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Editorial on the Research Topic
Artificial intelligence and imaging for oncology

Introduction

Recent advancements in artificial intelligence (AI) and imaging technologies have
significantly transformed the diagnostic and therapeutic landscapes of oncology (1-3).
Cutting-edge imaging modalities, such as CT, PET, US, and MRI, are being increasingly
utilized for tumor imaging (4-7), with emerging interdisciplinary fields like MR-LINAC
gaining considerable traction (8, 9). This accelerating convergence of imaging and therapy
in oncology highlights the urgent need to further explore the role of AI and imaging across
various oncology specialties, including radiation therapy, to enhance cancer care. In
response to this need, the topic titled “Artificial Intelligence and Imaging in Oncology”
has been proposed, bringing together 19 contributions from 149 authors/experts in the
field. These contributions delve into the potential of AT and imaging in tumor diagnosis and
treatment, explore emerging Al-driven models for oncology diagnosis and prediction, and
highlight the extraction of quantitative features from medical images to predict tumor
behavior, therapy response, and patient prognosis.

Al and imaging in tumor diagnosis and treatment

Al is revolutionizing cancer diagnosis and treatment by enhancing the accuracy and
efficiency of medical image analysis. By analyzing medical images like CT scans, MRIs, and
X-rays, AI algorithms can detect tumors earlier, differentiate between benign and
malignant growths, and assist in treatment planning and monitoring.

Shao et al. demonstrated the potential of radiomics-based nomograms in enhancing the
diagnostic capabilities of CT imaging. By extracting quantitative features from CT images,
these nomograms can more accurately differentiate between conditions like intravenous
leiomyomatosis and uterine leiomyoma, offering a significant clinical advantage over
traditional CT image interpretation.

Zeng et al. explored the potential of fusing multimodal imaging with ultrasound to
enhance the accuracy of interventional diagnostic procedures. By integrating machine
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learning techniques, they demonstrated the clinical utility of this
approach in guiding percutaneous biopsies of liver and adjacent
organs, leading to improved diagnostic success rates.

Yu et al. showed that UNet based deep learning models when
applied to positional CT and CBCT images and extracted radiomics
features show clinical significance of CBCT images. The work
showed that dice coefficient results of CBCT are within 85% of
the results of pCT for rectal cancer imaging. CBCT images are
frequently utilized on radiation treatment modalities.

Yang et al. explored the potential of combining ultrasound
imaging with radiomics analysis to differentiate small clear cell renal
cell carcinoma (ccRCC) from renal angiomyolipoma (RAML). By
developing and validating models that incorporate both clinical and
radiomic features, the study seeks to enhance diagnostic accuracy
and support more precise treatment decisions for patients with
small renal tumors. The findings suggest that this innovative
approach could significantly improve the clinical utility of
ultrasound in managing renal neoplasms.

Wen et al. explored an innovative approach to differentiate
benign from malignant head and neck tumors using synthetic MRI
in conjunction with FSE-PROPELLER DWI. In their study, the
authors employed both synthetic MRI and FSE-PROPELLER
diffusion-weighted imaging (DWI) to investigate the characteristics
of malignant and benign head and neck tumors. The study involved
48 subjects, who were retrospectively classified into malignant and
benign groups. The results were promising, demonstrating that both
synthetic MRI and FSE-PROPELLER DWTI can quantitatively
distinguish malignant from benign tumors based on T2 and ADC
values. Notably, combining T2 and ADC values provided improved
accuracy in tumor differentiation.

Liu et al. focused on the differential diagnosis of two common
adrenal tumors that are often misdiagnosed in clinical practice.
Their research utilized radiomics techniques, enhancing diagnostic
accuracy without the need for enhanced CT scans.

Haghshomar et al. reviewed recent advancements in
the application of artificial intelligence (AI) in liver oncology
imaging. They specifically highlighted the evolution of
manual radiomic techniques and the increasing use of deep
learning-based representations for more accurate assessments. They
demonstrated radiomics, a framework that complements
conventional radiological interpretation, has emerged as a powerful
tool for extracting and quantifying texture characteristics derived
from tumor heterogeneity.

Emerging Al-driven models for
oncology diagnosis and prediction

Emerging Al-driven models are revolutionizing oncology by
enabling earlier and more accurate cancer diagnosis. By analyzing
vast amounts of medical data, these models can identify subtle
patterns and predict disease progression, leading to more
personalized and effective treatment plans.

Xie et. al., conducted a study to establish this deep learning
(DL) driven Artificial intelligence (AI) system for predicting
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malignant STTs based on US images and clinical indexes of the
patients. The Al system could extract more morphological features
of the system and heatmaps of images for classifying malignant
soft tissue tumors. The system utilized a ResNet based architect on
both grey scale and color ultrasound images for tumor feature
extraction. The model can assist clinicians in diagnosing soft
tissue tumors.

Ullah et al. studied brain tumor on MRI images diligently
incorporating linear stretching in contrast enhancement and data
augmented images fed to variants of efficient Net and Inception
ResNet. The study utilized bayesian optimization on their deep
learning process and showed an accuracy improvement over limited
clinical dataset for brain tumor classification. The study showed
that cubic SVM can increase accuracy by 0.5% over a bilayered
neural network.

Wang et al. studied performance of MAMIL Net by histologic
features in predicting breast cancer in sentinel lymph node,
differentiating lung adenocarcinoma from squamous cell
carcinoma, and predicting therapeutic response of high-grade
ovarian serous carcinoma by retrospective case series. They found
that MAMILNet performed excellent for lung cancer, good for
breast cancer and fair for ovarian cancer based on AUC and
accuracy values, suggesting that this learning framework has the
potential in disease diagnosis and prognosis.

Li et al. developed PI-YOLO, a novel deep learning model
designed for automated blood vessel detection in pathology images.
This model effectively addresses the challenges posed by complex
backgrounds, small targets, and dense distributions in these images.
By incorporating the BiFormer attention mechanism, PI-YOLO
efficiently captures long-range dependencies and reduces
computational costs. Additionally, the use of GSConv convolution
further enhances the model’s performance by reducing parameters
and improving inference speed. The results demonstrate that PI-
YOLO achieves a significant mAP of 87.48%, outperforming
existing methods. This advancement in automated blood vessel
detection holds significant medical value, particularly in the field of
anti-tumor vascular therapy research. Figure 1 showed a typical
network framework including four main components: Input,
Backbone, Neck, and Prediction.

Krishnapriya and Karuna performed a study to show that deep
learning-based YOLO architecture can predict bounding boxes for
prediction and have added enhancements compared to its peers for
analogous inference tasks. The grab cut algorithm assisted
segmentation is likely to improve dice coefficients by 0.1 in the
presented dataset and is worth exploring in brain tumor
detection pipelines.

Awais et al. presented a novel decision support system for
identifying acute lymphoblastic leukemia (ALL). By combining
techniques like neighborhood pixel transformation, transfer
learning from deep neural networks, and a customized binary
Grey Wolf Algorithm for feature optimization, the system
achieves outstanding accuracy in both binary and subtype
classification of ALL. This approach holds great promise in aiding
medical professionals in the early and precise diagnosis of this
aggressive leukemia, leading to better patient outcomes.
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the dataset.

Houssein et al. investigated a new and efficient deep learning
technique for classifying white blood cells (WBCs) in blood smear
images, crucial for diagnosing leukemia. Leveraging DenseNet-161
and optimizing the training process with cyclical learning rates, the
method achieves exceptional accuracy in classifying various WBC
types, surpassing current state-of-the-art techniques. This
innovative approach has great potential to aid medical
professionals in the early and accurate diagnosis of leukemia,
ultimately improving patient outcomes.

Radiomics and radiogenomics for
predicting tumor behavior, treatment
response, and patient outcomes

Radiomics and radiogenomics are emerging fields that extract
quantitative features from medical images to predict tumor
behavior, treatment response, and patient outcomes. By analyzing
these features, clinicians can make more informed decisions about
treatment strategies and monitor disease progression.

Lan et. al, Radiomics has shown promising applicability in
cancer prediction, especially in recurrence. Lan et al. utilized ROIs
delineated on CT images for extracting over 1100 radiomic features.
To incorporate post-surgical data they used ten features based on
relevance. This work shows employing clinical data over imaging
parameters can be effectively used for predicting stage 1 lung
adenocarcinoma prediction.

Mao et al. explored a novel radiomic nomogram that effectively
differentiates parotid pleomorphic adenoma (PA) from
adenolymphoma (AL) using grayscale ultrasonography. By
combining advanced image analysis techniques with machine
learning algorithms, this non-invasive nomogram provides a
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highly accurate method for distinguishing between these two
common parotid gland tumors. This innovative approach has the
potential to greatly enhance diagnostic precision and guide more
effective treatment planning for patients with parotid gland lesions.

Liu et al., demonstrated the potential of radiomics-based
machine learning models using 18F-FDG PET/CT imaging data
to distinguish between adenocarcinoma and squamous cell
carcinoma in cervical cancer. By extracting and analyzing
numerous quantitative features from medical images, these
models offer valuable insights into tumor biology and assist in
personalized treatment planning. The study highlights the
promising role of radiomics in improving the diagnosis and
management of cervical cancer.

Hu et al. introduced an innovative approach for predicting
microvascular invasion (MVI) in hepatocellular carcinoma (HCC),
a critical factor influencing the disease’s aggressiveness. By
integrating MRI imaging data with microRNA analysis, the
researchers developed a radiogenomics nomogram that
significantly outperforms existing models. This tool offers a
promising path for more accurate risk assessment and
personalized treatment strategies for HCC patients. With its high
sensitivity and specificity, the nomogram shows great potential in
improving clinical decision-making and enhancing
patient outcomes.

Hu et al, explored a novel approach to testicular tumor
diagnosis using computed tomography (CT) texture analysis
(CTTA). This technique involves analyzing the texture patterns
within CT images to identify subtle differences between benign and
malignant tumors. By extracting specific texture features,
researchers were able to develop machine learning models that
can accurately classify tumors with high precision. One of the most
promising findings of this study is the ability of CTTA to
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differentiate between primary testicular lymphoma and other
malignant tumors. This distinction is particularly important as it
can influence treatment strategies. Additionally, CTTA can help
identify seminoma, the most common type of testicular germ cell
tumor, from other types of germ cell tumors.

Summary

This Research Topic explores the transformative role of artificial
intelligence (AI) and imaging advancements in oncology, focusing on
how these technologies are reshaping the field. The articles highlight
the growing integration of Al and imaging across various oncology
specialties, demonstrating their potential to revolutionize cancer
diagnosis, treatment planning, and prognostication. By leveraging
cutting-edge imaging modalities, such as CT, PET, US, and MR],
along with Al-driven models, these innovations are improving the
accuracy of tumor detection, enabling personalized treatment
strategies, and predicting patient outcomes with greater precision.
The Research Topic emphasizes the need for continued research and
development in these areas, with the promise of enhancing patient
care and outcomes across diverse cancer types.
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A contrast-enhanced CT-based
radiomic nomogram for the
differential diagnosis of
Intravenous leiomyomatosis
and uterine leiomyoma
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College, Chinese Academy of Medical Science, Beijing, China, ?Plastic Surgery Hospital, Chinese
Academy of Medical Science, Peking Union Medical College, Beijing, China, *Eight-year Program of
Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese
Academy of Medical Sciences, Beijing, China, “National Clinical Research Center for Obstetric &
Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College
Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China, *State
Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy
of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China,
¢Peking Union Medical College, MD Program, Beijing, China

Objective: Uterine intravenous leiomyomatosis (IVL) is a rare and unique
leiomyoma that is difficult to surgery due to its ability to extend into intra- and
extra-uterine vasculature. And it is difficult to differentiate from uterine
leiomyoma (LM) by conventional CT scanning, which results in a large number
of missed diagnoses. This study aimed to evaluate the utility of a contrast-
enhanced CT-based radiomic nomogram for preoperative differentiation of IVL
and LM.

Methods: 124 patients (37 IVL and 87 LM) were retrospectively enrolled in the
study. Radiomic features were extracted from contrast-enhanced CT before
surgery. Clinical, radiomic, and combined models were developed using
LightGBM (Light Gradient Boosting Machine) algorithm to differentiate IVL and
LM. The clinical and radiomic signatures were integrated into a nomogram. The
diagnostic performance of the models was evaluated using the area under the
curve (AUC) and decision curve analysis (DCA).

Results: Clinical factors, such as symptoms, menopausal status, age, and
selected imaging features, were found to have significant correlations with the
differential diagnosis of IVL and LM. A total of 108 radiomic features were
extracted from contrast-enhanced CT images and selected for analysis. 29
radiomics features were selected to establish the Rad-score. A clinical model
was developed to discriminate IVL and LM (AUC=0.826). Radiomic models were
used to effectively differentiate IVL and LM (AUC=0.980). This radiological
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nomogram combined the Rad-score with independent clinical factors showed
better differentiation efficiency than the clinical model (AUC=0.985, p=0.046).

Conclusion: This study provides evidence for the utility of a radiomic nomogram
integrating clinical and radiomic signatures for differentiating IVL and LM with
improved diagnostic accuracy. The nomogram may be useful in clinical decision-
making and provide recommendations for clinical treatment.

KEYWORDS

intravenous leiomyomatosis, contrast-enhanced CT, radiomics, preoperative
differential, nomogram

1 Introduction

Intravenous leiomyomatosis (IVL) is a rare benign type of
uterine leiomyoma. Although histologically benign, it can spread
to the extrauterine venous system or even the heart and pulmonary
arterial system (1, 2). The current information on IVL mainly
comes from case reports and case series, and its clinical presentation
is nonspecific and may lead to right heart obstruction, pulmonary
embolism and even sudden death (3). The development of IVL is
insidious, and the clinical symptoms and pathological imaging
features lack specificity and can cause serious consequences,
especially in patients presenting with cardiac symptoms.

In addition, the pathological presentation of IVL is the same as
that of common uterine leiomyoma (LM), and it may be difficult for
pathologists to distinguish it from LM in patients with primary LM
combined with IVL, especially if the lesions are confined to the
uterus without invasion of the extrauterine veins. Some patients
were only diagnosed with IVL after a previous hysterectomy to
remove a primary uterine tumor. Pathological tissue findings of
invasion of the parauterine veins may be a marker for IVL
diagnosis. As a result, IVL is often underestimated due to the ease
of misdiagnosis and the lack of specific identifying biomarkers.

The imaging presentation of IVL depends on the location and
extent of its involvement. Typical imaging methods for the diagnosis
of IVL include ultrasonography, computed tomography (CT) and
magnetic resonance imaging (MRI). When a mass is confined to the
pelvis, it is difficult to completely distinguish between IVL and LM on
the basis of traditional radiology alone unless it has invaded the
extrauterine vessels and is growing invasively (4). Radiomics refers to
quantitative methods of extracting image features from conventional

Abbreviations: AUC, Area under the curve; BMI, Body mass index; CT,
Computed tomography; DCA, Decision curve analysis; ER, Estrogen receptor;
ICC, Intraclass correlation coefficient; IVC, Inferior vena cava; IVL, Intravenous
leiomyomatosis; LASSO, Least absolute shrinkage and selection operator; LM,
Uterine leiomyoma; MRI, Magnetic resonance imaging, NPV, Negative
predictive value; PR, Progesterone receptor; PPV, Positive predictive value;
PUMCH, Peking Union Medical College Hospital; Rad-score, Radiomics score;
RA, Right atrium; ROC, Receiver operating characteristic; ROI, Region

of interest.
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radiographic images and analyzing the data to create models with
features to aid in diagnosis, prediction and prognosis (5). Previous
studies have demonstrated the value of radiomic features as imaging
predictors that can be used to treat and diagnose various types of
tumors (6). A study applied a radiomic model generated from
features extracted from the region of interest covering the uterus
with good diagnostic performance for uterine sarcomas and
leiomyomas (7). However, no research has been performed to
determine whether contrast-enhanced CT-based radiomics can be
used to differentiate IVL and LM.

Therefore, this study aimed to use radiomics features extracted
from clinically acquired abdominal pelvic CT scans to predict
whether LM patients have IVL features prior to treatment.

2 Materials and methods
2.1 Patients

The Peking Union Medical College Hospital (PUMCH) ethics
committee approved the study and waived informed consent from
the patients (No. JS-2964). We reviewed the PUMCH surgical
database. Patients who underwent gynecologic surgery between
January 2011 and December 2020 were pathologically confirmed
to have IVL. The inclusion criteria were as follows: 1) surgically and
pathologically confirmed IVL or LM; 2) abdominal pelvic contrast-
enhanced CT within the 20 days prior to gynecologic surgery; and
3) no relevant treatment prior to CT examination. The exclusion
criteria were as follows: 1) no pathological findings, 2) poor image
quality or significant image artifacts affecting the visualization, 3)
incomplete clinical data, 4) intravascular leiomyosarcoma. 5) and a
lack of CT images. Patients with uterine LM were matched to those
who underwent surgery for uterine neoplasms by BMI, risk factors,
and CT tube voltage. Ultimately, CT results from 124 patients (37
IVL and 87 LM) were included in the study. Figure 1 shows the flow
chart of patient enrollment.

2.2 CT scan protocol

Patients who underwent contrast-enhanced CT examinations of
the abdomen and pelvis were examined using GE Discovery CT (GE
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Medical, Piscataway, NJ, USA) or Somatom Definition Flash CT
(Siemens Medical Solutions, Germany). All patients underwent
thin-slice image scanning using a soft tissue algorithm, and CT
images were obtained for the arterial (30 seconds postinjection),
venous (60 seconds postinjection), and delayed (120 seconds
postinjection) phases. The scanning parameters were as follows:
tube voltage, 120 kV with automatic tube current modulation
initiated; collimation, Somatom Definition Flash CT 128 x
0.6 mm, GE Discovery CT 64 x 0.6 mm; slice thickness, 0.625-
1 mm; slice interval, 0.625-1 mm.

2.3 Image segmentation

The target of image segmentation is the intrauterine mass.
When there were multiple masses in the uterus, the largest mass
was chosen as the region of interest (ROI). Image segmentation was
performed independently by two radiologists with extensive
experience in gynecologic tumor imaging diagnosis. They were
blinded to the patients’ histopathology. One of the radiologists
(radiologist A, with 7 years of experience in diagnostic imaging of
gynecologic tumors) manually drew the ROI slice by slice using the
open-source software 3D Slicer 4.11.0 (https://www.slicer.org/) (8).
Another radiologist (radiologist B, with 10 years of experience in
diagnostic imaging of gynecologic tumors) reviewed all ROIs
manually segmented by radiologist A.

2.4 Data preprocessing

The dataset was randomly assigned in a 3:1 ratio to either the
training dataset or test dataset. All cases in the training dataset were
used to train the predictive model, while cases in the test dataset
were used to independently evaluate the model’s performance.
Medical volumes are common with heterogeneous voxel spacing
because of different scanners or different acquisition protocols. Such
spacing refers to the physical distance between two pixels in an
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image. Spatial normalization is often employed to reduce the effect
of voxel spacing variation. The fixed resolution resampling method
was used in our experiment to handle the aforementioned
problems. All images were resampled to a voxel size of 3*3*3 mm
to standardize the voxel spacing. Finally, the data were standardized
using z score standardization (zero-mean normalization).

2.5 Radiomics feature extraction

The handcrafted features can be divided into three groups: (I)
geometry, (II) intensity and (III) texture. The geometric features
describe the three-dimensional shape characteristics of the tumor.
The intensity features describe the first-order statistical distribution
of the voxel intensities within the tumor. The texture features
describe the patterns or the second- and high-order spatial
distributions of the intensities. Here, the texture features were
extracted using several different methods, including the gray-level
cooccurrence matrix (GLCM), gray-level run length matrix
(GLRLM), gray level size zone matrix (GLSZM) and
neighborhood gray-tone difference matrix (NGTDM) methods. A
total of 107 categories of handcrafted features were extracted,
including 18 geometry features, 14 intensity features, and 75
texture features. All handcrafted features were extracted with an
in-house feature analysis program implemented using Pyradiomics
(http://pyradiomics.readthedocs.io).

2.6 Radiomics feature selection

2.6.1 Intraclass correlation coefficient

First, the robustness of the image features was evaluated. As the
feature calculation depends on the ROI subregion contours, image
features that are robust against ROI segmentation uncertainties
were selected. Here, both test-retest analysis and interrater analysis
were used to determine the feature robustness. Based on 35 patients
randomly chosen from the discovery dataset, the test-retest analysis
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was performed, where for each patient, the tumor subregions were
segmented twice by one rater. The dataset used for interrater
analysis included another 35 randomly chosen patients, where for
each patient, the ROI subregions were segmented by two raters
independently. The features extracted from these multiple-
segmented subregions were assessed using the intraclass
correlation coefficient (ICC). Features with an ICC of > 0.85 were
considered robust against intra- and interrater uncertainties.

Pipeline of radiomics in Figure 2.

2.6.2 Spearman correlation

For features with high repeatability, Spearman’s rank
correlation coefficient was also used to calculate the correlation
between features (Supplementary Figure 1 Spearman correlation of
each feature), and one of the features with a correlation coefficient
greater than 0.9 between any two features was retained. To retain
the ability to depict features to the greatest extent, we use a stringent
recursive deletion strategy for feature filtering; that is, the feature
with the greatest redundancy in the current set is deleted each time.

2.6.3 LASSO and radiomics signature

The least absolute shrinkage and selection operator (LASSO)
Cox regression model was used on the discovery dataset for
signature construction. Depending on the regulation weight A,
LASSO shrinks all regression coefficients toward zero and sets the
coefficients of many irrelevant features exactly to zero. To find an

A ROI Segmentation B Feature Extraction

WIN W (>

WIN [N (-
PP Wk W
Wl [ww(N
WIN [P

Texture

Histogram

FIGURE 2

10.3389/fonc.2023.1239124

optimal A, 10-fold cross validation with minimum criteria was
employed, where the final value of A yielded the minimum cross
validation error (Figure 3). The retained features with nonzero
coefficients were used for regression model fitting and combined
into a radiomics signature. Subsequently, we obtained a radiomics
score (Rad-score) for each patient by a linear combination of
retained features weighed by their model coefficients. The Python
scikit-learn package was used for LASSO regression modeling. The
histogram of the Rad-score is shown in Figure 3.

2.7 Clinical factor model construction

Age, body mass index (BMI), weight, height, symptoms,
reproductive history, menopausal history, estrogen receptor (ER)
status, progesterone receptor (PR) status, and diabetes were selected
as clinical factors for the IVL and LM groups and analyzed for
differences between groups. The selected clinical factors were fed
into the LightGBM model for clinical signature building.

2.8 Radiomics model construction

After Lasso feature screening, we input the final features into the
LightGBM model for risk model construction. Here, we adopt 3-
fold cross verification to obtain the final radiomics signature.

c Feature Selection D Prediction

Lasso

MSE
Nomogram
= e I = -
S =L
—
----- —
—
—
-
.
' -
-
—
——
Coefficient DCA

[llustration of the study pipeline. (A), Intrauterine masses were segmented from contrast-enhanced CT as ROIs. (B), From the ROI, 107 radiomics
features were extracted, including geometry, intensity and texture. (C), LASSO was used to select features, and Spearman’s rank correlation
coefficient was used to calculate the correlation between features. (D), Using the selected features, models were constructed to differentiate IVL and
UM. ROI, regions of interest; LASSO, Least absolute shrinkage and selection operator; MSE, mean squared error; ROC, receiver operating

characteristic curve. DCA, Decision Curve Analysis.
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Figures of logistic LASSO regression. (A), Lasso path plot of the model in the training dataset. (B), Cross-validation plot for the penalty term. (C),
Spearman correlation coefficients between features were calculated, and 27 features with correlations were retained.

Receiver operating characteristic (ROC) curves were plotted to
assess the diagnostic performance of the predictive models, and
the corresponding area under the curve (AUC), diagnostic
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) were analyzed.

2.9 Construction of the nomogram

Furthermore, to assess the incremental prognostic value of the
radiomics signature to the clinical risk factors intuitively and
efficiently, a radiomics nomogram was presented on the
validation dataset. The nomogram combined the radiomics
signature and the clinical risk factors based on logistic regression
analysis. To compare the agreement between the IVL prediction of
the nomogram and the actual observation, the calibration curve
(Hosmer—Lemeshow H test) was calculated. The AUC was
calculated simultaneously for the training and test groups to
quantify the discriminability of the nomogram. The
discriminability of the model was tested using the Delong test.
Finally, decision curve analysis (DCA) was used to assess the clinical
utility of this nomogram by quantifying the net benefit of the
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training and test sets of the combined model at different
threshold probabilities.

2.10 Statistical analysis

The Python statamodels (version 0.13.2) package was used to
perform statistical analysis, and a p value < 0.05 was considered
statistically significant. We analyzed the differences between the IVL
and uterine LM groups using Student’s t test or Mann—Whitney U
tests for continuous variables; the chi-square test or Fisher’s exact
test was applied for categorical variables.

3 Results
3.1 Patient characteristics

A total of 124 patients, including 37 IVL and 87 LM patients,
were included in our study. Patients were divided into a training set

(82 patients) and an independent test set (42 patients) based on
treatment duration. A pathologist reviewed the pathological data.
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All patients underwent surgical treatment; there were 18 (48.6%)
patients with IVL and 44 (50.6%) patients with LM in the training
group and 19 (51.4%) patients with IVL and 43 (49.4%) patients
with LM in the test group. The characteristics of the patients in the
cohort are shown in Table 1. Table 1 summarizes the patients’
baseline characteristics and postoperative pathological findings in
the training and validation sets. The comparison of BMI, weight,
height, ER, PR, diabetes, and fertility history showed no significant
difference between the two groups and within each group (p>0.05),
ensuring a reasonable classification. Significant differences between
the cohorts were found in symptoms, menopause history, age, mass
size, hypertension, and history of surgery (p<0.05).

3.2 Feature selection and radiomics
signature development

Features with an ICC of > 0.85 were considered robust against
intra- and interrater uncertainties. After robustness evaluation, 62
categories out of the initial 108 image features remained. Spearman
correlation coefficients between features were calculated, and features
with correlations were retained (Supplementary Table 1). As shown in
Figure 3, 29 features of nonzero coefficients were selected to establish
the Rad-score with a LASSO logistic regression model (A = 0.005429).
The formula used to calculate the Rad-score is described in the
Supplementary Materials (Supplementary Table 1).

3.3 Clinical factor model

Analysis of differences between groups showed that symptoms,
menopausal history, and age were independent clinical risk factors
for IVL (Table 1). A clinical signature was composed of three factors
selected, namely, symptoms, menopausal history, and age. In the
training group, the AUC value of the radiomics model was 0.865

TABLE 1 Demographic and clinical characteristics of study populations.

10.3389/fonc.2023.1239124

(95% CI 0.786-0.944); in the test group, the AUC value of the model
was 0.826 (95% CI of 0.669-0.983) (Table 2, Figure 4A).

3.4 Diagnostic performance of
radiomics features

Our results show that the radiomics features have good
predictive performance for both the training and test sets. The
AUCG: of the radiomics model were significantly larger than those of
the clinical model in both the training dataset (AUC=0.998 95% CI:
0.995-1.000) and the validation dataset (AUC=0.98; 95% CI: 0.936-
1.000) (Table 2, Figure 4A).

3.5 Combined models and
radiomics nomogram

A combined model was developed by integrating the Rad-score
and clinical predictors. A good performance was shown for the
combined nomogram model in both the training dataset (AUC =
0.999 95% CI: 0.998-1.000) and the validation dataset (AUC =
0.985; 95% CI: 0.951-1.000) (Table 2, Figure 4A). The diagnostic
accuracy, sensitivity, specificity, PPV, NPV, precision and recall of
the three models are also demonstrated in Table 2.

The calibration curve showed that the IVL predicted by the
combined model was very close to the actual results in both datasets
(Figure 4B). The DCA also revealed the improvement in the
combined model in both datasets (Figure 4C). This showed that
when the threshold probability was between 1% and 99%, the
combined model was more beneficial than the Rad-score and
clinical models.

We also developed a nomogram to visualize the model for the
combination (Figure 5). In the nomogram, points for each variable
can be added to the corresponding axis to determine the risk of IVL.
A higher total score is associated with a greater risk of IVL.

Characteristic Total (n=124) IVL (n=37) UM (n=87)

Age 46.51 + 8.17 43.32 % 8.09 47.87 + 7.86 0.004
BMI 24.01 + 3.95 25.01 + 3.03 23.59 + 422 0.069
Weight (kg) 61.45 + 10.93 63.82 + 8.87 60.43 + 11.59 0.114
height (cm) 159.89 + 5.27 159.68 + 4.94 159.98 + 5.43 0.768
Symptoms 68 (0.5484) 35 (0.9459) 33 (0.3793) <0.001
Reproductive history 114 (0.9194) 34 (0.9189) 80 (0.9195) 0.991
menopause 40 (0.3226) 5(0.1351) 35 (0.4023) 0.003
ER- Positive 100 (0.8065) 33 (0.8919) 67 (0.7701) 0.118
PR- Positive 123 (0.9919) 36 (0.9730) 87 (1.0000) 0.126
Hypertension 28 (0.2258) 4(0.1081) 24 (0.2759) 0.041
Diabetes 17 (0.1371) 5 (0.1351) 12 (0.1379) 0.967

BMI, body mass index; ER, estrogen receptor; PR, progesterone receptor.
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According to the DeLong test, the AUCs of the nomogram-based
models in the training and test sets were significantly different from
those of the clinical model (P=0.046) (Supplementary Table 2).
Therefore, we found that the nomogram method performed well on
both sets of data. Furthermore, the Hosmer—Lemeshow test showed no
statistically significant difference between the training and testing
subsets (p>0.05) (Table 3).

4 Discussion

In this retrospective study, we constructed for the first time a
comprehensive model incorporating the Rad-score, symptoms,
menopausal history and age and established a preoperative
distinction between IVL and LM based on contrast-enhanced
CT images.

The combined model consisting of radiomic features and
clinical factors exhibited the best discriminatory ability and fit,
indicating a good diagnostic performance. The AUC values of the
model were 0.999 and 0.985 in the training and test
groups, respectively.

LM is the most common uterine neoplasm in gynecology, with a
prevalence of up to 20-30% in women of childbearing age. It has
typical imaging features and clinical manifestations, and the
radiological diagnosis of classic LM is definitive (9, 10).
Occasionally, however, LM with rare growth patterns occurs,
mostly in women of reproductive age, and IVL is one type of LM
with an unusual growth pattern that presents as serpentine growth
within the inferior vena cava (IVC) and genital veins and may
spread to the right atrium (RA), making its identification clinically
and radiologically more challenging (4). Worldwide, fewer than 300
cases of IVL and fewer than 100 cases of cardiac involvement have
been reported. The imaging features of IVL are unclear and are
often misdiagnosed preoperatively. It is mostly evaluated clinically
using multimodal imaging techniques such as echocardiography,
contrast-enhanced CT and MRI, which can provide important
information revealing the extent and location of the mass and are
used to determine surgical options (11). Echocardiography can
assess the extension of the tumor into the RA, and CT and MRI
can show the continuity of intraluminal tumor growth from the
pelvic veins. It has been suggested that MRI is a particularly valuable
imaging technique for the preoperative evaluation of IVL, which in
the inferior vena cava looks similar to a sieve on axial images and to
a sponge on T2-weighted images with several fissures parallel to the
IVL, which may lead to turbulent blood flow (12-15). However,
MRI has poor spatial resolution and is time-consuming and
unsuitable for patients with metal in their bodies. Enhanced CT
can produce multilevel enhanced CT data in a short period, directly
displaying the full extent of the tumor, with a sponge and sieve
appearance similar to MRI (16). In addition, the combined scan of
the chest, abdomen and pelvis can clearly show the changes in the
uterus and the extent of tumor invasion (17, 18). According to
previous reports in the literature, radiologists are prone to
misdiagnose IVL located in the venous system or RA as an
occupying lesion, mainly leiomyosarcoma, RA myxoma,
endometrial stromal sarcoma, and intravenous thrombosis (19,
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Results of the LightGBM models: (A), Receiver operator characteristic curves of the 3 LightGBM models for identifying patients with IVL and uterine
LM in the training and test datasets. (B), The calibration curve of the 3 models. (C), The decision curve analysis (DCA) of the three models of the

training and test datasets.

20). However, these patients usually do not have a history of LM. It
is almost impossible for radiologists to distinguish IVL confined to
parauterine veins without distant venous system invasion, and in
the early stages, LM is difficult to distinguish completely from IVL
clinically and radiologically.

Previous studies did not find significant differences between IVL
and LM in terms of histomorphology and immunophenotype, such
as both expressing ER and PR and smooth muscle cell markers, and
no elevated proliferation index or nuclear division number was
found, suggesting that both have more of the same intrinsic
molecular basis. Our data and recent reports suggest that IVL
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accounts for approximately 1% of LM surgical specimens and its
incidence is increasing. Some providers have an inadequate
understanding of IVL, therefore, there are more missed diagnoses
and its incidence is seriously underestimated (21-23). Some
scholars compared the transcriptomic data of IVL and LM and
found that antiapoptosis and angiogenesis-related genes may be
novel biomarkers of IVL, indicating that IVL is very different from
LM on a molecular and genetic basis. Further analysis of their gene
expression profiles revealed that IVL and LM share some molecular
genetic features and that IVL has a similar expression profile to
leiomyosarcoma, further supporting that IVL has a quasi-malignant
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Nomograph based on the combined model.

behavior and is not a distinct variant of LM (24, 25). However, these
molecular genetic features are not independent predictors, and
although they are associated with the occurrence of IVL, they do
not distinguish IVL from LM.

By extracting high-dimensional imaging features from different
modality images and mining the data, radiomics can be used for
molecular typing of tumors, differential diagnosis, treatment option
selection, efficacy detection and prognosis assessment (6).

These high-dimensional features are indistinguishable by the
human eye and contain biological information determined by
genes, proteins and tissue microcomponents, which radiomics can
measure (26, 27). A radiomic model with features extracted from a
ROI containing the whole uterus was shown to have good
diagnostic performance for uterine fibroids and uterine sarcomas
with an AUC of 0.83 (7). Some studies have used radiomic features
to distinguish uterine sarcomas from atypical fibroids, showing
better diagnostic efficacy than MRI features alone. Radiologists
achieved an AUC of 0.752 for MRI-based diagnostic efficacy, and
the radiomic model achieved an AUC of 0.830 (28). One study
established an MRI-based radiomic nomogram for detecting deep
myometrial invasion in early-stage endometrioid adenocarcinoma,
showing superior diagnostic accuracy to radiologists, with an AUC
of 0.883 (29). This suggests that radiomic methods can better
predict and differentiate the type of uterine tumors compared to
traditional clinical features. However, there are no relevant
radiomic studies to better differentiate and distinguish uterine
smooth muscle tumors with unusual growth patterns, which are
often rare and require multiple imaging techniques to aid in the
differential diagnosis.

In our study, the nomogram was constructed using the
Radscore and contrast-enhanced CT with radiological methods.
The Radscore is described as the probability of principal component
analysis calculated from the radiomic signature, which is
constructed based on sixteen selective radiomic features. The
AUCs for predicting the radiomic features of IVL were 0.998
(training group) and 0.980 (test group). Nomograms constructed
from radiological and clinical features show good discrimination

TABLE 3 Hosmer-Lemeshow test.

Clinic Signature Rad Signature Nomogram
UM 0.099372 0.598583 0.046526
VL 0.459798 0913913 0560273

Hosmer-Lemeshow test showed no statistically significant difference between the training and
testing subsets (p>0.05)
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between IVL and LM. The AUC values of the training and test
groups were 0.999 (95% CI: 0.998-1.000) and 0.985 (95% CI: 0.951-
1.000), respectively. The results showed that the nomogram
effectively predicted IVL in both the training and validation
groups, exceeding the predictive accuracy of the radiomics and
clinical models. The decision curve suggests that patients could
benefit more from using the radiological nomogram in this study if
they have a threshold probability of 1% to 99%. The combined
model has better predictive performance than clinical factors or
radiological features alone. The model is clear, simple, and easy to
understand, which makes it more suitable for clinical application.

In the analysis of clinical factors between the IVL and LM
groups, there were significant differences in age, symptoms, and
menopausal history, so we introduced these factors into the clinical
model and they demonstrated some predictive capacity. IVL often
has no specific symptoms before causing cardiac insufficiency, and
its clinical manifestations are usually related to the scope and size of
the tumor (25). In clinical practice, we have found that IVL
extending to the extrauterine venous system often accompanies
large pelvic LM and causes related symptoms. However, only a tiny
percentage of LMs develop at unusual locations beyond the uterus.
All IVL cases occur in women, and the literature reports that the
mean age of onset is 47 years; 90% are premenopausal, and 64%
have uterine fibroids or a history of hysterectomy (30). The mean
age of the cases in this group was 43.3 years; patients with a history
of menopause in IVL were significantly younger than those in the
LM group, which is similar to the literature.

This study still has some limitations. First, the sample size was
relatively small, and it was a single-center study because the study
population was a rare disease. Second, this study was retrospective,
which may lead to patient selection bias. Third, manual ROI
segmentation has inherent inter- and intra-observer differences.
Fourth, we only built a radiomic model based on enhanced CT
without using other imaging, so it is impossible to gage the quality
of each image. In the future, we will include more patients and make
further technical improvements, such as fully automated image
segmentation, deep learning and multiparametric modeling, to
explore more accurate radiological diagnoses.

5 Conclusion

In conclusion, our study confirmed that a radiomics nomogram
model and radiomics signature based on contrast-enhanced CT can
help differentiate between IVL and LM patients and predict whether

frontiersin.org


https://doi.org/10.3389/fonc.2023.1239124
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shao et al.

IVL will invade the extrauterine vessels when it is still confined to
the uterus to guide clinical treatment.
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Background: The examination, counting, and classification of white blood cells
(WBCs), also known as leukocytes, are essential processes in the diagnosis of
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many disorders, including leukemia, a kind of blood cancer characterized by the
uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone.
Blood smears can be chemically or microscopically studied to better understand
hematological diseases and blood disorders. Detecting, identifying, and
categorizing the many blood cell types are essential for disease diagnosis and
therapy planning. A theoretical and practical issue. However, methods based on
deep learning (DL) have greatly helped blood cell classification.

Materials and Methods: Images of blood cells in a microscopic smear were
collected from GitHub, a public source that uses the MIT license. An end-to-end
computer-aided diagnosis (CAD) system for leukocytes has been created and
implemented as part of this study. The introduced system comprises image
preprocessing and enhancement, image segmentation, feature extraction and
selection, and WBC classification. By combining the DenseNet-161 and the
cyclical learning rate (CLR), we contribute an approach that speeds up
hyperparameter optimization. We also offer the one-cycle technique to rapidly
optimize all hyperparameters of DL models to boost training performance.

Results: The dataset has been split into two sets: approximately 80% of the data
(9,966 images) for the training set and 20% (2,487 images) for the validation set.
The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte,
and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and
2,499, respectively. The suggested method has 100% accuracy on the training
set of images and 99.8% accuracy on the testing set.
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Conclusion: Using a combination of the recently developed pretrained
convolutional neural network (CNN), DenseNet, and the one fit cycle policy,
this study describes a technique of training for the classification of WBCs for
leukemia detection. The proposed method is more accurate compared to the

state of the art.
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leukemia, leukocytes, DenseNet, transfer learning, cyclical learning rate

1 Introduction

Medical images are a massive data source for the healthcare
sector. With developments in imaging technology and processing
capabilities, the demand for increasingly complex tools to interpret
images has developed. More accurate image analysis will save
healthcare costs and improve the quality of diagnosis, ultimately
leading to better patient outcomes. Anemia, leukemia, and malaria
are just a few of the blood disorders that can be detected with
improved pathologists’ ability to recognize, count, and classify
blood cells (1-3). Improved understanding will facilitate
treatment, reduce potentially dangerous drug interactions, and
facilitate health monitoring. The three types of cells that make up
human blood are the erythrocytes (red blood cells), leukocytes
(white blood cells (WBCs)), and thrombocytes (platelets). All three
are derived from lymphoid and bone marrow stem cells.
Erythrocytes, which are non-nucleated biconcave diskettes,
transport both carbon dioxide (CO,) and oxygen (O,) around the
body. Blood is composed of roughly 40%-45% red blood cells and
1% WBCs (4-6). Organs in the body rely on each of the three types
of blood cells for specific tasks. Nevertheless, WBCs are made in the
bone marrow and are a crucial part of the blood’s immune system.
The immune system is the body’s primary line of defense against
invaders, most notably pathogens, and is mostly the work of
WBCs (7).

Thrombocytes, often known as platelets, are smaller than
erythrocytes and lack a nucleus. Giemsa staining produces a vivid
purple tint in platelets (8). Platelets are crucial to the body’s clotting
process, which guards against bacterial invasion and keeps the body
from bleeding out continuously following injuries (9). Leukocytes
may be divided into five major types based on a variety of
characteristics, including cell size, nucleus shape, type of nucleus
lobes, granule cytoplasm-to-nucleus ratio (CNR) staining qualities,
and function.

Lymphocytes, monocytes, neutrophils, eosinophils, and
basophils are the five most common types of WBCs. Another
thing is the band identification for a certain nucleus shape.
Figure 1 illustrates several common types of leukocytes. A
decrease in leukocytes below the threshold is medically referred to
as leukopenia. It is evidence of the frailty of the immune system and
a potential reason for disease.
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Leukocyte counts can be low for one of two major reasons:
either the bone marrow has ceased producing leukocytes or an
infection is present and causing cells to be destroyed more quickly
than they can be replaced. Leukocytosis, a proliferative condition, is
characterized by a rise of leukocytes over the upper limit, which is
typically an indication of an inflammatory reaction. It occasionally
takes place because of normal immunological responses.
Nonetheless, if the neoplasm has an abnormally high or low cell
count, or if autoimmunity causes immunological reactions, it will be
classified as abnormal. Leukocyte disorders can also be classified in
this fashion (10) based on the nature and function of affected cells.
Hematologists can discover a great deal about blood diseases such as
anemia, bleeding disorders, leukemia, and HIV positivity from a
complete blood count (CBC) and differential blood count (DBC).
The CBC can be performed automatically by a cytometer as blood
flows past the detector, with parameters including hematocrit and
hemoglobin measured (11). DBC, which may count the different
types of leukocytes in peripheral blood, was previously performed
by a blood pathologist physically inspecting blood smears under a
light microscope. Nonetheless, this process is sensitive, and it is
essential that there be no (or just very few) inspection errors made
by the human professional. However, after several hours of
examination, specialists might often feel exhausted and make false
identifications of the various WBCs. This can happen rather
frequently (3, 12). As a result of the development of both
theoretical and practical applications for the technology that is
available today, several different methods of blood analysis that are
either fully or partially automated and are based on the image
analysis of blood smears or the principles of flow cytochemistry
have been developed. Image processing and artificial intelligence
(AI) (13) have lately been used to develop several new methods that
researchers have designed to automate the leukocyte classification
process. Within the scope of this investigation, a fully automated
computer-aided diagnosis (CAD) system of leukocytes has been
developed and implemented. The proposed CAD system includes
four primary stages, which are the image preprocessing and
enhancement stage, the image segmentation stage, the feature
extraction and selection stage, and the WBC classification stage.

The medical imaging industry makes extensive use of the
recently developed and powerful pretrained convolutional neural
network (CNN) DenseNet-161. However, compared to other
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The main types of leukocytes cell images. Lymphocytes, Monocytes, Neutrophils, Eosinophils, and basophils are the five most common types of

white blood cells. Each type has a certain nucleus shape.

pretrained CNNs, it has a high processing time and cannot
generalize. Thus, we are exploring the one cycle policy (14, 15), a
technique used to shorten training time while simultaneously
enhancing performance and tuning all hyperparameters of deep
learning (DL) models (15, 16). As can be shown in Figure 2, a
cyclical learning rate (CLR) can produce better training results than
the default learning rate (LR).

In contrast to blood cell segmentation algorithms that rely on
watershed segmentation, this article presents a segmentation
algorithm that uses Bounded Opening followed by Fast Radial
Symmetry (BO-FRS)-based seed-point detection and hybrid
Ellipse Fitting (EF)-based contour estimation. These methods
accurately extract seed points and precisely segment overlapping
cells, even from low-contrast inhomogeneous visual features. This
makes the method suitable for complex blood cell segmentation
problems. The proposed Least Squares (LS)-based geometric ellipse
fitting approach leads to better accuracy (ACC) and more
localization compared to algebraic Ellipse Fitting Methods
(EFMs), which are prone to biased fitting parameters and
inaccurate boundaries. The proposed method combines the
benefits of geometric and algebraic EFMs and is computationally
efficient. It also solves the noise problem with an Laplacian of
Gaussian (LoG)-based modified high-boosting operation and
avoids oversegmentation. This approach can also be applied to
other medical applications such as MRI, CT, ultrasound, and X-ray
images, as well as cybernetic applications and the segmentation of
overlapping objects. Notably, the proposed algorithm does not
require training data, making it more suitable than DL-based
techniques when little or no data are available for training (17).

The following is a list of the contributions that were made to
bring attention to the significance of the work that we will
be presenting:

08

0.2
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FIGURE 2
Accuracy achieved with one cycle of training against the
conventional method of training Convolutional Neural Networks
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¢ We present an improved, lightweight, and effective CAD
system that can automatically classify four types of
leukocytes (neutrophils, eosinophils, lymphocytes, and
monocytes), which is a significant contribution to the
field of medical image analysis.

*  We investigate the potential of DenseNet-161 pretrained
CNN for the suggested CAD system, which is a modern
approach to developing the system.

* The authors train the DenseNet efficiently with a single
cycle policy, cutting down on epochs and iterations, and
thereby making use of big datasets. This is a significant
contribution to the field of DL, as it demonstrates a more
efficient approach to training CNNGs.

* The proposed model is tested experimentally on a variety of
real-world datasets, which is a significant contribution to
the field of medical image analysis, as it demonstrates the
effectiveness of the model on a range of different datasets.

* The results of the study show that the proposed model
outperforms the gold standard classification model, which
is a significant contribution to the field of medical image
analysis.

* The achieved ACC in categorization is approximately
99.8%, which is a significant contribution to the field of
medical image analysis, as it demonstrates the high ACC of
the proposed model.

The sections of this paper are as follows: Section 2 (Literature
Review) details the related work. In Section 3 (Materials and
Methods), we provide some the datasets and methods utilized for
the proposed model. The analysis and results of the experiments are
presented in Section 5 (Results and Discussion). In the end, the
paper was concluded in Section 6 (Conclusion).

2 Literature review

Many attempts at automatically segmenting, categorizing, and
analyzing leukocytes have been published. The automatic analysis
of medical images such as microscopic blood smears has attracted
the attention of many researchers. Numerous scientists have argued
for employing machine learning (ML) and Al to automatically
detect and diagnose abnormalities in microscopic images of
leukocytes. CAD of leukocytes can be broken down into two
categories: those that use ML (18) and those that use DL (19).
Both ML and DL are described and summarized here. Table 1
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TABLE 1 Overview of research using DL techniques for leukocyte classification or segmentation.

