only. Results of eLRT are omitted in longitudinal design as it is equivalent to eRLRT.

outcome increases. In general, VC-lasso has a distinctively better
selection performance even when model is misspecified.

4.2. Application to Longitudinal Pulmonary
Microbiome Data
We apply VC-lasso to a longitudinal dataset of pulmonary
microbiome study. Bronchoalveolar lavage (BAL) fluid were
collected for microbiome profiling. The inclusion criterion for
this cohort were: (1) HIV infection and (2) CD4 count less than
500 cells/mm3 before HAART (Twigg III et al., 2016). Two most
common pulmonary function tests were performed repeatedly:
spirometry and diffusing capacity for carbon monoxide. In
this report we focus on spirometry measures. Spirometry is to
measure the lung volume and how well the lung exhales, such
as average forced expiratory flow (FEF) and forced expiratory
volume in 1s (FEV1). Both spirometry and diffusing capacity
were evaluated as percent predicted values as pulmonary function
tests are usually interpreted by comparing the patient’s value to

predicted value of the healthy subject with similar age, height
and ethnicity (Twigg III et al., 2016).

Twigg III et al. (2016) compared microbiome abundance
differences at overall community level between (1) uninfected
and baseline; (2) uninfected and 1 year after treatment; and
(3) uninfected and 3 year treated subjects. They suggest that
the lung microbiome in healthy HIV-infected individuals with
preserved CD4 counts is similar to uninfected individuals.
Among individuals with more advanced disease, there is
an altered alveolar microbiome characterized by a loss of
richness and evenness (alpha diversity). This alteration might
impact pulmonary complications (often characterized by the
measure of lung functions) in HIV-infected patients on
antiretroviral therapy (ART). In this application, we therefore
aim to identify microbiome genera associated with pulmonary
function in both longitudinal and baseline studies. Ethnicity,
gender, smoking history, CD4 count, and HIV viral load are
included as the covariates. Missing covariates are imputed
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FIGURE 10 | Solution path and AIC/BIC curve of the VC-lasso method in the analysis of 31 genera and the pulmonary function. The solution paths with penalty

parameter are presented for FEV1 (A) and FEF (B) in longitudinal study (upper panel). AIC/BIC curves as a function of tuning parameter for FEV1 (C) and FEF (D) are

shown in the lower panel.

by their mean. Penalized variance component selection is
performed among all 31 genera. Due to limited sample
sizes, we choose the optimal tuning parameter λ∗ by AIC
and BIC.

Tables 3, 4 show selected genera with their phylum
information and the corresponding p-values from exact
tests, i.e., score test (eScore), likelihood ratio test (eLRT), and
restricted likelihood ratio test (eRLRT) (Zhai et al., 2017b).
The genera are ranked in the order they appear in the solution
path (Figures 10A,B). VC-lasso selects 6 genera associated
with FEV1 using longitudinal data and λ∗ = 0.2 (Table 3
and Figure 10C). Three out of six selected genera have eRLRT
p-values < 0.05 (Table 3), including Actinomyces (p < 0.01),
Prevotella (p = 0.01), and Porphyromonas (p < 0.01). Using
baseline data, we identify five genera associated with FEV1,
among which Corynebacterium and TM7 genera incertae sedis are
also selected by using longitudinal data. Several selected genera
received insufficient attention in HIV-infected populations
previously, for example, Anaerococcus andMegasphaera. Studies
have shown that Anaerococcus became more abundant in
children with asthma after azithromycin treatment (Slater
et al., 2013; Riiser, 2015) and Megasphaera has higher relative
abundance in smoking population (Segal et al., 2014). However,
none of them has been reported in HIV infected pulmonary
microbiome (Rogers et al., 2004; Chen et al., 2007; Twigg III
et al., 2016).

For variance component selection on FEF (Table 4), VC-
lasso selects 6 genera in total using longitudinal data with
λ∗ = 0.035. Considering the exact test results (eRLRT and
eScore), four of them show significant association with FEF
(p-value < 0.05), i.e., Prevotella, Rothia, Campylobacter and
TM7_genera_incertae_sedis. Twigg III et al. (2016) reported
that HIV-positive BAL samples contained an increased
abundance of Prevotella after 1-year HAART treatment
while significantly decreased abundances during 3 years of
treatment. Campylobacter is another noteworthy genus that
has significant association with inflammation markers of HIV-
infected population (Iwai et al., 2014). Additionally, significantly
increased abundance of Rothia and TM7_genera_incertae_sedis
in oral wash microbiome has been reported in HAART treatment
group (Iwai et al., 2012; Beck et al., 2015). In conclusion, VC-
lasso provides innovative association evidence between fine level
pulmonary microbiome clusters with lung function phenotypes.
Our report is a hypothesis generation procedure. Association
results need to be further validated in a separate population or
by laboratory experiments.

5. DISCUSSION

In this paper, we propose the variance component selection
scheme VC-lasso for sparse and high-dimensional taxonomic
data analysis. To reduce the dimensionality, we first aggregate
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the dispersed individual OTUs to clusters at higher phylogenetic
level, such as genus, family, or phylum. By translating the
phylogenetic distance information to kernel matrices, we treat
the aggregated taxonomic clusters as multiple random effects
in a variance component model. Then, VC-lasso is performed
for parsimonious variable selection of variance components. The
MM algorithm with lasso penalization derived in Algorithm 1
for parameter estimation extremely simple and computationally
efficient for variance component estimation. The group-lasso as a
comparison can also be used for the microbiome cluster selection
and incorporating higher phylogenetic group information (Yuan
and Lin, 2006; Garcia et al., 2013; Yang and Zou, 2015).
However, group-lasso suffers from the high-dimensionality and
sparsity of OTUs within clusters. And group-lasso is not easy to
accommodate phylogenic information. Beyond that, our novel
approach VC-lasso can be applied to longitudinal designs. In
such cases, we do not penalize the variance component that
contains the repeat measurement correlation. Software and
detailed documentation are freely available at https://github.com/
JingZhai63/VCselection.

The VC-lasso is not limited to random intercept model
for longitudinal studies. More complex random effect models,
such as random intercept and random slope model, can also
be used. More generally, the extension of our method to
multivariate responses is expected to have better prediction
performances. In the precision medicine era, with the rapid
development of sequencing techniques and decreasing costs,
the personal microbiome sequencing is already available to
the consumer, e.g., American Gut (http://americangut.org/)
and uBiome (https://ubiome.com/). Selection for higher-order
interactions with random effect, such as microbiome and
treatment regime interactions (Gopalakrishnan et al., 2017), will
be a straightforward, yet interesting, implementation (Maity and
Lin, 2011; Lin et al., 2016).

In practice, knowledge is needed about which taxonomy
level should be aimed at to develop strategies for intervention.
Considering multiple level taxonomic data, one can extend

VC-lasso to include tree topologies (Wang and Zhao, 2016;Wang
et al., 2017). For example, overlapping or subgroup VC-lasso
can be developed by using both ℓ1 and ℓ2 regularizations (Jacob
et al., 2009; Bien et al., 2013). Last but not the least, the
variance components model requires specification of a kernel
function or kernel matrix a priori, but it is often unclear which
distance kernel to use in practice. To deal with the uncertainty,
we can consider obtaining a composite kernel by utilizing
a multiple kernel learning algorithm, such as a multi-kernel
boosting algorithm (Xia and Hoi, 2013). In conclusion, with
its competitive performance and many potential extensions, our
variance components model with regularization, VC-lasso, is a
powerful tool for mining the emerging microbiome data.

AUTHOR CONTRIBUTIONS

JZ implemented method and carried out data analysis. JZ
wrote the manuscript with support from JK, HZ, and JJZ. HZ

helped supervise the project. HT and KK provided pulmonary
microbiome data. JJZ supervised the project.

ACKNOWLEDGMENTS

JJZ is supported by NIH grant K01DK106116 and Arizona
Biomedical Research Commission (ABRC) grant. HZ is partially
supported by NIH grants HG006139, GM105785, GM53275 and
NSF grant DMS-1645093. HT and KK is supported by NIH grant
UO1 HL121831 and UO1 HL098960. An allocation of computer
time from the UA Research Computing High Performance
Computing (HPC) and High Throughput Computing (HTC) at
the University of Arizona is gratefully acknowledged.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.00509/full#supplementary-material

REFERENCES

Akaike, H. (1998). “Information theory and an extension of the maximum

likelihood principle,” in Selected Papers of Hirotugu Akaike, eds E. Parzen,

K. Tanabe, and G. Kitagawa (New York, NY: Springer), 199–213.

Beck, J. M., Schloss, P. D., Venkataraman, A., Twigg III, H., Jablonski, K. A.,

Bushman, F. D., et al. (2015). Multicenter comparison of lung and oral

microbiomes of HIV-infected and HIV-uninfected individuals. Am. J. Respirat.

Crit. Care Med. 192, 1335–1344. doi: 10.1164/rccm.201501-0128OC

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical interactions.

Ann. Statist. 41:1111. doi: 10.1214/13-AOS1096

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities

of southern Wisconsin. Ecol. Monogr. 27, 325–349. doi: 10.2307/1942268

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,

F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-

throughput community sequencing data. Nat. Methods 7, 335–336.

doi: 10.1038/nmeth.f.303

Chang, Q., Luan, Y., and Sun, F. (2011). Variance adjusted weighted UniFrac:

a powerful beta diversity measure for comparing communities based on

phylogeny. BMC Bioinformatics 12:118. doi: 10.1186/1471-2105-12-118

Chen, E. Z., and Li, H. (2016). A two-part mixed-effects model for analyzing

longitudinal microbiome compositional data. Bioinformatics 32, 2611–2617.

doi: 10.1093/bioinformatics/btw308

Chen, H. I., Kao, S. J., and Hsu, Y.-H. (2007). Pathophysiological mechanism

of lung injury in patients with leptospirosis. Pathology 39, 339–344.

doi: 10.1080/00313020701329740

Chen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D.,

et al. (2012a). Associating microbiome composition with environmental

covariates using generalized UniFrac distances. Bioinformatics 28, 2106–2113.

doi: 10.1093/bioinformatics/bts342

Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2012b).

Structure-constrained sparse canonical correlation analysis with an

application to microbiome data analysis. Biostatistics 14, 244–258.

doi: 10.1093/biostatistics/kxs038

Chen, J., Just, A. C., Schwartz, J., Hou, L., Jafari, N., Sun, Z., et al.

(2015a). CpGFilter: model-based CpG probe filtering with replicates

for epigenome-wide association studies. Bioinformatics 32, 469–471.

doi: 10.1093/bioinformatics/btv577

Chen, J., and Li, H. (2013). Kernel Methods for Regression Analysis of Microbiome

Compositional Data. New York, NY: Springer.

Frontiers in Microbiology | www.frontiersin.org March 2018 | Volume 9 | Article 50964

https://github.com/JingZhai63/VCselection
https://github.com/JingZhai63/VCselection
http://americangut.org/
https://ubiome.com/
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00509/full#supplementary-material
https://doi.org/10.1164/rccm.201501-0128OC
https://doi.org/10.1214/13-AOS1096
https://doi.org/10.2307/1942268
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1186/1471-2105-12-118
https://doi.org/10.1093/bioinformatics/btw308
https://doi.org/10.1080/00313020701329740
https://doi.org/10.1093/bioinformatics/bts342
https://doi.org/10.1093/biostatistics/kxs038
https://doi.org/10.1093/bioinformatics/btv577
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhai et al. Microbiome Variance Component Selection

Chen, L., Liu, H., Kocher, J.-P. A., Li, H., and Chen, J. (2015b). glmgraph:

an R package for variable selection and predictive modeling of structured

genomic data. Bioinformatics 31, 3991–3993. doi: 10.1093/bioinformatics/b

tv497

Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W.-H.,

et al. (2010). The human oral microbiome. J. Bacteriol. 192, 5002–5017.

doi: 10.1128/JB.00542-10

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent,

M., et al. (2005). Diversity of the human intestinal microbial flora. Science 308,

1635–1638. doi: 10.1126/science.1110591

Erb-Downward, J. R., Thompson, D. L., Han, M. K., Freeman, C. M., McCloskey,

L., Schmidt, L. A., et al. (2011). Analysis of the lungmicrobiome in the “healthy”

smoker and in COPD. PLoS ONE 6:e16384. doi: 10.1371/journal.pone.00

16384

Fan, Y., and Li, R. (2012). Variable selection in linear mixed effects models. Ann.

Statist. 40:2043. doi: 10.1214/12-AOS1028

Garcia, T. P., Müller, S., Carroll, R. J., and Walzem, R. L. (2013). Identification

of important regressor groups, subgroups and individuals via regularization

methods: application to gut microbiome data. Bioinformatics 30, 831–837.

doi: 10.1093/bioinformatics/btt608

Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S.,

et al. (2006).Metagenomic analysis of the human distal gutmicrobiome. Science

312, 1355–1359. doi: 10.1126/science.1124234

Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C.,

Karpinets, T. V., et al. (2017). Gut microbiome modulates response to

anti–pd-1 immunotherapy in melanoma patients. Science 359, 97–103.

doi: 10.1126/science.aan4236

Grice, E. A., and Segre, J. A. (2011). The skin microbiome. Nat. Rev. Microbiol. 9,

244–253. doi: 10.1038/nrmicro2537

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos,

G., et al. (2011). Chimeric 16S rRNA sequence formation and detection in

Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504.

doi: 10.1101/gr.112730.110

Hodkinson, B. P., and Grice, E. A. (2015). Next-generation sequencing: a review

of technologies and tools for wound microbiome research. Adv. Wound Care 4,

50–58. doi: 10.1089/wound.2014.0542

Hui, F. K., Müller, S., and Welsh, A. (2017). Joint selection in mixed

models using regularized PQL. J. Am. Statist. Assoc. 112, 1323–1333.

doi: 10.1080/01621459.2016.1215989

Hunter, D. R., and Lange, K. (2004). A tutorial on MM algorithms. Am. Statist. 58,

30–37. doi: 10.1198/0003130042836

Hunter, D. R., and Li, R. (2005). Variable selection using MM

algorithms. Ann. Statist. 3:1617. doi: 10.1214/0090536050000

00200

Ibrahim, J. G., Zhu, H., Garcia, R. I., and Guo, R. (2011). Fixed and

random effects selection in mixed effects models. Biometrics 67, 495–503.

doi: 10.1111/j.1541-0420.2010.01463.x

Iwai, S., Fei,M., Huang, D., Fong, S., Subramanian, A., Grieco, K., et al. (2012). Oral

and airway microbiota in HIV-infected pneumonia patients. J. Clin. Microbiol.

50, 2995–3002. doi: 10.1128/JCM.00278-12

Iwai, S., Huang, D., Fong, S., Jarlsberg, L. G., Worodria, W., Yoo, S.,

et al. (2014). The lung microbiome of Ugandan HIV-infected pneumonia

patients is compositionally and functionally distinct from that of San

Franciscan patients. PLoS ONE 9:e95726. doi: 10.1371/journal.pone.00

95726

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). “Group lasso with overlap and

graph lasso,” in Proceedings of the 26th Annual International Conference on

Machine Learning (Montreal, QC: ACM).

Kuleshov, V., Jiang, C., Zhou, W., Jahanbani, F., Batzoglou, S., and Snyder,

M. (2016). Synthetic long-read sequencing reveals intraspecies diversity

in the human microbiome. Nat. Biotechnol. 34, 64–69. doi: 10.1038/nb

t.3416

Lange, K. (2016). MM Optimization Algorithms. Philadelphia, PA: Society for

Industrial and Applied Mathematics.

Lange, K., Hunter, D. R., and Yang, I. (2000). Optimization transfer using

surrogate objective functions. J. Comput. Graphic. Statist. 9, 1–20.

doi: 10.1080/10618600.2000.10474858

Lin, W., Shi, P., Feng, R., and Li, H. (2014). Variable selection in

regression with compositional covariates. Biometrika 101, 785–797.

doi: 10.1093/biomet/asu031

Lin, X., Lee, S., Wu, M. C., Wang, C., Chen, H., Li, Z., et al. (2016). Test for

rare variants by environment interactions in sequencing association studies.

Biometrics 72, 156–164. doi: 10.1111/biom.12368

Lozupone, C., Cota-Gomez, A., Palmer, B. E., Linderman, D. J., Charlson, E. S.,

Sodergren, E., et al. (2013).Widespread colonization of the lung by Tropheryma

whipplei in HIV infection. Am. J. Respirat. Crit. Care Med. 187, 1110–1117.

doi: 10.1164/rccm.201211-2145OC

Lozupone, C., and Knight, R. (2005). UniFrac: a new phylogenetic method for

comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235.

doi: 10.1128/AEM.71.12.8228-8235.2005

Lozupone, C. A., Hamady, M., Kelley, S. T., and Knight, R. (2007). Quantitative

and qualitative β diversity measures lead to different insights into factors that

structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585.

doi: 10.1128/AEM.01996-06

Maity, A., and Lin, X. (2011). Powerful tests for detecting a gene effect in

the presence of possible gene–gene interactions using garrote kernel

machines. Biometrics 67, 1271–1284. doi: 10.1111/j.1541-0420.2011.01

598.x

Mardis, E. R. (2008). The impact of next-generation sequencing technology

on genetics. Trends Genet. 24, 133–141. doi: 10.1016/j.tig.2007.

12.007

Morris, A., Beck, J. M., Schloss, P. D., Campbell, T. B., Crothers, K., Curtis,

J. L., et al. (2013). Comparison of the respiratory microbiome in healthy

nonsmokers and smokers. A. J. Respirat. Crit. Care Med. 187, 1067–1075.

doi: 10.1164/rccm.201210-1913OC

Riiser, A. (2015). The human microbiome, asthma, and allergy. Allergy Asthma

Clin. Immunol. 11:35. doi: 10.1186/s13223-015-0102-0

Rogers, G., Carroll, M., Serisier, D., Hockey, P., Jones, G., and Bruce,

K. (2004). Characterization of bacterial community diversity in cystic

fibrosis lung infections by use of 16S ribosomal DNA terminal restriction

fragment length polymorphism profiling. J. Clin. Microbiol. 42, 5176–5183.

doi: 10.1128/JCM.42.11.5176-5183.2004

Schwarz, G. et al. (1978). Estimating the dimension of a model. Ann. Statist. 6,

461–464. doi: 10.1214/aos/1176344136

Segal, L. N., Rom, W. N., and Weiden, M. D. (2014). Lung microbiome

for clinicians. new discoveries about bugs in healthy and diseased lungs.

Ann. Am. Thoracic Soc. 11, 108–116. doi: 10.1513/AnnalsATS.201310-

339FR

Shi, P., Zhang, A., and Li, H. (2016). Regression analysis for

microbiome compositional data. Ann. Appl. Statist. 10, 1019–1040.

doi: 10.1214/16-AOAS928

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group

lasso. J. Comput. Graphic. Statist. 22, 231–245. doi: 10.1080/10618600.2012.6

81250

Slater, M., Rivett, D. W., Williams, L., Martin, M., Harrison, T., Sayers, I., et al.

(2013). The impact of azithromycin therapy on the airway microbiota in

asthma. Thorax 69, 673–674. doi: 10.1136/thoraxjnl-2013-204517

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley,

R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457,

480–484. doi: 10.1038/nature07540

Twigg III, H. L., Knox, K. S., Zhou, J., Crothers, K. A., Nelson, D. E., Toh, E.,

et al. (2016). Effect of advanced HIV infection on the respiratory microbiome.

Am. J. Respirat. Crit. Care Med. 194, 226–235. doi: 10.1164/rccm.201509-1

875OC

Twigg III, H. L., Morris, A., Ghedin, E., Curtis, J. L., Huffnagle, G. B.,

Crothers, K., et al. (2013). Use of bronchoalveolar lavage to assess the

respiratory microbiome: signal in the noise. Lancet Respirat. Med. 1, 354–356.

doi: 10.1016/S2213-2600(13)70117-6

Wang, J., and Jia, H. (2016). Metagenome-wide association studies: fine-mining

the microbiome. Nat. Rev. Microbiol. 14, 508–522. doi: 10.1038/nrmicro.20

16.83

Wang, T., and Zhao, H. (2016). Constructing predictive microbial signatures

at multiple taxonomic levels. J. Am. Statist. Associat. 112, 1022–1031.

doi: 10.1080/01621459.2016.1270213

Frontiers in Microbiology | www.frontiersin.org March 2018 | Volume 9 | Article 50965

https://doi.org/10.1093/bioinformatics/btv497
https://doi.org/10.1128/JB.00542-10
https://doi.org/10.1126/science.1110591
https://doi.org/10.1371/journal.pone.0016384
https://doi.org/10.1214/12-AOS1028
https://doi.org/10.1093/bioinformatics/btt608
https://doi.org/10.1126/science.1124234
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1038/nrmicro2537
https://doi.org/10.1101/gr.112730.110
https://doi.org/10.1089/wound.2014.0542
https://doi.org/10.1080/01621459.2016.1215989
https://doi.org/10.1198/0003130042836
https://doi.org/10.1214/009053605000000200
https://doi.org/10.1111/j.1541-0420.2010.01463.x
https://doi.org/10.1128/JCM.00278-12
https://doi.org/10.1371/journal.pone.0095726
https://doi.org/10.1038/nbt.3416
https://doi.org/10.1080/10618600.2000.10474858
https://doi.org/10.1093/biomet/asu031
https://doi.org/10.1111/biom.12368
https://doi.org/10.1164/rccm.201211-2145OC
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1128/AEM.01996-06
https://doi.org/10.1111/j.1541-0420.2011.01598.x
https://doi.org/10.1016/j.tig.2007.12.007
https://doi.org/10.1164/rccm.201210-1913OC
https://doi.org/10.1186/s13223-015-0102-0
https://doi.org/10.1128/JCM.42.11.5176-5183.2004
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1513/AnnalsATS.201310-339FR
https://doi.org/10.1214/16-AOAS928
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1136/thoraxjnl-2013-204517
https://doi.org/10.1038/nature07540
https://doi.org/10.1164/rccm.201509-1875OC
https://doi.org/10.1016/S2213-2600(13)70117-6
https://doi.org/10.1038/nrmicro.2016.83
https://doi.org/10.1080/01621459.2016.1270213
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhai et al. Microbiome Variance Component Selection

Wang, T., and Zhao, H. (2017). Structured subcomposition selection in regression

and its application to microbiome data analysis. Ann. Appl. Statist. 11, 771–791.

doi: 10.1214/16-AOAS1017

Xia, H., and Hoi, S. C. (2013). Mkboost: A framework of multiple kernel boosting.

IEEE Trans. Knowledge Data Eng. 25, 1574–1586. doi: 10.1109/TKDE.2012.89

Yang, Y., and Zou, H. (2015). A fast unified algorithm for solving group-

lasso penalize learning problems. Statist. Comput. 25, 1129–1141.

doi: 10.1007/s11222-014-9498-5

Yuan, M., and Lin, Y. (2006). Model selection and estimation in

regression with grouped variables. J. R. Statist. Soc. B 68, 49–67.

doi: 10.1111/j.1467-9868.2005.00532.x

Zemanick, E. T., Sagel, S. D., and Harris, J. K. (2011). The airway microbiome in

cystic fibrosis and implications for treatment. Curr. Opin. Pediatr. 23, 319–324.

doi: 10.1097/MOP.0b013e32834604f2

Zhai, J., Hsu, C.-H., and Daye, Z. J. (2017a). Ridle for sparse regression

with mandatory covariates with application to the genetic assessment

of histologic grades of breast cancer. BMC Med. Res. Methodol. 17:12.

doi: 10.1186/s12874-017-0291-y

Zhai, J., Knox, K. S., Twigg III, H. L., Zhou, H., and Zhou, J. (2017b).

Exact tests of zero variance component in presence of multiple

variance components with application to longitudinal microbiome

study. bioRxiv doi: 10.1101/281246

Zhao, N., Chen, J., Carroll, I. M., Ringel-Kulka, T., Epstein, M. P., Zhou, H., et al.

(2015). Testing inmicrobiome-profiling studies withMiRKAT, themicrobiome

regression-based kernel association test. Am. J. Hum. Genet. 96, 797–807.

doi: 10.1016/j.ajhg.2015.04.003

Zhou, H., Alexander, D., and Lange, K. (2011). A quasi-Newton acceleration

for high-dimensional optimization algorithms. Statist. Comput. 21, 261–273.

doi: 10.1007/s11222-009-9166-3

Zhou, H., Hu, L., Zhou, J., and Lange, K. (2015). MM algorithms

for variance components models. arXiv preprint arXiv:1509.

07426.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zhai, Kim, Knox, Twigg, Zhou and Zhou. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Microbiology | www.frontiersin.org March 2018 | Volume 9 | Article 50966

https://doi.org/10.1214/16-AOAS1017
https://doi.org/10.1109/TKDE.2012.89
https://doi.org/10.1007/s11222-014-9498-5
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1097/MOP.0b013e32834604f2
https://doi.org/10.1186/s12874-017-0291-y
https://doi.org/10.1101/281246
https://doi.org/10.1016/j.ajhg.2015.04.003
https://doi.org/10.1007/s11222-009-9166-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


ORIGINAL RESEARCH
published: 27 June 2018

doi: 10.3389/fmicb.2018.01391

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 1391

Edited by:

Michele Guindani,

University of California, Irvine,

United States

Reviewed by:

Bradley Stevenson,

University of Oklahoma, United States

Yijuan Hu,

Emory University, United States

*Correspondence:

Jun Chen

chen.jun2@mayo.edu

Li Chen

li.chen@auburn.edu

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 09 February 2018

Accepted: 06 June 2018

Published: 27 June 2018

Citation:

Xiao J, Chen L, Johnson S, Yu Y,

Zhang X and Chen J (2018) Predictive

Modeling of Microbiome Data Using a

Phylogeny-Regularized Generalized

Linear Mixed Model.

Front. Microbiol. 9:1391.

doi: 10.3389/fmicb.2018.01391

Predictive Modeling of Microbiome
Data Using a Phylogeny-Regularized
Generalized Linear Mixed Model
Jian Xiao 1,2, Li Chen 3*, Stephen Johnson 1, Yue Yu 1, Xianyang Zhang 4 and Jun Chen 1*

1Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN,

United States, 2 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Hubei, China,
3Department of Health Outcomes Research and Policy, Harrison School of Pharmacy, Auburn University, Auburn, AL,

United States, 4Department of Statistics, Texas A&M University, College Station, TX, United States

Recent human microbiome studies have revealed an essential role of the

human microbiome in health and disease, opening up the possibility of building

microbiome-based predictive models for individualized medicine. One unique

characteristic of microbiome data is the existence of a phylogenetic tree that relates

all the microbial species. It has frequently been observed that a cluster or clusters of

bacteria at varying phylogenetic depths are associated with some clinical or biological

outcome due to shared biological function (clustered signal). Moreover, in many

cases, we observe a community-level change, where a large number of functionally

interdependent species are associated with the outcome (dense signal). We thus

develop “glmmTree,” a prediction method based on a generalized linear mixed model

framework, for capturing clustered and dense microbiome signals. glmmTree uses the

similarity between microbiomes, which is defined based on the microbiome composition

and the phylogenetic tree, to predict the outcome. The effects of other predictive

variables (e.g., age, sex) can be incorporated readily in the regression framework.

Additional tuning parameters enable a data-adaptive approach to capture signals at

different phylogenetic depth and abundance level. Simulation studies and real data

applications demonstrated that “glmmTree” outperformed existing methods in the dense

and clustered signal scenarios.

Keywords: microbiome, phylogenetic tree, kernel method, generalized mixed model, predictive model

1. INTRODUCTION

The human microbiome, the collection of micro-organisms associated with the human body,
has recently attracted substantial scientific interest due to its vital role in human health. For
instance, the human gut microbiome contributes to nutrient metabolism, immune maturation
and modulation, inflammatory cytokine production, and host gene regulation (Ahern et al.,
2014; Schirmer et al., 2016; Pedersen et al., 2016; Fellows et al., 2018). Many diseases have been
linked to dysbiosis of the microbiome ranging from metabolic disorders (e.g., obesity and type II
diabetes) to autoimmune diseases (e.g., rheumatoid arthritis and multiple sclerosis) (Turnbaugh
et al., 2009; Kinross et al., 2011; Cho and Blaser, 2012; Honda and Littman, 2012; Pflughoeft and
Versalovic, 2012; Qin et al., 2012; Chen et al., 2016; Jangi et al., 2016). An abnormal microbiome
has also been implicated in many cancer types such as colorectal, endometrial and esophageal
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cancers (Ahn et al., 2013; Bultman, 2014; Walther-Antonio et al.,
2016; Peters et al., 2017), and a causal link has been emerging
through deep mechanistic studies (Rubinstein et al., 2013;
Bullman et al., 2017). In addition, the individual microbiomes
may modulate drug pharmacokinetics and pharmacodynamics,
contributing to drug response variations among individual
patients (Haiser et al., 2014). Recently, the efficacy of cancer
immune therapy has been shown to depend on the initial
configuration of the gut microbiome (Gopalakrishnan et al.,
2018; Matson et al., 2018; Routy et al., 2018). These findings
open up the possibility ofmicrobiome-based predictivemedicine,
where the microbiome data are used, potentially in conjunction
with other clinic or omics data,to improve the prediction of
relevant clinical outcomes.

A typical microbiome study involves collecting the
microbiome samples, isolating all genomic DNA and sequencing
the DNA using next-generation sequencing technologies.
There are two main approaches to sequence the microbiome:
gene-targeted sequencing and shotgun metagenomic sequencing
(Kuczynski et al., 2011). In gene-targeted sequencing, a
“fingerprint” gene that carries the taxonomic identity (e.g.,
16S rRNA gene) is amplified and sequenced, while in shotgun
metagenomic sequencing all genomic DNA is sequenced.
Although shotgun metagenomics can profile both the taxonomic
and functional content of the microbiome, the targeted approach
has been more routinely employed to study the microbiome
due to its lower cost and established bioinformatics pipelines.
In the targeted approach, the sequencing reads are usually first
clustered into operational taxonomic units (OTUs) based on the
sequence similarity, via either de novo clustering or comparing
to a reference database of OTUs (Edgar, 2013; Chen W. et al.,
2013; Chen X. et al., 2018; Rideout et al., 2014). These OTUs are
assumed to represent biological species at a 97% similarity level.
Recently, the concept of “amplicon sequence variant” (ASV) has
been proposed with the aim to cluster the sequence reads into
a finer taxonomic resolution without the need for a particular
similarity cutoff (e.g., 97%) (Callahan et al., 2016, 2017). After
the clustering process, the sequencing reads from a targeted
sequencing study are usually summarized as a count (abundance)
table of the detected OTUs/ASVs. These OTUs/ASVs are all
phylogenetically related, and a phylogenetic tree that reflects the
evolutionary relationship can be built based on their sequence
divergence (Price et al., 2010). Closely related species usually
have similar biological functions, and they are likely to be
associated with the outcome simultaneously, forming “clustered
signals” (Martiny et al., 2015). These clustered signals can appear
at a varying phylogenetic depth, resulting in clusters of different
sizes (e.g., phyla and genera are at deep and shallow phylogenetic
depths respectively) (Garcia et al., 2014). Thus, the phylogenetic
tree provides important prior knowledge about how these
species are related, which can be used to improve the efficiency
of statistical analyses. Indeed, incorporation of the phylogenetic
tree in the analysis has been instrumental in revealing overall
community structure, identifying covariate-associated bacteria
and improving the power of microbiome-wide testing (Purdom,
2011; Chen et al., 2012; Chen J. et al., 2013; Evans and Matsen,
2012; Xiao et al., 2017; Wang and Zhao, 2017).

To predict an outcome based on microbiome data, general-
purpose machine learning methods, such as Random Forest
and Support Vector Machine, as well as sparse regression
models, such as Lasso (Tibshirani, 1996), MCP (Zhang, 1996),
and Elastic Net (Zou and Trevor, 2005), have been applied
(Knights et al., 2011; Statnikov et al., 2013; Pasolli et al., 2016).
Although these methods are efficient in addressing the high
dimensionality problem, they have a limited ability to exploit the
phylogenetic structure of the microbiome data and hence may
not be optimal if the signals are clustered. Many efforts have
been attempted to incorporate the phylogenetic tree structure
into prediction, mainly by imposing a novel phylogeny/tree-
based smoothness penalty in penalized regression models.
The phylogeny-based penalty encourages similar coefficients
among species with respect to their phylogenetic relationship.
For example, Tanaseichuk et al. (2014) used a tree-guided
penalty to incorporate such structure into a penalized logistic
regression framework. Chen et al. (2015) proposed a tree-based
Laplacian penalty, in addition to a sparse penalty, for both
classification and regression of microbiome data. These methods
favor sparse and clustered signals due to their inherent sparsity
assumption. However, a community-level change has frequently
been observed in many physiological or pathophysiological states
(Jernberg et al., 2010; Koenig et al., 2011; Milani et al., 2016),
where a large number of functionally dependent species in the
community are jointly associated with the outcome (“dense
signal”). The “dense” signal is usually the consequence of the
perturbation of the underlying microbial network, where species
interact with each other to maintain a steady state (Faust and
Raes, 2012). In such scenarios, although each species may have
a weak effect on the outcome, the joint effects of all species may
be strong. Thus, the sparsity assumption may not be desirable for
“dense” microbiome signals.

In this work, we develop “glmmTree,” a predictive method
based on a generalized mixed model framework, for capturing
clustered and dense microbiome signals. To exploit the potential
phylogenetic relatedness among species, the coefficients of the
species are modeled as random with the correlation structure
defined based on the phylogenetic tree. Other predictive
variables (e.g., age, sex) are assumed to have fixed effects.
One tuning parameter in the phylogeny-induced correlation
structure allows detecting signals at various phylogenetic depths,
and another tuning parameter facilitates differential weighting
according to the species abundances as well as capturing
certain non-linear relationships. Simulation studies and real data
applications demonstrate that “glmmTree” outperforms existing
methods in clustered and dense-signal scenarios.

2. METHODS

2.1. A Phylogeny-Induced Correlation
Structure Among OTUs
Before we develop the predictive model for microbiome data, we
first introduce a phylogeny-induced correlation structure among
OTUs based on an evolutionary model. We use the term “OTU”
throughout to represent a basic analysis unit. Assume that we
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have p OTUs on a phylogenetic tree and the patristic distance
between OTU (i.e., the length of the shortest path linking OTU
i and j on the tree) is denoted as dij, the correlation of the traits
between OTU i and j can be modeled using the following trait
evolutionary model (Martins and Hansen, 1997).

Cij(ρ) = e−2ρdij , i, j = 1, . . . , p. (1)

The parameter ρ ∈ (0,∞) characterizes the evolutionary rate.
If ρ = 0, then Cij = 1, ∀i, j, indicating that all the traits are
the same and there is no evolution at all. If ρ → ∞, then
Cij → 0, ∀i, j, indicating that the evolution is so fast that there
is no correlation among the OTUs. In such case, the tree is not
informative. Alternatively, ρ can be interpreted as a parameter
that controls the phylogenetic depth at which the OTUs are
grouped: larger ρ (smaller Cij) groups OTUs into clusters at
a lower phylogenetic depth (a cluster is defined as a group of
highly correlated OTUs). When ρ → ∞, there is no grouping
of the OTUs. Conceptually, the phylogenetic grouping via ρ has
a similar effect as taxonomic grouping, where OTUs at different
taxonomic ranks (e.g., phylum, class, order, family, genus) are
grouped according to their taxonomy. Compared to taxonomic
grouping, the phylogenetic grouping circumvents the difficulty of
the uncertainty in taxonomy assignments and achieves far more
levels of granularities by adjusting ρ.

As the square root of the phylogenetic distance dij is of
Euclidean nature (de Vienne et al., 2011), C(ρ) = (Cij(ρ))p×p is
positive definite by Bochner’s theorem. In the proposed method,

we recommend using e
−2ρd2ij to achieve an even better signal-

grouping effect. Although the positive definiteness of C(ρ) is no
longer theoretically guaranteed, it is positive definite or close to
positive definite for most applications. In case of non-positive
definiteness, we can perform positive definiteness correction
(Higham, 2002).

2.2. glmmTree: A Generalized Linear Mixed
Model Based on a Phylogenetic Tree
We assume that there are n samples with the abundances of
p OTUs being profiled. For the ith sample, let yi denote the
outcome variable of interest, which can be binary or continuous
( e.g., disease status, or body mass index) , zi = (zi1, zi2, . . . , zip)

T

denote the normalized abundance vector of p OTUs (i.e.,
counts divided by the library size) for sample i, and xi =

(xi1, xi2, . . . , xiq)
T be the q × 1 vector for covariates such as

gender, age and other environmental or clinical variables that
have predictive values. The goal is to predict yi by zi and xi.

For a continuous outcome variable, we use the linear mixed
model (LMM) to build the prediction model

yi = β0 + xTi β1 + f (zi; γ )
Tb+ ǫi

b ∼ N(0, σ 2
bC(ρ)), ǫi ∼ N(0, σ 2

ǫ ),
(2)

and, for a binary outcome variable, we use the generalized linear
mixed model (GLMM)

logit(E(yi)) = β0 + xTi β1 + f (zi; γ )
Tb

b ∼ N(0, σ 2
bC(ρ)),

(3)

where β0 is an intercept and β1 = (β1,β2, . . . ,βq)
T is a q × 1

vector of fixed effect regression coefficients for the q covariates,
ǫi is the random error, b = (b1, . . . , bp)

T is a p × 1 vector of
random effect regression coefficients, C(ρ) = (Cij(ρ))p×p is the
phylogeny-induced correlation structure defined in the previous
section, and f (zi; γ ) = (f (zi1; γ ), . . . , f (zip; γ ))

T denotes some
component-wise transformation of the abundance vector with
the parameter γ allowing more modeling capability.

There are two advantages assuming the OTU effects b as
random. Firstly, as the sample size is typically smaller than the
number of OTUs (p > n), treating b as fixed effects will lead to
overfitting on the training data and poor generalization on the
test data. To improve the generalizability of the predictive model,
the regression coefficients b need to be regularized. We thus put
some distributional assumption on b and assume that b comes
from amultivariate normal distribution with variance-covariance
structure σ 2

b
C(ρ). The estimation procedure now switches from

estimating p regression coefficients to estimating the variance
component σ 2

b
, which significantly reduces the number of

parameters. Secondly, treating b as random effects provides
the flexibility to incorporate prior structure information. For
OTU data, the prior information is the phylogenetic relationship
among OTUs, and closely related OTUs have a tendency to have
similar effects. We incorporate such prior information using the
phylogeny-induced correlation structure C(ρ). It should be noted
that the ratio between σ 2

b
and σ 2

ǫ quantifies the joint (additive)
OTU effects.

For the transformation function f (·), we propose using a
power transformation, which is defined as

f (zij, γ ) =

{

z
γ
ij zij 6= 0

0 otherwise

where γ is an unknown constant (γ ≥ 0). Similar to Box-Cox
transformation (Sakia, 1992), it can potentially model a wide
range of non-linear relationships between the OTU abundance
and the outcome. This transformation takes into account the
skewed OTU abundance distribution and allows differential
weighting according to the abundance level. Smaller values of
γ (e.g., 0.1) up-weight less abundant OTUs so that their effects
will not be masked by those dominant OTUs when the signals are
primarily in the less abundant OTU clusters. When γ approaches
0, the OTU abundance data become almost binary. In this case,
only presence/absence of the OTU matters and these dominant
OTUs contribute little to the outcome since they are present in
most samples.

In the model, the regression coefficients β0 and β1, and the
variance components σ 2

b
, σ 2

ǫ need to be estimated from the data.
In principle, the parameters ρ and γ can also be estimated.
However, in our application, we treat them as tuning parameters,
and their optimal values are selected using cross-validation. We
account for potential non-informativeness of the phylogenetic
tree (i.e., signals are not clustered with respect to the tree) by
including a very large value on the search grid of ρ.
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Our phylogeny-based LMM or GLMM can be written in
another form,

g(E(yi)) = β0 + xTi β1 + hi

h = (h1, h2, ..., hn)
T ∼ MVN(0, σ 2

bK(γ , ρ))
(4)

where g(.) is the link function, h are the aggregated OTU effect
(overall microbiome effect) and K(γ , ρ) is a phylogeny-based
kernel matrix by evaluating the kernel function

K(zi, zj; γ , ρ) = f (zi; γ )
TC(ρ)f (zj; γ )

at all pairs of observations. The phylogeny-based kernel function
K(·, ·; γ , ρ) quantifies the similarity between observations in
terms of OTU abundance profile (“microbiome similarity”) while
taking into account the phylogenetic tree structure. Similar
ideas have been used to define ecological distances between
microbiome samples such as the popular UniFrac distance
(Lozupone and Knight, 2005). From (4), we can see that our
model aims to predict the outcome based on the microbiome
similarities while the tuning parameters γ , ρ are used to tailor the
microbiome similarity measure to maximally reflect the outcome
similarity. Since the microbiome similarity is calculated based on
all OTUs, the model is expected to perform best when the signals
are relatively dense, i.e., there are many outcome-associated
OTUs.

Our model is closely related to the kernel machine-based
semi-parametric regression model (KMR) (Liu et al., 2007, 2008)

g(E(yi)) = β0 + xTi β1 + hK(zi), (5)

where the covariate effect is modeled parametrically, and the
overall OTU effect is modeled non-parametrically through an
unknown function hK(·) that belongs to a Reproducing Kernel
Hilbert Space (RKHS) HK generated by the kernel function
K(·, ·). It turns out that the penalized likelihood estimation for
KMR is equivalent to the maximum likelihood estimation in
GLMM.

2.3. Model Estimation
The parameter ρ, controlling the evolutionary rate, and the
parameter γ , controlling the non-linear effect, are treated as
known inmodel estimation. For a continuous outcome, the LMM
is fitted using the restricted maximum likelihood estimation
method (RMLE) as described in Kang et al. (2008). Newton-
Raphson algorithm can be used to find the optimal solution. For
a binary outcome, the GLMM is fitted by the penalized quasi-
likelihood (PQL) method proposed by (Breslow and Clayton,
1993). PQL approximates the high-dimensional integration over
b using the Laplace approximation, and the approximated
likelihood function has that of a Gaussian distribution. Therefore,
the PQL estimate can be obtained by fitting a series of LMMs.
Details of the algorithms can be found in the Supplementary
Note.

2.4. Prediction of New Observations
Once the model is fitted based on the training dataset,
prediction can be made on the new observations. In this

section, we describe in detail how to predict the outcome of
new observations to provide more insights into our predictive
model. Suppose we have ntr , nte observations in the training
and test dataset respectively. Let ytr , yte be the outcome vectors
of the training and test dataset respectively, Xtr , Xte be the
design matrices for fixed effects including the intercepts and
Ztr , Zte be the OTU abundance matrices. We further denote
Ktr=f (Ztr; γ )C(ρ)f (Ztr; γ )

T ,Kte=f (Zte; γ )C(ρ)f (Zte; γ )
T and

Ktr,te=f (Ztr; γ )C(ρ)f (Zte; γ )
T , which are the kernel matrices

describing the microbiome similarities. We focus on the
prediction of a continuous outcome and the prediction of a
binary outcome can similarly be made based on the working
LMMmodel at the convergence of the PQL algorithm.

Based on (4), the joint distribution of ytr and yte can be
written as

(

ytr

yte

)

∼ MVN

{(

Xtrβ

Xteβ

)

,

(

6tr 6tr,te

6te,tr 6te

)}

, (6)

where β = (β0,β
T
1 )

T , 6tr = σ 2
b
Ktr +σ 2

ǫ I and 6te = σ 2
b
Kte+σ 2

ǫ I
are variance-covariance matrices for training and test dataset
respectively, and 6te,tr = 6T

tr,te = σ 2
b
Ktr,te is the covariance

matrix between training and test dataset. From the linear model
theory, the conditional distribution of yte on ytr is given by

(yte|ytr) ∼ MVN(Xteβ + 6te,tr6
−1
tr (ytr − Xtrβ), 6te

−6te,tr6
−1
tr 6tr,te). (7)

Thus, the prediction of yte can be obtained based on

ỹte = E[yte|ytr]

= Xteβ + 6te,tr6
−1
tr (ytr − Xtrβ).

Plugging in the estimates of β , σ 2
b
and σ 2

ǫ based on the training
dataset, we obtain the final prediction as

ŷte = Xteβ̂ + 6̂te,tr6̂
−1
tr (ytr − Xtrβ̂).

Note that the prediction formula can also be written in terms of
the random effects b:

ŷte = Xteβ̂ + f (Zte; γ )b̂,

where b̂ is the best linear unbiased predictor (BLUP), which
is a smoothed estimate with respect to the phylogenetic tree
(Supplementary Note).

The “glmmTree” software is available at “https://github.com/
lichen-lab/glmmTree.”

3. SIMULATION STUDIES

3.1. Simulation Strategy
We carried out extensive simulations to evaluate the performance
of glmmTree for both continuous and binary outcomes. For
the continuous outcome, we simulated 100 independent samples
in the training set and 200 independent samples in the test
set. For the binary outcome, we simulated 50 cases and 50
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controls in the training set, and 100 cases and 100 controls
in the test set. We used a Dirichlet-multinomial distribution
to simulate OTU counts and generated the outcome based on
the abundances of several selected OTU clusters. To objectively
evaluate our predictive model, we performed a parameter sweep
and investigated the effect of the cluster size (phylogenetic depth),
the number of clusters (signal density) and the abundance level
of the clusters on the prediction performance. The simulation
studies were aimed to reveal the scenarios under which ourmodel
performed favorably and also identify potential “blind spots” of
our model.

3.1.1. Simulating OTU Abundance Data

We generated the OTU counts using a Dirichlet-multinomial
distribution with the parameters (the mean proportion vector
and the dispersion parameter φ) estimated based on a real OTU
dataset from a study of the microbiome of the human upper
respiratory tract (Charlson et al., 2010; Chen and Li, 2013), which
contains the counts of 778 OTUs from 60 samples, together
with a phylogenetic tree describing the evolutionary relationship
among the 778 OTUs. For each sample, the total read count was
drawn from a negative binomial distribution with mean 5000
and dispersion 25. The OTU counts were normalized into OTU
proportions (z) by dividing the total read counts.

3.1.2. Constructing Outcome-Associated OTU

Clusters

The underlying relationship between the outcome and the
microbiome is complex. The outcome-associated OTUs
(“aOTUs”) can be clustered at different phylogenetic depths
(deep or shallow), creating OTU clusters (“aClusters”) of
different sizes. It is also possible that the aOTUs are simply not
phylogenetically related. In such case, each aOTU constitutes an
aCluster of size 1. The signal density (number of aClusters) can
also vary depending on the outcome. Finally, aClusters can be
abundant or rare since both rare and abundant taxa have been
observed to associate with the outcome. We thus studied the
effects of all these parameters in the simulation.

To construct aClusters with a different level of cluster size,
signal density and abundance, 778 OTUs were first grouped into
m clusters based on their patristic distances on the phylogenetic
tree.

We assumed that there were mc (m × s%) aClusters and
s% represents the signal density. For given m and mc, we
chose aClusters of different abundance level (a). The simulation
strategy is illustrated in Figure 1 and the detailed settings for
cluster size, signal density and abundance are presented below:

• Cluster size (m):
The 778 OTUs were partitioned into m clusters using

the partitioning-around-medoids (PAM) algorithm based on
the patristic distances among OTUs (Chen et al., 2012). We
considered m ∈ (10, 100, 778), representing large, medium
and small OTU clusters, and aClusters were selected from
these OTU clusters. Note that when m=778, the aOTUs are
not phylogenetically related and the phylogenetic tree is not
informative for prediction.

• Signal density (s%): We selected s% ∈ (10%, 20%, 40%)
for m=10, s% ∈ (1%, 5%, 25%) for m=100 and s% ∈

(1%, 5%, 30%) for m=778 to represent low, medium and high
signal density respectively. The number of aClusters mc was
taken to be the integer part ofm× s%.

• Abundance (a): Given m and mc, we had
(m
mc

)

choices
of aClusters. To obtain low, medium and high abundance
level, we randomly picked mc clusters from m clusters 1000
times and recorded their cumulative abundances at (t =

1, · · · , 1000). We chosemc aClusters of high, medium and low
abundance with abundance max(at), median(at), min(at), t =
1, ..., 1000, respectively.

3.1.3. Generating the Outcome Based on the

Abundance of AClusters

Denote Cl as the set containing the indices of the lth aCluster,
l ∈ {1, · · · ,mc}, and ηi be the expected outcome value for sample
i. We first generated ηi based on the following linear relationship

ηi = β0 +

mc
∑

l = 1

(
∑

k ∈Cl

zik)bl

bl ∼ N(0, σ 2
b )

(8)

For a continuous outcome,

yi = ηi + ǫi, ǫi ∼ N(0, σ 2
ǫ ) (9)

For a binary outcome,

πi =
eηi

1+ eηi

yi ∼ Bernoulli(πi)

(10)

Note that we assigned the same coefficient for OTUs within the
same cluster to create clustered signals. The variance σ 2

b
can

be adjusted to control the signal-to-noise ratio. Without loss of
generality, σ 2

b
was set to be 2 for the continuous outcome and 4

for the binary outcome. The error variance σ 2
ǫ for the continuous

outcome was chosen to be 1
4var(Zb) so that the OTUs jointly

explain 80% of the outcome variability.
To study the prediction performance under potential non-

linearity, we also simulated non-linear relationships, where we
use f (zik) instead of zik to generate the outcome. We specifically
investigated when f (zik) = z0.5

ik
, which attenuates the effect of

highly abundant OTUs, and f (zik) = 1(if zik 6= 0), which
represents the scenario where only the presence/absence of the
OTU affects the outcome.

3.2. Competing Methods, Model Selection
and Evaluation
3.2.1. Competing Methods

We compared glmmTree to Lasso, MCP and Elastic Net (Enet),
three sparse regression models with no consideration of the
phylogenetic structure. Particularly, Elastic Net encourages
the data-driven smoothing via L2 penalty. We also compared
glmmTree to a phylogeny-constrained sparse regression
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FIGURE 1 | Illustration for the simulation strategy. We simulate outcome-associated OTU clusters (aClusters) of different cluster size (top to bottom) and signal

density (left to right). We also vary the abundance level of the aClusters (not shown).

model (Chen et al., 2015) as a representative of tree-structure
penalized regression models. The method uses the same
phylogeny-induced correlation structure as in glmmTree but
encourages the phylogeny-driven smoothing based on the
inverse correlation matrix instead of the usual Laplacian
matrix. We thus termed it Sparse Inverse Correlation
Shrinkage method (SICS). Besides those sparse regression
models, we also compared glmmTree to Random Forest
(RF), which has been demonstrated a superior prediction
performance in various microbiome datasets. Finally, we
compared to a regular kernel-based GLMM (glmmTree.Reg)
to evaluate the benefit of exploiting the phylogenetic tree in
prediction.

3.2.2. Model Selection and Evaluation

For glmmTree, the tuning parameters (γ , ρ) are used to control
the phylogenetic depth and non-linear effect and need to be
tuned. We searched ρ on the grid {0, 2−5, 2−4, 2−3, · · · , 24, 25}

︸ ︷︷ ︸

11

while γ was tuned on the grid {0, 0.01, 0.1, 0.3, 0.5, 0.7, ..., 1.9}
︸ ︷︷ ︸

12

.

glmmTree.Reg was achieved by fixing ρ at a very large value (104).

Box 1 | Tuning parameter settings in different methods.

• Lasso: glmnet R package, all parameters were set as the default.

• Elastic Net: glmnet R package, all parameters were set as the default.

• MCP: ncvreg R package, all parameters were set as the default

• SICS: glmgraph R package, the search grid for ρ was the same as

glmmTree, the tuning parameter for the smoothness penalty was selected

from {0, 2−5, 2−4, 2−3, · · · , 24, 25}
︸ ︷︷ ︸

11

, other parameters were set as default.

• Random Forest: randomForest R package, parameters were set as

default.

The details of specific software packages used and their parameter
settings for competing methods are shown in Box 1.

Tuning parameter selection was based on five-fold cross-
validation (CV), where the training samples were randomly
divided into five folds with four folds used for model fitting
and the remaining one for calculating some CV criterion. We
used PMSE (Predicted Mean Square Error) as the CV criterion
for a continuous outcome and AUC (Area Under the Curve)
for a binary outcome. Once the optimal values of the tuning
parameters were selected, we fit the model using all training
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sample (n=100) and then evaluated the prediction performance
on the test dataset (n=200). Although we used PMSE and
AUC for tuning parameter selection, we focused on R2, which
quantifies the correlation between the predicted outcome and
the observed outcome and ranges from 0 (no correlation) to
1 (perfect correlation), to evaluate the prediction performance.
Specifically, for a continuous outcome, R2 is defined as

R2 =
{
∑nte

i = 1(ŷte,i − ŷte)(yte,i − yte)}
2

∑nte
i = 1(ŷte,i − ŷte,)

2
∑nte

i = 1(yte,i − yte)
2
,

where ¯̂y, ȳ are the sample means. For the binary-version R2,
we substitute ŷte,i with the predicted probability P̂te,i. Each
simulation was repeated 50 times and means and standard errors
were reported.

