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Editorial on the Research Topic

Artificial intelligence and imaging for oncology
Introduction

Recent advancements in artificial intelligence (AI) and imaging technologies have

significantly transformed the diagnostic and therapeutic landscapes of oncology (1–3).

Cutting-edge imaging modalities, such as CT, PET, US, and MRI, are being increasingly

utilized for tumor imaging (4–7), with emerging interdisciplinary fields like MR-LINAC

gaining considerable traction (8, 9). This accelerating convergence of imaging and therapy

in oncology highlights the urgent need to further explore the role of AI and imaging across

various oncology specialties, including radiation therapy, to enhance cancer care. In

response to this need, the topic titled “Artificial Intelligence and Imaging in Oncology”

has been proposed, bringing together 19 contributions from 149 authors/experts in the

field. These contributions delve into the potential of AI and imaging in tumor diagnosis and

treatment, explore emerging AI-driven models for oncology diagnosis and prediction, and

highlight the extraction of quantitative features from medical images to predict tumor

behavior, therapy response, and patient prognosis.
AI and imaging in tumor diagnosis and treatment

AI is revolutionizing cancer diagnosis and treatment by enhancing the accuracy and

efficiency of medical image analysis. By analyzing medical images like CT scans, MRIs, and

X-rays, AI algorithms can detect tumors earlier, differentiate between benign and

malignant growths, and assist in treatment planning and monitoring.

Shao et al. demonstrated the potential of radiomics-based nomograms in enhancing the

diagnostic capabilities of CT imaging. By extracting quantitative features from CT images,

these nomograms can more accurately differentiate between conditions like intravenous

leiomyomatosis and uterine leiomyoma, offering a significant clinical advantage over

traditional CT image interpretation.

Zeng et al. explored the potential of fusing multimodal imaging with ultrasound to

enhance the accuracy of interventional diagnostic procedures. By integrating machine
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learning techniques, they demonstrated the clinical utility of this

approach in guiding percutaneous biopsies of liver and adjacent

organs, leading to improved diagnostic success rates.

Yu et al. showed that UNet based deep learning models when

applied to positional CT and CBCT images and extracted radiomics

features show clinical significance of CBCT images. The work

showed that dice coefficient results of CBCT are within 85% of

the results of pCT for rectal cancer imaging. CBCT images are

frequently utilized on radiation treatment modalities.

Yang et al. explored the potential of combining ultrasound

imaging with radiomics analysis to differentiate small clear cell renal

cell carcinoma (ccRCC) from renal angiomyolipoma (RAML). By

developing and validating models that incorporate both clinical and

radiomic features, the study seeks to enhance diagnostic accuracy

and support more precise treatment decisions for patients with

small renal tumors. The findings suggest that this innovative

approach could significantly improve the clinical utility of

ultrasound in managing renal neoplasms.

Wen et al. explored an innovative approach to differentiate

benign from malignant head and neck tumors using synthetic MRI

in conjunction with FSE-PROPELLER DWI. In their study, the

authors employed both synthetic MRI and FSE-PROPELLER

diffusion-weighted imaging (DWI) to investigate the characteristics

of malignant and benign head and neck tumors. The study involved

48 subjects, who were retrospectively classified into malignant and

benign groups. The results were promising, demonstrating that both

synthetic MRI and FSE-PROPELLER DWI can quantitatively

distinguish malignant from benign tumors based on T2 and ADC

values. Notably, combining T2 and ADC values provided improved

accuracy in tumor differentiation.

Liu et al. focused on the differential diagnosis of two common

adrenal tumors that are often misdiagnosed in clinical practice.

Their research utilized radiomics techniques, enhancing diagnostic

accuracy without the need for enhanced CT scans.

Haghshomar et al. reviewed recent advancements in

the application of artificial intelligence (AI) in liver oncology

imaging. They specifically highlighted the evolution of

manual radiomic techniques and the increasing use of deep

learning-based representations for more accurate assessments. They

demonstrated radiomics, a framework that complements

conventional radiological interpretation, has emerged as a powerful

tool for extracting and quantifying texture characteristics derived

from tumor heterogeneity.
Emerging AI-driven models for
oncology diagnosis and prediction

Emerging AI-driven models are revolutionizing oncology by

enabling earlier and more accurate cancer diagnosis. By analyzing

vast amounts of medical data, these models can identify subtle

patterns and predict disease progression, leading to more

personalized and effective treatment plans.

Xie et. al., conducted a study to establish this deep learning

(DL) driven Artificial intelligence (AI) system for predicting
Frontiers in Oncology 026
malignant STTs based on US images and clinical indexes of the

patients. The AI system could extract more morphological features

of the system and heatmaps of images for classifying malignant

soft tissue tumors. The system utilized a ResNet based architect on

both grey scale and color ultrasound images for tumor feature

extraction. The model can assist clinicians in diagnosing soft

tissue tumors.

Ullah et al. studied brain tumor on MRI images diligently

incorporating linear stretching in contrast enhancement and data

augmented images fed to variants of efficient Net and Inception

ResNet. The study utilized bayesian optimization on their deep

learning process and showed an accuracy improvement over limited

clinical dataset for brain tumor classification. The study showed

that cubic SVM can increase accuracy by 0.5% over a bilayered

neural network.

Wang et al. studied performance of MAMIL Net by histologic

features in predicting breast cancer in sentinel lymph node,

differentiating lung adenocarcinoma from squamous cell

carcinoma, and predicting therapeutic response of high-grade

ovarian serous carcinoma by retrospective case series. They found

that MAMILNet performed excellent for lung cancer, good for

breast cancer and fair for ovarian cancer based on AUC and

accuracy values, suggesting that this learning framework has the

potential in disease diagnosis and prognosis.

Li et al. developed PI-YOLO, a novel deep learning model

designed for automated blood vessel detection in pathology images.

This model effectively addresses the challenges posed by complex

backgrounds, small targets, and dense distributions in these images.

By incorporating the BiFormer attention mechanism, PI-YOLO

efficiently captures long-range dependencies and reduces

computational costs. Additionally, the use of GSConv convolution

further enhances the model’s performance by reducing parameters

and improving inference speed. The results demonstrate that PI-

YOLO achieves a significant mAP of 87.48%, outperforming

existing methods. This advancement in automated blood vessel

detection holds significant medical value, particularly in the field of

anti-tumor vascular therapy research. Figure 1 showed a typical

network framework including four main components: Input,

Backbone, Neck, and Prediction.

Krishnapriya and Karuna performed a study to show that deep

learning-based YOLO architecture can predict bounding boxes for

prediction and have added enhancements compared to its peers for

analogous inference tasks. The grab cut algorithm assisted

segmentation is likely to improve dice coefficients by 0.1 in the

presented dataset and is worth exploring in brain tumor

detection pipelines.

Awais et al. presented a novel decision support system for

identifying acute lymphoblastic leukemia (ALL). By combining

techniques like neighborhood pixel transformation, transfer

learning from deep neural networks, and a customized binary

Grey Wolf Algorithm for feature optimization, the system

achieves outstanding accuracy in both binary and subtype

classification of ALL. This approach holds great promise in aiding

medical professionals in the early and precise diagnosis of this

aggressive leukemia, leading to better patient outcomes.
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Houssein et al. investigated a new and efficient deep learning

technique for classifying white blood cells (WBCs) in blood smear

images, crucial for diagnosing leukemia. Leveraging DenseNet-161

and optimizing the training process with cyclical learning rates, the

method achieves exceptional accuracy in classifying various WBC

types, surpassing current state-of-the-art techniques. This

innovative approach has great potential to aid medical

professionals in the early and accurate diagnosis of leukemia,

ultimately improving patient outcomes.

Radiomics and radiogenomics for
predicting tumor behavior, treatment
response, and patient outcomes

Radiomics and radiogenomics are emerging fields that extract

quantitative features from medical images to predict tumor

behavior, treatment response, and patient outcomes. By analyzing

these features, clinicians can make more informed decisions about

treatment strategies and monitor disease progression.

Lan et. al., Radiomics has shown promising applicability in

cancer prediction, especially in recurrence. Lan et al. utilized ROIs

delineated on CT images for extracting over 1100 radiomic features.

To incorporate post-surgical data they used ten features based on

relevance. This work shows employing clinical data over imaging

parameters can be effectively used for predicting stage 1 lung

adenocarcinoma prediction.

Mao et al. explored a novel radiomic nomogram that effectively

differentiates parotid pleomorphic adenoma (PA) from

adenolymphoma (AL) using grayscale ultrasonography. By

combining advanced image analysis techniques with machine

learning algorithms, this non-invasive nomogram provides a
Frontiers in Oncology 037
highly accurate method for distinguishing between these two

common parotid gland tumors. This innovative approach has the

potential to greatly enhance diagnostic precision and guide more

effective treatment planning for patients with parotid gland lesions.

Liu et al., demonstrated the potential of radiomics-based

machine learning models using 18F-FDG PET/CT imaging data

to distinguish between adenocarcinoma and squamous cell

carcinoma in cervical cancer. By extracting and analyzing

numerous quantitative features from medical images, these

models offer valuable insights into tumor biology and assist in

personalized treatment planning. The study highlights the

promising role of radiomics in improving the diagnosis and

management of cervical cancer.

Hu et al. introduced an innovative approach for predicting

microvascular invasion (MVI) in hepatocellular carcinoma (HCC),

a critical factor influencing the disease’s aggressiveness. By

integrating MRI imaging data with microRNA analysis, the

researchers developed a radiogenomics nomogram that

significantly outperforms existing models. This tool offers a

promising path for more accurate risk assessment and

personalized treatment strategies for HCC patients. With its high

sensitivity and specificity, the nomogram shows great potential in

improv ing c l in i ca l dec i s ion-mak ing and enhanc ing

patient outcomes.

Hu et al., explored a novel approach to testicular tumor

diagnosis using computed tomography (CT) texture analysis

(CTTA). This technique involves analyzing the texture patterns

within CT images to identify subtle differences between benign and

malignant tumors. By extracting specific texture features,

researchers were able to develop machine learning models that

can accurately classify tumors with high precision. One of the most

promising findings of this study is the ability of CTTA to
FIGURE 1

PI-YOLO Network architecture, including Input, Backbone, Neck, and Prediction. C in the Prediction module is the number of categories in
the dataset.
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differentiate between primary testicular lymphoma and other

malignant tumors. This distinction is particularly important as it

can influence treatment strategies. Additionally, CTTA can help

identify seminoma, the most common type of testicular germ cell

tumor, from other types of germ cell tumors.
Summary

This Research Topic explores the transformative role of artificial

intelligence (AI) and imaging advancements in oncology, focusing on

how these technologies are reshaping the field. The articles highlight

the growing integration of AI and imaging across various oncology

specialties, demonstrating their potential to revolutionize cancer

diagnosis, treatment planning, and prognostication. By leveraging

cutting-edge imaging modalities, such as CT, PET, US, and MRI,

along with AI-driven models, these innovations are improving the

accuracy of tumor detection, enabling personalized treatment

strategies, and predicting patient outcomes with greater precision.

The Research Topic emphasizes the need for continued research and

development in these areas, with the promise of enhancing patient

care and outcomes across diverse cancer types.
Frontiers in Oncology 048
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of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China,
6Peking Union Medical College, MD Program, Beijing, China
Objective: Uterine intravenous leiomyomatosis (IVL) is a rare and unique

leiomyoma that is difficult to surgery due to its ability to extend into intra- and

extra-uterine vasculature. And it is difficult to differentiate from uterine

leiomyoma (LM) by conventional CT scanning, which results in a large number

of missed diagnoses. This study aimed to evaluate the utility of a contrast-

enhanced CT-based radiomic nomogram for preoperative differentiation of IVL

and LM.

Methods: 124 patients (37 IVL and 87 LM) were retrospectively enrolled in the

study. Radiomic features were extracted from contrast-enhanced CT before

surgery. Clinical, radiomic, and combined models were developed using

LightGBM (Light Gradient Boosting Machine) algorithm to differentiate IVL and

LM. The clinical and radiomic signatures were integrated into a nomogram. The

diagnostic performance of the models was evaluated using the area under the

curve (AUC) and decision curve analysis (DCA).

Results: Clinical factors, such as symptoms, menopausal status, age, and

selected imaging features, were found to have significant correlations with the

differential diagnosis of IVL and LM. A total of 108 radiomic features were

extracted from contrast-enhanced CT images and selected for analysis. 29

radiomics features were selected to establish the Rad-score. A clinical model

was developed to discriminate IVL and LM (AUC=0.826). Radiomic models were

used to effectively differentiate IVL and LM (AUC=0.980). This radiological
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nomogram combined the Rad-score with independent clinical factors showed

better differentiation efficiency than the clinical model (AUC=0.985, p=0.046).

Conclusion: This study provides evidence for the utility of a radiomic nomogram

integrating clinical and radiomic signatures for differentiating IVL and LM with

improved diagnostic accuracy. The nomogrammay be useful in clinical decision-

making and provide recommendations for clinical treatment.
KEYWORDS

intravenous leiomyomatosis, contrast-enhanced CT, radiomics, preoperative
differential, nomogram
1 Introduction

Intravenous leiomyomatosis (IVL) is a rare benign type of

uterine leiomyoma. Although histologically benign, it can spread

to the extrauterine venous system or even the heart and pulmonary

arterial system (1, 2). The current information on IVL mainly

comes from case reports and case series, and its clinical presentation

is nonspecific and may lead to right heart obstruction, pulmonary

embolism and even sudden death (3). The development of IVL is

insidious, and the clinical symptoms and pathological imaging

features lack specificity and can cause serious consequences,

especially in patients presenting with cardiac symptoms.

In addition, the pathological presentation of IVL is the same as

that of common uterine leiomyoma (LM), and it may be difficult for

pathologists to distinguish it from LM in patients with primary LM

combined with IVL, especially if the lesions are confined to the

uterus without invasion of the extrauterine veins. Some patients

were only diagnosed with IVL after a previous hysterectomy to

remove a primary uterine tumor. Pathological tissue findings of

invasion of the parauterine veins may be a marker for IVL

diagnosis. As a result, IVL is often underestimated due to the ease

of misdiagnosis and the lack of specific identifying biomarkers.

The imaging presentation of IVL depends on the location and

extent of its involvement. Typical imaging methods for the diagnosis

of IVL include ultrasonography, computed tomography (CT) and

magnetic resonance imaging (MRI). When a mass is confined to the

pelvis, it is difficult to completely distinguish between IVL and LM on

the basis of traditional radiology alone unless it has invaded the

extrauterine vessels and is growing invasively (4). Radiomics refers to

quantitative methods of extracting image features from conventional
ody mass index; CT,

ER, Estrogen receptor;

cava; IVL, Intravenous

selection operator; LM,

ging, NPV, Negative

sitive predictive value;

score, Radiomics score;

teristic; ROI, Region
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radiographic images and analyzing the data to create models with

features to aid in diagnosis, prediction and prognosis (5). Previous

studies have demonstrated the value of radiomic features as imaging

predictors that can be used to treat and diagnose various types of

tumors (6). A study applied a radiomic model generated from

features extracted from the region of interest covering the uterus

with good diagnostic performance for uterine sarcomas and

leiomyomas (7). However, no research has been performed to

determine whether contrast-enhanced CT-based radiomics can be

used to differentiate IVL and LM.

Therefore, this study aimed to use radiomics features extracted

from clinically acquired abdominal pelvic CT scans to predict

whether LM patients have IVL features prior to treatment.

2 Materials and methods

2.1 Patients

The Peking Union Medical College Hospital (PUMCH) ethics

committee approved the study and waived informed consent from

the patients (No. JS-2964). We reviewed the PUMCH surgical

database. Patients who underwent gynecologic surgery between

January 2011 and December 2020 were pathologically confirmed

to have IVL. The inclusion criteria were as follows: 1) surgically and

pathologically confirmed IVL or LM; 2) abdominal pelvic contrast-

enhanced CT within the 20 days prior to gynecologic surgery; and

3) no relevant treatment prior to CT examination. The exclusion

criteria were as follows: 1) no pathological findings, 2) poor image

quality or significant image artifacts affecting the visualization, 3)

incomplete clinical data, 4) intravascular leiomyosarcoma. 5) and a

lack of CT images. Patients with uterine LM were matched to those

who underwent surgery for uterine neoplasms by BMI, risk factors,

and CT tube voltage. Ultimately, CT results from 124 patients (37

IVL and 87 LM) were included in the study. Figure 1 shows the flow

chart of patient enrollment.

2.2 CT scan protocol

Patients who underwent contrast-enhanced CT examinations of

the abdomen and pelvis were examined using GE Discovery CT (GE
frontiersin.org
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Medical, Piscataway, NJ, USA) or Somatom Definition Flash CT

(Siemens Medical Solutions, Germany). All patients underwent

thin-slice image scanning using a soft tissue algorithm, and CT

images were obtained for the arterial (30 seconds postinjection),

venous (60 seconds postinjection), and delayed (120 seconds

postinjection) phases. The scanning parameters were as follows:

tube voltage, 120 kV with automatic tube current modulation

initiated; collimation, Somatom Definition Flash CT 128 ×

0.6 mm, GE Discovery CT 64 × 0.6 mm; slice thickness, 0.625-

1 mm; slice interval, 0.625-1 mm.
2.3 Image segmentation

The target of image segmentation is the intrauterine mass.

When there were multiple masses in the uterus, the largest mass

was chosen as the region of interest (ROI). Image segmentation was

performed independently by two radiologists with extensive

experience in gynecologic tumor imaging diagnosis. They were

blinded to the patients’ histopathology. One of the radiologists

(radiologist A, with 7 years of experience in diagnostic imaging of

gynecologic tumors) manually drew the ROI slice by slice using the

open-source software 3D Slicer 4.11.0 (https://www.slicer.org/) (8).

Another radiologist (radiologist B, with 10 years of experience in

diagnostic imaging of gynecologic tumors) reviewed all ROIs

manually segmented by radiologist A.
2.4 Data preprocessing

The dataset was randomly assigned in a 3:1 ratio to either the

training dataset or test dataset. All cases in the training dataset were

used to train the predictive model, while cases in the test dataset

were used to independently evaluate the model’s performance.

Medical volumes are common with heterogeneous voxel spacing

because of different scanners or different acquisition protocols. Such

spacing refers to the physical distance between two pixels in an
Frontiers in Oncology 0311
image. Spatial normalization is often employed to reduce the effect

of voxel spacing variation. The fixed resolution resampling method

was used in our experiment to handle the aforementioned

problems. All images were resampled to a voxel size of 3*3*3 mm

to standardize the voxel spacing. Finally, the data were standardized

using z score standardization (zero-mean normalization).
2.5 Radiomics feature extraction

The handcrafted features can be divided into three groups: (I)

geometry, (II) intensity and (III) texture. The geometric features

describe the three-dimensional shape characteristics of the tumor.

The intensity features describe the first-order statistical distribution

of the voxel intensities within the tumor. The texture features

describe the patterns or the second- and high-order spatial

distributions of the intensities. Here, the texture features were

extracted using several different methods, including the gray-level

cooccurrence matrix (GLCM), gray-level run length matrix

(GLRLM), gray level size zone matrix (GLSZM) and

neighborhood gray-tone difference matrix (NGTDM) methods. A

total of 107 categories of handcrafted features were extracted,

including 18 geometry features, 14 intensity features, and 75

texture features. All handcrafted features were extracted with an

in-house feature analysis program implemented using Pyradiomics

(http://pyradiomics.readthedocs.io).
2.6 Radiomics feature selection

2.6.1 Intraclass correlation coefficient
First, the robustness of the image features was evaluated. As the

feature calculation depends on the ROI subregion contours, image

features that are robust against ROI segmentation uncertainties

were selected. Here, both test-retest analysis and interrater analysis

were used to determine the feature robustness. Based on 35 patients

randomly chosen from the discovery dataset, the test-retest analysis
FIGURE 1

Flow chart demonstrating the inclusion and exclusion criteria for the study participants with IVL and UM. IVL, intravenous leiomyomatosis; UM,
uterine leiomyoma; BMI, body mass index; CTA, computed tomography.
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was performed, where for each patient, the tumor subregions were

segmented twice by one rater. The dataset used for interrater

analysis included another 35 randomly chosen patients, where for

each patient, the ROI subregions were segmented by two raters

independently. The features extracted from these multiple-

segmented subregions were assessed using the intraclass

correlation coefficient (ICC). Features with an ICC of ≥ 0.85 were

considered robust against intra- and interrater uncertainties.

Pipeline of radiomics in Figure 2.

2.6.2 Spearman correlation
For features with high repeatability, Spearman’s rank

correlation coefficient was also used to calculate the correlation

between features (Supplementary Figure 1 Spearman correlation of

each feature), and one of the features with a correlation coefficient

greater than 0.9 between any two features was retained. To retain

the ability to depict features to the greatest extent, we use a stringent

recursive deletion strategy for feature filtering; that is, the feature

with the greatest redundancy in the current set is deleted each time.

2.6.3 LASSO and radiomics signature
The least absolute shrinkage and selection operator (LASSO)

Cox regression model was used on the discovery dataset for

signature construction. Depending on the regulation weight l,
LASSO shrinks all regression coefficients toward zero and sets the

coefficients of many irrelevant features exactly to zero. To find an
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optimal l, 10-fold cross validation with minimum criteria was

employed, where the final value of l yielded the minimum cross

validation error (Figure 3). The retained features with nonzero

coefficients were used for regression model fitting and combined

into a radiomics signature. Subsequently, we obtained a radiomics

score (Rad-score) for each patient by a linear combination of

retained features weighed by their model coefficients. The Python

scikit-learn package was used for LASSO regression modeling. The

histogram of the Rad-score is shown in Figure 3.
2.7 Clinical factor model construction

Age, body mass index (BMI), weight, height, symptoms,

reproductive history, menopausal history, estrogen receptor (ER)

status, progesterone receptor (PR) status, and diabetes were selected

as clinical factors for the IVL and LM groups and analyzed for

differences between groups. The selected clinical factors were fed

into the LightGBM model for clinical signature building.
2.8 Radiomics model construction

After Lasso feature screening, we input the final features into the

LightGBM model for risk model construction. Here, we adopt 3-

fold cross verification to obtain the final radiomics signature.
B C DA

FIGURE 2

Illustration of the study pipeline. (A), Intrauterine masses were segmented from contrast-enhanced CT as ROIs. (B), From the ROI, 107 radiomics
features were extracted, including geometry, intensity and texture. (C), LASSO was used to select features, and Spearman’s rank correlation
coefficient was used to calculate the correlation between features. (D), Using the selected features, models were constructed to differentiate IVL and
UM. ROI, regions of interest; LASSO, Least absolute shrinkage and selection operator; MSE, mean squared error; ROC, receiver operating
characteristic curve. DCA, Decision Curve Analysis.
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Receiver operating characteristic (ROC) curves were plotted to

assess the diagnostic performance of the predictive models, and

the corresponding area under the curve (AUC), diagnostic

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were analyzed.
2.9 Construction of the nomogram

Furthermore, to assess the incremental prognostic value of the

radiomics signature to the clinical risk factors intuitively and

efficiently, a radiomics nomogram was presented on the

validation dataset. The nomogram combined the radiomics

signature and the clinical risk factors based on logistic regression

analysis. To compare the agreement between the IVL prediction of

the nomogram and the actual observation, the calibration curve

(Hosmer−Lemeshow H test) was calculated. The AUC was

calculated simultaneously for the training and test groups to

quanti fy the discr iminabi l i ty of the nomogram. The

discriminability of the model was tested using the Delong test.

Finally, decision curve analysis (DCA) was used to assess the clinical

utility of this nomogram by quantifying the net benefit of the
Frontiers in Oncology 0513
training and test sets of the combined model at different

threshold probabilities.
2.10 Statistical analysis

The Python statamodels (version 0.13.2) package was used to

perform statistical analysis, and a p value < 0.05 was considered

statistically significant. We analyzed the differences between the IVL

and uterine LM groups using Student’s t test or Mann−Whitney U

tests for continuous variables; the chi-square test or Fisher’s exact

test was applied for categorical variables.
3 Results

3.1 Patient characteristics

A total of 124 patients, including 37 IVL and 87 LM patients,

were included in our study. Patients were divided into a training set

(82 patients) and an independent test set (42 patients) based on

treatment duration. A pathologist reviewed the pathological data.
B

C

A

FIGURE 3

Figures of logistic LASSO regression. (A), Lasso path plot of the model in the training dataset. (B), Cross-validation plot for the penalty term. (C),
Spearman correlation coefficients between features were calculated, and 27 features with correlations were retained.
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All patients underwent surgical treatment; there were 18 (48.6%)

patients with IVL and 44 (50.6%) patients with LM in the training

group and 19 (51.4%) patients with IVL and 43 (49.4%) patients

with LM in the test group. The characteristics of the patients in the

cohort are shown in Table 1. Table 1 summarizes the patients’

baseline characteristics and postoperative pathological findings in

the training and validation sets. The comparison of BMI, weight,

height, ER, PR, diabetes, and fertility history showed no significant

difference between the two groups and within each group (p>0.05),

ensuring a reasonable classification. Significant differences between

the cohorts were found in symptoms, menopause history, age, mass

size, hypertension, and history of surgery (p<0.05).
3.2 Feature selection and radiomics
signature development

Features with an ICC of ≥ 0.85 were considered robust against

intra- and interrater uncertainties. After robustness evaluation, 62

categories out of the initial 108 image features remained. Spearman

correlation coefficients between features were calculated, and features

with correlations were retained (Supplementary Table 1). As shown in

Figure 3, 29 features of nonzero coefficients were selected to establish

the Rad-score with a LASSO logistic regression model (l = 0.005429).

The formula used to calculate the Rad-score is described in the

Supplementary Materials (Supplementary Table 1).
3.3 Clinical factor model

Analysis of differences between groups showed that symptoms,

menopausal history, and age were independent clinical risk factors

for IVL (Table 1). A clinical signature was composed of three factors

selected, namely, symptoms, menopausal history, and age. In the

training group, the AUC value of the radiomics model was 0.865
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(95% CI 0.786–0.944); in the test group, the AUC value of the model

was 0.826 (95% CI of 0.669–0.983) (Table 2, Figure 4A).
3.4 Diagnostic performance of
radiomics features

Our results show that the radiomics features have good

predictive performance for both the training and test sets. The

AUCs of the radiomics model were significantly larger than those of

the clinical model in both the training dataset (AUC=0.998 95% CI:

0.995-1.000) and the validation dataset (AUC=0.98; 95% CI: 0.936-

1.000) (Table 2, Figure 4A).
3.5 Combined models and
radiomics nomogram

A combined model was developed by integrating the Rad-score

and clinical predictors. A good performance was shown for the

combined nomogram model in both the training dataset (AUC =

0.999 95% CI: 0.998-1.000) and the validation dataset (AUC =

0.985; 95% CI: 0.951-1.000) (Table 2, Figure 4A). The diagnostic

accuracy, sensitivity, specificity, PPV, NPV, precision and recall of

the three models are also demonstrated in Table 2.

The calibration curve showed that the IVL predicted by the

combined model was very close to the actual results in both datasets

(Figure 4B). The DCA also revealed the improvement in the

combined model in both datasets (Figure 4C). This showed that

when the threshold probability was between 1% and 99%, the

combined model was more beneficial than the Rad-score and

clinical models.

We also developed a nomogram to visualize the model for the

combination (Figure 5). In the nomogram, points for each variable

can be added to the corresponding axis to determine the risk of IVL.

A higher total score is associated with a greater risk of IVL.
TABLE 1 Demographic and clinical characteristics of study populations.

Characteristic Total (n=124) IVL (n=37) UM (n=87) p-value

Age 46.51 ± 8.17 43.32 ± 8.09 47.87 ± 7.86 0.004

BMI 24.01 ± 3.95 25.01 ± 3.03 23.59 ± 4.22 0.069

Weight (kg) 61.45 ± 10.93 63.82 ± 8.87 60.43 ± 11.59 0.114

height (cm) 159.89 ± 5.27 159.68 ± 4.94 159.98 ± 5.43 0.768

Symptoms 68 (0.5484) 35 (0.9459) 33 (0.3793) <0.001

Reproductive history 114 (0.9194) 34 (0.9189) 80 (0.9195) 0.991

menopause 40 (0.3226) 5 (0.1351) 35 (0.4023) 0.003

ER- Positive 100 (0.8065) 33 (0.8919) 67 (0.7701) 0.118

PR- Positive 123 (0.9919) 36 (0.9730) 87 (1.0000) 0.126

Hypertension 28 (0.2258) 4 (0.1081) 24 (0.2759) 0.041

Diabetes 17 (0.1371) 5 (0.1351) 12 (0.1379) 0.967
fron
BMI, body mass index; ER, estrogen receptor; PR, progesterone receptor.
tiersin.org

https://doi.org/10.3389/fonc.2023.1239124
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


T
A
B
LE

2
M
ai
n
co

n
se
q
u
e
n
ce

o
f
3
m
o
d
e
ls

b
as
e
d
o
n
Li
g
h
t
G
ra
d
ie
n
t
B
o
o
st
in
g
M
ac

h
in
e
(L
ig
h
tG

B
M
)a
lg
o
ri
th
m
.

M
od

el
D
at
as
et

A
cc
ur
ac
y

A
U
C

95
%

C
I

Se
ns
iti
vi
ty

Sp
ec
ifi
ci
ty

PP
V

N
PV

Pr
ec
is
io
n

Re
ca
ll

F1
Th

re
sh
ol
d

C
lin

ic
al

T
ra
in

0.
79
34
78

0.
86
5

0.
78
6
–
0.
94
4

0.
96
42
86

0.
71
87
50

0.
60
00
00

0.
97
87
23

0.
60
00
00

0.
96
42
86

0.
73
97
26

0.
24
05
45

T
es
t

0.
80
64
52

0.
82
6

0.
66
9
–
0.
98
3

0.
88
88
89

0.
77
27
27

0.
61
53
85

0.
94
44
44

0.
61
53
85

0.
88
88
89

0.
72
72
73

0.
26
83
98

R
ad
io
m
ic
s

T
ra
in

0.
98
92
47

0.
99
8

0.
99
5
-
1.
00
0

0.
96
42
86

1.
00
00
00

1.
00
00
00

0.
98
48
48

1.
00
00
00

0.
96
42
86

0.
98
18
18

0.
73
03
48

T
es
t

0.
96
77
42

0.
98
0

0.
93
6
-
1.
00
0

0.
88
88
89

0.
77
27
27

0.
61
53
85

0.
94
44
44

0.
61
53
85

0.
88
88
89

0.
72
72
73

0.
26
83
98

C
om

bi
ne
d

T
ra
in

0.
99
94
42

0.
99
9

0.
99
8
–
1.
00
0

1.
00
00
00

0.
98
43
75

0.
96
55
17

1.
00
00
00

0.
96
55
17

1.
00
00
00

0.
98
24
56

0.
23
27
76

T
es
t

0.
96
77
42

0.
98
5

0.
95
1
-
1.
00
0

0.
88
88
89

1.
00
00
00

1.
00
00
00

0.
95
65
22

1.
00
00
00

0.
88
88
89

0.
94
11
76

0.
58
66
24

A
U
C
,A

re
a
U
nd

er
C
ur
ve
;9
5%

C
I,
95
%

C
on

fi
de
nc
e
In
te
rv
al
;N

P
V
,N

eg
at
iv
e
pr
ed
ic
ti
ve

va
lu
e;
P
R
,P

ro
ge
st
er
on

e
re
ce
pt
or
;P

P
V
,P

os
it
iv
e
pr
ed
ic
ti
ve

va
lu
e;
F1
,F

1
Sc
or
e.

Shao et al. 10.3389/fonc.2023.1239124

Frontiers in Oncology 0715
According to the DeLong test, the AUCs of the nomogram-based

models in the training and test sets were significantly different from

those of the clinical model (P=0.046) (Supplementary Table 2).

Therefore, we found that the nomogram method performed well on

both sets of data. Furthermore, the Hosmer−Lemeshow test showed no

statistically significant difference between the training and testing

subsets (p>0.05) (Table 3).
4 Discussion

In this retrospective study, we constructed for the first time a

comprehensive model incorporating the Rad-score, symptoms,

menopausal history and age and established a preoperative

distinction between IVL and LM based on contrast-enhanced

CT images.

The combined model consisting of radiomic features and

clinical factors exhibited the best discriminatory ability and fit,

indicating a good diagnostic performance. The AUC values of the

model were 0.999 and 0.985 in the training and test

groups, respectively.

LM is the most common uterine neoplasm in gynecology, with a

prevalence of up to 20-30% in women of childbearing age. It has

typical imaging features and clinical manifestations, and the

radiological diagnosis of classic LM is definitive (9, 10).

Occasionally, however, LM with rare growth patterns occurs,

mostly in women of reproductive age, and IVL is one type of LM

with an unusual growth pattern that presents as serpentine growth

within the inferior vena cava (IVC) and genital veins and may

spread to the right atrium (RA), making its identification clinically

and radiologically more challenging (4). Worldwide, fewer than 300

cases of IVL and fewer than 100 cases of cardiac involvement have

been reported. The imaging features of IVL are unclear and are

often misdiagnosed preoperatively. It is mostly evaluated clinically

using multimodal imaging techniques such as echocardiography,

contrast-enhanced CT and MRI, which can provide important

information revealing the extent and location of the mass and are

used to determine surgical options (11). Echocardiography can

assess the extension of the tumor into the RA, and CT and MRI

can show the continuity of intraluminal tumor growth from the

pelvic veins. It has been suggested that MRI is a particularly valuable

imaging technique for the preoperative evaluation of IVL, which in

the inferior vena cava looks similar to a sieve on axial images and to

a sponge on T2-weighted images with several fissures parallel to the

IVL, which may lead to turbulent blood flow (12–15). However,

MRI has poor spatial resolution and is time-consuming and

unsuitable for patients with metal in their bodies. Enhanced CT

can produce multilevel enhanced CT data in a short period, directly

displaying the full extent of the tumor, with a sponge and sieve

appearance similar to MRI (16). In addition, the combined scan of

the chest, abdomen and pelvis can clearly show the changes in the

uterus and the extent of tumor invasion (17, 18). According to

previous reports in the literature, radiologists are prone to

misdiagnose IVL located in the venous system or RA as an

occupying lesion, mainly leiomyosarcoma, RA myxoma,

endometrial stromal sarcoma, and intravenous thrombosis (19,
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FIGURE 4

Results of the LightGBM models: (A), Receiver operator characteristic curves of the 3 LightGBM models for identifying patients with IVL and uterine
LM in the training and test datasets. (B), The calibration curve of the 3 models. (C), The decision curve analysis (DCA) of the three models of the
training and test datasets.
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20). However, these patients usually do not have a history of LM. It

is almost impossible for radiologists to distinguish IVL confined to

parauterine veins without distant venous system invasion, and in

the early stages, LM is difficult to distinguish completely from IVL

clinically and radiologically.

Previous studies did not find significant differences between IVL

and LM in terms of histomorphology and immunophenotype, such

as both expressing ER and PR and smooth muscle cell markers, and

no elevated proliferation index or nuclear division number was

found, suggesting that both have more of the same intrinsic

molecular basis. Our data and recent reports suggest that IVL
Frontiers in Oncology 0816
accounts for approximately 1% of LM surgical specimens and its

incidence is increasing. Some providers have an inadequate

understanding of IVL, therefore, there are more missed diagnoses

and its incidence is seriously underestimated (21–23). Some

scholars compared the transcriptomic data of IVL and LM and

found that antiapoptosis and angiogenesis-related genes may be

novel biomarkers of IVL, indicating that IVL is very different from

LM on a molecular and genetic basis. Further analysis of their gene

expression profiles revealed that IVL and LM share some molecular

genetic features and that IVL has a similar expression profile to

leiomyosarcoma, further supporting that IVL has a quasi-malignant
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behavior and is not a distinct variant of LM (24, 25). However, these

molecular genetic features are not independent predictors, and

although they are associated with the occurrence of IVL, they do

not distinguish IVL from LM.

By extracting high-dimensional imaging features from different

modality images and mining the data, radiomics can be used for

molecular typing of tumors, differential diagnosis, treatment option

selection, efficacy detection and prognosis assessment (6).

These high-dimensional features are indistinguishable by the

human eye and contain biological information determined by

genes, proteins and tissue microcomponents, which radiomics can

measure (26, 27). A radiomic model with features extracted from a

ROI containing the whole uterus was shown to have good

diagnostic performance for uterine fibroids and uterine sarcomas

with an AUC of 0.83 (7). Some studies have used radiomic features

to distinguish uterine sarcomas from atypical fibroids, showing

better diagnostic efficacy than MRI features alone. Radiologists

achieved an AUC of 0.752 for MRI-based diagnostic efficacy, and

the radiomic model achieved an AUC of 0.830 (28). One study

established an MRI-based radiomic nomogram for detecting deep

myometrial invasion in early-stage endometrioid adenocarcinoma,

showing superior diagnostic accuracy to radiologists, with an AUC

of 0.883 (29). This suggests that radiomic methods can better

predict and differentiate the type of uterine tumors compared to

traditional clinical features. However, there are no relevant

radiomic studies to better differentiate and distinguish uterine

smooth muscle tumors with unusual growth patterns, which are

often rare and require multiple imaging techniques to aid in the

differential diagnosis.

In our study, the nomogram was constructed using the

Radscore and contrast-enhanced CT with radiological methods.

The Radscore is described as the probability of principal component

analysis calculated from the radiomic signature, which is

constructed based on sixteen selective radiomic features. The

AUCs for predicting the radiomic features of IVL were 0.998

(training group) and 0.980 (test group). Nomograms constructed

from radiological and clinical features show good discrimination
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between IVL and LM. The AUC values of the training and test

groups were 0.999 (95% CI: 0.998–1.000) and 0.985 (95% CI: 0.951-

1.000), respectively. The results showed that the nomogram

effectively predicted IVL in both the training and validation

groups, exceeding the predictive accuracy of the radiomics and

clinical models. The decision curve suggests that patients could

benefit more from using the radiological nomogram in this study if

they have a threshold probability of 1% to 99%. The combined

model has better predictive performance than clinical factors or

radiological features alone. The model is clear, simple, and easy to

understand, which makes it more suitable for clinical application.

In the analysis of clinical factors between the IVL and LM

groups, there were significant differences in age, symptoms, and

menopausal history, so we introduced these factors into the clinical

model and they demonstrated some predictive capacity. IVL often

has no specific symptoms before causing cardiac insufficiency, and

its clinical manifestations are usually related to the scope and size of

the tumor (25). In clinical practice, we have found that IVL

extending to the extrauterine venous system often accompanies

large pelvic LM and causes related symptoms. However, only a tiny

percentage of LMs develop at unusual locations beyond the uterus.

All IVL cases occur in women, and the literature reports that the

mean age of onset is 47 years; 90% are premenopausal, and 64%

have uterine fibroids or a history of hysterectomy (30). The mean

age of the cases in this group was 43.3 years; patients with a history

of menopause in IVL were significantly younger than those in the

LM group, which is similar to the literature.

This study still has some limitations. First, the sample size was

relatively small, and it was a single-center study because the study

population was a rare disease. Second, this study was retrospective,

which may lead to patient selection bias. Third, manual ROI

segmentation has inherent inter- and intra-observer differences.

Fourth, we only built a radiomic model based on enhanced CT

without using other imaging, so it is impossible to gage the quality

of each image. In the future, we will include more patients and make

further technical improvements, such as fully automated image

segmentation, deep learning and multiparametric modeling, to

explore more accurate radiological diagnoses.
5 Conclusion

In conclusion, our study confirmed that a radiomics nomogram

model and radiomics signature based on contrast-enhanced CT can

help differentiate between IVL and LM patients and predict whether
FIGURE 5

Nomograph based on the combined model.
TABLE 3 Hosmer-Lemeshow test.

Clinic Signature Rad Signature Nomogram

UM 0.099372 0.598583 0.046526

IVL 0.459798 0.913913 0.560273
Hosmer-Lemeshow test showed no statistically significant difference between the training and
testing subsets (p>0.05)
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IVL will invade the extrauterine vessels when it is still confined to

the uterus to guide clinical treatment.
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tool for differentiation of leiomyomas and sarcomas of corpus uteri. Int J Mol Sci (2019)
20(15):3825. doi: 10.3390/ijms20153825

2. Li H, Xu J, Lin Q, Zhang Y, Zhao Y, Tong H, et al. Surgical treatment strategies for
extra-pelvic intravenous leiomyomatosis. Orphanet J Rare Dis (2020) 15(1):153. doi:
10.1186/s13023-020-01394-9

3. BurkeM, Opeskin K. Death due to intravenous leiomyomatosis extending to the right
pulmonary artery. Pathology (2004) 36(2):202–3. doi: 10.1080/00313020410001672075

4. Fasih N, Prasad Shanbhogue AK, Macdonald DB, Fraser-Hill MA, Papadatos D,
Kielar AZ, et al. Leiomyomas beyond the uterus: unusual locations, rare manifestations.
Radiographics (2008) 28(7):1931–48. doi: 10.1148/rg.287085095

5. Gardin I, Grégoire V, Gibon D, Kirisli H, Pasquier D, Thariat J, et al. Radiomics:
Principles and radiotherapy applications. Crit Rev Oncol Hematol (2019) 138:44–50.
doi: 10.1016/j.critrevonc.2019.03.015

6. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of
radiomics in precision diagnosis and treatment of oncology: opportunities and
challenges. Theranostics (2019) 9(5):1303–22. doi: 10.7150/thno.30309

7. Xie H, Zhang X,Ma S, Liu Y,WangX. Preoperative differentiation of uterine sarcoma
from leiomyoma: comparison of three models based on different segmentation volumes
using radiomics.Mol Imaging Biol (2019) 21(6):1157–64. doi: 10.1007/s11307-019-01332-7
8. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype. Cancer
Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-17-0339

9. Szklaruk J, Tamm EP, Choi H, Varavithya V. MR imaging of common and
uncommon large pelvic masses. Radiographics (2003) 23(2):403–24. doi: 10.1148/
rg.232025089

10. Buttram VC, Reiter RC. Uterine leiomyomata: etiology, symptomatology, and
management. Fertil Steril (1981) 36(4):433–45. doi: 10.1016/s0015-0282(16)45789-4

11. Xu ZF, Yong F, Chen YY, Pan AZ. Uterine intravenous leiomyomatosis with
cardiac extension: Imaging characteristics and literature review. World J Clin Oncol
(2013) 4(1):25–8. doi: 10.5306/wjco.v4.i1.25

12. Wray RC, Dawkins H. Primary smooth muscle tumors of the inferior vena cava.
Ann Surg (1971) 174(6):1009–18. doi: 10.1097/00000658-197112000-00021

13. Jalaguier-Coudray A, Allain-Nicolai A, Thomassin-Piana J, Villard-Mahjoub R,
Delarbre B, Rua S, et al. Radio-surgical and pathologic correlations of pelvic
intravenous leiomyomatosis. Abdom Radiol (NY) (2017) 42(12):2927–32. doi:
10.1007/s00261-017-1225-1

14. Robert-Ebadi H, Terraz S, Mach N, Dubuisson JB, Kalangos A, Bounameaux H.
Intravenous leiomyomatosis of the uterus: link with new fertilisation methods? Swiss
Med Wkly (2009) 139(29–30):436. doi: 10.4414/smw.2009.12750
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.1239124/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1239124/full#supplementary-material
https://doi.org/10.3390/ijms20153825
https://doi.org/10.1186/s13023-020-01394-9
https://doi.org/10.1080/00313020410001672075
https://doi.org/10.1148/rg.287085095
https://doi.org/10.1016/j.critrevonc.2019.03.015
https://doi.org/10.7150/thno.30309
https://doi.org/10.1007/s11307-019-01332-7
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1148/rg.232025089
https://doi.org/10.1148/rg.232025089
https://doi.org/10.1016/s0015-0282(16)45789-4
https://doi.org/10.5306/wjco.v4.i1.25
https://doi.org/10.1097/00000658-197112000-00021
https://doi.org/10.1007/s00261-017-1225-1
https://doi.org/10.4414/smw.2009.12750
https://doi.org/10.3389/fonc.2023.1239124
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shao et al. 10.3389/fonc.2023.1239124
15. Kang LQ, Zhang B, Liu BG, Liu FH. Diagnosis of intravenous leiomyomatosis
extending to heart with emphasis on magnetic resonance imaging. Chin Med J (Engl)
(2012) 125(1):33–7. doi: 10.3760/cma.j.issn.0366-6999.2012.01.007

16. Wang H, Nie P, Chen B, Hou F, Dong C, He F, et al. Contrast-enhanced CT findings of
intravenous leiomyomatosis. Clin Radiol (2018) 73(5):503.e1–6. doi: 10.1016/j.crad.2017.12.016

17. Foster BR, Anderson SW, Uyeda JW, Brooks JG, Soto JA. Integration of 64-
detector lower extremity CT angiography into whole-body trauma imaging: feasibility
and early experience. Radiology (2011) 261(3):787–95. doi: 10.1148/radiol.11100604

18. Peng HJ, Zhao B, Yao QW, Qi HT, Xu ZD, Liu C. Intravenous leiomyomatosis:
CT findings. Abdom Imaging (2012) 37(4):628–31. doi: 10.1007/s00261-011-9798-6

19. Gui T, Qian Q, Cao D, Yang J, Peng P, Shen K. Computerized tomography
angiography in preoperative assessment of intravenous leiomyomatosis extending to
inferior vena cava and heart. BMC Cancer (2016) 16:73. doi: 10.1186/s12885-016-2112-9

20. Bilyeu SP, Bilyeu JD, Parthasarathy R. Intravenous lipoleiomyomatosis. Clin
Imaging (2006) 30(5):361–4. doi: 10.1016/j.clinimag.2006.03.034

21. Wang J, Yang J, Huang H, Li Y, Miao Q, Lu X, et al. Management of intravenous
leiomyomatosis with intracaval and intracardiac extension. Obstet Gynecol (2012) 120
(6):1400–6. doi: 10.1097/AOG.0b013e31826ebb90

22. Ma G, Miao Q, Liu X, Zhang C, Liu J, Zheng Y, et al. Different surgical strategies
of patients with intravenous leiomyomatosis. Med (Baltimore) (2016) 95(37):e4902.
doi: 10.1097/MD.0000000000004902

23. Du J, Zhao X, Guo D, Li H, Sun B. Intravenous leiomyomatosis of the uterus: a
clinicopathologic study of 18 cases, with emphasis on early diagnosis and appropriate
treatment strategies.Hum Pathol (2011) 42(9):1240–6. doi: 10.1016/j.humpath.2010.10.015
Frontiers in Oncology 1119
24. Wang W, Wang Y, Chen F, Zhang M, Jia R, Liu X, et al. Intravenous
leiomyomatosis is inclined to a solid entity different from uterine leiomyoma based
on RNA-seq analysis with RT-qPCR validation. Cancer Med (2020) 9(13):4581–92. doi:
10.1002/cam4.3098

25. Ordulu Z, Nucci MR, Dal Cin P, Hollowell ML, Otis CN, Hornick JL, et al.
Intravenous leiomyomatosis: an unusual intermediate between benign and Malignant
uterine smooth muscle tumors. Mod Pathol (2016) 29(5):500–10. doi: 10.1038/
modpathol.2016.36

26. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

27. Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim
A, et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol (2020) 93
(1108):20190948. doi: 10.1259/bjr.20190948

28. Xie H, Hu J, Zhang X, Ma S, Liu Y, Wang X. Preliminary utilization of radiomics
in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic
efficacy of MRI features and radiomic features. Eur J Radiol (2019) 115:39–45. doi:
10.1016/j.ejrad.2019.04.004

29. Wang Y, Bi Q, Deng Y, Yang Z, Song Y, Wu Y, et al. Development and
validation of an MRI-based radiomics nomogram for assessing deep myometrial
invasion in early stage endometrial adenocarcinoma. Acad Radiol (2022) S1076-6332
(22):00320–8. doi: 10.1016/j.acra.2022.05.017

30. Stegmann T, Garcia-Gallont R, Döring W. Intravascular leiomyomatosis: report
of a case and review of the literature. Thorac Cardiovasc Surg (1987) 35(3):157–60. doi:
10.1055/s-2007-1020220
frontiersin.org

https://doi.org/10.3760/cma.j.issn.0366-6999.2012.01.007
https://doi.org/10.1016/j.crad.2017.12.016
https://doi.org/10.1148/radiol.11100604
https://doi.org/10.1007/s00261-011-9798-6
https://doi.org/10.1186/s12885-016-2112-9
https://doi.org/10.1016/j.clinimag.2006.03.034
https://doi.org/10.1097/AOG.0b013e31826ebb90
https://doi.org/10.1097/MD.0000000000004902
https://doi.org/10.1016/j.humpath.2010.10.015
https://doi.org/10.1002/cam4.3098
https://doi.org/10.1038/modpathol.2016.36
https://doi.org/10.1038/modpathol.2016.36
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1259/bjr.20190948
https://doi.org/10.1016/j.ejrad.2019.04.004
https://doi.org/10.1016/j.acra.2022.05.017
https://doi.org/10.1055/s-2007-1020220
https://doi.org/10.3389/fonc.2023.1239124
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Yuxiang Zhou,
Mayo Clinic Arizona, United States

REVIEWED BY

Palash Ghosal,
Sikkim Manipal University, India
Pradeep Kumar Das,
VIT University, India

*CORRESPONDENCE

Nagwan Abdel Samee

nmabdelsamee@pnu.edu.sa

RECEIVED 28 May 2023

ACCEPTED 15 August 2023

PUBLISHED 12 September 2023

CITATION

Houssein EH, Mohamed O, Abdel
Samee N, Mahmoud NF, Talaat R,
Al-Hejri AM and Al-Tam RM (2023)
Using deep DenseNet with cyclical
learning rate to classify leukocytes
for leukemia identification.
Front. Oncol. 13:1230434.
doi: 10.3389/fonc.2023.1230434

COPYRIGHT

© 2023 Houssein, Mohamed, Abdel Samee,
Mahmoud, Talaat, Al-Hejri and Al-Tam. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 12 September 2023

DOI 10.3389/fonc.2023.1230434
Using deep DenseNet
with cyclical learning rate
to classify leukocytes for
leukemia identification
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Nagwan Abdel Samee3*, Noha F. Mahmoud4, Rawan Talaat5,
Aymen M. Al-Hejri6 and Riyadh M. Al-Tam6
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Genetics Department, Agriculture Engineering, Ain Shams University, Cairo, Egypt, 6School of
Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded,
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Background: The examination, counting, and classification of white blood cells

(WBCs), also known as leukocytes, are essential processes in the diagnosis of

many disorders, including leukemia, a kind of blood cancer characterized by the

uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone.

Blood smears can be chemically or microscopically studied to better understand

hematological diseases and blood disorders. Detecting, identifying, and

categorizing the many blood cell types are essential for disease diagnosis and

therapy planning. A theoretical and practical issue. However, methods based on

deep learning (DL) have greatly helped blood cell classification.

Materials and Methods: Images of blood cells in a microscopic smear were

collected from GitHub, a public source that uses the MIT license. An end-to-end

computer-aided diagnosis (CAD) system for leukocytes has been created and

implemented as part of this study. The introduced system comprises image

preprocessing and enhancement, image segmentation, feature extraction and

selection, and WBC classification. By combining the DenseNet-161 and the

cyclical learning rate (CLR), we contribute an approach that speeds up

hyperparameter optimization. We also offer the one-cycle technique to rapidly

optimize all hyperparameters of DL models to boost training performance.

Results: The dataset has been split into two sets: approximately 80% of the data

(9,966 images) for the training set and 20% (2,487 images) for the validation set.

The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte,

and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and

2,499, respectively. The suggested method has 100% accuracy on the training

set of images and 99.8% accuracy on the testing set.
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Conclusion: Using a combination of the recently developed pretrained

convolutional neural network (CNN), DenseNet, and the one fit cycle policy,

this study describes a technique of training for the classification of WBCs for

leukemia detection. The proposed method is more accurate compared to the

state of the art.
KEYWORDS

leukemia, leukocytes, DenseNet, transfer learning, cyclical learning rate
1 Introduction

Medical images are a massive data source for the healthcare

sector. With developments in imaging technology and processing

capabilities, the demand for increasingly complex tools to interpret

images has developed. More accurate image analysis will save

healthcare costs and improve the quality of diagnosis, ultimately

leading to better patient outcomes. Anemia, leukemia, and malaria

are just a few of the blood disorders that can be detected with

improved pathologists’ ability to recognize, count, and classify

blood cells (1–3). Improved understanding will facilitate

treatment, reduce potentially dangerous drug interactions, and

facilitate health monitoring. The three types of cells that make up

human blood are the erythrocytes (red blood cells), leukocytes

(white blood cells (WBCs)), and thrombocytes (platelets). All three

are derived from lymphoid and bone marrow stem cells.

Erythrocytes, which are non-nucleated biconcave diskettes,

transport both carbon dioxide (CO2) and oxygen (O2) around the

body. Blood is composed of roughly 40%–45% red blood cells and

1% WBCs (4–6). Organs in the body rely on each of the three types

of blood cells for specific tasks. Nevertheless, WBCs are made in the

bone marrow and are a crucial part of the blood’s immune system.

The immune system is the body’s primary line of defense against

invaders, most notably pathogens, and is mostly the work of

WBCs (7).

Thrombocytes, often known as platelets, are smaller than

erythrocytes and lack a nucleus. Giemsa staining produces a vivid

purple tint in platelets (8). Platelets are crucial to the body’s clotting

process, which guards against bacterial invasion and keeps the body

from bleeding out continuously following injuries (9). Leukocytes

may be divided into five major types based on a variety of

characteristics, including cell size, nucleus shape, type of nucleus

lobes, granule cytoplasm-to-nucleus ratio (CNR) staining qualities,

and function.

Lymphocytes, monocytes, neutrophils, eosinophils, and

basophils are the five most common types of WBCs. Another

thing is the band identification for a certain nucleus shape.

Figure 1 illustrates several common types of leukocytes. A

decrease in leukocytes below the threshold is medically referred to

as leukopenia. It is evidence of the frailty of the immune system and

a potential reason for disease.
0221
Leukocyte counts can be low for one of two major reasons:

either the bone marrow has ceased producing leukocytes or an

infection is present and causing cells to be destroyed more quickly

than they can be replaced. Leukocytosis, a proliferative condition, is

characterized by a rise of leukocytes over the upper limit, which is

typically an indication of an inflammatory reaction. It occasionally

takes place because of normal immunological responses.

Nonetheless, if the neoplasm has an abnormally high or low cell

count, or if autoimmunity causes immunological reactions, it will be

classified as abnormal. Leukocyte disorders can also be classified in

this fashion (10) based on the nature and function of affected cells.

Hematologists can discover a great deal about blood diseases such as

anemia, bleeding disorders, leukemia, and HIV positivity from a

complete blood count (CBC) and differential blood count (DBC).

The CBC can be performed automatically by a cytometer as blood

flows past the detector, with parameters including hematocrit and

hemoglobin measured (11). DBC, which may count the different

types of leukocytes in peripheral blood, was previously performed

by a blood pathologist physically inspecting blood smears under a

light microscope. Nonetheless, this process is sensitive, and it is

essential that there be no (or just very few) inspection errors made

by the human professional. However, after several hours of

examination, specialists might often feel exhausted and make false

identifications of the various WBCs. This can happen rather

frequently (3, 12). As a result of the development of both

theoretical and practical applications for the technology that is

available today, several different methods of blood analysis that are

either fully or partially automated and are based on the image

analysis of blood smears or the principles of flow cytochemistry

have been developed. Image processing and artificial intelligence

(AI) (13) have lately been used to develop several new methods that

researchers have designed to automate the leukocyte classification

process. Within the scope of this investigation, a fully automated

computer-aided diagnosis (CAD) system of leukocytes has been

developed and implemented. The proposed CAD system includes

four primary stages, which are the image preprocessing and

enhancement stage, the image segmentation stage, the feature

extraction and selection stage, and the WBC classification stage.

The medical imaging industry makes extensive use of the

recently developed and powerful pretrained convolutional neural

network (CNN) DenseNet-161. However, compared to other
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pretrained CNNs, it has a high processing time and cannot

generalize. Thus, we are exploring the one cycle policy (14, 15), a

technique used to shorten training time while simultaneously

enhancing performance and tuning all hyperparameters of deep

learning (DL) models (15, 16). As can be shown in Figure 2, a

cyclical learning rate (CLR) can produce better training results than

the default learning rate (LR).

In contrast to blood cell segmentation algorithms that rely on

watershed segmentation, this article presents a segmentation

algorithm that uses Bounded Opening followed by Fast Radial

Symmetry (BO-FRS)-based seed-point detection and hybrid

Ellipse Fitting (EF)-based contour estimation. These methods

accurately extract seed points and precisely segment overlapping

cells, even from low-contrast inhomogeneous visual features. This

makes the method suitable for complex blood cell segmentation

problems. The proposed Least Squares (LS)-based geometric ellipse

fitting approach leads to better accuracy (ACC) and more

localization compared to algebraic Ellipse Fitting Methods

(EFMs), which are prone to biased fitting parameters and

inaccurate boundaries. The proposed method combines the

benefits of geometric and algebraic EFMs and is computationally

efficient. It also solves the noise problem with an Laplacian of

Gaussian (LoG)-based modified high-boosting operation and

avoids oversegmentation. This approach can also be applied to

other medical applications such as MRI, CT, ultrasound, and X-ray

images, as well as cybernetic applications and the segmentation of

overlapping objects. Notably, the proposed algorithm does not

require training data, making it more suitable than DL-based

techniques when little or no data are available for training (17).

The following is a list of the contributions that were made to

bring attention to the significance of the work that we will

be presenting:
Frontiers in Oncology 0322
• We present an improved, lightweight, and effective CAD

system that can automatically classify four types of

leukocytes (neutrophils, eosinophils, lymphocytes, and

monocytes), which is a significant contribution to the

field of medical image analysis.

• We investigate the potential of DenseNet-161 pretrained

CNN for the suggested CAD system, which is a modern

approach to developing the system.

• The authors train the DenseNet efficiently with a single

cycle policy, cutting down on epochs and iterations, and

thereby making use of big datasets. This is a significant

contribution to the field of DL, as it demonstrates a more

efficient approach to training CNNs.

• The proposed model is tested experimentally on a variety of

real-world datasets, which is a significant contribution to

the field of medical image analysis, as it demonstrates the

effectiveness of the model on a range of different datasets.

• The results of the study show that the proposed model

outperforms the gold standard classification model, which

is a significant contribution to the field of medical image

analysis.

• The achieved ACC in categorization is approximately

99.8%, which is a significant contribution to the field of

medical image analysis, as it demonstrates the high ACC of

the proposed model.
The sections of this paper are as follows: Section 2 (Literature

Review) details the related work. In Section 3 (Materials and

Methods), we provide some the datasets and methods utilized for

the proposed model. The analysis and results of the experiments are

presented in Section 5 (Results and Discussion). In the end, the

paper was concluded in Section 6 (Conclusion).
2 Literature review

Many attempts at automatically segmenting, categorizing, and

analyzing leukocytes have been published. The automatic analysis

of medical images such as microscopic blood smears has attracted

the attention of many researchers. Numerous scientists have argued

for employing machine learning (ML) and AI to automatically

detect and diagnose abnormalities in microscopic images of

leukocytes. CAD of leukocytes can be broken down into two

categories: those that use ML (18) and those that use DL (19).

Both ML and DL are described and summarized here. Table 1
FIGURE 1

The main types of leukocytes cell images. Lymphocytes, Monocytes, Neutrophils, Eosinophils, and basophils are the five most common types of
white blood cells. Each type has a certain nucleus shape.
FIGURE 2

Accuracy achieved with one cycle of training against the
conventional method of training Convolutional Neural Networks.
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provides a summary of DL-based methods and serves to contrast

our proposed work with the state-of-the-art DL-based methods.

Table 1 summarizes the current state of the field and the limitations

of each technique based on recent studies that employed DL

algorithms to identify abnormalities in leukocytes. The most

noteworthy aspects of the new system are highlighted in the table

together with the results of the performance evaluation in terms

of ACC.

The following studies represent leukocyte diagnosis research

that has been conducted using classical ML. Sanei et al. (14) have

utilized the Bayesian classifier for the classification of leukocytes.

They have split the blood microscopic image into three sections.

Instead of relying on the image’s geometric or physical properties,

they used a Bayesian classifier to isolate the Eigen cells. Decisions

were based on the relative density of various colors. First, the input

photographs were rescanned, segmented, and rotated, and the three

vectors representing intensity and color were identified. Leukocyte

images from 10 patients were employed by Sarrafzadeh et al. (31),

who trained a support vector machine (SVM) using a set of

parameters that includes six geometrical qualities, six color

attributes, six statistical features, and seven-moment invariances

(invariants). The classifier reported an ACC rate of over 93%.

Leukocyte borders in images are defined manually to reduce the

impact of segmentation errors. The cytoplasm and nucleus of

leukocytes were separately identified by the Fuzzy C-means

clustering method. Thereafter, the cytoplasm, nucleus, and other

components of the cell that are of interest are removed Ko et al. (32)

used SVMs to classify the 480 blood smear images into training and

testing sets. They claimed that random forest performed better than

multilayer SVM when it came to classification. In a previous work,

the snake algorithm has been utilized to divide leukocytes. They

used the shape, color, and texture of the image as criteria for

classification. Gaussian normalization was then utilized to

transform the feature vectors from 0 to 1 after feature extraction

(32). Ramoser et al. employed SVM to automatically grade
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leukocytes. The study of 1,166 images split into 13 categories

found that segmentation was performed with 95% ACC (94/100)

and classification was performed with 75%–90% ACC. In their

study, Theera-Umpon and Dhompongsa (33) analyzed if it was

possible to classify leukocytes using only data from their nuclei. To

prevent segmentation errors from affecting the results of the

investigations, the cell nuclei were removed manually. Bayes

classifiers and CNNs were used for classification. They

determined that the information obtained from cell nucleus 100

was adequate because their classification was correct 77% of the

time. WBC subtype detection by flow cytometry was proposed by

Adjouadi et al. Parametric datasets were analyzed in a

multidimensional space using SVMs (34). To classify WBCs,

Rodrigues et al. created a two-stage artificial neural network. To

reduce the 106 problems, they first employed the Back Propagation

Neural Network (BPNN) for preclassification and then presented a

hybrid model based on the SVM and the pulse-coupled neural

network (PCNN). As a result, they looked for ways to lessen the

negative effects (35).

Both Otsu’s automated thresholding methodology and the

image enhancement and arithmetic strategy were proposed by

Joshi et al. for separating leukocytes from red blood cells. The K

Nearest Neighbor (K-NN) classifier was used to separate blast cells

from typical lymphocyte cells. Their ACC was determined to be

93% based on the results of the tests (36). Image processing

methods were used by Tantikitti et al. (37) for classifying WBCs,

extracting features from edges, changing colors, and fragmenting

images. Patients with dengue virus infections were sorted using a

decision tree analysis. The results showed that a total of 167 cell

shots were able to accurately classify leukocytes (92.2% ACC) and

that 264 blood cell photos correctly classified dengue (72.3%). One

hundred fifteen images were used by Hiremath et al. (38) as input

parameters for AI-based algorithms that categorized WBCs based

on their color, texture, and geometric properties. Histogram

equalization, edge extraction, and threshold-based automatic
TABLE 1 Overview of research using DL techniques for leukocyte classification or segmentation.

Author Method Accuracy Dataset Data volume

Maryam et al. (20) Optimized CNN 99% BCCD 12,444

Bani–Hani et al. (21) GA-optimized CNN 91% BCCD 12,435

Liang et al. (22) Hybrid CNN-RNN 90.80% BCCD 12,444

Rao (23) CNN and ResNeXt 99.24% BCCD 12,444

Rao (24) ANN and CNN 97.70% BCCD 1,600

Baydilli, and Atila (25) Capsul Networks 96.90% LISC 263

Ghosh and Bhattacharya (26) CNN and FCN on noise-free cell images 98.40% BCCD 12,500

Wang et al. (27) Single Shot Multibox Detector and YOLO 90.09% Private database 11,600

Ma et al. (28) DC-GAN, and ResNet 91.70% BCCD 12,447

banik et al. (29) CNN 96% BCCD 12,811

Sahlool et al. (30) VGGNet, CNN, and SESSA 83.20% C-NMC 10,661

Proposed model DenseNet with Cyclical Learning Rate 99.80% BCCD 12,447
CNN, Convolutional Neural Network; GA, Genetic Algorithms; ANN, Artificial Neural Network; FCN, Fully Connected Network.
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segmentation for lymphocytes, monocytes, and neutrophils are the

focus of that study. Several images of blood smears were used in the

trials, with geometric features of the images being utilized in

the classification process. Habibzadeh et al. (39) employed the

shape, density, and texture of microscopic images of blood to

classify and count leukocytes. The parameters of the SVM

classifier were the wavelet characteristics that were generated for

the classification process using the dual-tree complex wavelet

transform (DT-CWT) approach.

Ramesh et al. (40) proposed a simple classification method that

incorporates morphological characteristics and color data. As the

first step in a two-stage classification process, leukocyte cell nuclei

and leukocyte boundaries have been meticulously established. The

second stage involved applying the linear discriminant analysis

method to implement the features found in the cytoplasm and

nucleus of leukocytes. In another study, Su et al. (41) classified

leukocytes into five distinct groups, each with its own set of

distinguishing features. In this location, they aimed to use

morphological mechanisms to segment the elliptical nuclei and

cytoplasm of leukocytes. These photo chunks were mined for

geometric elements, color characteristics, and texture qualities

based on LDP (local directional pattern) and then used to train

three distinct neural networks. For the testing, they used 450 images

of leukocytes, and the highest identification ACC was 99.11%.

The microscopic analysis of blood cells is crucial for the early

diagnosis of life-threatening hematological disorders such as

leukemia. This paper presents an effective and computationally

efficient approach for automatically detecting and classifying acute

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Das et al. (42) proposed an approach that uses transfer learning,

which has been successful in medical image analysis due to its

excellent performance in small databases. The proposed system

employs a lightweight transfer learning-based feature extraction

followed by SVM-based classification technique for efficient ALL

and AML detection. The system is faster and more efficient due to

the depthwise separable convolution, tunable multiplier, and

inverted residual bottleneck structure. Moreover, the SVM-based

classification technique improves the overall performance by

optimizing the hyperplane location. The experimental results

demonstrate that the proposed system outperforms others in all

three publicly available standard databases, including ALLIDB1,

ALLIDB2, and ASH.

Breast cancer is a leading cause of cancer-related deaths among

women worldwide, and early detection is crucial for successful

treatment. In this work, the authors have developed five new deep

hybrid CNN-based frameworks for breast cancer detection. Sahu

et al. (43) proposed that hybrid schemes exhibit better performance

than the respective base classifiers by combining the benefits of both

networks. A probability-based weight factor and threshold value are

essential for efficient hybridization. An experimentally selected

optimum threshold value makes the system faster and more

accurate. Notably, unlike traditional DL methods, the proposed

framework yields excellent performance even with small datasets.

The proposed scheme is validated with datasets of breast cancer:

mini-DDSM (mammogram), BUSI, and BUS2 (ultrasound). The

experimental results demonstrate the superiority of the proposed
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ShuffleNet-ResNet scheme over the current state-of-the-art

methods in all of the mentioned datasets. Moreover, the proposed

scheme achieves high ACC rates of 99.17% and 98.00% for

abnormality and malignancy detection in mini-DDSM,

respectively, and 96.52% and 93.18% for abnormality and

malignancy detection in BUSI, respectively. In BUS2, the

proposed scheme delivers 98.13% ACC for malignancy detection.

Sahu et al. (44) introduce a breast cancer detection framework

based on DL that utilizes EfficientNet to achieve high performance

even in cases of small databases. The framework incorporates

uniform and adaptive scaling of depth, width, and resolution to

ensure an optimal balance between classification performance and

computational cost. Furthermore, a Laplacian of Gaussian-based

modified high boosting (LoGMHB) is employed as a preprocessing

step, along with data augmentation, to enhance the system’s

performance. The study evaluated the proposed method on

mammogram and ultrasound modalities and demonstrated its

superiority over other methods in all performance measures. The

experimental results were obtained using 5-fold cross-validation

and showed promising results for automatic and accurate detection

of breast cancer at an early stage, which could lead to proper

treatment and greatly reduce mortality rates.

The early detection of leukemia is crucial for proper treatment

planning and improving patient outcomes. Microscopic analysis of

WBCs is a cost-effective and less painful approach for detecting

leukemia. However, automatic detection of leukemia using DL and

ML techniques is a challenging task. Das et al. (45) present a

systematic review of recent advancements in DL- and ML-based

ALL detection. The review categorizes various AI-based ALL

detection approaches into signal and image processing-based

techniques, conventional ML-based techniques, and DL-based

techniques, including supervised and unsupervised ML and CNN,

recurrent neural network (RNN), and autoencoder-based

classification methods. Furthermore, the review categorizes CNN-

based classification schemes into conventional CNN, transfer

learning, and other advancements. The article provides a critical

analysis of recent research, discussing the merits and demerits of the

different approaches and highlighting the challenges and future

research directions in this field. Overall, this systematic review

provides a comprehensive understanding of DL- and ML-based

ALL detection, which may assist researchers in formulating new

research problems in this domain.

Das et al. (46) propose an efficient deep convolutional neural

network (DCNN) framework for accurate diagnosis of ALL, a

challenging task. The framework features depthwise separable

convolutions, linear bottleneck architecture, inverted residual, and

skip connections. It uses a probability-based weight factor to

efficiently hybridize MobilenetV2 and ResNet18, preserving their

benefits. The approach achieves the best ACC in ALLIDB1 and

ALLIDB2 datasets, with superior performance compared to transfer

learning-based techniques.

In the field of biomedical image processing, DCNNs have

received a lot of attention for various detection and classification

tasks. The outcomes of many of them are comparable to or even

superior to those of radiologists and neurologists. However, the

need for a large dataset makes using such DCNNs difficult to
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achieve decent results. Paul et al. (47) present a novel single model-

based strategy for classifying brain tumors on a short dataset. To

avoid overfitting, a modified DCNN known as the RegNetY-3.2G is

coupled with regularization DropOut and DropBlock. Additionally,

to mitigate the issue of tiny datasets, the RandAugment is an

improved augmentation technique. Last but not least, the MWNL

(Multi-Weighted New Loss).

Many studies have been introduced using DL techniques for the

classification of leukocytes because of the outstanding performance

of DL methods for the classification of medical images. The grid

search (GS) and random search (RS) hyperparameter optimization

methods were used by Hosseini et al. (20) to categorize images of

four different categories of leukocytes. ACC of 99% on the training

set and of 97% on the validation set was effectively obtained by the

given hybrid technique. Through this study (21), the authors

highlight the potential of DL, specifically CNNs, in automating

the classification of different types of WBCs based on microscopic

images. The use of CNNs allows for the detection of significant

features that help distinguish different classes of leukocytes, which

can assist hematologists in diagnosing diseases such as AIDS and

leukemia. The study applied genetic algorithms to optimize the

CNN’s hyperparameters and trained the model on a dataset

containing 9,957 images and tested it on another dataset of 2,478

images. The optimized CNN achieved high classification ACC,

sensitivity, and specificity, indicating its potential as a substitute

for manual WBC counting by pathologists. Overall, this study

demonstrates the potential of DL techniques in the field of

hematology and medical diagnosis. By automating the

classification of WBCs, it could lead to more efficient and

accurate diagnoses, ultimately improving patient outcomes. CNNs

have been presented by Liang et al. (22). This approach can help to

strengthen the explanation of input images and discover the

structured features of images, and it can also begin end-to-end

training of leukocyte images. In particular, they implemented the

transfer learning method in order to transfer the feature weights to

the CNN segment. Additionally, they implemented a configurable

loss function in order to enable the network to train and converge at

a faster rate and with more precise parameterization. The findings

of their experiments demonstrated that their proposed model for

the network has achieved an ACC of 90.8%. The optimized CNN

achieved a classification ACC of 99% on the training set, which was

91% for the validation set. In (23), Bairaboina et al. present a DL

model developed to classify mature and immature WBCs from

peripheral blood smear images. Traditional methods of manual

classification by hematologists can be laborious, expensive, and

time-consuming. The proposed model uses a combination of W-

Net, GhostNet, ResNeXt, and DCGAN-based data augmentation

techniques to achieve high ACC levels of 99.16%, 99.24%, and

98.61% for three datasets. The model has potential for clinical

application in blood cell microscopic analysis. Another a hybrid

approach of recurrent neural networks (RNNs). Leukocyte

segmentation was implemented using a network based on W-Net,

a CNN-based technique for WBC classification implemented by

Rao and Rao (24). Afterward, a DL system based on GhostNet was

used to retrieve important feature maps. Then, a ResNeXt approach

was used to classify them. The proposed method has attained an
Frontiers in Oncology 0625
ACC of 99.24% on the Blood Cell Count and Detection (BCCD).

Rao and Rao (24) presented another DL-based framework for the

classification of leukocytes based on the MobilenetV3-ShufflenetV2

DL paradigm. At first, an effective Pyramid Scene Parsing Network

(PSPNet) is used to segment the images. When the images have

been segmented, the global and local features are extracted and

selected using MobilenetV3 and an Artificial Gravitational Cuckoo

Search (AGCS)-based technique. Images are then classified into five

groups using a ShufflenetV2 model. The proposed method achieves

99.19% and 99% ACC when tested on the BCCD and Raabin-Wbc

datasets. Baydilli and Atila (25) have presented a capsule deep

neural network (DNN)-based DL system for classifying leukocytes.

They have attained an ACC of 96.9% on the benchmarking dataset,

LISC. Ghosh and Bhattacharya (26) came up with two distinct

models of CNNs that improve and categorize input images of blood

cells. On the BCCD benchmarking dataset, they have achieved an

ACC of 98.4%. Wang et al. (27) have applied two unique object

detection strategies to the problem of leukocyte recognition. These

strategies are known as Single Shot Multibox Detector and You

Only Look Once (YOLO). In order to enhance the performance of

recognition, several essential elements affecting these object

detection strategies have been investigated, and detection models

have been constructed utilizing a private dataset. The level of ACC

that was achieved was 90.09%.Ma et al. (28) have come upwith a new

framework for the classification of blood cell images. This framework

is built on a deep convolutional generative adversarial network (DC-

GAN) as well as a residual neural network (ResNet). They have

accomplished a level of precision on the BCCD dataset that is 91.7%

accurate. By bringing together the ideas of merging the features of the

first and last convolutional layers and propagating the input image to

the convolutional layer, Banik et al. (29) created a novel CNNmodel.

They additionally employed a dropout layer to mitigate the model’s

overfitting issue. On the BCCD test database, they have obtained an

average ACC of 96%. Sahlol et al. (30) have used VGGNet, a robust

CNN architecture, already trained on ImageNet, to extract features

from images of leukocytes. The statistically improved Salp Swarm

Algorithm was then used to filter the extracted features. This

optimization method takes biological principles as its inspiration,

picking the most important features while discarding those that are

excessively linked or noisy. ACC of 83.2% was attained when the

proposed method was used on the C-NMC public Leukemia

reference dataset.
3 Materials and methods

3.1 Dataset

The BCCD public dataset (25) contains 12,453 augmented

images of leukocytes in JPEG format and cell type labels in CSV

format. There are 3,120, 3,103, 3,107, and 3,123 augmented images

for each class of the four cell types of eosinophil, lymphocyte,

monocyte, and neutrophil, respectively, as compared with the 88,

33, 21, and 207 original images (Mooney, 2018). The basophil

images are removed from the dataset as that type typically makes up

less than 1% of the leukocytes. A drop of blood is placed on a glass
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slide and smeared with a spreader slide. The blood is stained with a

Romanowsky stain such as May-Gr̈ u nwald Giemsa, Wright, or

Wright–Giemsa. Image quality, illumination, and different staining

techniques affect the outcome. The taken picture of cells is

magnified 100× and converted to standard RGB channels. The

dataset has been preprocessed, as each image was augmented and

repositioned before it is made available to the public for the input of

the CNN to avoid overfitting. The BCCD database is split into two

sets: approximately 80% of the data (9,966 images) for the training

set and 20% (2,487 images) for the validation set. The training set is

composed of 2,497, 2,483, 2,487, and 2,499 images of eosinophil,

lymphocyte, monocyte, and neutrophil, while the validation set

contains 623, 620, 620, and 624 images of eosinophil, lymphocyte,

monocyte, and neutrophil.

Neutrophils are the most numerous types of leukocytes

constituting 50%–70% of the circulating leukocytes (44). The

nucleus is relatively small and often multilobed. The stained

nucleus is dark blue, and its CNR is 2:1. They are capable of

phagocytizing viruses, toxins, fungi, and bacteria. They are the first

line of defense once microbial infection strikes.

Eosinophils compose 1%–5% of the leukocytes; however, their

counts fluctuate under different conditions (44). The cytoplasm is

pink-stained while the nucleus is purple-stained and frequently is

bilobed connected by a band of nuclear material. They protect

against parasitic infections and cancer cells. They produce

histamine as an inflammatory response to allergy-inducing

agents, damaged tissue, or pathogen invasion.

Lymphocytes constitute 20%–45% of leukocytes and are much

more common in the lymphatic system than in blood (22). They are

agranular cells with a large dark purple-stained nucleus and a

relatively small pale-colored amount of cytoplasm (38). They

create antibodies to regulate immune system responses against

bacteria, viruses, and other potentially harmful agents. The main

types of lymphocytes are T cells, B cells, and natural killer cells.

Monocytes make up approximately 2%–10% of leukocytes and

are the biggest leukocyte (22). Monocytes are granular and have a

kidney-shaped nucleus with plenty of light blue cytoplasm. They

share the phagocytic ability of neutrophils, break down bacteria,

and remove waste from the blood. They have a longer life span

compared with other leukocytes (20).

The BCCD database is augmented before becoming publicly

available on the Kaggle website because, practically, the amount of

training data is usually limited or not sufficient. Augmentation

expands the training set with artificial data so it can be used by

researchers. For the classification tasks, that means receiving a high-

dimensional input such as images and producing a related output. A

good classifier is immune to a wide-ranging variation. CNN as a

framework well-established for image data can discriminate

relevant minor features in the image while it is invariant to

unrelated large variations in the image (26). For image datasets,

augmentation can be done by modifying the images a few pixels to

improve the generalization ability and avoid overfitting. Among

available transformations are flipping, scaling, zooming, and

rotating the image in several directions. Augmentation helps

increase the correct classification rate regardless of size, position,

or degree of distortion of an image. Using random transformation
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exposes the network to more features in the data so it can generalize

better. One thing to consider when using an augmentation

approach is that one should take care of not altering the correct

class by using the wrong transformations (42, 44).
3.2 Convolutional neural network and
transfer learning

The CNNmodel is made up of multiple layers, including an input

layer, convolutional layers, batch normalization layers, pooling layers,

ReLU layers, Softmax layers, and one output layer. The dimensions a,

b, and c of the input image make up what is known as the input layer.

The total number of channels is specified by c. The main and first

convolutional layer of the network takes in data via three separate

inputs labeled a, b, and c. The convolutional layer is the one that is

responsible for mapping out the features. The activation layer makes

use of these features, which are also put to use for visualization

purposes. Transfer learning makes use of an already trained and

reused model as the foundation for a new task and model. The model

used for one task can be repurposed for other tasks as an optimization

to improve performance. By applying transfer learning, the model

can be trained with a small volume of data. It is helpful to save time

and achieve good results. In the transfer learning approach, we

transfer knowledge from the source mammogram input images to

the target domain mammogram mass images IT. The target classifier

Tc (Mt) is to be trained from the input mammogram image Is to the

target image IT to get the classifier prediction about BMNTi, which

stands for benign, malignant, and normal. To extract the features, a

transfer layer is used. The top layer from the classifier retrained the

new target classes, while the other layers were kept frozen as defined

in Equation 1.

BMNTi = Tc(Mt) (1)
3.2.1 DenseNet
DenseNets are the subsequent stage to increase the depth of

deep convolutional networks. When CNNs go deeper, the problems

arise. This happens because of the big path for information from

input to output layer. DenseNet-161 is a simple connectivity pattern

because it connects all layers directly with each other to be sure that

information flow is maximum between layers in the network. Feed

forward nature is maintained by obtaining each layer additional

inputs from the preceding layers. Figure 3 presents the architectures

of DenseNet for ImageNet. Features are combined by

concatenation. DenseNet is not as the same as traditional

architecture because it introduces L(L+1)
2 connections in an L-layer

network in lieu of L. Handling problems of vanish gradient, reusing

feature, lacking parameter’s number, and propagating features is the

most important feature of DenseNets.
3.2.2 Mathematical model of DenseNet
deep networks

DNNs have reached state-of-the-art performance in a variety of

computer vision applications. Moreover, the interpretation of
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DNNs has been examined from the perspective of visualization as

well as resilience. The groundbreaking studies that highlight the

potential of DNNs include AlexNet and VGGNet. The community’s

research focus has changed from feature engineering to network

design engineering as a direct result of the success of these key

efforts. As a result, various new network architectures have been

developed to improve the performance of DNNs. ResNets have

achieved state-of-the-art performance on a variety of benchmark

datasets, including ImageNet and the COCO detection dataset. This

was accomplished by reusing previous features in conjunction with

the identification shortcut. One of the factors that contribute to

ResNet ’s phenomenally high level of popularity is its

straightforward design strategy, which includes just one identity

shortcut. The shortcomings of the identity shortcut have been

investigated in subsequent publications, despite the tremendous

success that it has enjoyed. Because the identity shortcut bypasses

the residual blocks to maintain characteristics, it is possible that the

network’s capacity for representation is diminished as a result.