Author Method Accuracy Dataset Data volume
Maryam et al. (20) Optimized CNN 99% BCCD 12,444
Bani-Hani et al. (21) GA-optimized CNN 91% BCCD 12,435
Liang et al. (22) Hybrid CNN-RNN 90.80% BCCD 12,444
Rao (23) CNN and ResNeXt 99.24% BCCD 12,444
Rao (24) ANN and CNN 97.70% BCCD 1,600

Baydilli, and Atila (25) Capsul Networks 96.90% LISC 263

Ghosh and Bhattacharya (26) CNN and FCN on noise-free cell images 98.40% BCCD 12,500
Wang et al. (27) Single Shot Multibox Detector and YOLO 90.09% Private database 11,600
Ma et al. (28) DC-GAN, and ResNet 91.70% BCCD 12,447
banik et al. (29) CNN 96% BCCD 12,811
Sahlool et al. (30) VGGNet, CNN, and SESSA 83.20% C-NMC 10,661
Proposed model DenseNet with Cyclical Learning Rate 99.80% BCCD 12,447

CNN, Convolutional Neural Network; GA, Genetic Algorithms; ANN, Artificial Neural Network; FCN, Fully Connected Network.

provides a summary of DL-based methods and serves to contrast
our proposed work with the state-of-the-art DL-based methods.
Table 1 summarizes the current state of the field and the limitations
of each technique based on recent studies that employed DL
algorithms to identify abnormalities in leukocytes. The most
noteworthy aspects of the new system are highlighted in the table
together with the results of the performance evaluation in terms
of ACC.

The following studies represent leukocyte diagnosis research
that has been conducted using classical ML. Sanei et al. (14) have
utilized the Bayesian classifier for the classification of leukocytes.
They have split the blood microscopic image into three sections.
Instead of relying on the image’s geometric or physical properties,
they used a Bayesian classifier to isolate the Eigen cells. Decisions
were based on the relative density of various colors. First, the input
photographs were rescanned, segmented, and rotated, and the three
vectors representing intensity and color were identified. Leukocyte
images from 10 patients were employed by Sarrafzadeh et al. (31),
who trained a support vector machine (SVM) using a set of
parameters that includes six geometrical qualities, six color
attributes, six statistical features, and seven-moment invariances
(invariants). The classifier reported an ACC rate of over 93%.
Leukocyte borders in images are defined manually to reduce the
impact of segmentation errors. The cytoplasm and nucleus of
leukocytes were separately identified by the Fuzzy C-means
clustering method. Thereafter, the cytoplasm, nucleus, and other
components of the cell that are of interest are removed Ko et al. (32)
used SVMs to classify the 480 blood smear images into training and
testing sets. They claimed that random forest performed better than
multilayer SVM when it came to classification. In a previous work,
the snake algorithm has been utilized to divide leukocytes. They
used the shape, color, and texture of the image as criteria for
classification. Gaussian normalization was then utilized to
transform the feature vectors from 0 to 1 after feature extraction
(32). Ramoser et al. employed SVM to automatically grade
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leukocytes. The study of 1,166 images split into 13 categories
found that segmentation was performed with 95% ACC (94/100)
and classification was performed with 75%-90% ACC. In their
study, Theera-Umpon and Dhompongsa (33) analyzed if it was
possible to classify leukocytes using only data from their nuclei. To
prevent segmentation errors from affecting the results of the
investigations, the cell nuclei were removed manually. Bayes
classifiers and CNNs were used for classification. They
determined that the information obtained from cell nucleus 100
was adequate because their classification was correct 77% of the
time. WBC subtype detection by flow cytometry was proposed by
Adjouadi et al. Parametric datasets were analyzed in a
multidimensional space using SVMs (34). To classify WBCs,
Rodrigues et al. created a two-stage artificial neural network. To
reduce the 106 problems, they first employed the Back Propagation
Neural Network (BPNN) for preclassification and then presented a
hybrid model based on the SVM and the pulse-coupled neural
network (PCNN). As a result, they looked for ways to lessen the
negative effects (35).

Both Otsu’s automated thresholding methodology and the
image enhancement and arithmetic strategy were proposed by
Joshi et al. for separating leukocytes from red blood cells. The K
Nearest Neighbor (K-NN) classifier was used to separate blast cells
from typical lymphocyte cells. Their ACC was determined to be
93% based on the results of the tests (36). Image processing
methods were used by Tantikitti et al. (37) for classifying WBCs,
extracting features from edges, changing colors, and fragmenting
images. Patients with dengue virus infections were sorted using a
decision tree analysis. The results showed that a total of 167 cell
shots were able to accurately classify leukocytes (92.2% ACC) and
that 264 blood cell photos correctly classified dengue (72.3%). One
hundred fifteen images were used by Hiremath et al. (38) as input
parameters for Al-based algorithms that categorized WBCs based
on their color, texture, and geometric properties. Histogram
equalization, edge extraction, and threshold-based automatic
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segmentation for lymphocytes, monocytes, and neutrophils are the
focus of that study. Several images of blood smears were used in the
trials, with geometric features of the images being utilized in
the classification process. Habibzadeh et al. (39) employed the
shape, density, and texture of microscopic images of blood to
classify and count leukocytes. The parameters of the SVM
classifier were the wavelet characteristics that were generated for
the classification process using the dual-tree complex wavelet
transform (DT-CWT) approach.

Ramesh et al. (40) proposed a simple classification method that
incorporates morphological characteristics and color data. As the
first step in a two-stage classification process, leukocyte cell nuclei
and leukocyte boundaries have been meticulously established. The
second stage involved applying the linear discriminant analysis
method to implement the features found in the cytoplasm and
nucleus of leukocytes. In another study, Su et al. (41) classified
leukocytes into five distinct groups, each with its own set of
distinguishing features. In this location, they aimed to use
morphological mechanisms to segment the elliptical nuclei and
cytoplasm of leukocytes. These photo chunks were mined for
geometric elements, color characteristics, and texture qualities
based on LDP (local directional pattern) and then used to train
three distinct neural networks. For the testing, they used 450 images
of leukocytes, and the highest identification ACC was 99.11%.

The microscopic analysis of blood cells is crucial for the early
diagnosis of life-threatening hematological disorders such as
leukemia. This paper presents an effective and computationally
efficient approach for automatically detecting and classifying acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).
Das et al. (42) proposed an approach that uses transfer learning,
which has been successful in medical image analysis due to its
excellent performance in small databases. The proposed system
employs a lightweight transfer learning-based feature extraction
followed by SVM-based classification technique for efficient ALL
and AML detection. The system is faster and more efficient due to
the depthwise separable convolution, tunable multiplier, and
inverted residual bottleneck structure. Moreover, the SVM-based
classification technique improves the overall performance by
optimizing the hyperplane location. The experimental results
demonstrate that the proposed system outperforms others in all
three publicly available standard databases, including ALLIDBI,
ALLIDB2, and ASH.

Breast cancer is a leading cause of cancer-related deaths among
women worldwide, and early detection is crucial for successful
treatment. In this work, the authors have developed five new deep
hybrid CNN-based frameworks for breast cancer detection. Sahu
et al. (43) proposed that hybrid schemes exhibit better performance
than the respective base classifiers by combining the benefits of both
networks. A probability-based weight factor and threshold value are
essential for efficient hybridization. An experimentally selected
optimum threshold value makes the system faster and more
accurate. Notably, unlike traditional DL methods, the proposed
framework yields excellent performance even with small datasets.
The proposed scheme is validated with datasets of breast cancer:
mini-DDSM (mammogram), BUSI, and BUS2 (ultrasound). The
experimental results demonstrate the superiority of the proposed
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ShuffleNet-ResNet scheme over the current state-of-the-art
methods in all of the mentioned datasets. Moreover, the proposed
scheme achieves high ACC rates of 99.17% and 98.00% for
abnormality and malignancy detection in mini-DDSM,
respectively, and 96.52% and 93.18% for abnormality and
malignancy detection in BUSI, respectively. In BUS2, the
proposed scheme delivers 98.13% ACC for malignancy detection.

Sahu et al. (44) introduce a breast cancer detection framework
based on DL that utilizes EfficientNet to achieve high performance
even in cases of small databases. The framework incorporates
uniform and adaptive scaling of depth, width, and resolution to
ensure an optimal balance between classification performance and
computational cost. Furthermore, a Laplacian of Gaussian-based
modified high boosting (LoGMHB) is employed as a preprocessing
step, along with data augmentation, to enhance the system’s
performance. The study evaluated the proposed method on
mammogram and ultrasound modalities and demonstrated its
superiority over other methods in all performance measures. The
experimental results were obtained using 5-fold cross-validation
and showed promising results for automatic and accurate detection
of breast cancer at an early stage, which could lead to proper
treatment and greatly reduce mortality rates.

The early detection of leukemia is crucial for proper treatment
planning and improving patient outcomes. Microscopic analysis of
WBCs is a cost-effective and less painful approach for detecting
leukemia. However, automatic detection of leukemia using DL and
ML techniques is a challenging task. Das et al. (45) present a
systematic review of recent advancements in DL- and ML-based
ALL detection. The review categorizes various Al-based ALL
detection approaches into signal and image processing-based
techniques, conventional ML-based techniques, and DL-based
techniques, including supervised and unsupervised ML and CNN,
recurrent neural network (RNN), and autoencoder-based
classification methods. Furthermore, the review categorizes CNN-
based classification schemes into conventional CNN, transfer
learning, and other advancements. The article provides a critical
analysis of recent research, discussing the merits and demerits of the
different approaches and highlighting the challenges and future
research directions in this field. Overall, this systematic review
provides a comprehensive understanding of DL- and ML-based
ALL detection, which may assist researchers in formulating new
research problems in this domain.

Das et al. (46) propose an efficient deep convolutional neural
network (DCNN) framework for accurate diagnosis of ALL, a
challenging task. The framework features depthwise separable
convolutions, linear bottleneck architecture, inverted residual, and
skip connections. It uses a probability-based weight factor to
efficiently hybridize MobilenetV2 and ResNetl18, preserving their
benefits. The approach achieves the best ACC in ALLIDBI1 and
ALLIDB?2 datasets, with superior performance compared to transfer
learning-based techniques.

In the field of biomedical image processing, DCNNs have
received a lot of attention for various detection and classification
tasks. The outcomes of many of them are comparable to or even
superior to those of radiologists and neurologists. However, the
need for a large dataset makes using such DCNNs difficult to
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achieve decent results. Paul et al. (47) present a novel single model-
based strategy for classifying brain tumors on a short dataset. To
avoid overfitting, a modified DCNN known as the RegNetY-3.2G is
coupled with regularization DropOut and DropBlock. Additionally,
to mitigate the issue of tiny datasets, the RandAugment is an
improved augmentation technique. Last but not least, the MWNL
(Multi-Weighted New Loss).

Many studies have been introduced using DL techniques for the
classification of leukocytes because of the outstanding performance
of DL methods for the classification of medical images. The grid
search (GS) and random search (RS) hyperparameter optimization
methods were used by Hosseini et al. (20) to categorize images of
four different categories of leukocytes. ACC of 99% on the training
set and of 97% on the validation set was effectively obtained by the
given hybrid technique. Through this study (21), the authors
highlight the potential of DL, specifically CNNs, in automating
the classification of different types of WBCs based on microscopic
images. The use of CNNs allows for the detection of significant
features that help distinguish different classes of leukocytes, which
can assist hematologists in diagnosing diseases such as AIDS and
leukemia. The study applied genetic algorithms to optimize the
CNN’s hyperparameters and trained the model on a dataset
containing 9,957 images and tested it on another dataset of 2,478
images. The optimized CNN achieved high classification ACC,
sensitivity, and specificity, indicating its potential as a substitute
for manual WBC counting by pathologists. Overall, this study
demonstrates the potential of DL techniques in the field of
hematology and medical diagnosis. By automating the
classification of WBCs, it could lead to more efficient and
accurate diagnoses, ultimately improving patient outcomes. CNNs
have been presented by Liang et al. (22). This approach can help to
strengthen the explanation of input images and discover the
structured features of images, and it can also begin end-to-end
training of leukocyte images. In particular, they implemented the
transfer learning method in order to transfer the feature weights to
the CNN segment. Additionally, they implemented a configurable
loss function in order to enable the network to train and converge at
a faster rate and with more precise parameterization. The findings
of their experiments demonstrated that their proposed model for
the network has achieved an ACC of 90.8%. The optimized CNN
achieved a classification ACC of 99% on the training set, which was
91% for the validation set. In (23), Bairaboina et al. present a DL
model developed to classify mature and immature WBCs from
peripheral blood smear images. Traditional methods of manual
classification by hematologists can be laborious, expensive, and
time-consuming. The proposed model uses a combination of W-
Net, GhostNet, ResNeXt, and DCGAN-based data augmentation
techniques to achieve high ACC levels of 99.16%, 99.24%, and
98.61% for three datasets. The model has potential for clinical
application in blood cell microscopic analysis. Another a hybrid
approach of recurrent neural networks (RNNs). Leukocyte
segmentation was implemented using a network based on W-Net,
a CNN-based technique for WBC classification implemented by
Rao and Rao (24). Afterward, a DL system based on GhostNet was
used to retrieve important feature maps. Then, a ResNeXt approach
was used to classify them. The proposed method has attained an
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ACC of 99.24% on the Blood Cell Count and Detection (BCCD).
Rao and Rao (24) presented another DL-based framework for the
classification of leukocytes based on the MobilenetV3-ShufflenetV2
DL paradigm. At first, an effective Pyramid Scene Parsing Network
(PSPNet) is used to segment the images. When the images have
been segmented, the global and local features are extracted and
selected using MobilenetV3 and an Artificial Gravitational Cuckoo
Search (AGCS)-based technique. Images are then classified into five
groups using a ShufflenetV2 model. The proposed method achieves
99.19% and 99% ACC when tested on the BCCD and Raabin-Wbc
datasets. Baydilli and Atila (25) have presented a capsule deep
neural network (DNN)-based DL system for classifying leukocytes.
They have attained an ACC of 96.9% on the benchmarking dataset,
LISC. Ghosh and Bhattacharya (26) came up with two distinct
models of CNNs that improve and categorize input images of blood
cells. On the BCCD benchmarking dataset, they have achieved an
ACC of 98.4%. Wang et al. (27) have applied two unique object
detection strategies to the problem of leukocyte recognition. These
strategies are known as Single Shot Multibox Detector and You
Only Look Once (YOLO). In order to enhance the performance of
recognition, several essential elements affecting these object
detection strategies have been investigated, and detection models
have been constructed utilizing a private dataset. The level of ACC
that was achieved was 90.09%. Ma et al. (28) have come up with a new
framework for the classification of blood cell images. This framework
is built on a deep convolutional generative adversarial network (DC-
GAN) as well as a residual neural network (ResNet). They have
accomplished a level of precision on the BCCD dataset that is 91.7%
accurate. By bringing together the ideas of merging the features of the
first and last convolutional layers and propagating the input image to
the convolutional layer, Banik et al. (29) created a novel CNN model.
They additionally employed a dropout layer to mitigate the model’s
overfitting issue. On the BCCD test database, they have obtained an
average ACC of 96%. Sahlol et al. (30) have used VGGNet, a robust
CNN architecture, already trained on ImageNet, to extract features
from images of leukocytes. The statistically improved Salp Swarm
Algorithm was then used to filter the extracted features. This
optimization method takes biological principles as its inspiration,
picking the most important features while discarding those that are
excessively linked or noisy. ACC of 83.2% was attained when the
proposed method was used on the C-NMC public Leukemia
reference dataset.

3 Materials and methods
3.1 Dataset

The BCCD public dataset (25) contains 12,453 augmented
images of leukocytes in JPEG format and cell type labels in CSV
format. There are 3,120, 3,103, 3,107, and 3,123 augmented images
for each class of the four cell types of eosinophil, lymphocyte,
monocyte, and neutrophil, respectively, as compared with the 88,
33, 21, and 207 original images (Mooney, 2018). The basophil
images are removed from the dataset as that type typically makes up
less than 1% of the leukocytes. A drop of blood is placed on a glass
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slide and smeared with a spreader slide. The blood is stained with a
Romanowsky stain such as May-Gr u nwald Giemsa, Wright, or
Wright-Giemsa. Image quality, illumination, and different staining
techniques affect the outcome. The taken picture of cells is
magnified 100x and converted to standard RGB channels. The
dataset has been preprocessed, as each image was augmented and
repositioned before it is made available to the public for the input of
the CNN to avoid overfitting. The BCCD database is split into two
sets: approximately 80% of the data (9,966 images) for the training
set and 20% (2,487 images) for the validation set. The training set is
composed of 2,497, 2,483, 2,487, and 2,499 images of eosinophil,
lymphocyte, monocyte, and neutrophil, while the validation set
contains 623, 620, 620, and 624 images of eosinophil, lymphocyte,
monocyte, and neutrophil.

Neutrophils are the most numerous types of leukocytes
constituting 50%-70% of the circulating leukocytes (44). The
nucleus is relatively small and often multilobed. The stained
nucleus is dark blue, and its CNR is 2:1. They are capable of
phagocytizing viruses, toxins, fungi, and bacteria. They are the first
line of defense once microbial infection strikes.

Eosinophils compose 1%-5% of the leukocytes; however, their
counts fluctuate under different conditions (44). The cytoplasm is
pink-stained while the nucleus is purple-stained and frequently is
bilobed connected by a band of nuclear material. They protect
against parasitic infections and cancer cells. They produce
histamine as an inflammatory response to allergy-inducing
agents, damaged tissue, or pathogen invasion.

Lymphocytes constitute 20%-45% of leukocytes and are much
more common in the lymphatic system than in blood (22). They are
agranular cells with a large dark purple-stained nucleus and a
relatively small pale-colored amount of cytoplasm (38). They
create antibodies to regulate immune system responses against
bacteria, viruses, and other potentially harmful agents. The main
types of lymphocytes are T cells, B cells, and natural killer cells.

Monocytes make up approximately 2%-10% of leukocytes and
are the biggest leukocyte (22). Monocytes are granular and have a
kidney-shaped nucleus with plenty of light blue cytoplasm. They
share the phagocytic ability of neutrophils, break down bacteria,
and remove waste from the blood. They have a longer life span
compared with other leukocytes (20).

The BCCD database is augmented before becoming publicly
available on the Kaggle website because, practically, the amount of
training data is usually limited or not sufficient. Augmentation
expands the training set with artificial data so it can be used by
researchers. For the classification tasks, that means receiving a high-
dimensional input such as images and producing a related output. A
good classifier is immune to a wide-ranging variation. CNN as a
framework well-established for image data can discriminate
relevant minor features in the image while it is invariant to
unrelated large variations in the image (26). For image datasets,
augmentation can be done by modifying the images a few pixels to
improve the generalization ability and avoid overfitting. Among
available transformations are flipping, scaling, zooming, and
rotating the image in several directions. Augmentation helps
increase the correct classification rate regardless of size, position,
or degree of distortion of an image. Using random transformation
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exposes the network to more features in the data so it can generalize
better. One thing to consider when using an augmentation
approach is that one should take care of not altering the correct
class by using the wrong transformations (42, 44).

3.2 Convolutional neural network and
transfer learning

The CNN model is made up of multiple layers, including an input
layer, convolutional layers, batch normalization layers, pooling layers,
ReLU layers, Softmax layers, and one output layer. The dimensions a,
b, and ¢ of the input image make up what is known as the input layer.
The total number of channels is specified by c. The main and first
convolutional layer of the network takes in data via three separate
inputs labeled a, b, and c. The convolutional layer is the one that is
responsible for mapping out the features. The activation layer makes
use of these features, which are also put to use for visualization
purposes. Transfer learning makes use of an already trained and
reused model as the foundation for a new task and model. The model
used for one task can be repurposed for other tasks as an optimization
to improve performance. By applying transfer learning, the model
can be trained with a small volume of data. It is helpful to save time
and achieve good results. In the transfer learning approach, we
transfer knowledge from the source mammogram input images to
the target domain mammogram mass images IT. The target classifier
Tc (Mt) is to be trained from the input mammogram image Is to the
target image IT to get the classifier prediction about BMNTIi, which
stands for benign, malignant, and normal. To extract the features, a
transfer layer is used. The top layer from the classifier retrained the
new target classes, while the other layers were kept frozen as defined
in Equation 1.

BMNy; = T.(M,) (1)

3.2.1 DenseNet

DenseNets are the subsequent stage to increase the depth of
deep convolutional networks. When CNNs go deeper, the problems
arise. This happens because of the big path for information from
input to output layer. DenseNet-161 is a simple connectivity pattern
because it connects all layers directly with each other to be sure that
information flow is maximum between layers in the network. Feed
forward nature is maintained by obtaining each layer additional
inputs from the preceding layers. Figure 3 presents the architectures
of DenseNet for ImageNet. Features are combined by

concatenation. DenseNet is not as the same as traditional

L(L+1)
2

network in lieu of L. Handling problems of vanish gradient, reusing

architecture because it introduces connections in an L-layer
feature, lacking parameter’s number, and propagating features is the
most important feature of DenseNets.

3.2.2 Mathematical model of DenseNet
deep networks

DNNGs have reached state-of-the-art performance in a variety of
computer vision applications. Moreover, the interpretation of
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FIGURE 3

DenseNet architectures for ImageNet. DenseNets are broken up
into DenseBlocks, and while the dimensions of the feature maps
stay the same inside each block, the number of filters that are used
varies from one block to the next. These layers in between them are
referred to as Transition Layers.

DNN s has been examined from the perspective of visualization as
well as resilience. The groundbreaking studies that highlight the
potential of DNNs include AlexNet and VGGNet. The community’s
research focus has changed from feature engineering to network
design engineering as a direct result of the success of these key
efforts. As a result, various new network architectures have been
developed to improve the performance of DNNs. ResNets have
achieved state-of-the-art performance on a variety of benchmark
datasets, including ImageNet and the COCO detection dataset. This
was accomplished by reusing previous features in conjunction with
the identification shortcut. One of the factors that contribute to
ResNet’s phenomenally high level of popularity is its
straightforward design strategy, which includes just one identity
shortcut. The shortcomings of the identity shortcut have been
investigated in subsequent publications, despite the tremendous
success that it has enjoyed. Because the identity shortcut bypasses
the residual blocks to maintain characteristics, it is possible that the
network’s capacity for representation is diminished as a result.
The ResNet has brought about a fundamental shift in how it was
thought to parametrize the functions of DNNs. The DenseNet can be
thought of as a kind of logical extension of this. Both the connection
pattern in which each layer connects to all the preceding layers and the
concatenation operation (as opposed to the addition operations in
ResNet) to retain and reuse features of previous layer are defining
characteristics of the DenseNet architecture. Let us make a brief detour
into mathematics to comprehend how one might possibly arrive at
such a conclusion. Looking back to functions’ Taylor expansion. To
clarify, for a point y=0, it might be expressed as shown in Equation 2.
One of the most important features of ResNet is that it can break
down a function into a series of terms with progressively higher
orders. In a manner analogous to this, ResNet disassembles functions,
as demonstrated in Equation 3. In other words, the ResNet breaks
down a function f (y) into a straightforward linear component and a
complex nonlinear one. However, if we were to write down more
information than just the two components, but not necessarily add
anything new. DenseNet is one example of such a solution. Figure 4
illustrates the primary difference between ResNet (shown on the left)
and DenseNet (shown on the right) in terms of cross-layer
connections: the utilization of addition versus the utilization of
concatenation. As can be seen in Figure 4, the primary distinction
between ResNet and DenseNet is that, in the latter case, outputs are
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FIGURE 4

DenseNet vs. ResNet. The primary distinction between (A) ResNet
and (B) DenseNet is that, in the latter case, outputs are concatenated
(shown by) instead of added.

concatenated (shown by) instead of added. This is denoted by the
notation. As a consequence of this, we apply an increasingly complex
chain of functions before performing a mapping from the values it
contains, as depicted in Equation 4. The number of features is further
reduced by combining all of these functions in Multi-layer Perceptron
(MLP). The mechanics of this are straightforward; instead of adding,
we just string together the terms. DenseNet gets its name from how
packed the dependency tree between the variables gets. The last layer
in this structure has numerous connections to its predecessors.
Figure 5 depicts these complex interconnections.

, (0 (0
0 =50+ F 0wy 52y (T ) @
fO) =y+gk) 3
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3.3 The proposed CAD system for
leukocyte images

The image preprocessing and enhancement stage, the image
segmentation stage, the feature extraction and selection stage, and
the WBC classification stage are the four primary stages that are
included in the proposed CAD system. These stages are illustrated
in Figure 6, which also contains the information that is mentioned

L) £

LO)

FIGURE 5

Dense links in DenseNet. DenseNet gets its name from how packed
the dependency tree between the variables gets. The last layer in
this structure has numerous connections to its predecessors. This
figure depicts these complex interconnections.
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FIGURE 6

An automated End-to-End CAD, system of white blood cells. The image preprocessing and enhancement stage, the image segmentation stage, the
feature extraction and selection stage, and the white blood cell classification stage are the four primary stages that are included in the proposed

CAD system

in the Introduction section. In addition, the findings of this research
contribute to existing state-of-the-art models by suggesting the
implementation of a one fit cycle strategy, which makes the
process of training simpler. As a result, there is no requirement to
adjust any of the hyperparameters of the network that is being used.

3.3.1 Image preprocessing phase

In order to process the input histopathological image sample,
images are resized to 244 x 244, and training images are the only
ones that are normalized. Changing the range of intensity values for
individual pixels is the core idea behind image normalization. The
purpose of image normalization is to transform the pixel range
values into ranges that are more intuitive to the senses.

3.3.2 Image segmentation phase

Figure 7 illustrates an example for an input image with its
corresponding output image, segmented one. Color Image
Segmentation was used on the images to separate each individual
pixel using the HSV color space. The images will be segmented
using information derived from the HSV color space. HSV is an
abbreviation that stands for hue, saturation, and value as illustrated
in Figure 8.

The following Algorithm 1 is an outline of the primary steps
that are involved in the image segmentation phase:

i) First, convert the RGB image in HSV formas depicted in
Figure 6.

ii) using the color bar at the right to choose the

thresholds.

FIGURE 7

gamma_two_point_two

iii) set up the thresholds for the masks.
Lower Mask (refer to the hue channel)
Upper Mask (refer to the hue channel)
Saturation Mask (refer to the transparency
channel)
Ex: tosegment the NEUTROPHIL cell, the lower and upper
mask values that are appropriate wouldbe ©.0and 1.0
After that, the saturation threshold is decided. This
isabit tricky because youneed toconsider the colors
that are seen in the object. In this case, the values
are 0.45
iv) Create the mask by multiplying all masks of the
thresholds.
mask = upper_mask*lower_mask*saturation_mask
v)Then, multiply this mask by each value in the rgb

image.

red=dmg [ :, :, @ ]*mask
green=1dmg [ :, :, @ ]*mask
blue=dmh [ :, :, @ J*mask

i) Lastly, apply the morphology operation to remove the
noise or halls.

Algorithm 1. Image segmentation phases.

3.3.3 Feature selection and classification using
the DenseNet model

The DenseNet-161 DL model is used in the implementation of
both the feature extraction and classification stages. Adjouadi et al.
(34) developed DenseNet that had the best classification results on
the available datasets such as ImageNet. DenseNet does not use direct

segmented_img

An illustration of image before and after the segmenation phase. This is an example for an input image with its corresponding output image,

segmented one.
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Color Image Segmentation was used on the images to separate each individual pixel using the HSV color space. The images will be segmented using
information derived from the HSV color space. HSV is an abbreviation that stands for Hue, Saturation, and Value.

connections among hidden layers, but it uses dense connection to
build a model. Its construction was based on linking each to a
subsequent layer. In any layer, any important features learned are
involved within the network. Due to the extracted features, deep
network training became more efficient and the performance of the
model increased. The number of parameters has become less than
CNN because feature maps are sent directly to all subsequent layers.
The DenseNet has a very important feature, which is that it reduces
overfitting in the model because of the use of dense connections.
Training DL models with very large numbers of parameters takes
much time. More and more data and powerful GPU are required to
train these models from scratch. Transfer learning is used to
overcome the pervious problem. By using transfer learning, you are
saving time. Transfer learning is a method of machine learning in
which a model that was developed for one task can be utilized as a
foundation for a model that will be used on a different task. Learned
features are often transferable to different data. For example, a model
trained in Dataset for animal images that includes learned features
such as edges and lines can be used on other dataset using transfer
learning technique. In transfer learning, feature extractor is done by
fully connected layer after removing it from the model used.

In this study, DenseNet-161 with ImageNet is utilized; however,
the final layer, which is designated as the “completely connected”
layer, has had its number of classes reduced from 1,000 to 4. The
strategy known as one fit cycle policy is utilized to implement
DenseNet-161.

3.3.4 One fit cycle policy

It is known that training of DNN is a difficult optimization
problem. Tuning of hyperparameters such as LR is very
important. The performance of the network will be enhanced
by carefully selecting the hyperparameters for LR, momentum,
and weight decay. The traditional approach involves running
a grid or random search, which can be time-consuming and
computationally intensive. The impacts of these hyperparameters
are also closely related to the architecture, the data, and each
other. This section provides more effective guidelines for
selecting certain hyperparameters (27). A small LR leads to
very slow training, while a large LR hinders the convergence. A
low LR is good, but it takes a long time to train perfectly. When
training speed is increased, LR is increased until LR gets too large
and diverge. To obtain the exact LR, you need to do many
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experiments and be patient. A new method was discovered by
Leslie N. Smith for setting up LR named CLRs. CLR made LR
values between minimum and maximum range instead of having
fixed values during the training. CLR cycle has two steps, one of
them being an increase in LR and the other one being a decrease
in LR. CLR eliminates the need to find the optimal LR but the
optimal rate between minimum and maximum range. Figure 9
shows classification ACC while training CIFAR-10. The red curve
is CLR. As depicted in Figure 9, the CLR achieves the same ACC
as the original LR but in iteration less than the original LR
method (15). In Leslie N. Smith’s research (48), super-
convergence is the method that uses CLR, but with one cycle
that contains two LR steps. The total number of iterations must
be larger than the size of the cycle. After completing the cycle,
LR is decreased much further for the remaining iterations.
Leslie N. Smith named this method one fit cycle policy. In
super-convergence, LR starts from a small value and is
increased to a very large value then returns to a value lower
than its initial one. The impact of LR many values is a training
ACC curve. In super-convergence, training ACC is moved fast as
LR is increased (15, 44), becomes oscillated as LR is very large,
and then jumps again to an extreme point of ACC.

To utilize CLR, one must provide a step size and minimum and
maximum LR bounds. A cycle consists of two such steps, one in
which the LR linearly grows from the lowest to the maximum and the
other in which it progressively falls. The step size is the number of
iterations (or epochs) utilized for each step. Smith (2015) explored a
variety of methods for varying the LR between the two boundary
values, discovered that they were all equivalent, and thus advised the

---Original learning rate

---Exponential ]

—CLR (our approach)
0] 1 2 3 4 5 6 7
Iteration x10%

FIGURE 9
CLR method and original learning rate.
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most straightforward method—Iletting the LR change linearly—even
though suggested discrete jumps and found similar outcomes (28).

Training for the LR range test begins with a modest LR and
gradually rises linearly over the course of a pretraining run.
This single run offers useful insight into the maximal LR and
how well the network can be taught over a variety of LRs. The
network starts to converge at a low LR, and as the LR rises, it
finally reaches an unmanageable size, which lowers ACC and
increases test/validation loss. By using a constant LR, a smaller
number is required since otherwise the network will not start to
converge. The LR at these extrema is the highest value that can
be utilized as the LR for the maximum bound with CLRs. The
minimal LR constraint can be chosen in a variety of ways: 1) by
a factor of 3 or 4 less than the maximum bound, 2) by a factor of
10 or 20 less than the maximum bound if only one cycle is used,
or 3) by a quick test of hundreds of iterations with a few initial
LRs and choosing the largest one that permits convergence to
start without overfitting. If the initial LR is too large, the
training will not start to converge. Be aware that the LR can
only rise to a certain point before the training becomes
unstable. This affects your decision about the lowest and
maximum LRs (i.e., raise the step size to widen the gap
between the minimum and maximum).

4 Results and discussion

The experiments are applied on a BCCD public dataset. Our
studies were carried out on it with the help of Google Colab. The
evaluation criteria are used to evaluate the performance of
classification model, including image test ACC, Macro-Fl1,
Micro-F1, and Kappa criteria, and average time. Macro-F1
takes the average of the precision and recall of each class.
ACC is defined by the ratio of Ncor (the number of correctly
classified images in testing set) to Nall (Total number of images
in testing set). Equation 5 defines the image test ACC. Precision
is calculated as the sum of true positives across all classes
divided by the sum of true positives and false positives across
all classes. Recall is calculated as the sum of true positives across
all classes divided by the sum of true positives and false
negatives across all classes. Equation 6 defines Micro-F1.
Kappa measure, based on confusion matrix calculation, can
handle problems such as imbalanced datasets and multiclass
problems. Precision is defined by Equation 7, and it means the
percentage of your results that are relevant. On the other hand,
recall as described by Equation 8 refers to the percentage of
total relevant results correctly classified by your algorithm.
Equation 9 defines Kappa coefficient, where p, is the image
test ACC as defined in Equation 5, and p, is the summation of
the product of the number of images in each type of cancer and
the predicted number of images in each type of cancer to the
square of the total number of images in the testing set.

N
Accuracy(ACC) = cor

(5)

all
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2X(precision x recall)
(precision + recall)

(6)

F1 —score =

Sum c in C TruePositives _c

Precision =
Sum c in C (TruePositives _c + FalsePositives _c)
(7)
Sum c in C TruePositives _c
Recall = - — :
Sum cin C (TruePositives_c + FalseNegatives_c)

(8)

5. NtrueXNpre
Kappa = K¢, po = 525> pe = 2 NoueXNpre

NaiXNay

4.1 Classification results

The next subsection discusses the classification result on the
BCCD dataset based on the default one fit cycle policy approach.
The experimental result is applied on a raw dataset. Moreover, the
results of our research experiments are compared with the results of
other researchers. The experiments are performed over a desktop
computer system having an Intel Core i7-7700 CPU, 16 GB RAM,
and one 8-GB GPU. This research used DenseNet-161 to perform
the classification of microscopic images into neutrophils,
eosinophils, lymphocytes, and monocytes by using a pretrained
model in terms of ACC, F1, AUC, and Kappa. Our experimental
result of multiclassification problem on raw data is shown in Table 1
according to ACC, Macro-F1, Micro-F1 and Kappa. We ran the raw
data on 30 epochs. All classification results are given in Tables 2, 3.
The loss curves are shown in Figure 10, and the confusion matrices
are shown in Figure 11.

The experimental results in Table 3 show that all evaluation
metrics on 40x magnification factor (which is indicated by the black

TABLE 2 The result of each evaluation is on raw data.

Network Criteria Result Average Time
DenseNet-161 Accuracy (ACC) 0.985 ‘ 430 h
TABLE 3 Precision, Recall, and Fl-score for raw data.
Criteria Types precision recall = fl-score
Eosinophil 1.00 1.00 1.00
Lymphocyte 1.00 1.00 1.00
Monocyte 0.80 1.00 0.89
Neutrophil 1.00 0.98 0.99
accuracy - - - 0.99
macro avg - 0.95 0.99 0.99
weighted avg - 0.99 0.99 0.99
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Loss curve. How well a model matches its training data is measured
by the validation loss (Orange curve), whereas how well it performs
on novel data is measured by the training loss (Blue curve).
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Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm's results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.

underline) are better than the other magnification factors. The reason
for 40x achieving the best ACC is because it contains more significant
features of breast cancer. From Table 3, precision, recall, and F1-score
values show that our model classification result is perfect.

TABLE 4 A comparison between research results and the state of the art.
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Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm'’s results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.

The receiver operating characteristic (ROC) metric is used to
evaluate the output quality. ROC is a probability curve, while AUC,
area under the curve, is a metric for assessing how well two groups
may be distinguished. It reveals the extent to which the model can
differentiate between categories. If the AUC is high, then the model
is very good at predicting the correct classes. The AUC value (see in
Figure 12) for class 0 and class 1 is 1.00 and for class 2 and class 3 is
0.99. Ideally, the ROC for the false positive rate should be zero and
one for the true positive rate.

4.2 Comparisons with other models

This section compares our experimental results with the other
experiments carried out by other research papers on raw data and
augmented data. We evaluated the ACC of the newly introduced
method to that of the most recent and cutting-edge classification
frameworks for leukocyte histology by using the BCCD database. As a
consequence of this, we were in a position to evaluate the significance
of the hybrid DenseNet and CLR approach. The differences between
the suggested method and the state-of-the-art methods that are

Criteria Author Methods Result
Maryam et al. (20) Optimized CNN 99%
Bani-Hani et al. (21) GA-optimized CNN 91%
Liang et al. (22) Hybrid CNN-RNN 90.8%
Rao (23) CNN and ResNeXt 99.24%
Accuracy (ACC) Rao (24) ANN and CNN 97.7%
Ghosh and Bhattacharya (25) CNN and FCN on noise-free cell images 98.4%
Ma et al. (26) DC-GAN, and ResNet 91.7%
Banik et al. (27) CNN 96%
Proposed model DenseNet-161 with CLR Approach 99.8%
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currently in use are outlined in Table 4. To facilitate this comparison,
ACC was utilized as a performance metric.

DenseNet with the CLR approach, the suggested classification
framework, outperforms the DL systems established by Bani-Hani
et al. (40), Liang et al. (22), Paul et al. (47), Bairaboina and Battula
(23), Rao and Rao (24), and Banik et al. (29) when applied to the
BCCD dataset. In addition to this, it has accomplished a level of
ACC that is on par with that which Habibzadeh et al. (39), Rao and
Rao (24), and Ghosh and Bhattacharya (26) have accomplished.

In general, it can be deduced from the comparison in Table 4
that the suggested system is capable of recording a performance that
is better than that of all other systems.

From the experimental results applied on raw and augmented data,
Tables 2—4 show that the evaluation criteria-specified ACC achieved the
best results by applying a new method in training called one fit cycle
policy and with small number of batches and the fewest number of
epochs. When we have trained the CNN using 32 batch size and 60
epoch, we did not attain high performance. On the contrary, we use 32
batch sizes and 30 epochs on raw data, and this helped us to reduce the
time of training and achieve better ACC than the other research.

5 Conclusions

Using a combination of the recently developed pretrained CNN,
DenseNet, and the one fit cycle policy, this study describes a
technique of training for the classification of WBCs. The
proposed method is more accurate and requires less cycles to
train CNN—thanks to the one fit cycle policy. It fixes how
difficult it is to adjust the DL model’s hyperparameters.
DenseNet-161 was used in the experiment, and the results are
analyzed in terms of various performance indicators. ACC,
precision, and recall are presented as indicators of the suggested
model’s efficacy. We solved the multiclass classification problem
with a raw data ACC of 99.8%. As a result, the outcomes of our
experiments are more reliable than those obtained in the existing
state of the art for the classification of WBCs. In the future work, the
proposed model can be applied to diagnosis-specific diseases such
as cancer and liver disease.
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benign head and neck tumors:
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Yong Zhang™ and Jingliang Cheng™

‘Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, ?MR
Research China, GE Healthcare, Beijing, China

Background: Preoperative classification of head and neck (HN) tumors remains
challenging, especially distinguishing early cancerogenic masses from benign
lesions. Synthetic MRI offers a new way for quantitative analysis of tumors. The
present study investigated the application of synthetic MRI and stimulus and fast
spin echo diffusion-weighted imaging with periodically rotated overlapping
parallel lines with enhanced reconstruction (FSE-PROPELLER DWI) to
differentiate malignant from benign HN tumors.

Materials and methods: Forty-eight patients with pathologically confirmed HN
tumors were retrospectively recruited between August 2022 and October 2022.
The patients were divided into malignant (n = 28) and benign (n = 20) groups. All
patients were scanned using synthetic MRl and FSE-PROPELLER DWI. T1, T2, and
proton density (PD) values were acquired on the synthetic MRl and ADC values
on the FSE-PROPELLER DWI.

Results: Benign tumors (ADC: 2.03 + 0.31 X 1073 mm?/s, T1: 1741.13 + 662.64 ms,
T2: 157.43 + 72.23 ms) showed higher ADC, T1, and T2 values compared to
malignant tumors (ADC: 1.46 + 0.37 x 1073 mm?/s, T1: 1390.06 + 241.09 ms, T2:
97.64 + 14.91 ms) (all P<0.05), while no differences were seen for PD values. ROC
analysis showed that T2+ADC (cut-off value, > 0.55; AUC, 0.950) had optimal
diagnostic performance vs. T1 (cut-off value, < 1675.84 ms; AUC, 0.698), T2 (cut-
off value, < 113.24 ms; AUC, 0.855) and PD (cut off value, > 80.67 pu; AUC, 0.568)
alone in differentiating malignant from benign lesions (all P<0.05); yet, the
difference in AUC between ADC and T2+ADC or T2 did not reach statistical
significance.
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Conclusion: Synthetic MRl and FSE-PROPELLER DWI can quantitatively
differentiate malignant from benign HN tumors. T2 value is comparable to
ADC value, and T2+ADC values could improve diagnostic efficacy., apparent
diffusion coeffificient, head and neck tumors

KEYWORDS

synthetic, magnetic resonance imaging, diffusion-weighted image, apparent diffusion
coefficient, head and neck tumors

Highlights

- Synthetic MRI, FSE-PROPELLER DWI, and the combination
of the two methods can all be used to quantitatively
diagnose differential head and neck (HN) tumors.

- Synthetic MRI could constitute a new adjunct in diagnosing
HN tumors.

- Synthetic MRI is comparable to FSE-PROPELLER DWI.

- The combined effect of the two methods was better than
synthetic MRI used alone.

1 Introduction

Head and neck (HN) cancer is the 6™ most common cancer and
the 9™ most common cause of cancer-related death (1, 2). Surgery is
the most effective treatment for managing primary HN cancer. Yet,
many patients present with advanced-stage tumors at the time of
diagnosis and thus require more invasive treatment, including
radiochemotherapy, immunotherapy, and targeted therapy (3).
Also, diagnosis remains challenging considering its specific
location (masses originating from the larynx, the nasopharynx,
oropharynx, oral cavity hypopharynx, salivary glands, etc.). In
addition, HN cancer might cause various symptoms that
commonly accompany benign conditions (1). Thus, the
differentiation of benign from cancerous masses is very important.

Tissue biopsy and pathologic examination remain the gold
standard for evaluating the nature of HN lesions; nevertheless,

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under the curve;
DWI, diftusion-weighted imaging; EPI, echo-planar imaging; FOV, field of view;
FSE, fast spin echo; ICC, intraclass correlation coefficient; MAGIC, magnetic
resonance image compilation; NA, not applicable; NPV, negative predictive
value; PD, proton density; PPV, positive predictive value; PROPELLER,
periodically rotated overlapping parallel lines with enhanced reconstruction;
ROGC, receiver operating characteristic; ROI, region of interest; SS, single-shot;
T1, longitudinal relaxation time; T2, transverse relaxation time; TIWI, T1-
weighted imaging; T2WI, T2-weighted imaging; TE, echo time; TR, repetition

time; TSE, turbo spin-echo.
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only a part of the tissue can be obtained using this method. In
addition, this approach is invasive and not always well accepted by
the patient (4).

Endoscopy, head MRI, computed tomography (CT of the
sinuses and head, dental cone beam CT), panoramic dental x-
ray, and positron emission tomography (PET)/CT or chest
imaging are the most common imaging methods used to assess
the HN region. MRI is frequently used to detect, differentiate,
grade, or draw the extent of HN tumors (1, 5). Among different
MRI models, diffusion-weighted imaging (DWI) can
quantitatively evaluate the Brownian motion diffusion of water
molecules in tissues at a cellular level expressed as an apparent
diffusion coefficient (ADC). DWI with a single-shot echo-planar
sequence (SS-EP-DWTI), which is commonly applied to investigate
HN regions (6), is sensitive to chemical shifts, signal loss and
geometric distortion, metallic dental implant-related magnetic
susceptibility artifacts, and motion artifacts (7). Moreover,
stimulus and fast spin echo DWI with periodically rotated
overlapping parallel lines with enhanced reconstruction (FSE-
PROPELLER DWI) is useful to distinguish parotid pleomorphic
adenoma from Warthin tumor with less distortion of tumors than
SS-EP-DWI (7). However, the value of FSE-PROPELLER DWTI in
distinguishing malignant from benign HN tumors has not been
fully explored.

The major limitations of DWI include low signal-to-noise ratios
and prolonged acquisition time. Over the years, a new synthetic
MRI sequence based on a quantitative approach has been
developed. This tool can estimate absolute physical properties,
proton density (PD), and longitudinal and transverse relaxation
times (T1, T2), which are independent of the MRI scanners or
scanning parameters at a given field strength (8). Also, quantitative
values (PD, T1, and T2) can be simultaneously acquired on the
synthetic MRI, which enables a significant reduction in examination
time with good accuracy and reproducibility for use in clinical
practice (individual patient follow-up and comparison analysis (9-
11). This approach has been used in the study of multiple systemic
diseases of the brain (12), knee (13), spine (14), prostate (15), breast
(16), bladder (17), and nasopharynx (18).

In this study, we further assessed the value of synthetic MRI in
differentiating malignant from benign HN tumors compared with
FSE-PROPELLER DWT and a combination of these two methods.
To the best of our knowledge, this is the first study that focused on

frontiersin.org
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synthetic MRI and FSE-PROPELLER DWI to characterize
HN tumors.

2 Materials and methods

2.1 Patients

MRI data from 48 consecutive patients (mean age + standard
deviation [SD], 48.08 years + 15.01 [range, 18-76 years]) with HN
tumors who were treated at our hospital between August 2022 and
October 2022 were collected. The inclusion criteria were: (1) no
tumor treatments before MR examinations; (2) all pathological
examinations of samples were obtained by surgical resection or
biopsy of the tumor; (3) synthetic MRI and FSE-PROPELLER DWI
were acquired before surgical resection and biopsy; (4) the
maximum tumor diameter was > 6 millimeters. The exclusion
criteria were: (1) MR images with obvious artifacts and poor
quality; (2) patients previously treated. Subjects were divided into
benign and malignant groups.

This study was approved by our institutional review board.
Informed consent was waived.

2.2 Data collection

Demographic data included gender and age. All MRI
acquisitions were performed on a 3T MR scanner (Premier, GE
Healthcare, Milwaukee, WI, USA) in a supine position with a 21-
channel head-neck coil. The following sequences were acquired in
this study: axial T1-weighted image (T1WI), T2-weighted image
(T2WT), synthetic MRI, and FSE-PROPELLER DWI with two b-
values (0 and 800s/mm?). Detailed acquisition parameters are listed
in Table 1.

TABLE 1 MRI Sequence Parameters.

10.3389/fonc.2023.1225420

2.3 Image analysis

Acquired data from synthetic MRI sequences were analyzed
using magnetic resonance image compilation (MAGIC) software.
Then, quantitative T1, T2, and PD maps were created and used for
measurements to yield synthetic images and match the
conventional images (19). The two radiologists (with 10 and 8
years of experience in head and neck MR imaging independently
analyzed MR images) who were blind to the grouping manually
drew the regions of interest (ROIs) on synthetic T2WI to obtain the
PD, T1, and T2 values. Postprocessing of FSE-PROPELLER DWI
was performed using the ADW 4.7 workstation (GE Healthcare).
The axial routine MR images and DWI were used as references.
ROIs were drawn on synthetic T2WI and ADC maps with care by
avoiding necrosis, cystic degeneration, and bleeding areas at the
slice with the largest tumor diameter and directly colocalized on the
T1, T2, and PD maps. The size of ROIs was >25 mm?. Two
radiologists measured three times. The average value was
obtained by both radiologists in the analysis. Additionally, the
largest lesion was selected for analysis if more than one HN
lesion were present.