3.3. Simulation Results
3.3.1. Results for the Continuous Outcome.

We first evaluated the performance of different methods across
different cluster sizes and signal densities when the abundance
of the aClusters was high (Figure 2). We observed a general
decrease in performance for all methods when the signal density
increased. This trend is explained by a result of decreasing
individual effects as we increased the number of aOTUs since
we fixed the percentage of variability explained by OTUs ( 80%)
across parameter settings. The reduction in individual effects
was unfavorable for all methods. When the aCluster was large,
i.e., the signals were highly clustered, glmmTree outperformed
other methods substantially. Particularly, glmmTree had a
clear advantage over glmmTree.Reg, which did not account
for the phylogenetic structure, indicating the benefit of using
phylogenetic information to improve prediction. It was also
significantly better than the sparse regression methods and
RF across different levels of signal density. The unfavorable
performance of these sparse regression methods was due to
the weak individual effects of these aOTUs in the large cluster.
In such “many OTUs, weak effects” scenario, sparse regression
methods tended to have a low sensitivity and specificity to
identify these aOTUs, which led to poor prediction performance.
As the cluster size decreased, the phylogenetic signal became
weaker, and the difference of performance between glmmTree
and other methods diminished accordingly. However, glmmTree
still performed better than sparse regression methods when
the signal was dense. This was due to the fact that glmmTree
did not assume sparsity in the model, and when the signal
became dense, the irrelevant OTUs did not seriously corrupt
the overall microbiome similarity, upon which the glmmTree
was based. It should be noted that glmmTree and glmmTree.Reg
had performance similar to those sparse regression methods
in their most unfavorable setting, where a small number of
phylogenetically non-related OTUs were associated with the
outcome (Figure 2A, upper left). The comparable performance
is explained by the high abundance of the aOTUs, which
dominated those rare and less abundant OTUs in determining
the microbiome similarity.

As we decreased the abundance of the aClusters to be
“medium” (Figure 2B), glmmTree still excelled in highly

clustered signals across different signal densities, but its
prediction performance deteriorated significantly as the signal
density became lower and the size of aCluster became smaller.
When the signals were not phylogenetically related (Figure 2B,
top row), sparse regression models and RF performed better
than glmmTree. As these phylogenetically non-related signals
grew more sparse, glmmTree had very low predictive power. A
similar trend was observed when the abundance of aClusters was
“low” (Figure S1). In this scenario, the phylogeny-regularized
sparse regression method (SICS) outperformed the other sparse
regression methods. In summary, no methods dominates in
all settings and glmmTree has a performance edge over other
competing methods when the signal is dense, clustered and/or
abundant.

In glmmTree, we included two tuning parameters γ , which
up-weights or down-weights the effect of abundant OTUs,
and ρ, which controls the phylogenetic depth of the signal.
These two tuning parameters are used to exploit various signal
structures for microbiome data. It is interesting to observe the
patterns of the selected values across simulation settings. We
plotted the distribution of selected γ and ρ values over the
fifty simulation runs across different levels of cluster size, signal
density and abundance for the continuous outcome (Figure 3 ).
As expected, smaller values of γ tended to be selected for “low-
abundance” scenarios, where the outcome was associated with
less abundant aClusters. Smaller γ values up-weighted the effects
of less abundant OTUs and hence amplified their weak signals
(Figure 3A). γ had the stronger impact when the phylogenetic
signal was weak (i.e., the OTUs were less phylogenetically
related). On the other hand, smaller ρ values were selected for
larger clusters, where the signals were at a deeper phylogenetic
depth (Figure 3B). Therefore, the inclusion of these two tuning
parameters improved the model flexibility.

To study the robustness of glmmTree to tree mis-specification,
we generated “noisy” trees by randomly permuting different
percentages of the rows/columns of the tree-induced distance
matrices. As we increased the percentage from 25 to 75%,
the performance of glmmTree decreased accordingly, but it
was still more powerful than glmmTree.Reg, which did not
use tree information (Figure S2). As the tuning parameter ρ

approaches infinity, glmmTree is reduced to glmmTree.Reg.
Therefore, the performance of glmmTree is expected to be close
to glmmTree.Reg when the tree is severely mis-specified. We
next studied the performance of glmmTree under much lower
percentages of variability explained by OTUs (50% and 33%). As
we lowered the signal-noise-ratio (SNR), the performance of all
methods deteriorate but the same trend has been observed as in
the high SNR scenario (Figure S3).

3.3.2. Results for the Binary Outcome.

We repeated the same simulations for the binary outcome and
present the results in Figure 4 and Figure S4. Compared to
the continuous outcome-based simulations, the performance
for all methods deteriorated faster when the aClusters became
less abundant and more sparse. Nevertheless, a similar trend
persisted: glmmTree had the best performance under clustered
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FIGURE 2 | R2 for continuous-outcome simulations across different levels of cluster size and signal density. The abundance of associated OTU clusters is chosen to

be high (A) and medium (B). Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal

density, respectively.

FIGURE 3 | Distribution of the selected tuning parameter γ (A) and ρ (B) across different levels of cluster size, signal density and abundance for continuous-outcome

simulations. Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal density, respectively.

and dense signals, and abundant aClusters further improved its
performance.

3.3.3. Accommodation for Non-linear Signals

The conclusions in the previous simulations were based on
linear signals. Since the relationship between the microbiome
and the outcome is very complex, traditional linear models
may fail to capture non-linear microbiome effects. Besides the

differential weighting function, the tuning parameter γ can also
accommodate a wide range of non-linear effects. To illustrate
this point, we performed additional simulations based on non-
linear signals and compared the prediction performance to
glmmTree with a fixed gamma value (γ=1). Specifically, we
investigated two types of non-linear relationships, in which the
outcome was generated based on (1) the OTU presence/absence
and (2) square-root transformed OTU abundances, respectively.
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FIGURE 4 | R2 for binary-outcome simulations across different levels of cluster size and signal density. The abundance of associated OTU clusters is chosen to be

high (A) and medium (B). Cluster-S, -M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent low, medium and high signal density,

respectively.

Without loss of generality, we set the scenario to be high
abundance, large cluster and low signal density. The simulation
results are presented in Figure 5. Clearly, glmmTree achieved a
significantly higher R2 than glmmTree without γ tuning in both
non-linear scenarios for both continuous and binary outcomes.
When the outcome depended on the OTU presence/absence,
glmmTree without γ tuning was powerless: the R2 was close to
0. In contrast, glmmTree with γ tuning performed substantially
better since γ was usually tuned to be close to 0 to accommodate
such non-linearity. When the outcome depended on the square-
root transformed OTU abundances, glmmTree without γ tuning
achieved some predictive power, but was still much less
powerful than glmmTree with γ tuning. Therefore, glmmTree
can also capture non-linear signals with the imbedded power
transformation.

4. APPLICATION OF GLMMTREE TO
PREDICTING CHRONOLOGICAL AGE
BASED ON THE HUMAN GUT
MICROBIOME

We applied glmmTree to a study investigating how the gut
microbiome differs across age and geography (Yatsunenko et al.,
2012). The study consisted of 531 individuals, among which
115 individuals were from Malawi, 100 individuals were from
Venezuela, and 316 individuals were from the USA. The gut
microbiota of these individuals was profiled using 16S rRNA
gene targeted sequencing. The dataset was available for download
from Qiita (https://qiita.ucsd.edu/) with study ID 850, where the

sequence data was processed by the QIIME pipeline (reference-
based approach). A total of 14,170 OTUs were produced for this
dataset. To demonstrate the performance of glmmTree, we used
the 316 individuals from the USA for age prediction.

The complexity of the real data required us to properly
normalize, transform and filter the data before applying various
predictive tools. Let (cij)p×n be the observed count matrix. We
carried out a series of pre-processing steps before applying
various prediction methods:

1. Sample filtering to remove outlier samples. We calculated the
Bray-Curtis distance between samples. Denote djk the distance
between sample j and k. For each sample j, we calculated the
median distance from sample j to other samples, denoted as
mj = Mediank6=j(djk). An outlier index oj for sample j was
defined as oj = mj/Mediank(mk). We removed samples with
oj > 2 (8 samples removed).

2. OTU filtering to remove less informative and noisy OTUs
and reduce dimensionality. We imposed two filters: (1) OTU
prevalence < 10%, and (2) Median non-zero counts < 10.

3. Normalization to address variable library sizes. We used
GMPRnormalization, which is developed specifically for zero-
inflated count data (Chen L. et al., 2018). For each sample, we
calculated a GMPR size factor sj and the normalized counts
were then divided by sj. The normalized counts are denoted as
(c̃ij)p×n.

4. Winsorization to replace outlier counts. For each taxon i, we
calculated the 97% quantile q0.97i based on c̃ij(j=1 · · · n), and
replaced c̃ij > q0.97i with q0.97i . This procedure has shown
to be effective in reducing false positives in the context of
differential abundance analysis (Chen J. et al., 2018).
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FIGURE 5 | The ability of glmmTree to capture non-linear effects through the tuning parameter γ . glmmTree with tunable γ (red) is compared to glmmTree with fixed

γ = 1 (blue). R2 is used to evaluate the performance for continuous (A,B) and binary (C,D) outcomes when the outcome is generated based on OTU

presence/absence (A,C) and square-root transformed OTU abundances (B,D).

5. Transformation to reduce the influence of highly abundant
taxa counts. We used the commonly used square-root
transformation.

6. We further used square-root transformation on the
continuous age variable to better capture the underlying
relationship.

These proprocessing steps were used to make the microbiome
data more amenable to predictive modeling, and could improve
the performance of sparse regression methods such as Lasso
(Figure S5). After the processing steps, we were left with 308
individuals and 1087 OTUs. We first evaluated the prediction
performance by treating age as a continuous outcome. To
demonstrate the performance with binary outcomes, we classified
the individuals into three age groups: baby (age ≤ 3 years, n =

54), child (3< age< 18 years, n = 125) and adult (age≥ 18 years,
n = 129), and evaluated the prediction performance based on
the baby and child age group. The guidance of the group division
and choice was based on the observation that the microbiome
change begins to slow down after three years old, and the
child microbiome is more similar to the adult microbiome
(Yatsunenko et al., 2012). We included the prediction of baby
vs. child in the main text and the prediction of child vs. adult in
the Supplementary File.

We compared glmmTree to SICS, Lasso, MCP, Elastic Net
and Random Forest. Tuning parameter selection was based on
cross-validation (CV) as in the simulation.

To have an objective evaluation of the prediction
performance, we randomly divided the dataset fifty times
into five folds: four folds were used for training (with nested

CV) and the remaining one fold for testing. R2 and PMSE

were used as metrics for the continuous outcome, while R2

and AUC were used for the binary outcome. The results are
presented in Figure 6. glmmTree achieved the best performance

for continuous age prediction as indicated by the highest
R2 and lowest PMSE, followed by SICS and Elastic Net. For

baby vs. child prediction, glmmTree still achieved the highest
R2 and AUC, followed by Elastic Net and Random Forest.

For child vs. adult prediction, glmmTree and Elastic net
achieved the best performance (Figure S6). To verify if the

improvement of prediction was significant, we performed
paired Wilcoxon signed-rank tests between glmmTree and
other methods based on R2, PMSE and AUC obtained from
the fifty random divisions. For continuous age prediction,

glmmTree achieved significantly higher R2, and significantly
lower PMSE than other methods (P-value < 0.05). For baby

vs. child prediction, glmmTree achieved significantly higher
AUC than other methods, and significantly higher R2 than other
methods except Elastic Net. For child vs. adult prediction,

glmmTree achieved significantly higher AUC and R2 than other
methods except Elastic net. Overall, glmmTree performed the

best for both the continuous and binary age outcome on this
dataset.
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FIGURE 6 | Performance comparison for age prediction. All USA samples are used in continuous age prediction (A,B). Binary prediction is based on the two age

groups: baby (0 to 3 years old) and child (3 to 18 years old) (C,D). Red dashed line indicates the median value of various performance measures for glmmTree.

5. DISCUSSION

One of the challenges for predictive modeling of microbiome
data is the utilization of the phylogenetic tree. As microbiome
profiling experiments produce increasingly higher taxonomic
resolutions such as strain-level resolution (Truong et al., 2015;
Callahan et al., 2016), incorporating the phylogenetic tree
information becomes even more important. The phylogenetic
tree provides a principled way to pool signals and directs the
analysis to the most relevant parameter space, which is essential
to counter the “curse of dimensionality.” Previous work indicates
that predictive models could benefit from the incorporation of
the phylogenetic tree through the use of tree-induced smoothness
penalty (Tanaseichuk et al., 2014; Chen et al., 2015; Wang and
Zhao, 2017). These models usually induce a sparse solution and
are hence efficient to detect sparse and clustered signals. In
this work, we propose to utilize the phylogenetic tree to detect
dense and clustered signals. This is achieved by assuming the
OTU effects as random in a GLMM framework, and that the
OTU random effects follow a multivariate normal distribution
with the correlation structure defined based on the phylogenetic
tree.

We performed comprehensive simulations to investigate
the performance of the proposed method at varying cluster
sizes, signal densities and taxa abundances. Simulation studies
demonstrated that glmmTree favors dense and clustered signals
or signals from abundant OTUs, compared to sparse regression
models, which has a competitive performance for sparse signals,
particularly from those less abundant OTUs. By using a
power transformation, glmmTree can capture a wide range of
non-linear effects including the biologically relevant scenario
where the outcome depends on the presence/absence of the
OTUs. Human microbiome studies have frequently found
that the species richness (α-diversity) were associated with
some phenotypic traits (Le Chatelier et al., 2013). Therefore,
capturing the signals on the presence/absence level should not be
overlooked.

Our work is closely related to the recently proposed
kernel penalized regression framework (Randolph et al., 2015),
which provides a theoretic framework to incorporate a variety
of extrinsic information, such as phylogeny, into penalized
regression models. For microbiome data applications, Randolph
et al. (2015) illustrated their method using a kernel-based
on UniFrac distances. In our work, we took a further step
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and optimized the microbiome-based kernel to be capable of
capturing clustered signals at various phylogenetic depth as well
as accommodating non-linearity. Moreover, our model is based
on the generalized linear model, which can handle non-Gaussian
outcomes while adjusting for covariates easily.

As the microbiome field matures, more complex study designs
such as family and longitudinal studies have been used to
study the human microbiome in relation to various clinical
and biological variables. These studies are efficient to control
potential confounders such as genetics and diet, and are also
more powerful than studies based on independent sampling.
Although our framework is developed mainly for independent
data, it could be modified to accommodate such clustered data
by incorporating additional cluster-level random effects. Similar
algorithms (i.e., PQL) could be used to fit these multiple random
effects model.

The effectiveness of the proposed method depends on the
reliability of the phylogenetic tree, which can be very noisy
or non-informative. Although our method is robust to tree
mis-specification via the tuning parameter ρ, its performance
will not be optimal if the tree is severely mis-specified. In
this case, other types of kernels without using the tree, such
as the radial basis function (RBF) kernel (Shawe-Taylor and
Cristianini, 2004), may be more powerful. A composite kernel
that combines the tree-based and non-tree-based kernels may
increase the robustness of our method for detecting various
kinds of dense signals. Furthermore, since the underlying signal
structure is unknown for real applications, an ensemble approach
incorporating representative prediction methods targeted to

different signal structures (e.g., dense vs. sparse) is more likely
to provide an even more robust prediction. We leave these
extensions as our future work.

AUTHOR CONTRIBUTIONS

JX analyzed the data, drafted the paper, prepared figures and
tables, reviewed drafts of the paper. LC analyzed the data,
drafted the paper, prepared figures and tables, wrote the software,
reviewed drafts of the paper. SJ revised drafts of the paper.
YY contributed to the revision of the paper. XZ contributed
substantial expertise to improve the paper and revised the
paper. JC conceived and designed the experiments, analyzed the
data, wrote the paper, wrote the software, prepared figures and
tables.

ACKNOWLEDGMENTS

This work was supported by Mayo Clinic Gerstner Family Career
Development Awards, Mayo Clinic Center for Individualized
Medicine, U01 FD005875, Food and Drug Administration
and the National Natural Science Foundation of China
(no.61773401).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.01391/full#supplementary-material

REFERENCES

Ahern, P. P., Faith, J. J., and Gordon, J. I. (2014). Mining the human gut microbiota

for effector strains that shape the immune system. Immunity 40, 815–823.

doi: 10.1016/j.immuni.2014.05.012

Ahn, J., Sinha, R., Pei, Z., Dominianni, C., Wu, J., Shi, J., et al. (2013). Human gut

microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 105, 1907–1911.

doi: 10.1093/jnci/djt300

Breslow, N., and Clayton, D. G. (1993). Approximate inference in generalized

linear mixed models. J. Am. Stat. Assoc. 88, 9–25.

Bullman, S., Pedamallu, C. S., Sicinska, E., Clancy, T. E., Zhang, X., Cai, D.,

et al. (2017). Analysis of fusobacterium persistence and antibiotic response in

colorectal cancer. Science 358, 1443–1448. doi: 10.1126/science.aal5240

Bultman, S. J. (2014). Emerging roles of the microbiome in cancer. Carcinogenesis

35, 249–255. doi: 10.1093/carcin/bgt392

Callahan, B. J., McMurdie, P. J., and Holmes, S. P. (2017). Exact sequence variants

should replace operational taxonomic units in marker-gene data analysis. ISME

J 11, 2639–2643. doi: 10.1038/ismej.2017.119

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., and

Holmes, S. P. (2016). Dada2: High-resolution sample inference from illumina

amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

Charlson, E. S., Chen, J., Custers-Allen, R., Bittinger, K., Li, H., Sinha, R., et al.

(2010). Disordered microbial communities in the upper respiratory tract of

cigarette smokers. PLoS ONE 5:e15216. doi: 10.1371/journal.pone.0015216

Chen, J., Bittinger, K., Charlson, E. S., Hoffmann, C., Lewis, J., Wu, G. D.,

et al. (2012). Associating microbiome composition with environmental

covariates using generalized unifrac distances. Bioinformatics 28, 2106–2113.

doi: 10.1093/bioinformatics/bts342

Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2013).

Structure-constrained sparse canonical correlation analysis with an

application to microbiome data analysis. Biostatistics 14, 244–258.

doi: 10.1093/biostatistics/kxs038

Chen, J., King, E., Deek, R., Wei, Z., Yu, Y., Grill, D., et al. (2018). An omnibus

test for differential distribution analysis of microbiome sequencing data.

Bioinformatics 34, 643–651. doi: 10.1093/bioinformatics/btx650

Chen, J., and Li, H. (2013). Variable selection for sparse dirichlet-multinomial

regression with an application to microbiome data analysis. Ann. Appl. Stat.

7, 418–442. doi: 10.1214/12-AOAS592

Chen, J., Wright, K., Davis, J. M., Jeraldo, P., Marietta, E. V., Murray, J.,

et al. (2016). An expansion of rare lineage intestinal microbes characterizes

rheumatoid arthritis. Genome Med. 8, 43. doi: 10.1186/s13073-016-0299-7

Chen, L., Liu, H., Kocher, J. P., Li, H., and Chen, J. (2015). glmgraph: an r package

for variable selection and predictive modeling of structured genomic data.

Bioinformatics 31, 3991–3993. doi: 10.1093/bioinformatics/btv497

Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X., and Chen, J. (2018). Gmpr: A

robust normalization method for zero-inflated count data with application to

microbiome sequencing data. PeerJ 6:e4600. doi: 10.7717/peerj.4600

Chen, W., Zhang, C. K., Cheng, Y., Zhang, S., and Zhao, H. (2013). A comparison

of methods for clustering 16s rrna sequences into otus. PLoS ONE 8:e70837.

doi: 10.1371/journal.pone.0070837

Chen, X., Johnson, S., Jeraldo, P., Wang, J., Chia, N., Kocher, J. A., et al.

(2018). Hybrid-denovo: a de novo otu-picking pipeline integrating

single-end and paired-end 16s sequence tags. Gigascience 7, 1–7.

doi: 10.1093/gigascience/gix129

Cho, I., and Blaser, M. J. (2012). The human microbiome: at the interface of health

and disease. Nat. Rev. Genet. 13, 260–270. doi: 10.1038/nrg3182

de Vienne, D., Aguileta, G., and Ollier, S. (2011). Euclidean nature of phylogenetic

distance matrices. Syst. Biol. 60, 826–832. doi: 10.1093/sysbio/syr066

Edgar, R. C. (2013). Uparse: highly accurate otu sequences from microbial

amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 139178

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01391/full#supplementary-material
https://doi.org/10.1016/j.immuni.2014.05.012
https://doi.org/10.1093/jnci/djt300
https://doi.org/10.1126/science.aal5240
https://doi.org/10.1093/carcin/bgt392
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1371/journal.pone.0015216
https://doi.org/10.1093/bioinformatics/bts342
https://doi.org/10.1093/biostatistics/kxs038
https://doi.org/10.1093/bioinformatics/btx650
https://doi.org/10.1214/12-AOAS592
https://doi.org/10.1186/s13073-016-0299-7
https://doi.org/10.1093/bioinformatics/btv497
https://doi.org/10.7717/peerj.4600
https://doi.org/10.1371/journal.pone.0070837
https://doi.org/10.1093/gigascience/gix129
https://doi.org/10.1038/nrg3182
https://doi.org/10.1093/sysbio/syr066
https://doi.org/10.1038/nmeth.2604
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Xiao et al. glmmTree

Evans, S. N., and Matsen, F. A. (2012). The phylogenetic kantorovich-rubinstein

metric for environmental sequence samples. J. R. Stat. Soc. Ser. B Stat. Methodol.

74, 569–592. doi: 10.1111/j.1467-9868.2011.01018.x

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models.

Nat. Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832

Fellows, R., Denizot, J., Stellato, C., Cuomo, A., Jain, P., Stoyanova, E.,

et al. (2018). Microbiota derived short chain fatty acids promote histone

crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105.

doi: 10.1038/s41467-017-02651-5

Garcia, T. P., Muller, S., Carroll, R. J., and Walzem, R. L. (2014). Identification

of important regressor groups, subgroups and individuals via regularization

methods: application to gut microbiome data. Bioinformatics 30, 831–837.

doi: 10.1093/bioinformatics/btt608

Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C.,

Karpinets, T. V., et al. (2018). Gut microbiome modulates response to

anti-pd-1 immunotherapy in melanoma patients. Science 359, 97–103.

doi: 10.1126/science.aan4236

Haiser, H. J., Seim, K. L., Balskus, E. P., and Turnbaugh, P. J. (2014).

Mechanistic insight into digoxin inactivation by eggerthella lenta augments

our understanding of its pharmacokinetics. Gut. Microbes 5, 233–238.

doi: 10.4161/gmic.27915

Higham, N. (2002). Computing the nearest correlation matrixa problem from

finance. IMA J. Numer. Anal. 22, 329–343. doi: 10.1093/imanum/22.3.329

Honda, K., and Littman, D. R. (2012). The microbiome in infectious

disease and inflammation. Annu. Rev. Immunol. 30, 759–795.

doi: 10.1146/annurev-immunol-020711-074937

Jangi, S., Gandhi, R., Cox, L. M., Li, N., von Glehn, F., Yan, R., et al. (2016).

Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun.

7:12015. doi: 10.1038/ncomms12015

Jernberg, C., Lofmark, S., Edlund, C., and Jansson, J. K. (2010). Long-term impacts

of antibiotic exposure on the human intestinal microbiota.Microbiology 156(Pt

11), 3216–3223. doi: 10.1099/mic.0.040618-0

Kang, H. M., Zaitlen, N. A., Wade, C. M., Kirby, A., Heckerman, D.,

Daly, M. J., et al. (2008). Efficient control of population structure

in model organism association mapping. Genetics 178, 1709–1723.

doi: 10.1534/genetics.107.080101

Kinross, J. M., Darzi, A. W., and Nicholson, J. K. (2011). Gut microbiome-host

interactions in health and disease. Genome Med. 3, 14. doi: 10.1186/gm228

Knights, D., Costello, E. K., and Knight, R. (2011). Supervised

classification of human microbiota. FEMS Microbiol. Rev. 35, 343–359.

doi: 10.1111/j.1574-6976.2010.00251.x

Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight,

R., et al. (2011). Succession of microbial consortia in the developing infant

gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108 (Suppl. 1), 4578–4585.

doi: 10.1073/pnas.1000081107

Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers,

D., et al. (2011). Experimental and analytical tools for studying the human

microbiome. Nat. Rev. Genet. 13, 47–58. doi: 10.1038/nrg3129

Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., et al.

(2013). Richness of human gut microbiome correlates with metabolic markers.

Nature 500, 541–546. doi: 10.1038/nature12506

Liu, D., Ghosh, D., and Lin, X. (2008). Estimation and testing for the

effect of a genetic pathway on a disease outcome using logistic kernel

machine regression via logistic mixed models. BMC Bioinformatics 9:292.

doi: 10.1186/1471-2105-9-292

Liu, D., Lin, X., and Ghosh, D. (2007). Semiparametric regression

of multidimensional genetic pathway data: Least-squares kernel

machines and linear mixed models. Biometrics 63, 1079–1088.

doi: 10.1111/j.1541-0420.2007.00799.x

Lozupone, C., and Knight, R. (2005). Unifrac: a new phylogenetic method for

comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235.

doi: 10.1128/AEM.71.12.8228-8235.2005

Martins, E. P., and Hansen, T. F. (1997). Phylogenies and the comparative method:

a general approach to incorporating phylogenetic information into the analysis

of interspecific data. Am. Nat. 149, 646–667. doi: 10.1086/286013

Martiny, J. B., Jones, S. E., Lennon, J. T., and Martiny, A. C. (2015).

Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323.

doi: 10.1126/science.aac9323

Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M. L., et al. (2018).

The commensal microbiome is associated with anti-pd-1 efficacy in metastatic

melanoma patients. Science 359, 104–108. doi: 10.1126/science.aao3290

Milani, C., Ticinesi, A., Gerritsen, J., Nouvenne, A., Lugli, G. A., Mancabelli, L.,

et al. (2016). Gut microbiota composition and clostridium difficile infection

in hospitalized elderly individuals: a metagenomic study. Sci. Rep. 6:25945.

doi: 10.1038/srep25945

Pasolli, E., Truong, D. T., Malik, F., Waldron, L., and Segata, N. (2016). Machine

learning meta-analysis of large metagenomic datasets: tools and biological

insights. PLoS Comput. Biol. 12:e1004977. doi: 10.1371/journal.pcbi.1004977

Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Hyotylainen, T.,

Nielsen, T., Jensen, B. A., et al. (2016). Human gut microbes impact

host serum metabolome and insulin sensitivity. Nature 535, 376–381.

doi: 10.1038/nature18646

Peters, B. A., Wu, J., Pei, Z., Yang, L., Purdue, M. P., Freedman, N. D., et al. (2017).

Oral microbiome composition reflects prospective risk for esophageal cancers.

Cancer Res. 77, 6777–6787. doi: 10.1158/0008-5472.CAN-17-1296

Pflughoeft, K. J., and Versalovic, J. (2012). Human microbiome

in health and disease. Annu. Rev. Pathol. 7, 99–122.

doi: 10.1146/annurev-pathol-011811-132421

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). Fasttree 2–approximately

maximum-likelihood trees for large alignments. PLoS ONE 5:e9490.

doi: 10.1371/journal.pone.0009490

Purdom, E. (2011). Analysis of a data matrix and a graph: metagenomic data and

the phylogenetic tree. Ann. Appl. Stat. 5, 2326–2358. doi: 10.1214/10-AOAS402

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-

wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.

doi: 10.1038/nature11450

Randolph, T., Zhao, S., Copeland, W., Hullar, M., and Shojaie, A. (2015).

Kernel-penalized regression for analysis of microbiome data. arXiv preprint

arXiv:1511.00297.

Rideout, J. R., He, Y., Navas-Molina, J. A., Walters, W. A., Ursell, L. K., Gibbons,

S. M., et al. (2014). Subsampled open-reference clustering creates consistent,

comprehensive otu definitions and scales to billions of sequences. PeerJ 2:e545.

doi: 10.7717/peerj.545

Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillere, R.,

et al. (2018). Gutmicrobiome influences efficacy of pd-1-based immunotherapy

against epithelial tumors. Science 359, 91–97. doi: 10.1126/science.aan3706

Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., and Han, Y. W. (2013).

Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating

e-cadherin/beta-catenin signaling via its fada adhesin. Cell Host Microbe 14,

195–206. doi: 10.1016/j.chom.2013.07.012

Sakia, R. (1992). The box-cox transformation technique: a review. Statistician 63,

169–178. doi: 10.2307/2348250

Schirmer, M., Smeekens, S. P., Vlamakis, H., Jaeger, M., Oosting, M.,

Franzosa, E. A., et al. (2016). Linking the human gut microbiome

to inflammatory cytokine production capacity. Cell 167, 1125–1136.

doi: 10.1016/j.cell.2016.10.020

Shawe-Taylor, J., and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.

Cambridge, UK: Cambridge University Press.

Statnikov, A., Henaff, M., Narendra, V., Konganti, K., Li, Z., Yang, L., et al.

(2013). A comprehensive evaluation of multicategory classificationmethods for

microbiomic data.Microbiome 1:11. doi: 10.1186/2049-2618-1-11

Tanaseichuk, O., Borneman, J., and Jiang, T. (2014). Phylogeny-based

classification of microbial communities. Bioinformatics 30, 449–456.

doi: 10.1093/bioinformatics/btt700

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.

Soc. Ser. B 58, 267–288.

Truong, D. T., Franzosa, E. A., Tickle, T. L., Scholz, M., Weingart, G., Pasolli, E.,

et al. (2015). Metaphlan2 for enhanced metagenomic taxonomic profiling. Nat.

Methods. 12, 902–903. doi: 10.1038/nmeth.3589

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley,

R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457,

480–484. doi: 10.1038/nature07540

Walther-Antonio, M. R., Chen, J., Multinu, F., Hokenstad, A., Distad,

T. J., Cheek, E. H., et al. (2016). Potential contribution of the uterine

microbiome in the development of endometrial cancer. Genome Med. 8, 122.

doi: 10.1186/s13073-016-0368-y

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 139179

https://doi.org/10.1111/j.1467-9868.2011.01018.x
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1038/s41467-017-02651-5
https://doi.org/10.1093/bioinformatics/btt608
https://doi.org/10.1126/science.aan4236
https://doi.org/10.4161/gmic.27915
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1146/annurev-immunol-020711-074937
https://doi.org/10.1038/ncomms12015
https://doi.org/10.1099/mic.0.040618-0
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1186/gm228
https://doi.org/10.1111/j.1574-6976.2010.00251.x
https://doi.org/10.1073/pnas.1000081107
https://doi.org/10.1038/nrg3129
https://doi.org/10.1038/nature12506
https://doi.org/10.1186/1471-2105-9-292
https://doi.org/10.1111/j.1541-0420.2007.00799.x
https://doi.org/10.1128/AEM.71.12.8228-8235.2005
https://doi.org/10.1086/286013
https://doi.org/10.1126/science.aac9323
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1038/srep25945
https://doi.org/10.1371/journal.pcbi.1004977
https://doi.org/10.1038/nature18646
https://doi.org/10.1158/0008-5472.CAN-17-1296
https://doi.org/10.1146/annurev-pathol-011811-132421
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1214/10-AOAS402
https://doi.org/10.1038/nature11450
https://doi.org/10.7717/peerj.545
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1016/j.chom.2013.07.012
https://doi.org/10.2307/2348250
https://doi.org/10.1016/j.cell.2016.10.020
https://doi.org/10.1186/2049-2618-1-11
https://doi.org/10.1093/bioinformatics/btt700
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1038/nature07540
https://doi.org/10.1186/s13073-016-0368-y
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Xiao et al. glmmTree

Wang, T., and Zhao, H. (2017). Constructing predictive

microbial signatures at multiple taxonomic levels. J. Am.

Stat. Assoc. 112, 1022–1031. doi: 10.1080/01621459.2016.12

70213

Xiao, J., Cao, H., and Chen, J. (2017). False discovery rate control incorporating

phylogenetic tree increases detection power in microbiome-wide multiple

testing. Bioinformatics 33, 2873–2881. doi: 10.1093/bioinformatics/

btx311

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello,

M. G., Contreras, M., et al. (2012). Human gut microbiome viewed

across age and geography. Nature 486, 222–227. doi: 10.1038/nature

11053

Zhang, C. H. (1996). Nearly unbiased variable selection under minimax concave

penalty. Ann. Stat. 58, 267–288.

Zou, H., and Trevor, H. (2005). Regularization and variable selection via the elastic

net. J. R. Stat. Soc. Ser. B 67, 301–320. doi: 10.1111/j.1467-9868.2005.00503.x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Xiao, Chen, Johnson, Yu, Zhang and Chen. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Microbiology | www.frontiersin.org June 2018 | Volume 9 | Article 139180

https://doi.org/10.1080/01621459.2016.1270213
https://doi.org/10.1093/bioinformatics/btx311
https://doi.org/10.1038/nature11053
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00872 May 2, 2018 Time: 15:55 # 1

METHODS
published: 03 May 2018

doi: 10.3389/fmicb.2018.00872

Edited by:
Jessica Galloway-Pena,

The University of Texas MD Anderson
Cancer Center, United States

Reviewed by:
Wenxuan Zhong,

University of Georgia, United States
Jonathan Badger,

National Cancer Institute (NCI),
United States

*Correspondence:
Ying Wang

wangying@xmu.edu.cn
Fengzhu Sun

fsun@usc.edu;
fsun@dornsife.usc.edu

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 15 November 2017
Accepted: 16 April 2018
Published: 03 May 2018

Citation:
Wang Y, Fu L, Ren J, Yu Z, Chen T

and Sun F (2018) Identifying
Group-Specific Sequences

for Microbial Communities Using
Long k-mer Sequence Signatures.

Front. Microbiol. 9:872.
doi: 10.3389/fmicb.2018.00872

Identifying Group-Specific
Sequences for Microbial
Communities Using Long k-mer
Sequence Signatures
Ying Wang1* , Lei Fu1, Jie Ren2, Zhaoxia Yu3, Ting Chen2,4,5 and Fengzhu Sun2,6*

1 Department of Automation, Xiamen University, Xiamen, China, 2 Molecular and Computational Biology Program, University
of Southern California, Los Angeles, CA, United States, 3 Department of Statistics, University of California, Irvine, Irvine, CA,
United States, 4 Bioinformatics Division, Tsinghua National Laboratory of Information Science and Technology, Tsinghua
University, Beijing, China, 5 Department of Computer Science and Technology, Tsinghua University, Beijing, China, 6 Center
for Computational Systems Biology, Fudan University, Shanghai, China

Comparing metagenomic samples is crucial for understanding microbial communities.
For different groups of microbial communities, such as human gut metagenomic
samples from patients with a certain disease and healthy controls, identifying group-
specific sequences offers essential information for potential biomarker discovery.
A sequence that is present, or rich, in one group, but absent, or scarce, in another group
is considered “group-specific” in our study. Our main purpose is to discover group-
specific sequence regions between control and case groups as disease-associated
markers. We developed a long k-mer (k ≥ 30 bps)-based computational pipeline to
detect group-specific sequences at strain resolution free from reference sequences,
sequence alignments, and metagenome-wide de novo assembly. We called our method
MetaGO: Group-specific oligonucleotide analysis for metagenomic samples. An open-
source pipeline on Apache Spark was developed with parallel computing. We applied
MetaGO to one simulated and three real metagenomic datasets to evaluate the
discriminative capability of identified group-specific markers. In the simulated dataset,
99.11% of group-specific logical 40-mers covered 98.89% disease-specific regions
from the disease-associated strain. In addition, 97.90% of group-specific numerical
40-mers covered 99.61 and 96.39% of differentially abundant genome and regions
between two groups, respectively. For a large-scale metagenomic liver cirrhosis (LC)-
associated dataset, we identified 37,647 group-specific 40-mer features. Any one of
the features can predict disease status of the training samples with the average of
sensitivity and specificity higher than 0.8. The random forests classification using the
top 10 group-specific features yielded a higher AUC (from ∼0.8 to ∼0.9) than that
of previous studies. All group-specific 40-mers were present in LC patients, but not
healthy controls. All the assembled 11 LC-specific sequences can be mapped to two
strains of Veillonella parvula: UTDB1-3 and DSM2008. The experiments on the other
two real datasets related to Inflammatory Bowel Disease and Type 2 Diabetes in Women
consistently demonstrated that MetaGO achieved better prediction accuracy with fewer
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features compared to previous studies. The experiments showed that MetaGO is a
powerful tool for identifying group-specific k-mers, which would be clinically applicable
for disease prediction. MetaGO is available at https://github.com/VVsmileyx/MetaGO.

Keywords: long k-mer, classification, group-specific sequence, metagenomics, microbial community, disease
prediction

INTRODUCTION

High-throughput sequencing technologies have ushered in new
views of ubiquity and diversity of microbial communities
(Yatsunenko et al., 2012). Metagenomic sequencing data permit
comprehensive profiling of microbial communities at single-
nucleotide resolution. The ability to compare two groups of
metagenomic samples is crucial for understanding microbial
communities and their effects on hosts. Typically, for two
groups of individuals, patients with a certain disease and
healthy individuals, group-specific markers offer significant
support in understanding and predicting disease. Here, “group-
specific markers” can be genes, species, or sequences present,
or rich, in one group, but absent, or scarce, in another
group. “Group-specific” focuses on the highest discriminative
power, rather than the statistically significant difference (White
et al., 2009; Segata et al., 2011), to classify, or predict,
case and control groups. Accordingly, prediction performance
evaluates the discriminative capability of identified group-specific
features.

Some studies characterized microbiomes by aligning reads to
reference genomes or 16S rRNA marker genes (Costello et al.,
2009; Quast et al., 2012; Lozupone et al., 2013; Jiang, 2015).
It was realized that the alignment-based methods were limited
by incomplete or inaccurate reference sequences (Kunin et al.,
2008). For example, only about 31.0–48.8% of the shotgun
reads from human gut could be aligned to 194 public human
gut bacterial genomes, and 7.6–21.2% to the bacterial genomes
deposited in GenBank (Qin et al., 2010). Recently, more studies
adopted reference-free strategies to analyze the compositional
differences of metagenomes between control and case groups
at the microbial gene, gene set, or species levels. Generally,
contigs were produced through the metagenome-wide de novo
assembly, and a gene catalog was established through open-
reading frame (ORF) prediction. The above processing was
first applied to human microbiome of inflammatory bowel
disease (IBD) (Qin et al., 2010). Follow-up investigations were
conducted based on the constructed gene sets: approximately
60,000 associated gene markers were identified to predict Type
2 Diabetes (T2D), and the concept of a metagenomic linkage
group was proposed, which is a group of genes that co-exist
among samples and has a consistent abundance level and
taxonomic assignments (Qin et al., 2012). The metagenomic
gene clusters based on high abundance correlations were
further applied to predict T2D in European women using
gut metagenomic samples (Karlsson et al., 2013). The gene
clusters containing a large number of genes (such as >700)
assist de novo genome assembly to discover microbial species
associated with liver cirrhosis (LC) (Qin et al., 2014) and IBD

(Nielsen et al., 2014). Pasolli et al. (2016, 2017) conducted
prediction tasks on 2424 metagenomic samples from eight
large-scale projects using species-level relative abundances and
the presence of strain-specific markers as features. Wen et al.
(2017) compared the predicting performances of three types
of biomarkers: sequenced reference genomes, genes and gene
clusters, for ankylosing spondylitis based on gut metagenomic
samples. They found that gene markers performed better than
reference genome markers and clustered gene markers, and
the clustered gene markers might be limited by the unknown
taxonomic organisms in clusters. Almost all the above studies
followed the analysis pipeline of de novo contig assembly, gene
prediction, and gene clustering. Previous studies concluded that
metagenome-assembly performs well for microbial communities
that have high coverage of phylogenetically distinct, and low
taxonomic diversity (Papudeshi et al., 2017), but the presence
of closely related strains in one community would substantially
have negative effect on the assembly performance (Sangwan
et al., 2016; Sczyrba et al., 2017). Moreover, high co-abundance
among species would result in multiple species in one cluster
(Nielsen et al., 2014). Therefore, components with closely
related genome sequences or abundance would diminish the
performance of assembly and clustering in microbial community
studies.

Besides genes or species, assembled contigs have also been
used as features to predict disease. Several contig binning tools,
such as CONCOCT (Alneberg et al., 2014), MaxBin2.0 (Wu
et al., 2016), COCACOLA (Lu et al., 2017), and MetaGen
(Xing et al., 2017), were developed for binning contigs assuming
that contigs with similar coverage/relative abundances over
different samples come from the same genomes. In particular,
although the main purpose of MetaGen (Xing et al., 2017) is to
identify microbial species in the community through binning,
the study not only designed comprehensive experiments to
analyze the effect of sequencing depth, sample size, number
of species and sequence similarity, but also used the relative
abundance of each bin to predict IBD/T2D/obesity disease
on metagenomic datasets to evaluate the binned microbial
composition. Similarly, Ren et al. (2017) developed a novel
pipeline to predict the disease status of LC using the abundance
of viral contig bins. Both studies made novel attempts to
identify markers through assembling de novo reads into
contigs and then binning contigs, which achieved excellent
predicting results. The basic idea is to discover species markers
that are differentially abundant between case and control
groups. However, current assembly tools are hard to handle
large-scale datasets: reads assembly involves the construction
of De Bruijn graph, error correction, and path resolution;
contig binning requires mapping reads to the assembled
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contigs; both would require extremely large memory and
are very time-consuming. Also, if the main purpose is to
discover group-specific markers, it is not necessary to assemble
contigs for the genomes that are not associated with the
disease.

The k-mer frequencies (i.e., the number of occurrences
of k-mers within the whole sequencing data) are another
representative alignment-free feature to characterize a microbial
community. The frequency distributions of 2–10-mers were used
to compare metagenomic and meta-transcriptomic communities
(Jiang et al., 2012; Wang et al., 2014; Liao et al., 2016) or to
improve contig binning within a community (Wang et al., 2017).
Also, Cui and Zhang (2013) classified clinical metagenomic
samples using the frequencies of 2–10-mers.

However, 2–10-mers are too short to capture specific
details inside the microbial community, such as sequences
present, or rich, in one group, but absent, or scarce in another
group. Intuitively, longer k-mers contain richer biological
information in the nucleotide sequences. The long k-mers had
been mainly utilized as seed index in sequence assembly and
alignment (Li et al., 2010; Grabherr et al., 2011). Recently, long
k-mers (≥20 bp) began to be utilized to more applications:
our previous study explored the effect of k-mer length on
an unsupervised comparison between metagenomic samples
and verified the promising performance of long k-mers to
depict the specific characteristics of microbial communities
(Wang et al., 2015). Han et al. (2017) detected differentially
abundant 21-mers in metagenomic samples from T2D and
healthy individuals, assembled the reads containing those
21-mers into contigs, and then predicted genes based on the
contigs. Finally, they used the gene abundances to predict
T2D status. Our study differs from Han et al. (2017) in the
sense that we do not predict genes based on the contigs
assembled from reads containing statistically differentially
abundant k-mers. Instead, we identified group-specific k-mers
using discriminative power to separate two groups and
predicted disease status with k-mers as features. Moreover,
group-specific k-mers were assembled to contigs directly.
Rahman et al. (unpublished) found significant differentially
abundant 31-mers between two groups of 1000 genomes
data and discovered SNPs between different populations,
which is highly different from the objectives of this study.
The frequency vector of long k-mers (∼30 bp) was also
applied to calculate the dissimilarity between metagenomic
samples using 16 standard ecological distances (Benoit
et al., 2016). The long k-mers began to present attractive
potentials to characterize high-throughput sequencing
data.

Since sufficiently long k-mers are usually specific to a
genome (Fofanov et al., 2004), therefore, we proposed a
computational framework to identify group-specific sequences
between two groups of metagenomic samples with long
(≥30 bp) k-mers in this study. We call our method MetaGO:
Group-specific oligonucleotide analysis for metagenomic
samples. The main purpose of MetaGO is to discover group-
specific sequence regions between control and case groups
as disease-associated markers. Instead of using statistically

significant difference as index, we considered the discriminant
power to separate two groups of single k-mer. A k-mer is
considered group-specific if (1) the average of sensitivity
and specificity (ASS) is higher than a preset threshold when
using the presence/absence of the k-mer on the sequencing
data to predict disease status, or (2) the k-mer’s frequencies
are significantly different between two groups of samples
(Wilcoxon rank-sum test, p-value ≤ 0.01) and the ASS is
higher than a preset threshold using logistic regression. The
group-specific k-mers are identified based on the training
set. In our study, k-mer length is set between 30 and
40 given the tradeoff among sensitivity, specificity, and
computational cost. To reduce the computational burden
from long k-mers, we developed an open-source, parallel-
computing pipeline on Apache Spark. Once the group-specific
k-mers are identified, we assembled them into group-specific
sequences. The assembly on the markedly reduced number
of long k-mers will be more computationally efficient and
accurate.

MetaGO was tested on one simulated and three real
metagenomic datasets. In the simulated dataset, for the two
strains sharing 87% common sequences where one is disease
specific and the other one is present in both groups, we
identified group-specific logical 40-mers that covered 98.89%
(recall) of the disease-specific sequence regions from the
disease-associated strain with 98.91% precision. In addition,
98.83% of the group-specific numerical 40-mers covered 99.01
and 97.30% of the differential-abundant genome and regions,
respectively. For the metagenomic LC-associated dataset
(Qin et al., 2014), it is composed of human fecal samples
from 98 LC patients and 83 healthy controls, as well as an
additional independent dataset containing 25 patients and
31 controls. The k-mer length was set as 40 because of the
large sample size (number of samples). In our experiment,
two-thirds of the 98 patients and 83 control samples were
randomly selected as the training set, leaving one-third as
the validation set and the extra 25 patients and 31 controls
as the independent testing set. In total, 37,647 group-specific
40-mers were identified on the training set, and 35,652 and
12,944 of the group-specific 40-mers yielded ASS ≥ 0.8 on the
validation and testing sets, respectively. The single-logical-feature
predictor with the highest ASS score 0.87 on the training set
predicted the disease status in the validation and testing sets
with ASS score as 0.88 and 0.83, respectively. Using the top 10
group-specific 40-mers, the random forests classifier achieved
the area under the receiver operating characteristic (AUC) as
0.963, 0.969, and 0.942 on training, validation, and testing sets,
respectively. It is interesting to note that all 37,647 40-mers
were present in LC patients but absent from healthy controls.
The LC-specific 40-mers were assembled into 11 sequences with
a length between 210 and 350 bp, and they demonstrated the
distinguishing coverages between two groups. All the identified
LC-specific sequences could be matched to two strains of
Veillonella parvula, UTDB1-3 and DSM2008 with 97–100%
identity. And 83.2 and 79.6% of the 37,647 group-specific
40-mers could be matched to strain UTDB1-3 and DSM2008,
respectively.
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We also identified group-specific k-mers based on two more
metagenomic disease-associated datasets: IBD associated (Qin
et al., 2010) and WT2D (T2D in women) associated (Karlsson
et al., 2013). Based on the identified group-specific k-mers, our
pipeline achieved substantially better prediction performance
using relatively fewer features compared with previous studies
having identical or relaxed experimental settings. All experiments
demonstrated long k-mers to be more efficient in capturing
the specific information of sequencing data and discriminating
gut microbiome communities between control and case groups.
It should be noted that group-specific sequences are identified
free from reference sequences, metagenome-wide assembly,
and sequence alignments. MetaGO greatly facilitates the
identification of clinically meaningful biomarkers.

MATERIALS AND METHODS

Description of Terms
A group-specific feature is a k-mer present, or rich, in the
metagenomic sequencing data of one group, but absent, or sparse,
in the sequencing data of another group. A k-mer is a word
composed of k oligonucleotides, and the total number of all
possible k-mers is 4k.

We defined k-mer features in the following two ways:
Numerical features are the normalized frequencies of k-mers.

The numerical feature of a k-mer i in sample j is denoted as
fi(j) and is defined in Equation (1), where f ◦i (j) is the number
of occurrences of k-mer i in sample j, and n is the total number
of k-mers, that is 4k. So the normalization is the number of
occurrences of the k-mer over the total number of occurrences
for all k-mers in one sample. Each k-mer has the same length k,
so length is not considered during the normalization.

fi(j) =
f ◦i (j)∑n
i=1 f ◦i (j)

, i = 1, 2, . . . , n. (1)

Logical features are the logicalization of numerical features. They
use 1 and 0 to represent k-mers as present or absent in one
sample, as shown in Equation (2),

f (l)
i (j) =

{
1 if fi(j) > 0
0 if fi(j) = 0

, (2)

where f (l)
i (j) is the logical value of k-mer i in sample j, and the

superscript “l” indicates logical feature.
A single-logical-feature predictor, as represented in Equations

(3) and (4), is used to predict disease status based on whether a
k-mer i is present in the sequencing data of sample j or not.

f (l)
i (j) =

{
1 then sample j ∈ Group +
0 then sample j ∈ Group −

(3)

or

f (l)
i (j) =

{
1 then sample j ∈ Group −
0 then sample j ∈ Group +

. (4)

A single-numerical-feature logistic regression predicts the case and
control status based on one single numerical feature, and it is used

as the independent variable in a logistic regression. An example
of each term above is given in Supplementary File S1.

The Computational Framework to
Identify Group-Specific Sequences
As shown in Figure 1, the computational framework of MetaGO
consists of three modules. (1) Creating a feature vector for
each sample. The feature vector is composed of the number of
occurrences for each k-mer through all reads in one sample.
(2) Feature preprocessing. After removing k-mers occurring only
once and normalizing k-mer frequencies, the feature matrix is
integrated on the feature vectors across all training samples.
The k-mers that are absent in most training samples are
filtered out. (3) Identifying group-specific features. The logical
and numerical features with high discriminant power are
selected.

MetaGO was developed on Apache Spark to reduce
computational costs through parallel running on HDFS of
Hadoop or a stand-alone multi-core server. The open-source
pipeline is available at https://github.com/VVsmileyx/MetaGO.

Module 1: Creating Feature Vectors
A feature vector consists of elements that account for the number
of occurrences (i.e., frequency) for each k-mer through all the
reads in one metagenomic sample. Existing tools, such as DSK
(Rizk et al., 2013) or JELLYFISH (Marçais and Kingsford, 2011),
are available for counting k-mer frequency. In our study, we used
DSK to count k-mers. The reverse complements of reads were
taken into consideration. A k-mer and its reverse complement
were considered as the same object, so the theoretical dimension
of a feature vector for one sample is shrunk to 4k

+2k

2 for even

k and 4k

2 for odd k. Furthermore, only the k-mers that occur
in a sample are stored in the feature vector to reduce storage
space.

Module 2: Feature Preprocessing
Discard k-mer Features Occurring Only Once
With the increase of k-mer length, k-mer frequency decreases
exponentially, and the k-mer vector is highly sparse. A k-mer
occurring only once might be caused by low abundance or
sequencing errors. To achieve reproducible and stable prediction
models, k-mers occurring once were removed from the frequency
vector, and this step was implemented by DSK during k-mer
counting in our study.

Normalize k-mer Frequencies
Owing to different sequencing depths in samples, the frequency
of a k-mer is normalized using Equation (1) by the total number
of occurrences of all k-mers.

Build Feature Matrix Across Training Samples
Feature vectors across all training samples are integrated as a
matrix. This step is extremely time- and memory-consuming as
a result of the large sample size and the long k-mer length. Just
storing non-zero k-mers in each feature vector, the integration
process requires huge amounts of sorting and matching of
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FIGURE 1 | The MetaGO framework to identify group-specific sequences with long k-mer features. The framework is composed of three modules. (1) The feature
vector of each metagenomic sample is composed of the frequencies of all k-mers. (2) The k-mers are preprocessed by discarding features occurring only once,
normalization, integrating the matrix and removing the k-mers absent from most training samples. (3) The features are represented as logical and numerical forms,
and the features with high discriminant power are identified to be group-specific.

k-mers. When k = 40, approximately 109 40-mer features occur
more than once. The feature matrix F is denoted as Equation (5),
where k-mer1, k-mer2, . . . , k-merm are the m k-mer features, and
S1, S2, . . . , SN are the N training samples from case and control
groups.

k−mer1
F = k−mer2

...

k−merm

S1 S2 · · · SN
f1(1) f1(2) · · · f1(N)

f2(1) f2(2) · · · f2(N)
...

...
...

...

fm(1) fm(2) · · · fm(N)

 (5)

Remove Highly-Sparse Features
The “highly-sparse” feature means that a k-mer is absent in
most training samples, i.e., the frequencies of k-mers are 0 in
most training cases and controls. Such features have limited
contributions to classification. In our study, if a k-mer is absent
in more than 80% of control samples and 80% of case samples,
the feature is removed. The stringent threshold of 80% offers high
confidence in filtering out less useful features.

Module 3: Identifying Group-Specific
Features
After preprocessing, about 106 features still remain for 40-mers.
Simple feature-ranking filtering is more suitable than Wrapper
feature selection. Wrapper methods consider the selection of a set
of features as a search problem in which different combinations
are prepared, evaluated, and compared to other combinations.
The dimension of combination space is extremely high for a large
number of features in our study. The filtering of k-mers is only
based on the training data without touching the validation and
testing data.

Identify Group-Specific Logical Features Based on a
Single-Logical-Feature Predictor
As shown in Figure 2, numerical features were transformed
to logical features using Equation (2), and the single-logical-
feature predictors were created according to Equations (3) or
(4). The performance of a predictor was evaluated by ASS,
an average of sensitivity and specificity. If a single-logical-
feature predictor achieves ASS ≥ θ1, the corresponding k-mer
is identified to be group specific. The group-specific logical
features are present in one group but absent in another
group.
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FIGURE 2 | The single-logical-feature predictor. The numerical feature is transformed into the logical feature. Based on the logical value of the feature, the
single-logical-feature predictor is designed, and the corresponding ASS is calculated.

In our study, θ1 was set as 0.80, which means that each
group-specific k-mer alone can separate two groups of training
samples with ASS ≥ 0.8 solely. Some researchers would prefer
a statistical test, such as Chi-squared test, to rank the features.
To accommodate this preference, we calculated p-values of Chi-
squared test for the same feature set. Among the two feature lists
with the 400 largest ASS values and the 400 smallest p-values, 392
features were present in both lists in the same order. Therefore,
both ASS and Chi-squared test provide consistent ranks of the
features. In our pipeline, users have the option to choose either
ASS or Chi-squared test as evaluation metrics.