The ResNet has brought about a fundamental shift in how it was

thought to parametrize the functions of DNNs. The DenseNet can be

thought of as a kind of logical extension of this. Both the connection

pattern in which each layer connects to all the preceding layers and the

concatenation operation (as opposed to the addition operations in

ResNet) to retain and reuse features of previous layer are defining

characteristics of the DenseNet architecture. Let us make a brief detour

into mathematics to comprehend how one might possibly arrive at

such a conclusion. Looking back to functions’ Taylor expansion. To

clarify, for a point y=0, it might be expressed as shown in Equation 2.

One of the most important features of ResNet is that it can break

down a function into a series of terms with progressively higher

orders. In a manner analogous to this, ResNet disassembles functions,

as demonstrated in Equation 3. In other words, the ResNet breaks

down a function f (y) into a straightforward linear component and a

complex nonlinear one. However, if we were to write down more

information than just the two components, but not necessarily add

anything new. DenseNet is one example of such a solution. Figure 4

illustrates the primary difference between ResNet (shown on the left)

and DenseNet (shown on the right) in terms of cross-layer

connections: the utilization of addition versus the utilization of

concatenation. As can be seen in Figure 4, the primary distinction

between ResNet and DenseNet is that, in the latter case, outputs are
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concatenated (shown by) instead of added. This is denoted by the

notation. As a consequence of this, we apply an increasingly complex

chain of functions before performing a mapping from the values it

contains, as depicted in Equation 4. The number of features is further

reduced by combining all of these functions in Multi-layer Perceptron

(MLP). The mechanics of this are straightforward; instead of adding,

we just string together the terms. DenseNet gets its name from how

packed the dependency tree between the variables gets. The last layer

in this structure has numerous connections to its predecessors.

Figure 5 depicts these complex interconnections.

f (y) = f (0) + y  :  ½ f 0(0) + y :½  f
00(0)
2 !

+ y  :½  f
‴(0)
3 !

+…�� � (2)

f (y) = y + g(y)  (3)

y  → ½y,  f1(y),  f2(½y,  f1(y)�),  f3(½y,  f1(y),  f2(½y,  f1(y)�)�),  …� (4)
3.3 The proposed CAD system for
leukocyte images

The image preprocessing and enhancement stage, the image

segmentation stage, the feature extraction and selection stage, and

the WBC classification stage are the four primary stages that are

included in the proposed CAD system. These stages are illustrated

in Figure 6, which also contains the information that is mentioned
FIGURE 5

Dense links in DenseNet. DenseNet gets its name from how packed
the dependency tree between the variables gets. The last layer in
this structure has numerous connections to its predecessors. This
figure depicts these complex interconnections.
FIGURE 3

DenseNet architectures for ImageNet. DenseNets are broken up
into DenseBlocks, and while the dimensions of the feature maps
stay the same inside each block, the number of filters that are used
varies from one block to the next. These layers in between them are
referred to as Transition Layers.
BA

FIGURE 4

DenseNet vs. ResNet. The primary distinction between (A) ResNet
and (B) DenseNet is that, in the latter case, outputs are concatenated
(shown by) instead of added.
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in the Introduction section. In addition, the findings of this research

contribute to existing state-of-the-art models by suggesting the

implementation of a one fit cycle strategy, which makes the

process of training simpler. As a result, there is no requirement to

adjust any of the hyperparameters of the network that is being used.

3.3.1 Image preprocessing phase
In order to process the input histopathological image sample,

images are resized to 244 × 244, and training images are the only

ones that are normalized. Changing the range of intensity values for

individual pixels is the core idea behind image normalization. The

purpose of image normalization is to transform the pixel range

values into ranges that are more intuitive to the senses.
3.3.2 Image segmentation phase
Figure 7 illustrates an example for an input image with its

corresponding output image, segmented one. Color Image

Segmentation was used on the images to separate each individual

pixel using the HSV color space. The images will be segmented

using information derived from the HSV color space. HSV is an

abbreviation that stands for hue, saturation, and value as illustrated

in Figure 8.

The following Algorithm 1 is an outline of the primary steps

that are involved in the image segmentation phase:
Fron
i) First, convert the RGB image in HSV form as depicted in

Figure 6.

ii) using the color bar at the right to choose the

thresholds.
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iii) set up the thresholds for the masks.

• Lower Mask (refer to the hue channel)

• Upper Mask (refer to the hue channel)

• Saturation Mask (refer to the transparency

channel)

Ex: to segment the NEUTROPHIL cell, the lower and upper

mask values that are appropriate would be 0.0 and 1.0

After that, the saturation threshold is decided. This

is a bit tricky because you need to consider the colors

that are seen in the object. In this case, the values

are 0.45

iv) Create the mask by multiplying all masks of the

thresholds.

mask = upper_mask*lower_mask*saturation_mask

v)Then, multiply this mask by each value in the rgb

image.

red = img [ : , : , 0 ]*mask

green = img [ : , : , 0 ]*mask

blue = imh [ : , : , 0 ]*mask

i) Lastly, apply the morphology operation to remove the

noise or halls.
Algorithm 1. Image segmentation phases.

3.3.3 Feature selection and classification using
the DenseNet model

The DenseNet-161 DL model is used in the implementation of

both the feature extraction and classification stages. Adjouadi et al.

(34) developed DenseNet that had the best classification results on

the available datasets such as ImageNet. DenseNet does not use direct
FIGURE 6

An automated End-to-End CAD, system of white blood cells. The image preprocessing and enhancement stage, the image segmentation stage, the
feature extraction and selection stage, and the white blood cell classification stage are the four primary stages that are included in the proposed
CAD system.
FIGURE 7

An illustration of image before and after the segmenation phase. This is an example for an input image with its corresponding output image,
segmented one.
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connections among hidden layers, but it uses dense connection to

build a model. Its construction was based on linking each to a

subsequent layer. In any layer, any important features learned are

involved within the network. Due to the extracted features, deep

network training became more efficient and the performance of the

model increased. The number of parameters has become less than

CNN because feature maps are sent directly to all subsequent layers.

The DenseNet has a very important feature, which is that it reduces

overfitting in the model because of the use of dense connections.

Training DL models with very large numbers of parameters takes

much time. More and more data and powerful GPU are required to

train these models from scratch. Transfer learning is used to

overcome the pervious problem. By using transfer learning, you are

saving time. Transfer learning is a method of machine learning in

which a model that was developed for one task can be utilized as a

foundation for a model that will be used on a different task. Learned

features are often transferable to different data. For example, a model

trained in Dataset for animal images that includes learned features

such as edges and lines can be used on other dataset using transfer

learning technique. In transfer learning, feature extractor is done by

fully connected layer after removing it from the model used.

In this study, DenseNet-161 with ImageNet is utilized; however,

the final layer, which is designated as the “completely connected”

layer, has had its number of classes reduced from 1,000 to 4. The

strategy known as one fit cycle policy is utilized to implement

DenseNet-161.

3.3.4 One fit cycle policy
It is known that training of DNN is a difficult optimization

problem. Tuning of hyperparameters such as LR is very

important. The performance of the network will be enhanced

by carefully selecting the hyperparameters for LR, momentum,

and weight decay. The traditional approach involves running

a grid or random search, which can be time-consuming and

computationally intensive. The impacts of these hyperparameters

are also closely related to the architecture, the data, and each

other. This section provides more effective guidelines for

selecting certain hyperparameters (27). A small LR leads to

very slow training, while a large LR hinders the convergence. A

low LR is good, but it takes a long time to train perfectly. When

training speed is increased, LR is increased until LR gets too large

and diverge. To obtain the exact LR, you need to do many
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experiments and be patient. A new method was discovered by

Leslie N. Smith for setting up LR named CLRs. CLR made LR

values between minimum and maximum range instead of having

fixed values during the training. CLR cycle has two steps, one of

them being an increase in LR and the other one being a decrease

in LR. CLR eliminates the need to find the optimal LR but the

optimal rate between minimum and maximum range. Figure 9

shows classification ACC while training CIFAR-10. The red curve

is CLR. As depicted in Figure 9, the CLR achieves the same ACC

as the original LR but in iteration less than the original LR

method (15). In Leslie N. Smith’s research (48), super-

convergence is the method that uses CLR, but with one cycle

that contains two LR steps. The total number of iterations must

be larger than the size of the cycle. After completing the cycle,

LR is decreased much further for the remaining iterations.

Leslie N. Smith named this method one fit cycle policy. In

super-convergence, LR starts from a small value and is

increased to a very large value then returns to a value lower

than its initial one. The impact of LR many values is a training

ACC curve. In super-convergence, training ACC is moved fast as

LR is increased (15, 44), becomes oscillated as LR is very large,

and then jumps again to an extreme point of ACC.

To utilize CLR, one must provide a step size and minimum and

maximum LR bounds. A cycle consists of two such steps, one in

which the LR linearly grows from the lowest to the maximum and the

other in which it progressively falls. The step size is the number of

iterations (or epochs) utilized for each step. Smith (2015) explored a

variety of methods for varying the LR between the two boundary

values, discovered that they were all equivalent, and thus advised the
FIGURE 8

Color Image Segmentation was used on the images to separate each individual pixel using the HSV color space. The images will be segmented using
information derived from the HSV color space. HSV is an abbreviation that stands for Hue, Saturation, and Value.
FIGURE 9

CLR method and original learning rate.
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most straightforward method—letting the LR change linearly—even

though suggested discrete jumps and found similar outcomes (28).

Training for the LR range test begins with a modest LR and

gradually rises linearly over the course of a pretraining run.

This single run offers useful insight into the maximal LR and

how well the network can be taught over a variety of LRs. The

network starts to converge at a low LR, and as the LR rises, it

finally reaches an unmanageable size, which lowers ACC and

increases test/validation loss. By using a constant LR, a smaller

number is required since otherwise the network will not start to

converge. The LR at these extrema is the highest value that can

be utilized as the LR for the maximum bound with CLRs. The

minimal LR constraint can be chosen in a variety of ways: 1) by

a factor of 3 or 4 less than the maximum bound, 2) by a factor of

10 or 20 less than the maximum bound if only one cycle is used,

or 3) by a quick test of hundreds of iterations with a few initial

LRs and choosing the largest one that permits convergence to

start without overfitting. If the initial LR is too large, the

training will not start to converge. Be aware that the LR can

only rise to a certain point before the training becomes

unstable. This affects your decision about the lowest and

maximum LRs (i.e., raise the step size to widen the gap

between the minimum and maximum).
4 Results and discussion

The experiments are applied on a BCCD public dataset. Our

studies were carried out on it with the help of Google Colab. The

evaluation criteria are used to evaluate the performance of

classification model, including image test ACC, Macro-F1,

Micro-F1, and Kappa criteria, and average time. Macro-F1

takes the average of the precision and recall of each class.

ACC is defined by the ratio of Ncor (the number of correctly

classified images in testing set) to Nall (Total number of images

in testing set). Equation 5 defines the image test ACC. Precision

is calculated as the sum of true positives across all classes

divided by the sum of true positives and false positives across

all classes. Recall is calculated as the sum of true positives across

all classes divided by the sum of true positives and false

negatives across all classes. Equation 6 defines Micro-F1.

Kappa measure, based on confusion matrix calculation, can

handle problems such as imbalanced datasets and multiclass

problems. Precision is defined by Equation 7, and it means the

percentage of your results that are relevant. On the other hand,

recall as described by Equation 8 refers to the percentage of

total relevant results correctly classified by your algorithm.

Equation 9 defines Kappa coefficient, where p0 is the image

test ACC as defined in Equation 5, and pe is the summation of

the product of the number of images in each type of cancer and

the predicted number of images in each type of cancer to the

square of the total number of images in the testing set.

Accuracy(ACC) =
Ncor
Nall

(5)
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F1 − score =
2X(precision �  recall)
(precision +  recall)

(6)

Precision =
Sum c in C TruePositives _ c

Sum c in C (TruePositives _ c  +  FalsePositives _ c)
(7)

Recall =
Sum c in C TruePositives _ c

Sum c in C (TruePositives _ c  +  FalseNegatives _ c)

(8)

Kappa =
p0−pe
1−pe

, p0 =
Ncor
Nall

, pe = o
​NtrueXNpre

NallXNall
(9)
4.1 Classification results

The next subsection discusses the classification result on the

BCCD dataset based on the default one fit cycle policy approach.

The experimental result is applied on a raw dataset. Moreover, the

results of our research experiments are compared with the results of

other researchers. The experiments are performed over a desktop

computer system having an Intel Core i7-7700 CPU, 16 GB RAM,

and one 8-GB GPU. This research used DenseNet-161 to perform

the classification of microscopic images into neutrophils,

eosinophils, lymphocytes, and monocytes by using a pretrained

model in terms of ACC, F1, AUC, and Kappa. Our experimental

result of multiclassification problem on raw data is shown in Table 1

according to ACC, Macro-F1, Micro-F1 and Kappa. We ran the raw

data on 30 epochs. All classification results are given in Tables 2, 3.

The loss curves are shown in Figure 10, and the confusion matrices

are shown in Figure 11.

The experimental results in Table 3 show that all evaluation

metrics on 40× magnification factor (which is indicated by the black
TABLE 3 Precision, Recall, and F1-score for raw data.

Criteria Types precision recall f1-score

Eosinophil 1.00 1.00 1.00

Lymphocyte 1.00 1.00 1.00

Monocyte 0.80 1.00 0.89

Neutrophil 1.00 0.98 0.99

accuracy – – – 0.99

macro avg – 0.95 0.99 0.99

weighted avg – 0.99 0.99 0.99
fr
TABLE 2 The result of each evaluation is on raw data.

Network Criteria Result Average Time

DenseNet-161 Accuracy (ACC) 0.985 4.30 h
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underline) are better than the other magnification factors. The reason

for 40× achieving the best ACC is because it contains more significant

features of breast cancer. From Table 3, precision, recall, and F1-score

values show that our model classification result is perfect.
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The receiver operating characteristic (ROC) metric is used to

evaluate the output quality. ROC is a probability curve, while AUC,

area under the curve, is a metric for assessing how well two groups

may be distinguished. It reveals the extent to which the model can

differentiate between categories. If the AUC is high, then the model

is very good at predicting the correct classes. The AUC value (see in

Figure 12) for class 0 and class 1 is 1.00 and for class 2 and class 3 is

0.99. Ideally, the ROC for the false positive rate should be zero and

one for the true positive rate.
4.2 Comparisons with other models

This section compares our experimental results with the other

experiments carried out by other research papers on raw data and

augmented data. We evaluated the ACC of the newly introduced

method to that of the most recent and cutting-edge classification

frameworks for leukocyte histology by using the BCCD database. As a

consequence of this, we were in a position to evaluate the significance

of the hybrid DenseNet and CLR approach. The differences between

the suggested method and the state-of-the-art methods that are
frontiersin.org
FIGURE 11

Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm's results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.
FIGURE 12

Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm's results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.
TABLE 4 A comparison between research results and the state of the art.

Criteria Author Methods Result

Accuracy (ACC)

Maryam et al. (20) Optimized CNN 99%

Bani-Hani et al. (21) GA-optimized CNN 91%

Liang et al. (22) Hybrid CNN-RNN 90.8%

Rao (23) CNN and ResNeXt 99.24%

Rao (24) ANN and CNN 97.7%

Ghosh and Bhattacharya (25) CNN and FCN on noise-free cell images 98.4%

Ma et al. (26) DC-GAN, and ResNet 91.7%

Banik et al. (27) CNN 96%

Proposed model DenseNet-161 with CLR Approach 99.8%
FIGURE 10

Loss curve. How well a model matches its training data is measured
by the validation loss (Orange curve), whereas how well it performs
on novel data is measured by the training loss (Blue curve).
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currently in use are outlined in Table 4. To facilitate this comparison,

ACC was utilized as a performance metric.

DenseNet with the CLR approach, the suggested classification

framework, outperforms the DL systems established by Bani-Hani

et al. (40), Liang et al. (22), Paul et al. (47), Bairaboina and Battula

(23), Rao and Rao (24), and Banik et al. (29) when applied to the

BCCD dataset. In addition to this, it has accomplished a level of

ACC that is on par with that which Habibzadeh et al. (39), Rao and

Rao (24), and Ghosh and Bhattacharya (26) have accomplished.

In general, it can be deduced from the comparison in Table 4

that the suggested system is capable of recording a performance that

is better than that of all other systems.

From the experimental results applied on raw and augmented data,

Tables 2–4 show that the evaluation criteria-specified ACC achieved the

best results by applying a new method in training called one fit cycle

policy and with small number of batches and the fewest number of

epochs. When we have trained the CNN using 32 batch size and 60

epoch, we did not attain high performance. On the contrary, we use 32

batch sizes and 30 epochs on raw data, and this helped us to reduce the

time of training and achieve better ACC than the other research.
5 Conclusions

Using a combination of the recently developed pretrained CNN,

DenseNet, and the one fit cycle policy, this study describes a

technique of training for the classification of WBCs. The

proposed method is more accurate and requires less cycles to

train CNN—thanks to the one fit cycle policy. It fixes how

difficult it is to adjust the DL model’s hyperparameters.

DenseNet-161 was used in the experiment, and the results are

analyzed in terms of various performance indicators. ACC,

precision, and recall are presented as indicators of the suggested

model’s efficacy. We solved the multiclass classification problem

with a raw data ACC of 99.8%. As a result, the outcomes of our

experiments are more reliable than those obtained in the existing

state of the art for the classification of WBCs. In the future work, the

proposed model can be applied to diagnosis-specific diseases such

as cancer and liver disease.
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Yong Zhang1* and Jingliang Cheng1*
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Research China, GE Healthcare, Beijing, China
Background: Preoperative classification of head and neck (HN) tumors remains

challenging, especially distinguishing early cancerogenic masses from benign

lesions. Synthetic MRI offers a new way for quantitative analysis of tumors. The

present study investigated the application of synthetic MRI and stimulus and fast

spin echo diffusion-weighted imaging with periodically rotated overlapping

parallel lines with enhanced reconstruction (FSE-PROPELLER DWI) to

differentiate malignant from benign HN tumors.

Materials and methods: Forty-eight patients with pathologically confirmed HN

tumors were retrospectively recruited between August 2022 and October 2022.

The patients were divided into malignant (n = 28) and benign (n = 20) groups. All

patients were scanned using synthetic MRI and FSE-PROPELLER DWI. T1, T2, and

proton density (PD) values were acquired on the synthetic MRI and ADC values

on the FSE-PROPELLER DWI.

Results: Benign tumors (ADC: 2.03 ± 0.31 × 10-3 mm2/s, T1: 1741.13 ± 662.64ms,

T2: 157.43 ± 72.23 ms) showed higher ADC, T1, and T2 values compared to

malignant tumors (ADC: 1.46 ± 0.37 × 10-3 mm2/s, T1: 1390.06 ± 241.09 ms, T2:

97.64 ± 14.91 ms) (all P<0.05), while no differences were seen for PD values. ROC

analysis showed that T2+ADC (cut-off value, > 0.55; AUC, 0.950) had optimal

diagnostic performance vs. T1 (cut-off value, ≤ 1675.84 ms; AUC, 0.698), T2 (cut-

off value, ≤ 113.24 ms; AUC, 0.855) and PD (cut off value, > 80.67 pu; AUC, 0.568)

alone in differentiating malignant from benign lesions (all P<0.05); yet, the

difference in AUC between ADC and T2+ADC or T2 did not reach statistical

significance.
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Conclusion: Synthetic MRI and FSE-PROPELLER DWI can quantitatively

differentiate malignant from benign HN tumors. T2 value is comparable to

ADC value, and T2+ADC values could improve diagnostic efficacy., apparent

diffusion coeffificient, head and neck tumors
KEYWORDS

synthetic, magnetic resonance imaging, diffusion-weighted image, apparent diffusion
coefficient, head and neck tumors
Highlights
- Synthetic MRI, FSE-PROPELLER DWI, and the combination

of the two methods can all be used to quantitatively

diagnose differential head and neck (HN) tumors.

- Synthetic MRI could constitute a new adjunct in diagnosing

HN tumors.

- Synthetic MRI is comparable to FSE-PROPELLER DWI.

- The combined effect of the two methods was better than

synthetic MRI used alone.
1 Introduction

Head and neck (HN) cancer is the 6th most common cancer and

the 9th most common cause of cancer-related death (1, 2). Surgery is

the most effective treatment for managing primary HN cancer. Yet,

many patients present with advanced-stage tumors at the time of

diagnosis and thus require more invasive treatment, including

radiochemotherapy, immunotherapy, and targeted therapy (3).

Also, diagnosis remains challenging considering its specific

location (masses originating from the larynx, the nasopharynx,

oropharynx, oral cavity hypopharynx, salivary glands, etc.). In

addition, HN cancer might cause various symptoms that

commonly accompany benign conditions (1). Thus, the

differentiation of benign from cancerous masses is very important.

Tissue biopsy and pathologic examination remain the gold

standard for evaluating the nature of HN lesions; nevertheless,
, area under the curve;

ing; FOV, field of view;

ent; MAGIC, magnetic

V, negative predictive

value; PROPELLER,

hanced reconstruction;

nterest; SS, single-shot;

tion time; T1WI, T1-

ho time; TR, repetition

0235
only a part of the tissue can be obtained using this method. In

addition, this approach is invasive and not always well accepted by

the patient (4).

Endoscopy, head MRI, computed tomography (CT of the

sinuses and head, dental cone beam CT), panoramic dental x-

ray, and positron emission tomography (PET)/CT or chest

imaging are the most common imaging methods used to assess

the HN region. MRI is frequently used to detect, differentiate,

grade, or draw the extent of HN tumors (1, 5). Among different

MRI models , di ffus ion-weighted imaging (DWI) can

quantitatively evaluate the Brownian motion diffusion of water

molecules in tissues at a cellular level expressed as an apparent

diffusion coefficient (ADC). DWI with a single-shot echo-planar

sequence (SS-EP-DWI), which is commonly applied to investigate

HN regions (6), is sensitive to chemical shifts, signal loss and

geometric distortion, metallic dental implant-related magnetic

susceptibility artifacts, and motion artifacts (7). Moreover,

stimulus and fast spin echo DWI with periodically rotated

overlapping parallel lines with enhanced reconstruction (FSE-

PROPELLER DWI) is useful to distinguish parotid pleomorphic

adenoma from Warthin tumor with less distortion of tumors than

SS-EP-DWI (7). However, the value of FSE-PROPELLER DWI in

distinguishing malignant from benign HN tumors has not been

fully explored.

The major limitations of DWI include low signal-to-noise ratios

and prolonged acquisition time. Over the years, a new synthetic

MRI sequence based on a quantitative approach has been

developed. This tool can estimate absolute physical properties,

proton density (PD), and longitudinal and transverse relaxation

times (T1, T2), which are independent of the MRI scanners or

scanning parameters at a given field strength (8). Also, quantitative

values (PD, T1, and T2) can be simultaneously acquired on the

synthetic MRI, which enables a significant reduction in examination

time with good accuracy and reproducibility for use in clinical

practice (individual patient follow-up and comparison analysis (9–

11). This approach has been used in the study of multiple systemic

diseases of the brain (12), knee (13), spine (14), prostate (15), breast

(16), bladder (17), and nasopharynx (18).

In this study, we further assessed the value of synthetic MRI in

differentiating malignant from benign HN tumors compared with

FSE-PROPELLER DWI and a combination of these two methods.

To the best of our knowledge, this is the first study that focused on
frontiersin.org
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synthetic MRI and FSE-PROPELLER DWI to characterize

HN tumors.
2 Materials and methods

2.1 Patients

MRI data from 48 consecutive patients (mean age ± standard

deviation [SD], 48.08 years ± 15.01 [range, 18–76 years]) with HN

tumors who were treated at our hospital between August 2022 and

October 2022 were collected. The inclusion criteria were: (1) no

tumor treatments before MR examinations; (2) all pathological

examinations of samples were obtained by surgical resection or

biopsy of the tumor; (3) synthetic MRI and FSE-PROPELLER DWI

were acquired before surgical resection and biopsy; (4) the

maximum tumor diameter was ≥ 6 millimeters. The exclusion

criteria were: (1) MR images with obvious artifacts and poor

quality; (2) patients previously treated. Subjects were divided into

benign and malignant groups.

This study was approved by our institutional review board.

Informed consent was waived.
2.2 Data collection

Demographic data included gender and age. All MRI

acquisitions were performed on a 3T MR scanner (Premier, GE

Healthcare, Milwaukee, WI, USA) in a supine position with a 21-

channel head-neck coil. The following sequences were acquired in

this study: axial T1-weighted image (T1WI), T2-weighted image

(T2WI), synthetic MRI, and FSE-PROPELLER DWI with two b-

values (0 and 800s/mm2). Detailed acquisition parameters are listed

in Table 1.
Frontiers in Oncology 0336
2.3 Image analysis

Acquired data from synthetic MRI sequences were analyzed

using magnetic resonance image compilation (MAGIC) software.

Then, quantitative T1, T2, and PD maps were created and used for

measurements to yield synthetic images and match the

conventional images (19). The two radiologists (with 10 and 8

years of experience in head and neck MR imaging independently

analyzed MR images) who were blind to the grouping manually

drew the regions of interest (ROIs) on synthetic T2WI to obtain the

PD, T1, and T2 values. Postprocessing of FSE-PROPELLER DWI

was performed using the ADW 4.7 workstation (GE Healthcare).

The axial routine MR images and DWI were used as references.

ROIs were drawn on synthetic T2WI and ADC maps with care by

avoiding necrosis, cystic degeneration, and bleeding areas at the

slice with the largest tumor diameter and directly colocalized on the

T1, T2, and PD maps. The size of ROIs was >25 mm2. Two

radiologists measured three times. The average value was

obtained by both radiologists in the analysis. Additionally, the

largest lesion was selected for analysis if more than one HN

lesion were present.
2.4 Statistical analysis

Shapiro-Wilk test was used to assess normality, while Levene’s

test was used for variance homogeneity. The normally distributed

variables were expressed as the means ± SD. Non-normally

distributed variables were expressed as medians (interquartile

ranges, IQRs). Differences in sex between the two groups were

compared using a chi-square test. An independent samples t-test

was used to compare the discrepancy in age between the two

groups. The intraclass correlation coefficient (ICC) was used to

assess the intraobserver agreement for quantitative parameters (19):
TABLE 1 MRI Sequence Parameters.

Parameters T1WI T2WI MAGIC DWI

Imaging technique FSE Flex Synthetic MRI FSE-PROPELLER

Orientation Axial Axial Axial Axial

TR (ms) 693 3339 4000 3620

TE (ms) 6.7 80 13.3 50

Field of view (mm2) 220×220 220×220 220×220 220×220

Slice thickness (mm) 4 4 4 4

No. of slices 24 24 24 24

Nex 1 2 1 4

Fat suppression NA Dixon NA Fat sat

Acquisition matrix 320×224 280×224 224×224 120×50

Flip angle (degree) 111 110 NA 110

Acquisition time 40s 2 min 27s 3 min 38 s 3 min 20 s
T1WI, T1-weighted imaging; T2WI, T2 weighted imaging; DWI, diffusion-weighted imaging; TSE, turbo spin-echo; MAGIC, magnetic resonance image compilation; PROPELLER, periodically
rotated overlapping parallel lines; TR, repetition time; TE, echo time; NA, not applicable.
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value <0.40, 0.41-0.59, 0.60-0.74, and ≥0.75 indicated poor, fair,

good, and excellent consistency, respectively. Pearson’s correlation

coefficient was used to evaluate the correlation among parameters.

The receiver operating characteristic (ROC) curve was conducted,

and the area under the curve (AUC), sensitivity, specificity, negative

predictive value (NPV), and positive predictive value (PPV) were

further calculated to ascertain the diagnostic performance of

quantitative parameters for differentiating malignant from the

benign HN tumors. The diagnostic value of the combined ADC

and T2 values (T2+ADC) was based on the logistic regression

analysis. The method developed by DeLong et al. (20) was applied

to compare AUCs. Statistical analysis was performed using

MedCalc statistical software (version 19.6, MedCalc) and SPSS

software (version 17.0, Chicago, IL, USA). P < 0.05 was

considered statistically significant.
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3 Results

3.1 General data

A total of 48 patients with histologically diagnosed HN tumors

were assessed. Demographics are listed in Tables 2 and 3. In addition,

representative images of benign and malignant tumors are depicted

in Figures 1 and 2. There was no difference in age (t = -1.392, P >

0.05) and gender between the two groups (c2 = 0.689, P = 0.406).
3.2 Interobserver reliability

ICC analyses showed excellent consistency in the ADC, T1, T2, and

PD values assessed by the two physicians: the ICC values were 0.976
TABLE 2 Histologic types and locations of head and neck tumors.

Benign/malig-
nant

Histologic types Locations Gender
(M/F)

Age
(y)

T1
(ms)

T2
(ms)

PD
(pu)

ADC
(×10-3 mm2/s)

Benign Pleomorphic adenoma Parotid gland M 19 1854 147.17 89.4 2.15

Benign Pleomorphic adenoma Parotid gland M 50 1230.67 117.83 68.74 1.67

Benign Pleomorphic adenoma Parotid gland F 48 2991 317.33 90.99 2.59

Benign Pleomorphic adenoma Submandibular gland F 54 1837 152.33 84.97 2.15

Benign Pleomorphic adenoma Parotid gland F 49 1334.5 110.83 80.67 1.86

Benign Pleomorphic adenoma Parotid gland F 32 916.5 114.17 86.25 1.76

Benign Pleomorphic adenoma Parotid gland M 35 1292.5 99.17 74.17 1.84

Benign Pleomorphic adenoma Parotid gland F 24 1712.84 143 86.15 2.03

Benign Pleomorphic adenoma Parapharyngeal space M 59 1287.33 153.5 80.47 1.95

Benign Pleomorphic adenoma Parotid gland F 63 1854.67 174.17 87.07 2.18

Benign Pleomorphic adenoma Parotid gland M 52 1573.5 140.5 88.60 1.94

Benign Pleomorphic adenoma Parotid gland F 32 3332.5 304.5 97.52 2.42

Benign Pleomorphic adenoma Parotid gland M 21 2810.34 274.34 98.15 2.58

Benign Pleomorphic adenoma Parotid gland F 42 1548.84 118.17 86.09 1.86

Benign Pleomorphic adenoma Parotid gland F 54 2227.5 265.17 89.15 2.40

Benign Basal cell adenoma Parotid gland M 53 1382.33 93.17 80.3 1.54

Benign Basal cell adenoma Parotid gland F 57 1431 96.5 77.84 1.79

Benign Basal cell adenoma Parotid gland M 44 1401.83 97.5 79.19 1.71

Benign Basal cell adenoma Parotid gland M 62 817 120.67 89.25 2.34

Benign Basal cell adenoma Parotid gland F 41 1986.84 108.5 87.99 1.90

Malignant Squamous cell
carcinoma

Tongue M 54 1329.5 98.84 83.22 1.55

Malignant Squamous cell
carcinoma

Hypopharynx M 64 1166.17 78.33 89.83 1.72

Malignant Squamous cell
carcinoma

Tongue M 32 1850 93.5 90.17 1.84

(Continued)
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TABLE 2 Continued

Benign/malig-
nant

Histologic types Locations Gender
(M/F)

Age
(y)

T1
(ms)

T2
(ms)

PD
(pu)

ADC
(×10-3 mm2/s)

Malignant Squamous cell
carcinoma

Nasopharynx M 18 1422.67 100 85.38 1.04

Malignant Squamous cell
carcinoma

Tongue F 62 1143.67 86.67 80.5 2.49

Malignant Squamous cell
carcinoma

Nasopharynx M 56 1326.17 95.67 85.85 1.15

Malignant Squamous cell
carcinoma

Tongue M 53 1244.34 91.84 82.6 1.54

Malignant Squamous cell
carcinoma

Nasopharynx F 36 1175.34 80.17 87.25 1.34

Malignant Squamous cell
carcinoma

Vocal cords M 52 2067.17 88.67 90.14 2.41

Malignant Squamous cell
carcinoma

Nasopharynx M 37 1197.17 69.33 81.54 1.56

Malignant Squamous cell
carcinoma

Tongue F 48 1334.17 101.5 85.83 1.44

Malignant Squamous cell
carcinoma

Nasopharynx M 27 1054.5 82.17 80.92 1.07

Malignant Squamous cell
carcinoma

Nasopharynx M 59 1214.17 93.5 89.35 1.14

Malignant Squamous cell
carcinoma

Parotid gland M 76 1471.17 113.34 82.87 1.50

Malignant Squamous cell
carcinoma

Buccal mucosa F 47 1348.84 102.4 87.78 1.43

Malignant Squamous cell
carcinoma

Tongue M 41 1214.67 105.17 80.39 1.52

Malignant Squamous cell
carcinoma

Buccal mucosa F 65 1276.84 92.17 79.27 1.60

Malignant Squamous cell
carcinoma

Tongue M 69 1283.67 78.83 84.54 1.43

Malignant Lymphoma Parapharyngeal space F 49 1308.5 83.83 83 0.98

Malignant Lymphoma Nasopharynx M 66 1398 89.67 84.97 1.03

Malignant Lymphoma Parotid gland F 52 1483 125.33 82.25 1.54

Malignant Lymphoma Submandibular gland F 73 1571.84 109.34 87.9 1.24

Malignant Lymphoma Tonsil F 50 1649 110.84 89.48 1.16

Malignant Acinar cell carcinoma Parotid gland F 58 1675.84 121.17 86.32 1.77

Malignant Acinar cell carcinoma Parotid gland M 32 1181 103.33 89.43 1.58

Malignant Rhabdomyosarcoma Parotid gland and
neck

F 20 1833.67 133.84 83.92 1.31

Malignant Melanoma Paranasal sinus M 74 1239.5 99.84 89.54 1.17

Malignant Plasmacytoma Parapharyngeal space F 47 1461.17 104.5 85.95 1.20
F
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(95% CI 0.958 - 0.987, P = 0.000), 0.936 (95% CI 0.988 - 0.997, P =

0.000), 0.996 (95% CI 0.993 - 0.998, P 0.001), and 0.823 (95% CI 0.706 -

0.897, P = 0.000), respectively.

3.3 Correlation analysis

Pearson’s correlation analysis showed a significant positive

correlation between the T1 and T2 values (r = 0.854, P < 0.001), T1

and PD values (r = 0.574, P < 0.001), T1 andADC values (r = 0.565, P <
Frontiers in Oncology 0639
0.001), T2 and PD values (r = 0.495, P < 0.001), and T2 and ADC

values (r = 0.646, P< 0.001), respectively. There was no significant

positive correlation between PD and ADC values (r = 0.281, P = 0.053).
3.4 MRI values between the two groups

The T1 value (1741.13 ± 662.64ms), T2 value (157.43 ±

72.23ms), and ADC value (2.03 ± 0.31 × 10-3 mm2/s) of the
TABLE 3 Demographics and the parameters of patients with head and neck tumors.

Group Gender (M/F) Age(y) T1 (ms) T2 (ms) PD (pu) ADC (×10-3 mm2/s)

Benign tumor 9/11 44.55 ± 13.44 1741.13 ± 662.64 157.43 ± 72.23 85.15 ± 7.17 2.03 ± 0.31

Malignant tumor 16/12 50.61 ± 15.80 1390.06 ± 241.09 97.64 ± 14.91 85.36 ± 3.37 1.46 ± 0.37

c2/t/t’ 0.689a -1.392b 2.265c 3.647c -0.125c 5.762c

P value 0.406 0.171 0.033 0.002 0.901 <0.001
Unless otherwise indicated, data are mean ± standard deviation (SD). ADC, apparent diffusion coefficient; PD, proton density, a Data is c2, b Data is t,c Data is t’.
A B D

E F G H

C

FIGURE 1

A 54-year-old woman with pleomorphic adenoma in the left parotid gland. (A–C) Proton density (PD), T1, and T2 images obtained from synthetic MRI. (D)
Stimulus and fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (b = 800 s/mm2).
(E–G) Synthetic MRI-derived indicate that the mean T1, T2, and PD values measured by the two radiologists were 2227.50 ms, 265.17 ms, and 89.15 pu,
respectively. (H) ADC map indicates that the mean apparent diffusion coefficient (ADC) value measured by the two radiologists was 2.40 × 10-3 mm2/s.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1225420
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wen et al. 10.3389/fonc.2023.1225420
benign group was higher compared to the malignant group (T1:

1390.06 ± 241.09ms, t’ = 2.265, P = 0.033; T2: 97.64 ± 14.91ms, t’ =

3.647, P = 0.002; ADC: 1.46 ± 0.37 × 10-3 mm2/s, t' = 5.762, P <

0.001). Yet, no significant differences were found in PD values

between the two groups (t’ = -0.125, P = 0.901).
Frontiers in Oncology 0740
3.5 Comparison of ROC curves

The AUC, cut-off, sensitivity, specificity, PPV, and NPV of each

parameter discriminating malignant from benign lesions are

summarized in Table 4.
A B D

E F G H

C

FIGURE 2

A 41-year-old man with squamous cell carcinoma in the tongue. (A–C) T1, T2, and proton density (PD) weighted images obtained from synthetic
MRI. (D) Stimulus and fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (b
= 800 s/mm2). (E–G) Synthetic MRI-derived maps indicate that the mean T1, T2, and PD values measured by the two radiologists were 1214.67 ms,
105.17 ms, and 80.39 pu, respectively. (H) ADC map indicates that the mean apparent diffusion coefficient (ADC) value measured by the two
radiologists was 1.52 × 10-3 mm2/s.
TABLE 4 Diagnostic performance of MRI values and combined values for differentiating malignant from benign lesions.

Variable Cut off AUC (95%CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%) *P value

T1 (ms) 1675.84 0.698(0.549-0.822) 89 45 69 75 0.0161

T2 (ms) 113.34 0.855(0.546-0.801) 89 70 81 82 <0.0001

PD (pu) 80.67 0.568(0.429-0.700) 89 35 66 70 0.408

ADC (×10−3 mm2/s) 1.60 0.906(0.787-0.971) 82 95 96 79 <0.0001

T2+ADC 0.55 0.950(0.845-0.992) 89 90 93 86 <0.0001
fr
ADC, apparent diffusion coefficient; PD, proton density; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value, *p values are for the differences between
benign and malignant head and neck tumors.
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ROC curves for differentiating malignant from benign lesions

are depicted in Figure 3. T2+ADC (cut-off value, > 0.55; AUC,

0.950) showed optimal diagnostic performance, which was better

than that of T1 (cut-off value, ≤ 1675.84 ms; AUC, 0.698), T2 (cut-

off value, ≤ 113.24 ms; AUC, 0.855) and PD (cut off value, > 80.67

pu; AUC, 0.568) (P = 0.0030, 0.0464, and P < 0.0001, respectively).

The diagnostic performance of ADC was better than T1 and PD (P

= 0.0138 and 0.0005, respectively), but the difference in AUC

between ADC (cut-off value, ≤ 1.60 × 10-3 mm2/s; AUC, 0.906)

and T2+ADC or T2 did not reach significance (P = 0.2648 and

0.4604, respectively). The diagnostic performance of T2 was better

than PD (P = 0.0075); however, the difference in AUC between T2

and T1 did not reach statistical significance (P = 0.0549).
4 Discussion

We examined the tissue magnetic property parameters acquired

on the synthetic MRI with MAGIC and ADC acquired on the FSE-

PROPELLER DWI in discriminating malignant from benign HN

lesions. The purpose of evaluating parameter correlation is to

identify preferred parameters and facilitate the translation of

scientific research into clinical practice. Except for PD values, T1,

T2, and ADC values were lower in malignant than in benign HN

tumors. ADC, T1, and T2 values are widely used parameters for

differentiating malignant from benign HN tumors. The diagnostic

performance of the T2 value is comparable to the ADC value.

However, the diagnostic performance of the T1 and PD values was

not as good as that of the ADC value. We also found that T2+ADC

showed optimal diagnostic performance.

In this study, the malignant tumor had a lower T1 value related

to hyper-cellularity, smaller extracellular space, and lower free water
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content (18). Meng et al. found that the T1 value for

nasopharyngeal carcinoma was significantly lower than that for

benign hyperplasia in the nasopharynx, regardless of the ROI used

(18). Contrary Gao and his team found no difference in the T1

values between malignant and benign breast lesions (21). The

different types of tumors in these studies may contribute to

the discrepancy.

T2 value can be affected by various factors, including the main

magnetic field strength and the intrinsic properties of the tissue and

the environment. Tissue water content is the most important

influencing factor (22). A previous study reported a linear

relationship between the T2 value and water content (23); thus,

increased T2 values indicate increased tissue water content (24). In

our study, 75% of benign HN tumors were pleomorphic adenomas

followed by basal cell adenomas, and 64% of malignant HN tumors

were squamous cell carcinomas followed by lymphomas. We

speculate that the higher T2 values of benign HN tumors could

be ascribed to their tissue composition, lower cell density, and

higher free water content (5). Nevertheless, the lower T2 values in

malignant tumors are due to the increased solid components,

smaller extracellular spaces, and lower free water content (5, 18,

25). Several studies have reported higher T2 values in benign breast

lesions vs. in malignant lesions (21). This difference could be

attributed to increased tissue water content or interaction

between water and alkaline metal cations in the pathological

tissue (22).

PD value, which primarily reflects the water content in tissue, is

frequently used in brain imaging (26). This study found that the

difference in PD value in the malignant compared with benign HN

tumors was not statistically significant. Yet, Gao et al. demonstrated

that the PD value was significantly lower in malignant than that

benign breast lesions (21). The different types of tumors enrolled in

these studies may contribute to the contradiction.

Here we found that the ADC values of malignant tumors were

significantly lower than those of benign tumors. Higher ADC values

correlate with lower cellularity (27). Malignant tumors demonstrate

lower ADC values than benign tumors due to their relatively higher

cellularity (4). Srinivasan et al. also found that malignant lesions

showed lower ADC values than benign lesions (28).

In this study, the overall diagnostic performance of synthetic

MRI-derived parameters in discriminating malignant from the

benign HN lesions was inferior to the ADC value. However, the

diagnostic performance showed no significant differences between

ADC and T2 values. Also, T2+ADC showed optimal diagnostic

efficacy in distinguishing malignant from benign tumors; T2+ADC

showed a significantly higher differential performance vs. T1, T2, or

PD value alone, but it did not improve the diagnostic performance of

the ADC value. Despite this, the PD, T1, and T2 are intrinsic

magnetic properties and independent from the MRI scanners or

scanning parameters at a given field strength (15), predicting the

potential advantage of using synthetic MRI-derived parameters

compared to the ADC value alone (17). In addition, synthetic MRI

can generate multiple contrast-weighted images and quantification

maps in a single scan, greatly improving work efficiency (10). Thus,

synthetic MRI plus FSE-PROPELLER DWI might be a promising

tool for differentiating benign from malignant HN lesions.
FIGURE 3

Receiver operating characteristic curves of the parameters derived
from synthetic MRI and fast spin echo diffusion-weighted imaging
with periodically rotated overlapping parallel lines with enhanced
reconstruction in differentiating malignant from the benign head and
neck tumors.
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The present study has a few limitations. First, this is a single-

center retrospective study with small sample size, next, we will

expand the sample size for further study. Second, ROIs were

manually drawn at the slice with the largest tumor diameter,

leading to potential operator errors. In the future, the whole

tumor should be selected to determine whether the tumor volume

is more meaningful and accurate for tumor characterizing. Finally,

test-retest repeatability was not assessed.
5 Conclusion

The quantitative T1, T2, and PD values obtained by synthetic

MRI and ADC value obtained by FSE-PROPELLER DWI helped

discriminate malignant from benign HN tumors. The overall

diagnostic performance of synthetic MRI was inferior to FSE-

PROPELLER DWI. However, the T2 value was comparable to the

ADC value, and the combination of synthetic MRI and FSE-

PROPELLER DWI could provide improved diagnostic efficacy.
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Radiomic nomogram for
discriminating parotid
pleomorphic adenoma from
parotid adenolymphoma based
on grayscale ultrasonography
Yi Mao1†, LiPing Jiang1†, Jing-Ling Wang1, Fang-Qun Chen1,
Wie-Ping Zhang1, Zhi-Xing Liu1,2*‡ and Chen Li1*‡

1Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University,
Nanchang, Jiangxi, China, 2Department of Ultrasound, GanJiang New District Peoples Hospital,
Nanchang, Jiangxi, China
Objectives: To differentiate parotid pleomorphic adenoma (PA) from

adenolymphoma (AL) using radiomics of grayscale ultrasonography in

combination with clinical features.

Methods: This retrospective study aimed to analyze the clinical and radiographic

characteristics of 162 cases from December 2019 to March 2023. The study

population consisted of a training cohort of 113 patients and a validation cohort

of 49 patients. Grayscale ultrasonography was processed using ITP-Snap

software and Python to delineate regions of interest (ROIs) and extract

radiomic features. Univariate analysis, Spearman’s correlation, greedy recursive

elimination strategy, and least absolute shrinkage and selection operator (LASSO)

correlation were employed to select relevant radiographic features.

Subsequently, eight machine learning methods (LR, SVM, KNN, RandomForest,

ExtraTrees, XGBoost, LightGBM, and MLP) were employed to build a quantitative

radiomic model using the selected features. A radiomic nomogram was

developed through the utilization of multivariate logistic regression analysis,

integrating both clinical and radiomic data. The accuracy of the nomogram

was assessed using receiver operating characteristic (ROC) curve analysis,

calibration, decision curve analysis (DCA), and the Hosmer–Lemeshow test.

Results: To differentiate PA from AL, the radiomic model using SVM showed

optimal discriminatory ability (accuracy = 0.929 and 0.857, sensitivity = 0.946 and

0.800, specificity = 0.921 and 0.897, positive predictive value = 0.854 and 0.842,

and negative predictive value = 0.972 and 0.867 in the training and validation

cohorts, respectively). A nomogram incorporating rad-Signature and clinical

features achieved an area under the ROC curve (AUC) of 0.983 (95% confidence

interval [CI]: 0.965–1) and 0.910 (95% CI: 0.830–0.990) in the training and

validation cohorts, respectively. Decision curve analysis showed that the
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nomogram and radiomic model outperformed the clinical-factor model in terms

of clinical usefulness.

Conclusion: A nomogram based on grayscale ultrasonic radiomics and clinical

features served as a non-invasive tool capable of differentiating PA and AL.
KEYWORDS

ultrasonography, radiomics, parotid tumor, nomogram, wavelet transformation
Introduction

Parotid gland tumors are the most common type of salivary

gland tumors, with approximately 80%–85% of them being benign.

The primary types of these tumors are pleomorphic adenoma (PA)

and adenolymphoma (AL) (1), and both of them share similar

characteristics, such as slow growth, painlessness, and well-defined

borders. However, differentiations between PA and AL are crucial

for clinical diagnosis and treatment. On radiological examinations,

AL shows more heterogeneous density and signal compared to PA,

often accompanied by multiple small cystic changes and increased

blood flow (2). PA is more likely to occur in the deep regions of the

parotid gland, typically presenting as lobulated, with a higher risk of

malignant transformation and recurrence (3). Therefore, PA usually

requires a tumor and superficial parotidectomy, along with facial

nerve dissection. AL, however, typically only requires partial

parotidectomy. However, in PA cases, tumor cells can be detected

at the resection margins in 41.9% of cases (4). This could be one of

the reasons why PA is more prone to relapse. To distinguish

between the two types of parotid gland tumors at an early stage, a

fine-needle aspiration biopsy (FNAB) is commonly used as an

auxiliary diagnostic tool (5). It has high accuracy in the diagnosis

of both benign and malignant tumors. However, FNAB is an

invasive procedure and carries the risk of needle-track seeding

and facial nerve palsy (6).

Ultrasonic examinations can reflect differences in signal

scattering and speckling patterns, which correlate with variations

in parotid gland morphology and increasing tissue stiffness (2).

Compared to FNAB, grayscale ultrasonic examination is a non-

invasive, cost-effective, and user-friendly imaging technique.

However, differentiating between PA and AL using grayscale

ultrasonic examination can be challenging for sonographers.

Some morphological features, long-to-short diameter ratio (L/S)

ratio, and ultrasonographic shear wave elastography have limited

utility in distinguishing between the two types (7, 8). Therefore,

visible differences discernible by the naked eye do not significantly

improve the diagnostic accuracy of medical imaging.

Radiomics is a rapidly growing discipline that utilizes machine

learning to extract quantitative information from medical images
0245
like CT, MR, US, and predict outcomes in cancer research (9–11).

For head and neck tumors, radiomic features from T2-weighted MR

imaging (T2WI) and contrast-enhanced T1-weighted MR imaging

(CE-T1WI) can predict cancer staging pre-operatively (12).

Additionally, radiomic features from CT and PET scans can

accurately determine if oropharyngeal squamous cell carcinoma is

infected with the HPV (P16) virus (13). Radiomics has also shown

success in assessing early treatment effects (14) and radiotherapy

complications in nasopharyngeal cancer (15). In summary,

radiomic analysis of various medical imaging modalities holds

potential for improving diagnosis, prognosis, and personalized

treatment of head and neck cancers.

Wavelet transformation is created via dilatation and translation

of the mother wavelet (16). These modifications provide a spatial/

frequency representation of the signal, indicating that the wavelet

coefficients act as a projection of the original signal onto a multi-

resolution subspace. The high-pass filter also draws attention to the

grayscale changes in the image, improving the presentation of

image details and texture information. The low-pass filter,

however, blurs the differences in grayscale, obscuring the finer

details of the image and emphasizing its main characteristics (17).

The radiomic model’s texture features can be separated further.

Studies have shown that, compared to the original radiomics,

wavelet-transformed radiomics perform better in assessing

COVID-19 lung lesions (18).

The purpose of our study is to investigate whether radiology

based on grayscale ultrasonography can distinguish PA and AL and

whether the nomogram combined with clinical and radiological

features can facilitate and accurately help to distinguish these two

benign tumors.
Materials and methods

Ethics statement

This study adhered to the principles outlined in the Declaration

of Helsinki and received approval from the local ethics review board.

Written, informed consent was obtained from all participants.
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Selection of participants

We retrospectively analyzed patients with parotid tumors

undergoing grayscale ultrasonic examination at the local hospital

from December 2019 to March 2023. The inclusion criteria were as

follows: 1) preoperative two-dimensional ultrasonography

confirmed the presence of a parotid tumor. 2) A postoperative

histopathological examination confirmed the diagnosis of PA and

AL. 3) There was no history of fine-needle aspiration (FNA),

radiotherapy, or other treatments. 4) Complete clinical and data

records were available. 5) A preoperative ultrasound examination

was performed within 1 week. The exclusion criteria were as

follows: 1) the maximum diameter of the tumor was less than

1 cm; 2) the images were not clear, with incomplete visualization of

the tumor and significant artifacts; 3) the concurrent presence of

other organ tumors.
Ultrasonography procedures

The bilateral parotid glands were scanned using high-end

ultrasound diagnostic equipment such as Siemens ACUson

Sequoia, GE LOGIQ E11, and Philips EPIQ 7. A high-frequency

linear array probe was used for the examination. The maximum

diameter of the parotid gland masses was saved in the machine’s

memory in a cross-sectional view and exported in DICOM format

for subsequent analysis.
Image segmentation

All ultrasound images were imported into the ITK-SNAP

(http://www.itksnap.org) software. Two ultrasound physicians

with 6 years of experience in the field delineated the tumor

margins by carefully outlining them and selecting the maximum

section of the tumor to delineate a region of interest (ROI). The

delineation was subsequently reviewed and approved by a senior

physician. In case of any disagreements, a group discussion was held

to reach a consensus.
Feature extraction

The images and ROIs extracted from the ITK-SNAP software

were imported into Python (version 3.11) for further analysis.

Handcrafted features were extracted using an in-house feature

analysis program implemented in Pyradiomics (https://

pyradiomics.readthedocs.io). These features can be categorized into

three groups: I) geometry, II) intensity, and III) texture. There were

14 geometry features, 306 intensity features, and 1,241 texture

features comprised of the Gray Level Co-Occurrence Matrix

(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Run

Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

and Neighborhood Gray Tone Difference Matrix (NGTDM).

The ROIs were delineated by two sonographers, and the

interobserver agreement was evaluated using the interclass
Frontiers in Oncology 0346
correlation coefficient (ICC) analysis. ICC values higher than 0.75

were considered to have good consistency and were selected for

further analysis. Patients were randomly divided into two cohorts

with a ratio of 7:3 for training and validation purposes, respectively.
Feature selection

After applying z-score normalization, the t-test and Mann–

Whitney U test were performed on all radiomic features. Only

features with a p-value <0.05 were retained. For features exhibiting

high repeatability, Spearman’s rank correlation coefficient was used

to assess the correlation between features. If the correlation

coefficient between any two features exceeded 0.9, only one of

them was retained.

To identify the optimal feature subset, the least absolute

shrinkage and selection operator (LASSO) (19) algorithm was

employed. LASSO shrinks all regression coefficients toward zero

and sets the coefficients of irrelevant features to exactly zero. A 10-

fold cross-validation with minimum criteria was used to determine

the optimal lambda (l) value, which yielded the lowest cross-

validation error.
Model construction and validation

Radiomic and clinical models
After performing LASSO feature screening, the final selected

features were input into machine learning models such as LR, SVM,

RandomForest, and XGBoost. The coefficients of the features were

used to calculate a radiomic quality signature (rad-Signature).

Clinical features used for building the same machine learning

models were selected based on a baseline statistic with a

p-value <0.05.

Radiomic nomogram
A radiomic nomogram was developed by combining the

radiomic signature and clinical features. The diagnostic efficacy of

the radiomic nomogram was tested in the validation cohort, and

receiver operating characteristic (ROC) curves were plotted to

evaluate its diagnostic performance. Calibration curves were used

to evaluate the calibration efficiency of the nomogram, and the

Hosmer–Lemeshow analytical fit was employed to assess its

calibration ability. Additionally, decision curve analysis (DCA)

was used to evaluate the clinical utility of the predictive models.
Statistical analyses

Statistical analysis of the data was performed using SPSS 26.0

and Python 3.11. Continuous variables are presented as mean ±

standard deviation, while categorical variables are reported as

counts (n). The independent samples t-test was used to analyze

clinical data, and the chi-square test was applied for categorical

variables. A significance level of p < 0.05 was considered

statistically significant.
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Results

Clinical characteristics

The flowchart depicting the process of patient selection is

presented in Figure 1. Table 1 displays the clinical and imaging

data of the 162 patients included in this study. Out of the total, 105

were confirmed to have PA, and 57 were diagnosed with adenoid

cystic carcinoma (AL). The clinical characteristics of all 162 subjects

are summarized in Table 1. In the PA group, the average age was

43.49 ± 15.67 years, with a male-to-female gender ratio of 0.91:1.

Among the AL patients, the average age was 61.50 ± 10.08 years,

and the male-to-female gender ratio was 10.5:1.

The 162 subjects were randomly divided into training and

validation cohorts in a 7:3 ratio. Therefore, the training cohort

comprised 113 cases (76 PA and 37 AL), while the remaining 49

patients (29 PA and 20 AL) were assigned to the validation cohort.

There were no significant differences in clinical features between the

training and validation cohorts (p-value <0.05).
Feature selection, model construction,
and validation

The course of processing radiomics is shown in Figure 2. From

the grayscale ultrasonography for each participant, 1,561 radiomics

were extracted; 294 features were selected after univariate analysis
Frontiers in Oncology 0447
and ICC; and70 features were retained after being filtered using

Spearman’s correlation (Figure 3; Spearman’s correlation of each

feature). The radiomic feature selection was performed using

LASSO logistic regression, resulting in 18 selected radiomic

features. The coefficients and mean standard error (MSE) from

the 10-fold validation are presented in Figure 4. These features were

utilized to construct the radiomic signature. The final formula for

calculating rad-Signature and the corresponding coefficients is

depicted in Figure 5.
Nomogram performance and validation

The model constructed using clinical features such as age,

maximum diameter, and smoking status showed good predictive

performance (accuracy = 0.850 and 0.776, sensitivity = 0.811 and

0.950, specificity = 0.868 and 0.679, positive predictive value = 0.750

and 0.655, and negative predictive value = 0.904 and 0.950 in the

training and validation cohorts, respectively). Similarly, the

imaging-based radiomic features (Table 2), especially the SVM

model, demonstrated excellent predictive performance (accuracy

= 0.929 and 0.857, sensitivity = 0.946 and 0.800, specificity = 0.921

and 0.897, positive predictive value = 0.854 and 0.842, and negative

predictive value = 0.972 and 0.867 in the training and validation

cohorts, respectively). Furthermore, incorporating the results of the

radiomic model into the clinical model improved the predictive

performance of the combined model (accuracy = 0.947 and 0.857,
FIGURE 1

The flowchart of the patient selection process.
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sensitivity = 1 and 0.950, specificity = 0.921 and 0.931, positive

predictive value = 0.860 and 0.882, and negative predictive value = 1

and 0.844 in the training and validation cohorts, respectively). The

performance comparison of the three models is presented in Table 3

and Figure 6 (DeLong test, p < 0.005 for the training and validation

cohorts). A nomogram combining clinical features and rad-

Signature was developed (Figure 6), and its calibration curve

demonstrated consistent predictive and observed effects in both

the training and validation cohorts.

To assess the calibration ability of the developed nomogram, the

Hosmer–Lemeshow test (20) was employed. The results indicated a

good model fit (p-value >0.05), suggesting that the nomogram

accurately captured the observed data and that there was no
Frontiers in Oncology 0548
significant difference between the predicted and observed

outcomes. The DCA of the nomogram is depicted in Figure 6F.

Furthermore, the DCA of the nomogram demonstrated a larger

area under the curve compared to the clinical model. This indicates

that both the nomogram and radiomic model have a greater net

benefit in distinguishing between PA and AL.
Discussion

In this study, we utilized radiomic features extracted from grayscale

ultrasonography to assist in the early preoperative differentiation of two

benign tumors, PA and AL, with the goal of aiding clinicians in selecting
TABLE 1 Patient’s characteristics at baseline.

Feature name
Train PA AL p-Value Test PA AL p-Value

Age 49.17 ± 16.74 42.82 ± 15.40 62.22 ± 10.87 <0.001 50.86 ± 16.16 44.28 ± 17.12 60.40 ± 8.10 <0.001

Max D 25.04 ± 9.33 23.30 ± 8.94 28.62 ± 9.21 0.004009086 25.88 ± 8.35 22.38 ± 7.51 30.95 ± 6.88 <0.001

Sex <0.001 0.001820478

Male subjects 67 (59.29) 33 (43.42) 34 (91.89) 33 (67.35) 14 (48.28) 19 (95.00)

Female subjects 46 (40.71) 43 (56.58) 3 (8.11) 16 (32.65) 15 (51.72) 1 (5.00)

Smoking <0.001 <0.001

No 77 (68.14) 63 (82.89) 14 (37.84) 29 (59.18) 24 (82.76) 5 (25.00)

Yes 36 (31.86) 13 (17.11) 23 (62.16) 20 (40.82) 5 (17.24) 15 (75.00)

Number <0.001 0.013690557

Single 93 (82.30) 70 (92.11) 23 (62.16) 39 (79.59) 27 (93.10) 12 (60.00)

Multiple 20 (17.70) 6 (7.89) 14 (37.84) 10 (20.41) 2 (6.90) 8 (40.00)

Position 0.629061941 0.842154851

Right 62 (54.87) 40 (52.63) 22 (59.46) 29 (59.18) 18 (62.07) 11 (55.00)

Left 51 (45.13) 36 (47.37) 15 (40.54) 20 (40.82) 11 (37.93) 9 (45.00)
PA, parotid pleomorphic adenoma; AL, adenolymphoma.
FIGURE 2

The flowchart detailing the radiomic processing steps employed in this study. The collected images were exported to ITK software for region of
interest (ROI) delineation and image segmentation. Ultrasound radiomics were then extracted using Python software. Models were developed based
on the clinical features of patients with pleomorphic adenoma (PA) or adenoid cystic carcinoma (AL). The models underwent calibration and
validation processes to evaluate their performance.
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appropriate diagnostic and treatment approaches. Previous studies have

demonstrated that there are important differences between PA and AL

in terms of clinical features and traditional parameters, including

smoking history, age, and the presence of multiple lesions (15).

However, the effectiveness of these factors in a comprehensive

analysis is inconsistent, with varying areas under the ROC curve

(AUC) values ranging from 0.68 to 0.95, leading to significant

uncertainty in clinical diagnosis and treatment. Additionally, common

ultrasound features such as the L/S and ultrasound grayscale ratio
Frontiers in Oncology 0649
(UGSR) have also shown poor performance (AUC = 0.74) (7). In

contrast, the radiomic SVM-based model that we constructed has

demonstrated excellent performance in distinguishing between PA

from AL, with AUC values of 0.956 in the training cohort and 0.903

in the validation cohort. Additionally, other models in our study have

also demonstrated good performance in distinguishing between the two

types of tumors, but for the RandomForest, ExtraTrees, and XGBoost

models, there are significant differences in AUC between the training

and validation cohorts, indicating overfitting of the models (11, 21).
FIGURE 4

The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection. In the LASSO model, a 10-fold cross-
validation approach was utilized to determine the optimal tuning parameter (l). The minimum criterion was used to select the best values, and
vertical lines were drawn to indicate the true selection points. Additionally, a 10-fold cross-validation was performed to identify the selected value in
the l sequence, resulting in 18 features with non-zero coefficients.
FIGURE 3

Statistics of radiomic features.
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However, it is important to note that models with a large number of

input parameters or high degrees of freedom may have a tendency to

overfit the data by memorizing it. Consequently, when analyzing the

features, the model may react to random fluctuations in the data, which

is undesirable in accurate feature analysis.

Ultrasound images displaying both PA and AL appear on

ultrasound as localized enlargements of the salivary gland with

regular morphology and well-defined borders, presenting as well-

circumscribed hypoechoic masses. Matsuda (22) indicated that

63.2% of PA cases belonged to the category of no anechoic area

homogeneous tumors, while 53.3% of AL cases were classified as
Frontiers in Oncology 0750
multiple and sponge-like anechoic area heterogeneous tumors.

However, Jiang (23) and Rong (2) believed that there were no

statistically significant differences observed in the sonographic

features of boundaries, echo pattern, homogeneity, calcification,

and distal acoustic enhancement between PA and AL. We believe

that this discrepancy is only related to the number of samples.

However, it is undeniable that AL is more susceptible to infection

and cystic degeneration, characterized by a loose tissue texture with

numerous small cysts that create echo-free areas. In this study, most

of the features used for modeling were obtained through wavelet

transformation, revealing more layered variation and information
FIGURE 5

The histogram of the rad-Signature based on the selected features.
TABLE 2 Performance contributions of various radiological classifier models in classification.

Model name Cohort ACC AUC 95% CI SEN SPE PPV NPV Precision Recall F1 Threshold

LR
Train 0.858 0.898 0.838, −0.958 0.730 0.921 0.818 0.875 0.818 0.730 0.771 0.417

Validation 0.878 0.936 0.870, −1 1 0.793 0.769 1 0.769 1 0.870 0.181

SVM
Train 0.929 0.956 0.909, −1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230

Validation 0.857 0.903 0.818, −0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420

KNN
Train 0.814 0.895 0.840, −0.951 0.784 0.829 0.690 0.887 0.690 0.784 0.734 0.400

Validation 0.776 0.863 0.764, −0.962 0.800 0.786 0.696 0.846 0.696 0.800 0.744 0.400

RandomForest
Train 1 1 1, −1 1 1 1 1 1 1 1 0.500

Validation 0.714 0.791 0.661, −0.920 0.850 0.621 0.607 0.857 0.607 0.850 0.708 0.300

ExtraTrees
Train 1 1 1, −1 1 1 1 1 1 1 1 1

Validation 0.816 0.849 0.741, −0.957 0.850 0.793 0.739 0.885 0.739 0.850 0.791 0.400

XGBoost
Train 1 1 1, −1 1 1 1 1 1 1 1 0.539

Validation 0.857 0.893 0.795, −0.992 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.384

LightGBM
Train 0.920 0.977 0.957, −0.998 0.973 0.895 0.818 0.986 0.818 0.973 0.889 0.314

Validation 0.857 0.902 0.819, −0.985 0.700 0.966 0.933 0.824 0.933 0.700 0.800 0.443

MLP
Train 0.862 0.923 0.877, −0.969 0.804 0.893 0.804 0.893 0.804 0.804 0.804 0.392

Validation 0.875 0.861 0.716, −1 0.818 0.950 0.818 0.905 0.818 0.818 0.818 0.491
ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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FIGURE 6

(A) Receiver operating characteristic (ROC) curves of the eight classifier models on the validation cohort. (B, C) ROC charts of clinical and radiomic
models and nomogram performance on the training and validation cohorts. (D, E) Calibration curves of clinical and radiomic models and nomogram
performance on the training and validation cohorts. (F) Decision curve analysis (DCA) of clinical and radiomic models and nomogram performance
on the training and validation cohorts. (G) Nomogram for clinical features combined with Rad-Signature.
TABLE 3 Performance contributions of three different models in classification.

Cohort Signature ACC AUC 95% CI SEN SPE PPV NPV Precision Recall F1 Threshold

Train

Clinic 0.850 0.853 0.774, −0.931 0.811 0.868 0.750 0.904 0.750 0.811 0.779 0.370

Rad 0.929 0.956 0.909, −1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230

Nomogram 0.947 0.983 0.965, −1 1 0.921 0.860 1 0.860 1 0.925 0.277

Validation

Clinic 0.776 0.812 0.690, −0.934 0.950 0.679 0.655 0.950 0.655 0.950 0.776 0.194

Rad 0.857 0.903 0.818, −0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420

Nomogram 0.857 0.910 0.830, −0.990 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.440
F
rontiers in On
cology
 0851
ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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content in these feature maps. Among the 18 features used to

construct the radiomic model, the most influential feature is

wavelet_LHH_glrlm_LongRunHighGrayLevelEmphasis, which

describes the texture feature of long and high gray-level runs in

the image. A higher value indicates the presence of longer and

higher gray-level continuous texture features in the image (24). In

our study, the feature value PA > AL can be seen in both the training

and validation cohorts (Appendix 1, the average feature values of 18

modeling features in the training and validation sets). We believe

that the characteristic of cystic lesions in AL results in a lower value

of this feature compared to PA.

Previous studies have shown that radiomic research using CT

and MR images performs well in differentiating PA and AL. Zheng

(25) gathered 76 instances of PA and 34 cases of AL and built a

model based on CT images with an AUC of 0.89 and an accuracy of

83.3%. Song (26) built a T1-2WI model based on MR images with

an AUC of 0.90 and an accuracy of 86% after collecting 140

instances of PA and 112 cases of AL. The mutual information

(MI) feature model that Fruehwald-Pallamar et al. (27) developed

using CE-T1WI pictures had an accuracy of 81.8%. She gathered 13

cases of PA and 11 cases of AL. Similarly, Piludu et al. (28) enrolled

35 parotid PA and 20 AL to construct an SVM model using T2WI

and ADC pictures, which was successful with an accuracy of 91.7%.

Additionally, according to their studies, AL and PA could possibly

be distinguished from one another on T1WI, T2WI, and ADC

images by the characteristics of AL’s cystic components.

Our study still established and validated a novel prognostic

model using a nomogram-based approach to differentiate between

PA and AL. The nomogram, as a predictive statistical model, not

only provides a visual display of the relevant indicators influencing

the outcomes in multiple regression analysis but also enables a

simple graphical representation to predict survival probability,

making the prediction simpler and more convenient (29, 30). We

combined clinical features and rad-Signature and utilized a

nomogram for prediction. The results showed that in both the

training and validation cohorts, the AUC was higher than that of

the single model. However, in the validation cohort, the specificity

was 0.931 while the sensitivity was only 0.750, indicating high

accuracy in identifying AL patients. Therefore, this prognostic

model has certain clinical applicability. Zheng (25) developed and

validated a novel prognostic model using a nomogram-based

approach to differentiate between PA and AL. This model

incorporated the CT Rad-score and independent clinical factors.

The nomogram exhibited excellent discriminative performance,

with an AUC of 0.98 in the training cohort and 0.95 in the

validation cohort. However, when compared to the CT radiomic

model (with an AUC of 0.89 in both the training and validation

cohorts), the grayscale ultrasonography-based radiomic model in

this study demonstrates higher accuracy and stability.

Nevertheless, our study has several limitations that should be

noted. First, due to difficulties in disease epidemiology and obtaining

qualified patient images, the sample size was limited, and we did not

conduct an independent external validation. Future research should

involve a larger dataset for further investigation. Second, our radiomic

study only utilized conventional grayscale ultrasonography, which is

the most commonly used scanning method. In the future, we plan to
Frontiers in Oncology 0952
incorporate more scanning technologies, such as Sound-Touch

Elastography (STE) and contrast-enhanced ultrasound, to construct a

multimodal radiomic model to further assist clinical diagnosis and

treatment. Third, all images in our study were obtained from a single

center. Therefore, we intend to include more types of devices and data

centers in future studies to establish a multicenter radiomic model.
Conclusion

Evaluating the imaging features of grayscale ultrasonography

can significantly improve the diagnostic ability of clinical indicators

for distinguishing between PA and AL. Based on this, the

construction of a nomogram combining radiological features with

clinical characteristics is also a highly accurate and non-invasive

tool for distinguishing these two benign tumors.
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Purpose: To evaluate the ability of texture features for distinguishing between

benign and malignant testicular masses, and furthermore, for identifying primary

testicular lymphoma in malignant tumors and identifying seminoma in testicular

germ cell tumors, respectively.

Methods: We retrospectively collected 77 patients with an abdominal and pelvic

enhanced computed tomography (CT) examination and a histopathologically

confirmed testicular mass from a single center. The ROI of each mass was split

into two parts by the largest cross-sectional slice and deemed to be two samples.

After all processing steps, three-dimensional texture features were extracted

from unenhanced and contrast-enhanced CT images. Excellent reproducibility

of texture features was defined as intra-class correlation coefficient ≥0.8 (ICC

≥0.8). All the groups were balanced via the synthetic minority over-sampling

technique (SMOTE) method. Dimension reduction was based on pearson

correlation coefficient (PCC). Before model building, minimum-redundancy

maximum-relevance (mRMR) selection and recursive feature elimination (RFE)

were used for further feature selection. At last, three ML classifiers with the

highest cross validation with 5-fold were selected: autoencoder (AE), support

vector machine(SVM), linear discriminant analysis (LAD). Logistics regression (LR)

and LR-LASSO were also constructed to compare with the ML classifiers.

Results: 985 texture features with ICC ≥0.8 were extracted for further feature

selection process. With the highest AUC of 0.946 (P <0.01), logistics regression

was proved to be the best model for the identification of benign or malignant

testicular masses. Besides, LR also had the best performance in identifying

primary testicular lymphoma in malignant testicular tumors and in identifying

seminoma in testicular germ cell tumors, with the AUC of 0.982 (P <0.01) and

0.928 (P <0.01), respectively.
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Conclusion: Until now, this is the first study that applied CT texture analysis

(CTTA) to assess the heterogeneity of testicular tumors. LRmodel based on CTTA

might be a promising non-invasive tool for the diagnosis and differentiation of

testicular masses. The accurate diagnosis of testicular masses would assist

urologists in correct preoperative and perioperative decision making.
KEYWORDS

contrast enhanced computerized tomography, CT texture analysis, testicular masses,
machine learning, urology and radiology
Introduction

Testicular tumor is one of the most common malignancy in

men aged 14-44 years worldwide, accounting for approximately 1%

of all male tumors and 5% of genitourinary neoplasms. In recent

years, the morbidity and mortality of testicular cancer has risen

continuously, especially in Western countries (1–3). Testicular

tumor is a heterogeneous group of diseases with various

pathological subtypes and clinical behavior. Among them, 90%-

95% are testicular germ cell tumors (TGCTs), including seminoma,

embryoma, teratoma and choriocarcinoma, of which about 55% are

seminoma of the testis. The other part of testicular tumor subtypes

includes hematological neoplasm, sex cord stromal tumors, and

other exceedingly rare types of tumors. As the different

pathophysiology and molecular mechanisms, diverse biological

behaviors were observed in these testicular masses, which leads to

different management and clinical decision (4, 5). Of course,

different treatment strategies are applied in benign or malignant

testicular tumors and primary testicular lymphoma (6).

Furthermore, as to these local or systemic progressed TGCTs, the

main treatment is radiotherapy or chemotherapy instead of surgery

(radical orchiectomy) (7). Under this circumstance, we cannot

reach exact pathological results from the surgical specimens.

Thus, a pre-operative diagnostic tool that allows histological

subtype classification of testicular masses will be of great

importance to precise treatment and clinical prognosis

judgement. Although ultrasound examination is the preferred

examination for testicular masses, the widespread use of

ultrasound has led to more and more impalpable or ambiguous

results (8). As mentioned by the EAU Guidelines 2022(http://

uroweb.org/guidelines/compilations-of-all-guidelines/) (7),

although magnetic resonance imaging (MRI) provides higher

sensitivity and specificity than ultrasound in the diagnosis of

testicular tumor, MRI is not superior to contrast enhanced

computerized tomography (CECT) in detecting retroperitoneal

lymph node metastasis in general and is more expensive, which

does not justify its routine use in the diagnosis of testicular tumor

(8, 9). Besides, it should only be considered when ultrasound is

inconclusive, as local staging for testis-sparing surgery. However,
0255
CECT is recommended in all patients for staging before

orchidectomy (7, 10). Therefore, CT has become an indispensable

imaging method for patients with testicular masses. In addition,

testicular biopsy is used in few centers and has not gained

widespread acceptance because of narrow indication and possible

increased local recurrence rate, with which it is difficult to assess

intratumoral heterogeneity for its limitation (7, 11). In recent years,

CT texture analysis (CTTA) has become a promising technique for

evaluating tumor heterogeneity in a quantitative manner. CTTA

could provide a measure of heterogeneity of testicular masses with

various mathematical methods that can be used to evaluate the

gray-level intensity and position of the pixels within contrast-

enhanced CT images (12).

Up to now, no study has paid attention on the utility of CTTA

in histological subtyping of testicular masses. This is the first study

that explores the value of texture features in testicular masses.
Materials and methods

Patients

This study was approved by the Institutional Review Board in

the First Affiliated Hospital of Soochow University with a waiver of

informed consent. We retrospectively collected the imaging data

and clinical data of consecutive 94 patients diagnosed with testicular

masses from January 2015 to April 2022. Inclusion criteria were as

follows: (a) patients with available three-phase CT scan prior to any

treatment and operation; (b) pathologically proven testicular

masses after surgery treatment; (c) the interval between CT and

surgery was less than three months and no treatment received.

Exclusion criteria included: (a) lack of pretreatment contrast-

enhanced CT; (b) the absence of a certain phase of CT; (c) poor

image quality. After conducting the criteria, 77 men were identified

to constitute our study cohort and divided into a benign group

(n=21) and a malignant group (n=56) according to their

histological results. And then, in the malignant group, we divided

them into primary testicular lymphomas group (n=10) and non-

lymphomas group (n=46). Finally, we screened out all the testicular
frontiersin.org
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germ cell tumors from malignancy (n=43) and divided them into

seminoma group (n=30) and non-seminoma group (n=13) for

the differentiation.
Study design

To make this article clear, a flow chart including specific

technical steps was provided to the readers (Figure 1).
Image acquisition

All patients underwent contrast-enhanced CT (GE Healthcare

and Siemens Healthcare), including three phases: unenhanced phase

(UP), arterial phase (AP, 9s delay after contrast injection) and portal

venous phase (PP, 30s delay after contrast injection). Similar

protocols were applied when scanning: tube voltage of 120 kVp,

tube current of 180–450 mA, matrix of 512, field of view of 380–500

mm, and 5 mm reconstructed section thickness. Contrast medium

(iopromide) was injected intravenously at a rate of 3.0 mL/s.
Frontiers in Oncology 0356
ROIs delineation and data augmentation

For the mass without a distinct border or with invasion of the

whole testicle, the region of interest (ROI) was defined as the whole

testicular tissue on the diseased side. Meanwhile, for the mass with a

distinct border, ROI was presumed to be the whole mass (Figure 2).

One radiologist (with 5 years of experience) and one urologist (with

3 years of experience) blinded to the histopathology results first

identified the border of each mass in consensus and then manually

delineated the ROIs around the margin of the testicular masses with

the ITK-SNAP (v 3.6.0) software (Can Hu and Xiaomeng Qiao).

The ROIs were carefully drawn with an approximate distance of 1–3

mm from the margin of tumors to prevent the effect of fat and air

(13). Due to the low morbidity of testicular tumors, sample size was

inevitably limited in our study. Hence, as a scheme of data

augmentation, the ROI of each patient was split into the upper

and lower part by the largest slice and counted as two samples (for

bilateral tumors, we counted one patient as four samples) (14). The

histopathology results of augmented samples were in line with the

original patients. After 2 weeks, the same task was repeated by the

radiologist for the evaluation of intra-observer variation.
FIGURE 1

Simplified flow chart of the overall conceive of this study and the important steps in feature extraction, feature selection, and model optimization.
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CT texture feature evaluation and selection

Texture features were extracted from three-phases CT images. All

CT images were anonymous before they were uploaded to the

commercial texture analysis software (TexRAD, version 3.9,

Feedback Medical Ltd) stored in DICOM format. A total of 572

features were extracted from each of the CT phases, including 18 first

order features, 14 shape-based features, 24 features of grey level co-

occurrence matrix (GLCM), 14 of grey level dependence matrix

(GLDM), 16 of grey level run length matrix (GLRLM), 16 of grey

level size zone matrix (GLSZM) and 5 of neighborhood grey tone

difference matrix (NGTDM). The first order features and second

order features were extracted from the original images and derived

images via filtering based on the Laplacian of Gaussian. The spatial

scale factor (SSF) at 6 levels (0 mm: no filtration; 2 mm: fine texture

scale; 3 mm, 4 mm and 5 mm: medium texture scales; and 6 mm:

coarse texture scale) were used. These features have been used in

previous quantitative analysis studies and mathematical formula been

described in the website in detail (https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC7581467/) (15–18).

Inter- and intra-observer intra-class correlation coefficient (ICC)

was firstly utilized to assess reproducibility and repeatability for each

texture feature. We retained features with ICCs greater than 0.8. A total

of 985 texture features with ICCs ≥ 0.8 were included in the further

feature selection process. In order to avoid the classifiers overtrained

owing to highly-correlated features, feature selection dimension

reduction was conducted to identify candidate and optimal features

for model building (19). A synthetic minority oversampling technique

(SMOTE) was adopted to deal with the adverse impact of the

imbalanced data in this study. In addition, we also standardized the

data by the method of Z-score and mean to compare the AUC of the

model established by these two standardization methods for better

model selecting. Dimension reduction was based on pearson
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correlation coefficient (PCC). Features demonstrating a strong

correlation (PCC ≥0.8) were removed one by one to achieve better

performance. Moreover, after the application of minimum-redundancy

maximum-relevance (mRMR), each of the three groups for intra-group

comparisons were reduced to 20 features. Before build the model, we

also used recursive feature elimination (RFE) to further select optimal

features with excellent discrimination ability from the above 20 texture

features (20). Finally, with the highest 5-fold cross validation, five

models were built by machine learning (ML) algorithms including auto

encoder (AE), support vector machine (SVM), linear discriminant

analysis (LAD), logistics regression (LR) and logistics regression-least

absolute shrinkage and selection operator (LR-LASSO).
Statistical analysis

Statistical analysis was performed using IBM SPSS v.23.0, Python

software v2.7.13(https://www.python.org) and R software v.4.1.1. Non-

normal distribution continuous variables were expressed as medians

(interquartile range). The group differences were assessed using a

Mann–Whitney U test. Receiver operating characteristic (ROC)

curve analysis, accuracy, sensitivity, specificity, PPV and NPV were

calculated to comprehensively assess the models. Significance between

the AUC of models were compared using the Delong test. A two-sided

p value <0.05 indicated statistical significance.
Results

Demographics

Specific pathological subtypes of all these testicular masses were

provided in Table 1. Patient characteristics between the three
FIGURE 2

ROIs delineation in arterial phase (A, B), portal venous phase (C, D) and unenhanced phase (E, F) CT for the mass without a distinct border. ROIs
delineation in arterial phase (G, H) for mass with a distinct border.
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groups were summarized in Table 2. Among them, 36 patients with

lesions on the left side while 41 patients on the right side. Only one

patient with granulosa cell tumor was bilateral. Thus, a total of 77

patients with 156 masses (76*2 + 1*4) were enrolled in the study

according to our special method of data augmentation. For group 1,

21 benign cases and 56 malignant cases were counted. Statistical
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significance could be observed in age and all the serum tumor

markers. For group 2, there were 10 primary testicular lymphomas

(8 diffuse large B-cell lymphomas and 2 NK/T-cell lymphomas) and

46 non-lymphomas. The mean age of the lymphomas subgroup was

statistically significantly higher than the non-lymphoma subgroup

(33 (29, 39) vs 68 (58, 76), P <0.001). In the three serum tumor

markers, LDH between the two subgroups had no significant

difference. For group 3, there were 30 seminomas and 13 non-

seminomas (9 mixed TGCTs, 2 embryonal carcinomas and 2 yolk

sac tumors). Statistical significance could be observed in age, HCG

and AFP. The average time interval between CT and serum tumor

markers was 5 days.
Reproducibility and Feature selection

572 features were extracted from each of the CT phases. A total

of 985 texture features with an ICC ≥0.8 were included in the

further feature selection process. After mRMR, each of the three

groups for intra-group comparisons were reduced to 20 features.