2.4 Statistical analysis

Shapiro-Wilk test was used to assess normality, while Levene’s
test was used for variance homogeneity. The normally distributed
variables were expressed as the means * SD. Non-normally
distributed variables were expressed as medians (interquartile
ranges, IQRs). Differences in sex between the two groups were
compared using a chi-square test. An independent samples t-test
was used to compare the discrepancy in age between the two
groups. The intraclass correlation coefficient (ICC) was used to
assess the intraobserver agreement for quantitative parameters (19):

Parameters TiWI T2WI MAGIC DWI
Imaging technique FSE Flex Synthetic MRI FSE-PROPELLER
Orientation Axial Axial Axial Axial

TR (ms) 693 3339 4000 3620

TE (ms) 6.7 80 133 50

Field of view (mm?) 220%220 220%220 220%220 220%220
Slice thickness (mm) 4 4 4 4

No. of slices 24 24 24 24

Nex 1 2 1 4

Fat suppression NA Dixon NA Fat sat
Acquisition matrix 320%224 280x224 224x224 12050
Flip angle (degree) 111 110 NA 110
Acquisition time 40s 2 min 27s 3 min 38 s 3 min 20 s

T1WI, T1-weighted imaging; T2WI, T2 weighted imaging; DWI, diffusion-weighted imaging; TSE, turbo spin-echo; MAGIC, magnetic resonance image compilation; PROPELLER, periodically

rotated overlapping parallel lines; TR, repetition time; TE, echo time; NA, not applicable.
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value <0.40, 0.41-0.59, 0.60-0.74, and >0.75 indicated poor, fair,
good, and excellent consistency, respectively. Pearson’s correlation
coefficient was used to evaluate the correlation among parameters.
The receiver operating characteristic (ROC) curve was conducted,
and the area under the curve (AUC), sensitivity, specificity, negative
predictive value (NPV), and positive predictive value (PPV) were
further calculated to ascertain the diagnostic performance of
quantitative parameters for differentiating malignant from the
benign HN tumors. The diagnostic value of the combined ADC
and T2 values (T2+ADC) was based on the logistic regression
analysis. The method developed by DeLong et al. (20) was applied
to compare AUCs. Statistical analysis was performed using
MedCalc statistical software (version 19.6, MedCalc) and SPSS
software (version 17.0, Chicago, IL, USA). P < 0.05 was
considered statistically significant.

TABLE 2 Histologic types and locations of head and neck tumors.

Benign/malig- Locations

nant

Histologic types

10.3389/fonc.2023.1225420

3 Results
3.1 General data

A total of 48 patients with histologically diagnosed HN tumors
were assessed. Demographics are listed in Tables 2 and 3. In addition,
representative images of benign and malignant tumors are depicted
in Figures 1 and 2. There was no difference in age (t = -1.392, P >
0.05) and gender between the two groups (x> = 0.689, P = 0.406).

3.2 Interobserver reliability

ICC analyses showed excellent consistency in the ADC, T1, T2, and
PD values assessed by the two physicians: the ICC values were 0.976

PD
(pu)

ADC

(x1073 mm?/s)

Benign Pleomorphic adenoma Parotid gland M 19 1854 147.17 89.4 2.15
Benign Pleomorphic adenoma Parotid gland M 50 1230.67 117.83 68.74 1.67
Benign Pleomorphic adenoma Parotid gland F 48 2991 317.33 90.99 2.59
Benign Pleomorphic adenoma Submandibular gland F 54 1837 152.33 84.97 2.15
Benign Pleomorphic adenoma Parotid gland F 49 1334.5 110.83 80.67 1.86
Benign Pleomorphic adenoma Parotid gland F 32 916.5 114.17 86.25 1.76
Benign Pleomorphic adenoma Parotid gland M 35 1292.5 99.17 74.17 1.84
Benign Pleomorphic adenoma Parotid gland F 24 1712.84 143 86.15 2.03
Benign Pleomorphic adenoma Parapharyngeal space M 59 1287.33 153.5 80.47 1.95
Benign Pleomorphic adenoma Parotid gland F 63 1854.67 174.17 87.07 2.18
Benign Pleomorphic adenoma Parotid gland M 52 1573.5 140.5 88.60 1.94
Benign Pleomorphic adenoma Parotid gland F 32 33325 304.5 97.52 2.42
Benign Pleomorphic adenoma Parotid gland M 21 2810.34 274.34 98.15 2.58
Benign Pleomorphic adenoma Parotid gland F 42 1548.84 118.17 86.09 1.86
Benign Pleomorphic adenoma Parotid gland F 54 2227.5 265.17 89.15 2.40
Benign Basal cell adenoma Parotid gland M 53 1382.33 93.17 80.3 1.54
Benign Basal cell adenoma Parotid gland F 57 1431 96.5 77.84 1.79
Benign Basal cell adenoma Parotid gland M 44 1401.83 97.5 79.19 1.71
Benign Basal cell adenoma Parotid gland M 62 817 120.67 89.25 2.34
Benign Basal cell adenoma Parotid gland F 41 1986.84 108.5 87.99 1.90
Malignant Squamous cell Tongue M 54 1329.5 98.84 83.22 1.55
carcinoma
Malignant Squamous cell Hypopharynx M 64 1166.17 78.33 89.83 1.72
carcinoma
Malignant Squamous cell Tongue M 32 1850 93.5 90.17 1.84
carcinoma
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TABLE 2 Continued
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Benign/malig- Histologic types Locations ADC

nant (x107* mm?/s)

Malignant Squamous cell Nasopharynx M 18 1422.67 100 85.38 1.04
carcinoma

Malignant Squamous cell Tongue F 62 1143.67 86.67 80.5 2.49
carcinoma

Malignant Squamous cell Nasopharynx M 56 1326.17 95.67 85.85 1.15
carcinoma

Malignant Squamous cell Tongue M 53 1244.34 91.84 82.6 1.54
carcinoma

Malignant Squamous cell Nasopharynx F 36 1175.34 80.17 87.25 1.34
carcinoma

Malignant Squamous cell Vocal cords M 52 2067.17 88.67 90.14 241
carcinoma

Malignant Squamous cell Nasopharynx M 37 1197.17 69.33 81.54 1.56
carcinoma

Malignant Squamous cell Tongue 48 1334.17 101.5 85.83 1.44
carcinoma

Malignant Squamous cell Nasopharynx M 27 1054.5 82.17 80.92 1.07
carcinoma

Malignant Squamous cell Nasopharynx M 59 1214.17 93.5 89.35 1.14
carcinoma

Malignant Squamous cell Parotid gland M 76 1471.17 113.34 82.87 1.50
carcinoma

Malignant Squamous cell Buccal mucosa F 47 1348.84 1024 87.78 1.43
carcinoma

Malignant Squamous cell Tongue M 41 1214.67 105.17 80.39 1.52
carcinoma

Malignant Squamous cell Buccal mucosa F 65 1276.84 92.17 79.27 1.60
carcinoma

Malignant Squamous cell Tongue M 69 1283.67 78.83 84.54 1.43
carcinoma

Malignant Lymphoma Parapharyngeal space F 49 1308.5 83.83 83 0.98

Malignant Lymphoma Nasopharynx M 66 1398 89.67 84.97 1.03

Malignant Lymphoma Parotid gland F 52 1483 125.33 8225 1.54

Malignant Lymphoma Submandibular gland | F 73 1571.84 109.34 87.9 1.24

Malignant Lymphoma Tonsil 50 1649 110.84 89.48 1.16

Malignant Acinar cell carcinoma Parotid gland 58 1675.84 121.17 86.32 1.77

Malignant Acinar cell carcinoma Parotid gland M 32 1181 103.33 89.43 1.58

Malignant Rhabdomyosarcoma Parotid gland and F 20 1833.67 133.84 83.92 1.31

neck
Malignant Melanoma Paranasal sinus M 74 1239.5 99.84 89.54 1.17
Malignant Plasmacytoma Parapharyngeal space F 47 1461.17 104.5 85.95 1.20
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TABLE 3 Demographics and the parameters of patients with head and neck tumors.

Gender (M/F)

ADC (x107* mm?/s)

Benign tumor 9/11 44.55 + 13.44 1741.13 + 662.64 157.43 + 72.23 8515+ 7.17 2.03 +0.31
Malignant tumor 16/12 50.61 + 15.80 1390.06 + 241.09 97.64 + 1491 85.36 + 3.37 1.46 + 0.37
xz/t/t’ 0.689° -1.392" 2.265° 3.647¢ -0.125¢ 5.762°
P value 0.406 0.171 0.033 0.002 0.901 <0.001

Unless otherwise indicated, data are mean + standard deviation (SD). ADC, apparent diffusion coefficient; PD, proton density, * Data is 2 ® Data is t,¢ Data is t.

FIGURE 1

A 54-year-old woman with pleomorphic adenoma in the left parotid gland. (A—C) Proton density (PD), T1, and T2 images obtained from synthetic MRI. (D)
Stimulus and fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (b = 800 s/mm?).
(E-G) Synthetic MRI-derived indicate that the mean T1, T2, and PD values measured by the two radiologists were 2227.50 ms, 265.17 ms, and 89.15 pu,
respectively. (H) ADC map indicates that the mean apparent diffusion coefficient (ADC) value measured by the two radiologists was 2.40 x 10 5 mm?/s

(95% CI 0.958 - 0.987, P = 0.000), 0.936 (95% CI 0.988 - 0.997, P =
0.000), 0.996 (95% CI 0.993 - 0.998, P 0.001), and 0.823 (95% CI 0.706 -
0.897, P = 0.000), respectively.

3.3 Correlation analysis
Pearson’s correlation analysis showed a significant positive

correlation between the T1 and T2 values (r = 0.854, P < 0.001), T1
and PD values (r = 0.574, P < 0.001), T1 and ADC values (r = 0.565, P <
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0.001), T2 and PD values (r = 0.495, P < 0.001), and T2 and ADC
values (r = 0.646, P< 0.001), respectively. There was no significant
positive correlation between PD and ADC values (r = 0.281, P = 0.053).

3.4 MRI values between the two groups

The T1 value (1741.13 + 662.64ms), T2 value (157.43 +
72.23ms), and ADC value (2.03 + 0.31 x 10 mm?/s) of the
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FIGURE 2

A 41-year-old man with squamous cell carcinoma in the tongue. (A—C) T1, T2, and proton density (PD) weighted images obtained from synthetic
MRI. (D) Stimulus and fast spin echo diffusion-weighted imaging with periodically rotated overlapping parallel lines with enhanced reconstruction (b
= 800 s/mm?). (E-G) Synthetic MRI-derived maps indicate that the mean T1, T2, and PD values measured by the two radiologists were 1214.67 ms,
105.17 ms, and 80.39 pu, respectively. (H) ADC map indicates that the mean apparent diffusion coefficient (ADC) value measured by the two
radiologists was 1.52 x 107> mm?/s

benign group was higher compared to the malignant group (T1: 3§ Comparison of ROC curves
1390.06 + 241.09ms, t = 2.265, P = 0.033; T2: 97.64 + 14.91ms, t’ =

3.647, P = 0.002; ADC: 1.46 + 0.37 x 10> mm?/s, t' = 5.762, P < The AUC, cut-off, sensitivity, specificity, PPV, and NPV of each
0.001). Yet, no significant differences were found in PD values  parameter discriminating malignant from benign lesions are
between the two groups (t' = -0.125, P = 0.901). summarized in Table 4.

TABLE 4 Diagnostic performance of MRI values and combined values for differentiating malignant from benign lesions.

AUC (95%Cl)  Sensitivity (%)  Specificity (%) PPV (%) NPV (%)
89 45 69 75

T1 (ms) 1675.84 0.698(0.549-0.822) 0.0161
T2 (ms) 113.34 0.855(0.546-0.801) 89 70 81 82 <0.0001
PD (pu) 80.67 0.568(0.429-0.700) 89 35 66 70 0.408
ADC (x10™° mm?/s) 1.60 0.906(0.787-0.971) 82 95 96 79 <0.0001
T2+ADC 0.55 0.950(0.845-0.992) 89 90 93 86 <0.0001

ADC, apparent diffusion coefficient; PD, proton density; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value, *p values are for the differences between
benign and malignant head and neck tumors.
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FIGURE 3

Receiver operating characteristic curves of the parameters derived
from synthetic MRI and fast spin echo diffusion-weighted imaging
with periodically rotated overlapping parallel lines with enhanced
reconstruction in differentiating malignant from the benign head and
neck tumors

ROC curves for differentiating malignant from benign lesions
are depicted in Figure 3. T2+ADC (cut-off value, > 0.55; AUC,
0.950) showed optimal diagnostic performance, which was better
than that of T1 (cut-oft value, < 1675.84 ms; AUC, 0.698), T2 (cut-
off value, < 113.24 ms; AUC, 0.855) and PD (cut off value, > 80.67
pw; AUG, 0.568) (P = 0.0030, 0.0464, and P < 0.0001, respectively).
The diagnostic performance of ADC was better than T1 and PD (P
= 0.0138 and 0.0005, respectively), but the difference in AUC
between ADC (cut-off value, < 1.60 x 10 mm?*/s; AUC, 0.906)
and T2+ADC or T2 did not reach significance (P = 0.2648 and
0.4604, respectively). The diagnostic performance of T2 was better
than PD (P = 0.0075); however, the difference in AUC between T2
and T1 did not reach statistical significance (P = 0.0549).

4 Discussion

We examined the tissue magnetic property parameters acquired
on the synthetic MRI with MAGIC and ADC acquired on the FSE-
PROPELLER DWTI in discriminating malignant from benign HN
lesions. The purpose of evaluating parameter correlation is to
identify preferred parameters and facilitate the translation of
scientific research into clinical practice. Except for PD values, T1,
T2, and ADC values were lower in malignant than in benign HN
tumors. ADC, T1, and T2 values are widely used parameters for
differentiating malignant from benign HN tumors. The diagnostic
performance of the T2 value is comparable to the ADC value.
However, the diagnostic performance of the T1 and PD values was
not as good as that of the ADC value. We also found that T2+ADC
showed optimal diagnostic performance.

In this study, the malignant tumor had a lower T1 value related
to hyper-cellularity, smaller extracellular space, and lower free water
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content (18). Meng et al. found that the T1 value for
nasopharyngeal carcinoma was significantly lower than that for
benign hyperplasia in the nasopharynx, regardless of the ROI used
(18). Contrary Gao and his team found no difference in the T1
values between malignant and benign breast lesions (21). The
different types of tumors in these studies may contribute to
the discrepancy.

T2 value can be affected by various factors, including the main
magnetic field strength and the intrinsic properties of the tissue and
the environment. Tissue water content is the most important
influencing factor (22). A previous study reported a linear
relationship between the T2 value and water content (23); thus,
increased T2 values indicate increased tissue water content (24). In
our study, 75% of benign HN tumors were pleomorphic adenomas
followed by basal cell adenomas, and 64% of malignant HN tumors
were squamous cell carcinomas followed by lymphomas. We
speculate that the higher T2 values of benign HN tumors could
be ascribed to their tissue composition, lower cell density, and
higher free water content (5). Nevertheless, the lower T2 values in
malignant tumors are due to the increased solid components,
smaller extracellular spaces, and lower free water content (5, 18,
25). Several studies have reported higher T2 values in benign breast
lesions vs. in malignant lesions (21). This difference could be
attributed to increased tissue water content or interaction
between water and alkaline metal cations in the pathological
tissue (22).

PD value, which primarily reflects the water content in tissue, is
frequently used in brain imaging (26). This study found that the
difference in PD value in the malignant compared with benign HN
tumors was not statistically significant. Yet, Gao et al. demonstrated
that the PD value was significantly lower in malignant than that
benign breast lesions (21). The different types of tumors enrolled in
these studies may contribute to the contradiction.

Here we found that the ADC values of malignant tumors were
significantly lower than those of benign tumors. Higher ADC values
correlate with lower cellularity (27). Malignant tumors demonstrate
lower ADC values than benign tumors due to their relatively higher
cellularity (4). Srinivasan et al. also found that malignant lesions
showed lower ADC values than benign lesions (28).

In this study, the overall diagnostic performance of synthetic
MRI-derived parameters in discriminating malignant from the
benign HN lesions was inferior to the ADC value. However, the
diagnostic performance showed no significant differences between
ADC and T2 values. Also, T2+ADC showed optimal diagnostic
efficacy in distinguishing malignant from benign tumors; T2+ADC
showed a significantly higher differential performance vs. T1, T2, or
PD value alone, but it did not improve the diagnostic performance of
the ADC value. Despite this, the PD, T1, and T2 are intrinsic
magnetic properties and independent from the MRI scanners or
scanning parameters at a given field strength (15), predicting the
potential advantage of using synthetic MRI-derived parameters
compared to the ADC value alone (17). In addition, synthetic MRI
can generate multiple contrast-weighted images and quantification
maps in a single scan, greatly improving work efficiency (10). Thus,
synthetic MRI plus FSE-PROPELLER DWI might be a promising
tool for differentiating benign from malignant HN lesions.
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The present study has a few limitations. First, this is a single-
center retrospective study with small sample size, next, we will
expand the sample size for further study. Second, ROIs were
manually drawn at the slice with the largest tumor diameter,
leading to potential operator errors. In the future, the whole
tumor should be selected to determine whether the tumor volume
is more meaningful and accurate for tumor characterizing. Finally,

test-retest repeatability was not assessed.

5 Conclusion

The quantitative T1, T2, and PD values obtained by synthetic
MRI and ADC value obtained by FSE-PROPELLER DWTI helped
discriminate malignant from benign HN tumors. The overall
diagnostic performance of synthetic MRI was inferior to FSE-
PROPELLER DWI. However, the T2 value was comparable to the
ADC value, and the combination of synthetic MRI and FSE-
PROPELLER DWTI could provide improved diagnostic efficacy.
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Objectives: To differentiate parotid pleomorphic adenoma (PA) from
adenolymphoma (AL) using radiomics of grayscale ultrasonography in
combination with clinical features.

Methods: This retrospective study aimed to analyze the clinical and radiographic
characteristics of 162 cases from December 2019 to March 2023. The study
population consisted of a training cohort of 113 patients and a validation cohort
of 49 patients. Grayscale ultrasonography was processed using ITP-Snap
software and Python to delineate regions of interest (ROIs) and extract
radiomic features. Univariate analysis, Spearman’s correlation, greedy recursive
elimination strategy, and least absolute shrinkage and selection operator (LASSO)
correlation were employed to select relevant radiographic features.
Subsequently, eight machine learning methods (LR, SVM, KNN, RandomForest,
ExtraTrees, XGBoost, LightGBM, and MLP) were employed to build a quantitative
radiomic model using the selected features. A radiomic nomogram was
developed through the utilization of multivariate logistic regression analysis,
integrating both clinical and radiomic data. The accuracy of the nomogram
was assessed using receiver operating characteristic (ROC) curve analysis,
calibration, decision curve analysis (DCA), and the Hosmer—Lemeshow test.

Results: To differentiate PA from AL, the radiomic model using SVM showed
optimal discriminatory ability (accuracy = 0.929 and 0.857, sensitivity = 0.946 and
0.800, specificity = 0.921 and 0.897, positive predictive value = 0.854 and 0.842,
and negative predictive value = 0.972 and 0.867 in the training and validation
cohorts, respectively). A nomogram incorporating rad-Signature and clinical
features achieved an area under the ROC curve (AUC) of 0.983 (95% confidence
interval [Cl]: 0.965-1) and 0.910 (95% CI: 0.830-0.990) in the training and
validation cohorts, respectively. Decision curve analysis showed that the
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nomogram and radiomic model outperformed the clinical-factor model in terms
of clinical usefulness.

Conclusion: A nomogram based on grayscale ultrasonic radiomics and clinical
features served as a non-invasive tool capable of differentiating PA and AL.

KEYWORDS

ultrasonography, radiomics, parotid tumor, nomogram, wavelet transformation

Introduction

Parotid gland tumors are the most common type of salivary
gland tumors, with approximately 80%-85% of them being benign.
The primary types of these tumors are pleomorphic adenoma (PA)
and adenolymphoma (AL) (1), and both of them share similar
characteristics, such as slow growth, painlessness, and well-defined
borders. However, differentiations between PA and AL are crucial
for clinical diagnosis and treatment. On radiological examinations,
AL shows more heterogeneous density and signal compared to PA,
often accompanied by multiple small cystic changes and increased
blood flow (2). PA is more likely to occur in the deep regions of the
parotid gland, typically presenting as lobulated, with a higher risk of
malignant transformation and recurrence (3). Therefore, PA usually
requires a tumor and superficial parotidectomy, along with facial
nerve dissection. AL, however, typically only requires partial
parotidectomy. However, in PA cases, tumor cells can be detected
at the resection margins in 41.9% of cases (4). This could be one of
the reasons why PA is more prone to relapse. To distinguish
between the two types of parotid gland tumors at an early stage, a
fine-needle aspiration biopsy (FNAB) is commonly used as an
auxiliary diagnostic tool (5). It has high accuracy in the diagnosis
of both benign and malignant tumors. However, FNAB is an
invasive procedure and carries the risk of needle-track seeding
and facial nerve palsy (6).

Ultrasonic examinations can reflect differences in signal
scattering and speckling patterns, which correlate with variations
in parotid gland morphology and increasing tissue stiffness (2).
Compared to FNAB, grayscale ultrasonic examination is a non-
invasive, cost-effective, and user-friendly imaging technique.
However, differentiating between PA and AL using grayscale
ultrasonic examination can be challenging for sonographers.
Some morphological features, long-to-short diameter ratio (L/S)
ratio, and ultrasonographic shear wave elastography have limited
utility in distinguishing between the two types (7, 8). Therefore,
visible differences discernible by the naked eye do not significantly
improve the diagnostic accuracy of medical imaging.

Radiomics is a rapidly growing discipline that utilizes machine
learning to extract quantitative information from medical images
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like CT, MR, US, and predict outcomes in cancer research (9-11).
For head and neck tumors, radiomic features from T2-weighted MR
imaging (T2WT) and contrast-enhanced T1-weighted MR imaging
(CE-T1WI) can predict cancer staging pre-operatively (12).
Additionally, radiomic features from CT and PET scans can
accurately determine if oropharyngeal squamous cell carcinoma is
infected with the HPV (P16) virus (13). Radiomics has also shown
success in assessing early treatment effects (14) and radiotherapy
complications in nasopharyngeal cancer (15). In summary,
radiomic analysis of various medical imaging modalities holds
potential for improving diagnosis, prognosis, and personalized
treatment of head and neck cancers.

Wavelet transformation is created via dilatation and translation
of the mother wavelet (16). These modifications provide a spatial/
frequency representation of the signal, indicating that the wavelet
coefficients act as a projection of the original signal onto a multi-
resolution subspace. The high-pass filter also draws attention to the
grayscale changes in the image, improving the presentation of
image details and texture information. The low-pass filter,
however, blurs the differences in grayscale, obscuring the finer
details of the image and emphasizing its main characteristics (17).
The radiomic model’s texture features can be separated further.
Studies have shown that, compared to the original radiomics,
wavelet-transformed radiomics perform better in assessing
COVID-19 lung lesions (18).

The purpose of our study is to investigate whether radiology
based on grayscale ultrasonography can distinguish PA and AL and
whether the nomogram combined with clinical and radiological
features can facilitate and accurately help to distinguish these two

benign tumors.

Materials and methods
Ethics statement
This study adhered to the principles outlined in the Declaration

of Helsinki and received approval from the local ethics review board.
Written, informed consent was obtained from all participants.
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Selection of participants

We retrospectively analyzed patients with parotid tumors
undergoing grayscale ultrasonic examination at the local hospital
from December 2019 to March 2023. The inclusion criteria were as
follows: 1) preoperative two-dimensional ultrasonography
confirmed the presence of a parotid tumor. 2) A postoperative
histopathological examination confirmed the diagnosis of PA and
AL. 3) There was no history of fine-needle aspiration (FNA),
radiotherapy, or other treatments. 4) Complete clinical and data
records were available. 5) A preoperative ultrasound examination
was performed within 1 week. The exclusion criteria were as
follows: 1) the maximum diameter of the tumor was less than
1 cm; 2) the images were not clear, with incomplete visualization of
the tumor and significant artifacts; 3) the concurrent presence of
other organ tumors.

Ultrasonography procedures

The bilateral parotid glands were scanned using high-end
ultrasound diagnostic equipment such as Siemens ACUson
Sequoia, GE LOGIQ E11, and Philips EPIQ 7. A high-frequency
linear array probe was used for the examination. The maximum
diameter of the parotid gland masses was saved in the machine’s
memory in a cross-sectional view and exported in DICOM format
for subsequent analysis.

Image segmentation

All ultrasound images were imported into the ITK-SNAP
(http://www.itksnap.org) software. Two ultrasound physicians
with 6 years of experience in the field delineated the tumor
margins by carefully outlining them and selecting the maximum
section of the tumor to delineate a region of interest (ROI). The
delineation was subsequently reviewed and approved by a senior
physician. In case of any disagreements, a group discussion was held
to reach a consensus.

Feature extraction

The images and ROIs extracted from the ITK-SNAP software
were imported into Python (version 3.11) for further analysis.
Handcrafted features were extracted using an in-house feature
analysis program implemented in Pyradiomics (https://
pyradiomics.readthedocs.io). These features can be categorized into
three groups: I) geometry, II) intensity, and III) texture. There were
14 geometry features, 306 intensity features, and 1,241 texture
features comprised of the Gray Level Co-Occurrence Matrix
(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
and Neighborhood Gray Tone Difference Matrix (NGTDM).

The ROIs were delineated by two sonographers, and the
interobserver agreement was evaluated using the interclass
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correlation coefficient (ICC) analysis. ICC values higher than 0.75
were considered to have good consistency and were selected for
further analysis. Patients were randomly divided into two cohorts
with a ratio of 7:3 for training and validation purposes, respectively.

Feature selection

After applying z-score normalization, the t-test and Mann-
Whitney U test were performed on all radiomic features. Only
features with a p-value <0.05 were retained. For features exhibiting
high repeatability, Spearman’s rank correlation coefficient was used
to assess the correlation between features. If the correlation
coefficient between any two features exceeded 0.9, only one of
them was retained.

To identify the optimal feature subset, the least absolute
shrinkage and selection operator (LASSO) (19) algorithm was
employed. LASSO shrinks all regression coefficients toward zero
and sets the coefficients of irrelevant features to exactly zero. A 10-
fold cross-validation with minimum criteria was used to determine
the optimal lambda (A) value, which yielded the lowest cross-
validation error.

Model construction and validation

Radiomic and clinical models

After performing LASSO feature screening, the final selected
features were input into machine learning models such as LR, SVM,
RandomForest, and XGBoost. The coefficients of the features were
used to calculate a radiomic quality signature (rad-Signature).
Clinical features used for building the same machine learning
models were selected based on a baseline statistic with a
p-value <0.05.

Radiomic nomogram

A radiomic nomogram was developed by combining the
radiomic signature and clinical features. The diagnostic efficacy of
the radiomic nomogram was tested in the validation cohort, and
receiver operating characteristic (ROC) curves were plotted to
evaluate its diagnostic performance. Calibration curves were used
to evaluate the calibration efficiency of the nomogram, and the
Hosmer-Lemeshow analytical fit was employed to assess its
calibration ability. Additionally, decision curve analysis (DCA)
was used to evaluate the clinical utility of the predictive models.

Statistical analyses

Statistical analysis of the data was performed using SPSS 26.0
and Python 3.11. Continuous variables are presented as mean +
standard deviation, while categorical variables are reported as
counts (n). The independent samples t-test was used to analyze
clinical data, and the chi-square test was applied for categorical
variables. A significance level of p < 0.05 was considered
statistically significant.
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Results
Clinical characteristics

The flowchart depicting the process of patient selection is
presented in Figure 1. Table 1 displays the clinical and imaging
data of the 162 patients included in this study. Out of the total, 105
were confirmed to have PA, and 57 were diagnosed with adenoid
cystic carcinoma (AL). The clinical characteristics of all 162 subjects
are summarized in Table 1. In the PA group, the average age was
43.49 + 15.67 years, with a male-to-female gender ratio of 0.91:1.
Among the AL patients, the average age was 61.50 + 10.08 years,
and the male-to-female gender ratio was 10.5:1.

The 162 subjects were randomly divided into training and
validation cohorts in a 7:3 ratio. Therefore, the training cohort
comprised 113 cases (76 PA and 37 AL), while the remaining 49
patients (29 PA and 20 AL) were assigned to the validation cohort.
There were no significant differences in clinical features between the
training and validation cohorts (p-value <0.05).

Feature selection, model construction,
and validation

The course of processing radiomics is shown in Figure 2. From
the grayscale ultrasonography for each participant, 1,561 radiomics
were extracted; 294 features were selected after univariate analysis

10.3389/fonc.2023.1268789

and ICC; and70 features were retained after being filtered using
Spearman’s correlation (Figure 3; Spearman’s correlation of each
feature). The radiomic feature selection was performed using
LASSO logistic regression, resulting in 18 selected radiomic
features. The coefficients and mean standard error (MSE) from
the 10-fold validation are presented in Figure 4. These features were
utilized to construct the radiomic signature. The final formula for
calculating rad-Signature and the corresponding coefficients is
depicted in Figure 5.

Nomogram performance and validation

The model constructed using clinical features such as age,
maximum diameter, and smoking status showed good predictive
performance (accuracy = 0.850 and 0.776, sensitivity = 0.811 and
0.950, specificity = 0.868 and 0.679, positive predictive value = 0.750
and 0.655, and negative predictive value = 0.904 and 0.950 in the
training and validation cohorts, respectively). Similarly, the
imaging-based radiomic features (Table 2), especially the SVM
model, demonstrated excellent predictive performance (accuracy
=0.929 and 0.857, sensitivity = 0.946 and 0.800, specificity = 0.921
and 0.897, positive predictive value = 0.854 and 0.842, and negative
predictive value = 0.972 and 0.867 in the training and validation
cohorts, respectively). Furthermore, incorporating the results of the
radiomic model into the clinical model improved the predictive
performance of the combined model (accuracy = 0.947 and 0.857,

Inclusion criteria:

1.Preoperative B-mode US confirmed parotid tumor.
2.Postoperative pathology confirmed PA or AL.

3.No history of FNA, radiotherapy, or other treatments.
4.Complete clinical and data records were available.

S.preoperative US examination within one week.

|

PA and AL patients in our center (n=197)

Exclusion criteria:

1.The maximum diameter of the tumor < 1 cm (n=3)

2.The images not clear and Incomplete tumor
visualization with obvious artifacts (n=20)

3.Concurrent presence of other organ tumors (n=12)

\4

Patients for main analysis (n=162)

Train cohort:
n=113 (PA=76, AL=37)

Validation cohort:
n=49 (PA=29, AL=20)

FIGURE 1
The flowchart of the patient selection process.
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TABLE 1 Patient’s characteristics at baseline.

Feature name

10.3389/fonc.2023.1268789

Age 49.17 + 16.74 42.82 + 15.40 62.22 + 10.87 <0.001 50.86 + 16.16 4428 +17.12 60.40 + 8.10 <0.001
Max D 25.04 +9.33 23.30 + 8.94 28.62 + 9.21 0.004009086 25.88 + 8.35 2238 +£7.51 30.95 + 6.88 <0.001
Sex ‘ <0.001 ‘ ‘ 0.001820478
Male subjects 67 (59.29) 33 (43.42) 34 (91.89) 33 (67.35) 14 (48.28) 19 (95.00)
Female subjects 46 (40.71) 43 (56.58) 3(8.11) 16 (32.65) 15 (51.72) 1 (5.00)
Smoking ‘ <0.001 ‘ ‘ <0.001
No 77 (68.14) 63 (82.89) 14 (37.84) 29 (59.18) 24 (82.76) 5 (25.00)
Yes 36 (31.86) 13 (17.11) 23 (62.16) 20 (40.82) 5(17.24) 15 (75.00)
Number ‘ <0.001 ‘ ‘ 0.013690557
Single 93 (82.30) 70 (92.11) 23 (62.16) 39 (79.59) 27 (93.10) 12 (60.00)
Multiple 20 (17.70) 6 (7.89) 14 (37.84) 10 (20.41) 2 (6.90) 8 (40.00)
Position ‘ 0.629061941 ‘ ‘ 0.842154851
Right 62 (54.87) 40 (52.63) 22 (59.46) 29 (59.18) 18 (62.07) 11 (55.00)
Left 51 (45.13) 36 (47.37) 15 (40.54) 20 (40.82) 11 (37.93) 9 (45.00)

PA, parotid pleomorphic adenoma; AL, adenolymphoma.

sensitivity = 1 and 0.950, specificity = 0.921 and 0.931, positive
predictive value = 0.860 and 0.882, and negative predictive value = 1
and 0.844 in the training and validation cohorts, respectively). The
performance comparison of the three models is presented in Table 3
and Figure 6 (DeLong test, p < 0.005 for the training and validation
cohorts). A nomogram combining clinical features and rad-
Signature was developed (Figure 6), and its calibration curve
demonstrated consistent predictive and observed effects in both
the training and validation cohorts.

To assess the calibration ability of the developed nomogram, the
Hosmer-Lemeshow test (20) was employed. The results indicated a
good model fit (p-value >0.05), suggesting that the nomogram
accurately captured the observed data and that there was no

significant difference between the predicted and observed
outcomes. The DCA of the nomogram is depicted in Figure 6F.
Furthermore, the DCA of the nomogram demonstrated a larger
area under the curve compared to the clinical model. This indicates
that both the nomogram and radiomic model have a greater net
benefit in distinguishing between PA and AL.

Discussion

In this study, we utilized radiomic features extracted from grayscale
ultrasonography to assist in the early preoperative differentiation of two
benign tumors, PA and AL, with the goal of aiding clinicians in selecting

[ Feature Extractiorm

[ wavelet ]

/Images Collectiona

L "

Wavelet features

\ Texture features /

FIGURE 2

E> - 4R

{ Feature Selecttion '\ / Data Analysis \

Nomogram

Spearman Correlation
ROC calibration curves]

LASSO Algorithm

\ I,

The flowchart detailing the radiomic processing steps employed in this study. The collected images were exported to ITK software for region of
interest (ROI) delineation and image segmentation. Ultrasound radiomics were then extracted using Python software. Models were developed based
on the clinical features of patients with pleomorphic adenoma (PA) or adenoid cystic carcinoma (AL). The models underwent calibration and

validation processes to evaluate their performance.
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Statistics of radiomic features

appropriate diagnostic and treatment approaches. Previous studies have ~ (UGSR) have also shown poor performance (AUC = 0.74) (7). In
demonstrated that there are important differences between PA and AL contrast, the radiomic SVM-based model that we constructed has
in terms of clinical features and traditional parameters, including  demonstrated excellent performance in distinguishing between PA
smoking history, age, and the presence of multiple lesions (15).  from AL, with AUC values of 0.956 in the training cohort and 0.903
However, the effectiveness of these factors in a comprehensive  in the validation cohort. Additionally, other models in our study have
analysis is inconsistent, with varying areas under the ROC curve  also demonstrated good performance in distinguishing between the two
(AUC) values ranging from 0.68 to 0.95, leading to significant  types of tumors, but for the RandomForest, ExtraTrees, and XGBoost
uncertainty in clinical diagnosis and treatment. Additionally, common  models, there are significant differences in AUC between the training
ultrasound features such as the L/S and ultrasound grayscale ratio  and validation cohorts, indicating overfitting of the models (11, 21).
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FIGURE 4

The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection. In the LASSO model, a 10-fold cross-
validation approach was utilized to determine the optimal tuning parameter (A). The minimum criterion was used to select the best values, and
vertical lines were drawn to indicate the true selection points. Additionally, a 10-fold cross-validation was performed to identify the selected value in
the A sequence, resulting in 18 features with non-zero coefficients
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FIGURE 5
The histogram of the rad-Signature based on the selected features.

However, it is important to note that models with a large number of
input parameters or high degrees of freedom may have a tendency to
overfit the data by memorizing it. Consequently, when analyzing the
features, the model may react to random fluctuations in the data, which
is undesirable in accurate feature analysis.

Ultrasound images displaying both PA and AL appear on
ultrasound as localized enlargements of the salivary gland with
regular morphology and well-defined borders, presenting as well-
circumscribed hypoechoic masses. Matsuda (22) indicated that
63.2% of PA cases belonged to the category of no anechoic area
homogeneous tumors, while 53.3% of AL cases were classified as

-0.05

o
o
3

0.05 0.10

multiple and sponge-like anechoic area heterogeneous tumors.
However, Jiang (23) and Rong (2) believed that there were no
statistically significant differences observed in the sonographic
features of boundaries, echo pattern, homogeneity, calcification,
and distal acoustic enhancement between PA and AL. We believe
that this discrepancy is only related to the number of samples.
However, it is undeniable that AL is more susceptible to infection
and cystic degeneration, characterized by a loose tissue texture with
numerous small cysts that create echo-free areas. In this study, most
of the features used for modeling were obtained through wavelet
transformation, revealing more layered variation and information

TABLE 2 Performance contributions of various radiological classifier models in classification.

Model name @ Cohort ACC AUC 95% Cl SEN SPE PPV NPV Precision Recall F1 Threshold
Train 0.858 0.898 0.838, —0.958 0.730 0.921 0.818 0.875 0.818 0.730 0.771 0.417
LR
Validation 0.878 0.936 0.870, -1 1 0.793 0.769 1 0.769 1 0.870 0.181
Train 0.929 0.956 0.909, -1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230
SVM
Validation 0.857 0.903 0.818, —0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420
Train 0.814 0.895 0.840, —0.951 0.784 0.829 0.690 0.887 0.690 0.784 0.734 0.400
KNN
Validation 0.776 0.863 0.764, —0.962 0.800 0.786 0.696 0.846 0.696 0.800 0.744 0.400
Train 1 1 1, -1 1 1 1 1 1 1 1 0.500
RandomPForest
Validation 0.714 0.791 0.661, —0.920 0.850 0.621 0.607 0.857 0.607 0.850 0.708 0.300
Train 1 1 1, -1 1 1 1 1 1 1 1 1
ExtraTrees
Validation 0.816 0.849 0.741, —0.957 0.850 0.793 0.739 0.885 0.739 0.850 0.791 0.400
Train 1 1 1, -1 1 1 1 1 1 1 1 0.539
XGBoost
Validation 0.857 0.893 0.795, —0.992 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.384
Train 0.920 0.977 0.957, —0.998 0.973 0.895 0.818 0.986 0.818 0.973 0.889 0.314
LightGBM
Validation 0.857 0.902 0.819, —0.985 0.700 0.966 0.933 0.824 0.933 0.700 0.800 0.443
Train 0.862 0.923 0.877, —0.969 0.804 0.893 0.804 0.893 0.804 0.804 0.804 0.392
MLP
Validation 0.875 0.861 0.716, -1 0.818 0.950 0.818 0.905 0.818 0.818 0.818 0.491

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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TABLE 3 Performance contributions of three different models in classification.

Cohort  Signature ACC AUC 95% ClI SEN SPE PPV NPV Precision Recall F1  Threshold

Clinic 0.850 0.853 0.774, -0.931 0.811 0.868 0.750 0.904 0.750 0.811 0.779 0.370

Train Rad 0.929 0.956 0.909, -1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230
Nomogram 0.947 0.983 0.965, -1 1 0.921 0.860 1 0.860 1 0.925 0.277

Clinic 0.776 0.812 0.690, —0.934 0.950 0.679 0.655 0.950 0.655 0.950 0.776 0.194

Validation Rad 0.857 0.903 0.818, —0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420
Nomogram 0.857 0.910 0.830, —0.990 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.440

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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FIGURE 6

(A) Receiver operating characteristic (ROC) curves of the eight classifier models on the validation cohort. (B, C) ROC charts of clinical and radiomic
models and nomogram performance on the training and validation cohorts. (D, E) Calibration curves of clinical and radiomic models and nomogram
performance on the training and validation cohorts. (F) Decision curve analysis (DCA) of clinical and radiomic models and nomogram performance
on the training and validation cohorts. (G) Nomogram for clinical features combined with Rad-Signature.
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content in these feature maps. Among the 18 features used to
construct the radiomic model, the most influential feature is
wavelet_ LHH_glrlm_LongRunHighGrayLevelEmphasis, which
describes the texture feature of long and high gray-level runs in
the image. A higher value indicates the presence of longer and
higher gray-level continuous texture features in the image (24). In
our study, the feature value PA > AL can be seen in both the training
and validation cohorts (Appendix 1, the average feature values of 18
modeling features in the training and validation sets). We believe
that the characteristic of cystic lesions in AL results in a lower value
of this feature compared to PA.

Previous studies have shown that radiomic research using CT
and MR images performs well in differentiating PA and AL. Zheng
(25) gathered 76 instances of PA and 34 cases of AL and built a
model based on CT images with an AUC of 0.89 and an accuracy of
83.3%. Song (26) built a T1-2WI model based on MR images with
an AUC of 0.90 and an accuracy of 86% after collecting 140
instances of PA and 112 cases of AL. The mutual information
(MI) feature model that Fruehwald-Pallamar et al. (27) developed
using CE-T1WTI pictures had an accuracy of 81.8%. She gathered 13
cases of PA and 11 cases of AL. Similarly, Piludu et al. (28) enrolled
35 parotid PA and 20 AL to construct an SVM model using T2WI
and ADC pictures, which was successful with an accuracy of 91.7%.
Additionally, according to their studies, AL and PA could possibly
be distinguished from one another on TIWI, T2WI, and ADC
images by the characteristics of AL’s cystic components.

Our study still established and validated a novel prognostic
model using a nomogram-based approach to differentiate between
PA and AL. The nomogram, as a predictive statistical model, not
only provides a visual display of the relevant indicators influencing
the outcomes in multiple regression analysis but also enables a
simple graphical representation to predict survival probability,
making the prediction simpler and more convenient (29, 30). We
combined clinical features and rad-Signature and utilized a
nomogram for prediction. The results showed that in both the
training and validation cohorts, the AUC was higher than that of
the single model. However, in the validation cohort, the specificity
was 0.931 while the sensitivity was only 0.750, indicating high
accuracy in identifying AL patients. Therefore, this prognostic
model has certain clinical applicability. Zheng (25) developed and
validated a novel prognostic model using a nomogram-based
approach to differentiate between PA and AL. This model
incorporated the CT Rad-score and independent clinical factors.
The nomogram exhibited excellent discriminative performance,
with an AUC of 0.98 in the training cohort and 0.95 in the
validation cohort. However, when compared to the CT radiomic
model (with an AUC of 0.89 in both the training and validation
cohorts), the grayscale ultrasonography-based radiomic model in
this study demonstrates higher accuracy and stability.

Nevertheless, our study has several limitations that should be
noted. First, due to difficulties in disease epidemiology and obtaining
qualified patient images, the sample size was limited, and we did not
conduct an independent external validation. Future research should
involve a larger dataset for further investigation. Second, our radiomic
study only utilized conventional grayscale ultrasonography, which is
the most commonly used scanning method. In the future, we plan to
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incorporate more scanning technologies, such as Sound-Touch
Elastography (STE) and contrast-enhanced ultrasound, to construct a
multimodal radiomic model to further assist clinical diagnosis and
treatment. Third, all images in our study were obtained from a single
center. Therefore, we intend to include more types of devices and data
centers in future studies to establish a multicenter radiomic model.

Conclusion

Evaluating the imaging features of grayscale ultrasonography
can significantly improve the diagnostic ability of clinical indicators
for distinguishing between PA and AL. Based on this, the
construction of a nomogram combining radiological features with
clinical characteristics is also a highly accurate and non-invasive
tool for distinguishing these two benign tumors.
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Purpose: To evaluate the ability of texture features for distinguishing between
benign and malignant testicular masses, and furthermore, for identifying primary
testicular lymphoma in malignant tumors and identifying seminoma in testicular
germ cell tumors, respectively.

Methods: We retrospectively collected 77 patients with an abdominal and pelvic
enhanced computed tomography (CT) examination and a histopathologically
confirmed testicular mass from a single center. The ROI of each mass was split
into two parts by the largest cross-sectional slice and deemed to be two samples.
After all processing steps, three-dimensional texture features were extracted
from unenhanced and contrast-enhanced CT images. Excellent reproducibility
of texture features was defined as intra-class correlation coefficient >0.8 (ICC
>0.8). All the groups were balanced via the synthetic minority over-sampling
technique (SMOTE) method. Dimension reduction was based on pearson
correlation coefficient (PCC). Before model building, minimum-redundancy
maximum-relevance (MRMR) selection and recursive feature elimination (RFE)
were used for further feature selection. At last, three ML classifiers with the
highest cross validation with 5-fold were selected: autoencoder (AE), support
vector machine(SVM), linear discriminant analysis (LAD). Logistics regression (LR)
and LR-LASSO were also constructed to compare with the ML classifiers.

Results: 985 texture features with ICC >0.8 were extracted for further feature
selection process. With the highest AUC of 0.946 (P <0.01), logistics regression
was proved to be the best model for the identification of benign or malignant
testicular masses. Besides, LR also had the best performance in identifying
primary testicular lymphoma in malignant testicular tumors and in identifying
seminoma in testicular germ cell tumors, with the AUC of 0.982 (P <0.01) and
0.928 (P <0.01), respectively.
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Conclusion: Until now, this is the first study that applied CT texture analysis
(CTTA) to assess the heterogeneity of testicular tumors. LR model based on CTTA
might be a promising non-invasive tool for the diagnosis and differentiation of
testicular masses. The accurate diagnosis of testicular masses would assist
urologists in correct preoperative and perioperative decision making.