Identify Group-Specific Numerical Features Based on
a Single-Numerical-Feature Logistic-Regression
Predictor
First, Wilcoxon rank-sum test is applied to the numerical features
to select k-mers with differential abundance (p-value ≤ θ2)
between two groups. However, our main goal is to identify
features with the most discriminant power. Therefore, we fit
logistic regression for each numerical k-mer feature that passed
the Wilcoxon rank-sum test over all the training samples,
and we term this as single-numerical-feature logistic-regression
predictor. We used ASS≥ θ3 as a metric to identify group-specific
numerical k-mers. In our study, we used θ2 = 0.01 and θ3 = 0.8

Random Forests Prediction of Disease Status With
the Combination of Multiple Features
The single-logical-feature predictor and single-numerical logistic-
regression predictor are the classifiers based on a single k-mer
feature. Because of the complicated association between human
microbiome and disease, classifiers using multiple features are
expected to be more efficient than those with single features.
Therefore, we used random forests to design a classifier with
multiple group-specific features. To remove redundant features,
we calculated the Pearson correlation coefficients (PCC) between
the feature vectors of every pair of k-mers. If a pair of k-mers
has a PCC value higher than a preset threshold, such as 0.75,

one k-mer feature was randomly discarded. The remaining
features were ranked according to the variable importance
measures of Breiman’s random forests method (Breiman, 2001),
and the top features were adopted to design a random forests
classifier.

Assembly of Group-Specific Sequences
Using CAP3 (Huang and Madan, 1999), the identified group-
specific k-mers based on logical and numerical features were,
respectively, assembled to longer sequences. For quality control,
the assembled sequences longer than a certain threshold (200 bp
in our study) are considered as group-specific sequences.

Parallel Computing Workflow on Apache
Spark
The running time and memory required to integrate feature
matrix and filter out less useful features expand dramatically with
the increase of k-mer length and sample size. Fortunately, these
processing steps are suitable for parallel computing. Therefore,
we developed MetaGO workflow on Apache Spark (Zaharia
et al., 2010) to implement parallel computing. Spark can run
in local mode or cluster mode. Thus, MetaGO can run on a
local stand-alone multi-core server or a distributed cluster on
HDFS. The detailed description of the workflow is given in
Supplementary File S1. The workflow is available on https://
github.com/VVsmileyx/MetaGO.

Experimental Design
The Setting of k-mer Length
A previous study showed that sufficiently long k-mers are
usually specific to a genome (Fofanov et al., 2004). According
to an observation based on 100 pairs of bacterial genomes,
the average ratio of common k-mers between the genomes
is <1.02% when k ≥ 30 (Le et al., 2015). Therefore, k-mers
longer than 30 bp would possess sufficiently high sensitivity to
capture the discriminate characteristics to separate two groups;
thus, theoretically, longer k-mers are better suited to this task.
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At the same time, however, k-mer length is limited by four
factors: sample size (the number of samples), sequencing depth,
computational cost, and read length. First, the dimension of
feature space grows exponentially with k. Owing to the curse
of dimensionality, a limited number of samples would lead
to a high false-positive rate. Therefore, a large sample size is
required to obtain high specificity. Second, when sequencing
depth is not deep enough to cover all the metagenomic regions,
the frequencies of long k-mers would not be accurate. Third,
with the increase of k-mer length, the huge number of k-mers
leads to the explosion of memory and storage. Fourth, when
the k-mer length is close to read length, the frequencies of
k-mers are contaminated by the truncated sites under limited
sequencing depth. Therefore, we set the k-mer length to be 30–
40 as the reasonable tradeoff among sensitivity, specificity, and
computational cost.

Simulated Metagenomic Dataset
Based on the relative abundances of frequent microbial genomes
within human gut analyzed by Qin et al. (2010) (Figure 3 of
their paper), we selected the top 10 most frequent genomes as
the basis components of the simulation. The relative abundances
in the control group were approximated from the medians of
Figure 3 of that study (Qin et al., 2010), which were converted
into the cell proportions of the 10 genomes in all the cells
within the community. In addition, we added another strain
Bacteroides thetaiotaomicron VPI-5482 to the patient group,
and this strain shares about 87% common sequences with
the existing B. thetaiotaomicron 7330. Meanwhile, we assigned
Genome Bacteroides caccae ATCC 43185 threefold abundance
in the control group than in the patient group. The remaining
nine genomes have identical abundance distributions between
the healthy individual and the patient groups. The detail setting
is shown in Table 1. We used MetaSim (Richter et al., 2008) to
generate 15 metagenomic samples for case and control groups,
respectively. For each group, the absolute values of Gaussian
noises of mean zero and standard derivation equal to each
central relative abundance were added to the center relative
abundance vector. Each sample contains ∼10,000,000 reads. In
the evaluations, the proportion of identified group-specific k-
mers that can be aligned to disease-specific sequence regions is
called “precision,” and the proportion of disease-specific sequence
regions that can be covered by group-specific 40-mers is called
“recall.”

Metagenomic Liver Cirrhosis-Associated Dataset
In recent studies, alterations in human gut microbiota have been
linked to LC (Qin et al., 2014; Wiest et al., 2014). We analyzed
the human fecal metagenomic samples (Qin et al., 2014) from
98 LC patients and 83 healthy controls, as well as an extra
dataset composed of 25 independent patients and 31 controls.
The data were sequenced with Illumina HiSeq 2000. In the
experiment, two-thirds of the 98 patients and 83 control samples
were randomly selected as the training set to identify group-
specific k-mers, and the remaining one-third as the validation set.
Finally, the extra 25 patients and 31 controls were applied to test
the group-specific k-mers independently.

Metagenomic IBD-Associated and WT2D-Associated
Datasets
The IBD dataset is composed of the human fecal metagenomic
samples from 25 IBD patients and 97 controls (Qin et al.,
2010). These samples were sequenced on Illumina GAIIx from
the MetaHIT project (Human Microbiome Project Consortium,
2012). The WT2D dataset is composed of samples from 53
T2D patients and 43 healthy controls from European women
(Karlsson et al., 2013). These samples were sequenced on Illumina
HiSeq 2000. Both datasets had been predicted using various
types of features (Cui and Zhang, 2013; Karlsson et al., 2013;
Pasolli et al., 2016). In our study, we adopted the experimental
setting of a previous study (Pasolli et al., 2016), in which
20 independent runs of 10-fold cross-validation were used to
evaluate the classification.

RESULTS

The Simulated Metagenomic Dataset
For logical features, there were 1,646,128 group-specific 40-mers
using ASS ≥ 0.8 as a threshold. And 99.999% of the 40-mers
were patient specific, which means almost all the logical group-
specific 40-mers exist only in the patient group and are absent
in the healthy control group. Among the logical patient-specific
40-mers, 99.11% of them (precision) were exactly aligned to
strain B. thetaiotaomicron VPI-5482 (the strain present in the
patient group only) and covered 98.89% (recall) of the regions
that are not in the genome of the other strain B. thetaiotaomicron
7330. None of the group-specific 40-mers were aligned to
B. thetaiotaomicron 7330, which has the same abundance on
both groups. The logical group-specific 40-mers mainly indicate
genomes present in one group but not in another group.

The remaining features were represented as numerical 40-
mers, and there were 7,891,412 group-specific 40-mers using
p < 0.05 and ASS ≥ 0.8 as the thresholds. And 4,452,553
(56.42%) of them were exactly matched to B. caccae ATCC
43185 and covered 99.61% (recall) of the whole genome,
which is differentially abundant between the healthy control
and the case groups. Among the remaining 40-mers, 3,257,251
(41.3%) of them were aligned to the common regions between
B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330,
and covered 96.39% (recall) of the common sequences. Because
for the patient group, the abundance of common sequences
includes VPI-5482 and B. thetaiotaomicron 7330, but the
control group only includes B. thetaiotaomicron 7330, the
common sequences are differentially abundant. In total, 97.72%
(precision) of the identified group-specific numerical 40-mers
were aligned to the differentially abundant regions between the
two groups.

The identified patient-specific and control-specific 40-mers
from logical and numerical features were assembled into contigs,
respectively. For the assembled patient-specific contigs, there were
20 of them with length ≥10,000 bp and all these contigs were
matched to the patient-specific strain B. thetaiotaomicron VPI-
5482 with 99.79–100% identity and 100% coverage. The coverage
rate here means the proportion of contig sequence mapped

Frontiers in Microbiology | www.frontiersin.org May 2018 | Volume 9 | Article 87287

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00872 May 2, 2018 Time: 15:55 # 8

Wang et al. Group-Specific Sequences for Microbiome

FIGURE 3 | (A) The distribution of ASS values of the 37,302 single-logical-feature predictors and 345 single-numerical logistic-regression predictors on the identified
group-specific features for training, validation, and testing sets. These predictors achieved better performance in the validation set compared to the training set.
A total of 35,652 group-specific features achieved ASS ≥ 0.8 for the validation set, and 12,944 of them achieved ASS ≥ 0.8 for the testing set. (B) ROC curves of
the random forests classifier with the top 10 features on validation and testing sets. Using the top 10 group-specific 40-mers, the random forests classifier achieved
AUC of 0.963, 0.969, and 0.942 on training, validation, and testing sets, respectively.
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TABLE 1 | The relative abundance profile of different genomes in control and patient groups for the simulated dataset.

Genomes NCBI Accession ID Relative_Abundance_H∗ Relative_Abundance_P∗

Bacteroides thetaiotaomicron 7330 NZ_CP012937.1 18%

Bacteroides thetaiotaomicron VPI-5482 NC_004663.1 0 6%

Bacteroides uniformis CL03T12C37 NZ_JH724268.1 7%

Alistipes putredinis isolate CAG MNQH01000001.1 16%

Parabacteroides merdae 2789STDY5834848 CZAG01000002.1 10%

Dorea longicatena 2789STDY5834914 NZ_CZAY01000001.1 10%

Ruminococcus bromii L2-63 FP929051.1 10%

Bacteroides caccae ATCC 43185 NZ_CP022412.2 9% 3%

Clostridium sp. SS2/1 NZ_DS547029.1 8%

Eubacterium hallii isolate EH1 NZ_LT907978.1 6%

Ruminococcus torques L2-14 FP929055.1 6%

The relative abundances were the proportions of the number of copies of 11 genomes within the community. Bacteroides thetaiotaomicron VPI-5482 is present only in
the patient group, and it is another strain of B. thetaiotaomicron. Bacteroides caccae ATCC 43185 has threefold abundance in the control group of that in the patient
group. ∗H, healthy control; P, patient.

to the strain. In contrast, these contigs cannot be matched to
B. thetaiotaomicron 7330, and the maximum common sequences
between contigs and B. thetaiotaomicron 7330 genome were no
longer than 47 bp. For assembled control-specific contigs, there
were 24 of them with length ≥5000 bp and all of them were
mapped to the differentially abundant genome B. caccae with
100% identity and 100% coverage using BLAST (Altschul et al.,
1997).

To evaluate the effect of k-mer length, we ran MetaGO on 10-
mer, 20-mer, 30-mer, 50-mer, and 60-mer, and the corresponding
precision and recall are shown in Table 2. For the simulated
dataset, When k = 10, no group-specific logical k-mers were
identified. The recall rates for the identified numerical k-mers
were only 25.34% for B. caccae ATCC 43185 and 22.45% for
the common regions between B. thetaiotaomicron VPI-5482 and
B. thetaiotaomicron 7330. When k ≥ 20, the effects of the k-mer
length on the performance of our methods were small. The
precision increased slightly with the k-mer length from 99.03
to 99.35% for logical k-mers and from 96.81 to 98.58% for
numerical k-mers, consistent with the intuition that long k-mers
can capture more specific information of each group. On the
other hand, though almost all the recall rates were all above 90%,
the recall first increased with k-mer length until k = 40 and then
decreased, which might be caused by insufficient coverage for
long k-mers.

The experimental results demonstrate that the identification
of group-specific 40-mers can not only capture genomes with
different abundance but also identify group-specific markers
under the strain-level resolution. Even though the two strains
B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330 share
87% common sequences, our method still captured the group-
specific sequences.

The LC-Associated Metagenomic
Dataset
MetaGO was applied to the large-scale metagenomic LC-
associated dataset (Qin et al., 2014). With sufficient training
samples and long read length, the k-mer length was set as k = 40.
A total of ∼109 non-zero 40-mers were found in the feature

matrix of training samples. After removing the highly sparse
40-mer features,∼106 features were left.

Identify Group-Specific Features
Using ASS > 0.8 as the threshold, 37,302 logical features were
identified as group-specific 40-mers. That is, any one of these
40-mers could achieve ASS > 0.8 using its corresponding single-
logical-feature predictor on training samples. We then used each
of these 37,302 single-logical-feature predictors to predict LC in
the validation and testing sets. As shown in the histogram of
Figure 3A, ASS values of validation and testing were centered
at 0.85 and 0.78, respectively. Among the 37,302 single-logical-
feature predictors, 35,404 (95%) group-specific 40-mers achieved
ASS ≥ 0.8 on the validation set, and 12,750 (36%) achieved
ASS≥ 0.8 on the testing set. Furthermore, 345 numerical features
were identified as group-specific 40-mers with ASS ≥ 0.8, where
248 and 194, respectively, achieved ASS ≥ 0.8 on validation and
testing sets using corresponding single-numerical-feature logistic
regression predictors. All 37,302 logical and 345 numerical 40-
mers were LC-specific in that they were all present only in the
fecal samples of LC patients, but not in the samples from healthy
controls. The identified group-specific 40-mers for the LC dataset
are available in Supplementary File S2.

We also implemented a controlled trial by shuffling the labels
of the training samples randomly. Using the same pipeline and
settings, only 247 40-mers achieved ASS ≥ 0.7, and the highest
value was 0.73. This control trial indicates that most of the
identified group-specific 40-mers for LC were more likely to be
true rather than due to false positives.

Classification With the Group-Specific 40-mer(s)
We used classification performance to evaluate the discriminative
capability of the identified group-specific 40-mers. First, we
classified the healthy and LC groups with single features.
The single-logical-feature predictor that obtained the highest
ASS = 0.87 on the training set achieved ASS = 0.885
(sensitivity = 0.81 and specificity = 0.96) on the validation set and
0.87 (sensitivity = 0.84 and specificity = 0.90) on the independent
testing set. Second, we built a classifier using a set of features.
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TABLE 2 | The precision and recall of MetaGO for the simulated dataset using different k-mer lengths.

k-mer length 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%)

Logicalized k-mers Precision –∗ 99.03 99.05 99.11 99.45 99.35

Recall –∗ 89.79 92.16 98.89 97.01 95.23

Numercial k-mers Precision 99.63 96.81 96.07 97.72 98.22 98.58

Averaged recall 23.89 95.70 97.93 98.00 96.82 94.76

The “averaged recall” in numerical k-mers is the average of the recall of B. caccae ATCC 43185 genome and the recall of the common regions between strain
B. thetaiotaomicron 7330 and B. thetaiotaomicron VPI-5482. ∗When k = 10, there is no logicalized k-mer identified, so it is marked with “–”.

TABLE 3 | Comparison of the prediction performance of different methods based on the LC dataset.

Feature 40-mer 40-mer Gene markers†† Species abundance† Presence of strain-
specific markers†

Experiment Training (66P+56H) 20 runs of 10-fold

Validation (32P+27H) cross-validation (114P+118H)

Testing (25P+31H)

Number of feature 1 10 15 542 120553

Classifier Single
logical
feature
predictor

Random
forests

Support
vector
machine

Random
forests

Support
vector
machine

AUC Training
validation
testing

ASS∗ = 0.87
ASS = 0.885
ASS = 0.87

0.963
0.969
0.942

0.918
0.838
0.836

0.946 ± 0.035 0.963 ± 0.027

Using much fewer features, MetaGO achieved better results compared to other methods. The results of MetaGO were in bold. †(Pasolli et al., 2016); ††(Qin et al., 2014);
∗average of sensitivity and specificity.

Using the top 10 group-specific 40-mers, a random forests
classifier achieved AUCs of 0.963 on training, 0.969 on validation,
and 0.942 on testing sets, respectively. The corresponding ROC
curves are shown in Figure 3B. As shown in Table 3, Qin et al.
(2014) obtained AUC = 0.918, 0.838, and 0.836 on training,
validation, and testing sets with SVM using 15 marker genes
as features. Pasolli et al. (2016) obtained AUC = 0.946 ± 0.036
with random forests using 542 species-abundance features and
0.963 ± 0.027 with SVM using 91,756 strain-specific markers
features over 20 independent runs of 10-fold cross-validations,
where cross-validations gave much more optimistic results, and
many more features were adopted. The experiments show that
group-specific 40-mers achieved better classification performance
with fewer features.

Group-Specific Sequences
The identified group-specific 40-mers were assembled into group-
specific sequences using CAP3 (Huang and Madan, 1999), in
which 11 assembled sequences were longer than 200 bp, with
length from 210 to 350 bp (available in Supplementary File S2).
They were aligned by the sequencing reads from the training and
validation sets and the independent testing sets. The coverage
distributions over the 11 sequences across all samples were
represented as heatmaps in Figure 4. A noticeable difference
appears between the two groups. In the group of healthy
individuals, the reads of most samples cannot be aligned to the
11 sequences. In the patient group, the 11 sequences were aligned
successively by the reads from most patients. The de novo and
reference-free assembly produces longer group-specific sequences,
which enables the discovery of biomarkers.

Taxonomic Information of the Group-Specific
Markers
We aligned the 11 LC-specific sequences to genomes with
“Nucleotide Blast” in NCBI, and all of the sequences were aligned
to two strains of V. parvula, UTDB1-3, and DSM2008, with 100%
query coverage and 97–100% identity. In a previous analysis
based on the alignments from reads to reference genomes (Qin
et al., 2014), V. parvula demonstrated a significant difference in
abundance between the two groups of LC patients and healthy
individuals.

All 37,302 group-specific logical features and 345 group-specific
numerical features were also blasted to reference genomes in
NCBI, 31,067 of logical and 268 of numerical 40-mers could
be matched to V. parvula strain UTDB1-3, and 29,712 of
logical and 262 of numerical 40-mers could be matched to
V. parvula strain DSM2008. Using V. parvula strain UTDB1-
3 as an example, Figure 5A shows the coverage of the whole
genome (2.17 Mbp) by the LC-specific 40-mers. The horizontal
axis is the whole genome. The 40-mers covered most parts of
the genome. Figures 5B–D are the zoomed-in alignments and
coverages of the genome: 108,308–122,356, 2,037,894–2,038,165,
and 2,038,052–2,038,119, marked as “zoom1,” “zoom2,” and
“zoom3”, respectively, in the figure. It is clear that many regions
are highly and consecutively covered by k-mers. As shown
in Figure 5E, region 1,423,893–1,423,993 of V. parvula strain
DSM2008 corresponds to “Zoom3” region of V. parvula strain
UTDB1-3. Comparing the regions in these two strains, the
consensus mismatch against UTDB1 is absent on DSM2008,
while DSM2008 presents another consensus mismatch against
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FIGURE 4 | Heatmaps of coverage distribution over the 11 assembled sequences by the metagenomic reads from the training, validation, and testing samples.
(A) Heatmap of the reads coverage of the 11 assembled sequences across the training and validation samples (83 healthy individuals and 98 LC patients).
(B) Heatmap of the reads coverage of the 11 assembled sequences across the testing samples (30 healthy individuals and 25 LC patients). The coverage is the
read-alignment depth in each nucleotide normalized by the number of million reads. To avoid the effect of large span, we use the logarithm of (coverage+1) as the
numerical value of the heatmaps. The horizontal axis is composed of each nucleotide of the 11 sequences, and the vertical axis is composed of healthy individuals
and patients. The upper part of each heatmap is the healthy group, and the lower part is the patient group.

DSM2008: 1,423,924. The consistent mismatches against strains
UTDB1 and DSM2008 in V. parvula indicate the possible
existence of an unknown strain of V. parvula, which would exist
in the gut of LC patients but be absent in the gut of healthy
controls.

The IBD-Associated and WT2D-
Associated Metagenomic Datasets
The additional two disease-associated metagenomic datasets
were analyzed with 20 independent runs of 10-fold cross-
validation to evaluate the classification performance for easy
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FIGURE 5 | The alignments of the identified group-specific 40-mers to the genome sequence of V. parvula strain UTDB1-3. (A) The alignment distribution over the
whole genome. (B) The alignments and coverages of region 108,308–122,356 (Zoom1). The red and blue bars denote the 40-mers matched to reference genome
sequence forward and backward, respectively. (C) The alignments and coverages of region 2,037,894–2,038,165 (Zoom2). (D) The alignments and coverages of
region 2,038,053–2,038,119 (Zoom3) with consensus mismatches on 2,038,082. (E) The alignments and coverages of region 1,423,893–1,423,993 of V. parvula
strain DSM2008. This region corresponds to the Zoom3 region of V. parvula strain UTDB1-3. Comparing the two regions in the two strains, the consensus mismatch
(in green color in D) on UTDB1 is absent on DSM2008, but DSM2008 presents another consensus mismatch (in green color in E) on DSM2008: 1,423,924.
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comparison with previous studies. We emphasized that feature
preprocessing and selection were done using only the training
set, thereby avoiding biased and overly optimistic performance
(Zhang et al., 2006; Pasolli et al., 2016).

The IBD-Associated Dataset
For each fold test of 10-fold cross-validation, about 7000 group-
specific logical features with ASS ≥ 0.8, but no group-specific
numerical features, were identified. The numbers of group-
specific features varied with different fold tests. Because of the
relatively small sample size, 30-mers were set as features. For
each group-specific 30-mer, its single-logical-feature predictor
yielded an ASS score on validation. For each round of cross-
validation, ∼7000×10 (∼7000 single-logical-feature predictors
and 10-folds) ASS values were obtained on validations. The
boxplots in Figure 6A present the distribution of the ∼70,000
ASS values in 20 rounds of 10-fold cross-validation. The values
are between 0.78 and 0.89, and they centered at 0.81–0.82,
indicating that individual binary features can achieve ASS≥ 0.78
solely on validation. The average ASS score is 0.875 ± 0.004
(95% confidence interval). The top 15 ranked features were
combined to design a random forests classifier. Figure 6B
presents the ROC curves of 20 independent runs, which were
averaged over the 10-folds of cross-validation. The mean AUC
of 20 runs is 0.990 ± 0.005 (95% confidence interval), which
is much higher than the results reported in previous studies.
As shown in Table 4, using the same dataset, Pasolli et al.
(2016) designed two classifiers. The random forests classifier
based on 443 species-abundance features achieved an averaged
AUC = 0.893 ± 0.080 under the same experimental setting.
The SVM classifier based on the presence of 91,756 strain-
specific markers achieved AUC = 0.914 ± 0.084. Xing et al.
(2017) obtained AUC = 0.967 with a logistic regression model
with LASSO penalty in leave-one-out cross-validation (LOOCV),
which used the relative abundances of bins as features. In
another study, Cui and Zhang (2013) obtained accuracy = 88%,
sensitivity = 92%, and specificity = 84% with 200 7-mer features
at LOOCV on 25 healthy subjects and 25 patients, where the
samples were the subset of our experiment and LOOCV was more
relaxed than 10-fold cross-validation.

The WT2D-Associated Dataset
For each fold test of 10-fold cross-validation, ∼700 40-mers with
ASS ≥ 0.75 were identified, and the best ASS score was 0.78. The
classifier designed with random forests using 10 top group-specific
40-mer features obtained an average AUC = 0.939 ± 0.011 on
the 20 independent runs of 10-fold cross-validation, as shown
in Figure 6C. In previous studies under the same experimental
setting, the average AUCs were 0.834 using 50 metagenomic
clusters as features (Karlsson et al., 2013) and 0.785 ± 0.104
using the presence of 83,456 strain-specific markers as features
(Pasolli et al., 2016). For further comparison, we implemented
metagenome-wide de novo assembly with MegaHIT (Li et al.,
2015) and then binned the contigs with MetaGen (Xing et al.,
2017). The relative abundances of bins were used as features to
separate the patient and control groups. The total of 96 samples
were too large for read assembly, which required >256 GB

memory for 80 samples, and the alignments of reads to the
contigs were time-consuming. Therefore, 20 patients and 20
healthy individuals were randomly selected as the training set.
The remaining 56 samples were used for independent testing.
The relative abundances of bins generated by MetaGen were
used as features and the random forests classifier was designed
on the training set. The definition of relative abundance in
MetaGen includes the parameters that should be determined
for each species (they assumed each bin is each species) and
each sample through the algorithm of MetaGen. When the
classifier was tested on the independent set, these parameters for
independent samples are also required to be determined. Personal
communications with MetaGen’s developers, we revised the code
of MetaGen and calculated the feature values of the relative
abundances of selected bins for each testing sample. With random
forests, MetaGen achieved AUC = 0.685 using 3 features of bins
and AUC = 0.735 using 15 features of bins on testing data. With
the same training samples, our pipeline obtained AUC = 0.782
with 3 features of k-mers and AUC = 0.794 using 15 features
of k-mers with random forests on testing data. Although both
methods are reference free, the group-specific k-mers show greater
discriminative power than the contig bins for predicting the
disease status. Besides, the de novo assembly and contig binning
are time-consuming. For example, it took 120 h to finish the
running from read assembly to contig binning on this training
set.

From the experiments, IBD is more predictable than T2D. The
experiments on the two disease-associated datasets demonstrate
that group-specific k-mers achieved much better classification
performance with fewer features than previous studies that
used the features of short k-mer frequencies, species abundance,
and strain marker presence. The experiments confirm the
effectiveness of long k-mer features and the strategy of identifying
group-specific features.

Running the Computational Pipeline on
Apache Spark
For the LC dataset, it took 65 h to identify the group-specific 40-
mers from 56 healthy and 66 LC training samples (252 GB fasta.gz
files), including the calculation of 40-mer frequency vector, the
integration of feature matrix, and the identification of the group-
specific 40-mers. The peak storage space is about 1.5 TB. The
above result was run on a local mode of a server with 128 G-
memory and Intel(R) Xeon(R) CPU E5-2620 v4 with 8 CPU cores
at 2.10 GHz.

DISCUSSION

Different diseases have different levels of association-complexity
with human microbiome. If one disease is significantly associated
with a specific microbial strain/species/gene, then the disease is
highly predictable using a single-feature predictor. That is, the
disease can be diagnosed with a single microbial biomarker.
However, many human diseases are complex in the sense that
multiple group-specific markers are required to characterize the
relevance of disease and microbiome. For these diseases, we have

Frontiers in Microbiology | www.frontiersin.org May 2018 | Volume 9 | Article 87293

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00872 May 2, 2018 Time: 15:55 # 14

Wang et al. Group-Specific Sequences for Microbiome

FIGURE 6 | (A) The IBD-associated dataset: the boxplots of ASS by single-logical-feature predictors on each one of the identified ∼7000 group-specific features in
the 20 independent runs of 10-fold cross-validation on the IBD dataset. Each boxplot is composed of ∼70,000 ASS values on each round of cross-validation. The
ASS values are between 0.78 and 0.89 and centered on 0.81–0.82. The “+” symbol denotes outliers. (B) The ROC curves of the IBD-associated dataset: The top 15
ranked 30-mers were combined to design the random forests classifier. The 20 ROC curves are from the 20 independent runs, and each one is the average over the
10-folds of cross-validation. The mean AUC is 0.990 ± 0.005 (95% confidence interval). (C) The ROC curves of the WT2D-associated dataset: The top 10 ranked
40-mers were combined to design the random forests classifier. The 20 ROC curves are from the 20 independent runs, and each one is the average over the
10-folds of cross-validation. The mean AUC is 0.939 ± 0.011 (95% confidence interval).

shown that combining several group-specific features can improve
prediction accuracy.

In MetaGO, features were selected based on three preset
thresholds, including ASS of single-logical-feature predictor (θ1),
p-value of Wilcoxon rank-sum test for numerical features (θ2),
and single-numerical logistic-regression predictor (θ3). For the
IBD-associated and LC-associated datasets, we set θ1 = 0.8,

θ2 = 0.01, and θ3 = 0.8, respectively. However, for diseases
having more complex associations with microbiome, such as
T2D (Pasolli et al., 2016), θ1 was relaxed to 0.75, θ2 = 0.05
and θ3 = 0.75. Therefore, the three thresholds were, in
effect, set according to the expected discriminant power of
features and the complexity of association between disease and
microbiome.
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MetaGO was designed and implemented for two-group case
and control datasets. For some studies, there may exist multiple
subgroups for the disease, or a pre-disease group. An example
of subgroups for disease is the AR-type (marked akinesia and
rigidity) and T-type (predominant resting tremor) in Parkinson’s
disease (Paulus and Jellinger, 1991). Two examples of pre-disease
state are impaired glucose tolerance state between T2D and
normal glucose tolerance (Karlsson et al., 2013) and colorectal
adenoma state between carcinoma and healthy state (Feng
et al., 2015). For the multiple-groups scenario, the way to use
MetaGO depends on the research purpose. If the purpose is
to identify some microbial organisms that are associated with
all sub-groups of the disease, we can combine all individuals
belonging to any disease groups and treat them as one disease
group. MetaGO can be used to the disease and control groups
to identify the common microbial organisms associated with
all groups of diseases. On the other hand, if the purpose
is to identify certain microbial organisms that are specific
to a particular group, we can combine all other individuals
into one group and then use MetaGO to identify group-
specific-associated microbial organisms. Extending MetaGO
for a joint analysis of group-specific organisms in all the
control and different disease groups is a topic of further
study.

CONCLUSION

In this study, we developed a computational framework,
MetaGO, that is free from reference sequences, metagenome-
wide de novo assembly, and sequence alignment, to identify
group-specific sequences between two groups of microbial
communities using long k-mer features. The k-mer length was
set between 30 and 40 based on the tradeoff among sensitivity,
specificity, and computational cost. The identified group-specific
k-mers present improved discriminant power for diagnosing
diseases using human gut metagenomics data compared with
previous studies.

To overcome the computational challenge of long k-mer
features, an open-source, parallel-computing pipeline was
developed on Apache Spark to save computational resources
and reduce running time. In this study, we applied MetaGO to
analyze metagenomic disease-associated datasets. It should be
noted that the pipeline is also suitable for identifying group-
specific k-mers for all types of high-throughput sequencing
data where samples are collected from different groups,
such as disease-associated human genome sequencing data or
other phenotype-associated metagenomic datasets from different
environments.

Our experiments validated improvements made by the
identified group-specific k-mer features compared to previous
studies using other types of features. The group-specific sequences
offer deep and detailed insights required to understand the
differences between groups because the method essentially
identifies a sequence that is present, or rich, in one group, but
absent, or scarce, in another group, the fundamental working
principle of group-specific sequences. We found that biological

explorations based on group-specific sequences are consistent
with those from previous biological experiments, but additionally
offered the potential for new discoveries. Therefore, using
long k-mer sequence signatures is an effective way to discover
biological features, paving the way for a new paradigm of
biomarker discovery in the context of host phenotypes. MetaGO
enables the detection of group-specific features and development
of prediction models using a single feature, or a combination of a
few features, which helps to reduce the complexity of the model,
while increasing the potential feasibility of follow-up discovery of
discriminative microbial biomarker(s) for the easy diagnosis of
human diseases.
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BURRITO: An Interactive Multi-Omic
Tool for Visualizing Taxa–Function
Relationships in Microbiome Data
Colin P. McNally1†, Alexander Eng1†, Cecilia Noecker1†, William C. Gagne-Maynard2 and
Elhanan Borenstein1,3,4*

1 Department of Genome Sciences, University of Washington, Seattle, WA, United States, 2 Institute for Health Metrics and
Evaluation, Seattle, WA, United States, 3 Department of Computer Science and Engineering, University of Washington,
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The abundance of both taxonomic groups and gene categories in microbiome samples
can now be easily assayed via various sequencing technologies, and visualized using
a variety of software tools. However, the assemblage of taxa in the microbiome
and its gene content are clearly linked, and tools for visualizing the relationship
between these two facets of microbiome composition and for facilitating exploratory
analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool
for interactive visualization of microbiome multi-omic data with paired taxonomic and
functional information. BURRITO simultaneously visualizes the taxonomic and functional
compositions of multiple samples and dynamically highlights relationships between taxa
and functions to capture the underlying structure of these data. Users can browse
for taxa and functions of interest and interactively explore the share of each function
attributed to each taxon across samples. BURRITO supports multiple input formats for
taxonomic and metagenomic data, allows adjustment of data granularity, and can export
generated visualizations as static publication-ready formatted figures. In this paper, we
describe the functionality of BURRITO, and provide illustrative examples of its utility
for visualizing various trends in the relationship between the composition of taxa and
functions in complex microbiomes.

Keywords: microbiome, metagenomics, data visualization, taxonomy, function, web interface

BACKGROUND

Microbial communities are complex ecosystems with important impacts on human health and on
the environment. High-throughput DNA sequencing has enabled comprehensive profiling of these
communities in terms of their composition and structure. Traditionally, microbial ecology studies
resort to one of two primary approaches for profiling the composition of a given community,
focusing either on its taxonomic composition (e.g., using targeted 16S rRNA gene sequencing
or a marker-gene based approach) or on its functional composition (e.g., using metagenomic
shotgun sequencing and assessing the abundance of various gene families) (Figure 1A). Obtained
taxonomic or functional profiles are then often visualized as simple stacked bar or area plots of
relative abundances, or via specialized data visualization tools designed for exploring these data.

Abbreviations: BURRITO, Browser Utility for Relating micRobiome Information on Taxonomy and functiOn; KEGG,
Kyoto Encyclopedia of Genes and Genomes; OTU, operational taxonomic unit.
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For example, Explicet (Robertson et al., 2013) and Krona (Ondov
et al., 2011) aid analysis by displaying abundance data while
simultaneously presenting the hierarchical relationships between
entities. Other tools have gone beyond relative abundance
visualization to enable exploration of specific, comparative
aspects of microbiome data. EMPeror (Vázquez-Baeza et al.,
2013), for example, allows users to generate 3D principal
coordinate analysis plots to visualize clustering of, or variation in,
taxonomic compositions coupled with trends in any associated
metadata. Other tools, including Community-Analyzer (Kuntal
et al., 2013) and MetaCoMET (Wang et al., 2016), provide access
to multiple types of visualizations of the same microbiome data,
each highlighting different aspects of community structure or
between-sample relationships.

Importantly, however, recent years have witnessed an
explosion of microbiome multi-omic studies that aim to
describe simultaneously multiple aspects of community
structure, including specifically both taxonomic and functional
compositions (Huttenhower et al., 2012; Greenblum et al., 2015;
Taxis et al., 2015; Pedersen et al., 2016; Zhernakova et al., 2016;
Lloyd-Price et al., 2017). Moreover, recently developed methods
can now determine both the taxonomic and functional profile of
a given community from the same sequencing data, for example,
by assigning shotgun metagenomic reads both taxonomic and
functional annotations (Abubucker et al., 2012). Notably, these
two facets of microbiome composition are not independent since
the set of genes found in a metagenome and their abundances is a
direct result of the set of genes (and their copy number) encoded
by each community member and the relative abundance of each
member in the community (Figure 1B). Put differently, the
abundance of each gene family (or ‘function’) in the metagenome
can be deconvolved into taxon-specific functional profiles in
which shares of the gene family’s total abundance are attributed
to specific taxa of origin (Carr et al., 2013) (Figure 1C). This
link between taxonomic and functional compositions can be
used, for example, to predict functional abundances from 16S
rRNA-based taxonomic profiles (Langille et al., 2013) or to
identify taxonomic drivers of disease-associated functional
shifts (Manor and Borenstein, 2017b). Importantly, this inherent
relationship between taxonomic and functional profiles must also
be considered when exploring how functional capacity co-varies
with taxonomic composition across samples, since differences
in gene abundances between samples are mainly derived from
differences in taxonomic composition (Turnbaugh et al., 2009;
Oh et al., 2014; Bäckhed et al., 2015). Yet, despite the growing
appreciation for this link between taxonomic and functional
compositions, an integrative tool that can simultaneously
visualize both taxonomic and functional data and that can
account for and expose the relationships between taxonomic and
functional variation is lacking.

Here we introduce BURRITO, a web-based visualization
tool that enables easy and intuitive exploratory analysis of the
relationships between taxonomic and functional abundances
across microbiome samples. BURRITO simultaneously provides
a traditional interface for exploring taxonomic and functional
abundances independently while also visualizing the links
between these two microbiome facets and highlighting the

share of each function’s total abundance that is attributed
to each taxon (Figure 1D). Through an interactive interface,
BURRITO also provides ample and precise information about
such attributions (i.e., the share of each function’s total abundance
attributed to each taxon), as well as various summary statistics.
To facilitate interactive data exploration and publication-quality
figure generation for a wide audience, BURRITO further offers
multiple options for data input and supports customizing various
aspects of the visualization.

METHODS AND IMPLEMENTATION

User Input and Taxa–Function Mapping
BURRITO accommodates multiple types of input data and,
depending on the provided data, uses different approaches to
attribute the provided or inferred function abundances to taxa
of origin (see Figure 1D). Specifically, the user can select one
of three options for input data and for determining taxa–
function attributions (Figure 2). In the first option, which
requires the bare minimum in terms of input data, the
user can simply provide a table of taxonomic abundances
across samples (measured as either absolute read counts or
relative abundances) using Greengenes 97% OTU IDs for each
taxon (DeSantis et al., 2006). Given these taxonomic data,
BURRITO will automatically predict the functional profile of
each sample and will determine each function’s taxonomic
attributions using a database of pre-annotated genomic content
(following the approach described in Figures 1B,C). Briefly, in
this approach, taxonomic abundances for each sample are first
corrected by dividing each taxon’s abundance by its estimated
16S rRNA copy number. The abundance of a given function
that is attributed to each taxon (and ultimately the total
abundance of that function) is then inferred by multiplying
the corrected taxonomic abundances by the number of genes
associated with that function in each taxon’s genomes. The gene
content for each taxon is obtained from PICRUSt (Langille
et al., 2013) and functional annotations are based on KEGG
Orthology groups (Kanehisa and Goto, 2000; Kanehisa et al.,
2015).

The second available option is similar to the one described
above, but relies on user-provided genomic content annotations
(instead of PICRUSt-based inferred content) to calculate
functional profiles and the share of the functional profile
attributed to each taxon. This approach is appropriate, for
example, for exploring communities with members that may
not be adequately represented by PICRUSt-inferred genomes
but that can be better characterized based on user proprietary
data. As in the first option, the user is required to provide
a taxonomic abundance table, but also provides a custom
genomic content table describing the set of genes (and their copy
number) encoded by each taxon. Given these data, functional
abundances and attributions are calculated in the same manner
as described above. When using this option, it is also assumed
that taxonomic abundances are already normalized by estimated
16S rRNA copy number. Moreover, using this approach the user
is not limited to Greengenes OTU IDs or to KEGG Orthology
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FIGURE 1 | The taxonomic and functional compositions of a microbiome are inherently linked. (A) Typical microbiome studies quantify and report the taxonomic
(colored shapes) and functional (letters) profiles of a given community as separate entities. (B) The functional profile of a community is a linear combination of the
taxonomic composition and the genomic content of each taxon. (C) Functional profiles can be deconvolved into taxon-specific functional profiles, denoting which
share of the abundance of each function is attributed to each taxon. (D) Such deconvolved functional profiles can be visualized, illustrating the total abundance of
each function as a stacked bar of taxon-specific attributions.

groups, and alternately can use their taxonomic and/or functional
classification of choice (as long as the same IDs are used in
all relevant input files). Notably, when using custom taxonomic
classification or custom hierarchical function relationships, the
user can also provide files describing these custom systems
to allow taxonomic and functional data to be grouped at
different levels (see section “Exploring Attributions at Different
Taxonomic and Functional Levels”).

The third and final option relies on a pre-determined table
of taxon-specific functional attributions rather than calculating
attributions from taxonomic composition. This approach may
be appropriate, for example, in cases where the user wishes
to introduce specific custom modifications to a pre-calculated
attribution table. Using this option requires a taxonomic
abundance table (as above) and, instead of a genomic content
table, a table of taxa-specific functional abundance attributions.
As in the second approach, any taxonomic classification or
functional hierarchy system can be used.

The specific format for each data input file and the specific
restrictions associated with each approach are all noted on
BURRITO’s upload page and are described in more detail in

BURRITO’s documentation. Example data files are also available
for download from the upload page. Notably, in all three
approaches, the user can also upload an independent, paired
dataset of functional abundance profiles (i.e., based on functional
annotation of shotgun metagenomic sequencing), which will be
visualized as described below alongside the calculated taxa-based
functional profiles.

Importantly, predicting functional abundances based on
taxonomic composition has various drawbacks, including, most
notably, limited accuracy that can vary across samples and
functions. For example, predicting the functional content of
taxa that match available reference genomes (or that are
phylogenetically close to sequenced strains) would likely be much
more precise than taxa for which only distantly related reference
genomes are available. Predicted functional abundance should
therefore be considered probabilistic in nature, and indeed tools
like PICRUSt provide additional information to describe the
confidence of obtained predictions (some of which is made
available via BURRITO as described below). With that in mind,
BURRITO’s option to compare taxa-based functional prediction
with functional annotation from metagenomic data could be
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particularly useful, allowing users to explore prediction accuracy
in their data.

In addition to the above primary input, BURRITO’s upload
page (Figure 2) further includes several visualization options,
allowing users to better control the way data will be displayed.

Specifically, BURRITO supports grouping samples based on
user-provided labels (e.g., cases vs. control or conditions).
Additionally, the user can select the minimum taxonomic and
functional resolution to be displayed. Using a finer resolution
allows exploring the data in more depth, but could slow

FIGURE 2 | BURRITO’s upload page, describing the various input approaches BURRITO supports and other visualization and analysis options.
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visualization performance due to the large number of elements
that need to be calculated, managed, and displayed. Finally, users
can choose between hierarchical or random color schemes to
distinguish taxa and functions.

Visualizing the Relationship Between
Taxonomic and Functional Abundances
BURRITO uses two stacked bar plots, one for taxonomy
(Figure 3A) and one for function (Figure 3B), to provide
a standard visualization of taxonomic and functional relative
abundances in each sample. Taxonomic abundances are taken
from the user-provided taxonomic abundance table. Functional
abundances are calculated as described in the previous sections
and are displayed as the sums of all taxon-specific attributions
for each function and sample. Precise abundance values for
each taxon or function in each sample can be viewed in a
tooltip that appears when the user hovers over any bar segment
(Figure 3C). Additionally, hovering over a bar segment highlights
the corresponding taxon’s or function’s bar segment across all

samples to aid visual comparison of abundances between samples
(Figure 3D).

The most innovative component of BURRITO is the
visualization of how function abundance shares are attributed
to the various taxa. This information is revealed when the
user hovers over a bar segment in the taxonomic abundance
bar plot, which, in addition to highlighting taxon abundances
as noted above, also highlights the portion of each function
abundance bar segment (in each sample) that is attributed to
this taxon (Figure 3E). To view the exact function abundance
share attributed to a given taxon, the user can click on (rather
than hover over) a taxon’s bar segment to lock this taxon-specific
attribution highlighting, and then hover over the highlighted
portion of a function bar segment, revealing a tooltip with the
corresponding information (Figure 3F).

BURRITO also displays a “control panel” that can be used
to investigate specific taxa and/or functions and explore average
abundances across samples (Figure 3G). Specifically, taxa and
functions are represented by bars on the left and right sides

FIGURE 3 | A layout of BURRITO’s visualization. (A,B) Stacked bar plots of taxonomic and functional composition across samples. (C) Tooltips appear when
hovering over each taxon, providing information about this taxon’s relative abundance in each sample. (D) Interactive highlighting of individual taxa, which
correspondingly highlights the shares of functional abundances that can be attributed to the taxon in question (E). (F) Tooltips provide detailed function abundance
and attribution data for each sample. (G) The bipartite graph control panel identifies individual taxa and functions and shows links between them. (H) Edge width in
the control panel represents the average share of a function that is attributed to a given taxon. (I) Exact taxon-function attribution values can be seen by hovering
over the edge connecting the taxon to the function. (J) An independent dataset of shotgun metagenomics-derived function abundances can be provided and
displayed alongside inferred taxon-specific function abundances. (K,L) The data can be viewed at a higher or lower taxonomic or functional resolution by clicking on
nodes in the corresponding tree diagrams. (M) The size of each node in the tree represents the average abundance of that entity. (N) Opening the hidden menu
allows users to export visualization plots and processed data.
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of a bipartite graph. Hovering over the control panel performs
similar highlighting as the bar plots, highlighting the linked
abundances of individual taxa and functions and displaying
(via a tooltip) the average relative abundance of each taxon
or function. Moreover, when a taxon is highlighted, edges that
link that taxon to all the functions it encodes are displayed,
providing an easy reference for identifying the functions with
shares attributed to that taxon. Similarly, when a function is
highlighted, edges that indicate which taxa encode that function
(and hence have shares of that function attributed to them) are
displayed. The width of an edge between a taxon and a function
represents the average share of that function’s abundance that
is attributed to that taxon across all samples (Figure 3H).
Clicking on a specific taxon or function in the control panel
(or bar plots) locks the selection of that taxon or function,
allowing the user to hover over each edge and view (via a
tooltip) the exact taxon-function attribution values (Figure 3I).
Additionally, when a taxon or function selection has been clicked
(i.e., selected) and edges connecting taxa and functions are
displayed, the user can highlight the abundances of a single
function attributed to a single taxon by clicking on the edge
between them.

BURRITO also supports comparison between taxa-based
function abundances (calculated based on taxonomic profiles and
genomic content as noted above) and a separate dataset of user-
provided function abundances (typically obtained by functional
annotation of shotgun metagenomic sequencing reads). If such
a dataset is included in the input, these user-provided function
abundances are displayed adjacent to the taxa-based function
abundances for comparison (Figure 3J).

Exploring Attributions at Different
Taxonomic and Functional Levels
BURRITO provides an interactive and intuitive interface
for exploring abundance and attribution data at varying
taxonomic and functional resolutions. Taxonomic classification
and hierarchical function relationships (either those used by
default or custom systems provided by the user as noted
above) are each represented as a tree above the corresponding
abundance bar plot (Figures 3K and 3L, respectively). To aid
the user in understanding how different taxa or functions
are related in the bipartite graph and bar plots, these trees
are aligned to the left and right of the bipartite graph with
all taxa and functions appearing in the same vertical order
across all components of the visualization. These trees also
indicate average taxon and function abundances across samples
by the size of leaf nodes in the trees (Figure 3M). Beyond
visualizing hierarchical relationships, these trees also provide
a tool for interactive data exploration by allowing the user to
expand or collapse different leaves or branches of each tree.
Clicking on a leaf node reveals all taxonomic or functional
subcategories of that node in the tree, and correspondingly
expands the bipartite graph and subdivides the relevant relative
abundance bars in the bar plot into the relative abundances of
those subcategories. Alternatively, clicking on a non-leaf node
within a tree performs the reverse operation, collapsing all

visible descendants of that node, making the clicked node a leaf
node, and aggregating the abundance bars for those descendants
into the abundance bars for the clicked node. Importantly,
these interactive features allow the user to dynamically drill
up or down in both taxonomic and functional resolution
across the different branches of either tree as they explore the
data.

Exporting Visualization Plots and
Processed Data
BURRITO also provides options for exporting a static version
of the visualization (e.g., for including in presentations or
publications), for downloading the function abundance table
or attribution table underlying the displayed function plot,
and for downloading basic statistics. These options can be
accessed from the visualization screen via a hidden menu
(Figure 3N). Exported figures will maintain any currently-
selected highlighting and taxonomic or functional tree expansion.
In addition to exporting the full visualization, users can choose
to individually export either bar plot of relative abundances
and either half of the bipartite graph, which can serve as
a legend for the color-coding of taxa or functions in the
bar plots. All images can be exported in PNG or SVG
format.

If users wish to further explore the predicted function
abundance or attribution data in more detail, they can also
download the tables underlying the visualization. Function
abundance and attribution tables can be downloaded at the
minimum functional resolution (and minimum taxonomic
resolution for the attribution table) specified on the upload
page.

Finally, if a binary categorical variable is selected for sample
grouping, BURRITO will perform basic differential abundance
testing (and multiple hypothesis testing correction) of taxa and
functions and provide the results for download. Additionally, for
visualizations showing PICRUSt-inferred functional abundances,
BURRITO will calculate and provide the average Nearest
Sequenced Taxon Index (NSTI; Langille et al., 2013) for each
sample, reflecting the overall confidence in predicted functions.
This information can be similarly downloaded via the hidden
menu.

Technical Implementation
BURRITO’s client is a browser page written in HTML and
Javascript, utilizing the d3.js library to display data. User-
submitted data are uploaded to an R Shiny server for processing
(including, specifically, calculation of attributions) and the results
are sent back to the browser for visualization. Additional details
concerning BURRITO implementation can be found in the
Supplementary Text.

CASE STUDIES AND DISCUSSION

To demonstrate the utility of BURRITO, we describe below its
application to two microbiome datasets with varying properties.
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Case Study 1: Exploring the Effects of
Antibiotic Treatment and Recovery on
Inferred Functional Composition in the
Mouse Cecum
We used BURRITO to visualize a publicly available dataset of
16S rRNA sequencing data, describing cecal samples from mice
treated with antibiotics 2 days and 6 weeks after treatment
(labeled ‘Abx Day 2’ and ‘Abx Day 42,’ respectively), and time-
matched controls (labeled ‘Control Day 2’ and ‘Control Day
42,’ respectively) (Theriot et al., 2014). Note that BURRITO
can visualize grouping even when samples are partitioned into
more than two groups (as is the case in this dataset; Figure 4),
though it does not provide differential abundance statistics
in such settings. This study, which focused on associations
of the microbiome with metabolomic data and colonization
resistance, confirmed significant community perturbations in
response to antibiotics. This dataset is also used in BURRITO’s
Preview option on the upload page (see Figure 2), allowing
users to examine BURRITO’s visualization and functionality
(and to compare those to the examples provided in this
case study) without the need to provide any additional
data.

Given this dataset, we used the first input approach
described above, allowing BURRITO to predict functional
abundances (and taxon-specific attributions) based on the
default PICRUSt-derived genomic content table. BURRITO’s
visualization of taxonomic and functional profiles revealed
relatively subtle functional variation despite drastic taxonomic
variation across samples, a pattern commonly observed in
microbiome studies (Manor and Borenstein, 2017a). Specifically,
while Abx Day 2 samples are markedly different from, for
example, Control Day 2 samples (with the former being
dominated by species from the class Bacilli and the latter
by species from the classes Clostridia and Bacteroidia), their
predicted functional profiles are relatively similar (Figure 4A).
Hovering over the various taxa in the taxonomic profiles
highlighted the shares of the functional profile in the various
sample groups that are attributed to microbes from these
three classes (Bacilli, Clostridia, and Bacteroidia), demonstrating,
for example, that attributions to the Bacteroidia species were
relatively small compared to their abundance. See, for instance,
sample NonAbx29, in which Bacteroidia is more abundant
than Clostridia (54.93 vs. 44.13%), but has a smaller share
attributed to it than to Clostridia in every functional category
(Figure 4B). To further illustrate BURRITO’s functionality,
we then visually searched for functions that are nonetheless
differentially abundant between Abx Day 2 samples and other
samples, focusing specifically on pathways in the metabolism
category. We observed, for example, that Abx Day 2 samples
were generally depleted of amino acid metabolism genes
(Figure 4C). Indeed, a characteristic shift in gut amino acid
concentrations has been previously described in response to
antibiotic treatment in mice, and since amino acid availability
can facilitate infection by enteric pathogens such as Clostridium
difficile, understanding the taxonomic determinants of this shift
is of great interest (Antunes et al., 2011; Jump et al., 2014;

Jenior et al., 2017). Selecting this pathway (by clicking on
it in the bar plot or in the control panel) and examining
the share of this pathway attributed to each taxon (by then
clicking on the edge connecting this pathway to each taxon
in the control panel), suggested that its depletion in Abx
Day 2 samples could be explained by the fact that Bacilli
contribute less than Clostridia to this pathway compared to
their abundances. Specifically, we noted that the share of
this pathway attributed to Bacilli in Abx Day 2 samples is
smaller than the share of this pathway attributed to Clostridia
in Abx Day 42 samples, even though the abundance of
Bacilli and Clostridia in Abx Day 2 and in Abx Day 42
samples, respectively, is comparable (close to 100%) (Figure 4D).
Similarly, the share of this pathway attributed to Bacilli in
Abx Day 2 samples is comparable to the share of this
pathway attributed to Clostridia in Control samples, even
though the abundance of Bacilli in Abx Day 2 samples is
higher than the abundance of Clostridia in control samples.
This lower proportional contribution indicates fewer genes
involved in this pathway in Bacilli compared to Clostridia.
Lastly, we searched for additional functions with higher or
lower shares attributed to Bacilli by selecting this taxon
(again, by hovering over or clicking on it in the control
panel or in the bar plot) and examining the width of the
attribution edges connecting it to each function. In this setting,
it was easy to note that a relatively small share of the cell
motility function is attributed to this taxon, compared to, for
example, the shares of metabolic functions attributed to it
(Figure 4E).