Before model building, RFE was applied in all models to further

select optimal features with excellent discrimination ability from the

above 20 texture features (range from 9 to 15) (Supplementary 1).
ML-based classifications

The predictive performance and ROC curves of all ML and the

two LR-based models using two data standardization methods for

the three groups were summarized in Tables 3A–C, respectively. As

a whole, z-score had a better performance than mean in the three

groups. For group 1 (Table 3A), the LR and LR-LASSO were the two

best-performing classifiers that achieved similar AUC values (AUC

=0.946, P =1.000). However, considering the AUC of LR was

slightly higher than LR-LASSO by the method of z-score, LR was

selected for the best model. The overall accuracy, sensitivity,

specificity, PPV, NPV and AUC of the best model were 87.3%,

86.1%, 90.5%, 95.6%, 73.1% and 0.946 (95% CI 0.896-0.995),

respectively. For group 2 (Table 3B), although SVM and LR-

LASSO had high AUC of 0.986 and 0.985, respectively, LR was

chosen as the most appropriate model, achieved an accuracy of

90.4% (sensitivity 100%, specificity 88.3%, PPV 64.5% and NPV

100%) with an AUC of 0.982 (95% CI 0.963-1.000). For group 3
TABLE 1 Specific pathological subtypes of testicular masses.

Pathological
subtypes

Specific
subtypes

n

Malignant,
n=56

TGCTs 43

seminoma 30

mixed TGCTs 9

embryonal
carcinomas

2

yolk sac tumors 2

Sex cord-
stromal tumor

2

granulosa
cell tumor

1

Sertoli-Leydig
cell tumor

1

Primary
testicular
lymphoma

10

diffuse large B-
cell lymphoma

8

NK/T-
cell lymphoma

2

embryonal
rhabdomyosarcoma

1

Benign,
n=21

inflammation
or abscess

5

adenomatoid
tumor

3

angiomas
or leiomyoma

8

others 5
TGCTs, testicular germ cell tumors.
TABLE 2 Patients’ demographics between the three groups.

Variables,
(M, IQR)

Benign
vs Malignant

P non-lymphomas
vs lymphomas

P non-seminoma
vs seminoma

P

Age 47(35, 68) vs 35(29, 48) 0.041 33(29, 39) vs 68(58, 76) <0.001 29(37, 34) vs 36(31, 43) 0.007

HCG 0(0, 0.2) vs 1.8(0.3, 38.8) <0.001 3.8(1.0, 92.3) vs 0.18(0, 0.5) <0.001 49.8(2.8, 246) vs 3.6(0.9, 38.8) 0.023

AFP 2.5(1.8, 3.1) vs 3.3
(2.1, 18.3)

0.011 3.4(2.5, 112.2) vs 2.1(1.1, 5.0) 0.02 273(44, 381) vs 3.1(2.2, 4.2) <0.001

LDH 173(151, 184) vs 219
(172, 278)

<0.001 224(176, 290) vs 193(160, 270) 0.404 288(196, 327) vs 218(180, 251) 0.054
frontie
HCG, human chorionic gonadotropin; AFP, alpha fetoprotein; LDH, lactic dehydrogenase; IQR, interquartile range.
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(Table 3C), LR also outperformed other models, achieving an

accuracy of 90.7% (sensitivity 90.0%, specificity 92.3%, PPV

96.4% and NPV 80.0%) with a high AUC of 0.928 (95% CI 0.858-

0.996). Overall, LR was the best choice for the histological

classification of testicular masses. The ROC curves of LR among

the three groups were demonstrated in Figure 3.
Discussion

This is the first study that applied CT texture analysis (CTTA) to

assess the pathological subtypes of testicular tumors. All the patients

were divided into three groups to evaluate the ability of texture features

for identifying benign and malignant testicular masses, identifying

primary testicular lymphoma in malignant tumors and identifying

seminoma in testicular germ cell tumors, respectively. For all three

groups, the most appropriate model was LR rather than ML-based

classifiers by the data standardization of z-score.

Testicular tumor is a heterogeneous group of diseases with

various pathological subtypes and clinical behavior, which leads to

different response to treatment (21). Firstly, the treatment of benign

and malignant mass is different. Radical orchiectomy was the

standard operation of TGCTs while symptomatic treatment is

often used in benign masses. As to clinical stage I non-

seminomas without vascular and lymphatic infiltration,

retroperitoneal lymph node dissection (RPLND) is the standard

treatment for patients without follow-up conditions. CTTA

facilitates clinical evaluation and psychological development of

patients, and to some extent RPLND could even be performed

immediately after orchiectomy, avoiding the need for a second

operation. As to clinical stage II TGCTs, seminomas tend to have

sensitive response to radiotherapy while non-seminomas tend to

benefit more from RPLND or neo-adjuvant chemotherapy. As to

metastatic testicular tumors, urologists could only apply different

chemotherapy regimens according to the prognosis (7, 22). Under

the circumstance, exact pathological results cannot be reached from
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the surgical specimens. Conventionally, ultrasound examination is

the preferred choice for testicular masses. Despite its high sensitivity

in the mass detection, it shows low specificity in distinguishing

between benign and malignant masses, let alone other pathological

subtypes (23, 24). Furthermore, testicular biopsy is used in some

centers but has not gained widespread acceptance because of

narrow indications and concerns for tumor seeding along the

biopsy tract. Germ cell neoplasia in situ (GCNIS) could be

diagnosed by testicular biopsy using immunohistochemistry with

high sensitivity and specificity. However, a certain amount of false-

negative biopsy was brought inevitably (25). Thus, non-invasive test

for the evaluation of testicular masses may open the possibility of

allowing histological subtype classification.

CT is recommended for the pre-surgical assessment of testicular

masses, and at the same time, could evaluate retroperitoneal lymph

node metastases. However, the heterogeneity of tumors is not

particularly obvious on imaging and the diagnostic accuracy

depends on the experience of radiologists. In the present study,

we found that quantitative CTTA potentially allowed for detection

of subtle differences and was able to differentiate various histological

subtype classifications beyond visual assessment. To date, as far as

we know, there have been no CTTA related studies on testicular

tumors. Previous research has focused on tumors such as epithelial

ovarian carcinoma, renal cell carcinoma or lung carcinoma (26–29).

In the study of An et al. (26), they demonstrated that CTTA was

instrumental in the identification of high-grade serous carcinoma

(HGSC) or non-HGSC in 205 patients. Erdim et al. (28)

investigated that renal masses with unclear pathological diagnosis

could be distinguished through ML-based CTTA in 79 patients.

Furthermore, Ceyda et al. (27) has confirmed the ability of different

ML-based classifiers in the prediction of Fuhrman nuclear grade of

clear cell renal cell carcinomas in 53 patients. Yang et al. (29)

evaluated the value of 2D and 3D CTTA in predicting lymphatic

vascular invasion in lung adenocarcinoma.

Our study is not only focused on the differentiation of benign

and malignant lesions but also on identifying primary testicular
TABLE 3A Performance of ML classifiers, LR and LR-LASSO in differentiating benign masses from malignant masses with the method of Z-score
and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 77.5% 74.0% 85.7% 92.5% 58.1% 0.59 0.833 (0.711-0.954)

z-score 87.3% 92.3% 76.2% 90.2% 80.0% 0.68 0.866 (0.758-0.972)

SVM mean 86.0% 84.1% 90.1% 95.4% 70.4% 0.74 0.922 (0.852-0.990)

z-score 91.6% 94.2% 85.7% 94.0% 85.7% 0.80 0.900 (0.804-0.995)

LDA mean 88.7% 87.9% 90.5% 95.7% 76.0% 0.78 0.910 (0.825-0.996)

z-score 88.7% 88.3% 90.5% 95.7% 76.0% 0.79 0.910 (0.825-0.996)

LR mean 87.3% 85.8% 90.5% 95.6% 73.1% 0.76 0.944 (0.892-0.995)

z-score 87.3% 86.1% 90.5% 95.6% 73.1% 0.77 0.946 (0.896-0.995)

LR-LASSO mean 88.7% 89.9% 85.7% 93.8% 78.2% 0.76 0.912 (0.836-0.988)

z-score 88.7% 88.4% 90.5% 95.7% 75.0% 0.78 0.946 (0.894-0.996)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
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lymphoma in malignant tumors and identifying seminoma in

TGCTs. The differential diagnosis of TGCTs or non-TGCTs was

not included in our study for the reason that most testicular tumors

were germ cell neoplasms (accounting for 95%), and the remaining

few were of no great discriminative value and had a low incidence.

To avoid confounding bias, we also did not identify lymphoma and

seminoma across all tumor types. We think the above process may

be more appropriate and in line with the clinical practice. The

performance of most classifiers in all three groups are satisfactory.

Despite the ACC of SVM is slightly higher than LR in group 1, we

chose LR as the best classifier for the better stability of the model

(the AUC of LR was higher than SVM) (30). For group 2, SVM and

LR-LASSO seem to outperform LR (P >0.05). Nevertheless,

compared to LR, the AUC of the two classifiers had a relatively

large reduction when using the data standardization of mean. For

group 3, LR was obviously superior than other models (P <0.05).

Therefore, in view of the fact that the diagnostic performance of
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each model was not significantly different, we still tend to choose LR

as the last model for uniformity. In general, CTTA could be

potentially valuable in guiding treatment and provide a reliable

reference for clinicians.

The result of optimal features indicated that the entropy of the

gray-level cooccurrence matrix (GLCM) for AP, energy of the first-

order texture feature for PP and 90th percentile of the first-order

texture feature for UP were features with the largest coefficient for

the three groups, respectively. For group 1, malignant testicular

tumors were characterized by a greater entropy for AP (P =0.028).

Entropy represents the randomness or complexity of the texture in

the image and a greater entropy tends to reflect heterogeneity,

which exactly demonstrated the invasive growth pattern with

poorly defined boundaries in malignant tumors (31–33). In

addition, malignant testicular tumors appear to be more irregular

on cells for the different degree of the disturbed formation of the

germ cells (22, 34). Energy is the sum of the squares of voxel values
TABLE 3B Performance of ML classifiers, LR and LR-LASSO in differentiating primary testicular lymphoma from non-lymphoma in malignant tumors
with the method of Z-score and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.965 (0.930-1.000)

z-score 87.6% 89.8% 86.2% 58.1% 97.6% 0.76 0.921 (0.847-0.995)

SVM mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.973 (0.947-0.998)

z-score 93.0% 100% 91.5% 71.4% 100% 0.91 0.986 (0.970-1.000)

LDA mean 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)

z-score 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)

LR mean 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)

z-score 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)

LR-LASSO mean 96.5% 85.0% 98.9% 94.4% 96.7% 0.84 0.978 (0.959-1.000)

z-score 91.2% 100% 89.4% 66.7% 100% 0.89 0.985 (0.967-1.000)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
TABLE 3C Performance of ML classifiers, LR and LR-LASSO in differentiating seminoma from non-seminoma in TGCTs with the method of Z-score
and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 79.1% 85.0% 65.4% 85.0% 65.4% 0.50 0.765 (0.639-0.891)

z-score 72.1% 75.0% 65.4% 83.3% 53.1% 0.40 0.673 (0.528-0.819)

SVM mean 84.9% 83.3% 88.5% 94.3% 69.7% 0.72 0.890 (0.805-0.974)

z-score 87.2% 83.3% 96.1% 98.0% 71.4% 0.79 0.919 (0.847-0.989)

LDA mean 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)

z-score 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)

LR mean 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.925 (0.858-0.996)

z-score 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.928 (0.855-0.994)

LR-LASSO mean 86.1% 83.3% 92.3% 96.1% 70.6% 0.76 0.894 (0.808-0.978)

z-score 86.2% 81.7% 96.2% 98.0% 69.4% 0.78 0.919 (0.848-0.988)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
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and reflects the uniformity of image gray distribution and texture

thickness (35, 36). Primary testicular lymphoma displayed a lower

energy (P <0.001) and it may be associated with a worse overall

survival and more aggressive tumors (36, 37). We also found that

higher 90th percentile was correlated with seminomas (P =0.020),

demonstrating a phenomenon of hyper-attenuation in UP (38).

Possible explanation for this is that seminomas typically have

homogenous internal attenuation while non-seminomas show

inhomogeneous soft-tissue density (39). Moreover, as the

representation of low attenuation, hemorrhage and necrosis of

seminomas may present but are usually limited (40, 41).

There are several limitations in our study. First, owing to the low

morbidity, the sample size of the study is small inevitably. We had to

apply the method of data augmentation to expand the sample size,

which may aggravate selection bias. Secondly, no comparison was

made with MRI and ultrasound in terms of diagnostic efficacy because

not all patients had complete imageological examinations. Besides, as a

comparative analysis with CTTAwith other experimental methods like

flow cytometry, H&E, IHC that would help to accurately diagnose the

tumors based on CTTA. We look forward to further research on MRI

and detecting techniques in the identification of testicular tumors.

Thirdly, the potential impact of this methodical difference on clinical

findings is largely unexplored. the reproducibility of texture analysis

has yet to be established widely. Some issues like image acquisition and

image quality, and their effect on texture analysis need to be regulated

and resolved. Fourthly, our study was retrospective and lack of external

validation. Although 5-fold cross validation was used, the risk of

overfitting could not be avoided. Fifthly, a three- dimensional CTTA

may be time-consuming, but this exactly the advantage of our study.

Lastly, we chose only a few representative ML classifiers. Lastly,

different devices and software may have different consequences.

Thus, large-scale and well-designed studies are warranted to validate

the performance of the models.
Conclusion

In conclusion, LR model based on CTTA might be a promising

non-invasive tool for the diagnosis and differentiation of testicular

masses. The accurate diagnosis of testicular masses would
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assist urologists in correct preoperative and perioperative

decision making.
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Brain tumor classification from
MRI scans: a framework of
hybrid deep learning model with
Bayesian optimization and
quantum theory-based marine
predator algorithm
Muhammad Sami Ullah1, Muhammad Attique Khan1,
Anum Masood2*, Olfa Mzoughi3, Oumaima Saidani4

and Nazik Alturki4

1Department of Computer Science, HITEC University, Taxila, Pakistan, 2Department of Physics,
Norwegian University of Science and Technology, Trondheim, Norway, 3Department of Computer
Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al
−Kharj, Saudi Arabia, 4Department of Information Systems, College of Computer and Information
Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
Brain tumor classification is one of the most difficult tasks for clinical diagnosis

and treatment in medical image analysis. Any errors that occur throughout the

brain tumor diagnosis process may result in a shorter human life span.

Nevertheless, most currently used techniques ignore certain features that have

particular significance and relevance to the classification problem in favor of

extracting and choosing deep significance features. One important area of

research is the deep learning-based categorization of brain tumors using brain

magnetic resonance imaging (MRI). This paper proposes an automated deep

learning model and an optimal information fusion framework for classifying brain

tumor from MRI images. The dataset used in this work was imbalanced, a key

challenge for training selected networks. This imbalance in the training dataset

impacts the performance of deep learningmodels because it causes the classifier

performance to become biased in favor of the majority class. We designed a

sparse autoencoder network to generate new images that resolve the problem of

imbalance. After that, two pretrained neural networks were modified and the

hyperparameters were initialized using Bayesian optimization, which was later

utilized for the training process. After that, deep features were extracted from the

global average pooling layer. The extracted features contain few irrelevant

information; therefore, we proposed an improved Quantum Theory-based

Marine Predator Optimization algorithm (QTbMPA). The proposed QTbMPA

selects both networks’ best features and finally fuses using a serial-based

approach. The fused feature set is passed to neural network classifiers for the
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final classification. The proposed framework tested on an augmented Figshare

dataset and an improved accuracy of 99.80%, a sensitivity rate of 99.83%, a false

negative rate of 17%, and a precision rate of 99.83% is obtained. Comparison and

ablation study show the improvement in the accuracy of this work.
KEYWORDS

brain tumor, MRI, contrast enhancement, deep learning, hyperparameters optimization,
feature selection
1 Introduction

One of the deadliest brain disorders is a brain tumor, which

develops from an abnormal development of tissue inside the skull.

Primary and secondary forms can be distinguished among them. 70%

of cases of primary brain tumors only spread within the brain (1). In

contrast, secondary tumors start in an organ like the breast, kidney, or

lung before metastasizing to the brain (2). The World Health

Organization (WHO) divides malignant gliomas into two

categories: grade IV/IV tumors, which include glioblastoma

multiforme (GBM), and grade III/IV tumors, which include

anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic

oligoastrocytoma, and anaplastic ependymomas. With an incidence

rate of 3.19 cases per 100,000 person a year and a median age of 64,

GBM is the most prevalent malignant brain tumor. It makes up 80%

of all primary malignant CNS tumors and 45.2% of all malignant CNS

tumors. GBM is 1.5 times more common in men than in women, and

it is twice as common in white people as it is in black people (3).

Meningioma is the most common primary tumor of the central

nervous system, with 5/100,000 annual occurrence. Radiation

therapy and hormone use are risk factors. According to the

WHO’s 2016 histological criteria, the majority of meningiomas

are grade I benign tumors; however, up to 15% can be atypical and

2% can be anaplastic (4). Pituitary adenomas usually are benign

tumors that develop from unusual pituitary gland cell development.

They appear either by producing too much hormone or by putting

pressure on the surrounding structures, which causes less hormone

to be secreted. Prolactinomas, non-functioning adenomas,

adenomas that secrete growth hormone, and adenomas that

secrete adrenocorticotrophic hormones are the four primary

forms. Less frequent kinds include gonadotroph adenomas with

clinically significant luteinizing hormone, follicle-stimulating

hormone secretion, and thyroid-stimulating hormone-secreting

adenomas. Pituitary incidentalomas are a subtype that was

unintentionally found while undergoing brain MRI. They can be

divided into macroadenomas (bigger, accounting for roughly 40%

of occurrences) and microadenomas (less than 1 cm in diameter).

Macroadenomas can strain essential structures and regions like the

optic chiasm (5).

Gliomas and meningioma emerge from neuroglial and brain

membranes, respectively; both are the most frequent primary brain
0265
cancers. Pituitary gland and nerve sheath tumors are also included

in this group. High-grade gliomas are a common form of malignant

tumor. Meningiomas are typically benign; however, they can

occasionally turn cancerous (6). Gliomas are more common in

men, whereas meningiomas are more common in women; other

brain cancers affect both sexes equally (7). Pituitary tumors,

whether benign or malignant, can have severe consequences due

to their location. Malignant tumors spread quickly, whereas benign

tumors develop slowly and are generally entirely eradicated through

surgery (8).

Radiologists and clinicians have substantial difficulties in

detecting brain tumors. Brain tumor images produced in medical

settings might be challenging to analyze. As a result, there is a need

for computer-aided procedures with increased early detection

accuracy. Currently, there is a lot of interest in using multimodal

images to classify brain tumors (9). Magnetic resonance imaging

(MRI) is frequently used to diagnose brain malignancies. A tumor

can be found via MRI, commonly used to identify brain tissues

based on their size, shape, or location (10). Figshare is a publicly

available MRI image-based brain tumor dataset containing 3,064

T1-weighted contrast-enhanced images. These are obtained from

233 patients. A total of 1,426 slices of glioma, 708 slices of

meningioma, and 930 slices of pituitary tumors are included in

said dataset (11, 12). A few sample images are shown in Figure 1.

In recent years, interest in computer vision has grown across

various fields of studies, from medical to industrial robotics.

Computer science and advances in image processing techniques

have greatly aided computer vision (13). Deep learning is a diverse

set of techniques that includes neural networks, hierarchical

probabilistic models, and a wide range of unsupervised and

supervised feature learning algorithms. Deep learning approaches

have recently gained popularity because of their ability to beat prior

state-of-the-art techniques in various tasks and the amount of

complex data from various sources (e.g., visual, auditory, medical,

social, and sensor) (14). Deep learning has made significant

advances in a wide range of computer vision tasks, including

object recognition (15), motion tracking (16), and medical image

classification and detection (17, 18). Classification of brain tumors

for medical specialists is an important field where computer vision

and deep learning techniques work together and bring prosperity to

patients with non-invasive diagnosis of brain tumors using MRI.
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1.1 Aims and objectives

Image acquisition from MRI has loss of information that leads

to improper feature visibility. A technique is required to employ

that can enhance the contrast of MRI images so that loss of

information during the acquisition process can be minimized.

Hence, feature visibility can be improved and classification

problems can be addressed, which has a close relationship with

feature visibility. In order to address classification problems for MRI

images of brain tumors, there is an immense need to introduce a

technique using state-of-the-art deep learning methods. In a quest

to fulfill this need, a deep learning technique should acquire brain

tumor MRI images from publically available benchmark datasets.

The selected dataset explained in a related section of this

manuscript has significant imbalance classes, so it is important to

incorporate a data augmentation technique that can gracefully fill

the gap of imbalanced dataset classes. After enhancement of

contrast and data augmentation steps, lightweight pretrained deep

leaning models need to be deployed and modified based on the low

complexity for training of the balanced dataset. Optimization of

hyperparameters to train deep learning models is required to select

the optimal combination of values for model training on the

selected dataset. Extracted features can be optimized using some
Frontiers in Oncology 0366
optimization algorithms and then be fused together. Feature fusion

greatly impacts the overall classification accuracy. The subsequent

section presents the major challenges in order to develop an aimed

technique and contribution to address these challenges in

proposed work.
1.2 Major challenges and contributions

This imbalance in the training dataset impacts the performance

of deep learning models because it causes the classifier performance

to become biased in favor of the majority class. The authors tried to

resolve this issue by using few traditional techniques such as flip

image and rotate image, and few of the authors performed contrast

enhancement. However, these techniques are not enough, and the

images are highly duplicated. Therefore, it is essential to address this

challenge by employing some of the latest techniques, such as GAN

and encoders. Still, most currently used feature selection techniques

ignore certain features that have particular significance and relevance

to the classification problem in favor of extracting and choosing deep

significance features. We proposed a hybrid deep learning framework

with BO and QTbMPA feature selection algorithms to address these

challenges. Our major contributions are listed below.
FIGURE 1

Sample MRI images of brain Meningioma, glioma, and pituitary tumors.
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▪ Sparse Autoencoder architecture was proposed for the

generation of new images based on the training data for

the augmentation process.

▪ Two lightweight pretrained deep learning models were fine-

tuned based on the additional layers and removal of pooling

layers. The models were trained from scratch on an

augmented dataset.

▪ A Bayesian optimization technique was implemented to

initialize the hyperparameters of the fine-tuned deep

models for improved learning.

▪ An efficient Quantum Theory-based Marine Predator

Optimization algorithm was proposed for the selection of

best features for the final classification.

▪ A detailed ablation study was performed on the proposed

framework for the validation of the proposed framework.
2 Literature review

A wide range of classification approaches have been introduced for

the Figshare dataset. Several techniques have been introduced in the

literature for the classification of brain tumor from MRI images.

Researchers used deep learning models for the feature extraction and

later performed classification using Softmax and machine learning

classifiers. A novel deep transfer learning-based model was identified

by Alanazi et al. (19). It entails creating several convolutional neural

network models and then utilizing transfer learning to repurpose a 22-

layer model for subclass classification. The proposed model achieved

95.75% accuracy on three classes of the Figshare dataset. Moreover, the

technique was also validated for an unseen dataset and achieved an

accuracy of 96.89%. Another DeepTumorNet hybrid deep

learning model was suggested by Raza et al. (20). The last five

layers of GoogleNet were eliminated while creating the hybrid

DeepTumorNet technique, and 15 new layers were added. They used

the feature map’s leaky ReLU activation function to make the model

more expressive. The suggested model was evaluated on the Figshare

dataset and achieved 99.67% accuracy. Tummala et al. (21) used

ensemble-oriented vision transformer-based pretrained models to

classify the modalities of the Figshare dataset. An ensemble of B/16,

B/32, L/16, and L/32 was used. The selected approach achieved an

overall accuracy of 98.70%. Attention mechanism, patch-oriented

input, and token embedding are techniques used in vision

transformers, which make them more computationally expensive,

and processing requires a tensor processing unit (TPU) environment.

Another work by Polat et al. (22) introduced a novel divergence-

based feature extractor which is used for classification by decreasing

weights for deep neural networks. The achieved accuracy was 99.18%.

They have reduced the input image dimensions considerably (i : e :,  

512�   512   to   128  �   128), which can result in loss of spatial

information. Loss of information at the input level can result in

compromised accuracy. A technique that uses a multilevel attention

network (MANet) (23) was suggested by Shaik et al. in which the

model has an attentionmechanismwith several tiers of attention blocks

and can concentrate on crucial spatial and category-specific properties.
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Prioritizing tumor details in the image is done by the first attention

block, and the second attention layer is highlighted by the tumor-

specific descriptors using ConvLSTM. MRI images are represented as

input to the model using pretrained features from the XCeption

network. The resultant accuracy of 96.51 for the Figshare dataset was

obtained. In the presented technique, only those glioma images with

tumor in it will be classified. A CNN-based approach was created by

Haq et al. (24); they performed classification as well as segmentation. A

classification accuracy of 98% was achieved. The proposed algorithm

has a long running time and needs an improvement to reduce the

running time. In another technique, Rahman et al. (25) implemented a

Parallel Deep Convolutional Neural Network (PDCNN) technique. It

operates in two concurrent stages to capture both global and local

features. The model includes dropout regularization and batch

normalization to alleviate the overfitting issue. The classification

accuracy is 97.60%. The proportion of 80:20 training and testing data

was respectively used. A major proportion of training data may lead to

overfitting as it becomes specialized for known data but not for unseen

or unknown data.

The authors Talukder et al. (22) presented a technique to classify

brain tumors. They used different pretrained models and obtained an

accuracy of 99.68% on ResNet50V2. The lack of sharp images is the

main shortcoming of this study. In their work, Aloraini et al. (26)

presented another technique in which the authors utilized a hybrid

method combining a transformer with an attention mechanism to

capture global features. Local features were extracted using a

convolutional neural network (CNN). The approach attained an

accuracy of 99.10% for the Figshare dataset. Few misclassifications

were reported due to visual similarity between classes. In their work,

authors Athisayamani et al. (27) introduced a new adaptive Canny

Mayfly algorithm for edge identification. An algorithm that reduces the

dimension of retrieved features, the enhanced chimpanzee

optimization algorithm (EChOA), is utilized to choose features. The

feature classification process is then done using the Softmax classifier

and ResNet-152. The proposed technique achieved an accuracy of

98.85%. In their presented work, the authorsMishra et al. (28) provided

a method for classifying brain tumors using a K-NN classifier, where

the parameter } k } is adjusted and the best feature set is selected using

the binary version of the comprehensive learning elephant herding

optimization (CLEHO) algorithm. The presented method obtained an

accuracy of 98.97%, better than the recent techniques. A pretrained

model-based approach was suggested by the authors Malla et al. (25),

in which a transfer learning DCNN framework known as VGGNet was

used. They employed transfer learning aspects such as fine-tuning the

convolutional network and freezing layers for better performance.

Features were extracted from the Global Average Pooling (GAP)

layer. The technique resulted in an accuracy of 98.93% on the

Figshare dataset. In the given approach, the feature dimensionality

issue was not addressed, and that intended to address it in

future research.

In another work, authors Cinar et al. (29) presented a

Convolutional Neural Network (CNN) architecture for brain

tumor classification. The model was compared with ResNet50,

VGG19, DensetNet121, and InceptionV3 pretrained models. The

presented model achieved an average classification accuracy of

98.32% on the prescribed dataset. The authors determined to
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enhance their technique using area and size-oriented metrics. In

another technique, the authors Deepak et al. (30) coined an

approach in which they trained CNN using three different

methods: cross-entropy loss, class-weighted loss, and weighted

local loss. They fused the features, and classification was

performed with an accuracy of 95.40%. Another approach by

authors by authors Zulfiqar et al. (31) suggested an approach in

which five variations of the EfficientNets family’s pretrained

models, EfficientNetB0 through EfficientNetB4, were fine-tuned.

They also investigated how data augmentation affects the model’s

accuracy. The best model’s attention maps are finally visualized

using Grad-CAM, successfully highlighting the tumorous region of

the brain cell. The achieved accuracy was 98.86%.
3 Methodology

The proposed methodology of brain tumor classification is

illustrated in Figure 2. This section starts with the preprocessing

phase in which the Figshare brain tumor dataset (32) is obtained.

The contrast enhancement step is crucial to improving the quality of
Frontiers in Oncology 0568
low-contrast images, and it was performed using a statistical technique

presented in (33). Data augmentation is performed on contrast-

enhanced images. This step is taken into account due to the high

imbalance of classes in the original dataset. Augmentation of the data is

performed using sparse autoencoders (34). The said technique

augments the data by learning the most important features of the

original data and leaving behind the least important features. Two

pretrained models named InceptionResNetV2 (35) and EfficientNetB0

(36) are used and fine-tuned for the input of preprocessed data.

Dynamic and optimized selection of hyperparameters of both models

is carried out using Bayesian-based optimization (37). Features are

extracted from each optimized resultant model. To further optimize the

features, a nature-inspired algorithm named the Marine Predators

Algorithm (MPA) (38) is used on the obtained features of each

model. Feature fusion is carried out, final classification is performed.
3.1 Dataset of this work

The Figshare dataset includes 3,064 T1 weighted contrast-

enhanced MRI scans collected from 233 patients. There are three
FIGURE 2

Proposed methodology of brain tumor classification using deep learning and optimization algorithm.
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classes of these scans named meningioma, glioma, and pituitary,

with 708, 1,426, and 930 MRI scans, respectively, in each class (32).

Meningiomas are the most prevalent intracranial tumor, accounting

for more than one-third of all primary central nervous system

(CNS) tumors. They are typically benign tumors that can be

observed or preferentially treated with extensive complete

resection, which results in satisfactory outcomes. Meningioma

with complex histology or in vulnerable areas has proven difficult

to treat and predict prognostic outcomes (39).

Gliomas are divided into different categories based on the cells

of their origin. They make up around 80% of all malignant primary

brain tumors and are most frequent malignancies of the central

nervous system (CNS). The most dangerous and common variety of

glioma is called glioblastoma multiforme (GBM). More than 60% of

adult brain tumors are caused by it. Despite the wide range

of contemporary treatments available, GBM remains a fatal

condition with a very bad prognosis. The median survival time

for patients is typically 14 to 15 months after diagnosis of the deadly

disease (40).

The anterior pituitary gland is the site of tumors called pituitary

adenomas. They rank as the third most frequent adult cause of

central nervous systemmalignancies (CNS). Most benign adenomas

cause either a large-scale effect or an increase in hormone release.

Depending on their size and hormone produced, pituitary

adenomas appear differently in clinical evaluations (41). Samples

of meningioma, glioma, and pituitary brain tumors from the

Figshare dataset are presented in Figure 1.
3.2 Contrast enhancement

Analyzing medical images is challenging because of the inherent

qualities present in medical images, such as poor contrast, speckle

noise, signal dropouts, and complicated anatomical formation.

Contrast enhancement is a vital component of subjective

evaluation of image quality that aims to improve the overall

excellence of medical imagery for feature visualization and clinical

measurement (42). In fact, despite technological advancements in

healthcare systems, they still produce images that demonstrate a

deficiency in contrast due to improper locales and equipment

limitations. To enhance the contrast of MRI images of the dataset

discussed above, an existing technique for contrast enhancement

(33) is employed. It uses basic statistics and some basic image

processing methods. The approach adjusts the global and local

contrast of a given image separately, then combines both results

using logarithmic image processing (LIP), producing an output that

is further analyzed by an adaptive linear stretching method to

produce the improved version of the image. The overall process of

contrast enhancement is defined as follows:

Letting a low-contrast image ɡ(x,y), at first, the local contrast is

altered using contrast stretching transformation (CST). The CST

process is defined in Equation 1.

k(x,y) =
1

1 + (m=ɡ(x,y))
E (1)
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In the above equation, k(x,y) is the output of the CST procedure

where x, y represents the dimensions of an image. The slope of the

function is set by constant E, and its value is set to 0.5 for this

experiment. The mean value of the input image is represented bym.

A standard logic function is applied to the original image to change

its global contrast. Mathematically, it is defined in Equation 2.

j(x,y) =
exp(ɡ(x,y))

1 + exp(ɡ(x,y))
(2)

The resultant images with altered local and global contrast will be

combined. The Logarithmic Image Processing (LIP) method devised in

(43) is for this purpose and is mathematically defined as follows:

f(x,y) =
k(x,y) + j(x,y)

1 + (k(x,y)*j(x,y))
(3)

An exponent W is used to control the enhancement, and the

entire equation is raised to its power of it. The scalar parameter

(W > 0) and its higher value lead to achieving a good level of

contrast enhancement. Mathematically, it is defined in Equation 4.

f(x,y) =
k(x,y) + j(x,y)

1 + (k(x,y)*j(x,y))

" #W
(4)

Contrast enhancement of the image has been achieved after

employing Equation 4, but the image f(x,y)   does not correspond to

the natural range of pixel values. A linear stretching method with

adaptive form (40) brings a natural range of pixel values to the image.

Mathematically, it is defined by Equation 5.

t(x,y) =  a*   f(x,y) − b (5)

where t(x,y) is a resultant image, and a and b are the control

variables for the stretching process. The value of these control

variables is adjusted manually, but here, Equation 6 and Equation 7

are used to select the values of these variables automatically.

a =
1

max(f(x,y))  −  min(f(x,y))
(6)

b =
min(f(x,y))

max(f(x,y))  −  min(f(x,y))
(7)

In the above equations, the variables max and min represent the

upper and lower bounds of values for pixels of an image f(x,y),  

respectively. The pseudocode of the above mathematical description

is given under Pseudo-code 1. A few visual images are also illustrated

in Figure 3.
Input: Original image g(x,y) and a parameter W.

Computation of CST method by using Equation 1.

Estimation of SL function by using Equation 2.

Calculation of modified LIP method by using Equation 4.

Computation of parameters a and b by using Equations 6

and 7

Processing of contrast by using Equation 5.

Output: Contrast Enhanced image t(x,y)
Pseudo Code 1. Proposed Contrast Enhancement Technique.
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3.3 Data augmentation

Classification performance is negatively impacted by class

imbalance. The impact of imbalance on classification performance

gets more robust with increasing task size. The effect of imbalance

depends on the distribution of observations (i.e., images)

throughout the classes and cannot be solely attributed to a lower

overall number of training cases (44). In Section 3.1, it is noted that

our dataset has a high-class imbalance. Hence, creating a dataset

bias may lead to an overfitting problem for some classes. To fill that

gap, we employed a sparse autoencoder (45) to augment the dataset

instead of traditional methods.

Sparse Autoencoders learn a compressed representation of the

input data. The following hyperparameters are used to train a sparse

autoencoder network:

Hyperparameters Value

Hidden size 300

Maximum epochs 2000

L2WeightRegularization 0.001

SparsityRegularization 4

SparsityProportion 0.15
F
rontiers in Oncology
Hidden size parameter represents the number of neurons in

layers. Few dozen neurons are enough for simpler tasks, but in order
0770
to use it with complex tasks, a few hundred neurons are used. A

hidden size of 300 might be able to prevent overfitting while still

having sufficient capacity to learn from the data, particularly in

situations where bigger hidden sizes could cause overfitting.

One whole cycle through the whole training dataset is referred

to as an epoch. The hyperparameter for maximum epochs indicates

the maximum number of times the training dataset will be

processed by the learning algorithm. In the proposed technique,

the training dataset for augmentation took 2,000 epochs to converge

at a suitable result for MRI images.

The intensity or weight of L2 regularization given to a neural

network’s weights during training is commonly denoted by the

hyperparameter L2WeightRegularization, which has a value of

0.001. The selection of 0.001 maintains a balance between letting

the model learn from the data and regularizing it to avoid

overfitting. It is also referred to as weight decay.

The sparsity regularization weight that is given to a neural

network during training is indicated by the hyperparameter

SparsityRegularization, and the chosen value for it is 4. By

encouraging the model to have fewer active (non-zero) weights,

the objective is to cause the weight matrices to become sparse,

which means that during the training phase, a large number of the

weights are driven to be zero or almost zero. Sparsity regularization

helps to create a more effective and sparse representation for better

feature selection.

The hyperparameter of “SparsityProportion” with a value of

0.15 commonly refers to a threshold sparsity level, which is used
FIGURE 3

Visual illustration of the contrast enhancement process. The left images are original, and the right images are generated using contrast enhancement.
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with sparsity regularization. The target of around 15% of the neural

network’s weights becoming zero or almost zero is indicated by the

value of 0.15. The sparsity regularization hyperparameter sets a

threshold of 4, and weights that are below threshold are settled to

zero. The value of 0.15 represents the proportion of weights that

should actually fall below the specified threshold value during the

training process.

The specified values for each hyperparameter are adjusted for

augmentation of MRI images. The resultant images obtained from

this step are used to augment the data.

The overall representation of sparse autoencoders is provided

in Figure 4.

The total number of observations for each class increased to

2,000 after employing the proposed sparse encoder network. The

newly generated images have been utilized to train selected deep

learning models.
3.4 Hyperparameter selection for modified
EfficientNetB0 and InceptionResNetV2

The augmented dataset is used to train fine-tuned deep-learning

models. Three hyperparameters for both models are optimized

using Bayesian optimization to train the models. These

hyperparameters are named InitialLearnRate, Momentum, and

L2Regularization. The dynamic tuning of hyperparameters is a

crucial task for deep learning models. In this case, dynamically

selected values for specific hyperparameters are used until a specific

best-value threshold is achieved. The particular model is then

trained, and features are extracted for classification tasks.

Bayesian optimization (BO) is an effective technique for

hyperparameter tuning. Implementation (46) can be achieved by

setting an optimization goal. The Equations 8 and 9 below describes

the BO process.

x0 = arg   max
xєA

f (x) (8)
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In the equation, search space is A for input x. BO is based on the

Bayes theorem that is mathematically defined as follows:

P(D│ F) ∝   P(F │D)P(D) (9)

Given that an event or hypothesis F has occurred, it is the

likelihood that the event or hypothesis D will also occur, where F

denotes the evidence data, D denotes the model, and P(D│ F) is the

posterior probability that is proportional to the likelihood P(F │D)

and is multiplied with a probability of D. The foundation of BO is

the combination of sample data (evidence) and the prior

distribution of the function f (x) to produce the posterior of the

function. Then, based on the criterion, the posterior information is

used to determine the location where the function f (x) is

maximized. The criterion is also called an acquisition function (v)

and is used to estimate the next sample point. Sampling points are

searched using exploration and exploitation sampling methods

while searching the sampling space. Exploration tends to search

for sampling areas with high uncertainty. Exploitation searches for

those samples that are of high value. These methods improve the

performance, even with multiple local maxima solutions.

The prior distribution of the function f (x), a crucial component in

the statistical inference of the posterior distribution, is a requirement

for Bayesian optimization in addition to sample information. The

posterior distribution is updated using the Gaussian process to better

align with the data, improving our forecasts’ accuracy and knowledge.

Algorithm 1 describes the working of BO.
1: For i = 1, 2,…

2: Find xi by optimizing the acquisition function v over

function f: xi = arg max v
x

(x│D1 :i−1).(Equation 10)

3: Sample the objective function: yi   = f(xi).

4: Augment the data D1 :i   =   D1 :i−1  ,   (xi,yi)f g and update the

posterior of function f.

5: End For.
Algorithm 1. Bayesian optimization.
FIGURE 4

Representation of sparse autoencoder for data augmentation.
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The algorithm consists of two parts: acquisition function

maximization using step 2 and posterior distribution update

using steps 3 and 4. Furthermore, the training dataset is denoted

by D1 : i−1   = xn, ynf gi−1n=1  with i − 1 observations of function f .

Each processed observation updates the posterior distribution.

The updated distribution helps to find the highest value of the

acquisition function at some point, which is then added to the

training dataset. This process continues until the maximum

number of iterations is reached or the difference between the

current and best values so far is less than a predetermined

threshold. The following starting and stopping criteria are

selected for experiments. Number of seed points = 4;

Maximum Objective Evaluation = 30, and Maximum time =

Infinite by default.

A Gaussian process prior with additional Gaussian noise in the

observations serves as the fundamental probabilistic model for the

objective function f . Therefore, the Gaussian process with mean m
(x; q) and covariance kernel function k(x, x0, q) represent the prior
distribution on f (x) :Here, x represents the initial value, x 0 denotes
the updated value, and q is a parameter containing a kernel vector

vector. Therefore, looking into more detail, we show a set of points

x =   x 0 with associated objective function F =   fi and the prior joint

probability distribution of the function value k(x, x0) where kij=k(xi
, xj) and initially m = 0. Moreover, Gaussian noise is added, which is

denoted by s 2 so the prior distribution has covariance k(x, x0, q) +
s 2x,   and therefore, the final Gaussian process regression is

depicted by the following Equation 11.

k(xi, xj, q) = s 2
f   exp −

1
2
  ∑

d

m=1

(xi, xj)
2

s 2
m

� �
(11)

where sm   is length scale predictionm andm = 1, 2, 3,…d, sf is

the signal standard deviation, qm = log (sm),   qd+1 = log(sf ), and k

(x, x0, q) is a Kernel function that significantly affects the quality of

Gaussian process regression. In Bayesian optimization, the ARD

Matern 5/2 kernel is optimized by default and is given in the

following Equation 12.

k(xi, xj │ q) = s 2
f 1 +

ffiffiffi
5

p
  r +

5
3
  r2

� �
exp −

ffiffiffi
5

p
  r

� �
(12)

where r =od
m=0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xim−xjm)

2

s2
m

q
 . BO employs the acquisition function

to derive the highest value of the function f after collecting the posterior

distribution of the objective function. Typically, we believe the large

value of the objective function f matches the high value of the

acquisition function. Therefore, the increasing the acquisition function

is the same as increasing the function f , as presented in Equation 13:

x0 = arg   max
xєA

  u(x│D) (13)

The acquisition function named expected improvement per

second plus is employed for hyperparameter optimization. The

family of acquisition functions known as “expected improvement”

assesses the expected rate of improvement in the objective function

while ignoring values that increase the objective. The equation for

expected improvement is defined in Equation 14:
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EI(x,Q) = EQ½max(0,mQ(xbest) − f (x))� (14)

where xbest is the location of the lowest posterior mean and

mQ(xbest) is the lowest value of the posterior mean. The anticipated

improvement per second used by the acquisition function during

the objective function assessment is formulated in Equation 15:

EIpS(x) =
EIQ(x)
mS(x)

(15)

where mS(x) is the posterior mean of the timing Gaussian

process model. Finally, the maximization process was performed

and returned the best hyperparameter value. The initial learn rate

(InitialLearnRate) range is 0.01–0.9, the momentum value is

selected between 0.8 and 0.98, and the L2Regularization range is

1e − 10   (0:0000000001)   to   1e − 2   (0:01). To find the values of the

hyperparameters, the search space needs to be transformed

logarithmically. A logarithmic transformation is used to improve

the search process order-of-magnitude balance. Results for

optimizing the hyperparameters for EfficientNetB0 are provided

in Figure 5A. While optimizing the hyperparameters, the best

objective function value is achieved during iteration number 5.

Op t im iz ing r e su l t s f o r hype rpa r ame t e r s o f th e

InceptionResNetV2 model are provided in Figure 5B. The best

object value (i.e., optimized hyperparameters) is achieved at

iteration number 5, the best and last iteration per already defined

termination criteria.
3.5 Training and feature extraction

Both fine-tuned models have been trained on the augmented

dataset, and deep features are extracted from the global average

pooling layer. The sigmoid activation function has been employed

in the feature extraction process and obtained a feature vector of

N � 1280 and N � 1536 from fine-tuned EfficientNetb0 and fine-

tuned InceptionResNetV2, respectively. The complex patterns are

captured from the deeper layers of the above models, and higher

spatial dimensions are achieved. The Global Average Pooling layer

reduces the higher dimensions to a fixed-size vector; however,

optimizing the features’ size for accurate classification is necessary.
3.6 Improved MPA optimization

In this work, we proposed an improved Quantum Theory-based

Marine Predator Algorithm to select the best features. The MPA is a

metaheuristics algorithm. Random walk describes the behavior of

particles or objects in various physical and biological domains.

These are effective methods for studying the movement of

organisms such as bacteria or animals looking for food. The

random character of each step in these circumstances allows for a

realistic picture of how these organisms explore and navigate their

surroundings. Lévy and Brown’s movements are random walks.

Different velocity ratios are extracted and used in the three phases of

MPA. These are strategies behind MPA (38). MPA is based on

population as many other metaheuristic algorithms. The initial
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solution is homogeneously disseminated over the entire search

space through the first sample see, Equation 16.

Y0 = Ymin + rand   (Ymax − Ymin) (16)

Upper and lower bounds of variables are represented with Ymax

and Ymin, respectively, whereas uniform random vector is denoted

by rand whose range is between 0 and 1.

According to the notion of survival of the fittest, top natural

predators are better foragers. As a result, the top predator, also

known as elite, in the E matrix is chosen as the fittest solution. The

chosen matrix is constructed, and arrays of the matrix provide a

detail of searching and finding the prey based on the position of the

prey. The matrix is given in Equation 17:

E =  

YI
1,1    Y

I
1,2  …    YI

1,d

YI
2,1    Y

I
2,2  …    YI

2,d

:             :                     :

:             :                     :

:             :                     :

YI
n,1    Y

I
n,2  …    YI

n,d

2
666666666666664

3
777777777777775
n  X   d

(17)

In the above matrix, Y1
	!

is a vector representing the top

predator, and it is repeated n times to create the E matrix.
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Dimensions are represented by d, whereas search agents are

denoted by n. Predators and prey are considered search agents

because predators look for its prey and the prey is looking for its

food. The E matrix is updated once a better predator replaces the

existing top predator.

Another matrix with the same dimensions is constructed

depending on the position of the prey. Predator updates the

position based on the prey’s position matrix. The matrix is

named P and is given in Equation 18:

P =  

Y1,1    Y1,2  …    Y1,d

Y2,1    Y2,2  …    Y2,d

:             :                     :

:             :                     :

:             :                     :

Yn,1    Yn,2  …    Yn,d

2
666666666666664

3
777777777777775
n  X   d

(18)

In P matrix Yi,j the j represents the jth dimension, and i

represents the ith prey. These two matrices are the backbone

for optimization.

There are three phases of MPA. These are based on the predator

and prey’s life cycle and velocity criteria. These three phases are

discussed separately as follows: In the first phase, the predator is

considered moving faster than the prey, which is also called as the
B

A

FIGURE 5

Summary of best selected hyperparameter values using BO. (A) Bayesian optimized (BO) hyperparameters for training of EfficientNetB0. (B) Bayesian
optimized (BO) hyperparameters for training of InceptionResNetV2.
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high-velocity ratio (velocity   ≥   10) phase. The ideal predator

strategy is to remain still. The mathematical model for this phase

is defined in Equation 19:

While   Iteration   <  
1
3
 Max _ Iteration

stepsizei
				!

=   RB
	!

 ⊗ (Ei
!

−   RB
	!

 ⊗   Pi
!
)     i = 1,…n

Pi
!

= Pi
!

+ T :~R⊗ stepsizei
				!

(19)

This scenario occurs in the first third of iterations. Iteration

represents the current iteration, whereas Max _ Iteration represents

maximum iterations. RB is a vector containing random values from

the normal distribution exhibiting Brownian movement. Entry-wise

multiplications are denoted by ⊗. Movement of prey is simulated

by the multiplication of RB
	!

 ⊗   Pi
!
. Here, T is a constant, and its

value is 0:5. R denotes a vector of uniform random numbers

between 0 and 1.

The second phase occurs in unit velocity ratio or when the prey

and predator move at the same speed. It means that the predator is

actively looking for prey, and the prey is actively looking for its food.

This optimization stage is where the transition from exploration to

exploitation occurs. The prey does exploitation, whereas

exploration is the predator’s primary goal. Half of the population

is designated for exploitation and the other half for exploration. If

the velocity ratio (velocity   ≈   1), then the prey moves in Lévy and

the predator follows the Brownian motion. A mathematical model

for this is given below:

While  
1
3
 Max _ Iteration   <   Iteration   <

2
3
 Max _ Iteration

The first half of the population can be modeled by Equation 20:

stepsizei
				!

=   RL
	!

 ⊗ (Ei
!

−   RL
	!

 ⊗   Pi
!
)     i = 1,…

n
2

Pi
!

= Pi
!

+ T :~R⊗ stepsizei
				!

(20)

In the above equation, RL
	!

represents the Lévy movement of the

first half of the population. The multiplication of RL
	!

 ⊗   Pi
!

describes the Lévy movement of the prey, and adding the step

size of the prey position determines its movement. The second half

of the population can be modeled in the given below Equation 21:

stepsizei
				!

=   RB
	!

 ⊗ ( RB
	!⊗   Ei

!
−   Pi

!
)     i =

n
2
, : :, n

Pi
!

= Ei
!

+ T : CF
	!⊗ stepsizei

				!
(21)

where CF = (1 − Iteration
Max _ Iteration )

(2 Iteration
Max _ Iteration) is regarded as an

adaptive parameter to regulate the predator’s movement’s step

size. The multiplication of RB
	!⊗   Ei

!
determines the step size in

the Brownian movement of the predator, whereas the prey modifies

its position in relation with the predator’s movement. The third

phase starts with a low velocity ratio or when a predator has a faster

pace than the prey. It is the last phase of optimization. High

exploitation capability is demonstrated in this phase. In such a
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low-velocity ratio of velocity =   0:1, the predator adopts the Lévy

strategy. The mathematical model is provided in Equation 22:

While   Iteration >  
2
3
 Max _ Iteration

stepsizei
				!

=   RL
	!

 ⊗ ( RL
	!⊗   Ei

!
−   Pi

!
)     i = 1, : :, n

Pi
!

= Ei
!

+ T : CF
	!⊗ stepsizei

				!
(22)

In the Lévy method, multiplying RL
	!⊗   Ei

!
simulates the

predator’s movement, whereas adding the step size to the Elite

position assists in updating the position of the prey. Fish

aggregating devices (FADs), considered local optima in their

search space, are where sharks spend most of their time (i.e.,

more than 80% of the time). They make longer jumps in diverse

directions during the remaining 20% of their time, probably to

locate different prey distributions. To ensure a more dynamic search

during the simulation, these lengthier hops help prevent them from

being stuck in local optima. The FAD effect’s mathematical

elaboration can be represented as the following Equation 23:

Pi
!

=  
Pi
!

+ CF½Ymin
		!

+  ~R  ⊗   (Ymax
		!

−  Ymin
		!

)�  ⊗  ~U         if   r   ≤ FADs

Pi
!

+  ½FADs   (1 − r) + r�   (Pr1	! −   Pr2
	!

)                         if   r   ≥ FADs

8<
:

(23)

The likelihood that FADs may affect the optimization process is

represented by the probability, given as 0:2. A binary vector ~U is

made up of zeros and ones. It is created by a random vector with

values between [0,1], with a zero set for values below 0.2 and one for

values above 0.2. Additionally, r stands for a random number

uniformly distributed between [0,1]. Ymin
		!

and Ymax
		!

denote lower

and upper bounds of dimensions. P matrix’s random indexes are

denoted by subscripts r1 and r2.

Novelty in this method

The problem of the MPA algorithm is finding an optimal global

position; therefore, we added a concept of Quantum Theory that

improves populations’ motion behavior. The initial population in

the modified version is defined as follows:

Zi(k + 1) = Zmin + r � ½Zmax − Zmin�
where Zi denotes the ith iteration value, r is a random value

between (0,1), k is a current iteration, and Zmax and Zmin denote the

upper and lower limits, respectively. The fitness value is computed

to find the best solution in the next step. The following Equations

24–27 is utilized for this purpose:

~LQ = Zi,j(k + 1) =
Ci − b* Jbest − Zi,j(k))� ln ( 1

u


 �
,       if  T ≥ Entropy

Ci + b* Jbest − Zi,j(k))� ln ( 1
u


 �
,       if  T ≥ Entropy

(

(24)

Q Zj
i,k+1

� �
=

1

Lengthji,k
exp −

2 zji,k+1 − sji,k

��� ���
Lengthji,k

0
@

1
A (25)

Ci = q � cBesti + (1 − q)� ɡBest (26)
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Jbest =
1
No

N
i=1cBesti (27)

The notation cBesti denotes the best position in the ith iteration

for the predator, and gBest is the best position for all predators at

each iteration. The average best predator is denoted by Jbest , and q is

the distribution of a chaotic number on (0,1). The b denotes the

contraction expression phase, and it is used to control the

convergence rate. Mathematically, b is defined by Equation 28:

b = bmax −
bmax − bmin

Iterationsmax


 �
� Iterations

� �
(28)

Hence, the final equation is formulated as the following Equation 29:

Step
		!

= ~CQ⨂(Elite
		!

i −~CQ ⊗Prey
		!

i),   i = 1, 2,…
n
2

(29)

Every solution in the current iteration is compared with its

equivalent in the prior iteration for fitness. If the current solution is

found to be a superior match, the previous one is superseded. This

iterative procedure improves solution quality with time and imitates

the behavior of predators that return to locations with abundant

prey after successful foraging attempts. After completion of

optimization, a feature vector of dimension N � 380   and a

feature vector of N � 313, respectively, are obtained.
3.7 Feature fusion and classification

The selected features are finally fused and later classified using

machine learning classifiers. The fusion process improves an

object’s information that directly relates to better accuracy. In this
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work, a simple serial-based fusion has been chosen to combine the

selected feature vectors in a single vector.

Using the following equation, we can determine the dimension of

the serial-based fusion vector if we have two feature vectors, f 1 and f 2,

with dimensions of N � 380 and N � 313, respectively, where N

denotes the total number of observations as defined by Equation 30.

R =  
f 1

f 2

 !
N�380   +N�  313

(30)

The resultant feature vector is obtained of dimension N � 693.

The fused feature vector is finally classified using traditional

machine learning classifiers named as Cubic SVM and Weighted

KNN and neural network-based classifiers such as narrow, wide, tri-

layered, bi-layered, and medium. The hyperparameters used to train

these classifiers are provided in Table 1 as follows:
3.8 Dataset and performance evaluation

The augmented Figshare dataset is used for our experiments

and is contributed by (11). The dataset is publicly available for

research purposes. A model or algorithm’s ability to predict

outcomes based on the available data is measured using

performance metrics in machine learning. The calculated

measures contain each classifier’s sensitivity rate, false negative

rate (FNR), precision rate, and area under the curve (AUC). Time

and accuracy measures are also used to interpret the performance of

each classifier. Table 2 provides more details on these

performance metrics.
TABLE 1 Classifiers and training hyperparameters of each classifier.

Classifier Training hyperparameters Classifier Training hyperparameters

Cubic SVM Kernel function: Cubic
Kernel scale: Automatic
Box constraint level: 1
Multiclass method: one-vs-one
Standardize data: true

Weighted KNN Number of neighbors: 10
Distance metric: Euclidean
Distance weight: squared inverse
Standardize data: true

Wide neural network Number of fully connected layers: 1
First layer size: 100
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Medium neural network Number of fully connected layers: 1
First layer size: 25
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Bilayered neural network Number of fully connected layers: 2
First layer size: 10
Second layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Trilayered neural network Number of fully connected layers: 3
First layer size: 10
Second layer size: 10
Third layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes

Narrow neural network Number of fully connected layers: 1
First layer size: 10
Activation: ReLU
Iteration limit: 1000
Regularization strength (Lambda): 0
Standardize data: yes
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TP is for true positive, TN is for true negative, FP is for false

positive, and FN is for false negative.

The reason to choose each measure provided in Table 1 is

given below:
Fron
• Accuracy is the ratio of accurately predicted occurrences to

total instances. This gives a general idea of how well a

model is predicting in every class. Accuracy by itself,

though, could not be enough if the classes are

unbalanced. In our proposed technique, classes are

balanced. Balance among classes is achieved by data

augmentation process.

• Time required to finish a specific task is given in seconds.

• Sensitivity quantifies the percentage of actual positive

instances that the model accurately predicted. In order to

reduce false negatives, it is very crucial. For example, in the

medical domain, high sensitivity indicates that the model is

effective in identifying positive cases.

• False negative rate refers to the percentage of true positive

cases that were mistakenly forecast as negative. It stands for

the probability of overlooking favorable examples. When

the cost of missing positive occurrences is large, it is

essential to reduce false negative rate.

• Precision gauges how well the model predicts positive

occurrences. If you wish to reduce false positives,

accuracy is crucial. For instance, high precision in

medical diagnosis indicates that the model is likely to be

accurate when it predicts a positive case.

• The area under the receiver operating characteristic (ROC)

curve is known as the area under the curve (AUC). The

trade-off between true positive rate (sensitivity) and false

positive rate is represented graphically by the ROC curve.

AUC offers a single scalar value that sums up the model’s

overall performance. Perfect categorization is indicated by

an AUC of 1.0; random chance is suggested by an AUC

of 0.5.
4 Results and discussion

4.1 Experimental setup

In this section, detailed experimental setup is discussed. The data

augmentation is performed using a sparse auto-encoder. A single
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hidden layer with 300 neurons is selected while the training

parameters like a maximum epochs are 2,000, L2Weight

Regularization is set equal to 0.001, SparsityRegularization is equal to

4, and finally, SparsityProportion is set to 0.15. Hyperparameter

optimization is performed to optimize the parameters of fine-tuned

deep models such as EfficientNetB0 and InceptionResNetV2. The

original dataset is split into a ratio of 50:50 in training and test

proportions. After that, the training and testing images are separately

augmented and trainedmodels. The gradient vectors are accelerated via

stochastic gradient descent (SGDM) for quicker convergence at the

convolutional layers. During the algorithm learning phase for both

models, a mini-batch size 128 is chosen. Additionally, the experiments

are carried out using MATLAB R2023a on a machine equipped with

128 GB of RAM and CPU Intel(R) Core(TM) i7-6700 @ 3.40 GHz and

12 GB RTX3000.
4.2 Proposed framework results (fine-
tuned models)

In this section, results of the first step of the proposed

framework are presented. The hyperparameter optimization using

the Bayesian method is performed separately for EfficientNetB0 and

InceptionResNetV2 models and numerical results are computed.

4.2.1 Fine-tuned Bayesian optimization-
based EfficientNetB0

Table 3 describes the classification performance of fine-tuned

EfficientNetB0 deep architecture with an accuracy value of 99.10%,

achieved by the Cubic SVM classifier. The wide neural network

obtained the second best accuracy of 98.90%. The rest of the

classifiers obtained accuracies of 98.80%, 98.70%, 98.60%, and

98.50%. The sensitivity and precision rates of each classifier are

also noted, and the maximum value of Cubic SVM is 99.10%. In

addition, the performance of Cubic SVM can be confirmed by a

confusion matrix, given in Figure 6A. The diagonal numbers in the

figure represent the number of true observations and the true

positive rate for glioma, meningioma, and pituitary classes. The

computational time of each classifier is also noted during the

classification process, and it is observed that the minimum noted

time is 12.512 (seconds) for Medium Neural Network.

4.2.2 Fine-tuned Bayesian optimization-
based InceptionResNetV2

In the second step, the classification results are computed using

fine-tuned InceptionResNetV2 with the initialization of BO-based
TABLE 2 Performance measures used to validate the proposed methodology.

Name Accuracy
(%)

Time Sensitivity rate (%) False negative
rate (%)

Precision
rate (%)

Area under
the curve

Performance
measure

TP + TN
TP + TN + FP + FN

Seconds TP
TP + FP

FN
TP + FP

TP
TP + FN

Z b

a
f (x)dx

Description It is a characteristic or
condition of being precise
or accurate.

Precise time
to finish
a task

Measures how successfully
a test finds true positives.

Probability of failure to
detect a true positive.

Degree of false
positives in
the result

x-axis integral
over a
particular time
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hyperparameters. The results of this step are given in Table 4, which

shows the maximum accuracy of 98.10 for the Cubic SVM classifier.

The minimum computational time of this step is 20.543 (second)

for the Narrow Neural Network classifier. In addition, the

performance of the Cubic SVM classifier can be confirmed by a

confusion matrix, illustrated in Figure 6B. Compared with the

performance of this step with step 1, it is observed that the

accuracy of this step is degraded by approximately 1%. Moreover,

the increase in time shows the drawbacks of this step. In order to

reduce the drawbacks of this step, a feature selection method is

employed, which selects only important features for classification.
4.3 Feature selection using proposed
QTbMPA feature selection

The third and fourth steps correspond to the best

feature selection.

4.3.1 QTbMPA feature selection on fine-
tuned EfficientNetB0

In the third step, the proposed feature selection method is

applied to deep extracted features; in return, the best optimal
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features are obtained. The results of the feature selection method

on fine-tuned EfficientNetB0 are presented in Table 5. In this table,

the maximum accuracy of 99.00% by the Cubic SVM classifier is

shown. The sensitivity and precision rate of this classifier are also

99% that the confusion matrix in Figure 7A can confirm. Wide

neural network obtained the second best accuracy of 98.80%. Each

classifier’s computational time is noted, and its minimum reported

time is 3.8078 (sec). In step 1, the minimum time was 12.52 (s),

which is now reduced by almost 300%. Moreover, the accuracy of

this step is consistent, which can be a strength of the proposed

feature selection method.
4.3.2 QTbMPA feature selection on fine-
tuned InceptionResNetV2

I n t h e f ou r t h s t e p , f e a t u r e s o f t h e fine - t un ed

InceptionResNetV2 model are selected using the proposed

QTbMPA method and classification is performed. Table 6

describes the results of this step, showing an maximum accuracy

of 97.70% by Cubic SVM. The sensitivity and precision rate of this

classifier is also 97.70%. The confusion matrix in Figure 7B can

further confirm these values. The computational time of each

classifier is also given in this table, and the minimum reported
TABLE 3 Classification results using the BO-based EfficientNetB0 model.

Classifier Accuracy (%) Time (s)
Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.10 20.227 99.10 0.90 99.10 1.00

Wide neural network 98.90 14.505 98.93 1.07 98.93 1.00

Medium neural network 98.80 12.512 98.76 1.24 98.76 1.00

Bilayered neural network 98.70 15.886 98.66 1.34 98.66 0.99

Weighted KNN 98.60 26.907 98.63 1.37 98.63 1.00

Narrow neural network 98.60 15.377 98.60 1.40 98.60 0.99

Trilayered neural network 98.50 16.059 98.53 1.47 98.53 1.00
Bold denotes the best values.
BA

FIGURE 6

Confusion matrix of EffficientNetB0 and InceptionResNetV2 hyperparameter optimization using BO. (A) Confusion matrix of fine-tuned
EffficientNetB0 hyperparameter optimization using BO. (B) Confusion matrix of fine-tuned InceptionResNetV2 hyperparameter optimization
using BO.
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time is 6.1486 (s) for Cubic SVM. Compared with the

computational time of this step with the second step, the time is

reduced almost 300%.
4.3.3 Fusion of best selected features
Finally, the best-selected features of both models, in the third

and fourth steps, are fused using a serial approach. The cubic SVM

classifier obtained the maximum accuracy of 99.80% and the

sensitivity and precision rates of 99.83% (can be seen in Table 7).

The confusion matrix in Figure 8 can further confirm these values.

A minor increase in computational time is observed after the fusion

process; however, the accuracy is significantly improved for all

classifiers. In comparison, with all previous steps, noted accuracy

has significantly improved and is the highest among all early noted

accuracies. Moreover, Table 8 shows a detailed comparison of the

proposed method with state-of-the-art techniques and shows

significant improvement.
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4.4 Discussion

A t-test is a statistical technique used to compare the mean

values of two groups. It is frequently used in hypothesis testing to

see whether a particular process or treatment has a noticeable effect

on the target population or whether there is a significant difference

between the two groups. In order to test the significant difference

between the classifiers, t-test is applied.

In the proposed technique, t-test is conducted to check any

considerable gap between accuracies at different stages of our

proposed model. The gap is resulted when we have unbalanced

classes of dataset (54). The augmented step balanced the classes of

dataset; however, to validate our augmentation step, t-test is applied

on all phases of the proposed technique. The test starts by setting a

null hypothesis as below:

H0   =  The   accuracy   of   the   chosen   classifiers   differs   significantly  

over   the   phases   of   proposed   technique :
TABLE 4 Classification results of using BO-based InceptionResNetV2.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 98.10 21.966 98.06 1.94 98.06 1.00

Narrow
neural network

97.90 20.543 97.93 2.07 97.93 0.99

Wide neural network 97.90 49.824 97.93 2.07 97.93 1.00

Bilayered
neural network

97.90 36.736 97.93 2.07 97.93 0.99

Trilayered
neural network

97.90 36.711 97.86 2.14 97.86 0.99

Medium
neural network

97.80 29.453 97.80 2.20 97.80 1.00

Weighted KNN 97.10 34.365 97.13 2.87 97.13 1.00
Bold denotes the best values.
TABLE 5 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
EfficientNetB0 model.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.00 5.4668 99.00 1.00 99.00 1.00

Wide neural network 98.80 4.5414 98.83 1.17 98.83 1.00

Medium
neural network

98.60 3.8831 98.63 1.37 98.63 1.00

Weighted KNN 98.60 7.4494 98.56 1.44 98.56 1.00

Trilayered
neural network

98.50 4.9574 98.53 1.47 98.53 0.99

Narrow
neural network

98.50 3.9573 98.50 1.5 98.50 1.00

Bilayered
neural network

98.50 3.8078 98.50 1.5 98.50 0.99
Bold denotes the best values.
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Additionally, two best-performing classifiers at all phases of the

proposed technique are chosen. The accuracy achieved by respective

classifier at each phase is selected to conduct experiments.

A detailed overview of test is given below:
The mean of the differences for all experiments are calculated

using the following Equations 31–34:

Difference   (J) =   Accuracy(k) − Accuracy(l)j j (31)

Mean   (m) =  
1
No

I
k=1 Jkj j (32)
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where I is the number of experiments and the noted mean

value after this step is 0:48. After calculating the Mean   (m), the
standard   deviation   (s ) is calculated by using the following

equation:
standard   deviation   (s ) =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(oI

k=1(Jk) − m)2

I − 1

s
(33)

The resultant standard deviation value is 0:357, later used in the

T   Selection formula.
TABLE 6 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
InceptionResNetV2 model.

Classifier Accuracy (%) Time (s)
Sensitivity
rate (%)

False
negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 97.70 6.1486 97.70 2.30 97.70 1.00

Narrow neural network 97.60 7.8251 97.60 2.40 97.60 0.99

Medium neural network 97.60 7.3787 97.60 2.40 97.60 0.99

Bilayered
neural network

97.50 7.7592 97.50 2.50 97.5 0.98

Wide neural network 97.30 11.376 97.20 2.80 97.20 0.99

Trilayered
neural network

97.30 8.9962 97.26 2.74 97.26 0.99

Weighted KNN 97.20 6.8459 97.16 2.84 97.16 0.99
Bold denotes the best values.
BA

FIGURE 7

Confusion matrix of the QTbMPA selection technique for EffficientNetB0 and InceptionResNetV2. (A) Confusion matrix of QTbMPA based best
selected EfficentNetB0 deep features. (B) Confusion matrix of QTbMPA based best selected InceptionResNetV2 deep features.
Phases → BO
based

EfficientNetB0

BO
based

InceptionResNetV2

MPA Optimization
for EfficientNetB0

MPA Optimization
for InceptionResNetV2

Feature
fusionClassifiers

↓

Cubic SVM 99.10 98.10 99.00 99.70 99.80

Weighted
KNN

98.60 97.10 98.60 97.20 99.80
f
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 T   Selection =

ffiffiffiffi
I  

p �   m  
s

(34)

The value 3:012 was obtained after calculation using the above

formula. The obtained value will be considered as a decisive point to

conduct the Student 0 s  T − Test. Moreover, the degree   of   freedo

m   (df ) is calculated using the formula: df = n − 1; the resultant

value is four and selected p   value   =   0:05 (55). After looking at the

corresponding output value in the t-test chart, the value is

( − 2:776,   +2:776). The decisive T   Selection value is 3:012; based

on the given below formulation in equation 35, it is established that

H0 is rejected, and there is no noteworthy difference between the

atp10ccuracy of the selected classifiers.

If   (T   Selection   >=  −2:776   and   <=   +   2:776) (35)

Hypothesis test establishes that throughout the phases of the

proposed technique, there is a consistency in accuracy of each

phase; it means that the class imbalance problem is accurately

addressed. Inconsistent accuracies are the result of imbalance
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classes of dataset, which lead to loss of accuracies. The proposed

data augmentation step helps to properly address class

imbalance problem.

Heat map-based analysis: Heat map-based techniques are

employed to express the decisive features of classification for each

class. Grad-CAM, LIME, and Occlusion Sensitivity are three

methods commonly used to represent decision features for

classification of an image. Grad-CAM uses gradients to determine

the classification score about the final convolutional feature map. It

draws attention to that part of input image that has the biggest

influence on this score. The method uses a global average pooling

layer to extract features. Equation 36 serves as the basis for this

procedure, which is illustrated below:

bcɡ =  
1
N
 oioj

∂cy
∂Bɡ

i,j

(36)

where bcg represents class scores of ɡ features from the Global

Average Pooling layer, N represents total pixels in a feature map, c
FIGURE 8

Classification results after the fusion of selected feature features.
TABLE 7 Classification results after fusing of the best selected features of both models.

Classifier
Accuracy

(%)
Time (s)

Sensitivity
rate (%)

False negative
rate (%)

Precision
rate (%)

Area under
curve (%)

Cubic SVM 99.80 11.198 99.83 0.17 99.83 1.00

Weighted KNN 99.80 13.699 99.80 0.20 99.80 1.00

Wide neural network 99.80 6.776 99.76 0.24 99.76 1.00

Medium
neural network

99.70 5.6234 99.70 0.30 99.70 1.00

Bilayered
neural network

99.70 5.0002 99.66 0.34 99.66 1.00

Trilayered
neural network

99.70 5.6399 99.66 0.34 99.66 1.00

Narrow
neural network

99.60 6.2125 99.60 0.40 99.60 1.00
Bold denotes the best values.
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depicts the class score, and y is the considered output. The whole

expression ∂ Bɡ
i,j represents the convolution map. In the expression,

i and j represent two dimensions and B represents gradients.

Features with negative weight can be possible using the above

equation; therefore, the Relu activation function is used to

convert the negative weights to positive and is represented using

the given below Equation 37:

M = Relu(obcg   :  B
g)  (37)

Mathematical details of LIME and Occlusion Sensitivity can be

seen from (56) and (57), respectively. Figure 9 represents the

visualization of important features of each class using the

explained methods of the heat map.
5 Conclusion

This article presents a novel deep learning framework with

an efficient QTbMPA feature selection technique for the

classification of brain tumor types such as meningioma,

glioma, and pituitary from MRI images. Instead of manual

data augmentation, a sparse autoencoder architecture was
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proposed and generated new images based on the training set.

Two lightweight deep learning architectures were modified and

trained with the help of BO hyperparameter initialization. The

deeper layer (global average pool) was employed for feature

extraction and performed classification. The classification

process shows that there exist few irrelevant features, which

are impacted on the classification computational time.

Therefore, we proposed an efficient QTbMPA feature selection

algorithm that almost 300% reduced the computational time

and maintained the classification accuracy. The selected

features were finally fused and classified using ML and neural

network classifiers. On the augmented dataset, the proposed

framework obtained an improved accuracy of 99.80% than the

SOTA technique.

The goal of the proposed research is to create a deep learning

(DL) model for brain tumor classification, utilizing DL’s

capabilities to classify various forms of brain tumors more

accurately. This finding could have a significant clinical impact

in neuro-oncology and have a wide variety of potential

applications. The proposed research can assist doctors and

radiologists in making accurate diagnoses when using medical

imaging data, such as MRI scans, to identify brain tumors. It

offers dependable and consistent tumor categorization results,
TABLE 8 Summary of recent state-of-the-art (SOTA) techniques for brain tumor classification using Figshare dataset.

Serial no. Reference Year Dataset Accuracy (%)

1 Alanazi et al. (19) 2022 Figshare 95.75

2 Raza et al. (20) 2022 Figshare 99.67

3 Tummala et al. (21) 2022 Figshare 98.70

4 Polat et al. (22) 2022 Figshare 99.18

5 Shaik et al. (23) 2022 Figshare 96.51

6 Haq et al. (24) 2022 Figshare 98.00

7 Rahman et al. (25) 2023 Figshare 97.60

8 Talukder et al. (47) 2023 Figshare 99.68

9 Aloraini et al. (26) 2023 Figshare 99.10

10 Athisayamani et al. (27) 2023 Figshare 98.85

11 Mishra et al. (28) 2023 Figshare 98.97

12 Agrawal et al. (48) 2023 Figshare 96.40

13 Malla et al. (49) 2023 Figshare 98.93

14 Asif et al. (50) 2023 Figshare 98.69

15 Cinar et al. (29) 2023 Figshare 98.32

16 Deepak et al. (30) 2023 Figshare 95.40

17 Zulfiqar et al. (31) 2023 Figshare 98.86

18 Shyamala et al. (51) 2023 Figshare 94.70

19 Yapici et al. (52) 2023 Figshare 99.47

20 Sahoo et al. (53). 2023 Figshare 97.00

Proposed Figshare 99.80
Bold denotes the best values.
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lowering the misdiagnosis risk and enabling early brain tumor

discovery. Furthermore, the accurate classification of brain

tumors might help in developing customized treatment plans

for patients. The model assists physicians in developing

customized treatment regimens that lead to more accurate and

successful treatment outcomes by aiding in the identification of

the exact type of tumor.
5.1 Limitations and future work

Although we obtained the maximum accuracy, there are few

limitations that make the proposed architecture more consistent.

The limitations of this work are selection of pretrained models and

best feature selection. The pretrained models have been selected

based on the Top-5 accuracy on ImageNet dataset and total number

of parameters. In addition, the selection process reduces the

overfitting, but still there are few irrelevant features selected for
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the classification. The proposed architecture has been evaluated on

brain tumor MRIs of the Figshare dataset; however, in future, it will

be tested on BRATS datasets. Moreover, a new self-attention and

vision transformer model will be proposed for the improved

accuracy and efficiency.
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3D-RUnet image segmentation
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Purpose: The present study is based on evidence indicating a potential

correlation between cone-beam CT (CBCT) measurements of tumor size,

shape, and the stage of locally advanced rectal cancer. To further investigate

this relationship, the study quantitatively assesses the correlation between

positioning CT (pCT) and CBCT in the radiomics features of these cancers, and

examines their potential for substitution.

Methods: In this study, 103 patients diagnosed with locally advanced rectal

cancer and undergoing neoadjuvant chemoradiotherapy were selected as

participants. Their CBCT and pCT images were used to divide the participants

into two groups: a training set and a validation set, with a 7:3 ratio. An improved

conventional 3D-RUNet (CLA-UNet) deep learning model was trained on the

training set data and then applied to the validation set. The DSC, HD95 and ASSD

were calculated for quantitative evaluation purposes. Then, radiomics features

were extracted from 30 patients of the test set.

Results: The experiments demonstrate that, the modified model achieves an

average DSC score 0.792 for pCT and 0.672 for CBCT scans. 1037 features were

extracted from each patient’s CBCT and pCT images, 73 image features were

found to have R values greater than 0.9, including three features related to the

staging and prognosis of rectal cancer.

Conclusion: In this study, we proposed an automatic, fast, and consistent

method for rectal cancer GTV segmentation for pCT and CBCT scans. The

findings of radiomic results indicate that CBCT images have significant research

value in the field of radiomics.
KEYWORDS

radiomics, cone-beam CT, rectal cancer, 3D-RUnet, CLAHE
Abbreviations: pCT, Planning Computerized Tomography; CBCT, Cone Beam CT; TME, Total Mesolectal

Excision; nCRT, Neoadjuvant Chemoradiotherapy; pCR, Pathologic Complete Response; CLAHE, Contrast

Limited Adaptive Histogram Equalization; DSC, Dice similarity coefficient; 95%HD, Hausdorff-95 distance;

ASSD, average symmetric surface distance; PCC, Pearson correlation coefficient.
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Introduction

The standard-of-care treatment for locally advanced rectal

cancer (LARC, T34 or N+) is currently total mesorectal excision

(TME) followed by neoadjuvant chemoradiotherapy (nCRT) (1–3).

After nCRT, approximately 15%–27% of patients can show a

pathologic complete response (pCR) (4, 5). And several prior

studies have shown that these patients typically have outstanding

long-term outcomes without surgery (6–9). Habr-Gama and

colleagues suggested a “wait and see” policy, while Maas and

colleagues approach a reasonable solution that could avoid

surgery and preserve organs (6, 10). The pCR, however, could

only be performed using histopathological analysis of surgically

resected specimens. So, it remains a major challenge to develop a

non-invasive, validated way to reliably classify pCR patients

after chemoradiotherapy.

Tumor segmentation and the subsequent quantitative of rectal

cancer in medical images provide valuable information for the

analysis of pathologies and prediction of patient outcomes.

Numerous studies have shown that image radiomic features

extracted from multi-modality imaging techniques, such as CT

(11), MRI (12), and PET-CT (13), can be used to predict the

treatment response and prognosis of locally advanced rectal

cancer. Machine learning models based on CT and MRI image

radiomics have also demonstrated good reproducibility and

robustness (14, 15). However, these imaging techniques are

typically used for disease diagnosis before or after radiotherapy,

and are unable to monitor the changes in tumor heterogeneity

during the treatment process (16). In contrast, cone-beam CT

(CBCT) scans, which are routinely obtained during radiotherapy

to examine patient position changes, do not require patients to

undergo additional radiation exposure. The features extracted from

CBCT may provide valuable information on the changes in tumors

during the treatment process without exposing patients to

additional radiation hazards. The goal of this study is to examine

whether CBCT features can be used for clinical staging or prognosis

assessment of tumors by comparing the linear relationship between

CBCT and pCT-extracted imaging features.

Precise segmentation of rectal cancer as the mask is particularly

important for radiomics extraction and affects the robustness of

radiomic features. The current image segmentation methods

include manual, semiautomatic, and fully segmentation. The U-Net

(17) based models have proven effectiveness over traditional medical

segmentation algorithms. However, the 2D U-Net model for

segmenting tumors only obtain a single tumor slice in CT scan,

while tumors are usually distributed in continuous CT slices (18). To

solve the issues, we extend the 2D U-Net to a 3D version with Resnet

architecture to capture the inter-slice continuity of the tumor.
Methods

Patients

The article under consideration presents a retrospective analysis

of 103 patients who underwent neoadjuvant chemoradiotherapy in
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the Department of Oncology Radiotherapy at the Affiliated Hospital

of Xiamen University between January 2019 and October 2020. The

study followed the ethical principles outlined in the Helsinki

Declaration and its subsequent relevant revisions for all

procedures involving human participants. The inclusion criteria

for the retrospective analysis were as follows:
1. Biopsy-confirmed primary rectal adenocarcinoma

2. Locally advanced disease (T stage ≥3) prior to treatment

3. No prior receipt of chemoradiotherapy, radiotherapy,

or chemotherapy
Only patients who met these criteria were included in the

analysis. In compliance with the Helsinki Declaration of 1964 and

its later corresponding revisions, all the procedures carried out in

this study involving human participants were compliant. CBCT was

scanned during the whole treatment period.
Image acquisition

The CT scans utilized in this study for lesion localization were

conducted using a GE LightSpeed device (manufactured by GE

Medical System, USA). The scans were performed using parameters

of 120 kV tube voltage, 200 mA tube current, a 512×512

reconstruction matrix, and 5mm slice thickness. In addition,

CBCT scans were performed using a Truebeam linear accelerator

(manufactured by Varian Medical System), with a 512×512

reconstruction matrix and 3mm slice thickness.
CLA-UNet structure analysis

In this article, we extend the traditional 2D U-Net to 3D U-Net

equipped with ResNet architecture to capture the inter-slice

continuity of the tumor, and we propose a CLAHE (19)

processed U-Net (CLA-UNet) model to further improve the

clarity of the anatomy structure, texture, and boundary in the

CT image before segmentation. This CLA-UNet designed to

accurately segment the lesion area in positioning CT (pCT) and

cone-beam CT (CBCT) images of rectal cancer tumor. The CLA-

UNet network combines the popular 3D-UNet structure with a

residual module (Res-net) to improve the accuracy of tumor

location and boundary description, ensuring a precise radiation

target area.

The structure of the CLA-UNet network is illustrated in

Figure 1 of the article. The network is designed to automatically

segment the lesion area both in pCT and CBCT images, which also

providing valuable information for radiation treatment planning

and evaluation.
CLAHE algorithm processing

Prior to importing the 3D CT data into the 3D-RUNet network

for training, a preprocessing step is carried out to crop the CT
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volume and enhance the image contour. This involves removing

any blank areas or areas without drawn target regions, resulting in

the cropped CT volume being resized to 256×256×128 voxels using

linear interpolation. As rectal tumors are considered soft tissue, the

CT value range is restricted to (-200, 300). To focus the network

training on information that is relevant to rectal tumors, the 3D CT

image is thresholder such that any image values outside the

specified range are replaced with corresponding boundary values.
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To further improve the clarity of the anatomy structure, texture,

and boundary in the CT image, the thresholder CT image is

processed using the Contrast Limited Adaptive Histogram

Equalization (CLAHE) algorithm.

This results in the rectal structure and boundary becoming

clearer and an overall improvement in image quality, as

demonstrated in a comparison of the image before and after

thresholding and CLAHE processing shown in Figure 2.
FIGURE 2

Data pre-processing with CLAHE. (A) Original CT image; (B) CT image intercepted by threshold with HU=(-200~300); (C) CT image transformed by CLAHE.
FIGURE 1

Layers of the proposed CLA-UNet model.
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Model training and evaluation

The CLA-UNet network is based on the PyTorch kernel

platform and the training machine is configured with a Windows

10 operating system and a Quadro P5000 GPU device. The Adam

optimizer is used for training with an initial learning rate of 0.0001,

and the batch size for network training is set to 2 with a maximum

training cycle of 150. This study is trained on a 103 rectal cancer CT

dataset provided by the First Affiliated Hospital of Xiamen

University, with 70% of the data randomly selected as the

training set and 30% as the testing set. The network is trained

using the Tversky Loss function, shown in Equation 1.