KEYWORDS

contrast enhanced computerized tomography, CT texture analysis, testicular masses,
machine learning, urology and radiology

Introduction

Testicular tumor is one of the most common malignancy in
men aged 14-44 years worldwide, accounting for approximately 1%
of all male tumors and 5% of genitourinary neoplasms. In recent
years, the morbidity and mortality of testicular cancer has risen
continuously, especially in Western countries (1-3). Testicular
tumor is a heterogeneous group of diseases with various
pathological subtypes and clinical behavior. Among them, 90%-
95% are testicular germ cell tumors (TGCTs), including seminoma,
embryoma, teratoma and choriocarcinoma, of which about 55% are
seminoma of the testis. The other part of testicular tumor subtypes
includes hematological neoplasm, sex cord stromal tumors, and
other exceedingly rare types of tumors. As the different
pathophysiology and molecular mechanisms, diverse biological
behaviors were observed in these testicular masses, which leads to
different management and clinical decision (4, 5). Of course,
different treatment strategies are applied in benign or malignant
testicular tumors and primary testicular lymphoma (6).
Furthermore, as to these local or systemic progressed TGCTs, the
main treatment is radiotherapy or chemotherapy instead of surgery
(radical orchiectomy) (7). Under this circumstance, we cannot
reach exact pathological results from the surgical specimens.
Thus, a pre-operative diagnostic tool that allows histological
subtype classification of testicular masses will be of great
importance to precise treatment and clinical prognosis
judgement. Although ultrasound examination is the preferred
examination for testicular masses, the widespread use of
ultrasound has led to more and more impalpable or ambiguous
results (8). As mentioned by the EAU Guidelines 2022(http://
uroweb.org/guidelines/compilations-of-all-guidelines/) (7),
although magnetic resonance imaging (MRI) provides higher
sensitivity and specificity than ultrasound in the diagnosis of
testicular tumor, MRI is not superior to contrast enhanced
computerized tomography (CECT) in detecting retroperitoneal
lymph node metastasis in general and is more expensive, which
does not justify its routine use in the diagnosis of testicular tumor
(8, 9). Besides, it should only be considered when ultrasound is
inconclusive, as local staging for testis-sparing surgery. However,
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CECT is recommended in all patients for staging before
orchidectomy (7, 10). Therefore, CT has become an indispensable
imaging method for patients with testicular masses. In addition,
testicular biopsy is used in few centers and has not gained
widespread acceptance because of narrow indication and possible
increased local recurrence rate, with which it is difficult to assess
intratumoral heterogeneity for its limitation (7, 11). In recent years,
CT texture analysis (CTTA) has become a promising technique for
evaluating tumor heterogeneity in a quantitative manner. CTTA
could provide a measure of heterogeneity of testicular masses with
various mathematical methods that can be used to evaluate the
gray-level intensity and position of the pixels within contrast-
enhanced CT images (12).

Up to now, no study has paid attention on the utility of CTTA
in histological subtyping of testicular masses. This is the first study
that explores the value of texture features in testicular masses.

Materials and methods
Patients

This study was approved by the Institutional Review Board in
the First Affiliated Hospital of Soochow University with a waiver of
informed consent. We retrospectively collected the imaging data
and clinical data of consecutive 94 patients diagnosed with testicular
masses from January 2015 to April 2022. Inclusion criteria were as
follows: (a) patients with available three-phase CT scan prior to any
treatment and operation; (b) pathologically proven testicular
masses after surgery treatment; (c) the interval between CT and
surgery was less than three months and no treatment received.
Exclusion criteria included: (a) lack of pretreatment contrast-
enhanced CT; (b) the absence of a certain phase of CT; (c) poor
image quality. After conducting the criteria, 77 men were identified
to constitute our study cohort and divided into a benign group
(n=21) and a malignant group (n=56) according to their
histological results. And then, in the malignant group, we divided
them into primary testicular lymphomas group (n=10) and non-
lymphomas group (n=46). Finally, we screened out all the testicular
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germ cell tumors from malignancy (n=43) and divided them into
seminoma group (n=30) and non-seminoma group (n=13) for
the differentiation.

Study design

To make this article clear, a flow chart including specific
technical steps was provided to the readers (Figure 1).

Image acquisition

All patients underwent contrast-enhanced CT (GE Healthcare
and Siemens Healthcare), including three phases: unenhanced phase
(UP), arterial phase (AP, 9s delay after contrast injection) and portal
venous phase (PP, 30s delay after contrast injection). Similar
protocols were applied when scanning: tube voltage of 120 kVp,
tube current of 180-450 mA, matrix of 512, field of view of 380-500
mm, and 5 mm reconstructed section thickness. Contrast medium
(iopromide) was injected intravenously at a rate of 3.0 mL/s.

10.3389/fonc.2023.1284040

ROls delineation and data augmentation

For the mass without a distinct border or with invasion of the
whole testicle, the region of interest (ROI) was defined as the whole
testicular tissue on the diseased side. Meanwhile, for the mass with a
distinct border, ROI was presumed to be the whole mass (Figure 2).
One radiologist (with 5 years of experience) and one urologist (with
3 years of experience) blinded to the histopathology results first
identified the border of each mass in consensus and then manually
delineated the ROIs around the margin of the testicular masses with
the ITK-SNAP (v 3.6.0) software (Can Hu and Xiaomeng Qiao).
The ROIs were carefully drawn with an approximate distance of 1-3
mm from the margin of tumors to prevent the effect of fat and air
(13). Due to the low morbidity of testicular tumors, sample size was
inevitably limited in our study. Hence, as a scheme of data
augmentation, the ROI of each patient was split into the upper
and lower part by the largest slice and counted as two samples (for
bilateral tumors, we counted one patient as four samples) (14). The
histopathology results of augmented samples were in line with the
original patients. After 2 weeks, the same task was repeated by the
radiologist for the evaluation of intra-observer variation.

Patients diagnosed with testicular masses and have pathological report confirmed

17 cases meet the exclusion criteria

were eliminated

A 4

Patients eligible for this study (n=77)

a) Features selected: ICC >0.8

b) Data resampling: SMOTE

¢) Data standardization: Z-score, mean

d) Dimension reduction: PCC =0.8

e) Candidate features selected: mRMR

f) Optimal features selected: RFE

g) ML with the highest 3-fold
validation

Cross

h 4

Group 1: differentiating benign masses (n=21) from malignant masses (n=56)

in all masses

Y

Group 2: differentiating primary testicular lymphoma (n=10) from non-lymphoma (n=46)

in malignant tumors

Group 3: differentiating seminoma (n=30) from non-seminoma (n=13)

in TGCTs

FIGURE 1

Simplified flow chart of the overall conceive of this study and the important steps in feature extraction, feature selection, and model optimization.
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FIGURE 2

ROIs delineation in arterial phase (A, B), portal venous phase (C, D) and unenhanced phase (E, F) CT for the mass without a distinct border. ROls

delineation in arterial phase (G, H) for mass with a distinct border.

CT texture feature evaluation and selection

Texture features were extracted from three-phases CT images. All
CT images were anonymous before they were uploaded to the
commercial texture analysis software (TexRAD, version 3.9,
Feedback Medical Ltd) stored in DICOM format. A total of 572
features were extracted from each of the CT phases, including 18 first
order features, 14 shape-based features, 24 features of grey level co-
occurrence matrix (GLCM), 14 of grey level dependence matrix
(GLDM), 16 of grey level run length matrix (GLRLM), 16 of grey
level size zone matrix (GLSZM) and 5 of neighborhood grey tone
difference matrix (NGTDM). The first order features and second
order features were extracted from the original images and derived
images via filtering based on the Laplacian of Gaussian. The spatial
scale factor (SSF) at 6 levels (0 mm: no filtration; 2 mm: fine texture
scale; 3 mm, 4 mm and 5 mm: medium texture scales; and 6 mm:
coarse texture scale) were used. These features have been used in
previous quantitative analysis studies and mathematical formula been
described in the website in detail (https://www.ncbinlm.nih.gov/
pmc/articles/PMC7581467/) (15-18).

Inter- and intra-observer intra-class correlation coefficient (ICC)
was firstly utilized to assess reproducibility and repeatability for each
texture feature. We retained features with ICCs greater than 0.8. A total
of 985 texture features with ICCs > 0.8 were included in the further
feature selection process. In order to avoid the classifiers overtrained
owing to highly-correlated features, feature selection dimension
reduction was conducted to identify candidate and optimal features
for model building (19). A synthetic minority oversampling technique
(SMOTE) was adopted to deal with the adverse impact of the
imbalanced data in this study. In addition, we also standardized the
data by the method of Z-score and mean to compare the AUC of the
model established by these two standardization methods for better
model selecting. Dimension reduction was based on pearson
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correlation coefficient (PCC). Features demonstrating a strong
correlation (PCC 20.8) were removed one by one to achieve better
performance. Moreover, after the application of minimum-redundancy
maximum-relevance (NRMR), each of the three groups for intra-group
comparisons were reduced to 20 features. Before build the model, we
also used recursive feature elimination (RFE) to further select optimal
features with excellent discrimination ability from the above 20 texture
features (20). Finally, with the highest 5-fold cross validation, five
models were built by machine learning (ML) algorithms including auto
encoder (AE), support vector machine (SVM), linear discriminant
analysis (LAD), logistics regression (LR) and logistics regression-least
absolute shrinkage and selection operator (LR-LASSO).

Statistical analysis

Statistical analysis was performed using IBM SPSS v.23.0, Python
software v2.7.13(https://www.python.org) and R software v.4.1.1. Non-
normal distribution continuous variables were expressed as medians
(interquartile range). The group differences were assessed using a
Mann-Whitney U test. Receiver operating characteristic (ROC)
curve analysis, accuracy, sensitivity, specificity, PPV and NPV were
calculated to comprehensively assess the models. Significance between
the AUC of models were compared using the Delong test. A two-sided
p value <0.05 indicated statistical significance.

Results
Demographics

Specific pathological subtypes of all these testicular masses were
provided in Table 1. Patient characteristics between the three
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TABLE 1 Specific pathological subtypes of testicular masses.

Pathological Specific
subtypes subtypes
Malignant, | TGCTs 43
n=56
seminoma 30
mixed TGCTs 9
embryonal )
carcinomas
yolk sac tumors 2
Sex cord- )
stromal tumor
granulosa
1
cell tumor
Sertoli-Leydig 1
cell tumor
Primary
testicular 10
lymphoma
diffuse large B-
8
cell lymphoma
NK/T-
2
cell lymphoma
embryonal )
rhabdomyosarcoma
Benign, inflammation 5
n=21 or abscess
adenomatoid 5
tumor
angiomas 8
or leiomyoma
others 5

TGCTs, testicular germ cell tumors.

groups were summarized in Table 2. Among them, 36 patients with
lesions on the left side while 41 patients on the right side. Only one
patient with granulosa cell tumor was bilateral. Thus, a total of 77
patients with 156 masses (76*2 + 1*4) were enrolled in the study
according to our special method of data augmentation. For group 1,
21 benign cases and 56 malignant cases were counted. Statistical

TABLE 2 Patients’ demographics between the three groups.

10.3389/fonc.2023.1284040

significance could be observed in age and all the serum tumor
markers. For group 2, there were 10 primary testicular lymphomas
(8 diffuse large B-cell lymphomas and 2 NK/T-cell lymphomas) and
46 non-lymphomas. The mean age of the lymphomas subgroup was
statistically significantly higher than the non-lymphoma subgroup
(33 (29, 39) vs 68 (58, 76), P <0.001). In the three serum tumor
markers, LDH between the two subgroups had no significant
difference. For group 3, there were 30 seminomas and 13 non-
seminomas (9 mixed TGCTs, 2 embryonal carcinomas and 2 yolk
sac tumors). Statistical significance could be observed in age, HCG
and AFP. The average time interval between CT and serum tumor
markers was 5 days.

Reproducibility and Feature selection

572 features were extracted from each of the CT phases. A total
of 985 texture features with an ICC 20.8 were included in the
further feature selection process. After mRMR, each of the three
groups for intra-group comparisons were reduced to 20 features.
Before model building, RFE was applied in all models to further
select optimal features with excellent discrimination ability from the
above 20 texture features (range from 9 to 15) (Supplementary 1).

ML-based classifications

The predictive performance and ROC curves of all ML and the
two LR-based models using two data standardization methods for
the three groups were summarized in Tables 3A-C, respectively. As
a whole, z-score had a better performance than mean in the three
groups. For group 1 (Table 3A), the LR and LR-LASSO were the two
best-performing classifiers that achieved similar AUC values (AUC
=0.946, P =1.000). However, considering the AUC of LR was
slightly higher than LR-LASSO by the method of z-score, LR was
selected for the best model. The overall accuracy, sensitivity,
specificity, PPV, NPV and AUC of the best model were 87.3%,
86.1%, 90.5%, 95.6%, 73.1% and 0.946 (95% CI 0.896-0.995),
respectively. For group 2 (Table 3B), although SVM and LR-
LASSO had high AUC of 0.986 and 0.985, respectively, LR was
chosen as the most appropriate model, achieved an accuracy of
90.4% (sensitivity 100%, specificity 88.3%, PPV 64.5% and NPV
100%) with an AUC of 0.982 (95% CI 0.963-1.000). For group 3

Variables, Benign non-lymphomas non-seminoma

(M, IQR) vs Malignant vs lymphomas VS seminoma

Age 47(35, 68) vs 35(29, 48) 0.041  33(29, 39) vs 68(58, 76) <0.001 | 29(37, 34) vs 36(31, 43) 0.007

HCG 0(0, 0.2) vs 1.8(0.3, 38.8) <0.001  3.8(1.0, 92.3) vs 0.18(0, 0.5) <0.001 | 49.8(2.8, 246) vs 3.6(0.9, 38.8) 0.023

AFP 2.5(1.8,3.1) vs 3.3 0011  3.4(25, 112.2) vs 2.1(1.1, 5.0) 0.02 273(44, 381) vs 3.1(2.2, 4.2) <0.001
(2.1, 18.3)

LDH 173(151, 184) vs 219 <0.001 | 224(176, 290) vs 193(160, 270) 0404 | 288(196, 327) vs 218(180, 251) 0.054
(172, 278)

HCG, human chorionic gonadotropin; AFP, alpha fetoprotein; LDH, lactic dehydrogenase; IQR, interquartile range.
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TABLE 3A Performance of ML classifiers, LR and LR-LASSO in differentiating benign masses from malignant masses with the method of Z-score

and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 77.5% 74.0% 85.7% 92.5% 58.1% 0.59 0.833 (0.711-0.954)
z-score 87.3% 92.3% 76.2% 90.2% 80.0% 0.68 0.866 (0.758-0.972)

SVM mean 86.0% 84.1% 90.1% 95.4% 70.4% 0.74 0.922 (0.852-0.990)
z-score 91.6% 94.2% 85.7% 94.0% 85.7% 0.80 0.900 (0.804-0.995)

LDA mean 88.7% 87.9% 90.5% 95.7% 76.0% 0.78 0.910 (0.825-0.996)
z-score 88.7% 88.3% 90.5% 95.7% 76.0% 0.79 0.910 (0.825-0.996)

LR mean 87.3% 85.8% 90.5% 95.6% 73.1% 0.76 0.944 (0.892-0.995)
z-score 87.3% 86.1% 90.5% 95.6% 73.1% 077 0.946 (0.896-0.995)

LR-LASSO mean 88.7% 89.9% 85.7% 93.8% 78.2% 076 0.912 (0.836-0.988)
z-score 88.7% 88.4% 90.5% 95.7% 75.0% 078 0.946 (0.894-0.996)

ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.

(Table 3C), LR also outperformed other models, achieving an
accuracy of 90.7% (sensitivity 90.0%, specificity 92.3%, PPV
96.4% and NPV 80.0%) with a high AUC of 0.928 (95% CI 0.858-
0.996). Overall, LR was the best choice for the histological
classification of testicular masses. The ROC curves of LR among
the three groups were demonstrated in Figure 3.

Discussion

This is the first study that applied CT texture analysis (CTTA) to
assess the pathological subtypes of testicular tumors. All the patients
were divided into three groups to evaluate the ability of texture features
for identifying benign and malignant testicular masses, identifying
primary testicular lymphoma in malignant tumors and identifying
seminoma in testicular germ cell tumors, respectively. For all three
groups, the most appropriate model was LR rather than ML-based
classifiers by the data standardization of z-score.

Testicular tumor is a heterogeneous group of diseases with
various pathological subtypes and clinical behavior, which leads to
different response to treatment (21). Firstly, the treatment of benign
and malignant mass is different. Radical orchiectomy was the
standard operation of TGCTs while symptomatic treatment is
often used in benign masses. As to clinical stage I non-
seminomas without vascular and lymphatic infiltration,
retroperitoneal lymph node dissection (RPLND) is the standard
treatment for patients without follow-up conditions. CTTA
facilitates clinical evaluation and psychological development of
patients, and to some extent RPLND could even be performed
immediately after orchiectomy, avoiding the need for a second
operation. As to clinical stage II TGCTs, seminomas tend to have
sensitive response to radiotherapy while non-seminomas tend to
benefit more from RPLND or neo-adjuvant chemotherapy. As to
metastatic testicular tumors, urologists could only apply different
chemotherapy regimens according to the prognosis (7, 22). Under
the circumstance, exact pathological results cannot be reached from
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the surgical specimens. Conventionally, ultrasound examination is
the preferred choice for testicular masses. Despite its high sensitivity
in the mass detection, it shows low specificity in distinguishing
between benign and malignant masses, let alone other pathological
subtypes (23, 24). Furthermore, testicular biopsy is used in some
centers but has not gained widespread acceptance because of
narrow indications and concerns for tumor seeding along the
biopsy tract. Germ cell neoplasia in situ (GCNIS) could be
diagnosed by testicular biopsy using immunohistochemistry with
high sensitivity and specificity. However, a certain amount of false-
negative biopsy was brought inevitably (25). Thus, non-invasive test
for the evaluation of testicular masses may open the possibility of
allowing histological subtype classification.

CT is recommended for the pre-surgical assessment of testicular
masses, and at the same time, could evaluate retroperitoneal lymph
node metastases. However, the heterogeneity of tumors is not
particularly obvious on imaging and the diagnostic accuracy
depends on the experience of radiologists. In the present study,
we found that quantitative CTTA potentially allowed for detection
of subtle differences and was able to differentiate various histological
subtype classifications beyond visual assessment. To date, as far as
we know, there have been no CTTA related studies on testicular
tumors. Previous research has focused on tumors such as epithelial
ovarian carcinoma, renal cell carcinoma or lung carcinoma (26-29).
In the study of An et al. (26), they demonstrated that CTTA was
instrumental in the identification of high-grade serous carcinoma
(HGSC) or non-HGSC in 205 patients. Erdim et al. (28)
investigated that renal masses with unclear pathological diagnosis
could be distinguished through ML-based CTTA in 79 patients.
Furthermore, Ceyda et al. (27) has confirmed the ability of different
ML-based classifiers in the prediction of Fuhrman nuclear grade of
clear cell renal cell carcinomas in 53 patients. Yang et al. (29)
evaluated the value of 2D and 3D CTTA in predicting lymphatic
vascular invasion in lung adenocarcinoma.

Our study is not only focused on the differentiation of benign
and malignant lesions but also on identifying primary testicular
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TABLE 3B Performance of ML classifiers, LR and LR-LASSO in differentiating primary testicular lymphoma from non-lymphoma in malignant tumors

with the method of Z-score and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)
AE mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.965 (0.930-1.000)
z-score 87.6% 89.8% 86.2% 58.1% 97.6% 0.76 0.921 (0.847-0.995)
SVM mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.973 (0.947-0.998)
z-score 93.0% 100% 91.5% 71.4% 100% 091 0.986 (0.970-1.000)
LDA mean 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)
z-score 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)
LR mean 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)
z-score 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)
LR-LASSO mean 96.5% 85.0% 98.9% 94.4% 96.7% 0.84 0.978 (0.959-1.000)
z-score 91.2% 100% 89.4% 66.7% 100% 0.89 0.985 (0.967-1.000)

ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.

lymphoma in malignant tumors and identifying seminoma in
TGCTs. The differential diagnosis of TGCTs or non-TGCTs was
not included in our study for the reason that most testicular tumors
were germ cell neoplasms (accounting for 95%), and the remaining
few were of no great discriminative value and had a low incidence.
To avoid confounding bias, we also did not identify lymphoma and
seminoma across all tumor types. We think the above process may
be more appropriate and in line with the clinical practice. The
performance of most classifiers in all three groups are satisfactory.
Despite the ACC of SVM is slightly higher than LR in group 1, we
chose LR as the best classifier for the better stability of the model
(the AUC of LR was higher than SVM) (30). For group 2, SVM and
LR-LASSO seem to outperform LR (P >0.05). Nevertheless,
compared to LR, the AUC of the two classifiers had a relatively
large reduction when using the data standardization of mean. For
group 3, LR was obviously superior than other models (P <0.05).
Therefore, in view of the fact that the diagnostic performance of

each model was not significantly different, we still tend to choose LR
as the last model for uniformity. In general, CTTA could be
potentially valuable in guiding treatment and provide a reliable
reference for clinicians.

The result of optimal features indicated that the entropy of the
gray-level cooccurrence matrix (GLCM) for AP, energy of the first-
order texture feature for PP and 90™ percentile of the first-order
texture feature for UP were features with the largest coefficient for
the three groups, respectively. For group 1, malignant testicular
tumors were characterized by a greater entropy for AP (P =0.028).
Entropy represents the randomness or complexity of the texture in
the image and a greater entropy tends to reflect heterogeneity,
which exactly demonstrated the invasive growth pattern with
poorly defined boundaries in malignant tumors (31-33). In
addition, malignant testicular tumors appear to be more irregular
on cells for the different degree of the disturbed formation of the
germ cells (22, 34). Energy is the sum of the squares of voxel values

TABLE 3C Performance of ML classifiers, LR and LR-LASSO in differentiating seminoma from non-seminoma in TGCTs with the method of Z-score

and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % Cl)

AE mean 79.1% 85.0% 65.4% 85.0% 65.4% 0.50 0.765 (0.639-0.891)
z-score 72.1% 75.0% 65.4% 83.3% 53.1% 0.40 0.673 (0.528-0.819)

SVM mean 84.9% 83.3% 88.5% 94.3% 69.7% 072 0.890 (0.805-0.974)
z-score 87.2% 83.3% 96.1% 98.0% 71.4% 0.79 0.919 (0.847-0.989)

LDA mean 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)
z-score 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)

LR mean 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.925 (0.858-0.996)
z-score 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.928 (0.855-0.994)

LR-LASSO mean 86.1% 83.3% 92.3% 96.1% 70.6% 0.76 0.894 (0.808-0.978)
z-score 86.2% 81.7% 96.2% 98.0% 69.4% 0.78 0.919 (0.848-0.988)

ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
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FIGURE 3

ROC curves in histological subtype classification of testicular masses using the selected logistics regression model. (A): ROC curve for group 1.

(B): ROC curve for group 2. (C): ROC curve for group 3.

and reflects the uniformity of image gray distribution and texture
thickness (35, 36). Primary testicular lymphoma displayed a lower
energy (P <0.001) and it may be associated with a worse overall
survival and more aggressive tumors (36, 37). We also found that
higher 90™ percentile was correlated with seminomas (P =0.020),
demonstrating a phenomenon of hyper-attenuation in UP (38).
Possible explanation for this is that seminomas typically have
homogenous internal attenuation while non-seminomas show
inhomogeneous soft-tissue density (39). Moreover, as the
representation of low attenuation, hemorrhage and necrosis of
seminomas may present but are usually limited (40, 41).

There are several limitations in our study. First, owing to the low
morbidity, the sample size of the study is small inevitably. We had to
apply the method of data augmentation to expand the sample size,
which may aggravate selection bias. Secondly, no comparison was
made with MRI and ultrasound in terms of diagnostic efficacy because
not all patients had complete imageological examinations. Besides, as a
comparative analysis with CTTA with other experimental methods like
flow cytometry, H&E, IHC that would help to accurately diagnose the
tumors based on CTTA. We look forward to further research on MRI
and detecting techniques in the identification of testicular tumors.
Thirdly, the potential impact of this methodical difference on clinical
findings is largely unexplored. the reproducibility of texture analysis
has yet to be established widely. Some issues like image acquisition and
image quality, and their effect on texture analysis need to be regulated
and resolved. Fourthly, our study was retrospective and lack of external
validation. Although 5-fold cross validation was used, the risk of
overfitting could not be avoided. Fifthly, a three- dimensional CTTA
may be time-consuming, but this exactly the advantage of our study.
Lastly, we chose only a few representative ML classifiers. Lastly,
different devices and software may have different consequences.
Thus, large-scale and well-designed studies are warranted to validate
the performance of the models.

Conclusion

In conclusion, LR model based on CTTA might be a promising
non-invasive tool for the diagnosis and differentiation of testicular
masses. The accurate diagnosis of testicular masses would
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assist urologists in correct preoperative and perioperative

decision making.
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Brain tumor classification is one of the most difficult tasks for clinical diagnosis
and treatment in medical image analysis. Any errors that occur throughout the
brain tumor diagnosis process may result in a shorter human life span.
Nevertheless, most currently used techniques ignore certain features that have
particular significance and relevance to the classification problem in favor of
extracting and choosing deep significance features. One important area of
research is the deep learning-based categorization of brain tumors using brain
magnetic resonance imaging (MRI). This paper proposes an automated deep
learning model and an optimal information fusion framework for classifying brain
tumor from MRI images. The dataset used in this work was imbalanced, a key
challenge for training selected networks. This imbalance in the training dataset
impacts the performance of deep learning models because it causes the classifier
performance to become biased in favor of the majority class. We designed a
sparse autoencoder network to generate new images that resolve the problem of
imbalance. After that, two pretrained neural networks were modified and the
hyperparameters were initialized using Bayesian optimization, which was later
utilized for the training process. After that, deep features were extracted from the
global average pooling layer. The extracted features contain few irrelevant
information; therefore, we proposed an improved Quantum Theory-based
Marine Predator Optimization algorithm (QTbMPA). The proposed QTbMPA
selects both networks’ best features and finally fuses using a serial-based
approach. The fused feature set is passed to neural network classifiers for the
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final classification. The proposed framework tested on an augmented Figshare
dataset and an improved accuracy of 99.80%, a sensitivity rate of 99.83%, a false
negative rate of 17%, and a precision rate of 99.83% is obtained. Comparison and
ablation study show the improvement in the accuracy of this work.

KEYWORDS

brain tumor, MRI, contrast enhancement, deep learning, hyperparameters optimization,

feature selection

1 Introduction

One of the deadliest brain disorders is a brain tumor, which
develops from an abnormal development of tissue inside the skull.
Primary and secondary forms can be distinguished among them. 70%
of cases of primary brain tumors only spread within the brain (1). In
contrast, secondary tumors start in an organ like the breast, kidney, or
lung before metastasizing to the brain (2). The World Health
Organization (WHO) divides malignant gliomas into two
categories: grade IV/IV tumors, which include glioblastoma
multiforme (GBM), and grade III/IV tumors, which include
anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic
oligoastrocytoma, and anaplastic ependymomas. With an incidence
rate of 3.19 cases per 100,000 person a year and a median age of 64,
GBM is the most prevalent malignant brain tumor. It makes up 80%
of all primary malignant CNS tumors and 45.2% of all malignant CNS
tumors. GBM is 1.5 times more common in men than in women, and
it is twice as common in white people as it is in black people (3).

Meningioma is the most common primary tumor of the central
nervous system, with 5/100,000 annual occurrence. Radiation
therapy and hormone use are risk factors. According to the
WHO’s 2016 histological criteria, the majority of meningiomas
are grade I benign tumors; however, up to 15% can be atypical and
2% can be anaplastic (4). Pituitary adenomas usually are benign
tumors that develop from unusual pituitary gland cell development.
They appear either by producing too much hormone or by putting
pressure on the surrounding structures, which causes less hormone
to be secreted. Prolactinomas, non-functioning adenomas,
adenomas that secrete growth hormone, and adenomas that
secrete adrenocorticotrophic hormones are the four primary
forms. Less frequent kinds include gonadotroph adenomas with
clinically significant luteinizing hormone, follicle-stimulating
hormone secretion, and thyroid-stimulating hormone-secreting
adenomas. Pituitary incidentalomas are a subtype that was
unintentionally found while undergoing brain MRI. They can be
divided into macroadenomas (bigger, accounting for roughly 40%
of occurrences) and microadenomas (less than 1 ¢cm in diameter).
Macroadenomas can strain essential structures and regions like the
optic chiasm (5).

Gliomas and meningioma emerge from neuroglial and brain
membranes, respectively; both are the most frequent primary brain
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cancers. Pituitary gland and nerve sheath tumors are also included
in this group. High-grade gliomas are a common form of malignant
tumor. Meningiomas are typically benign; however, they can
occasionally turn cancerous (6). Gliomas are more common in
men, whereas meningiomas are more common in women; other
brain cancers affect both sexes equally (7). Pituitary tumors,
whether benign or malignant, can have severe consequences due
to their location. Malignant tumors spread quickly, whereas benign
tumors develop slowly and are generally entirely eradicated through
surgery (8).

Radiologists and clinicians have substantial difficulties in
detecting brain tumors. Brain tumor images produced in medical
settings might be challenging to analyze. As a result, there is a need
for computer-aided procedures with increased early detection
accuracy. Currently, there is a lot of interest in using multimodal
images to classify brain tumors (9). Magnetic resonance imaging
(MRI) is frequently used to diagnose brain malignancies. A tumor
can be found via MRI, commonly used to identify brain tissues
based on their size, shape, or location (10). Figshare is a publicly
available MRI image-based brain tumor dataset containing 3,064
T1-weighted contrast-enhanced images. These are obtained from
233 patients. A total of 1,426 slices of glioma, 708 slices of
meningioma, and 930 slices of pituitary tumors are included in
said dataset (11, 12). A few sample images are shown in Figure 1.

In recent years, interest in computer vision has grown across
various fields of studies, from medical to industrial robotics.
Computer science and advances in image processing techniques
have greatly aided computer vision (13). Deep learning is a diverse
set of techniques that includes neural networks, hierarchical
probabilistic models, and a wide range of unsupervised and
supervised feature learning algorithms. Deep learning approaches
have recently gained popularity because of their ability to beat prior
state-of-the-art techniques in various tasks and the amount of
complex data from various sources (e.g., visual, auditory, medical,
social, and sensor) (14). Deep learning has made significant
advances in a wide range of computer vision tasks, including
object recognition (15), motion tracking (16), and medical image
classification and detection (17, 18). Classification of brain tumors
for medical specialists is an important field where computer vision
and deep learning techniques work together and bring prosperity to
patients with non-invasive diagnosis of brain tumors using MRL
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FIGURE 1
Sample MRI images of brain Meningioma, glioma, and pituitary tumors

1.1 Aims and objectives

Image acquisition from MRI has loss of information that leads
to improper feature visibility. A technique is required to employ
that can enhance the contrast of MRI images so that loss of
information during the acquisition process can be minimized.
Hence, feature visibility can be improved and classification
problems can be addressed, which has a close relationship with
feature visibility. In order to address classification problems for MRI
images of brain tumors, there is an immense need to introduce a
technique using state-of-the-art deep learning methods. In a quest
to fulfill this need, a deep learning technique should acquire brain
tumor MRI images from publically available benchmark datasets.
The selected dataset explained in a related section of this
manuscript has significant imbalance classes, so it is important to
incorporate a data augmentation technique that can gracefully fill
the gap of imbalanced dataset classes. After enhancement of
contrast and data augmentation steps, lightweight pretrained deep
leaning models need to be deployed and modified based on the low
complexity for training of the balanced dataset. Optimization of
hyperparameters to train deep learning models is required to select
the optimal combination of values for model training on the
selected dataset. Extracted features can be optimized using some
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optimization algorithms and then be fused together. Feature fusion
greatly impacts the overall classification accuracy. The subsequent
section presents the major challenges in order to develop an aimed
technique and contribution to address these challenges in
proposed work.

1.2 Major challenges and contributions

This imbalance in the training dataset impacts the performance
of deep learning models because it causes the classifier performance
to become biased in favor of the majority class. The authors tried to
resolve this issue by using few traditional techniques such as flip
image and rotate image, and few of the authors performed contrast
enhancement. However, these techniques are not enough, and the
images are highly duplicated. Therefore, it is essential to address this
challenge by employing some of the latest techniques, such as GAN
and encoders. Still, most currently used feature selection techniques
ignore certain features that have particular significance and relevance
to the classification problem in favor of extracting and choosing deep
significance features. We proposed a hybrid deep learning framework
with BO and QTbMPA feature selection algorithms to address these
challenges. Our major contributions are listed below.
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m Sparse Autoencoder architecture was proposed for the
generation of new images based on the training data for
the augmentation process.

m Two lightweight pretrained deep learning models were fine-
tuned based on the additional layers and removal of pooling
layers. The models were trained from scratch on an
augmented dataset.

m A Bayesian optimization technique was implemented to
initialize the hyperparameters of the fine-tuned deep
models for improved learning.

m An efficient Quantum Theory-based Marine Predator
Optimization algorithm was proposed for the selection of
best features for the final classification.

m A detailed ablation study was performed on the proposed
framework for the validation of the proposed framework.

2 Literature review

A wide range of classification approaches have been introduced for
the Figshare dataset. Several techniques have been introduced in the
literature for the classification of brain tumor from MRI images.
Researchers used deep learning models for the feature extraction and
later performed classification using Softmax and machine learning
classifiers. A novel deep transfer learning-based model was identified
by Alanazi et al. (19). It entails creating several convolutional neural
network models and then utilizing transfer learning to repurpose a 22-
layer model for subclass classification. The proposed model achieved
95.75% accuracy on three classes of the Figshare dataset. Moreover, the
technique was also validated for an unseen dataset and achieved an
accuracy of 96.89%. Another DeepTumorNet hybrid deep
learning model was suggested by Raza et al. (20). The last five
layers of GoogleNet were eliminated while creating the hybrid
DeepTumorNet technique, and 15 new layers were added. They used
the feature map’s leaky ReLU activation function to make the model
more expressive. The suggested model was evaluated on the Figshare
dataset and achieved 99.67% accuracy. Tummala et al. (21) used
ensemble-oriented vision transformer-based pretrained models to
classify the modalities of the Figshare dataset. An ensemble of B/16,
B/32, L/16, and L/32 was used. The selected approach achieved an
overall accuracy of 98.70%. Attention mechanism, patch-oriented
input, and token embedding are techniques used in vision
transformers, which make them more computationally expensive,
and processing requires a tensor processing unit (TPU) environment.

Another work by Polat et al. (22) introduced a novel divergence-
based feature extractor which is used for classification by decreasing
weights for deep neural networks. The achieved accuracy was 99.18%.
They have reduced the input image dimensions considerably (i.e .,
512 x 512 to 128 x 128), which can result in loss of spatial
information. Loss of information at the input level can result in
compromised accuracy. A technique that uses a multilevel attention
network (MANet) (23) was suggested by Shaik et al. in which the
model has an attention mechanism with several tiers of attention blocks
and can concentrate on crucial spatial and category-specific properties.
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Prioritizing tumor details in the image is done by the first attention
block, and the second attention layer is highlighted by the tumor-
specific descriptors using ConvLSTM. MRI images are represented as
input to the model using pretrained features from the XCeption
network. The resultant accuracy of 96.51 for the Figshare dataset was
obtained. In the presented technique, only those glioma images with
tumor in it will be classified. A CNN-based approach was created by
Hagq et al. (24); they performed classification as well as segmentation. A
classification accuracy of 98% was achieved. The proposed algorithm
has a long running time and needs an improvement to reduce the
running time. In another technique, Rahman et al. (25) implemented a
Parallel Deep Convolutional Neural Network (PDCNN) technique. It
operates in two concurrent stages to capture both global and local
features. The model includes dropout regularization and batch
normalization to alleviate the overfitting issue. The classification
accuracy is 97.60%. The proportion of 80:20 training and testing data
was respectively used. A major proportion of training data may lead to
overfitting as it becomes specialized for known data but not for unseen
or unknown data.

The authors Talukder et al. (22) presented a technique to classify
brain tumors. They used different pretrained models and obtained an
accuracy of 99.68% on ResNet50V2. The lack of sharp images is the
main shortcoming of this study. In their work, Aloraini et al. (26)
presented another technique in which the authors utilized a hybrid
method combining a transformer with an attention mechanism to
capture global features. Local features were extracted using a
convolutional neural network (CNN). The approach attained an
accuracy of 99.10% for the Figshare dataset. Few misclassifications
were reported due to visual similarity between classes. In their work,
authors Athisayamani et al. (27) introduced a new adaptive Canny
Mayfly algorithm for edge identification. An algorithm that reduces the
dimension of retrieved features, the enhanced chimpanzee
optimization algorithm (EChOA), is utilized to choose features. The
feature classification process is then done using the Softmax classifier
and ResNet-152. The proposed technique achieved an accuracy of
98.85%. In their presented work, the authors Mishra et al. (28) provided
a method for classifying brain tumors using a K-NN classifier, where
the parameter } k } is adjusted and the best feature set is selected using
the binary version of the comprehensive learning elephant herding
optimization (CLEHO) algorithm. The presented method obtained an
accuracy of 98.97%, better than the recent techniques. A pretrained
model-based approach was suggested by the authors Malla et al. (25),
in which a transfer learning DCNN framework known as VGGNet was
used. They employed transfer learning aspects such as fine-tuning the
convolutional network and freezing layers for better performance.
Features were extracted from the Global Average Pooling (GAP)
layer. The technique resulted in an accuracy of 98.93% on the
Figshare dataset. In the given approach, the feature dimensionality
issue was not addressed, and that intended to address it in
future research.

In another work, authors Cinar et al. (29) presented a
Convolutional Neural Network (CNN) architecture for brain
tumor classification. The model was compared with ResNet50,
VGGI19, DensetNet121, and InceptionV3 pretrained models. The
presented model achieved an average classification accuracy of
98.32% on the prescribed dataset. The authors determined to
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enhance their technique using area and size-oriented metrics. In
another technique, the authors Deepak et al. (30) coined an
approach in which they trained CNN using three different
methods: cross-entropy loss, class-weighted loss, and weighted
local loss. They fused the features, and classification was
performed with an accuracy of 95.40%. Another approach by
authors by authors Zulfiqar et al. (31) suggested an approach in
which five variations of the EfficientNets family’s pretrained
models, EfficientNetBO through EfficientNetB4, were fine-tuned.
They also investigated how data augmentation affects the model’s
accuracy. The best model’s attention maps are finally visualized
using Grad-CAM, successfully highlighting the tumorous region of
the brain cell. The achieved accuracy was 98.86%.

3 Methodology

The proposed methodology of brain tumor classification is
illustrated in Figure 2. This section starts with the preprocessing
phase in which the Figshare brain tumor dataset (32) is obtained.
The contrast enhancement step is crucial to improving the quality of

10.3389/fonc.2024.1335740

low-contrast images, and it was performed using a statistical technique
presented in (33). Data augmentation is performed on contrast-
enhanced images. This step is taken into account due to the high
imbalance of classes in the original dataset. Augmentation of the data is
performed using sparse autoencoders (34). The said technique
augments the data by learning the most important features of the
original data and leaving behind the least important features. Two
pretrained models named InceptionResNetV2 (35) and EfficientNetBO
(36) are used and fine-tuned for the input of preprocessed data.
Dynamic and optimized selection of hyperparameters of both models
is carried out using Bayesian-based optimization (37). Features are
extracted from each optimized resultant model. To further optimize the
features, a nature-inspired algorithm named the Marine Predators
Algorithm (MPA) (38) is used on the obtained features of each
model. Feature fusion is carried out, final classification is performed.

3.1 Dataset of this work

The Figshare dataset includes 3,064 T1 weighted contrast-
enhanced MRI scans collected from 233 patients. There are three
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FIGURE 2

Proposed methodology of brain tumor classification using deep learning and optimization algorithm.
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classes of these scans named meningioma, glioma, and pituitary,
with 708, 1,426, and 930 MRI scans, respectively, in each class (32).
Meningiomas are the most prevalent intracranial tumor, accounting
for more than one-third of all primary central nervous system
(CNS) tumors. They are typically benign tumors that can be
observed or preferentially treated with extensive complete
resection, which results in satisfactory outcomes. Meningioma
with complex histology or in vulnerable areas has proven difficult
to treat and predict prognostic outcomes (39).

Gliomas are divided into different categories based on the cells
of their origin. They make up around 80% of all malignant primary
brain tumors and are most frequent malignancies of the central
nervous system (CNS). The most dangerous and common variety of
glioma is called glioblastoma multiforme (GBM). More than 60% of
adult brain tumors are caused by it. Despite the wide range
of contemporary treatments available, GBM remains a fatal
condition with a very bad prognosis. The median survival time
for patients is typically 14 to 15 months after diagnosis of the deadly
disease (40).

The anterior pituitary gland is the site of tumors called pituitary
adenomas. They rank as the third most frequent adult cause of
central nervous system malignancies (CNS). Most benign adenomas
cause either a large-scale effect or an increase in hormone release.
Depending on their size and hormone produced, pituitary
adenomas appear differently in clinical evaluations (41). Samples
of meningioma, glioma, and pituitary brain tumors from the
Figshare dataset are presented in Figure 1.

3.2 Contrast enhancement

Analyzing medical images is challenging because of the inherent
qualities present in medical images, such as poor contrast, speckle
noise, signal dropouts, and complicated anatomical formation.
Contrast enhancement is a vital component of subjective
evaluation of image quality that aims to improve the overall
excellence of medical imagery for feature visualization and clinical
measurement (42). In fact, despite technological advancements in
healthcare systems, they still produce images that demonstrate a
deficiency in contrast due to improper locales and equipment
limitations. To enhance the contrast of MRI images of the dataset
discussed above, an existing technique for contrast enhancement
(33) is employed. It uses basic statistics and some basic image
processing methods. The approach adjusts the global and local
contrast of a given image separately, then combines both results
using logarithmic image processing (LIP), producing an output that
is further analyzed by an adaptive linear stretching method to
produce the improved version of the image. The overall process of
contrast enhancement is defined as follows:

Letting a low-contrast image Gixy) at first, the local contrast is
altered using contrast stretching transformation (CST). The CST
process is defined in Equation 1.

1

1+ (m/gey)® M

k(x,y) =
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In the above equation, ki, is the output of the CST procedure
where x, y represents the dimensions of an image. The slope of the
function is set by constant E, and its value is set to 0.5 for this
experiment. The mean value of the input image is represented by m.
A standard logic function is applied to the original image to change
its global contrast. Mathematically, it is defined in Equation 2.

exP (g (xy) )

_— 2
1+ exp(g(x,y)) ( )

Joxy =

The resultant images with altered local and global contrast will be

combined. The Logarithmic Image Processing (LIP) method devised in
(43) is for this purpose and is mathematically defined as follows:

key) + ey

— (3)
1+ (K #icy)

f(x,y) =

An exponent W is used to control the enhancement, and the
entire equation is raised to its power of it. The scalar parameter
(W >0) and its higher value lead to achieving a good level of
contrast enhancement. Mathematically, it is defined in Equation 4.

kiey +J
f(x,y) _ |: (ey) T J(xy) (4)

w
1+ (k<x,y>*j<x,y>)}

Contrast enhancement of the image has been achieved after
employing Equation 4, but the image f.,) does not correspond to
the natural range of pixel values. A linear stretching method with
adaptive form (40) brings a natural range of pixel values to the image.
Mathematically, it is defined by Equation 5.

t(x,}/) = O f(x,y) - ﬂ (5)

where £, is a resultant image, and o and 8 are the control
variables for the stretching process. The value of these control
variables is adjusted manually, but here, Equation 6 and Equation 7
are used to select the values of these variables automatically.

- ! (6)

- max(fie,) — min(fiy,)

_ min(f%},)) 7
max(fie,)) — min(fi.y)

In the above equations, the variables max and min represent the
upper and lower bounds of values for pixels of an image f),
respectively. The pseudocode of the above mathematical description
is given under Pseudo-code 1. A few visual images are also illustrated
in Figure 3.

Input: Original image g, and a parameter W.
Computation of CST method by using Equation 1.
Estimation of SL function by using Equation 2.
Calculation of modified LIP method by using Equation 4.
Computation of parameters o and B by using Equations 6
and 7

Processing of contrast by using Equation 5.

Output: Contrast Enhanced image ty,,

Pseudo Code 1. Proposed Contrast Enhancement Technique.
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FIGURE 3

Visual illustration of the contrast enhancement process. The left images are original, and the right images are generated using contrast enhancement

3.3 Data augmentation

Classification performance is negatively impacted by class
imbalance. The impact of imbalance on classification performance
gets more robust with increasing task size. The effect of imbalance
depends on the distribution of observations (i.e., images)
throughout the classes and cannot be solely attributed to a lower
overall number of training cases (44). In Section 3.1, it is noted that
our dataset has a high-class imbalance. Hence, creating a dataset
bias may lead to an overfitting problem for some classes. To fill that
gap, we employed a sparse autoencoder (45) to augment the dataset
instead of traditional methods.

Sparse Autoencoders learn a compressed representation of the
input data. The following hyperparameters are used to train a sparse
autoencoder network:

Hidden size 300
Maximum epochs 2000
L2WeightRegularization 0.001
SparsityRegularization 4
SparsityProportion 0.15

Hidden size parameter represents the number of neurons in
layers. Few dozen neurons are enough for simpler tasks, but in order
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to use it with complex tasks, a few hundred neurons are used. A
hidden size of 300 might be able to prevent overfitting while still
having sufficient capacity to learn from the data, particularly in
situations where bigger hidden sizes could cause overfitting.

One whole cycle through the whole training dataset is referred
to as an epoch. The hyperparameter for maximum epochs indicates
the maximum number of times the training dataset will be
processed by the learning algorithm. In the proposed technique,
the training dataset for augmentation took 2,000 epochs to converge
at a suitable result for MRI images.

The intensity or weight of L2 regularization given to a neural
network’s weights during training is commonly denoted by the
hyperparameter L2WeightRegularization, which has a value of
0.001. The selection of 0.001 maintains a balance between letting
the model learn from the data and regularizing it to avoid
overfitting. It is also referred to as weight decay.

The sparsity regularization weight that is given to a neural
network during training is indicated by the hyperparameter
SparsityRegularization, and the chosen value for it is 4. By
encouraging the model to have fewer active (non-zero) weights,
the objective is to cause the weight matrices to become sparse,
which means that during the training phase, a large number of the
weights are driven to be zero or almost zero. Sparsity regularization
helps to create a more effective and sparse representation for better
feature selection.

The hyperparameter of “SparsityProportion” with a value of
0.15 commonly refers to a threshold sparsity level, which is used
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with sparsity regularization. The target of around 15% of the neural
network’s weights becoming zero or almost zero is indicated by the
value of 0.15. The sparsity regularization hyperparameter sets a
threshold of 4, and weights that are below threshold are settled to
zero. The value of 0.15 represents the proportion of weights that
should actually fall below the specified threshold value during the
training process.

The specified values for each hyperparameter are adjusted for
augmentation of MRI images. The resultant images obtained from
this step are used to augment the data.

The overall representation of sparse autoencoders is provided
in Figure 4.

The total number of observations for each class increased to
2,000 after employing the proposed sparse encoder network. The
newly generated images have been utilized to train selected deep
learning models.

3.4 Hyperparameter selection for modified
EfficientNetBO and InceptionResNetV2

The augmented dataset is used to train fine-tuned deep-learning
models. Three hyperparameters for both models are optimized
using Bayesian optimization to train the models. These
hyperparameters are named InitialLearnRate, Momentum, and
L2Regularization. The dynamic tuning of hyperparameters is a
crucial task for deep learning models. In this case, dynamically
selected values for specific hyperparameters are used until a specific
best-value threshold is achieved. The particular model is then
trained, and features are extracted for classification tasks.

Bayesian optimization (BO) is an effective technique for
hyperparameter tuning. Implementation (46) can be achieved by
setting an optimization goal. The Equations 8 and 9 below describes
the BO process.