Case Study 2: Taxa–Function
Relationships in the Human Microbiome
Project
We additionally used BURRITO to visualize data from 21
supragingival plaque samples with both 16S rRNA and
shotgun metagenomic data downloaded from the Human
Microbiome Project (Huttenhower et al., 2012). We first
used the 16S rRNA data alone (i.e., again using the first
input approach), examining inferred functional profiles and
the taxa they are attributed to. As noted above, expanding
the taxonomic tree can provide additional details about
specific genera to which each function is attributed. Similarly,
expanding the functional tree can offer insights into differentially
abundant pathways and subpathways. For example, drilling
down into subpathways in the Environmental Information
Processing category and examining the average share from
each subpathway attributed to the various phyla, we noted
that the abundance of ABC transporter genes is attributed
primarily to Actinobacteria (average attribution across samples
is 24.87% of this function’s abundance), Firmicutes (24.65%),
and Proteobacteria (29.55%). Indeed, samples with high relative
abundance of these phyla tended to have higher abundance of
this subpathway. Similarly, examining the shares of pyruvate
metabolism (a subpathway of carbohydrate metabolism)
attributed to genera from the phylum Proteobacteria revealed a
specifically large attribution of the genus Neisseria, a prominent
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FIGURE 4 | Using BURRITO to visualize the functional impacts of microbiome shifts in response to antibiotics. (A) An overall view of BURRITO’s display for this
dataset of 29 mouse cecal samples. (B) Selecting a taxon (e.g., Bacteroidia) displays the share of each function attributed to this taxon. Tooltips provide exact
attribution values. (C) Expanding functional resolution and clicking on a given function (e.g., Amino Acid Metabolism) highlights this function in each sample. Tooltips
provide exact abundance values. (D) Once a function is selected, taxon-function edges in the control panel can be clicked, displaying the average share of the
function attributed to the selected taxon and the sample-specific share of the function attributed to the selected taxon. (E) Edges connecting a given taxon to all
encoded functions provide information about the average share of each function attributed to this taxon.
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FIGURE 5 | Taxa–function relationships across supragingival plaque samples from the Human Microbiome Project. (A) Taxa and functions can be explored at
different levels, using the trees in the control panel to expand taxa and functions of interest. This allows users to examine shares of specific functions that are
attributed to specific taxa at high resolution. Edges in the control panel display information about the average share of a function attributable to each taxon across
samples (with exact values provided via tooltips). (B) Inferred taxa-based functional abundances (linked to 16S rRNA taxonomic data, T) can be displayed alongside
measured functional relative abundance data obtained from metagenomic shotgun sequencing (M) for easy comparison.

acid producer in the oral microbiome (Figure 5A). This is
consistent with the capacity of strains from the genus Neisseria
to metabolize lactate (via reactions included in the pyruvate
metabolism pathway) (Hoshino and Araya, 1980; McLean et al.,
2012).

Finally, Figure 5B demonstrates how BURRITO can also
be used to compare such amplicon-based inferred functional

profiles with functional abundance profiles obtained directly
from shotgun metagenomic sequencing (when such functional
profiles are provided as an additional input file). As expected,
shotgun metagenomic-based profiles are generally in agreement
with taxa-based inferred functional profiles, yet some differences
can be observed, for example in the abundance of genes related to
the metabolism of cofactors and vitamins (highlighted).
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CONCLUSION

BURRITO is a web-based tool that addresses a major gap
in currently available visualization tools for microbial ecology
research. Studies in this field typically analyze, explore, and
visualize taxonomic and functional abundances separately and
fail to account for the interdependence between the two,
potentially due to a shortage of tools that support simultaneous
and integrative study of taxonomic and functional profiles. Our
tool enables data exploration and hypothesis generation based
on the attribution of functional abundances to specific taxa,
providing a novel view into microbiome variation and dynamics.
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Realization of the importance of microbiome studies, coupled with the decreasing
sequencing cost, has led to the exponential growth of microbiome data. A number
of these microbiome studies have focused on understanding changes in the microbial
community over time. Such longitudinal microbiome studies have the potential to offer
unique insights pertaining to the microbial social networks as well as their responses
to perturbations. In this communication, we introduce a web based framework called
‘TIME’ (Temporal Insights into Microbial Ecology’), developed specifically to obtain
meaningful insights from microbiome time series data. The TIME web-server is designed
to accept a wide range of popular formats as input with options to preprocess and filter
the data. Multiple samples, defined by a series of longitudinal time points along with their
metadata information, can be compared in order to interactively visualize the temporal
variations. In addition to standard microbiome data analytics, the web server implements
popular time series analysis methods like Dynamic time warping, Granger causality
and Dickey Fuller test to generate interactive layouts for facilitating easy biological
inferences. Apart from this, a new metric for comparing metagenomic time series data
has been introduced to effectively visualize the similarities/differences in the trends of the
resident microbial groups. Augmenting the visualizations with the stationarity information
pertaining to the microbial groups is utilized to predict the microbial competition as well
as community structure. Additionally, the ‘causality graph analysis’ module incorporated
in TIME allows predicting taxa that might have a higher influence on community
structure in different conditions. TIME also allows users to easily identify potential
taxonomic markers from a longitudinal microbiome analysis. We illustrate the utility of the
web-server features on a few published time series microbiome data and demonstrate
the ease with which it can be used to perform complex analysis.

Keywords: time series, microbiome, community state, visualization, clustering, Granger causality algorithm, web
server

INTRODUCTION

Recent advances in high throughput next generation sequencing technologies and emergence of
the field of metagenomics have helped in profiling not only the entire microbial groups in various
environment(s), but also enabled cross sectional view of the sample(s) in a longitudinal time scale.
While a cross sectional study design aims at comparisons of sample(s) at a single time point,
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longitudinal studies conduct several observations of the same
sample(s) over a regular/irregular time intervals. A cross sectional
study can provide insights regarding the differential abundances
of the resident microbes across various states which is likely to be
an indicator of potentially important biomarkers (Ghosh et al.,
2014; Cameron et al., 2017). However, in order to obtain deeper
understanding of the inter dependencies as well as periodic
patterns and temporal variations in the microbial community,
it is essential to perform a longitudinal study (Secrier and
Schneider, 2014).

Temporal variation in microbial abundances play a critical
role in influencing human health. For example, changes in
microbial diversity are known to be associated with flu, seasonal
allergies, as well as lifestyle disorders like diabetes and obesity
(Hartstra et al., 2015; Riiser, 2015). The decreasing cost per
mega-base of sequencing has enabled increased number of
such large scale longitudinal metagenomic projects from diverse
environments (Caporaso et al., 2011; Parsons et al., 2012; Kato
et al., 2015). A number of studies have also concentrated in
analyzing the changes in normal human microbiota after a
perturbation event like administration of antibiotics (Dethlefsen
and Relman, 2011). Unlike the cross sectional studies, the
longitudinal microbiome studies have opened a new avenue for
understanding the importance of causality analysis and networks
based inferences on longitudinal time series microbiome data
(Faust et al., 2015). New insights have also been obtained
relating to differences in the stability of microbiomes across
various environments (Shade et al., 2012). Another study has also
elaborated the importance of stationarity analysis and its relation
to microbial competition (David et al., 2014).

With the increase in number of microbiome projects, various
tools and platforms have been developed for analysis of cross
sectional microbiome data (Caporaso et al., 2010; Arndt et al.,
2012; Kuntal et al., 2013; McMurdie and Holmes, 2013; Parks
et al., 2014; Dhariwal et al., 2017; Kuntal and Mande, 2017).
However, most of these tools cannot be utilized for understanding
the temporal dynamics of microbial communities obtained
from longitudinal studies. The available tools for time series
microbiome data analysis are focused for a particular purpose
or are implemented as library specific to a software platform
(Bucci et al., 2016) which is difficult for biologists inexperienced
in programming. While tools like Time-searcher (Hochheiser
and Shneiderman, 2004) have options for visualizing any time
series data, they have limited functionalities. STEM (Ernst and
Bar-Joseph, 2006), TimeClust (Magni et al., 2008) and GATE
(MacArthur et al., 2010), developed with a focus on microarray
time series data, also cannot be used for time series microbiome
data.

In order to obtain meaningful insights from microbiome
time series data, we have developed a user friendly GUI web
application, called ‘TIME: (Temporal Insights into Microbial
Ecology’) publicly available at https://web.rniapps.net/time.
‘TIME’ allows users to upload data and perform analysis
by selecting any desired workflow(s). Each workflow is
carefully designed to address a biologically relevant question.
These analyses include clustering similar taxa based on
their temporal behavior, generating causality based inference

networks, identification of time point similarities, etc. A new
method for clustering time series data is also introduced and
implemented in the platform. ‘TIME’ uses powerful visualization
techniques coupled with interactive ‘on the fly’ analyses to assist
obtaining meaningful inferences from microbiome time series
data. Visual data mining and analysis of large time series datasets
can be easily performed using this tool, thereby making it
convenient for biologists to focus more on the results rather
than implementation. ‘TIME’ intends to complement the existing
metagenomic analysis tools and incorporate a suite of techniques
that are suitable for microbiome time series analysis.

RESULTS

The ‘TIME’ Interface and the Workflows
A few time series microbiome studies have sampled data over
a reasonably sized longitudinal span from individual(s) or
environment(s) (Caporaso et al., 2011). Some of these time series
datasets may consist of several short sampling stretches spanning
over a long time period (Dethlefsen and Relman, 2011). The
‘TIME’ interface is designed to easily input user data in various
formats (described in the “Materials and Methods” section) for
visualization and analysis of time series microbiome data. Once
the data is uploaded, a summary plot of the richness and diversity
of microbial groups at each phylogenetic level is displayed.
Following this, a user may proceed analyzing the data step by step
selecting a workflow targeted for a specific time series analysis.
Various workflows along with their biological implications are
discussed below:

Workflow-1
Identify abundance based variations in taxonomic groups
over time
The first and foremost step in any time series analysis pertains
to visualization of temporal trends of the constituent entities
(for example taxonomic groups in a microbial ecosystem). This
workflow can be used to visualize and identify high, medium,
and low abundant taxa. In addition, it allows identification of
‘core,’ ‘persistent,’ and ‘transient’ microbial groups which serve as
important characteristic constituents of the ecosystem. The core
microbiome refers to those taxa which are present across all time-
points. On the other hand, the persistent microbiota refers to the
ones that are present across extended time points, but not in all.
In contrast, the transient group comprises of those sets of taxa
which show frequent trends of appearance and disappearance.
It should be noted that although the threshold parameters used
for defining the ‘core,’ ‘transient,’ and ‘persistent’ have been taken
from a previously reported study (Caporaso et al., 2011), they are
prone to biases due to sequencing depth.

Workflow-2
Compare temporal trends between selected taxa
Analysis of time series data often requires trend comparison of a
custom set of taxonomic groups. For example, the group may be
a set of taxa previously known to show a characteristic behavior.
The current workflow allows easy graphical comparison of two
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or more user selected taxa over the sampled timeline. TIME
also allows comparison of trends in microbial abundance using
a simple ‘select and plot’ operation, wherein users can choose
microbial taxa (at a specified taxonomic level) using a simple
auto-complete search or from a dropdown selection. One or more
taxa can then be appended to or removed from the existing
plot, thereby providing an easy way to study a selected set of
microbes. Most of the microbiome datasets consist of sets of
highly abundant as well as rare taxa. This poses a major problem
while plotting and visualizing multiple taxa together in a single
plot, with highly abundant taxa dominating the scale, thereby
making it difficult to decipher patterns for the rare groups. In case
the selected taxa have different abundance scales, users can utilize
the ‘log scaling’ option for comparing their trends. Particular time
stretches of interest can also be zoomed for in depth analysis.

Workflow-3
Identify temporally stable/unstable taxa
One of the important steps in time series analysis pertains to
identification of stationary entities corresponding to the ones
which have mean, standard deviation and variance constant over
time. In microbial time series studies, identification of stationary
taxa is especially crucial to detect inter microbial competition
(David et al., 2014). As demonstrated in an earlier study (David
et al., 2014), the presence of competition among the resident taxa
is expected to cause sustained growth of some of them leading to
their non-stationary behavior. Since in most cases the microbiota
are in stable state, only a few taxonomic groups are expected to be
non-stationary. A significant test of non-stationarity hence can
be considered as a hint for a restoring force governing bacterial
dynamics. However, fluctuations due to diet and environment
may also affect stationarity of taxa and hence a cautious
interpretation of results is required. Additionally, the similarities
in phylogeny of non-stationary taxa may also provide clues
pertaining to resource competition as genetically similar taxa are
more likely to exhibit resource competition.

Workflow-4
Identify variations in taxonomic groups between two time
ranges
Time series experiments involving perturbation events (like
administration of antibiotics) are likely to disrupt the microbial
community structure. In such analysis, it might be of interest
to identify and visualize the exact temporal effect of the
perturbation on the resident microbial groups. This workflow
allows identification of taxa which undergo noticeable changes
between two selected time ranges along with statistical inferences.
Taxonomic behaviors like gradual increase or decrease in
abundances can be easily inferred from the tabular summary
generated using this workflow.

Workflow-5a
Cluster groups of taxa having similar behavior over time
An important goal while analyzing microbial time series data
pertains to identification of groups of taxa which show similar
trends over a time stretch. Similar temporal behavior by
different bacterial taxa could arise due to reasons like symbiotic

relationship between two or more bacteria. On the other hand,
it is also important to know which bacterial taxa behave in
temporally opposite ways, since such behavior might be an
indicator of some underlying interaction or competition among
them. Taxonomic groups depicting similar behavior in a selected
timeframe are identified using Dynamic Time Warping (DTW)
algorithm (described under “Materials and Methods” section).
The output can be visually explored using interactive tree and
trend plots. Each branch of the tree corresponds to a set of
taxa having similar time series trends. Users can select a branch
(a group of taxa having similar temporal patterns) or an
individual terminal node (taxa) from the tree and visually explore
the time series trends using the assistive plot.

Workflow-5b
Explore pair-wise relationship among taxonomic groups
Visualization of correlation and other similarity indices between
the resident taxonomic groups often helps to gather meaningful
insights. This workflow allows users to select Pearson correlation
or modified DTW (referred to as TIME-DTW) index and use it
to generate heatmaps. Such heatmaps are useful for visual pattern
mining and the corresponding distance metric can be exported
for further advanced network analysis.

Workflow-6
Explore inter taxa interactions using causality network
The existence of a strong correlation in the abundance of two
or more taxonomic groups across a time scale may not always
be ascertained to causation. A recent study has utilized ‘module
networks’ to understand causality relationships among bacteria
(Lu et al., 2017). A causation event can be ascertained between
two taxonomic groups when the past values of one taxon are
observed to have some information about the future values of
the other. This analysis is performed in ‘TIME’ using a Granger
causality algorithm (described in details under “Materials and
Methods” section). The global community behavior over the
whole sampled timeline is captured using interactive causality
networks and trend plots. Each node in the network can be
queried for its causality using interactive operations. While right
clicking on a node (corresponding to a taxon) highlights the
nodes (or taxa) that are affected (‘Granger caused’) by it, left
clicking on the same highlights the nodes (or taxa) responsible
for affecting (‘Granger causing’) its temporal changes.

Workflow-7
Cluster time points based on similar community patterns
Many microbial time series datasets are often observed to
have a typical composition of constituent entities which gives
rise to seasonality or periodicity of microbial communities.
These similarities and differences in the proportion of the
constituent taxonomic groups give rise to ‘community states’ in
the microbiome. Such ‘community states’ could be useful for
obtaining insights into the microbial dynamics (Gajer et al.,
2012). The interactive hybrid trend plot and heatmap generated
using this workflow is useful for visualizing the temporal changes
in the community structure.

Frontiers in Microbiology | www.frontiersin.org January 2018 | Volume 9 | Article 36112

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00036 January 22, 2018 Time: 18:53 # 4

Baksi et al. ‘TIME’ (Temporal Insights into Microbial Ecology’)

Case Studies on Publicly Available Time
Series Microbiome Data
We demonstrate the applicability and utility of each workflow
using three publicly available time series microbiome datasets.
‘Caporaso-Dataset’ corresponds to a longitudinal metagenomic
time series data of gut microbiome samples from an American
healthy male and female subject, collected at regular intervals
spanning a long time period (Caporaso et al., 2011). A second
time series metagenomic dataset (‘Dethlefsen-Dataset’)
corresponds to a study evaluating the effects two doses of
antibiotic treatments on the gut microbiome of three adult
American females (Dethlefsen and Relman, 2011). The third
dataset (‘Gajer-Dataset’) corresponds to a temporal sampling
of vaginal microbiome of 32 reproductive age women over a
period of 16-weeks (Gajer et al., 2012). All the above datasets are
pre-loaded into the ‘TIME’ application for users’ convenience.

Case Study 1: Analysis of Microbial Perturbation from
Microbiome Time Series Data
In order to demonstrate the applicability of ‘TIME’ in analysis
of perturbation, ‘Dethlefsen-Dataset’ (antibiotic treatment) was
selected and various relevant workflows were used for analysis.
The ‘Dethlefsen-Dataset’ had an associated metadata mapping for
the time points corresponding to the different states (for all three
individuals – D, E, and F), namely before antibiotic treatment
(‘PreCp’), during the two doses (‘FirstCp’ and ‘SecondCp’),
the week immediate post the two treatments (‘FirstWPC’
and ‘SecondWPC’), gap between the doses (‘Interim’) and
the time points post treatment (‘PostCp’). A drastic drop in
diversity and richness specifically at the points of perturbation
(‘FirstWPC’ and ‘SecondWPC’), could be visually inferred
using the diversity plots generated using TIME (Figure 1A).
The Figure also shows the slow but incomplete recovery in
diversity post perturbation, which is in line with the reported
findings (Dethlefsen and Relman, 2011). The core taxa identified
using ‘Workflow-1’ (at ‘genus’ level) also indicates an inter-
individual variation among the three subjects (Figure 1B),
with only four genera to be consistently common across all
(Bacteroides, Coprococcus, Roseburia, and Dorea). In order to
identify the taxa which are most affected by the antibiotic
treatment on ‘Sample E’ (as a representative example), the
Workflow-4 was employed after selecting two time stretches,
namely, ‘before Cp1’ (Period 1 ranging from time point 0–59)
and ‘after Cp1’ (Period 2 ranging from time point 65–124).
This analysis identified the affected genera sorted by the log
fold change in the mean abundances between period 1 and
period 2. Haemophilus, Butyrivibrio, Eubacterium, Turicibacter,
and Parabacteroides were identified to be the top five affected
genera upon antibiotic treatment based of log-fold abundance
(Figure 2) but none of them were found to be statistically
significant (when evaluated with Wilcoxon Rank-Sum Test
using P-values corrected for multiple testing). Subsequently,
to gather a deeper insight into the pattern of the affected
genera during perturbation or genera similarly affected during
perturbation, Workflow-5a was used (selecting sample ‘E,’ time
point as ‘FirstCp’ and a rare taxa cutoff of 0.5) to generate
the DTW tree (Figure 3A). Visual inference of the tree

revealed three clear clusters (Figure 3A), each of which were
used to generate their corresponding trend plots (Figure 3B).
While Cluster 2 seemed to contain genera whose abundance
is most strongly decreased by antibiotic treatment, Cluster 1
contained the moderately affected ones. On the other hand,
Cluster 3 consisted of genera which increased post perturbation,
possibly due to the reduced abundances of taxa belonging to
Clusters 1 and 2.

Case Study 2: Insights into Microbial
Inter-Dependencies Using Causality Networks
To analyze the effect of stationary genera and its relation to
causality, the female subject (at genus level) from ‘Caporaso-
Dataset’ (the 6 months spanning time series sampling) was used
to generate the causality network using Workflow-6 (keeping a
rare taxa cutoff of 0.5). The non-stationary genera information
was overlaid on the network using one of the features in TIME
which highlights the corresponding names (Figure 4). While a
majority of the genera were seen to be stationary, a few exhibited
non-stationary behaviors, an observation similar to an earlier
study on a different gut microbiome dataset (David et al., 2014).
Further, the majority of the non-stationary genera belonged to the
phylum Firmicutes, strengthening the hypothesis of phylum level
(genetically similar) resource competition (David et al., 2014).
However, owing to the complexity of the community interactions
in a gut microbiome, further experimental validations are
required to support this hypothesis. In order to infer the effect of
a non-stationary genus on others, we chose two non-stationary
genera nodes (Faecalibacterium and Clostridium) from the
causality network. While Faecalibacterium is a well documented
commensal gut bacterium, a number of species belonging to
Clostridium are known to have several pathogenic effects on
human. Right clicking on these nodes enables one to highlight the
edges connecting the genera affected (‘Granger caused’) by them
and correspondingly displays the trend plot of all the associated
taxonomic groups. A quick look into the edge connections
showed that most of the genera affected by Faecalibacterium are
non-stationary as compared to the ones affected by Clostridium.
This observation suggests a differential influence of one taxon
over others.

Case Study 3: Importance of Time Series Community
Analysis
Microbial communities in different body sites have been reported
to exhibit differences in their compositions. These compositions
are also known to change over time. For example, studies on
temporal variation of human gut microbiome have reported the
presence of periodic as well as non-periodic diversity patterns
(Caporaso et al., 2011). Such similar temporal patterns arise
due to a comparable microbial community composition across
these time points. Workflow-7 of ‘TIME’ is dedicated to identify
such community clusters and visualize their variations across the
timeline. ‘Caporaso-Dataset’ and ‘Gajer-Dataset’ (corresponding
to gut and vaginal time series microbiome, respectively) were
used as a part of this analysis pipeline (results are summarized
in Figures 5, 6, respectively). In order to consider the effect of
only the ‘non-rare taxa’ (taxa which occur in at least 70% of
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FIGURE 1 | (A) Changes in richness and diversity of the microbial genera across the three subjects (D, E, and F of ‘Dethlefsen-Dataset’ used in the case study)
especially at the time points pertaining to antibiotic treatment (‘FirstCp’ and ‘SecondCp’). (B) Trend plots of the core microbial genera in the three subjects show
individual specific variations.

samples), a rare taxa cutoff of 0.7 was selected and a bi-directional
clustering was done (for time points and taxa). Each of the two
‘time-point clusters’ (Figure 5) represent a group of time points
having similar microbial distributions, called ‘community states’
(see section “Materials and Methods” for details). A comparison
of the female and male gut microbiome time series (‘Caporaso-
Dataset’) using the above workflow revealed a clear bias of one
of the two ‘community states’ in the male (Figure 5B) while
almost an equal distribution of the two ‘community states’ was
found in the female (Figure 5A). In male, while the dominant
cluster had mainly the genera Bacteroides and Parabacteroides
as distinguishable marker, other genera namely Prevotella and
Campylobacter were observed to be the prominent contributors
of the less dominant cluster (Figure 5B). On the other hand, the
female microbiome had one cluster prominently dominated by
Akkermansia, with no single clearly dominant member in the
other (Figure 5A). To explore community states in a different
body site, vaginal microbiome from subject-1 of ‘Gajer-Dataset’
was considered and analyzed using Workflow-7. A clear periodic
pattern in the ‘community states’ was observed (Figure 6B),
probably due to the prominent changes in the menstrual cycle

and related hormonal changes in reproductive age females. While
one ‘community state’ showed a dominance of Lactobacillus
iners, the other showed a dominance of Atopobium. The genera
Atopobium is known to be associated with bacterial vaginosis,
while lactic acid producing bacteria (like L. iners) are known to
prevent pathogen colonization by creating an acidic environment
(Gajer et al., 2012). The generated heatmap (Figure 6A) as well as
trend comparison plot using Workflow-2 (Figure 6C) indicate an
antagonistic behavior between the above two taxa.

DISCUSSION

The various workflows in ‘TIME’ allow visualizing time series
microbiome data as well as analyzing them to obtain meaningful
biological insights. It is to be noted that a few key points
need to be considered before interpreting the generated outputs
and building hypotheses based on such datasets (Weiss et al.,
2017). For instance, the microbial abundance files used as
input for analysis represent the count of clustered sequences
(OTUs) across several time points corresponding to one or more
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FIGURE 2 | Demonstrating the utility of ‘Workflow-4’ in identifying the taxonomic groups completely eliminated and the ones mostly affected by antibiotic treatment
during the first dosage period (‘FirstCp’ of ‘Dethlefsen-Dataset’ used in the case study). Two time periods (‘BeforeCp’ and ‘AfterCp’) were chosen based on the
metadata.

sources (samples). Regardless of strict experimental designs,
not all sources as well as time points are sampled/sequenced
at similar depths due to sampling constraints as well as
sequencing limitations. Hence, samples sequenced at lower
depth may display biased diversity estimates and consequently
affect the downstream analyses. For example, workflow 4 in

TIME can predict differential abundant taxa between two time
stretches with increased confidence if the sequencing depths are
sufficiently high and even since samples with higher number of
sequence will have better estimates of abundances. Similarly, if
some time points are sampled deeper than the others, it makes
interpretation of transient and rare taxa difficult (workflows 1
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FIGURE 3 | Clustering of taxonomic groups based on their temporal trends during the antibiotic treatment (‘FirstCp’ of ‘Dethlefsen-Dataset’ used in the case study)
on Subject ‘E.’ The (A) shows a tree (radial layout) with three clusters generated using DTW-distance metric in ‘Workflow-5a.’ The (B) shows the corresponding
trend plots for the three clusters obtained by clicking on the root node of each cluster. The genera color labels (in the tree) correspond to their respective phyla as
shown in the legend while bold labels indicate non-stationary taxa.

and 3) without normalization. In addition, presence of sparse
OTUs represents uncertainty in counts owing to limitations
in the sequencing detection ability (since they are below the
detection threshold). A majority of microbiome studies consider
either a relative normalization route (OTU counts scaled to
proportions) or a rarefaction based normalization step (each
sample is sub-sampled to an even depth), both of which are
implemented in TIME for convenience. Use of rarefaction curves
can provide guidance on choosing a suitable rarefaction depth for
normalization and lower the false discovery rates (Weiss et al.,
2017). However, it should be kept in mind that rarefying a data
might impact a number of downstream analysis workflows due
to removal of a subset of the data. Moreover, time series data
involving perturbation events, if normalized using rarefaction,
might subdue the effect of the perturbation itself. Relative
normalization on the other hand, is also prone to create several
artifacts (Stämmler et al., 2016). Both rarefied as well as relatively
normalized data are compositional, therefore, fluctuations in
abundance of one taxon might lead to spurious fluctuations in
abundance of other taxa resulting in false correlations (Weiss
et al., 2017). A lack of knowledge of absolute abundance can

thus impact the interpretation of the results of the analyses.
For example in workflow 3, although a taxon might change in
abundance and appear to be non-stationary, it may actually be
not changing but taxa around it may be changing in relative
abundance. Moreover, relative abundance based approaches
ignore the possibility that the altered abundance itself could be
a key identifier of a disease state (Vandeputte et al., 2017). It
may also be noted that both relative and absolute abundances are
required for obtaining a comprehensive understanding of time
series microbiome data (Props et al., 2017). Additionally, data
obtained from appropriately designed experiments (e.g., using
replicates for each time point) will increase confidence on the
obtained results. Advanced experimental protocols have also
been reported (Stämmler et al., 2016) which helps in normalizing
the biases arising due to differential microbial loads across
samples.

The incorporated Granger causality based interaction
networks in ‘TIME’ provides a way to capture the overall global
microbial community behavior and is ideal for datasets having
evenly sampled time-points. Variations of Granger causality
have been applied earlier to decipher ecological relationships
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FIGURE 4 | (A,B) Represent two composite plots for Granger causality graphs (A1 and B1) and Trend plots (A2 and B2) corresponding to genera Faecalibacterium
and Clostridium respectively. Granger causality graph (A1 and B1) for the constituent taxa in the female subject of ‘Caporaso-Dataset’ used in the case study
generated using ‘Workflow-6.’ The trend plots (A2 and B2) for two genera namely Faecalibacterium and Clostridium along with the genera caused (or affected) by
them are displayed below the corresponding circular graphs. The arrows in the graph represent the causality relationships between the source and target nodes. The
genera color labels correspond to their respective phyla as shown in the legend while bold labels indicate non-stationary taxa.

(Detto et al., 2012) and in gene expression networks (Yang
et al., 2017) with reasonable success. However, not all Granger
causal interactions correctly predict biological causality and are
merely statistical predictions. It should also be noted that such
predictions do not provide explanations regarding the origin of
the interactions and could be due to an indirect influence. For
instance, one time series may be a strong predictor of another
time series because both are shaped together by a common
underlying cause. Hence, like any other statistical prediction, a
cautious interpretation of each predicted interaction is required
to be made before building any hypothesis. Incorporation of
functional data like metabolic co-dependencies (Levy et al., 2015)
might help to strengthen the basis of a predicted interaction.

CONCLUSION

The various workflows implemented in ‘TIME’ can help end
users not only to perform a number of analyses, but also gain
meaningful insights from the interactive visualizations. Analysis
on a few well known publicly available datasets illustrate the
utility of the options available in ‘TIME.’ For example, apart from

obtaining information regarding the temporal effect of antibiotic
treatment on human gut microbiome, ‘TIME’ could identify
similarly perturbed groups of microbial genera. Additionally,
the inter-microbial competition among the pathogens and
commensals could also be inferred from the causality networks
and stationarity analysis. In another example, the periodic
changes in community structure of the vaginal microbiome
were illustrated using the ‘community state’ analysis workflow.
Although the scope of the case studies presented here is limited
in this communication, the workflows can be further utilized
to gain additional insights. We expect ‘TIME’ to be a valuable
contribution in the field of microbial time series data analysis and
visualization.

MATERIALS AND METHODS

‘TIME’ web application uses Python and JavaScript to execute
the backend algorithms and for browser based data processing,
respectively. We used the DyGraphs1 (DyGraphs Java Script,

1http://dygraphs.com/
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FIGURE 5 | Demonstrating the utility of ‘Workflow-7’ in gathering insights on community patterns in the female (A) and male (B) subject of ‘Caporaso-Dataset’ used
in the case study. The heatmaps are clustered vertically based on taxa abundance and horizontally arranged according to the two ‘community states’ (represented
as ‘Cluster 1’ and ‘Cluster 2’) identified by TIME.

2017) module for rendering time series line charts since it has the
ability to handle large datasets seamlessly. Other visualizations
are implemented using D3.js library (Bostock, 2017) with
extensive interactive operations.

Input Format
User data (consisting of the microbial abundance table) along
with the available metadata information can be incorporated
in ‘TIME’ using a simple form. The abundance table can
either be provided as a standard ‘QIIME’ output (Caporaso
et al., 2010) or as a tab delimited file. The metadata file
is required to have information related to the source of the
microbiome sample, sample names (identical to the ones in
the abundance file), time stamp information along with the
sample condition for each time point. A detailed description of
the input files is provided in the user manual (available in the
website).

Normalization, Visual Exploration and
Segregation of Microbiome Time Series
Data
The microbial abundances obtained for analysis represents the
count of clustered sequences belonging to the constituent taxa

as operational taxonomic units (OTUs). The abundances of each
OTU across different time points constitute the OTU abundance
matrix. Restraints in sampling at multiple time points as well as
sequencing errors result in unequal sequencing depths. ‘TIME’
provides methods to circumvent this limitation using either a
proportion based or rarefaction based normalization. Rarefaction
plots serve as one of the means to identify unequally sampled
data points and subsequently can be used to normalize the
OTU matrices such that all time points have similar counts.
Users can generate a rarefaction curve for each metagenomic
source by selecting either all the time points or a set of
equidistant 5 or 10 time points. The generated curve can be
used as a guide to select a suitable rarefaction normalization
depth. Alternatively, users may proceed with absolute count
data (without any normalization) or perform relative proportion
based normalization. It is advisable to choose appropriate
normalization method (refer to the “Discussion” section for more
details).

The visual examination of the temporal trends is an important
step in any time series analysis. In ‘TIME,’ all the taxa abundances
at any particular taxonomic level can be viewed together as
interactive line plots across the sampled timeline. An important
challenge for carrying out such comparative microbial data
analysis pertains to the problem of taxa abundances with
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FIGURE 6 | Demonstrating the periodic microbial community patterns in the vaginal microbiome of ‘Gajer-Dataset’ used in the case study. (A) Heatmap clustered
vertically based on taxa abundance and horizontally arranged based on the two community clusters (represented as ‘Cluster 1’ and ‘Cluster 2’) identified by TIME.
(B) Trend plots of the constituent taxa with the plot background highlighted corresponding to the ‘community state’ affiliation (in ‘blue’ and ‘orange’) of the respective
time points. (C) Demonstrating the antagonistic behavior between the two genera Lactobacillus iners and Atopobium in the vaginal microbiome dataset used in the
case study generated using ‘Workflow-2.’

different orders of magnitude (with some taxa having very high
abundances and some having extremely low counts). In other
words, it is difficult to visualize the trends of the lower abundant
taxa owing to the dominant influence of the very high abundant
ones on the plot. ‘TIME’ provides two ways to tackle this problem.
While one uses ‘quartile segregation,’ the other utilizes ‘log
scaling.’ In quartile segregation, the different taxa are grouped
into four quartiles based on their abundance information which
can be viewed separately. The very high abundant and the
very low abundant taxonomic groups (or potential outliers)
tend to occupy the top and bottom quartiles, respectively. The
remaining quartile accommodates the taxonomic groups having
the intermediate abundances. This makes sure that during visual
exploration the temporal trends of the low abundance taxa do
not get compressed (or dominated) by the trends of the very
high abundant taxa. TIME also offers the option of log scaling
the abundance values so that the trends of low abundant and
that of high abundant taxa can be compared on the same plot.
Additionally, the tool provides an option to view the core,
persistent and the transient groups of bacteria which are reported
to have distinct roles in microbial ecosystems (Caporaso et al.,
2011). A taxon is considered to be persistent if it is observed
in more than 20% of the time points, with at least 90% of

these observations being consecutive. On the other hand, the
transient taxa are those which are observed in at least 60% of
the time points, with at most 75% of these observations being
consecutive. However, TIME provides an option to modify these
parameters (prevalence threshold and consecutive observations)
for definition of core, persistent and transient in ‘workflow 1’
to accommodate differences in wide number of datasets. In
addition to the above measures, the richness and diversity of
the studied microbial communities are also calculated using
well known indices. While richness of a microbiome denotes
the unique number of constituent taxa present in each sample
(at a time point), the diversity provides a measure of how evenly
the taxonomic entities are distributed. Although diversity of a
microbiome can be calculated using a number of ways, the widely
accepted Shannon index for diversity (Shannon, 1948) has been
implemented in ‘TIME.’

Shannon Index = −
R∑
i=1

pi ln pi

Where, pi refers to the proportion of the abundance of the ith
taxon in the population consisting of ‘R’ taxa.
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With implementation of each of the above methods and
their corresponding visualizations, an interactive operation for
selecting a ‘subplot window’ of the plotted timescale is presented.
This feature enables users to graphically choose the start and
end time points using simple mouse operations and visualize the
selected time range. The ‘subplot window’ can then be dragged
along the time-scale with a zoomed view. The moving average
of a time series can also be specified using a text box available
at the bottom corner of the plot window. This feature smoothes
the short term fluctuations in the time series data and shows the
overall trends (and cycles) across a longer timescale.

Identification of Stationary Taxonomic
Groups
Stationarity of taxa in microbial time series data is important
to understand inter-microbial competition (David et al., 2014).
A taxon is considered stationary if its mean, variance, covariance,
and autocorrelation are constant over time, due to the absence
of a unit root process. A unit root process is said to be present
in a time series if its autoregressive model has an estimated
coefficient close to one. The presence of a unit root indicates
that a perturbation in the value of the entity in the time
series has a persistent impact on its future values and hence a
cause of non-stationarity. The most commonly used method for
calculating stationarity is the Augmented Dickey Fuller (ADF)
Test. While the null hypothesis of the ADF Test is that there
is a unit root process governing the dynamics of the entity
(taxon), the alternate hypothesis states that there is no unit root.
The ADF test statistic is a number, the more negative it is, the
stronger will be the confidence with which the null hypothesis
can be rejected. ‘TIME’ allows identification of microbial groups
detected to be stationary and non-stationary and lists the same
in a searchable table with options to export the results. The
stationarity information corresponding to each taxon is also used
to augment other plots in the tool along with the phylogeny
information.

Generation of Inter-Microbial Causality
Network
One of the important objectives in time series studies pertains to
identifying causal relationships among entities. Causality aims to
find the direct interactions between entities such that one entity
can trigger/suppress or be triggered/suppressed by the other. It
should be noted that causation should not be confused with
correlation. For example, two taxa (‘A’ and ‘B’) in a microbiome
time series dataset may be correlated, but may not have any causal
relationships. Granger Causality (Granger, 1969) is one of the
most well established statistical tests for checking causality among
two time series. The basic premise of this method is that, if one
variable causes another, the past values of the former must have
some information about the future values of the latter (which
is not available otherwise). For example in a microbiome time
series data, if taxon A affects taxon B, the future values of taxon
B can be better predicted using the past values of both taxa A and
B, rather than using the past values of taxon B alone. In order
to ascertain if taxon A influences taxon B, two regressions are

performed. In one, past values of taxa A and B are used to predict
the present values of taxon B. In the other, only the past values
of taxon B is used to predict the present values of taxon B. If a
significant increase of the goodness of fit of the former regression
over the latter is observed, then taxon A is said to ‘Granger cause’
taxon B.

Since a typical microbiome time series data has more than
two entities (taxa), ‘Granger Lasso Causality’ (Hlaváčková-
Schindler and Pereverzyev, 2015) can be used to find causal
relationships among all taxa. Thus, apart from the ‘Pairwise
Granger causality’ (described above) for all possible taxa pairs,
‘Granger-Lasso’ method has also been implemented in ‘TIME.’
The LASSO (Least Absolute Shrinkage and selection operator)
is one of the most well known and widely used methods for
feature selection and regularization in machine learning. LASSO
works by adding a regularizing penalty to the sum of squared
errors. This objective function is minimized (by optimization)
for estimating the values of the coefficients of regression
(thus reducing the weightage/coefficients of the unimportant
predictors), thereby finding the best set of predictors for every
variable. Granger-Lasso utilizes the LASSO methodology for
identifying causal relationships among all entities (taxa) in
multivariate microbiome time series dataset (Arnold et al., 2007).
Another option allowing selection of causality pairs predicted by
both ‘Pairwise Granger’ and ‘Granger-Lasso’ is implemented for
improved Granger Causality predictions. All these three methods
are available in ‘TIME’ which can be finally used to generate a
directed causality network.

Identifying Taxonomic Groups Having
Similar Temporal Patterns
In time series datasets, it is not only important to evaluate
temporal changes of different entities and the causal relationships
among them, but also to identify entities which exhibit similar
temporal patterns. The Euclidean distance based clustering of
entities is unsuitable for identifying similar temporal patterns
since this distance measure does not take into account the
distortion across time series (Keogh and Ratanamahatana, 2005).
In other words, the temporal behavior of two taxa which are
out of phase is assigned a high value by Euclidian measure.
On the other hand, Dynamic Time Warping (DTW) gives
due importance to the phase displacement and obtains the
optimal alignment between the two time series (Berndt and
Clifford, 1994). DTW uses a dynamic programming based
approach to align and score the similarity of the temporal
patterns corresponding to two entities (taxa in the case of
microbial time series). Since the DTW algorithm is relatively
slow with a worst case time complexity of O(n2), a modified
DTW algorithm (Sakoe and Chiba, 1990) is implemented in
‘TIME’. In this algorithm, a constraint is applied in such a way
that a limited number of cells are evaluated during computing
the cost matrix of the alignment, thereby making the overall
computation process much faster (Salvador and Chan, 2007).
‘TIME’ uses the calculated pair-wise DTW distances among
the different taxa for hierarchical clustering. The resulting
dendrograms can be viewed as trees in standard or radial layouts.
One of the limitations of the DTW distance pertains to the
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inability to interpret the distance score easily as it does not fall in
a definite range. Therefore, it is desirable to have a modified score
with a definitive range that can be universally interpreted. In
order to achieve this, we introduce a new method for calculating
the distance between two time series, called the ‘TIME-DTW
Distance,’ In a microbial time series data, one taxon can have
a difference of several orders of magnitude with another, but
their time series may have similar overall shape. Thus, a standard
normalization step is first applied to minimize such differences.
Following this, the DTW distance is calculated and normalized
by the average ‘sum of the absolute difference’ (SAD) between
each time series and its ‘mirror image’ (Supplementary Material).
The resultant value (‘TIME-DTW distance’) will hence always
fall between a range of zero and one. ‘TIME’ allows an easy and
interactive way to explore the results using a ‘clustered heat map.’
In addition to using the TIME DTW Distance as the measure
of similarity/dissimilarity, the pairwise similarity between taxa
can also be viewed using Pearson Correlation coefficient. The
resulting heatmaps are hierarchically clustered based on their
distances along the vertical axis, and taxonomic hierarchies along
the horizontal axis.

Understanding Community Structure
Based on Similarities across Time Points
Apart from understanding the temporal similarities among the
resident entities (taxa), clustering of time points having similar
entity distribution is expected to yield valuable insights regarding
the microbial community dynamics. The identified time
points having similar taxonomic distributions (i.e., phylotype
proportions) can be considered as a ‘community state’ (Gajer
et al., 2012). Jenson Shannon divergence (JSD) metric has been
utilized earlier to identify such ‘community state’ in microbiome
time series data (Gajer et al., 2012). In ‘TIME,’ a modification
of the method is implemented to make it applicable for any
microbiome time series. The taxa abundances are first normalized
to generate probability distributions, which are then used to
calculate the JSD among the different time points. Thus, a
pairwise JSD matrix is obtained for all time points. Since, the
K-medoids clustering algorithm (Jin and Han, 2011) is known

to be robust to noise and outliers (as compared to K-means), it
was utilized for clustering the time points using the generated
JSD matrix. The number of clusters can be chosen by the user
based on visual inspection. Along with clustering the different
samples based on their microbial community structure, it is often
useful and sometimes necessary to find the drivers of the cluster,
i.e., the most dominant taxa among the clusters. Keeping this in
view, ‘TIME’ also provides the option to view the (normalized)
relative abundances of the taxa across different clusters and
different time points as a heatmap, which helps in visual
exploration and determination of the distinctive/driver taxa or
groups of taxa.
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The successional dynamics of microbial communities are influenced by the synergistic

interactions of physical and biological factors. In our motivating data, ocean microbiome

samples were collected from the Santa Cruz Municipal Wharf, Monterey Bay at

multiple time points and then 16S ribosomal RNA (rRNA) sequenced. We develop a

Bayesian semiparametric regression model to investigate how microbial abundance and

succession change with covarying physical and biological factors including algal bloom

and domoic acid concentration level using 16S rRNA sequencing data. A generalized

linear regression model is built using the Laplace prior, a sparse inducing prior, to

improve estimation of covariate effects on mean abundances of microbial species

represented by operational taxonomic units (OTUs). A nonparametric prior model is used

to facilitate borrowing strength across OTUs, across samples and across time points.

It flexibly estimates baseline mean abundances of OTUs and provides the basis for

improved quantification of covariate effects. The proposed method does not require prior

normalization of OTU counts to adjust differences in sample total counts. Instead, the

normalization and estimation of covariate effects on OTU abundance are simultaneously

carried out for joint analysis of all OTUs. Using simulation studies and a real data analysis,

we demonstrate improved inference compared to an existing method.

Keywords: count data, Laplace prior, metagenomics, microbiome, regularizing prior, process convolution,

negative binomial model, 16S ribosomal RNA sequencing

1. INTRODUCTION

Microbial communities are influenced by several factors whether they live in the host’s guts
or other occupied niches. Their successional dynamics could further change in response to
perturbations of the host or of the surrounding environments (Turnbaugh et al., 2009; Needham
and Fuhrman, 2016). Understanding how abiotic and biotic factors influence the dynamics of
microbial communities is of great interest in the field of microbiome studies. Recent revolutionary
advances in next-generation sequencing (NGS) technologies along with rapidly decreasing costs,
have facilitated the accumulation of large datasets of 16S ribosomal RNA (rRNA) amplicon
sequences across various disciplines such asmedicine, biology, ecology, and environmental sciences
(Woo et al., 2008). Sequencing data is usually pre-treated for quality filtering, noise removal
and chimera checking through bioinformatics algorithms and the filtered sequences are clustered
into Operational Taxonomic Units (OTUs), which represent similar organisms (microbial species)
based on sequence homology (called OTU picking). An OTU abundance table is generated,
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recording counts for OTUs in samples. Further statistical data
analyses are then performed using the OTU table to answer
biological and ecological questions.

Analysis of huge NGS data is computationally expensive and
challenging. One of the key challenges is the normalization of
counts across samples. Total counts (often called library size
or sequencing depth) may vastly vary across different samples
due to technical reasons. Thus, observed counts are not directly
comparable across samples and cannot be used as a measure
of the abundance of an OTU. Normalized counts through
rarefaction or relative frequencies are commonly used for easy
comparison of OTU abundance across samples. However, such
ad hoc normalization procedures have been criticized from a
statistical perspective since using pre-normalized quantities may
undermine the performance of downstream analysis (McMurdie
andHolmes, 2014). Another challenge is high dimensionality and
sparsity inOTU count data. A dataset typically includes hundreds
or thousands of OTUs and a majority of them has zero or very
low frequencies in most of samples. For example, Figure 1A
illustrates a heatmap of OTU counts in our motivating dataset
described in section 2.3. It shows that a majority of OTUs has
very low counts (gray) in a sample, and the set of OTUs having
large counts (blue) vary across samples. Due to such sparsity
in data, borrowing strength across OTUs through joint analysis
of all OTUs is crucial for improved inference. Recently, various
statistical methods including Romero et al. (2014), Chen and
Li (2016), Gibbons et al. (2017), and Zhang et al. (2017) have
been developed for microbiome studies using NGS data. For
example, Zhang et al. (2017) used a negative binomial mixed
regression model to study interactions between the microbiome
and host environmental/clinical factors. Random effects are used
to induce correlation among samples from a group. Common to
most of recentmethods including Zhang et al. (2017) is separately
analyzing each OTU at a time.

We develop a Bayesian semiparametric generalized linear
regression model to study the effects of physical and biological
factors on abundance of microbes. The proposed method
performs mode-based normalization through a hierarchical
model, which enables direct modeling of OTU counts.
Furthermore, the hierarchical model facilitates borrowing
strength between OTUs, between samples, and between time
points through joint analysis and improves inference on the
effects of covariates X on OTU abundance which are the
parameters of our primary interest. Specifically, a negative
binomial (NB) distribution parameterized by a mean parameter
µ and an overdispersion parameter s is assumed for OTU counts.
The NB distribution flexibly accommodates overdispersion
often seen in NGS data and is commonly used as a robust
alternative to a Poisson distribution (Anders and Huber,
2010). The expected count µ of an OTU is decomposed as a
product of factors, a baseline mean count g and a nonnegative
function η(X) of covariates that describes their effects on
the mean count. We use the log link function for η(X) and
assume that change in a covariate has a multiplicative effect
on mean count, where the associated coefficient quantifies
the size and direction of the effect. We consider a Laplace
prior for the coefficients, a shrinkage prior that is essential

in a high dimensional regression setting. Shrinkage priors in
regression yield sparse point estimates of the coefficients, where
many of the coefficients have values close to zero and few
have large values. The sparse estimates improve out-of-sample
prediction and produce more interpretable models (Park and
Casella, 2008). In addition, shrinkage priors such as a Laplace
prior in a regression problem mitigate potential problems
by multicollinearity and yield improved coefficient estimates
when covariates are high-dimensional and potentially highly
correlated (Polson and Scott, 2012). For baseline mean counts,
we develop a nonparametric model to combine all OTUs for
joint analysis. Baseline mean counts may vary across samples and
OTUs. Also, as in our motivating data for which samples were
taken over time, there may be temporal dependence in baseline
mean counts. To tackle the problem, we further decompose the
baseline count g into sample size factor (r), OTU size factor
(α0), and OTU and time factor (αt), that is, g = r × α0 × αt .
Due to the overparametrization of the baseline mean abundance,
individual factors are not identifiable. To avoid identifiability
issues, we place the regularizing priors with mean constraints
(Li et al., 2017) for sample size factor r and OTU size factor
α0. In addition, we model a temporal dependence structure
between the baseline expected counts for an OTU through a
convolutional Gaussian process (Higdon, 1998). The process
convolution approach is often used as an alternative approach
of the Gaussian process to construct a dependent process due to
its efficient computation (Lee et al., 2005; Liang and Lee, 2014).
Through simulation studies, we show that estimates of individual
parameters r, α0, and αt are not fully interpretable under the
proposed model, but baseline mean counts g are identifiable. The
model also provides a posterior distribution of g for uncertainty
quantification.

The rest of the paper is organized as follows. In section 2 we
describe the proposed model and discuss the prior formulations
and the resulting posterior inference. We perform simulation
studies to assess the proposed model and perform comparison
with an existing method that analyzes one OTU at a time. We
then apply the proposed model to an ocean microbiome dataset.
Section 3 presents the performance of the proposed model
from the simulation experiment and the ocean microbime data.
Section 4 concludes the paper with a discussion on limitations
and possible extensions.

2. MATERIALS AND METHODS

2.1. Bayesian Semiparametric Regression
Model
Suppose that samples are taken at n different time points, 0 ≤

ti ≤ T, i = 1, . . . , n, and with Ki replicates at time point ti.
We consider count yti ,k,j of OTU j in replicate k taken at time
ti, where i = 1, . . . , n, k = 1, . . . ,Ki, and j = 1, . . . , J. A
sample is thus indexed by ti and k. We let the total number of
samples N =

∑n
i=1 Ki. Let Y = [yti ,k,j] denote the N × J matrix

of counts, where yti ,k,j is integer-valued and nonnegative. Also,
suppose that covariates Xti = (Xti ,1, . . . ,Xti ,P)

′ are recorded at
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FIGURE 1 | Ocean microbiome data. (A) Heatmap of OTU counts (yti ,k,j ). OTU and samples are in rows and columns, respectively. OTU counts are rescaled within a

sample for better illustration. (B) 55 time points where ocean microbiome samples were collected are marked on the X-axis and the number of dots at a time point

represents the number of replicates (Ki ) at the time point.

time ti. For example, covariates are physical and biological factors
in our motivating data.

2.1.1. Sampling Model

Count data by NGS methods is often modeled through a Poisson
distribution. The assumption under the Poisson distribution that
the variance is equal to the mean is often too restrictive to
accommodate overdispersion that variation in data exceeds the
mean. The negative binomial (NB) distribution is a popular and
convenient alternative to address the overdispersion problem and
is widely recognized as a model that provides improved inference
to NGS count data (for example, see Robinson and Smyth, 2007;
Anders andHuber, 2010). ANB distribution can be characterized
by mean and overdispersion parameters. We suppress index i for
simpler notation and assume a NB model for count yt,k,j of OTU

j in replicate k at time t,

yt,k,j
indep
∼ NB(µt,k,j, sj), (1)

where mean count µt,k,j > 0 and overdispersion parameter
sj > 0. The model in Equation (1) implies that count of OTU
j in replicate k at time t has mean E(yt,k,j | µt,k,j) = µt,k,j and

variance Var(yt,k,j | µt,k,j, sj) = µt,k,j + µ2
t,k,j

sj. The model allows

different dispersion levels across OTUs through OTU-specific
overdispersion parameters sj. In the limit as sj → 0, the model
in Equation (1) yields the Poisson distribution with mean µt,k,j.
We assume a gamma distribution for a prior distribution of sj,

sj
iid
∼ Ga(as, bs), j = 1, . . . , J, with fixed as and bs.
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2.1.2. Model for Regression

We next model the mean count µt,k,j of yt,k,j. We decompose the
mean count into factors, a baseline mean count and a function
of covariates, µt,k,j = gt,k,jηj(Xt). Here parameter gt,k,j denotes
the baseline mean abundance of OTU j in sample (t, k) and
ηj(Xt) is a function of covariates Xt for OTU j to model the
covariate effects. We construct a generalized regression model
by letting log(ηj(Xt)) = X

′
tβj , where βj = (βj1, . . . ,βjP)

′

is a P-dimensional vector of regression coefficients of OTU j
(Lawless, 1987; McCullagh and Nelder, 1989). The coefficient βj,p
quantifies the effect of covariate p Xp on the mean abundance
of OTU j. A vector βj close to the zero vector produces a value
of ηj(Xt) close to 1, and the mean count remains similar to
the baseline mean count gt,k,j, implying insignificant covariate
effects. A negative (positive) of βj,p implies a negative (positive)
association between mean counts and the p-th covariate, and a
larger value of Xj,p decreases (increases) the mean count, while
holding the other covariates constant. We consider a Laplace
prior on βj. Specifically, we express the Laplace distribution as
a scale mixture of normals and assume for j = 1, . . . , J and
p = 1, . . . , P,

βj,p | σ
2
j ,φj,p

indep
∼ N(0, σ 2

j φj,p), φj,p
indep
∼ Exp(

λ2j

2
),

λ2j
iid
∼ Ga(aλ, bλ), σ 2

j
iid
∼ IG(aσ , bσ ),

(2)

where aλ, bλ, aσ , and bσ are fixed. σ 2
j and φj,p denote the global

and local shrinkage parameters, respectively, for OTU j. After
integrating φj,p out, the prior distribution of βj,p is the Laplace
distribution with location parameter 0 and scale parameter
√

σ 2
j /λj, that is, p(βj,p | λ2j , σ

2
j ) ∝ exp

(

−λj|βj,p|/
√

σ 2
j

)

.

Compared to a normal distribution that is a common choice for

r̃ti ,k | ψ
r , ηr ,wr , v2r , cr

iid
∼

Lr
∑

ℓ=1

ψ r
ℓ

{

wr
ℓφ(η

r
ℓ, v

2
r )+ (1− wr

ℓ)φ

(

cr − wr
ℓη

r
ℓ

1− wr
ℓ

, v2r

)}

,

α̃0,j | ψ
α , ηα ,wα , v2α , cα

iid
∼

Lα
∑

ℓ=1

ψαℓ

{

wαℓφ(η
α
ℓ , v

2
α)+ (1− wαℓ )φ

(

cα − wαℓ η
α
ℓ

1− wαℓ
, v2α

)}

,

(4)

the prior of βj,p, the Laplace distribution has more concentration
around zero but allows heavier tails. The regularized regression
through the Laplace prior more shrinks the coefficients of
insignificantly related covariates into zero and less pulls the
coefficients of important covariates toward zero. Shrinkage
of β estimates through the model in Equation (2) mitigates
possible issues due to multicollinearity and efficiently improves
estimation of β in a high dimensional setting (Polson and Scott,
2012).