T(a , b) = oN
i=1p0iɡ0i

oN
i=1p0iɡ0i + aoN

i=1p0iɡ1i + boN
i=1p1iɡ0i

(1)

p0i is the probability that the i-th voxel is a tumor, p1i is the

probability that the i-th voxel is not a tumor, g0i is 1 if the voxel is

abnormal, 0 if it is not abnormal, g1i is the opposite of g0i. Tversky

Loss effectively solves the problem of data imbalance by finding a

better balance between accuracy and recall.

The model is evaluated using the Dice similarity coefficient

(DSC), Hausdorff-95 distance (95% HD), and average symmetric

surface distance (ASSD) evaluation metric to compare the

segmentation results with those of CBCT scans.

The DSC is defined as follows, shown in Equation 2:

DSC =
2 P ∩ Gj j
Pj j + Gj j (2)

Where the P represents the ground truth, G denotes the

prediction results and the P ∩​ G is the intersection of P and G.

The range of DSC evaluation is [0,1], and the higher the score is

close to 1.0, the more accurate the prediction is. P and G represent

the target structure drawn by the physician and the

model, respectively.

The HD(A,B) is defined as follows, shown in Equation 3:

HD(A,B) = max(maxa∈B minb∈Bd(a, b)ð Þ,maxb∈B mina∈Bd(b, a)ð Þ)
(3)

Where d (a, b) is the distance between the point a and b.

The ASSD is shown in Equation 4:

ASSD =
1

S(A) + S(B)
(oSA∈S(A)d SA, S(B)ð Þ +oSB∈S(B)d SB, S(A)ð Þ) (4)

Where S(A) represents the surface voxels in set A, and d(SA,S

(B)) represents the shortest distance from SA to S(B).
Radiomics correlation analysis

The open source radiomics extraction software Pyradiomics 3.0

(https://pyradiomics.readthedocs.io/en/latest/) was used to extract

high-throughput features from patient images. In the test group, a

total of 30 cases were automatically segmented from pCT and

CBCT images using the 3D CLA-UNet model. All the images were

filtered by Laplacian of Gaussian (LoG) filter and performed wavelet
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transformation, so there are four types of images, namely, “Original

Images”, “texture Images”, “LoG Images”, and “Wavelet Images”.

After that, the Pearson correlation test was used to analyze the

correlation between the image radiomic feature values of pCT and

CBCT, if the Pearson correlation coefficient (PCC) R is greater than

0.9, it is considered that the feature value has strong consistency and

substitutability in machine learning (14). Pearson correlation

coefficient is a method for measuring the similarity of vectors, the

range of correlation is [-1, 1], it is defined as the ratio of the

covariance and standard deviation of two feature variables,

calculated as follows shown in Equation 5:

r =
Cov(X,Y)

sxsy
=
E½(X − mx)(Y − mx)�

sxsy
(5)

Among them, X and Y are two different groups of eigenvalue

variables, and m_x and s_x are mean and standard deviation

respectively. This process was implemented using the Pearson

algorithm in the R language (R language 3.6).
Results

Study population

The radiomics analysis were conducted on a test set of 30

patients, patients’ radiomic characteristics were grouped by LN

metastasis and compared in Supplementary Table 1. The clinical

information includes gender, age, pathology, and clinical-stage

information. All the patients received pCRT followed by TME,

and group differences were examined.
Model performance

The trend of the average Loss and average Dice values during

the CLA-UNet training process is depicted in Figure 3. It is evident

that as the number of training rounds, also known as epochs,

increases, the Loss values (a) on both the training and validation

sets rapidly decrease, while the Dice values (b) steadily improve.

When the number of epochs reaches 50, the trend stabilizes, with

the Loss value reaching close to 0 and the Dice value reaching a

stable value around 0.8, details were shown in Table 1.

The results of the CLA-UNet network training on 103 samples

showed that the network could segment the rectal tumor with good

accuracy, details shown in Figure 4. As seen in the transverse

sections, the performance of the automatic segmentation was

satisfactory for the majority of the levels. However, there were

some regions, particularly near the cecum and anus, where larger

discrepancies were observed between the manual annotations and

the machine segmentations. This was likely due to the close

proximity of densities in these areas, making it more challenging

to distinguish between the different tissues. In such cases, manual

annotations by doctors may require additional imaging modalities,

such as MRI or PET-CT, or the use of their experience to assist in

the outlining process. Despite these limitations, the average Dice
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score for the CLA-UNet outlining ranged from 0.72 to 0.86, which

is generally in line with the clinical requirements.
Inter-group correlations calculation

Automatically contouring 30 patient images based on deep

learning algorithms to ensure consistency in contouring results.

1037 features were extracted from pCT and CBCT modalities using

machine learning algorithms, including shape features (n=14), first-

order features (n=19), texture features (n=172), wavelet features

(n=728), and loG features (n=104). Pearson’s correlation analysis

was used to analyze the correlation of two sets of features, and

strong correlated features were extracted. 73 features had Pearson

correlation coefficients R greater than 0.9, meaning that these 73

features can be interchangeable. The three features confirmed in

previous literature to be related to rectal cancer staging and new

adjuvant therapy effectiveness (20), including original first-order

Energy, wavelet-HLH_glrlm Gray Level Non Uniformity, and

original_glrlm Gray Level Non Uniformity, are included in the
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strong correlated features. The correlation coefficients R of these

three features are 0.9521, 0.9406, and 0.9191, respectively, the data

of the subsequent two radiomics were shown in detail in Figure 5.
Discussion

The usage of imaging radiomics in CT scans for rectal cancer

diagnosis and prognosis analysis has been well documented in

previous studies (21). However, the application of CBCT in this

regard has been less explored. In this study, a modified deep

learning algorithm, CLA-UNet, was developed to automatically

segment the rectal cancer tumor location. With our previous

work, we had trained the deep-learning model and used it in our

clinical practice. The results indicate that the CLA-UNet model is

feasible and time-saving to perform fully automatic segmentation

for the rectal tumor both on CBCT and pCT images. To evaluate the

accuracy of the 3D mask of the CLA-UNet mode, we compared the

coverage of the predicated area with the manual segmentation with

an average Dice value, which was 0.792 for pCT and 0.672 for

CBCT scans.

Subsequently, imaging radiomic features were extracted and

analyzed from both pCT and CBCT scans using machine learning

algorithms. The results showed that 73 features had a correlation

coefficient (R) greater than 0.9. Our findings also demonstrate that

some of the prognostically significant features of radiomics have a

strong linear relationship between the pCT and CBCT images based

on automatic image segmentation, which indicate a measure of

interchangeability between the two scans. These high-correlation
A B

DC

FIGURE 3

Trend of Loss and Dice value with epoch during training both for CTs (A, B) and CBCTs (C, D).
TABLE 1 Comparison results on the test set for the pCT and
CBCT scans.

pCT CBCT

DSC 0.792 ± 0.056 0.672 ± 0.084

HD95(mm) 15.4 ± 9.5 20.2 ± 12.4

ASSD 4.3 ± 2.1 5.4 ± 2.6
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FIGURE 4

Gross tumor volume contouring with Dice = 0.78. (A) manual; (B) contouring of CLA-UNet; comparing of segmentations between manual and
deep-learning both for transverse (C) and coronal (D) planes. The red was contoured by CLA-UNet and the white was contoured by manual.
FIGURE 5

Scatter diagram of features extracted from CBCT and CT scans.
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features include those previously reported in literature as important

indicators for rectal cancer (22, 23). This highlights the potential

value of CBCT as an early biomarker for treatment response

evaluation (24).

Moreover, high-dimensional features were confirmed in

previous literature to be related to rectal cancer staging and new

adjuvant therapy effectiveness, in the present study, most of the key

features were wavelet features, which are challenging to decipher

with the naked eyes. However, high-dimensional features hold more

detailed information about the tumor and more sensitive when

assessing pCR, as was also demonstrated in recent study (20).

However, there are still some challenges in using CBCT images

for radiomics, cause the extracted textural features typically depend

on the reconstruction and scanning parameters (25). To be

consistent throughout in this study all the CBCTs were resampled

into an equal size of 5mm as pCTs, and the influence of slice

thickness on the radiomic parameters needs further investigation.

Nevertheless, other unknown factors may also influence the

consistency evaluation between pCT and CBCT radiomics.

Potentially, a radiomics approved reconstruction or corrections

could in general improve the consistency and utility of radiomics

in medical imaging. Besides this, the detector size of the CBCT has a

limited field of view (FOV) that may not be large enough for off-axis

patient positions and extensive tumors.

In conclusion, this study provides a preliminary exploration of

the correlation between pCT and CBCT imaging radiomics in locally

advanced rectal cancer. The CLA-UNet algorithm was successfully

applied to segment the rectal tumors, then the correlation between

the extracted imaging radiomic features was analyzed. The results

showed that radiomic features have a high correlation between pCT

and CBCT images, indicating the potential use of CBCT images as an

early biomarker for the evaluation of treatment response. However,

there are still some limitations in the use of CBCT images. First, the

patient sample size was small, a larger sample size test is needed to

achieve robust results. Second, the differences in reconstruction

algorithms and scan parameters, FOV limitations, and sensitivity to

motion artifacts which will influence the consistency evaluation

between pCT and CBCT radiomics. Further research is needed to

explore the potential applications of CBCT in the diagnosis and

prognosis of rectal cancer. Future studies could also focus on multi-

center data collection and validation, and on reducing the number of

features for clinical predictions.
Conclusion

In this study, we have presented a modified 3D-UNet

segmentation method, CLA-UNet, based on deep learning to

automatic segmentation the rectal cancer tumor both for pCTs

and CBCTs. Subsequently, radiomic features were extracted and

analyzed to find out the inter-group correlation, and the results

indicate that some of the prognostically significant features of

radiomics have a strong linear relationship between the pCT and

CBCT images, which indicate a measure of interchangeability

between the two scans.
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An efficient decision support
system for leukemia
identification utilizing
nature-inspired deep
feature optimization
Muhammad Awais1,2*, Md. Nazmul Abdal3, Tallha Akram1,
Areej Alasiry4, Mehrez Marzougui4 and Anum Masood5*

1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah, Pakistan,
2Department of Computer Engineering, TED University, Ankara, Türkiye, 3Department of Computer
Science and Engineering, University of Liberal Arts Bangladesh, Dhaka, Bangladesh, 4College of
Computer Science, King Khalid University, Abha, Saudi Arabia, 5Department of Physics, Norwegian
University of Science and Technology, Trondheim, Norway
In the field of medicine, decision support systems play a crucial role by

harnessing cutting-edge technology and data analysis to assist doctors in

disease diagnosis and treatment. Leukemia is a malignancy that emerges

from the uncontrolled growth of immature white blood cells within the

human body. An accurate and prompt diagnosis of leukemia is desired due to

its swift progression to distant parts of the body. Acute lymphoblastic leukemia

(ALL) is an aggressive type of leukemia that affects both children and adults.

Computer vision-based identification of leukemia is challenging due to

structural irregularities and morphological similarities of blood entities. Deep

neural networks have shown promise in extracting valuable information from

image datasets, but they have high computational costs due to their extensive

feature sets. This work presents an efficient pipeline for binary and subtype

classification of acute lymphoblastic leukemia. The proposed method first

unveils a novel neighborhood pixel transformation method using differential

evolution to improve the clarity and discriminability of blood cell images for

better analysis. Next, a hybrid feature extraction approach is presented

leveraging transfer learning from selected deep neural network models,

InceptionV3 and DenseNet201, to extract comprehensive feature sets. To

optimize feature selection, a customized binary Grey Wolf Algorithm is

utilized, achieving an impressive 80% reduction in feature size while

preserving key discriminative information. These optimized features

subsequently empower multiple classifiers, potentially capturing diverse

perspectives and amplifying classification accuracy. The proposed pipeline is

validated on publicly available standard datasets of ALL images. For binary

classification, the best average accuracy of 98.1% is achieved with 98.1%

sensitivity and 98% precision. For ALL subtype classifications, the best

accuracy of 98.14% was attained with 78.5% sensitivity and 98% precision.

The proposed feature selection method shows a better convergence behavior

as compared to classical population-based meta-heuristics. The suggested
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solution also demonstrates comparable or better performance in comparison

to several existing techniques.
KEYWORDS

bio-inspired, CNN, transfer learning, leukemia classification, deep learning,
metaheuristics optimization
1 Introduction

Blood is a vital fluid for the human body. It performs a number

of crucial physiological functions, including the distribution of

oxygen and nutrients from organs to cells, delivery of waste

products from cells to organs for elimination, the maintenance of

the human immune system, clotting and wound healing process,

and the regulation of body temperature and fluid balance. The

body’s main source of blood production is the bone marrow, a

spongy tissue-like structure located within the bone cavities. A

complex process known as hematopoiesis involves the maturation

of stem cells into other blood cell types.

Figure 1 demonstrates the categorization of stem cells during

hematopoiesis of a normal human being. The hematopoietic stem

cells develop into either of two types of cells, i.e., a) lymphoid stem

cells and b) myeloid stem cells. The lymphoid stem cells are then

converted into the lymphoid blast, which then matures into B and T
0294
subtypes of lymphocytes. In contrast, the myeloid type of stem cells

matures to synthesize erythrocytes, platelets, and various types of

granulocytes (i .e . , basophils , eosinophils , neutrophils ,

and monocytes).

The body produces the blood cells in a controlled manner as per

its requirements. Each cell type has a specific function in preserving

a person’s general state of health. An abnormality in the production

and structure of blood cells leads to certain medical conditions. For

example, white blood cells (WBCs), also referred to as leukocytes,

constitute an integral part of the general immune and inflammatory

response system (1, 2). Leukemia is a blood malignancy that is

caused by the unregulated production of immature leukocytes in

the bone marrow. Figure 2 shows a broad classification of leukemia,

which is primarily of two types, i.e., acute and chronic, depending

upon its progress rate. Chronic leukemia is slow-growing and takes

months or years to manifest its symptoms, whereas acute leukemia

develops rather swiftly. Each type of leukemia is further categorized
FIGURE 1

Human hematopoiesis.
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on the basis of affected leukocytes. In the chronic leukemia category,

chronic myeloid leukemia (CML) affects the myeloid type of cells,

whereas chronic lymphocytic leukemia affects the lymphoid cells.

Similarly, the acute leukemia category is further classified as acute

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML)

categories. ALL is further categorized into T-cell or B-cell subtypes.

B-cell ALL is the most prevalent type of leukemia, impacting the B-

cell lymphocytes; it is further divided into pre-curser, pro, mature,

and common B-cell ALL subtypes.

The existing medical approach for leukemia diagnosis involves a

series of tests, ranging from simple blood count tests to more invasive

tests such as needle biopsy or bonemarrow aspiration. A blood test that

shows a high value of white blood cell count suggests leukemia

diagnosis. An important diagnostic tool in the evaluation of leukemia

is the peripheral blood smear test. It involves the smearing of blood on

the slide and its visual inspection under the microscope. A blood smear

of a leukemia patient shows a significant number of purple-stained

lymphoblasts in the bloodstream, with poorly defined boundaries.

Traditionally, hematologists perform this ocular inspection of blood

smears. This manual method not only consumes much time and effort

of medical experts but can also be error-prone due to several external

factors. Blood analysis is usually the first step of leukemia diagnosis and

is carried out in conjunction with more detailed analysis methods such

as RNA sequencing and molecular genetics. Computer-aided

automation of blood analysis can be a significant step in reducing

the time and cost of leukemia diagnosis.

Thanks to the landmark advancement in the domain of digital

electronics and imaging technologies, automated blood analysis has

been made possible. In particular, computer vision-based blood

disease diagnosis has seen an increased research focus in recent

years. However, due to morphological similarities across various

blood entities as well as their structural anomalies, accurate

machine learning-based blood analysis, particularly leukemia

subtype detection, is still a challenge. A breakthrough in modern

computer vision approaches, i.e., deep convolutional neural networks

(CNNs), has shown a promising solution for a variety of classification

scenarios (3, 4). They are capable of extracting a diverse range of

features from the images. However, a large and well-labeled dataset is

typically required to achieve a certain acceptable accuracy level. In the

biomedical domain, a detailed dataset for CNN training from scratch

is not readily available. Transfer learning is an often adopted
Frontiers in Oncology 0395
approach in which deep CNN, pre-trained on another dataset, is

retrained for a specific task (5, 6). Some well-known pre-trained

CNNs include ResNet (7), MobileNet (8), DarkNet (9), Inception

(10), and Xception (11). Modern methods also propose ensembles of

feature vectors extracted from multiple CNNs (12). Apart from the

wide use of deep CNNs in the computer vision domain, one limiting

factor is the very high size of their extracted feature vectors. The

present focus of research is to investigate approaches to improve the

accuracy of classification systems while reducing their computational

complexity and memory requirements.
2 Literature review

Existing research on leukemia detection can be broadly

categorized into two types of approaches. In the first category, the

studies are included, which perform white blood cell classification as

an important preliminary step. The second category of work is

focused on considering the stained images containing leukemia

blasts and proposing an efficient method for leukemia subtype

classification. Some considerable studies from the first category are

summarized as follows. Sanei and Lee proposed a method that

computes eigenvectors of blood cell images using the minimization

of similarity approach (13). Using the density and color information

of eigencells, a Bayesian classifier was used to perform cell

classification. Kumar et al. (14) used various image pre-processing

techniques with a random forest classifier for blood cancer detection.

Su et al. (15) suggested a segmentation method based on detecting a

discriminating zone of WBCs on the hue, saturation, and intensity

(HSI) space. WBC classification was performed using geometrical,

color, and local directional pattern (LDP) features. Sharma et al. (16)

used DenseNet121 CNN for WBC classification. Almezhghwi and

Serte (17) proposed an image augmentation approach using

generative adversarial networks, and classification was performed

using DenseNet. Yildirim and Çinar (18) proposed Gaussian and

median filtering approaches for image pre-processing. Then, multiple

CNN architectures were trained for WBC classification.

Table 1 summarizes some recently published leukemia

classification methods using blood smear images containing cell

blasts. Bhattacharjee and Saini (19) applied different morphological

operations to perform image segmentation. This was followed by

classification using multiple baseline classifiers to diagnose the

presence of ALL. The proposed solution achieved the best

accuracy of 95.23% with the artificial neural network (ANN)

classifier. Goutam and Sailaja (20) applied K-means clustering for

segmentation, followed by the local directional path technique in

order to extract features, and, finally, classification using support

vector machines (SVMs). The F-measure achieved by this approach

was 93.44. Patel and Mishra (21) applied histogram equalization

along with the zack algorithm group wbcS in the smear images.

Next, various morphological features including area, color, mean,

and standard deviation were extracted and classified using SVM.

The overall accuracy achieved by the system was 93.57%. Rawat

et al. (22) proposed a method in which leukocytes and lymphocytes

were sequentially separated from other blood cells. The shape and

grey-level occurrence matrices were classified using a binary SVM
FIGURE 2

Classification of leukemia disease.
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classifier. Mishra et al. (23) performed nucleus feature extraction

from RGB images using discrete cosine transform (DCT), followed

by SVM classification. Di Ruberto et al. (24) utilized a multiscale

blob detection scheme followed by the watershed algorithm for

segmentation and, finally, classification using CNN and SVM

classifiers. The proposed solution achieves a binary classification

accuracy of 94.18%. Anwar and Alam (26) proposed a three-phase

filtering algorithm to perform image segmentation. Next, 16 robust

features were extracted, and classification was performed using

ANN and SVM classifiers, yielding a specificity of 95.41%. Bodzas

et al. (25) utilized different data augmentation techniques and

performed training on their custom-proposed CNN architecture

to obtain an overall accuracy of 99.5% for the binary classification of

leukemic cells. Batool and Byun (27) proposed a lightweight deep

learning-based EfficientNet-B3 model, which employs depth-wise

separable convolutions for ALL classification. The proposed

method achieves an accuracy of 96.81% for leukemia subtype

classification using public datasets. Elhassan et al. (28) proposed

an approach of AML detection from WBC images. First, a CMYK

moment-based region of interest (ROI) localization method was

used, followed by deep learning-based feature extraction and

classification using several baseline classifiers. The proposed

system achieves the best accuracy of 97.57%. In our previous
Frontiers in Oncology 0496
work (29), we utilized a quantum-inspired deep feature selection

method for WBC classification for leukemia detection.

Modern transfer learning-based deep CNN techniques are

characterized by their ability to extract a high number of

characteristics from the input images. Due to the unreasonably huge

feature sets that must be stored and processed, this has enormous

computational costs and memory needs (30, 31). Most frequently, a

large portion of these extracted deep characteristics are redundant and

provide nothing to help with categorization. By selecting just potent,

discriminating characteristics, feature selection is essential to reduce the

complexity of feature vectors. This shortens the processing time while

simultaneously improving the accuracy of the classification system.

Several studies have investigated efficient feature selection methods,

which include two kinds of approaches, namely, the filter approach and

the wrapper approach. The filter approach quickly converges to the

critical features, but it ignores the relationship between the classification

algorithm and the feature subset. The wrapper approach, in contrast,

considers a tight relationship between a subset of selected features and

accuracy. While nature-inspired metaheuristics have been extensively

applied in a wide range of combinatorial optimization problems (32–

34), they have been recently investigated for feature selection

optimization (35–38).
3 Contributions

This work proposes an improved pipeline for ALL subtype

identification. The following are the main contributions of this study.
1. First, an efficient neighborhood pixel-based contrast

enhancement technique was proposed based on a

differential evolution algorithm, whose parameters were

optimized using a greedy metaheuristic.

2. Next, two CNNs, namely, InceptionV3 and DenseNet201,

were used for feature extraction using deep transfer learning.

3. A combined feature vector was created by performing a

fusion of extracted feature vectors.

4. As a main contribution, the deep feature selection problem

was modeled as an optimization problem and solved using

a nature-inspired Grey Wolf Optimization (GWO)

algorithm. The suggested approach selects only the most

pertinent features, efficiently excluding correlated and

noisy information.

5. The classification performance of various baseline

classifiers was validated on the selected feature set to

obtain the best-performing classifiers.

6. The proposed system achieves better performance metrics

as compared to several existing feature selection methods,

with a significant reduction in feature vector size.
4 Materials and method

The key components of the suggested methodology are

elaborated upon in the subsequent sections.
TABLE 1 Summary of some published studies on leukemia identification.

Author Method Leukemia
type

Results

Bhattacharjee
and Saini (19)

Morphological
segmentation

ALL

Accuracy:
96.67%

Classification:
SVM

Accuracy:
90.47%

ANN Accuracy:
95.23%

K-means Accuracy:
85.71%

Goutam and
Sailaja (20)

K-means clustering
classification: SVM

AML F-
measure
93.44

Patel and
Mishra (21)

Zack algorithm
segmentation

classification: SVM

ALL Accuracy:
93.57

Rawat
et al. (22)

K-means clustering
classification: SVM

ALL Accuracy:
89.8%

Mishra
et al. (23)

DCT feature extraction ALL Accuracy:
81.66

Classification: SVM

Di Ruberto
et al. (24)

Watershed segmentation
classification: CNN, SVM

ALL Accuracy:
94.1.8%

Bodzas
et al. (25)

Classification: ANN, SVM ALL Specificity:
95.31%

Anwar and
Alam (26)

Automated feature
extraction

classification: CNN

ALL Accuracy:
99.5%
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; SVM, support vector
machine; ANN, artificial neural network; DCT, discrete cosine transform; CNN,
convolutional neural network.
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4.1 Description of datasets

This study utilized different datasets of blood smear images. The

initial dataset utilized in this study was the ALL-IDB2 dataset

introduced by Scotti et al. (39). This dataset consisted of a total of

260 pictures, encompassing both healthy individuals and subjects

diagnosed with ALL. The dataset was generated by employing an

optical microscope that was attached to a Canon Power Shot G5

camera. The IDB2 dataset comprises images in which the region of

interest has been cropped to include the area of interest for both

normal and blast cells. All images were stored in the Tagged Image

File Format (TIFF) and had a resolution of 2,592 pixels in width and

1,944 pixels in height. Figure 3 displays a selection of sample images

from the ALL-IDB2 dataset.

This study used multiple datasets of blood smear images. First, the

ALL-IDB2 dataset was used, which was composed of 260 images of

healthy and ALL subjects. The dataset was prepared using an optical

microscope connected to a Canon Power Shot G5 camera. The IDB2

dataset contained images in which the area of interest of normal and

blast cells was cropped as the region of interest. All images were in TIFF

format with a resolution of 2,592 × 1,944 pixels. The figure

demonstrates some sample images of the ALL-IDB2 dataset.

Another dataset prepared by the bone marrow laboratory of

Taleqani Hospital, Iran (40) was also used. The dataset consisted of

3,242 peripheral blood smear images belonging to two classes, i.e.,

benign and malignant. The latter class was further divided into three

sub-classes of ALL, i.e., early, precursor B-cell ALL, and pro-B-cell

ALL. The images were captured using a Zeiss camera integrated with

a microscope setting with ×100 magnification. The resolution of

images was 224 × 224. Figure 4 shows some sample images of the

dataset of (40), whereas Table 2 shows the class distribution.
4.2 Proposed system pipeline

In Figure 5, a pipeline is presented for the proposed system. The

main steps of computation are discussed in the following.
Frontiers in Oncology 0597
4.2.1 Contrast enhancement
In most of the existing works, image enhancement is mainly

accomplished using transforms, points, and spatial operations (41).

Among the transforms, various kinds of filtering operations are

included such as homomorphic or linear operations. Point

operations include contrast enhancement, thresholding, and

histogram adjustment. The main limitation of most of these

methods is that they perform a global operation on the input

image without considering region-specific contrast stretching.

Spatial transformation includes neighborhood-based methods

such as filtering or masking. These techniques sometimes produce

unnecessary noise enhancement of images or increase the

smoothness of image regions where sharpness is required (42).

In this work, we performed image contrast stretching using a

greedy differential evolution approach, which consisted of the

following steps.
1. Convert the input image from RGB image space to

HSI image.

2. Perform contrast stretching of the I-channel of the image

using the proposed greedy differential approach

3. Convert the HSI image to RGB image space.
The proposed contrast stretching method was based on

neighborhood pixel transformations instead of image-wise global

operators. Considering an input intensity image I with dimensions

M × N, we used the following function for pixel-wise update based

on local neighborhood (41). Mathematically, it is formulated by

Equation 1.

f (m, n) = m : d
b+sp(m,n)

� �
½I(m, n) − gmp(m, n)�

+mp(m, n)a   ∀ m ∈ M, n ∈ N ,
(1)

where I(m, n) is the current pixel value of the intensity image

with coordinates m and n, µ is the global mean of the image, µp(m,

n) is the local mean, and sp(m, n) is the local variance of a window

comprising of p × p neighborhood pixels around the central pixel I
FIGURE 3

Some samples of images from ALL-IDB2 dataset of Scotti et al. (39) used in this study.
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(i, j). Munteanu and Rosa (41) used the non-zero constants a, b,
and g. The non-zero value of b allows to have zero standard

deviation sp(i, j) of the pixel window. The final term of Equation

2 was added to achieve smoothness while preserving the brightness.

In this work, we performed automatic estimation of decision

variables a, b, g, and d using a meta-heuristic algorithm. The

following objective function was used in Equation 2:

F(I*) =
log(log(G(I*))� ne(I*)� H(I*)

M � N
, (2)
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where I∗ denotes an enhanced intensity image obtained using

(2) on the input intensity image, and ne(I
∗) and H(I∗), respectively,

denote the number of pixels on the boundary and value of entropy

of I∗. The value of function G(I∗) was obtained by applying a Sobel

kernel on the enhanced intensity image I∗.

4.2.2 Optimization of decision variables using
differential evolution

The estimation of variables a, b, g, and d was performed using

bounded exploration of search space. First, a population matrix P

consisting of Np row vectors was generated, where each vector was

composed of four variables, i.e., a, b, g, and d. Each entity of the

population matrix was generated randomly, as Equations 3–6 (43).

P(i, j) = lb + r1 � (ub − lb),

∀ i ∈ 1,…,Np

� �
, j ∈ 1,…, 4f g, (3)

where lb and ub are respectively the minimum and maximum

values of the decision variable as given in Table 3, and r1 denotes a

random number in [0, 1]. All vectors of population P then

participated in computing the value of intensity transformation

function f(i, j) of Equation 2 and objective function F(I∗) of
TABLE 2 Class distribution of image dataset of Ghaderzadeh et al. (40).

Class No. of images

Benign 512

Precursor B-cell ALL 955

Pro-B-cell 796

Early pre-B 979
ALL, acute lymphoblastic leukemia.
FIGURE 4

Some samples of images from acute lymphoblastic leukemia (ALL) subtype dataset (40) used in this study.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1328200
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Awais et al. 10.3389/fonc.2024.1328200
Equation 2. The vector yielding the maximum value of the objective

function was selected as the population best, i.e., Pb.

In the next step, each population vector Pi i ∈{1, …, Np}

underwent mutation operation to generate its corresponding

mutation vector Mi such that (43)

Mi(t) = Pb(t) + A(Pr1 − Pr2)  + A(Pr3 − Pr4), (4)

where t denotes the value of the current iteration, Pb(t) denotes

the iteration’s best individual vector, and scaling factor A is a

random number in [0, 1]. The indices of population vectors (i.e.,

r1, r2, r3, and r4) were randomly chosen such that they are all

distinct from each other and the index i of the current

population vector.

The population vector Pi and its corresponding mutation vector

Mi then underwent binomial crossover operation to generate vector

Ci such that (43)

Ci(t) =
Pi(t) i ≠ x1     r > x2

Ci(t) i = x1 or r ≤ x2

( )
, (5)

where x1 is a randomly generated index within the interval [1,

Np] and x2 is a random number in [0, 1]. Next, all decision variables

each vector Ci(t) are bounded within limits lb and ub. In differential

evolution, a greedy selection of survival of the fittest was carried out

using the following criteria to update the population matrix (43).
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Pi(t + 1) =
Pi(t)  if F(Ci) < F(Pi)

Ci(t) otherwise

( )
, (6)

where F(Pi) and F(Ci) denote the cost of the objective function

(2) using the vectors Pi and Ci, respectively. This completes one

iteration of the algorithm, which was repeated for T iterations.

4.2.3 Feature extraction
The contrast-enhanced images of datasets were used in the

feature extraction step. For this purpose, we employed transfer

learning as a feature extraction using two well-known deep CNNs,

namely, InceptionV3 and ResNetV2.

InceptionV3 is a deep CNN that belongs to the Inception family

of CNNs. It is pre-trained on the ImageNet database (44) consisting

of 1,000 object classes. The network has 316 layers and 350

connections (45). The size of the first layer, i.e., the input layer, is

299 × 299 × 3. A convolution layer consists of different filters and

stride sizes. Each convolution layer also incorporates batch

normalization and ReLU layers for adding non-linearity. A

pooling layer is also added between the convolution layers to

obtain active neurons. The addition of Inception modules is a

distinguishing characteristic of this network. They are designed

for multiscale feature extraction. Each inception module is built

using multiple parallel convolution layers with different filter sizes

and a pooling layer. The outputs of these layers are concatenated

along the depth dimension.

To use InceptionV3 for feature extraction, its last learnable

layer, “predictions”, was replaced with a fully connected layer,

which had outputs matching the number of classes of our

datasets [i.e., two classes for ALL-IDB2 and four classes for the

dataset of (40)]. The softmax layer named “predictions softmax”

was replaced by the new softmax layer. A label-free classification

layer was added to the network, which replaced the

“ClassificationLayer predictions” layer. Prior to the network

training, the dataset image resizing was performed per the

requirement of the network’s input layer. Then, specific

augmentation steps were performed. The activations were applied
TABLE 3 Minimum and maximum values of decision variables used in
differential evolution.

Decision
variable

Minimum
value (lb)

Maximum
value (ub)

a 0 1.6

b 0 0.5

g 0 0.8

d 0.5 1.5
FIGURE 5

Proposed pipeline for binary and multiclass identification of acute lymphoblastic leukemia.
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on the “avg pool” layer, and a feature vector of length 2,048 was

obtained per image of the training and testing datasets.

DenseNet201 (46) has a depth of 201 layers and was initially

trained on the ImageNet (44) dataset. The DenseNet201 is based on

the idea of layer concatenation; i.e., each layer obtains data from all

of its previous layers and transfers its computed feature maps to all

its next layers. As a result, a thinner and more compact network is

realized, which is computationally efficient and achieves

considerable memory savings.

To use DenseNet201 as a feature extractor, its “fc1000” layer

was substituted with a fully connected one that contains an equal

number of classes from our datasets. Similarly, a new softmax and

classification layer without labels was inserted in the network in

place of their respective layers. After performing image resizing and

augmentation, feature activation was applied on the global average

pool layer, and a feature vector of size 1,920 was extracted per image

of the dataset.

4.2.4 Feature fusion
In this work, we performed a simple horizontal concatenation

of the individual feature vectors extracted from the abovementioned

deep CNNs and formed a fused feature vector of size 1 × (a + b),

where a = 2,048 and b = 1,920 are the number of features extracted

from InceptionV3 and DenseNet201 networks, respectively.

4.2.5 Meta-heuristic for feature selection
The combined feature vector obtained from the transfer

learning steps above has a considerably large size. Directly using

the extracted fused feature vector to train the baseline classifiers

requires a huge amount of processing power and memory. As a

main contribution, this work modeled the optimization problem of

feature selection with the objective of maximizing classification

accuracy with the minimum feature set. The optimization problem

was then solved with the help of a population-based meta-heuristic

named Grey Wolf Algorithm. This technique (47) mimics the

hunting behavior of grey wolves. A pack of grey wolf apex

predators consists of an average of five to 12 individuals. The grey

wolf population is composed of four distinct individuals categorized

as alpha, beta, delta, and omega, based on their dominant order. The

alpha wolf is the individual within a population that holds the

highest rank and assumes the role of decision-maker and dominant

figure. The subsequent position in the dominance hierarchy is

occupied by the beta wolf. It is subordinate to the alpha and helps

in the decision-making. The delta wolf ranks third in the hierarchy

and only dominates the least significant omega group.

In the mathematical framework of GWO, the most optimal

solution is referred to as the alpha wolf (a). Subsequently, the
second and third most optimal solutions are denoted as the beta (b)
and delta (d) wolves, respectively. The main steps of grey wolf

hunting are as follows:
Fron
• Search the prey (exploration).

• Encircle the prey.

• Attack the prey (exploitation).
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The prey encircle behavior of a pack of wolves is mathematically

modeled as defined in Equations 7–18.

D = C :Xp − V(t)
�� ��, (7)

V(t + 1) = Vp(t) − A :D, (8)

where Vp denotes the prey vector position at iteration t, V (t) is

the current position of the grey wolf, A and C are the vectors of

coefficients:

A = 2:a : x1 − a, (9)

C = 2:x2 (10)

where x1 and x2 are vectors containing random vectors in [0, 1],

and a is the encircling coefficient that mimics the encircling

behavior by decreasing linearly from 2 to 0, which is linearly

decreased from 2 to 0 with iterations as (47)

a = 2 − 2(
t

tmax
) (11)

where tmax is the maximum number of algorithm iterations.

During an iteration t, each wolf updates its position using the a, b,
and d wolves such that (47)

V(t + 1) =
V1 + V2 + V3

3
(12)

V1 = Va − A1 :Daj j (13)

V2 = Vb − A1 :Db
�� �� (14)

V3 = Vd − A1 :Ddj j (15)

where Va, Vb, and Vd denote the position vectors of a, b, and d
wolves, respectively, at iteration t; A1, A2, and A3 are computed

using Equation 9. The vectors D, Db, and Dd are computed as

Da =   C1Va − Vj j (16)

Db =   C1Vb − V
�� �� (17)

Dd =   C1Vd − Vj j (18)

The coefficients C1, C2, and C3 are computed using Equation 10.

The original GWO algorithm of Mirjalili et al. (47) is generally

applicable to continuous optimization problems with variables X

∈ R.

4.2.5.1 Binary Grey Wolf Algorithm

This work used a binary GWO algorithm of Emary et al. (48), in

which the position update of the wolf is determined using the

crossover operation of individual genes, and mathematically

formulated by Equations 19–23.

V(t + 1) = (V1 ⊗V2 ⊗V3) (19)
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where V1, V2, and V3 are binary vectors for dimension dmax and

computed as

Vd
i =

1, if (Dd
j + Vd

j ) ≥ 1

0,         otherwise 

( )
     ,∀ d ∈ D (20)

For i = 1, 2, 3, Vd
j is equal to Va ,Vb , and Vd , whereas Dd

j is equal

to Dd
a ,Dd

b , and Dd
d respectively. Dj

d is computed as (48):

Dd
j =

1, if Sdj ≥ r4

0, otherwise 

( )
(21)

where r4 is the vector of random numbers in [0, 1]. The

continuous step size Sdj is computed as (48)

Sdj =
1

exp( − 10(Ad
1 :D

d
j − 0:5)) + 1

(22)

Dd
j is equal to Da ,Db , and Dd , respectively, for i = 1,   2, and 3.

Ad
1 is computed using Equation 9, whereas Dd

j is computed using

Equations 16 – 18. The new position of the wolf is updated using the

following crossover operation (48).

Vd(t + 1) =

Vd
1 , if r6 <

1
3

Vd
2 , if 

1
3 ≤ r6 <

2
3

Vd
3 ,         otherwise

8>><
>>:

9>>=
>>; (23)

where r6 is a random variable that follows a uniform

distribution in the interval [0, 1].

4.2.5.2 Wrapper feature selection using binary GWO

This study presents the application of the binary GWO method

for the purpose of deep feature selection within the leukemia

classification pipeline. The computational steps of the suggested

feature selection strategy are presented in Algorithm 1.

The main inputs to the binary GWO algorithm include the

fused feature matrix F, the vector L, which contains the labels of the

training image set; the maximum count of iterations tmax the size of

grey wolf population np; and dimension size dmax, which represents

the total number of variables (features) of each wolf (solution) of

population. The size of matrix F is nt × dmax, where nt and dmax

respectively denote the number of training images and the

dimension of fused feature vector per image.

Phase 1 initializes the main parameters including iteration

counter t, and alpha, beta, and delta grey wolves Xa, Xb, and Xd

along with their fitness values fa, fb, and fd, respectively. In Phase 2,

an initial population is generated and stored in matrix X of size np ×

dmax. The randn(1, np, 1: dmax) function generates a matrix of

dimensions np ×dmax of binary values of uniform distribution in [0,

1]. The execution phase of the GWO algorithm proceeds in Steps 6–

75. The while loop is executed for tmax iterations. In an iteration,

first, a prey is extracted from the population matrix (Step 8), and its

fitness is evaluated (Step 9). The Fitness function receives three

inputs, namely, the fused feature set F, the vector L of labels, and

one member of the population, i.e., a binary vector X. In the Fitness

function routine, Steps 85–86 obtain the features from F, which are

indexed by non-zero values of X. The updated feature matrix F2 is
Frontiers in Oncology 09101
then divided into testing and training parts. In Steps 87–93 of the

Fitness function, the classification error of the K-nearest neighbor

(KNN) classifier is used as a fitness value (cost). This value is then

used to update the alpha, beta, and delta Xa, Xb, and Xd grey wolf

vectors, respectively, in Steps 10–23 of the main function. Steps 26–

74 of the main routine perform the position update of each grey

wolf of the population according to Equations 19, 20 of the binary

GWO algorithm. After the execution of the while loop for tmax

iterations, the global best solution, i.e., alpha wolf Xa, contains the

indices of features to be selected from the fused feature vector.
1: External Inputs: F, L,dmax,tmax,np

2: Phase 1: Initialization of Main Parameters t ← 1,

Va(1,1: dmax) ← 0, fa ← ∞

Vb(1,1: dmax) ← 0, fb ← ∞

Vd(1,1: dmax) ← 0, fd ← ∞

3: Phase 2: Generate Initial Population of Grey Wolves

4: (1: np,1: dmax) ← randn(1: np,1: dmax)

5: Execution

6: while i< tmax do

7: for j = 1: np do

8: V ← (j,1: dmax)

9: f ←Fitness (F, L, V)

10: if f< fa then

11: Vb←Va

12: fb ←fa

13: Va ←V

14: fa ← f

15: else if f< fb then

16: Vd ← Vb

17: fd ← fb

18: Vb←V

19: fb ← f
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Fron
20: else

21: Vd ← V

22: fd ← f

23: end if

24: end for

25: Population Update

26: for j = 1: np do

27: for d = 1: dmax do

28: a← 2 − 2 i
tmax

29: a1←2.a.rand(1, 1)-a

30: a2←2.a.rand(1, 1)-a

31: a3←2.a.rand(1, 1)-a

32: c1←2.rand(1, 1)-a

33: c2←2.rand(1, 1)-a

34: c3←2.rand(1, 1)-a

35: Da (1,d)← c1 :Va (1,d) − V(j,d)j j

36: Db (1,d)← c1 :Va (1,d) − V(j,d)j j

37: Dd (1,d)← c1 :Va (1,d) − V(j,d)j j

38: S1(1,d)← 1
1+exp(−10(a1 :Da (1,d)−0:5))

39: S2(1,d)← 1
1+exp(−10(a2 :Db (1,d)−0:5))

40: S3(1,d)← 1
1+exp(−10(a3 :Dd (1,d)−0:5))

41: if S1(1,d) ≥ randn(1,1) then

42: D1(1,d) ← 1

43: else

D1(1,d) ← 0

44: end if

45: if S2(1,d) ≥ randn(1,1) then

46: D2(1,d) ← 1
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47: else

D2(1,d) ← 0

48: end if

49: if S3(1,d) ≥ randn(1,1) then

50: D3(1,d) ← 1

51: else

D3(1,d) ← 0

52: end if

53: if (Va(1,d) + D1(1,d)) ≥ 1 then

54: Z1(1,d) ← 1

55: else

Z1(1,d) ← 0

56: end if

57: if (Vb(1,d) + D2(1,d)) ≥ 1 then

58: Z2(1,d) ← 1

59: else

Z2(1,d) ← 0

60: end if

61: if (Vd(1,d) + D3(1,d)) ≥ 1 then

62: Z3(1,d) ← 1

63: else

Z3(1,d) ← 0

64: end if

65: r ← rand(1,1)

66: if r < 1
3 then

67: V(j,d)←Z1(1,d)

68: else if r ≥ 1
3 andr < 2

3 then

69: V(j,d)←Z2(1,d)
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70: else

71: V(j,d)←Z3(1,d)

72: end if

73: end for

74: end for

75: end while

76: Select Features

77: I ← 1: dmax

78: SF ← I((Va == 1))

OUTPUT: SF

79: Function: Fitness

80: Inputs: V,L,F

81: Parameters: k = 5,ho = 0.2,a1 = 0.99,a2 = 0.01

82: if (sum(V == 1) == 0) then

83: G = 1

84: else

85: F2 ←F( :, (V == 1))

86: Atrain ,Ltrain ,Atest ,Ltest ←partition(F2,L,ho)

87: Model←trainKNN(Atrain ,Ltrain ,k)

88: Lpred ←predict(Model,Atest)

89: a←sum(Lpred == Ltest)=length(Ltest)

90: e← 1 − a

91: qs ←sum(a == 1)

92: qt ←length(V)

93: G ←a1 � e + a2 � ( qs
qt
)

94: end if

95: Return: G
ALGORITHM 1. Feature selection based on binary GWO algorithm.
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4.2.6 Classification
The set of selected features from the binary GWO algorithm

was then used along with the label L for training and classification of

outer classifiers. Multiple classifiers were used in this work, and the

best-performing classifiers were selected.
5 Results and discussion

The proposed decision support system for leukemia

identification was implemented on an Intel Core i5 CPU with

and 64-bit Windows 10 operating system and 16GB RAM.
5.1 Experiment 1: binary classification

First, the proposed pipeline was implemented for binary

detection of leukemia using the ALL-IDB2 dataset. The

classification performance of CNN was influenced by the quality

and size of the training dataset. A small dataset leads to overfitting

and poor generalization of the model. Hence, augmentation of

contrast stretched ALL-IDB2 dataset was performed using the

operations of random rotation, flipping, intensity modification,

and brightness correction. Table 4 shows the class distribution of

ALL-IDB2 as a result of augmentation. In the next step, the

augmented dataset was divided into training and test parts with a

70:30 split ratio, as shown in Table 5. Then, the training dataset was

used for transfer learning of InceptionV3 and DenseNet201 models

with parameters listed in Table 6.

InceptionV3 and DenseNet201 return deep feature vectors of

sizes 2,048 and 1,920, respectively, which are horizontally

concatenated to obtain a fused feature vector of size 3,968. This

vector is then subjected to the proposed feature selection step using

the GWO algorithm. After a fixed number of iterations, the GWO

algorithm returns its best solution, i.e., a reduced vector of the most
TABLE 4 Class distribution of ALL-IDB2 dataset before and
after augmentation.

Class
Frequency

Before After

Healthy 130 593

ALL 130 601
ALL, acute lymphoblastic leukemia.
TABLE 5 Training and testing ALL-IDB2 dataset for binary classification
of leukemia.

Class Training Images Testing Images Total

Healthy 415 178 593

ALL 420 181 601

Total 835 359 1,194
fronti
ALL, acute lymphoblastic leukemia.
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important selected features, which are then used to train several

baseline classifiers with multiple settings of their kernel. Table 7

shows the performance results of the proposed binary classification

pipeline. The KNN classifier with cosine kernel achieves the best

performance metrics with a reduced feature vector of 797 features,

which is approximately 80% smaller than the original fused feature

vector of size 3,986. The confusion matrix of the KNN cosine

classifier is demonstrated in Table 8.

In Figure 6, the error rate of the GWO algorithm is plotted

along with the standard genetic algorithm (GA), as a function of

iterations with a constant value of population size np = 20. A better

convergence behavior is demonstrated by the GWO algorithm as

compared to GA, which reveals that GWO performs better

exploration of feature search space.
5.2 Experiment 2: leukemia
subtype classification

In the second step, the proposed pipeline was implemented for

multiclass problems, i.e., leukemia subtype identification using the
Frontiers in Oncology 12104
dataset of Ghaderzadeh et al. (40). As discussed earlier, the dataset

consists of four classes, i.e., benign, precursor, pro-B-cell, and early

pre-B. Following the contrast stretching phase (Section 4.2.1) on the

dataset, the augmentation was carried out using the same

methodology as binary classification. The class distribution of the

augmented dataset is shown in Table 9. Next, with a splitting ratio

of 70:30, the training and testing parts of the dataset were extracted

as shown in Table 10.

In Table 11, the leukemia subtype classification results are

presented. Several classifiers with various kernels were tested. The

performance metrics, i.e., accuracy, precision, recall, sensitivity,

specificity, and F1 score, were computed through macro averaging

of the individual class metrics. In this case, the SVM classifier with

Gaussian kernel achieved the best average accuracy of 98.05%,

whereas the maximum average accuracy values achieved by KNN,

decision tree, and neural network (NN) classifiers were 97.9%, 82.4%,

and 95.8%, respectively. The testing confusion matrix with the SVM

Gaussian classifier is demonstrated in Table 12, whereas the class-

wise statistics are mentioned in Table 13. The maximum accuracy of

98.66% was achieved by the pro-B-cell class, whereas all other classes

achieved an accuracy of above 90%.
TABLE 6 Parameter settings for training of InceptionV3 and DenseNet201 models.

Parameter Value Parameter Value

Kernel type sdgm Max epochs 10

Initial learning rate 1× 10−4 Environment Auto

Validation frequency 30 Stride size 1

Mini-batch size 20 Dropout rate 0.1
TABLE 7 Results of binary classification of leukemia on ALL-IDB2 dataset.

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall

KNN cosine
KNN coarse
KNN cubic
KNN fine

797

98.1
97.8
97.9
97.5

0.981
0.971
0.981
0.964

0.987
0.981
0.976
0.965

0.98
0.972
0.972
0.989

0.987
0.972
0.972
0.977

SVM (regression)
SVM (Gaussian)
SVM (quadratic)

85.2
86.4
72.2

0.887
0.894
0.734

0.842
0.891
0.741

0.890
0.901
0.882

0.80
0.86
0.72

Decision tree (medium) 72.4 0.742 0.725 0.73 0.726

NN wide 94.8 0.925 0.911 0.932 0.951
fron
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
TABLE 8 Confusion matrix of binary classification experiment of ALL-IDB2 with KNN-cosine classifier.

Predicted class

TPR FNRALL Healthy

True Class ALL 177 4 97.7% 2.2%

Healthy 2 176 98.8% 1.2%
tie
TPR, true-positive rate; FNR, false-negative rate; KNN, K-nearest neighbor; ALL, acute lymphoblastic leukemia.
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Table 14 presents an accuracy comparison of three feature

extraction methods, i.e., a full set of deep features extracted from

InceptionV3 and DenseNet201 CNNs, a reduced set of features

selected by the proposed GWO algorithm, and a standard genetic

algorithm. The table demonstrates that the GWO algorithm achieves

a better or comparable accuracy as compared to the other two feature

selection methods with a significantly small feature set.

In Table 15, a comparison is presented of the performance of our

proposed method with some existing studies on leukemia

identification. For a fair comparison, we selected the published

studies that have used identical or almost similar datasets. Our

proposed pipeline for leukemia binary detection and subtype

identification achieves better or comparable performance metrics as

compared to several other relevant studies with smaller feature sizes.

This shows the validity and applicability of the proposed approach.
6 Conclusion

Leukemia, a kind of hematologic malignancy, is frequently

diagnosed in both pediatric and geriatric populations. An automated,

computer-aided system of leukemia diagnosis is essential to aidmedical
FIGURE 6

Error rate of feature selection using genetic and Grey Wolf Optimization algorithms. Population size np = 20.
TABLE 9 Class distribution of dataset of Ghaderzadeh et al. (40) before
and after augmentation.

Class
Frequency

Before After

Benign 512 1,024

Precursor 955 1,000

Pro-B-cell 796 1,050

Early pre-B 979 1,020
TABLE 10 Class distribution of training and testing parts of dataset of
Ghaderzadeh et al. (40) for leukemia subtype classification.

Class Training images Testing images Total

Benign 716 308 1,024

Precursor 700 300 1,000

Pro-B-cell 735 315 1,050

Early pre-B 714 306 1,020

Total 2,149 1,229 4,094
TABLE 11 Results of leukemia subtype classification using the dataset of Ghaderzadeh et al. (40).

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall

KNN cosine
KNN coarse
KNN cubic
KNN fine

797

97.9
97.6
97.4
96.4

0.783
0.781
0.709
0.771

0.78
0.78
0.71
0.771

0.978
0.976
0.974
0.96

0.783
0.781
0.974
0.771

SVM (regression)
SVM (Gaussian)
SVM (quadratic)

85.2
98.14
96.2

0.721
0.785
0.638

0.642
0.78
0.61

0.890
0.981
0.96

0.659
0.785
0.61

Decision tree (medium) 82.4 0.68 0.689 0.82 0.826

NN wide 95.8 0.71 0.86 0.952 0.086
fron
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
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TABLE 12 Confusion matrix of leukemia subtype identification using SVM Gaussian classifier on dataset of Ghaderzadeh et al. (40).

Predicted class

TPR FNRBenign Precursor Pro-B-cell Early pre

T
ru
e 
C
la
ss

Benign 1,004 11 5 4 98.04% 1.9%

Precursor 5 982 11 2 98.2% 1.8%

Pro-B-cell 2 2 1,036 10 98.6% 1.4%

Early pre 6 13 5 996 97.67% 2.35%
F
rontiers in On
cology
 14106
 frontie
TPR, true-positive rate; FNR, false-negative rate; SVM, support vector machine.
TABLE 13 Statistics of individual classes using SVM Gaussian kernel.

Class Accuracy % Sensitivity % Precision % Recall

Benign 98.04 98.72 98.72 0.9804

Precursor 98.2 97.42 97.42 0.982

Pro-B-cell 98.66 98.01 98.01 0.986

Early pre 97.64 98.41 98.41 0.976
SVM, support vector machine.
TABLE 14 Performance comparison of leukemia classification using three feature selection approaches, i.e., proposed GWO feature selection
algorithm, feature selection using genetic algorithm, and full feature set.

Classifier
Full feature set Genetic algorithm Grey Wolf Algorithm

No. of features Accuracy % No. of features Accuracy % No. of features Accuracy %

KNN cosine

3,986

97.2

1,520

96.2

797

97.9

KNN coarse 96.9 94.3 97.6

KNN cubic 98.1 97.2 97.4

KNN fine 95.1 96.1 96.4

SVM Gaussian 98.5 97.58 98.14

SVM regression 90.2 89.2 85.2

NN wide 96.2 94.5 95.8

Decision tree medium 84 81.2 82.4
KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
TABLE 15 Comparison of classification accuracy of proposed leukemia identification pipeline with some existing relevant works.

Work Proposed method Dataset Disease type Performance result

Classification: SVM, ANN

(24) Multiscale blob detection
deep feature extraction: AlexNet classification: SVM

ALL-IDB ALL Accuracy = 94.1%

(25) Preprocessing
segmentation: three-phase filtering morphological feature extraction

Self-collected ALL Specificity = 93.5%

(49) Active contours for nucleus detection
Shape and texture feature extraction classification: NN, SVM

Self-collected Leukemia Accuracy = 98.8%

(50) Preprocessing
Feature extraction: hybrid CNN
Classification: bagging ensemble

ALL-IDB
MiMMSBI
SN-AM

ALL
AML

Multiple myeloma

ALL classification accuracy
= 97.04%

This
work

Contrast stretching using DE
Deep feature extraction: InceptionV3 and DenseNet201 feature selection:

GWO algorithm

ALL-IDB2
(40)

Leukemia
ALL subtypes

Accuracy = 97.9% Accuracy
= 98.14%
KNN, K-nearest neighbor; ANN, artificial neural network; ALL, acute lymphoblastic leukemia; NN, neural network; AML, acute myeloid leukemia; GWO, Grey Wolf Optimization.
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professionals in making informed decisions about the disease and

making an effective prognosis and treatment plan. In this work, we

have demonstrated the effectiveness of deep feature optimization taking

as a relevant design case, the detection, and classification of leukemia

disease from blood smear images. We have proposed a hybrid deep

learning methodology utilizing transfer learning as feature extraction.

The problem of feature selection has been modeled as a combinatorial

optimization problem and solved using a customized Grey Wolf

Optimization algorithm. Our proposed leukemia identification

system can be used as a supporting evidence tool in conjunction

with other more detailed analysis methods such as RNA sequencing

and molecular testing. We believe that the proposed expert system can

also be integrated with more complex and rather practical image

analysis systems such as image flow cytometry.
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A deep learning model for the
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grab cut algorithm
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School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
Introduction: Brain tumors are a common disease that affects millions of people

worldwide. Considering the severity of brain tumors (BT), it is important to

diagnose the disease in its early stages. With advancements in the diagnostic

process, Magnetic Resonance Imaging (MRI) has been extensively used in disease

detection. However, the accurate identification of BT is a complex task, and

conventional techniques are not sufficiently robust to localize and extract tumors

in MRI images. Therefore, in this study, we used a deep learning model combined

with a segmentation algorithm to localize and extract tumors from MR images.

Method: This paper presents a Deep Learning (DL)-based You Look Only Once

(YOLOv7) model in combination with the Grab Cut algorithm to extract the

foreground of the tumor image to enhance the detection process. YOLOv7 is

used to localize the tumor region, and the Grab Cut algorithm is used to extract

the tumor from the localized region.

Results: The performance of the YOLOv7 model with and without the Grab Cut

algorithm is evaluated. The results show that the proposed approach

outperforms other techniques, such as hybrid CNN-SVM, YOLOv5, and

YOLOv6, in terms of accuracy, precision, recall, specificity, and F1 score.

Discussion: Our results show that the proposed technique achieves a high dice

score between tumor-extracted images and ground truth images. The findings

show that the performance of the YOLOv7 model is improved by the inclusion of

the Grab Cut algorithm compared to the performance of the model without

the algorithm.
KEYWORDS

brain tumor, deep learning, YOLOv7, grab cut algorithm, magnetic resonance imaging
(MRI), gamma correction
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1 Introduction

Brain tumors (BT) result in an unusual growth of brain cells,

which is caused by the uncontrolled division of cells in the brain. In

general, BTs are categorized as malignant (cancerous) or benign

(noncancerous). (1). Benign or normal tumors do not cause any

damage to the brain cells and can be easily treated. On the other

hand, malignant tumors are dangerous and can spread to other

organs if not treated in the early stages. The tumors are also

classified as primary and secondary tumors wherein primary BT

is developed from the existing cells and secondary tumors are

developed from the cancerous cells (2). Benign tumors develop

slowly and can be identified easily. These tumors can be removed by

determining the brain region where they are located. Conversely,

brain tumors can have serious consequences on human health and

do not have any specific boundaries. Hence, they can affect other

healthy cells in the brain and thereby completely disrupt the

functioning of the brain (3).

There are several imaging modalities such as Perfusion

magnetic resonance imaging (4), computed tomography (CT) (5),

and positron emission tomography (PET) (6). Among the different

techniques, MRI is a potential technique for identifying

irregularities in brain patterns and works effectively on soft tissue

(7). MRI is an invasive technique that generates high-quality brain

images with better resolution. Usually, brain tumors are treated

using advanced treatment processes such as chemotherapy,

radiotherapy, and surgery which can destroy cancerous cells

completely if the location of the tumor is identified correctly (8–10).

Manual identification and diagnosis of brain tumors can be a

tedious and labor-intensive task. Since these techniques depend on

manual intervention, the accuracy and precision of the tumor

detection process are questionable. Hence, there is a need for a

qualitative approach that can detect tumors and their location in the

early stage with high accuracy and precision (11–13). The use of

machine learning (ML) and deep learning (DL) techniques for

precisely detecting BT has been emphasized in several studies

(14, 15).

ML algorithms such as support vector machines (SVM) (16),

Random Forest (RF) (17), Decision Trees (DT), K-nearest neighbor

(KNN) (18), etc. have been used in previous works. However, these

algorithms depend on manual feature extraction wherein the

detection models are trained using these features. Hence, the

accuracy of the detection and classification of brain tumors

depends on the quality of the extracted features. In addition,

constructing ML classifiers requires more resources, and their

computational time is very high while processing large-scale

datasets. As a result, these models exhibit a low classification

accuracy (19).

A substantial amount of research has been dedicated to brain

tumor detection and segmentation processes and various

researchers have attempted to address the complexities associated

with the detection process (20–22). One of the main challenges
Frontiers in Oncology 02110
related to brain tumor identification is the classification of

neoplastic tissues which are heterogeneous in nature. These

tissues overlap with the healthier tissues most of the time and

conventional techniques used for tumor detection fail to distinguish

them. Texture analysis is one such effective technique that can be

used to determine the textural features of the tumors such as

regularity, and orientation of the tumor, and thereby identify

multiple indistinct areas in an image (23, 24).

The extraction of textural features helps the classifier to

determine both visible and non-visible tumor regions with the aid

of advanced techniques such as MRI. Conventional ML classifiers

use gray-level and pixel-level-based features for classifying

malignant and benign tumors. Various algorithms are used to

automatically segment BT using MRI images and these

techniques fail to achieve desired solutions for the issues related

to BT detection techniques (25). The hybrid Convolutional Neural

Network (CNN) and Deep Neural Network (DNN) were suggested

(26) for addressing the drawbacks of ML algorithms such as high

computational time and reduced classification accuracy. In this

process, the CNN model was used to extract features that were

classified using a fully connected network. The DNN employed in

this work enhanced the performance of CNN by accurately

classifying the tumor regions with an accuracy and F1 score of

96.08% and 97.3% respectively.

An ensemble model is implemented for distinguishing BT from

MRI images (27). A pre-trained Inception ResNetV2 model is

adopted for tumor detection and a ML-based RF model is

employed for determining the stage and type of brain cancer (28).

A cycle generative adversarial networks (C-GAN) model is used to

augment the size of the dataset. The results exemplify that the

proposed ensemble approach achieved detection and classification

accuracies of 99% and 98%, respectively. The authors Dipu et al.

(29) implemented a YOLOv5 model for detecting BT along with a

DL library known as FastAi. The model was trained using data

collected from the BRATS 2018 dataset, which consisted of 1,992

brain MRI images. It attained an overall accuracy of 85.95% and the

FastAi model exhibited an improved accuracy of 95.78%. These two

techniques validated the effectiveness of DL in the early detection of

brain cancer.

The work mentioned in (30) implemented a YOLOv3 for

identifying cancerous BTs. The YOLOv3 model was combined

with a CNN model to boost the performance. This hybrid model

attained an accuracy of 97%. However, YOLOv3 significantly

requires more memory and this can be a challenging factor while

working with limited resources. A YOLOv4 model is employed in

(31) for BT detection. It is trained using a transfer learning (TL)

approach and a pre-trained COCO dataset was used to maximize

the tumor detection performance. Compared to the traditional

YOLO model, the YOLOv4 model achieves better performance

but with a high localization error.

A YOLOv5 was used by Paul et al. and Shelatkar et al. (32, 33)

for segmenting brain cancer images and diagnosing brain tumors.
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The YOLOv5 was trained on the BRATS 2021 dataset and the

model achieved an average precision of 88%. It was observed from

the results that the YOLOv5 model provided a slightly lesser

accuracy compared to other classification models. It was also

inferred that the complexity of the model increases the training

time. The authors Arunachalam & Sethumathavan and Hossain et

al. (34, 35) implemented YOLOv5 to detect abnormalities from

brain images. The YOLOv5 model performed better compared to

previous versions of YOLO and exhibited excellent tumor detection

performance. However, the model was not tested for detecting

malignant tumors from brain images.

As inferred from the existing approaches, most of the

techniques used in the brain tumor detection process employ pre-

processing and segmentation to identify and distinguish BTs and

these techniques are not effective in recognizing normal or

malicious tumor areas. In addition, conventional YOLO models

namely YOLOv3, YOLOv4, and YOLOv5 suffer from certain

drawbacks such as high computational complexity, compromised

accuracy to maintain fast execution speed restricts their adaptability

in disease detection tasks. Besides, these models rely on larger

datasets, and collecting such datasets for rare tumor classes can be a

tedious and time-consuming task. These drawbacks motivate this

research to employ an advanced version of the YOLO model to

automatically segment BTs with enhanced accuracy.

To address these drawbacks, in this work, we implemented a

deep learning (DL) model for the accurate detection of brain tumors

with better performance. The detection and segmentation of brain

tumors from MRI images using the hybrid DL-based YOLOv7 and

Grab Cut algorithms are presented here. The model was trained

using a Br35H Brain tumor dataset, and its effectiveness is validated

through a comparative analysis.

The primary contributions of the proposed work are as follows:
Fron
• The data processing technique used in this work consists of

different processes such as RGB to Gray conversion, Otsu’s

thresholding, Brain Skull Removal, Image Resizing, and

Median filtering.

• We proposed an efficient object detection-based YOLOv7

algorithm for diagnosing brain tumors in the early stages to

mitigate the effect and speed up the diagnosis process.

• A gamma correction technique and a Grab Cut algorithm

are used to extract the Gamma-corrected image.

• The performance of the YOLOv7 model is evaluated with

and without the GrabCut algorithm and the proposed

model performed better than the other existing

algorithms in both cases.
The remaining portion of the paper is organized as: Section 2

includes the suggested methodology to train the model with the

sourced dataset for detecting tumors from brain MRI images. This

section also discusses the implementation of YOLOV7 and the

GrabCut algorithm for the detection and extraction of tumors.

Section 3 evaluates the results of the experiments conducted based

on the proposed methodology. Lastly, Section 4 outlines the

conclusion based on the produced results with future scope.
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2 Materials and methods

This paper aims to achieve a highly accurate recognition of BTs

from MRI images. DL-based YOLOv7 model (36) is used for

achieving faster and more accurate results for tumor detection

and classification. The automatic recognition of BT is a

challenging task because of the similarities and irregularities in

tumor images obtained from MRI scans. These issues make it

difficult for the classifier to recognize and classify the tumors with

better precision. Hence, it employs a Gamma correction mechanism

to improve the quality of the images.

This work implements a structured approach to classify BTs. In

the initial stage, the data from the brain tumor dataset is collected

for analysis, and in the second stage, the images are preprocessed

and subjected to Gamma correction in the third stage. In the fourth

step, the YOLOv7 model is implemented to detect and locate the

tumor. In the fifth stage, the Grab cut algorithm (37) is used for

extracting the foreground of the tumor image The process flow of

the proposed approach is shown in Figure 1.
2.1 Dataset collection and preparation

The dataset used for training the YOLOv7 model is collected

from BR35H: Brain Tumor Detection 2020 (BR35H) (38). The

dataset incorporated 1437 brain MRI images of which 734 were

malignant and 703 were normal tumors. The dataset consists of

both T1 and T2 weighted images and all images are two-

dimensional (2D images) and have a dimension of 256 × 256

pixels. All the images are skull-stripped and labeled as ‘YES’ if the

tumor is present; otherwise, labeled as ‘NO’. The description of the

dataset is given in Table 1.

The dataset is split into a ratio of 70:15:15 where 70% of the data

is used for training the model, 15% for testing, and the remaining

15% for validation.
2.2 Data preprocessing

The data is preprocessed to enhance the quality of the images and

make them suitable for the classification process. Preprocessing

significantly improves the classification performance of the DL

models by filtering out the uncertainties. In this work, preprocessing

is performed using different stages such as RGB to Gray conversion,

Otsu’s thresholding, Brain Skull Removal, Image Resizing, and

Median filtering.
• RGB to Gray conversion: The RGB images consist of red,

green, and blue-scale images arranged on top of each other. A

grayscale image is a single-layered image denoted as an M ×

N array, whose values are used to represent the intensity of an

image. To convert the RGB images into gray images, the

components of the red, green, and blue images were extracted

and represented in three different two-dimensional matrices.

A new matrix is created with similar dimensions, where the
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Fron
number of rows and columns is equal to that of the RGB

images. Each pixel of the RGB image was converted at

location (i, j) to grayscale values by determining the

weighted sum of the RGB color components and assigning

it to the respective location (i, j) in the new matrix. This

process simplifies the classification process and reduces

computational complexity.

• Otsu’s thresholding process: This process is used to

determine a threshold value to reduce the overlap

between foreground and background images. In other

words, Otsu’s algorithm returns a single intensity

threshold value that separates the pixels into two different

sets: foreground and background.

• Brain Skull Removal: Skull stripping was performed to

eliminate non-brain tissue from the MRI images. This

improved the speed and accuracy of the segmentation

process. At this stage, flood-filling and masking
tiers in Oncology 04112
operations were considered for the skull removal process.

The flood-fill algorithm is used to identify or modify

adjacent values in the image based on their similarity to

the original values. Furthermore, masking was performed to

identify a specific Region of Interest (ROI) for analyzing the

tumor. This process discards image regions that are not

characterized by tumors.

• Image Resizing: It is performed to minimize the size of the

image without altering the actual image information. In this

work, all the input images were resized to (250x250) pixels

to avoid overfitting.

• Noise Removal: The noise in the input images was removed

using a median filter with a kernel size of (3x3). Median

filters are highly effective in filtering noise while preserving

the edges. The filter computes the intensity of the pixel

surrounded by the central pixel. The obtained median value

was replaced with the intensity of the center pixel.
2.3 Gamma correction

The preprocessed images are subjected to Gamma correction to

control the overall brightness of the tumor image. In this process,

the images that are too dark or bright are corrected. The CNN

performs automatic classification of the image attributes

considering the statistical features. The contrast of the image is

enhanced by dynamically modifying the parameters. In this stage,

the Gamma correction is applied for each ROI of the image and this

contributes to the overall image enhancement process. Overall, by

incorporating gamma correction into the pipeline, the model can

benefit from improved image quality, enhanced feature

representation, and better generalization capabilities, ultimately

leading to improved classification performance for brain tumor

images. However, this did not change the underlying content or

category of the image.
2.4 YOLOv7 model for tumor detection

Considering the benefits of the supervised learning of DL based

YOLO model, this research employs an advanced version of the

traditional YOLO model known as the YOLOv7 model. The

YOLOv7 model is designed to develop an appropriate technique

for identifying BT from brain MRI images. The working operation

of YOLOv7 is unique and indistinct from fundamental methods

used for detecting BT. In this process, the model simultaneously

predicts the class and puts a bounding box around the tumor area.

Each bounding box consists of five components (x, y, w, h, and the
TABLE 1 Description of the Brain Tumor MRI Dataset.

No of Images No of patients Training Samples Testing Samples Validation Samples Label

With Tumor 734 68 514 110 110 Yes (1)

No Tumor 703 70 493 105 105 No (0)
front
FIGURE 1

Workflow of the proposed method.
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confidence score) with the first four components corresponding to

the center coordinates (x, y, width, and height) of the respective

bounding box, and the fundamental motive of YOLO is object

detection and localization via bounding boxes. Therefore, two sets

of bounding box vectors are required, i.e., vector ‘y’ is the

representative of ground truth, and vector ‘Y’ is the predicted

vector which is shown in Equation 1.

Y   = ½pc, bx , by , bh, bw, c� (1)
Fron
• pc corresponds to the objectness score (the probability score

of the grid containing an object).

• bx, by, are the x and y coordinates of the center of the

bounding box for the enveloping grid cell.

• bh, bw, correspond to the height and the width of the

bounding box for the enveloping grid cell.

• ‘c’ corresponds to the class.
The MRI images are arranged in a grid of dimensions D x D for

each grid cell. In the case where the center of the object of interest

falls into one of the grid cells, that particular grid cell would be

responsible for the detection of that object. This permitted the other

cells to neglect the object in the case of multiple appearances. Each

grid cell predicts B bounding boxes along with the dimensions and

confidence scores. The confidence score was indicative of the

absence or presence of an object within the bounding box.

Therefore, the confidence score can be expressed as Equation 2:

C = Pr   (Object)� IOUtruth
pred (2)

where Pr  (Object) dignified the probability of the object being

present, within a range of 0–1, with 0 indicating that the object does

not exist and  IOUtruth
pred   notes the intersection-over-union with the

predicted bounding box for the ground truth bounding box. To

address multiple bounding boxes containing no object or the same

object, YOLO opts for non-maximum suppression (NMS). By

defining a threshold value for the NMS, all overlapping predicted

bounding boxes with an IoU lower than the defined NMS value

are eliminated.

The losses associated with YOLOv7 are bounding box loss and

objectness loss. Bounding box Loss (Localization loss) is

represented in Equation 3:

Li box = (xi − bxi )2 + (yi − byi )2 + (
ffiffiffiffiffi
wi

p
−

ffiffiffiffiffifficwip
)2 + (

ffiffiffiffi
hi

p

−

ffiffiffiffiffibhiq
)2 (3)

here (x̂i, ŷi, ŵi, ĥi) represent ground truth values and  (xi  yi  wi,

 hi represent predicted values. Objectness Loss(confidence loss) is

expressed as in Equation 4:

Li object  = (ci − bci)2 (4)

In this process, the features are learned from labeled data, and

the YOLOv7 is initialized using the learned features. In this work,

the model is trained using both low-level and high-level features of

the brain tumor, and the model is updated after every iteration. This
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allows fine-tuning of the learned parameters and enables the layers

of YOLOv7 to capture features that are highly discriminative in

nature. The architecture of the YOLOv7 model is illustrated

in Figure 2.

The proposed YOLOv7 architecture incorporates three layers

namely; (i) Backbone: E-ELAN, (ii) Neck: PANet, and (iii) Head:

YOLO Layer. The backbone layer is the first layer responsible

for extricating important tumor features from MRI images.

A cross-stage partial network is utilized for extracting

representational features.

The backbone of YOLOv7 consists of an Extended Efficient

Layer Aggregation Network (E-ELAN) architecture (39) that uses

expand, shuffle, and merge cardinality to improve the learning

ability of the model without affecting gradient flow paths. E-ELAN

modifies the YOLOv7 architecture in the computational block and

the architecture remains the same in the transition layer. E-ELAN

incorporates a group convolution method to maximize the channel

capacity and cardinality of the computation block. The channel

multiplier is applied to all blocks in the computation layer, and a

feature map is created for each block. The feature maps from all

blocks are concatenated, and the obtained feature map is used to

merge the cardinality, as shown in Figure 3.

The second layer is the PANet layer, also known as the neck of

the model. The main reason behind selecting PANet is its capacity

to restore the spatial data and thereby contribute significantly to the

improvement of the localization process which in turn helps in

creating the mask around the image. This layer employs anchor

boxes for constructing feature vectors with bounding boxes for

tumor detection. The neck aggregates the feature maps obtained

from the Backbone and creates feature pyramids. The neck is made

up of multiple paths and the features extracted from the backbone

model are used to create the FPN as shown in Figure 4.

The last layer in the YOLOv7 architecture is the head of the

model which computes the final predictions as classification and

localization. The head predicts classes and bounding boxes,

classification scores, and objectness scores of objects based on the

features collected from the neck. In YOLOv7, the head generates the

final output, which is called the Lead Head, and assists in training

the middle layers, called the Auxiliary Head. With the help of

assistant loss, the weights of the auxiliary heads are updated, which

enables deep supervision and thereby allows the model to learn

better. The head of the YOLOv7 model is presented in Figure 5.
2.5 Grab cut algorithm

The detected tumor from the YOLOv7 model is analyzed using

the Grab Cut algorithm which extracts the feature from the gamma-

corrected image. This algorithm is used to extract the foreground of

an image by drawing a rectangular box around it. This box helps in

coordinating the image regions. However, the image contains both

foreground and background regions and hence it is essential to

eliminate the redundant background regions. This is achieved

through a segmentation process wherein the pixels located in the

foreground and background images are segmented and thereby
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helping in extracting only foreground images to achieve a better

tumor detection performance. An input image is accepted whose

value is 1 and for that, a bounding box is assigned. This determines

the object in an image that needs to be segmented. The steps

involved in the process are defined as follows:
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Step 1: A Gaussian Mixture Model (GMM) is used for

estimating the color distribution across the foreground and

background images.

Step 2: A Markov random field is constructed over the

pixel’s labels.

Step 3: The final segmented output images are obtained via the

Grab Cut algorithm.

In Grab Cut, the model for monochrome images is replaced by

GMM for color images. Soft segmentation is performed wherein a

new vector k = {k1,…, kn,…, kN} is imputed to each pixel of GMM’s

knth component, where kn = 1, 2,…, K (Normally K = 5), and an =

0,1 is assigned to each pixel to show that it belongs to either the

foreground or background GMM. The energy function of the

GrabCut algorithm is defined as shown in Equation 5:

E (a,  k,  q,  z)  =  U (a,  k,  q,  z)  +  V (a,  z) (5)

and GMM is defined using Equation 6:

G(z) =  oK
i=1wk  gk   (z;   uk,Sk),  o

K

i=1
wk   = 1,   and   0 <  wk  

< 1 (6)

Where gk = (z; mk, Sk) is the Gaussian distribution function for

each component t k, k = 1, 2,…K is given by Equation 7.

ɡ(   z;  m;  S) =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD o
�� ��q exp½− 1

2
  (z − m)T  o​−1(Z −  m)� (7)
FIGURE 3

E-ELAN as Backbone Layer for YOLOv7 architecture.
FIGURE 2

The proposed architecture of the YOLOv7 model.
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and wk is the weighting coefficient, mk is the means, Sk is the
covariance matrix for kth component and D is the number of

dimensions of variable z. Combining equations 2, 3, and 4, the

term U is computed as in Equation 8.

U   (a ,   k,   q , z) =  o
n
G   (a ,   k,   q, z) (8)

Where G (a, k, 0, z) is expressed as in Equation 9.

G   (a ,   k,   q, z) =  −logw(an,   kn) +
1
2
log o(an,   kn)

�� �� + 1
2
 ½zn

− m(an,   kn)
T  o(an,   kn)

−1½zn
− m(an,   kn)�   (9)

And the term q is defined as in Equation 10.

q = p(a ,   k),  m   (a ,   k),  o(a ,   k),  a = 0,   1,   k = 1,  … :,  K
� �

(10)

Grab Cut minimizes the energy function by modifying the

iterative minimization cut algorithm. In the initial stage,

the algorithm considers two-pixel sets wherein one set

represents the background (an = 0) and another one for object

classes (an = 1). Two GMMs were initialized along with the two

sets to start the iteration. GrabCut is an interactive version of
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graph cut where the user quickly marks some pixels as

background, some as foreground, and then graph cut sorts out

the rest (constraining the marked pixels to belong to the

background and foreground or source-side and sink-side

respectively). In this algorithm, the minimum cut is obtained by

determining the maximum flow of data in the graph. In a graph,

the connectivity is formed by removing the set of edges which also

forms two individual subsets namely a maximum and a minimum

cut. The max-flow min-cut theorem states that the maximum flow

through any network from a given source to a given sink is equal

to the minimum sum of a cut. The results of the simulation

analysis are discussed in the below sections.
3 Results

This section provides localization and segmentation results on a

dataset made publicly available on Kaggle (38). We conducted our

experiments on the PYTHON 3.10.2 platform and executed on a

system with an Intel(R) Core (TM) i5-1035G1 CPU, 8 GB RAM,

and 3.3 GHz. We trained the model using the following

hyperparameters: a learning rate (lr0) of 0.01, weight decay of

0.0005, and batch size of 16. We used the ADAM optimizer for

100 epochs.
A B

FIGURE 5

Head layer in YOLOv7 architecture. (A) Normal model (B) Model with auxiliary head.
FIGURE 4

PANet layer in the YOLOv7 architecture.
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3.1 Performance evaluation metrics

The efficacy of the YOLOv7 model was determined using the

following metrics.

Accuracy is defined as the percentage of accurately detected

brain tumors and is calculated as shown in Equation 11.

Accuracy =
TP + TN

TP + TN + FP + FN    
    (11)

Recall is defined as the ratio of brain tumor images that were

accurately classified as shown in Equation 12.

Recall =
TP

           TP + FN                    
  (12)

The F1 score is determined as the weighted harmonic mean of

its precision and recall are given by Equation 13.

F1 score =
2   *   Precision*Recall
Precision   +  Recall

(13)

Similarly, precision is defined as the accuracy of the positive

predictions which is shown in Equation 14.

Precision =
TP

TP + FP
(14)

Based on the YOLOv7 model we trained, we achieved good

results in terms of the overall mAP and individual class

performance. The model achieved an overall mAP50 of 0.9391

and mAP 50-95 of 0.4981 on the validation set. This means that the

model was able to accurately localize the tumor region with a high

degree of confidence.

Figure 6 shows the loss values for the box loss, and object loss at

each epoch during the training process. The box loss represents the

difference between the predicted and ground-truth bounding box

coordinates, and the object loss represents the confidence score for

each object detected in an image. The goal of training an object
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detection model is to minimize the total loss, which is a

combination of box loss, and object loss. The loss values should

exhibit a decreasing trend as the training progresses, indicating an

improvement in the model’s ability to localize the tumor region.

Moreover, from Figure 6, it appears that the precision, recall,

and mean average precision (mAP) are all increasing with training

epochs. This could indicate that the model improves over time and

becomes more accurate at identifying the correct location of the

tumor region. Our proposed model achieved a mean average

precision (mAP50) of 0.9304 and 0.9391, respectively, indicating

a high level of accuracy in identifying and localizing tumor regions

in the images. The model accurately localized tumor regions with a

precision (P) of 99% and recall (R) of 100%, demonstrating its

abil ity to localize tumor regions even in challenging

image conditions.

Overall, the results of our YOLOv7s model suggest that it

performed well in accurately localizing the tumor region in the

brain MR images we used for training and validation. Hence, we can

infer that these results demonstrate the potential of the YOLOv7

and Grab cut model for localizing and extracting brain tumor in MR

medical images.
3.2 Simulation results

The input image for YOLOv7 and the tumor detected image is

shown in Figure 7.

The values of different performance metrics obtained from

simulation for the proposed method are tabulated in Table 2.

It can be inferred from the table that the proposed detection

model achieved an optimal accuracy of 99.5% for training and

testing datasets, and 99% for validation datasets. In addition to the

performance evaluation metrics listed in Table 2, the performance

of the proposed approach was validated in terms of training and
FIGURE 6

Outcomes of the training process.
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validation loss, objectness loss, precision, and recall which are

illustrated in the figures below.

The loss function of YOLOv7 is computed as a combination of

two individual loss functions, that is, Bounding Box Regression

(which measures how well predicted bounding boxes capture

ground truth bounding boxes) and cross-entropy loss (which

measures how well a job the detector did in predicting the correct

class). The box loss represented in Figure 8A shows the effectiveness

of the algorithm in terms of locating the center of the object (tumor

image) and how well the predicted bounding box covers an object.

The validation objectness loss is shown in Figure 8B. Objectness loss

measures the probability that a tumor exists in the proposed ROI. If

objectness is high, the image window is likely to contain an object.
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As observed in Figure 8B, the proposed approach exhibits a high

objectness score and hence helps in locating the tumor from the

given image. The precision and recall graphs for the proposed

model are shown in Figure 9.

The training measurement values used to train the YOLOv7

model are tabulated in Table 3. A graphical representation of the

training process outcomes is shown in Figure 6.

Figure 6 shows that the mAP values obtained during the validation

for 100 epochs was IOU = 0.5 and mAP for IOU from 0.5 to 0.95. For

mAP at 0.5 and 0.95 are measured as the step values for different values

such as 0.05 (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95).

In addition, the comparison is done between ground truth test

images and predicted test images. In this work, four segmentation

techniques like Fuzzy C means segmentation, K-means clustering,

Otsu thresholding, and Grab cut algorithm are applied for finding

the DICE similarity measurement between ground truth images and

predicted test images. The resultant images for the segmentation

process are shown in Figure 10.