X' =arg me:;xf(x) (8)

10.3389/fonc.2024.1335740

In the equation, search space is A for input x. BO is based on the
Bayes theorem that is mathematically defined as follows:

P(D | F) > P(F | D)P(D) 9)

Given that an event or hypothesis F has occurred, it is the
likelihood that the event or hypothesis D will also occur, where F
denotes the evidence data, D denotes the model, and P(D | F) is the
posterior probability that is proportional to the likelihood P(F | D)
and is multiplied with a probability of D. The foundation of BO is
the combination of sample data (evidence) and the prior
distribution of the function f(x) to produce the posterior of the
function. Then, based on the criterion, the posterior information is
used to determine the location where the function f(x) is
maximized. The criterion is also called an acquisition function (v)
and is used to estimate the next sample point. Sampling points are
searched using exploration and exploitation sampling methods
while searching the sampling space. Exploration tends to search
for sampling areas with high uncertainty. Exploitation searches for
those samples that are of high value. These methods improve the
performance, even with multiple local maxima solutions.

The prior distribution of the function f(x), a crucial component in
the statistical inference of the posterior distribution, is a requirement
for Bayesian optimization in addition to sample information. The
posterior distribution is updated using the Gaussian process to better
align with the data, improving our forecasts’ accuracy and knowledge.
Algorithm 1 describes the working of BO.

T:Fori=12,.

2: Find x; by optimizing the acquisition function v over
function f: x; =arg maXx\/(X | Dy.i,).(Equation 10)

3: Sample the objective function: y; = f(x;).

4: Augment the data D,.; = {D;.;_;, (X3,y;)} and update the
posterior of function f.

5: End For.

Algorithm 1. Bayesian optimization.
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Representation of sparse autoencoder for data augmentation.
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The algorithm consists of two parts: acquisition function
maximization using step 2 and posterior distribution update
using steps 3 and 4. Furthermore, the training dataset is denoted
by Dy = {%,y, )i with i—1 observations of function f.
Each processed observation updates the posterior distribution.
The updated distribution helps to find the highest value of the
acquisition function at some point, which is then added to the
training dataset. This process continues until the maximum
number of iterations is reached or the difference between the
current and best values so far is less than a predetermined
threshold. The following starting and stopping criteria are
selected for experiments. Number of seed points = 4;
Maximum Objective Evaluation = 30, and Maximum time =
Infinite by default.

A Gaussian process prior with additional Gaussian noise in the
observations serves as the fundamental probabilistic model for the
objective function f. Therefore, the Gaussian process with mean
(x; 0) and covariance kernel function k(x, x', 0) represent the prior
distribution on f(x) .Here, x represents the initial value, x' denotes
the updated value, and 6 is a parameter containing a kernel vector
vector. Therefore, looking into more detail, we show a set of points
x = x' with associated objective function F = f; and the prior joint
probability distribution of the function value k(x, x) where kijk(x;
,xj) and initially u = 0. Moreover, Gaussian noise is added, which is
denoted by o? so the prior distribution has covariance k(x, x,0)+
o’x, and therefore, the final Gaussian process regression is
depicted by the following Equation 11.

1 d (x,x)
k(x,-,xj, 0) = sz exp [_E mZZI( 0-2]) } (11)

where o,, islength scale prediction mand m = 1,2,3,...d, o is
the signal standard deviation, 6,, = log (0,,), 6,4, = log(oy), and k
(x, %/, 0) is a Kernel function that significantly affects the quality of
Gaussian process regression. In Bayesian optimization, the ARD
Matern 5/2 kernel is optimized by default and is given in the
following Equation 12.
(12)

k(x;, x; | 0):6f2(1+\/§ r+§ rz)exp(—\/g r)

where r = Ei:o* /(x'";%)z . BO employs the acquisition function
to derive the highest value of the function f after collecting the posterior
distribution of the objective function. Typically, we believe the large
value of the objective function f matches the high value of the
acquisition function. Therefore, the increasing the acquisition function
is the same as increasing the function f, as presented in Equation 13:

x = arg max u(x | D) (13)

The acquisition function named expected improvement per
second plus is employed for hyperparameter optimization. The
family of acquisition functions known as “expected improvement”
assesses the expected rate of improvement in the objective function
while ignoring values that increase the objective. The equation for
expected improvement is defined in Equation 14:
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ElI(x, Q) = EQ[max(0, uQ(xbest) — f (x))] (14)

where xbest is the location of the lowest posterior mean and
UQ(xbest) is the lowest value of the posterior mean. The anticipated
improvement per second used by the acquisition function during
the objective function assessment is formulated in Equation 15:

EIQ(x)
uS(x)

where uS(x) is the posterior mean of the timing Gaussian

EIpS(x) = (15)

process model. Finally, the maximization process was performed
and returned the best hyperparameter value. The initial learn rate
(InitialLearnRate) range is 0.01-0.9, the momentum value is
selected between 0.8 and 0.98, and the L2Regularization range is
le—10 (0.0000000001) to le—2 (0.01). To find the values of the
hyperparameters, the search space needs to be transformed
logarithmically. A logarithmic transformation is used to improve
the search process order-of-magnitude balance. Results for
optimizing the hyperparameters for EfficientNetB0 are provided
in Figure 5A. While optimizing the hyperparameters, the best
objective function value is achieved during iteration number 5.

Optimizing results for hyperparameters of the
InceptionResNetV2 model are provided in Figure 5B. The best
object value (i.e., optimized hyperparameters) is achieved at
iteration number 5, the best and last iteration per already defined
termination criteria.

3.5 Training and feature extraction

Both fine-tuned models have been trained on the augmented
dataset, and deep features are extracted from the global average
pooling layer. The sigmoid activation function has been employed
in the feature extraction process and obtained a feature vector of
N x 1280 and N x 1536 from fine-tuned EfficientNetb0 and fine-
tuned InceptionResNetV2, respectively. The complex patterns are
captured from the deeper layers of the above models, and higher
spatial dimensions are achieved. The Global Average Pooling layer
reduces the higher dimensions to a fixed-size vector; however,
optimizing the features’ size for accurate classification is necessary.

3.6 Improved MPA optimization

In this work, we proposed an improved Quantum Theory-based
Marine Predator Algorithm to select the best features. The MPA is a
metaheuristics algorithm. Random walk describes the behavior of
particles or objects in various physical and biological domains.
These are effective methods for studying the movement of
organisms such as bacteria or animals looking for food. The
random character of each step in these circumstances allows for a
realistic picture of how these organisms explore and navigate their
surroundings. Lévy and Brown’s movements are random walks.
Different velocity ratios are extracted and used in the three phases of
MPA. These are strategies behind MPA (38). MPA is based on
population as many other metaheuristic algorithms. The initial
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Optimized Hyperparameters for EfficientNetB0

Iteration | Objective InitialLearnerRate | Momentum L2Regularization
1 0.58933 0.50404 0.95861 0.000000063133
2 0.66667 0.83335 0.82047 0.00000000015273
3 0.098 0.018088 0.92972 0.000000021129
4 0.66467 0.17542 0.80687 0.0087329

6 0.046 0.010024

5 0.03 0.010001 0.88505  0.00000000051622

0.90823 0.000000012423

7 0.034 0.010047

0.8024 0.00000000020056

Optimized Hyperparameters for InceptionResNetV2

Iteration | Objective InitialLearnerRate | Momentum l L2Regularization
1 0.66467 0.50404 0.95861 0.000000063133
2 0.66933 0.83335 0.82047 0.00000000015273
3 0.11467 0.018088 0.92972 0.000000021129
4 0.67067 0.17542 0.80687 0.0087329

5 0.0000047067

0.048 0.010006

FIGURE 5

0.88776

Summary of best selected hyperparameter values using BO. (A) Bayesian optimized (BO) hyperparameters for training of EfficientNetBO. (B) Bayesian

optimized (BO) hyperparameters for training of InceptionResNetV2

solution is homogeneously disseminated over the entire search
space through the first sample see, Equation 16.

Y, = Y,

Ymin +rand (Ymax - min) (16)

Upper and lower bounds of variables are represented with Y,,,,,
and Y,,;,, respectively, whereas uniform random vector is denoted
by rand whose range is between 0 and 1.

According to the notion of survival of the fittest, top natural
predators are better foragers. As a result, the top predator, also
known as elite, in the E matrix is chosen as the fittest solution. The

Dimensions are represented by d, whereas search agents are
denoted by n. Predators and prey are considered search agents
because predators look for its prey and the prey is looking for its
food. The E matrix is updated once a better predator replaces the
existing top predator.

Another matrix with the same dimensions is constructed
depending on the position of the prey. Predator updates the
position based on the prey’s position matrix. The matrix is
named P and is given in Equation 18:

Y, Y, ... Y
chosen matrix is constructed, and arrays of the matrix provide a L2 Ld
detail of searching and finding the prey based on the position of the Yor Yoo oo Yoy
prey. The matrix is given in Equation 17:
BRI p= (18)
Y3, Y3, .. Yi,
Yn,l Yn,2 Yn,d
E= (17) I Inxa
In P matrix Y;; the j represents the j™ dimension, and i
I I I represents the i prey. These two matrices are the backbone
Yii Yo oo Yo L
for optimization.
L dnXd There are three phases of MPA. These are based on the predator
. and prey’s life cycle and velocity criteria. These three phases are
In the above matrix, Y' is a vector representing the top  discussed separately as follows: In the first phase, the predator is

predator, and it is repeated n times to create the E matrix.
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considered moving faster than the prey, which is also called as the
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high-velocity ratio (velocity > 10) phase. The ideal predator
strategy is to remain still. The mathematical model for this phase

is defined in Equation 19:

1
While Iteration < 3 Max _ Iteration

— —_— — — — .
stepsize;= Ry ®(E;— Ry ® P;) i=1,...n

- = - —
P; = P; + T . R ® stepsize; (19)

This scenario occurs in the first third of iterations. Iteration
represents the current iteration, whereas Max _ Iteration represents
maximum iterations. Ry is a vector containing random values from
the normal distribution exhibiting Brownian movement. Entry-wise
multiplications are denoted by ®. Movement of prey is simulated
by the multiplication of R—B> ® F: Here, T is a constant, and its
value is 0.5. R denotes a vector of uniform random numbers
between 0 and 1.

The second phase occurs in unit velocity ratio or when the prey
and predator move at the same speed. It means that the predator is
actively looking for prey, and the prey is actively looking for its food.
This optimization stage is where the transition from exploration to
exploitation occurs. The prey does exploitation, whereas
exploration is the predator’s primary goal. Half of the population
is designated for exploitation and the other half for exploration. If
the velocity ratio (velocity = 1), then the prey moves in Levy and
the predator follows the Brownian motion. A mathematical model
for this is given below:

1 2
While 3 Max _Iteration < Iteration < 3 Max _ Iteration

The first half of the population can be modeled by Equation 20:

_— —_— — —_— - . n
stepsize;= R, ®(E;— R, ® P;) 1=1,...E

- = = T
P; = P; + T . R @ stepsize; (20)

In the above equation, R—L> represents the Levy movement of the
first half of the population. The multiplication of TL) ® E)
describes the Lévy movement of the prey, and adding the step
size of the prey position determines its movement. The second half
of the population can be modeled in the given below Equation 21:

—

_ —_— — — .
stepsize;= Ry ®(Rp ® E;— P;) i=—,..,n

n
2
- = = o

P; = E; + T. CF Q@ stepsize; (21)

= (1 — —lteration__y(2yrtettan
where CF = (1 — g rerpio ) ¥ teraion

adaptive parameter to regulate the predator’s movement’s step

is regarded as an

size. The multiplication of R‘B) ® E determines the step size in
the Brownian movement of the predator, whereas the prey modifies
its position in relation with the predator’s movement. The third
phase starts with a low velocity ratio or when a predator has a faster
pace than the prey. It is the last phase of optimization. High
exploitation capability is demonstrated in this phase. In such a
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low-velocity ratio of velocity = 0.1, the predator adopts the Levy
strategy. The mathematical model is provided in Equation 22:

2
While Iteration > 3 Max _Iteration

e

— — [
Stepsizei = RL ®(RL ® E,‘ - Pl)

— = —_ s T
P; = E; + T . CF @ stepsize; (22)

In the Lévy method, multiplying R—L>® E simulates the
predator’s movement, whereas adding the step size to the Elite
position assists in updating the position of the prey. Fish
aggregating devices (FADs), considered local optima in their
search space, are where sharks spend most of their time (i.e.,
more than 80% of the time). They make longer jumps in diverse
directions during the remaining 20% of their time, probably to
locate different prey distributions. To ensure a more dynamic search
during the simulation, these lengthier hops help prevent them from
being stuck in local optima. The FAD effect’s mathematical
elaboration can be represented as the following Equation 23:

— — - —_ —_ —
_ D, +CF|[Ym+ RQ® (Ypuo— Y)] ® U if r < FADs
P = — — — .
D, + [FADs (1-r)+71] (P, - P,) if r > FADs
(23)

The likelihood that FADs may affect the optimization process is
represented by the probability, given as 0.2. A binary vector U is
made up of zeros and ones. It is created by a random vector with
values between [0,1], with a zero set for values below 0.2 and one for
values above 0.2. Additionally, r stands for a random number
uniformly distributed between [0,1]. m and m denote lower
and upper bounds of dimensions. P matrix’s random indexes are
denoted by subscripts r; and r;.

Novelty in this method

The problem of the MPA algorithm is finding an optimal global
position; therefore, we added a concept of Quantum Theory that
improves populations’ motion behavior. The initial population in
the modified version is defined as follows:

Zz(k + 1) = Zmin +r X [Zmux - Zmin]

where Z; denotes the ith iteration value, r is a random value
between (0,1), k is a current iteration, and Z,,,, and Z,,;, denote the
upper and lower limits, respectively. The fitness value is computed
to find the best solution in the next step. The following Equations
24-27 is utilized for this purpose:

Ci = b4 (Jpest = Z3(R)) x In (1),

1), if T = Entropy
Ci+ b (Jye — Zij(k)) x In (L), if T = Entropy

ZQ:Z,,}-(kH):{

(24)
. 2 Z{,kﬂ - Sé,k
Q(Z';,k+l) = %exp —’7. (25)
Length,, Length,
C; = 0 X cBest; + (1 — 0) x gBest (26)
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1
Tpest = ﬁgﬁchesti (27)

The notation cBest; denotes the best position in the ith iteration
for the predator, and gBest is the best position for all predators at
each iteration. The average best predator is denoted by J,;, and 0 is
the distribution of a chaotic number on (0,1). The b denotes the
contraction expression phase, and it is used to control the
convergence rate. Mathematically, b is defined by Equation 28:

- |

Hence, the final equation is formulated as the following Equation 29:

bmax B bmin

Iterations,,,,

b } X Iterations} (28)

Step = Co@(Blite; - Co ® Preyy), i = 1,2,...% (29)

Every solution in the current iteration is compared with its
equivalent in the prior iteration for fitness. If the current solution is
found to be a superior match, the previous one is superseded. This
iterative procedure improves solution quality with time and imitates
the behavior of predators that return to locations with abundant
prey after successful foraging attempts. After completion of
optimization, a feature vector of dimension N x 380 and a
feature vector of N x 313, respectively, are obtained.

3.7 Feature fusion and classification

The selected features are finally fused and later classified using
machine learning classifiers. The fusion process improves an
object’s information that directly relates to better accuracy. In this

TABLE 1 Classifiers and training hyperparameters of each classifier.

Classifier

Training hyperparameters

10.3389/fonc.2024.1335740

work, a simple serial-based fusion has been chosen to combine the
selected feature vectors in a single vector.

Using the following equation, we can determine the dimension of
the serial-based fusion vector if we have two feature vectors, f1 and f2,
with dimensions of N x 380 and N x 313, respectively, where N
denotes the total number of observations as defined by Equation 30.

1
12

The resultant feature vector is obtained of dimension N x 693.

R= (30)

Nx380 +Nx 313

The fused feature vector is finally classified using traditional
machine learning classifiers named as Cubic SVM and Weighted
KNN and neural network-based classifiers such as narrow, wide, tri-
layered, bi-layered, and medium. The hyperparameters used to train
these classifiers are provided in Table 1 as follows:

3.8 Dataset and performance evaluation

The augmented Figshare dataset is used for our experiments
and is contributed by (11). The dataset is publicly available for
research purposes. A model or algorithm’s ability to predict
outcomes based on the available data is measured using
performance metrics in machine learning. The calculated
measures contain each classifier’s sensitivity rate, false negative
rate (FNR), precision rate, and area under the curve (AUC). Time
and accuracy measures are also used to interpret the performance of
each classifier. Table 2 provides more details on these
performance metrics.

Classifier Training hyperparameters

Cubic SVM Kernel function: Cubic

Kernel scale: Automatic

Box constraint level: 1
Multiclass method: one-vs-one

Standardize data: true

Weighted KNN Number of neighbors: 10
Distance metric: Euclidean
Distance weight: squared inverse

Standardize data: true

Wide neural network Number of fully connected layers: 1
First layer size: 100

Activation: ReLU

Iteration limit: 1000

Regularization strength (Lambda): 0

Standardize data: yes

Bilayered neural network Number of fully connected layers: 2
First layer size: 10

Second layer size: 10

Activation: ReLU

Iteration limit: 1000

Regularization strength (Lambda): 0

Standardize data: yes

Narrow neural network Number of fully connected layers: 1
First layer size: 10

Activation: ReLU

Iteration limit: 1000

Regularization strength (Lambda): 0

Standardize data: yes
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Medium neural network Number of fully connected layers: 1
First layer size: 25

Activation: ReLU

Iteration limit: 1000

Regularization strength (Lambda): 0

Standardize data: yes

Trilayered neural network Number of fully connected layers: 3
First layer size: 10

Second layer size: 10

Third layer size: 10

Activation: ReLU

Iteration limit: 1000

Regularization strength (Lambda): 0
Standardize data: yes
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TABLE 2 Performance measures used to validate the proposed methodology.

Accuracy Time Sensitivity rate (%) False negative Precision Area under
(%) rate (%) rate (%) the curve
Performance TP + TN Seconds FN TP b
measure TP+ TN + FP + FN TP+ FP TP+ FP TP+ N / fx)dx
Description It is a characteristic or Precise time Measures how successfully | Probability of failure to | Degree of false x-axis integral

to finish
a task

condition of being precise
or accurate.

a test finds true positives.

detect a true positive. positives in

the result

over a
particular time

TP is for true positive, TN is for true negative, FP is for false
positive, and FN is for false negative.

The reason to choose each measure provided in Table 1 is
given below:

o Accuracy is the ratio of accurately predicted occurrences to
total instances. This gives a general idea of how well a
model is predicting in every class. Accuracy by itself,
though, could not be enough if the classes are
unbalanced. In our proposed technique, classes are
balanced. Balance among classes is achieved by data
augmentation process.

o Time required to finish a specific task is given in seconds.

« Sensitivity quantifies the percentage of actual positive
instances that the model accurately predicted. In order to
reduce false negatives, it is very crucial. For example, in the
medical domain, high sensitivity indicates that the model is
effective in identifying positive cases.

« False negative rate refers to the percentage of true positive
cases that were mistakenly forecast as negative. It stands for
the probability of overlooking favorable examples. When
the cost of missing positive occurrences is large, it is
essential to reduce false negative rate.

o Precision gauges how well the model predicts positive
occurrences. If you wish to reduce false positives,
accuracy is crucial. For instance, high precision in
medical diagnosis indicates that the model is likely to be
accurate when it predicts a positive case.

o The area under the receiver operating characteristic (ROC)
curve is known as the area under the curve (AUC). The
trade-off between true positive rate (sensitivity) and false
positive rate is represented graphically by the ROC curve.
AUC offers a single scalar value that sums up the model’s
overall performance. Perfect categorization is indicated by
an AUC of 1.0; random chance is suggested by an AUC
of 0.5.

4 Results and discussion
4.1 Experimental setup

In this section, detailed experimental setup is discussed. The data
augmentation is performed using a sparse auto-encoder. A single
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hidden layer with 300 neurons is selected while the training
parameters like a maximum epochs are 2,000, L2Weight
Regularization is set equal to 0.001, SparsityRegularization is equal to
4, and finally, SparsityProportion is set to 0.15. Hyperparameter
optimization is performed to optimize the parameters of fine-tuned
deep models such as EfficientNetBO and InceptionResNetV2. The
original dataset is split into a ratio of 50:50 in training and test
proportions. After that, the training and testing images are separately
augmented and trained models. The gradient vectors are accelerated via
stochastic gradient descent (SGDM) for quicker convergence at the
convolutional layers. During the algorithm learning phase for both
models, a mini-batch size 128 is chosen. Additionally, the experiments
are carried out using MATLAB R2023a on a machine equipped with
128 GB of RAM and CPU Intel(R) Core(TM) i7-6700 @ 3.40 GHz and
12 GB RTX3000.

4.2 Proposed framework results (fine-
tuned models)

In this section, results of the first step of the proposed
framework are presented. The hyperparameter optimization using
the Bayesian method is performed separately for EfficientNetB0 and
InceptionResNetV2 models and numerical results are computed.

4.2.1 Fine-tuned Bayesian optimization-
based EfficientNetBO

Table 3 describes the classification performance of fine-tuned
EfficientNetB0 deep architecture with an accuracy value of 99.10%,
achieved by the Cubic SVM classifier. The wide neural network
obtained the second best accuracy of 98.90%. The rest of the
classifiers obtained accuracies of 98.80%, 98.70%, 98.60%, and
98.50%. The sensitivity and precision rates of each classifier are
also noted, and the maximum value of Cubic SVM is 99.10%. In
addition, the performance of Cubic SVM can be confirmed by a
confusion matrix, given in Figure 6A. The diagonal numbers in the
figure represent the number of true observations and the true
positive rate for glioma, meningioma, and pituitary classes. The
computational time of each classifier is also noted during the
classification process, and it is observed that the minimum noted
time is 12.512 (seconds) for Medium Neural Network.

4.2.2 Fine-tuned Bayesian optimization-
based InceptionResNetV2

In the second step, the classification results are computed using
fine-tuned InceptionResNetV2 with the initialization of BO-based
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TABLE 3 Classification results using the BO-based EfficientNetBO model.

10.3389/fonc.2024.1335740

o 7 Sensitivit False negative Precision Area under
Classifier AT () L2 rate (%)y rate (9%) rate (%) curve (%)
Cubic SVM 99.10 20.227 99.10 0.90 99.10 1.00
Wide neural network 98.90 14.505 98.93 1.07 98.93 1.00
Medium neural network 98.80 12.512 98.76 1.24 98.76 1.00
Bilayered neural network 98.70 15.886 98.66 1.34 98.66 0.99
Weighted KNN 98.60 26.907 98.63 1.37 98.63 1.00
Narrow neural network 98.60 15.377 98.60 1.40 98.60 0.99
Trilayered neural network 98.50 16.059 98.53 1.47 98.53 1.00

Bold denotes the best values.

hyperparameters. The results of this step are given in Table 4, which
shows the maximum accuracy of 98.10 for the Cubic SVM classifier.
The minimum computational time of this step is 20.543 (second)
for the Narrow Neural Network classifier. In addition, the
performance of the Cubic SVM classifier can be confirmed by a
confusion matrix, illustrated in Figure 6B. Compared with the
performance of this step with step 1, it is observed that the
accuracy of this step is degraded by approximately 1%. Moreover,
the increase in time shows the drawbacks of this step. In order to
reduce the drawbacks of this step, a feature selection method is
employed, which selects only important features for classification.

4.3 Feature selection using proposed
QTbMPA feature selection

The third and fourth steps correspond to the best
feature selection.

4.3.1 QTbMPA feature selection on fine-
tuned EfficientNetBO

In the third step, the proposed feature selection method is
applied to deep extracted features; in return, the best optimal
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FIGURE 6

features are obtained. The results of the feature selection method
on fine-tuned EfficientNetB0 are presented in Table 5. In this table,
the maximum accuracy of 99.00% by the Cubic SVM classifier is
shown. The sensitivity and precision rate of this classifier are also
99% that the confusion matrix in Figure 7A can confirm. Wide
neural network obtained the second best accuracy of 98.80%. Each
classifier’s computational time is noted, and its minimum reported
time is 3.8078 (sec). In step 1, the minimum time was 12.52 (s),
which is now reduced by almost 300%. Moreover, the accuracy of
this step is consistent, which can be a strength of the proposed
feature selection method.

4.3.2 QTbMPA feature selection on fine-
tuned InceptionResNetV2

In the fourth step, features of the fine-tuned
InceptionResNetV2 model are selected using the proposed
QTbMPA method and classification is performed. Table 6
describes the results of this step, showing an maximum accuracy
of 97.70% by Cubic SVM. The sensitivity and precision rate of this
classifier is also 97.70%. The confusion matrix in Figure 7B can
further confirm these values. The computational time of each
classifier is also given in this table, and the minimum reported
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Confusion matrix of EffficientNetBO and InceptionResNetV2 hyperparameter optimization using BO. (A) Confusion matrix of fine-tuned
EffficientNetBO hyperparameter optimization using BO. (B) Confusion matrix of fine-tuned InceptionResNetV2 hyperparameter optimization

using BO.
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TABLE 4 Classification results of using BO-based InceptionResNetV2.

10.3389/fonc.2024.1335740

o Accuracy . Sensitivity False negative Precision Area under
Classifier ° Time (s) 5 3 5 o
(%) rate (%) rate (%) rate (%) curve (%)
Cubic SVM 98.10 21.966 98.06 1.94 98.06 1.00
Narrow
97.90 20.543 97.93 2.07 97.93 0.99
neural network
Wide neural network 97.90 49.824 97.93 2.07 97.93 1.00
Bilayered
97.90 36.736 97.93 2.07 97.93 0.99
neural network
Trilayered
riayere 97.90 36711 97.86 2.14 97.86 0.99
neural network
Medium
97.80 29.453 97.80 2.20 97.80 1.00
neural network
Weighted KNN 97.10 34.365 97.13 2.87 97.13 1.00

Bold denotes the best values.

time is 6.1486 (s) for Cubic SVM. Compared with the
computational time of this step with the second step, the time is
reduced almost 300%.

4.3.3 Fusion of best selected features

Finally, the best-selected features of both models, in the third
and fourth steps, are fused using a serial approach. The cubic SVM
classifier obtained the maximum accuracy of 99.80% and the
sensitivity and precision rates of 99.83% (can be seen in Table 7).
The confusion matrix in Figure 8 can further confirm these values.
A minor increase in computational time is observed after the fusion
process; however, the accuracy is significantly improved for all
classifiers. In comparison, with all previous steps, noted accuracy
has significantly improved and is the highest among all early noted
accuracies. Moreover, Table 8 shows a detailed comparison of the
proposed method with state-of-the-art techniques and shows
significant improvement.

4.4 Discussion

A t-test is a statistical technique used to compare the mean
values of two groups. It is frequently used in hypothesis testing to
see whether a particular process or treatment has a noticeable effect
on the target population or whether there is a significant difference
between the two groups. In order to test the significant difference
between the classifiers, t-test is applied.

In the proposed technique, t-test is conducted to check any
considerable gap between accuracies at different stages of our
proposed model. The gap is resulted when we have unbalanced
classes of dataset (54). The augmented step balanced the classes of
dataset; however, to validate our augmentation step, t-test is applied
on all phases of the proposed technique. The test starts by setting a
null hypothesis as below:

Hy = The accuracy of the chosen classifiers differs significantly

over the phases of proposed technique.

TABLE 5 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
EfficientNetBO model.

i Accuracy g Sensitivity False negative Precision Area under

Classifier ° Time (s) 5 5 o o

(VA rate (%) rate (%) rate (%) curve (%)
Cubic SVM 99.00 5.4668 99.00 1.00 99.00 1.00
Wide neural network 98.80 4.5414 98.83 1.17 98.83 1.00
Medium

98.60 3.8831 98.63 1.37 98.63 1.00
neural network
Weighted KNN 98.60 7.4494 98.56 1.44 98.56 1.00
Tril

rilayered 98.50 49574 98.53 147 98.53 0.99

neural network
Narrow

98.50 3.9573 98.50 1.5 98.50 1.00
neural network
Bilayered

98.50 3.8078 98.50 1.5 98.50 0.99
neural network

Bold denotes the best values.
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Additionally, two best-performing classifiers at all phases of the
proposed technique are chosen. The accuracy achieved by respective

10.3389/fonc.2024.1335740

where I is the number of experiments and the noted mean
value after this step is 0.48. After calculating the Mean (u), the

classifier at each phase is selected to conduct experiments. standard deviation (o) is calculated by using the following

A detailed overview of test is given below: equation:

Phases —

baBsOed baBsoed MPA Optimization MPA Optimization Feature
Classifi ici i i
; assifiers EfficientNetBO  InceptionResNetV2 for EfficientNetBO for InceptionResNetV2 fusion
Cubic SVM 99.10 98.10 99.00 99.70 99.80
:(V;iﬁhted 98.60 97.10 98.60 97.20 99.80
The mean of the differences for all experiments are calculated
using the following Equations 31-34:
I 2
Difference (J) = |Accuracy(k) — Accuracy(l)| (31) standard deviation (0) = W (33)
1 The resultant standard deviation value is 0.357, later used in the
Mean (u) = NZk:ll] il (32) T Selection formula.

True Class
True Class
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FIGURE 7
Confusion matrix of the QTbMPA selection technique for EffficientNetBO and InceptionResNetV2. (A) Confusion matrix of QTbMPA based best
selected EfficentNetBO deep features. (B) Confusion matrix of QTbMPA based best selected InceptionResNetV2 deep features.

TABLE 6 Proposed classification results after employing the QTbMPA selection method on features returned from the Bayesian-based
InceptionResNetV2 model.

- False ..
" o . Sensitivity ) Precision Area under
Classifier Accuracy (%) Time (s) ° negative o o
rate (%) o rate (%) curve (%)
rate (%)

Cubic SVM 97.70 6.1486 97.70 2.30 97.70 1.00
Narrow neural network 97.60 7.8251 97.60 2.40 97.60 0.99
Medium neural network 97.60 7.3787 97.60 2.40 97.60 0.99
Bil

ayered 97.50 7.7592 9750 2.50 975 0.98
neural network
Wide neural network 97.30 11.376 97.20 2.80 97.20 0.99
Trilayered

97.30 8.9962 97.26 2.74 97.26 0.99

neural network
Weighted KNN 97.20 6.8459 97.16 2.84 97.16 0.99

Bold denotes the best values.

Frontiers in Oncology frontiersin.org

79


https://doi.org/10.3389/fonc.2024.1335740
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ullah et al.

10.3389/fonc.2024.1335740

TABLE 7 Classification results after fusing of the best selected features of both models.

o Accuracy . Sensitivity False negative Precision Area under

Classifier o Time (s) ° 2 ° o

(VA rate (%) rate (%) rate (%) curve (%)
Cubic SVM 99.80 11.198 99.83 0.17 99.83 1.00
Weighted KNN 99.80 13.699 99.80 0.20 99.80 1.00
Wide neural network 99.80 6.776 99.76 0.24 99.76 1.00
Medi

edium 99.70 5.6234 99.70 0.30 99.70 1.00

neural network
Bilayered

99.70 5.0002 99.66 0.34 99.66 1.00
neural network
Trilayered

99.70 5.6399 99.66 0.34 99.66 1.00
neural network
Narrow

99.60 6.2125 99.60 0.40 99.60 1.00
neural network

Bold denotes the best values.
VI x u classes of dataset, which lead to loss of accuracies. The proposed
T Selection = o G349 data augmentation step helps to properly address class

The value 3.012 was obtained after calculation using the above
formula. The obtained value will be considered as a decisive point to
conduct the Student’s T — Test. Moreover, the degree of freedo
m (df) is calculated using the formula: df = n — 1; the resultant
0.05 (55). After looking at the
corresponding output value in the t-test chart, the value is
(-2.776, +2.776). The decisive T Selection value is 3.012; based
on the given below formulation in equation 35, it is established that
H is rejected, and there is no noteworthy difference between the

value is four and selected p value =

atplOccuracy of the selected classifiers.

If (T Selection >= -2.776 and <= + 2.776) (35)

Hypothesis test establishes that throughout the phases of the
proposed technique, there is a consistency in accuracy of each
phase; it means that the class imbalance problem is accurately
addressed. Inconsistent accuracies are the result of imbalance

men'm

True Class

p\\“‘\“a‘v

imbalance problem.

Heat map-based analysis: Heat map-based techniques are
employed to express the decisive features of classification for each
class. Grad-CAM, LIME, and Occlusion Sensitivity are three
methods commonly used to represent decision features for
classification of an image. Grad-CAM uses gradients to determine
the classification score about the final convolutional feature map. It
draws attention to that part of input image that has the biggest
influence on this score. The method uses a global average pooling
layer to extract features. Equation 36 serves as the basis for this
procedure, which is illustrated below:

.1 9y
by = N 22 81;.9 (36)
ij

where bg represents class scores of g features from the Global
Average Pooling layer, N represents total pixels in a feature map, ¢

0.1%
(01)

g\'\o‘“a

FIGURE 8
Classification results after the fusion of selected feature features.
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TABLE 8 Summary of recent state-of-the-art (SOTA) techniques for brain tumor classification using Figshare dataset.

Serial no. Reference Year Dataset Accuracy (%)
1 Alanazi et al. (19) 2022 Figshare 95.75
2 Raza et al. (20) 2022 Figshare 99.67
3 Tummala et al. (21) 2022 Figshare 98.70
4 Polat et al. (22) 2022 Figshare 99.18
5 Shaik et al. (23) 2022 Figshare 96.51
6 Hagq et al. (24) 2022 Figshare 98.00
7 Rahman et al. (25) 2023 Figshare 97.60
8 Talukder et al. (47) 2023 Figshare 99.68
9 Aloraini et al. (26) 2023 Figshare 99.10
10 Athisayamani et al. (27) 2023 Figshare 98.85
11 Mishra et al. (28) 2023 Figshare 98.97
12 Agrawal et al. (48) 2023 Figshare 96.40
13 Malla et al. (49) 2023 Figshare 98.93
14 Asif et al. (50) 2023 Figshare 98.69
15 Cinar et al. (29) 2023 Figshare 98.32
16 Deepak et al. (30) 2023 Figshare 95.40
17 Zulfigar et al. (31) 2023 Figshare 98.86
18 Shyamala et al. (51) 2023 Figshare 94.70
19 Yapici et al. (52) 2023 Figshare 99.47
20 Sahoo et al. (53). 2023 Figshare 97.00
Proposed Figshare 99.80

Bold denotes the best values.

depicts the class score, and y is the considered output. The whole
expression 0 Bf:'j represents the convolution map. In the expression,
i and j represent two dimensions and B represents gradients.
Features with negative weight can be possible using the above
equation; therefore, the Relu activation function is used to
convert the negative weights to positive and is represented using
the given below Equation 37:

M = Relu(3b . BY) (37)

Mathematical details of LIME and Occlusion Sensitivity can be
seen from (56) and (57), respectively. Figure 9 represents the
visualization of important features of each class using the
explained methods of the heat map.

5 Conclusion

This article presents a novel deep learning framework with
an efficient QTbMPA feature selection technique for the
classification of brain tumor types such as meningioma,
glioma, and pituitary from MRI images. Instead of manual
data augmentation, a sparse autoencoder architecture was

Frontiers in Oncology

proposed and generated new images based on the training set.
Two lightweight deep learning architectures were modified and
trained with the help of BO hyperparameter initialization. The
deeper layer (global average pool) was employed for feature
extraction and performed classification. The classification
process shows that there exist few irrelevant features, which
are impacted on the classification computational time.
Therefore, we proposed an efficient QTbMPA feature selection
algorithm that almost 300% reduced the computational time
and maintained the classification accuracy. The selected
features were finally fused and classified using ML and neural
network classifiers. On the augmented dataset, the proposed
framework obtained an improved accuracy of 99.80% than the
SOTA technique.

The goal of the proposed research is to create a deep learning
(DL) model for brain tumor classification, utilizing DL’s
capabilities to classify various forms of brain tumors more
accurately. This finding could have a significant clinical impact
in neuro-oncology and have a wide variety of potential
applications. The proposed research can assist doctors and
radiologists in making accurate diagnoses when using medical
imaging data, such as MRI scans, to identify brain tumors. It
offers dependable and consistent tumor categorization results,
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Heat map of classes using Grad-CAM, LIME, and occlusion sensitivity

lowering the misdiagnosis risk and enabling early brain tumor
discovery. Furthermore, the accurate classification of brain
tumors might help in developing customized treatment plans
for patients. The model assists physicians in developing
customized treatment regimens that lead to more accurate and
successful treatment outcomes by aiding in the identification of
the exact type of tumor.

5.1 Limitations and future work

Although we obtained the maximum accuracy, there are few
limitations that make the proposed architecture more consistent.
The limitations of this work are selection of pretrained models and
best feature selection. The pretrained models have been selected
based on the Top-5 accuracy on ImageNet dataset and total number
of parameters. In addition, the selection process reduces the
overfitting, but still there are few irrelevant features selected for

Frontiers in Oncology

meningioma (0.95) pituitary (1.00)

the classification. The proposed architecture has been evaluated on
brain tumor MRIs of the Figshare dataset; however, in future, it will
be tested on BRATS datasets. Moreover, a new self-attention and
vision transformer model will be proposed for the improved
accuracy and efficiency.
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pCT scans based on modified
3D-RUnet image segmentation
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Yipeng He?, Liwan Shi* and Zheng Kang*

!College of Electronic Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China,
2Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen,
Fujian, China

Purpose: The present study is based on evidence indicating a potential
correlation between cone-beam CT (CBCT) measurements of tumor size,
shape, and the stage of locally advanced rectal cancer. To further investigate
this relationship, the study quantitatively assesses the correlation between
positioning CT (pCT) and CBCT in the radiomics features of these cancers, and
examines their potential for substitution.

Methods: In this study, 103 patients diagnosed with locally advanced rectal
cancer and undergoing neoadjuvant chemoradiotherapy were selected as
participants. Their CBCT and pCT images were used to divide the participants
into two groups: a training set and a validation set, with a 7:3 ratio. An improved
conventional 3D-RUNet (CLA-UNet) deep learning model was trained on the
training set data and then applied to the validation set. The DSC, HD95 and ASSD
were calculated for quantitative evaluation purposes. Then, radiomics features
were extracted from 30 patients of the test set.

Results: The experiments demonstrate that, the modified model achieves an
average DSC score 0.792 for pCT and 0.672 for CBCT scans. 1037 features were
extracted from each patient's CBCT and pCT images, 73 image features were
found to have R values greater than 0.9, including three features related to the
staging and prognosis of rectal cancer.

Conclusion: In this study, we proposed an automatic, fast, and consistent
method for rectal cancer GTV segmentation for pCT and CBCT scans. The
findings of radiomic results indicate that CBCT images have significant research
value in the field of radiomics.

KEYWORDS

radiomics, cone-beam CT, rectal cancer, 3D-RUnet, CLAHE

Abbreviations: pCT, Planning Computerized Tomography; CBCT, Cone Beam CT; TME, Total Mesolectal
Excision; nCRT, Neoadjuvant Chemoradiotherapy; pCR, Pathologic Complete Response; CLAHE, Contrast
Limited Adaptive Histogram Equalization; DSC, Dice similarity coefficient; 95%HD, Hausdorff-95 distance;

ASSD, average symmetric surface distance; PCC, Pearson correlation coefficient.
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Introduction

The standard-of-care treatment for locally advanced rectal
cancer (LARC, T34 or N+) is currently total mesorectal excision
(TME) followed by neoadjuvant chemoradiotherapy (nCRT) (1-3).
After nCRT, approximately 15%-27% of patients can show a
pathologic complete response (pCR) (4, 5). And several prior
studies have shown that these patients typically have outstanding
long-term outcomes without surgery (6-9). Habr-Gama and
colleagues suggested a “wait and see” policy, while Maas and
colleagues approach a reasonable solution that could avoid
surgery and preserve organs (6, 10). The pCR, however, could
only be performed using histopathological analysis of surgically
resected specimens. So, it remains a major challenge to develop a
non-invasive, validated way to reliably classify pCR patients
after chemoradiotherapy.

Tumor segmentation and the subsequent quantitative of rectal
cancer in medical images provide valuable information for the
analysis of pathologies and prediction of patient outcomes.
Numerous studies have shown that image radiomic features
extracted from multi-modality imaging techniques, such as CT
(11), MRI (12), and PET-CT (13), can be used to predict the
treatment response and prognosis of locally advanced rectal
cancer. Machine learning models based on CT and MRI image
radiomics have also demonstrated good reproducibility and
robustness (14, 15). However, these imaging techniques are
typically used for disease diagnosis before or after radiotherapy,
and are unable to monitor the changes in tumor heterogeneity
during the treatment process (16). In contrast, cone-beam CT
(CBCT) scans, which are routinely obtained during radiotherapy
to examine patient position changes, do not require patients to
undergo additional radiation exposure. The features extracted from
CBCT may provide valuable information on the changes in tumors
during the treatment process without exposing patients to
additional radiation hazards. The goal of this study is to examine
whether CBCT features can be used for clinical staging or prognosis
assessment of tumors by comparing the linear relationship between
CBCT and pCT-extracted imaging features.

Precise segmentation of rectal cancer as the mask is particularly
important for radiomics extraction and affects the robustness of
radiomic features. The current image segmentation methods
include manual, semiautomatic, and fully segmentation. The U-Net
(17) based models have proven effectiveness over traditional medical
segmentation algorithms. However, the 2D U-Net model for
segmenting tumors only obtain a single tumor slice in CT scan,
while tumors are usually distributed in continuous CT slices (18). To
solve the issues, we extend the 2D U-Net to a 3D version with Resnet
architecture to capture the inter-slice continuity of the tumor.

Methods

Patients

The article under consideration presents a retrospective analysis
of 103 patients who underwent neoadjuvant chemoradiotherapy in
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the Department of Oncology Radiotherapy at the Affiliated Hospital
of Xiamen University between January 2019 and October 2020. The
study followed the ethical principles outlined in the Helsinki
Declaration and its subsequent relevant revisions for all
procedures involving human participants. The inclusion criteria
for the retrospective analysis were as follows:

1. Biopsy-confirmed primary rectal adenocarcinoma
2. Locally advanced disease (T stage 23) prior to treatment

3. No prior receipt of chemoradiotherapy, radiotherapy,
or chemotherapy

Only patients who met these criteria were included in the
analysis. In compliance with the Helsinki Declaration of 1964 and
its later corresponding revisions, all the procedures carried out in
this study involving human participants were compliant. CBCT was
scanned during the whole treatment period.

Image acquisition

The CT scans utilized in this study for lesion localization were
conducted using a GE LightSpeed device (manufactured by GE
Medical System, USA). The scans were performed using parameters
of 120 kV tube voltage, 200 mA tube current, a 512x512
reconstruction matrix, and 5mm slice thickness. In addition,
CBCT scans were performed using a Truebeam linear accelerator
(manufactured by Varian Medical System), with a 512x512
reconstruction matrix and 3mm slice thickness.

CLA-UNet structure analysis

In this article, we extend the traditional 2D U-Net to 3D U-Net
equipped with ResNet architecture to capture the inter-slice
continuity of the tumor, and we propose a CLAHE (19)
processed U-Net (CLA-UNet) model to further improve the
clarity of the anatomy structure, texture, and boundary in the
CT image before segmentation. This CLA-UNet designed to
accurately segment the lesion area in positioning CT (pCT) and
cone-beam CT (CBCT) images of rectal cancer tumor. The CLA-
UNet network combines the popular 3D-UNet structure with a
residual module (Res-net) to improve the accuracy of tumor
location and boundary description, ensuring a precise radiation
target area.

The structure of the CLA-UNet network is illustrated in
Figure 1 of the article. The network is designed to automatically
segment the lesion area both in pCT and CBCT images, which also
providing valuable information for radiation treatment planning
and evaluation.

CLAHE algorithm processing

Prior to importing the 3D CT data into the 3D-RUNet network
for training, a preprocessing step is carried out to crop the CT
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FIGURE 1
Layers of the proposed CLA-UNet model.

volume and enhance the image contour. This involves removing
any blank areas or areas without drawn target regions, resulting in
the cropped CT volume being resized to 256x256x128 voxels using
linear interpolation. As rectal tumors are considered soft tissue, the
CT value range is restricted to (-200, 300). To focus the network
training on information that is relevant to rectal tumors, the 3D CT
image is thresholder such that any image values outside the
specified range are replaced with corresponding boundary values.
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To further improve the clarity of the anatomy structure, texture,
and boundary in the CT image, the thresholder CT image is
processed using the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm.

This results in the rectal structure and boundary becoming
clearer and an overall improvement in image quality, as
demonstrated in a comparison of the image before and after
thresholding and CLAHE processing shown in Figure 2.

FIGURE 2

Data pre-processing with CLAHE. (A) Original CT image; (B) CT image intercepted by threshold with HU=(-200~300); (C) CT image transformed by CLAHE
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Model training and evaluation

The CLA-UNet network is based on the PyTorch kernel
platform and the training machine is configured with a Windows
10 operating system and a Quadro P5000 GPU device. The Adam
optimizer is used for training with an initial learning rate of 0.0001,
and the batch size for network training is set to 2 with a maximum
training cycle of 150. This study is trained on a 103 rectal cancer CT
dataset provided by the First Affiliated Hospital of Xiamen
University, with 70% of the data randomly selected as the
training set and 30% as the testing set. The network is trained
using the Tversky Loss function, shown in Equation 1.

25111701‘90;‘

T(o, B) =
Eﬁlpmgm + O‘Eﬁﬂ’ot’gli + ﬁEfilpligoi

1

po; is the probability that the i-th voxel is a tumor, py; is the
probability that the i-th voxel is not a tumor, g, is 1 if the voxel is
abnormal, 0 if it is not abnormal, gj; is the opposite of g;;. Tversky
Loss effectively solves the problem of data imbalance by finding a
better balance between accuracy and recall.

The model is evaluated using the Dice similarity coefficient
(DSC), Hausdorft-95 distance (95% HD), and average symmetric
surface distance (ASSD) evaluation metric to compare the
segmentation results with those of CBCT scans.

The DSC is defined as follows, shown in Equation 2:

2PN gl

DSC =
P[+1G]

2

Where the P represents the ground truth, G denotes the
prediction results and the P N G is the intersection of P and G.
The range of DSC evaluation is [0,1], and the higher the score is
close to 1.0, the more accurate the prediction is. P and G represent
the target structure drawn by the physician and the
model, respectively.

The HD(A,B) is defined as follows, shown in Equation 3:

HD(A, B) = max(max,cg(minypd(a, b)), maxyeg(min,cpd(b, a)))
(3)
Where d (a, b) is the distance between the point a and b.
The ASSD is shown in Equation 4:

ASSD = (s, e5)@(8a, SB)) + D5, cs584(Sp, S(A))) (4)

S(A) + S(B)

Where S(A) represents the surface voxels in set A, and d(S4,S
(B)) represents the shortest distance from S, to S(B).

Radiomics correlation analysis

The open source radiomics extraction software Pyradiomics 3.0
(https://pyradiomics.readthedocs.io/en/latest/) was used to extract
high-throughput features from patient images. In the test group, a
total of 30 cases were automatically segmented from pCT and
CBCT images using the 3D CLA-UNet model. All the images were
filtered by Laplacian of Gaussian (LoG) filter and performed wavelet
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transformation, so there are four types of images, namely, “Original

» o« » «

Images”, “texture Images”, “LoG Images”, and “Wavelet Images”.
After that, the Pearson correlation test was used to analyze the
correlation between the image radiomic feature values of pCT and
CBCT, if the Pearson correlation coefficient (PCC) R is greater than
0.9, it is considered that the feature value has strong consistency and
substitutability in machine learning (14). Pearson correlation
coefficient is a method for measuring the similarity of vectors, the
range of correlation is [-1, 1], it is defined as the ratio of the
covariance and standard deviation of two feature variables,

calculated as follows shown in Equation 5:

Cov(X,Y)  E[(X - t)(Y - 1,)]
- 600, 0,0,

(5)

Among them, X and Y are two different groups of eigenvalue
variables, and tu_x and 6_x are mean and standard deviation
respectively. This process was implemented using the Pearson
algorithm in the R language (R language 3.6).