2.1.3. Model for Baseline Mean Count

We next build a prior probability model for the baseline
mean count gt,k,j of OTU j in sample (t, k). We assume
gt,k,j = rt,kα0,jαt,j to separate sample (rt,k), OTU (α0,j),
and OTU-time (αt,j) factors. Sample total counts yt,k,· =
∑J

j=1 yt,k,j may greatly differ for different samples possibly due

to experimental artifacts. For example, counts of an OTU even
in the replicates taken at a time point may vastly differ. Sample
specific size factors rt,k account for different total counts in
different samples and expected counts normalized by rt,k are
comparable across samples. Factor α0,j explains variabilities in
baseline mean abundances of OTUs and αt,j models temporal
dependence of the mean counts for an OTU, respectively.
Factors α0,j and αt,j are not indexed by replicate k and
account for stochastic change over time in normalized baseline
expected counts of OTU j. Collecting all, we write the mean
count as

µt,k,j = gt,k,jηj(Xt) = rt,kα0,jαt,jηj(Xt), (3)

The model for gt,k,j in Equation (3) is overparameterized and
the individual parameters are not identifiable. To avoid potential
identifiability issues, many of NB models rely on some form
of approximation for the baseline mean counts. For example,
one may find the maximum likelihood estimates (MLEs) of
baseline mean abundance under some constraints and plug in
those estimates to infer the mean abundance levels µti ,j of
OTUs (Witten, 2011). Plugging in MLEs is simple but may not
be robust. In particular, the inference is greatly affected by a
small change in a few OTUs that have large counts. Moreover,
the errors introduced in the baseline mean count estimation
will not be reflected in the inference. Several approaches to
robustify the estimates are proposed (for example, see Anders
and Huber, 2010; Witten, 2011). To circumvent the identifiability
issue and provide uncertainty quantification for estimation of
gt,k,j, we take an alternative in Li et al. (2017) by imposing
regularizing priors with mean constraints for rt,k and α0,j. We
let the logarithm of the factors r̃t,k = log(rt,k) and α̃0,j =

log(α0,j), and assume the regularizing prior distribution with
mean constraints,

where φ(η, v2) is the probability density function of the normal
distribution with mean η and variance v2, constraints for the
mixture weights

∑Lr

ℓ=1 ψ
r
ℓ =

∑Lα

ℓ=1 ψ
α
ℓ = 1 with 0 < ψ r

ℓ < 1
and 0 < ψαℓ < 1 , 0 < wr

ℓ < 1, and 0 < wαℓ < 1
for all ℓ. Mixture models as in Equation (4) are often used as
a basis to approximate any distribution. Each component in
Equation (4) is further composed of a mixture of two normals,

N(ηℓ, v
2) and N

(

(c−wℓηℓ)
(1−wℓ)

, v2
)

with weights wℓ and 1 − wℓ,

respectively, and themean of the component is c. In consequence,
the prior and posterior of r̃ and α̃ under the model in
Equation (4) satisfy their prespecified mean constraints cr and cα ,
respectively. Li et al. (2017) showed that the model in Equation
(4) flexibly accommodates various features in a distribution such
as skeweness or multi-modality while satisfying the constraints.
Furthermore, the model based normalization through Equation
(4) enables joint analysis of all OTUs and can further improve
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estimation of the covariate effects. With the regularizing priors,
baseline mean counts gt,k,j are identifiable, while rt,k, α0,j, and αt,j
are not directly interpretable. More importantly, the parameters
of primary interest ηj(Xt) can be uniquely estimated and βj,p’s
keep their interpretation as parameters that quantify the effects
of covariates on mean counts. We used an empirical approach
to fix the mean constraints cr and cα . Sensitivity analyses were
conducted to assess the robustness to the specification of cr and
cα and show that the model provides reasonable estimates of
gt,k,j and moderate changes in the values of cr and cα minimally
change the estimates. More details of the specification of cr and
cα are discussed in section 3.1. We fix the numbers of mixture

components, Lr and Lα and variances v2r and v2α . We let ηrℓ
iid
∼

N(cr ,ω
2
r ) and ηαℓ

iid
∼ N(cα ,ω

2
α), where ω

2
r and ω2

α are fixed.
We assume ψ r = (ψ r

1 , . . . ,ψ
r
Lr ) ∼ Dir(dr , . . . , dr) and ψ

α =

(ψα1 , . . . ,ψ
α
Lα ) ∼ Dir(dα , . . . , dα), with fixed dr and dα . We let

wr
ℓ

iid
∼ Be(ar , br), ℓ = 1, . . . , Lr and wαℓ

iid
∼ Be(aα , bα), ℓ =

1, . . . , Lα with fixed ar , br , aα , and bα .
Recall that samples are collected over time points t1, . . . , tn

in [0,T] and αt,j accounts for temporal dependence in the
baseline mean count for an OTU. We let α̃t,j = log(αt,j)
a function in time t and use a stochastic process to model
temporal dependence among µt,k,j. The Gaussian process (GP)
is one of the most popular stochastic models for the underlying
process in spatial and spatio-temporal data (for example, see
Cressie, 1992; Banerjee et al., 2014 among many others). The
GP effectively represents the underlying phenomenon in a
variety of applications, but it has some drawbacks such as
a complex computation that requires a matrix decomposition
and problematic estimation of the parameters in its covariance
function, potentially leading to difficulties in exploring the
posterior distribution (Lee et al., 2005; Liang and Lee, 2014). To
alleviate such difficulties of GP models while still maintaining
their flexibility and adaptiveness, we use a convolution approach
with a kernel function developed in Higdon (1998, 2002). For
each OTU, we specify the latent process θ j(t) to be nonzero only
at the time points u1, . . . , uM in [0,T]. Specifically, we consider
the GP convolution model,

α̃t,j =

M
∑

m=1

Z(t − um)θm,j,

where {u1, . . . , uM} a set of basis points in [−t′1,T + t′2] with
t′1, t

′
2 > 0, and Z(t − um) a Gaussian kernel centered at um,

Z(t − um) =
1√
2πγ 2

exp{−(t−um)
2

2γ 2
}. The number of basis points

M, their locations um and the range parameter γ can be treated
as random variables by placing prior distributions, e.g., consider
a gamma prior for γ . For simplicity, we fix them as follows. We
first choose a value for M and let um evenly spaced over time
[−t′1,T + t′2]. Following Xiao (2015), we let the range parameter
γ 2 = ((2T + t′1 + t′2)/M)2, that is, the range parameter depends
on the value of M. Through simulations, we studied the impact
of different values of M on the posterior inference of gt,k,j. A
discussion is included in section 3.1. Given the number of basis

pointsM, we assume θm,j | τ
2
j

indep
∼ N(0, τ 2j ) and τ

2
j

iid
∼ IG(aτ , bτ ),

m = 1, . . . ,M and j = 1, . . . , J.

We implement posterior inference on the parameters θ̃ =

(βj, σ
2
j , λ

2
j ,φj,p, r̃t,k,ψ

r ,wr
ℓ, η

r
ℓ, α̃0,j, α̃t,j,ψ

α ,wαℓ , η
α
ℓ , θ j, τ

2
j , sj) via

a Markov chain Monte Carlo (MCMC) method based on
Metropolis-Hastings algorithm and Gibbs sampling. Each of the
parameters is iteratively updated conditional on the currently
computed values of all other parameters to simulate a sample
from the posterior distribution. The parameters r̃ and α̃0
jointly determine baseline mean counts and joint updating
of r̃ and α̃0 may greatly improve the mixing. In our ocean
microbiome data, some discretized covariates are missing.
We treat them as random variables by assuming a uniform
distribution over possible categories, and impute their values
in MCMC simulation. Full details of our MCMC algorithm are
given in Supplementary section 1. We diagnose convergence and
mixing of the described posterior MCMC simulation using trace
plots and autocorrelation plots of imputed parameters. For the
upcoming simulation examples and the data analysis, we found
no evidence of practical convergence problems. An R package
of the code used for simulations and the analysis of the ocean
microbiome dataset in the following sections is available from the
authors website https://users.soe.ucsc.edu/~juheelee/.

2.2. Simulation Experiment: Data
Generation and Comparative Study
We conducted simulation studies to assess the performance of
our model. We compared the model to an alternative model,
the negative binomial mixed model (NBMM) in Zhang et al.
(2017). We assumed a sample of J = 200 OTUs. We used
the same time points (ti) and numbers of replicates (Ki) of our
ocean microbiome data as shown in Figure 1B. We let βTR

j,p = 0

with probability 0.85. For βTR
j,p 6= 0 we simulated βTR

j,p from

either of N(−1.5, 0.052) or N(1.5, 0.052) with equal probability,
where N(a, b2) denotes the normal distribution with mean a and
variance b2. It implies that a covariate has no effect on OTU
abundance with probability 0.85 or may significantly affect mean
abundance with the remaining probability 0.15. To specify rTR

t,k

and αTR
0,j , we did not assume any distribution and used their

classical estimates from our ocean microbiome data; following
Witten (2011), we first computed estimates of sample size factors
r′
ti ,k

and OTU size factors α′0,j using the ocean microbiome data,

r′
ti ,k

= yti ,k,·/y···
and α′0,j = 1

N

∑n
i=1

∑Ki

k=1
yti ,k,j/r

′
ti ,k

where

yti ,k,· =
∑J

j=1 yti ,k,j and y
···

=
∑J

j=1 y··,j. We then randomly

sampled from the pool of r′
t,k

and α′0,j to specify the true values.

To simulate temporal dependence in OTU abundance, we let
α̃TR
ti ,j

= ati ,j cos(2π(t̃i − bti ,j))+ cti ,j(t̃i − t̃⋆)2. Here t̃i denotes time

ti in year and t̃⋆ the median of t̃i. We let at,j
iid
∼ N(0.15, 0.12),

bt,j
iid
∼ N(0, 0.52), and ct,j

iid
∼ N(0.1, 0.12) to have different patterns

for OTUs. For some OTUs, α̃TR
ti ,j

are illustrated in red squares

in Figures 4E–G. We generated sTRj
iid
∼ Ga(1, 10). We used the

covariate matrix of the ocean microbiome data illustrated in
Figure 2 for the simulation study. For the missing covariates in
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the data, we generated a value of possible categories with equal
probability. We finally simulated OTU counts yti ,k,j from the

negative binomial distribution yti ,k,j
indep
∼ NB(µTR

ti ,k,j
, sTRj ), where

µTR
ti ,k,j

= rTR
ti ,k
αTR
0,j exp(α̃

TR
ti ,j

+ X
TR
t β

TR
j ).

For comparison, we used the negative binomial mixed model
(NBMM) in Zhang et al. (2017). Similar to the proposed model,
the NBMM uses a negative binomial distribution with mean
µNBMM and shape parameter θNBMM to model OTU counts and
assumes log(µNBMM

t,k,j
) = log(yt,k,·)+β

NBMM
0,j +Xtβ

NBMM
j +Zt,kb

NBMM
j

where Xt and Zt,k are the covariate matrices for fixed effects and
random effects, respectively. It assumes random effects bNBMM

j ∼

N(0,9). By letting the replicates at a time point share the same
random effect, OTU abundances in the replicates at a time
point are correlated. The NBMM normalizes OTU counts by
sample total counts. That is, sample total counts yt,k,· are used
as an offset to adjust for the variability in total counts across
samples. Similar to other existing methods, the NBMM performs
separate analyses of OTUs. An iterative weighted least squares
algorithm is developed to produce the MLEs under the NBMM
and implemented in a R function glmm in R package BhGLM.

2.3. Ocean Microbiome Data: Data
Description and Preprocessing
We applied the proposed statistical method to ocean microbiome
data. Seawater samples were collected weekly at the end of Santa
Cruz Municipal Wharf (SCW), Monterey Bay (36.958 oN,
−122.017 oW), with an approximate depth of 10 m. SCW is one
of the ocean observing sites in Central and Northern California
(CenCOOS), where harmful algal bloom species [HAB species:
Alexandrium (Ax), Dinophysis (Dp), Pseudo-nitzschia (Pn)
etc.] are monitored weekly along with nutrient measurements
[ammonia (NH4), silicate (Si), nitrate (N), phosphate (P)],
temperature (T), domoic acid (DA) concentration, and
chlorophyll (Chl). Details of phytoplankton net tow sampling
of measuring phytoplankton abundance, measurement of
physical (nutrients and temperature) and biological parameters
(chlorophyll α and DA concentration) are described in
Sison-Mangus et al. (2016). Pseudo-nitzschia, Dinophysis, and
Alexandrium cells were counted with a Sedgewick rafter counter
under themicroscope. Data for physical and biological factors are
available from the website link http://www.sccoos.org/query/?
project=Harmful%20Algal%20Blooms&study[]=Santa%20Cruz
%20Wharf. Among the 10 variables, the concentration levels of
Alexandrium, Dinophysis, Pseudo-nitzschia, and domoic acid
have highly right-skewed distributions and are discretized into
categories based on their biological properties for our analysis.
The ranges of the concentration levels for the discretization are in
Supplementary Table 1 and Figures 2A–J illustrates all covariates
included for analysis. The values of−1, 0, 1, 2, 3, and 4 represent
missing values and the categories of None, Low, Medium,
High, and Very High for the discretized variables, respectively.
Due to high right skeweness, categories corresponding to
high concentration levels have low frequencies. Values of the
Dinophysis concentration level are missing at 20 time points
among 55 points used for analysis. Sample correlations between

the factors are relatively strong. Figures 2K,L shows scatterplots
for some selected pairs of the factors.

For bacterial RNA samples, three depth-integrated (0, 5, and
10 ft) water samples were collected at a total of 55 time points
between April 2014 and November 2015. Two or three samples
are sequenced at each time point. The numbers of replicates
at the time points are illustrated in Figure 1B. Microbial RNA
in the samples was extracted for 16S rRNA sequencing. Post-
processing of sequences was performed using the Quantitative
Insights Into Microbial Ecology (QIIME 1.9.1) pipeline. A total
of nearly 39,823 OTUs were obtained in data after removing
singletons. We restricted our attention to OTUs that have greater
than or equal to five counts on average. The rule leaves in the end
J = 263 OTUs for the 150 samples for the analysis. A heatmap of
the counts in the filtered data is shown in Figure 1. The primary
goal of the study is to investigate the effects of physical and
biological factors on abundance levels of OTUs, while accounting
for baseline abundance levels of OTUs in samples.

3. RESULTS

3.1. Simulation Experiment: Model Fitting
and Comparison
To fit the proposed model for the simulated data designed in
section 2.2, we specified hyperparameter values of the model as
follows; for the Laplace prior of βj,p, we let aλ = bλ = 0.5
for a gamma prior of λ2j (with mean aλ/bλ and variance aλ/b

2
λ)

and aσ = bσ = 0.3 for an inverse gamma prior for common
variances σ 2

j . For the regularizing priors of r̃ti ,k and α̃0,j, we fixed

dα = dr = 10, ar = br = aα = bα = 1, ω2
r = ω2

α = 1.0,
v2r = 1, and v2α = 2.0. We also fixed the number of mixture
components for the regularizing priors Lr = 30 and Lα = 50.
To specify values of the mean constraints cr and cα , we took
an empirical approach. We used the simulated yti ,k,j, computed
estimates of rti ,k,j and αj,0 as described in section 2.2 and fixed the
mean constraints at the means of the logarithm of the estimates,
respectively. Note that the specified values of cr and cα were very
different from the means of their true values. For the process
convolution prior of OTU-time factor α̃ti ,j, we chose a value of
M such that the kernel function at a basis point is not entirely
located in a place where no sample is obtained.We let the number
of basis M = 13 and basis um, m = 1, . . . ,M evenly spaced
between−10 and Ti + 10. For overdispersion parameter sj we let
as = 1 and bs = 2. To run MCMC simulation, we initialized the
parameters by simulating with their prior distributions. We then
implemented posterior inference using MCMC simulation over
25,000 iterations, discarding the first 10,000 iterations as burn-in
and choosing every other sample as thinning.

Figure 3 illustrates the comparison of posterior estimates of
βj,p to their true values βTR

j,p for some selected covariates. In the

figure, dots and blue dashed lines represent posterior means β̂j,p

of βj,p and their 95% credible intervals, respectively. β̂j,ps are
around the 45 degree line (red dotted line) for most of (j, p)
and most of the interval estimates captures the true values. It
implies that the proposed model reasonably recovers βTR

j,p . For

categories 3 and 4 of X4 in Figures 3I,J, the credible intervals
tend to be wider due to their low frequencies in the data as shown
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FIGURE 2 | Ocean microbiome data. Bar plots of discretized covariates, concentration levels of Alexandrium (Ax, X1) and Dinophysis (Dp, X2), Pseudo-nitzchia (Pn,

X3), domoic acid (DA, X4) in (A–D). The values of −1, 0, 1, 2, 3, and 4 represent a missing value, none and low, medium, high, and highest concentration levels,

respectively. Histograms of continuous covariates, concentration levels of ammonia (NH4, X5), nitrate (N, X6), phosphate (P, X7), silicate (Si, X8), water temperature (T,

X9), concentration level of chlorophyll (Chl, X10) in (E–J). The variables are standardized to have mean 0 and variance 1 prior to analysis. A scatterplot of the

concentrations of ammonia and silicate and a scatterplot of the concentrations of phosphate and silicate are shown in (K,L), respectively.

in Figure 2D. The insert plot in each panel illustrates a scatter
plot of β̂j,p for (j, p) with βTR

j,p = 0 . It shows that the proposed

regression model with the Laplace prior effectively shrinks βj,p
with βTR

j,p = 0 to zero, as is desired in our simulation setup.

Supplementary Figure 1 has plots for all covariates.
Figures 4A–C illustrate plots of gTR

t,k,j
vs estimates of gt,k,j

with their means (black dots) and 95% credible intervals (blue
vertical lines) for some selected OTUs, j = 8, 34, and 48.
Recall that we do not attempt to recover the true values of
individual rti ,k, α0,j, and αt,j, but we rather aim to reasonably
recover the true baseline mean counts, gTR

ti ,k,j
= rTR

ti ,k
αTR
0,j exp(α̃

TR
ti ,j
).

In the figure the estimates are tightly around the 45 degree
line, providing evidence that reasonable estimates of baseline
mean counts are obtained under the proposed model. Figure 4D

has a histogram of averaged differences between baseline mean

count estimates and their true values, Dj =
∑n

i=1

∑Ki

k=1
(ĝti ,k,j −

gTR
ti ,k,j

)/N. The averaged differences are around zero, implying that

the proposed model provides reasonable estimates of baseline
mean counts for most of OTUs. We further examined individual

parameters. Figures 4E–G shows the comparison of estimates
of α̃0,j + α̃t,j to their true values over time for the same OTUs
in Figures 4A–C. Black dots and blue vertical lines represent

estimates of posterior means of α̃0,j + α̃t,j and their 95% credible
intervals, respectively. Red squares represent their true values.
From the figure, the estimates of α̃0,j + α̃t,j are consistently
greater than their true values at all time points, but capture their
overall temporal trend. Figure 4H illustrates a scatterplot of r̃TR

t,k
and their posterior estimates of r̃t,k, where dots and blue vertical
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FIGURE 3 | Simulation 1—proposed model. Comparison of the true values βTR
j,p and the posterior estimates of βj,p under the proposed model for some selected

covariates. Dots and blue dashed lines represent estimates of posterior means β̂j,p of βj,p and 95% credible intervals (CIs) of βj,p, respectively. The insert plot in each

panel is a scatter plot of β̂j,p and βTR
j,p for (j,p) with βTR

j,p = 0.

intervals denote estimates of posterior means and 95% credible
intervals, respectively, and the gray horizontal line is at cr used for
analysis. Different from the estimates of α̃0,j + α̃t,j, the estimates
of r̃t,k fall below the 45 degree line approximately by the same
distance for all OTUs. It shows that estimates of α̃0,j + α̃t,j and
r̃t,k have discrepancies from their true values but in the opposite
direction and the model can produce reasonable estimates of gt,k,j
as seen in Figures 4A–D. The true overdispersion parameters
sTRj are reasonably well estimated as shown in Figure 4I. We

check the posterior predictive distribution of Yt,k,j. The posterior

predicted values of Yti ,k,j with their 95% predictive intervals for
OTUs j = 8, 34, and 48 are compared to their observed values in
Supplementary Figure 2. The figure indicates a reasonable model
fit.

In addition, we conducted a sensitivity analysis to the
specification of mean constraints cr and cα for the priors of r̃
and α̃0. We used different values for cr and cα and compared
the estimates of gt,k,j to their truth. Supplementary Figures 3a–
c has histograms of averaged differences Dj between ĝti ,k,j and
gTR
ti ,k,j

for different specification of cr and cα . The histograms show
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FIGURE 4 | Simulation 1—proposed model. Panels (A–C) illustrate plots of the true baseline mean counts gTR
t,k,j vs their estimates ĝt,k,j for some selected OTUs

j = 8, 34, 48. Panel (D) shows a histogram of averaged differences between gTR
t,k,j and ĝt,k,j for each OTU. Panels (E–G) show plots of estimates of α̃0,j + α̃t,j over time

for OTUs j = 8, 34, 48. Panel (H) has a scatterplot of ˆ̃rt,k vs. r̃TR. Panel (I) has a scatterplot of ŝ vs. sTR. Dots represent posterior mean estimates and blue vertical

dotted lines 95% credible intervals. Red squares represent the true values.

minor change in estimates of gti ,k,j under different specifications
of cr and cα . An sensitivity analysis to the specification of the
number M of basis points in the GP convolution model for α̃t,j
was also performed. We used M = 8, 13, and 18 and examined
estimates of the baseline mean counts, gt,k,j. Supplementary
Figures 3a,d,e has histograms of averaged differences Dj for each
of M. The results indicate that the baseline mean counts are
reasonably estimated for a range of values ofM in the simulation
study.

For comparison, we used the NBMM to the simulated data.
Since the NBMM does not accommodate missing covariates,
we used X

TR to fit the NBMM. Figure 5 compares the MLEs
β̂NBMM
j,p of βj,p to the true values for the same covariates used in

Figure 3. Dots and blue vertical lines represent the MLEs under
the NBMM and their 95% confidence intervals, respectively.
Comparing Figure 5 to Figure 3, the NBMM produces poor
estimates. The MLEs are biased for some covariates (e.g.,
Figure 5A). Also, confidence intervals under the NBMM often

Frontiers in Microbiology | www.frontiersin.org March 2018 | Volume 9 | Article 522131

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Lee and Sison-Mangus Bayesian Model for Microbime Data

FIGURE 5 | Simulation 1—NBMM. Comparison of the true values βTR
j,p and maximum likelihood estimates β̂NBMM

j,p of βj,p under the negative binomial mixed model

(NBMM) for some selected covariates. Dots and blue dashed lines represent β̂NBMM and their 95% confidence intervals, respectively. The insert plot in each panel is a

scatter plot of β̂NBMM
j,p and βTR

j,p for (j,p) with βTR
j,p = 0.

fail to capture the true values and their interval estimates under
the NBMM tend to bemuch wider than those under the proposed
model. Normalization through observed sample total counts
and inducing correlation in replicates through iid (independent
and identically distributed) random effects under the NBMM
may lead to poor estimation of the baseline mean abundance
for the simulated data, resulting in deterioration of coefficient
estimation. In addition, separate analyses of OTUs under the
NBMM do not allow to strengthen estimates through combining
information across OTUs. Comparing the insert plots in Figure 5

to those in Figure 3, β̂NBMM
j,p with βTR

j,p = 0 tends to more widely

spread out from zero and often their confidence intervals fail
to capture zero. Supplementary Figure 4 has plots of βj,p for all
covariates. Supplementary Figures 4, 5 shows the comparison
of the estimates θ̂NBMM of overdispersion parameters under the
NBMM to their true values. Note that θNBMM is the inverse of s in
our model. The NBMM underestimates sj for many OTUs, and
yields poor predicted values, implying the lack of a fit.

We further examined the performance of the proposed model
through additional simulation studies, Simulations 2 and 3 in
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Supplementary section 2. In these simulations, we studied the
robustness of the model when different simulation setups are
used to simulate data. In Simulation 2, we assumed no temporal
dependence among OTU abundance and generated independent
samples from a normal distribution for α̃t,j. We assumed that
all βTR

j,p has nonzero effects for all OTUs and simulated βj,p

from a mixture of normals. The performance of our model is
almost the same as in Simulation 1 (see Supplementary Figures
6–8). Interestingly, the NBMM that assumes iid random effects
performs poorly for β estimation. In Simulation 3, we simulated
α̃TR
t,j from a discontinuous function. The results show that when

the temporal dependence pattern is not smooth as assumed
for the GP, estimates of the baseline mean counts under the
proposed model are slightly deteriorated but the model produces
reasonable inference on βj,p (see Supplementary Figures 9–11). A
more detailed summary of the additional simulations is given in
Supplementary section 2.

3.2. Ocean Microbiome Data: Model Fitting
and Comparison
We specified hyperparameters similar to those in the simulations
and analyzed the microbiome data in section 2.3. The MCMC
simulation was run over 25,000 iterations. The first 15,000
iterations were discarded as burn-in and every other sample
was kept as thinning and used for inference. Figure 6 illustrates
inference on covariate effects for some selected OTUs, j = 16, 34,
and 49, taxonomically belonging to Alteromonadales,Halomonas
sp., and Alteromonadales in the Gamma-proteobacteria phyla,
respectively. Dots and vertical solid lines represent the posterior
mean β̂j,p and 95% credible interval estimates, respectively.
Similar to the results of the simulation study, the credible
intervals for high and highest levels of the discretized covariates
tend to be wider due to their low frequencies in the data. From
Figure 6A, on average themedium concentration level of domoic
acid (DA, X4) and the concentration level of nitrate (N, X6)
significantly decrease the mean abundance of OTU 16 by a
multiplicative factor of exp(−0.572) = 0.564 and exp(−0.260) =
0.771, respectively. Onemay infer that themedium concentration
level of domoic acid is significantly associated with lower
expected counts for the OTU compared to those with category
none of the domoic acid concentration level. A similar argument
can be applied to the inference on the nitrate concentration
level. Interestingly, we observed statistically significant reduction
in abundance from many OTUs belonging to Gamma-
proteobacteria including those OTUs for increasing domoic
acid concentration (not shown). The resulting inference was
further validated through a lab experiment. Most notably, four
bacterial cultured isolates belonging to Gamma-proteobacteria
(three among them are Alteromonadales) were observed to be
severely retarded in growth after 2 days of exposure to increasing
domoic acid of 0 to 150 µg/ml in the experiment (Sison-
Mangus, unpublished data). This demonstrates that the proposed
model successfully identifies important OTUs in ocean bacterial
community dynamics for further investigation. More results are
presented in Supplementary section 3. Supplementary Figures
12a–c illustrates the posterior estimates of baseline expected

counts α̃0,j+ α̃t,j normalized by sample size factors for the OTUs.
From the figure, the baseline expected counts vary over time
for those OTUs and the temporal pattern of OTU j = 34
is different from those of OTUs j = 16 and 49. Histograms
of the posterior mean estimates β̂j,p of βj,p, are illustrated in
Supplementary Figure 13. The figure does not show clear overall
tendency in the direction of association between covariates and
OTU counts. Posterior inference on sample size factors rti ,k
and OTU specific overdispersion parameters sj is illustrated in
Supplementary Figures 12d,e.

For comparison, we fitted the NBMM to the data. Since
the NBMM does not account for missing values, we use the
maximum a posteriori estimates of the missing values under
the proposed for the NBMM. We used the R function glmm
and the algorithm produced warning messages on convergence
for 32 OTUs. Figure 7 illustrates β̂NBMM

j,p (dots) with their 95%

confidence intervals (solid vertical lines) for OTUs j = 16, 34,
and 49. Inference on the covariate effects is different from
that under the proposed. For example, domoic acid (DA)
levels do not have significant effects on the mean counts
for OTU j = 16 and 49 from Figures 7A,C. Comparing
Figures 7A,C to Figure 7, the NBMM produces wider interval
estimates for βj,p. Histograms of the MLEs of βj,p, β̂

NBMM
j,p

under the NBMM are shown in Supplementary Figure 14. The
histograms are much dispersed than those under the proposed
model shown in Supplementary Figure 13. Estimates β̂j,p and

β̂NBMM
j,p for all covariates are also compared in Supplementary

Figure 15. From the figure, the NBMM yields extremely large
or small values for β̂j,p for some OTUs, possibly due to the
convergence problem. The insert plots show that for regions
of small values of β̂j,p, the estimates under the proposed are
more shrunken toward zero than those under the NBMM,
similar to the results in section 3.1. The overdispersion
parameter estimates under the NBMM tend to be smaller than
those under the proposed (shown in Supplementary Figure
12f), which may lead to different predictive distributions of
OTU counts.

4. DISCUSSION AND CONCLUSIONS

In this paper, we developed a Bayesian semiparametric regression
model for joint analysis of microbiome data. We formulated
the mean counts of OTUs as a product of factors and built
models for the factors. We utilized the regularizing priors
with mean constraints to avoid possible idenfiability issues,
and the process convolution model to capture the temporal
dependence structure in the baseline mean abundance of an
OTU. The flexible model developed for baseline abundance
enables joint analysis of all OTUs in the data and allows
borrowing information across OTUs, across samples, and across
time points. The model produces accurate estimates of the
baseline mean counts and yields improved estimates of the effects
of the covariates. We incorporated the Laplace distribution, a
sparsity inducing shrinkage prior for the coefficients and the
proposed model produces sparse estimates that is more desirable
when the problem is high-dimensional and covariates are highly
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FIGURE 6 | Ocean microbiome data—proposed model. Posterior Inference on βj for some selected OTUs (j = 16, 34, 49). Dots represent the posterior means β̂j,p of

βj,p. Each vertical line connects the lower bounds and the upper bounds of 95% credible intervals.

correlated. We compared the proposed model to a comparable
frequentist model that does separate analyses for individual
OTUs. The comparisons through the simulation study and real
data analysis show better performance of the proposed model.

Although we focused on the analysis of NGS count data,
the proposed model is quite general and can be applied for
analyses of any count data. Future work will explore alternative
approaches to model the effects of covariates on the mean counts.
For example, one may consider a nonparametric model using
linear combinations of basis functions (Kohn et al., 2001) to

flexibly capture shape in the response function. In such a case,
an elaborate development of the prior model may be needed
to produce a robust inference since both the baseline mean
counts and the covariate effects are nonparametrically modeled.
Other possible extensions are to include a variable selection
method such as a stochastic search variable selection (George and
McCulloch, 1993) if it is reasonable to assume that some covariate
effects are exactly zero, and to let coefficients vary over time if
covariate effects evolve with time. For time varying coefficients,
we may use the random walk process in Leybourne (1993) to
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FIGURE 7 | Ocean microbiome data—NBMM. Inference on βj for some selected OTUs (j = 16, 34, 49) under the negative binomial mixed model (NBMM). Dots
represent the maximum likelihood estimates β̂NBMM

j,p of βj,p. Each vertical line connects the lower bounds and the upper bounds of 95% confidence intervals.

induce relationship between βj,p,t−1 and βj,p,t . Considering the
high dimensionality in OTU data, posterior computation may
need to be carefully handled. Also, prior information may be
needed to produce sensible inference due to sparsity in data.
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Longitudinal, prospective studies often rely on multi-omics approaches, wherein various
specimens are analyzed for genomic, metabolomic, and/or transcriptomic profiles.
In practice, longitudinal studies in humans and other animals routinely suffer from
subject dropout, irregular sampling, and biological variation that may not be normally
distributed. As a result, testing hypotheses about observations over time can be
statistically challenging without performing transformations and dramatic simplifications
to the dataset, causing a loss of longitudinal power in the process. Here, we introduce
splinectomeR, an R package that uses smoothing splines to summarize data for
straightforward hypothesis testing in longitudinal studies. The package is open-source,
and can be used interactively within R or run from the command line as a standalone
tool. We present a novel in-depth analysis of a published large-scale microbiome study
as an example of its utility in straightforward testing of key hypotheses. We expect
that splinectomeR will be a useful tool for hypothesis testing in longitudinal microbiome
studies.

Keywords: bioinformatics, microbiome analysis, R packages, computational biology methods, permutation tests,
longitudinal data analysis

INTRODUCTION

Biological studies in humans are subject to significant variability and noise, often great enough to
obscure all but the most dramatic differences. Longitudinal studies are powerful in these cases,
allowing researchers to observe (and account for) both inter- and intra-individual variability,
or measure changes in response to an intervention in real time (Gonzalez et al., 2012;
Gerber, 2014). As the costs of DNA sequencing have decreased, microbiome researchers have a
greater opportunity to perform such longitudinal studies. While longitudinal data with multiple
timepoints always provide more information than single-timepoint data, the computational tools
to analyze longitudinal microbiome studies with multiple timepoints per subject lag behind.
A number of practical concerns often complicate analysis of longitudinal microbiome data: time
points are usually not in sync or differ in number between subjects, longitudinal variation may
not follow a normal distribution, and timeseries data may follow arbitrary curves, for example
during the maturation of the infant microbiome. To overcome these challenges, researchers in
many studies have collapsed samples across time points to average individuals’ signals or they have
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summarized first with multivariate approaches that condense the
initial observations (e.g., David et al., 2014; Zhou et al., 2015;
Yassour et al., 2016). These approaches have been sufficient to
make important discoveries in published studies, but there may
still be opportunities to gain statistical power by using additional
information content and directionality of the temporal axis.

To address this gap in data analysis, we introduce
splinectomeR for direct hypothesis testing of categorical
variables in longitudinal studies. SplinectomeR’s implementation
is straightforward and complements recently developed
mixed-effects models that are used for discovering differentiating
taxa (Chen and Li, 2016). At the core of the tests is the loess spline
that uses weighted local polynomials to model data that may
not follow any classical model or shape (as is common in real
biological data) (Cleveland, 1979; Cleveland and Devlin, 1988).
Null distributions are generated by permutation of the data,
similar to methods implemented in multivariate tests such as
PERMANOVA (Anderson, 2001). Lastly, its implementation as
an R package makes it practical and easy to adopt by microbiome
researchers.

splinectomeR contains three key functions: permuspliner,
which tests for an overall significant difference between two
groups’ summary splines over the longitudinal time course;
sliding_spliner, which interpolates across the group spline and
tests for significance between two groups at each interval to
illuminate regions of time where significant differences exist; and
trendyspliner, which tests for a significant non-zero overall trend
in a single population over time. To demonstrate the utility of
these tests, we performed additional testing of key hypotheses
in a large published cohort of 37 infant microbiomes sampled
over the first 3 years of life (Yassour et al., 2016). SplinectomeR
is open-source and freely available for download and installation
on GitHub at https://github.com/RRShieldsCutler/splinectomeR.

METHODS AND IMPLEMENTATION

splinectomeR contains three primary functions that test specific
hypotheses about longitudinal trends (see Figure 1 for schematic
diagram). Each function uses loess splines to smooth longitudinal
data before performing the specific statistical test. The input is a
properly formatted data frame: each quantitative measurement or
metadata category is its own column, and each row is a separate
observation. This is a common structure for bioinformatics
metadata, including in microbiome analyses, and therefore tests
may be performed with little or no reformatting required.
The standalone command-line version of the scripts requires a
tab-delimited file of the same structure. We refer the reader to the
online package vignettes (included as Supplemental Data Files 1
and 2) for examples of proper input data and for manual data
wrangling techniques.

Permuspliner
The objective of the permuspliner function is to test whether
two groups of individuals follow more different trajectories over
time (or along any continuous axis) than would be expected
by random chance. It compares two groups over time without

collapsing the timepoints to a single averaged point. Since
differences between groups may not be consistent over time, and
responses may even invert relative to one another over time,
collapsing could mask or nullify important differences between
groups. This problem can be avoided by considering the entire
time series in a statistical comparison. Permuspliner fits a spline
to the average time series of each group of individuals, and then
measures the absolute area between the splines to determine the
observed group difference.

Specifically, the input data is first split into the two groups to
be compared, A and B. In some studies, participants may only
appear once or twice in the dataset; to filter out samples from
low-prevalence participants, the user may set a threshold with
“cut_low = n.” A loess spline is fit to each group’s total time
series, if it also meets the minimum data sparseness threshold
set by the “cut_sparse = n” parameter. Lastly, the direction of
the null hypothesis can be set with “test_direction = [more/less]”;
this enables the user to test for not only group differences that
are greater than expected by chance (test_direction = “more,” the
default) but also differences smaller than expected by chance
(test_direction = “less”). To calculate the observed group distance,
points are interpolated along each spline and the sum of the
areas across these points yields the group distance. Splinectomer
uses 1000 points by default but this can be edited in the
function arguments (with “ints = n”) to account for a longer
time series or greater/lower resolution. This area determination
is then recalculated after permuting the group assignments:
to which group each participant belongs (A vs. B) is shuffled
randomly without replacement. Permuting the group labels, as
opposed to the participant data points, preserves the underlying
distributions and patterns of the individuals’ timeseries curves.
The permutation is repeated (default setting is 999 permutations)
to generate a null distribution over the random between-group
distances, from which an empirical p-value is calculated and
reported by comparison to the observed distance. Because
the random distribution is built from the observed values, it
inherently reflects the noise and variability of the dataset, and is
therefore tailored to each study’s unique character. SplinectomeR
also includes plotting functions for visualizing the permuted
distribution.

Sliding Spliner
As a complement to the permuspliner test, the sliding spliner
function allows the user to test the data series at defined intervals
and ask whether the two groups of interest are significantly
different at a any point in time during the time series. This
is often challenging in clinical datasets where sampling is not
coordinated between individuals, so analysis requires artificial
binning or averaging across time in order to compare enough
data at any one time point. Here, each individual—as opposed
to the whole group, as in the permuspliner test above—is
summarized by a spline, thus filling gaps across their time series.
Every interpolated interval can then be tested as a complete
distribution of all participants without binning or unnecessarily
dropping samples. Low-prevalence participants are again filtered
out with the “cut_low” parameter. Since the splines are not
extrapolated beyond the start and end of the individual’s time
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FIGURE 1 | Schematic of the splinectomeR analysis package and simulated analyses. (A) Each of the three primary tests produces a results list object containing
several data articles including the p-value(s), and which can also be used to generate pre-configured data visualizations. To demonstrate that the splinectomeR
package detects non-linear changes between groups during a time series, data were simulated for 10 individuals over time and perturbed at three magnitudes (1x,
2x, 4x). The perturbation was done at one (B) or two (C) regions of the time series The permuspliner test finds that these changes are less likely to be random as the
magnitude increases, as would be expected. In (B), p = 0.3, p = 0.005, and p = 0.001 for 1x, 2x, and 4x shifts, respectively; in (C) p = 0.79, p = 0.36, and p = 0.002
for 1x, 2x, and 4x shifts, respectively.

series, the start and end regions may become less dense as fewer
subjects have early and/or late samples. To account for this,
the “test_density = n” argument sets the minimum number of
participants required in each group to perform and report a
p-value (default = 3). The output from this function is a table
containing a p-value for each time interval, summarized by the
companion plotting function where intervals at which the groups
significantly diverge are visualized, and the points are scaled
according to the data density—larger circles on the plot mean
more data were used to calculate the p-value at that interval than
for smaller circles.

Trendyspliner
While testing for association between a categorical variable and
a longitudinal variable is straightforward using regressions and
correlations, methods for quickly testing whether a response
is increasing or decreasing over time are less established. The
trendyspliner function tests whether a set of responses in one
group changes in a non-zero direction over the time series (or
other continuous independent axis). A spline is fit to the data
and interpolated across the number of set intervals. Non-zero
change is measured as the area between the group spline and a
linear baseline that is established from the start point of the group

spline. Thus, if the pattern of observations does not meaningfully
increase or decrease over time, the spline will not diverge
from the baseline and the areas will remain small. To generate
the null distribution, the time series within each individual is
then permuted, and the spline is recalculated along with the
area to the permuted baseline. The permutation is repeatedly
executed to generate a random distribution of areas from
which the two-sided p-value is calculated by comparison to the
observed value. In some biological measurements, individuals’
initial values may be variable (e.g., body weight, height). To
normalize these differences and improve the ability to detect an
increase or decrease in these situations, the user can elect to
“mean_center” the observations before calculations, which shifts
each individuals’ mean over time to the group mean from all
individuals. As in the other modes, a plotting function allows the
user to visualize the permuted splines in the context of the real
data.

User Customization
In each of the above functions, the user can alter several
additional parameters for specific applications. These include
the spline span parameter, a standard spline parameter that
determines how large the local smoothing neighborhood is, and
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therefore the degree of smoothing; the number of permutations,
which influences the sensitivity of the test and p-value, as more
permutations will allow a lower p-value to be detected but will
also increase run time (default is 999 permutations); and the
number of intervals over which to divide the data (larger values
also increase run time and memory but provide finer resolution
and more precise comparisons). These arguments allow flexibility
for more advanced users with particular needs and unique data
shapes.

Package Implementation
The splinectomeR code was written in R version 3.4.0, and the
package was built in RStudio using devtools and roxygen2 to
generate and populate the package documentation (Wickham
and Chang, 2017; Wickham et al., 2017). SplinectomeR is open-
source and freely available on GitHub at https://github.com/
RRShieldsCutler/splinectomeR. The figures generated by the
secondary plotting functions are ggplot2 objects and can be saved
in most image formats at a size and resolution specified by
the user (e.g., through base R drivers or the “ggsave” function)
(Wickham, 2009).

EXAMPLE ANALYSIS

To demonstrate how splinectomeR detects group changes over
a time series, we first generated a simulated data set. The
response variable was perturbed at one or two regions of the
time series, and at three magnitudes of change (Figures 1B,C).
A linear model is a poor fit to these data shapes, and testing
for absolute change from beginning to end is not sensitive to
the internal dynamics. However, splinectomeR uses the entire
dataset to compare between the baseline and perturbed data.
As the magnitude of change increases, the permuspliner test
yields decreasing p-values as expected in both the single region
(p = 0.3, p = 0.005, p = 0.001 for 1x, 2x, and 4x shifts, respectively;
Figure 1B) and double region perturbations (p = 0.79, p = 0.36,
p = 0.002 for 1x, 2x, and 4x shifts, respectively; Figure 1C).
Non-linear changes of this sort during a time series may be of
great biological interest, although their statistical significance is
difficult to test with existing tools.

Freely available datasets were used to test and further
demonstrate the splinectomeR functions, as documented in
the package vignettes that are available to view online in
HTML format at https://rrshieldscutler.github.io/splinectomeR/.
A proof-of-concept analysis was performed on the ChickWeights
dataset in the R “datasets” package, and is available as a vignette
on the website. To demonstrate splinectomeR’s utility on a more
complex dataset, we used the publicly available OTU tables and
associated metadata from a published longitudinal study of infant
microbiomes by Yassour et al. (2016).

Analysis of Longitudinal Microbiome
Data
We tested splinectomeR’s utility on the taxonomic and metadata
profiles from Yassour et al. (2016), to evaluate whether we
could statistically support patterns described by the authors and

investigate novel hypotheses. A more extensive analysis including
all code used for data formatting is available as an online vignette
and as Supplemental Data File 2.

In several figures in the original publication, the authors
draw visual comparisons between taxon abundances in antibiotic
exposed versus non-exposed infants. These stream plots are
powerful in displaying the inter-individual diversity and inspired
us to use splinectomeR to perform statistical hypothesis testing
on the time series data for differences between the infant
groups. SplinectomeR’s permuspliner function can test whether
a taxon’s abundance pattern over time is significantly different
between antibiotic-exposed and non-exposed infants. We used
splinectomeR to calculate that the difference in Bacteroidaceae
abundance is not statistically significant across the overall time
series (p = 0.28). The permutated differences support this
conclusion, as the output shows in Figure 2A. However, the
results indicate that the groups may be diverging toward the end
of the time series, as the observed distance is higher relative to
most of the permuted values. We tested this with the sliding
spliner function, which generates a series of p-values across the
longitudinal scale. The results, as the function’s output plot shows
in Figure 2B, indeed show that there is a temporal pocket of
significance surrounding the 30-month time point. We were
also able to confirm the finding that the genus Bacteroides is
significantly different between vaginal and cesarean born infants
(p = 0.04), and that this difference is most pronounced in the first
year of life (see Supplemental Data File 2).

Because these tests are implemented as R functions,
they can be used programmatically for multiple hypothesis
testing, such as testing all dominant bacterial families for
significant differences between antibiotic exposure status. We
performed this test on the present dataset (see vignette for
full analysis), revealing that Porphyromonadaceae is the most
discriminatory family (p = 0.05). The built-in plotting function
(permuspliner.plot.permsplines) shows that antibiotic-exposed
infants do indeed develop a notably higher abundance of
Porphyromonadaceae (Figure 2C). The permuted splines lie
predominantly between the two observed curves, supporting the
conclusion that this difference is larger than expected by chance,
and this observation becomes greater over time. The distance plot
further supports this conclusion (Figure 2D), showing that initial
distances are not greater than chance but become significant after
approximately 12 months of age.

In their published analysis, the authors found a significant
difference in abundance of the butyrate-producing Clostridium
groups IV and XIV by antibiotic status at the final time
point (36 months). Given butyrate’s important roles in gut
homeostasis (e.g., Pryde et al., 2002; Ridaura et al., 2013;
Zhang et al., 2016), it is worth investigating whether this
difference exists over the infants’ first 3 years of development,
or is just established at 36 months. To test this, we used the
permuspliner function on a summarized table containing the
following putatively butyrate-producing genera from Clostridium
groups IV and XIV present in the OTU table: Clostridium,
Coprococcus, Dorea, Lachnospira, Roseburia, Ruminococcus, and
Faecalibacterium (Louis and Flint, 2009; Lopetuso et al., 2013;
Van den Abbeele et al., 2013). When all of the longitudinal
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FIGURE 2 | Permuted spline tests for statistical significance in longitudinal microbiome data. (A) The permuspliner output plot shows that the difference between
Bacteroidaceae abundance between antibiotic exposed and non-exposed infants (distance between group splines shown as red line) is not significantly greater than
95% of the permuted values shown in translucent black. (B) The plot output of the sliding spliner function shows the p-value at each specified interval (shown with
default 100 intervals) derived from the distribution of points from individuals’ smoothed splines. Dotted line indicates p = 0.05. The number of infants with data at a
given interval is used to scale the data point size, as some entered and exited the study later or earlier, respectively. (C) Porphyromonadaceae abundance over time
distinguishes antibiotic exposed (group spline in blue) and non-exposed infants (group spline in red; 999 permutations, p = 0.053). (D) Group distance plot, as in (A),
for the Porphyromonadaceae comparison, showing that permuted splines support a trend toward a greater true statistical difference after 12 months of life.

FIGURE 3 | Complete time series analysis highlights a significant and temporally maintained deficiency in butyrate-producing Clostridiales among infants exposed to
antibiotics. (A) Results plot generated by the permuspliner test, showing enriched abundance of Clostridium groups IV and XIV in infants not exposed to antibiotics
(Abx–, red line). (B) Corresponding distance plot output, showing that the observed difference between the groups exceeds the random permuted distribution
997/1000 times, which supports the statistically significant finding (p = 0.003).
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FIGURE 4 | Alpha diversity increases over time but is not different between antibiotic exposure groups. (A) Output plot from the permuspliner test showing that
Shannon diversity is not significantly different in infants exposed to antibiotics (Abx+, blue) compared to those who were not (Abx–, red), p = 0.96. (B) The results
plot from the trendyspliner function shows that the permuted data form a zero-change distribution from which the real data (red line) is significantly distinct
(p = 0.001). This supports the hypothesis that alpha diversity increases over time in the first 3 years of the infants’ lives.

data are included in this comparison, we find that antibiotic
exposed infants do indeed have significantly lower Clostridium
group IV/XIV abundance compared to non-exposed infants over
time (Figure 3A). Notably, our test using the entire 36-month
time series yields a lower p-value than that reported using just
the 36 month data: p = 0.003 vs. p = 0.037, respectively, and
the resulting plot suggests that the most divergent time point
is near 1 year of age (Figures 3A,B). This demonstrates the
utility and simplicity of the splinectomeR tests; we are able to
directly include 3 years of observations, strengthen support for
this finding, and suggest directions for new hypotheses.

To test and demonstrate the third function in the
splinectomeR package, we hypothesized that the infants’
alpha diversity would significantly increase over time. We can
use the permuspliner test to show that the alpha diversity is
highly similar between the antibiotic (p = 0.92) and birth mode
(p = 0.98) groups, but to statistically test whether it changes over
time, we used the trendyspliner function. As shown in Figure 4,
the randomly permuted splines generate a linear and zero-slope
distribution, while the observed spline increases steadily over the
time series, confirming our hypothesis that infant microbiome
alpha diversity increases over time (p = 0.01). In this case, the
trend is evident and expected; many biological datasets, however,
have slight trends that are hard to interpret, in which case the
trendyspliner test provides a straightforward permutation-based
statistical test to confirm whether the deviation is greater than
expected from chance.

Summary
Yassour et al. (2016) present a prodigious dataset with dense
longitudinal data that details the human gut microbiome’s
complex dynamics over the first 3 years of life. The approaches
presented above provide statistical support for observations and
conclusions the authors reported, and allow us to test and develop
additional hypotheses from the dataset. Researchers analyzing
new longitudinal microbiome data with multiple samples per

subject may benefit from these analytical capabilities provided by
splinectomeR.

DISCUSSION

Longitudinal studies hold great promise for understanding the
effects of interventions and environmental stimuli in the context
of a naturally variable population. Analysis of these complex
data has been impeded by a lack of clear, simple methods for
directly comparing observations across multiple individuals and
many time points without averaging or summarizing across
time points. As we have demonstrated here using a large-
scale longitudinal microbiome study, the splinectomeR package
performs straightforward tests that are easy to interpret and will
allow researchers to test important hypotheses from within R or
a command line interface.

The approaches here are not without limitations; reliance
on the loess spline means that the tests may be impacted by
outliers, particularly in sparse datasets. User-definable arguments
for sparseness cut offs and spline resolution (the smoothing
parameter or spar) can help minimize these effects. Additionally,
the size of longitudinal studies mean that the tests with many
permutations can be slow to complete, though still easily
performed on a standard workstation running R. From a
standard metadata table, splinectomeR tests are run with a single
command in R or on the command line. We provide the user with
interpretable results in the form of pre-formatted plots that can
be saved at publication quality and re-generated from the results
object stored by the function.

CONCLUSION

In summary, we have shown how a new open-source R
package, splinectomeR, can quickly assess statistical significance
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in large longitudinal microbiome studies by summarizing
longitudinal group data with splines and using randomly
permuted distributions to evaluate the probability that the
observed magnitude of differences between groups, or of trends
over time, is due to chance. By providing three distinct types of
hypothesis tests, we can explore overall changes in abundances
or other biological measures, and compare longitudinal trends
between groups of interest. Altogether, we are able to perform
these tests in a way that takes full advantage of longitudinal
data and maintains individual observations, thus leveraging all
possible data points. Longitudinal studies generating “big data”
with multi-omics approaches are now commonplace, but we lack
appropriate tools to interpret these data. We offer splinectomeR
as an open-source solution to testing key hypotheses in complex
longitudinal data. SplinectomeR may also simplify analysis for
longitudinal studies beyond the microbiome research field.
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Identification of the majority of organisms present in human-associated microbial

communities is feasible with the advent of high throughput sequencing technology. As

substantial variability in microbiota communities is seen across subjects, the use of

longitudinal study designs is important to better understand variation of the microbiome

within individual subjects. Complex study designs with longitudinal sample collection

require analytic approaches to account for this additional source of variability. A common

approach to assessing community changes is to evaluate the change in alpha diversity

(the variety and abundance of organisms in a community) over time. However, there

are several commonly used alpha diversity measures and the use of different measures

can result in different estimates of magnitude of change and different inferences. It

has recently been proposed that diversity profile curves are useful for clarifying these

differences, and may provide a more complete picture of the community structure.

However, it is unclear how to utilize these curves when interest is in evaluating changes

in community structure over time. We propose the use of a bi-exponential function in

a longitudinal model that accounts for repeated measures on each subject to compare

diversity profiles over time. Furthermore, it is possible that no change in alpha diversity

(single community/sample) may be observed despite the presence of a highly divergent

community composition. Thus, it is also important to use a beta diversity measure

(similarity between multiple communities/samples) that captures changes in community

composition. Ecological methods developed to evaluate temporal turnover have currently

only been applied to investigate changes of a single community over time. We illustrate

the extension of this approach to multiple communities of interest (i.e., subjects) by

modeling the beta diversity measure over time. With this approach, a rate of change in

community composition is estimated. There is a need for the extension and development

of analytic methods for longitudinal microbiota studies. In this paper, we discuss different

approaches to model alpha and beta diversity indices in longitudinal microbiota studies

and provide both a review of current approaches and a proposal for new methods.

Keywords: microbiome, Hill’s numbers, repeated measures, alpha diversity, beta diversity, Shannon index, mixed

model

144

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01037
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01037&domain=pdf&date_stamp=2018-05-22
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:brandie.wagner@ucdenver.edu
https://doi.org/10.3389/fmicb.2018.01037
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01037/full
http://loop.frontiersin.org/people/427773/overview
http://loop.frontiersin.org/people/541222/overview


Wagner et al. Diversity Measures in Longitudinal Studies

INTRODUCTION

Identification of the majority of organisms present in human-
associated microbial communities is now feasible with the
advent of high throughput sequencing technology. Several
studies have shown large subject-to-subject variability (Flores
et al., 2014) as well as many different factors thatmight contribute
to variability in microbiome studies, i.e., diet, region, exposure,
genetics, etc. Given the highly personalized microbiome, valuable
information is likely to come from studies following subjects over
time. The use of longitudinal study designs is important to better
understand the contribution of the microbiome to human health
(Flores et al., 2014). Complex study designs with longitudinal
sample collection require analytic approaches to account for this
additional source of variability, and to allow examination of
changes within subjects.