The dice similarity measurements for all four segmentation

techniques are illustrated in Table 4. It is understood from the

results that the proposed Grab cut algorithm yields enhanced results

compared to other techniques by achieving high dice similarity

measurement. The performance of the YOLOv7 model in

combination with the Grab cut algorithm is also compared with
TABLE 2 Performance metrics for the proposed method.

Training Testing Validation

Accuracy 99.5% 99.5% 99%

Precision 99.0% 99.0% 98.03%

Recall 100% 100% 100%

Specificity 100% 100% 100%

F1 score 99.5% 99.5% 99%
A B C

FIGURE 7

(A) Input image (B) Tumor detected using YOLOv7 (C) Extracted tumor using Grab Cut algorithm.
A B

FIGURE 8

(A) Training and validation Box loss of the proposed model (B) Training and validation Objectness loss of the proposed model.
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that of other tumor extraction mechanisms, and the results are

illustrated in Figure 11.
4 Discussion

Although several studies have been conducted on the

application of deep learning for tumor localization and extraction,

the combination of Grab cut and YOLOv7 has not been widely

employed in this field. Actually, as far as we are aware, no studies

have used YOLOv7 plus Grab cut for this purpose. Therefore, by

using YOLOv7 in combination with Grab cut for tumor localization

and extraction, our work represents a novel contribution to

the field.
A B D EC

FIGURE 10

(A) Ground truth image (B) Fuzzy segmented image (C) K-means segmented image (D) Otsu’s segmented image (E) Proposed Grab Cut
segmented image.
FIGURE 9

Precision- Recall of the proposed model.
TABLE 3 Findings from training procedure.

Epochs Box
loss

Val
Box loss

Objectness
loss

Val
Objectness loss

Precision Recall mAP
@ 0.5

mAP@
0.5: 0.95

1 0.07792 0.07574 0.01807 0.01491 0.00332 0.9798 0.0032 0.00048

10 0.06179 0.07527 0.00763 0.00861 0.08104 0.2626 0.03995 0.00600

20 0.05863 0.07332 0.00650 0.00729 0.6102 0.2688 0.2806 0.09291

30 0.04947 0.07618 0.00532 0.00612 0.7755 0.5859 0.7094 0.2555

40 0.0455 0.07286 0.05112 0.00469 0.8157 0.7152 0.773 0.323

50 0.03831 0.06884 0.00461 0.00460 0.9157 0.8889 0.9211 0.4099

60 0.04114 0.06723 0.00506 0.00475 0.8183 0.8687 0.8892 0.4378

70 0.04045 0.06302 0.00479 0.00465 0.9261 0.9091 0.9291 0.4515

80 0.03322 0.06304 0.00456 0.00465 0.9384 0.9293 0.9464 0.4771

90 0.03923 0.06588 0.00482 0.00449 0.8846 0.9291 0.9304 0.4881

100 0.03426 0.06369 0.00469 0.00449 0.9681 0.9191 0.9391 0.4981
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Moreover, it is important to remember that accuracy on its own

might not be a good enough statistic for object detection tasks

because it ignores false positives and false negatives. Rather, mean

average precision, or mAP, is frequently employed to assess how

well object detection models perform. The mAP offers a more

thorough assessment of the model’s performance by accounting for

precision and recall at various intersection over union (IoU)

thresholds. Our study’s mAP50 of 0.9391 shows that our model

does a good job of identifying the tumor location.

The performance of the proposed model is compared with

other techniques, such as the hybrid CNN-SVM, YOLOv5, and

YOLOv6 models. The outcomes are shown in Figure 12, and the
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obtained values are listed in Table 5. The table clearly shows that

our model outperforms the benchmark models in terms of

metrics of dice similarity, accuracy, precision, recall, specificity,

and F1 score.

In Figure 10, the first, third, and fourth rows represent the

tumor input image and the second row represents a non-tumor

input image. As inferred from the comparative results (Table 4) the

proposed YOLOv7 achieves excellent results compared to the

existing methodologies. The accuracy of 99% is obtained by using

the proposed approach and the accuracy of hybrid CNN-SVM is

69%, YOLOv5 and YOLOv6 are 97.5% respectively. A highest

precision of 98.03% is achieved by the YOLOv7 model and the

precision values are 69.79%, 97.02% and 97.79% for hybrid CNN-

SVM, YOLOv5 and YOLOv6 techniques respectively.

In addition, the YOLOv7 model is also tested with and without

the application of the Grab cut algorithm, as shown in Figures 13A,

B, respectively. The average mean dice similarity score value

between the predicted test images and corresponding ground

truth images using Grab cut algorithm for tumor extraction is

shown in Table 6. The outcomes of YOLOv7 with and without the

combination of Grab Cut are shown in Figure 14.

Results show that the proposed technique attains a high dice

score between tumor extracted images and Ground truth images.

The findings show that the performance of the YOLOv7 model is

improved by the inclusion of the Grab Cut algorithm as compared

to the performance of the model without the algorithm.
TABLE 4 Dice similarity measurement of various
segmentation techniques.

Segmentation techniques Dice similarity
measurements

Fuzzy Segmentation(Pitchai,
R et al.,2021)

0.9240

K-means Clustering(Sinaga, K.
P et al.,2020)

0.9354

Otsu’s Thresholding(Huang, C
et al., 2021)

0.8765

Proposed Grab cut Algorithm 0.9831
Bold text and values represent the proposed work.
A B D EC

FIGURE 11

Tumor extracted images (A) Ground truth image (B) CNN-SVM + Grab cut (C) YOLOv5 + Grab cut (D) YOLOv6 + Grab cut (E) YOLOv7 + Grab cut.
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5 Conclusion

This paper deploys a new BT detection and extraction method

using deep convolution neural network YOLOv7 in combination

with Grab cut algorithm. This approach detects the salient images

for accurate results. The proposed model involved different stages of
Frontiers in Oncology 12120
preprocessing like noise removal, image resizing, thresholding and

RGB to gray conversion. The tumor image is converted to grayscale

before being segmented and corrected using the Gamma correction

process based on the threshold level. Our methodology provides

better resolution and dimension-independent segmentation

outcomes than the prior deep learning-based detection
FIGURE 12

Brain Tumor detected images of the different models..
TABLE 5 Comparison of the proposed method with other methods.

Hybrid CNN-SVM YOLOv5 YOLOv6 Proposed YOLOv7

Accuracy 69% 97.5% 97.5% 99%

Precision 69.79% 97.02% 97.79% 98.03%

Recall 67% 98% 97% 100%

Specificity 67% 98% 97% 100%

F1 score 68.36% 97.51% 97.48% 99%
Bold text and values represent the proposed work.
A B

FIGURE 13

(A) Performance of the various models without Grab cut algorithm (B)Performance of the various models with Grab cut algorithm.
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techniques. We evaluated our method using BR35H: Brain Tumor

Detection 2020 (BR35H) dataset. Results show that the YOLOv7

model in combination with grab cut achieves an outstanding

accuracy of 99% in comparison to existing hybrid CNN-SVM,

YOLOv5 and YOLOv6 models. The outcome of the analysis

reveals that the YOLOv7 model is fast compared to the other

models. In addition, the YOLOv7 accurately detects and extracts

BT in the presence of the Grab Cut algorithm. This approach is best

identified for BT detection when implemented for larger datasets.

This model can be extended in the future to explore various types of

tumors from the extracted tumor for accurate diagnosis.
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Similarity Measurements

0.3328 0.8105 0.8190 0.9147
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Outcomes of YOLOv7 with and without Grabcut.
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ultrasound-guided percutaneous
biopsy of lesions in the first
hepatic hilum with fusion of
ultrasound and multimodal
imaging cognitive guidance
Xian-Tao Zeng1,2,3†, Xia Liang1,2,3†, Zhi-Liang Hong1,2,3†,
Sheng Chen1,2,3, Jian-Chuan Yang1,2,3, Yu-cheng Lin1,4

and Song-Song Wu1,2,3*

1Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China, 2Fujian Provincial Key
Laboratory of Critical Care Medicine, Fuzhou, China, 3Department of Ultrasound, Fujian Provincial
Hospital, Fuzhou, China, 4Department of Ultrasonography, Affiliated Fuzhou First Hospital of Fujian
Medical University, Fuzhou, China
Purpose: This study aims to evaluate the efficacy and safety of ultrasound-guided

percutaneous biopsy of the first hepatic hilum lesion, and examine its clinical

value of diagnosis and treatment.

Methods: We conducted a retrospective study on patients diagnosed with the

first hepatic hilum lesions at Fujian Provincial Hospital between February 2015

and October 2022. We selected patients who had lesions in the first hepatic

hilum(including a 2cm surrounding area of the left/right hepatic ducts and

upper-middle segment of the common bile duct) and the liver periphery(in the

peripheral area of the liver, outside of the above-mentioned first hepatic porta

region). These patients underwent percutaneous ultrasound-guided core needle

biopsy (PUS-CNB) with cognitive fusion guidance using CT, MRI, or PET-CT. We

compared the safety and efficacy of PUS-CNB in the first hepatic hilum and the

liver periphery to explore the value of PUS-CNB in optimizing the clinical

treatment of the first hepatic hilum lesions.

Results: The studied includes 38 cases of the first hepatic hilum cases (18

females; 20 males), 23 presented with mass-forming tumors while the

remaining 15 exhibited diffuse infiltrative tumors, with an average diameter of

4.65± 2.51 cm. The percutaneous biopsy procedure, conducted under

ultrasound guidance, had an average operation time of 14.55 ± 2.73 minutes,

and resulted in a postoperative bleeding volume of approximately 10.79 ± 2.79

ml. The diagnostic success rate was noted to be as high as 92.11% among the

participants who underwent percutaneous biopsy of the first hepatic hilum.

Procedural complications, such as bleeding, bile leakage, intestinal perforation,

infection or needle tract seeding, did not occur during or after the biopsy

procedure. Affected by biopsy results, 5 altered their clinical treatment plans

accordingly, 24patients received non-surgical treatment, 9 underwent surgical

treatment, 5 underwent radiofrequency ablation for the lesions. The study
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comprised a total of 112 cases for percutaneous biopsy of the liver periphery. The

safety and effectiveness of the two biopsy techniques were comparable, with

diagnostic success rates of 92.11% VS. 94.34%, respectively (p = 0.61).

Conclusion: Cognitive fusion of ultrasound and multi-modal imaging for the first

hepatic hilum lesion puncture biopsy is a safe and effective diagnostic procedure,

with better diagnostic rate, may improve clinical value of diagnosis and treatment

of various diseases.
KEYWORDS

multi-modal imaging, cognitive fusion, first hepatic hilum, ultrasound-guided, core
needle biopsy
1 Introduction

The first hepatic hilum, located on the visceral surface of the

liver, is a complex anatomical region where multiple structures

converge, including the portal vein, hepatic artery, bile duct,

lymphatics, nerves, and connective tissue. Lesions in this area

pose a diagnostic challenge as imaging features of benign and

malignant tumors can overlap, resulting in approximately 13-15%

of preoperatively suspected malignancies being diagnosed as benign

(1, 2). Clinicians should be aware of these challenges when

evaluating patients with suspected lesions in the first hepatic

hilum. Surgical resection of lesions located in the first hepatic

hilum represents a formidable challenge, with reported rates of

severe complications ranging from 37-64%, and surgical mortality

rates of 8-10% (3). As such, obtaining an accurate histological

diagnosis prior to surgical intervention is essential for ensuring

proper diagnosis and appropriate surgical management. This

crucial step can help mitigate the risk of adverse outcomes and

improve patient outcomes (4). The most commonly used biopsy

techniques for diagnosing suspected malignancies in the bile duct

include cytology using brush cytology during endoscopic retrograde

cholangiopancreatography (ERCP) (5), forceps biopsy, and

endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA).

However, ERCP is primarily used to sample the bile ducts and has a

detection rate of 44% to 80% for suspected cholangiocarcinoma in

that area (6, 7). The malignant tumor detection rate for forceps

biopsy is 43% to 81% (8, 9). EUS-FNA demonstrates slightly higher

diagnostic sensitivity (45%-86%) (10, 11). But lower negative

predictive value (9%-38%) compared to previous techniques for

obtaining pathological tissue of the first hepatic hilum lesions (12,

13). False negatives may occur, highlighting the need for alternative

approaches to safely and effectively diagnose advanced malignant

tumors and obtain tissue for genetic testing to facilitate targeted

and immunotherapy.

Hence, there is an urgent need for novel strategies that can

guarantee the safe and effective acquisition of pathological tissue from

lesions in the first hepatic hilum, thereby enabling precise
02124
preoperative diagnosis. We conducts a study to explore a novel and

safe percutaneous biopsy technique for detecting the first hepatic

hilum lesions. The primary objective is to bolster diagnostic precision,

furnish valuable insights for clinical deliberation, and promote better

treatment selection, particularly in the context of malignant tumors.
2 Materials and methods

2.1 The subjects of study

This retrospective study encompassed cases between February

2015 and October 2022 at Fujian Provincial Hospital. The patients

who were included in the study exhibited lesions within the first

hepatic hilum(including a 2cm surrounding area of the left/right

hepatic ducts and upper-middle segment of the common bile duct)

(Figure 1) and the liver periphery(in the peripheral area of the liver,

outside of the above-mentioned first hepatic porta region).

Inclusion criteria:(a) Imaging findings indicating the first hepatic

hilum or perihepatic masses requiring a definitive pathological

diagnosis;(b) Availability of a safe and suitable transabdominal

puncture route;(c) Platelet count >50×10^9/L;(d) Prothrombin

time ratio ≥70%. Exclusion criteria:① Severe coagulation

dysfunction;② Severe underlying diseases or physical weakness

(Figure 2).

This retrospective analysis has been approved by the

Institutional Review Board of Fujian Provincial Hospital. Written

informed consent was obtained from each patient prior to

treatment, with all patients being informed of the treatment

indications, potential therapeutic effects, as well as possible

complications that may arise.
2.2 Instruments and methods

In our clinical setting, We utilize the Philips iU22 and GE Vivid

7 Dimension color Doppler ultrasound diagnostic machines for our
frontiersin.org

https://doi.org/10.3389/fonc.2024.1297153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2024.1297153
ultrasound equipment. The linear array probe operates at a

frequency of 5-12MHz, while the convex array probe operates at

a frequency of 2-5MHz. For our biopsy procedures, we employ

either the 18G fully automatic biopsy gun or the semi-automatic

option (BARD Magnum, MN18-20, CR).
2.3 Pre-puncture preparation

All patients underwent routine laboratory examinations, including

complete blood counts, biochemical tests, and coagulation function

assessments. Prior to the surgery, all patients underwent CT/MRI/

PET-CT imaging to evaluate the first hepatic hilum and the

surrounding areas using multimodal imaging. The surgical team
Frontiers in Oncology 03125
performed a multimodal imaging assessment prior to the puncture

procedure to reconstruct the specific location of the first hepatic hilum

lesion and its surrounding anatomical relationships. The lesion was

scanned using an ultrasound probe prior to the puncture, and then the

imaging image in the mind was fused with the ultrasonic image to

determine the puncture passage (a. intercostal approach above the rib

arch, b. subcostal approach through the liver parenchyma).
2.4 Ultrasound-guided percutaneous
biopsy procedure

The procedure is performed in the ultrasound intervention

room: The patient was positioned supine, The ideal puncture site
FIGURE 1

① Depicts the first hepatic hilum as a dashed elliptical area, which encompasses the surrounding 2 cm range of the left and right hepatic ducts, as
well as the upper-middle region of the bile duct; ②: Illustrates the distribution of nodular lesions within the first hepatic hilum; ③: Displays the
distribution of diffuse lesions within the first hepatic hilum.
FIGURE 2

Flow chart.
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is identified through the process of cognitive fusion, using contrast-

enhanced ultrasonography to visualize areas of abnormal

enhancement (indicating an active lesion) and rapid washout

(suggesting a suspicious region for malignant tumor). These

findings guide the selection of the suspected active target area.

The puncture site was sterilized and draped, and local anesthesia

was administered to the area. Under real-time ultrasound guidance,

the needle tip was observed to sequentially pass through the skin,

subcutaneous tissue, and liver until reaching the lesion (taking care

to avoid major blood vessels). The trigger (biopsy device) was

activated to obtain tissue, and then the needle tip was withdrawn.

All biopsies were performed under local anesthesia with 2%

lidocaine. The biopsy procedure was carried out by two

experienced ultrasound intervention physicians with over 10 years

of experience. An 18G biopsy needle was used for the puncture, and

after tissue sampling, the needle was quickly withdrawn. The quality

of the tissue samples within the needle notch was observed, and if

deemed unsatisfactory, additional samples were taken. Each time, 2-

4 tissue samples measuring approximately 15mm-20mm in length

were obtained for pathological diagnosis. After applying sterile

dressing to the skin puncture site, patients were instructed to

apply pressure to the site for 5 minutes and were observed for 30-

60 minutes to check for any active bleeding. Additionally, patients

were advised to rest in bed for 6 hours after the procedure, and no

medication intervention was administered.
2.5 Evaluation indicators

Diagnostic success rate assessment: The diagnostic success

rate was assessed as follows: Cases in which the biopsy pathology

diagnosis was confirmed and matched the clinical discharge

diagnosis or postoperative pathology diagnosis were considered

successful cases. Cases in which the biopsy pathology diagnosis was

confirmed but did not match the postoperative pathology diagnosis

were considered non-matching cases. Cases in which the biopsy was

unsuccessful and could not provide a definitive pathology diagnosis,

requiring a repeat biopsy or surgical procedure for a definitive

pathology diagnosis, were also considered non-matching cases. The

diagnostic success rate was calculated as the number of cases with a

confirmed pathology diagnosis on the first biopsy divided by the

total number of cases.

The effectiveness measure includes: The average time spent

during the operation.

Safety indicators include (Complications of puncture): Post-

puncture, the amount of bleeding from the skin puncture site is

evaluated. Following the surgery and after one hour, careful

observation is conducted to assess the presence of fluid collections

within the abdominal and pelvic cavities caused by active bleeding,

as well as to check for any apparent damage to surrounding organs.

The patients are monitored for symptoms of infection, bile leakage,

intestinal perforation, and other related symptoms. During the

follow-up period, which lasts for three months after the surgery,

the presence of needle tract implantation metastasis and other long-

term complications related to the procedure are observed using

methods such as reviewing medical records, real-time
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communication with the attending physician, and conducting

telephone follow-ups after the patient’s discharge.
2.6 Statistical processing

This study employed SPSS 26.0 statistical software and

considered p<0.05 (two-tailed test) as the level of statistical

significance. Independent sample t-tests and Mann-Whitney U

tests were utilized for comparing quantitative data, while count

data was represented using frequency with between-group

differences assessed via chi-square tests and Fisher’s exact

probability method.
3 Results

3.1 General information

In this study, a total of 49 patients with lesions in the first

hepatic hilum were selected for percutaneous ultrasound-guided

core needle biopsy (PUS-CNB). Among them, 11 cases were

excluded due to the lack of a safe puncture pathway or abnormal

coagulation function. The remaining 38 cases underwent PUS-CNB

(20 males and 18 females) with a mean age of 61.08 ± 11.29 years

(ranging from 30 to 77 years). The clinical symptoms upon

admission included abdominal pain in 28 cases, jaundice in 15

cases, vomiting in 5 cases, constipation in 4 cases, and a less

common symptom of recurrent melena in 1 case. The types of

lesions included 23 cases of mass-type and 15 cases of diffuse

infiltration, with an average diameter of 4.65 ± 2.51 cm. Prior to

the puncture, 30 cases underwent MRI examination, 7 cases

underwent CT examination, and 2 cases underwent PET-CT

examination. Based on cognitive fusion guidance, the selected

puncture approaches were intercostal transhepatic in 32 cases and

subcostal transhepatic in 6 cases (See Table 1).
3.2 Safety and effectiveness of
the puncture

The average duration of PUS-CNB procedure for the first

hepatic hilum lesions was 14.55 ± 2.73 minutes. The

postoperative bleeding volume was approximately 10.79 ± 2.79

ml. All patients experienced mild discomfort, and no

complications such as bleeding, bile leakage, intestinal

perforation, or infection were observed during or after the

procedure. There were no evident needle tract metastases during

the six-month follow-up. The success rate of tissue sampling

through the biopsy procedure was 100%. The biopsy results

revealed 19 cases of cholangiocarcinoma, 2 cases of gallbladder

carcinoma, 5 cases of hepatocellular carcinoma, 1 case of diffuse

large B-cell lymphoma, 4 cases of inflammatory lesions, 1 case of

parasitic infection, 5 cases of metastatic tumors (non-hepatic or

biliary in origin), and 1 case of malignant pheochromocytoma.

Among them, three cases initially diagnosed as inflammatory
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lesions were confirmed as cholangiocarcinoma through surgery,

resulting in a biopsy success rate of 92.11% (See Tables 2, 3).
3.3 Compared with perihepatic
puncture biopsy

A total of 112 patients underwent ultrasound-guided

percutaneous needle biopsy of the liver periphery with an average

operation time of 14.24 ± 3.01 minutes and an average

postoperative bleeding volume of approximately 10.16 ± 2.30 ml.

All patients tolerated the procedure well, experiencing only mild

pain, and no major complications such as significant bleeding, bile
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leakage, intestinal perforation, or infection were observed during or

after the procedure. During the six-month follow-up, there were no

evident needle tract metastases. The overall success rate of tissue

sampling through the biopsy procedure was 94.64%, which did not

show a significant difference compared to the success rate of the first

hepatic hilum biopsies (P = 0.57). (See Table 3).
3.4 Post-puncture changes in diagnosis
and treatment

After undergoing the first hepatic hilum biopsy, 5 patients had a

change in their treatment plans (Table 4):

One patient with postoperative lung cancer was found to have

the first hepatic hilum lesion on follow-up imaging, which raised

suspicion of a possible metastatic tumor. However, PUS-CNB

confirmed it as malignant pheochromocytoma, leading to a

referral for urological treatment (Figure 3).

One patient with postoperative gastric cancer was found to have

a first hepatic hilum lesion on follow-up imaging, along with a

significant increase in AFP levels. Clinical considerations pointed to

primary liver cancer, but PUS-CNB confirmed it as a metastatic

carcinoma, resulting in chemotherapy treatment.

One patient who was suspected of having a primary tumor in

the first hepatic hilum with multiple liver metastases underwent

PUS-CNB, which diagnosed a parasitic infection. The treatment

plan was then changed to internal medicine, and follow-up at 1 year

showed the disappearance of the lesion (Figure 4).

One patient who was being evaluated for fever underwent

lymph node excision biopsy in the neck, which revealed reactive

proliferation on pathology. However, the treatment outcome was

unsatisfactory. Subsequent PET-CT revealed a high metabolic

lesion in the first hepatic hilum, and PUS-CNB confirmed it as

diffuse large B-cell lymphoma. The patient was then referred to

hematology for chemotherapy treatment.

One patient who was suspected of having cholangiocarcinoma

based on imaging findings had a PUS-CNB that diagnosed IgG4-
TABLE 2 Safety and efficacy comparison of the two groups.

index first hepatic hilum liver periphery t p

Total number of cases 38 112

validity index

puncture time(min) 14.55 ± 2.73 14.24 ± 3.01 0.59 0.56

Diagnostic success rate 92.11% 94.64% / 0.57

Safety indicator

bleeding Volume(ml) 10.79 ± 2.79 10.16 ± 2.30 1.25 0.22

infect 0 0

Perforation 0 0

Bile leakage 0 0

needle track implantation 0 0

postoperative hemorrhage 0 0
TABLE 1 General information for both groups.

index first
hepatic hilum

liver
periphery

Total number of cases 38 112

Gender

Male 20 66

Female 18 46

Age (years)

Average 61.08 ± 11.29 58.79 ± 12.42

Focal type

The mass type 23 94

diffuse type 15 18

Diameter of the lesion 4.65 ± 2.51 5.59 ± 3.85

puncture channel

intercostal liver
puncture approach

32 106

Subcostal space
puncture approach

6 6
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related sclerosing cholangitis. The treatment plan was then changed

to internal medicine.

In the case of an advanced-stage cholangiocarcinoma patient,

gene testing after PUS-CNB indicated high PD-L1 expression

(90%). The patient received immunotherapy with Keytruda,

receiving a total of 22 doses, with the first two doses at 200mg

and the subsequent 20 doses at 100mg. During this period, the

patient also underwent one session of radiation therapy with a dose

of 500GY*6. Follow-up PET-CT showed that the lesions had mostly

disappeared, with no metabolic enhancement, indicating a

significant treatment response. The patient has survived for 3

years and maintains a high quality of life (Figure 5).

Five patients with metastatic cancer underwent radiofrequency

ablation treatment, and follow-up MR scans showed complete

lesion inactivation in all cases. In total, 6 patients with
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cholangiocarcinoma, 2 patients with hepatocellular carcinoma,

and 1 patient with chronic inflammation underwent surgical

treatment. The remaining 24 patients had advanced-stage

malignant tumors and received non-surgical treatment (Figure 6).
4 Discussion

Malignant tumors are commonly found in the first hepatic

hilum, with cholangiocarcinoma, gallbladder carcinoma, metastatic

carcinoma, and lymphoma being the main types. CT and MRI are

widely accepted methods for further diagnosing the first hepatic

hilum tumors, with MRI being the preferred imaging modality for

evaluating histological characteristics and the presence of diffusion.

However, even with imaging, it is not possible to completely

differentiate between primary cholangiocarcinoma, metastatic

carcinoma, hepatocellular carcinoma, and lymphoma (14, 15).

Different tumor types require different treatment strategies, and

an accurate diagnosis is crucial for clinical staging and treatment

planning. Currently, the main methods of biopsy include brush

cytology under ERCP, forceps biopsy, and fine-needle aspiration

under endoscopic ultrasound guidance. Unfortunately, these biopsy

methods are mainly focused on cytological diagnosis and have a

lower sensitivity. Therefore, there is a need to explore a new, safe,

and effective biopsy method.

Ultrasonography-guided percutaneous core needle biopsy

(PUS-CNB) has been validated as a feasible modality for

obtaining liver-peripheral tissue samples (16, 17). However, the

complex anatomical structure and proximity to neighboring organs

in the first hepatic hilum pose challenges in acquiring satisfactory

pathological specimens. Our research has revealed that the fusion of

ultrasonography with multimodal imaging cognition enables PUS-

CNB to emerge as a viable technique, with a diagnostic success rate

of 92.11%. In a large series of 1300 patients, accuracy rate was found

as 92.8% (499/538) in total, 85% (159/187) in small needle group vs.

96.9% (340/351) in large needle group with the liver metastases

(P<0.001). These rates were 91% (91/100) in total, 85.5% (47/55) in

small needle group vs. 97.9% (44/45 in large needle group with

hepatocellular carcinomas (P=0.039). Among 100 hepatocellular

carcinomas, 18% were well-differentiated, 26% and 56% were

moderate-differentiated and poor-differentiated, respectively.

Biopsies of hepatocellular carcinomas were performed with large

needles in 45% (45/100) and with small needles in 55% (55/100)

(18).In comparison, the diagnostic success rate of endoscopic

ultrasound-guided fine-needle aspiration (EUS-FNA), as reported

by Krister Jones et al., stands at 32% (19). PUS-CNB significantly

outperforms cytology-based biopsy methods (8–11). Moreover, our

study has demonstrated the safety and efficacy of PUS-CNB for the

first hepatic hilum lesions, as evidenced by the absence of major

complications such as significant hemorrhage, bile leakage,

intestinal perforation, infection, or needle tract seeding. In our

experience, two factors have contributed to our success: Firstly, our

ultrasonography interventionalists possess over a decade of

expertise in procedural interventions, exhibiting a high level of

proficiency and skill. Secondly, ultrasonography provides real-time

dynamic visualization, facilitating the precise navigation around
TABLE 3 Pathological results of the two groups.

index first
hepatic hilum

liver
periphery

cholangiocarcinoma 19 9

hepatocellular carcinoma 5 23

diffuse large B
cell lymphoma

1 0

Inflammatory lesions 4 9

parasitic infection 1 0

metastatic tumor 5 69

Malignant
pheochromocytoma

1 0

carcinoma of gallbladder 2 0

Neuroendocrine tumor 0 1

angioma 0 1

Total number of cases 38 112
TABLE 4 Effect of PUS-CNB on the treatment.

Type Effect of ultrasound-
guided needle biopsy

on therapy

Example
number

Percentage
of cases

ET1 Leading to inappropriate
treatment options.

0 00.00

ET2 There was no effect on the
choice of the treatment method

1 2.63

ET3 No change the choice of
treatment but increased
clinician confidence in
the choice

27 71.05

ET4 Has an important role in the
choice of treatment.

5 13.16

ET5 Change in the treatment
approach chosen

5 13.16

total 38
ET, Effect on treatment.
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vital anatomical structures during the needle puncture. Efforts

should be made to identify the shortest trajectory for needle

insertion, avoiding critical organ structures and favoring a lateral

approach along blood vessels and bile ducts. Nonetheless, there
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were three cases in which the intended pathological diagnosis was

not successfully obtained, resulting in false negatives. In these

instances, the final histopathological findings revealed

cholangiocarcinoma, characterized by an abundance of fibrous
FIGURE 3

A 58-year-old male patient Presented with malignant pheochromocytoma. ①: Percutaneous biopsy of the first hepatic hilum was performed under
ultrasound guidance. ②: Ultrasonography revealed a hyperechoic area in the first hepatic hilum with clear borders, regular shape, heterogeneous
internal echogenicity, and slight blood flow signal. ③: MRI T1 arterial phase showed mild to moderate enhancement of the first hepatic hilum lesion
(arrow), suggesting the possibility of metastatic tumor. ④: Schematic diagram of percutaneous biopsy of the first hepatic hilum under ultrasound
guidance. ⑤: The neoplasm displays a fascicular and lobular architecture with active proliferative activity and local tissue invasion. Cystic
degeneration is noted, and malignant tumor emboli are identified within the neoplastic thrombosed vessels and adjacent fibrovascular stroma. These
features fulfill the criteria for malignant pheochromocytoma per the 2016 World Health Organization Classification of Neuroendocrine Tumors
(magnification, ×10). ⑥: After 1 year of follow-up CT examination post-surgery, the lesion was completely excised (circle) and no evidence of
recurrence was detected.
FIGURE 4

A 65-year-old man Presented with parasitic infection. ①: On ultrasound imaging, multiple patchy hypoechoic lesions(arrow) were identified
surrounding the bile duct, with one particularly located at the first hepatic hilum. The boundary of the lesion is indistinct, and its irregular shape is
accompanied by internal echogenicity that appears uneven. ②: PET-CT scan showed hypermetabolic activity in the first hepatic hilum lesion,
indicating the possibility of tumor. ③: Ultrasound contrast demonstrated rapid wash-in and wash-out enhancement(arrow) in the first hepatic hilum
lesion. ④: A schematic diagram was provided to illustrate the percutaneous biopsy procedure of the first hepatic hilum under ultrasound guidance.
⑤: High magnification microscope, HE staining(magnification, ×40);The biopsy sample of the liver demonstrated the occurrence of focal necrosis
accompanied by the formation of granulomatous nodules, with a substantial infiltration of eosinophilic granulocytes and liver cell edema. The portal
area displayed a chronic infiltration of inflammatory cells and fibrous tissue hyperplasia, indicating a parasitic infection. ⑥: After the therapeutic
intervention, a subsequent PET-CT scan revealed a lack of metabolic elevation in the previously identified lesion located at the first hepatic hilum,
indicative of its regression.
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tissue and chronic inflammatory cells, which may have contributed

to the failure of our biopsy procedure. Insufficient tumor cell

representation within the biopsy specimens can lead to both

overdiagnosis and underdiagnosis. Perhaps the utilization of a

larger gauge biopsy needle, such as 16G, could ameliorate this

issue. Additionally, increasing the number of biopsy attempts and

adopting a multidirectional approach may also serve as potential

improvements. Pre-procedural ultrasonography contrast

enhancement could aid in identifying suitable biopsy sites,

prioritizing areas with enhanced activity while avoiding necrotic

regions. These strategies may potentially enhance the overall

success rate of the biopsy procedure. It needs further investigation

in this setting.

In this study, 5 cases had a change in treatment plan after PUS-

CNB, highlighting the important role of PUS-CNB in guiding

subsequent therapies. PUS-CNB had a positive impact on

diagnosis and enhanced physicians’ confidence in 97.37% of

cases. Among the tumors in the first hepatic hilum,

cholangiocarcinoma accounted for the majority (57.89%).

Cholangiocarcinoma is a malignant tumor originating from the

bile ducts and is the second most common primary malignant liver

tumor after hepatocellular carcinoma, representing 10%-20% of all

liver tumors (20). It has a poor prognosis, with an overall 5-year

survival rate of 2%-30% (21, 22). Even with curative resection, the 5-

year survival rate is less than 40% (23). Importantly, many cases of

cholangiocarcinoma are diagnosed at an advanced stage, limiting

the opportunity for surgical intervention. However, there are

various treatment options available for advanced tumors,

including biliary stent placement, percutaneous transhepatic

cholangiodrainage (PTCD), chemotherapy, immunotherapy,

targeted therapy, and more (24, 25). A definitive histopathological
Frontiers in Oncology 08130
diagnosis helps guide personalized treatment approaches (26, 27).

In one case of our study, a patient was diagnosed with advanced-

stage cholangiocarcinoma in the first hepatic hilum based on

imaging findings, precluding surgical intervention. After PUS-

CNB and subsequent genetic testing, the patient was found to

have high PD-L1 expression (90%), and with the combination of

immunosuppressive agents and radiotherapy, the patient achieved

near-complete regression of the lesion during a 3-year follow-up.

Immune checkpoint inhibitors have emerged as a novel first-line

treatment option for advanced cholangiocarcinoma, with multiple

studies demonstrating their efficacy in this patient population (28,

29). A study by Japanese scholars further supported the reliable and

well-tolerated efficacy of combination therapy using immune

checkpoint inhibitors and chemotherapy compared to

monotherapy with chemotherapy or immunotherapy drugs (30).

Therefore, for patients with advanced-stage tumors, obtaining

histopathological tissue is a crucial step in exploring non-surgical

treatment options.

For lymphoma, patients can often avoid surgery due to their

sensitivity to chemotherapy. Effective tumor control and long-term

survival can be achieved through standardized chemotherapy, and a

specific subtype can only be determined with a definite pathology to

establish appropriate clinical chemotherapy protocols. In this study,

in the case of diffuse large B-cell lymphoma diagnosed after PUS-

CNB, obtaining tissue specimens was crucial. For patients with

metastatic cancer, radiofrequency ablation (RFA) serves as a

palliative treatment modality. The percutaneous RFA procedure for

lesions in the first hepatic hilum under ultrasound guidance is similar

to PUS-CNB, making ultrasound-guided RFA feasible for lesions in

the first hepatic hilum. In this study, there were 5 patients who were

diagnosed with metastatic cancer after PUS-CNB confirmed the first
FIGURE 5

A 70-year-old male patient Presented with cholangiocarcinoma (a nodular type). ①: MRI T2-weighted magnetic resonance imaging showed a slightly
elevated signal in the first hepatic hilum region(arrow), indicating a high likelihood of cholangiocarcinoma. ②: PET-CT shows high metabolic activity in
the lesion, suggesting the possibility of malignant tumor. ③ An irregular hypoechoic mass(arrow) was detected in the first hepatic hilum during
ultrasound examination. Further contrast-enhanced ultrasound revealed rapid wash-in and wash-out in the first hepatic hilum area, along with arterial
phase enhancement. These findings suggest the presence of a tumor or lesion in the first hepatic hilum region. ④: Percutaneous biopsy of the first
hepatic hilum was performed under ultrasound guidance. ⑤: A schematic diagram was provided to illustrate the percutaneous biopsy procedure of the
first hepatic hilum under ultrasound guidance. ⑥: The immunohistochemical analysis for programmed death ligand 1 (PD-L1) demonstrated that the
tumor cells expressed PD-L1 in a positive manner (TC+), with a positivity rate of 90%. ⑦: The imaging follow-up after immuno-oncology treatment
presented a compelling outcome, revealing complete disappearance of the first hepatic hilum lesion on the PET-CT scan.
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hepatic hilum lesions. All of them underwent ultrasound-guided RFA

for the first hepatic hilum lesions, and during a follow-up period of

six months, the lesions were in an inactive state. Fusion imaging can

also reduce false-positive lesion detection during US-guided RFA and

consistently improve the detection of HCCs, especially when these are

smaller than 2 cm. The ability of fusion imaging to reduce false

positives also applies to the evaluation of local tumor progression

after RFA and TACE (31, 32).

In this study, the integration of ultrasound with multimodal

image cognition in percutaneous ultrasound-guided the first hepatic

hilum puncture biopsy offers the following advantages:1.High safety:

Prior to the procedure, other imaging examinations are performed,

and with the integration of ultrasound cognition, large blood vessels

and bile ducts can be avoided. The appropriate puncture path can be

selected, reducing the risk of major bleeding and bile leakage. This

study found that punctures above the common hepatic duct in the

first hepatic hilum can be performed through the intercostal

approach, while lesions in the upper segment of the common bile

duct and the surrounding hepatic hilum can be accessed through the

subcostal approach, reducing the puncture distance. Real-time

dynamic monitoring of the needle insertion process ensures a safe

and controlled procedure. Additionally, multiplane imaging provides

confidence for operators.2.Simplicity, speed, and ease of use: This

technique is easy to learn, and experienced ultrasound

interventionists can quickly master it after short training. The

puncture biopsy procedure is relatively short, with a minimum

time of 9 minutes and an average time of 14.55 ± 2.73

minutes.3.High accuracy: The use of an 18-gauge thick needle

allows for an adequate amount of pathological tissue to be
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obtained, resulting in higher diagnostic accuracy compared to

previous fine needle aspiration biopsy methods.4.Ultrasound

examination features no radiation, is flexible, and has low cost:

Compared to fluoroscopy or CT-guided puncture biopsy,

ultrasound’s radiation-free imaging is an absolute advantage.

Moreover, the overall procedure incurs minimal economic costs.

However, there are certain limitations to consider. Firstly, this

procedure is not without risks. Despite the integration with other

imaging modalities, potential complications such as vascular injury,

bile leakage, and needle tract seeding still exist. It also relies on the

experience and radiological expertise of the operator. Post-

procedure observation for one hour and close collaboration with

multiple clinical disciplines are necessary to promptly identify and

manage any complications that may arise. Secondly, this study is

retrospective and has a relatively small number of cases. Patients

without a puncture path were not included in the study, which may

have inflated the success rate of the procedure. Additionally, the

study lacks a comparison with other imaging-guided techniques.

Retrospective data collected from a single institution might

introduce bias. Therefore, large-scale, high-quality prospective

studies are needed to validate these findings and obtain more

accurate conclusions.
5 Conclusion

The integration of ultrasound and multimodal imaging

cognition in the percutaneous ultrasound-guided biopsy of the
FIGURE 6

A 53-year-old female patient Presented with cholangiocarcinoma (a diffuse type). ①: According to an ultrasound examination, there is a hypoechoic
lesion(arrow) with irregular margins located in the left hepatic duct at the first hepatic hilum. Additionally, a contrast-enhanced ultrasound shows
that this lesion exhibits rapid wash-in and wash-out during the arterial phase. Ultrasound contrast revealed rapid wash-in and wash-out in the lesion
at the first hepatic hilum. ②, ③: Cross-sectional images obtained from MRCP and MRI of the bile duct at the first hepatic hilum reveal irregular
thickening of the bile duct and upper common bile duct that is surrounded by infiltrative soft tissue signals(arrow). These findings are consistent with
a focal, irregular stricture in the bile duct lumen, as well as intrahepatic bile duct dilatation resembling a soft, vine-like structure with uniform and
obvious enhancement. Furthermore, there is evidence of slightly longer T1 and T2 signals with uneven and obvious enhancement. Given the imaging
findings, cholangiocarcinoma should be considered as a possible diagnosis. ④: Schematic diagram of percutaneous biopsy of the first hepatic hilum
under ultrasound guidance. ⑤: Percutaneous biopsy of the first hepatic hilum was performed under ultrasound guidance. ⑥: High magnification
microscope, HE staining, moderately differentiated cholangiocarcinoma (magnification, ×40).
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first hepatic hilum lesions can reduce unnecessary surgical

exploration or resection. It can confirm the resectability or

treatability of the lesions and has the potential to become a new,

superior, and faster method. This approach can optimize the triage

and treatment strategies for indeterminate hepatic hilum lesions,

benefiting the patients. It is particularly valuable for patients with

unclear lesions in the first hepatic hilum who require a definitive

diagnosis, as well as for those with bile duct carcinoma who have

lost the opportunity for surgical intervention and can benefit

from immunotherapy.
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Background: Whole Slide Image (WSI) analysis, driven by deep learning

algorithms, has the potential to revolutionize tumor detection, classification,

and treatment response prediction. However, challenges persist, such as limited

model generalizability across various cancer types, the labor-intensive nature of

patch-level annotation, and the necessity of integrating multi-magnification

information to attain a comprehensive understanding of pathological patterns.

Methods: In response to these challenges, we introduce MAMILNet, an

innovative multi-scale attentional multi-instance learning framework for WSI

analysis. The incorporation of attention mechanisms into MAMILNet contributes

to its exceptional generalizability across diverse cancer types and prediction

tasks. This model considers whole slides as “bags” and individual patches as

“instances.” By adopting this approach, MAMILNet effectively eliminates the

requirement for intricate patch-level labeling, significantly reducing the manual

workload for pathologists. To enhance prediction accuracy, themodel employs a

multi-scale “consultation” strategy, facilitating the aggregation of test outcomes

from various magnifications.

Results:Our assessment of MAMILNet encompasses 1171 cases encompassing a

wide range of cancer types, showcasing its effectiveness in predicting complex

tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for

breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with

an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved

an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug

therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and

an Accuracy of 0.7341.
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Conclusion: The outcomes of this study underscore the potential of MAMILNet

in driving the advancement of precision medicine and individualized treatment

planning within the field of oncology. By effectively addressing challenges related

to model generalization, annotation workload, and multi-magnification

integration, MAMILNet shows promise in enhancing healthcare outcomes for

cancer patients. The framework’s success in accurately detecting breast tumors,

diagnosing lung cancer types, and predicting ovarian cancer therapy responses

highlights its significant contribution to the field and paves the way for improved

patient care.
KEYWORDS

whole slide image analysis, multiple instance learning, cancer diagnosis, multi-scale
attention, deep learning
1 Introduction

In recent years, computational pathology has emerged as a

transformative discipline with immense potential to revolutionize

cancer diagnosis and treatment planning. The advent of digital

pathology and whole slide imaging has led to vast histopathological

data repositories, presenting an unprecedented opportunity for

deep learning networks in this field Srinidhi et al. (1) Qu et al.

(2). Whole Slide Image (WSI) analysis, enabled by deep learning

algorithms, shows promise in tumor detection, typing, and drug

treatment response prediction, heralding a new era of precision

medicine in oncology Cheplygina et al. (3) Rony et al. (4).

Tumor detection is critical for timely and accurate cancer

diagnoses. Conventional methods, relying on manual examination

by pathologists, can be time-consuming and subjective, leading to

diagnostic errors and variability. Deep learning networks

revolutionize tumor detection, using Convolutional Neural

Networks (CNNs) to met iculous ly analyze dig i t ized

histopathological images, identifying malignancy with precision

and efficiency. Integrating deep learning expedites diagnostic

processes, enhances accuracy, and ensures reproducibility in

clinical settings. Tumor typing, categorizing cancers into

subtypes, is vital for personalized oncology. Deep learning

networks address challenges in tumor typing, comprehensively

learning from annotated histopathological datasets. They discern

subtle differences between tumor subtypes with remarkable

accuracy, facilitating efficient and precise tumor typing, leading to

tailored therapies and improved patient outcomes. In the realm of

cancer treatment, establishing deep-learning models to predict drug

therapy response from WSIs has emerged as a transformative

frontier. Traditional methods relying on manual evaluation of

biopsy samples struggle to capture the true heterogeneity of

tumor responses. In contrast, deep learning networks in WSI

analysis offer a promising and powerful approach. By analyzing

large-scale histopathological datasets, these models can detect subtle

alterations induced by therapies, enabling accurate and timely
02135
prediction of treatment response. This groundbreaking

development holds the potential to revolutionize cancer treatment

and elevate patient outcomes to new heights.

Deep learning networks have a significant impact on

computational pathology, particularly in WSI analysis for tumor

detection, typing, and treatment response prediction, advancing

precision medicine and patient care. However, integrating deep

learning algorithms faces significant challenges in this domain. A

primary issue is the limited generalizability of models across

different cancer types and tasks, compromising their practicality

for routine clinical use. Many current approaches achieve

remarkable results on specific cancer types or tasks, but their

performance tends to deteriorate when confronted with diverse

cancers. The burden of patch-level annotation is another major

challenge. WSIs are massive and need to be divided into smaller

patches for deep learning training. Manual annotation of these

patches is time-consuming and labor-intensive, making

comprehensive annotation impractical, hindering the adoption of

fully-supervised algorithms. Moreover, handling multi-

magnification information is vital. Current studies often focus on

single magnification analysis, neglecting the diagnostic information

embedded in multiple magnifications. This limitation may lead to

incomplete understanding of pathological patterns, reducing the

efficacy of deep learning algorithms in capturing the full complexity

of the images Srinidhi et al. (1) Qu et al. (2) Cheplygina et al. (3)

Rony et al. (4) Wang et al. (5) Qu et al. (6).

This paper presents MAMILNet, a novel multi-scale attentional

multi-instance learning framework for whole slide pathological

image processing. MAMILNet offers several key advantages over

existing methods. Firstly, it exhibits high generalization across

multiple cancer types and prediction tasks by skillfully integrating

the attention mechanism. This adaptability ensures robust

performance in diverse scenarios. Secondly, MAMILNet employs

a multi-instance learning (MIL) architecture, treating slides as

“bags” and their cut patches as “instances,” effectively

representing slides as a whole. This eliminates the need for fine-
frontiersin.org
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grained patch-level labeling, reducing the burden of manual

labeling for pathologists. Additionally, MAMILNet utilizes a

multi-scale “consultation” training and prediction strategy,

training with multiple magnifications and aggregating test results

from different scales using a probability ensemble method. This

approach significantly enhances prediction accuracy by considering

multiple magnifications during diagnosis and prediction. Overall,

MAMILNet is a promising framework for achieving high-accuracy

predictions in WSI analysis with weak labeling at the slide level.

We present a comprehensive evaluation of MAMILNet’s

performance. We focus on three critical diagnosis tasks, involving

different cancer types, from four distinct medical centers. These

tasks include automatic recognition of sentinel lymph node cancer

in breast cancer, automatic typing of lung adenocarcinoma and lung

squamous cell carcinoma, and drug resistance diagnosis of high-

grade serous ovarian cancer. Through a meticulous analysis of 1711

patients and WSIs, MAMILNet demonstrates remarkable accuracy

in predicting these complex tasks. The successful outcomes

achieved by MAMILNet in this diverse dataset hold significant

implications for cancer diagnosis and personalized treatment

planning. These findings further reinforce the potential of deep

learning networks in advancing WSI processing, paving the way for

improved healthcare outcomes in oncology.
2 Related work

2.1 Deep-learning-based WSI analysis

Numerous noteworthy studies have been dedicated to addressing

significant clinical challenges in the WSI analysis field. For instance,

Coudray et al. (7) developed deep-learning models capable of

accurately predicting cancer subtypes and genetic mutations,

sparking the entire field. Naik et al. (8) presented a deep-learning

framework for directly predicting estrogen receptor status from H&E

slides. Another notable clinical endeavor was undertaken by Tomita

et al. (9), who proposed a grid-based network for performing 4-class

classification of high-resolution endoscopic esophagus and

gastroesophageal junction mucosal biopsy images from 379 patients.

Skrede et al. (10) developed a deep model to analyze conventional

H&E-stained slides and effectively predict the prognosis of patients

after colorectal cancer surgery. Similarly, in a gastrointestinal tract

oncology study, Kather et al. (11) employed a deep model to predict

microsatellite instability (MSI) directly from H&E-stained slides.

Currently, deep-learning models for WSI analysis have been applied

across a wide range of cancer types, including breast, colorectal, lung,

liver, cervical, thyroid, and bladder cancers Coudray et al. (7) Bejnordi

et al. (12) Chaudhary et al. (13) Campanella et al. (14) Saillard et al.

(15) Woerl et al. (16) Anand et al. (17) Velmahos et al. (18) Wessels

et al. (19) Li et al. (20) Yang et al. (21).

In contrast to the majority of studies that have focused on

specific tasks for individual cancers, our proposed MAMILNet takes

a broader approach, exploring network architectures for multiple

tasks across multiple cancer species. With MAMILNet, we have

successfully achieved high accuracy in predicting multiple tasks for

various cancer types.
Frontiers in Oncology 03136
2.2 Multi-instance learning techniques

As an effective weakly supervised learning algorithm, multi-

instance learning has emerged as the mainstream method for WSI

analysis based on deep learning Campanella et al. (14)Ilse et al. (22)

Shi et al. (23) Li et al. (24) Qu et al. (25) Qu et al. (26). Due to the

substantial size of WSIs, often reaching 100,000 × 100,000 pixels,

direct utilization as input for deep-learning models is impractical.

To alleviate the computational burden, WSIs are typically divided

into numerous small patches for processing. In multi-instance

learning, each WSI is treated as a “bag,” while the segmented

patches are regarded as “instances” belonging to that bag. If a bag

is labeled as negative, all instances within it are considered negative;

conversely, if a bag is labeled as positive, at least one instance within

it is positive. Multi-instance learning leverages neural networks to

extract features from each instance and aggregates them into a

feature representation of the bag. Subsequently, the classifier is

trained at the bag level, enabling direct slide-level classification

without the need for doctors to label patches with fine granularity.

However, current studies primarily focus on MIL-based WSI

analysis at a single magnification level, while pathologists often

switch between multiple magnifications to perform comprehensive

diagnoses. Neglecting the multiplex information may lead to an

incomplete understanding and interpretation of pathological

patterns, thereby limiting the effectiveness of deep learning

algorithms in capturing the full complexity of these images.

Embracing the varied information present in different

magnifications is essential to enhance the diagnostic accuracy and

enable deep-learning models to encompass the richness of

information contained within WSIs.
3 Materials and methods

3.1 Study design and workflow

The present study focuses on advancing WSI processing

through the integration of deep learning techniques. As illustrated

in Figure 1, our methodology commences with the expertise of

skilled pathologists, who meticulously prepare film and microscope

reprints of tumor tissue sections. Subsequently, high-quality

sections with clear labels are carefully chosen for digital scanning,

yielding comprehensive WSI datasets. The utilization of WSIs is

essential as it allows for a holistic view of the tissue, enabling a more

comprehensive and accurate analysis.

To optimize the input data for deep learning analysis, the

acquired WSIs undergo preprocessing (refer to Section 3.2). This

step involves WSI patching, data normalization, and data

augmentation, among other techniques, ensuring standardized

and consistent data for subsequent analysis.

The main focus of our study involves the development and

implementation of a sophisticated deep learning network, referred

to as MAMILNet (detailed in section 3.2.3). By incorporating

attention mechanisms, multi-instance learning, and multi-scale

ensemble strategies, MAMILNet is strategically designed to

effectively address the complexities associated with multiple
frontiersin.org
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prediction tasks across various cancer types. To comprehensively

evaluate MAMILNet’s performance on these diverse prediction

tasks, we utilized three data cohorts from four different centers,

encompassing 1711 cases and WSIs. The predictive tasks for

different cancer types include: automatic recognition of sentinel

lymph node cancer in breast cancer, automatic typing of lung

adenocarcinoma and lung squamous cell carcinoma, and

evaluation of drug resistance in high-grade serous ovarian cancer.
3.2 Data collection and preprocessing

In this research, we conducted a comprehensive evaluation of

MAMILNet’s performance on various prediction tasks for different

cancer types using a total of 1711 cases and WSIs from three data

cohorts across four centers. The predicted cancer types and tasks

included the automatic recognition of sentinel lymph node cancer

in breast cancer, automatic typing of lung adenocarcinoma and lung

squamous cell carcinoma, and drug-resistance diagnosis of high-

grade serous ovarian cancer. For details on the collection of relevant

data queues, please refer to section 3.2.1, and for information on the

pre-processing of data queues, see section 3.2.2.

3.2.1 Data collection
3.2.1.1 Breast cancer cohort

For the breast cancer cohort, we utilized the Camelyon 16

Dataset Bejnordi et al. (12), which is a prominent public benchmark

in computational pathology, specifically focusing on sentinel lymph

nodes. This dataset consists of a total of 399 whole-slide images

(WSIs) collected from the Radboud University Medical Center in

Nijmegen and the University Medical Center Utrecht in the

Netherlands. Expert pathologists have annotated the tissue slides,

labeling slides containing cancer as positive and those without

cancer as negative. The raw data queue contains both slide-level

weak labels and pixel-level labels for cancer regions. However, to

adhere to the requirements of weakly supervised scenarios, we

utilized only slide-level weak labels for training and testing

purposes. This approach ensures the appropriate use of data
Frontiers in Oncology 04137
while addressing the challenges posed by weak supervision in the

context of this research.

3.2.1.2 Lung cancer cohort

The TCGA lung cancer dataset comprises a total of 1050 H&E

stained WSIs from the public Cancer Genome Atlas (TCGA) data

portal. This dataset includes two subtypes of lung cancer: Lung

Adenocarcinoma and Lung Squamous Cell Carcinoma. Expert

pathologists have carefully annotated the WSIs, providing slide-

level labels to indicate whether each WSI corresponds to Lung

Adenocarcinoma (negative) or Lung Squamous Cell Carcinoma

(positive). The meticulous annotations by expert pathologists

ensure the accuracy and reliability of the dataset for further

analysis and research in the field of lung cancer.

3.2.1.3 Ovarian cancer cohort

The Ovarian Cancer Cohort comprises a total of 262 cases and

WSIs from two centers: 228 patients from Yunnan Cancer Hospital,

China, and 34 patients from Yunnan First People’s Hospital, China.

After obtaining institutional review board approval, we

retrospectively selected patients who received standardized

treatment for ovarian cancer at Yunnan Cancer Hospital and

Yunnan First People’s Hospital between 2015 and 2022.

Inclusion criteria for patient selection were as follows: (1)

confirmation of high-grade serous ovarian cancer through

operation and pathology; (2) treatment modalities including

primary tumor cell reduction plus first-line platinum drug

chemotherapy, or neoadjuvant chemotherapy plus tumor cell

reduction plus first-line platinum drug chemotherapy; (3)

availability of at least one pathological H&E-stained slide with

focal lesions for each patient; (4) at least 6 months of available

follow-up records after chemotherapy. Exclusion criteria included:

(1) history of other malignant tumors, pelvic surgery, or platinum

chemotherapy; (2) poor quality of tissue slides (Cases with poor

slide quality, such as broken cap fragments or stains on the surface,

insufficient tumor tissue, or tissue folding, were excluded.); (3)

maximum diameter of the lesion less than 1 cm; (4) incomplete or

substandard chemotherapy regimen; (5) incomplete clinical and
FIGURE 1

Pipeline of the whole study.
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pathological data. To clarify, at Yunnan Cancer Hospital, out of 270

patients considered, 42 were excluded based on the predefined

criteria, resulting in 228 patients being included in the study.

Similarly, at Yunnan First People’s Hospital, from an initial pool

of 48 patients, 14 did not meet the inclusion criteria, leaving 34

patients to be enrolled in the study.

We defined platinum resistance as disease progression or

recurrence within 6 months after the end of chemotherapy, and

platinum sensitivity if there was no disease progression or

recurrence within this timeframe. Tumor recurrence was

determined based on histopathology or the presence of two of the

following manifestations: sustained elevation of CA125, pleural

effusion or ascites, physical examination finding a lump, imaging

findings of a mass, or unexplained intestinal obstruction. For each

patient, two professional pathologists Qinqing Wang and Qingyin

Meng evaluated the slides, selecting 1-3 representative primary

lesion slides. The images were then digitized through an off-field

20-magnification scan (0.48 µm/pixel) using a portable scanner

(Ocus, Grundium, Finland).

3.2.2 Data preprocessing and partitioning
In this research, we employed the Python language (Version

3.7) and utilized the Openslide library (Version 3.4.1) to export all

data queues at three magnifications: 20x, 10x, and 5x. We saved the

resulting image sets separately, dividing them into non-overlapping

224×224 small image blocks. To ensure data quality, image blocks

with an entropy of less than 5 were excluded, as they are likely to

represent the background. For each resolution set, we performed

image normalization using the mean and variance of all slices

within the corresponding set. Data augmentation techniques,

including random flipping, rotation, color transformation, and

random cropping, were applied to enhance the dataset’s diversity.

To achieve this, we utilized Python (Version 3.7) with libraries such
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as Pillow (Version 8.4.0), OpenCV (Version 4.1.0), and the PyTorch

deep learning framework (Version 1.7.1). By employing these

procedures and tools, we ensured that our dataset was prepared

with standardized resolution and enhanced with data

augmentation, setting a solid foundation for robust and reliable

deep-learning model training and evaluation.

In the Breast cancer cohort, we conducted a random division to

create a training set consisting of 240 cases and slides, and a test set

containing 129 cases and slides. For the Lung Cancer Cohort, we

applied a random division resulting in a training set comprising 840

cases and slides, and a test set comprising 210 cases and slides.

Similarly, for the Ovarian Cancer Cohort, we randomly divided it

into a training set with 183 cases and slides, and a test set with 79

cases and slides. Importantly, each of the training sets also includes

validation sets.

3.2.3 Multi-scale attentional multi-instance
learning network

We present MAMILNet, a multi-instance deep convolutional

neural network architecture incorporating a multi-scale attentional

mechanism, designed to handle multiple prediction tasks for

various cancers. The network’s training process is illustrated in

Figure 2A. During training, we create separate models for the 20x,

10x, and 5x image sets, as depicted in Figure 2A. Each set of patches

from the same WSI constitutes a bag. Before each iteration, we

apply random data augmentation techniques to each patch in the

bag, including random noise, rotation, clipping, and color

transformation. Next, we utilize a pre-trained ResNet He et al.

(27) network as the primary feature extractor to obtain the features

of each patch within the bag. Subsequently, an attention module is

employed, where a learnable attention weight is assigned to the

features of each image block. This attention-pooling process

aggregates the features within the bag to obtain the bag-level
A

B

FIGURE 2

(A) Training process of the MAMILNet; (B) Inference process of the MAMILNet.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1275769
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1275769
features. Finally, a bag-level Multilayer Perceptron (MLP) serves as

the bag classifier, directly predicting the negative and positive risks

of the WSI. The cross-entropy loss, calculated against the true

labels, serves as the loss function during training, and stochastic

gradient descent drives the parameter updates in the network.

The attention module consists of two main steps. First, a linear

fully connected layer reduces the dimension of each feature vector

to 128, followed by the application of the pixel-level hyperbolic

tangent function (tanh()). This non-linear output is then scaled to

be between -1 and 1. The resulting values are multiplied with

another linear layer to calculate the attention weight of each image

block using the softmax function. In the second step, we use the

feature matrix of the image block and the attention weight matrix to

obtain the bag-level features. This step involves element-wise

multiplication of the feature matrix with the attention weight

matrix, effectively emphasizing the important regions within the

bag based on their calculated attention weights. The resulting

features represent a compact representation of the bag, capturing

the salient information required for accurate bag-level predictions.

The inference process of the network is depicted in Figure 2B.

During the testing phase, we propose a multi-scale integration

strategy inspired by pathologists who often zoom in and out of

slices for diagnosis. This strategy allows us to make the final

prediction for the test cohort. Specifically, we employ the 20x,

10x, and 5x models obtained during the training process to calculate

the predicted risk probability for each WSI at each magnification

level. Next, we use the mean-pooling method to aggregate the

prediction probabilities from the three magnification levels. This

aggregation process yields the final prediction risk probability for

each WSI.

We utilized the PyTorch deep learning framework (Version

1.7.1) in Python (Version 3.7) to perform all training and testing

processes of the network. The Adam optimizer was employed to

train the model, utilizing the cross-entropy loss as the loss function.

The total number of training iterations was set to 500, with a

learning rate of 1e-4. We applied a weight decay factor of 1e-5, and

the batch size was set to 64. For computational resources, we

conducted the training using the 11th Gen Intel(R) Core(TM) i7-

11700K CPU in combination with the Nvidia 3090 GPU. These

hardware configurations ensure efficient and high-performance

processing during the training and testing phases of our deep-

learning model.

3.2.4 Statistical analysis
In our specific experiments, we employed the cross-validation

method to train the model and select the best-performing model for

final internal verification and independent testing. During this

process, the verification set was utilized to identify the model

with the optimal performance, while the independent test set

remained unseen during both the training and verification stages,

ensuring a fair evaluation of the model’s performance. Specifically,

for each dataset, we first divide it into a training set (including a

validation set) and an independent test set at a ratio close to 4:1,

where the independent test set remains unseen during the training

and validation process. The details of the division can be found in

Section 3.2.2 Data Preprocessing and Partitioning. For the training
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set, we employed a 5-fold cross-validation method. This technique

divides the training dataset into five parts, using four parts for

training and one part for validation in each iteration. This process

ensures that each data point is used for both training and validation

once, thus obtaining a more reliable estimate of model performance.

Then we select the best model and parameters from the cross-

validation to test on the independent test set and report the results

of the independent test set as the final outcome. This also better

simulates the prediction scenario for more new unseen clinical data

in the future.

To assess the model’s performance, we employed several

metrics, including the area under the ROC curve (AUC),

Accuracy, False Positive Rate (FPR), and False Negative Rate

(FNR). These metrics were reported along with 95% confidence

intervals (CI) to provide a comprehensive understanding of the

model’s effectiveness. All metric calculations and statistical analyses

were conducted using the scikit-learn package (Version 1.3.0)

within the Python (Version 3.7) environment. The scikit-learn

package offers robust and reliable tools for evaluating machine

learning models, ensuring the accuracy and consistency of our

model assessments.
4 Results

4.1 Prediction results of sentinel lymph
node tumor detection in breast cancer

In the task of tumor diagnosis of sentinel lymph nodes of breast

cancer, as shown in Table 1, our innovative MAMILNet

demonstrated remarkable success, achieving an impressive AUC

of 0.8872 (95%CI 0.86-0.90) on the independent test set. Moreover,

our model exhibited high accuracy (0.8760, 95%CI 0.85-0.89) and

demonstrated low false positive rate (FPR=0.1406, 95%CI 0.16-

0.12) and false negative rate (FNR=0.1077, 95%CI 0.08-0.12)

performances. These compelling results underscore the efficacy of

MAMILNet in accurately diagnosing tumors based on H&E-stained

WSIs, and hold significant promise for enhancing breast cancer

diagnostics and patient outcomes.

Moreover, by comparing our multi-scale model with

MAMILNet variants and advanced competitors, we observed
TABLE 1 Prediction results on the independent test set of sentinel lymph
node tumor detection in breast cancer.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.7684 0.7520 0.2258 0.2698

10× only MAMILNet 0.8379 0.8217 0.1384 0.2187

20× only MAMILNet 0.8653 0.8450 0.1538 0.1562

MILRNN Campanella
et al. (14)

0.8178 0.8062 0.1428 0.2542

CLAM Lu et al. (28) 0.8762 0.8527 0.1142 0.2000

MAMILNet (ours) 0.8872 0.8760 0.1077 0.1406
fron
Bold values refer to the best results.
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further improvements through our proposed multi-scale integrated

prediction strategy, validating its effectiveness in enhancing model

performance. These findings signify significant strides in the field of

deep learning-based tumor diagnosis, propelling advancements in

early detection and precision medicine for breast cancer patients.

The ROC curve of MAMILNet on the breast cancer sentinel

lymph node tumor detection task on the independent test set is

shown in Figure 3A.
4.2 Prediction results of automatic
subtyping of lung adenocarcinoma and
lung squamous cell carcinoma

In the domain of WSI processing for lung cancer typing diagnosis,

as can be seen from Table 2, our MAMILNet demonstrated

outstanding performance. The achieved AUC of 0.9551 (95%CI 0.94-

0.96) on the independent test set, coupled with accuracy of 0.9095 (95%

CI 0.89-0.91), FPR of 0.0961 (95%CI 0.110.07), and FNR of 0.0857

(95%CI 0.09-0.07), affirms the model’s accurate and efficient

classification of lung tumor types based on H&E-stained WSIs.

Additionally, a comparative analysis with other single-scale variants

and competitors underscores the superiority of our innovative multi-

scale strategy, further validating its efficacy in enhancing classification

accuracy and diagnostic performance. These findings represent a

significant advancement in the field of deep learning-based lung

cancer typing, offering promising avenues for improving patient care

and treatment outcomes.

The ROC curve on lung cancer tumor typing task on the

independent test set is shown in Figure 3B.
4.3 Prediction results of drug resistance in
high-grade serous ovarian cancer

We explored a novel and challenging clinical task—predicting

patients’ drug therapy response using the Ovarian Cancer Cohort.

This task, which surpasses the interpretability of H&E-stained slides

even for medical experts, represents a pressing problem in

contemporary medical research. As can be seen from Table 3, our
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MAMILNet demonstrated promising results in this endeavor,

achieving an AUC of 0.7358 (95%CI 0.74-0.72) on the

independent test set, along with accuracy of 0.7341 (95%CI 0.72-

0.74), FPR of 0.2982 (95%CI 0.30-0.28), and FNR of 0.1818 (95%CI

0.17-0.19). These performance indicators signify the potential of

our MAMILNet to make significant advancements in drug response

therapy prediction, ushering in a new era of personalized medicine

and improved patient outcomes in ovarian cancer management.

The ROC curve on the ovarian cancer treatment resistance

prediction task on the independent test set is shown in Figure 3C.
5 Discussion and conclusions

This research introduces MAMILNet, a novel multi-scale

attentional multi-instance learning framework, which achieves

remarkable performance in critical tasks like breast cancer tumor

detection, lung cancer subtype diagnosis, and ovarian cancer drug

resistance prediction, even with weak slide-level labeling.

MAMILNet’s innovative design and capabilities hold significant

promise for advancing medical image analysis, improving

diagnostic accuracy, and guiding cancer treatment decisions.

MAMILNet demonstrates its robust performance through three

key components. Firstly, it effectively employs attentionmechanisms to

adaptively learn critical visual features associated with various cancer

species and tasks. By assigning higher attention weights to clinically

relevant visual features and lower weights to unrelated background and

noise, MAMILNet acts as a dynamic filter, enhancing its learning

ability for different tasks. Consequently, the network exhibits

exceptional generalization across multiple cancer types and

prediction tasks. Secondly, MAMILNet adopts a feature aggregation-

based multi-instance learning architecture, enabling remarkable

performance even with slide-level weak annotation. It treats slides as

“bags” and their cut patches as “instances,” employing an efficient

instance-level feature extractor to derive informative representations.

An attention mechanism is then used to aggregate these instance

features effectively into bag-level features. This approach culminates in

a powerful bag classifier, enabling accurate slide-level classification.

The combination of instance-level efficient feature representation,

attention-based feature aggregation, and a robust bag-level classifier
A B C

FIGURE 3

(A) The ROC curve of MAMILNet on the breast cancer sentinel lymph node tumor detection task (independent test set). (B) The ROC curve on lung
cancer tumor typing task (independent test set). (C) The ROC curve on the ovarian cancer treatment resistance prediction task (independent
test set).
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ensures MAMILNet’s efficiency. Lastly, inspired by pathologists’

“zoom in and out” reading approach, MAMILNet introduces a

multi-scale “consultation” training and prediction strategy. During

training, it uses multiple magnifications to fully model and learn

pathological features. During testing, a probabilistic set approach

aggregates results from different scales, harnessing the advantages of

diverse magnifications for optimal prediction performance, akin to a

medical consultation process. This innovative strategy further

enhances MAMILNet’s predictive capabilities.

Tumor detection and pathologic subtyping are vital in WSI

analysis through deep learning. The deep learning model offers

faster and more detailed diagnostic references directly from H&E-

stained slides, significantly reducing examination time. Moreover, its

highly generalized nature facilitates diagnosis in regions with limited

medical resources. This study demonstrates satisfactory performance

in both tasks, paving the way for the widespread application of deep-

learning models in this domain. It is also among the pioneering efforts

to explore the direct prediction of drug response therapeutic efficacy

from WSI using deep learning. Assessing a patient’s response to drug

therapy is critical for treatment decisions and prognosis. However,

determining drug resistance from H&E-stained slides is challenging,

even for experienced physicians. Studies Vamathevan et al. (29)

Ballester et al. (30) Farahmand et al. (31) suggest that a patient’s

sensitivity to specific drug therapy may be evident in H&E-stained

sections, presenting opportunities for deep-learning model

applications. The deep-learning model effectively captures
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pathological patterns related to drug treatment responses in a data-

drivenmanner, enabling accurate predictions. The research conducted

a preliminary trial on High-grade Serous Ovarian Cancer, yielding

promising results. These findings support the future prediction of

treatment responses using deep learning across various cancer types

with different drugs. This breakthrough holds significant potential for

advancing personalized medicine and enhancing patient outcomes.

The study has several limitations that require careful consideration.

Firstly, it adopts a retrospective analysis approach, which may

inherently constrain the diversity and representativeness of the data.

Future investigations aim to build a larger and more comprehensive

dataset to enhance the model’s robustness. Secondly, for drug

resistance prediction tasks, systematic pathologic patterns have not

been identified. The deep-learningmodel relies on data-driven iteration

and training, making it challenging to understand the underlying

pathological basis of its judgments. Although the designed attention

mechanism can highlight patches of high and low risk, further

experiments are needed to systematically generalize authoritative

pathological patterns. While this study provides a preliminary

glimpse into the potential of utilizing deep-learning models for drug

therapy response prediction in ovarian cancer, full generalization of this

knowledge requires more extensive trials and investigation. Thirdly,

despite conducting trials involving three cancer species from four

centers, the validation across multiple centers remains insufficient for

each task. Limited multi-center training and verification constrain the

generalization and robustness of deep learning networks. To address

this, future endeavors will focus on collecting more extensive data to

facilitate large-scale, multi-center training and validation, ensuring

more comprehensive and reliable results.

In our study, we investigated the predictors of therapeutic

outcomes in ovarian cancer, acknowledging that these are

influenced by a range of factors beyond tumor morphology, such as

pathological stage, resection margins, patient performance status, and

comorbidities. We developed a deep learning model, using

pathological slides as the sole input, to predict drug resistance,

exploring the potential of pathological sections as an independent

biomarker. While integrating clinical and pathological data could

improve predictive accuracy, our initial focus on pathological slides

due to scope and time constraints represents a deliberate first step

towards a comprehensive research strategy. Plans to include clinical

data in future analyses acknowledge the opportunity to enhance drug

resistance predictions. We analyzed additional clinical data, including

Federation International of Gynecology and Obstetrics (FIGO) stage,

age, and BMI, through logistic regression to assess their relationship

with platinum resistance. The p-values for these factors (0.2052,

0.9191, and 0.3393, respectively) suggest they are poor predictors of

platinum resistance, as evidenced by AUC values of 0.58, 0.51, and

0.54 in independent tests. Conversely, our deep learning analysis of

pathological images with MAMILNet demonstrated higher predictive

accuracy for treatment response, achieving an AUC of 0.7358, with

significant accuracy, FPR, and FNR rates. We aim to extend our

research to include broader clinical parameters, enhancing prediction

accuracy and understanding of therapeutic outcome determinants in

ovarian cancer. This multidimensional approach promises to refine

our predictive models and contribute valuable insights into the

complex dynamics of cancer treatment response.
TABLE 3 Prediction results on the independent test set of drug
resistance in high-grade serous ovarian cancer.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.6741 0.6582 0.3636 0.3333

10× only MAMILNet 0.6968 0.6835 0.2727 0.3333

20× only MAMILNet 0.7126 0.7088 0.2727 0.2982

MILRNN Campanella
et al. (14)

0.6537 0.6329 0.3333 0.4118

CLAM Lu et al. (28) 0.6884 0.6709 0.2727 0.4000

MAMILNet (ours) 0.7358 0.7341 0.1818 0.2982
TABLE 2 Prediction results on the independent test set of automatic
subtyping of lung adenocarcinoma and lung squamous cell carcinoma.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.9269 0.8619 0.1333 0.1429

10× only MAMILNet 0.9324 0.8904 0.0952 0.1250

20× only MAMILNet 0.9488 0.9000 0.0857 0.1153

MILRNN Campanella
et al. (14)

0.9236 0.8667 0.1111 0.1733

CLAM Lu et al. (28) 0.9411 0.8857 0.0714 0.2000

MAMILNet (ours) 0.9551 0.9095 0.0857 0.0961
Bold values refer to the best results.
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In summary, deep-learning-based WSI analysis has emerged as

a crucial approach for cancer diagnosis. This study introduces a

novel multi-scale attentional multi-instance network architecture

(MAMILNet), presenting a fresh perspective and method for WSI

analysis using deep learning. Notably, MAMILNet demonstrates

promising results in breast cancer tumor detection, lung cancer

tumor typing, and ovarian cancer drug resistance prediction tasks.

These achievements offer valuable insights for the wider application

of deep-learning models in these areas and inspire new avenues for

utilizing deep learning in diverse cancer types and diagnostic tasks.

MAMILNet’s performance signifies its potential as a powerful tool

for enhancing cancer diagnosis and treatment in clinical settings.
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Leveraging radiomics
and AI for precision
diagnosis and prognostication
of liver malignancies
Maryam Haghshomar, Darren Rodrigues, Aparna Kalyan,
Yury Velichko and Amir Borhani*

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
Liver tumors, whether primary or metastatic, have emerged as a growing

concern with substantial global health implications. Timely identification and

characterization of liver tumors are pivotal factors in order to provide optimum

treatment. Imaging is a crucial part of the detection of liver tumors; however,

conventional imaging has shortcomings in the proper characterization of these

tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and

radiomics have recently emerged as investigational opportunities with the

potential to enhance the detection and characterization of liver lesions. These

advancements offer opportunities for better diagnostic accuracy,

prognostication, and thereby improving patient care. In particular, these

techniques have the potential to predict the histopathology, genotype, and

immunophenotype of tumors based on imaging data, hence providing

guidance for personalized treatment of such tumors. In this review, we outline

the progression and potential of AI in the field of liver oncology imaging,

specifically emphasizing manual radiomic techniques and deep learning-based

representations. We discuss how these tools can aid in clinical decision-making

challenges. These challenges encompass a broad range of tasks, from

prognosticating patient outcomes, differentiating benign treatment-related

factors and actual disease progression, recognizing uncommon response

patterns, and even predicting the genetic and molecular characteristics of the

tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of

these AI-based techniques.
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Introduction

Liver tumors, both primary and metastatic, have become a

growing global health concern with significant implications.

Treating HCC remains challenging given the heterogeneity and

complexity of the disease. Most HCC patients have underlying

cirrhosis or chronic inflammation. The microscopic changes, in the

setting of chronic inflammation, makes HCC an ideal disease state

to consider for targeted therapy. While immunotherapy has

changed the first line treatment paradigms, there remains a

paucity of treatment options in patients who either progress on

immunotherapy or are intolerant of these agents. Historically,

treatments for HCC have been based on the Barcelona Clinic

liver cancer staging system, with the assessment of tumor burden,

liver function, and general health status guiding the selection of the

best treatment modality (1). However, in the era of precision

medicine, tumor biomarkers and treatment selection challenge

the one-size-fits-all concept in HCC.

The low sensitivity and specificity of biomarkers has rendered

selection of treatment to be difficult. While Alpha-fetoprotein

(AFP) has historically been used for detection of early, potentially

curable tumors, it is limited by its sensitivity to make treatment

decisions (2). Biomarkers that predict response to systemic therapy

are urgently needed. Presently, AFP is the only biomarker to predict

response, and only in a subset of patients who receive ramucirumab

as a second-line agent. Using cell free DNA’s genomic and

epigenetic changes potentially offers a more sensitive and

promising biomarker, especially for detecting minimal residual

disease (2). Genetic changes detected by means of circulating

tumor DNA allows improved understanding of tumor biology

and disease heterogeneity.

Imaging plays a vital role in detecting liver tumors but sometimes

conventional methods often lack the precision needed for proper

characterization, leading to the need for invasive tissue biopsy.

Conventional imaging methods provide limited information on the

prognostic factors of liver tumors, such as genetic mutations, molecular

markers, and potential treatment response. This information gap

delays personalized treatment planning and prognostication.

Rapid advancements in imaging and post-processing

techniques have revolutionized high-throughput image analysis,

enabling a more precise and comprehensive evaluation of liver

diseases. Artificial intelligence (AI) and radiomics have emerged as

promising methods with the potential to revolutionize liver lesion

characterization. AI and radiomics can analyze medical images at a

high level of detail, identifying subtle patterns that correlate with

specific tumor types, stages, and biological characteristics. These

methods are fast, affordable and readily available. AI and radiomics

can do simple tasks and handle a huge amount of data with the

same accuracy, meaning that missing manual steps, fatigue, or data

overload won’t affect the findings.

We provide an outline of radiomics and AI contributions to

diagnosis and staging, treatment response assessment, and

prognosis prediction in liver malignancies in this review. We

describe the progress and potential of AI in the liver oncology
Frontiers in Oncology 02145
imaging, focusing specifically on radiomic and deep-

learning techniques.
Radiomics and artificial intelligence

Radiomics, a framework that complements conventional

radiological interpretation, has emerged as a powerful tool for

extracting and quantifying texture characteristics derived from

tumor heterogeneity (3–6) (Figure 1). Radiomics employs a wide

range of method, each designed to capture specific aspects of tissue

architecture and texture. These features provide a detailed

representation of tumor heterogeneity, enabling researchers to

study and compare tumor characteristics across different patients.

The standardization of radiomics features ensures the

reproducibility and generalizability of radiomics studies, fostering

collaboration and wider adoption of this technique. Development of

openly available imaging datasets further creates opportunities to

test and benchmark radiomics algorithms and facilitate the

translation of radiomics findings into the clinical practice.

Radiomics features extracted from large datasets enable the

development of advanced statistical models, including machine

learning and artificial intelligence algorithms. These models can

enhance various aspects of liver imaging assessment, including

tumor origin identification, therapy response prediction, and

prognosis assessment. For instance, radiomics provides valuable

insights into tumor characteristics, such as aggressiveness and

prognosis, which can inform treatment decisions. Another example

includes delta-radiomic models, which allow for longitudinal

assessment of changes in tumor texture to assess tumor response to

treatment. This enables timely adjustments to treatment regimens

and improves overall treatment efficacy. Furthermore, radiomics-

based predictive models can personalize treatment strategies for

individual patients, tailoring treatment to their specific tumor

characteristics and maximizing treatment success.

Harnessing the power of neural networks, AI in medical

imaging extracts intricate patterns from large datasets and can

improve informed predictions. The convolution operation, a

cornerstone of many neural networks, employs diverse kernels to

transform raw data into meaningful representations, enabling

neural networks to learn from and make predictions on complex

datasets. Deep learning, a powerful subfield of AI, utilizes many

interconnected layers that transform information, enabling more

sophisticated information processing. Deep learning’s ability to

automatically learn features and representations from data stands

out as a key strength, eliminating the need for explicit feature

engineering by human experts. This capability makes deep learning

particularly well-suited for various clinical tasks. For instance, deep

learning algorithms can accurately detect and localize objects within

images, enabling the identification of anatomical structures or

abnormalities in medical scans. Other models can be trained to

precisely segment objects in images, allowing for the delineation of

organs and lesions. Segmented organs or lesions can be effectively

classified into distinct categories, aiding in disease diagnosis and
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treatment monitoring. Radiomics can be used to identify the origin

of segmented lesions. The integration of radiomics with deep

learning has emerged as a promising strategy for enhancing

classification performance in medical imaging. Deep learning

algorithms possess the ability to complement radiomic features

with kernel-based features and then extract patterns from the high-

dimensional imaging data. This synergistic combination has yielded

noticeable advancements in classification accuracy for a wide range

of medical imaging tasks.

While AI-based approaches offer a diverse toolbox for image

analysis, both radiomics and deep learning share a similar workflow

including collection and standardization of imaging data, image pre-

processing, and segmentation of relevant regions depending on the

task. In liver disease analysis, this involves whole liver segmentation,

segmentation of various structures like lesions, gallbladder, bile ducts,

and vascular components. The whole liver segmentation allows for

evaluation of liver morphology, liver surface, and parenchymal changes

such as fibrosis and cirrhosis. Segmentation and detailed analysis of

individual lesions, including their count, size, heterogeneity, necrosis,

and vascular involvement, can provide valuable insights for staging,

treatment planning, and prognosis (Figure 2).
Frontiers in Oncology 03146
Segmentation

Segmentation of the liver or its vasculature through CT

and MRI has importance in diagnosing lesions, planning

radiotherapy, conducting liver vascular surgeries, preparing for

liver transplantation, and analyzing tumor vascularization, among

other applications. The process of manual segmentation is both

time-consuming and susceptible to human errors. Several

researchers have explored the use of deep learning models to

automate this process, aiming to overcome these limitations.

Segmentation studies exhibit remarkable specificity in liver

imaging, compared to other fields. The mainstream segmentation

technology at present is U-Net, a convolutional neural network

(CNN), and its derivatives. The segmentation accuracy for the

entire liver, as assessed on the SLIVER07 dataset, is exceptionally

high, achieving a maximum Dice Similarity Coefficient (DSC; which

is a metric of accuracy of the method) of 0.9827 (7).