Results
Study population

The radiomics analysis were conducted on a test set of 30
patients, patients’ radiomic characteristics were grouped by LN
metastasis and compared in Supplementary Table 1. The clinical
information includes gender, age, pathology, and clinical-stage
information. All the patients received pCRT followed by TME,
and group differences were examined.

Model performance

The trend of the average Loss and average Dice values during
the CLA-UNet training process is depicted in Figure 3. It is evident
that as the number of training rounds, also known as epochs,
increases, the Loss values (a) on both the training and validation
sets rapidly decrease, while the Dice values (b) steadily improve.
When the number of epochs reaches 50, the trend stabilizes, with
the Loss value reaching close to 0 and the Dice value reaching a
stable value around 0.8, details were shown in Table 1.

The results of the CLA-UNet network training on 103 samples
showed that the network could segment the rectal tumor with good
accuracy, details shown in Figure 4. As seen in the transverse
sections, the performance of the automatic segmentation was
satisfactory for the majority of the levels. However, there were
some regions, particularly near the cecum and anus, where larger
discrepancies were observed between the manual annotations and
the machine segmentations. This was likely due to the close
proximity of densities in these areas, making it more challenging
to distinguish between the different tissues. In such cases, manual
annotations by doctors may require additional imaging modalities,
such as MRI or PET-CT, or the use of their experience to assist in
the outlining process. Despite these limitations, the average Dice
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FIGURE 3
Trend of Loss and Dice value with epoch during training both for CTs (A, B) and CBCTs (C, D).

score for the CLA-UNet outlining ranged from 0.72 to 0.86, which  strong correlated features. The correlation coefficients R of these
is generally in line with the clinical requirements. three features are 0.9521, 0.9406, and 0.9191, respectively, the data
of the subsequent two radiomics were shown in detail in Figure 5.

Inter-group correlations calculation
Discussion

Automatically contouring 30 patient images based on deep

learning algorithms to ensure consistency in contouring results. The usage of imaging radiomics in CT scans for rectal cancer
1037 features were extracted from pCT and CBCT modalities using diagnosis and prognosis analysis has been well documented in
machine learning algorithms, including shape features (n=14), first- previous studies (21). However, the application of CBCT in this
order features (n=19), texture features (n=172), wavelet features regard has been less explored. In this study, a modified deep
(n=728), and loG features (n=104). Pearson’s correlation analysis learning algorithm, CLA-UNet, was developed to automatically
was used to analyze the correlation of two sets of features, and segment the rectal cancer tumor location. With our previous
strong correlated features were extracted. 73 features had Pearson o1k we had trained the deep-learning model and used it in our
correlation coefficients R greater than 0.9, meaning that these 73 (Jipjcal practice. The results indicate that the CLA-UNet model is
features can be interchangeable. The three features confirmed in  feagible and time-saving to perform fully automatic segmentation
previous literature to be related to rectal cancer staging and new  for the rectal tumor both on CBCT and pCT images. To evaluate the
adjuvant therapy effectiveness (20), including original first-order accuracy of the 3D mask of the CLA-UNet mode, we compared the
Energy, wavelet-HLH_glrlm Gray Level Non Uniformity, and coverage of the predicated area with the manual segmentation with
original_glrlm Gray Level Non Uniformity, are included in the — ap average Dice value, which was 0.792 for pCT and 0.672 for

CBCT scans.
TABLE 1 Comparison results on the test set for the pCT and Subsequently, imaging radiomic features were extracted and
CBCT scans. analyzed from both pCT and CBCT scans using machine learning
algorithms. The results showed that 73 features had a correlation
PCT cBCT coefficient (R) greater than 0.9. Our findings also demonstrate that
DsC 0792 £ 0.056 0.672 + 0.084 some of the prognostically significant features of radiomics have a
HDO95(mm) 154 + 95 202 + 124 strong linear relationship between the pCT and CBCT images based
on automatic image segmentation, which indicate a measure of

ASSD 43+21 54+26

interchangeability between the two scans. These high-correlation

Frontiers in Oncology 89 frontiersin.org


https://doi.org/10.3389/fonc.2024.1301710
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yu et al. 10.3389/fonc.2024.1301710

(a)

¥
¥

FIGURE 4
Gross tumor volume contouring with Dice = 0.78. (A) manual; (B) contouring of CLA-UNet; comparing of segmentations between manual and

deep-learning both for transverse (C) and coronal (D) planes. The red was contoured by CLA-UNet and the white was contoured by manual
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FIGURE 5
Scatter diagram of features extracted from CBCT and CT scans
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features include those previously reported in literature as important
indicators for rectal cancer (22, 23). This highlights the potential
value of CBCT as an early biomarker for treatment response
evaluation (24).

Moreover, high-dimensional features were confirmed in
previous literature to be related to rectal cancer staging and new
adjuvant therapy effectiveness, in the present study, most of the key
features were wavelet features, which are challenging to decipher
with the naked eyes. However, high-dimensional features hold more
detailed information about the tumor and more sensitive when
assessing pCR, as was also demonstrated in recent study (20).

However, there are still some challenges in using CBCT images
for radiomics, cause the extracted textural features typically depend
on the reconstruction and scanning parameters (25). To be
consistent throughout in this study all the CBCT's were resampled
into an equal size of 5mm as pCTs, and the influence of slice
thickness on the radiomic parameters needs further investigation.
Nevertheless, other unknown factors may also influence the
consistency evaluation between pCT and CBCT radiomics.
Potentially, a radiomics approved reconstruction or corrections
could in general improve the consistency and utility of radiomics
in medical imaging. Besides this, the detector size of the CBCT has a
limited field of view (FOV) that may not be large enough for off-axis
patient positions and extensive tumors.

In conclusion, this study provides a preliminary exploration of
the correlation between pCT and CBCT imaging radiomics in locally
advanced rectal cancer. The CLA-UNet algorithm was successfully
applied to segment the rectal tumors, then the correlation between
the extracted imaging radiomic features was analyzed. The results
showed that radiomic features have a high correlation between pCT
and CBCT images, indicating the potential use of CBCT images as an
early biomarker for the evaluation of treatment response. However,
there are still some limitations in the use of CBCT images. First, the
patient sample size was small, a larger sample size test is needed to
achieve robust results. Second, the differences in reconstruction
algorithms and scan parameters, FOV limitations, and sensitivity to
motion artifacts which will influence the consistency evaluation
between pCT and CBCT radiomics. Further research is needed to
explore the potential applications of CBCT in the diagnosis and
prognosis of rectal cancer. Future studies could also focus on multi-
center data collection and validation, and on reducing the number of
features for clinical predictions.

Conclusion

In this study, we have presented a modified 3D-UNet
segmentation method, CLA-UNet, based on deep learning to
automatic segmentation the rectal cancer tumor both for pCTs
and CBCTs. Subsequently, radiomic features were extracted and
analyzed to find out the inter-group correlation, and the results
indicate that some of the prognostically significant features of
radiomics have a strong linear relationship between the pCT and
CBCT images, which indicate a measure of interchangeability
between the two scans.
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In the field of medicine, decision support systems play a crucial role by
harnessing cutting-edge technology and data analysis to assist doctors in
disease diagnosis and treatment. Leukemia is a malignancy that emerges
from the uncontrolled growth of immature white blood cells within the
human body. An accurate and prompt diagnosis of leukemia is desired due to
its swift progression to distant parts of the body. Acute lymphoblastic leukemia
(ALL) is an aggressive type of leukemia that affects both children and adults.
Computer vision-based identification of leukemia is challenging due to
structural irregularities and morphological similarities of blood entities. Deep
neural networks have shown promise in extracting valuable information from
image datasets, but they have high computational costs due to their extensive
feature sets. This work presents an efficient pipeline for binary and subtype
classification of acute lymphoblastic leukemia. The proposed method first
unveils a novel neighborhood pixel transformation method using differential
evolution to improve the clarity and discriminability of blood cell images for
better analysis. Next, a hybrid feature extraction approach is presented
leveraging transfer learning from selected deep neural network models,
InceptionV3 and DenseNet201, to extract comprehensive feature sets. To
optimize feature selection, a customized binary Grey Wolf Algorithm is
utilized, achieving an impressive 80% reduction in feature size while
preserving key discriminative information. These optimized features
subsequently empower multiple classifiers, potentially capturing diverse
perspectives and amplifying classification accuracy. The proposed pipeline is
validated on publicly available standard datasets of ALL images. For binary
classification, the best average accuracy of 98.1% is achieved with 98.1%
sensitivity and 98% precision. For ALL subtype classifications, the best
accuracy of 98.14% was attained with 78.5% sensitivity and 98% precision.
The proposed feature selection method shows a better convergence behavior
as compared to classical population-based meta-heuristics. The suggested
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solution also demonstrates comparable or better performance in comparison
to several existing techniques.

KEYWORDS

bio-inspired, CNN, transfer learning, leukemia classification, deep learning,
metaheuristics optimization

1 Introduction

Blood is a vital fluid for the human body. It performs a number
of crucial physiological functions, including the distribution of
oxygen and nutrients from organs to cells, delivery of waste
products from cells to organs for elimination, the maintenance of
the human immune system, clotting and wound healing process,
and the regulation of body temperature and fluid balance. The
body’s main source of blood production is the bone marrow, a
spongy tissue-like structure located within the bone cavities. A
complex process known as hematopoiesis involves the maturation
of stem cells into other blood cell types.

Figure 1 demonstrates the categorization of stem cells during
hematopoiesis of a normal human being. The hematopoietic stem
cells develop into either of two types of cells, i.e., a) lymphoid stem
cells and b) myeloid stem cells. The lymphoid stem cells are then
converted into the lymphoid blast, which then matures into B and T

-

subtypes of lymphocytes. In contrast, the myeloid type of stem cells
matures to synthesize erythrocytes, platelets, and various types of
granulocytes (i.e., basophils, eosinophils, neutrophils,
and monocytes).

The body produces the blood cells in a controlled manner as per
its requirements. Each cell type has a specific function in preserving
a person’s general state of health. An abnormality in the production
and structure of blood cells leads to certain medical conditions. For
example, white blood cells (WBCs), also referred to as leukocytes,
constitute an integral part of the general immune and inflammatory
response system (1, 2). Leukemia is a blood malignancy that is
caused by the unregulated production of immature leukocytes in
the bone marrow. Figure 2 shows a broad classification of leukemia,
which is primarily of two types, i.e., acute and chronic, depending
upon its progress rate. Chronic leukemia is slow-growing and takes
months or years to manifest its symptoms, whereas acute leukemia
develops rather swiftly. Each type of leukemia is further categorized
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Human hematopoiesis.
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Classification of leukemia disease

on the basis of affected leukocytes. In the chronic leukemia category,
chronic myeloid leukemia (CML) affects the myeloid type of cells,
whereas chronic lymphocytic leukemia affects the lymphoid cells.
Similarly, the acute leukemia category is further classified as acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML)
categories. ALL is further categorized into T-cell or B-cell subtypes.
B-cell ALL is the most prevalent type of leukemia, impacting the B-
cell lymphocytes; it is further divided into pre-curser, pro, mature,
and common B-cell ALL subtypes.

The existing medical approach for leukemia diagnosis involves a
series of tests, ranging from simple blood count tests to more invasive
tests such as needle biopsy or bone marrow aspiration. A blood test that
shows a high value of white blood cell count suggests leukemia
diagnosis. An important diagnostic tool in the evaluation of leukemia
is the peripheral blood smear test. It involves the smearing of blood on
the slide and its visual inspection under the microscope. A blood smear
of a leukemia patient shows a significant number of purple-stained
lymphoblasts in the bloodstream, with poorly defined boundaries.
Traditionally, hematologists perform this ocular inspection of blood
smears. This manual method not only consumes much time and effort
of medical experts but can also be error-prone due to several external
factors. Blood analysis is usually the first step of leukemia diagnosis and
is carried out in conjunction with more detailed analysis methods such
as RNA sequencing and molecular genetics. Computer-aided
automation of blood analysis can be a significant step in reducing
the time and cost of leukemia diagnosis.

Thanks to the landmark advancement in the domain of digital
electronics and imaging technologies, automated blood analysis has
been made possible. In particular, computer vision-based blood
disease diagnosis has seen an increased research focus in recent
years. However, due to morphological similarities across various
blood entities as well as their structural anomalies, accurate
machine learning-based blood analysis, particularly leukemia
subtype detection, is still a challenge. A breakthrough in modern
computer vision approaches, i.e., deep convolutional neural networks
(CNNs), has shown a promising solution for a variety of classification
scenarios (3, 4). They are capable of extracting a diverse range of
features from the images. However, a large and well-labeled dataset is
typically required to achieve a certain acceptable accuracy level. In the
biomedical domain, a detailed dataset for CNN training from scratch
is not readily available. Transfer learning is an often adopted
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approach in which deep CNN, pre-trained on another dataset, is
retrained for a specific task (5, 6). Some well-known pre-trained
CNNs include ResNet (7), MobileNet (8), DarkNet (9), Inception
(10), and Xception (11). Modern methods also propose ensembles of
feature vectors extracted from multiple CNNs (12). Apart from the
wide use of deep CNNs in the computer vision domain, one limiting
factor is the very high size of their extracted feature vectors. The
present focus of research is to investigate approaches to improve the
accuracy of classification systems while reducing their computational
complexity and memory requirements.

2 Literature review

Existing research on leukemia detection can be broadly
categorized into two types of approaches. In the first category, the
studies are included, which perform white blood cell classification as
an important preliminary step. The second category of work is
focused on considering the stained images containing leukemia
blasts and proposing an efficient method for leukemia subtype
classification. Some considerable studies from the first category are
summarized as follows. Sanei and Lee proposed a method that
computes eigenvectors of blood cell images using the minimization
of similarity approach (13). Using the density and color information
of eigencells, a Bayesian classifier was used to perform cell
classification. Kumar et al. (14) used various image pre-processing
techniques with a random forest classifier for blood cancer detection.
Su et al. (15) suggested a segmentation method based on detecting a
discriminating zone of WBCs on the hue, saturation, and intensity
(HSI) space. WBC classification was performed using geometrical,
color, and local directional pattern (LDP) features. Sharma et al. (16)
used DenseNet121 CNN for WBC classification. Almezhghwi and
Serte (17) proposed an image augmentation approach using
generative adversarial networks, and classification was performed
using DenseNet. Yildirim and Cinar (18) proposed Gaussian and
median filtering approaches for image pre-processing. Then, multiple
CNN architectures were trained for WBC classification.

Table 1 summarizes some recently published leukemia
classification methods using blood smear images containing cell
blasts. Bhattacharjee and Saini (19) applied different morphological
operations to perform image segmentation. This was followed by
classification using multiple baseline classifiers to diagnose the
presence of ALL. The proposed solution achieved the best
accuracy of 95.23% with the artificial neural network (ANN)
classifier. Goutam and Sailaja (20) applied K-means clustering for
segmentation, followed by the local directional path technique in
order to extract features, and, finally, classification using support
vector machines (SVMs). The F-measure achieved by this approach
was 93.44. Patel and Mishra (21) applied histogram equalization
along with the zack algorithm group wbcS in the smear images.
Next, various morphological features including area, color, mean,
and standard deviation were extracted and classified using SVM.
The overall accuracy achieved by the system was 93.57%. Rawat
etal. (22) proposed a method in which leukocytes and lymphocytes
were sequentially separated from other blood cells. The shape and
grey-level occurrence matrices were classified using a binary SVM
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TABLE 1 Summary of some published studies on leukemia identification.

Author Method Leukemia  Results
type
Bhattacharjee Morphological Accuracy:
and Saini (19) segmentation 96.67%
Classification: Accuracy:
SVM 90.47%
ALL
ANN Accuracy:
95.23%
K-means Accuracy:
85.71%
Goutam and K-means clustering AML F-
Sailaja (20) classification: SVM measure
93.44
Patel and Zack algorithm ALL Accuracy:
Mishra (21) segmentation 93.57
classification: SVM
Rawat K-means clustering ALL Accuracy:
et al. (22) classification: SVM 89.8%
Mishra DCT feature extraction ALL Accuracy:
et al. (23) 81.66
Classification: SVM
Di Ruberto Watershed segmentation ALL Accuracy:
et al. (24) classification: CNN, SVM 94.1.8%
Bodzas Classification: ANN, SVM ALL Specificity:
et al. (25) 95.31%
Anwar and Automated feature ALL Accuracy:
Alam (26) extraction 99.5%

classification: CNN

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; SVM, support vector
machine; ANN, artificial neural network; DCT, discrete cosine transform; CNN,
convolutional neural network.

classifier. Mishra et al. (23) performed nucleus feature extraction
from RGB images using discrete cosine transform (DCT), followed
by SVM classification. Di Ruberto et al. (24) utilized a multiscale
blob detection scheme followed by the watershed algorithm for
segmentation and, finally, classification using CNN and SVM
classifiers. The proposed solution achieves a binary classification
accuracy of 94.18%. Anwar and Alam (26) proposed a three-phase
filtering algorithm to perform image segmentation. Next, 16 robust
features were extracted, and classification was performed using
ANN and SVM dlassifiers, yielding a specificity of 95.41%. Bodzas
et al. (25) utilized different data augmentation techniques and
performed training on their custom-proposed CNN architecture
to obtain an overall accuracy of 99.5% for the binary classification of
leukemic cells. Batool and Byun (27) proposed a lightweight deep
learning-based EfficientNet-B3 model, which employs depth-wise
separable convolutions for ALL classification. The proposed
method achieves an accuracy of 96.81% for leukemia subtype
classification using public datasets. Elhassan et al. (28) proposed
an approach of AML detection from WBC images. First, a CMYK
moment-based region of interest (ROI) localization method was
used, followed by deep learning-based feature extraction and
classification using several baseline classifiers. The proposed
system achieves the best accuracy of 97.57%. In our previous
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work (29), we utilized a quantum-inspired deep feature selection
method for WBC classification for leukemia detection.

Modern transfer learning-based deep CNN techniques are
characterized by their ability to extract a high number of
characteristics from the input images. Due to the unreasonably huge
feature sets that must be stored and processed, this has enormous
computational costs and memory needs (30, 31). Most frequently, a
large portion of these extracted deep characteristics are redundant and
provide nothing to help with categorization. By selecting just potent,
discriminating characteristics, feature selection is essential to reduce the
complexity of feature vectors. This shortens the processing time while
simultaneously improving the accuracy of the classification system.
Several studies have investigated efficient feature selection methods,
which include two kinds of approaches, namely, the filter approach and
the wrapper approach. The filter approach quickly converges to the
critical features, but it ignores the relationship between the classification
algorithm and the feature subset. The wrapper approach, in contrast,
considers a tight relationship between a subset of selected features and
accuracy. While nature-inspired metaheuristics have been extensively
applied in a wide range of combinatorial optimization problems (32—
34), they have been recently investigated for feature selection
optimization (35-38).

3 Contributions

This work proposes an improved pipeline for ALL subtype
identification. The following are the main contributions of this study.

1. First, an efficient neighborhood pixel-based contrast
enhancement technique was proposed based on a
differential evolution algorithm, whose parameters were
optimized using a greedy metaheuristic.

2. Next, two CNNs, namely, InceptionV3 and DenseNet201,
were used for feature extraction using deep transfer learning.

3. A combined feature vector was created by performing a
fusion of extracted feature vectors.

4. As a main contribution, the deep feature selection problem
was modeled as an optimization problem and solved using
a nature-inspired Grey Wolf Optimization (GWO)
algorithm. The suggested approach selects only the most
pertinent features, efficiently excluding correlated and
noisy information.

5. The classification performance of various baseline
classifiers was validated on the selected feature set to
obtain the best-performing classifiers.

6. The proposed system achieves better performance metrics
as compared to several existing feature selection methods,
with a significant reduction in feature vector size.

4 Materials and method

The key components of the suggested methodology are
elaborated upon in the subsequent sections.
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4.1 Description of datasets

This study utilized different datasets of blood smear images. The
initial dataset utilized in this study was the ALL-IDB2 dataset
introduced by Scotti et al. (39). This dataset consisted of a total of
260 pictures, encompassing both healthy individuals and subjects
diagnosed with ALL. The dataset was generated by employing an
optical microscope that was attached to a Canon Power Shot G5
camera. The IDB2 dataset comprises images in which the region of
interest has been cropped to include the area of interest for both
normal and blast cells. All images were stored in the Tagged Image
File Format (TIFF) and had a resolution of 2,592 pixels in width and
1,944 pixels in height. Figure 3 displays a selection of sample images
from the ALL-IDB2 dataset.

This study used multiple datasets of blood smear images. First, the
ALL-IDB2 dataset was used, which was composed of 260 images of
healthy and ALL subjects. The dataset was prepared using an optical
microscope connected to a Canon Power Shot G5 camera. The IDB2
dataset contained images in which the area of interest of normal and
blast cells was cropped as the region of interest. All images were in TIFF
format with a resolution of 2,592 x 1,944 pixels. The figure
demonstrates some sample images of the ALL-IDB2 dataset.

Another dataset prepared by the bone marrow laboratory of
Taleqani Hospital, Iran (40) was also used. The dataset consisted of
3,242 peripheral blood smear images belonging to two classes, i.e.,
benign and malignant. The latter class was further divided into three
sub-classes of ALL, i.e., early, precursor B-cell ALL, and pro-B-cell
ALL. The images were captured using a Zeiss camera integrated with
a microscope setting with x100 magnification. The resolution of
images was 224 x 224. Figure 4 shows some sample images of the
dataset of (40), whereas Table 2 shows the class distribution.

4.2 Proposed system pipeline

In Figure 5, a pipeline is presented for the proposed system. The
main steps of computation are discussed in the following.

Healthy . . . .

10.3389/fonc.2024.1328200

4.2.1 Contrast enhancement

In most of the existing works, image enhancement is mainly
accomplished using transforms, points, and spatial operations (41).
Among the transforms, various kinds of filtering operations are
included such as homomorphic or linear operations. Point
operations include contrast enhancement, thresholding, and
histogram adjustment. The main limitation of most of these
methods is that they perform a global operation on the input
image without considering region-specific contrast stretching.
Spatial transformation includes neighborhood-based methods
such as filtering or masking. These techniques sometimes produce
unnecessary noise enhancement of images or increase the
smoothness of image regions where sharpness is required (42).

In this work, we performed image contrast stretching using a
greedy differential evolution approach, which consisted of the
following steps.

Convert the input image from RGB image space to
HSI image.

Perform contrast stretching of the I-channel of the image
using the proposed greedy differential approach

Convert the HSI image to RGB image space.

The proposed contrast stretching method was based on
neighborhood pixel transformations instead of image-wise global
operators. Considering an input intensity image I with dimensions
M x N, we used the following function for pixel-wise update based
on local neighborhood (41). Mathematically, it is formulated by
Equation 1.

f(m,n) = (m) [I(m,n) - wp(m, n)]

Vme M,n<EN,

(1)
+[Jp(m, n)“

where I(m, n) is the current pixel value of the intensity image
with coordinates m and n, y is the global mean of the image, ,(m,
n) is the local mean, and c,(m, n) is the local variance of a window
comprising of p x p neighborhood pixels around the central pixel I

FIGURE 3

Some samples of images from ALL-IDB2 dataset of Scotti et al. (39) used in this study.
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FIGURE 4

Some samples of images from acute lymphoblastic leukemia (ALL) subtype dataset (40) used in this study.

(i, j). Munteanu and Rosa (41) used the non-zero constants o, f3,
and ¥ The non-zero value of B allows to have zero standard
deviation 0,(i, j) of the pixel window. The final term of Equation
2 was added to achieve smoothness while preserving the brightness.

In this work, we performed automatic estimation of decision
variables o, [, % and 0 using a meta-heuristic algorithm. The
following objective function was used in Equation 2:

log(log(G(I*)) x n (I*) x H(I*)

F(I*) =
() M x N

) 2

TABLE 2 Class distribution of image dataset of Ghaderzadeh et al. (40).

Class No. of images

Benign 512
Precursor B-cell ALL 955
Pro-B-cell 796
Early pre-B 979

ALL, acute lymphoblastic leukemia.

Frontiers in Oncology

where I denotes an enhanced intensity image obtained using
(2) on the input intensity image, and #,(I") and H(I"), respectively,
denote the number of pixels on the boundary and value of entropy
of I". The value of function G(I"*) was obtained by applying a Sobel
kernel on the enhanced intensity image I".

4.2.2 Optimization of decision variables using
differential evolution

The estimation of variables ¢, B, % and & was performed using
bounded exploration of search space. First, a population matrix P
consisting of N, row vectors was generated, where each vector was
composed of four variables, ie., &, B, % and 6. Each entity of the
population matrix was generated randomly, as Equations 3-6 (43).

P(i,j) = Iy + 11 % (up = 1),
Vie{1,.,N,},j € {L,...,4},

where I, and u,, are respectively the minimum and maximum

©)

values of the decision variable as given in Table 3, and r; denotes a
random number in [0, 1]. All vectors of population P then
participated in computing the value of intensity transformation
function f(i, j) of Equation 2 and objective function F(I*) of
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Equation 2. The vector yielding the maximum value of the objective
function was selected as the population best, i.e., P,.

In the next step, each population vector P; i €{l, ..., Np}
underwent mutation operation to generate its corresponding
mutation vector M; such that (43)

M;(t) = Py(t) + A(Py = Ppp) +A(Py3 — Ppy), (4)

where t denotes the value of the current iteration, P,(t) denotes
the iteration’s best individual vector, and scaling factor A is a
random number in [0, 1]. The indices of population vectors (i.e.,
rl, r2, r3, and r4) were randomly chosen such that they are all
distinct from each other and the index i of the current
population vector.

The population vector P; and its corresponding mutation vector
M, then underwent binomial crossover operation to generate vector
C; such that (43)

Pi(t) i#x, r>x
Ci(t) = ) ,
C(t)i=x;, or r<x

where x; is a randomly generated index within the interval [1,

@)

N,] and x; is a random number in [0, 1]. Next, all decision variables
each vector Ci(t) are bounded within limits [, and u;,. In differential
evolution, a greedy selection of survival of the fittest was carried out
using the following criteria to update the population matrix (43).

TABLE 3 Minimum and maximum values of decision variables used in
differential evolution.

Maximum
value (up)

Minimum
value (lp)

Decision
variable
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{Pi(t)
P,(t + 1) = (6)

if F(C)) < F(P)
Ci(b) ’

otherwise

where F(P;) and F(C;) denote the cost of the objective function
(2) using the vectors P; and C;, respectively. This completes one
iteration of the algorithm, which was repeated for T iterations.

4.2.3 Feature extraction

The contrast-enhanced images of datasets were used in the
feature extraction step. For this purpose, we employed transfer
learning as a feature extraction using two well-known deep CNNs,
namely, InceptionV3 and ResNetV2.

InceptionV3 is a deep CNN that belongs to the Inception family
of CNNGs. It is pre-trained on the ImageNet database (44) consisting
of 1,000 object classes. The network has 316 layers and 350
connections (45). The size of the first layer, i.e., the input layer, is
299 x 299 x 3. A convolution layer consists of different filters and
stride sizes. Each convolution layer also incorporates batch
normalization and ReLU layers for adding non-linearity. A
pooling layer is also added between the convolution layers to
obtain active neurons. The addition of Inception modules is a
distinguishing characteristic of this network. They are designed
for multiscale feature extraction. Each inception module is built
using multiple parallel convolution layers with different filter sizes
and a pooling layer. The outputs of these layers are concatenated
along the depth dimension.

To use InceptionV3 for feature extraction, its last learnable
layer, “predictions”, was replaced with a fully connected layer,
which had outputs matching the number of classes of our
datasets [i.e., two classes for ALL-IDB2 and four classes for the
dataset of (40)]. The softmax layer named “predictions softmax”
was replaced by the new softmax layer. A label-free classification
layer was added to the network, which replaced the
“ClassificationLayer predictions” layer. Prior to the network
training, the dataset image resizing was performed per the
requirement of the network’s input layer. Then, specific
augmentation steps were performed. The activations were applied
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on the “avg pool” layer, and a feature vector of length 2,048 was
obtained per image of the training and testing datasets.

DenseNet201 (46) has a depth of 201 layers and was initially
trained on the ImageNet (44) dataset. The DenseNet201 is based on
the idea of layer concatenation; i.e., each layer obtains data from all
of its previous layers and transfers its computed feature maps to all
its next layers. As a result, a thinner and more compact network is
realized, which is computationally efficient and achieves
considerable memory savings.

To use DenseNet201 as a feature extractor, its “fc1000” layer
was substituted with a fully connected one that contains an equal
number of classes from our datasets. Similarly, a new softmax and
classification layer without labels was inserted in the network in
place of their respective layers. After performing image resizing and
augmentation, feature activation was applied on the global average
pool layer, and a feature vector of size 1,920 was extracted per image
of the dataset.

4.2.4 Feature fusion

In this work, we performed a simple horizontal concatenation
of the individual feature vectors extracted from the abovementioned
deep CNNss and formed a fused feature vector of size 1 x (a + b),
where a = 2,048 and b = 1,920 are the number of features extracted
from InceptionV3 and DenseNet201 networks, respectively.

4.2.5 Meta-heuristic for feature selection

The combined feature vector obtained from the transfer
learning steps above has a considerably large size. Directly using
the extracted fused feature vector to train the baseline classifiers
requires a huge amount of processing power and memory. As a
main contribution, this work modeled the optimization problem of
feature selection with the objective of maximizing classification
accuracy with the minimum feature set. The optimization problem
was then solved with the help of a population-based meta-heuristic
named Grey Wolf Algorithm. This technique (47) mimics the
hunting behavior of grey wolves. A pack of grey wolf apex
predators consists of an average of five to 12 individuals. The grey
wolf population is composed of four distinct individuals categorized
as alpha, beta, delta, and omega, based on their dominant order. The
alpha wolf is the individual within a population that holds the
highest rank and assumes the role of decision-maker and dominant
figure. The subsequent position in the dominance hierarchy is
occupied by the beta wolf. It is subordinate to the alpha and helps
in the decision-making. The delta wolf ranks third in the hierarchy
and only dominates the least significant omega group.

In the mathematical framework of GWO, the most optimal
solution is referred to as the alpha wolf (o). Subsequently, the
second and third most optimal solutions are denoted as the beta (3)
and delta (8) wolves, respectively. The main steps of grey wolf
hunting are as follows:

» Search the prey (exploration).

 Encircle the prey.
+ Attack the prey (exploitation).
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The prey encircle behavior of a pack of wolves is mathematically
modeled as defined in Equations 7-18.

D=|C.X,- V()] @)

V(t+1) = V,(t) ~A.D, 8)

where V,, denotes the prey vector position at iteration ¢, V () is
the current position of the grey wolf, A and C are the vectors of
coefficients:

A=2.a.x —a, 9)

C=2.x, (10)

where x; and x; are vectors containing random vectors in [0, 1],
and a is the encircling coefficient that mimics the encircling
behavior by decreasing linearly from 2 to 0, which is linearly
decreased from 2 to 0 with iterations as (47)

t
a=2-2(

) (11)

max

where t,,,, is the maximum number of algorithm iterations.
During an iteration t, each wolf updates its position using the o, 3,
and 0 wolves such that (47)

vy = et 02
V) = |Vg = Ay . Dyl (13)
Vy = |Vp - A; . Dg| (14)
Vs =|Vs - A, . Dy (15)

where V,, Vg, and Vs denote the position vectors of o, 3, and 6
wolves, respectively, at iteration #; A;, A,, and A; are computed
using Equation 9. The vectors D, Dg, and Ds are computed as

Do = |CVy = V| (16)
Dg= |CVg-V]| (17)
Ds = |C,\Vs - V]| (18)

The coefficients C;, C,, and C; are computed using Equation 10.
The original GWO algorithm of Mirjalili et al. (47) is generally
applicable to continuous optimization problems with variables X
ER.

4.2.5.1 Binary Grey Wolf Algorithm

This work used a binary GWO algorithm of Emary et al. (48), in
which the position update of the wolf is determined using the
crossover operation of individual genes, and mathematically
formulated by Equations 19-23.

V(iE+1) =(V;®V,®V;) (19)
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where Vj, V,, and V; are binary vectors for dimension d,,,,, and
computed as

Lif (AY+VH) =1
V,»d - i 1 1 ) ,VdeED
0, otherwise

(20)

Fori=1,2,3, de is equal to V,, Vg, and Vg, whereas A]‘-i is equal
to A’Z,,Af,, and A’é respectively. A; is computed as (48):

AT N
o~ .
0, otherwise

where r, is the vector of random numbers in [0, 1]. The

@1

continuous step size Sf is computed as (48)

1

d

Sj - exp\ — d d -
p(—10(A{ . Df - 0.5)) + 1

(22)

D;-i is equal to Dg, Dg, and Dy, respectively, for i = 1, 2, and 3.
A{ is computed using Equation 9, whereas DJ‘-’I is computed using
Equations 16 — 18. The new position of the wolf is updated using the
following crossover operation (48).

Vi if rg<l
Vie+1) =4 Ve if l<rg<2 (23)
Vf, otherwise

where rg is a random variable that follows a uniform
distribution in the interval [0, 1].

4.2.5.2 Wrapper feature selection using binary GWO

This study presents the application of the binary GWO method
for the purpose of deep feature selection within the leukemia
classification pipeline. The computational steps of the suggested
feature selection strategy are presented in Algorithm 1.

The main inputs to the binary GWO algorithm include the
fused feature matrix IF, the vector L, which contains the labels of the
training image set; the maximum count of iterations f,,,, the size of
grey wolf population #,; and dimension size d,;,4x, which represents
the total number of variables (features) of each wolf (solution) of
population. The size of matrix F is #, X d,,.,, Where 1, and d,;,
respectively denote the number of training images and the
dimension of fused feature vector per image.

Phase 1 initializes the main parameters including iteration
counter f, and alpha, beta, and delta grey wolves X, Xp, and X
along with their fitness values f, f, and fs, respectively. In Phase 2,
an initial population is generated and stored in matrix X of size n, x
Aoy The randn(1, n,, 1: d,,,,) function generates a matrix of
dimensions 71, Xd,,q, of binary values of uniform distribution in [0,
1]. The execution phase of the GWO algorithm proceeds in Steps 6-
75. The while loop is executed for t,,, iterations. In an iteration,
first, a prey is extracted from the population matrix (Step 8), and its
fitness is evaluated (Step 9). The Fitness function receives three
inputs, namely, the fused feature set I, the vector L of labels, and
one member of the population, i.e., a binary vector X. In the Fitness
function routine, Steps 85-86 obtain the features from F, which are
indexed by non-zero values of X. The updated feature matrix I, is
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then divided into testing and training parts. In Steps 87-93 of the
Fitness function, the classification error of the K-nearest neighbor
(KNN) classifier is used as a fitness value (cost). This value is then
used to update the alpha, beta, and delta X,, Xp, and X grey wolf
vectors, respectively, in Steps 10-23 of the main function. Steps 26-
74 of the main routine perform the position update of each grey
wolf of the population according to Equations 19, 20 of the binary
GWO algorithm. After the execution of the while loop for t,,,,
iterations, the global best solution, i.e., alpha wolf X, contains the
indices of features to be selected from the fused feature vector.

1: External Inputs: F, L, dpax, thax, Np
2: Phase 1: Initialization of Main Parameters t « 1,
V(1,1 dpax) < 0, fpew
Va(1,1: dpax) < 0, fpe—
Vs(1,1: dpax) < 0, fse—w
3: Phase 2: Generate Initial Population of Grey Wolves
4:(1:np, 10 dpax) < randn(1:np, 1 dpax)
5: Execution
6: while i< t,,, do
7: forj=1:n,do
8: Ve (7,1 dyax)

9: f«Fitness (F, L, V)

10 : if f< f, then

11: VB—Vo
12: fp—fa
13 VgV
14 fo T

15: else if f< fgthen

16: Vé— VB
17: fé— fp
18: VgV

19: fpe— T
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20: else
21: VsV
22: fsef
23: end if
24: end for

25:

Population Update

26: for j=1:n,do

27

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

47

42

43

44

45:

46

for d=1: d,.x do

a—2-2-2

thax

a;«<2.a.rand(1, 1)-a
a,«2.a.rand(1, 1)-a
agz«—2.a.rand(1, 1)-a
ci«<2.rand(1, 1)-a
co«—2.rand(1, 1)-a
ca—2.rand(1, 1)-a

Do (1, d) |c1 . Vo(1,d) - V(5, d)]
Dp(1,d) ey . Vo(1,d) - V(5 d)|
Ds(1,d) —|cy . Vy(1,d) - V(5,d)|
510 )~ e Dana0m

82(1) d)‘f

$:(1. &) — Tz Taaom

if S$1(1,d) = randn(1,1) then
A(1,d) <1

else
A(1,d) <0

end if

if S,(1,d) = randn(1,1) then

A2(1,d) (—1
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47 :

48:

49:

50 :

51:

52

53:

54 :

55:

56:

57:

58:

59:

60:

61:

62:

63:

64 :

65:

66 :

67:

68:

69:

10.3389/fonc.2024.1328200

else
Ay(1,d) <0

end if

if S3(1,d) = randn(1,1) then
Az(1,d) <1

else
Az(1,d) <0

end if

if (Vo(1,d) +A(1,d)) =1 then
Z1(1,d) «1

else
Z1(1,d) <0

end if

if (Vg(1,d) +A,(7,d)) =1 then
Z(1,d) «1

else
Z,(1,d) <0

end if

if (Vs(1,d) +A3(1,d)) =1 then
Z3(1,d) «1

else
Z3(1,d) <0

end if

r«—rand(1,1)

if r < then
V(J,d)«2,(1,d)

else if r > {andr < Z then

V(,d)—2Z,(1,d)
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70:

71:

72

73:

74:

75:

76:

77:

78:

79:

80:

81:

82:

83:

84 :

85:

86:

87:

88:

89:

90:

91:

92:

93:

94 :

95

ALGORITHM 1. Feature selection based on binary GWO algorithm.

else
V(J,d)«Z5(1,d)
end if
end for
end for
end while
Select Features
T« 1: dpax
S I((Va==1))
OUTPUT: S¢
Function: Fitness
Inputs: V,L,F
Parameters: k=5,h,=0.2,04 -0.99, , - 0.01

if (sum(V ==1) ==0) then

else
F «F(;,(V==1))
Atrain Lirains Atests Lrest < partition(F,,L,hy)
Model « trainKNN(A¢rains Lirain, K)
Lyreq <—predict(Model, Aiesy)
@« sum(Lpreq == Leest)/1ength(Lest)
e—1l-a
s« sum(a ==1)
g« length(V)
F—o xe+ao, x(g—i)

end if

: Return: T
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4.2.6 Classification

The set of selected features from the binary GWO algorithm
was then used along with the label L for training and classification of
outer classifiers. Multiple classifiers were used in this work, and the
best-performing classifiers were selected.

5 Results and discussion

The proposed decision support system for leukemia
identification was implemented on an Intel Core i5 CPU with
and 64-bit Windows 10 operating system and 16GB RAM.

5.1 Experiment 1: binary classification

First, the proposed pipeline was implemented for binary
detection of leukemia using the ALL-IDB2 dataset. The
classification performance of CNN was influenced by the quality
and size of the training dataset. A small dataset leads to overfitting
and poor generalization of the model. Hence, augmentation of
contrast stretched ALL-IDB2 dataset was performed using the
operations of random rotation, flipping, intensity modification,
and brightness correction. Table 4 shows the class distribution of
ALL-IDB2 as a result of augmentation. In the next step, the
augmented dataset was divided into training and test parts with a
70:30 split ratio, as shown in Table 5. Then, the training dataset was
used for transfer learning of InceptionV3 and DenseNet201 models
with parameters listed in Table 6.

InceptionV3 and DenseNet201 return deep feature vectors of
sizes 2,048 and 1,920, respectively, which are horizontally
concatenated to obtain a fused feature vector of size 3,968. This
vector is then subjected to the proposed feature selection step using
the GWO algorithm. After a fixed number of iterations, the GWO
algorithm returns its best solution, i.e., a reduced vector of the most

TABLE 4 Class distribution of ALL-IDB2 dataset before and
after augmentation.

Frequency
Before After
Healthy ‘ 130 ‘ 593
ALL ‘ 130 ‘ 601

ALL, acute lymphoblastic leukemia.

TABLE 5 Training and testing ALL-IDB2 dataset for binary classification
of leukemia.

Class Training Images Testing Images | Total

Healthy 415 178 593
ALL 420 181 601
Total 835 359 1,194

ALL, acute lymphoblastic leukemia.
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TABLE 6 Parameter settings for training of InceptionV3 and DenseNet201 models.

Parameter

Parameter

Kernel type sdgm Max epochs 10
Initial learning rate 1x 107" Environment Auto

Validation frequency ‘ 30 Stride size 1

Mini-batch size ‘ 20 Dropout rate 0.1

important selected features, which are then used to train several
baseline classifiers with multiple settings of their kernel. Table 7
shows the performance results of the proposed binary classification
pipeline. The KNN classifier with cosine kernel achieves the best
performance metrics with a reduced feature vector of 797 features,
which is approximately 80% smaller than the original fused feature
vector of size 3,986. The confusion matrix of the KNN cosine
classifier is demonstrated in Table 8.

In Figure 6, the error rate of the GWO algorithm is plotted
along with the standard genetic algorithm (GA), as a function of
iterations with a constant value of population size 7, = 20. A better
convergence behavior is demonstrated by the GWO algorithm as
compared to GA, which reveals that GWO performs better
exploration of feature search space.

5.2 Experiment 2: leukemia
subtype classification

In the second step, the proposed pipeline was implemented for
multiclass problems, i.e., leukemia subtype identification using the

TABLE 7 Results of binary classification of leukemia on ALL-IDB2 dataset.

dataset of Ghaderzadeh et al. (40). As discussed earlier, the dataset
consists of four classes, i.e., benign, precursor, pro-B-cell, and early
pre-B. Following the contrast stretching phase (Section 4.2.1) on the
dataset, the augmentation was carried out using the same
methodology as binary classification. The class distribution of the
augmented dataset is shown in Table 9. Next, with a splitting ratio
of 70:30, the training and testing parts of the dataset were extracted
as shown in Table 10.

In Table 11, the leukemia subtype classification results are
presented. Several classifiers with various kernels were tested. The
performance metrics, ie., accuracy, precision, recall, sensitivity,
specificity, and F1 score, were computed through macro averaging
of the individual class metrics. In this case, the SVM classifier with
Gaussian kernel achieved the best average accuracy of 98.05%,
whereas the maximum average accuracy values achieved by KNN,
decision tree, and neural network (NN) classifiers were 97.9%, 82.4%,
and 95.8%, respectively. The testing confusion matrix with the SVM
Gaussian classifier is demonstrated in Table 12, whereas the class-
wise statistics are mentioned in Table 13. The maximum accuracy of
98.66% was achieved by the pro-B-cell class, whereas all other classes
achieved an accuracy of above 90%.

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall

KNN cosine 98.1 0.981 0.987 0.98 0.987
KNN coarse 97.8 0.971 0.981 0.972 0.972
KNN cubic 97.9 0.981 0.976 0.972 0.972
KNN fine 97.5 0.964 0.965 0.989 0.977

SVM (regression) 797 85.2 0.887 0.842 0.890 0.80

SVM (Gaussian) 86.4 0.894 0.891 0.901 0.86

SVM (quadratic) 72.2 0.734 0.741 0.882 0.72
Decision tree (medium) 72.4 0.742 0.725 0.73 0.726
NN wide 94.8 0.925 0911 0.932 0.951

KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.

TABLE 8 Confusion matrix of binary classification experiment of ALL-IDB2 with KNN-cosine classifier.

Predicted class

Healthy
True Class ALL 177 4 97.7% 2.2%
Healthy 2 176 98.8% 1.2%

TPR, true-positive rate; FNR, false-negative rate; KNN, K-nearest neighbor; ALL, acute lymphoblastic leukemia.
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FIGURE 6
Error rate of feature selection using genetic and Grey Wolf Optimization algorithms. Population size n, = 20.

TABLE 9 Class distribution of dataset of Ghaderzadeh et al. (40) before .
and after augmentation. Table 14 presents an accuracy comparison of three feature

extraction methods, i.e., a full set of deep features extracted from
Frequency InceptionV3 and DenseNet201 CNNs, a reduced set of features
selected by the proposed GWO algorithm, and a standard genetic

S algorithm. The table demonstrates that the GWO algorithm achieves

Benign >12 1024 a better or comparable accuracy as compared to the other two feature
Precursor 955 1,000 selection methods with a significantly small feature set.

Pro-Bcell 796 1,050 In Table 15, a comparison is presented of the performance of our

proposed method with some existing studies on leukemia

Barly pre-B 7 1,020 ‘ identification. For a fair comparison, we selected the published

studies that have used identical or almost similar datasets. Our
TABLE 10 Class distribution of training and testing parts of dataset of proposed plpehne for leukemia bmary detection and subtype
Ghaderzadeh et al. (40) for leukemia subtype classification. identification achieves better or comparable performance metrics as

compared to several other relevant studies with smaller feature sizes.

Class Training images  Testing images  Total This shows the validity and applicability of the proposed approach.

Benign 716 308 1,024
Precursor 700 300 1,000 6 CO n Clu S | on
Pro-B-cell 735 315 1,050
Early pre-B 714 306 1,020 Leukemia, a kind of hematologic malignancy, is frequently
diagnosed in both pediatric and geriatric populations. An automated,
Total 2,149 1,229 4,094 . o . ) ) )
computer-aided system of leukemia diagnosis is essential to aid medical

TABLE 11 Results of leukemia subtype classification using the dataset of Ghaderzadeh et al. (40).

Classifier Selected feature vector size Accuracy % Sensitivity F1 score Precision Recall
KNN cosine 97.9 0.783 0.78 0.978 0.783
KNN coarse 97.6 0.781 0.78 0.976 0.781
KNN cubic 97.4 0.709 0.71 0.974 0.974
KNN fine 96.4 0.771 0771 0.96 0.771
SVM (regression) 797 85.2 0.721 0.642 0.890 0.659
SVM (Gaussian) 98.14 0.785 0.78 0.981 0.785

SVM (quadratic) 96.2 0.638 0.61 0.96 0.61

Decision tree (medium) 82.4 0.68 0.689 0.82 0.826
NN wide 95.8 071 0.86 0.952 0.086

KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.
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TABLE 12 Confusion matrix of leukemia subtype identification using SVM Gaussian classifier on dataset of Ghaderzadeh et al. (40).

Predicted class

10.3389/fonc.2024.1328200

Precursor Pro-B-cell Early pre
Benign 1,004 11 5 4 98.04% 1.9%
2 Precursor 5 982 11 2 98.2% 1.8%
=}
g Pro-B-cell 2 2 1,036 10 98.6% 1.4%
= Early pre 6 13 5 996 97.67% 2.35%

TPR, true-positive rate; FNR, false-negative rate; SVM, support vector machine.