Extension and development of analytic methods are needed
for longitudinal microbiota studies (Gerber, 2014). Current
approaches include extending models applied to individual
taxa to address repeated measures over time (Chen and Li,
2016; Fang et al., 2016; Wagner et al., 2017) but not much
attention has been given to discussion and extension of
ecological community indices, which are useful for describing
the community biodiversity. Themajority of analyticmethods for
these measures were developed for studying one community over
time in the field of ecology. This paper, therefore, focuses on the
application and development of methods for diversity indices in
order to model multiple communities (i.e., subjects) over time.

Several measures of diversity have been widely applied to
microbiota data. The selection of a diversity measure is important
as the inferences made can differ widely depending on the
measure chosen (Jost, 2006; Ellison, 2010; Tuomisto, 2010a,b;
Jurasinski and Koch, 2011; Moreno and Rodriguez, 2011;
Tuomisto, 2011) and several analyses include multiple measures
which makes consolidating the results challenging. For alpha
diversity, the calculation and comparison of diversity curves
(Renyi, 1961; Whittaker, 1972; Hill, 1973; Carranza et al., 2007;
Studeny et al., 2011; Gotelli and Chao, 2013) has been proposed,
which alleviates the need to choose a single diversity index. These
curves provide a useful visualization but there currently is no
method available to make inferences about the changing shape
of the curves over time.

Furthermore, it is possible that no change in alpha diversity
(single community/sample) may be observed despite the
presence of a highly divergent community composition. Thus,
it is also important to use a beta diversity measure (similarity
between multiple communities/samples) that captures changes
in community composition. Ecological methods developed to
evaluate temporal turnover have currently only been applied to
investigate changes of a single community over time (Collins
et al., 2000; Korhonen et al., 2010; Yuan et al., 2016; Lewthwaite
et al., 2017). In order to evaluate changes over time in multiple
communities (i.e., subjects), an extension to a hierarchical model
is needed.

In this paper, we discuss different approaches to model
diversity indices in longitudinal microbiota studies. All
approaches are illustrated using a motivating example described

in section Description of Motivating Example. In section Single
Alpha Diversity Index, a linear mixed model (also called a
hierarchical model) is used to separately model three alpha
diversity measures over time and the results are compared
across measures. The recently proposed alpha diversity curves
are explained in section Alpha Diversity Curves and we
develop a hierarchical model approach to analyze these curves
longitudinally with a non-linear mixed model. In section Beta
Diversity, a description of how to model beta diversity in
longitudinal studies is provided. This work provides both a
review of current approaches and presents newly developed
methods.

DESCRIPTION OF MOTIVATING EXAMPLE

The motivating example used throughout this paper is a
prospective study of 50 subjects aged 10–22 years with cystic
fibrosis (CF) and admitted for intravenous (IV) antibiotic therapy
for a pulmonary exacerbation (Pex). All subjects were treated
following standard clinical guidelines, at the discretion of their
physician. Study evaluation and specimen collection occurred
at three times, hospital admission (day 0–2; Beg Pex), hospital
discharge (day 6–21; End Pex), and a clinical follow-up visit
post-exacerbation (within 30 days of completing IV antibiotic
treatment; Post Pex). A total of 123 sputum samples were
collected and frozen prior to analysis: 31 subjects provided
samples at all three times, 12 subjects missed 1 sample collection,
and 7 subjects missed 2 sample collections. All models used for
the analysis of this dataset assume data are missing at random.
Written informed consent was obtained from all patients aged
18 years or older and from parents/legal guardians for patients
under 18 years of age, and assent was obtained from patients aged
10–17 years. The study was approved by the Colorado Multiple
Institutional Review Board (COMIRB #07-0365).

Bacterial profiles were determined by broad-range
amplification and sequence analysis of 16S rDNA following
previously described methods and validated in prior publications
(Hara et al., 2012; Markle et al., 2013; Zemanick et al., 2017).
Quality control procedures were performed on paired-end
sequences (Zemanick et al., 2017). Assembled sequences were
aligned and classified at the lowest taxonomic level with SINA
version 1.2.11 (Pruesse et al., 2012) using the SILVA111 database
(Quast et al., 2013) as reference configured to yield the SILVA
taxonomy (www.arb-silva.de). Sorted paired-end sequence
data were deposited in the National Center for Biotechnology
Information Sequence Read Archive (www.ncbi.nlm.nih.gov/sra)
under accession number SRP143768. Operational taxonomic
units (OTUs) were produced by clustering sequences with
identical taxonomic assignments (generally genus level groups).
This process generated 20,183,481 sequences for 361 samples
(average sequence length: 316 nt; average sample size: 83,722
sequences/sample; minimum sample size: 2,188; maximum
sample size: 422,831). The median Goods coverage score was ≥
99.25% at the rarefaction point of 2,188 (the minimum number
of sequences for all samples). The software package Explicet
version 2.10.5 (www.explicet.org) (Robertson et al., 2013) was
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used for calculation of diversity indices at the rarefaction point.
Taxonomic data utilized in this analysis have been included as
Supplementary Material and represent a subset of data from
the parent study (excluding saliva samples and samples from
repeated Pex events).

SINGLE ALPHA DIVERSITY INDEX

Diversity, defined as the description of “the variety and
abundance of species in a defined unit of study,” (Magurran,
2004) is a measure often used to describe the complexity of
a community. Several measures of diversity have been widely
applied to microbiota data and have been used previously as
outcomes in longitudinal models (Gajer et al., 2012; Flores et al.,
2014; Wagner et al., 2017). In this section we similarly apply
linear mixed models to three diversity measures over time. These
results serve as a useful comparator for the remaining sections of
this paper.

Differences in Weights for Evenness and
Richness Components Across Measures
Explain Differences in Results
Diversity indices applied to microbiota data consist of differing
weights of two components, richness and evenness (Jost, 2006).
Richness is a count of the number of different taxa observed in
the community without regard to their frequencies, and evenness
refers to the equitability of the taxa frequencies in a community.
Three commonly used alpha diversity measures include species
observed, Shannon index and Simpson index:

S
(

obs
)

=
∑

k
I
(

pk > 0
)

Shannon = −
∑

k
pk ln

(

pk
)

Simpson =
∑

k
p2k,

where p is some function of frequency, often relative abundance
(proportion of total sequences) for each taxon, k.

Species observed is equal to richness and therefore provides
no weight to the evenness component, Shannon index equally
weights richness and evenness and Simpson index provides more
weight to evenness (Jost, 2006). Moreover, the units are different
across the measures, species observed is a count, Shannon index
contains a logarithmic value and Simpson index is a sum of
squared proportions. These differences in weighting and units
explain differences often observed in results from each measure.

Motivating Example
Species observed, Shannon diversity index and Simpson
diversity, as well as the corresponding evenness components,
were separately modeled over time in CF patients during a Pex
using a linear mixed model that included a random subject
intercept with SAS PROC MIXED software. All three diversity
measures show a decrease at the end of the Pex (hospital
discharge), followed by an increase at follow-up, although
measures still remained lower at follow-up than at the beginning
of the Pex (Figure 1). Despite this agreement in general trends,

the pairwise comparisons of times differ across the measures.
The means at each time (Table 1) differed significantly across all
three times for species observed and Shannon index (p < 0.01),
but Simpson diversity differed only marginally across times
(p= 0.07). Neither of the evenness measures change significantly
over time.

Issues of Numerous Measures
Although the concept of diversity is rather straightforward, its
application can be complicated for several reasons: (1) there
are numerous commonly used diversity indices which can
yield different results; (2) the nomenclature currently in use
to describe diversity is complex and confusing; (3) partitioning
diversity into components, such as richness and evenness, may
be useful, but varies depending on the diversity measure; and (4)
the application to sequence data is complicated by incomplete
sampling, i.e., not all bacterial sequences may be measured due
to differences in sequencing depth. These issues result in debates
and general confusion over which diversity measure to use,
misinterpretation of results, and an inability to compare results
across studies.

Often these indices are incorrectly treated as interchangeable
measures of the same characteristic without consideration of
the variations in the mathematical properties of each diversity
index. The measurement of diversity has been discussed in the
ecological literature (Jost, 2006; Ellison, 2010; Jurasinski and
Koch, 2011; Moreno and Rodriguez, 2011; Tuomisto, 2011) and
there has been an acknowledgement within the field that more
rigor is needed. One approach is the calculation and comparison
of diversity curves (Renyi, 1961; Whittaker, 1972; Hill, 1973;
Carranza et al., 2007; Studeny et al., 2011; Gotelli and Chao,
2013) which provides information across multiple weights of the
components of richness and evenness and alleviates the need to
choose a single diversity index.

ALPHA DIVERSITY CURVES

The computational formula for diversity curves is

D(q) =
(

∑K

k=1
pk

q
)

1
1−q

,

where D is most commonly calculated for q = 0, 1, 2 and
p is some function of frequency, often relative abundance
(proportion of total sequences) for each taxon, k, when applied
to sequencing data. D is undefined for q = 1, so the limit as q
approaches 1 is used instead.

In this equation, the order, q, determines how much weight
is given to abundant vs. rare taxa (evenness). Species observed
(q = 0) weights rare taxa more heavily since the abundance of
each taxon is not considered. Conversely with diversity of orders
> 1 (e.g., Simpson q = 2), more weight is given to the more
abundant species. Only when q = 1 [Shannon index, specifically
exp(Shannon index)] are the rare and abundant species equally
weighted (Jost, 2006).

A plot of D vs. varying values of q can provide a more
complete way to convey diversity of a community compared
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FIGURE 1 | Comparison of alpha diversity over time. Species observed (A) shows a decrease in values after completion of IV antibiotic treatments that increase at

follow-up. A similar pattern is observed for the Shannon and Simpson diversity indices (B,C, respectively) but the magnitude of change differs for each index.

to using a single measure (Tothmeresz, 1995; Carranza et al.,
2007; Lozupone et al., 2007; Studeny et al., 2011; Gotelli and
Chao, 2013; Buckland et al., 2017). For instance, the shape of
the curve conveys the evenness of a community. A perfectly even
community is represented by a horizontal line (D does not change
as q increases) and a highly uneven community is represented by
a curve with an initial steep descent as q increases, see https://
wagnerbd.shinyapps.io/Frontiers/ (snapshots from the shiny app
displayed in Supplementary Figure 1).

Characterization of Diversity Curves Using
Bi-Exponential Function
Although visual inspection of diversity curves may identify
potential changes in their shape, it is not clear how to make
inferences about whether these differences are meaningful. In
this section, we propose a method to characterize a sequence of
diversity curves using a bi-exponential function.

The D values, alternatively referred to as Hill’s numbers (Hill,
1973), are related to the Renyi entropies

(

H(q)

)

(Renyi, 1961) as

D(q) =

(

K
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pk
q

)

1
1−q

= e

H(q)

where Renyi entropies are H(q) =
1

1−q ln
(

∑K
k=1 pk

q
)

Suppose taxa can be divided roughly into two groups, rare and
non-rare, based on abundance p, and let k = 1, ..K1 for rare taxa

with abundance p1 and k = K1 + 1, ..,K for non-rare taxa with
abundance p2. Then
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1
1−q
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q
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where K1 + K2 = K and since eln(x) = x

≈
(

K1e
q∗ ln(p1) + K2e

q∗ ln(p2)
)

1
1−q

which is now in the form of a bi-exponential function. We can
re-parameterize such that

θ1 = − ln(p1),

θ2 = − ln(p2),

θ3 =
K1

K1 + K2
, and

θ4 = K1 + K2 then

D(q) =
(

θ3θ4e
qθ1 + (1− θ3)θ4e

qθ2
)

1
1−q

where θ4 is the total number of taxa in the sample, θ3 is the
proportion of rare taxa with a fast rate of decline θ1 for increasing
q and θ2 is the slow rate of decline in the curve for the 1 − θ3
proportion of non-rare taxa.
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TABLE 1 | Comparison of common alpha diversity measures at three time points: Beg Pex, End Pex, and a follow-up visit post-Pex.

Species observed Shannon Evenness Shannon Simpson Evenness Simpson

Means (SE) Beg Pex 26.0 (1.3) 0.46 (0.02) 2.13 (0.12) 0.026 (0.002) 0.62 (0.03)

End Pex 19.0 (1.3) 0.40 (0.02) 1.70 (0.12) 0.029 (0.002) 0.53 (0.03)

post-Pex 23.1 (1.4) 0.46 (0.02) 2.07 (0.12) 0.028 (0.002) 0.62 (0.03)

P-values Across all times <0.01 0.09 0.01 0.40 0.07

Beg vs End <0.01 0.06 <0.01 0.19 0.04

Beg vs post-Pex 0.10 0.89 0.69 0.27 0.90

End vs post-Pex 0.02 0.05 0.02 0.69 0.06

P-values < 0.05 are indicated in bold.

Development of a Hierarchical Model
In order to make inferences in the changing shape of the curves
over time, we propose a longitudinal model to simultaneously
estimate the parameters describing the change in the diversity
curves over time. To further simplify the model, we will replace
the θ4 parameter with the observed number of taxa and drop the
1/(1-q) exponent. Let

θijm = αjm + sim

D(q)ij = Kijθij3e
qθij1 + Kij(1− θij3)e

qθij2 + eij

where m = {1, 2, 3} indexes the θ parameters for the bi-
exponential, i = 1, .., n indexes subjects, j = 1, 2, 3 indexes time,
αjm is the estimated mean for parameter m at time j, eij ∼

N(0, σ 2) is a random error, and sim is a random subject intercept,

sim ∼ N
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Motivating Example for Alpha Diversity
Curves
A non-linear mixed model was estimated by maximum
likelihood using SAS PROC NLMIXED. Diversity curves were
calculated for each sample and are presented graphically for
each subject at each time (Figure 2A). The fitted curves follow
points indicating good fit. All curves have similar shape and show
curvature indicating that the bacterial communities of all samples
are relatively uneven (a flatter curve would indicate a more even
community). The curves appear to exhibit steeper decline from
beginning of the Pex (Beg Pex) to the follow-up visit (post Pex)
for the majority of subjects.

The mean curves at each time from the longitudinal model
indicate that D(0) (species observed, i.e., richness) was highest
at the beginning of the pulmonary exacerbation and decreased
thereafter (Figure 2B). The curve for the end of the pulmonary
exacerbation (End Pex) is more uneven (steeper decline)
compared to the other two times. The parameter estimates
provided in Table 2 correspond to visual observations related
to the change in shape in both the individual curves and
the mean curves, but in addition provide quantification and
the ability to make inference on the change in the shape
of the curves over time. Estimated θ1 at End Pex is largest,

corresponding to the visually steepest decline, θ2 estimates
increase over time resulting in lower diversity at the Post
Pex time associated with the more dominant taxa, and θ3
estimates from the hierarchical model indicate a significant
shift toward a lower proportion of rare taxa over time
(Table 2).

The shapes of the diversity curves differ (Figure 2B) which
explains the discrepancies in comparing the diversity indices
that were observed earlier (Table 1). In addition, using the
individual indices conveys no information about evenness
without calculating an evenness measure separately. Although
separate models evaluating changes in diversity, evenness and
richness are easily obtained, there is a different evenness measure
corresponding to each diversity measure and therefore this
approach suffers from the same issue of multiple measures that
may provide different answers depending on how much weight
is given to rare taxa. Advantageously, diversity curves provide
information about the change in the evenness of the communities
over time in a singlemodel. These characteristics can be evaluated
and compared numerically with the longitudinal model that
allows estimation of trends in the four parameters from the bi-
exponential distribution and additional estimates of non-linear
functions of these parameters. Application of the hierarchical
model to the parameters from the bi-exponential distribution
represents a novel approach to evaluating changes in the diversity
curves over time.

BETA DIVERSITY

In addition to partitioning diversity into independent
components describing evenness and richness, we can also
partition diversity by collections of samples. Whereas, the
diversity associated with a single sample is referred to as a local
(alpha) component, the diversity of the collection of samples
is referred to as the regional (gamma) component and the
relationship between these two is referred to as beta diversity
(Legendre and Legendre, 1998). Previously, an alpha diversity
measure was calculated for each sample α(xij), here, a beta
diversity index is calculated for each pair of samples β(xij, xij′ ),
and represents either a similarity or a distance between the two
samples.

Changes in alpha diversity over time can be useful for
evaluating the change in the community structure over time as
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FIGURE 2 | Diversity curves from each sample, where the points correspond to D values from the Hill’s numbers (y-axis) plotted vs. the q values (x-axis). The

corresponding bi-exponential distribution fits are displayed using lines for each time point separately (A). The average diversity curves at each time estimated from the

joint longitudinal model are displayed in panel (B).

TABLE 2 | Parameter estimates from nonlinear mixed model at three time points:

Beg Pex, End Pex, and a follow-up visit post-Pex.

Est (95% CI) Beg Pex End Pex post-Pex

θ1 3.65 (2.97–4.33) 3.87 (3.19–4.55) 3.70 (3.02–4.38)

θ2 1.48 (0.90–2.06) 1.63 (1.05–2.21) 1.64 (1.06–2.22)

θ3 0.82 (0.72–0.91) 0.79 (0.69–0.90) 0.62 (0.47–0.77)

previously discussed. However, these measures do not convey
any information about changes in the community composition
(Yuan et al., 2016; Buckland et al., 2017), for example, a
community can experience a complete shift in composition,
where no taxa are shared, but can still have similar alpha
diversity measures, i.e., similar number and abundance of taxa.
An important addition to evaluating amicrobial community over
time in any longitudinal analysis is the incorporation of beta
diversity.

As with the alpha diversity measures, there are several possible
beta diversity indices that one could use, some of the most
popular in microbiome studies include Jaccard, Bray-Curtis,
Morisita-Horn and Sorenson. Similar to the earlier discussion
of alpha diversity measures, differing results are obtained across
beta diversity indices, again due to differences in weighting of
the components (Tuomisto, 2010a,b). The calculation of beta
diversity indices for all combinations of pairs of samples results in
a distance matrix that is often used for ordination (e.g., principal
coordinates analysis) and data exploration in microbiota data
analysis. Several methods are available for analysis of the full
distance matrix (correspondence analysis, redundancy analysis,
Mantel test, etc.) (Tuomisto and Ruokolainen, 2006). We focus
here on regression based methods that allow for inference at
the subject level in a longitudinal design, i.e., studying changes
over time within a subject. The implication of this focus is
that not all values in the distance matrix are of interest,

only those that are comparisons of samples collected within a
subject.

Pairwise Comparison of Consecutively
Collected Samples
In order to evaluate beta diversity indices at the subject level and
compare values over time or across groups, specific values from
the full distance or similarity matrix are selected for analysis.
In the case of longitudinal studies, we are most interested
in evaluating changes in the community over time within a
subject and can therefore select the distance measures between
samples collected on the same subject β(xij, xij′ ). One approach
that has been used is to calculate the mean or median beta
diversity value for each subject and use this as an outcome
(Gajer et al., 2012). Here we instead use the beta diversity values
from consecutively collected samples within the same subject
β(xij, xij+1) as outcomes in a second stage generalized linear
mixed model.

Community Turnover
A recently proposed approach in the ecological literature is to
use beta diversity indices to evaluate temporal turnover (Collins
et al., 2000; Shimadzu et al., 2015). Here, the beta diversity indices
are regressed on a time lag variable using a time series model.
With this approach, all pairwise indices comparing samples
within a subject are used β(xij, xij′ ) (not simply the indices
from consecutive samples as above) and a rate of change in
composition is estimated. The proposed approach has been useful
for assessing turnover in a single community over time (Collins
et al., 2000; Korhonen et al., 2010; Yuan et al., 2016; Lewthwaite
et al., 2017), but requires extension to a hierarchical model to
make inferences on groups of communities (i.e., subjects in our
motivating example). We suggest the use of a similar model
to that used for the indices of consecutive samples and simply
replace the single independent time variable with one denoting
all pairs (Wagner et al., 2017).
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Shannon Beta
Another useful measure that has been proposed in the ecological
literature (Marcon et al., 2012, 2014) and applied to microbiota
data (Zemanick et al., 2015) is the Shannon Beta index.
This measure can be decomposed into multiple alpha and
beta components even when community weights are unequal
(Tuomisto, 2010a,b; Marcon et al., 2012). Thus, in addition
to being widely used in other disciplines, its well-understood
mathematical properties and underlying theory make Shannon
Beta a useful measure overall.

This approach extends the beta diversity measure to apply
to a collection of samples rather than just for pair-wise
comparisons β(xij, xij′ , xij′′ , ..). For our example, Shannon Beta
(Hβi ) is calculated as

Hβi =
∑

j

cij

ci++

∑

k

cijk

cij+
ln





cijk
cij+
ci+k
c+++





where cijk is the sequence count for subject i, from time j and
taxon k, the + in the subscript denotes the summation of the
counts over the specified indicator.

For ease of clinical interpretation, Shannon Beta is expressed
as a Hill’s number which indicates the effective number of
communities represented by the collection of samples or the
number of distinct communities. This measure is dependent
on the number of samples from which it was calculated, and
ranges from 1 to 3 in our motivating example. A normalizing
transformation was used to rescale the Hill’s numbers to allow
comparison across subjects with differences in the number of
collected samples (Chao et al., 2010).

Hni =
Hβi − 1

ji − 1

where ji is the number of samples for subject i.

Motivating Example for Beta Diversity
Morisita-Horn (MH, Beta-diversity) values for pairwise samples
j and j′ within each subject i were calculated as follows

Morisita Horn(xij, xij′ ) = 2
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MH was compared over time using a log-normal model and
included a random subject effect. MH in this example is a
similarity measure bound between 0 and 1. Values closer to 1
indicate the pair of samples are more similar. MH values, on
average, are similar for the two consecutive sample pairs (Beg
vs. End Pex and End Pex vs. Follow-up), but individual subjects
have varying patterns (Figure 3A). Specifically, there are several
subjects with limited similarity between communities (MH for
both consecutive pairs is close to 0). The turnover analysis
was performed in two ways, first, time was defined using the
clinically meaningful states (Beg Pex, End Pex, and Post Pex)
and second, time was defined using the number of days between

when samples were collected. The latter approach is used for
illustrative purposes to better show the differences between the
consecutive and turnover analyses for this particular example
given the small number of samples collected per subject. The
turnover analysis using the clinically meaningful time points
(Figure 3B) reveals that the bacterial communities at Post Pex are
more similar to the communities at the Beg Pex than the other
comparisons (in this case the consecutive sample comparisons:
Beg vs. End Pex and End Pex vs. Post Pex). This indicates that the
communities are converging back to the original communities
observed at the beginning of the Pex after being perturbed
by antibiotics. This is also evident in those subjects with very
different communities between consecutively collected samples
but show a much higher degree of similarity between Beg Pex
and Post Pex. This same pattern is seen using the continuous
version of the time variable, where the average similarity
values increase with increasing time lag between pairs up to
approximately 45 days, after which the similarity declines over
time (Figure 3C). These figures also illustrate the large amount
of variability across subjects with varying patterns in change over
time. For both turnover analyses, there are individual subjects
whose communities remain stable (no change in similarity with
increasing time lag) and those whose communities indicate a
directional change (similarity decreases with increasing time
lag). A hierarchical model allows each subject’s trajectory to
deviate from the overall average, capturing this between subject
variability. It may be useful to further evaluate the estimated
individual subject trajectories by identifying subjects with specific
patterns of change over time or by identifying groups of subjects
with similar trajectories.

A single Beta diversity measure, Shannon Beta diversity, was
calculated for each subject to quantify the number of bacterial
communities represented. The median of the beta diversity
values after normalization was 0.15 and ranged from 0.04 to
0.75 (Figure 3D). Higher values indicate that more distinct
communities were observed for a subject, this value ranges from
0 to 3 (number of samples collected per subject). For the subset
of subjects with all three samples collected, the median of the
Hill’s beta diversity measure was 1.3 and ranged from 1.1 to
2.2 and 50% of the values were between 1.2 and 1.6 indicating
that the majority of subjects did not experience large shifts
in their bacterial communities across all three time points as
the number of distinct communities (i.e., Hill’s numbers) were
around 1.

Both alpha and beta diversity measures from a single example
subject are displayed in Figure 4. For this subject, the Shannon
diversity (q = 1) decreases for the second time point and
then increases at the third time point but remains below
the values observed at the first sample. The communities
are very uneven (include several rare taxa) and the diversity
curves cross each other indicating that different measures
would yield different results, especially for the second and
third samples which would differ with lower q values but
show similar community characteristics for larger values. The
bar charts display the composition of the three communities
and show that despite the second and third sample having
similar alpha diversity values, the communities are very different.
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FIGURE 3 | Comparison of MH beta diversity measures for the consecutively collected samples (A) and plotted vs. time lag (B). Each subjects value is plotted and

connected with lines and the means and 95% confidence intervals from the generalized linear models are plotted with dots and whiskers. The bottom panel displays

the MH beta diversity measures plotted over actual time between sample collection (C), individual subjects are indicated by the thin gray lines and the thicker blue line

indicates the average change. The distribution of the normalized Shannon Beta diversity measures for all subjects (D).

This information, however, is captured with the beta diversity
measures. The pairwise MH similarity values illustrate that
the samples collected consecutively differ, but that the first
sample and the third sample have similar compositions.
This indicates that after antibiotics this subject’s bacterial
community more closely resembled their starting community.
The Hill’s number for the Shannon beta measure indicates that
approximately 1.4 distinct communities are observed for this
subject.

The three different approaches to evaluating beta diversity
measures in longitudinal studies discussed here provide
additional information about changes in communities over time
that are not captured by simply modeling alpha diversity over
time. The pairwise measures are useful for identifying subjects
or times at which shifts in the community are observed and
the turnover analysis can yield insights into whether there are
consistent shifts with increasing time between sample collections.
The single measure (Shannon beta) calculated for each subject
can aid in identifying subjects with similar communities across
all the time points or those with large changes that suggest shifts
over time.

DISCUSSION

In this work, a discussion of methods for evaluating diversity
measures in longitudinal microbial data includes the commonly
used approach of modeling a single alpha diversity measure
over time. Modeling one alpha diversity measure over time
(e.g., species observed) could result in different inferences than
modeling a different alpha diversity measure (e.g., Simpson).
Diversity curves and their calculation were reviewed as a way
to alleviate the need to select a single measure; however,
until now, there has been no discussion of how to compare
curves over time quantitatively. We developed an approach
that utilizes a bi-exponential distribution to summarize each
curve and compare curves over time using a hierarchical model.
This represents a contribution to the field of microbiome data
analysis. Lastly, we discuss the additional information that is
gained by evaluating beta diversity measures to assess changes
in community composition over time and implement three
different approaches and discuss their differences.

Several measures of diversity have been widely applied to
microbiota data and have been used previously as outcomes
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FIGURE 4 | Diversity curves for an example subject (A) corresponding to the communities represented by the stacked barcharts (B). Taxa with a relative abundance

> 5% for any sample are displayed. The table shows the pairwise MH beta diversity values and the Shannon Beta for this subject.

in longitudinal models (Gajer et al., 2012; Flores et al., 2014;
Wagner et al., 2017). Often these indices are incorrectly treated
as interchangeable measures of the same characteristic, which
has caused debates and general confusion over which diversity
measure to use, misinterpretation of results, and an inability to
compare results across studies. Diversity curves incorporating
aspects of these different measures were promoted as a solution,
but until now have been used simply for visualization purposes
(Renyi, 1961; Whittaker, 1972; Hill, 1973; Carranza et al., 2007;
Studeny et al., 2011; Gotelli and Chao, 2013). We chose to model
the diversity curves proposed by Jost (2006) that have been
shown to equal several commonly used measures, although we
recognize that there are alternative complexity curves that have
been proposed (Rajaram and Castellani, 2016). The use of any
curve will require a model to be applied to capture the shape of
the curve to make inferences about changes over time.

An important addition to evaluating a microbial community
over time in any longitudinal analysis is the incorporation of beta
diversity, as these measures convey information about changes
in community composition. The majority of previous analyses
have concentrated on modeling turnover in a single community
(Collins et al., 2000; Korhonen et al., 2010; Yuan et al., 2016;
Lewthwaite et al., 2017). Two studies (Gajer et al., 2012; Wagner
et al., 2017) modeled beta diversity measures over time using a
hierarchical model similar to the model using beta diversity from
consecutive times discussed in this paper, but the descriptions
of the models were relegated to supplements. In this paper we
describe in detail the modeling approach and its interpretation.
Our example included the Morisita-Horn beta diversity measure,

selected because it is not influenced by richness and sequencing
effort (Magurran, 2004). However, various other beta diversity
measures including phylogenetic measures that account for
genetic similarity between taxa can be used (Gotelli and Chao,
2013) without loss of generality of the modeling approach.

The Shannon Beta index is another useful measure that has
been proposed in the ecological literature (Marcon et al., 2012,
2014) and applied to microbiota data (Zemanick et al., 2015).
This measure provides a single number denoting the similarity
across multiple communities and can be used to identify subjects
with small or large changes in their bacterial community. To
our knowledge, the Shannon Beta index has not been previously
applied to evaluate changes in bacterial communities within
a subject over time and thus our methods represent a novel
application of this measure to longitudinal microbiota data.

All of the methods discussed are illustrated and compared
using a motivating example in cystic fibrosis. The example
included a small number of repeated samples per subject
and samples corresponded to clinically meaningful time points
(hospital admission, hospital discharge, and a follow-up visit
post-exacerbation). For this reason, the models we employed
designated time as a categorical variable. These models are
flexible and could include time as a continuous variable
instead for studies with more longitudinal samples collected.
The separate models for alpha diversity indices indicated that
diversity decreased with administration of antibiotics mainly
driven by a decrease in richness. This pattern was also observed
in modeling the alpha diversity curves and provided the ability
to make inferences about the components of diversity (richness
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and evenness) without requiring a separate model for each
measure. Alpha diversity can provide information about changes
in community structure but does not provide any information
about changes in community composition, to address this, beta
diversity measures are needed. The majority of studies utilizing
beta diversity, use the measures to perform exploratory data
analysis with ordination plots. Here, we chose to focus on models
of beta diversity that can be used to test hypotheses about change
in community composition over time. We illustrated three
different approaches for modeling beta diversity. The first used
the beta diversity measure from consecutively collected samples,
and showed that the average MH was fairly large indicating
similar communities. However, there were subjects with a high
degree of dissimilarity between consecutive samples (MH values
close to 0), whereas the turnover analysis revealed that for these
subjects, there were large changes while on treatment but the
follow-up community reverted back to the baseline community
after being perturbed with antibiotics. Given the small number
of samples collected per person in the motivating example, this
pattern could have been discerned by evaluating beta diversity
for all three combinations of sample pairs, an example with more
samples per person or unbalanced collection (samples collected
at different times) might have greater benefit from the insight
gained from both analyses. The third approach provided a single
measure per subject that compares composition of all three
samples. This method does not provide information about trends
over time but it can be used to rank subjects based on whether
they had large changes or whether the three communities
were relatively similar. This information could be useful for
correlating with clinically important factors, like whether the
subject exhibited clinical improvement with treatment.

It was necessary to select specific approaches/indices to
include in this work. We recognize though that different
alternatives could have been chosen. Instead of providing
an exhaustive list and comparison of all methods, we chose
approaches that provided good examples of the concepts with

the understanding that the methods discussed generalize to
other measures; any beta diversity and any measure could be
used as the outcome in the models discussed. Future work
could incorporate the efforts to classify beta diversity measures
based on differences in weighting of the components (Tuomisto,
2010a,b) for application to longitudinal studies.

In summary, several approaches to analyzing diversity
measures in a longitudinal study were discussed and compared,
including a novel approach modeling longitudinal patterns
in alpha diversity curves over time. Given the importance
of repeated sampling of microbial communities, especially
in human studies, extension of methods appropriate for
longitudinal study designs are needed.
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The metagenomics sequencing data provide valuable resources for investigating the

associations between the microbiome and host environmental/clinical factors and

the dynamic changes of microbial abundance over time. The distinct properties

of microbiome measurements include varied total sequence reads across samples,

over-dispersion and zero-inflation. Additionally, microbiome studies usually collect

samples longitudinally, which introduces time-dependent and correlation structures

among the samples and thus further complicates the analysis and interpretation of

microbiome count data. In this article, we propose negative binomial mixed models

(NBMMs) for longitudinal microbiome studies. The proposed NBMMs can efficiently

handle over-dispersion and varying total reads, and can account for the dynamic trend

and correlation among longitudinal samples. We develop an efficient and stable algorithm

to fit the NBMMs. We evaluate and demonstrate the NBMMs method via extensive

simulation studies and application to a longitudinal microbiome data. The results show

that the proposed method has desirable properties and outperform the previously used

methods in terms of flexible framework for modeling correlation structures and detecting

dynamic effects. We have developed an R package NBZIMM to implement the proposed

method, which is freely available from the public GitHub repository http://github.com//

nyiuab//NBZIMM and provides a useful tool for analyzing longitudinal microbiome data.

Keywords: count data, longitudinal study, microbiome, metagenomics, negative binomial mixed model

INTRODUCTION

The human microbiome plays an important role in human health and disease. The complex
microbiome is inherently dynamic and interacts with the host and the environmental factors over
time (Gerber, 2014a). These complex dynamics start from the birth with increasingly richness in
the communities of microbiota over time (Palmer et al., 2007; Koenig et al., 2011; Wu et al., 2011;
De Muinck et al., 2013; Gerber, 2014a). Recent studies have found that the human microbiome
in healthy adults can be altered by various host factors including genotype (Spor et al., 2011;
Blekhman et al., 2015; Goodrich et al., 2016a,b), lifestyle such as dietary habit (De Filippo et al.,
2010; Wu et al., 2011), physiological status such as aging (Biagi et al., 2010), pathophysiological
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status (Turnbaugh et al., 2009), and host environment
(Dominguez-Bello et al., 2010). The dynamic shifts in
compositional features of the microbiome can occur with
human diseases such as obesity (Turnbaugh et al., 2006), diabetes
(Samuel and Gordon, 2006), infections or inflammatory bowel
disease (Frank et al., 2007), and cancers (Holmes et al., 2011).
To decipher the relationship between the dynamic changes in
microbiome and human diseases, high-throughput sequencing
technologies, such as the 16S ribosome RNA (rRNA) gene
sequencing or shotgun metagenomics sequencing, have been
widely applied in longitudinal microbiome studies (Matsen et al.,
2010; Ghodsi et al., 2011; Gilbert et al., 2011; La Rosa et al., 2014).

The metagenomics sequencing data provide valuable
resources for investigating the dynamic changes of microbial
abundance over time and the associations between the
microbiome and host environmental/clinical factors. Multiple
recent microbiome studies have employed the longitudinal
study designs to address the crucial research question (La Rosa
et al., 2014; DiGiulio et al., 2015; Zhou et al., 2015; Ward et al.,
2016). Among them, La Rosa et al. (2014) utilized longitudinal
analysis of repeated measures data to demonstrate that the
dynamic shifts in dominating microbiota of the infant gut
from Bacilli at birth, giving way to Gammaproteobacteria, then
Clostridia at the end of the first month of life. In another recent
published study, Ward et al. (2016) used longitudinal study to
address the associations between the dynamic change of the early
intestinal microbiome in preterm infants and the occurrence of
Necrotizing enterocolitis (NEC) or NEC-associated deaths.

Despite our ability to generate large-scale metagenomics
sequencing longitudinal data, many challenges exist in the
development of robust and powerful statistical methods and
computational tools for properly analyzing and interpreting
longitudinal microbiome data. The metagenomics sequencing
data has some properties that require tailored analytic tools;
these include varied total sequence reads across samples, over-
dispersion and zero-inflation. One common way to account
for varying total reads is normalization, i.e., conversion of the
sequence counts to the relative abundance (or proportion) using
the total sum, mean, or median of representative OTUs across
all samples (Anders and Huber, 2010; Robinson and Oshlack,
2010; Knights et al., 2011; Wagner et al., 2011; Kostic et al., 2012;
Paulson et al., 2013). Several zero-inflated models were proposed
to correct for excess zero counts in microbiome measurements,
including zero-inflated Gaussian, lognormal, negative binomial,
and betamodels (Paulson et al., 2013; Peng et al., 2015; Sohn et al.,
2015; Xu et al., 2015). On the other hand, the negative binomial
regression, which is a standard statistical method for analyzing
over-dispersed count observations, has been recently applied to
microbiome data (White et al., 2009; Pookhao et al., 2015).

It is even more challenging to analyze longitudinal
microbiome count data. In addition to the special features
of microbiome data, longitudinal studies possesses two
fundamental time-dependent features: (a) time imposes an
inherent and irreversible ordering on samples, and (b) samples
exhibit statistical dependencies that are a function of time
(Gerber, 2014b). Ignoring these properties of longitudinal data
and applying statistical tools designed for analyzing static data

can result in erroneous conclusions (Gerber, 2014a). Most of
the previous studies resort to linear mixed models (LMMs)
to account for time-dependent correlations in longitudinal
microbiome study designs by treating transformed data as
normally distributed responses (Benson et al., 2010; Srinivas
et al., 2013; La Rosa et al., 2014; Leamy et al., 2014; Wang
et al., 2015). However, using LMMs directly without addressing
properties of microbiome data may result in lower power
or potential inaccurate results to detect the dynamic effects
of microbiota. Chen and Li (2016) developed zero-inflated
beta mixed models for analyzing transformed proportions in
microbiome longitudinal studies, but did not address time
trends and within-subject correlations. Thus, statistical models
to account for time series as well as properties of microbiome
count data are required for analyzing microbiome data (Spor
et al., 2011; Faust et al., 2015; Chen and Li, 2016).

Zhang et al. (2017) have recently developed negative binomial
mixed models (NBMMs) for analyzing clustered microbiome
data, but have not addressed longitudinal studies yet. We here
extend negative binomial mixed models (NBMMs) proposed
by Zhang et al. (2017) to analyze longitudinal microbiome
count data. The extended NBMMs can include various types
of fixed effects and random effects, and can incorporate
various correlation structures among observations within the
same subjects, thus fully addressing the special properties of
longitudinal microbiome count data. We develop an efficient and
stable IWLS (iterative weighted least squares) algorithm to fit the
extended NBMMs by taking advantage of the standard procedure
for fitting linear mixed models. Through extensive simulations,
we show that the NBMMs outperform the previously used
LMMs in terms of detecting dynamic effects in longitudinal
microbiome count data. We also apply our method to a
previously published microbiome data to detect significantly
dynamic effects of associated taxa. We have implemented the
proposed method in the R package NBZIMM, which is freely
available from the public GitHub repository http://github.com//
nyiuab//NBZIMM and provides a useful tool for longitudinal
microbiome studies.

METHODS

Negative Binomial Mixed Models (NBMMS)

for Longitudinal Microbiome Studies
Longitudinal studies collect multiple subjects and measure each
subject at multiple time points (i.e., samples). Assume that there
are n subjects, and subject i is measured at ni time points tij;
j = 1, ···, ni; i = 1, ···, n. For each sample, microbiome data
generated by the 16S rRNA gene sequencing or the shotgun
metagenomics sequencing consist of counts for numerous taxa
at certain taxonomic levels (OTU, species, genus, classes, etc.),
cijh, h = 1, ···, m, and total sequence read Tij (also referred
to as depths of coverage or library size). We also measure
some host clinical/environmental variables for each subject,
Xi. Table 1 summarizes the data structure for a longitudinal
microbiome study. The goal of longitudinal microbiome studies
is to detect associations between the microbiome counts and the
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TABLE 1 | Longitudinal microbiome data structure.

Subject

ID

Taxon 1 Taxon 2 ··· Taxon

m

Total

reads

Host

factors

Time

variables

Subject 1 c111 c112 ··· c11m T11 X1 t11

Subject 1 c121 c122 ··· c12m T12 X1 t12

Subject 1 c131 c132 ··· c13m T13 X1 t13

Subject 2 c211 c212 ··· c21m T21 X2 t21

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

Subject n cn11 cn12 ··· cn1m Tn1 Xn tn1

host variables, and characterize the time trends of microbiome
abundance within subjects and between subjects.

We separately analyze each microbiome taxon, as most
existing methods. For notational simplification, we denote
yij = cijh for any given taxon h. Since the microbiome count
outcome is over-dispersed, we use negative binomial models. We
extend negative binomial mixed models (NBMMs) proposed by
Zhang et al. (2017) to analyze longitudinal microbiome data by
including the time variable and its interaction with the host factor
of interest in themodel. In the next section, we will further extend
NBMMs to account for within-subject correlation structures.

In our NBMMs, the counts yij are assumed to follow the
negative binomial distribution:

yij ∼ NB(yij |µij, θ) =
Ŵ(yij + θ)

Ŵ(θ)yij!
·

(

θ

µij + θ

)θ

·

(

µij

µij + θ

)yij

(1)

where θ is the dispersion parameter that controls the amount of
over-dispersion, and µij are the means. The means µij are related
to the host variables via the logarithm link function:

log(µij) = log(Tij)+ Xijβ + Zijbi (2)

where log(Tij) is the offset that corrects for the variation of the
total sequence reads, Xij = (1,Xi, tij,X

s
i tij), X

s
i is the variable

of interest in Xi, for example, an indicator variable for the case
group and the control group, andZij = (1, tij); β = (β0, β1, β2,

β3)
T is the vector of fixed effects (i.e., population-level effects),

including an intercept β0, the effects β1 of the host variables
Xi, the overall time effect β2, and the interaction β3 betweenX

s
i

andtij; bi = (b0i, b1i)
T is the vector of random effects (i.e., subject-

level effects), including the random intercept b0i and the random
time effect b1i. For simplicity, the above model only considers the
linear function of tij. If sample size is large enough, however, we
can extend the model to use polynomial functions, for example,
(tij, tij

2), or B-spline functions, allowing us to detect arbitrary
temporal trends.

The random effects are used to model multiple sources of
variations and subject-specific effects, and thus avoid biased
inference on the fixed effects. The vector of the random effects
is usually assumed to follow a multivariate normal distribution
(Pinheiro and Bates, 2000; McCulloch and Searle, 2001):

bi ∼ N(0,9) (3)

where Ψ is the variance-covariance matrix. Ψ can be a general
positive-definite matrix that accounts for the correlation of the
random covariates. In some applications, however, we can restrict
Ψ to special forms of variance-covariance matrices that are
parameterized by fewer parameters. For example, wemay assume
that the random effects are independent, in which case Ψ is a
diagonal matrix.

Accounting for Within-Subject Correlations

and IWLS Algorithm for Fitting the NBMMS
The IWLS (Iterative Weighted Least Squares) algorithm
developed by Zhang et al. (2017) can be used to fit the above
NBMMs. The basic idea of the IWLS algorithm is to iteratively
approximate the negative binomial mixed model by a linear
mixed model. However, Zhang et al. (2017) restricts the within-
subject errors in the linear mixed model to be independent, and
thus ignores special within-subject correlation structures. For
longitudinal data, however, samples within the same subject are
usually correlated. Thus, we extend the model by relaxing the
assumption of independent within-subject errors to account for
special within-subject correlation structures:

zij = log(Tij)+ Xijβ + Zijbi + w
−1/2
ij eij, bi ∼ N(0,9),

ei = (ei1, · · · , eini )
′ ∼ N(0, σ 2Ri) (4)

where zij and wij are the pseudo-responses and the pseudo-

weights, respectively, that depend on log(Tij) + Xijβ̂ + Zijb̂i and

θ̂as described in Zhang et al. (2017), and Ri is a correlation
matrix, which describes dependence among observations,
Pinheiro and Bates (2000) describes several ways to specify the
correlation matrix Ri, all of which can be incorporated into our
NBMMs. For longitudinal studies, a common choice of Ri is
autoregressive of order 1, AR(1), or continuous-time AR(1).

We extend the IWLS algorithm developed by Zhang et al.
(2017) to fit the proposed NBMMS with correlation structures.
The algorithm alternatively updates the dispersion θ and the
parameters in the linear mixed model (4). Given the estimates of
β and b, we update the dispersion parameter θ by maximizing
the negative binomial likelihood using the standard Newton-
Raphson algorithm, and then calculate the pseudo-responses and
the pseudo-weights. We then fit the linear mixed model (4) using
the standard method as implemented in the core package nmle

in R. At convergence of the algorithm, we get the maximum
likelihood estimates of all the fixed effects βk and their confidence
intervals from the final linear mixed model. We then can test H0:
βk = 0 following the linear mixed model framework.

R Package for Implementing the Proposed

Method
We have created the function glmm.nb for setting up and fitting
the proposed NBMMs, which is part of the R packageNBZIMM.
The function glmm.nb works by repeated calls to the function
lme for fitting linear mixed models in the recommended package
nlme in R, and allows for any types of random effects and within-
subject correlation structures as described in the package nlme.
The outputs from the function glmm.nb can be summarized
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by functions in nlme. The package NBZIMM is freely available
from the public GitHub repository http://github.com//nyiuab//
NBZIMM.

RESULTS

Simulation Studies
Simulation Designs

We performed extensive simulations to evaluate the proposed
methods. We extended the simulation framework of Zhang et al.
(2017) to simulate longitudinal microbiome counts from negative
binomial distributions and incorporate time covariates, random
effects and within-subject correlation structures.

Our simulation studies employed a case-control longitudinal
study design with four different settings. All the four simulation
settings followed a two-level longitudinal study, where all
individuals (subjects) were from two groups (i.e., case or control)
and multiple samples were measured at several time points for
each individual. For all the settings, we simulated (n =) 50, 100
or 150 individuals, half of which were cases, and included three
fixed covariates: a binary case-control indicator variable xi, a
continuous time variable tij, and their interaction. We denote the
fixed effects of these three covariates by (β1, β2, β3). The time
points, random effects, and within-subject correlation structures
were set as follows:

1) Setting A: 5 time points for each individual, only random
intercept, and no within-subject correlation;

2) Setting B: 10 time points for each individual, only
random intercept, and the within-subject correlation
was autoregressive of order 1, AR(1);

3) Setting C: 5 time points for each individual, two random
effects (i.e., random intercept and time effect), and no within-
subject correlation;

4) Setting D: 4 or 5 different time points for individuals, only
random intercept, and no within-subject correlation;

To minimize possible bias and yield reasonable count values
that are similar to real microbiome data, we randomly generated
the parameters in the model from reasonable ranges at each
simulation replication (Zhang et al. 2017), which are described
as follows:

1) The values, log(Tij) + β0, control the means of simulated
counts when all the effects are zero, where β0 is the fixed
intercept. We set β0 = −7 and randomly sampled log(Tij)
from the range [7.1, 10.5]. In this case, log(Tij) + β0 were
in the range [0.1, 3.5], which yield counts similar to real
microbiome data;

2) The dispersion parameter θ were uniformly sampled from the
range [0.1, 5], which yield highly or moderate over-dispersed
counts;

3) To evaluate false positive rates, the fixed effects β1, β2 and
β3 were all set to be zero. To evaluate empirical powers, we
considered four scenarios: a) β1 and β2 were set to 0, and β3

was sampled from [0.2, 0.35]; b) β1 and β2 were set to 0, and
β3 was sampled from [0.35, 0.8]; c) β1, β2 and β3 were all

TABLE 2 | Parameter ranges in simulation studies.

Parameter Range

log(Tij ) + β0 Unif(0.1, 3.5)

Dispersion parameter θ Unif(0.1, 5)

Fixed effects β1, β2, β3

(false positive rate)

0, 0, 0

Fixed effects β1, β2, β3

(power of interaction)

0, 0, Unif(0.2, 0.35) or Unif(0.35, 0.8)

Fixed effects β1, β2, β3

(power of both β1 and β3)

All from Unif(0.2, 0.35) or Unif(0.35, 0.8)

Standard deviation τ Unif(0.5, 1)

Correlation ρ Unif(0.1, 0.5)

Standard deviation σ Unif(0.1, 0.5)

sampled from [0.2, 0.35]; d) β1, β2 and β3 were all sampled
from [0.35, 0.8];

4) The random effects b0i and b1i were generated from N(0, τ 2),
where τ was randomly drawn from the range [0.5, 1];

5) The correlation coefficient ρ for AR(1) correlation was
sampled from [0.1, 0.5], and the AR(1) correlation was
generated by the function arima.sim() from R package stats;

6) The standard deviation σ was sampled from [0.1, 0.5];

The ranges of all the parameters used in the simulation are
summarized in Table 2.

In all the four simulation settings, the procedure was repeated
10,000 times. At each replication, the parameters were sampled
from the ranges described above. There were two hypotheses of
interests to be tested, i.e., the group main effect β1 = 0 and the
group by time interaction β3 = 0. Both empirical power and
false positive rate for testing the hypotheses were calculated under
significance level at 0.05. The empirical power and false positive
rate were defined as the proportions of detecting non-zero and
zero effects over the simulation replications, respectively. We
compared the proposed NBMMs with the linear mixed model
with the arcsine square root transformation, arcsine

(√

yij/Tij

)

,
as the response, denoted by LMM arcsin.

Simulation Results

Figure 1 and Figure A.1 show the empirical power to detect the
group by time interaction under the four different simulation
settings, when the group main effect was set to zero. The power
was affected by the sample size. It can be clearly seen that the
proposed method performed consistently better than the LMM
arcsin method across almost all the scenarios. The second setting
was set to represent time-series structure in longitudinal data
with 10 measurements for each individual, and thus had the
largest power among all the four settings. It was shown that the
first setting had higher power than the third setting, on the other
hand, a similar performance in power compared with the fourth
setting.

It is of interest to detect both the group main effect and the
group by time interaction. Therefore, in another set of parameter
settings, we targeted to detect both the group main effect and
the group by time interaction. Figure 2 and Figure A.2 show the
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FIGURE 1 | Empirical power of interaction term and false positive rates of main effect in all four simulation settings.

empirical power to detect both the group main effect and the
group by time interaction under the four different simulation
settings. The results showed that the LMM arcsine method
resulted in a slightly higher power in detecting interaction term
than our proposed method across all the scenarios. However, it
showed an extreme low power close to alpha level in detecting the
group main effect across all the scenarios. It inferred that LMM
arcsine method is not an appropriate approach to be used when
the group main effect and the group by time interaction effect
are both nonzero. Figure 3 displays the false positive rates for
detecting both the group main effect and interaction effect. For
all the four simulation settings, the false positive rates were well
controlled under all the scenarios.

Application to Temporal and Spatial

Pregnant Data
We applied our method to a public microbiome data from
a longitudinal study to investigate the bacterial taxonomic
composition for pregnant and postpartum women by DiGiulio
et al. (2015). This case-control longitudinal study included 49
pregnant women, 15 of whom delivered preterm. The discovery
data was consisted with 40 of those women. Among those
40 women, they collected 3,767 specimens prospectively and
weekly during gestation and monthly after delivery from the
vagina, distal gut, saliva, and tooth/gum. The specimens were
analyzed for bacterial taxonomic composition. The final dataset
contained a total of 1271 taxa from 3432 specimens which were
identified for pregnant women delivered at term and preterm.

Detailed information about population and material is available
in DiGiulio et al. (2015). Clinical data included race, weeks/days
when the samples were obtained, way of delivery, and household
income level were acquired. The public processed OTU data
available from the study is from species level. The clinical data
for the validation dataset for the rest of 9 pregnant women is not
available.

We used the proposed NBMMs and the linear mixed models
(LMMs) with the arcsine square root transformations to detect
associations between delivery term and vaginal bacteria taxa
composition during pregnancy. The host factor in the analysis
was defined as two groups with patients who delivered at preterm
vs. term. The patients who delivered at marginal term were
excluded from the analysis. Only specimens collected in vaginal
during pregnancy were included in the analysis. Meanwhile,
according to the original paper, the samples could be divided to 5
Vaginal Community State Types. Only samples with community
state type 4 were analyzed in the original paper. To be consistent,
we followed the same criteria for sample filtering. The sample
size in the final analysis was 103. We included 58 taxa with zero
proportion greater than 0.25 for 103 samples in our analysis.
The real data and the R code for our analysis are available
from the GitHub page: https://abbyyan3.github.io//NBZIMM-
tutorial/NBZIMM_NBMMs_Longitudinal.html.

To compare the abilities of LMMs and NBMMs in detecting
the static and dynamic association between host factor and
vaginal bacterial taxa composition, we used the following four
different models:
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FIGURE 2 | Empirical power of both interaction term and main effect in all four simulation settings.

FIGURE 3 | False positive rates of both interaction term and main effect in all four simulation settings.
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TABLE 3 | Significant taxa rates detected in four models with LMMs and NBMMs.

Alpha Level 0.05

Model 1 Test of β1 LMMs 0.034483

NBMMs 0.068966

Model 2 Test of β1 LMMs 0.034483

NBMMs 0.12069

Model 3 Test of β1 LMMs 0.12069

NBMMs 0.224138

Test of β3 LMMs 0.137931

NBMMs 0.275862

Model 4 Test of β1 LMMs 0.137931

NBMMs 0.206897

Test of β3 LMMs 0.137931

NBMMs 0.293103

1) Model A: the host factor as fixed effect only, no host factor and
time interaction term, only random intercept;

2) Model B: the host factor as fixed effect only, no host factor
and time interaction term, two random effects (i.e., random
intercept and time effect);

3) Model C: the host factor, time, host factor and time interaction
term as fixed effects, only random intercept;

4) Model D: the host factor, time, host factor and time interaction
term as fixed effects, two random effects (i.e., random intercept
and time effect);

We summarized the number of significant taxa and calculated the
rate of significant taxa detected by LMMs and NBMM each using
Model A-D at alpha level at 0.05 (Table 3). In model A andmodel
B, the numbers of detected significant taxa were substantially
less than the numbers from model C and model D. It inferred
that failing to incorporate the host factor and time interaction
term as fixed effect in the model will largely affect our ability to
detect shifts in microbiome studies. Meanwhile, it showed that
our NBMMs is capable in detecting more significant taxa than
LMMs. Consistent differences have also been found at different
significance levels, like 0.01 and 0.001.