Said et al. employed CNNs for HCC segmentation in MRI,

achieving fair to good performance, notably excelling in single-slice

segmentation with mean DSC ranging from 0.442 to 0.778 in 292

patients (8). Another study focused on automating colorectal liver
FIGURE 1

(A, B) 64 y/o M with history of cirrhosis and HCC.Contrast-enhanced T1-weighted MRI shows a heterogeneous tumor (A) with associated texture
heterogeneity map demonstrating tumor habitats (B). The patient had poor outcome with several recurrent lesions after surgical resection
suggestive of poor tumor biology. (C, D) 54 y/o F with history of cirrhosis and HCC. Contrast-enhanced T1-weighted MRI shows a less
heterogeneous tumor (C) with associated texture heterogeneity map showing the tumor habitats (D). The patient good outome after resection with
no recurrence.
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metastasis and liver ablation zone segmentation on CT, with the

Hybrid-WNet model demonstrating high accuracy. Trained on 92

patients, the model achieved a median DSC of 0.73 (9).

Additionally, a feasibility study utilized a deep convolutional

neural network (DCNN) to automate the application of LI-RADS

(Liver Imaging Reporting and data System) algorithm on

multiphasic MRI, showcasing efficient liver and HCC

segmentation. The average DSC for automatically identified

lesions using the DCNN+ random forest classifier employing

radiomic features and thresholding was 0.64 in the validation set

and 0.68 in the test set (10). One paper presented an automatic

algorithm for rapid and accurate liver and lesion segmentation in

CT scans. Achieving a 94.2% volume overlap and 3.7 mm accuracy

for liver surface segmentation, the method demonstrated a short

processing time of 11.4 seconds per slice. Tumor lesion detection

showed 82.6% sensitivity and 87.5% specificity (11). A separate

study used a deep-learning model for HCC segmentation and

classification using gadoxetic acid-enhanced MRI. The 3D U-Net-

based model achieved high performance (average DSC of 0.884) for

HCC segmentation (12). Lastly, a dual-energy CT radiomics pilot

study successfully differentiated between benign and malignant

hepatic lesions, outperforming iodine quantification. This

involved semiautomatic segmentation of both the volume and rim

of individual liver lesions, along with extracting contrast

enhancement, iodine concentrations, and radiomic features from

each image (13).

Deep learning models can perform HCC segmentation with a

high accuracy. This has multiple clinical applications. These models

can handle a huge amount of data with the same accuracy, meaning

that missing manual steps, fatigue, or data overload won’t affect

the findings. Computer-based processing is affordable and

readily availability.
Early detection and accurate
tumor classification

Identifying liver cancers in their early stages, when they are

localized and amenable to curative treatment, is the ultimate goal.
Frontiers in Oncology 04147
Ideally, the cancer should be diagnosed when patient is

asymptomatic as the emergence of symptoms often signifies late-

stage, incurable disease in many cases. Moreover, early small

tumors should be characterized correctly to allow for correct

treatment since different tumor pathologies have distinct course

and different treatment approaches. Unfortunately, primary liver

cancers may have nonspecific imaging features in their early stages

due to their smaller size. Equally significant is the early

identification of liver metastases, highlighting the importance

timely and precise detection. At the same time addressing and

preventing false positives, overdetection, overdiagnosis, and

overtreatment is essential (14). As an example, combined HCC

and cholangiocarcinoma (CC) originates from hepatic progenitor

cells and can display both hepatocytic and cholangiocytic

differentiation (15, 16). HCC the most common hepatic

malignancy is histologically derived from the hepatocytes and CC

the second most common hepatic malignancy is derived from the

biliary epithelial cells. Studies have demonstrated that the clinical

features and prognosis of combined HCC-CC markedly differ from

those of intrahepatic CC (IHCC) and HCC (17, 18). Hence, it holds

significant clinical implications to differentiate these tumors

preoperatively accurately.

Radiomics integrated with machine learning algorithms has

promising role in distinguishing diverse focal hepatic lesions. The

features extracted may allow for noninvasive diagnosis and

characterization of liver malignancies and provide vital details

such as microvascular invasion within tumors. AI has also been

extensively employed for classifying different liver lesions. CNNs

specifically designed for image recognition tasks have attracted

considerable attention for liver cancer diagnosis.

Numerous large scale studies utilizing CT or MR imaging have

employed radiomics to distinguish various liver lesions, yielding

areas under ROC curves (AUC) ranging from 0.7 to 0.95 (19–29).

These investigations demonstrated robust performance not only on

the training set but also on testing and validation sets. The scope of

these studies encompassed a wide range of classification tasks and

discriminating lesions, including HCC, hemangioma, cysts,

adenoma, hepatic focal nodular hyperplasia, CC, combined HCC-

CC, inflammatory masses, and metastasis. Clinical variables were

integrated into certain models to enhance their performance (19–

29). A multitude of AI studies has endeavored to predict liver

malignancies, focusing on diverse aspects such as detecting HCC

(30–32), classifying major features of LI-RADS (12, 33, 34), and

discerning classic HCC form other malignant and nonmalignant

liver lesions. AUC values in either the training or validation sets

varied from 0.6 to 0.942 (12, 30–34).

Presence of microvascular invasion (MVI) is identified as an

independent risk factor for the postoperative recurrence of HCC

(35). The definitive assessment for MVI is based on histologic

examination of surgical specimen, which is only available after

resection of tumor. As a result, assessing the MVI status before

surgery will play a crucial role in guiding decisions regarding the

optimal extent of surgical resection or ablation treatment for

individuals with HCC. Several studies using AI or radiomic

features extracted from gadoxetic acid-enhanced MRI, dynamic

contrast enhanced MR, or contrast enhanced CT images tried to
FIGURE 2

The work flow of radiomics and AI.
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predict microvascular invasion in HCC and mass-forming CC (36).

The AUCs ranged from 0.75 to 0.98 with most of the studies

achieving AUCs higher than 0.85 (36–47). Notably, studies focused

on peritumoral areas within the 5 cm to 10 cm range. One study

underscored that patients without MVI experienced significantly

prolonged recurrence-free survival (RFS). Validation sets were

incorporated in all studies (36–47). As mentioned above,

accurately predicting MVI before surgery can significantly

influence surgical planning, including decisions regarding the

extent of resection or the suitability of ablation treatments. Such

high AUCs and predictive capabilities mean that presence of MVI

can be successfully determined with AI and radiomics prior to

surgery allowing for a more personalized surgical approach,

potentially improving postoperative outcomes and recurrence-free

survival for patients with HCC.
Grading, association with molecular
profile, immunophenotype, etc.

HCC histopathological grading has been identified to be closely

associated with the prognosis of the tumor, serving as an indicator

of the tumor’s biological behavior. Extensive research indicates that

both progression-free survival and overall survival are notably lower

in poorly differentiated HCC compared to well-differentiated HCC.

Certain subtypes of HCCs, such as macrotrabecular-massive

subtype, are also correlated with worse prognosis. Pre-operative

knowledge of tumor grading affects treatment plan and surgical

approach, when surgery is indicated. For example, the

recommendation is to opt for an extended resection margin when

conducting liver surgery for poorly differentiated HCC to

minimized the risk of early recurrence. Some data suggest

recommendation against liver transplantation for patients with

HCC that is both poorly differentiated and exceeds 3 cm in size.

Preoperative knowledge of tumor grading is classically achieved by

histologic examination of biopsy specimen. Biopsy however is an

invasive procedure and is not feasible in all patients (due to patient’s

factors and location/size of the tumor). Additionally, given the high

success of imaging-based criteria for noninvasive diagnosis of HCC

(such as LI-RADS criteria), biopsy is not routinely performed in

this population.

Several radiomics models utilizing gadoxetic acid-enhanced

MRI, some augmented by AI, have aimed for HCC subtyping and

grading to overcome these issues. They have achieved AUCs

ranging from 0.6 to 0.912 (48–53). Notably, lower grades were

correlated with longer progression-free survival in one cohort.

Additionally, the radiomics model demonstrated associations with

dysregulated humoral immunity, encompassing B-cell infiltration

and immunoglobulin synthesis, offering valuable insights into the

immune microenvironment of HCC (48–53).

Comprehensive knowledge of the molecular profile and

immunophenotype of liver cancers is also relevant for advancing

precision oncology. The tumor microenvironment and immune

status are integral factors influencing the success of immunotherapies

and locoregional treatments in HCC (54). Gene expression analysis has

revealed distinct immune classes among HCC patients and immune
Frontiers in Oncology 05148
profiling of HCC can predict response to immunotherapy (55).

Preliminary works have indicated the potential of radiomics

quantification in immune profiling for HCC. Notably, these works

studied expression of vascular endothelial growth factor (VEGF) (56),

angiopoietin-2 (57), Forkhead Box M1 (FOXM1) (58), and Ki-67 (59,

60). Additionally, the presence of b-catenin mutation (61), intra-

tumoral tertiary lymphoid structures (62), cytokeratin 19 (63, 64),

glypican-3 (GPC3) (65), immunohistochemical cell typemarkers for T-

cells (CD3), macrophages (CD68) and endothelial cells (CD31), PD1

and CTLA4 at mRNA expression level (66), as well as density of CD3+

and CD8+ T cells (67) were studied. All the aforementioned molecules

have relevant task in carcinogenesis. VEGF and Angiopoietin-2

regulate tumor growth by influencing angiogenesis. FOXM1 governs

cell cycle genes, Ki-67 marks proliferation, and b-Catenin mutation

leads to uncontrolled cell growth. Intra-tumoral Tertiary Lymphoid

Structures impact the anti-tumor immune response. Cytokeratin 19

maintains cell structure, while GPC3 serves as a tumor diagnostic

marker. Immune cell markers like CD3, CD68, and CD31 reveal cell

distribution and density, reflecting the local immune response. PD1

and CTLA4mRNA levels influence responses to checkpoint inhibitors.

Each of these immune subtypes plays a critical role in unraveling the

complex immune response within HCC, providing insights for

prognostication and targeted therapeutic interventions. AUCs of

these tasks fell somewhere between 0.76 to 0.95 (56–67). Notably,

when clinical factors were integrated with radiomics signatures,

models’ performance significantly improved. In the MRI studies, the

hepatobiliary phase consistently demonstrated the best performance.

While deep learning models haven’t been as widely applied as

radiomics for this particular task, they undoubtedly hold significant

potential. Xie et al. introduced a non-invasive method for predicting

PD-1 and PD-L1 expression in HCC. Using a cohort of 87 HCC

patients and analyzing 3094 CT images, the Contrastive Learning

Network (CLNet) was proposed. Trained with self-supervised

contrastive learning, CLNet achieved superior performance,

demonstrated an AUC of 86.6 for PD-1 expression and 83.9 for

PD-L1 expression (68) (Table 1).

High AUC values in both radiomics and deep learning

tasks indicate strong predictive performance, meaning these

models are highly effective in identifying molecular profiles,

immunophenotypes and grades of HCC.
Assessment of tumor response

Several locoregional therapeutic strategies have been developed

and implemented over past decades, and a considerable number

of these are currently considered as the standard of care for

liver malignancies (69). These involve a range of percutaneous and

trans-arterial methods designed to induce cell death in tumors. This

can be achieved through percutaneous approach, as seen in

radiofrequency and microwave ablation, or achieved via targeted

trans-catheter trans-arterial administration of embolic agents (known

as trans-arterial bland embolization, TAE), chemotherapeutic

substances (referred to as trans-arterial chemoembolization,

TACE), or radioembolizing agents (as in trans-arterial Yttrium-90

radioembolization, TARE) (70). While typically less invasive
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compared to surgical removal and transplantation, these therapies

can lead to complications. Hence, careful patient selection and

thorough evaluation of treatment response are crucial clinical

considerations. Evaluating the response to treatment following

TARE and external beam radiation, particularly in the initial

months post-treatment, poses challenges due to the intrinsic

characteristics and timeline of cytotoxic effects induced by

radiation. Sustained enhancement in the arterial phase and

subsequent washout can be observed in treated lesions for several

months following the treatment, even though a complete response is

ultimately achieved (71). Considering these limitations, it is essential

to explore alternative approaches for evaluating treatment response.

Numerous studies have explored the potential of utilizing

radiomic features extracted from post-treatment CT and MRI in

assessing the treatment response of HCC (72–79). There are limited

studies on other liver tumors (80, 81). Radiomics features were
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extracted from diverse imaging modalities, including MRI and CT

scans, and involved different treatment methods. In some studies key

clinical information, such as albumin levels, AFP levels, and Child-

Pugh score were integrated into predictive models to enhance

accuracy. The studies anticipated diverse outcomes encompassing

early response, early recurrence, aggressive intrasegmental

recurrence, tumor refractoriness, and local tumor progression

across varied locoregional strategies. The AUC values of these

studies ranged from 0.8 to 0.95 (72–81). These studies collectively

underscore the potential of radiomics in tailoring treatment strategies

and prognostic assessments for liver cancer patients, providing a non-

invasive means to predict outcomes and guide personalized

interventions based on comprehensive imaging analyses and

relevant clinical parameters.

The utilization of deep learning to evaluate locoregional

therapeutic responses in HCC is relatively limited in the current
TABLE 1 Summary of HCC grading, molecular profiling, and immunophenotyping.

Author Marker Subjects Modality Model Accuracy training
Accuracy
testing

Accuracy validation

Chen Immunoscore 207 HCC MRI Radiomics/
ML

AUC, accuracy, sensitivity,
specificity = 0.904, 0.787,

93.8%, 74.6%
combined- AUC = 0.926

NA AUC, accuracy, sensitivity,
specificity = 0.899, 0.772, 92.3%,

72.7%
combined- AUC = 0.934

Chen FOXM1 expression 286 HCC CT Radiomics/
ML

AUC = 0.918 AUC = 0.837 NA

Fan VEGF expression 202 HCC MRI Radiomics/
ML

AUC = 0.892
combined- AUC = 0.936

AUC: 0.8/
combined-

AUC = 0.836

NA

Hectors Immunoprofiling
and genomics

48 HCC MRI Radiomics/
ML

Tumor size ≥ 5 cm - HCC
recurrence (OR = 3.01,
p = 0.004, AUC = 0.76).

NA NA

Li Intra-tumoral
tertiary
lymphoid
structures

142 HCC CT Radiomics/
ML

AUC = 0.79 NA AUC = 0.75

Wang cytokeratin
19 expression

227 HCC MRI Radiomics/
ML

AUC = 0.892
combined- AUC, sensitivity,

specificity, C-index = 0.951, 0.818,
0.974, 0.959

NA AUC = 0.73
combined- AUC, sensitivity,

specificity, C-index = 0.822, 0.769,
0.818, 0.846

Wu Ki-67 expression 172 HCC CT Radiomics/
ML

AUC = 0.854
combined- AUC = 0.884

NA AUC: 0.744
combined- AUC = 0.819

Yan Ki67 expression 110 HCC MRI Radiomics/
ML

AUC = 0.833
combined- AUC = 0.901

NA AUC: 0.772
combined- AUC = 0.781

Zeng b-catenin mutation 98 HCC MRI Radiomics/
ML

AUC, accuracy, sensitivity,
specificity = 0.86, 0.75, 1.0, 0.65

combined- AUC = 0.86

NA AUC, accuracy, sensitivity,
specificity = 0.82, 0.73, 0.67, 0.76

combined- AUC = 0.76

Zhang cytokeratin
19 expression

311 HCC MRI Radiomics/
ML

C-index, 0.914 C-index, 0.855 C-index, 0.795

Zhang glypican-
3 expression

137 HCC MRI Radiomics/
ML

AUC, sensitivity, specificity =
0.822, 0.816, 0.706

combined- AUC, sensitivity,
specificity = 0.888, 0.777, 0.912

NA combined- AUC, sensitivity,
specificity = 0.800, 0.58.5, 1.0

Zheng angiopoietin-
2 expression

52 HCC MRI Radiomics/
ML

AUC = 0.8
combined- AUC = 0.933

NA NA

Xie PD-1 and PD-
L1 expression

87 HCC CT AI-DL AUC = 0.866 for PD-1 expression
AUC = 0.839 for PD-

L1 expression

NA NA
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body of research, yet, it’s important to note that the studies

presented are novel, and there’s considerable unexploited

potential in this evolving field. Three studies employed deep

learning to explore the response of TACE in HCC (82–84). In a

study involving 414 patients, hazard ratios for time to progression

(TTP) were 0.32 (training), 0.28 (validation), and 0.55 (test). The

research also indicated improved overall survival (OS) with a

hazard ratio of 0.58 and a median survival of 38.8 months,

compared to 20.9 months (82). Another investigation with 789

patients achieved an 84.3% accuracy, showing AUCs of 0.97, 0.96,

0.95, and 0.96 for complete response (CR), partial response (PR),

stable disease (SD), and progressive disease (PD), respectively. The

deep learning model displayed accuracies of 85.1% and 82.8%

across CR, PR, SD, and PD in two validation sets (83). The deep

learning signature showed strong predictive performance, with a C-

index of 0.717 in the training set and 0.714 in the validation set (84).

One study developed an automatic and non-invasive deep

learning radiomic nomogram (DLRN) to predict hepatic arterial

infusion chemotherapy response in HCC. Utilizing contrast-

enhanced CT images from 458 patients across three hospitals, the

DLRN achieved high AUC values of 0.988 (training), 0.915 (internal

validation), and 0.896 (external validation), outperforming other

models. The DLRN also successfully stratified survival risk, with the

predictive objective response group exhibiting significantly longer

overall survival (26.0 vs. 12.3 months) (85).

The ability of AI and radiomics to predict early treatment

response and recurrence can improve the management of liver

cancer. By identifying patients at risk of aggressive recurrence or

poor response to treatment early on, clinicians can adjust

therapeutic strategies promptly have shown that these methods

have consistently high accuracies.
Prognostication

The prognosis of HCC continues to be unfavorable, even

following curative-intent treatments like liver resection or

transplantation. After liver resection, the early recurrence rate

stands at 50–70%, while following a median post-transplant

period of 13–14 months, the rate is 10–20% (86, 87).

By analyzing detailed features from medical images, radiomics

helps predict recurrence, understand tumor growth, and estimate

progression-free survival. When combined with essential clinical

details, radiomics can become a powerful tool for predicting

aggressive disease and customizing treatments. This approach

offers a non-invasive, precise way to enhance prognostic

assessments, bringing a new level of accuracy to liver cancer care.

Multiple studies - including ten studies on HCC (88–97), four

studies on Mass-forming CC (98–101), and three studies on

colorectal liver metastases (102–104)- utilized various radiomics

approaches to predict outcomes and guide treatment decisions. The

studies involved diverse cohorts, including patients undergoing

liver transplantation, surgical resection, or chemotherapy. The

endpoint outcomes ranged from overall survival (OS), recurrence

free survival (RFS), progression-free survival (PFS), event-free

survival (EFS), early recurrence (ER), 1-year survival and 5-year
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survival, post-hepatectomy liver failure (PHLF), and lymph node

metastasis. The AUCs for predictive models varied, ranging

between 0.70 to 0.98 (88–104). Moreover, the integration of

radiomics with clinical factors consistently improved predictive

performance, demonstrating the potential for personalized risk

assessment. Notably, radiomics models were applied to predict

survival in various contexts, offering valuable insights for

prognosis and treatment planning in HCC and other liver cancers.

Radiomics analysis and the integration of CNNs with CT and

MRI images and clinical data have been developed to predict the

prognosis of HCC patients. Machine learning and CNNs have

exhibited a good accuracy in predicting patient survival following

surgical treatment. In a bicentric study, a deep learning nomogram

based on gadoxetic acid MRI features was developed to predict early

recurrence in 285 HCC patients post-hepatectomy. Extracting deep

learning features using VGGNet-19 from contrast-enhanced MRI

images, the deep learning nomogram, incorporating multiphase

deep learning signatures, performed well on both the training

(AUC: 0.949) and validation sets (AUC: 0.909). Independent

predictors for early recurrence included microvascular invasion,

tumor number, and the deep learning signature (105). Lv et al.

introduced an AI -powered approach for predicting the 3-year

recurrence of HCC using contrast-enhanced CT radiomic profiles.

In a single-center retrospective cohort of 224 HCC patients,

radiomic signatures from arterial and portal venous phases were

utilized to establish three models: radiological model (RM), deep

learning-based radiomics model (DLRM), and clinical & deep

learning-based radiomics model (CDLRM). CDLRM,

incorporating clinical factors and DLR features, demonstrated

superior accuracy (AUC: 0.98 in training, 0.83 in testing)

compared to DLRM and RM (106). In a proof-of-concept study

for HCC patients initially eligible for liver transplant, machine

learning models were developed using pretreatment clinical and

MRI features to predict posttreatment recurrence. The study

included 120 patients, and three machine learning models

(clinical, imaging, combined) predicted recurrence with AUCs

ranging from 0.60 to 0.86 across six timeframes. The imaging

model outperformed the clinical model (mean AUC 0.76 vs. 0.68,

p = 0.03). Kaplan-Meier analysis demonstrated significant

differences in recurrence risk prediction between low and high-

risk groups for all three models (107). A retrospective study,

involving 55 patients with stage 4 colon cancer and hepatic

metastasis, explored the role of MRI-based measures of intra-

tumor heterogeneity in predicting survival. Extracting a

heterogeneity phenotype vector from 94 hepatic lesions, the study

identified 22 texture features associated with patient survival. A

random forest machine learning model, combining clinical

variables with imaging-based features, improved survival

prediction performance, yielding an area under the ROC curve of

0.94 compared to 0.83 with clinical variables alone (108).

By analyzing the complex patterns within imaging data, these

approaches allow for a deeper understanding of tumor biology and

patient-specific disease progression. The predictive capability of

radiomics and AI models, as evidenced by their high accuracy in

various studies, emphasizes the need for ongoing research to further

validate and integrate these technologies into clinical practice.
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Pitfalls and technical limitations

Despite the promising results in radiomics research for liver

cancers, a notable gap persists between numerous numerical data

generated and their practical clinical application. These studies

provide a myriad of quantitative metrics and predictive models,

showcasing radiomics’ potential in augmenting diagnostic and

prognostic evaluations. However, translation of these findings

into routine clinical practice remains uncertain. Challenges,

including protocol variability and interobserver discrepancies,

present significant obstacles in bridging the research-clinical gap.

Noteworthy is the absence of clear guidelines on the integration of

radiomic data into the real-world clinical decision-making. The

intrinsic heterogeneity of liver tumors and the dynamic nature of

cancer progression amplify the intricacies of developing robust and

generalizable radiomic models. Additionally, challenges related to

overfitting, model validation, and potential false correlations in

high-dimensional data emphasize the need for rigorous

methodology standardization. These technical challenges

collectively underscore the substantial work required before

radiomics can claim its role as a dependable and clinically

impactful tool in liver cancer management.

While machine learning has shown remarkable promise in the

radiologic assessment of primary and metastatic liver malignancies,

it is not without its pitfalls. One significant challenge lies in the

quality and quantity of training data. The performance of machine

learning models heavily relies on the availability of diverse and

representative datasets, and issues such as imbalances, biases, or

insufficient samples can lead to suboptimal generalization and

performance. Additionally, the interpretability of machine

learning models in radiology remains a concern. The “black-box”

nature of some sophisticated algorithms makes it challenging for

clinicians to understand the rationale behind specific predictions,

limiting their trust and acceptance. Another notable pitfall is the

potential for overfitting, where a model may perform exceptionally

well on the training data but fails to generalize effectively to new,

unseen cases. Moreover, the dynamic nature of medical imaging

and evolving standards in radiologic practices pose challenges in

keeping machine learning models up-to-date and adaptable to

changes in the field. Addressing these pitfalls is crucial to harness

the full potential of machine learning in improving the accuracy and

efficiency of radiologic assessments for liver malignancies.
Future direction

It’s important to acknowledge the gap between research

advancements in radiomics and AI and their clinical

implementation. This gap mainly exists because the low external

validity of these technologies limits their adoption in routine clinical

practice. The primary challenge for clinical translation is ensuring

the generalizability of AI and radiomics models. There is a need for

further clarification of true role of radiomics and machine learning

tools in clinical applications. This involves external validation of

machine learning models and the assessment of diagnostic

performance for specific diseases using deep learning radiomics.
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External validation, particularly through large multi-institutional

datasets gathered over a longer period, is essential to confirm the

models’ generalizability. To enhance the clinical translation and

applicability of radiomics studies, it is also crucial to address

important issues such as access, cost-effectiveness analysis, and

the promotion of open data practices. Generally, achieving

sufficient clinical performance in training a CNN necessitates a

large amount of training data. In the development of AI imaging

models, the cost of annotation is a significant concern, and the

future is expected to see a focus on acquiring substantial amounts of

high-quality training data while simultaneously minimizing

annotation costs. The ultimate goal is to leverage AI and

radiomics in clinic for the precise classification and detection of

liver tumors and to enable personalized treatment by accurately

predicting treatment responses.
Conclusion

In this review we identified several potentials of AI and

radiomics in clinical decision-making in liver oncology imaging,

including improving the precision of tumor detection,

characterization and classification, enabling the prediction of

treatment response, identifying patient-specific prognostic

indicators for personalized therapy, and possibly reducing the

reliance on invasive procedures like biopsies by non-invasively

determining tumor genetics, immune phenotype and behavior.
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Deep learning driven diagnosis
of malignant soft tissue tumors
based on dual-modal ultrasound
images and clinical indexes
Haiqin Xie1, Yudi Zhang2, Licong Dong1, Heng Lv1, Xuechen Li3,
Chenyang Zhao1, Yun Tian1, Lu Xie1, Wangjie Wu1, Qi Yang1,
Li Liu1, Desheng Sun1, Li Qiu4, Linlin Shen2* and Yusen Zhang1*

1Shenzhen Hospital, Peking University, Shenzhen, China, 2College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, Guangdong, China, 3National Engineering Laboratory for
Big Data System Computing Technology, Shenzhen University, Shenzhen, China, 4West China
Hospital, Sichuan University, Chengdu, Sichuan, China
Background: Soft tissue tumors (STTs) are benign or malignant superficial

neoplasms arising from soft tissues throughout the body with versatile

pathological types. Although Ultrasonography (US) is one of the most common

imaging tools to diagnose malignant STTs, it still has several drawbacks in STT

diagnosis that need improving.

Objectives: The study aims to establish this deep learning (DL) driven Artificial

intelligence (AI) system for predicting malignant STTs based on US images and

clinical indexes of the patients.

Methods: We retrospectively enrolled 271 malignant and 462 benign masses to

build the AI system using 5-fold validation. A prospective dataset of 44 malignant

masses and 101 benign masses was used to validate the accuracy of system. A

multi-data fusion convolutional neural network, named ultrasound clinical soft

tissue tumor net (UC-STTNet), was developed to combine gray scale and color

Doppler US images and clinic features for malignant STTs diagnosis. Six

radiologists (R1-R6) with three experience levels were invited for reader study.

Results: The AI system achieved an area under receiver operating curve (AUC)

value of 0.89 in the retrospective dataset. The diagnostic performance of the AI

system was higher than that of one of the senior radiologists (AUC of AI vs R2:

0.89 vs. 0.84, p=0.022) and all of the intermediate and junior radiologists (AUC of

AI vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; p <0.01). The AI system also
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achieved an AUC of 0.85 in the prospective dataset. With the assistance of the

system, the diagnostic performances and inter-observer agreement of the

radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63

to 0.69; p<0.01).

Conclusion: The AI system could be a useful tool in diagnosing malignant STTs,

and could also help radiologists improve diagnostic performance.
KEYWORDS

deep learning, artificial intelligence, ultrasound, soft tissue tumor, malignant tumor
Highlights
• The deep-learning driven system has a high accuracy in

diagnosing malignant soft tissue tumors.

• The deep-learning system showed superior performance

than junior radiologists.

• The system is a useful tool for radiologists in discerning

malignant soft tissue tumors.
Introduction

Soft tissue tumors (STTs) are a group of superficial neoplasms

with heterogeneous clinical manifestations and diverse pathological

types. The ratio of benign to malignant is close to 100:1 (1). Soft

tissue sarcomas are the most common malignant STTs, accounting

for only 1% of all adult cancers (2). Despite the rarity of malignant

STTs compared with other malignant entities, their hazards cannot

be ignored due to the substantial mortality and morbidity (3, 4). The

overall five-year survival rate of malignant STTs is about 50% (1).

They also present high metastasis and postoperative recurrence

rates, up to 39% for soft tissue sarcomas (5). Soft tissue sarcoma is

one of the leading causes of death for young adults, particularly for

certain subtypes (6). As a result, accurate diagnosis and timely

treatment for malignant STTs is crucial to improve the prognosis of

the patients. However, as STTs substantially vary in clinical

manifestations, morphological changes, and biological behaviors,

it is difficult to make precise classification of malignant STTs, which

might lead to delayed diagnosis. It is reported that the diagnosis of

soft tissue sarcoma was usually delayed for up to 94.6 weeks (7),

which might cause disastrous consequences on patients’ outcome,

such as a shorter survival time (8, 9).

Ultrasonography (US) is considered to be the first-line imaging

method for STTs, due to its fast speed, high resolution, lower cost,
S), soft tissue tumors

TNet).

02156
availability, dynamic observation, and no contraindications (2).

Gray-scale US can map the locations and morphological changes

of STTs, including size, margin, shape, and internal components.

The mobility, compressibility, and its anatomical associations with

adjacent structures can also be confirmed by dynamic US. Color

Doppler US can further display the distribution of intra-tumoral

and peri-tumoral blood vessels (10–14). However, US presented an

unstable and relatively low diagnostic performance for classifying

benign and malignant STTs. The reported accuracy rate of US

varied among studies, ranging from 69% to 93% (10–12, 15, 16).

And most of the previous studies only involved a small number of

cases for evaluation, compromising their reliability. Meanwhile,

conventional US is characterized by high operator-dependence and

relatively low inter-observer agreement, which also degrade its

performance in classifying malignant STTs. How to improve the

diagnosis accuracy of US for malignant STTs, at the same time

decrease operator dependence, is a very important research topic.

Advanced techniques like Artificial intelligence (AI), especially

deep learning (DL) algorithms, possess an excellent ability in image

recognition tasks. DL is emerging as a promising tool to resolve

various radiology tasks using US images, including screening breast

cancer (17, 18), classifying thyroid nodules (19–21), diagnosing

liver diseases (22–24), and assessing musculoskeletal abnormality

(25). Apart from showing good diagnostic performances in some

diseases, DL can also assist radiologists in enhancing their accuracy

and reliability in reading US images (26). Currently, AI-based

malignant STTs diagnosis based on US images is still in the initial

stage (27–29). These studies applied non-DL methods to develop

assistant tools for malignant STTs diagnosis, with limited enrolled

STTs cases. And clinical indexes were not fully utilized for the

model construction in the previous studies.

To overcome the barrier of US diagnosis of malignant STTs, we

established this DL-driven AI system, named ultrasound clinical

soft tissue tumor net (UC-STTNet), for predicting STTs based on

US images and clinical indexes of the patients. First, one of the

highlights of the study is the application of two modalities of US

imaging, gray-scale US and color-Doppler US, in model

construction, which could provide more morphological

information of STTs masses. And basic clinical indexes were also
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incorporated in the system for a more comprehensive diagnosis of

the tumors. Also, we used 5-fold cross validation method in the

model building based on a large database. The AI system could also

provide heatmaps of US images illustrating the features relevant to

model predictions for radiologists to make diagnosis. The AI system

could successfully improve the performances and stability of the

radiologists in classifying malignant STTs. To the best of our

knowledge, our work is the first one applying DL technology for

US diagnosis of malignant STTs.

Materials and methods

Ethical approval

The study was designed as a retrospective study and approved

by the ethics committee of Peking University Shenzhen Hospital

(Approval number: 202200901). The informed content was not

waived since the retrospective study was observational and did not

involve any interventional procedures. And all the information of

the patients is anonymized throughout the study. The ethics

committee approved the omission of informed content.
Study participants enrollment

In this work we employed five-fold cross validation for network

evaluation. Among 5 folds, 4 and 1 folds were employed for training

and testing, respectively. To build the training and testing dataset,

we retrospectively reviewed the clinical and imaging data of the

patients with STTs from July 2013 to December 2021. The patients

with dual-modal US images and pathological results from surgical

resections or biopsies were enrolled. To further evaluate the

performance of the AI system, we collected a prospective testing

dataset from April 2022 to September 2022 in our hospital. Tumors

that occurred in superficial organs, including thyroid gland, breast,

salivary gland, and lymph nodes, were excluded in both of the

retrospective and prospective workflows.
US imaging and clinical data collection

All US images were derived from US imaging database at Peking

University Shenzhen Hospital. The US examinations were performed

by radiologists with over five-year experiences of US using

commercial US equipment with 5-15MHz probes. Two

representative pictures of each patient, one gray scale image

showing the largest section of tumor and one color Doppler flow

image with the most abundant blood vessels, were selected for model

building. The US images of STTs were reviewed and selected from the

patients by two radiologists with five-year experiences in US together

for image quality control. When disagreement occurred between the

two radiologists, they would refer to a third radiologist with over 10-

year experiences for the final decision. Two clinicians collected the

clinical data for the enrolled patients, including sex, age, duration,

locations, layer, the maximum and minimum diameter of lesions,

depth from skin, history of malignancy, and surgical history.
Frontiers in Oncology 03157
DL architecture development

We designed a multi-data fusion convolutional neural network,

named as UC-STTNet, to combine gray scale and color Doppler US

images and clinic features for malignant STTs diagnosis. Detailed

descriptions about UC-STTNet are shown in Supplementarymaterials

(Supplementary 1; Supplementary Figure 1; Supplementary Table 1).

The image feature extraction consisted of a tumor area

enhancement block and a tumor feature extraction block. The

tumor area enhancement block was an encoder-decoder network,

which employed ResNet18 as backbone and with five down- and

up-sample layers. The encoder was employed to extract the region

of interest (ROI) feature of STTs, and the decoder was used to

generate a ROI feature map which represented the possibility of

tumor area (abbr. ROI-map).

The clinical data was directly digitized as a feature vector, which

was then processed by a multi-layer perceptron and directly input

into the multi-data fusion block. The multi-data fusion block

consisted of feature concatenation and attention mechanism. The

segmentation and tumor area features were concatenated together,

and then the combined features were input into an attention block.

Global average pooling was used to align the image features to

linear space and then concatenated with the features of clinic data to

generate a multi-data fusion feature for the final STTs classification.

Gradient-weighted Class Activation Mapping (Grad-CAM) was

adopted in the classification tasks on deep learning to explain the

performance of the proposed UC-STTNet. And we used a weighted

combination for the forward activation map and activated the result

by Rectified Linear Activation function (ReLU) to get the

visualization heatmap.
Reader study and AI-assisted reader study

Six radiologists with three experience levels were invited to

review the dual-modal US images and clinical manifestations

independently and make diagnosis. The six radiologists

participated the reader study included two senior radiologists

with 21 and 24 years of experience (R1 and R2), two intermediate

radiologists with 10 and 12 years of experience (R3 and R4), and

two junior radiologists with 4 and 7 years of experience (R5 and

R6). The radiologists were blind to the pathologic results of the

tumors. One month after the original reader study, the same STTs

cases were re-presented to the six radiologists for a second

diagnosis, along with the AI-predicted results and heatmaps as

reference. The radiologists were blind to their first-time results and

pathological results of the tumors.
Statistical analysis

The 5-fold cross validation was used for model training and

testing. The split was randomly repeated for five times and the

average performances were recorded. The receiver operating curve

(ROC), area under ROC curve (AUC), accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive

value (NPV) with 95% confidence interval (CI) were used to evaluate
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the diagnostic performance of the model, the radiologists, and the

radiologists with AI assistance. AUC values of the same dataset and

different datasets were compared to use the methods reported by

DeLong et al (30) and Hanley and McNeil (31), respectively. We

further calculated the intra-class correlation (ICC) with 95% CI to

evaluate the inter-observer variability of the six radiologists before

and after the assistance of AI results. P < 0.05 was considered as

statistically significant. The statistical analyses were performed by

using Medcalc (Version 20.0, MedCalc Software Ltd, Belgium).
Results

In this study, we developed and presented UC-STTNet, an AI

system based on a deep-learning architecture for malignant STTs

diagnosis. The study flow of the construction and validation of UC-

STTNet is shown in Figure 1.

From July 2013 to December 2021, a total of 15120 adult

patients with STTs were received from pathology data, which

came from core biopsy or surgery. There were 546 patients with

malignancy and 14574 patients with benign. Finally, 733 masses of

693 patients, including 271 malignant masses of 231 patients and

462 benign masses of 462 patients, were enrolled in this study to

build the model. For the prospective validation of the model, we

recruited 145 masses of 145 patients, including 44 malignant masses

of 44 patients and 101 benign masses of 101 patients from April

2022 to September 2022. The workflow of the retrospective and

prospective patient recruitment is shown in Figure 2.
Clinical data and pathological results

The clinical features and pathological results of the

retrospectively enrolled and prospectively enrolled STTs were
Frontiers in Oncology 04158
listed in Table 1. Except sex, the other clinical characteristics

between benign and malignant masses, were significantly different.
Performance of the AI system on the
retrospective dataset for model building

The performance of the AI system was evaluated using 5-fold

cross validation. Of the five validation sets, the highest AUC was

0.91 (95% CI: 0.84, 0.95), with accuracy of 0.89 (95% CI: 0.84, 0.94),

sensitivity of 0.82 (95% CI: 0.72, 0.82), specificity of 0.93 (95% CI:

0.88, 0.98), PPV of 0.88 (95% CI: 0.79, 0.97), NPV of 0.90 (95% CI:

0.84, 0.96), respectively. The average AUC, accuracy, sensitivity,

specificity, PPV and NPV of the model in the five validations were

0.89 (95% CI: 0.87, 0.92), 0.84 (95% CI: 0.82, 0.87), 0.76 (95% CI:

0.71, 0.81), 0.90 (95% CI: 0.87, 0.92), 0.81 (95% CI: 0. 76, 0.86) and

0.86 (95% CI: 0.83, 0.89), respectively. The AI system showed higher

specificity than sensitivity, indicating that the majority of the benign

cases (above 90%) were accurately recognized. While there were

around 20% of the malignant cases mistakenly classified as benign.

Similarly, the NPV value of the model was slightly higher than the

PPV value, indicating that the AI system had more confidence

(around 3%) in predicting benign cases.

Figure 3A presents the ROCs of all five folds. According to the

figure, UC-STTNet appears to be robust and stable when trained

and tested with different folds of data. The AUC values of the AI

system in the five validations ranged from 0.84 to 0.91, with the

standard deviation 0.028. Figure 3B depicted the performances of

radiologists with three different experience levels. The diagnostic

performance of UC-STTNet was higher than that of one of the

senior radiologists (AUC of UC-STTNet vs AUC of R2: 0.89 vs.

0.84, p=0.022) and all the intermediate and junior radiologists

(AUC of UC-STTNet vs AUC of R3, R4, R5, and R6: 0.89 vs

0.75, 0.81, 0.80, 0.63; p <0.01), and was comparable to one of the
FIGURE 1

Overall study flow of UC-STTNet, the AI system for STTs diagnosis. The AI system was developed on a deep learning frame work using the tumor
information from both dual-modal US images, including gray-scale US and color-Doppler US, and clinical features. The AI system could help
radiologists in clinical decision-making by providing prediction results of STTs and heatmaps of US images as reference.
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high-level radiologists (AUC of UC-STTNet vs AUC of R1: 0.89 vs

0.87, p=0.30). And there were no significant differences in accuracy,

specificity and PPV between the AI system and the intermediated-

level radiologists (p=0.09, 0.96, and 0.72, respectively). And the AI

system showed better sensitivity and NPV than the intermediated-

level radiologists (p=0.01 and 0.04, respectively).
Assistant role of the AI system
for radiologists

. The change in diagnostic performance of each radiologist after the

assistance from the AI system was displayed in Figure 4l Table 2. For

junior radiologists (R5 and R6) and one of the intermediate radiologists

(R3), the AUC values after the AI assistance were significantly

improved (R3: 0.75 to 0.83, p<0.01; R5: 0.80 to 0.85, p<0.01; R6: 0.63

to 0.69, p<0.01), indicating that the diagnostic performances of the

radiologists could be enhanced via the aid of the AI system.

Subsequently, we calculated the ICC value among the six

radiologists in classifying the malignant STTs. The original ICC

value of the radiologists before referring to the AI system was 0.87

(0.84-0.89), which increased to 0.92 (0.91-0.93) after AI assistance,

indicating the diagnostic agreement of the radiologists could be

improved via the aid of the AI system.
Explainability of the AI system

Explainability of UC-STTNet was demonstrated as heatmaps

that highlights the significant areas attended by the model for
Frontiers in Oncology 05159
malignant STTs diagnosis. The examples of the AI prediction of

malignant STTs were illustrated in Figure 5. UC-STTNet gave the

prediction result of a malignant STTs mass based on its dual modal

US images and clinical indexes. The heatmap of the mass was

generated by the AI system and used as reference for radiologists.
Performance of the AI system on the
prospective dataset

The AUC, accuracy, sensitivity, specificity, PPV and NPV of the

AI system on the prospective dataset were 0.85 (95% CI: 0.82, 0.89),

0.83 (95% CI: 0.77, 0.90), 0.63 (95% CI: 0.49, 0.78), 0.91 (95% CI:

0.86, 0.97), 0.75 (95% CI: 0.62, 0.90) and 0.85 (95% CI: 0.79, 0.92),

respectively. The AUC value of the AI system on the prospective

dataset had no statistical difference with the average AUC value on

the model-building dataset (0.89 vs 0.85, p=0.282). The diagnostic

performance of the AI system in the prospective dataset is shown

in Figure 6.
Discussion

In this study, a total of 733 and 145 masses were collected

retrospectively and prospectively. We successfully built a DL-driven

AI system, named UC-STTNet, for distinguishing the malignant

STTs from benign ones based on dual modal US images and clinical

manifestations. The AI system achieved the average AUC value of

0.89 in the retrospective dataset, showing a diagnostic performance
FIGURE 2

Flow chart of the retrospective and prospective patients’ recruitment.
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comparable to high-level radiologists, superior to intermediate and

junior radiologists. With the assistance of the system, the diagnostic

performances and inter-observer agreement of the radiologists

could be further enhanced. To note, the number of STTs patients
Frontiers in Oncology 06160
and cases involved in our study is so far the largest, among all

available literature works.

Diagnostic models for classifying malignant STTs based on US

images have been developed by several studies. Despite of their high
TABLE 1 Clinical characteristics of 733 retrospective STTs masses and 145 prospective STTs masses.

AUC Accuracy Sensitivity (%) Specificity (%) PPV NPV

AI system
0.89

(0.87-0.92)
0.84

(0.82-0.87)
0.76

(0.71-0.81)
0.90

(0.87-0.92)
0.81

(0.76-0.86)
0.86

(0.83-0.89)

R1
0.87

(0.85-0.90)
0.88

(0.86-0.91)
83.4

(78.4-87.6)
91.34

(88.4 - 93.7)
0.85

(0.81 ~ 0.89)
0.90

(0.88 ~ 0.93)

R1+AI
0.88

(0.86-0.91)
0.89

(0.87-0.91)
86.4

(81.7-90.2)
90.26

(87.2 - 92.80)
0.84

(0.79 ~ 0.88)
0.92

(0.89 ~ 0.94)

R2
0.84

(0.81-0.87)
0.87

(0.85 -0.89)
72.7

(67.0-77.9)
95.24

(92.9 - 97.0)
0.90

(0.86 ~ 0.94)
0.86

(0.83 ~ 0.89)

R2+AI
0.82

(0.79-0.85)
0.86

(0.83-0.89)
68.3

(62.4-73.8)
96.32

(94.2 - 97.8)
0.92

(0.88 ~ 0.95)
0.84

(0.81 ~ 0.87)

R3
0.75

(0.72-0.78)
0.80

(0.78-0.83)
54.6

(48.5-60.6)
95.45

(93.1 - 97.2)
0.88

(0.83 ~ 0.93)
0.78

(0.75 ~ 0.82)

R3+AI
0.83

(0.80-0.86)
0.85

(0.82-0.88)
75.3

(69.7-80.3)
90.69

(87.7 - 93.2)
0.83

(0.78 ~ 0.87)
0.86

(0.83 ~ 0.89)

R4
0.81

(0.78-0.83)
0.82

(0.79-0.85)
76.1

(70.5-81.0)
85.06

(81.5 - 88.2)
0.75

(0.70 ~ 0.80)
0.86

(0.83 ~ 0.89)

R4+AI
0.81

(0.78-0.84)
0.83

(0.81-0.86)
71.6

(65.8-76.9)
90.04

(86.9 - 92.6)
0.81

(0.76 ~ 0.86)
0.84

(0.81 ~ 0.88)

R5
0.80

(0.77-0.83)
0.80

(0.77-0.83)
83.4

(78.4-87.6)
77.27

(73.2 - 81.0)
0.68

(0.63 ~ 0.73)
0.89

(0.86 ~ 0.92)

R5+AI
0.85

(0.82-0.88)
0.86

(0.84-0.89)
80.07

(74.8-84.7)
90.04

(86.9 - 92.6)
0.83

(0.78 ~ 0.87)
0.89

(0.86 ~ 0.91)

R6
0.63

(0.59-0.66)
0.71

(0.68-0.74)
31

(25.5-36.9)
94.16

(91.6 - 96.1)
0.76

(0.68 ~ 0.84)
0.70

(0.66 ~ 0.74)

R6+AI
0.69

(0.65-0.72)
0.76

(0.73-0.79)
40.22

(34.3-46.3)
96.97

(95.0 - 98.3)
0.89

(0.83 ~ 0.94)
0.73

(0.70 ~ 0.77)
f

STTs, soft tissue tumors.
BA

FIGURE 3

Receiver operating characteristic curves (ROC) of UC-STTNet assessed by 5-fold cross validations and comparing the different level radiologists. 3
(A). ROC of each fold of the AI system and three different levels of radiologists; 3 (B). the average performance of the AI system compared with
three levels radiologists.
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accuracy, the previous models have some disadvantages and are not

suitable for clinical promotion. Chen et al. developed a computer-

aid-diagnosis (CAD) system using US images to improve the

accuracy of 89.5% for malignant STTs (27). However, manual

identifications of lesions were required in their CAD system,

which is time-consuming and not convenient for clinical

application. Wu MJ et al. established a STTs diagnostic

nomogram integrating ultrasound and clinical features via

multivariable regression analysis, which achieved an AUC value

of 0.896 (29). The sample size for model building was also relatively

small. Compared with previous studies, our study has the following

strengths. Firstly, we used deep learning algorithm to develop the AI

system for diagnosis, which was more intelligent and robust than

the hand-crafted systems, and could made automatic diagnosis of

the masses. Secondly, the AI system utilized the imaging data of two

US modalities, the gray scale and color Doppler US, as well as
TABLE 2 Performance of the AI system, the radiologists with three experience levels, and AI-assisted radiologists.

Clinical
Characteristics

Retrospective STTs masses Prospective STTs masses

Overall
Benign
masses

Malignant
masses

P-
Value

Overall
Benign
masses

Malignant
masses

P-
Value

Sex

0.8825 0.100Male 338 214 124 61 38 23

Female 395 248 147 84 63 21

Age 27.6±15.4 40.3±13.9 51.7±15.3 <0.001
41.96
±15.5

38.8±13.4 49.2±17.6 0.057

Malignant History

<0.001 <0.001Yes 164 17 147 13 0 13

None 579 445 124 132 101 31

Surgical History

Yes 189 63 126 <0.001 12 101 32 <0.001

None 544 399 146 <0.001 133 0 12

Tumor
Duration (months)

27.6±47.8 33.9±52.1 15.5±42.2 <0.001 28.3±42.8 31.4±46.2 21.9±34.7 0.06

Tumor Position

<0.001 <0.001

Head or neck 118 91 27 39 30 9

Truck 286 109 177 24 10 14

Upper limb 193 172 21 48 43 5

Lower limb 136 90 46 34 18 16

Tumor Side

0.012 0.688
Left 303 186 117 67 49 18

Right 342 208 134 58 39 19

Mid 88 68 20 20 13 7

Tumor Long
Diameter (mm)

33.2±29.4 25.9±19.4 45.7±38.1 <0.001 34.7±38.5 22.8±15.6 62.3±57.3 0.026

(Continued)
fron
FIGURE 4

AUC of the radiologists with and without referring to the AI system.
R1 and R2: senior radiologists; R3 and R4: intermediate radiologists;
R5 and R6: junior radiologists. For junior radiologist (R5 and R6) and
one of the intermediate radiologists (R3), the AUC after the AI
assistance were significantly improved.
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clinical information, to make a more comprehensive diagnosis of

the tumors. Also, the AI system was built on a relatively large

number of cases, and its accuracy and robustness were validated on

a prospective dataset. The diagnostic performance of UC-STTNet

was comparable with a meta-analysis of elastography in assessment

of malignant STTs (16). The average AUC and accuracy of our

system were 0.89 and 0.84, demonstrating a better performance

than the contrast-enhanced ultrasound (CEUS) for predicting the

malignancy of STTs, whose AUC and accuracy were 0.86 and 0.81,

respectively (32).

We also verified the assistant role of the AI system for

radiologists in making diagnosis of malignant STTs. While our

results showed that UC-STTNet was superior to the performance

of intermediate and junior radiologists, our AI system could help

these less experience radiologists make more accurate diagnosis.

Meanwhile, the inter-observer agreement of the radiologists was

also improved when they referred to the diagnostic results of the

AI system. UC-STTNet not only provided the final predictive

results of the masses, but also generated heatmaps representing

the active areas for diagnosis for the radiologists. Therefore, the AI
Frontiers in Oncology 08162
system could be utilized as an assistant tool for the radiologists to

enhance their diagnostic performance and stability in STTs, as

well as to decrease operator dependence. To note, compared with

other models for diagnosing STTs, including the model based on

hand-crafted ultrasound features and the model based on

radiomics, the process of using our AI system is more clinical

applicable. The AI system can directly generate the result for

prediction and does not need lesion delineation and feature

extraction. For further clinical promotion of the AI system in

the future, we will attempt to integrate the DL architecture into

commercial US devices as an on-board software to help to

improve the diagnosis performance and decrease workforce

for radiologists.

The AI system tends to misdiagnose the benign masses with

large size, usually more than 30mm in longitude. The benign STTs

that possessing abundant blood vessels on color Doppler US

imaging, such as glomangioma, could also be misdiagnosed by

the system. On the other hand, the malignant tumors with small

size and scarce vasculature might be classified as benign ones. In

addition, a total of 6 cases of dermatofibrosarcoma protuberans
TABLE 2 Continued

Clinical
Characteristics

Retrospective STTs masses Prospective STTs masses

Overall
Benign
masses

Malignant
masses

P-
Value

Overall
Benign
masses

Malignant
masses

P-
Value

Tumor Short
Diameter(mm)

16.1±16.2 11.4±10.8 24.2±20.2 <0.001 16.3±20.7 9.5±8.0 32.0±30.4 <0.001

Tumor Depth(mm) 4.5±4.2 3.6±3.3 6.2±4.9 <0.001 4.3±5.0 2.8±2.1 7.8±7.5 0.005

Anatomical Level

<0.001Superficial fascia layer 613 412 201 113 95 18
<0.001

Deep fascia layer 120 50 70 32 6 26

Pathological types Retrospective STTs masses Prospective STTs masses

Malignant types 271 44

Sarcoma 74 33

Metastasis 137 0

Lymphoma 13 3

Squamous-cell carcinoma 13 5

Melanoma 9 3

Others 25 0

Benign types 462 101

lipoma 109 22

hemangioma 57 20

epidermoid cyst 51 10

schwannoma 35 8

giant cell tumor 25 0

Others 185 41
fron
AI, Artificial intelligence; R1 and R2: senior radiologists R3 and R4: intermediate radiologists R5 and R6: junior radiologists.
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(DFSP) were predicted as benign by the AI system. For DFSPs,

skin changes should also be taken into account during diagnosis.

Additionally, misdiagnosis often occurs in patients with a history

of malignancy. To prevent the aforementioned misdiagnosis

scenarios , more cases should be suppl ied for model

development in the future study. Supplementary Figure 2

demonstrated the examples of the misdiagnosed STTs cases of

the AI system.
Frontiers in Oncology 09163
Our study has several limitations. First, it was a single center

research. The AI system was not verified by external validation from

multi-center datasets. The sensitivity of the AI system was relatively

low in the prospective validation dataset. which should be improved

by enrolling more malignant cases in the training dataset in further

studies. Also, we only used two modalities of US images to build the

model, and other available US modalities, including US

elastography and CEUS, were not incorporated in our study. The

two US modalities will be added to the system in our future study to

improve its diagnostic accuracy. Moreover, we compared

the performance of the DL model with the radiologists on the

retrospective dataset due to its relatively large sample size. In the

future study, the accuracy of the model will be further explored on a

large prospective data.
Conclusions

A DL-driven AI system based on dual-modal US images and

clinical features for malignant STTs diagnosis was developed on a

retrospective dataset of STTs. It achieved a high accuracy in

predicting malignant STTs on both retrospective and prospective

datasets. The performance of the AI system was comparable to

senior radiologists, and better than junior and intermediate

radiologists. The developed AI system could also assist

radiologists in improving their diagnostic accuracy and stability

in classifying malignant STTs.
FIGURE 5

Examples of the AI system classifying benign and malignant STTs. The AI system diagnosed STTs based on dual-modal US images and clinical
features. Heatmaps of the two modalities of US were also provided by the system. The above case is a 28-year-old female with a STTs mass on the
subcutaneous layer of the right hand. She had no tumor or surgical history. The tumor was found 12 months ago and had a size of 13×11mm. The AI
system diagnosed it as a benign tumor, which was identified as a benign schwannoma by pathology. The other case is a 64-year-old male with a
STTs mass on the muscular layer of abdomen. The patient also reported no tumor or surgical history. The tumor was found 10 days ago and had a
size of 22×11mm. The AI system diagnosed it as a malignant STTs tumor, which was identified as a metastatic malignant melanoma by pathology.
FIGURE 6

ROC curves of the AI system on the retrospective and
prospective datasets.
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Purpose: This study aimed to develop and validate a radiogenomics nomogram for

predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the

basis of MRI and microRNAs (miRNAs).

Materials and methods: This cohort study included 168 patients (training cohort: n

= 116; validation cohort: n = 52)with pathologically confirmedHCC,who underwent

preoperative MRI and plasma miRNA examination. Univariate and multivariate

logistic regressions were used to identify independent risk factors associated with

MVI. These risk factors were used to produce a nomogram. The performance of the

nomogram was evaluated by receiver operating characteristic curve (ROC) analysis,

sensitivity, specificity, accuracy, and F1-score. Decision curve analysis was

performed to determine whether the nomogram was clinically useful.

Results: The independent risk factors for MVI were maximum tumor length, rad-

score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-

score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916,

respectively. The AUC of the nomogram was 0.900 (95% CI: 0.808–0.992) in the

validation cohort, higher than that of any other single factormodel (maximum tumor

length, rad-score, and miRNA-21).

Conclusion: The radiogenomics nomogram shows satisfactory predictive

performance in predicting MVI in HCC and provides a feasible and practical

reference for tumor treatment decisions.
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Introduction

Hepatocellular carcinoma (HCC) is a malignancy with third

highest world mortality rate (8.3%), after lung cancer (18%) and

colorectal cancer (9.4%) (1). The main treatment of HCC is surgical

resection, but recurrence is common, with a five-year recurrence

rate of up to 40%–70%. The 5-year survival rate is only 18% (2).

Microvascular invasion (MVI) is one of the most important

prognostic factors for HCC after surgical treatment, and it has

been established as a risk factor for early recurrence and poor

outcome. The term MVI refers to the cancer cell nests that are

established within the lining of blood vessels by microscopic

endothelial cells. It is considered as a sign of strong tumor

invasion ability, and it could only be diagnosed through

pathology at present. MVI-positive patients often require

improved prognosis by expanding surgical margins, and patients

with microvascular infiltration are also considered unsuitable for

liver transplantation (3–5). Therefore, developing a method for

non-invasive prediction of microvascular invasion is necessary to

guide the treatment of HCC.

The imaging characteristics of HCC, such as a non-smooth

tumor margin, arterial peritumoral enhancement, and peritumoral

hypo-intensity on hepatobiliary phase imaging (HBP), have been

confirmed to be noninvasive imaging biomarkers for MVI

prediction (4–7). However, such qualitative studies are vulnerable

to subjective factors, image quality, and interobserver variation.

Therefore, more objective quantitative methods are needed to

predict MVI. In 2012, Lambin et al. (8) proposed the concept of

radiomics, where medical images are converted into useful data by

using high-throughput quantitative features to predict the disease

treatment efficacy and prognosis. Using radiomics to predict MVI

in HCC is a major research area in recent years. Many studies with

satisfactory results have been conducted (9–11). Xu’s (10) study has

achieved predicted satisfactory results by developing a radiomics

nomogram model on the basis of computed tomography (CT). MRI

examination technology has the advantage of multimodal/

multisequence imaging and high soft-tissue resolution.

Theoretically MRI multicolumn multimodal imaging provides

more characteristic elements. Therefore, in the present study,

predictive models based on radiomic features in MRI were

developed for predicting MVI.

MicroRNAs (miRNAs) are a kind of endogenous, non-coding

RNAs. Thousands of miRNAs play a role in regulating various

molecular biological processes by inhibiting the translation of

different messenger RNAs (mRNAs) in the cell (12) .

A dysregulation of miRNAs is often associated with malignancy,

and it regulates the proliferation, migration, invasion, and

development of tumors in HCC by promoting or suppressing

them (13, 14). Previous studies have shown that combining

radiomics and genomics could remarkably improve the

performance of predictive models (15, 16). Zhou (17) et al.

screened 7 plasma miRNAs (miRNAs) out of 723 HCC-

associated miRNAs (miR-122, miR-192, miR-21, miR-223, miR-

26a, miR-27a, miR-801), which had high diagnostic performance in

the early diagnosis of hepatocellular carcinoma.Therefore, we

extracted these 7 mi-RNAs from the patients’ plasma, but among
Frontiers in Oncology 02167
them, miR-192 and miR-801 had large differences in expression,

and the data were not stable enough to be screened out, so only 5

mi-RNAs (miR-122, miR-21, miR-223, miR-26a, miR-27a) were

included in the analysis. Therefore, we measured these miRNAs and

explored their relationship with HCC microvascular invasion, and

combined them with radiomics to explore the performance of the

joint model. Moreover, routine laboratory tests for HCC and

radiological characteristics based on MRI were added; the

independent risk factors for MVI were determined through

multivariate logistic regression, combined radiomics, genomics,

and clinico-radiological factors; predictive models were

established; and the performance of these models was verified.

This study aimed to develop and validate a radiogenomics

nomogram model for preoperative prediction of MVI in HCC.

The nomogram is helpful for clinicians to assist in determining

individual therapeutic strategies for patients with HCC.
Materials and methods

Patients

This retrospective study was approved by the institutional

review board, with a waiver for patient informed consent. We

included all patients who underwent preoperative MRI and plasma

mi-RNAs between December 2018 and November 2021. The

inclusion criteria were as follows: (a) all patients who underwent

radical hepatectomy with postoperative pathologic confirmation of

hepatocellular carcinoma and complete clinical data;(b) MRI

examination and plasma miRNA testing within two weeks prior

to surgery; (c) Histopathology report containing a complete

description of hepatocellular carcinoma (tumor size, number,

MVI status and category, etc.); (d) The images were free of

artifacts, sequence loss, and high image quality, meeting the basic

requirements for image segmentation. The exclusion criteria were

as follows: (a) the patient underwent any form of anticancer

treatment (surgery, drugs, etc.) before surgery;(b) vascular or

vascular invasion or the presence of distant metastasis was

detected by the naked eye in preoperative imaging;(c) combined

with other primary tumors.

Then, 168 patients (142 males and 26 females) comprised the

final cohort. The included patients were divided into training (n =

116; 100 males and 16 females) and validation cohorts (n = 52; 43

males and 9 females), with a ratio of 7:3. The flowchart of patient

enrollment and grouping in Figure 1. All patients received routine

laboratory tests and plasma miRNA examinations prior to curative

resection. Further information on the patients is available

in Table 1.
Histopathological examination

Seven-point baseline sampling method was used to take 1:1

samples at the junction between the cancer and the paracancerous

liver tissues at the clock positions of twelve, three, six, and nine

points of the tumor. At least one piece of tissue was taken inside the
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tumor, and one piece of liver tissue was taken ≤ 1 cm (near

paracancerous) and > 1 cm (distal paracancerous) from the

tumor margin (18). Histopathological features (tumor size,

number, MVI status, and category) were consistently assessed by

two experienced abdominal pathologists.
Collection of plasma samples and
miRNA extraction

Venous blood samples were collected from all patients with

HCC prior to any means of processing. Before the sample collection

was conducted, a written consent was obtained for each patient to

donate a sample for the purpose of the study. For specific steps on

collection of plasma samples and miRNA extraction, please refer to

the Supplementary Materials 1.
MRI examination

MRI examinations were conducted using a GE DISCOVERY

750W 3.0 T MRI scanner, with axial in-phase and opposed-phase

T1 weighted imaging (T1WI), axial T2-weighted imaging with fat

suppression (T2WI-FS), diffusion-weighted imaging (DWI), and

DCE-MRI (dynamic contrast-enhanced magnetic resonance

imaging) sequences for all patients. Please refer to Supplementary

Material 2 for specific MRI parameters.
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Analysis of radiological characteristics

The radiological characteristics were independently evaluated by

two abdominal radiologists A (RA) and B (RB), with 7 and 15 years of

experience, respectively. If any differences occurred, senior radiologist

C (RC) with 20 years of experience would join the discussion to reach a

consensus. All radiologists were aware that the lesions were HCCs but

blinded to all other laboratory and histopathological information. The

largest tumor was used to analyze patients with multiple tumors. The

evaluation was based on the Liver Imaging Reporting and Data System

(LI-RADS version 2018) (19), and the important morphological

features reported in the relevant literature (7). The qualitative

features of the images were assessed refer to Supplementary Material 3.
Analysis of radiomics

Image segmentation
HCC image segmentation was performed by RA and RB with the

use of three-dimensional (3D) slicer software (version 5.0.2). The

volumes of interest (VOIs) were delineated in the axial T2WI-FS,

DWI (with b value of 800 s/mm2), AP, PP, and DP images. For

assessment of the reproducibility and reliability of image segmentation,

images of 30 randomly selected patients were first segmented by RA

and RB separately. Then, 30 patients were re-segmented by RB after 2

weeks, and the images of the remaining patients were segmented by

RA. The segmentation results were validated by RC.
FIGURE 1

Flowchart of patient enrollment and grouping.
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TABLE 1 Comparisons of patient characteristics in training and validation cohorts.

Characteristics
Training cohort Validation cohort

MVI+ (n=39) MVI− (n=77) P MVI+ (n=18) MVI− (n=34) P

Age (years) 58.97 ± 8.49 59.48 ± 8.90 0.769 58.89 ± 10.22 56.03 ± 11.33 0.375

Sex
Male
Female

29 (74.36%)
10 (25.64%)

33 (84.62%)
6 (15.38%)

0.726 13 (72,22%)
5 (27.78%)

29 (85.29%)
5 (14.71%)

0.304

HBV
Present
Absent

38 (97.44%)
1 (2.56%)

73 (94.81%)
4 (5.19%)

0.514 18 (100.0%)
0(0.00%)

32 (94.12%)
2 (5.88%)

0.160

AFP (ng/mL)
≤ 20

20–400
>400

19 (48.7%)
8 (20.5%)
12 (30.8%)

39 (50.6%)
22 (28.6%)
16 (20.8%)

0.079
11 (61.1%)
2 (11.1%)
5 (27.8%)

15 (44.1%)
12 (35.3%)
7 (20.6%)

0.383

ALT (µ/l)
≤ 40
>40

25 (64.1%)
14 (36.9%)

55 (71.4%)
22 (28.6%)

0.318 10 (55.6%)
8 (44.4%)

23 (67.6%)
11 (32.4%)

0.372

AST (µ/l)
≤ 35
>35

22 (56.4%)
17 (43.6%)

42 (45.5%)
35 (54.5%)

0.364 10 (55.6%)
8 (44.4%)

22 (64.7%)
12 (35.3%)

0.415

TBIL (µmol/l)
≤ 20
>20

26 (66.7%)
13 (33.3%)

53 (68.8%)
24 (31.2%)

0.379 12 (66.7%)
6 (33.3%)

22 (64.7%)
12 (35.3%)

0.418

ALB (g/l)
≤ 40
>40

17 (43.6%)
22 (56.4%)

42 (54.5%)
35 (45.4%)

0.635 9 (50.0%)
9 (50.0%)

19 (55.9%)
15 (44.1%)

0.869

PIVKA-II (mAu/mL)
≤ 40
>40

4 (10.3%)
35 (89.7%)

11 (14.3%)
66 (85.7%)

0.910 4 (22.2%)
14 (77.8%)

5 (14.7%)
29 (85.3%)

0.144

PT (s)
≤ 14
>14

35 (89.7%)
4 (10.3%)

68 (88.3%)
9 (11.7%)

0.941 17 (94.4%)
1 (5.6%)

29 (85.3%)
5 (14.7%)

0.679

INR
≤ 1.0
>1.0

18 (46.2%)
21 (53.8%)

18 (23.4%)
59 (76.6%)

0.382 8 (44.4) %
10 (55.6%)

8 (23.5%)
26 (76.5%)

0.376

MiRNA-21 29.60 ± 1.40 31.32 ± 0.85 < 0.001 29.18 ± 1.19 31.13 ± 0.76 < 0.001

MiRNA-26a 32.08 ± 1.67 30.27 ± 1.69 < 0.001 32.32 ± 1.53 30.40 ± 1.60 < 0.001

MiRNA-27a 27.35 ± 2.04 28.51 ± 0.95 0.002 26.50 ± 1.97 28.46 ± 1.03 < 0.001

MiRNA-122 28.96 ± 1.62 29.89 ± 0.95 0.001 28.35 ± 1.48 29.81 ± 0.97 < 0.001

MiRNA-223 31.88 ± 1.50 31.13 ± 1.06 0.001 32.46 ± 1.30 31.25 ± 1.07 < 0.001

Maximum tumor length 6.43 ± 3.36 5.16 ± 2.58 0.044 6.11 ± 2.88 5.24 ± 3.05 0.320

Tumor margin
Smooth

Non-smooth
3 (7.7%)
36 (92.3%)

23 (29.9%)
54 (70.1%)

0.007 1 (5.6%)
17 (94.4%)

12 (35.3%)
22 (64.7%)

0.043

Number
=1
>1

36 (92.3%)
3 (7.7%)

68 (88.3%)
9 (11.7%)

0.730 16 (88.9%)
2 (11.1%)

31 (91.2%)
3 (8.8%)

1.000

Enhancement pattern
Typical
Atypical

35 (89.7%)
4 (10.3%)

73 (94.8%)
4 (5.2%)

0.530 2 (11.1%)
16 (88.9%)

32 (94.1%)
2 (5.9%)

0.900

Radiologic capsule
Present
Absent

7 (17.9%)
32 (82.1%)

40 (51.9%)
37 (48.1%)

< 0.001 3 (16.7%)
15 (83.3%)

20 (58.8%)
14 (41.2%)

0.004

(Continued)
F
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Radiomics feature extraction, selection, and
signature building

A total of 7045 radiomic features were extracted from each

segmented lesion using the SlicerRadiomics plugin in 3DSlicer.

Python (version 2.7.18) was used for radiological feature selection.

These features included shape, first-order histogram features and

texture features. The 1856 features with intra- and inter-correlation

coefficients (ICCs) values less than 0.8 were firstly excluded, and the

remaining features were initially screened by SelectKBest. The remaining

features were selected by least absolute shrinkage and selection operator

(LASSO) algorithms. The features of the LASSO regression result in

which the corresponding coefficients with non-zero were retained. 10-

fold cross-validation was performed to select the optimal a value, and

the coefficients of the corresponding radiomics features were obtained at

the same time. The radiomic feature score (rad-score) reflecting the

MVIwas calculated for each patient by using a linear combination of the

selected features weighted with the respective coefficients.

Model construction, evaluation, and comparison
All variables (laboratory tests, miRNA, radiological

characteristics, and radiation scores) were first screened by

univariate analysis, and then independent risk factors for MVI

were determined by stepwise backward regression with the

principle of minimum AIC (Akaike information criterion) value

by multivariate logistic regression analysis. All the independent risk

factors were used separately to build the corresponding prediction

models and construct the nomogram. The ROC curves were

plotted, the discriminant efficiency of MVI predictions was

quantified using AUC, and multiple comparisons between

different models were carried out by Delong test. The 95% CI of

AUCs, sensitivity, specificity, and accuracy were also calculated. F1-

score was used to evaluate a binary classification model with

unbalanced data samples. The clinical utility of the nomogram

was evaluated using decision curve analysis, which quantifies the

net benefit to the overall cohort at different threshold probabilities

(20). The process of the present study is illustrated in Figure 2.
Statistical analysis

Statistical analysis was performed using R software (version

3.4.1). Continuous variables were expressed as mean ± standard
Frontiers in Oncology 05170
deviation. The categorical variables were presented as percentages.

Kolmogorov–Smirnov tests were used to evaluate the distribution’s

normality. For identification of variables that differed significantly

between the training and validation cohorts, Student’s t test was

used to compare the quantitative data, and Chi-square test or

Fisher’s exact test was used to compare the qualitative data. The

reproducibility of the feature extraction was assessed by calculating

the intra- and inter-correlation coefficients (ICCs), and ICCs > 0.80

were considered to have good reproducibility. The Hosmer–

Lemeshow’s goodness-of-fit test was used to evaluate whether the

model’s predicted probabilities fitted the actual probabilities. The

sensitivity, specificity, and accuracy were calculated by confusion

matrix in accordance with the cutoff value that maximized the

Youden index. Statistical significance was set at P < 0.05.
Results

Clinico-radiological characteristics and MVI
prediction factors

A comparison of the clinico-radiological characteristics is shown

in Table 1. Among the 168 patients with HCC,MVI was diagnosed in

the resected tissue of 57 patients. The comparison between the

training and validation cohorts was not statistically different in

terms of age, gender, AFP, and other clinical indicators (P = 0.144–

0.941). All five miRNAs significantly differed between MVI+ and

MVI− in the training and validation cohorts (P < 0.05). The patients

with MVI+ and MVI− also showed significantly different imaging

characteristics (tumormargin, radiologic capsule, arterial peritumoral

enhancement, and intratumor necrosis/hemorrhage) (P < 0.05). No

significant differences were found in the tumor number and

enhancement pattern between MVI+ and MVI− in either the

training cohort or the validation cohort (P = 0.530–1.000).

The univariate analysis showed that five imaging features

(maximum tumor length, tumor margin, radiologic capsule, peri-

arterial tumor enhancement, and presence of hemorrhage and

necrosis) and the five kinds of miRNAs (miR-21, miR-26a, miR-

27a, miR-122, and miR-223) were significantly associated with MVI

(P < 0.05). In the multivariate analysis, maximum tumor length and

miR-21 were found to be independent predictors of MVI. The

specific information is shown in Table 2.
TABLE 1 Continued

Characteristics
Training cohort Validation cohort

MVI+ (n=39) MVI− (n=77) P MVI+ (n=18) MVI− (n=34) P

Arterial peritumoral
enhancement

Present
Absent

36 (92.3%)
3 (7.7%)

44 (57.1%)
33 (42.9%)

< 0.001 17 (94.4%)
1 (5.6%)

15 (44.1%)
19 (55.9%)

0.001

Intratumor necrosis/hemorrhage
Present
Absent

33 (84.6%)
6 (15.4%)

45 (58.4%)
32 (41.6%)

0.005 17 (94.4%)
1 (5.6%)

19 (55.9%)
15 (44.1%)

0.011
HBV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; MVI, microvascular invasion.
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Feature selection and radiomics
signature building

Radiomics features were downscaled by SelectKBest and LASSO,

resulting in a final selection of 11 features, all of which were derived

fromDWI andDP sequences. The ICCs ranged from 0.856 to 0.989 for

the intra-observers and from 0.843 to 0.982 for the inter-observers.

These values demonstrated the high reliability of the measurements

taken by the observers. A linear combination of the selected features,

weighted by their respective logistic regression coefficients, was used to

generate the rad-score (risk score reflecting the probability of MVI).

This score was used to calculate each selected VOI as follows:

rad-score = 0.33 + exponential_firstorder_Energy_DWI ×

0.049456 + original_firstorder_Energy_DWI × 0.032877 +

wavelet-HLH_glszm_SizeZoneNonUniformity_DWI × 0.006842

+ exponential_firstorder_Skewness_DH × 0.014393 −

original_shape_Sphericity_DH × 0.014946 +

logarithm_glszm_LowGrayLevelZoneEmphasis_DH × 0.016827 +

wavelet-LHL_firstorder_Median_DWI × 0.000386 +

wavelet-LHL_glrlm_HighGrayLevelRunEmphasis_DWI ×

0.034749 −

wavelet-LHL_firstorder_Skewness_DWI × 0.012754 +

wavelet-HLH_firstorder_Skewness_DWI × 0.027165 +

original_glszm_LowGrayLevelZoneEmphasis_DH × 0.001094
Frontiers in Oncology 06171
The univariate and multifactorial regression analyses showed

that the rad-score is an independent risk factor for MVI (Table 2).
Model construction and evaluation

The independent predictive factors of MVI, which were

maximum tumor length, miR-21, and rad-score, were identified

by univariate and multivariate logistic regression methods. The

MVI prediction model incorporated these three independent risk

factors to develop a nomogram prediction model (Figure 3).

The three single-factor models of tumor maximum length, miR-

21, and rad-score reached AUC values of 0.658 (95% CI: 0.551–

0.764), 0.907 (95% CI 0.866–0.949), and 0.836 (95% CI: 0.763–

0.909) in the training cohort, respectively, and 0.632 (95% CI:

0.465–0.799), 0.881 (95% CI: 0.763–0.998), and 0.704 (95% CI:

0.551–0.857) in the validation cohort, respectively. The nomogram

model had an AUC of 0.900 (95% CI 0.808–0.992) in the validation

cohort, with sensitivity, specificity, accuracy, and F1-score of 0.970,

0.722, 0.884, and 0.916, respectively (Figures 4A, B, Table 3). The

Hosmer–Lemeshow’s goodness-of-fit test evaluated the model

performance at P = 0.55 > 0.05, indicating that the actual value of

the prediction model fitted well with the predicted value. The

decision curve showed the clinical usefulness of the different
FIGURE 2

Flowchart showing the radiogenomics analysis for MVI prediction. ROI segmentation was performed on axial MR images, and then radiomic features
were extracted and selected. Next, the radiomic score was calculated for each patient by using a linear combination of selected features weighted with
the respective coefficients. The radiological characteristics, miRNAs, and clinical information were also collected. Finally, all variables were screened by
univariate and multivariate logistic regression analyses to identify the independent risk factors for MVI, which were used to construct the nomogram. The
nomogram was evaluated with ROC curve and decision curve. Delong test was used to compare area under the curves (AUCs) from different models.
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models (Figures 4C, D). The prediction performance of the

nomogram model was satisfactory in the validation cohort, with

the decision curve shown in Figure 4D. The net benefit of predicting

the decision curve for the nomogram and miR-21 model was higher

than that for other models when the threshold probability was > 0%.

This finding suggested that the nomogram and miR-21 models

could achieve satisfactory net clinical benefits.
Model comparison

Among the three single-factor models of maximum tumor

length, miR-21, and rad-score, the miR-21 model performed best,

and the differences with the other two one-factor models were all

statistically significant in the validation cohort (miR-21 vs.

maximum tumor length: AUC of 0.881 vs. 0.632, P = 0.004; miR-

21 vs. rad-score: AUC of 0.881 vs. 0.704, P = 0.009). The nomogram
Frontiers in Oncology 07172
prediction model outperformed the miR-21 model (AUC of 0.900

vs. 0.881; P = 0.464), the rad-score model (AUC of 0.900 vs. 0.704;

P = 0.003), and the maximum tumor length model (AUC of 0.900

vs. 0.632; P = 0.003) in the validation cohort. However, no statistical

difference was found between the nomogrammodel and the miR-21

model (P = 0.464), as detailed in Table 3 and Figure 5.
Discussion

In this study, we have successfully developed and rigorously

validated a multi-omics nomogram prediction model, which

integrates MRI-derived radiomics, radiological features, and

miRNA-based genomics. The resulting radiogenomic nomogram

has demonstrated excellent performance in accurately predicting

microvascular invasion in HCC, thus providing a non-invasive yet

reliable clinical method for preoperative prediction.
TABLE 2 Univariate and multivariate analysis to identify risk factors associated with MVI in the training cohort.

Variables
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Sex 0.95 (0.74–1.23) 0.726 NA NA

Age 1.00 (0.99–1.01) 0.769 NA NA

HBV 1.15 (0.75–1.77) 0.514 NA NA

AFP 1.00 (0.99–1.01) 0.198 NA NA

PIVKA-II 1.00 (0.99–1.00) 0.906 NA NA

ALT 0.99 (0.99–1.00) 0.318 NA NA

AST 0.99 (0.99–1.00) 0.364 NA NA

TB 0.98 (0.99–1.02) 0.379 NA NA

ALB 1.01 (0.99–1.13) 0.641 NA NA

PT 0.98 (0.94–1.06) 0.941 NA NA

INR 0.96 (0.87–1.05) 0.382 NA NA

MiRNA-21 0.81 (0.76–0.85) < 0.001 0.73 (0.66–0.78) < 0.001

MiRNA-26a 1.12 (1.08–1.17) < 0.001 1.05 (0.99–1.11) 0.065

MiRNA-27a 0.89 (0.84–0.94) < 0.001 0.95 (0.81–1.11) 0.518

MiRNA-122 0.88 (0.83–0.94) 0.002 1.04 (0.74–1.44) 0.840

MiRNA-223 1.11 (1.04–1.19) < 0.001 0.86 (0.68–1.09) 0.220

Maximum tumor length 1.05 (1.02–1.07) < 0.001 0.90 (0.87–0.93) < 0.001

Tumor margin 1.33 (1.09–1.07) < 0.001 0.99 (0.83–1.18) 0.478

Number 0.91 (0.68–1.21) 0.509 NA NA

Enhancement pattern 0.84 (0.60–1.18) 0.314 NA NA

Radiologic capsule 0.73 (0.62–0.86) < 0.001 0.92 (0.79–1.07) 0.788

Arterial peritumoral enhancement 1.44 (1.21–1.71) < 0.001 1.10 (0.93–1.29) 0.329

Intratumor necrosis/hemorrhage 1.30 (1.09–1.56) < 0.001 0.93 (0.81–1.08) 0.915

Rad-score 9.33 (4.65–18.74) < 0.001 7.92 (3.78–16.6) < 0.001
HBV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; OR, odds ratio; CI, confidence interval. NA, not available.
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The expression of miR-21, miR-27a, and miR-122 in the MVI+

group was upregulated compared with that in the MVI− group,

whereas the expression of miR-26a and miR-223 was

downregulated. These differences were all statistically significant.

By contrast, the differences in conventional laboratory indicators,

such as AFP, were not statistically significant between the MVI+

group and the MVI− group, indicating that the miRNAs extracted

in the plasma of patients with HCC were more meaningful in

suggesting MVI than the conventional laboratory indicators.

Further univariate and multivariate analyses showed that miR-21

had better correlations than other clinical laboratory tests. Studies

have shown that miR-21 is one of the most expressed miRNAs in

liver diseases, such as nonalcoholic fatty liver disease (21). Ladeiro

et al. (22) found that miR-21 was significantly overexpressed in

HCC, as compared to benign tumor or non-neoplastic liver tissue.

The maladjusted expression of miRNA could be used as a

biomarker, and it could be detected in the plasma of patients.

Studies have shown that miR-21 plays a role in promoting HCC

growth invasion, distant metastasis, and other links (21).

Furthermore, this study confirmed that among other miRNAs

detected in plasma, only miR-21 emerged as an independent risk

factor for MVI in HCC. The miR-21 model surpassed the rad score

and maximum tumor length models in predicting MVI, and the

differences were statistically significant in the validation cohort

(P<0.05). These findings indicate that the miR-21 model performs

well in preoperative prediction of MVI in HCC. Conventional

clinical laboratory indicators, including tumor markers such as

AFP, were all excluded in the univariate analysis due to their

relatively poor correlation compared to other variables.

On the basis of the morphological characteristics of MRI,

previous meta-analysis studies have found that some of MRI

signs were significantly associated with MVI, including larger

tumors (> 5 cm), rim arterial enhancement, arterial peritumoral

enhancement, non-smooth tumor margin, and multiple lesions (7).

The present study incorporated these MR morphological features

into the analysis and found that only the maximum tumor length is
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an independent predictor of MVI in HCC. Increased tumor volume

led to increased contact between the tumor and adjacent normal

liver tissues, thereby promoting the formation of microvessels.

A total of 7045 features were extracted from five different MRI

sequences, and then 11 radiomic features were screened out by

SelectKBest and LASSO. Interestingly, these features were all

derived from DWI and DP sequences. A previous study (23)

found that primary radiomic signatures extracted from delayed-

phase sequences were associated with MVI. Zhang et al. (24)

compared the performance of different MRI sequences to predict

MVI and found the performance of DP to be the best (AUC =

0.806). The present study also found the value of DP to be the best

in predicting MVI, which could be explained by the fact that tumors

continue to release a large number of angiogenic factors that

promote tumor angiogenesis and change tumor perfusion,

resulting in the differences between MVI−and MVI+ being more

easily shown in DP sequences (25). DWI also has a satisfactory

performance, as confirmed by some previous studies (26, 27). This

finding could be explained that the minimum value of the apparent

diffusion coefficient of DWI could reflect the densest tumor, the

most abundant neovascularization, and the most active tumor

proliferation. The hepatobiliary phase of specific contrast agents

has been reported to make an important contribution to suggesting

MVI (7). It is important to note that when hepatocyte-specific

agents are used, DWI is usually scanned after contrast, and the

ability and contribution of DWI may differ, which needs to be

proven by further research.