TABLE 13 Statistics of individual classes using SVM Gaussian kernel.

Accuracy %

Sensitivity %

Precision %

Benign 98.04 98.72 98.72 0.9804
Precursor 98.2 97.42 97.42 0.982
Pro-B-cell 98.66 98.01 98.01 0.986
Early pre 97.64 98.41 98.41 0.976

SVM, support vector machine.

TABLE 14 Performance comparison of leukemia classification using three feature selection approaches, i.e., proposed GWO feature selection
algorithm, feature selection using genetic algorithm, and full feature set.

Full feature set Genetic algorithm Grey Wolf Algorithm
Classifier
No. of features  Accuracy % No. of features  Accuracy % No. of features  Accuracy %
KNN cosine 97.2 96.2 97.9
KNN coarse 96.9 94.3 97.6
KNN cubic 98.1 97.2 97.4
KNN fine 95.1 96.1 96.4
3,986 1,520 797

SVM Gaussian 98.5 97.58 98.14
SVM regression 90.2 89.2 85.2
NN wide 96.2 94.5 95.8
Decision tree medium 84 81.2 82.4

KNN, K-nearest neighbor; SVM, support vector machine; NN, neural network.

TABLE 15 Comparison of classification accuracy of proposed leukemia identification pipeline with some existing relevant works.

Performance result

Proposed method

Disease type

Classification: SVM, ANN
(24) Multiscale blob detection ALL-IDB ALL Accuracy = 94.1%
deep feature extraction: AlexNet classification: SVM
(25) Preprocessing Self-collected ALL Specificity = 93.5%
segmentation: three-phase filtering morphological feature extraction
(49) Active contours for nucleus detection Self-collected Leukemia Accuracy = 98.8%
Shape and texture feature extraction classification: NN, SVM
(50) Preprocessing ALL-IDB ALL ALL classification accuracy
Feature extraction: hybrid CNN MiMMSBI AML = 97.04%
Classification: bagging ensemble SN-AM Multiple myeloma
This Contrast stretching using DE ALL-IDB2 Leukemia Accuracy = 97.9% Accuracy
work Deep feature extraction: InceptionV3 and DenseNet201 feature selection: (40) ALL subtypes = 98.14%
GWO algorithm

KNN, K-nearest neighbor; ANN, artificial neural network; ALL, acute lymphoblastic leukemia; NN, neural network; AML, acute myeloid leukemia; GWO, Grey Wolf Optimization.
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professionals in making informed decisions about the disease and
making an effective prognosis and treatment plan. In this work, we
have demonstrated the effectiveness of deep feature optimization taking
as a relevant design case, the detection, and classification of leukemia
disease from blood smear images. We have proposed a hybrid deep
learning methodology utilizing transfer learning as feature extraction.
The problem of feature selection has been modeled as a combinatorial
optimization problem and solved using a customized Grey Wolf
Optimization algorithm. Our proposed leukemia identification
system can be used as a supporting evidence tool in conjunction
with other more detailed analysis methods such as RNA sequencing
and molecular testing. We believe that the proposed expert system can
also be integrated with more complex and rather practical image
analysis systems such as image flow cytometry.
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Introduction: Brain tumors are a common disease that affects millions of people
worldwide. Considering the severity of brain tumors (BT), it is important to
diagnose the disease in its early stages. With advancements in the diagnostic
process, Magnetic Resonance Imaging (MRI) has been extensively used in disease
detection. However, the accurate identification of BT is a complex task, and
conventional techniques are not sufficiently robust to localize and extract tumors
in MRl images. Therefore, in this study, we used a deep learning model combined
with a segmentation algorithm to localize and extract tumors from MR images.

Method: This paper presents a Deep Learning (DL)-based You Look Only Once
(YOLOV7) model in combination with the Grab Cut algorithm to extract the
foreground of the tumor image to enhance the detection process. YOLOV7 is
used to localize the tumor region, and the Grab Cut algorithm is used to extract
the tumor from the localized region.

Results: The performance of the YOLOv7 model with and without the Grab Cut
algorithm is evaluated. The results show that the proposed approach
outperforms other techniques, such as hybrid CNN-SVM, YOLOvVS5, and
YOLOV6, in terms of accuracy, precision, recall, specificity, and F1 score.

Discussion: Our results show that the proposed technique achieves a high dice
score between tumor-extracted images and ground truth images. The findings
show that the performance of the YOLOvV7 model is improved by the inclusion of
the Grab Cut algorithm compared to the performance of the model without
the algorithm.

KEYWORDS

brain tumor, deep learning, YOLOV7, grab cut algorithm, magnetic resonance imaging
(MRI), gamma correction
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1 Introduction

Brain tumors (BT) result in an unusual growth of brain cells,
which is caused by the uncontrolled division of cells in the brain. In
general, BTs are categorized as malignant (cancerous) or benign
(noncancerous). (1). Benign or normal tumors do not cause any
damage to the brain cells and can be easily treated. On the other
hand, malignant tumors are dangerous and can spread to other
organs if not treated in the early stages. The tumors are also
classified as primary and secondary tumors wherein primary BT
is developed from the existing cells and secondary tumors are
developed from the cancerous cells (2). Benign tumors develop
slowly and can be identified easily. These tumors can be removed by
determining the brain region where they are located. Conversely,
brain tumors can have serious consequences on human health and
do not have any specific boundaries. Hence, they can affect other
healthy cells in the brain and thereby completely disrupt the
functioning of the brain (3).

There are several imaging modalities such as Perfusion
magnetic resonance imaging (4), computed tomography (CT) (5),
and positron emission tomography (PET) (6). Among the different
techniques, MRI is a potential technique for identifying
irregularities in brain patterns and works effectively on soft tissue
(7). MRI is an invasive technique that generates high-quality brain
images with better resolution. Usually, brain tumors are treated
using advanced treatment processes such as chemotherapy,
radiotherapy, and surgery which can destroy cancerous cells
completely if the location of the tumor is identified correctly (8-10).

Manual identification and diagnosis of brain tumors can be a
tedious and labor-intensive task. Since these techniques depend on
manual intervention, the accuracy and precision of the tumor
detection process are questionable. Hence, there is a need for a
qualitative approach that can detect tumors and their location in the
early stage with high accuracy and precision (11-13). The use of
machine learning (ML) and deep learning (DL) techniques for
precisely detecting BT has been emphasized in several studies
(14, 15).

ML algorithms such as support vector machines (SVM) (16),
Random Forest (RF) (17), Decision Trees (DT), K-nearest neighbor
(KNN) (18), etc. have been used in previous works. However, these
algorithms depend on manual feature extraction wherein the
detection models are trained using these features. Hence, the
accuracy of the detection and classification of brain tumors
depends on the quality of the extracted features. In addition,
constructing ML classifiers requires more resources, and their
computational time is very high while processing large-scale
datasets. As a result, these models exhibit a low classification
accuracy (19).

A substantial amount of research has been dedicated to brain
tumor detection and segmentation processes and various
researchers have attempted to address the complexities associated
with the detection process (20-22). One of the main challenges
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related to brain tumor identification is the classification of
neoplastic tissues which are heterogeneous in nature. These
tissues overlap with the healthier tissues most of the time and
conventional techniques used for tumor detection fail to distinguish
them. Texture analysis is one such effective technique that can be
used to determine the textural features of the tumors such as
regularity, and orientation of the tumor, and thereby identify
multiple indistinct areas in an image (23, 24).

The extraction of textural features helps the classifier to
determine both visible and non-visible tumor regions with the aid
of advanced techniques such as MRI. Conventional ML classifiers
use gray-level and pixel-level-based features for classifying
malignant and benign tumors. Various algorithms are used to
automatically segment BT using MRI images and these
techniques fail to achieve desired solutions for the issues related
to BT detection techniques (25). The hybrid Convolutional Neural
Network (CNN) and Deep Neural Network (DNN) were suggested
(26) for addressing the drawbacks of ML algorithms such as high
computational time and reduced classification accuracy. In this
process, the CNN model was used to extract features that were
classified using a fully connected network. The DNN employed in
this work enhanced the performance of CNN by accurately
classifying the tumor regions with an accuracy and F1 score of
96.08% and 97.3% respectively.

An ensemble model is implemented for distinguishing BT from
MRI images (27). A pre-trained Inception ResNetV2 model is
adopted for tumor detection and a ML-based RF model is
employed for determining the stage and type of brain cancer (28).
A cycle generative adversarial networks (C-GAN) model is used to
augment the size of the dataset. The results exemplify that the
proposed ensemble approach achieved detection and classification
accuracies of 99% and 98%, respectively. The authors Dipu et al.
(29) implemented a YOLOv5 model for detecting BT along with a
DL library known as FastAi. The model was trained using data
collected from the BRATS 2018 dataset, which consisted of 1,992
brain MRI images. It attained an overall accuracy of 85.95% and the
FastAi model exhibited an improved accuracy of 95.78%. These two
techniques validated the effectiveness of DL in the early detection of
brain cancer.

The work mentioned in (30) implemented a YOLOvV3 for
identifying cancerous BTs. The YOLOv3 model was combined
with a CNN model to boost the performance. This hybrid model
attained an accuracy of 97%. However, YOLOV3 significantly
requires more memory and this can be a challenging factor while
working with limited resources. A YOLOv4 model is employed in
(31) for BT detection. It is trained using a transfer learning (TL)
approach and a pre-trained COCO dataset was used to maximize
the tumor detection performance. Compared to the traditional
YOLO model, the YOLOv4 model achieves better performance
but with a high localization error.

A YOLOV5 was used by Paul et al. and Shelatkar et al. (32, 33)
for segmenting brain cancer images and diagnosing brain tumors.
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The YOLOV5 was trained on the BRATS 2021 dataset and the
model achieved an average precision of 88%. It was observed from
the results that the YOLOv5 model provided a slightly lesser
accuracy compared to other classification models. It was also
inferred that the complexity of the model increases the training
time. The authors Arunachalam & Sethumathavan and Hossain et
al. (34, 35) implemented YOLOV5 to detect abnormalities from
brain images. The YOLOv5 model performed better compared to
previous versions of YOLO and exhibited excellent tumor detection
performance. However, the model was not tested for detecting
malignant tumors from brain images.

As inferred from the existing approaches, most of the
techniques used in the brain tumor detection process employ pre-
processing and segmentation to identify and distinguish BTs and
these techniques are not effective in recognizing normal or
malicious tumor areas. In addition, conventional YOLO models
namely YOLOv3, YOLOv4, and YOLOV5 suffer from certain
drawbacks such as high computational complexity, compromised
accuracy to maintain fast execution speed restricts their adaptability
in disease detection tasks. Besides, these models rely on larger
datasets, and collecting such datasets for rare tumor classes can be a
tedious and time-consuming task. These drawbacks motivate this
research to employ an advanced version of the YOLO model to
automatically segment BTs with enhanced accuracy.

To address these drawbacks, in this work, we implemented a
deep learning (DL) model for the accurate detection of brain tumors
with better performance. The detection and segmentation of brain
tumors from MRI images using the hybrid DL-based YOLOv7 and
Grab Cut algorithms are presented here. The model was trained
using a Br35H Brain tumor dataset, and its effectiveness is validated
through a comparative analysis.

The primary contributions of the proposed work are as follows:

* The data processing technique used in this work consists of
different processes such as RGB to Gray conversion, Otsu’s
thresholding, Brain Skull Removal, Image Resizing, and
Median filtering.

*  We proposed an efficient object detection-based YOLOv7
algorithm for diagnosing brain tumors in the early stages to
mitigate the effect and speed up the diagnosis process.

* A gamma correction technique and a Grab Cut algorithm
are used to extract the Gamma-corrected image.

* The performance of the YOLOv7 model is evaluated with
and without the GrabCut algorithm and the proposed
model performed better than the other existing
algorithms in both cases.

The remaining portion of the paper is organized as: Section 2
includes the suggested methodology to train the model with the
sourced dataset for detecting tumors from brain MRI images. This
section also discusses the implementation of YOLOV7 and the
GrabCut algorithm for the detection and extraction of tumors.
Section 3 evaluates the results of the experiments conducted based
on the proposed methodology. Lastly, Section 4 outlines the
conclusion based on the produced results with future scope.
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2 Materials and methods

This paper aims to achieve a highly accurate recognition of BTs
from MRI images. DL-based YOLOv7 model (36) is used for
achieving faster and more accurate results for tumor detection
and classification. The automatic recognition of BT is a
challenging task because of the similarities and irregularities in
tumor images obtained from MRI scans. These issues make it
difficult for the classifier to recognize and classify the tumors with
better precision. Hence, it employs a Gamma correction mechanism
to improve the quality of the images.

This work implements a structured approach to classify BTs. In
the initial stage, the data from the brain tumor dataset is collected
for analysis, and in the second stage, the images are preprocessed
and subjected to Gamma correction in the third stage. In the fourth
step, the YOLOv7 model is implemented to detect and locate the
tumor. In the fifth stage, the Grab cut algorithm (37) is used for
extracting the foreground of the tumor image The process flow of
the proposed approach is shown in Figure 1.

2.1 Dataset collection and preparation

The dataset used for training the YOLOv7 model is collected
from BR35H: Brain Tumor Detection 2020 (BR35H) (38). The
dataset incorporated 1437 brain MRI images of which 734 were
malignant and 703 were normal tumors. The dataset consists of
both T1 and T2 weighted images and all images are two-
dimensional (2D images) and have a dimension of 256 x 256
pixels. All the images are skull-stripped and labeled as YES’ if the
tumor is present; otherwise, labeled as ‘NO’. The description of the
dataset is given in Table 1.

The dataset is split into a ratio of 70:15:15 where 70% of the data
is used for training the model, 15% for testing, and the remaining
15% for validation.

2.2 Data preprocessing

The data is preprocessed to enhance the quality of the images and
make them suitable for the classification process. Preprocessing
significantly improves the classification performance of the DL
models by filtering out the uncertainties. In this work, preprocessing
is performed using different stages such as RGB to Gray conversion,
Otsu’s thresholding, Brain Skull Removal, Image Resizing, and
Median filtering.

* RGB to Gray conversion: The RGB images consist of red,
green, and blue-scale images arranged on top of each other. A
grayscale image is a single-layered image denoted as an M x
N array, whose values are used to represent the intensity of an
image. To convert the RGB images into gray images, the
components of the red, green, and blue images were extracted
and represented in three different two-dimensional matrices.
A new matrix is created with similar dimensions, where the
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FIGURE 1
Workflow of the proposed method.

number of rows and columns is equal to that of the RGB
images. Each pixel of the RGB image was converted at
location (i, j) to grayscale values by determining the
weighted sum of the RGB color components and assigning
it to the respective location (i, j) in the new matrix. This
process simplifies the classification process and reduces
computational complexity.

* Otsu’s thresholding process: This process is used to
determine a threshold value to reduce the overlap
between foreground and background images. In other
words, Otsu’s algorithm returns a single intensity
threshold value that separates the pixels into two different
sets: foreground and background.

¢ Brain Skull Removal: Skull stripping was performed to
eliminate non-brain tissue from the MRI images. This
improved the speed and accuracy of the segmentation
process. At this stage, flood-filling and masking

TABLE 1 Description of the Brain Tumor MRI Dataset.

10.3389/fonc.2024.1347363

operations were considered for the skull removal process.
The flood-fill algorithm is used to identify or modify
adjacent values in the image based on their similarity to
the original values. Furthermore, masking was performed to
identify a specific Region of Interest (ROI) for analyzing the
tumor. This process discards image regions that are not
characterized by tumors.

* Image Resizing: It is performed to minimize the size of the
image without altering the actual image information. In this
work, all the input images were resized to (250x250) pixels
to avoid overfitting.

* Noise Removal: The noise in the input images was removed
using a median filter with a kernel size of (3x3). Median
filters are highly effective in filtering noise while preserving
the edges. The filter computes the intensity of the pixel
surrounded by the central pixel. The obtained median value
was replaced with the intensity of the center pixel.

2.3 Gamma correction

The preprocessed images are subjected to Gamma correction to
control the overall brightness of the tumor image. In this process,
the images that are too dark or bright are corrected. The CNN
performs automatic classification of the image attributes
considering the statistical features. The contrast of the image is
enhanced by dynamically modifying the parameters. In this stage,
the Gamma correction is applied for each ROI of the image and this
contributes to the overall image enhancement process. Overall, by
incorporating gamma correction into the pipeline, the model can
benefit from improved image quality, enhanced feature
representation, and better generalization capabilities, ultimately
leading to improved classification performance for brain tumor
images. However, this did not change the underlying content or
category of the image.

2.4 YOLOvV7 model for tumor detection

Considering the benefits of the supervised learning of DL based
YOLO model, this research employs an advanced version of the
traditional YOLO model known as the YOLOv7 model. The
YOLOvV7 model is designed to develop an appropriate technique
for identifying BT from brain MRI images. The working operation
of YOLOV7 is unique and indistinct from fundamental methods
used for detecting BT. In this process, the model simultaneously
predicts the class and puts a bounding box around the tumor area.
Each bounding box consists of five components (x, y, w, h, and the

No of Images

No of patients

With Tumor ‘ 734 ‘ 68 514

No Tumor ‘ 703 ‘ 70 493
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confidence score) with the first four components corresponding to
the center coordinates (x, y, width, and height) of the respective
bounding box, and the fundamental motive of YOLO is object
detection and localization via bounding boxes. Therefore, two sets
of bounding box vectors are required, i.e., vector ‘y’ is the
representative of ground truth, and vector Y is the predicted
vector which is shown in Equation 1.

Y = [pes by by by by ] (1)

*  p.corresponds to the objectness score (the probability score
of the grid containing an object).

e b, by, are the x and y coordinates of the center of the
bounding box for the enveloping grid cell.

e by, b,, correspond to the height and the width of the
bounding box for the enveloping grid cell.

* ‘C’ corresponds to the class.

The MRI images are arranged in a grid of dimensions D x D for
each grid cell. In the case where the center of the object of interest
falls into one of the grid cells, that particular grid cell would be
responsible for the detection of that object. This permitted the other
cells to neglect the object in the case of multiple appearances. Each
grid cell predicts B bounding boxes along with the dimensions and
confidence scores. The confidence score was indicative of the
absence or presence of an object within the bounding box.
Therefore, the confidence score can be expressed as Equation 2:

C =P, (Object) x IOU st 2

where P, (Object) dignified the probability of the object being
present, within a range of 0-1, with 0 indicating that the object does
not exist and IOU‘;;’;;h notes the intersection-over-union with the
predicted bounding box for the ground truth bounding box. To
address multiple bounding boxes containing no object or the same
object, YOLO opts for non-maximum suppression (NMS). By
defining a threshold value for the NMS, all overlapping predicted
bounding boxes with an IoU lower than the defined NMS value
are eliminated.

The losses associated with YOLOvV7 are bounding box loss and
objectness loss. Bounding box Loss (Localization loss) is
represented in Equation 3:

Livox = (6 — %)% + (yi— 51)% + (Vawi - Vi) + (Vhi

- \/ﬁ)2 3)

here (x;, 9, W;, ﬁi) represent ground truth values and (x; y; w;
h; represent predicted values. Objectness Loss(confidence loss) is
expressed as in Equation 4:

L; object =(¢;—¢;)2 (4)

In this process, the features are learned from labeled data, and
the YOLOV7 is initialized using the learned features. In this work,
the model is trained using both low-level and high-level features of
the brain tumor, and the model is updated after every iteration. This
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allows fine-tuning of the learned parameters and enables the layers
of YOLOV7 to capture features that are highly discriminative in
nature. The architecture of the YOLOv7 model is illustrated
in Figure 2.

The proposed YOLOV7 architecture incorporates three layers
namely; (i) Backbone: E-ELAN, (ii) Neck: PANet, and (iii) Head:
YOLO Layer. The backbone layer is the first layer responsible
for extricating important tumor features from MRI images.
A cross-stage partial network is utilized for extracting
representational features.

The backbone of YOLOV7 consists of an Extended Efficient
Layer Aggregation Network (E-ELAN) architecture (39) that uses
expand, shuffle, and merge cardinality to improve the learning
ability of the model without affecting gradient flow paths. E-ELAN
modifies the YOLOv7 architecture in the computational block and
the architecture remains the same in the transition layer. E-ELAN
incorporates a group convolution method to maximize the channel
capacity and cardinality of the computation block. The channel
multiplier is applied to all blocks in the computation layer, and a
feature map is created for each block. The feature maps from all
blocks are concatenated, and the obtained feature map is used to
merge the cardinality, as shown in Figure 3.

The second layer is the PANet layer, also known as the neck of
the model. The main reason behind selecting PANet is its capacity
to restore the spatial data and thereby contribute significantly to the
improvement of the localization process which in turn helps in
creating the mask around the image. This layer employs anchor
boxes for constructing feature vectors with bounding boxes for
tumor detection. The neck aggregates the feature maps obtained
from the Backbone and creates feature pyramids. The neck is made
up of multiple paths and the features extracted from the backbone
model are used to create the FPN as shown in Figure 4.

The last layer in the YOLOV7 architecture is the head of the
model which computes the final predictions as classification and
localization. The head predicts classes and bounding boxes,
classification scores, and objectness scores of objects based on the
features collected from the neck. In YOLOV7, the head generates the
final output, which is called the Lead Head, and assists in training
the middle layers, called the Auxiliary Head. With the help of
assistant loss, the weights of the auxiliary heads are updated, which
enables deep supervision and thereby allows the model to learn
better. The head of the YOLOv7 model is presented in Figure 5.

2.5 Grab cut algorithm

The detected tumor from the YOLOv7 model is analyzed using
the Grab Cut algorithm which extracts the feature from the gamma-
corrected image. This algorithm is used to extract the foreground of
an image by drawing a rectangular box around it. This box helps in
coordinating the image regions. However, the image contains both
foreground and background regions and hence it is essential to
eliminate the redundant background regions. This is achieved
through a segmentation process wherein the pixels located in the
foreground and background images are segmented and thereby
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Output Image

FIGURE 2
The proposed architecture of the YOLOv7 model.

helping in extracting only foreground images to achieve a better
tumor detection performance. An input image is accepted whose
value is 1 and for that, a bounding box is assigned. This determines
the object in an image that needs to be segmented. The steps
involved in the process are defined as follows:

2¢ partial 2c¢ -
Expand cardinality

—
= ZE[3x3.2c.2¢c.2 |
Z : __|
s g{ 3x3.2c. 2c. 2 |
S =
=3 — -
= g | 3x3,.2c.2¢c. 2 |
Z = .
< = [3x3.2c.2¢c. 2]
|5 Shuffle cardinality
- - - » - = * £
| dc ] [ dc ]
[ 1x1, 8c, 2¢c. 2 = ]
Merge cardinality
[ < ]
<
FIGURE 3

E-ELAN as Backbone Layer for YOLOV7 architecture.
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Step 1: A Gaussian Mixture Model (GMM) is used for
estimating the color distribution across the foreground and
background images.

Step 2: A Markov random field is constructed over the
pixel’s labels.

Step 3: The final segmented output images are obtained via the
Grab Cut algorithm.

In Grab Cut, the model for monochrome images is replaced by
GMM for color images. Soft segmentation is performed wherein a
new vector k = {ky,..., k..., ky} is imputed to each pixel of GMM’s
k,th component, where k, = 1, 2, ..., K (Normally K = 5), and o, =
0,1 is assigned to each pixel to show that it belongs to either the
foreground or background GMM. The energy function of the
GrabCut algorithm is defined as shown in Equation 5:

E(o, k, 6,2) = U(a, k, 6, 2) + V(a, 2) (5)
and GMM is defined using Equation 6:

K
G2) = SK o g (& wp3k), Dax =1, and 0< oy
i=1

<1 (6)

Where g, = (z; W, X is the Gaussian distribution function for

each component t k, k = 1, 2,...K is given by Equation 7.

9( z5 1 %) =;6Xp[—% -w"'Y -1Zz- ] @)
V23

frontiersin.org


https://doi.org/10.3389/fonc.2024.1347363
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Krishnapriya and Karuna

10.3389/fonc.2024.1347363

FIGURE 4
PANet layer in the YOLOV7 architecture

and o is the weighting coefficient, py is the means, X is the
covariance matrix for k™ component and D is the number of
dimensions of variable z. Combining equations 2, 3, and 4, the
term U is computed as in Equation 8.

U (o, k 0,2)= DG (o, k, 0,2) (8)
Where G (a, k, 0, z) is expressed as in Equation 9.
1 1
G (o, k, 6,2) = -logaw(ey, k,) +Elog|2(an, k)| +5 [

—,U(O(n, kn)T E(an’ kn)_l[zn
—,U(Otn, kn)} (9)

And the term 6 is defined as in Equation 10.

0= {n(o, k), p (o, k), J(et, k), =0, 1, k=1, ..., K}
(10)

Grab Cut minimizes the energy function by modifying the
iterative minimization cut algorithm. In the initial stage,
the algorithm considers two-pixel sets wherein one set
represents the background (on = 0) and another one for object
classes (o, = 1). Two GMMs were initialized along with the two
sets to start the iteration. GrabCut is an interactive version of

A Normal model

FIGURE 5

graph cut where the user quickly marks some pixels as
background, some as foreground, and then graph cut sorts out
the rest (constraining the marked pixels to belong to the
background and foreground or source-side and sink-side
respectively). In this algorithm, the minimum cut is obtained by
determining the maximum flow of data in the graph. In a graph,
the connectivity is formed by removing the set of edges which also
forms two individual subsets namely a maximum and a minimum
cut. The max-flow min-cut theorem states that the maximum flow
through any network from a given source to a given sink is equal
to the minimum sum of a cut. The results of the simulation
analysis are discussed in the below sections.

3 Results

This section provides localization and segmentation results on a
dataset made publicly available on Kaggle (38). We conducted our
experiments on the PYTHON 3.10.2 platform and executed on a
system with an Intel(R) Core (TM) i5-1035G1 CPU, 8 GB RAM,
and 3.3 GHz. We trained the model using the following
hyperparameters: a learning rate (Ir0) of 0.01, weight decay of
0.0005, and batch size of 16. We used the ADAM optimizer for
100 epochs.

Aux Head

2x (] - Aux Head

Aux Head

B Model with auxiliary head

Head layer in YOLOV7 architecture. (A) Normal model (B) Model with auxiliary head.
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3.1 Performance evaluation metrics

The efficacy of the YOLOv7 model was determined using the
following metrics.

Accuracy is defined as the percentage of accurately detected
brain tumors and is calculated as shown in Equation 11.

A TP + TN
ccuracy =
Y = TP+ TN+ FP+ EN

63))

Recall is defined as the ratio of brain tumor images that were
accurately classified as shown in Equation 12.

TP

Recall =
eca TP+ FN

(12)

The F1 score is determined as the weighted harmonic mean of
its precision and recall are given by Equation 13.

2 » Precision+Recall

F1 score = (13)

Precision + Recall

Similarly, precision is defined as the accuracy of the positive
predictions which is shown in Equation 14.

TP

P . s __
recision TP + FP

(14)

Based on the YOLOv7 model we trained, we achieved good
results in terms of the overall mAP and individual class
performance. The model achieved an overall mAP50 of 0.9391
and mAP 50-95 of 0.4981 on the validation set. This means that the
model was able to accurately localize the tumor region with a high
degree of confidence.

Figure 6 shows the loss values for the box loss, and object loss at
each epoch during the training process. The box loss represents the
difference between the predicted and ground-truth bounding box
coordinates, and the object loss represents the confidence score for
each object detected in an image. The goal of training an object

BOX LOSS OBJECTNESS LOSS
0.06 0.0175 —e— results
0.0150
0.05 0.0125
0.0100
0.04
0.0075
0.03 0.0050
[ 50 100 [ 50 100
VAL BOX LOSS VAL OBJECTNESS LOSS
0.11
0:10 0.03
0.09
0.02
0.08
0.07 0.01
0.06
[} 50 100 0 50 100

FIGURE 6
Outcomes of the training process.
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detection model is to minimize the total loss, which is a
combination of box loss, and object loss. The loss values should
exhibit a decreasing trend as the training progresses, indicating an
improvement in the model’s ability to localize the tumor region.

Moreover, from Figure 6, it appears that the precision, recall,
and mean average precision (mAP) are all increasing with training
epochs. This could indicate that the model improves over time and
becomes more accurate at identifying the correct location of the
tumor region. Our proposed model achieved a mean average
precision (mAP50) of 0.9304 and 0.9391, respectively, indicating
a high level of accuracy in identifying and localizing tumor regions
in the images. The model accurately localized tumor regions with a
precision (P) of 99% and recall (R) of 100%, demonstrating its
ability to localize tumor regions even in challenging
image conditions.

Overall, the results of our YOLOv7s model suggest that it
performed well in accurately localizing the tumor region in the
brain MR images we used for training and validation. Hence, we can
infer that these results demonstrate the potential of the YOLOv7
and Grab cut model for localizing and extracting brain tumor in MR
medical images.

3.2 Simulation results

The input image for YOLOv7 and the tumor detected image is
shown in Figure 7.

The values of different performance metrics obtained from
simulation for the proposed method are tabulated in Table 2.

It can be inferred from the table that the proposed detection
model achieved an optimal accuracy of 99.5% for training and
testing datasets, and 99% for validation datasets. In addition to the
performance evaluation metrics listed in Table 2, the performance
of the proposed approach was validated in terms of training and

PRECISION RECALL
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FIGURE 7
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(A) Input image (B) Tumor detected using YOLOV7 (C) Extracted tumor using Grab Cut algorithm.

validation loss, objectness loss, precision, and recall which are
illustrated in the figures below.

The loss function of YOLOV7 is computed as a combination of
two individual loss functions, that is, Bounding Box Regression
(which measures how well predicted bounding boxes capture
ground truth bounding boxes) and cross-entropy loss (which
measures how well a job the detector did in predicting the correct
class). The box loss represented in Figure 8A shows the effectiveness
of the algorithm in terms of locating the center of the object (tumor
image) and how well the predicted bounding box covers an object.
The validation objectness loss is shown in Figure 8B. Objectness loss
measures the probability that a tumor exists in the proposed ROL. If
objectness is high, the image window is likely to contain an object.

TABLE 2 Performance metrics for the proposed method.

Training Testing

Accuracy 99.5% 99.5% 99%
Precision 99.0% 99.0% 98.03%
Recall 100% 100% 100%
Specificity 100% 100% 100%
F1 score 99.5% 99.5% 99%
A
BOX LOSS
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FIGURE 8

As observed in Figure 8B, the proposed approach exhibits a high
objectness score and hence helps in locating the tumor from the
given image. The precision and recall graphs for the proposed
model are shown in Figure 9.

The training measurement values used to train the YOLOv7
model are tabulated in Table 3. A graphical representation of the
training process outcomes is shown in Figure 6.

Figure 6 shows that the mAP values obtained during the validation
for 100 epochs was IOU = 0.5 and mAP for IOU from 0.5 to 0.95. For
mAP at 0.5 and 0.95 are measured as the step values for different values
such as 0.05 (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95).

In addition, the comparison is done between ground truth test
images and predicted test images. In this work, four segmentation
techniques like Fuzzy C means segmentation, K-means clustering,
Otsu thresholding, and Grab cut algorithm are applied for finding
the DICE similarity measurement between ground truth images and
predicted test images. The resultant images for the segmentation
process are shown in Figure 10.

The dice similarity measurements for all four segmentation
techniques are illustrated in Table 4. It is understood from the
results that the proposed Grab cut algorithm yields enhanced results
compared to other techniques by achieving high dice similarity
measurement. The performance of the YOLOv7 model in
combination with the Grab cut algorithm is also compared with

B OBJECTNESS LOSS

— Training loss
—— Validation Loss

sum of the squared error
o P Py e
¢ 8 8§ &%
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0005 {

(A) Training and validation Box loss of the proposed model (B) Training and validation Objectness loss of the proposed model
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that of other tumor extraction mechanisms, and the results are

20 T illustrated in Figure 11.

o.8

4 Discussion

g
¥ o4 Although several studies have been conducted on the
application of deep learning for tumor localization and extraction,

oz the combination of Grab cut and YOLOv7 has not been widely
employed in this field. Actually, as far as we are aware, no studies

*%s o 8 acan = ve have used YOLOvV7 plus Grab cut for this purpose. Therefore, by
FIGURE 9 using YOLOV7 in combination with Grab cut for tumor localization
Precision- Recall of the proposed model and extraction, our work represents a novel contribution to

the field.

TABLE 3 Findings from training procedure.

Epochs Box Val Objectness Val Precision Recall mAP

loss Box loss loss Objectness loss @ 0.5
1 0.07792 0.07574 0.01807 0.01491 0.00332 0.9798 0.0032 0.00048
10 0.06179 0.07527 0.00763 0.00861 0.08104 0.2626 0.03995 0.00600
20 0.05863 0.07332 0.00650 0.00729 0.6102 0.2688 0.2806 0.09291
30 0.04947 0.07618 0.00532 0.00612 0.7755 0.5859 0.7094 0.2555
40 0.0455 0.07286 0.05112 0.00469 0.8157 0.7152 0.773 0.323
50 0.03831 0.06884 0.00461 0.00460 0.9157 0.8889 0.9211 0.4099
60 0.04114 0.06723 0.00506 0.00475 0.8183 0.8687 0.8892 0.4378
70 0.04045 0.06302 0.00479 0.00465 0.9261 0.9091 0.9291 0.4515
80 0.03322 0.06304 0.00456 0.00465 0.9384 0.9293 0.9464 04771
90 0.03923 0.06588 0.00482 0.00449 0.8846 0.9291 0.9304 0.4881
100 0.03426 0.06369 0.00469 0.00449 0.9681 0.9191 0.9391 0.4981

FIGURE 10
(A) Ground truth image (B) Fuzzy segmented image (C) K-means segmented image (D) Otsu’s segmented image (E) Proposed Grab Cut
segmented image.
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TABLE 4 Dice similarity measurement of various
segmentation techniques.

Segmentation techniques Dice similarity
measurements

Fuzzy Segmentation(Pitchai, 0.9240
R et al.,2021)

K-means Clustering(Sinaga, K. 0.9354
P et al.,2020)

Otsu’s Thresholding(Huang, C 0.8765
et al., 2021)

Proposed Grab cut Algorithm 0.9831

Bold text and values represent the proposed work.

Moreover, it is important to remember that accuracy on its own
might not be a good enough statistic for object detection tasks
because it ignores false positives and false negatives. Rather, mean
average precision, or mAP, is frequently employed to assess how
well object detection models perform. The mAP offers a more
thorough assessment of the model’s performance by accounting for
precision and recall at various intersection over union (IoU)
thresholds. Our study’s mAP50 of 0.9391 shows that our model
does a good job of identifying the tumor location.

The performance of the proposed model is compared with
other techniques, such as the hybrid CNN-SVM, YOLOV5, and
YOLOV6 models. The outcomes are shown in Figure 12, and the

A B C

-

10.3389/fonc.2024.1347363

obtained values are listed in Table 5. The table clearly shows that
our model outperforms the benchmark models in terms of
metrics of dice similarity, accuracy, precision, recall, specificity,
and F1 score.

In Figure 10, the first, third, and fourth rows represent the
tumor input image and the second row represents a non-tumor
input image. As inferred from the comparative results (Table 4) the
proposed YOLOvV7 achieves excellent results compared to the
existing methodologies. The accuracy of 99% is obtained by using
the proposed approach and the accuracy of hybrid CNN-SVM is
69%, YOLOv5 and YOLOV6 are 97.5% respectively. A highest
precision of 98.03% is achieved by the YOLOv7 model and the
precision values are 69.79%, 97.02% and 97.79% for hybrid CNN-
SVM, YOLOV5 and YOLOV6 techniques respectively.

In addition, the YOLOv7 model is also tested with and without
the application of the Grab cut algorithm, as shown in Figures 13A,
B, respectively. The average mean dice similarity score value
between the predicted test images and corresponding ground
truth images using Grab cut algorithm for tumor extraction is
shown in Table 6. The outcomes of YOLOv7 with and without the
combination of Grab Cut are shown in Figure 14.

Results show that the proposed technique attains a high dice
score between tumor extracted images and Ground truth images.
The findings show that the performance of the YOLOv7 model is
improved by the inclusion of the Grab Cut algorithm as compared
to the performance of the model without the algorithm.

ol e |0
- oo (o]

Tumor extracted images (A) Ground truth image (B) CNN-SVM + Grab cut (C) YOLOV5 + Grab cut (D) YOLOvV6 + Grab cut (E) YOLOV7 + Grab cut

FIGURE 11
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CNN-SVM

FIGURE 12
Brain Tumor detected images of the different models..

TABLE 5 Comparison of the proposed method with other methods.

Hybrid CNN-SVM

YOLOVS

10.3389/fonc.2024.1347363
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Text

Accuracy 69%
Precision 69.79%

Recall 67%

Specificity 67%
F1 score 68.36%

Bold text and values represent the proposed work.

A
COMPARISONS
o
H
H
H
- e
- s
- et
- oyl |
Ky Feceion Serstivy ol Sorchicly (P
Messarements

FIGURE 13
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(A) Performance of the various models without Grab cut algorithm (B)Performance of the various models with Grab cut algorithm.

5 Conclusion

This paper deploys a new BT detection and extraction method
using deep convolution neural network YOLOV7 in combination
with Grab cut algorithm. This approach detects the salient images
for accurate results. The proposed model involved different stages of

Frontiers in Oncology

preprocessing like noise removal, image resizing, thresholding and
RGB to gray conversion. The tumor image is converted to grayscale
before being segmented and corrected using the Gamma correction
process based on the threshold level. Our methodology provides
better resolution and dimension-independent segmentation
outcomes than the prior deep learning-based detection
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TABLE 6 Dice similarity measurement of various models with Grab Cut algorithm.

Hybrid CNN-SVM + YOLOVS + Yolov6 + Proposed Yolov7 +
Grab Cut Grab Cut Grab Cut Grab Cut
Dice 03328 0.8105 0.8190 0.9147
Similarity Measurements
Input image YOLOv7  Without Grabcut  With Grabcut

FIGURE 14
Outcomes of YOLOv7 with and without Grabcut.

techniques. We evaluated our method using BR35H: Brain Tumor
Detection 2020 (BR35H) dataset. Results show that the YOLOv7
model in combination with grab cut achieves an outstanding
accuracy of 99% in comparison to existing hybrid CNN-SVM,
YOLOv5 and YOLOv6 models. The outcome of the analysis
reveals that the YOLOv7 model is fast compared to the other
models. In addition, the YOLOV7 accurately detects and extracts
BT in the presence of the Grab Cut algorithm. This approach is best
identified for BT detection when implemented for larger datasets.
This model can be extended in the future to explore various types of
tumors from the extracted tumor for accurate diagnosis.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding author.

Frontiers in Oncology

121

Author contributions

SK: Conceptualization, Formal analysis, Methodology, Writing —
original draft. YK: Supervision, Validation, Writing - review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fonc.2024.1347363
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Krishnapriya and Karuna

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

1. Jalali V, Kaur D. A study of classification and feature extraction techniques for
brain tumor detection. Int ] Multimedia Inf Retrieval. (2020) 9:271-90. doi: 10.1007/
513735-020-00199-7

2. Amran GA, Alsharam MS, Blajam AOA, Hasan AA, Alfaifi MY, Amran MH, et al.
Brain tumor classification and detection using hybrid deep tumor network. Electronics.
(2022) 11:3457. doi: 10.3390/electronics11213457

3. Sarah AVA, Yepuganti K, Kripa K, Srigiri Krishna P, Saritha S. "Brain Tumor
Detection Using Deep Learning with Synthetic Data Augmentation." In 2023 IEEE 12th
International Conference on Communication Systems and Network Technologies
(CSNT), pp. 164-170. IEEE, 2023.

4. Metwali H, Raemaekers M, Kniese K, Kardavani B, Fahlbusch R, Samii A.
Reliability of functional magnetic resonance imaging in patients with brain tumors: a
critical review and meta-analysis. World Neurosurg. (2019) 125:183-90. doi: 10.1016/
j-wneu.2019.01.194

5. Ramakrishnan T, Sankaragomathi B. A professional estimate on the computed
tomography brain tumor images using SVM-SMO for classification and MRG-GWO
for segmentation. Pattern Recognition Lett. (2017) 94:163-71. doi: 10.1016/
j.patrec.2017.03.026

6. Lohmann P, Werner JM, Shah NJ, Fink GR, Langen K], Galldiks N. Combined
amino acid positron emission tomography and advanced magnetic resonance imaging
in glioma patients. Cancers. (2019) 11:153. doi: 10.3390/cancers11020153

7. Windisch P, Weber P, Firweger C, Ehret F, Kufeld M, Zwahlen D, et al.
Implementation of model explainability for a basic brain tumor detection using
convolutional neural networks on MRI slices. Neuroradiology. (2020) 62:1515-8.
doi: 10.1007/s00234-020-02465-1

8. Amin J, Sharif M, Gul N, Raza M, Anjum MA, Nisar MW, et al. Brain tumor
detection by using stacked autoencoders in deep learning. J Med Syst. (2020) 44:1-12.
doi: 10.1007/s10916-019-1483-2

9. Roberts TA, Hyare H, Agliardi G, Hipwell B, d’Esposito A, Ianus A, et al
Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the
early detection of therapeutic response. Sci Rep. (2020) 10:1-13. doi: 10.1038/s41598-
020-65956-4

10. Sarhan AM. Brain tumor classification in magnetic resonance images using deep
learning and wavelet transform. J Biomed Sci Eng. (2020) 13:102. doi: 10.4236/
jbise.2020.136010

11. WangY, Zu C, Hu G, Luo Y, Ma Z, He K, et al. Automatic tumor segmentation
with deep convolutional neural networks for radiotherapy applications. Neural Process
Lett. (2018) 48:1323-34. doi: 10.1007/s11063-017-9759-3

12. Mubashar M, Ali H, Gronlund C, Azmat S. R2U++: a multiscale recurrent
residual U-Net with dense skip connections for medical image segmentation. Neural
Computing Appl. (2022) 34:17723-39. doi: 10.1007/s00521-022-07419-7

13. Raza A, Ayub H, Khan JA, Ahmad I, S. Salama A, Daradkeh YI, et al. A hybrid
deep learning-based approach for brain tumor classification. Electronics. (2022)
11:1146. doi: 10.3390/electronics11071146

14. Khan MA, Ashraf I, Alhaisoni M, Damasevicius R, Scherer R, Rehman A, et al.
Multimodal brain tumor classification using deep learning and robust feature selection:
A machine learning application for radiologists. Diagnostics. (2020) 10:565.
doi: 10.3390/diagnostics10080565

15. Sadad T, Rehman A, Munir A, Saba T, Tariq U, Ayesha N, et al. Brain tumor
detection and multi-classification using advanced deep learning techniques. Microscopy
Res Technique. (2021) 84:1296-308. doi: 10.1002/jemt.23688

16. Vani N, Sowmya A, Jayamma N. Brain tumor classification using support vector
machine. Int Res ] Eng Technol (IRJET). (2017) 4:792-6.

17. Anitha R, Siva Sundhara Raja D. Development of computer-aided approach for
brain tumor detection using random forest classifier. Int ] Imaging Syst Technol. (2018)
28:48-53. doi: 10.1002/ima.22255

18. Garg G, Garg R. Brain tumor detection and classification based on hybrid
ensemble classifier. arXiv. (2021). doi: 10.48550/arXiv.2101.00216

19. Ahmad I, Liu Y, Javeed D, Shamshad N, Sarwr D, Ahmad S. “A review of
artificial intelligence techniques for selection & evaluation,” In: IOP Conference Series:
Materials Science and Engineering, IOP Publishing. (2020), Vol. 853. p. 012055.

Frontiers in Oncology

122

10.3389/fonc.2024.1347363

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

20. Bhatele KR, Bhadauria SS. Brain structural disorders detection and classification
approaches: a review. Artif Intell Rev. (2020) 53:3349-401. doi: 10.1007/s10462-019-
09766-9

21. Sri Sabarimani K, Arthi R. A brief review on Brain Tumour detection and
classifications. Bio-inspired Neurocomputing. (2021), 61-72. doi: 10.1007/978-981-15-
5495-7_4

22. Gull S, Akbar S. Artificial intelligence in brain tumor detection through MRI
scans: Advancements and challenges. Artif Intell Internet Things. (2021), 241-76.
doi: 10.1201/9781003097204-10

23. Bhagat PK, Choudhary P, Singh KM. “A comparative study for brain tumor
detection in MRI images using texture features.” In: Sensors for health monitoring.
Academic Press (2019). p. 259-87. doi: 10.1016/B978-0-12-819361-7.00013-0

24. Durgamahanthi V, Anita Christaline J, Shirly Edward A. “GLCM and GLRLM
based texture analysis: application to brain cancer diagnosis using histopathology
images,” In: Intelligent Computing and Applications: Proceedings of ICICA 2019.
Springer Singapore (2021). p. 691-706.

25. Krishnapriya S, Yepuganti K. "A survey of deep learning for MRI brain tumor
segmentation methods: Trends, challenges, and future directions." Health and
Technology 13, no. 2 (2023): 181-201.

26. Choudhury CL, Mahanty C, Kumar R, Mishra BK. (2020). “Brain tumor
detection and classification using convolutional neural network and deep neural
network,” In: 2020 international conference on computer science, engineering and
applications (ICCSEA), TEEE. pp. 1-4. doi: 10.1109/ICCSEA49143.2020.9132874

27. Gupta RK, Bharti S, Kunhare N, Sahu Y, Pathik N. Brain tumor detection and
classification using cycle generative adversarial networks. Interdiscip Sciences: Comput
Life Sci. (2022) 14:485-502. doi: 10.1007/s12539-022-00502-6

28. Srigiri K, Yepuganti K. "Pre-trained deep learning models for brain MRI image
classification”. Front. Hum. Neurosci., (2023) Brain-Computer Interfaces Volume 17 —
2023.

29. Dipu NM, Shohan SA, Salam KMA. “Deep learning-based brain tumor detection
and classification,” In: 2021 International Conference on Intelligent Technologies
(CONIT), TEEE. (2021). pp. 1-6.

30. Chanu MM, Singh NH, Muppala C, Prabu RT, Singh NP, Thongam K.
Computer-aided detection and classification of brain tumor using YOLOv3 and deep
learning. Soft Computing. (2023) 27:9927-40. doi: 10.1007/s00500-023-08343-1

31. Dixit A, Singh P. Brain tumor detection using fine-tuned YOLO model with
transfer learning. In: Artificial Intelligence on Medical Data: Proceedings of International
Symposium, ISCMM 2021. Springer Nature Singapore, Singapore (2022). p. 363-71.