Figure 4 shows the significant features of species level in
the model with the host factor and the host factor and time
interaction term both at the 5% significance threshold and their
minus log transformed p-values for NBMMs and LMMs. It
showed that NBMMs could discover more species than LMMs
in detecting both static association (with host factor term) and
dynamic association (with host factor and time interaction
term). To compare our analysis results with the published results
in DiGiulio et al. (2015), we found that the original paper made
two extreme assumptions to the longitudinal study as completely
independent or averaged over samples for each subject. The
top identified taxa overlapped between our NBMMs with the
original paper included Gardnerella_137183, Lactobacillus
jensenii_31171, Staphylococcus aureus_4446058, Lactobacillus
crispatus_4447432, Prevotella_760967, Dialister_1105876.
In summary, our NBMMs method is not only a statistical

valid method without making extreme assumptions and data
transformation, but also detected more significant taxa and
yielded much smaller p-values than the LMMs, showing that the
proposed method could be more powerful than the conventional
LMMs.

DISCUSSION

The main research interest in longitudinal microbiome study is
to detect the associations between host clinical/environmental
factors and the dynamic shifts in microbiome composition while
accounting for sources of heterogeneity and dependence in
microbiome measurements. To study the dynamic composition
of microbiome, many studies collect samples with temporal
structures (Hill et al., 2010; Morrow et al., 2013; Srinivas
et al., 2013; La Rosa et al., 2014; Leamy et al., 2014;
Faust et al., 2015; Wang et al., 2015; Zhou et al., 2015).
These longitudinal studies enable us to study the inherent
dynamic properties in microbiome data which have provided
extraordinary opportunities to elucidate the true roles of the
microbiome in health and disease states and to develop new
diagnostics and therapeutic targets (Knights et al., 2011; Segata
et al., 2011; Virgin and Todd, 2011; Collison et al., 2012).
Accurately identifying and understanding these associations is
critical to further predict the probabilities of disease with the
identified taxa or biomarkers. However, the traditional methods
of using LMMs to model longitudinal data fail to address
the count data features in microbiome data. Our simulation
studies revealed the impact of the specific features on the
microbiome data, showing that ignoring those features can
substantially reduce the power for detecting the effects of host
clinical/environmental factors with dynamic effects, thus leading
to biased and false inferences. We extended our previously
proposed negative binomial mixed model (NBMMs) specifically
to directly analyze longitudinal microbiome count data without
data transformation.

The previously proposed NBMMs (Zhang et al., 2017) have
demonstrated its superior ability in family structured clustered
microbiome count data. The proposed NBMMs directly model
microbiome counts generated by the 16S rRNA gene sequencing
or the shotgun sequencing with an efficient IWLS algorithm
(Schall, 1991; Breslow and Clayton, 1993; McCulloch and
Searle, 2001; Venables and Ripley, 2002). It not only addresses
statistical challenges of over-dispersion and varied total reads in
microbiome count data, but also accounts for correlation among
the observations. Our simulations and real data analysis also
show that our algorithm is stable and efficient (Zhang et al., 2017).
Meanwhile, the IWLS algorithm is an extension of a commonly
used procedure for fitting GLMs and GLMMs which allows us to
model non-constant variances or special correlation structures.
Therefore, by extending the NBMMs to analyze longitudinal
microbiome count data, we illustrated the capability of our
proposed NBMMs to handle complex longitudinal study design,
such as to include time in the random slope model or to account
for the auto-regressive residual correlation in time-series data.
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FIGURE 4 | The analyses of NBMMs and LMM: minus log transformed p-values for the significant differentially abundant taxa at the 5% significance threshold

between term and preterm groups for species level; the left panel shows the minus log transformed p-values for association of group main effect, and the right panel

shows the minus log transformed p-values for association for group by time interaction.

Our simulations indicate that our proposed approach is flexible
to handle complex structured longitudinal data, allowing for
incorporating any types of random effects and within-subject
correlation structures (Pinheiro and Bates, 2000; McCulloch
and Searle, 2001). In the simulations, our proposed approach
outperformed LMMs consistently.

We also applied our method to a previously published
data set. The purpose of the real data is to detect host factors
that associated with dynamic compositional features of
the microbiome (Leamy et al., 2014). Notably, by applying
our NBMMs to the temporal and spatial dataset from
DiGiulio et al. (2015), the goal of our analysis was to
detect taxa that are significantly associated with dynamic
change in compositional microbiome between termed and
preterm pregnancy. Our proposed method detected the
same species Gardnerella_137183, Lactobacillus jensenii_31171,
Staphylococcus aureus_4446058, Lactobacillus crispatus_4447432,
Prevotella_760967, Dialister_1105876, as in the original paper.
In the original paper, they made two extreme assumptions to
the longitudinal study as completely independent or averaged
over samples for each subject. Our NBMMs, on the other
hand, does not make any extreme assumption and is more
statistically valid. Nevertheless, we still identified overlapped
species as in the original paper, showing NBMMs picked out the
significant species under extremes as well. Our NBMMs method
detected more significant taxa and yielded much smaller p-values
than the LMMs, showing that the proposed method could be
more powerful than the conventional LMMs. Furthermore,
comparing the species identified in the real data using LMMs
and NBMMs, we found that the species identified by NBMMs
only are mostly overlapped with the original paper. It inferred
that the transformation of count data could potentially lead
to misleading information and interpretation. One potential

limitation of our NBMMs is that it is not designed to explicitly
handle zero-inflation and we recommend it as future work.
Even though, our NBMMs has shown it outperformed LMMs in
longitudinal microbiome study in terms of power and accurate
interpretation. It is also directly applicable to be used as an
analytic tool in longitudinal RNA-seq study.
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Even in the age of big data in Biology, studying the connections between the biological

processes and the molecular mechanisms behind them is a challenging task. Systems

biology arose as a transversal discipline between biology, chemistry, computer science,

mathematics, and physics to facilitate the elucidation of such connections. A scenario,

where the application of systems biology constitutes a very powerful tool, is the study

of interactions between hosts and pathogens using network approaches. Interactions

between pathogenic bacteria and their hosts, both in agricultural and human health

contexts are of great interest to researchers worldwide. Large amounts of data have

been generated in the last few years within this area of research. However, studies

have been relatively limited to simple interactions. This has left great amounts of

data that remain to be utilized. Here, we review the main techniques in network

analysis and their complementary experimental assays used to investigate bacterial-

plant interactions. Other host-pathogen interactions are presented in those cases where

few or no examples of plant pathogens exist. Furthermore, we present key results

that have been obtained with these techniques and how these can help in the design

of new strategies to control bacterial pathogens. The review comprises metabolic

simulation, protein-protein interactions, regulatory control of gene expression, host-

pathogen modeling, and genome evolution in bacteria. The aim of this review is to

offer scientists working on plant-pathogen interactions basic concepts around network

biology, as well as an array of techniques that will be useful for a better andmore complete

interpretation of their data.

Keywords: networks, bacterial pathogens, plant pathogens, host-pathogen interactions, pathogenicity

INTRODUCTION

Biology has entered a new era of scientific discoveries as a consequence of the development
of new technologies, and the production of massive amounts of biological data at the cellular
and subcellular levels. Researchers can now formulate new hypotheses and diverse manners of
testing them. They can design new experiments based on multiple environmental, temporal,
and physiological conditions on a single cell, populations, or communities of species. The
reduction in costs of next-generation sequencing (NGS) technologies coupled with the advances in
metabolomics and proteomics has made high-throughput data more accessible (Hou et al., 2015).
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The levels of information that can be obtained from biological
entities range from genes, genomes, transcriptomes, proteomes,
and metabolomes to phenotypes.

Despite these advances, the amount of collected data is larger
than the amount being analyzed. Molecular biologists tend to
focus on a single level of information (e.g., specific genes,
protein-protein interaction, etc.), ignoring the different levels of
interactions and connections present within complex biological
systems. In the case of quantitative experiments in the areas
of genomics and transcriptomics, the amount of available data
exceeds the capacity of the common computational systems as
well as the ability for researchers to interpret them. Thus, the
challenge resides in building models that accurately represent
nature and gaining biological insights from data that is inherently
noisy and heterogeneous. Systems biology attempts to bridge this
multi-level understanding of living systems (Karr et al., 2012).

Systems biology is a discipline that studies biological entities as
a whole. Here, parts of the organism (genes and their regulation,
signaling cascades, interacting proteins, structural compounds,
and metabolic pathways) interact among them and with the
environment (which, in turn, gives a context to the organism)
to produce a given phenotype. When the biological parts of
an organism are interconnected, new properties arise that are
dependent on the context and the biological system. Systems
biology uses different sources of biological data, mathematical
approaches, and computational methods and techniques, to
model the organism in a computer (in silico). The computational
model allows researchers to make predictions and to generate
new hypotheses that may then be experimentally validated.
Experimentation can fulfill this function and serve to better
parameterize and tune different theoretical models.

One of the fields within systems biology which has been
fundamental for studying biological organisms at a large-scale
is network analysis. Network analyses are a set of mathematical
and computational approaches that may be used to study
the interactions between the components of a network such
as computers connected through the internet, electrical nodes
within a network, or biological components within an organism.
In the context of biology, the network approach or network
biology allows to reconstruct molecular interactions and uncover
biological properties that may be difficult to uncover when
studying a single or few interactions.

This review presents the main approaches in network
biology and their complementary experimental assays used
to investigate bacteria-plant interactions. When necessary,
examples of human-pathogen interactions were included to
illustrate analyses that may potentially be applied to study plant-
pathogen interactions. Pathogenicity is an ecological interaction
influenced by many different factors. Understanding molecular
and ecological interactions may help explain the mechanisms
by which pathogens colonize their host plant as well as the co-
evolutionary history among the two or more-interacting species.

The review is divided into five sections. First, we describe
the basic concepts in network biology; second, we illustrate the
importance of metabolic pathways in bacterial pathogenicity;
third, we review different approaches used to study protein-
protein interactions; fourth, we review themodeling of regulatory

networks; and fifth, we describe how this information, may be
used to understand processes of adaptation of pathogens to
recent and former hosts. The aim of this review is to offer
scientists in the field of host-pathogen interactions, the most
important concepts around network biology, as well as an array
of techniques that will be useful for a better and more complete
interpretation of their data.

NETWORK ANALYSES IN SYSTEMS
BIOLOGY

Network biology has arisen as a new subfield of systems biology
(Box 1) useful in molecular biology studies. The high amounts
of data produced by omics technologies nowadays, as well as the
increasing number of studies on bacterial pathogenesis allows
the use of network biology to mathematically model large-scale
bacterial systems. Network biology, is a top-down approach
(Box 1) that allows the reconstruction of genome-scale biological
systems.

The biological networks represent the relationships among
molecular components within the context of a cellular function
(Box 2). The methods derived from the mathematical framework
of networks can be applied to diverse fields such as electrical,
social, and Internet networks. As biological systems can be
represented as networks, the mathematical concepts behind
network analyses can be applied to biomolecular systems.

Types of Biological Networks
In the context of networks and molecular biology, we can
represent an organism, or parts of it, using four different kinds
of networks: regulatory, metabolic, protein-protein interaction
networks (PPINs), and signaling networks (a special type of
PPIN). Furthermore, these networks can be integrated into a
single model by using a combination of different networks
connected into a single computational model. It is important to
note that the classification of regulatory, metabolic, and PPINs
is arbitrary and has been done to facilitate the construction of
scientific knowledge. This review, focuses on these three methods
due to the availability of omics data from pathogens that may
be used to construct these types of networks. The omics data
that have been generated have been mostly used to investigate
specific research questions, leaving large amounts of data yet
to be explored. Network analyses provide an opportunity to
further analyze this information to develop new hypotheses
related to mechanisms of pathogenesis or general life style of
these microorganisms.

One type of network is the transcriptional regulatory
network (TRN). TRNs are used to mathematically represent
gene expression profiles and their regulation by transcription
factors or other regulatory elements (e.g., sRNA). Through
these TRNs, one can simulate the effect of different biological
and environmental conditions on the expression profile of an
individual. The TRNs may be constructed for specific groups of
genes, such as those related to pathogenicity, or for the whole
organism. In a topological sense, the TRN is defined as a bipartite
network (Box 2) with directionality. Some nodes correspond
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BOX 1 | Systems biology.

Systems biology comprises different combinations of mathematical and computational approaches used with diverse kinds of the biological data; as a result, the

starting scale of the model (whether it takes into account a small subsystem or a whole system) will vary. Therefore, systems biology may use two approaches

that are complementary depending on the nature of the data, and the mathematical and computational approaches used: bottom-up and top-down approaches

(Bruggeman and Westerhoff, 2007).

The bottom-up approach precisely reconstructs biological subsystems from their parts (genes, proteins, and metabolites) until a full model of the subsystem is

obtained (mainly at a small scale). This kind of approach allows to deduce fundamental principles inherent to all biological systems such as the physical and

mathematical laws that govern it. The data used for the model are obtained from single cell experiments, from the in vitro assessment of rate parameters from

enzymatic reactions, transport phenomena, or regulatory processes.

The top-down approach reconstructs the biological system from high amounts of data to initially obtain a full draft model of the whole system, with subsequent

refinings. This kind of approach allows to induce properties of the system in a biological state. The data used for these models arise from omics experiments

(genomics, transcriptomics, metabolomics, etc.), and they allow the reconstruction of the whole model.

BOX 2 | Biological networks.

A biological network is a mathematical abstraction of nature which represents biological entities such as genes, transcription factors, metabolites, and proteins, as

nodes or vertices and the relations between them as edges or links (regulatory mechanism, transformation reactions, protein-protein interactions such as signaling

cascades). We can find directed (regulation of A to B, directionality of an enzymatic reaction, Figure 1A) or undirected (a pair of interacting proteins, Figure 1B)

networks, depending on whether the relationship between the nodes has directionality or not, or if this can be determined. Furthermore, there are unipartite networks

where the nodes have the same biological feature (e.g., protein-protein interaction networks) and bipartite or two-mode networks, composed of different biological

components (e.g., a regulatory network where regulatory proteins and regulated genes interact or, metabolic networks where substrates are connected to reactions

and reactions with substrates) (Newman, 2010).

FIGURE 1 | Type of networks. (A) Directed networks are composed of nodes representing biological entities as proteins, metabolites, or genes. These nodes are

interconnected by directed edges (or arrows) that symbolize a directed relationship between two or more biological species, as a gene regulated by a transcription

factor or a reaction that is connected downstream to another reaction forming metabolic pathways. (B) Undirected networks are composed of nodes, that represent

proteins, for example. These nodes are interconnected by edges that symbolize an interaction between two or more biological species, as for example signaling

proteins.

to regulatory proteins and others to target genes (that can be
transcriptionally switched on or off by the regulatory protein).
One regulatory protein can be connected to several target genes;
in turn, genes can be regulated and connected by one or a small
number of regulatory proteins.

Metabolic networks are substrate-product transformation
networks mediated by enzymatic reactions. In the metabolic
networks, the substrates and products can be proteins, lipids,
and other cellular components. These are represented as
nodes and the transformation reactions mediated by enzymes
are represented as edges. This representation of metabolic
networks can be analyzed by computational methods to perform

associations between the genotype and the metabolic phenotype
of an organism, as constraint based modeling does (Box 3).
Metabolic networks may be coupled to the regulatory networks
of an organism to model a more complex representation of the
molecular machinery of the organism.

A PPIN reflects physical interactions between two or more
proteins. In this category, we can find signaling networks, but
it is also possible to find proteins involved in the formation of
macromolecular complexes related to structural and molecular
types of machinery of the cell. The Signaling Network contains
a series of proteins that are transformed to carry a signal inside
or outside of the cell. Signaling cascades are of special interest
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BOX 3 | Systems biology.

The metabolism of an organismmay be represented in a matrix based on the stoichiometry of the reactions in the constraint-basedmodeling (CBM) approach (Orth

et al., 2010). The stoichiometric matrix can be analyzed to assess the metabolic phenotype of the organism under different conditions (e.g., environment, mutants,

etc.). To analyze the metabolic phenotype, the stoichiometric matrix may be solved using a Flux Balance Analysis (FBA). A FBA is a computational optimization

method. The final solution of the metabolic system is the distribution of the reaction rates or fluxes (moles over time). In the FBA, assumptions and constraints of the

system are defined. For example, it assumes a steady-state (thermodynamic equilibrium) and defines upper and lower boundary constraints for the fluxes throughout

the reactions. Furthermore, an objective function must be defined to achieve a unique solution of the system. The objective function is a reaction or a combination

of reactions that represent a biological feature of the organism e.g., biomass. In other words, models based on CBM approach represents the metabolism of an

organism only with the information of the reactions catalyzed by enzymes that are coded in the genome.

Another alternative approach that does not require the calculation of an optimal flux distribution is the elementary flux mode analysis (EFMA) (Zanghellini et al.,

2013). In this analysis, the metabolic network is decomposed in its main pathway components.

A complementary analysis in metabolic modeling is gene set enrichment analysis (GSEA) (Hung et al., 2012). When applied to a genome-scale, set of genes

differentially expressed can be classified into metabolic categories or pathways giving information related with the most represented pathways in a determined

scenario.

in molecular pathosystems since they are tightly related to the
regulation of the response to attack and defense of the pathogen
and the host, respectively.

When a biological network follows the power law distribution
several biological interpretations based on the network metrics
can be stated (Box 4). However, these interpretations must be
carefully reviewed from the biological point of view of the
researcher. We recommend the work of Winterbach et al.
(2013), which provides detailed description of these statistics
(Winterbach et al., 2013). For a more extensive revision of the
mathematical foundations of biological networks, please refer to
De Smet andMarchal (2010), Képès (2007), and Newman (2010).

METABOLIC NETWORKS AND
PATHOGENICITY

In this section, we will review studies on metabolic modeling of
plant pathogenic bacteria. Given that the information may be
limited, we will also include examples of animal pathogens. First,
we will describe the constraint-based modeling (CBM) approach,
commonly used for in silico metabolic modeling. Second, we
will review the biological results produced by these studies and
their main conclusions; of special interest will be the objective
function. Third, wewill review themultiscalemetabolicmodeling
approach that integrates different sources of data and constraint-
based metabolic models. Finally, we will discuss how CBM is a
hypothesis-driven approach used in metabolic networks and the
possibilities to improve metabolic models based on experimental
results.

Constraint-Based Modeling
The metabolic interactions within an organism can be modeled
and analyzed using different mathematical approaches, among
others, deterministic kinetic models, stochastic models,
elementary flux mode analysis, CBM, and pathway enrichment
analysis (Box 4; Puchałka and Kierzek, 2004; Hung et al.,
2012; Zanghellini et al., 2013). Every one of these methods has
advantages and disadvantages. The CBM approach has been
established as a standard for metabolic model formulations;
there are approximately 165 models of organisms that are
finished and experimentally validated (http://sbrg.ucsd.edu/

InSilicoOrganisms/OtherOrganisms). This method has been
widely employed given that it is a top-down approach (Box 1)
that may incorporate whole-genome data and chemical
information that is publicly available, as well as knowledge
obtained through experimentation into a genome-scale
metabolic model. With this approach, several analyses can be
performed and relevant biological questions can be addressed
(Oberhardt et al., 2009). Other mathematical approaches, such
as the mass-action kinetic model (Horn and Jackson, 1972) or
the biochemical system analysis (Savageau, 1969), rely on several
parameters such as rates of transformation of molecules involved
in metabolic reactions of the cell. These parameters are difficult
to calculate experimentally at a whole-genome level (that is, all
the possible reactions catalyzed by all the enzymes coded by the
genome). Thus, the CBM offers a powerful approach to assess
metabolic phenotypes in distinct environmental conditions by
relying on physicochemical constraints that restrict the metabolic
phenotype1 of the organism.

The first part of the CBM approach is the genome-scale
reconstruction of the metabolic network (Figure 2). There
are five main steps in obtaining a high-quality metabolic
reconstruction of an organism: (i) genome annotation; (ii)
gene-protein and protein-reaction associations; (iii) model
curation; (iv) validation through experimental analyses; and
(V) improvement of the metabolic model by incorporating the
feedback obtained through experimentation.

Genome annotation can be performed using different
bioinformatics tools, such as the Rapid Annotation using System
Technology (RAST; Aziz et al., 2008; Richardson and Watson,
2013; Kalkatawi et al., 2015). After the genomes have been
automatically annotated, they must be manually curated. Once
a high-quality genome annotation is obtained, proteins involved
in metabolic reactions are assigned. Commonly used databases
for the assignment of proteins to metabolic pathways include the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000), MetaCyc (Caspi et al., 2014), MetaNetx (Ganter
et al., 2013), and Biochemical, Genetic and Genomic (BiGG)
knowledge base (Schellenberger et al., 2010).

1The metabolic phenotype is the distribution of the biochemical reactions rates

(fluxes) in a determined set of conditions (physicochemical constraints).
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BOX 4 | Topological features of biological networks.

The most basic topological measure of a network is the average (or mean) degree, that is the average number of nearest nodes connected to a specific node.

More informative is the distribution of these nearest nodes in a network. A feature of some types of biological networks, particularly in metabolic and protein-protein

interaction networks is that they follow a power law distribution (or a scale-free degree distribution). That is, most of the nodes have few neighbors and the minority

of them have hundreds or thousands of neighboring nodes (highly connected nodes or hubs) (Barabási and Albert, 1999). Particularly the biological networks have

a specific topology that tends to be small-world; in other words, their organization makes possible the existence of hubs as central focal points of interactions (Aloy

and Russell, 2004), e.g., proteins or genes involved in regulatory processes of bacterial pathogenicity or plant resistance (Haynes et al., 2006).

Another powerful structural measure is the clustering coefficient, which evaluates the degree of grouping between a node and its neighbors. The clustering

coefficient is defined as the ratio of the number of connections between the neighbors of a node and the total number of possible connections (Watts and Strogatz,

1998). This coefficient measures the modularity of a set of nodes and interestingly this feature has shown some patterns of hierarchy between clusters of nodes

(modules) of known metabolic networks (Ravasz et al., 2002). Finally, the motifs are patterns of connections between a few nodes that are related to a biological

function, particularly in regulatory networks (Maslov and Sneppen, 2002). In topological terms, motifs are sets of nodes whose pattern is overrepresented in the

network when compared to a randomly generated network of the same size. In Table 1 we describe other relevant measurements and concepts of networks.

Once the reactions related to the organism of interest
are obtained, a mathematical representation of the connected
reactions (metabolic models or pathways) can be reconstructed
(Orth et al., 2010). However, this initial representation is not free
of gaps and errors. These may arise for different reasons such
as an inherent gap in our knowledge of bacterial metabolism
(e.g., protein-reaction associations), the incomplete genome
sequencing of the organisms, or the inaccuracy in the genome
annotation. Therefore, the metabolic model needs to be subjected
to a curation process. Several methods and algorithms have
been developed to curate this model (e.g., based on homology
and phylogenetic information or experimental data) (Orth and
Palsson, 2010).

Some useful automatic tools that can be alternatively used to
reconstruct and analyze metabolic networks include RAST-SEED
(Aziz et al., 2008), KEGG Automatic Annotation Server (KAAS)
(Moriya et al., 2007), Reconstruction, Analysis, and Visualization
of Metabolic Networks (RAVEN) (Agren et al., 2013), PRofils
pour l’Identification Automatique du Métabolisme (PRIAM)
(Claudel-Renard et al., 2003), SuBliMinal, and Pathway Tools
(Swainston et al., 2011). Furthermore, protocols for supervised
and manual reconstruction of metabolic networks have been
established (Francke et al., 2005; Reed et al., 2006; Thiele and
Palsson, 2010; Pinzón et al., 2011; Lewis et al., 2012).

Once a representation of the metabolism of the bacterium is

obtained, relevant biological questions can be addressed based
on this model. For example, the rate of ATP production or the
oxygen consumption can be assessed. In the CBM approach,
several constraints are set to assess the metabolic model of the
organism (McCloskey et al., 2013). The metabolic phenotype can
be defined as the rates of consumption and production of the
metabolites for every reaction of the metabolic model of interest
in a determined biological context or environment.

Constraints are determined a priori based on either
experimental or theoretical data like metabolomics, C13

labeling and measurements of consumption and production
of carbon sources. An example may be the active and inactive
reactions that reflect the biological state of the cell and can be
determined, although indirectly, through specific transcriptional
profiles (genes down or up-regulated). Another example of
constraint includes the activation of transport reactions that
simulates the substrate transported into the cell in a specific

medium or biological condition. Therefore, the metabolic
phenotype, which is defined by a set of reactions that represents
a biological function, such as growth or pathogenicity, can be
assessed.

Flux Balance Analysis (FBA) is an approach used in CBM
to find an optimal distribution of the rates of conversion of
substrates to products (fluxes), in every reaction. In order
to obtain the solutions for the reaction rates of interest, a
representation of a specific biological function must be defined
(e.g., growth, redox potential, production of a compound of
biological, or industrial interest, etc.). This specific biological
function is known as the objective function. Choosing the best
objective function to answer a specific biological question is
still controversial. The right choice will define the robustness
of the conclusions achieved by the computational analysis
(see discussion below). Finally, FBA allows uncovering the
most reliable mechanism behind a relevant biological function
(O’Brien et al., 2013).

Metabolic Modeling of Pathogenic Bacteria
As mentioned above, the constraint-based modeling, CBM,
has been established as a standard method for modeling
the metabolism of microorganisms (especially in bacterial
pathogens), given that it only relies on a few physicochemical
constraints and on the assumption that the metabolic fluxes of
the organism are in a steady-state (Box 3). With this approach,
metabolic phenotypes of pathogenic bacteria may be simulated.
Such simulations may reflect differences between wild-type
bacteria and their mutant derivatives, between pathogenic and
non-pathogenic bacteria, and the effect of growth at different
environmental conditions.

The main biological questions addressed in metabolic models
of plant pathogens, using CBM, are related to the search for
control strategies against these pathogens, the classification
of pathogens, the comparisons between pathogenic and non-
pathogenic strains, and the plant-pathogen interactions. The
CBM approach allows studying the metabolism of pathogens
for the search of alternative strategies for control, and through
several in silico and experimental approaches, has aimed to
reveal the metabolic mechanisms, genes, and proteins that are
important for pathogenicity. An example is the study of xanthan,
a virulence factor of industrial importance, in Xanthomonas
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FIGURE 2 | Metabolic modeling. The process of metabolic modeling starts

with a genome annotation used for inferring metabolic reactions that are

present in an organism. Automatic tools could be used for reconstructing the

metabolic network based on the genome. In the initial set of reactions there will

be metabolic gaps or missing reactions that are necessary for the complete

function of pathways. These gaps can be identified and filled out using

different algorithms. The final metabolic reconstruction will have associations

among genes, proteins, and reactions (GPRs). Then, further manual curation,

based on omics data and literature should be performed. The definition of an

objective function that represents a target biological function to optimize

should be defined, typically cell growth or ATP production. Once the objective

function is set, computational simulations for obtaining metabolic phenotypes

related to different conditions are carried out; Flux Balance Analysis (FBA) is

the main technique for these simulations. Finally, new biological hypotheses

are generated and validated. In all the procedure, data, and information from

different experimental assays are incorporated into the model.

campestris pv. campestris (Xcc) (Schatschneider et al., 2013).
Another example, includes the study of metabolic precursors of
lipopolysaccharides in Pectobacterium carotovorum because of
their role in antimicrobial resistance (Wang et al., 2014a). These
two studies highlight the importance of virulence factors in the
relocation of resources for pathogen growth and their potential
use as drug targets.

Gene essentiality analyses have been used to find genes that
are related to pathogenicity through the systematic deletion of
every gene related tometabolism. The in silico deletion of genes in

the whole reaction network allows the identification of important
genes for the survival of the pathogen (Segrè et al., 2002; Shlomi
et al., 2005; Kim et al., 2007). In the case of X. campestris
pv. campestris, several essential genes were identified in silico
(Schatschneider et al., 2013). Furthermore, the researchers
performed experimental validation by generating mutants of the
carbohydrate metabolism and xanthan production. Interestingly
in this study, a subset of these genes, that were initially identified
as non-essential, were found to cause a meaningful decrease in
the growth rate, after additional in silico double mutants were
performed. This highlights the importance of double mutants for
the determination of essential genes and the reduction of false
negative results in pathogenicity assessments.

The CBM approach has helped to compare pathogenic and
non-pathogenic bacteria (Perumal et al., 2009; Charusanti et al.,
2011; Liao et al., 2011; Monk et al., 2013). Correctly classifying
and comparing between pathogenic and non-pathogenic bacteria
is important because differences between these may help
select the best target for pathogen control. Also, the CBM
approach can improve our understanding of the emergence
of new pathotypes and their adaptation process to different
niches (Monk et al., 2013). Thus, pathogenic mechanisms and
infection strategies may be revealed through CBM. However,
there are also cases where the metabolic model wrongly predicts
the ability of different bacterial mutants or strains to grow
on different media. The reasons are metabolic reconstruction
artifacts such as incomplete genome information and gaps in
our knowledge of the metabolism. However, metabolic network
reconciliation methods have been developed to improve the
level of prediction of the models (Oberhardt et al., 2011).
Ultimately, the inclusion of exact metabolic parameters such
as rates of metabolic conversion and rates of volume dilution,
achieved through bottom-up approaches, will improve the level
of prediction of metabolic models at a genome-scale (Bruggeman
and Westerhoff, 2007).

Multiscale Metabolic Modeling
Several studies have focused on integrating different omics
information (e.g., RNA-Seq, microarrays, metabolomics, etc.)
into the metabolic, protein-protein interaction, and regulatory
models of pathogens. Also, the metabolic interactions between
hosts and pathogens have been subject of study. This integration
has improved the phenotypic predictions, the understanding of
the mechanisms of host-pathogen interactions, and have helped
discover new drug targets in pathogens (Colijn et al., 2009;
Bordbar et al., 2010; Ward et al., 2010; Lobel et al., 2012; Schaadt
et al., 2013).

Control at the Metabolic Phenotype in Bacterial

Pathogens
Different approaches have been proposed for integrating
regulatory and metabolic models in bacterial pathogens of
humans, these have not been reported so far for plant pathogens.
For example, the regulatory network and the CBM model of
Mycobacterium tuberculosis were integrated using a probabilistic
approach; this model was used to predict the growth rates of
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TABLE 1 | Basic concepts of biological networks.

Structure assessment Definition Utility References

Degree distribution Distribution of probabilities of degrees in a

specific network.

Comparisons, scale-free networks. Clear indicator of the

presence of hubs when it is combined with the centrality

measurement. Degree provides clues about modules in

a network by determining the number of interactions

shared between neighboring nodes.

Képès, 2007

Shortest path The shortest path between two nodes in a

biological network.

Connectivity. Perumal et al., 2009

Average diameter The minimum number of edges

connecting any two nodes over all

possible pairs.

Information flow, Small World. Capacity and time of the

response of a system, so that in networks with a high

centrality, signaling processes are favored.

Képès, 2007

Node clustering coefficient The ratio of connections to neighboring

nodes to the number of all possible

connections.

Comparisons, scale-free, hierarchical. Képès, 2007

Betweenness—centrality The ratio of the number of k-shortest

paths passing through a node and its

nearest neighbor links.

Identifies hubs (highly connected nodes in a network),

important in pathogenicity and potential target for drugs.

Hubs may potentially disconnect the network if they are

removed or blocked.

Goh et al., 2001; Perumal

et al., 2009

Assortativity The probability of connection of a node

with others of the same degree.

Robustness to node deletion. Newman, 2010

Summary of structural measurements of the topology of a network and their utility in a biological context.

different mutants and putative drug targets (Chandrasekaran and
Price, 2010).

A similar approach was used in Listeria monocytogenes to
decipher its metabolic requirements and the relationship between
metabolism and virulence regulation (Lobel et al., 2012). The
researchers found a correlation between the activity of certain
gene regulators, under nutrient limiting conditions, and the
activation of a global virulence response.

The integration of regulatory models and the metabolic model
combined with experimental data is fundamental for adjusting
the predictions of the metabolic phenotype. For example, Bartell
and collaborators found that inconsistencies between the growth
rate of Burkholderia in different carbon sources, that were
experimentally measured, and the predictions obtained by the
simulations of the metabolic model, could be partially explained
by the absence of the integration between a regulatory model
and a metabolic model (Bartell et al., 2014). In the previously
mentioned studies, of M. tuberculosis and L. monocytogenes,
researchers included in the metabolic model data obtained
from experimental techniques such as microarrays, mutants,
transcription factor, RT-qPCR, and lux reporters. These examples
highlight the importance of experimental feedback and validation
of the model for improving computational predictions, and the
integration of regulatory networks into metabolic models.

A subsequent step after the coupling of the regulatory and
metabolic models is the incorporation of signaling networks into
the pathogenic bacterial model. For example, in Pseudomonas
aeruginosa several genes related to quorum sensing (QS), an
important process in pathogenesis that regulate the expression
of virulence genes, were modeled through a multi-level approach
using a Boolean method of the signaling, regulatory and
metabolic networks (Schaadt et al., 2013). In this work, the
researchers identified the best targets at the signaling and
metabolic level to inhibit the production of auto-inducers and

thus, disrupt the cellular communication between bacteria at the
QS system level.

Another example of a multilevel model is Mycoplasma
genitalium (Karr et al., 2012). This was the first effort to construct
a whole model of a microorganism. In this study, 28 different
submodels were used to represent the life cycle of the bacterium
at the regulatory, metabolic, and signaling level. To accomplish
this task, four mathematical approaches were used: (i) Ordinary
differential equations, (ii) Boolean logic, (iii) probabilistic, and
(iv) CBM approach.

Finally, the integration of molecular networks can be
used to study microbiome interactions in pathogenic and
non-pathogenic bacteria. In a study of two bacterial species,
Clostridium difficile and Barnesiella intestinihominis the
interaction at the metabolic level was investigated. The
researchers found in their in silico analysis that the competition
between the two bacteria reduces the growth of one of them at
the expense of the other; this result was experimentally validated
(Steinway et al., 2015).

Host-Pathogen Interactions
The interaction between hosts and pathogens has been widely
studied in human pathogens through network biology. The
research focus can be either the pathogen or the host, depending
on the biological question. For example, two different studies
of the interaction between M. tuberculosis and humans were
conducted, both based on genome-scale metabolic using a CBM
approach. In the first one, researchers exposed the pathogen
to human macrophages, human sputum, and other in vitro
conditions, and then integrated transcriptomics data of each
condition into the metabolic model of the pathogen (Bonde et al.,
2011). The objective, in this case, was to study the metabolic
changes in the pathogen caused by the interaction with the
host in a similar way as has been done for regulatory-metabolic
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networks. In this research, a down-regulation of the central
metabolism and an up-regulation of the cell wall and virulence
factors in the pathogen were found. In the second study, the
objective was to investigate the metabolic changes in the human
alveolar cells as well as in the pathogen,M. tuberculosis (Bordbar
et al., 2010). In this study, transcriptomic data was also used to
assess the interaction between the host and the pathogen. Here,
the two metabolic models of both the host and the pathogen were
integrated. As a result, a reduction of the metabolic plasticity
of the host when interacting with the pathogen (in a technical
sense: they found a reduction of the solution space of fluxes in
the metabolism of the host) was found. Also, the gene essentiality
analysis was improved by the incorporation of the interaction in
the modeling process.

Other software tools can be used to model metabolic
interactions between the host and the pathogen as are the
E-flux (Colijn et al., 2009) or NetGenerator (Schulze et al.,
2015) approaches. The E-Flux tool extends the genome-
scale reconstructions and CBM approach, by integrating
transcriptomic data into the model. Using this tool, it was
possible to measure the impact of 75 drugs and nutrients on the
cell wall synthesis and fatty acid biosynthesis on M. tuberculosis,
identifying several inhibitors; importantly, some of the drugs
tested are among the most widely used in the treatment of
this disease (Colijn et al., 2009). The NetGenerator tool allows
the incorporation of different time points in host-pathogen
interactions. This method has been used to infer regulatory
changes between Candida albicans and dendritic cells of Mus
musculus at different time points during the interaction (Schulze
et al., 2015).

Plant-pathogen interactions may also be studied through
network biology. For example, host-pathogen networks
have been constructed using microRNA and PPIN between
Arabidopsis thaliana and Xanthomonas campestris pv.
campestris. This study provided several potential pathways
of pathogenesis (Kurubanjerdjit et al., 2012). Furthermore,
the change from healthy state to disease in A. thaliana when
infected with Pseudomonas syringae pv. tomato has been assessed
(Ward et al., 2010), by integrating data from microarrays and
metabolomics techniques and analyses such as: Proton Nuclear
Magnetic Resonance (1H-NMR), Flow Injection Electrospray
Mass Spectrometry (FIE-MS), Gas chromatography-mass
spectrometry (GC-MS) and GC-TOF-MS (TOF by “time of
flight”). This study found that the metabolism of sugars is
modified in the plant to improve the flow of energy into the
bacteria. Other modifications were nitrogen mobilization and
purine metabolism. On the other hand, the plant showed
an unusual metabolic activity of aromatic amino acids and
secondary metabolites (toxins) potentially used as a defense
mechanism against the pathogen.

Plant-pathogen interactions have also been modeled
completely in silico. Duan et al. (2013) investigated five host-
pathogen metabolic models. They analyze two main points: the
impairment of the plant by the pathogen and the divergence
between host and pathogens’ networks. They calculated the
metabolic impairment of the plant by identifying the metabolites
from the plant that, when taken by the pathogen, affect the

plant’s growth (in other words, modifies the value of the objective
function after FBA). The researchers found that the impairment
of the plant metabolic network is determined by the pathogen
and not by the host. For the comparisons between host-pathogen
interactions, the authors used a multidimensional scaling (MDS)
analysis. The MDS approach allows the comparison among
different types of host-pathogen interactions. Using a Jaccard
distance to measure the pairs of metabolic networks, authors
found that the five metabolic networks of the plants studied are
very similar to each other. In contrast, the pathogen networks
are much more heterogeneous among them. For example, the
metabolic networks of the bacterial pathogens Xanthomonas
oryzae and P. syringae differed from those of the fungal
pathogenic species. Additionally, researchers found that histidine
is the main target in all host-pathogen interactions, followed
by lysine, methionine, and the nucleotide phosphate TTP; and
in the specific case of X. oryzae, thymidine triphosphate. They
also found that the large secondary metabolism of plants is
underrepresented by a gap of knowledge. However, authors
recognize a bias in their study as they only compared pathogenic
interactions. The solution proposed, is to use, in addition to
the plant-pathogenic networks, non-pathogenic interactions
as a null model to compare and validate the results found in
silico. However, how can this in silico simulations be contrasted
with experimental data? Interactions among non-pathogens
and their host may be compared to pathogenic interactions at
the metabolic level to add experimental information to in silico
predictions.

Objective Function in Pathogenic Bacteria
The objective function is indispensable for the CBM approach
because it specifies the set of metabolites that must be used
to optimize the system and resolve the metabolic fluxes of
the organism. The most frequently used objective function to
model pathogenic bacteria is biomass (Table 2) (Charusanti et al.,
2011; Liao et al., 2011; Thiele et al., 2011; Fong et al., 2013;
Monk et al., 2013; Schatschneider et al., 2013; Wang et al.,
2014a).

When the organism under study lacks experimental data for
the formulation of the biomass function, data from Escherichia
coli is used. However, differences in the composition of biomass
of the components should be considered to correct for the
growth estimation of the model. For example, the biomass
composition of Klebsiella pneumoniae has a greater proportion
of carbohydrates than that of E. coli (probably due to differences
in the polysaccharide content of its capsule); this factor was
included in the model of K. pneumoniae and it led to an
improvement in growth predictions for this species (Liao et al.,
2011). Similarly, in a study performed with Burkholderia, it
was found that the special fatty acid and lipid composition of
this species was dependent on the growth temperature. Thus,
this information was taken into account when determining the
biomass composition used for the objective function to improve
the growth predictions of this pathogenic bacteria (Bartell et al.,
2014).

An important modification to the biomass function is the
inclusion of the growth associated maintenance (GAM) and
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TABLE 2 | Examples of objective functions used and the biological utility of the studies.

Organisms Biological question—objectives Objective function References

Yersinia pestis CO92 Gene targets for antibiotic development. Growth at

different carbon sources (used for classification of

strains of Y. pestis).

Biomass: at two temperatures.

Differences in LPS and fatty acid

composition at biomass

definition.

Charusanti et al., 2011

Salmonella enterica serovar Typhimurium

LT2

Metabolic reconstruction, reconciliation of two

models.

Biomass Thiele et al., 2011

Salmonella enterica serovar Typhimurium Reconciliation of simulations and experimental data;

gap filling.

Biomass Fong et al., 2013

Pseudomonas putida KY2440 & P.

aeruginosa PA01

Search for drug targets and comparison of

metabolic networks of pathogenic and

non-pathogenic bacterium.

NA Perumal et al., 2009

Burkholderia cenocepacia j2315 & B.

multivorans ATCC 17616

Differences and similarities in pathogenesis and

virulence.

Biomass: special composition of

lipids and fatty acid.

Bartell et al., 2014

Pectobacterium carotovorum PC1 Establishes a new strategy for identification of

bactericides targets of agriculture importance.

Biomass: E. coli Wang et al., 2014a

Klebsiella pneumoniae Metabolic model reconstruction and experimental

validation of the model.

Biomass Liao et al., 2011

Xanthomonas campestris pv. campestris Uncover mechanisms of xanthan biosynthesis for

industrial purposes and pathogenicity research.

Biomass/ xanthan production Schatschneider et al., 2013

Xanthomonas oryzae pv. oryzae &

Pseudomonas syringae pv. tomato

Research on plant-pathogen interactions. NA Duan et al., 2013

Escherichia coli (55 strains) & Shigella

(8 species)

Determination of limits between strain and species

at a metabolic level. Characterization of pan and

core metabolic capabilities. Evaluation of

strain-specific auxotrophies.

Biomass Monk et al., 2013

non-growth associated maintenance (NGAM) energies (Thiele
and Palsson, 2010) as was performed in K. pneumoniae (Liao
et al., 2011). The GAM is a reaction that represents the energy
necessary (ATP) for the replication of the cell including DNA,
protein, and RNA synthesis. The NGAM represents the energy
necessary (also in ATP) for maintenance of the cell in activities
other than growth (e.g., turgor pressure or membrane leakage).
The objective is to adjust the model to the experimental growth
data and to account for the differences among strains (Varma and
Palsson, 1994).

Another objective function that has been used for pathogenic
bacteria are virulence factors. Xanthan, in X. campestris
pv. campestris (Xcc) was chosen with excellent results
(Schatschneider et al., 2013). The main difficulty for the
model of Xcc under the phenotype of xanthan was the lack
of information in the metabolic databases regarding the
polysaccharide biosynthesis needed for xanthan production.
This gap was filled by Schatschneider et al. (2013) using
additional information from the genome annotation performed
in a former study (Vorhölter et al., 2008). Another problem
detected by Schatschneider et al. (2013) was that the biomass
function competes for the same precursors as xanthan. Thus,
for the analysis, xanthan may be defined as a product along
with biomass in a specific ratio. The most important result of
this study was the discovery of an increased growth rate in the
absence of xanthan production by a reallocation of carbohydrate
precursors to the biomass products. Finally, the authors validated
this prediction using experimental mutants of the carbohydrate

metabolism and xanthan production (Schatschneider et al.,
2013).

Bartell et al. (2014) extensively assessed the production
of several virulence factors of Burkholderia species during
cystic fibrosis in humans by in vitro and in silico assays. The
virulence factors included biofilm-related exopolysaccharides,
molecules that trigger the immune response, phagocytosis-
resistant molecules, and quorum sensing molecules. The main
findings from these simulations were that the most important
carbon source to produce the virulence factors assessed are
tyrosine and glucose and that every virulence factor can be
produced by at least one carbon source. These results have been
useful for drug and control design, as the specificity of the species
for carbon sources was shown.

With all this taken into account, which objective function
should be used for metabolic modeling? Which biomass
formulation should be used? Or should it be related to
pathogenesis or virulence? Or a combination of both? The
final answer is in the nature of the biological question or
aim to be achieved. A first approach to the model, using
the biomass formulation alone, can be used to calibrate the
model and assess the normal behavior in standard conditions
of in vitro culturing. However, if a deeper understanding of
the host-pathogen interaction is desired, a pathogenic/virulence
focus objective function must be proposed and supported by
experimental data. A final comparison between the three results
of modeling with: biomass, pathogenic, and a combination of
both could give insights into the pathogenic behavior. One
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example of the improvement of objective function based on
experimental data in pathogenesis is in Ralstonia solanacearum,
where the researchers assessed the trade-off between virulence
and proliferation (Peyraud et al., 2016). Another example was
proposed by researchers to modify the objective function of M.
tuberculosis based on proteomics data, successfully improving the
predictions under antibiotic stress (Montezano et al., 2015).

In conclusion, metabolic networks may be analyzed by the
CBM approach without knowing all the metabolic parameters.
The predictions provided by CBM can help uncover the
pathogenicity mechanisms in plant pathogenic bacteria. Also, the
design of control strategies against pathogens may be done by
simulating multiple mutants in silico and then testing potential
candidates in the laboratory. However, one of the weaknesses
of the actual definition of objective function for metabolic
studies, is the lack of experimental data to improve and confirm
the predictions of the non-model organisms. Thus, unless the
utility of top-down approaches for genome-scale modeling is
evident, a better effort for obtaining experimental data for non-
model organisms is necessary to assess the level of bias of
using information of model organisms for non-model ones.
Furthermore, other elements must be included in the biomass
formulations as metabolic cofactors. These, have an impact in the
predictions of growth of different strains on different media, as
shown in previous studies (Xavier et al., 2017). Today, the CBM
is the standardized approach for conducting metabolic analyses.
New methods that complement CBM are being developed and
incorporate regulatory, lipidomics, and transcriptomics data.
This will certainly help improving the power of the predictions.

PROTEIN-PROTEIN INTERACTION
NETWORKS

A fundamental aspect of systems biology is the understanding of
the interaction of its components in a holistic way. For networks
of proteins, interactions allow the establishment of clusters and
routes that proteins develop during a process (Singh et al.,
2007). Each of these clusters of interactions describes a function
e.g., signal transduction, assembly of the cytoskeleton, protein
degradation, etc. (Zhang, 2009).

One of the great advantages that the reconstruction of
PPINs provides is the ability to obtain evidence of synergy2,
redundancy3, re-wiring4, robustness5, and even evolutionary
processes (Sun et al., 2012). For example, the analysis of
disturbance (where individual proteins are eliminated from the
network) applied to a PPIN helps identify critical proteins in
the system (Yadav and Babu, 2012). In addition, it is possible
to integrate PPIN with other kinds of networks (for example
regulatory and metabolic networks) or information to improve

2Synergy: union of two or more processes or paths that generate new process or

biological properties.
3Redundancy: repetition of process or elements that serve as a functional reserve

in case of failure.
4Rewiring: change in the association of biological entities that can vary along the

time for improvement of system efficiency.
5Robustness: capacity of the biological system to recover from perturbations

conserving the equilibrium of the system.

the understanding of microorganisms (Gligorijević and Pržulj,
2015). Finally, experimental techniques may be used to improve
the reconstruction of the PPIN or to validate specific protein-
protein interactions. The main experimental techniques used
are shown in Table 3. A good example of the utility of high-
throughput experimental techniques for PPIN reconstruction in
plant pathogens is the Yeast Two-Hybrid (Y2H) system. In this
study, the interaction between A. thaliana and three pathogens:
P. syringae, Hyaloperonospora arabidopsidis, and Golovinomyces
orontii (Weßling et al., 2014) were assessed. Importantly, the
researchers found Arabidopsis target elements shared by the
three pathogens, highlighting the importance of a few hubs in
plants that can be targeted by pathogenicity weapons of the
microorganism. This highlights the relevance of the integration
of experimental techniques in pathogenicity studies.

In the following section, we will discuss some approaches for
the analyses of PPIN in the context of pathogenicity interactions.
The concepts used for characterizing and comparing networks
were previously defined (Table 1 and Box 4).

Computational Methods in PPIN for
Pathogenic Interaction Studies
Among the multiple computational analyses that can be
performed for the reconstruction of PPIN and prediction of
interactions (Table 4), we will focus on phylogenetic methods,
used in bacterial pathogens (Albert, 2007). We will also discuss
the importance of modeling the dynamics of PPINs and how
PPIN can be used for gaining insights into the meaning of
pathogenicity. The reader can review other methods for PPINs
reconstruction elsewhere (Dyer et al., 2007; Zahiri et al., 2013).

Phylogenetic Methods: Orthologous Domains or

Genes
A first methodological approach within PPIN consists of the
identification of interacting proteins based on orthologous genes
that are known to interact (He et al., 2008). For this approach,
databases of interactions from well-characterized organisms such
asHomo sapiens, E. coli, Saccharomyces cerevisiae,Caenorhabditis
elegans, and Drosophila melanogaster, can be used. He et al.
(2008) used these databases for the prediction of protein-
protein interactions forMagnaporthe grisea, a pathogenic fungus
that produces rice blast disease. In this study, they identified
orthologous genes corresponding to proteins that are known to
interact using databases from E. coli, S. cerevisae, C. elegans, D.
melanogaster, andH. sapiens. They obtained a network of around
3,000 proteins forM. grisea. Among these, 40 seemed to be hubs
that showed a high network degree. All the interactions were
validated through in silico approaches and authors found possible
pathogenic clusters involved in infection, such as phosphorus
metabolism, chromatin silencing, and ion transport. This study
highlights the importance of the network approach for predicting
interactions where no previous information for the organism is
available.

A second approach uses different protein features related to
known protein-protein interactions: a motif, a domain, or a
tridimensional structure. Then, these features are used to predict
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TABLE 4 | Computational methods for prediction of protein-protein interaction.

Technique Algorithms Strengths Weaknesses Organism Reference

Phylogenetic Cluster analysis,

maximum likelihood,

maximum parsimony,

Bayesian inference

Provides information of

selective environmental

pressure

Difficult to estimate

divergence of proteins

H. pylori, P. falciparum Ratmann et al., 2007

Machine learning Random forest, decision tree,

k-nearest neighbors,

bayesian, Neural networks,

support vector machine

Simple to understand,

accurate

Dependent of parameter

settings and features,

black-box predictor,

large data set for training

Vibrio cholerae,

P. aeruginosa

Nanni et al., 2012;

Ehrenberger et al.,

2015

Data mining Named entity recognition, ID3,

Computational of natural

language processing, C4.5

Fast and process large

volumes of information, good

to focused list

It is sensitive to noise,

require manually curation

H. pylori,

Campylobacter jejuni

Bock and Gough,

2003

Topological Power-law degree distribution,

clustering coefficient

Common topological

characteristics among species

(small-world), comparison with

random networks

False positives proportional

to the size of the network,

configuration of protein

modules may vary

E. coli Butland et al., 2005;

Wuchty, 2006;

Sharan et al., 2007

Structure Shape complementarity,

rigid-body docking, heuristic

potential

Accurate, good availability of

data for primary and secondary

structure

Slow development for high

throughput methodologies

E. coli, S. typhimurium

and T. maritima

Matsuzaki et al.,

2014

new interactions (Davis et al., 2007). The predictions of host-
pathogen protein interactions have been mostly based on the
S. cerevisiae interactome6 [which was reconstructed based on
affinity purification/mass spectrometry (Collins et al., 2006)].
This interactome created a reference map which was curated for
later studies. For example, Davis et al. (2007) used it to predict
interactions of 10 human pathogens, including Plasmodium
and Mycobacterium species, generating a full protocol based on
protein domains.

In the case of plant-pathogens, a prediction at the genome-
scale was calculated forA. thaliana and P. syringae. This was done
through two methodologies based on domains and interolog7,
generating more than 85,000 interactions, of which 11,000 were
shared by the two methodologies (Sahu et al., 2014).

Despite the power of phylogenetic methods, they can be
largely affected by the number of genomes used and the quality of
their assembly and annotation. Therefore, a robust methodology
of verification of false positives is necessary to evaluate the
accuracy of these methods.

Modeling Dynamic Networks
Protein networks have been presented so far as a mechanism
that allows associations to be viewed in a static way. In contrast,
the cell performs processes precisely by receiving and emitting
signals in a temporal context (Przytycka et al., 2010). The study of
dynamic networks aims to identify changes in topology, function,
spatial distribution, and information flow, to understand the
organism’s response to disturbance in function of time.

For example, probabilistic approaches integrate gene
expression profiles from different time points and protein

6It is appropriate to clarify that the interactome includes the set of interactions that

can occur in an organism, usually but not always, represented by protein-protein

interaction.
7Interactions that are conserved among pairs of proteins that are present in

descent-related species.

interaction data for the reconstruction of more accurate
PPIN than the networks that rely only on one time point
(Zhang et al., 2016). This probabilistic approach identifies
protein complexes better than static methods and localizes
the protein complex in their correct time stage at biological
level. The authors exemplify this in the case of a protein
complex of the Golgi transport system, showing their
interaction in a specific point of the time series (Zhang
et al., 2016).

Also, integrative strategies (using proteomics, genomics,
and transcriptomics) have been generated to observe changes
at the level of protein interaction or gene expression, both
permanent or transient for the detection of biomarkers of disease
progression as reviewed by (Wang et al., 2014b).

Temporary associations generate rapid response mechanisms,
vital in defense processes against pathogens. Therefore, dynamic
networks could be used for generating models of disease
progression, helping in the design of drugs or control strategies
(Przytycka et al., 2010).