After rigorous data analysis and model training, we have

successfully developed a nomogram model that comprehensively

incorporates various risk factors. In stringent tests using training

and validation datasets, the model exhibited outstanding predictive

performance, with AUC values reaching 0.942 and 0.900,

significantly surpassing other single-factor models. The

nomogram model demonstrated satisfactory performance in

predicting microvascular invasion in HCC. Looking back at

previous studies, although nomogram models based on radiomics
FIGURE 3

Radiogenomics nomogram for predicting MVI in hepatocellular carcinoma. (1) Factors in the prediction model: maximum tumor length, rad-score,
and miRNA-21, the scale on the line segment corresponding to each factor represents the range of values of the factor, and the length of the line
segment represents the contribution of the factor to the probability of occurrence of the outcome variable. (2) Points and total pionts: individual
points represent the individual scores corresponding to each factor at different ranges of values, and the total points represents the sum of the
individual scores corresponding to all the factors at different ranges of values. (3) Prediction: the scale value corresponding to the total points
indicates the risk of microvascular invasion in patients with hepatocellular carcinoma.
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and clinical factors have shown promising predictive capabilities,

most of them still have limitations in performance, with AUC

values generally ranging from 0.801 to 0.861 (28–30). Notably, these

models often involve numerous risk factors, whereas our

nomogram model incorporates only three independent risk

factors, highlighting the advantages of multi-omics approaches in

data processing and model development.

In previous explorations, such as the study by Banerjee et al.

(28), they delved into the radiogenomics of MVI in liver cancer,

innovatively developing a novel imaging biomarker called

radiogenomic venous invasion (RVI) by combining venous

invasion genes in hepatocellular carcinoma with dynamic

contrast-enhanced CT. This achievement has achieved significant

results in predicting MVI and prognosis. Similarly, Taouli et al. (29)

also conducted in-depth research on the imaging characteristics and

genomic data of hepatocellular carcinoma, successfully identifying

imaging features related to aggressive hepatocellular carcinoma

genes through a combination of preoperative CT or MR

examinations and transcriptomic analysis.

However, our study adopted a more unique and precise

approach. We directly used miRNAs closely related to liver
Frontiers in Oncology 09174
cancer as variables in logistic regression analysis, screening out

miRNAs species independently associated with MVI in liver cancer

through rigorous univariate and multivariate analysis.

Subsequently, we combined these crucial miRNAs with radiomics

and clinical radiological features to construct an efficient and

accurate prediction model, achieving satisfactory preoperative

prediction of MVI. This achievement provides a powerful tool or

method for the accurate prediction of microvascular invasion in

hepatocellular carcinoma, guiding clinical decision-making,

optimizing treatment plans, and ultimately improving the survival

rate and quality of life of patients.
Limitations

This study still has some limitations. First, it is a small, single-

center study. Therefore, the results should be complemented by

further validation from larger queues at other centers. Second,

miRNAs have many types, and only a small number was detected

in this study. Secondly, there are many types of miRNAs, only a

small amount was detected in this study, although this part of
A B

DC

FIGURE 4

(A, B) ROC curves for different models in the training and validation cohorts. The ROC graph is a curve that reflects the relationship between
sensitivity and specificity. According to the position of the curve, the whole graph is divided into two parts, the area below the curve is called AUC
(Area Under Curve), which is used to indicate the prediction accuracy, the higher the value of AUC, that is, the larger the area under the curve,
indicating that the prediction accuracy is higher. The closer the curve is to the upper left corner, the higher the prediction accuracy. Panels A, B
represent the prediction values of different models for the training cohort and validation cohort, respectively. (C, D) Clinical decision curves for
different models in the training and validation cohorts. Clinical utility is evaluated in terms of Decision curve analysis (DCA), which reflects the ability
of a model to benefit patients by influencing clinical decisions.A good model should have a high net benefit value at the threshold required by its
clinical question. The net benefit of predicting the decision curve for the nomogram and miR-21 model was higher than that for other models when
the threshold probability was > 0%. This finding suggested that the nomogram and miR-21 models could achieve satisfactory net clinical benefits.
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miRNAs has been shown to be associated with HCC caused by

hepatitis B virus (HBV) (17), and the vast majority of patients we

included are accompanied by HBV infection, but the effect of this

data on HCC caused by non-HBV is unknown, so the results may

only be valuable for HBV-associated HCC, in addition, whether

there is genomic data with better performance than miR-21 needs

to be further explored and verified. Third, miRNA is still a

deve lop ing b iomarker and i s repor ted to have low

reproducibility (30). Although we strictly follow standard

procedures in the process of extracting miRNA, miRNA data

stability is susceptible to a variety of factors such as limited
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amount of analyte before analysis, cell contamination, risk of

inhibition, etc., which may introduce some bias into the final

result. It is believed that with the development of liquid biopsy

technology, the reproducibility and stability of miRNA data will

be improved, so as to be used for robust clinical prediction.

Fourth, MVI involves the tumor edge, but only the internal

characteristics of the tumor were analyzed, and the ROI outside

the tumor, especially around the tumor, was not expanded. In

some studies (10, 31, 32), radiological features were extracted by

expanding the ROI, achieving good results. This method is also a

part of the follow-up research that needs to be further improved.
TABLE 3 Performance of different MVI prediction models.

Models AUC Sensitivity Specificity Accuracy F1-score

Maximum tumor length
Training cohort
Validation cohort

0.658 (0.551–0.764)
0.632 (0.465–0.799)

0.987
0.764

0.256
0.555

0.698
0.692

0.835
0.764

Rad-score
Training cohort
Validation cohort

0.836 (0.763–0.909)
0.704 (0.551–0.857)

0.688
0.647

0.871
0.833

0.750
0.711

0.785
0.746

MiRNA-21
Training cohort
Validation cohort

0.907 (0.866–0.949)
0.881 (0.763–0.998)

0.827
0.911

0.865
0.777

0.843
0.865

0.875
0.898

Nomogram
Training cohort
Validation cohort

0.942 (0.899–0.985)
0.900 (0.808–0.992)

0.805
0.970

0.948
0.722

0.853
0.884

0.832
0.916
AUC, area under the ROC curve.
FIGURE 5

Heatmap showing statistical differences between different models in the validation cohort. The nomogram model outperforms the maximum tumor
diameter model and the radiomics scoring model, and the differences are statistically significant (P < 0.05). The AUC value of the nomogram model
is slightly higher than that of the miR-21 model, although the difference is not statistically significant (P = 0.464).
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Conclusion

The radiogenomic nomogram exhibited promising preoperative

predictive capabilities and clinical decision-making implications in

forecasting microvascular invasion (MVI) in hepatocellular

carcinoma (HCC). This model holds the potential to emerge as a

biomarker for MVI in HCC in the future, though its efficacy

necessitates further validation through extensive studies

encompassing larger sample sizes from multiple centers.
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Prediction of clear cell renal
cell carcinoma ≤ 4cm:
visual assessment of
ultrasound characteristics
versus ultrasonographic
radiomics analysis
Fan Yang1,2, Dai Zhang1,2, Li-Hui Zhao1,2, Yi-Ran Mao1,2,
Jie Mu1,2, Hai-Ling Wang1,2, Liang Pang3, Shi-Qiang Yang4,
Xi Wei1,2* and Chun-Wei Liu5*

1Department of Ultrasound Diagnosis and Treatment, Tianjin Medical University Cancer Institute and
Hospital, National Clinical Research Center for Cancer, Tianjin, China, 2Key Laboratory of Cancer
Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University,
Tianjin, China, 3Department of Urology, Tianjin Occupational Diseases Precaution and Therapeutic
Hospital, Tianjin, China, 4Department of Urology, Tianjin First Central Hospital, Tianjin, China,
5Department of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China
Objective: To investigate the diagnostic efficacy of the clinical ultrasound

imaging model, ultrasonographic radiomics model, and comprehensive model

based on ultrasonographic radiomics for the differentiation of small clear cell

Renal Cell Carcinoma (ccRCC) and Renal Angiomyolipoma (RAML).

Methods: The clinical, ultrasound, and contrast-enhanced CT(CECT) imaging

data of 302 small renal tumors (maximum diameter ≤ 4cm) patients in Tianjin

Medical University Cancer Institute and Hospital from June 2018 to June 2022

were retrospectively analyzed, with 182 patients of ccRCC and 120 patients of

RAML. The ultrasound images of the largest diameter of renal tumors were

manually segmented by ITK-SNAP software, and Pyradiomics (v3.0.1) module in

Python 3.8.7 was applied to extract ultrasonographic radiomics features from

ROI segmented images. The patients were randomly divided into training and

internal validation cohorts in the ratio of 7:3. The Random Forest algorithm of the

Sklearn module was applied to construct the clinical ultrasound imaging model,

ultrasonographic radiomics model, and comprehensive model. The efficacy of

the prediction models was verified in an independent external validation cohort

consisting of 69 patients, from 230 small renal tumor patients in two different

institutions. The Delong test compared the predictive ability of three models and

CECT. Calibration Curve and clinical Decision Curve Analysis were applied to

evaluate the model and determine the net benefit to patients.
Abbreviations: ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-

enhanced CT; ROI, region of interest; AUC, Area under the ROC curve; GLCM, gray level cooccurrence

matrix; GLRLM, gray-level run-length matrix; GLSZM, gray level size zone matrix; GLDM, gray level

dependence matrix; ICCs, Interclass and intraclass correlation coefficients; MRMR, max-relevance and min-

redundancy; VIF, Variance Inflation Factor; RFA, Random forest algorithm.
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Results: 491 ultrasonographic radiomics features were extracted from 302 small

renal tumor patients, and 9 ultrasonographic radiomics features were finally retained

for modeling after regression and dimensionality reduction. In the internal validation

cohort, the area under the curve (AUC), sensitivity, specificity, and accuracy of the

clinical ultrasound imaging model, ultrasonographic radiomics model,

comprehensive model, and CECT were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,

61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%, 91.1%, respectively.

In the external validation cohort, AUC, sensitivity, specificity, and accuracy of the

three models and CECT were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%;

0.90, 85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively. The DeLong

test showed no significant difference between the clinical ultrasound imagingmodel

and the ultrasonographic radiomicsmodel (Z=-1.287, P=0.198). The comprehensive

model showed superior diagnostic performance than the ultrasonographic

radiomics model (Z=4. 394, P<0.001) and the clinical ultrasound imaging model

(Z=4. 732, P<0.001). Moreover, there was no significant difference in AUC between

the comprehensive model and CECT (Z=-0.252, P=0.801). Both in the internal and

external validation cohort, the Calibration Curve and Decision Curve Analysis

showed a better performance of the comprehensive model.

Conclusion: It is feasible to construct an ultrasonographic radiomics model for

distinguishing small ccRCC and RAML based on ultrasound images, and the

diagnostic performance of the comprehensive model is superior to the clinical

ultrasound imaging model and ultrasonographic radiomics model, similar to that

of CECT.
KEYWORDS

small renal tumor, clear cell renal cell carcinoma, ultrasound, radiomics,
renal angiomyolipoma
Introduction

With the improvement of imaging techniques, the incidence of

renal cell carcinoma (RCC) has been steadily increasing at a rate of

2%-4% every year (1), among which the proportion of patients

diagnosed with small RCC (diameter ≤ 4 cm) has been constantly

increasing (2). Recently, small renal tumors have become a hot topic

in research. About 20-30% of small renal tumors are benign, and

renal angiomyolipoma (RAML) is the most common pathology

type (3). Clear cell renal cell carcinoma (ccRCC) is the most

common pathology type of RCC. There’s a lack of typical

malignant ultrasound features (necrosis or tumor embolism) in

small renal tumors less than 4cm, which makes it difficult to

discriminate small ccRCC from RAML. The low-fat content results

in hypoechoicity on ultrasound in fat-poor renal angiomyolipoma

(fpRAML), similar to small renal carcinomas. Transabdominal

ultrasonography is a common method in preoperative imaging

examination of renal tumors, but the small renal tumors may be

ignored due to the above sonographic characteristics.

In clinical practice, the identification of ccRCC and RAML is

mainly based on contrast-enhanced CT (CECT). However, CECT is
02179
an invasive procedure involving intravenous contrast injection,

making it unsuitable for patients with renal dysfunction or iodine

contrast allergies. Ultrasonography examination is widely used in

clinical practice and is inexpensive, feasible, and reproducible.

Moreover, the small ccRCC may be untypical on CECT, and their

presentation could be easily confused with RAML, especially low-fat

RAML (4). In case of an unclear diagnosis, a repeated examination

is required during the follow-up period. So, repeated ultrasound

examinations may be more acceptable to these patients.

Improvement of the ultrasound diagnostic capability in clinical

physical examination will be beneficial.

With the development of artificial intelligence, radiomics

prediction models have gained attention in cancer diagnosis (5, 6).

Radiomics can extract inaccessible feature data from medical images

with high throughput and has great application prospects in

predicting the biological behavior of tumors (7, 8). In recent years,

few studies have been reported on ultrasonographic radiomics to

identify small ccRCC. It is unclear whether the diagnostic

performance could be improved using ultrasonographic radiomics

in these patients. In this current study, we investigated the feasibility

of ultrasonographic radiomics to discriminate ccRCC and RAML by
frontiersin.org
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constructing a clinical ultrasound imaging model, ultrasonographic

radiomics model, and comprehensive model. We also compared the

diagnostic efficacy between the above models and CECT.
Materials and methods

Study population

This retrospective study was approved by the ethics committee of

Tianjin Medical University Cancer Institute and Hospital (bc2023079).

From June 2018 to June 2022, 385 small renal tumor patients with a

histological examination at TianjinMedical University Cancer Institute

(institution 1) were retrospectively recruited to construct training and

internal validation cohorts of the model. Another 230 small renal

tumor patients with a histological examination from Tianjin First

Central Hospital, and Tianjin Occupational Diseases Precaution and

Therapeutic Hospital (institutions 2 and 3) were retrospectively

recruited, constituting an independent external validation cohort to

verify the efficacy of the prediction model. The inclusion criteria were

as follows: (1) patients performed an ultrasonic examination and CECT

within 2 weeks before the operation, and the images of the tumor’s

largest diameter were clear, (2) the diagnosis of ccRCC or RAML was

confirmed by postoperative pathology, (3) patients had no previous

history of other malignancies, (4) maximum diameter of renal tumor ≤

4cm. The excluding standards were as follows: (1) there were significant

artifacts in the ultrasound or CT images, (2) tumor components were

predominantly cystic (the solid component was less than 25%) (9), and

(3) incomplete clinical information on patients. As a result, 302 patients

with 302 small renal tumors were finally enrolled in our study to

construct ultrasonographic radiomics models and internal validation;

and 69 patients for external validation (Figure 1). Patients in institution

1 were divided into the ccRCC group (n = 182; 107 men and 75

women; mean age 56.85 ± 10.71 years) and RAML group (n = 120; 57

men and 63 women; mean age 53.64 ± 12.23 years). The mean age of

the external validation cohort was 55.72 ± 14.58 years (38 men and

31 women).
Ultrasonography and CT scanning methods
and image analysis

Color Doppler ultrasonic diagnostic apparatus of PHILIPS

EPIQ5, Toshiba Aplio 500, and 800 were used. Transabdominal

ultrasound was performed using a convex array probe with 1~6MHz.

Patients should be fasting for 8-12 hours to show the largest section of

tumors clearly. We performed a multisectional examination of both

kidneys in the supine, lateral, or prone position. Ultrasonographic

features of renal tumors were recorded, including tumor location,

maximum diameter, tumor boundaries, echo pattern, presence of

calcifications, necrotic cystic degeneration, and blood flow signals.

Preoperative CECT was performed on multiple scanners:

Siemens Somatom Definition, GE HiSpeed 16, and Philips

Brilliance 64. Acquisition parameters were as follows: tube voltage,

120–140 kV; automated varied milliampere-second settings;

collimation width, 1.5 mm. CT and CECT features included fat
Frontiers in Oncology 03180
density assessment, peak enhancement degree, homogeneity of

enhancement, and the velocity of contrast in and out.

Ultrasonographic and CECT imaging were independently

assessed by two sonographers and two radiologists (all with more

than 10 years of experience). They were blinded to the pathology

results. When the diagnostic results were inconsistent, they reached

a consensus through discussion. Clinical information of these

patients was recorded, including sex, age, and clinical symptoms.
Segmentation and pre-processing of
ultrasound images

The framework of this study is illustrated in Figure 2. Ultrasound

images of the largest renal tumor cross-section were imported into

ITK-SNAP software (version v 3.8.0, www.itksnap.org), and the tumor

edges were manually outlined as the region of interest (ROI) by

sonographer A with more than 10 years’ experience (Figure 3). Two

weeks later, sonographer A and sonographer B (with 5 years of

experience) made ROI outlining from 50 renal tumor images

randomly, to assess intra- and inter-observer correlation

coefficients (ICCs).
Radiomics features extraction

Z-Score was performed to standardize the data of different

orders before radiomics feature extraction. The Pyradiomics

module of Python 3.8.7 (v3.0.1) was used to extract the radiomics

features of ROIs, including shape-based features, first-order

features, and structural texture features. The structural texture

features included a gray level cooccurrence matrix (GLCM), gray

level run-length matrix (GLRLM), gray level size zone matrix

(GLSZM), and gray level dependence matrix (GLDM). ICCs were

used to evaluate the agreement of feature extraction. The intra-

observer ICC was calculated based on two feature extractions by

sonographer A, and inter-observer ICC was calculated based on the

features extracted firstly by sonographer A and subsequently by

sonographer B. Features with better consistency (ICC > 0.9) were

retained. The maximum relevance-minimum redundancy features

were obtained by max-relevance and min-redundancy (MRMR)

algorithm filtering. The covariance between ultrasound features was

assessed by calculating the Variance Inflation Factor (VIF). Finally,

the high-stability radiomics features were subjected to Spearman’s

correlation analysis, with a correlation coefficient threshold of 0.7.
Construction of ultrasonographic
radiomics model

The patients were randomly divided into training and internal

validation cohorts in the ratio of 7:3. The Random forest algorithm

(RFA) of the Sklearn module (Python 3.8.7) was applied to

construct the clinical ultrasound imaging model, ultrasonographic

radiomics model, and comprehensive model, to predict diagnostic

efficacy for small ccRCCs. Both feature extraction and model
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construction used ten-fold cross-validation and parameter tuning to

optimize the predictive performance.
Statistical analysis

All data were analyzed using the SPSS Statistics software version

23.0 (IBM, Armonk, NY, USA), Python3.8.7 and R software version

4.2.2. All categorical variables were expressed as numbers(n) and

percentages, and continuous variables were expressed as mean value

± standard deviation (SD) or median ± inter-quartile range (IQR). c²
test was used to compare the clinical ultrasound characteristics between

patients in ccRCC and RAML groups. The diagnostic ability of the

ultrasound imaging model, ultrasonographic radiomics model,

comprehensive model, and CECT for ccRCC were assessed by the

receiver operating characteristic (ROC) curve, and the area under the

curve (AUC), sensitivity, specificity, and accuracy of three models and

CECT were calculated separately. The AUC values of different models

and CECT were compared by the Delong test. The performance of the
Frontiers in Oncology 04181
three models was evaluated by the Calibration Curve. Clinical Decision

Curve Analysis was also applied to determine the net benefit of

patients. P<0.05 was considered statistically significant.
Results

Comparison of clinical ultrasound and
CECT characteristics

In this study, 302 small renal tumor patients, comprising 182

with ccRCC and 120 with RAML, were enrolled as the training and

internal validation cohorts. There were significant differences in the

distribution of gender, clinical symptoms, echo pattern, necrotic

cystic degeneration, blood flow signals, CT presence of bulk fat, and

homogeneity of enhancement, but no significant differences in age,

location, tumor boundaries, calcification, peak enhancement

degree, existent of fast-in and fast-out between the two groups

(P<0.05, Table 1; Figures 4–6).
FIGURE 1

Flowchart of inclusion and exclusion of the study population.
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FIGURE 2

The main procedure performed in this study comprised four steps: (A) ultrasound imaging and tumor segmentation, (B) image processing and
feature extraction, (C) feature selection, and (D) modeling, and Analysis.
FIGURE 3

The renal tumor edge was outlined as the region of interest by ITK-SNAP software.
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TABLE 1 Clinical ultrasound and CECT characteristics of 302 small renal tumor patients.

ccRCC (n=182) RAML (n=120) c2 P

Gender

Male 105 (57.7%) 57 (47.5%)
3.021 0.082

Female 77 (42.3%) 63 (52.5%)

Age

<50 years old 43 (23.6%) 34 (28.3%)
0.843 0.358

≥50 years old 139 (76.4%) 86 (71.7%)

Clinical symptoms

Hematuria 29 (15.9%) 8 (6.7%)
5.777 0.016

No hematuria 153 (84.1%) 112 (93.3%)

Ultrasound characteristics

Location

Left kidney 101 (55.5%) 59 (49.2%)
1.162 0.281

Right kidney 81 (44.5%) 61 (50.8%)

Tumor boundaries

Clear 140 (76.9%) 95 (79.2%)
0.211 0.646

Unclear 42 (23.1%) 25 (20.8%)

Echo pattern

Hypoechoic 87 (47.8%) 31 (25.8%)

16.566 0.000Isoechoic 39 (21.4%) 28 (23.3%)

Hyperechoic 56 (30.8%) 61 (50.9%)

Calcification

Existent 38 (20.9%) 15 (12.5%)
3.509 0.061

Non-existent 144 (79.1%) 105 (87.5%)

Necrotic cystic degeneration

Existent 44 (24.2%) 9 (7.5%)
13.898 0.000

Non-existent 138 (75.8%) 111 (92.5%)

blood flow signals

Existent 102 (56.0%) 51 (42.5%)
5.307 0.021

Non-existent 80 (44.0%) 69 (57.5%)

CT and CECT characteristics

Presence of bulk fat

Existent 73 (40.1%) 76 (63.3%)
15.604 0.000

Non-existent 109 (59.9%) 44 (36.7%)

Peak enhancement degree

hyper- enhancement 116 (63.7%) 87 (72.5%)
2.521 0.112

iso-/hypo-enhancement 66 (36.3%) 33 (27.5%)

(Continued)
F
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Selection of ultrasonographic
radiomics features

The Pyradiomics software package extracted 491 ultrasonographic

radiomics features. 9 ultrasonographic radiomics features were finally

retained after regression dimensionality reduction processing,

including 3 Shape, 1 GLRLM, 3 GLSZM, and 2 GLDM features.

Spearman correlation heatmap of radiomics features is shown

in Figure 7.
Diagnostic efficacy of predictive models

In the internal validation cohort, AUC, sensitivity, specificity, and

accuracy of the clinical ultrasound imaging model, ultrasonographic

radiomics model, comprehensive model, and CECT for ccRCC

diagnostic prediction were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,

61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%,

91.1%, respectively. In the external validation cohort, AUC,

sensitivity, specificity, and accuracy of the three models and CECT

were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%; 0.90,

85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively
Frontiers in Oncology 07184
(Figure 8; Table 2). In the internal validation cohort, the DeLong test

demonstrated no significant difference in AUC between the clinical

ultrasound imaging model and ultrasonographic radiomics model

(Z=-1.287, P=0.198), whereas the comprehensive model was superior

to the ultrasonographic radiomics model (Z=4. 394, P<0.001) and

clinical ultrasound imaging model (Z=4. 732, P<0.001). Moreover,

there was no significant difference in AUC between the

comprehensive model and CECT (Z=-0.252, P=0.801). The

Calibration curve indicated a better performance of the

comprehensive model (Figure 9), while Decision Curve Analysis

showed a superior clinical utility of the comprehensive

model (Figure 10).
Discussion

The clinical symptoms are usually untypical in patients with

small ccRCC. Many patients are discovered incidentally during

radiologic examinations (10, 11). It is also more complex

considering clinical decision-making (12–14), including a

variety of interventions available for these patients: renal tumor

biopsy, partial nephrectomy, radical nephrectomy, thermal
TABLE 1 Continued

ccRCC (n=182) RAML (n=120) c2 P

Homogeneity of enhancement

homogeneous 78 (42.9%) 69 (57.5%)
6.207 0.013

inhomogeneous 104 (57.1%) 51 (42.5%)

Fast-in and fast-out

Existent 103 (56.6%) 62 (51.7%)
0.708 0.400

Non-existent 79 (43.4%) 58 (48.3%)
P-values indicate comparisons between ccRCC and RAML groups.
ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-enhanced CT.
FIGURE 4

A 74-year-old man with a 1.9 × 1.4cm RAML. (A) Ultrasound demonstrated a mildly hyperechoic mass located in the middle pole of the right kidney
(arrow). (B) CECT: the mass showed inhomogeneous hyperenhancement (arrow).
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ablation, and follow-up monitoring (6, 15, 16). Therefore, the

evaluation of imaging features of renal tumors has gradually

evolved from morphological presentation to criteria based on

histological features and molecular typing features (17, 18).

Radiomics can quantitatively assess the heterogeneity of tumors

and can be applied to differentiate renal carcinoma from RAML,

assess the biological behavior of tumors, and predict the risk of

recurrence or survival (19–21). Several studies have reported

radiomics models establ ished by CT or MR images ,

demonstrating their utility in identifying benign and malignant

renal tumors and predicting pathological grading (22–25).

However, reports on the establishment of radiomics models of

ultrasound, the most convenient imaging examination for

screening renal tumors, are rather rare.

In this study, the sensitivity of the internal validation cohort of

the clinical ultrasound imaging model for the prediction of ccRCC
Frontiers in Oncology 08185
was 76.7% and the accuracy was 70.0%. Although there were

statistically significant differences in gender, clinical symptoms,

echo pattern, necrotic cystic degeneration, and blood flow signals

between patients in the ccRCC group and RAML group, 30.0% of

small renal carcinomas were still misdiagnosed in this model. The

reason may be that patients with small ccRCC do not have the

specificity of clinical presentation and have a complex and varied

pathohistological structure. Whereas ccRCC and fpRAML may

exhibit some similar ultrasound characteristics (26, 27). The

comprehensive model showed superior ability in predicting

ccRCC, with 91% of sensitivity and 77% of specificity. The

model extracted 491 ultrasonographic radiomics features, which

were processed by regression dimensionality reduction, and finally

retained 9 stable ultrasonographic radiomics features. Among

them, Shape features described the morphological information

of renal tumors. Major axis length, Mesh volume, and Sphericity
FIGURE 6

A 64-year-old man with a 3.2 × 2.8cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows).
FIGURE 5

A 43-year-old man with a 3.5 × 3.4cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows).
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described the similarity of renal tumor morphology to the

standard sphere. Renal tumors in the RAML group had a

smaller long-axis length and were closer to spherical than those

in the ccRCC group. GLSZM was a count of the number of groups

of interconnected neighboring pixels or voxels with the same gray

level form the basis for the matrix (28). GLRLM provided

information about the spatial distribution of runs of consecutive

pixels with the same gray level, assessing the percentage of pixels

or voxels within the ROI that are part of the runs and therefore

reflect graininess (29). GLDM was also a count matrix that holds
Frontiers in Oncology 09186
information about the number of “dependent” pixels and the

number of occurrences of all pixels in the image. All the above

three features belonged to texture features, which suggested that

the tumors in the ccRCC group had poor texture consistency and a

significant effect of non-periodic or speckled texture in ultrasound

images compared to those in the RAML group. These findings

indicated higher tumor heterogeneity in ccRCC. Compared with

the RAML group, tumors in the ccRCC group had more irregular

morphology, wider image signal distribution, and rougher texture

features. So, combining ultrasonographic radiomics features and
BA

FIGURE 8

ROC curves of clinical ultrasound imaging model, ultrasonographic radiomics model,. and comprehensive model in the internal (A) and external
(B) validation cohort.
FIGURE 7

Spearman correlation heatmap of renal tumor ultrasonographic radiomics features. The color indicates a correlation: the darker the color, the higher
the correlation (red indicates a positive correlation, and blue indicates a negative correlation).
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FIGURE 9

Calibration curves of the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model in the internal (A) and
external (B) validation cohort.
TABLE 2 Comparison of the predictive efficacy of clinical ultrasound imaging model, ultrasonographic radiomics model, comprehensive model, and
CECT in the internal and external validation cohorts.

Model AUC (95%CI) Sensitivity Specificity Accuracy

Internal validation cohort (n=90) Clinical ultrasound imaging model 0.75 (0.70-0.81) 76.7% 60.0% 70.0%

Ultrasonographic radiomics model 0.80 (0.75-0.85) 85.6% 61.7% 76.0%

Comprehensive model 0.88 (0.84-0.93) 90.6% 76.7% 85.0%

CECT 0.90 (0.84-0.98) 92.6% 88.9% 91.1%

External validation cohort (n=69) Clinical ultrasound imaging model 0.73 (0.66-0.79) 67.5% 69.1% 68.3%

Ultrasonographic radiomics model 0.89 (0.85-0.93) 86.7% 80.0% 83.5%

Comprehensive model 0.90 (0.86-0.94) 85.0% 85.5% 85.2%

CECT 0.91 (0.87-0.95) 94.6% 88.3% 91.3%
F
rontiers in Oncology
 10187
BA

FIGURE 10

Decision curve analysis of clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model in the internal (A) and
external (B) validation cohort.
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clinical ultrasound imaging features, the comprehensive model

showed better diagnostic efficacy. The comprehensive model

improved the sensitivity and accuracy of ccRCC prediction to

90.6% and 85.0%, which was similar to previous studies (20, 30–

32). Our study suggested that ultrasonographic radiomics features

could compensate for the shortcomings of clinical ultrasound

imaging features and improve the predictive efficacy of small

ccRCC. The Calibration Curve and Decision Curve Analysis of the

three models also validated that the comprehensive model had a

higher net benefit and a better performance in predicting patients

with small ccRCC.

Our study had several improvements compared with the

previous radiomics studies. Firstly, we compared the diagnostic

efficacy between ultrasonographic radiomics models and CECT.

Both of the these methods have high diagnostic efficiency and there

was no significant difference between the comprehensive model and

CECT. Moreover, an external validation cohort was used to assess

the diagnostic performance of different models. The AUC of the

comprehensive model was 0.90 in the external validation cohort,

demonstrating a good predictive ability and robustness on new data.

Thus, the comprehensive model based on ultrasonographic

radiomics and clinical ultrasound imaging features could provide

a convenient, inexpensive, and radiation-free examination for small

ccRCC patients.

In this study, we applied a “multivariate filtering” feature

selection method, the MRMR algorithm, to maximize the

correlation between the imaging features and the prediction

target as far as possible. Meanwhile, the correlation between the

individual features was minimized as far as possible, with the help

of high computational speed and high discriminative power.

Features were selected from multiple perspectives to minimize

information loss in our study, thus avoiding overfitting or

underfitting of the predictive model. Moreover, we used the

same ratio to divide the training and validation cohort in both

ccRCC and RAML, to ensure the stability of the prediction results.

Finally, we chose random forests to build the model classifiers to

ensure high overfitting resistance and stability.

There are several limitations in this study. Firstly, the cases in

this retrospective study are only from three medical institutions,

and the results of the study may be subject to selection bias.

Secondly, the ultrasound and CECT images in this study are from

different diagnostic apparatuses, and there may be heterogeneity in

the study images. In addition, the manual segmentation of outlining

the ROI may reduce the reproducibility of this study. In the future,

we will verify the stability of the results through multicenter

prospective studies.

In conclusion, It is feasible to establish a diagnostic prediction

model by ultrasonographic radiomics features in ccRCC and RAML

with a maximum diameter of ≤4 cm, and we find that

ultrasonographic radiomics features have great potential in

identifying tumor heterogeneity in these patients. The

comprehensive model showed a superior diagnostic ability in

identifying ccRCC, which was similar to that of CECT, providing

valuable information for clinicians to make personalized

treatment decisions.
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Vessel density within tumor tissues strongly correlates with tumor proliferation

and serves as a critical marker for tumor grading. Recognition of vessel density by

pathologists is subject to a strong inter-rater bias, thus limiting its prognostic

value. There are many challenges in the task of object detection in pathological

images, including complex image backgrounds, dense distribution of small

targets, and insignificant differences between the features of the target to be

detected and the image background. To address these problems and thus help

physicians quantify blood vessels in pathology images, we propose Pathological

Images-YOLO (PI-YOLO), an enhanced detection network based on YOLOv7. PI-

YOLO incorporates the BiFormer attentionmechanism, enhancing global feature

extraction and accelerating processing for regions with subtle differences.

Additionally, it introduces the CARAFE upsampling module, which optimizes

feature utilization and information retention for small targets. Furthermore, the

GSConv module improves the ELAN module, reducing model parameters and

enhancing inference speed while preserving detection accuracy. Experimental

results show that our proposed PI-YOLO network has higher detection accuracy

compared to Faster-RCNN, SSD, RetinaNet, YOLOv5 network, and the latest

YOLOv7 network, with a mAP value of 87.48%, which is 2.83% higher than the

original model. We also validated the performance of this network on the ICPR

2012 mitotic dataset with an F1 value of 0.8678, outperforming other methods,

demonstrating the advantages of our network in the task of target detection in

complex pathology images.
KEYWORDS

pathologica l images, b lood vessel , deep learning , object detect ion,
attention mechanism
frontiersin.org01190

https://www.frontiersin.org/articles/10.3389/fonc.2024.1347123/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1347123/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1347123/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1347123/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1347123/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1347123&domain=pdf&date_stamp=2024-07-29
mailto:qiling1718@gzhmu.edu.cn
mailto:guiyingzhang@gzhmu.edu.cn
https://doi.org/10.3389/fonc.2024.1347123
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1347123
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2024.1347123
1 Introduction

The growth of most tumors is highly correlated with new blood

vessels (1). Rapid tumor cell proliferation often results in hypoxia

and malnutrition, prompting the formation of new blood vessels to

fulfill the increased metabolic demands of tumors (2). According to

the tumor angiogenesis switch hypothesis, when tumors grow to a

diameter of 1-2 mm, they frequently trigger the expression of

angiogenesis-related factors, initiating the formation of a new

vascular network that promotes tumor growth and development.

Blocking angiogenesis and tumor growth is an effective approach to

treating tumors, such as colorectal cancer, lung cancer, and breast

cancer (3). Further studies have revealed that quantitative analysis

of blood vessels in tumors can help physicians determine tumor

grade and predict patient prognosis (4). This, in turn, supports the

development of more rational and effective treatment strategies.

Therefore, there is a pressing need for a rapid and precise method to

detect blood vessels within tumors.

In the past, there were three main methods for detecting blood

vessels within tumors. However, none of these methods employed

computer-based automatic detection due to issues such as limitations

in imaging equipment. The first method involves the utilization of

immunohistochemistry technology to selectively label specific

antibodies targeting vascular endothelial cells, such as F8-RA,

CD31, CD34, CD105 (5). Researchers then count the positive cells

per unit area under a microscope. This method is one of the earliest

approaches used for quantitative analysis of tumor vasculature and

currently stands as the gold standard for such analysis (6). However,

it requires manual selection of the area with the highest vessel density

for counting, making it susceptible to subjective influences. The

second method entails the use of target-enhanced ultrasound

imaging of molecular markers that are overexpressed during

angiogenesis (7), enabling indirect quantitative analysis of blood

vessels. This approach has advantages such as low detection costs

and real-time imaging capabilities but is limited by low detection

sensitivity and limited penetration. The third method involves the

targeted introduction of magnetic contrast agents into the tumor

region, followed by high-resolution imaging of blood vessels within

the tumor using MRI technology (8). This method, while capable of

producing detailed images, demands sophisticated equipment and

longer imaging times, thus limiting its clinical applicability.

In recent years, the field of histopathology has achieved

significant advances through electron microscopic imaging,

enabling pathologists to perform high-resolution tumor

vascularization through digitized whole slide images (WSIs) (9). In

addition, rapid advances in artificial intelligence technologies,

particularly deep learning, have provided powerful tools for

automated tissue section analysis, promising to provide more

accurate and consistent results than traditional manual evaluations

and to reduce the workload of pathologists. Artificial intelligence

algorithms have been developed to identify and quantify vascular

features such as density, morphology, and spatial distribution, which

are often challenging for human observers (10). Studies have

demonstrated the feasibility and efficacy of AI for vascular

detection in histological sections of a wide range of malignancies,

helping to improve the accuracy of lymphovascular invasion
Frontiers in Oncology 02191
detection, predict lymph node metastasis, and identify new

morphological features with prognostic value (11). However,

implementing AI-based vascular testing in clinical practice still

faces a number of challenges, including the need for larger and

more diverse datasets, and optimizing algorithms for better and faster

testing performance so that testing models can be integrated with

existing pathology workflows (12).

In response to challenges posed by small target proportions,

complex image backgrounds, and subtle feature differences in

pathology images, we propose a YOLOv7-based detection network

for object detection in pathology images (13). Our approach also

prioritizes meeting the speed requirements of clinical applications.

The model fuses the BiFormer (14) attention mechanism, the

lightweight generalized upsampling operator CARAFE (15) and a

new lightweight convolutional technique GSConv (16) into the

YOLOv7 model. The proposed model significantly enhances the

accuracy of blood vessel detection in pathology images and offers

an effective solution for target detection in pathology images.

The contributions of this paper are as follows:

1. This article proposes an improved object detection network

model for pathological images based on YOLOv7. We fused the

BiFormer attention mechanism, the CARAFE upsampling operator,

and GSConv into the YOLOv7 model. This fusion concept

effectively enhances detection accuracy and accelerates the blood

vessel detection process in pathology images, offering an efficient

solution for the task of target detection in pathology images.

2. On the Blood vessel detection dataset, PI-YOLO achieves a

mean Average Precision (mAP) value of 87.48%, which is 2.83%

higher than the original model. On the ICPR2012 Mitosis detection

dataset, the F1 score reaches 0.8678. PI-YOLO outperforms other

methods on both datasets, demonstrating superior detection

accuracy and faster inference speed (17).

3. Extensive comparative and ablation experiments have

provided both quantitative and qualitative verification of this

model’s superiority in vascular detection tasks within pathological

images from various perspectives. The outcomes of this study are

anticipated to be valuable for researchers in the fields of anti-

angiogenic therapy for tumors and tumor prognosis prediction.
2 Related work

At present, classical object detection networks can be broadly

categorized into two groups: anchor-based and anchor-free. The key

distinction lies in the fact that anchor-based methods require the

prior definition of anchor boxes, whereas anchor-free methods do not

necessitate this step. One-stage anchor-based approaches,

exemplified by YOLOv3 (18) and RetinaNet (19), are capable of

directly performing regression and classification tasks for bounding

boxes. These methods produce outputs in the form of regression

parameters (anchor offsets) and category confidences. On the other

hand, the mainstream two-stage anchor-based methods, such as

Faster RCNN (20) and Mask RCNN (21), initially generate

proposals and subsequently conduct regression and classification

tasks for the bounding boxes. Similarly, a variety of anchor-free

techniques have been developed, including CornerNet (22) and FSAF
frontiersin.org
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(23). Among these, CornerNet is a classic example of the keypoint

detection network, while FSAF incorporates a feature selection

anchor-free module to achieve anchor-free object detection. While

these conventional networks have delivered promising results in the

context of natural images, their performance will be constrained

when applied to the unique characteristics of pathological images

during the detection process.

Pathological diagnosis, as the gold standard for cancer diagnosis,

provides comprehensive information about tumors. In recent years,

deep learning methods have been widely applied in the detection and

segmentation of micro vessels in pathological images. Traditional

methods rely on immunohistochemistry (IHC) staining and manual

counting, which are not only time-consuming and labor-intensive

but also highly subjective. To address these issues, Yi et al. (24)

developed an automated detection method based on fully

convolutional networks (FCNs). This method leverages deep

learning to achieve end-to-end image training and pixel-level

prediction, significantly improving detection efficiency. However,

limitations such as small dataset sizes and high false-positive rates

remain significant drawbacks. To further enhance detection accuracy

and reliability, Fraz et al. (25) proposed a method for micro vessel

segmentation in H&E-stained histological images. This method

incorporates an uncertainty prediction mechanism that generates

uncertainty maps by introducing random transformations during

testing, highlighting areas where the network’s predictions are

uncertain, thus improving segmentation confidence. Additionally,

they developed a novel Feature Attention-Based Network (FABnet)

(26) for the simultaneous segmentation of micro vessels and nerves.

FABnet combines feature attention modules and uncertainty

prediction mechanisms to focus on salient features and perform

multi-scale feature extraction, achieving more precise segmentation.

Despite significant progress in accuracy and reliability, the

complexity of the network architecture and the need for multiple

random transformations increase computational costs. Furthermore,

the study primarily focuses on oral squamous cell carcinoma datasets,

lacking extensive validation across other cancer types. Additionally,

Generative Adversarial Networks (GANs) have been introduced into

vascular detection. Atzori et al. (27) employed GANs to generate

synthetic ERG-stained images, reducing dependency on IHC

staining. Although GANs have shown impressive results in

improving image quality and accuracy, issues such as variability in

staining quality and limited training dataset sizes persist. All these

methods are based on segmentation approaches, which involve pixel-

level classification to distinguish blood vessel boundaries from the

background. While accuracy has been continuously improving, the

complexity of these models often results in slower processing speeds,

limiting their clinical practicality.
3 Materials and methods

3.1 Datasets

In this paper, two datasets are used for experiments. The

experiments on blood vessel detection in pathology images were
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performed on the blood vessel detection dataset we created, and the

comparison experiments on other detection tasks were performed

on the ICPR 2012 mitosis detection dataset (17).

3.1.1 Blood vessel detection dataset
Blood vessels exist in different tumor tissues. To make the

detection model applicable to various tumor tissues, we collect 36

WSIs from two institutions: TCGA (28) and the Guangzhou

Kingmed Center for Clinical Laboratory. The dataset comprises

twenty WSIs of breast cancer, eight WSIs of lung cancer, and eight

WSIs of colon cancer. Due to the typically large size of WSIs, we

divide them into patches measuring 512 � 512 pixels to facilitate

physician annotation and model training. Next, we use a pre-

trained classification model to screen out patches with blood

vessels. We select a total of 2000 patches containing blood vessels.

These patches are annotated by two experienced pathologists (with

more than five years of experience in pathology), and then reviewed

by expert pathologists (with more than ten years of experience in

pathology) after the annotation is completed.

The annotated dataset contains a total of 2000 images, including

4526 blood vessels. They were divided into training set, validation

set and test set according to the ratio of 7:2:1. The training set

contains 1400 images, including 3445 blood vessels. The validation

set consists of 400 images, which include 681 blood vessels. The test

set comprises the remaining 200 images, containing 400 blood

vessels. All datasets are stored in PNG format. Table 1 shows the

division of the datasets.

3.1.2 ICPR 2012 mitosis detection dataset
The ICPR 2012 mitosis detection dataset was introduced in the

ICPR 2012 competition, making it the first publicly available

mitosis detection dataset. This dataset consists of five H&E-

stained breast cancer biopsy slides. In each slide, a pathologist

selects 10 high-power fields (HPF) at 40x magnification, resulting in

a total of 50 HPFs in the dataset, which collectively contain more

than 300 cells undergoing mitosis. The slides were scanned using

various equipment, including an Aperio XT scanner (A scanner), a

Hamamatsu Nano Zoomer scanner (H scanner), and a 10-band

multispectral microscope. Each HPF’s mitotic cells were annotated

by a pathologist. For our experiments, we focused on data obtained

from the A scanner, which includes 50 RGB images. Out of these, 35

were allocated for training, and the remaining 15 were designated
TABLE 1 The partitioning of the dataset.

Name Proportion Number
of

Pictures

Number
of

Blood
vessels

training set 70% 1400 3445

dataset validation
set

20% 400 681

test set 10% 200 400

total 100% 2000 4526
f
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for testing. Since the image size of 2084 × 2084 pixels isn’t suitable

for direct model training, we subdivided it into patches measuring

521 × 521 pixels, resulting in 243 images that contain a total of 323

mitotic cells. Of these, 195 were used for the training set, and the

remaining 48 were assigned to the test set.
3.2 The proposed PI-YOLO model

Since the background in pathology images typically occupies

the majority of the image area, and the target to be detected is often

small, it is essential to employ a network structure with global

modeling capabilities as the backbone. YOLOv7’s backbone

network consists of convolutional stacks. The feature maps in the

shallow layers of the network have a limited receptive field, allowing

them to capture only local features of the original image.

Conversely, the convolutional layers in the deeper network

possess a larger receptive field but require more complex

computations. BiFormer, a multi-head self-attention mechanism,

provides a broader field of view in the shallow layers of the network,

enabling it to capture global features. Its key idea lies in filtering out

most of the irrelevant key-value pairs at the coarse region level,

retaining only a small portion of the routing region. This

significantly reduces computational demands while maintaining

accuracy. In this paper, we propose a target detection method for

pathological images by incorporating the BiFormer attention

mechanism, CARAFE upsampling module, GSConv module, and

the YOLOv7 network. We have enhanced, optimized, and

reconstructed the method. The overall network framework,

shown in Figure 1, consists of four main components: Input,

Backbone, Neck, and Prediction.
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3.2.1 Input layer
In the input layer, each training sample undergoes an initial

Mosaic data augmentation process. This process involves the

following steps: First, four different images are randomly selected

from the dataset. Each selected image is then individually flipped,

and its color gamut is adjusted. After these adjustments, the images

are randomly cropped. Next, these four augmented images are

combined into a single new image, forming a new training sample.

This Mosaic augmentation technique enriches the background

variations and generalizes the features used for detection.

Furthermore, the locations of the detection targets in these new

composite images are adaptively adjusted according to their original

positions in the selected images. By incorporating diverse

backgrounds, the model’s ability to detect targets in complex

environments is enhanced through training with these

augmented samples.

3.2.2 Backbone
The backbone network is a critical component for feature

extraction in our model. The original YOLOv7 backbone consists

of 50 modules, which include CBS modules, ELAN modules, and

MP1 modules. Specifically, there are four ELAN modules in the

network, as shown in Figure 2. Each ELAN module is composed of

six CBS modules. To enhance the feature extraction capability of the

backbone network, we have introduced the BiFormer attention

mechanism after the last CBS module of the last two ELAN

modules. The BiFormer attention mechanism is characterized by

dynamic sparse attention with a two-layer routing process. Its core

concept involves filtering out the least relevant key-value pairs at the

coarse area level. This process is carried out by constructing and

pruning an area-level directed graph. Subsequently, fine-grained
FIGURE 1

PI-YOLO Network architecture, including Input, Backbone, Neck, and Prediction. C in the Prediction module is the number of categories in
the dataset.
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token-to-token attention is applied within the union of the routed

areas. The incorporation of the BiFormer attention mechanism

enables dynamic query-aware sparsity, allowing for more flexible

computational allocation and content awareness. This mechanism

not only preserves dependencies and location information across

different spatial regions but also significantly reduces computational

costs. The workflow of the enhanced backbone network can be

summarized as follows: Initially, input images pass through a series

of CBS modules for basic feature extraction. These features are then

fed into the ELAN modules, where the BiFormer attention

mechanism is applied to enhance the relevant feature maps.

Finally, the refined features proceed to subsequent network layers

for further processing and prediction tasks. This structured

approach ensures that the backbone network effectively captures

and utilizes critical spatial information, ultimately improving the

model’s overall performance in object detection tasks.

3.2.3 Neck and prediction layer
The neck network serves to disperse the multi-scale output

learned from the backbone network into multiple feature mappings,

and then integrates the learned multi-scale information. This is to

enhance the model’s ability to capture diverse information and

improve target detection performance. As shown in Figure 1, the

neck network adopts a PAFPN structure, which combines enhanced

components from FPN (29) and PANet (30) for feature extraction
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and fusion. In place of the original upsampling module, we

introduce a lightweight generalized upsampling operator called

CARAFE within the neck network. This operator expands the

receptive field without significantly increasing computational

demands or introducing excess parameters. It efficiently leverages

semantically relevant content from the feature map for upsampling.

Additionally, we employ the lightweight convolutional block

GSConv to enhance the ELAN module, reducing model

parameters, computational complexity, and size while preserving

rich features. Finally, after the input image undergoes two rounds of

feature extraction via the backbone and neck networks, the feature

information is amalgamated using repconv and transformed into

the final prediction information to generate the model’s

prediction results.
3.3 Attention for PI-YOLO

Due to the intricate backgrounds and a high prevalence of small

objects in pathological images, numerous detection models struggle

to effectively filter out background information. To shift the focus of

the detection model towards the essential information within the

input features while minimizing the influence of background data,

we incorporate a dynamic sparse attention mechanism known as

BiFormer into the backbone network of the model. This BiFormer
B

C

D

EA

FIGURE 2

Structure diagram of the model part of the module. In this diagram, (A) illustrates the combination of different convolution modules, where “k”
represents the convolution kernel size, and “s” signifies the convolution step size. (B) outlines the essential configuration of the MP module, while
(C) provides an overview of the core structure of the ELAN module, (D) presents the layout of the SPPCSPC module, and (E) describes the
architecture of the REP module.
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attention mechanism, as utilized in this study, can be delineated

into two distinct phases.

The first phase initiates with coarse-grained attention,

emphasizing sparsity control, while the second phase performs

fine-grained attention based on the outcomes of the sparse

attention from the first phase. In the initial phase, the image is

partitioned into multiple coarse-grained blocks, upon which self-

attention is applied. This process computes correlations between

every two coarse-grained blocks using Q and K , resulting in a

relational matrix. Subsequently, this matrix is sparsified, retaining

only the top- k elements with the highest values, signifying pairs of

blocks that require further attention. In the subsequent phase,

building upon the sparse coarse-grained matrix from the first

stage, additional fine-grained self-attention is conducted. Each

patch exclusively engages in attention computations with patches

residing within other coarse-grained blocks that are associated with

the coarse-grained block it occupies in the first stage. The

implementation details are as follows:

BiFormer is built using Bi-Level Routing Attention (BRA) as the

basic building block. The implementation details of BRA are as

follows: given a 2D input feature map X ∈ RH*W*C , it is first

divided into S� S non-overlapping regions to obtain Q,K ,V , the

related equation is as in (1):

Q = XrWq,  K = XrWk ,  V = XrWv (1)

where Wq,  Wk,  Wv ∈ Rc*c   are projection weights for the

query, key, value, respectively.

Then the mean of Q and K is calculated to obtain the

corresponding  Qr , Kr ∈ RS2�C , and then the affinity adjacency

matrix Ar ∈ RS2�S2 between regions is obtained using transpose

multiplication, the related equation is as in (2):

Ar = Qr(Kr)T (2)
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Then use the topk operator to keep the k regions with the closest

relationships to obtain the region routing index matrix Ir , the

related equation is as in (3):

Ir = topkIndex(Ar) (3)

After obtaining Ir , fine-grained Token-to-token attention can

be applied, as shown in the Figure 3.

First, collect all the routing regions indexed by all elements in Ir

and collect all their K and V to obtain Kɡ, Vɡ ∈ RS2�kHW
S2

�C , the

related equation is as in (4):

Kɡ = ɡather(K , Ir),  Vɡ = gather(V , Ir) (4)

Then apply Kɡ and Vɡ, which are the gathered key and value

tensor. Next, apply attention to the gathered key-value pairs as

follows (5):

O = Attention(Q,Kɡ,Vɡ) + LCE(V) (5)

Here, a local context enhancement term LCE(V) is introduced,

as described in (31). The function LCE( · ) is parameterized using

deep separable convolution, and set the convolution kernel size to 5.

It follows the design of most vision transformer architectures, which

also use a four-stage pyramid structure, i.e., downsampling by a

factor of 32, as shown in Figure 4.
3.4 CARAFE for PI-YOLO

The up-sampling method adopted by YOLOv7 in the feature

fusion part is nearest neighbor interpolation up-sampling, which

determines the up-sampling kernel only by the spatial location of

pixel points, and does not utilize the semantic information of the

feature map, ignores the possible influence of surrounding feature

points, and the perceptual field is small, and the quality of the image
FIGURE 3

The structure diagram of the BiFormer dynamic attention mechanism.
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after up-sampling is not high. In this paper, the CARAFE

lightweight up-sampling operator with a large perceptual field is

used to improve the neck, which can make good use of the semantic

information of the feature map.

CARAFE is divided into a kernel prediction module and a

content-aware reassembly module. The kernel prediction module is

responsible for generating the up-sampling reassembly kernel,

which predicts the attention weights for each up-sampling

location based on the mapping relationship between the down-

sampled feature map and the up-sampled location. These weights

are crucial for maintaining spatial details and contextual

information during the feature reassembly process. The content-

aware reassembly module focuses on retaining as much spatial

information as possible during the up-sampling process to better

preserve the accuracy of object boundaries. The structure of

CARAFE is shown in Figure 5.
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The overall sampling process of CARAFE is as follows. Firstly,

for the input feature map c   of shape H �W � C, a 1� 1

convolutional layer is used to compress the input channel from C

to Cm in order to reduce the parameter and computational cost of

the model. Next, a reorganization upsampling kernel of shape H �
W � Cm is obtained based on the feature map of shape H �W �
s2 � k2up by using a convolutional layer as a content encoder for

predicting the upsampling kernel, where s is the upsampling

multiplicity and kup is the size of the receptive field region for the

feature recombination process. Then the channel is expanded in the

spatial dimension to obtain the upsampling kernel of shape sH �
sW � k2up, and finally the upsampling kernel is normalized so that

its convolutional kernel weights sum to 1. In the content-aware

reassembly module, for each position in the output feature map, it is

mapped back to the input feature map by taking the region centered

on the kup � kup region centered on it, and perform dot product
FIGURE 5

The overall framework of CARAFE. CARAFE is composed of two key components, kernel prediction module and content-aware reassembly module.
FIGURE 4

Left: The overall architecture of BiFormer. Right: Details of a BiFormer Block.
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with the predicted upsampling kernel at that point to get the output

value. Different channels at the same location share the same

upsampling kernel, and finally the sH � sW � C upsampled

feature map c  
0
is obtained.

The CARAFE upsampling module enhances the ability of the

neck network for image feature extraction and fusion, thus

effectively addressing the challenges posed by the presence of a

large number of backgrounds and densely distributed small targets

in pathology images.
3.5 GSConv for PI-YOLO

Standard Convolution (SConv) operates on all three channels

simultaneously, where the number of convolution kernels and

channels matches the number of output and input channels,

respectively. Consequently, employing an excessive number of

standard convolution kernels results in an accumulation of

parameters. Utilizing SConv for image feature extraction leads to

a proliferation of parameters and feature redundancy, particularly

in deeper layers. The Ghost Conv model module, proposed by Han

K et al. (32), efficiently extracts valuable features while reducing

parameters and computational overhead. It operates in two steps:

initially involving a limited number of convolutional and linear

transformation operations, followed by the integration of feature

maps generated from these two operations, which are then output.

Ghost Conv is predominantly employed in the realm of

lightweighting computer vision models due to its impressive

performance. However, the Ghost Conv module does encounter a

challenge in that it loses a significant amount of channel

information during its second step of operation. To address this

limitation, Li H et al. (16) introduced the GSConv module, as

illustrated in Figure 6. The GSConv module is designed to mitigate

this issue. Its final blending operation effectively disrupts channel

information uniformly, enhances semantic information extraction,

strengthens the fusion of feature data, and ultimately improves the

representation of image features.
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When the network conducts feature fusion at the Neck layer, it

continuously propagates semantic information downward.

However, this propagation can result in the loss of some semantic

information, which may affect the final prediction, especially when

the height and width of the feature map, as well as the number of

channels, undergo continuous compression and expansion. In this

paper, we introduce the GSConv module into the ELAN module of

the network’s neck layer, replacing the standard convolution. This

adjustment not only reduces the model’s parameter count and

computational load but also maximizes the sampling effect. The

structure of the GSConv module is illustrated in Figure 7.

Specifically, the four convolutions preceding the Concat layer

make use of the GSConv module. This modification reduces the

model’s parameter count while ensuring detection accuracy.
4 Experiments and results

4.1 Experimental environment and
hyperparameter settings

All experimental data in this article were measured in the same

environment. The hardware environment adopts Intel (R) Xeon (R)

Gold 5218 @ 2.30GHz CPU, 64GB RAM, and NVIDIA GeForce

RTX TITAN graphics card. The system environment is Linux

version 5.13.0-30 generic. Python version 3.10, PyTorch version

1.13.0, CUDA version 11.7.

In the experimental models presented in this paper, we explored

various hyperparameter configurations and found that the best

results were obtained when using the default hyperparameters of

the original YOLOv7. The relevant parameters used in the

experiments are listed in Table 2. The gradient descent optimizer

employed for updating the convolutional kernel parameters is

Adam, with a momentum parameter of 0.937. During the

training process, the learning rate is updated using a step-wise

method, with a maximum learning rate of 0.001 and a training

batch size of 24. The training duration spans 200 epochs, and it’s
FIGURE 6

The structure of the GSConv module. The “Conv” box consists of three layers: a convolutional-2D layer, a batch normalization-2D layer, and an
activation layer.
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worth noting that all experiments were conducted without pre-

training weights. The entire network model was trained

from scratch.
4.2 Evaluation indicators

In this study, we utilize seven evaluation metrics to assess the

model’s performance:

Precision: This metric represents the ratio of correctly predicted

positive instances (TP) to the total recognized objects and is

calculated as shown in Equation (6). Recall: Recall signifies the

ratio of correctly recognized objects to the total number of objects

and is calculated using Equation (7). F1 Score: The F1 score is the

harmonic mean of Precision and Recall, computed as indicated in

Equation (8). Average Precision (AP): AP is the average of precision

values at different recall points, quantified by the area under the

Precision-Recall (PR) curve. A higher AP value indicates greater

model precision, with the calculation formula shown in Equation

(9). Mean Average Precision (mAP): mAP represents the average

AP across all categories. A higher mAP value signifies a superior

model with increased target recognition accuracy, with the formula

outlined in Equation (10). Frames Per Second (FPS): FPS indicates

the number of images processed per second and serves as an

indicator of detection speed. A higher value implies faster model

inference. Giga Floating-point Operations Per Second (GFLOPS):

GFLOPS quantifies the computational complexity of the model,

reflecting the number of computations required. Additionally, the

term “Params” refers to the total number of trainable parameters in

the model, serving as an indicator of the model’s size and training

requirements.

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

F1 = 2� Precision� Recall
Precision + Recall

(8)

AP =
Z 1

0
P(R)dR (9)

mAP =
oN

1

Z 1

0
P(R)dR

N
(10)

TP represents the count of positive samples correctly predicted

by the model, whereas FP   represents the count of negative samples

predicted as positive by the model. FN represents the count of

positive samples that the model incorrectly predicts as negative. In

this context, P represents the class accuracy, R represents the class

recall rate, and N represents the total number of classes. Given that

the dataset contains only one type of blood vessel, N = 1.
4.3 Attention mechanism
compatibility experiment

We chose to incorporate the BiFormer attention mechanism

into our model. To assess its compatibility with the model, we

conducted comparisons with models that lacked a fused attention

mechanism, as well as models that integrated the fused SENet, ECA,

CA, and CBAM attention mechanisms, respectively (33–36). In our

qualitative analysis experiments, we employed a visualization

technique commonly used in deep learning, known as Grad-CAM

(37), to illustrate differences in the regions of interest within the

model after integrating various attention mechanisms. This method
TABLE 2 Experiment-related hyperparameter settings.

Hyperparameter Epoch Batch_size Max_learning_rate Optimizer Momentum Lr decay

Value 200 24 0.001 Adam 0.937 Step
FIGURE 7

The ELAN-GS structure diagram.
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offers insights into the model’s focus on different regions and helps

explain variations in model performance. The importance of

features is depicted using a color scale, with increasing

importance denoted by a transition from blue to red hues.

As illustrated in Figure 8. Heatmap, which displays the heatmaps

generated by different attention mechanisms, we conducted

experiments using images from various sources. When compared

with the visualization results of other attention mechanisms, it

becomes evident that the heatmap produced by the BiFormer

Attention Mechanism exhibits a larger overall coverage area. This

suggests that the model focuses on a broader region of interest at the

target location, resulting in more comprehensive feature extraction

of the targets. This, in turn, facilitates the detection of small targets.

Additionally, the red area in the heatmap is also more extensive,

indicating enhanced extraction of effective target feature

information. The model allocates greater attention to the pertinent

target information. The experimental outcomes reveal that the

integration of the BiFormer attention mechanism compels the

model to prioritize the feature information of the target to be

recognized. It also suppresses the influence of target features that

may be less conspicuous due to the complexity of the background in

pathology images. In comparison with other attention mechanisms,

the BiFormer mechanism exhibits superior performance.

We performed a quantitative analysis of the experiment using

the mAP evaluation criterion. We introduced changes only to the

attention mechanism module, subsequently measuring the mAP

values for each model. This allowed us to compare the mAP values

among different models, assessing the compatibility between

various attention mechanisms and the models. The comparative

experimental data is presented in Table 3. The results indicate that
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the model equipped with the BiFormer attention mechanism

achieved higher detection accuracy compared to the model

without any attention mechanism, as well as models

incorporating the SE, ECA, CA, and CBAM attention

mechanisms. Specifically, the model incorporating the ECA

attention mechanism experienced a 0.28% reduction in detection

accuracy. On the other hand, the models incorporating the SE

attention mechanism, CA attention mechanism, and CBAM

attention mechanism demonstrated improvements in detection

accuracy by 0.56%, 1.02%, and 0.09%, respectively. Notably, the

model’s detection accuracy was enhanced by 1.48% with the

inclusion of the fused BiFormer attention mechanism. These

results indicate that, in comparison with the original YOLOv7

model, our model is better suited for handling pathology images.
4.4 Ablation experiment

This portion of the experiment investigates the impacts of the

three improvement methods on the network model. The plotted

data is presented in Table 4. We conducted eight sets of experiments

with different modules added, and compared them with the original

YOLOv7 model using metrics such as mAP, F1, Params, and FPS.

For clarity and convenience, we have designated the network with

the BiFormer attention module as “YOLOv7+BiFormer”, the

network with the CARAFE upsampling module as “YOLOv7

+CARAFE”, and the network with the GSConv convolution as

“YOLOv7+GSConv”, and so forth.

As shown in Table 4, the incorporation of the BiFormer

attention module, CARAFE upsampling module, and GSConv
FIGURE 8

Heatmaps for various attention mechanisms. “Original” displays the dataset image. “Detection” presents the detection results of Baseline+BiFormer,
while “Baseline” exhibits the heatmap of YOLOv7. “Baseline+XX” showcases the heatmap of YOLOv7 integrated with the XX attention mechanism
(where XX represents SE, ECA, CA, CBAM, and BiFormer).
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convolution into YOLOv7 leads to a slight improvement in the

network’s detection accuracy. Specifically, these improvements are

1.48%, 0.56%, and 0.94% higher than the YOLOv7 model,

respectively. This suggests that the integration of the BiFormer

attention module directs the model’s attention more effectively

toward the feature information of the detection target, enhancing

the quality of feature mapping and significantly improving overall

accuracy. However, it’s worth noting that the BiFormer attention

mechanism increases the model’s complexity and reduces network

inference speed. Additionally, we observed that the model’s

inference speed can be substantially increased to 73.52 FPS after

incorporating the CARAFE upsampling module into the network,

which represents a 13.2% improvement over the original version.

Furthermore, the fusion of the GSConv convolution module results

in a reduction of the model’s parameters to 33.80M, a 7.3% decrease

compared to the original version.

Moreover, when combining these modules in pairs, it becomes

evident from the table that the combination of BiFormer + GSConv

modules exhibits the most substantial improvement in model

accuracy. The combination of CARAFE + GSConv modules

enhances the model’s inference speed to 68.49 FPS. It is

important to note that the introduction of the BiFormer attention

module increases both the number of parameters and the inference

time of the model. Nevertheless, we assert that this combination of
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three modules is well-suited. By leveraging the CARAFE module

and GSConv module for accelerated inference and lightweight

deployment, the incorporation of the BiFormer attention module

yields a qualitative improvement in detection accuracy. In

summary, our approach demonstrates improvements in both

detection accuracy and speed compared to the original model,

marking a significant enhancement.
4.5 Comparative experiments with other
mainstream algorithms

Our proposed PI-YOLO algorithm demonstrates strong feature

extraction capabilities in complex pathological image scenes and

achieves fast detection speeds, making it a high-performing solution

for pathological image object detection. To validate the superiority

of our proposed algorithm in the context of pathological images, we

conducted comparisons with mainstream object detection

algorithms, including Faster RCNN (38), SSD (39), RetinaNet

(19), YOLOv5 (40), and YOLOv7 (13). Utilizing the same

vascular dataset and training methodology, we performed both

qualitative and quantitative analyses to assess the respective

advantages of these algorithm models.

In our experiments, we conducted a qualitative analysis of the

algorithms’ performance by examining the detection result plots of

different models. Figure 9 displays the detection results of Faster-

RCNN, SSD, RetinaNet, YOLOv5, YOLOv7, and PI-YOLO. From

the visual results, it becomes evident that RetinaNet’s detection

performance is superior to that of Faster-RCNN and SSD, and it is

on par with YOLOv5. However, the number of detected targets in

RetinaNet is generally lower than that in YOLOv5, and there are

instances of target misclassifications. The PI-YOLO algorithm

introduced in this paper exhibits better target recognition

capabilities compared to Faster-RCNN, SSD, and RetinaNet. It

also demonstrates fewer misclassifications and identifies a greater

number of small vessels compared to YOLOv5.

To facilitate a comprehensive evaluation of the detection

performance of the PI-YOLO algorithm, we conducted a

comparative analysis between PI-YOLO and the leading detection

algorithm in the field, YOLOv7. Figure 10. presents the detection

results of both YOLOv7 and PI-YOLO on pathological sample

images featuring small blood vessels with unclear edges. These

vessels are highlighted with green bounding boxes. As observed, due

to the indistinct edges of the small vessels, YOLOv7 struggles to

distinguish them from the background, resulting in missed

detections and false negatives. In contrast, PI-YOLO accurately

identifies and delineates these small vessels. This improvement is

attributed to the integration of the BiFormer attention mechanism,

which enhances feature extraction, particularly for small and

inconspicuous targets.

In our experimental assessment, we quantitatively compared

and analyzed each model, employing metrics such as mAP, F1

score, Params, GFLOPS, and FPS. The outcomes of these

comparative measurements are presented in Table 5. The data

indicate that our PI-YOLO algorithm achieves an mAP of

87.48%, surpassing currently mainstream object detection
TABLE 4 The impact of the fusion of different modules of the model on
the metrics.

Methods mAP
(%)

F1(%) Params
(M)

FPS

YOLOv7 84.65 82.45 36.48 64.93

YOLOv7+BiFormer 86.13 83.36 37.01 60.67

YOLOv7+ CARAFE 85.21 82.48 36.72 73.52

YOLOv7+ GSConv 85.59 83.12 33.80 66.89

YOLOv7+ BiFormer
+ CARAFE

84.12 81.69 37.26 64.88

YOLOv7+ BiFormer
+ GSConv

86.48 83.45 34.33 61.35

YOLOv7+ CARAFE
+ GSConv

85.64 81.67 34.45 68.49

YOLOv7+BiFormer+
CARAFE+ GSConv

87.48 85.18 34.90 65.39
TABLE 3 mAP measurements for different attention mechanisms.

Model Attention Input shape mAP(%)

YOLOv7 – 640×640 84.65

YOLOv7 SENet 640×640 85.21

YOLOv7 ECA 640×640 84.37

YOLOv7 CA 640×640 85.67

YOLOv7 CBAM 640×640 84.74

YOLOv7 BiFormer 640×640 86.13
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algorithms. In terms of detection speed, the integration of the

CARAFE up-sampling module and the GSConv module has

effectively reduced the model’s parameter count and increased

computational speed, thereby maintaining commendable real-

time performance. Notably, our enhanced PI-YOLO algorithm

exhibits a significant improvement in accuracy by 18.94% and
Frontiers in Oncology 12201
performance by 90.97% compared to the widely used two-stage

object detection algorithm, Faster-RCNN-ResNet. In contrast,

when compared with the commonly adopted single-stage object

detection algorithm YOLOv5, our PI-YOLO algorithm shows a

4.79% increase in mAP, although the detection speed is slightly

reduced by 2.91%. Additionally, compared to the YOLOv7
FIGURE 9

Images displaying the detection results of six models. The first column, “Original,” represents the original images from the dataset. The second
column shows the detection images from Faster-RCNN, the third column from SSD, the fourth column from RetinaNet, the fifth column from
YOLOv5, the sixth column from YOLOv7, and the seventh column from PI-YOLO.
FIGURE 10

The detection effect of YOLOv7 and the detection effect of PI-YOLO.
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algorithm, our improved PI-YOLO algorithm shows an increase of

2.83% in mAP and a modest increase of 0.71% in detection speed,

while the model size has been reduced by 1.58 M.
4.6 Comparative experiments on other
detection tasks in pathological images

To demonstrate the superior performance of the PI-YOLO

algorithm in pathology image detection, we conducted

experiments using the ICPR 2012 mitotic target detection dataset.

The experimental results are presented in Figure 11. We measured

the Precision, Recall, and F1 values of the model and compared

them with the current state-of-the-art mitosis detection methods

using different metrics. The comparison results are summarized in

Table 6. While PI-YOLO falls within the middle range in terms of

Precision, it achieves the highest Recall value among all methods,

leading to the highest F1 score as well. These results indicate that the

PI-YOLO algorithm excels in feature extraction, particularly in the

context of complex pathology images from various sources

and tissues.

In summary, the proposed model achieves the highest detection

accuracy among current mainstream detection algorithms and also

maintains good detection and inference speed. The network
Frontiers in Oncology 13202
demonstrates significant advantages in pathology image object

detection tasks.
5 Conclusion

In this paper, we introduce the PI-YOLO target detection model

to achieve automated blood vessel detection in pathology images

using deep learning techniques. Our research addresses the

challenges presented by pathology images, which include a high

proportion of small targets, complex image backgrounds, dense

target distribution, and subtle feature differences between the target

and the background. Our model incorporates the BiFormer

attention mechanism, which effectively reduces information loss

during feature extraction while capturing long-range contextual

dependencies. This not only saves computational resources but also

enhances the overall feature extraction capabilities of the network.

The integration of this attention mechanism into YOLOv7 results in

improved detection accuracy for pathology images. Furthermore, by

replacing the upsampling module and implementing GSConv

convolution, we maintain detection accuracy while reducing

model parameters and enhancing inference speed. These

components, when integrated into YOLOv7, yield the enhanced

PI-YOLO model. This model demonstrates superior performance

in pathology image detection tasks, achieving a remarkable mAP

value of 87.48%. It partially mitigates the challenges posed by

complex backgrounds in pathology images. Moreover, automating

blood vessel detection in pathology images significantly assists

researchers in the study of anti-tumor vascular therapy, offering

substantial medical value.

However, although our method is highly effective in vascular

detection tasks, it currently lacks the capability to differentiate

among various types of blood vessels, such as arterial, venous,

and capillary. This limitation affects its specificity in tumor studies

where such distinctions are crucial. Deploying PI-YOLO in clinical

settings presents several challenges, including the need for high

computational resources, seamless integration into existing

diagnostic workflows without disruption, and robustness against

variability in pathology image data due to differing laboratory
TABLE 5 Performance metric values of mainstream target detection
algorithms on the dataset.

Model mAP
(%)

F1(%) FPS GFLOPS
(G)

params
(M)

Faster-
RCNN-
ResNet

68.54 64.37 34.24 416.52 127.35

SSD 75.23 73.36 107.64 215.37 23.72

RetinaNet 80.34 74.47 44.69 120.43 35.56

YOLOv5 82.69 80.15 67.35 115.32 45.53

YOLOv7 84.65 82.45 64.93 103.23 36.48

PI-YOLO 87.48 85.18 65.39 119.70 34.90
B CA

FIGURE 11

Schematic diagram of mitotic assay results, (A) ground truth; (B) patch of ground truth; (C) test results.
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standards and imaging equipment. To overcome these challenges

and improve the model, our future research will focus on

developing methods to accurately distinguish between different

blood vessel types to enhance clinical relevance in tumor analysis.

We aim to optimize the detection speed of our models for real-time

clinical use and expand our dataset to include a more diverse range

of pathology images, thereby improving the model’s generalizability

and robustness. Additionally, we plan to explore deployment on

embedded devices to provide on-site assistance to medical

professionals, facilitating quicker and more accurate diagnosis

and treatment decisions. These steps will pave the way for the

successful implementation of PI-YOLO in practical medical

applications, ultimately benefiting patient care.
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Objective: Radiomics can non-invasively predict the prognosis of a tumour by

applying advanced imaging feature algorithms.The aim of this study was to predict

the chance of postoperative recurrence by modelling tumour radiomics and

peritumour radiomics and clinical features in patients with stage I lung

adenocarcinoma (LUAD).

Materials and methods: Retrospective analysis of 190 patients with postoperative

pathologically confirmed stage I LUAD from centre 1, who were divided into training

cohort and internal validation cohort, with centre 2 added as external validation

cohort. To develop a combined radiation-clinical omics model nomogram

incorporating clinical features based on images from low-dose lung cancer

screening CT plain for predicting postoperative recurrence and to evaluate the

performance of the nomogram in the training cohort, internal validation cohort and

external validation cohort.

Results: A total of 190 patients were included in the model in centre 1 and

randomised into a training cohort of 133 and an internal validation cohort of 57 in

a ratio of 7:3, and 39were included in centre 2 as an external validation cohort. In the

training cohort (AUC=0.865, 95% CI 0.824-0.906), internal validation cohort

(AUC=0.902, 95% CI 0.851-0.953) and external validation cohort (AUC=0.830,95%

CI 0.751-0.908), the combined radiation-clinical omicsmodel had a good predictive

ability. The combined model performed significantly better than the conventional

single-modality models (clinical model, radiomic model), and the calibration curve

and decision curve analysis (DCA) showed high accuracy and clinical utility of

the nomogram.
Abbreviations: 2.5D, 2.5-dimension; 3D, Three-dimension; AUC, Area under the receiver operating

characteristic curve; NSCLC, Non-small cell lung cancer; ROC, Receiver operating characteristic curve;

ROI, Region of interest; SCLC, Small cell lung cancer; LUAD, Lung adenocarcinoma; LUSC, Lung squamous

carcinoma; ICC, Intraclass correlation coefficient; TNM, Tumor, node, and metastasis; PPV, Positive

predictive value; NPV, Negative predictive value.
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Conclusion: The combined preoperative radiation-clinical omics model provides

good predictive value for postoperative recurrence in stage ILUAD and combines

the model’s superiority in both internal and external validation cohorts,

demonstrating its potential to aid in postoperative treatment strategies.
KEYWORDS

radiomics, lung adenocarcinoma, postoperative recurrence, nomogram, peritumoral regions
1 Introduction

Lung cancer is a significant contributor to global cancer

mortality (1). Lung cancer is classified into two main groups (2,

3): non-small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC), of which about 85% of patients belong to NSCLC, which

includes lung adenocarcinoma (LUAD), lung squamous carcinoma

(LUSC), and other histological subtypes. In NSCLC patients, LUAD

accounts for the largest proportion. With the development of low-

dose computed tomography(LDCT) lung cancer screening, a large

number of patients with early-stage NSCLC have been screened,

and in particular, a considerable number of patients with stage I

LUAD have been screened (4, 5), for which surgical resection is the

preferred treatment (6). However, studies have found that the risk

of recurrence remains high, even with a 20-50% recurrence rate for

completely resected stage I LUAD (7). Therefore, assessment of

postoperative recurrence is crucial for the prognosis of stage

I LUAD.

Currently, most studies have focused on assessing benign and

malignant tumours (8), disregarding the prognostic impact of subtle

changes in the peritumoural microenvironment (9, 10).

Furthermore, studies on the prognosis of LUAD have primarily

concentrated on evaluating the prognosis of intermediate and

advanced lung cancer based on genes and treatment regimens

(11–14), while neglecting the impact of certain clinical factors

such as immunohistochemistry and density on the prognosis. It is

important to note that due to the heterogeneity of tumours (15, 16),

even at the same stage, the prognosis can vary significantly.

Moreover, most of the previous studies have been on two-

dimension (2D) and three-dimension (3D) prognostic models

(17, 18), and nowadays some scholars have started to study 2.5-

dimension (2.5D) models (19) as well. Through the peritumoural

radiomics prognostic study of stage I LUAD (20, 21), this study not

only makes up for the shortcomings of previous studies, but also

develops a new 2.5D peritumoural radiation-clinical omics model.
02206
Compared with previous 2D or 3D radiomics features, the method

is newer and more effective in studying the prognosis of LUAD.
2 Materials and methods

2.1 Patient selection and follow-up

This retrospective study was approved by two institutional

review boards of the Guangxi Zhuang Autonomous Region

(NO.LW2024009), exempting patients from informed consent.

We collected medical records of all patients with stage I LUAD

who underwent surgical resection and were pathologically

confirmed between January 2010 and December 2018 at the

centre 1. The inclusion criteria (1): underwent surgical complete

resection of the lung lesion (2); postoperative pathological diagnosis

of invasive stage I lung adenocarcinoma (3); CT examination within

2 weeks before surgery. The exclusion criteria (1): the presence of

multiple primary cancers or other malignancies in the lungs (2);

preoperative neoadjuvant therapy (3); failure to complete

postoperative follow-up (4); CT image artefacts that severely

impaired the visualisation of the tumour (5); absence of low-dose

lung cancer screening CT plain images prior to surgery.

A total of 190 patients with stage I LUAD were included in

centre 1 and randomised into two cohorts in a ratio of 7:3. The

training cohort consisted of 133 patients, while the internal

validation cohort had 57 patients. Additionally, 39 patients with

stage I LUAD in centre 2 were collected as the external testing

cohort from January 2016 to December 2018, following the same

inclusion and exclusion criteria. A postoperative follow-up was

conducted, including computed tomography (CT) and/or magnetic

resonance imaging (MRI), PET-CT. Recurrence was defined as local

recurrence and distant metastasis, as per relevant studies. Local

recurrence included recurrence in N1 lymph nodes, N2 lymph

nodes, mediastinum, primary lung or pleura. Distant metastases
frontiersin.org
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included metastases to the adrenal gland, kidney, bone, brain, liver,

contralateral lung, skin or N3 (22).
2.2 Clinical characteristic

Basic patient information and clinical variables including age,

sex, white blood cell (WBC), neutrophils (NEU), C-reactive protein

(C-RP), carcinoembryonic antigen (CEA), cytokeratin 19 fragment

assay (CYFRA21-1), neuron-specific enolase assay (NSE),

carbohydrate antigen (CA) 125, CA153, squamous cell carcinoma-

associated antigen (SCCA), CA50, CA242, CA724, Ki-67, location of

the tumour, distance from the pleura, T-stage, and type of nodule.

We divided the age into two groups: less than 65 years old and

greater than or equal to 65 years old; T-stage was determined by

experienced radiologists from preoperative CT images, based on the

9th edition of the TNM staging system for lung cancer, and was

divided into T1a, T1b, and T1c; the division of the content of Ki67 is

still controversial, and we used less than 10% for low expression and

greater than or equal to 10% for high expression; and the type of

nodules of stage I LUAD that we included showed mixed ground

glass nodules (mGGN) and solid nodules (SN).
2.3 Procedure

The study workflow is summarized in Figure 1, and the

radiomics modelling pipeline in Figure 2.
Frontiers in Oncology 03207
2.4 CT image acquisition

The scanning machine at both hospitals was SIEMENS

SOMATOM Definition Flash (Stellar) with the same lung scanning

parameters. All CT scans were performed from the tip of the lungs to

the base of the lungs, and the parameters of the scan reconstruction

were: Tube voltage=120kV, Effective power of tube=30mAs, Detector

col l imat ion=128 × 0.625mm, Matr ix=512×512, S l ice

thickness=0.625mm, CDTIvol=2.03mGy.
2.5 Radiomics feature extraction and
feature selection

The DICOM format images of the patients were downloaded

from the Picture Archiving and Communication Systems (PACS) and

imported into the Darwin Intelligent Science Research Platform. The

process of tumour region segmentation and radiomics feature

extraction involves the following steps (1): Modal settings: the

modal parameters for each patient were set to tumour body,

peritumoural 3mm, peritumoural 6mm, peritumoural 9mm,

peritumoural 12mm and peritumoural 15mm, and the window

widths and window positions were uniformly set to 1200 and -600

(2); 2.5D region of interest (ROI) segmentation: The ROI was

manually delineated on the CT images by two radiologists with 10

years of experience. For each CT image, the radiologist selected the

largest section of the tumour on the Darwin Intelligent Science
FIGURE 1

Flow diagram of the study population.
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research platform (23) to draw a ROI, and then selected the forward

and backward angles of 45° on this section to draw two ROIs. These

three ROIs were then merged to create a 2.5D ROI for each tumour. In

outlining ROIs, we exclude pleural walls, thick bronchial tubes, and

blood vessels (3); A total of 1125 radiomics features were extracted

using the Darwin Intelligent Science Research Platform (4); A

minimum-maximum normalised, optimal feature filter was used to

assess the linear correlation between each feature and the lesion

category labels, and the 40 most relevant features were filtered out

of 1125 features. The least absolute shrinkage and selection operator

(LASSO) algorithm was used to select the most relevant features from

40 features (Figure 3). Finally, a total of 10 features most relevant to

recurrence after surgery for stage I LUAD were selected and used to

construct a prediction model (Figure 4).
Frontiers in Oncology 04208
2.6 Intra-observer and inter-
observer consistency

We used intraclass correlation coefficient (ICC) to assess intra-

and inter-observer correlation coefficients. A total of 49 patients were

randomly selected from the training set, and ROI segmentation was

independently performed by two physicians. We considered these

features to be stable when the ICC value was greater than 0.80.
2.7 Model construction and validation

To predict postoperative recurrence of stage I LUAD, we

performed univariate and multifactorial logistic regression (LR)
FIGURE 2

The radiomics modelling pipeline.
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analyses to select statistically significant clinical characteristics

(P < 0.05) for clinical modelling. Clinical characteristics that were

statistically significant for postoperative recurrence of stage I LUAD

were retained in the univariate logistic regression analysis (p<0.05).