PPIN in the Context of Host-Pathogen
Interactions
We want to point the main use of PPIN approaches
in pathogenicity context. First, multiple protein-protein
interactions among pathogenicity factors (e.g., effector proteins)
and host proteins (based on genome data and information of
related species) can be assessed in silico. Then, the target of
the protein of the pathogen into the host can be predicted, and
obtain a network of PPIN of the pathogen and the host. Second,
host-pathogen interactions can be assessed through techniques
as Y2H or other techniques mentioned at the beginning of this
chapter. Then, these experimental data and in silico predictions
can be used to construct a PPIN of the host-pathogen interaction.
This kind of network has a lot of information useful for the
biotechnological control of the pathogen. For example, with the
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help of network metrics (Table 1) such as clustering coefficients
or network degree, hubs of susceptibility in the host can be
detected. Finally, it is highly recommended to experimentally
confirm the candidates by more precise techniques such as CoIP.

Signaling Networks: A Special Case of
PPIN
Signaling is a series of chemical and/or energetic transmissions
from an external stimulus to the cell. Signaling networks
reconstruct the interaction path of the signal-carrying elements
(usually proteins) to the organelle that requires the decision
of maintaining or changing a state of homeostasis (Cho et al.,
2015). These networks are also represented in a directed manner
(Figure 1A) and with highly conserved and specific topologies.
Usually, these types of networks also include transcription factors
and PPIN to reconstruct the signaling cascade. The most likely
edges of signal conduction are also weighted by the strongest
or most reliable directed path (Cho et al., 2015). From the
computational point of view, the weighting of the vertices
constitutes a great challenge due to the inherent subjectivity of
this process. Punctuation methodologies have been proposed by
defining a probability (Liu and Zhao, 2004).

Kim et al. (2014) discuss the robustness and modularity of
an immunity network, specifically that of A. thaliana under a
pathogen attack, investigating the changes of the plant-immunity
process called pattern-triggered immunity. They constructed
a dynamic model of a signaling network by evaluating the
determination of certain plant hormones against the immune
challenge, to evaluate their predictive power. They found that
the hormone ethylene increases the robustness of the system by
inhibiting the jasmonate pathway.With this, they could conclude
that the network is able to grade the level of the response to a
given pathogen.

REGULATORY NETWORKS

Regulatory networks represent the relationship between genes
and regulatory proteins that lead to the expression or suppression
of certain genes. The graphs of regulatory networks are
represented in a directed way (Figure 1A), trying to capture a
series of events that are often consecutive. These networks show
highly defined and sometimes hierarchical modules (Lozada-
Chávez et al., 2006).

Regulatory networks are highly dependent on the
environmental conditions, the cell type that is being studied,
and the developmental stages of the organism. Due to the
nature of this type of networks, mechanisms of control and
modulation generally given by transcription factors need to be
considered (Lee, 2002). Moreover, these networks may represent
protein-DNA interaction. Thus, they may be easily integrated
into protein-interaction networks and metabolic networks.

Because of the large amount of information that is possible
to integrate to these networks, multiple approaches have
been implemented, based on different sources of information
(Marbach et al., 2012). Table 5 summarize some of the methods
used for the reconstruction of regulatory networks. For instance,

in a report on the plant pathogen Xanthomonas axonopodis pv.
citri, researchers used microarrays and mutants to decipher the
role of two proteins, HrpX and HrpG, in the global control
of the virulence process (Guo et al., 2011) and proposed a
regulatory model. Also, Seo and collaborators used analysis of
gene expression profiles and ChIP-chip experiments to uncover
the main transcriptional architecture and regulatory features of
K. pneumoniae (Seo et al., 2012).

Finally, transcriptional reprogramming is a mechanism of
great importance in the control of pathogenicity. Consequently,
the reconstruction of regulatory networks derived from temporal
series of gene expression data, available in public repositories
(Marbach et al., 2012), could be used to predict the response
of the pathogen to host defense or antibiotic treatment.
Adding promoter regions and functional annotations can help
improve this type of network and highlight key components in
pathogenicity and evolution of resistance.

NETWORKS, EVOLUTION, AND
PATHOGENICITY

Evolution of Network Topology and
Distribution of Fluxes
The comparative analysis of networks is a powerful tool that
allows understanding the evolutionary relationships among
organisms. Furthermore, it allows scientists to decipher the
evolution of cell processes such as pathogenicity and adaptation
to life on a host. In the context of metabolic networks, three
main characteristics can be compared: the similarity of their
components, their topology or organization, and the distribution
of fluxes. Some studies that are reviewed here show several
principles of the evolution of networks in pathogenic bacteria.
We would like to highlight two of them: (i) highly connected
elements of the network are highly conserved and (ii) in a
changing environment, the organism will favor one functional
objective at the expense of others.

As stated in the first principle mentioned above, the
organization of the networks reflects the evolutionary
conservation of its components. Some studies have shown
the positive correlation between connectivity of proteins
and their degree of conservation (Butland et al., 2005). The
organization of the core (shared pathways) and the specific
networks are related to the lifestyle of the organism. Regardless
of the pathway, the highly-connected enzymes or other elements
(regulatory modules and protein interactions) in the network
are highly conserved. Furthermore, a scale-free network is
vulnerable to the removal of the highly-connected proteins
(hubs) but not to the deletion of the less connected proteins.
The modularity of the networks reflects the lifestyles of the
organisms, as will be discussed in the next section (Butland et al.,
2005; Kreimer et al., 2008).

Concerning the second principle, while today we have a
better understanding of the way networks are organized or
their topology, the evolution and the distribution of fluxes
through metabolism have been less studied. Schuetz et al.
(2012) compared the evolution of metabolism inmicroorganisms
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TABLE 5 | Methods for reconstruction of regulatory networks.

Approaches Highlights Challenges Organisms studied References

Differential equations Network dynamic over time,

regulation and optimization of

function

High computational demanding,

complex parameter optimization

Mus musculus, Candida albicans Linde et al., 2015

Boolean Switch-like behavior, efficient and

easy interpretation

Only two states, good in small

networks,

Only synchronous interactions

H. pylori Franke et al., 2008

Bayesian* Robust to deal of disturbances,

integrated knowledge to increase

the support

Non-dynamical, high computational

cost, often used a hybrid method to

increase the accuracy

E. coli Yang et al., 2011

Neural networks Allows continuous variables over

time, very sensitive for regulated

systems, noise-resistant

Computational complex, difficult for

training, need a lot of input data

Caulobacter crescentus,

E. coli, Bacillus subtilis

Yaghoobi et al., 2012;

Umarov and Solovyev,

2017

State space model High computational efficiency,

probabilistic framework to

simulate the network, determines

an optimal threshold value

There are no learning steps Saccharomyces cerevisiae,

Aspergillus fumigatu

Do et al., 2009; Koh

et al., 2009

*To counteract the stationary problem of Bayesian networks, The dynamic Bayesian network approach was developed.

to the Pareto optimality. The Pareto optimality or Pareto
efficiency is an economic concept stating that one’s utility
will increase only if someone else’s utility diminishes (Sen,
1993). Therefore, in a changing environment, an organism
faces a series of trade-offs; the optimality of an objective
will be at the expense of another (ATP balance, growth
rate, or minimization of fluxes; Schuetz et al., 2012). For
example, an organism cannot be optimally adapted to growth
in aerobic conditions and anaerobic at the same time. More
importantly, authors found a deviance of the metabolism’s
operation of some mutants from the Pareto surface, which
support the author’s hypothesis that organisms maintain some
space from optimality as evolutionary adaptation under changing
environments (Schuetz et al., 2012). Thus, evolution favors flux
distributions that minimize adjustments to the new conditions
(Schuetz et al., 2012).

Comparative Studies of Networks
Network comparisons between different organisms to study
their evolution can be performed with different methods. Some
methods compare the contents of the network (e.g., similarity
in enzymes, individual pathways, or the whole repertoire)
while others compare their structure. We will revise some of
these methods mentioning their differences and some of their
applications.

The first set of methods calculates indices of similarity
or distance between networks, by calculating the similarity
or distance between the network components (enzymes,
transcription factors, or any other sequence used to construct
the network). The similarity between proteins can be simply
obtained by their sequence or structure similarity but also by the
similarity between the EC (Enzyme Classification) numbers of
the corresponding reactions, in the case of metabolic networks
(IUBMB. Nomenclature Committee of The International Union
of Biochemistry and Molecular Biology, 1992; Heymans and
Singh, 2003).

Other methods use the information of the structure of the

networks. Forst and Schulten (2001) used sequence similarity

combined with information of the corresponding network.

They defined the distance between pathways based on all the

comprising elements that share the same functional role. In
the simplest pathway, the elements of a functional role are the
enzyme and its substrate and they can be compared by traditional
sequence comparison analysis, if the latter is a protein.

Heymans and Singh (2003) proposed to combine both
measures, similarity of the components and network structure

using local graph similarity. The graph similarity is calculated on

enzyme subsets where all the information contained within the
pathways, except for the enzymes, is deleted and the simplified
subset is then compared (Heymans and Singh, 2003). However,
this method applies to individual pathways and a more inclusive
approach was proposed by Forst et al. (2006) in a study where the
whole metabolic networks are compared (Heymans and Singh,
2003; Forst et al., 2006).

The fourth set of analyses studies differences in the
components of the networks; basically, they compare the
insertion or deletion of components in a network. These
approaches allow the understanding of the adaptation of
organisms to new niches. In a network, two types of pathways
can be identified, the essential, present in all organisms, and
the non-essential, which are under continuous evolution and
are specific to the organism’s lifestyle (Mithani et al., 2010). In
the Reaction correlation analysis (Mithani et al., 2010, 2011)
a Euclidean distance is calculated based on the absence or
presence of the reactions in different individuals or strains. In
the “all but one analysis” included in the software Rahnuma
(Mithani et al., 2009), and then redefined by Mithani et al.
(2010), the user can identify pathways and reactions present in
some organisms but absent in others. The identification of a
core network leads to the construction of an Ancestral Network,
a network comprising the reactions present in all species and
the definition of species-specific networks (Mithani et al., 2010).
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Therefore, a Bayesian model like the one proposed by Mithani
et al. (2010) for the study of network evolution allows for the
identification of regions of the network under selective pressures,
most probably involved in pathogenicity processes. In a study
combining different approaches of network evolution analysis,
Mithani et al. (2011) showed how these comparative analyses
lead to the understanding of the evolution and adaptation
strategies of a set of related organisms, some pathogenic and
other nonpathogenic. For example, according to the ancestral
network reconstruction, it has been suggested that the ancestral
pseudomonad was saprotrophic from which more specialized
pathogens evolved (Mithani et al., 2010, 2011).

The fifth set of analyses compare the topological features
of metabolic networks, especially modularity, for more than
300 bacterial species (Kreimer et al., 2008). These analyses
permit studying evolution at a broader phylogenetic scale and
relate network characteristics with environmental cues. One
of the main results of Kreimer and collaborators was that
the environmental factors influence network modularity. Also,
symbionts and pathogens show lower modularity while the free-
living and less niche-specific bacteria show higher modularity
(Kreimer et al., 2008). Moreover, endosymbiotic organisms living
in nutrient-restricted niches show both smaller networks and
less modularity, losing specific fast-evolving pathways (Kreimer
et al., 2008). In this context, modularity is interpreted as subset of
functionally related and highly connected reactions or pathways.
Thus, pathogens and symbionts have a lower number of modules
and connections because they are expected to use the external
pathways from the host for its own benefit.

Network Evolution and Pathogenicity
The comparative genomic studies reviewed here take advantage
of a higher order of organization based on the structure
and properties of the molecular level network-based models.
These models allow stating additional hypotheses for the
evolution of bacterial pathogens. However, studies based on
molecular network models have important limitations as do
other comparative genomic studies. Missing data is probably the
major drawback, for example on the directionality and kinetic
parameters of the reactions.

The study of network evolution will help in the understanding
of pathogenicity and in the processes of adaptation of pathogens
to new or old hosts. Especially, the organization of orphan
genes, the species-specific or pathogen-specific genes, and their
connections to the core network will help achieve this goal.
New genes arise by different processes: exon shuffling, gene
duplication, retrotransposition, mobile elements, lateral gene
transfer, de novo, and a combination of these mechanisms (Long
et al., 2003). Once generated, both duplicated and novel genes are
less connected at the beginning, however, the rewiring process
differs between these two (Capra et al., 2010). In the case of
the pathogenicity-related genes, it is argued that they will always
occupy peripheral positions in the networks (Kholodenko et al.,
2012), a result expected due to their fast-evolving rates.

The study of the rewiring process of recently evolving
genes may be helpful in the pathogenicity studies, given that
the rewiring process occurs not only inside the cell but also

with its interactors (host or pathogen). In a recent study, it
was shown that effector proteins from phylogenetically distant
organisms converge to and target highly connected hubs of
the immune plant system (Mukhtar et al., 2011; Kholodenko
et al., 2012). Thus, this mechanism of host-pathogen interaction
could help in the prediction of evolving paths in the pathogen
as response to drug or pesticide control (in human and plant
pathogens respectively), and therefore partially solve the problem
of resistance in pathogens subject of pathogenicity control.

CONCLUSIONS

We have reviewed the metabolic, protein-protein and regulatory
networks that have helped understanding disease, mechanisms
of pathogenesis and virulence, as well as interactions between
bacteria and their hosts.

All types of networks, used for prediction purposes, have
both strengths and weaknesses, and provide different types of
biological information Table 6. Also, we showed how topological
and other mathematical approaches can be used to analyze every
type of network. For example, CBM, which does not rely on
the complete knowledge of the kinetic constants, serves as a
useful approach for metabolic analyses in pathogenic bacteria.
In contrast, the Boolean analysis of regulatory networks, which
relies only on topological features of the network architecture,
provides useful information about pathogenic mechanisms.
Thus, the different mechanisms of pathogenicity, disease, and
virulence can be uncovered by network approaches. However,
a strong feedback between the information derived from
experimental procedures and computational models should
be progressively more relevant and important to improve
the conclusions of the models and provide new biological
hypotheses.

The systems biology approach can be used to design control
strategies of the pathogen. For example, bactericides target
important regulators or proteins of the pathogen, identified on
in silico studies. In the case of regulatory networks, two of the
most important aspects related to pathogens are the robustness
of the network to random changes and its stability through time.
This has been made evident by the high degree of fitness that
successful pathogens possess. Pathogens share elements linked
to pathogenicity that have simultaneous and/or complementary
actions as redundant mechanisms in the event of detection by the
host. The robustness is a consequence of the wired redundancy of
the gene-regulator interactions, especially in the genes encoding
for hub proteins. It can be inferred that the evolutionary forces
have shaped and constrained the most important regulatory
pathways involved in disease, pathogenicity, and virulence of
bacteria. Therefore, genes within pathways that improve the
fitness of the pathogen are positively selected, increasing the
degree of wiring of these specific mechanisms. These genes are
promising targets for bacterial control.

In the case of protein-protein interactions, newmethodologies
and approaches have emerged from structural, functional and
computational knowledge. Studies have focused on the functional
role of proteins in disease-related processes, significantly
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TABLE 6 | Summary of networks for the study of host-pathogen interaction.

Networks Experimental data Mathematical and computational

approaches

Objective

Regulatory Genomics; Transcriptomics; Transcription

Start Site (5′-RACE); Binding sites global

regulators (ChIP-chip)

Boolean; network analysis Dynamic of regulation of genes involved in

virulence and pathogenicity

Metabolic Genomics; transcriptomics;

Metabolomics; Phenotype microarrays;

C13 labeling

Constraint-based modeling; elementary

flux mode analysis; pathway enrichment

analysis; network analysis

Metabolic capabilities; genes related with

virulence and pathogenicity

Protein-protein

interaction

Y2H; PCA; BiFC; Protein arrays; Pull

down; Phage display

Phylogenetic methods; dynamical

networks; machine learning

Identification of hubs involved in virulence

and pathogenicity; Determination of

interaction between proteins related with

signaling and regulatory cascades

Signaling and regulatory Transcriptomics; Fusion assays (LacZ

reporter); Adherence assay; Biofilm

formation (fluorescence)

Boolean; network analysis Impact of sensors in regulation of virulence

and pathogenesis; Cell-to-cell signaling;

biofilm synthesis;

Signaling, regulatory and

metabolic

Genomics; metabolomics; transcriptomics Constraint-based modeling; boolean

model hierarchical layers; network analysis

Model regulatory and metabolic network

of QS system

The networks reviewed in this work, the experimental data (mainly at the level of omics), the mathematical and computational approaches applied for every network, and the research

objective for the networks studied are summarized.

contributing to the understanding of the role of proteins as
mechanistic executors in each of the physiological stages of
infection. Thus, signaling pathways or hubs that are susceptible to
be blocked to prevent the development of a given disease could be
detected and be used to design control strategies of the pathogen.
One of these strategies starts from the analysis of domains or
contact surfaces allowing to establish interactomes in silico and
develop mimetic or decoy proteins.

We have shown that regulatory, metabolic, and protein-
protein interaction network systems are tightly interconnected,
and each of them depends on the others. In the future, we
expect that more studies center their efforts into coupled systems
using different computational and mathematical approaches
with the support of several experimental techniques and
approaches (as much targeted to specific genes and mechanisms
as supporting high-throughput data analysis). For example, the
gene essentiality analysis is important in the context of regulatory
networks, where deletion of genes impact molecular networks
at the level of protein interactions, signaling cascades, and
the metabolic phenotype. Therefore, this analysis constitutes a
powerful approach for searching for genetic targets for the design
of control strategies against pathogens.

Another example of the inference power of coupled systems
is the relationship between the genotype and the phenotype
that is reflected in metabolic and protein networks linked to
regulatory and signaling networks. It is the convergence of
systems, through the switching of the distinctmetabolic pathways
mediated by regulation of the genes and signaling cascades,
that determines the defense and attack mechanisms of the
pathogen. The hubs at the level of the regulatory system play
an important role in the control of pathogenicity, since a global
regulator of pathogenicity can control several genes within a
pathogenicity module. Subsequently, the downstream cascade of
genes can up or down-regulate several other genes involved in
metabolism and other functions. The result is the expression
of a metabolic phenotype that serves as a coordinated attack

or defense system. Thus, the study of regulatory, signaling and
metabolic interactions through a multiscale modeling approach
will provide promising results related to pathogenicity and
defense mechanisms.

In systems biology, we will see an important improvement
of the evolutionary analyses performed on the networks. The
incorporation of a genetic population frame is urgently needed
to help to understand the pathogenic mechanisms of host-
pathogen interactions. A way to accomplish this is through
the establishment of relationships between genetic variation of
the genes associated with the enzymes and proteins and the
properties of the networks to explain this variation in spatial
and evolutionary terms in a system context. Ultimately, the
host-pathogen relationships are governed by evolutionary forces
acting in time and space of the whole biological system.

The evolutionary studies supported by systems biology can
help to solve important questions related to pathogenicity as
the emergence of specific pathogens and their relationship with
non-pathogens. The processes of interaction among species over
millions of years have largely been influenced by domestication.
This has generated changes among the connections of the
elements of the immune system (rewiring). As a result, selection
pressures have varied, favoring, in some cases, a non-specific
pathogen to infect a given host. This process can be modeled
through networks, by reconstructing the routes or proteins of
ancestral and/or non-domesticated species and comparing with
the present ones to observe the changes in connections among
the elements.

From the evolutionary point of view, networks can also
demonstrate the molecular changes that have occurred during
pathogen interactions. From the hypothesis of arms race
processes, new perspectives have been generated that can fill the
gaps, such as that proposed by Cook et al. (2015), which provides
a view of the host-pathogen interaction, related to mutualism
and parasitic symbiosis as initial stages of co-evolution. With the
above, we could rethink the approximation strategies and howwe
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understand the interaction of what is considered pathogenic, and
how biological networks can drive to new hypothesis through the
integration of enormous amount of information.

Finally, the comparisons between pathogens and non-
pathogens in an evolutionary context, where there are
conserved and divergent features among the different
strains and species, can serve to design control strategies
and to help to improve the understanding of pathogenicity
mechanisms.

In this review, we tried to describe different methodologies
to solve biological questions using the networks, giving an
overview of the available mathematical approaches. As a growing
discipline, network analysis in systems biology still has challenges
that must be overcome and must be considered when generating
new hypotheses. Some of the challenges that need to be addressed
are:

I. At the metabolic level, the objective function should be
redefined in a context of host-pathogen relationships (xanthan
is a good example; other pathogenic factors can be modeled in
the same way).

II. Protein-protein interaction prediction methodologies must
have a large amount of data as a basis for prediction.

III. The reconstruction of the regulatory networks still represents
experimental limitations since a high amount of data are
needed such as time series, gene deletions or biological
samples.

IV. The evolutionary forces acting on the networks should be
mathematical and computational implemented; not only to
compare between different networks of the same species or
genus, but also to differentiate among genetic drift, genetic
flow and other evolutionary forces.

V. The experimental information on non-model pathogens,
especially the high-throughput data must be increased for
feeding the computational models and for comparison
purposes.

Confronting these challenges will bring the study of pathogenic
mechanisms and relationships to a next level. Without doubt,
network analysis in systems biology will appear as an essential
discipline used in every molecular laboratory that studies host-
pathogen interactions and, we will see a burst of user-friendly
software in network biology designed for experimental biologist
to fulfill this necessity.

AUTHOR CONTRIBUTIONS

DB, CA, AB, GD, SR: Developed and wrote the manuscript;
GD, SR, AB: Guided and assisted in writing the manuscript; All
authors read and approved the final manuscript.

FUNDING

Faculty of Sciences of the Universidad de Los Andes and
the Administrative Department of Science and Technology in
Colombia.

ACKNOWLEDGMENTS

We want to thank Faculty of Sciences of the Universidad de Los
Andes for all the funding that made this review possible. We
also want to thank the Administrative Department of Science
and Technology in Colombia (Colciencias) for the award under
contract number 0794-2013 for support to CA.

REFERENCES

Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I., Nielsen, J., et al.

(2013). The RAVEN toolbox and its use for generating a genome-scale

metabolic model for Penicillium chrysogenum. PLoS Comput. Biol. 9:e1002980.

doi: 10.1371/journal.pcbi.1002980

Albert, R. (2007). Network inference, analysis, and modeling in systems biology.

Plant Cell 19, 3327–3338. doi: 10.1105/tpc.107.054700

Aloy, P., and Russell, R. B. (2004). Taking the mystery out of biological networks.

EMBO Rep. 5, 349–350. doi: 10.1038/sj.embor.7400129

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al.

(2008). The RAST Server: rapid annotations using subsystems technology.

BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75

Barabási, A.-L., and Albert, R. (1999). Emergence of scaling in random networks.

Science, 286, 509–512.

Bartell, J. A., Yen, P., Varga, J. J., Goldberg, J. B., and Papin, J. A. (2014).

Comparative metabolic systems analysis of pathogenic Burkholderia. J.

Bacteriol. 196, 210–226. doi: 10.1128/JB.00997-13

Bhat, R. A., Miklis, M., Schmelzer, E., Schulze-Lefert, P., and Panstruga, R.

(2005). Recruitment and interaction dynamics of plant penetration resistance

components in a plasma membrane microdomain. Proc. Natl. Acad. Sci. U.S.A.

102, 3135–3140. doi: 10.1073/pnas.0500012102

Bock, J. R., and Gough, D. A. (2003). Whole-proteome interaction mining.

Bioinformatics 19, 125–135. doi: 10.1093/bioinformatics/19.1.125

Bonde, B. K., Beste, D. J. V., Laing, E., Kierzek, A. M., and McFadden,

J. (2011). Differential Producibility Analysis (DPA) of transcriptomic data

with metabolic networks: deconstructing the metabolic response of M.

tuberculosis. PLoS Comput. Biol. 7:e1002060. doi: 10.1371/journal.pcbi.10

02060

Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. Ø., and Jamshidi, N. (2010).

Insight into human alveolar macrophage and M. tuberculosis interactions via

metabolic reconstructions.Mol. Syst. Biol. 6:422. doi: 10.1038/msb.2010.68

Bruggeman, F. J., and Westerhoff, H. V. (2007). The nature of systems biology.

Trends Microbiol. 15, 45–50. doi: 10.1016/j.tim.2006.11.003

Butland, G., Peregrín-Alvarez, J. M., Li, J., Yang, W., Yang, X., Canadien, V.,

et al. (2005). Interaction network containing conserved and essential protein

complexes in Escherichia coli. Nature, 433, 531–537. doi: 10.1038/nature03239

Capra, J. A., Pollard, K. S., and Singh, M. (2010). Novel genes exhibit distinct

patterns of function acquisition and network integration. Genome Biol.

11:R127. doi: 10.1186/gb-2010-11-12-r127

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A.,

et al. (2014). The MetaCyc database of metabolic pathways and enzymes and

the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42,

D459–D471. doi: 10.1093/nar/gkt1103

Chandrasekaran, S., and Price, N. D. (2010). Probabilistic integrative modeling

of genome-scale metabolic and regulatory networks in Escherichia coli and

Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 107, 17845–17850.

doi: 10.1073/pnas.1005139107

Charusanti, P., Chauhan, S., McAteer, K., Lerman, J. A., Hyduke, D. R., Motin,

V. L., et al. (2011). An experimentally-supported genome-scale metabolic

network reconstruction for Yersinia pestis CO92. BMC Syst. Biol. 5:163.

doi: 10.1186/1752-0509-5-163

Cho, Y. R., Xin, Y., and Speegle, G. (2015). P-finder: reconstruction of signaling

networks from protein-protein interactions and GO annotations. IEEE/ACM

Trans. Comput. Biol. Bioinform. 12, 309–321. doi: 10.1109/TCBB.2014.2355216

Claudel-Renard, C., Chevalet, C., Faraut, T., and Kahn, D. (2003). Enzyme-specific

profiles for genome annotation: PRIAM. Nucleic Acids Res. 31, 6633–6639.

doi: 10.1093/nar/gkg847

Frontiers in Microbiology | www.frontiersin.org January 2018 | Volume 9 | Article 35181

https://doi.org/10.1371/journal.pcbi.1002980
https://doi.org/10.1105/tpc.107.054700
https://doi.org/10.1038/sj.embor.7400129
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.1128/JB.00997-13
https://doi.org/10.1073/pnas.0500012102
https://doi.org/10.1093/bioinformatics/19.1.125
https://doi.org/10.1371/journal.pcbi.1002060
https://doi.org/10.1038/msb.2010.68
https://doi.org/10.1016/j.tim.2006.11.003
https://doi.org/10.1038/nature03239
https://doi.org/10.1186/gb-2010-11-12-r127
https://doi.org/10.1093/nar/gkt1103
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1186/1752-0509-5-163
https://doi.org/10.1109/TCBB.2014.2355216
https://doi.org/10.1093/nar/gkg847
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Botero et al. Network Analyses in Plant Pathogens

Colijn, C., Brandes, A., Zucker, J., Lun, D. S., Weiner, B., Farhat, M. R., et al.

(2009). Interpreting expression data with metabolic flux models: predicting

Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol.

5:e1000489. doi: 10.1371/journal.pcbi.1000489

Collins, S. R., Kemmeren, P., Zhao, X.-C., Greenblatt, J. F., Spencer, F., Holstege,

F. C. P., et al. (2006). Toward a comprehensive atlas of the physical

interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6, 439–450.

doi: 10.1074/mcp.M600381-MCP200

Cook, D. E., Mesarich, C. H., and Thomma, B. P. H. J. (2015). Understanding plant

immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol.

53, 541–563. doi: 10.1146/annurev-phyto-080614-120114

Davis, F. P., Barkan, D. T., Eswar, N., McKerrow, J. H., and Sali, A. (2007). Host

pathogen protein interactions predicted by comparative modeling. Protein Sci.

16, 2585–2596. doi: 10.1110/ps.073228407

De Smet, R., and Marchal, K. (2010). Advantages and limitations of

current network inference methods. Nat. Rev. Microbiol. 8, 717–729.

doi: 10.1038/nrmicro2419

Do, J. H., Yamaguchi, R., and Miyano, S. (2009). Exploring temporal

transcription regulation structure of Aspergillus fumigatus in heat shock

by state space model. BMC Genomics 10:306. doi: 10.1186/1471-2164-

10-306

Duan, G., Christian, N., Schwachtje, J., Walther, D., and Ebenhöh, O. (2013). The

metabolic interplay between plants and phytopathogens. Metabolites 3, 1–23.

doi: 10.3390/metabo3010001

Dyer, M. D., Murali, T. M., and Sobral, B. W. (2007). Computational prediction

of host-pathogen protein-protein interactions. Bioinformatics 23, i159–i166.

doi: 10.1093/bioinformatics/btm208

Ehrenberger, T., Cantley, L. C., and Yaffe, M. B. (2015). Computational

prediction of protein-protein interactions. Methods Mol. Biol. 1278, 57–75.

doi: 10.1007/978-1-4939-2425-7_4

Fong, N. L., Lerman, J. A., Lam, I., Palsson, B. O., and Charusanti,

P. (2013). Reconciling a Salmonella enterica metabolic model with

experimental data confirms that overexpression of the glyoxylate shunt

can rescue a lethal ppc deletion mutant. FEMS Microbiol. Lett. 342, 62–69.

doi: 10.1111/1574-6968.12109

Forst, C. V., Flamm, C., Hofacker, I. L., and Stadler, P. F. (2006). Algebraic

comparison of metabolic networks, phylogenetic inference, and metabolic

innovation. BMC Bioinformatics 7:67. doi: 10.1186/1471-2105-7-67

Forst, C. V., and Schulten, K. (2001). Phylogenetic analysis of metabolic pathways.

J. Mol. Evol. 52, 471–489. doi: 10.1007/s002390010178

Francke, C., Siezen, R. J., and Teusink, B. (2005). Reconstructing the metabolic

network of a bacterium from its genome. Trends Microbiol. 13, 550–558.

doi: 10.1016/j.tim.2005.09.001

Franke, R., Müller, M., Wundrack, N., Gilles, E.-D., Klamt, S., Kähne, T., et al.

(2008). Host-pathogen systems biology: logical modelling of hepatocyte growth

factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst.

Biol. 2:4. doi: 10.1186/1752-0509-2-4

Ganter, M., Bernard, T., Moretti, S., Stelling, and Pagni, M. (2013). MetaNetX.org:

a website and repository for accessing, analysing and manipulating metabolic

networks. Bioinformatics, 29, 815–816. doi: 10.1093/bioinformatics/btt036

Gligorijević, V., and Pržulj, N. (2015). Methods for biological data

integration: perspectives and challenges. J. R. Soc. Interface 12:20150571.

doi: 10.1098/rsif.2015.0571

Goh, K. I., Kahng, B., and Kim, D. (2001). Universal behavior of load

distribution in scale-free networks. Phys. Rev. Lett. 87(27 Pt 1):278701.

doi: 10.1103/PhysRevLett.87.278701

Guo, Y., Figueiredo, F., Jones, J., andWang, N. (2011). HrpG and HrpX play global

roles in coordinating different virulence traits of Xanthomonas axonopodis pv.

citri. Mol. Plant Microbe Interact. 24, 649–661. doi: 10.1094/MPMI-09-10-0209

Hatzios, S. K., Ringgaard, S., Davis, B. M., and Waldor, M. K. (2012). Studies

of dynamic protein-protein interactions in bacteria using Renilla luciferase

complementation are undermined by nonspecific enzyme inhibition. PLoS

ONE 7:e43175. doi: 10.1371/journal.pone.0043175

Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N., Cusick, M. E., Radivojac,

P., et al. (2006). Intrinsic disorder is a common feature of hub

proteins from four eukaryotic interactomes. PLoS Comput. Biol. 2:e100.

doi: 10.1371/journal.pcbi.0020100

He, F., Zhang, Y., Chen, H., Zhang, Z., and Peng, Y.-L. (2008). The prediction of

protein-protein interaction networks in rice blast fungus. BMCGenomics 9:519.

doi: 10.1186/1471-2164-9-519

Heymans, M., and Singh, A. K. (2003). Deriving phylogenetic trees from

the similarity analysis of metabolic pathways. Bioinformatics 19, i138–i146.

doi: 10.1093/bioinformatics/btg1018

Horn, F., and Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech.

Anal. 47, 81–116. doi: 10.1007/BF00251225

Hou, Z., Jiang, P., Swanson, S. A., Elwell, A. L., Nguyen, B. K. S., Bolin, J. M.,

et al. (2015). A cost-effective RNA sequencing protocol for large-scale gene

expression studies. Sci. Rep. 5:9570. doi: 10.1038/srep09570

Hung, J.-H., Yang, T.-H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set

enrichment analysis: performance evaluation and usage guidelines. Brief.

Bioinform. 13, 281–291. doi: 10.1093/bib/bbr049

IUBMB. Nomenclature Committee of The International Union of Biochemistry,

and Molecular Biology (1992). Enzyme Nomenclature 1992 : Recommendations

of the Nomenclature Committee of the International Union of Biochemistry

and Molecular Biology on the Nomenclature and Classification of Enzymes.

San Diego, CA: Academic Press.

Jönsson, K., Guo, B. P., and Mekalanos, J. J. (2004). Molecular cloning

and characterization of two Helicobacter pylori genes coding for

plasminogen-binding proteins. Proc. Natl. Acad. Sci. 101, 1852–1857.

doi: 10.1073/pnas.0307329101

Kalkatawi, M., Alam, I., and Bajic, V. B. (2015). BEACON: automated tool

for Bacterial GEnome Annotation ComparisON. BMC Genomics, 16:616.

doi: 10.1186/s12864-015-1826-4

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27

Kaneko, A., Umeyama, T., Hanaoka, N., Monk, B. C., Uehara, Y., and Niimi,

M. (2004). Tandem affinity purification of the Candida albicans septin protein

complex. Yeast 21, 1025–1033. doi: 10.1002/yea.1147

Karr, J. R. R., Sanghvi, J. C. C., Macklin, D. N. N., Gutschow, M. V. V., Jacobs,

J. M. M., Bolival, B., et al. (2012). A whole-cell computational model predicts

phenotype from genotype. Cell 150, 389–401. doi: 10.1016/j.cell.2012.05.044

Képès, F. (2007). Biological Networks, Vol. 3. Singapore: World Scientific.

Kholodenko, B., Yaffe, M. B., and Kolch, W. (2012). Computational approaches

for analyzing information flow in biological networks. Sci. Signal. 5:re1.

doi: 10.1126/scisignal.2002961

Kim, P.-J., Lee, D.-Y., Kim, T. Y., Lee, K. H., Jeong, H., Lee, S. Y., et al. (2007).

Metabolite essentiality elucidates robustness of Escherichia coli metabolism.

Proc. Natl. Acad. Sci. U.S.A. 104, 13638–13642. doi: 10.1073/pnas.0703262104

Kim, Y., Tsuda, K., Igarashi, D., Hillmer, R. A., Sakakibara, H., Myers,

C. L., et al. (2014). Mechanisms underlying robustness and tunability

in a plant immune signaling network. Cell Host Microbe 15, 84–94.

doi: 10.1016/j.chom.2013.12.002

Koh, C., Wu, F. X., Selvaraj, G., and Kusalik, A. J. (2009). Using a state-space model

and location analysis to infer time-delayed regulatory networks. EURASIP J.

Bioinform. Syst. Biol. 2009:484601. doi: 10.1155/2009/484601

Komarova, A. V., Combredet, C., Meyniel-Schicklin, L., Chapelle, M.,

Caignard, G., Camadro, J.-M. et al. (2011). Proteomic analysis of virus-

host interactions in an infectious context using recombinant viruses.Mol. Cell.

Proteomics 10:M110.007443. doi: 10.1074/mcp.M110.007443

Kreimer, A., Borenstein, E., Gophna, U., and Ruppin, E. (2008). The evolution

of modularity in bacterial metabolic networks. Proc. Natl. Acad. Sci. 105,

6976–6981. doi: 10.1073/pnas.0712149105

Kurubanjerdjit, N., Tsai, J. J. P., and Ng, K. (2012). “Prediction of microRNA-

regulated A. thaliana-Xcc protein interaction pathways,” in International

Conference on Agricultural, Environment and Biological Sciences (Phuket), 6–9.

Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. (2005). The VirE3

protein of Agrobacterium mimics a host cell function required for plant

genetic transformation. EMBO J. 24, 428–437. doi: 10.1038/sj.emboj.76

00524

Lee, T. I. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae.

Science 298, 799–804. doi: 10.1126/science.1075090

Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the

metabolic genotype–phenotype relationship using a phylogeny of in silico

methods. Nat. Rev. Microbiol. 10, 291–305. doi: 10.1038/nrmicro2737

Frontiers in Microbiology | www.frontiersin.org January 2018 | Volume 9 | Article 35182

https://doi.org/10.1371/journal.pcbi.1000489
https://doi.org/10.1074/mcp.M600381-MCP200
https://doi.org/10.1146/annurev-phyto-080614-120114
https://doi.org/10.1110/ps.073228407
https://doi.org/10.1038/nrmicro2419
https://doi.org/10.1186/1471-2164-10-306
https://doi.org/10.3390/metabo3010001
https://doi.org/10.1093/bioinformatics/btm208
https://doi.org/10.1007/978-1-4939-2425-7_4
https://doi.org/10.1111/1574-6968.12109
https://doi.org/10.1186/1471-2105-7-67
https://doi.org/10.1007/s002390010178
https://doi.org/10.1016/j.tim.2005.09.001
https://doi.org/10.1186/1752-0509-2-4
https://doi.org/10.1093/bioinformatics/btt036
https://doi.org/10.1098/rsif.2015.0571
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1094/MPMI-09-10-0209
https://doi.org/10.1371/journal.pone.0043175
https://doi.org/10.1371/journal.pcbi.0020100
https://doi.org/10.1186/1471-2164-9-519
https://doi.org/10.1093/bioinformatics/btg1018
https://doi.org/10.1007/BF00251225
https://doi.org/10.1038/srep09570
https://doi.org/10.1093/bib/bbr049
https://doi.org/10.1073/pnas.0307329101
https://doi.org/10.1186/s12864-015-1826-4
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/yea.1147
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1126/scisignal.2002961
https://doi.org/10.1073/pnas.0703262104
https://doi.org/10.1016/j.chom.2013.12.002
https://doi.org/10.1155/2009/484601
https://doi.org/10.1074/mcp.M110.007443
https://doi.org/10.1073/pnas.0712149105
https://doi.org/10.1038/sj.emboj.7600524
https://doi.org/10.1126/science.1075090
https://doi.org/10.1038/nrmicro2737
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Botero et al. Network Analyses in Plant Pathogens

Li, X., Liu, P., Gan, S., Zhang, C., Zheng, Y., Jiang, Y., et al. (2016). S. suis

protein Fhb: mechanisms of host-pathogen protein complex formation and

bacterial immune evasion of Streptococcus suis protein Fhb. J. Biol. Chem. 291,

17122–17132. doi: 10.1074/jbc.M116.719443

Liao, Y.-C., Huang, T.-W., Chen, F.-C., Charusanti, P., Hong, J. S. J., Chang,

H.-Y., et al. (2011). An experimentally validated genome-scale metabolic

reconstruction ofKlebsiella pneumoniaeMGH78578, iYL1228. J. Bacteriol. 193,

1710–1717. doi: 10.1128/JB.01218-10

Linde, J., Schulze, S., Henkel, S. G., and Guthke, R. (2015). Data- and knowledge-

based modeling of gene regulatory networks: an update. EXCLI J. 14, 346–378.

doi: 10.17179/excli2015-168

Liu, Y., and Zhao, H. (2004). A computational approach for ordering signal

transduction pathway components from genomics and proteomics Data. BMC

Bioinformatics 5:158. doi: 10.1186/1471-2105-5-158

Lobel, L., Sigal, N., Borovok, I., Ruppin, E., and Herskovits, A., a.

(2012). Integrative genomic analysis identifies isoleucine and CodY as

regulators of Listeria monocytogenes virulence. PLoS Genet. 8:e1002887.

doi: 10.1371/journal.pgen.1002887

Long, M., Betrán, E., Thornton, K., and Wang, W. (2003). The origin of

new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875.

doi: 10.1038/nrg1204

Lozada-Chávez, I., Janga, S. C., and Collado-Vides, J. (2006). Bacterial regulatory

networks are extremely flexible in evolution. Nucleic Acids Res. 34, 3434–3445.

doi: 10.1093/nar/gkl423

Marbach, D., Costello, J. C., Küffner, R., Vega, N. N. M., Prill, R. J., Camacho, D.

M., et al. (2012). Wisdom of crowds for robust gene network inference. Nat.

Methods 9, 796–804. doi: 10.1038/nmeth.2016

Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein

networks. Science 296, 910–913. doi: 10.1126/science.1065103

Matsuzaki, Y., Ohue, M., Uchikoga, N., and Akiyama, Y. (2014). Protein-

protein interaction network prediction by using rigid-body docking tools:

application to bacterial chemotaxis. Protein Pept. Lett. 21, 790–798.

doi: 10.2174/09298665113209990066

McCloskey, D., Palsson, B. Ø., and Feist, A. M. (2013). Basic and applied uses of

genome-scale metabolic network reconstructions of Escherichia coli.Mol. Syst.

Biol. 9:661. doi: 10.1038/msb.2013.18

Mithani, A., Hein, J., and Preston, G. M. (2011). Comparative analysis of

metabolic networks provides insight into the evolution of plant pathogenic

and nonpathogenic lifestyles in Pseudomonas. Mol. Biol. Evol. 28, 483–499.

doi: 10.1093/molbev/msq213

Mithani, A., Preston, G. M., and Hein, J. (2009). Rahnuma: hypergraph-based tool

for metabolic pathway prediction and network comparison. Bioinformatics 25,

1831–1832. doi: 10.1093/bioinformatics/btp269

Mithani, A., Preston, G. M., and Hein, J. (2010). A Bayesian approach to

the evolution of metabolic networks on a phylogeny. PLoS Comput. Biol.

6:e1000868. doi: 10.1371/journal.pcbi.1000868

Monk, J. M., Charusanti, P., Aziz, R. K., Lerman, J. A., Premyodhin, N., Orth, J. D.,

et al. (2013). Genome-scale metabolic reconstructions of multiple Escherichia

coli strains highlight strain-specific adaptations to nutritional environments.

Proc. Natl. Acad. Sci. U.S.A. 110, 20338–20343. doi: 10.1073/pnas.13077

97110

Montezano, D., Meek, L., Gupta, R., Bermudez, L. E., and Bermudez, J. C. M.

(2015). Flux balance analysis with objective function defined by proteomics

data-metabolism of Mycobacterium tuberculosis exposed to mefloquine. PLoS

ONE 10:e0134014 . doi: 10.1371/journal.pone.0134014

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., and Kanehisa, M. (2007). KAAS:

an automatic genome annotation and pathway reconstruction server. Nucleic

Acids Res. 35(Suppl. 2), W182–W185. doi: 10.1093/nar/gkm321

Mukhtar, M. S., Carvunis, A.-R., Dreze, M., Epple, P., Steinbrenner, J.,

Moore, J., et al. (2011). Independently evolved virulence effectors converge

onto hubs in a plant immune system network. Science 333, 596–601.

doi: 10.1126/science.1203659

Nanni, L., Lumini, A., Gupta, D., and Garg, A. (2012). Identifying bacterial virulent

proteins by fusing a set of classifiers based on variants of Chou’s Pseudo amino

acid composition and on evolutionary information. IEEE/ACMTrans. Comput.

Biol. Bioinform. 9, 467–475. doi: 10.1109/TCBB.2011.117

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.

Oberhardt, M. A., Palsson, B. Ø., and Papin, J. A. (2009). Applications

of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5:320.

doi: 10.1038/msb.2009.77

Oberhardt, M. A., Puchałka, J., dos Santos, V. A. P. M., and Papin, J.

A. (2011). Reconciliation of genome-scale metabolic reconstructions

for comparative systems analysis. PLoS Comput. Biol. 7:e1001116.

doi: 10.1371/journal.pcbi.1001116

O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R., and Palsson, B. Ø. (2013).

Genome-scale models of metabolism and gene expression extend and refine

growth phenotype prediction.Mol. Syst. Biol. 9:693. doi: 10.1038/msb.2013.52

Orth, J. D., and Palsson, B. Ø. (2010). Systematizing the generation of missing

metabolic knowledge. Biotechnol. Bioeng. 107, 403–412. doi: 10.1002/bit.22844

Orth, J., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat.

Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Ozawa, T., Takeuchi, M., Kaihara, A., Sato, M., and Umezawa, Y. (2001). Protein

splicing-based reconstitution of split green fluorescent protein for monitoring

protein-protein interactions in bacteria: improved sensitivity and reduced

screening time. Anal. Chem. 73, 5866–5874. doi: 10.1021/ac010717k

Pennington, H. G., Gheorghe, D. M., Damerum, A., Pliego, C., Spanu, P. D.,

Cramer, R., et al. (2016). Interactions between the powdery mildew effector

BEC1054 and barley proteins identify candidate host targets. J. Proteome Res.

15, 826–839. doi: 10.1021/acs.jproteome.5b00732

Perumal, D., Lim, C. S., and Sakharkar, M. K. (2009). A comparative study

of metabolic network topology between a pathogenic and a non-pathogenic

bacterium for potential drug target identification. Summit Translat. Bioinforma.

2009, 100–104.

Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J., and Genin, S. (2016).

A resource allocation trade-off between virulence and proliferation drives

metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS

Pathog. 12:e1005939. doi: 10.1371/journal.ppat.1005939

Pinzón, A., Rodriguez,-R. L. M., González, A., Bernal, A., and Restrepo,

S. (2011). Targeted metabolic reconstruction: a novel approach for the

characterization of plant-pathogen interactions. Brief. Bioinform. 12, 151–162.

doi: 10.1093/bib/bbq009

Przytycka, T. M., Singh, M., and Slonim, D. K. (2010). Toward the

dynamic interactome: it’s about time. Brief. Bioinform. 11, 15–29.

doi: 10.1093/bib/bbp057

Puchałka, J., and Kierzek, A. M. (2004). Bridging the gap between stochastic and

deterministic regimes in the kinetic simulations of the biochemical reaction

networks. Biophys. J. 86, 1357–1372. doi: 10.1016/S0006-3495(04)74207-1

Ratmann, O., Jørgensen, O., Hinkley, T., Stumpf, M., Richardson, S., and Wiuf, C.

(2007). Using likelihood-free inference to compare evolutionary dynamics of

the protein networks ofH. pylori and P. falciparum. PLoS Comput. Biol. 3:e230.

doi: 10.1371/journal.pcbi.0030230

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabasi, A. L. (2002).

Hierarchical organization of modularity in metabolic networks. Science 297,

1551–1555. doi: 10.1126/science.1073374

Reed, J. L., Famili, I., Thiele, I., and Palsson, B. Ø. (2006). Towards

multidimensional genome annotation. Nat. Rev. Genet. 7, 130–141.

doi: 10.1038/nrg1769

Richardson, E. J., and Watson, M. (2013). The automatic annotation of bacterial

genomes. Brief. Bioinform. 14, 1–12. doi: 10.1093/bib/bbs007

Sahu, S. S., Weirick, T., and Kaundal, R. (2014). Predicting genome-

scale Arabidopsis-Pseudomonas syringae interactome using domain

and interolog-based approaches. BMC Bioinformatics 15:S13.

doi: 10.1186/1471-2105-15-S11-S13

Savageau, M. A. (1969). Biochemical systems analysis. I. Some mathematical

properties of the rate law for the component enzymatic reactions. J. Theor. Biol.

25, 365–369.

Schaadt, N. S., Steinbach, A., Hartmann, R. W., and Helms, V. (2013). Rule-based

regulatory and metabolic model for Quorum sensing in P. aeruginosa. BMC

Syst. Biol. 7:81. doi: 10.1186/1752-0509-7-81

Schatschneider, S., Persicke, M., Watt, S. A., Hublik, G., Pühler, A., Niehaus,

K., et al. (2013). Establishment, in silico analysis, and experimental

verification of a large-scale metabolic network of the xanthan producing

Xanthomonas campestris pv. campestris strain B100. J. Biotechnol. 167, 123–134.

doi: 10.1016/j.jbiotec.2013.01.023

Frontiers in Microbiology | www.frontiersin.org January 2018 | Volume 9 | Article 35183

https://doi.org/10.1074/jbc.M116.719443
https://doi.org/10.1128/JB.01218-10
https://doi.org/10.17179/excli2015-168
https://doi.org/10.1186/1471-2105-5-158
https://doi.org/10.1371/journal.pgen.1002887
https://doi.org/10.1038/nrg1204
https://doi.org/10.1093/nar/gkl423
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1126/science.1065103
https://doi.org/10.2174/09298665113209990066
https://doi.org/10.1038/msb.2013.18
https://doi.org/10.1093/molbev/msq213
https://doi.org/10.1093/bioinformatics/btp269
https://doi.org/10.1371/journal.pcbi.1000868
https://doi.org/10.1073/pnas.1307797110
https://doi.org/10.1371/journal.pone.0134014
https://doi.org/10.1093/nar/gkm321
https://doi.org/10.1126/science.1203659
https://doi.org/10.1109/TCBB.2011.117
https://doi.org/10.1038/msb.2009.77
https://doi.org/10.1371/journal.pcbi.1001116
https://doi.org/10.1038/msb.2013.52
https://doi.org/10.1002/bit.22844
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1021/ac010717k
https://doi.org/10.1021/acs.jproteome.5b00732
https://doi.org/10.1371/journal.ppat.1005939
https://doi.org/10.1093/bib/bbq009
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1016/S0006-3495(04)74207-1
https://doi.org/10.1371/journal.pcbi.0030230
https://doi.org/10.1126/science.1073374
https://doi.org/10.1038/nrg1769
https://doi.org/10.1093/bib/bbs007
https://doi.org/10.1186/1471-2105-15-S11-S13
https://doi.org/10.1186/1752-0509-7-81
https://doi.org/10.1016/j.jbiotec.2013.01.023
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Botero et al. Network Analyses in Plant Pathogens

Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B. Ø. (2010). BiGG:

a Biochemical Genetic and Genomic knowledgebase of large scale metabolic

reconstructions. BMC Bioinform. 11:213. doi: 10.1186/1471-2105-11-213

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012).

Multidimensional optimality of microbial metabolism. Science 336, 601–604.

doi: 10.1126/science.1216882

Schulze, S., Henkel, S. G., Driesch, D., Guthke, R., Linde, J. J., Sebastian,

H., et al. (2015). Computational prediction of molecular pathogen-host

interactions based on dual transcriptome data. Front. Microbiol. 6:65.

doi: 10.3389/fmicb.2015.00065

Scietti, L., Sampieri, K., Pinzuti, I., Bartolini, E., Benucci, B., Liguori, A., et al.

(2016). Exploring host-pathogen interactions through genome wide protein

microarray analysis. Sci. Rep. 6:27996. doi: 10.1038/srep27996

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in

natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99,

15112–15117. doi: 10.1073/pnas.232349399

Sen, A. (1993). Markets and freedoms: achievements and limitations of the market

mechanism in promoting individual freedoms. Oxf. Econ. Pap. 45, 519–541.

doi: 10.1093/oxfordjournals.oep.a042106

Seo, J.-H., Hong, J. S.-J., Kim, D., Cho, B.-K., Huang, T.-W., Tsai, S.-F., et al. (2012).

Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its

transcriptional architecture and regulatory features. BMC Genomics 13:679.

doi: 10.1186/1471-2164-13-679

Sharan, R., Ulitsky, I., and Shamir, R. (2007). Network-based prediction of protein

function.Mol. Syst. Biol. 3:88. doi: 10.1038/msb4100129

Shlomi, T., Berkman, O., and Ruppin, E. (2005). Regulatory on-off

minimization of metabolic flux. Proc. Natl. Acad. Sci. U.S.A. 102,7695–7700.

doi: 10.1073/pnas.0406346102

Singh, R., Xu, J., and Berger, B. (2007). Pairwise global alignment of protein

interaction networks by matching neighborhood topology. Res. Comput. Mol.

Biol. 4453, 16–31. doi: 10.1007/978-3-540-71681-5_2

Steinway, S. N., Biggs, M. B., Loughran, T. P., Papin, J. A., and

Albert, R. (2015). Inference of network dynamics and metabolic

interactions in the gut microbiome. PLoS Comput. Biol. 11:e1004338.

doi: 10.1371/journal.pcbi.1004338

Sun,M. G. F., Sikora, M., Costanzo, M., Boone, C., and Kim, P. M. (2012). Network

evolution: rewiring and signatures of conservation in signaling. PLoS Comput.

Biol. 8:e1002411. doi: 10.1371/journal.pcbi.1002411

Swainston, N., Smallbone, K., Mendes, P., Kell, D., and Paton, N. (2011). The

SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic

networks. J. Integr. Bioinform. 8:186. doi: 10.1515/jib-2011-186

Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-

quality genome-scale metabolic reconstruction. Nat. Biotechnol. 5, 93–121.

doi: 10.1038/nprot.2009.203

Thiele, I., Hyduke, D. R., Steeb, B., Fankam, G., Allen, D. K., Bazzani, S., et al.

(2011). A community effort towards a knowledge-base and mathematical

model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol.

5:8. doi: 10.1186/1752-0509-5-8

Umarov, R. K., and Solovyev, V. V. (2017). Recognition of prokaryotic and

eukaryotic promoters using convolutional deep learning neural networks. PLoS

ONE 12:e0171410. doi: 10.1371/journal.pone.0171410

Varma, A., and Palsson, B. O. (1994). Stoichiometric flux balance models

quantitatively predict growth and metabolic by-product secretion in wild-type

Escherichia coliW3110. Appl. Environ. Microbiol. 60, 3724–3731.

Vorhölter, F. J., Schneiker, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O.,

et al. (2008). The genome of Xanthomonas campestris pv. campestris B100

and its use for the reconstruction of metabolic pathways involved in xanthan

biosynthesis. J. Biotechnol. 134, 33–45. doi: 10.1016/j.jbiotec.2007.12.013r
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