Variables with p<0.05 in the multifactorial analysis were identified

as independent predictors associated with postoperative recurrence

and were included in the construction of the clinical model.

Combining the radiomics model with the clinical model to create

a joint model with different parameters. Receiver operating

characteristic (ROC) curves were plotted, and area under the

receiver operating characteristic curve (AUC) was calculated to

assess the efficacy of each model. We compared thirteen predictive

models, including six parameter radiomics models, clinical model,

and six radiation-clinical omics models incorporating clinical

factors. The best models were then selected from these to draw

nomogram, and we used deLong tests, calibration curves, and

decision curve analyses (DCA) to test the accuracy and clinical

utility of the nomogram.
2.8 Statistical analysis

SPSS 24.0 was used for statistical analysis. Continuous variables

were presented as mean ± standard deviation and compared using

independent samples t-test. Categorical variables were presented as

percentage counts and compared using chi-square test. The model’s
Frontiers in Oncology 05209
goodness of fit was assessed using the Hosmer-Lemeshow test,

which showed no statistically significant difference (P > 0.05),

indicating good model fit. To comprehensively evaluate the

predictive efficacy of different models, we used ROC curve, AUC,

accuracy, sensitivity, specificity, Positive predictive value(PPV), and

Negative predictive value (NPV). All statistical tests were two-sided

with a significance level of p<0.05.
3 Results

3.1 Patient clinical baseline characteristics

Table 1 lists and compares the clinical baseline characteristics of

the analysed patients.
3.2 Establishment of clinical models

Logistic regression analysis was used to assess 19 possible risk

factors. Univariate and multifactorial logistic regression analyses

were performed on clinical indicators in training cohort of 133

patients with postoperative recurrence of stage I LUAD (Table 2).

Univariate logistic regression analysis showed that T1c in T-stage,

CEA, NSE, ≥10% in Ki67, and SN in nodal type were statistically

significant for postoperative recurrence of stage ILUAD. For
FIGURE 4

The final 10 features selected (10 textures).
FIGURE 3

Feature selection using the LASSO algorithm [(A), LASSO path; (B), MSE path].
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TABLE 1 Clinical baseline characteristics.

Training Set
(n1 = 133)

Internal Test Set
(n2 = 57)

p value
(n1 VS n2)

External Test Set
(n3 = 39)

p value
(n1 VS n3)

Age 0.838 0.571

<65 88(66.2) 43 (75.4) 25 (64.1)

≥65 45(33.8) 14 (24.6) 14 (35.9)

Sex 0.777 0.705

Male 66 (49.6) 27 (47.4) 18 (46.2)

Female 67 (50.4) 30 (52.6) 21 (53.8)

Stage 0.213 0.371

T1a 8 (6.0) 7 (12.2) 4 (10.2)

T1b 77 (57.9) 38 (66.7) 23 (59.0)

T1c 48 (36.1) 12 (21.1) 12 (30.8)

WBC (Mean ± SD) 6.97 ± 2.34 6.93 ± 2.06 0.911 6.77 ± 1.87 0.707

NEU (Mean ± SD) 4.30 ± 2.04 4.14 ± 1.48 0.604 3.99 ± 1.53 0.441

C-RP (Mean ± SD) 6.08 ± 14.58 2.66 ± 3.63 0.093 4.56 ± 14.98 0.585

CEA (Mean ± SD) 5.38 ± 7.90 3.82 ± 4.14 0.082 7.02 ± 18.99 0.431

CYFRA21-1 (Mean ± SD) 3.09 ± 1.74 3.55 ± 2.28 0.175 2.97 ± 1.86 0.776

NSE (Mean ± SD) 13.26 ± 3.69 13.93 ± 6.19 0.392 13.18 ± 4.74 0.792

CA125 (Mean ± SD) 15.29 ± 12.00 12.03 ± 16.85 0.156 14.09 ± 15.03 0.678

CA15-3 (Mean ± SD) 15.68 ± 15.77 13.17 ± 9.26 0.294 19.78 ± 16.23 0.318

SCCA (Mean ± SD) 1.19 ± 0.79 1.42 ± 0.86 0.088 1.55 ± 0.79 0.335

CA50 (Mean ± SD) 9.56 ± 14.43 23.93 ± 71.84 0.163 8.32 ± 9.80 0.568

CA242 (Mean ± SD) 6.59 ± 6.10 12.56 ± 34.26 0.222 5.09 ± 4.91 0.205

CA72-4 (Mean ± SD) 4.42 ± 9.16 3.82 ± 7.78 0.682 5.04 ± 13.42 0.750

Ki67 0.078 0.095

<10% 68 (51.1) 26 (45.6) 14 (35.9)

≥10% 65 (48.9) 31 (54.4) 25 (64.1)

Location 0.854 0.580

Left superior lobar 37 (27.8) 15 (26.3) 14 (35.9)

Right superior lobar 45 (33.8) 20 (35.1) 10 (25.7)

Right middle lobar 8 (6.0) 4 (7.0) 7 (17.9)

Right inferior lobar 27 (20.3) 14 (24.6) 2 (5.1)

Left inferior lobar 16 (12.0) 4 (7.0) 6 (15.4)

Distance from pleura (Mean
± SD)

1.45 ± 0.73 1.50 ± 0.65 0.640 1.50 ± 0.65 0.402

Nodule type 0.920 0.079

mGGN 43 (32.3) 18 (31.6) 18 (9.5)

SN 90 (67.7) 39 (68.4) 39 (20.5)

Recurrence 0.862 0.628

Yes 39 (29.3) 16 (28.1) 11 (28.2)

No 94 (70.7) 41 (71.9) 28 (71.8)
F
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TABLE 2 Univariate and multivariate analysis.

N(100%) OR(95%CI) p value OR(95%CI) p value

Age

<65 88(66.2) 1.000

≥65 45(33.8) 0.969(0.439-2.136) 0.937

Sex

Male 66(49.6) 1.000

Female 67(50.4) 1.270(0.601-2.685) 0.531

Stage

T1a 8(6.0) 1.000

T1b 77(7.9) 3.500(0.437-28.004) 0.238 4.092(0.497-33.707) 0.190

T1c 48(36.1) 4.549(2.135-9.695) 0.000 14.237(1.704-118.970) 0.014

WBC 1.123(0.962-1.311) 0.141 – –

NEU 1.165(0.974-1.392) 0.095 – –

C-RP 1.013(0.989-1.039) 0.293 – –

CEA 1.095(1.020-1.175) 0.012 – –

CYFRA21-1 1.182(0.943-1.481) 0.147 – –

NSE 1.126(1.005-1.263) 0.041 1.215(1.032-1.430) 0.020

CA125 1.020(0.988-1.052) 0.223 – –

CA153 1.013(0.989-1.038) 0.304 – –

SCCA 0.752(0.428-1.320) 0.320 – –

CA50 1.010(0.985-1.036) 0.430 – –

CA242 1.054(0.991-1.122) 0.097 – –

CA724 1.028(0.984-1.073) 0.216 – –

Ki67

<10% 68(51.1) 1.000

≥10% 65(48.9) 10.656(4.044-28.078) 0.000 0.081(0.020-0.322) 0.000

Location

Left superior lobar 37(27.8) 1.000 – –

Right superior lobar 45(33.8) 0.758(0.292-1.967) 0.568 – –

Right middle lobar 8(6.0) 1.250(0.255-6.119) 0.783 – –

Right inferior lobar 27(20.3) 0.595(0.191-1.859) 0.372 – –

Left inferior lobar 16(12.0) 1.250(0.368-4.251) 0.721 – –

Distance from pleura 0.822(0.470-1.439) 0.492 – –

Nodule type

mGGN 43(32.3) 1.000

SN 90(67.7) 6.205(2.039-18.881) 0.001 4.541(1.716-12.014) 0.002
F
rontiers in Oncology
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mGGN, Mmixed ground-glass nodule; SN, Solid nodules; SD, Standard deviation. Bolded indicators are meaningful.
Values in bold indicate statistical significance.
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statistically significant clinical characteristics, multifactorial logistic

regression analysis was used, which showed that NSE, ≥10% in

Ki67, T-stage in T1c and SN in nodule type were independent risk

factors for postoperative recurrence and could be used to establish

clinical models.
3.3 Performance and comparison
of models

In this study, we developed 13 models, including the radiomics

models with 6 parameters (tumour body, peritumoural 3mm,

peritumoural 6mm, peritumoural 9mm, peritumoural 12 mm,

peritumoural 15mm), the clinical model, and the six-parameter

radiation-clinical omics models that incorporates clinical factors,

and evaluated the performance of all the models. Table 3 displays

the AUC, accuracy, sensitivity, specificity, PPV, and NPV of various

models. In the training cohort, the peritumoural 9mm model

(AUC= 0.785) outperformed the clinical model (AUC= 0.772) in

terms of postoperative recurrence. When clinical features were

added to the peritumoural 9mm model, the combined radiation-

clinical omics model’s AUC significantly improved in the training
Frontiers in Oncology 08212
cohort (0.865), internal validation cohort (0.902), and external

validation cohort (0.830) (p<0.001). Figure 5 shows the ROC

curves for the peritumoural 9mm model, the clinical model, and

the combined radiation-clinical omics models in the training

cohort, internal validation cohort, and external validation cohort.

In order to develop a clinically applicable and more accurate model

for predicting postoperative recurrence in stage ILUAD, we used

the LR algorithm to construct a peritumoural 9mm radiomics

nomogram incorporating some of the independent risk

factors (Figure 6).

The DeLong test showed that the AUC values of the nomogram

were significantly different from those of the other models in the

training cohort (P < 0.05). The combined radiation-clinical omics

model’s ROC curves were significantly better than those of the

radiomics and clinical models. The calibration curves of the training

cohort, and the internal validation cohort in the joint model showed

significant agreement in predicting postoperative recurrence in

stage ILUAD (Figure 7). The DCA of the training cohort, and the

internal validation cohort, showed that the nomogram of the

combined radiation-clinical omics model had a good net clinical

benefit (Figure 8), suggesting that it is a reliable clinical tool for

predicting recurrence after surgery for stage ILUAD.
TABLE 3 Diagnostic effectiveness of different models.

AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV

Training Set

Clinical model 0.772 (0.723-0.820) 0.707 0.791 0.673 0.495 0.888

Tumor body 0.762 (0.711-0.813) 0.659 0.809 0.599 0.449 0.885

Peritumoral 3mm 0.763 (0.711-0.815) 0.632 0.852 0.542 0.430 0.901

Peritumoral 6mm 0.708 (0.651-0.766) 0.717 0.548 0.785 0.508 0.811

Peritumoral 9mm 0.785 (0.734-0.837) 0.724 0.757 0.711 0.515 0.878

Peritumoral 12mm 0.677 (0.616-0.739) 0.654 0.722 0.627 0.439 0.848

Peritumoral 15mm 0.791 (0.744-0.838) 0.714 0.687 0.725 0.503 0.851

Tumor body+Clinic 0.855 (0.817-0.893) 0.757 0.896 0.701 0.548 0.943

Peritumoral 3mm+Clinic 0.861 (0.823-0.899) 0.799 0.765 0.813 0.624 0.895

Peritumoral 6mm+Clinic 0.836 (0.794-0.878) 0.779 0.783 0.778 0.588 0.898

Peritumoral 9mm+Clinic 0.865 (0.824-0.906) 0.832 0.730 0.873 0.700 0.889

Peritumoral 12mm+Clinic 0.851 (0.810-0.892) 0.820 0.696 0.870 0.684 0.876

Peritumoral 15mm+Clinic 0.855 (0.816-0.895) 0.767 0.809 0.750 0.567 0.906

Internal Test Set

Clinical model 0.779 (0.703-0.855) 0.737 0.760 0.727 0.535 0.880

Peritumoral 9mm 0.815 (0.742-0.888) 0.813 0.640 0.884 0.696 0.856

Peritumoral 9mm+Clinic 0.902 (0.851-0.953) 0.871 0.720 0.934 0.818 0.890

External Test Set

Clinical model 0.773 (0.732-0.814) 0.721 0.764 0.704 0.512 0.880

Peritumoral 9mm 0.712 (0.603-0.820) 0.795 0.424 0.940 0.737 0.806

Peritumoral 9mm+ Clinic 0.830 (0.751-0.908) 0.821 0.727 0.857 0.667 0.889
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4 Discussion

In recent years, much attention has been paid to an emerging

technology, radiomics, which automatically extracts a large number

of imaging features from medical imaging data in a high-

throughput manner; it appears to offer an almost unlimited range

of imaging biomarkers, and shows great potential in oncology for

detecting, diagnosing, evaluating prognosis, and predicting

response to treatment (24–26). Furthermore, an increasing

number of scholars are conducting radiomics studies on the

interstitium of peripheral lung cancer, which refers to the tissue

surrounding the primary tumour, and achieving favourable

outcomes (17, 27, 28). This demonstrates the importance of the

peritumoural region in radiomics analysis (29).

Tumour radiomics is widely used for prognostic prediction in

LUAD (27). However, few studies have applied peritumoural

imaging features to aid in the prediction of stage ILUAD, and the

selection of the peritumoural region remains controversial. Previous

studies have defined the peritumoural region as ranging from 1.5 to

20 mm (8, 30, 31). Wu et al. concluded that peritumour radiomic

features based on CT images are reliable for predicting the

prognosis of non-small cell carcinoma (28). The study also noted

that the peritumoural region should ideally extend 15 mm, 20 mm
Frontiers in Oncology 09213
or 30 mm from the tumour border. Chen et al. measured the bulk

tumour volume as well as the bulk tumour volume in the

peritumoural 3mm, peritumoural 6mm and peritumoural 9mm

regions by extracting the radiomic feature regions (18), and finally

constructed the bulk tumour volume of peritumoural 9mm region

based on the extraction of the radiomics features had the highest

AUC (training set = 0.82, internal validation = 0.75, external

validation = 0.67). Liu et al. conducted another study where they

extracted radiomics features from intratumoural to peritumoural

3mm, peritumoural 3mm and peritumoural 6mm regions (17). The

study demonstrated that features from the intratumoural 3mm to

peritumoural 3mm region had higher predictive performance. In a

study using radiomics to predict early recurrence, Wang et al.

selected 2.1 mm, 4.2 mm, and 8.4 mm as the peritumoural

regions, extracted 2D and 3D deep learning image features, and

constructed a radiomics model via an air cavity diffusion model,

which resulted in good performance in both internal validation

cohort and external validation cohort, demonstrating its potential

for assisting in post-surgical treatment strategies (7). Wang et al.

investigated 8 models of tumour perimeter 5mm, 10mm, 15mm,

20mm as well as tumour-perimeter 5mm, tumour-perimeter

10mm, tumour-perimeter 15mm, tumour-perimeter 20mm, and

found that nomogram based on the combined model of tumour-
FIGURE 6

The radiomics nomogram incorporating some of the independent risk factors; the peritumoral 9mm model’s radscore = +4.611 *wavelet-LL_first
order_Median_lung window_peritumoral 9mm + 4.114 *original_shape 2.5D_MaximumDiameter_lung window_peritumoral 9mm-4.119.
FIGURE 5

ROC curves of peritumoral 9mm model, clinical model, and combined radiation-clinical omics model in training cohort (A), internal validation
cohort (B), and external validation cohort (C).
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perimeter 10mm and clinical features had a high predictive

efficiency for STAS status in NSCLC patients (32). It can be seen

that the researchers chose different peritumoural regions, but the

best performing peritumoural features essentially consisted of

features in the 3-9mm peritumoural regions. In addition, it was

also found in previous studies that only intratumoural features were

used to predict the prognosis of LUAD (33–36), whereas in this

study, the use of peritumoural features performed well.
Frontiers in Oncology 10214
Based on these previous studies, we selected peritumoural 3mm,

peritumoural 6mm, peritumoural 9mm, peritumoural 12mm and

peritumoural 15mm as peritumoural regions, but unlike them, we

used low-dose lung cancer screening CT plain images and

performed 2.5D radiological feature extraction. In this study, we

found that the combined peritumoural 9mm radiation-clinical

omics model had the highest diagnostic efficacy (AUC=0.865)

compared to the tumour and the rest of the peritumour models,
FIGURE 8

The DCA of training cohort (A) and internal validation cohort (B).
FIGURE 7

The calibration curves of combined radiation-clinical omics model for training cohort (blue dashed line) and internal validation cohort (orange
dotted line).
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with good AUC and sensitivity, specificity, NPV, and PPV in both

the internal validation cohort and the external validation cohort,

and that it outperformed the conventional unimodal model. By

combining a peritumoural 9mm radiomics model with clinical

factors, we have also created a visual nomogram with high

predictive power and net benefit in the evaluation of recurrence

after surgery for stage ILUAD. Our study provides a new approach

to prognostic assessment, helps to adjust the treatment plan for

patients with stage ILUAD, and enables AI-personalised

management of the prognosis of these patients.

Multifactorial logistic regression analysis identified T-stage,

neuron-specific enolase assay, Ki67 and nodule type as

independent predictors of recurrence after surgery for stage

ILUAD, which can be used for clinical modelling. Higher clinical

stage, Ki67 percentage, and percentage of nodal solid component

imply higher proliferation and invasiveness of tumour cells and

higher risk of postoperative recurrence, which is consistent with

previous reports (37–39). In addition, multifactorial logistic

regression showed that neuron-specific enolase assay and nodule

type were also independent predictors of postoperative recurrence,

but the clinical-omics features were not significant; therefore, we

developed a nomogram combining some of the independent

predictors in combination with peritumoural 9mm radiomic

features to predict the probability of recurrence in patients with

stage ILUAD. In clinical practice, the patient’s clinical information

and radiological score(radscore) are added to the nomogram to

obtain multiple probability scales, and then the total score of the

nomogram is calculated, which shows the probability of recurrence.

Notably, there was a significant improvement in the AUC of the

nomogram compared to a single radiomics and clinical model. It

can gain valuable treatment time for patients with stage ILUAD that

may recur, and it can help to develop a more rational and effective

treatment plan. When it is known that a patient has a high

probability of recurrence after surgery, some adjuvant treatments

such as chemoradiotherapy or targeted drugs can be taken to reduce

the chance of recurrence.

In addition, DeLong test of AUC for each model showed that in

the training cohort, the AUC values for the nomogram were

significantly different from those of the peritumoural 9mm

radiomics model and the clinical model (P < 0.05). The results of

the study showed that the combined radiation-clinical omics model

performed better than the single model, and that clinical parameters

also play an important role in predicting postoperative recurrence

for stage ILUAD.

The different models constructed in this study not only provide

intratumoural and peritumoural biological information, but also

give some guidance for clinical treatment. Furthermore, by

comparing the diagnostic performance of the different peritumour

models, the peritumoural 9mm model had the best predictive

performance overall, possibly due to the higher reproducibility of

radiomics features the further away from the intratumour area. This

finding may be related to the presence of homogeneous lung

parenchyma in the distal peritumoural area (31). Thus, in our

study, the peritumoural 9mm model showed better predictive

performance than the other models. According to the
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recommendations of the NCCN guidelines for NSCLC 2024, 4th

edition, for most patients with NSCLC, the margin requirement is

to ensure that the lung parenchyma margin distance is ≥ 2 cm or ≥

the size of the tumour nodule (40), and it was found that the

peritumoural region was often extended from the tumour border to

15 mm, 20 mm, or 30 mm (30, 41, 42). However, in our study, when

extending to 20 mm peritumour, we found it difficult to avoid thick

blood vessels and bronchioles, and complex extrapulmonary tissues,

so we only extended to 15 mm peritumour.
5 Conclusions and limitations

This study has several limitations. Firstly, it is a retrospective

study and there may be recurrent cases in the 2018 cases so far.

Secondly, the sample size in this study was small and the predictive

efficiency of the external validation cohort may be erroneous, and

due to the small sample size, we could not perform survival analysis,

and more large sample studies are needed for further validation in

the future.

In summary, the combined 2.5D peritumoural 9mm radiation-

clinical omics model is more accurate than the tumour and the rest

of the peritumoural model in predicting the prognosis of clinical

stage ILUAD, and may serve as an effective non-invasive predictive

tool, which may provide value in decision-making and defining

personalised treatments. However, since most of the studies were

conducted retrospectively, further prospective, multicentre and

biologically relevant studies based on prospective, multicentre and

biologically relevant studies should be carried out in order to

facilitate its clinical application.
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Purpose: To establish various radiomics models based on conventional CT scan

images and enhanced CT images, explore their value in the classification of

pheochromocytoma (PHEO) and lipid-poor adrenal adenoma (LPA) and screen

the most parsimonious and efficient model

Methods: The clinical and imaging data of 332 patients (352 lesions) with PHEO

or LPA confirmed by surgical pathology in the Affiliated Hospital of Qingdao

University were retrospectively analyzed. The region of interest (ROI) on

conventional and enhanced CT images was delineated using ITK-SNAP

software. Different radiomics signatures were constructed from the radiomics

features extracted from conventional and enhanced CT images, and a radiomics

score (Rad score) was calculated. A clinical model was established using

demographic features and CT findings, while radiomics nomograms were

established using multiple logistic regression analysis.The predictive efficiency

of different models was evaluated using the area under curve (AUC) and receiver

operating characteristic (ROC) curve. The Delong test was used to evaluate

whether there were statistical differences in predictive efficiency between

different models.

Results: The radiomics signature based on conventional CT images showed

AUCs of 0.97 (training cohort, 95% CI: 0.95∼1.00) and 0.97 (validation cohort,

95% CI: 0.92∼1.00). The AUCs of the nomogram model based on conventional

scan CT images and enhanced CT images in the training cohort and the

validation cohort were 0.97 (95% CI: 0.95∼1.00) and 0.97 (95% CI: 0.94~1.00)

and 0.98 (95% CI: 0.97∼1.00) and 0.97 (95% CI: 0.94∼1.00), respectively. The
prediction efficiency of models based on enhanced CT images was slightly

higher than that of models based on conventional CT images, but these

differences were statistically insignificant(P>0.05).
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Conclusions: CT-based radiomics signatures and radiomics nomograms can be

used to predict and identify PHEO and LPA. The model established based on

conventional CT images has great identification and prediction efficiency, and it

can also enable patients to avoid harm from radiation and contrast agents caused

by the need for further enhancement scanning in traditional image examinations.
KEYWORDS

adrenal adenoma, pheochromocytoma, CT, radiomics, classification
Introduction

Adrenal adenoma accounts for 75% to 80% of all benign adrenal

tumors and is the most common adrenal tumor (1). The clinical

symptoms are often nonspecific. Depending on the lipid content of

the tumor, a CT value of 10 HU is taken as the boundary. If the

average CT value within the lesion is lower than 10HU, it indicates

that the lesion is an adrenal adenoma rich in lipids. If the CT value

is higher than 10HU, it indicates that the lesion is an adrenal

adenoma lacking in lipids (LPA) (2–5). A pheochromocytoma

(PHEO), which originates from the adrenal medulla, can secrete

catecholamines and cause hypertension and may lead to

neuropathy and heart disease (6). When the clinical and imaging

manifestations of PHEO and adrenal adenoma are not typical, the

classification of the two diseases is difficult, and the misdiagnosis

rate is high before surgery (7–9). Moreover, there are significant

differences in preoperative preparation, surgical approach and

prognosis between the two adrenal adenomas (10). Therefore, it is

very important to correctly distinguish these two diseases

before surgery.

The aim of our research is to develop different radiomics models

based on conventional CT scan images and enhanced CT images to

identify PHEOs and LPAs and to compare the predictive efficacy of

various models to screen the most parsimonious and

efficient model.
Materials and methods

Patients

The imaging and clinical data of 167 patients (168 lesions) with

LPA and 165 patients (184 lesions) with PHEO confirmed by

surgical pathology in the Affiliated Hospital of Qingdao

University from January 2016 to December 2021 were

retrospectively collected (Figure 1). The inclusion criteria were as

follows: (1) Both conventional CT scans and dynamic enhanced CT

scans were performed before surgery. (2) The tumor lesions were

confirmed by surgery and complete pathological data. The

exclusion criteria were as follows: (1) The patient was
02219
accompanied by other primary malignant tumors during the

same period; (2) The average CT number of adrenal adenoma

was less than 10HU; (3) The quality of the image could not meet the

requirements of analysis; and (4) With incomplete clinical data.

Using a stratified random sampling method, patients were divided

into a training cohort (n=232) and a validation cohort (n=100) in a

7:3 ratio.
Image acquisition and segmentation
of lesions

All CT scans were performed on one of the following devices:

GE Discovery CT 750 HD (GE Healthcare, USA),SOMATOM

Definition AS(Siemens Medical Systems, Germany) and Brilliance

iCT (Philips Healthcare, Netherlands). The acquisition and

reconstruction parameters are shown in Table 1. The slice

thickness of the conventional CT was set at 5 mm. During the

enhanceme nt scan, 50 ml iohexol (300 mg/mL) was injected into

the elbow vein with a flow rate of 2.5-3.0 ml/s. The arterial and

venous phase images were collected at 25 s and 65 s after the

injection of contrast agent. The slice thickness of the reconstructed

image was set to 1 mm.

Using image segmentation software (ITK-SNAP, http://

www.itksnap.org, Version: 3.8.0, USA), we manually delineated

the region of interest (ROI) on the axial image that displayed the

largest cross-sectional area of the lesion on the conventional CT

scan. On the axial section images of the arterial phase and venous

phase (with a thickness of 1 mm) of the dynamic enhanced CT scan,

drew ROI layer by layer along the edge of the lesion, and then apply

automatic fusion software to generate 3D ROI of the lesion. All ROI

delineation was completed by 2 radiologists (Doctor QF and Doctor

SLL) with more than 10 years of chest CT diagnosis experience. Dr.

QF outlined the ROI and performed feature extraction. After 1

week, the second ROI mapping and feature extraction were

performed to evaluate the internal consistency of the measurers.

Dr. SLL only performed ROI placement and feature extraction once.

This approach was used to evaluate the inter- and intra- class

correlation coefficients (ICCs). An ICC > 0.75 was regarded as

satisfactory inter- and intra-reader reproducibility.
frontiersin.org

http://www.itksnap.org
http://www.itksnap.org
https://doi.org/10.3389/fonc.2024.1339671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1339671
Image standardization, feature extraction
and development of the
radiomics signature

Figure 2 shows the workflow of radiomics implementation.

Before extracting the radiomics features, the original images were

normalized through z score transformation, and the average

intensity range for each imaging mode for all subjects was 0, with

a standard deviation of 1. We used a two-step feature selection

method to reduce curse of dimensionality, minimize overfitting,

and determine the most effective feature for distinguishing PHEO

and LPA. Firstly, a single factor analysis of variance (ANOVA) was

performed on all features with ICC scores>0.75, selecting

statistically significant features for the training cohort. Secondly,

the selected features are included in the Least Absolute Shrinkage

and Selection Operator (LASSO) regression algorithm to determine

the best feature (with non zero coefficients) to distinguish between

PHEO and LPA (Figures 3A–C). Tuning regularization parameters

that control regularization intensity were selected by using a

minimum standard of 10 times cross validation l. Then, the final
selected feature with a nonzero coefficient was used to construct a

radiomics signature. Features weighted by their corresponding

nonzero coefficients were screened using a linear combination of
Frontiers in Oncology 03220
selected values. Then, the Rad scores of each patient in the training

cohort and external validation cohort were calculated (Figure 4).
Development of the radiomics nomogram
and assessment of the performance of
different models

Integrate independent clinical factors and Rad scores developed

on the training cohort into the radiomics nomogram using

multivariate logistic regression. Then, the Rad score and

independent clinical factors were used to calculate the radiomics

nomogram score (Nomo score) for each patient in the training and

validation cohort.Calibration curves for two groups of patients were

graphically generated to evaluate the performance of the radiomics

nomogram. The AUC, accuracy, specificity, and sensitivity were

used to evaluate the effectiveness of different models. The

calibration efficiency of the nomogram was evaluated using a

calibration curve, and the analysis fitting was performed using the

Hosmer Lime test, which was used to evaluate the calibration ability

of the nomogram. Decision curve analysis (DCA) was used to

evaluate the clinical application value of the prediction model. The

DeLong test was used to evaluate the difference in prediction

efficiency between different models.
Statistical analysis

Statistical analysis was conducted using R software (version

4.2.0, https://www.R-project.org). Qualitative data analysis was

conducted using Fisher’s exact test or chi-square test, and

quantitative data analysis was conducted using independent

sample t-test. Delong test was used for comparing the predictive

value of different models.The following software packages were

used in our study: use the “glmnet (R)” software package for LASSO

regression based on multivariate binary logistic regression. The

ROC curve was plotted using the software package ‘Partial Subject

Operating Characteristics (pROC [R])’. Use the ‘Regression
TABLE 1 The scanning parameters and reconstruction parameters of
these three CT scanners.

Parameters Discovery
750 HD

SOMATOM
Definition AS

Brilliance
iCT

Scan parameters 120kVp,
Smart mA

Care kV,Care Dose
4D,

Ref mAs

120kVp,
Dose Right

Pitch
Reconstruction slice
thickness(mm)

0.984
1.25

0.6
1

0.984
1

Reconstruction
kernel

soft B30f standard
FIGURE 1

Flow diagram of the patient selection.
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Modeling Strategy (rms [R])’ software package for nomogram

development and calibration curves. The significance level is set

at p<0.05.
Results

Clinical factors of the patients

Comparison of clinical data and CT image characteristics of all

patients with PHEO and LPA showed statistically significant

differences (P< 0.01) in lesion location, maximum lesion
Frontiers in Oncology 04221
diameter, necrosis, edge, CT values and perfusion values, as

shown in Table 2.
Validation of the models

The AUC of the clinical model was 0.83 (95% CI: 0.76-0.89) in

the training cohort and 0.83 (95% CI: 0.72-0.94) in the validation

cohort. Clinically relevant factors of lesion location, CT values

(arterial phase CT values), and necrosis were independent

predictors for classifying PHEO and adrenal LPA, and these

factors were integrated with the radscore to create a nomogram,
FIGURE 3

(A–C) Use the Least Absolute Shrinkage and Selection Operator (LASSO) regression model for radiomics feature selection. (A) Using cross validation
to select the optimal model parameters l. (B) Using 10 cross validation tests, a coefficient profile was generated and matched with the selected
logarithm l. (C) Nine radiomics features with nonzero coefficients were selected.
FIGURE 2

Flowchart of radiomics implementation in this study.
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TABLE 2 Clinical factors of the patients.

Clinical factors PHEO(n=165, 184 lesions) LPA (n=167, 168 lesions) p-value c2 or t

Gender
Male 73(44.2%) 62(37.1%)

0.19 1.74*
Female 92(55.8%) 105(62.9%)

Age, year 51.3 ± 12.6 51.2 ± 12.7 0.95 0.07

Location

left 83(50.3%) 102(61.1%)

<0.01 16.17*right 65(39.4%) 64(38.3%)

bilateral 17(10.3%) 1(0.6%)

Maximum diameter(mm) 49.4 ± 28.3 23.5 ± 11.8 <0.01 11.02

Hypertension
positive 88(53.3%) 97(58.1%)

0.66 0.19*
negative 77(46.7%) 70(41.9%)

Necrotic
positive 138(75.0%) 47(28.0%)

<0.01 77.88*
negative 46(25.0%) 121(72.0%)

edge
positive 115(62.5%) 154(91.7%)

<0.01 41.46*
negative 69(37.5%) 14(8.3%)

Arterial phase CT value(CT_A) (Hu) 123.2 ± 51.0 71.8 ± 25.5 <0.01 11.79

Conventional CT value (Hu) 41.4 ± 7.1 27.1 ± 9.3 <0.01 16.32

Perfusion value (Hu) 81.8 ± 52.4 44.6 ± 22.2 <0.01 8.50
F
rontiers in Oncology
 05222
* c2 test, Perfusion value=Arterial phase CT value-Conventional CT value.
FIGURE 4

(A, B) shows the Rad score of each patient in the training cohort (A) and validation cohort (B). The Rad score was used to classify patients with
PHEO and LPA according to the threshold. Use Wilcoxon test to verify whether there is a statistical difference between the two groups.
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as shown in Figure 5. The predictive effectiveness of the clinic

model,radiomics signatures and radiomics nomogram models

established based on conventional CT images and dynamic

enhanced CT images (Mixed images of arterial and venous

phases) are shown in Table 3. We compared the predictive value

of different models using Delong test, and the results showed that

the prediction efficiency of the model based on enhanced CT images

was slightly higher than that based on conventional CT images, but

the difference was not statistically significant (p>0.05)(Table 3).

Figure 6 shows that in the validation cohort, the predictive ability of

the radiomics nomogram (AUC=0.97, 95% CI: 0.94-1.00) and

radiomics signature (AUC=0.97, 95% CI: 0.92-1.00) based on

conventional CT images was better than that of the clinical model

(AUC=0.83, 95% CI: 0.72-0.94). Figure 7 shows the DCAs of the

radiomics nomogram and radiomics signature.

Both radiomics models and clinical models can predict the

classification of PHEO and LPA. In the training and validation

cohorts, the predictive ability of the nomogram (red) (AUC=0.97)

and the radiomics signature (blue) (AUC=0.97) were better than

that of the clinical model (green) (AUC=0.83).
Frontiers in Oncology 06223
Net income is displayed on the y-axis. The dark blue line

represents the nomogram model model that combined clinical

features and radscores. The red line indicates that all patients are

assumed to have PHEO, the light blue line indicates that none of the

patients have PHEO, the yellow line represents the results of the

clinical model, and the gray line represents the results of radiomics

signature. It can be seen that the radiomics signature model and the

nomogram model have higher net income.
Discussion

Adrenal adenoma is very common in clinical work, and CT has

high specificity and sensitivity in the diagnosis of adrenal adenoma

when its CT value on conventional scan is below 10 Hu due to its rich

lipid component. However, some adrenal adenomas lacking lipids

(called LPAs) are difficult to diagnose correctly (11, 12). PHEOs can

secrete catecholamines. The typical clinical manifestation is

hypertension, as well as headache and palpitations associated with

hypertension, but in practice, approximately 10% to 20% of patients
TABLE 3 Comparing the predictive value of different models using Delong test.

Models

Training cohort
p-

value

Validation cohort
p-

valueAUC
(95% CI)

Accuracy Sensitivity Specificity
AUC

(95% CI)
Accuracy Sensitivity Specificity

CT-conventional
radiomics signature

0.97
(0.95~1.00)

0.95 0.96 0.94 Reference
0.97

(0.92~1.00)
0.92 0.82 0.86 Reference

Clinical model
0.83

(0.76~0.89)
0.79 0.89 0.67 <0.001

0.83
(0.72~0.94)

0.68 0.91 0.39 0.03

Enhanced CT
radiomics signature

0.98
(0.97~1.00)

0.95 0.94 0.96 0.94
0.98

(0.95~1.00)
0.89 0.97 0.79 0.48

CT- conventional
radiomics nomogram

0.97
(0.95~1.00)

0.95 0.92 0.99 0.98
0.97

(0.94~1.00)
0.91 0.87 0.96 0.74

Enhanced CT
radiomics nomogram

0.98
(0.97~1.00)

0.96 0.98 0.94 0.87
0.97

(0.94~1.00)
0.89 0.85 0.96 0.81
fron
p-value: Comparing the predictive value of different subgroup models using Delong test.
FIGURE 5

Radiomics nomogram used to classify LPA and PHEO.(CT_A: Arterial phase CT value) Data of a patient with LPA (A–C),data of a patient with PHEO
(D–F); radiomics nomogram (G). The lesions of two patients had similar imaging findings.
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have no clinical manifestations or atypical manifestations (13, 14).

Adrenal LPA and PHEO are both blood-rich tumors and have many

similarities in CT presentation that make them difficult to differentiate

(15–18). However, the surgical risk of PHEO is high, and the literature

reports that adequate preoperative preparation could reduce the

surgical mortality of PHEO from 30%-40% to 0-5.5% (19–21).

Therefore, it is necessary to make an accurate clinical diagnosis of

patients before surgery.

In the past, the relative and absolute enhancement washout rates

were often used to characterize adrenal tumors, but Park said that it

was difficult to identify PHEO and LPA using the enhancement

washout rate (22, 23). In studying abdominal energy spectrum CT,

Marin et al. found that lipid-rich components showed a certain pattern

of CT value changes in a certain energy range with high specificity but

had little diagnostic significance for lipid-poor components (24).

More and more radiomics analysis was being applied to

medical imaging research (25). Radiomics can help clinicians

make accurate diagnoses by exploring the connection between

images and pathology and clinics (26–28). In addition, radiomics
Frontiers in Oncology 07224
characteristics may be important predictive factors for cancer

differential diagnosis, treatment response, and survival prediction

(29, 30). Xiaoping Yi et al (31) found that non enhanced CT

quantitative texture analysis based on machine learning may be a

reliable quantitative method for distinguishing PHEO from LPA.

However, the sample size of this study was relatively small, and no

model based on enhanced scanning 3D data had been established

for comparison. Therefore, our study is the first to establish multiple

imaging radiomics models based on conventional CT and enhanced

CT images to predict LPA and PHEO, and we also compared the

predictive performance of different models. The AUCs of the

radiomics signature based on conventional CT images were 0.97

in the training cohort and 0.97 in the validation cohort. In the

validation cohort, the AUCs of the radiomics signature and

radiomics nomogram based on enhanced CT images were 0.98

and 0.97, respectively. Both models showed good predictive ability,

better than the predictive performance of the clinical model. These

results are also superior to the findings of Xiaoping Yi. The

radiomics nomogram based on conventional CT images also
FIGURE 7

Decision curve analysis (DCA) of different models.
FIGURE 6

The models based on clinical and conventional CT scan images applied AUC to evaluate the prediction ability of different models (A: ROC curve of
the training cohort; B: ROC curve of the validation cohort).
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yielded satisfactory results. The Delong test results showed that the

prediction efficiency of the models based on enhanced CT images

was slightly higher than that of the models based on conventional

CT images, but the difference was not statistically significant (P

>0.05). CT scanning can cause ionizing radiation damage, and

dynamic enhanced scanning not only increases radiation exposure

but also produces harmful effects such as contrast agent allergy and

contrast agent nephrotoxicity (32–35). At present, radiological

examinations should strictly follow the principle of “As Low As

Reasonably Achievable” (32, 33, 36–38). The model based on

conventional CT scans can effectively distinguish adrenal LPAs

from PHEOs, and the radiation and contrast hazards associated

with further enhancement scans can be avoided.

In this study, radiomic features were selected to construct

radiomics signature model for classifying PHEO and adrenal LPA,

including:P_wavelet_LLH_gldm_Dependence Non Uniformity,

P_wavelet LLH_glszm_Large Area Low Gray Level Emphasis,

P_wavelet_HHH glrlm_Run Length Non Uniformity Normalized,

P_wavelet_LLH_glrlm_Run Length Non Uniformity Normalized,

P_original_shape_Sphericity,P_wavelet_LLH_glcm_Contrast,

P_original_shape _Minor Axis Length, P_original_firstorder_Median,

P_wavelet_LLH_glrlm_Run Variance, among which 1 first order

feature, 3 glrlm features,1 glszm feature,1 glcm feature,1 gldm feature

and 2 original shape features were included.Amix offirst-order, texture

and wavelet features seemed to be important for classifying PHEO and

adrenal LPA. In our study, we used filters to extract radiomics features

from the original images.Among the 9 independent imaging features

ultimately selected, there are 6 wavelet features. Wavelet features can

comprehensively analyze changes in spatial frequency. These features

can provide detailed analysis of texture changes. Wavelet features can

also quantify the heterogeneity of tumors in various directions through

different spatial scales, so it is believed that wavelet features may help us

understand the pathophysiology and morphology of tumors (39).

Previous studies had revealed the potential value of wavelet features

in histological subtype prediction and prognostic assessment (40, 41).

Our results show that wavelet features also have significant capabilities

in the prediction models of PHEO and LPA.First order features can

reflect the grayscale distribution of tumors and are obtained by

calculating the grayscale values of tumors, usually representing low

dimensional information that is easy to perceive visually.In addition,

our model also includes two original shape features, which respectively

suggest that the short axis length and sphericity of the tumor may have

value in distinguishing PHEO and LPA.

Nevertheless, our research has some limitations: (1) there may

be problems of selection bias and information bias in retrospective

studies; (2) different CT machines reduce the consistency of image

comparison to a certain extent; and (3) future multicenter and

prospective trials are needed to verify the results of this study.

In conclusion, the CT-based radiomics signature and radiomics

nomogram in our research have good predictive efficacy in identifying

PHEO and adrenal LPA. The model based on conventional CT scans

can identify both diseases while avoiding the radiation and contrast

hazards caused by dynamic enhancement scans.
Frontiers in Oncology 08225
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challenges for the implementation of computational medical imaging (radiomics) in
oncology. Ann Oncol. (2017) 28:1191–206. doi: 10.1093/annonc/mdx034

26. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton
P, et al. Radiomics: Extracting more information from medical images using advanced
feature analysis. Eur J Cancer. (2012) 48:441–6. doi: 10.1016/j.ejca.2011.11.036

27. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,
they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

28. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quantitative
radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5006

29. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, et al. Radiomics signature: A
potential biomarker for the prediction of disease-free survival in early-stage (I or II)
non-small cell lung cancer. Radiology. (2016) 281:947–57. doi: 10.1148/
radiol.2016152234

30. Bogowicz M, Riesterer O, Ikenberg K, Stieb S, Moch H, Studer G, et al.
Computed tomography radiomics predicts HPV status and local tumor control after
definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat
OncologyBiologyPhys. (2017) 99:921–8. doi: 10.1016/j.ijrobp.2017.06.002

31. Yi X, Guan X, Zhang Y, Liu L, Long X, Yin H, et al. Radiomics improves
efficiency for differentiating subclinical PHEO from LPA: a predictive, preventive and
personalized medical approach in adrenal incidentalomas. EPMA J. (2018) 9:421–9.
doi: 10.1007/s13167-018-0149-3

32. Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R.
Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer
risks from CT of adults. Radiology. (2009) 251:175–84. doi: 10.1148/radiol.2511081296

33. Pannu N, Wiebe N, Tonelli M. Prophylaxis strategies for contrast-induced
nephropathy. JAMA J Am Med Assoc. (2006) 295:2765–79. doi: 10.1001/
jama.295.23.2765

34. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced
nephropathy. Kidney Int. (2005) 68:14–22. doi: 10.1111/j.1523-1755.2005.00377.x

35. Seeliger E, Sendeski M, Rihal CS, Persson PB. Contrast-induced kidney injury:
mechanisms, risk factors, and prevention. Eur Heart J. (2012) 33(16):2007–15.
doi: 10.1093/eurheartj/ehr494

36. Oakley PA, Harrison DE. Death of the ALARA radiation protection principle as
used in the medical sector. Dose Response. (2020) 18:710596823. doi: 10.1177/
1559325820921641

37. Gupta RV, Kalra MK, Ebrahimian S, Kaviani P, Primak A, Bizzo B, et al.
Complex relationship between artificial intelligence and CT radiation dose. Acad
Radiol. (2022) 29:1709–19. doi: 10.1016/j.acra.2021.10.024

38. Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, et al. Radiation
exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur
Radiol. (2003) 13:1979–91. doi: 10.1007/s00330-003-1883-y

39. Hu S, Xu C, Guan W, Tang Y, Liu Y. Texture feature extraction based on wavelet
transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.
Bio-med Mater Eng. (2014) 24:129–43. doi: 10.3233/BME-130793

40. Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano J, et al. CT-based
radiomic analysis of stereotactic body radiation therapy patients with lung cancer.
Radiother Oncol. (2016) 120(2):258–66. doi: 10.1016/j.radonc.2016.05.024

41. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al.
Exploratory study to identify radiomics classifiers for lung cancer histology. Front
Oncol. (2016) 6:71. doi: 10.3389/fonc.2016.00071
frontiersin.org

https://doi.org/10.1097/RCT.0000000000000343
https://doi.org/10.1007/s12022-017-9484-5
https://doi.org/10.1007/s12022-017-9484-5
https://doi.org/10.1148/radiol.14140876
https://doi.org/10.1148/radiol.2502080302
https://doi.org/10.2214/AJR.16.17758
https://doi.org/10.1210/jc.2014-2998
https://doi.org/10.1002/jmri.25452
https://doi.org/10.1007/s00330-005-0017-0
https://doi.org/10.1016/j.crad.2016.01.010
https://doi.org/10.2214/AJR.15.15475
https://doi.org/10.1016/j.clinimag.2015.09.006
https://doi.org/10.2214/ajr.181.6.1811663
https://doi.org/10.2214/ajr.181.6.1811663
https://doi.org/10.1097/01.hjh.0000251887.01885.54
https://doi.org/10.1097/01.hjh.0000251887.01885.54
https://doi.org/10.1016/j.maturitas.2013.12.009
https://doi.org/10.1148/rg.2016150139
https://doi.org/10.1148/radiol.12120110
https://doi.org/10.1148/rg.24si045506
https://doi.org/10.1007/s00330-008-1073-z
https://doi.org/10.1186/s40981-022-00547-y
https://doi.org/10.1016/S1015-9584(09)60162-7
https://doi.org/10.1016/S1015-9584(09)60162-7
https://doi.org/10.1210/jc.2007-1720
https://doi.org/10.1007/s00330-007-0695-x
https://doi.org/10.1007/s00330-017-5076-5
https://doi.org/10.1148/radiol.14131480
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1016/j.ijrobp.2017.06.002
https://doi.org/10.1007/s13167-018-0149-3
https://doi.org/10.1148/radiol.2511081296
https://doi.org/10.1001/jama.295.23.2765
https://doi.org/10.1001/jama.295.23.2765
https://doi.org/10.1111/j.1523-1755.2005.00377.x
https://doi.org/10.1093/eurheartj/ehr494
https://doi.org/10.1177/1559325820921641
https://doi.org/10.1177/1559325820921641
https://doi.org/10.1016/j.acra.2021.10.024
https://doi.org/10.1007/s00330-003-1883-y
https://doi.org/10.3233/BME-130793
https://doi.org/10.1016/j.radonc.2016.05.024
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.3389/fonc.2024.1339671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sharon R. Pine,
University of Colorado Anschutz Medical
Campus, United States

REVIEWED BY

Paulina Cegla,
Greater Poland Cancer Center (GPCC),
Poland
Maryam Haghshomar,
Northwestern Medicine, United States

*CORRESPONDENCE

Ruozheng Wang

wrz8526@vip.163.com

RECEIVED 29 November 2023

ACCEPTED 27 August 2024
PUBLISHED 17 September 2024

CITATION

Liu H, Lao M, Zhang Y, Chang C, Yin Y and
Wang R (2024) Radiomics-based machine
learning models for differentiating
pathological subtypes in cervical
cancer: a multicenter study.
Front. Oncol. 14:1346336.
doi: 10.3389/fonc.2024.1346336

COPYRIGHT

© 2024 Liu, Lao, Zhang, Chang, Yin and Wang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 17 September 2024

DOI 10.3389/fonc.2024.1346336
Radiomics-based machine
learning models for
differentiating pathological
subtypes in cervical cancer:
a multicenter study
Huiling Liu1,2, Mi Lao3, Yalin Zhang1, Cheng Chang4,
Yong Yin5 and Ruozheng Wang1,6,7*

1Department of Radiation Oncology, The Third Affiliated Teaching Hospital of Xinjiang Medical
University, Affiliated Cancer Hospital, Urumuqi, China, 2Department of Radiation Oncology, Binzhou
People’s Hospital, Binzhou, China, 3Department of Cardiology, Binzhou People’s Hospital,
Binzhou, China, 4Department of Nuclear Medicine, The Third Affiliated Teaching Hospital of Xinjiang
Medical University, Affiliated Cancer Hospital, Urumuqi, China, 5Department of Radiation Oncology,
Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
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Purpose: This study was designed to determine the diagnostic performance of

fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/

computed tomography (CT) radiomics-based machine learning (ML) in the

classification of cervical adenocarcinoma (AC) and squamous cell

carcinoma (SCC).

Methods: Pretreatment 18F-FDG PET/CT data were retrospectively collected

from patients who were diagnosed with locally advanced cervical cancer at two

centers. Radiomics features were extracted and selected by the Pearson

correlation coefficient and least absolute shrinkage and selection operator

regression analysis. Six ML algorithms were then applied to establish models,

and the best-performing classifier was selected based on accuracy, sensitivity,

specificity, and area under the curve (AUC). The performance of different model

was assessed and compared using the DeLong test.

Results: A total of 227 patients with locally advanced cervical cancer were

enrolled in this study (N=136 for the training cohort, N=59 for the internal

validation cohort, and N=32 for the external validation cohort). The PET

radiomics model constructed based on the lightGBM algorithm had an

accuracy of 0.915 and an AUC of 0.851 (95% confidence interval [CI], 0.715-

0.986) in the internal validation cohort, which were higher than those of the CT

radiomics model (accuracy: 0.661; AUC: 0.513 [95% CI, 0.339-0.688]). The

DeLong test revealed no significant difference in AUC between the combined

radiomics model and the PET radiomics model in either the training cohort

(z=0.940, P=0.347) or the internal validation cohort (z=0.285, P=0.776). In the

external validation cohort, the lightGBM-based PET radiomics model achieved

good discrimination between SCC and AC (AUC = 0.730).
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Conclusions: The lightGBM-based PET radiomics model had great potential to

predict the fine histological subtypes of locally advanced cervical cancer and

might serve as a promising noninvasive approach for the diagnosis and

management of locally advanced cervical cancer.
KEYWORDS

locally advanced cervical cancer, positron emission tomography, PET, radiomics,
adenocarcinoma, AC, squamous cell carcinoma, SCC
1 Introduction

Cervical cancer is the fourth most common female cancer

worldwide (1). In 2016, there were approximately 34,000 cervical

cancer-related deaths in Chinese women (2). Squamous cell

carcinoma (SCC) and adenocarcinoma (AC) are the main

pathological subtypes of cervical cancer, accounting for 70-75%

and 10-25% respectively. The incidence of AC has been observed to

increase in recent decades (3). Patients with locally advanced

cervical cancer who receive radiation therapy or concurrent

chemoradiotherapy have a worse prognosis for AC compared to

SCC, highlighting the need for alternative treatment options

specifically for AC cases (4). High intratumor heterogeneity

exhibited a significantly poor clinical outcome (5). Therefore, it is

essential to uncover the differences between AC and SCC from

multiple perspectives, explore the underlying reasons for these

differences, and develop personalized treatment strategies and

plans, as this holds considerable importance.

Pathological diagnosis is considered the gold standard for the

detection of cervical cancer, with cervical cytology and cervical

biopsy being the primary recommended methods (6). However, AC

may sometimes result in cytological false-negatives (7). Biopsy is an

invasive procedure associated with risks of bleeding and infection.

Point-to-point biopsy performed on larger tumors only evaluates a

small portion of the sample, resulting in sampling bias and an

inability to comprehensively assess tumor heterogeneity (8–10). In

addition, radiologists find it challenging to differentiate AC from

SCC based on conventional imaging modalities such as magnetic

resonance imaging (MRI), positron emission tomography (PET)/

computed tomography (CT), ultrasound, etc., and the interobserver

agreement is typically low (11, 12).

Radiomics is a rapidly growing field of research that utilizes

medical images to extract quantitative features, converting them

into high-dimensional data for analysis and exploration. This

technique enhances our understanding of diseases and provides

valuable support for clinical decision-making (13, 14). Malignant

tumors exhibit considerable spatial variation within the tumor at

the morphological and histopathological levels, including

cellularity, vascularization, extracellular matrix, and necrotic

components (15, 16). As a noninvasive tool, radiomics can

quantify intratumoral heterogeneity and is widely used in
02228
diagnosis, treatment response evaluation, and survival prediction

(17). Among conventional imaging modalities, MRI has better fine

exquisite soft tissue resolution than CT and PET, so it has long been

considered as the preferred imaging method of choice for the

evaluation of local tumor extension in primary cervical cancer.

Unsurprisingly, numerous radiomics studies aimed at identifying

the pathological subtypes of cervical cancer are primarily founded

on pretreatment MRI (18). To the best of our knowledge, there are

no radiomics studies that delineate the primary cervical tumor on

CT images, which might be related to the inability to clearly define

the boundary of the primary cervical tumor on CT images. In

addition, only two published studies have preliminarily evaluated

PET radiomics in cervical cancer to discriminate between AC and

SCC (19, 20). Nevertheless, both of the studies were single-center

ones, extracted too few radiomic features, and the methods for

radiomics feature selection and model construction were simplistic.

Even in one of the studies, only 83 patients were included.

Previous studies have shown that radiomic features based on

CT or PET images can achieve the differentiation of pathological

types of lung cancer (21). The application of radiomics methods for

diagnosis and tumor characterization might be a potential

supplement for omics datasets, or an alternative for pathological

diagnosis, particularly for patients who are at an advanced stage,

inoperable, or unable to undergo biopsies. A more extensive and

comprehensive study is required to investigate the value of PET/CT

imaging in differentiating the subtypes of cervical cancer. Therefore,

the aim of this study was to develop and validate an optimal

machine learning (ML) model based on pretherapeutic fluorine-

18-fluorodeoxyglucose (18F-FDG) PET/CT for differentiating

between SCC and AC in cervical cancer.
2 Materials and methods

2.1 Study design

This retrospective study was conducted in accordance with the

Declaration of Helsinki. Ethical approval was obtained from the

Institutional Review Board of the Affiliated Cancer Hospital of

Shandong First Medical University (No. SDTHEC2023006030) and

the Affiliated Cancer Hospital of Xinjiang Medical University (No.
frontiersin.org
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K-2022006), and the requirement for written informed consent was

waived. The workflow of our study is shown in Figure 1.
2.2 Patient cohort

The study included patients with a diagnosis of cervical cancer

between September 2015 and February 2022. The inclusion criteria

were as follows: (1) pathologically confirmed cervical cancer with

the 2018 International Federation of Gynecology and Obstetrics

(FIGO) stage IB-IVA; (2) underwent 18F-FDG PET/CT; and (3)

complete clinical data retrievable from the electronic medical

records. Exclusion criteria included: (1) a history of any previous

anticancer treatment; (2) pathological types other than SCC and

AC; (3) patients with a diagnosis of other unrelated malignant

tumors; (4) presence of extensive abdominal metastasis; (5) poor

PET/CT image quality; and (6) primary maximal tumor diameter

less than 1.0 cm.

All patients were initially confirmed by hematoxylin-eosin (HE)

staining, and the poorly differentiated patients whose subtypes

cou ld no t b e a ffi rmed we re f u r th e r confi rmed by

immunohistochemistry (IHC) staining. Ultimately, based on the

pathological reports of biopsy specimens, a total of 195 patients

were recruited in the Center 1 (the Affiliated Cancer Hospital of

Shandong First Medical University), among which 164 were

confirmed by HE staining and 31 were confirmed by IHC. The

Center 2 (the Affiliated Cancer Hospital of Xinjiang Medical

University) recruited 32 patients, of whom 23 were confirmed by

HE staining and 9 were confirmed by IHC. The patients recruited in

the Center 1 were randomly allocated to the training cohort (n =
Frontiers in Oncology 03229
136) and the internal validation cohort (n = 59) in a 7:3 ratio, while

the Center 2 serves as the external validation cohort. Figure 2

illustrates a flow chart outlining the process of patient selection. The

clinical information of the patients, including age, pathology,

maximal tumor diameter (MTD) on PET/CT images, menopausal

status, lymph node metastasis (LNM), and red blood cell count, was

collected from electronic medical records.
2.3 PET/CT acquisition

All enrolled patients underwent 18F-FDG PET/CT with a

standardized scan setup and parameters before treatment. Patients

enrolled in Center 1 were scanned with the Philips Gemini TF PET/

CT scanner (Phillips Medical Systems, Holland), and the 18F-FDG

was generated by the MINItrace cyclotron from GE Healthcare. At

Center 2, the Philips Ingenuity TF (Phillips Medical Systems,

Holland) was used, and 18F-FDG was generated by the Sumitomo

Heavy Industries HM-10 cyclotron. The radiochemical purity was

above 95%. All patients fasted for at least 6 h, and their peripheral

blood glucose levels were confirmed to be ≤150 mg/dL before 18F-

FDG injection. 18F-FDG was intravenously administered at 3.7–4.4

MBq/kg body weight. The key scanning parameters were as follows:

tube voltage of 120-130 KV; tube current of 150-300 mA. PET images

were reconstructed using ordered-subset expectation maximization.

Reconstruction using standard convolution kernel with 1.5mm layer

thickness (median 1.5mm; range 1.0–3.0mm). Each CT image was

reconstructed in a 512×512 pixels image matrix and each PET image

was reconstructed in a 144×144 pixel image matrix. To eliminate

image differences between images acquired by different scanners, all
FIGURE 1

The Workflow of this study.
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images were resampled to the same image spacing of 1

mm×1mm ×1mm.
2.4 Tumor segmentation

PET images were attenuated, corrected, reconstructed in

multiple layers, and then fused with noncontrast-enhanced low-

dose CT images. The resulting images were imported into MIM

Maestro version 7.1.7 (MIM Software Inc., Cleveland, OH, USA).

The regions of interest (ROIs) were delineated using a fixed

threshold value at 42% of the maximum standardized uptake

value (SUVmax) of the primary tumor. Regions corresponding to

the bladder were manually excluded from the analysis. For the

obtained ROIs, various parameters, such as metabolic active tumor

volume (MTV), mean standardized uptake value (SUVmean), total

lesion glycolysis (TLG), and SUVmax, were calculated using MIM

Software. The contoured ROIs were then transferred to PET and CT

images using rigid registration. Another experienced oncologist

carefully reviewed and modified the transferred results on a slice-

by-slice basis. Figures 3, 4 show a set of representative PET/CT

images from a 53-year-old woman with SCC and a 41-year-old

woman with AC, respectively. The ROI, labeled in red, was

segmented in each slice of the axial, sagittal, and coronal views of

the PET, CT, and fusion images.
2.5 Feature extraction and normalization

A total of 1409 PET and 1409 CT radiomics features were

extracted from each segmented ROI using AccuContour software

version 3.2 (Manteia Medical Technologies Co. Ltd., Xiamen,

China), which is a commercial software application that allows

for standardized preprocessing of medical imaging data. The
Frontiers in Oncology 04230
radiomics features based on the original images included shape

features, first-order intensity histogram features, gray-level

cooccurrence matrix (GLCM) features, gray-level run-length

matrix (GLRLM) features, gray-level size zone matrix (GLSZM)

features, neighboring gray-tone difference matrices (NGTDM), and

gray-level dependence matrix (GLDM) features.
2.6 Feature selection and
model development

All features were standardized to Z scores with the mean and

standard deviation. The Pearson correlation coefficient (PCC) for

each feature pair was calculated to evaluate their similarity, and if

the PCC value exceeded 0.9, one of the features was randomly

eliminated. After this process, the dimension of the feature space

was reduced, and features were independent of each other. Then,

least absolute shrinkage and selection operator (LASSO) regression

analysis with 10-fold cross-validation was employed to select the

effective radiomics features. Clinical features were selected using

logistic regression analysis. Separate models with good prediction

performance were built to differentiate pathological subtypes in

locally advanced cervical cancer. Ultimately, the predictive

performance of the models was assessed using the receiver

operating characteristic (ROC) curve, decision curve analysis

(DCA), and calibration curve.
2.7 Statistical analysis

Quantitative data that followed a normal distribution are

presented as the mean ± standard deviation (s), while qualitative

data are expressed as frequencies (percentages). The patient

characteristics between the training and validation cohorts were
FIGURE 2

Flow chart of patients selection.
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compared using various statistical tests, such as the Pearson Chi-

square test, Fisher’s exact test, Student’s t test, and Mann−Whitney U

test. Clinical features were selected using univariate and multivariate

logistic regression analyses. Six ML classifiers, including logistic
Frontiers in Oncology 05231
regression (LR), naive Bayes (NB), support vector machine (SVM),

k-nearest neighbors (KNN), light gradient boosting machine

(lightGBM), and multilayer perceptron neural network (MLP),

were used to build a model to differentiate pathological subtypes.
FIGURE 3

A 53-year-old woman diagnosed with SCC. (A–C) The ROI, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D–F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G–I) The ROI, labeled in red, was segmented on the coronal, axial,
sagittal CT images. (J) pathological examination confirmed SCC.
FIGURE 4

A 41-year-old woman diagnosed with AC. (A–C) The ROI, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D–F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G–I) The ROI, labeled in red, was segmented on the coronal, axial,
sagittal CT images. (J) Pathological examination confirmed AC.
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The optimal ML model was selected based on its AUC, accuracy

(ACC), sensitivity (SEN), and specificity (SPE). The AUC values were

compared between different models using the DeLong test. The data

analyses were performed using SPSS software (Version 25.0, IBM

Corp., Armonk, NY, USA) and R software (Version 3.4.0, R

Foundation for Statistical Computing, Vienna, Austria). A two-

sided p-value<0.05 was considered statistically significant.
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3 Results

3.1 Clinical characteristics and PET
metabolic parameters

Table 1 presents the clinical characteristics and PET metabolic

parameters of 227 patients with locally advanced cervical cancer.
TABLE 1 Comparison of Clinical characteristics and PET metabolic parameters between SCC and AC in the training, internal validation and external
validation cohorts.

Training (N = 136)

p Value

Internal validation
(N = 59)

p Value

External validation
(N=32)

p Value
SCC
(N=115)

AC (N=21)
SCC
(N=45)

AC (N=14)
SCC
(N=29)

AC (N=3)

Age (years) 53.91 ± 9.37 56.33 ± 12.86 0.418 52.67 ± 11.41 55.28 ± 12.22 0.464 52.24 ± 11.27 51.33 ± 4.93 0.892

Abortion 0.105

NO 64(55.7%) 13(61.9%) 0.595 24(53.33%) 4(28.57%) 11(37.93%) 1(33.33%) 0.876

YES 51(44.3%) 8(38.1%) 21(46.67%) 10(71.43%) 18(62.07%) 2(66.67%)

MTD (cm) 5.22 ± 1.67 0.29 4.48 ± 1.48 3.27 ± 0.25 0.173

LNM 0.430 0.516 0.909

NO 39(33.9%) 9(42.9%) 13(28.89%) 6(42.86%) 13(44.83%) 2(66.67%)

YES 76(66.1%) 12(57.1%) 32(71.11%) 8(57.14%) 16(55.17%) 1(33.33%)

Para-
aortic LNM

0.350 0.759 0.476

NO 88(76.5%) 18(85.7%) 37(82.22%) 11(78.57%) 24(82.76%) 2(66.67%)

YES 27(23.5%) 3(14.3%) 8(17.78%) 3(21.43%) 5(17.24%) 1(33.33%)

Menopause 0.929 0.849 0.819

NO 45(39.1%) 8(38.1%) 18(40.0%) 6(42.9%) 17(58.62%) 1(33.33%)

YES 70(60.9%) 13(61.9%) 27(60.0%) 8(57.1%) 12(41.38%) 2(66.67%)

SUVmax
(SUVbw)

15.59 ± 5.88 16.38 ± 8.01 0.672 16.20 ± 5.82 17.27 ± 5.90 0.010 15.30 ± 7.28 9.85 ± 6.81 0.225

MTV (ml)
27.48
(15.54,54.08)

34.9
(16.85,57.56)

0.555
35.12
(22.20,73.87)

27.44
(9.21,42.97)

<0.001
11.01
(6.10,25.15)

6.56
(5.27,13.24)

0.580

SUVmean
(SUVbw)

9.23 ± 3.52 9.35 ± 4.43 0.908 10.21 ± 3.44 9.64 ± 2.73 0.013 9.28 ± 4.62 6.08 ± 4.42 0.261

TLG
(SUVbw*ml)

231.53
(117.85,510.18)

305.64
(124.16,693.92)

0.671
405.52
(171.37,775.63)

189.45
(74.06,294.13)

0.012
101.02
(50.60,177.68)

57.04
(36.96,64.96)

0.164

WBC count 6.85 ± 2.43 6.56 ± 3.84 0.644 7.54 ± 3.22 6.28 ± 1.91 0.171 6.17 ± 1.85 6.55 ± 0.62 0.730

RBC count 4.12 ± 0.50 4.02 ± 0.43 0.384 4.19 ± 0.65 4.32 ± 0.45 0.494 4.22 ± 0.61 4.45 ± 0.39 0.529

Plt count 291.76 ± 94.11 285.67 ± 101.24 0.788 326.24 ± 103.28
313.57
± 142.57

0.716 233.25 ± 62.74
225.00
± 37.51

0.826

lymphocyte
count

1.68 ± 0.57 1.56 ± 0.39 0.355 1.63 ± 0.59 1.65 ± 0.40 0.916 3.00 ± 5.79 1.81 ± 0.10 0.728

neutrophile
count

4.52 ± 2.16 4.52 ± 3.60 0.995 5.19 ± 2.56 4.01 ± 1.61 0.13 5.57 ± 10.59 4.22 ± 0.66 0.830

Hb count 120.81 ± 16.76 116.71 ± 14.91 0.298 117.98 ± 23.78 116.43 ± 24.42 0.833 126.17 ± 18.74 131.33 ± 1.16 0.642
fro
SCC, squamous cell carcinoma; AC, adenocarcinoma; MTD, maximal tumor diameter; LNM, lymph node metastasis; SUVmax, maximum standardized uptake value; SUVmean, mean
standardized uptake value; MTV, metabolic active tumor volume; TLG, total lesion glycolysis; WBC, white blood cell; RBC, red blood cell; WBC, white blood cell; Plt, blood platelet;
Hb, hemoglobin.
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The comparison between SCC and AC in three groups are shown in

Supplementary Table S1. The results of the univariate logistic

regression analysis are provided in Table 2. None of the clinical

features or PET metabolic parameters showed significant

differentiation ability for the pathological subtypes.
3.2 Radiomics features extraction
and selection

A total of 2818 radiomic features were extracted from the ROIs of

CT and PET images. Among them, a total of 391 and 242 radiomics

features were selected from the CT and PET images, respectively,

based on the PCC. Subsequently, LASSO regression analysis was

performed to select one CT radiomics feature (Figures 5A, C) and five

PET radiomic features (Figures 5B, D, 6). Then, Table 3 displays the

final PET and CT radiomic features. The quantitative differences in

PET radiomic features between cervical SCC and AC are shown in

Supplementary Table S2.
3.3 Radiomics model development
and evaluation

Table 4 presents a summary of the prediction performance in

distinguishing between AC and SCC using various ML classifiers in the

training and internal validation cohorts. The LightGBM model

exhibited superior performance in terms of AUC, ACC, SEN, SPE

compared to the other ML models, and was consequently employed as

theML algorithm for differentiating the described pathological subtypes.

Figure 7 illustrates the ROC curves of the CT radiomics model,

PET radiomics model, and combined model. In the training cohort,

the best differentiation performance was demonstrated by the

combined radiomics model (AUC=0.968), followed by the PET

radiomics model (AUC=0.955), while the differentiation

performance of the CT radiomics model was average

(AUC=0.752). The DeLong test indicated that there was no

statistically significant difference between the combined radiomics

model and the PET radiomics model (z=0.940, p-value=0.347).

Nevertheless, both the combined radiomics model and the PET

radiomics model significantly outperformed the CT radiomics

model (z=3.291, p-value<0.001). In the internal validation cohort,

the PET radiomics model had the best differentiation effectiveness

(AUC=0.851), followed by the combined radiomics model

(AUC=0.842), while the differentiation performance of the CT

radiomics model was poor (AUC=0.513). The DeLong test

showed no statistically significant difference between the

combined radiomics model and the PET radiomics model

(z=0.285, p-value=0.776). However, both the combined radiomics

model and the PET radiomics model were significantly better than

the CT radiomics model (z=2.807, p-value=0.005 and z=2.697, p-

value=0.007, respectively). In the external validation cohort, the

DeLong test showed no statistically significant difference between

the combined radiomics model and the PET radiomics model

(z=0.272, p-value=0.809).
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The DCA results showed that the PET radiomics model

performed better and provided a higher clinical application value

in differentiating pathological subtypes than CT radiomics mode

and PET-CT radiomics model (Supplementary Figure S1). The

calibration curves for the training cohort, internal validation cohort

and external validation cohort (Supplementary Figures S2), assessed

using the Hosmer-Lemeshow test, showed no significant differences

in both the training cohort (P=0.129), internal validation cohort

(P=0.351) and external validation cohort (P=0.529). This suggests

good consistency between the actual and predicted risks.
4 Discussion

In this study, we successfully developed six MLmodels based on

PET and CT images, among which the lightGBM model based on

PET radiomics features performed excellently in distinguishing AC

and SCC.

Previous literature has indicated that CT radiomics features

exhibit better predictive performance than PET radiomics features

in predicting survival, and CT radiomics features are also more

abundant than PET features (22, 23). Nevertheless, with regard to

distinguishing pathological subtypes, Kirienko et al. (24) discovered

that PET radiomics features had a greater ability to discriminate

between primary and metastatic pulmonary lesions than CT
TABLE 2 Univariate logistic regression analysis of clinical and PET
metabolic parameters to differentiate pathological subtypes in the
training cohort.

Univariate logistic analysis

OR 95% CI p-Value

Age (years) 1.022 0.986-1.060 0.228

Abortion 0.915 0.647-1.295 0.617

MTD (cm) 0.859 0.680-1.087 0.206

LNM 0.642 0.304-1.355 0.245

Para-aortic LNM 0.739 0.284-1.921 0.535

Menopause 0.974 0.462-2.056 0.945

SUVmax (SUVbw) 0.968 0.909-1.031 0.316

MTV (ml) 0.996 0.986-1.006 0.414

SUVmean (SUVbw) 0.933 0.837-1.040 0.211

TLG (SUVbw*ml) 1.000 0.999-1.001 0.385

WBC count 0.911 0.778-1.067 0.249

RBC count 0.995 0.496-1.997 0.989

Plt count 1.000 0.996-1.003 0.806

lymphocyte count 0.780 0.386-1.575 0.488

neutrophile count 0.929 0.780-1.107 0.410

Hb count 0.991 0.972-1.010 0.755
MTD, maximal tumor diameter; LNM, lymph node metastasis; MTV, metabolic active tumor
volume; SUV, standardized uptake value; TLG, total lesion glycolysis; WBC, white blood cell;
RBC, red blood cell; WBC, white blood cell; Plt, blood platelet; Hb, hemoglobin.
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radiomics features. Further studies conducted by Hyun et al. (25)

and Han et al. (21) demonstrated that a PET/CT-based machine

learning method was able to make a distinction between AC and

SCC in patients with non-small cell lung cancer. This study

indicates that in distinguishing SCC and AC, the selected PET

radiomics features are substantially more numerous than CT
Frontiers in Oncology 08234
radiomics features, and the performance of the PET radiomics

model is notably superior to that of the CT radiomics model.

Furthermore, the Delong test showed that although there was a

slight improvement in performance when combining PET

radiomics features with CT radiomics features, the increase in

AUC value did not reach statistical significance (the p values of
FIGURE 5

CT and PET radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) algorithm. (A) LASSO coefficient profiles of
CT radiomics features. (B) LASSO coefficient profiles of PET radiomics features. (C) Mean square error path obtained through tenfold cross-validation
for CT radiomics feature selection process. (D) Mean square error path obtained through tenfold cross-validation for PET radiomics feature
selection process.
FIGURE 6

The five PET radiomics features are selected and shown.
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the training and internal validation cohorts were 0.347 and 0.776,

respectively). In a retrospective study, Shen et al. (19) first found

that short-zone emphasis (SZE) from GLSZM was the only PET-

based radiomics feature that showed quantitative differences

between SCC and non-SCC in cervical cancer. Tsujikawa et al.

(20) reported that the correlation from normalized gray-level co-

occurrence matrix (NGLCM) was the only feature extracted from
18F-FDG PET that showed significant differences between cervical

SCC and non-SCC. The previous two published studies extracted

merely 18 or 76 features from the original images. In contrast, our

study extracted 2818 features from the original images as well as the

converted images. This might be the cause for which the previous

study could select only one meaningful feature, while our study

selected five. In summary, the findings of this series of PET/CT

radiomic studies highlights the importance of functional imaging-

based radiomics research in differentiating tumor pathological

subtypes. This may be related to the FDG uptake heterogeneity
Frontiers in Oncology 09235
between AC and SCC, which is consistent with the identification of

the pathological subtypes of lung cancer based on PET/CT (21).

MRI techniques also introduced various functional sequences,

including apparent diffusion coefficient (ADC), dynamic contrast-

enhanced imaging, and perfusion-weighted imaging (26). Wang

et al. (18) achieved good differentiation between SCC and AC using

a multiparameter MRI radiomics model based on ADC, enhanced

T1-weighted imaging, and other anatomical and functional

sequences. Although the differentiation performance of the multi-

parametric MRI-based radiomics model was the highest among the

published MRI-based radiomics studies, its differentiation

performance (AUC = 0.89) was lower than that of the pure PET-

based radiomics model constructed in our study (AUC = 0.955).

These findings demonstrate the advantages of PET radiomics

features over multiparametric MRI radiomics features to a certain

extent. PET-based radiomics can not only reveal the intratumoral

heterogeneity of imaging structures between AC and SCC but also

demonstrate the heterogeneity of tumor cell metabolism. Moreover,

radiomics features are based on manually segmented ROIs in five

MRI sequences, which not only requires a substantial amount of

work but also increases the instability of the features.

The radiomics features selected in our study are all derived from

processed images, which may reveal greater tumor heterogeneity

differences between SCC and AC compared to the original images,

showcasing the advantage of radiomics. Among these radiomics

features selected in our study, the firstorder_Maximum and

firstorder_Minimum represent the maximum and minimum gray

level intensities, respectively. SCC exhibits significantly higher values

than AC, indicating that SCC has a stronger FDG uptake than AC.

Campos-Parra et al. found that compared to AC, SCC exhibits higher

activation levels of key cancer pathways, such as IL-17, JAK/STAT,

and Ras signaling (27). high-risk human papilloma virus (HPV) -16
TABLE 3 The final PET and CT radiomics features used for models.

Image Filter Feature class Feature

PET Exponential GLSZM
Small area low gray
level emphasis

Wavelet
(LHL)

First-order Maximum

Square GLDM Small dependence emphasis

Squareroot First-order Minimum

Squareroot GLDM Small dependence emphasis

CT
Wavelet
(HLL)

NGTDM Busyness
TABLE 4 Performance of machine learning classifiers for differentiating pathological subtypes in the training and internal validation cohort.

ML DS
PET radiomics model CT radiomics model

AUC 95% CI ACC SEN SPE AUC 95% CI ACC SEN SPE

LR
T 0.916 0.852 - 0.979 0.919 0.714 0.957 0.597 0.441 - 0.753 0.779 0.429 0.843

V 0.779 0.631 - 0.928 0.814 0.571 0.889 0.521 0.330 - 0.711 0.746 0.286 0.909

NB
T 0.848 0.739 - 0.957 0.919 0.667 0.965 0.684 0.549 - 0.820 0.603 0.762 0.574

V 0.719 0.517 - 0.921 0.847 0.643 0.911 0.524 0.334 - 0.712 0.746 0.286 0.909

SVM
T 0.941 0.885 - 0.998 0.941 0.857 0.957 0.612 0.465 - 0.760 0.632 0.619 0.635

V 0.811 0.647 - 0.975 0.864 0.786 0.889 0.484 0.287 - 0.681 0.780 0.214 0.977

KNN
T 0.96 0.931 - 0.989 0.824 1.000 0.791 0.802 0.735 - 0.870 0.559 1.000 0.478

V 0.700 0.535 - 0.865 0.847 0.357 1.000 0.417 0.253 - 0.582 0.763 0.071 1.000

LightGBM
T 0.955 0.922 - 0.988 0.868 0.952 0.852 0.752 0.642 - 0.862 0.713 0.667 0.761

V 0.851 0.715 - 0.986 0.915 0.643 1.000 0.513 0.339 - 0.688 0.661 0.286 0.814

MLP
T 0.930 0.877 - 0.984 0.809 0.905 0.791 0.597 0.440 - 0.753 0.779 0.429 0.843

V 0.816 0.667 - 0.965 0.847 0.643 0.911 0.521 0.330 - 0.711 0.746 0.286 0.909
fro
ML, machine learning; DS, data set; PET, positron emission tomography; CT, computed tomography; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE,
Specificity; LR, logistic regression; T, training cohort; V, internal validation cohort; NB, Naive Bayes; SVM, support vector machine; KNN, k-nearest neighbors; lightGBM, light gradient boosting
machine; MLP, multilayer perceptron neural network.
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infection is more common in SCC, while HPV-18 and HPV-45 are

more frequently observed in AC (27, 28). Priego-Hernández et al.

discovered that cervical cancer and HPV-16-positive cell lines have

increased expression of HIF-1a and glucose metabolism-related genes

(GLUT1, LDHA, CAIX, MCT4, and BSG) (29). Furthermore, there

are significant variations in the expression of glucose metabolism-

related genes between SCC and AC (30). Choi et al. demonstrated that

tumor FDG uptake is associated with glucose transporters (Glut-1 and

Glut-3), with SCC exhibiting higher expression intensity and

proportion of Glut-1 compared to AC. Consequently, SCC

demonstrates higher SUVmax and stronger FDG uptake capacity

(31). Small dependence emphasis (SDE) from GLDM and small area

low gray level emphasis (SALGLE) from GLSZM represent tumor

heterogeneity, with higher values indicating more significant

heterogeneity. In our study, GLDM_SDE and GLSZM_SALGLE

features were significantly higher in SCC compared to AC,

indicating that the intratumoral metabolic heterogeneity based on

PET imaging in SCC is significantly higher than that in AC. This may

be related to the previously mentioned metabolic and

histomorphological differences between SCC and AC. The tissue

structure of SCC is tight, with small gaps between tumor cells,

wrapped in several matrix structures, forming cancer nests. In

contrast, the tissue structure of AC is more loose, characterized by

glandular differentiation. Therefore, the differential expression of

pathogenic molecular mechanisms, especially glucose metabolism

genes, determines the metabolic differences of tumor cells, while cell

arrangement and tissue morphology determine the spatial

heterogeneity of tumor cells. The tumor heterogeneity revealed by

PET images manifests these metabolic differences and spatial

heterogeneity of tumor cells. These findings require further

validation with a larger-scale patient or in combination

with pathomics.

In this study, we employed six ML algorithms to develop

models for distinguishing SCC and AC. Among the algorithms,

the radiomics model constructed by the LightGBM algorithm

exhibited excellent differentiation performance, accuracy,

sensitivity, and specificity with a relatively balanced performance.

This finding is consistent with a similar study conducted by Lam

et al., who investigated the correlation between radiomics features
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and tumor mutation burden in glioma based on MRI images using

LR, SVM, and six other ML algorithms (32). They found that the

radiomics model constructed by the LightGBM algorithm also

demonstrated the best discriminative performance with relatively

balanced sensitivity and specificity. Furthermore, researchers have

successfully achieved good discriminative performance in

distinguishing low-grade and high-grade meningiomas using the

LightGBM algorithm for both radiomics and deep learning models

(33). Similarly, Chang et al. constructed LightGBM and

convolutional neural network (CNN) models based on

noncontrast CT and enhanced images to differentiate thymic

epithelial tumors from other anterior mediastinal tumors (34).

The results demonstrated that the LightGBM model

outperformed the CNN model in both the noncontrast CT

dataset and the enhanced CT dataset. The LightGBM algorithm,

which is based on the gradient boosting decision tree model,

optimizes the search for optimal split points and the tree growth

process. It supports efficient parallel training and possesses

advantages such as faster training speed, lower memory

consumption, better accuracy, and quick processing of massive

data, making it widely applicable. Therefore, ML can better handle

complex nonlinear relationships in large-scale datasets and holds

great potential for clinical applications (35). However, it is

important to acknowledge that ML models and algorithms also

have limitations, including overfitting and lack of interpretability.

Overfitting can undermine predictive performance, while the lack of

interpretability can hinder the use of ML (36). Hence, it is essential

to prioritize the future optimization of ML algorithms and conduct

independent validations to verify their performance.

There were several limitations in this study. Firstly, it was a

retrospective and preliminary study, carrying a potential selection

bias despite the use of strict inclusion and exclusion criteria. Secondly,

HPV status and histological differentiation were not available for

some patients when retrieving the electronic medical record system,

and we were unable to further explore their impact on pathological

subtypes. Lastly, the sample size of AC in this study is relatively small,

but this is consistent with the epidemiology of cervical cancer. To

improve the generalizability of the model, it is necessary to investigate

a larger sample size from multiple centers in future research.
FIGURE 7

The receiver operating characteristic (ROC) curves of all three radiomics models were used to differentiate pathological subtypes in the training
cohort (A), internal validation cohort (B), and external validation cohort (C).
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5 Conclusion

The lightGBM-based PET radiomics model effectively identified

pathological subtypes in patients with locally advanced cervical

cancer and may help clinicians in their daily decision-

making process.
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