32. Paul S, Ahad DMT, Hasan MM. Brain cancer segmentation using YOLOV5 deep
neural network. arXiv. (2022).

33. Shelatkar T, Urvashi D, Shorfuzzaman M, Alsufyani A, Lakshmanna K.
Diagnosis of brain tumor using light weight deep learning model with fine-tuning
approach. Comput Math Methods Med. (2022). 2022 doi: 10.1155/2022/2858845

34. Arunachalam S, Sethumathavan G. An effective tumor detection in MR brain
images based on deep CNN approach: i-YOLOV5. Appl Artif Intell. (2022) 36:2151180.
doi: 10.1080/08839514.2022.2151180

35. Hossain A, Islam MT, Almutairi AF. A deep learning model to classify and detect
brain abnormalities in portable microwave based imaging system. Sci Rep. (2022)
12:6319. doi: 10.1038/s41598-022-10309-6

36. Labcharoenwongs P, Vonganansup S, Chunhapran O, Noolek D, Yampaka T.
An automatic breast tumor detection and classification including automatic tumor
volume estimation using deep learning technique. Asian Pacific ] Cancer Prev. (2023)
24:1081-8. doi: 10.31557/APJCP.2023.24.3.1081

37. Saeed S, Abdullah A, Jhanjhi N, Naqvi M, Masud M, AlZain MA. Hybrid
GrabCut hidden Markov model for segmentation. Comput Mater Contin. (2022)
72:851-69. doi: 10.32604/cmc.2022.024085

38. Hamada. Br35h: Brain Tumor Detection 2020, version 5 (2020). Available online
at: https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-etection?select=yes.

39. Wang CY, Bochkovskiy A, Liao HYM. (2023). YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, in: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 7464-75.

frontiersin.org


https://doi.org/10.1007/s13735-020-00199-7
https://doi.org/10.1007/s13735-020-00199-7
https://doi.org/10.3390/electronics11213457
https://doi.org/10.1016/j.wneu.2019.01.194
https://doi.org/10.1016/j.wneu.2019.01.194
https://doi.org/10.1016/j.patrec.2017.03.026
https://doi.org/10.1016/j.patrec.2017.03.026
https://doi.org/10.3390/cancers11020153
https://doi.org/10.1007/s00234-020-02465-1
https://doi.org/10.1007/s10916-019-1483-2
https://doi.org/10.1038/s41598-020-65956-4
https://doi.org/10.1038/s41598-020-65956-4
https://doi.org/10.4236/jbise.2020.136010
https://doi.org/10.4236/jbise.2020.136010
https://doi.org/10.1007/s11063-017-9759-3
https://doi.org/10.1007/s00521-022-07419-7
https://doi.org/10.3390/electronics11071146
https://doi.org/10.3390/diagnostics10080565
https://doi.org/10.1002/jemt.23688
https://doi.org/10.1002/ima.22255
https://doi.org/10.48550/arXiv.2101.00216
https://doi.org/10.1007/s10462-019-09766-9
https://doi.org/10.1007/s10462-019-09766-9
https://doi.org/10.1007/978-981-15-5495-7_4
https://doi.org/10.1007/978-981-15-5495-7_4
https://doi.org/10.1201/9781003097204-10
https://doi.org/10.1016/B978-0-12-819361-7.00013-0
https://doi.org/10.1109/ICCSEA49143.2020.9132874
https://doi.org/10.1007/s12539-022-00502-6
https://doi.org/10.1007/s00500-023-08343-1
https://doi.org/10.1155/2022/2858845
https://doi.org/10.1080/08839514.2022.2151180
https://doi.org/10.1038/s41598-022-10309-6
https://doi.org/10.31557/APJCP.2023.24.3.1081
https://doi.org/10.32604/cmc.2022.024085
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-etection?select=yes
https://doi.org/10.3389/fonc.2024.1347363
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

:' frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

Poonam Yadav,
Northwestern University, United States

Rahul Gupta,

Synergy Institute of Medical Sciences, India
Bilgin Kadri Aribas,

Bulent Ecevit University, Turkiye

Song-Song Wu
wu_songsong@126.com

These authors have contributed
equally to this work and share
first authorship

19 September 2023
21 March 2024
24 April 2024

Zeng X-T, Liang X, Hong Z-L, Chen S,

Yang J-C, Lin Y-c and Wu S-S (2024) Initial
investigation on ultrasound-guided
percutaneous biopsy of lesions in the first
hepatic hilum with fusion of ultrasound and
multimodal imaging cognitive guidance.
Front. Oncol. 14:1297153.

doi: 10.3389/fonc.2024.1297153

© 2024 Zeng, Liang, Hong, Chen, Yang, Lin
and Wu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology

Original Research
24 April 2024
10.3389/fonc.2024.1297153

Initial investigation on
ultrasound-guided percutaneous
biopsy of lesions in the first
hepatic hilum with fusion of
ultrasound and multimodal
Imaging cognitive guidance

1,2,3¢

Xian-Tao Zeng***', Xia Liang™**', Zhi-Liang Hong"**',
Sheng Chen'??, Jian-Chuan Yang™*?, Yu-cheng Lin**
and Song-Song Wu**

tShengli Clinical Medical College of Fujian Medical University, Fuzhou, China, ?Fujian Provincial Key
Laboratory of Critical Care Medicine, Fuzhou, China, *Department of Ultrasound, Fujian Provincial
Hospital, Fuzhou, China, “Department of Ultrasonography, Affiliated Fuzhou First Hospital of Fujian
Medical University, Fuzhou, China

Purpose: This study aims to evaluate the efficacy and safety of ultrasound-guided
percutaneous biopsy of the first hepatic hilum lesion, and examine its clinical
value of diagnosis and treatment.

Methods: We conducted a retrospective study on patients diagnosed with the
first hepatic hilum lesions at Fujian Provincial Hospital between February 2015
and October 2022. We selected patients who had lesions in the first hepatic
hilum(including a 2cm surrounding area of the left/right hepatic ducts and
upper-middle segment of the common bile duct) and the liver periphery(in the
peripheral area of the liver, outside of the above-mentioned first hepatic porta
region). These patients underwent percutaneous ultrasound-guided core needle
biopsy (PUS-CNB) with cognitive fusion guidance using CT, MRI, or PET-CT. We
compared the safety and efficacy of PUS-CNB in the first hepatic hilum and the
liver periphery to explore the value of PUS-CNB in optimizing the clinical
treatment of the first hepatic hilum lesions.

Results: The studied includes 38 cases of the first hepatic hilum cases (18
females; 20 males), 23 presented with mass-forming tumors while the
remaining 15 exhibited diffuse infiltrative tumors, with an average diameter of
4.654+ 2.51 cm. The percutaneous biopsy procedure, conducted under
ultrasound guidance, had an average operation time of 14.55 + 2.73 minutes,
and resulted in a postoperative bleeding volume of approximately 10.79 + 2.79
ml. The diagnostic success rate was noted to be as high as 92.11% among the
participants who underwent percutaneous biopsy of the first hepatic hilum.
Procedural complications, such as bleeding, bile leakage, intestinal perforation,
infection or needle tract seeding, did not occur during or after the biopsy
procedure. Affected by biopsy results, 5 altered their clinical treatment plans
accordingly, 24patients received non-surgical treatment, 9 underwent surgical
treatment, 5 underwent radiofrequency ablation for the lesions. The study
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comprised a total of 112 cases for percutaneous biopsy of the liver periphery. The
safety and effectiveness of the two biopsy techniques were comparable, with
diagnostic success rates of 92.11% VS. 94.34%, respectively (p = 0.61).

Conclusion: Cognitive fusion of ultrasound and multi-modal imaging for the first
hepatic hilum lesion puncture biopsy is a safe and effective diagnostic procedure,
with better diagnostic rate, may improve clinical value of diagnosis and treatment

of various diseases.

KEYWORDS

multi-modal imaging, cognitive fusion, first hepatic hilum, ultrasound-guided, core

needle biopsy

1 Introduction

The first hepatic hilum, located on the visceral surface of the
liver, is a complex anatomical region where multiple structures
converge, including the portal vein, hepatic artery, bile duct,
lymphatics, nerves, and connective tissue. Lesions in this area
pose a diagnostic challenge as imaging features of benign and
malignant tumors can overlap, resulting in approximately 13-15%
of preoperatively suspected malignancies being diagnosed as benign
(1, 2). Clinicians should be aware of these challenges when
evaluating patients with suspected lesions in the first hepatic
hilum. Surgical resection of lesions located in the first hepatic
hilum represents a formidable challenge, with reported rates of
severe complications ranging from 37-64%, and surgical mortality
rates of 8-10% (3). As such, obtaining an accurate histological
diagnosis prior to surgical intervention is essential for ensuring
proper diagnosis and appropriate surgical management. This
crucial step can help mitigate the risk of adverse outcomes and
improve patient outcomes (4). The most commonly used biopsy
techniques for diagnosing suspected malignancies in the bile duct
include cytology using brush cytology during endoscopic retrograde
cholangiopancreatography (ERCP) (5), forceps biopsy, and
endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA).
However, ERCP is primarily used to sample the bile ducts and has a
detection rate of 44% to 80% for suspected cholangiocarcinoma in
that area (6, 7). The malignant tumor detection rate for forceps
biopsy is 43% to 81% (8, 9). EUS-FNA demonstrates slightly higher
diagnostic sensitivity (45%-86%) (10, 11). But lower negative
predictive value (9%-38%) compared to previous techniques for
obtaining pathological tissue of the first hepatic hilum lesions (12,
13). False negatives may occur, highlighting the need for alternative
approaches to safely and effectively diagnose advanced malignant
tumors and obtain tissue for genetic testing to facilitate targeted
and immunotherapy.

Hence, there is an urgent need for novel strategies that can
guarantee the safe and effective acquisition of pathological tissue from
lesions in the first hepatic hilum, thereby enabling precise

Frontiers in Oncology

preoperative diagnosis. We conducts a study to explore a novel and
safe percutaneous biopsy technique for detecting the first hepatic
hilum lesions. The primary objective is to bolster diagnostic precision,
furnish valuable insights for clinical deliberation, and promote better
treatment selection, particularly in the context of malignant tumors.

2 Materials and methods
2.1 The subjects of study

This retrospective study encompassed cases between February
2015 and October 2022 at Fujian Provincial Hospital. The patients
who were included in the study exhibited lesions within the first
hepatic hilum(including a 2cm surrounding area of the left/right
hepatic ducts and upper-middle segment of the common bile duct)
(Figure 1) and the liver periphery(in the peripheral area of the liver,
outside of the above-mentioned first hepatic porta region).
Inclusion criteria:(a) Imaging findings indicating the first hepatic
hilum or perihepatic masses requiring a definitive pathological
diagnosis;(b) Availability of a safe and suitable transabdominal
puncture route;(c) Platelet count >50x1079/L;(d) Prothrombin
time ratio >70%. Exclusion criteria:® Severe coagulation
dysfunction;® Severe underlying diseases or physical weakness
(Figure 2).

This retrospective analysis has been approved by the
Institutional Review Board of Fujian Provincial Hospital. Written
informed consent was obtained from each patient prior to
treatment, with all patients being informed of the treatment
indications, potential therapeutic effects, as well as possible
complications that may arise.

2.2 Instruments and methods

In our clinical setting, We utilize the Philips iU22 and GE Vivid
7 Dimension color Doppler ultrasound diagnostic machines for our
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FIGURE 1
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®

@ Depicts the first hepatic hilum as a dashed elliptical area, which encompasses the surrounding 2 cm range of the left and right hepatic ducts, as
well as the upper-middle region of the bile duct; @: Illustrates the distribution of nodular lesions within the first hepatic hilum; ®: Displays the

distribution of diffuse lesions within the first hepatic hilum.

ultrasound equipment. The linear array probe operates at a
frequency of 5-12MHz, while the convex array probe operates at
a frequency of 2-5MHz. For our biopsy procedures, we employ
either the 18G fully automatic biopsy gun or the semi-automatic
option (BARD Magnum, MN18-20, CR).

2.3 Pre-puncture preparation

All patients underwent routine laboratory examinations, including
complete blood counts, biochemical tests, and coagulation function
assessments. Prior to the surgery, all patients underwent CT/MRI/
PET-CT imaging to evaluate the first hepatic hilum and the
surrounding areas using multimodal imaging. The surgical team

Radiological examination
revealed a mass at the first
hepatic hilum

performed a multimodal imaging assessment prior to the puncture
procedure to reconstruct the specific location of the first hepatic hilum
lesion and its surrounding anatomical relationships. The lesion was
scanned using an ultrasound probe prior to the puncture, and then the
imaging image in the mind was fused with the ultrasonic image to
determine the puncture passage (a. intercostal approach above the rib
arch, b. subcostal approach through the liver parenchyma).

2.4 Ultrasound-guided percutaneous
biopsy procedure

The procedure is performed in the ultrasound intervention
room: The patient was positioned supine, The ideal puncture site

\/

38 patients were inincluded and
underwent PUS-CNB

\/

11 excluded
6 no puncture approach
3 coagulation dysfunction
2 benign

"® | Repeat PUS-CNB

Definitive pathological diagnosis

yes

or alternative biopsy methods

FIGURE 2
Flow chart.

Frontiers in Oncology

Individualized treatment -

125

frontiersin.org


https://doi.org/10.3389/fonc.2024.1297153
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zeng et al.

is identified through the process of cognitive fusion, using contrast-
enhanced ultrasonography to visualize areas of abnormal
enhancement (indicating an active lesion) and rapid washout
(suggesting a suspicious region for malignant tumor). These
findings guide the selection of the suspected active target area.
The puncture site was sterilized and draped, and local anesthesia
was administered to the area. Under real-time ultrasound guidance,
the needle tip was observed to sequentially pass through the skin,
subcutaneous tissue, and liver until reaching the lesion (taking care
to avoid major blood vessels). The trigger (biopsy device) was
activated to obtain tissue, and then the needle tip was withdrawn.
All biopsies were performed under local anesthesia with 2%
lidocaine. The biopsy procedure was carried out by two
experienced ultrasound intervention physicians with over 10 years
of experience. An 18G biopsy needle was used for the puncture, and
after tissue sampling, the needle was quickly withdrawn. The quality
of the tissue samples within the needle notch was observed, and if
deemed unsatisfactory, additional samples were taken. Each time, 2-
4 tissue samples measuring approximately 15mm-20mm in length
were obtained for pathological diagnosis. After applying sterile
dressing to the skin puncture site, patients were instructed to
apply pressure to the site for 5 minutes and were observed for 30-
60 minutes to check for any active bleeding. Additionally, patients
were advised to rest in bed for 6 hours after the procedure, and no
medication intervention was administered.

2.5 Evaluation indicators

Diagnostic success rate assessment: The diagnostic success
rate was assessed as follows: Cases in which the biopsy pathology
diagnosis was confirmed and matched the clinical discharge
diagnosis or postoperative pathology diagnosis were considered
successful cases. Cases in which the biopsy pathology diagnosis was
confirmed but did not match the postoperative pathology diagnosis
were considered non-matching cases. Cases in which the biopsy was
unsuccessful and could not provide a definitive pathology diagnosis,
requiring a repeat biopsy or surgical procedure for a definitive
pathology diagnosis, were also considered non-matching cases. The
diagnostic success rate was calculated as the number of cases with a
confirmed pathology diagnosis on the first biopsy divided by the
total number of cases.

The effectiveness measure includes: The average time spent
during the operation.

Safety indicators include (Complications of puncture): Post-
puncture, the amount of bleeding from the skin puncture site is
evaluated. Following the surgery and after one hour, careful
observation is conducted to assess the presence of fluid collections
within the abdominal and pelvic cavities caused by active bleeding,
as well as to check for any apparent damage to surrounding organs.
The patients are monitored for symptoms of infection, bile leakage,
intestinal perforation, and other related symptoms. During the
follow-up period, which lasts for three months after the surgery,
the presence of needle tract implantation metastasis and other long-
term complications related to the procedure are observed using
methods such as reviewing medical records, real-time
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communication with the attending physician, and conducting
telephone follow-ups after the patient’s discharge.

2.6 Statistical processing

This study employed SPSS 26.0 statistical software and
considered p<0.05 (two-tailed test) as the level of statistical
significance. Independent sample t-tests and Mann-Whitney U
tests were utilized for comparing quantitative data, while count
data was represented using frequency with between-group
differences assessed via chi-square tests and Fisher’s exact
probability method.

3 Results
3.1 General information

In this study, a total of 49 patients with lesions in the first
hepatic hilum were selected for percutaneous ultrasound-guided
core needle biopsy (PUS-CNB). Among them, 11 cases were
excluded due to the lack of a safe puncture pathway or abnormal
coagulation function. The remaining 38 cases underwent PUS-CNB
(20 males and 18 females) with a mean age of 61.08 + 11.29 years
(ranging from 30 to 77 years). The clinical symptoms upon
admission included abdominal pain in 28 cases, jaundice in 15
cases, vomiting in 5 cases, constipation in 4 cases, and a less
common symptom of recurrent melena in 1 case. The types of
lesions included 23 cases of mass-type and 15 cases of diffuse
infiltration, with an average diameter of 4.65 + 2.51 c¢cm. Prior to
the puncture, 30 cases underwent MRI examination, 7 cases
underwent CT examination, and 2 cases underwent PET-CT
examination. Based on cognitive fusion guidance, the selected
puncture approaches were intercostal transhepatic in 32 cases and
subcostal transhepatic in 6 cases (See Table 1).

3.2 Safety and effectiveness of
the puncture

The average duration of PUS-CNB procedure for the first
2.73 minutes. The
postoperative bleeding volume was approximately 10.79 + 2.79

hepatic hilum lesions was 14.55 +

ml. All patients experienced mild discomfort, and no
complications such as bleeding, bile leakage, intestinal
perforation, or infection were observed during or after the
procedure. There were no evident needle tract metastases during
the six-month follow-up. The success rate of tissue sampling
through the biopsy procedure was 100%. The biopsy results
revealed 19 cases of cholangiocarcinoma, 2 cases of gallbladder
carcinoma, 5 cases of hepatocellular carcinoma, 1 case of diffuse
large B-cell lymphoma, 4 cases of inflammatory lesions, 1 case of
parasitic infection, 5 cases of metastatic tumors (non-hepatic or
biliary in origin), and 1 case of malignant pheochromocytoma.
Among them, three cases initially diagnosed as inflammatory
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TABLE 1 General information for both groups.

first liver
hepatic hilum periphery

Total number of cases 38 112
Gender

Male 20 ‘ 66

Female 18 ‘ 46
Age (years)

Average 61.08 + 11.29 ‘ 58.79 + 12.42
Focal type

The mass type 23 94

diffuse type 15 18

Diameter of the lesion 4.65 + 251 5.59 + 3.85
puncture channel

intercostal liver 32 106
puncture approach

Subcostal space 6 6
puncture approach

lesions were confirmed as cholangiocarcinoma through surgery,
resulting in a biopsy success rate of 92.11% (See Tables 2, 3).

3.3 Compared with perihepatic
puncture biopsy

A total of 112 patients underwent ultrasound-guided
percutaneous needle biopsy of the liver periphery with an average
operation time of 14.24 + 3.01 minutes and an average
postoperative bleeding volume of approximately 10.16 + 2.30 ml.
All patients tolerated the procedure well, experiencing only mild

pain, and no major complications such as significant bleeding, bile

TABLE 2 Safety and efficacy comparison of the two groups.

10.3389/fonc.2024.1297153

leakage, intestinal perforation, or infection were observed during or
after the procedure. During the six-month follow-up, there were no
evident needle tract metastases. The overall success rate of tissue
sampling through the biopsy procedure was 94.64%, which did not
show a significant difference compared to the success rate of the first
hepatic hilum biopsies (P = 0.57). (See Table 3).

3.4 Post-puncture changes in diagnosis
and treatment

After undergoing the first hepatic hilum biopsy, 5 patients had a
change in their treatment plans (Table 4):

One patient with postoperative lung cancer was found to have
the first hepatic hilum lesion on follow-up imaging, which raised
suspicion of a possible metastatic tumor. However, PUS-CNB
confirmed it as malignant pheochromocytoma, leading to a
referral for urological treatment (Figure 3).

One patient with postoperative gastric cancer was found to have
a first hepatic hilum lesion on follow-up imaging, along with a
significant increase in AFP levels. Clinical considerations pointed to
primary liver cancer, but PUS-CNB confirmed it as a metastatic
carcinoma, resulting in chemotherapy treatment.

One patient who was suspected of having a primary tumor in
the first hepatic hilum with multiple liver metastases underwent
PUS-CNB, which diagnosed a parasitic infection. The treatment
plan was then changed to internal medicine, and follow-up at 1 year
showed the disappearance of the lesion (Figure 4).

One patient who was being evaluated for fever underwent
lymph node excision biopsy in the neck, which revealed reactive
proliferation on pathology. However, the treatment outcome was
unsatisfactory. Subsequent PET-CT revealed a high metabolic
lesion in the first hepatic hilum, and PUS-CNB confirmed it as
diffuse large B-cell lymphoma. The patient was then referred to
hematology for chemotherapy treatment.

One patient who was suspected of having cholangiocarcinoma
based on imaging findings had a PUS-CNB that diagnosed IgG4-

index first hepatic hilum liver periphery t P
Total number of cases 38 112
validity index
puncture time(min) 14.55 + 2.73 14.24 + 3.01 0.59 0.56
Diagnostic success rate 92.11% 94.64% / 0.57
Safety indicator
bleeding Volume(ml) 10.79 + 2.79 10.16 + 2.30 1.25 0.22
infect 0 0
Perforation 0 0
Bile leakage 0 0
needle track implantation 0 0
postoperative hemorrhage 0 0
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TABLE 3 Pathological results of the two groups.

first liver
hepatic hilum periphery
cholangiocarcinoma 19 9
hepatocellular carcinoma 5 23
diffuse large B 1 0

cell lymphoma

Inflammatory lesions 4 9
parasitic infection 1 0
metastatic tumor 5 69
Malignant 1 0
pheochromocytoma

carcinoma of gallbladder 2 0
Neuroendocrine tumor 0 1
angioma 0 1
Total number of cases 38 112

related sclerosing cholangitis. The treatment plan was then changed
to internal medicine.

In the case of an advanced-stage cholangiocarcinoma patient,
gene testing after PUS-CNB indicated high PD-L1 expression
(90%). The patient received immunotherapy with Keytruda,
receiving a total of 22 doses, with the first two doses at 200mg
and the subsequent 20 doses at 100mg. During this period, the
patient also underwent one session of radiation therapy with a dose
of 500GY*6. Follow-up PET-CT showed that the lesions had mostly
disappeared, with no metabolic enhancement, indicating a
significant treatment response. The patient has survived for 3
years and maintains a high quality of life (Figure 5).

Five patients with metastatic cancer underwent radiofrequency
ablation treatment, and follow-up MR scans showed complete
lesion inactivation in all cases. In total, 6 patients with

TABLE 4 Effect of PUS-CNB on the treatment.

Type Effect of ultrasound- = Example Percentage

guided needle biopsy = number of cases
on therapy

ET1 Leading to inappropriate 0 00.00
treatment options.

ET2 There was no effect on the 1 2.63
choice of the treatment method

ET3 No change the choice of 27 71.05
treatment but increased
clinician confidence in
the choice

ET4 Has an important role in the 5 13.16
choice of treatment.

ET5 Change in the treatment 5 13.16
approach chosen
total 38

ET, Effect on treatment.

Frontiers in Oncology

10.3389/fonc.2024.1297153

cholangiocarcinoma, 2 patients with hepatocellular carcinoma,
and 1 patient with chronic inflammation underwent surgical
treatment. The remaining 24 patients had advanced-stage
malignant tumors and received non-surgical treatment (Figure 6).

4 Discussion

Malignant tumors are commonly found in the first hepatic
hilum, with cholangiocarcinoma, gallbladder carcinoma, metastatic
carcinoma, and lymphoma being the main types. CT and MRI are
widely accepted methods for further diagnosing the first hepatic
hilum tumors, with MRI being the preferred imaging modality for
evaluating histological characteristics and the presence of diffusion.
However, even with imaging, it is not possible to completely
differentiate between primary cholangiocarcinoma, metastatic
carcinoma, hepatocellular carcinoma, and lymphoma (14, 15).
Different tumor types require different treatment strategies, and
an accurate diagnosis is crucial for clinical staging and treatment
planning. Currently, the main methods of biopsy include brush
cytology under ERCP, forceps biopsy, and fine-needle aspiration
under endoscopic ultrasound guidance. Unfortunately, these biopsy
methods are mainly focused on cytological diagnosis and have a
lower sensitivity. Therefore, there is a need to explore a new, safe,
and effective biopsy method.

Ultrasonography-guided percutaneous core needle biopsy
(PUS-CNB) has been validated as a feasible modality for
obtaining liver-peripheral tissue samples (16, 17). However, the
complex anatomical structure and proximity to neighboring organs
in the first hepatic hilum pose challenges in acquiring satisfactory
pathological specimens. Our research has revealed that the fusion of
ultrasonography with multimodal imaging cognition enables PUS-
CNB to emerge as a viable technique, with a diagnostic success rate
0f92.11%. In a large series of 1300 patients, accuracy rate was found
as 92.8% (499/538) in total, 85% (159/187) in small needle group vs.
96.9% (340/351) in large needle group with the liver metastases
(P<0.001). These rates were 91% (91/100) in total, 85.5% (47/55) in
small needle group vs. 97.9% (44/45 in large needle group with
hepatocellular carcinomas (P=0.039). Among 100 hepatocellular
carcinomas, 18% were well-differentiated, 26% and 56% were
moderate-differentiated and poor-differentiated, respectively.
Biopsies of hepatocellular carcinomas were performed with large
needles in 45% (45/100) and with small needles in 55% (55/100)
(18).In comparison, the diagnostic success rate of endoscopic
ultrasound-guided fine-needle aspiration (EUS-FNA), as reported
by Krister Jones et al.,, stands at 32% (19). PUS-CNB significantly
outperforms cytology-based biopsy methods (8-11). Moreover, our
study has demonstrated the safety and efficacy of PUS-CNB for the
first hepatic hilum lesions, as evidenced by the absence of major
complications such as significant hemorrhage, bile leakage,
intestinal perforation, infection, or needle tract seeding. In our
experience, two factors have contributed to our success: Firstly, our
ultrasonography interventionalists possess over a decade of
expertise in procedural interventions, exhibiting a high level of
proficiency and skill. Secondly, ultrasonography provides real-time
dynamic visualization, facilitating the precise navigation around
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FIGURE 3

A 58-year-old male patient Presented with malignant pheochromocytoma. ®: Percutaneous biopsy of the first hepatic hilum was performed under
ultrasound guidance. @: Ultrasonography revealed a hyperechoic area in the first hepatic hilum with clear borders, regular shape, heterogeneous
internal echogenicity, and slight blood flow signal. ®: MRI T1 arterial phase showed mild to moderate enhancement of the first hepatic hilum lesion
(arrow), suggesting the possibility of metastatic tumor. @: Schematic diagram of percutaneous biopsy of the first hepatic hilum under ultrasound
guidance. ®: The neoplasm displays a fascicular and lobular architecture with active proliferative activity and local tissue invasion. Cystic
degeneration is noted, and malignant tumor emboli are identified within the neoplastic thrombosed vessels and adjacent fibrovascular stroma. These
features fulfill the criteria for malignant pheochromocytoma per the 2016 World Health Organization Classification of Neuroendocrine Tumors
(magnification, x10). ®: After 1 year of follow-up CT examination post-surgery, the lesion was completely excised (circle) and no evidence of

recurrence was detected.

vital anatomical structures during the needle puncture. Efforts
should be made to identify the shortest trajectory for needle
insertion, avoiding critical organ structures and favoring a lateral
approach along blood vessels and bile ducts. Nonetheless, there

were three cases in which the intended pathological diagnosis was
not successfully obtained, resulting in false negatives. In these
instances, the final histopathological findings revealed
cholangiocarcinoma, characterized by an abundance of fibrous

FIGURE 4

A 65-year-old man Presented with parasitic infection. ©: On ultrasound imaging, multiple patchy hypoechoic lesions(arrow) were identified
surrounding the bile duct, with one particularly located at the first hepatic hilum. The boundary of the lesion is indistinct, and its irregular shape is
accompanied by internal echogenicity that appears uneven. @: PET-CT scan showed hypermetabolic activity in the first hepatic hilum lesion,
indicating the possibility of tumor. @: Ultrasound contrast demonstrated rapid wash-in and wash-out enhancement(arrow) in the first hepatic hilum
lesion. @: A schematic diagram was provided to illustrate the percutaneous biopsy procedure of the first hepatic hilum under ultrasound guidance.
®: High magnification microscope, HE staining(magnification, x40);The biopsy sample of the liver demonstrated the occurrence of focal necrosis
accompanied by the formation of granulomatous nodules, with a substantial infiltration of eosinophilic granulocytes and liver cell edema. The portal
area displayed a chronic infiltration of inflammatory cells and fibrous tissue hyperplasia, indicating a parasitic infection. ®@: After the therapeutic
intervention, a subsequent PET-CT scan revealed a lack of metabolic elevation in the previously identified lesion located at the first hepatic hilum,

indicative of its regression.
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FIGURE 5
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A 70-year-old male patient Presented with cholangiocarcinoma (a nodular type). ©: MRI T2-weighted magnetic resonance imaging showed a slightly
elevated signal in the first hepatic hilum region(arrow), indicating a high likelihood of cholangiocarcinoma. @: PET-CT shows high metabolic activity in
the lesion, suggesting the possibility of malignant tumor. ® An irregular hypoechoic mass(arrow) was detected in the first hepatic hilum during
ultrasound examination. Further contrast-enhanced ultrasound revealed rapid wash-in and wash-out in the first hepatic hilum area, along with arterial
phase enhancement. These findings suggest the presence of a tumor or lesion in the first hepatic hilum region. @: Percutaneous biopsy of the first
hepatic hilum was performed under ultrasound guidance. ®: A schematic diagram was provided to illustrate the percutaneous biopsy procedure of the
first hepatic hilum under ultrasound guidance. ®: The immunohistochemical analysis for programmed death ligand 1 (PD-L1) demonstrated that the
tumor cells expressed PD-L1 in a positive manner (TC+), with a positivity rate of 90%. @: The imaging follow-up after immuno-oncology treatment
presented a compelling outcome, revealing complete disappearance of the first hepatic hilum lesion on the PET-CT scan.

tissue and chronic inflammatory cells, which may have contributed
to the failure of our biopsy procedure. Insufficient tumor cell
representation within the biopsy specimens can lead to both
overdiagnosis and underdiagnosis. Perhaps the utilization of a
larger gauge biopsy needle, such as 16G, could ameliorate this
issue. Additionally, increasing the number of biopsy attempts and
adopting a multidirectional approach may also serve as potential
improvements. Pre-procedural ultrasonography contrast
enhancement could aid in identifying suitable biopsy sites,
prioritizing areas with enhanced activity while avoiding necrotic
regions. These strategies may potentially enhance the overall
success rate of the biopsy procedure. It needs further investigation
in this setting.

In this study, 5 cases had a change in treatment plan after PUS-
CNB, highlighting the important role of PUS-CNB in guiding
subsequent therapies. PUS-CNB had a positive impact on
diagnosis and enhanced physicians’ confidence in 97.37% of
cases. Among the tumors in the first hepatic hilum,
cholangiocarcinoma accounted for the majority (57.89%).
Cholangiocarcinoma is a malignant tumor originating from the
bile ducts and is the second most common primary malignant liver
tumor after hepatocellular carcinoma, representing 10%-20% of all
liver tumors (20). It has a poor prognosis, with an overall 5-year
survival rate of 2%-30% (21, 22). Even with curative resection, the 5-
year survival rate is less than 40% (23). Importantly, many cases of
cholangiocarcinoma are diagnosed at an advanced stage, limiting
the opportunity for surgical intervention. However, there are
various treatment options available for advanced tumors,
including biliary stent placement, percutaneous transhepatic
cholangiodrainage (PTCD), chemotherapy, immunotherapy,
targeted therapy, and more (24, 25). A definitive histopathological
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diagnosis helps guide personalized treatment approaches (26, 27).
In one case of our study, a patient was diagnosed with advanced-
stage cholangiocarcinoma in the first hepatic hilum based on
imaging findings, precluding surgical intervention. After PUS-
CNB and subsequent genetic testing, the patient was found to
have high PD-L1 expression (90%), and with the combination of
immunosuppressive agents and radiotherapy, the patient achieved
near-complete regression of the lesion during a 3-year follow-up.
Immune checkpoint inhibitors have emerged as a novel first-line
treatment option for advanced cholangiocarcinoma, with multiple
studies demonstrating their efficacy in this patient population (28,
29). A study by Japanese scholars further supported the reliable and
well-tolerated efficacy of combination therapy using immune
checkpoint inhibitors and chemotherapy compared to
monotherapy with chemotherapy or immunotherapy drugs (30).
Therefore, for patients with advanced-stage tumors, obtaining
histopathological tissue is a crucial step in exploring non-surgical
treatment options.

For lymphoma, patients can often avoid surgery due to their
sensitivity to chemotherapy. Effective tumor control and long-term
survival can be achieved through standardized chemotherapy, and a
specific subtype can only be determined with a definite pathology to
establish appropriate clinical chemotherapy protocols. In this study,
in the case of diffuse large B-cell lymphoma diagnosed after PUS-
CNB, obtaining tissue specimens was crucial. For patients with
metastatic cancer, radiofrequency ablation (RFA) serves as a
palliative treatment modality. The percutaneous RFA procedure for
lesions in the first hepatic hilum under ultrasound guidance is similar
to PUS-CNB, making ultrasound-guided RFA feasible for lesions in
the first hepatic hilum. In this study, there were 5 patients who were
diagnosed with metastatic cancer after PUS-CNB confirmed the first
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FIGURE 6

A 53-year-old female patient Presented with cholangiocarcinoma (a diffuse type). ®: According to an ultrasound examination, there is a hypoechoic
lesion(arrow) with irregular margins located in the left hepatic duct at the first hepatic hilum. Additionally, a contrast-enhanced ultrasound shows
that this lesion exhibits rapid wash-in and wash-out during the arterial phase. Ultrasound contrast revealed rapid wash-in and wash-out in the lesion
at the first hepatic hilum. ®, ®: Cross-sectional images obtained from MRCP and MRI of the bile duct at the first hepatic hilum reveal irregular
thickening of the bile duct and upper common bile duct that is surrounded by infiltrative soft tissue signals(arrow). These findings are consistent with
a focal, irregular stricture in the bile duct lumen, as well as intrahepatic bile duct dilatation resembling a soft, vine-like structure with uniform and
obvious enhancement. Furthermore, there is evidence of slightly longer T1 and T2 signals with uneven and obvious enhancement. Given the imaging
findings, cholangiocarcinoma should be considered as a possible diagnosis. @: Schematic diagram of percutaneous biopsy of the first hepatic hilum
under ultrasound guidance. ®: Percutaneous biopsy of the first hepatic hilum was performed under ultrasound guidance. ®: High magnification
microscope, HE staining, moderately differentiated cholangiocarcinoma (magnification, x40)

hepatic hilum lesions. All of them underwent ultrasound-guided RFA
for the first hepatic hilum lesions, and during a follow-up period of
six months, the lesions were in an inactive state. Fusion imaging can
also reduce false-positive lesion detection during US-guided RFA and
consistently improve the detection of HCCs, especially when these are
smaller than 2 cm. The ability of fusion imaging to reduce false
positives also applies to the evaluation of local tumor progression
after RFA and TACE (31, 32).

In this study, the integration of ultrasound with multimodal
image cognition in percutaneous ultrasound-guided the first hepatic
hilum puncture biopsy offers the following advantages:1.High safety:
Prior to the procedure, other imaging examinations are performed,
and with the integration of ultrasound cognition, large blood vessels
and bile ducts can be avoided. The appropriate puncture path can be
selected, reducing the risk of major bleeding and bile leakage. This
study found that punctures above the common hepatic duct in the
first hepatic hilum can be performed through the intercostal
approach, while lesions in the upper segment of the common bile
duct and the surrounding hepatic hilum can be accessed through the
subcostal approach, reducing the puncture distance. Real-time
dynamic monitoring of the needle insertion process ensures a safe
and controlled procedure. Additionally, multiplane imaging provides
confidence for operators.2.Simplicity, speed, and ease of use: This
technique is easy to learn, and experienced ultrasound
interventionists can quickly master it after short training. The
puncture biopsy procedure is relatively short, with a minimum
time of 9 minutes and an average time of 14.55 + 2.73
minutes.3.High accuracy: The use of an 18-gauge thick needle
allows for an adequate amount of pathological tissue to be
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obtained, resulting in higher diagnostic accuracy compared to
previous fine needle aspiration biopsy methods.4.Ultrasound
examination features no radiation, is flexible, and has low cost:
Compared to fluoroscopy or CT-guided puncture biopsy,
ultrasound’s radiation-free imaging is an absolute advantage.
Moreover, the overall procedure incurs minimal economic costs.
However, there are certain limitations to consider. Firstly, this
procedure is not without risks. Despite the integration with other
imaging modalities, potential complications such as vascular injury,
bile leakage, and needle tract seeding still exist. It also relies on the
experience and radiological expertise of the operator. Post-
procedure observation for one hour and close collaboration with
multiple clinical disciplines are necessary to promptly identify and
manage any complications that may arise. Secondly, this study is
retrospective and has a relatively small number of cases. Patients
without a puncture path were not included in the study, which may
have inflated the success rate of the procedure. Additionally, the
study lacks a comparison with other imaging-guided techniques.
Retrospective data collected from a single institution might
introduce bias. Therefore, large-scale, high-quality prospective
studies are needed to validate these findings and obtain more

accurate conclusions.

5 Conclusion

The integration of ultrasound and multimodal imaging
cognition in the percutaneous ultrasound-guided biopsy of the
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first hepatic hilum lesions can reduce unnecessary surgical
exploration or resection. It can confirm the resectability or
treatability of the lesions and has the potential to become a new,
superior, and faster method. This approach can optimize the triage
and treatment strategies for indeterminate hepatic hilum lesions,
benefiting the patients. It is particularly valuable for patients with
unclear lesions in the first hepatic hilum who require a definitive
diagnosis, as well as for those with bile duct carcinoma who have
lost the opportunity for surgical intervention and can benefit
from immunotherapy.
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Background: Whole Slide Image (WSI) analysis, driven by deep learning
algorithms, has the potential to revolutionize tumor detection, classification,
and treatment response prediction. However, challenges persist, such as limited
model generalizability across various cancer types, the labor-intensive nature of
patch-level annotation, and the necessity of integrating multi-magnification
information to attain a comprehensive understanding of pathological patterns.

Methods: In response to these challenges, we introduce MAMILNet, an
innovative multi-scale attentional multi-instance learning framework for WSI
analysis. The incorporation of attention mechanisms into MAMILNet contributes
to its exceptional generalizability across diverse cancer types and prediction
tasks. This model considers whole slides as “bags” and individual patches as
“instances.” By adopting this approach, MAMILNet effectively eliminates the
requirement for intricate patch-level labeling, significantly reducing the manual
workload for pathologists. To enhance prediction accuracy, the model employs a
multi-scale “consultation” strategy, facilitating the aggregation of test outcomes
from various magnifications.

Results: Our assessment of MAMILNet encompasses 1171 cases encompassing a
wide range of cancer types, showcasing its effectiveness in predicting complex
tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for
breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with
an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved
an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug
therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and
an Accuracy of 0.7341.
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Conclusion: The outcomes of this study underscore the potential of MAMILNet
in driving the advancement of precision medicine and individualized treatment
planning within the field of oncology. By effectively addressing challenges related
to model generalization, annotation workload, and multi-magnification
integration, MAMILNet shows promise in enhancing healthcare outcomes for
cancer patients. The framework's success in accurately detecting breast tumors,
diagnosing lung cancer types, and predicting ovarian cancer therapy responses
highlights its significant contribution to the field and paves the way for improved

patient care.

KEYWORDS

whole slide image analysis, multiple instance learning, cancer diagnosis, multi-scale
attention, deep learning

1 Introduction

In recent years, computational pathology has emerged as a
transformative discipline with immense potential to revolutionize
cancer diagnosis and treatment planning. The advent of digital
pathology and whole slide imaging has led to vast histopathological
data repositories, presenting an unprecedented opportunity for
deep learning networks in this field Srinidhi et al. (1) Qu et al.
(2). Whole Slide Image (WSI) analysis, enabled by deep learning
algorithms, shows promise in tumor detection, typing, and drug
treatment response prediction, heralding a new era of precision
medicine in oncology Cheplygina et al. (3) Rony et al. (4).

Tumor detection is critical for timely and accurate cancer
diagnoses. Conventional methods, relying on manual examination
by pathologists, can be time-consuming and subjective, leading to
diagnostic errors and variability. Deep learning networks
revolutionize tumor detection, using Convolutional Neural
Networks (CNNs) to meticulously analyze digitized
histopathological images, identifying malignancy with precision
and efficiency. Integrating deep learning expedites diagnostic
processes, enhances accuracy, and ensures reproducibility in
clinical settings. Tumor typing, categorizing cancers into
subtypes, is vital for personalized oncology. Deep learning
networks address challenges in tumor typing, comprehensively
learning from annotated histopathological datasets. They discern
subtle differences between tumor subtypes with remarkable
accuracy, facilitating efficient and precise tumor typing, leading to
tailored therapies and improved patient outcomes. In the realm of
cancer treatment, establishing deep-learning models to predict drug
therapy response from WSIs has emerged as a transformative
frontier. Traditional methods relying on manual evaluation of
biopsy samples struggle to capture the true heterogeneity of
tumor responses. In contrast, deep learning networks in WSI
analysis offer a promising and powerful approach. By analyzing
large-scale histopathological datasets, these models can detect subtle
alterations induced by therapies, enabling accurate and timely
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prediction of treatment response. This groundbreaking
development holds the potential to revolutionize cancer treatment
and elevate patient outcomes to new heights.

Deep learning networks have a significant impact on
computational pathology, particularly in WSI analysis for tumor
detection, typing, and treatment response prediction, advancing
precision medicine and patient care. However, integrating deep
learning algorithms faces significant challenges in this domain. A
primary issue is the limited generalizability of models across
different cancer types and tasks, compromising their practicality
for routine clinical use. Many current approaches achieve
remarkable results on specific cancer types or tasks, but their
performance tends to deteriorate when confronted with diverse
cancers. The burden of patch-level annotation is another major
challenge. WSIs are massive and need to be divided into smaller
patches for deep learning training. Manual annotation of these
patches is time-consuming and labor-intensive, making
comprehensive annotation impractical, hindering the adoption of
fully-supervised algorithms. Moreover, handling multi-
magnification information is vital. Current studies often focus on
single magnification analysis, neglecting the diagnostic information
embedded in multiple magnifications. This limitation may lead to
incomplete understanding of pathological patterns, reducing the
efficacy of deep learning algorithms in capturing the full complexity
of the images Srinidhi et al. (1) Qu et al. (2) Cheplygina et al. (3)
Rony et al. (4) Wang et al. (5) Qu et al. (6).

This paper presents MAMILNet, a novel multi-scale attentional
multi-instance learning framework for whole slide pathological
image processing. MAMILNet offers several key advantages over
existing methods. Firstly, it exhibits high generalization across
multiple cancer types and prediction tasks by skillfully integrating
the attention mechanism. This adaptability ensures robust
performance in diverse scenarios. Secondly, MAMILNet employs
a multi-instance learning (MIL) architecture, treating slides as
“bags” and their cut patches as “instances,” effectively
representing slides as a whole. This eliminates the need for fine-
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grained patch-level labeling, reducing the burden of manual
labeling for pathologists. Additionally, MAMILNet utilizes a
multi-scale “consultation” training and prediction strategy,
training with multiple magnifications and aggregating test results
from different scales using a probability ensemble method. This
approach significantly enhances prediction accuracy by considering
multiple magnifications during diagnosis and prediction. Overall,
MAMILNet is a promising framework for achieving high-accuracy
predictions in WSI analysis with weak labeling at the slide level.

We present a comprehensive evaluation of MAMILNet’s
performance. We focus on three critical diagnosis tasks, involving
different cancer types, from four distinct medical centers. These
tasks include automatic recognition of sentinel lymph node cancer
in breast cancer, automatic typing of lung adenocarcinoma and lung
squamous cell carcinoma, and drug resistance diagnosis of high-
grade serous ovarian cancer. Through a meticulous analysis of 1711
patients and WSIs, MAMILNet demonstrates remarkable accuracy
in predicting these complex tasks. The successful outcomes
achieved by MAMILNet in this diverse dataset hold significant
implications for cancer diagnosis and personalized treatment
planning. These findings further reinforce the potential of deep
learning networks in advancing WSI processing, paving the way for
improved healthcare outcomes in oncology.

2 Related work
2.1 Deep-learning-based WSI analysis

Numerous noteworthy studies have been dedicated to addressing
significant clinical challenges in the WSI analysis field. For instance,
Coudray et al. (7) developed deep-learning models capable of
accurately predicting cancer subtypes and genetic mutations,
sparking the entire field. Naik et al. (8) presented a deep-learning
framework for directly predicting estrogen receptor status from H&E
slides. Another notable clinical endeavor was undertaken by Tomita
et al. (9), who proposed a grid-based network for performing 4-class
classification of high-resolution endoscopic esophagus and
gastroesophageal junction mucosal biopsy images from 379 patients.
Skrede et al. (10) developed a deep model to analyze conventional
H&E-stained slides and effectively predict the prognosis of patients
after colorectal cancer surgery. Similarly, in a gastrointestinal tract
oncology study, Kather et al. (11) employed a deep model to predict
microsatellite instability (MSI) directly from H&E-stained slides.
Currently, deep-learning models for WSI analysis have been applied
across a wide range of cancer types, including breast, colorectal, lung,
liver, cervical, thyroid, and bladder cancers Coudray et al. (7) Bejnordi
et al. (12) Chaudhary et al. (13) Campanella et al. (14) Saillard et al.
(15) Woerl et al. (16) Anand et al. (17) Velmahos et al. (18) Wessels
etal. (19) Li et al. (20) Yang et al. (21).

In contrast to the majority of studies that have focused on
specific tasks for individual cancers, our proposed MAMILNet takes
a broader approach, exploring network architectures for multiple
tasks across multiple cancer species. With MAMILNet, we have
successfully achieved high accuracy in predicting multiple tasks for
various cancer types.
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2.2 Multi-instance learning techniques

As an effective weakly supervised learning algorithm, multi-
instance learning has emerged as the mainstream method for WSI
analysis based on deep learning Campanella et al. (14)Ilse et al. (22)
Shi et al. (23) Li et al. (24) Qu et al. (25) Qu et al. (26). Due to the
substantial size of WSIs, often reaching 100,000 x 100,000 pixels,
direct utilization as input for deep-learning models is impractical.
To alleviate the computational burden, WSIs are typically divided
into numerous small patches for processing. In multi-instance
learning, each WSI is treated as a “bag,” while the segmented
patches are regarded as “instances” belonging to that bag. If a bag
is labeled as negative, all instances within it are considered negative;
conversely, if a bag is labeled as positive, at least one instance within
it is positive. Multi-instance learning leverages neural networks to
extract features from each instance and aggregates them into a
feature representation of the bag. Subsequently, the classifier is
trained at the bag level, enabling direct slide-level classification
without the need for doctors to label patches with fine granularity.

However, current studies primarily focus on MIL-based WSI
analysis at a single magnification level, while pathologists often
switch between multiple magnifications to perform comprehensive
diagnoses. Neglecting the multiplex information may lead to an
incomplete understanding and interpretation of pathological
patterns, thereby limiting the effectiveness of deep learning
algorithms in capturing the full complexity of these images.
Embracing the varied information present in different
magnifications is essential to enhance the diagnostic accuracy and
enable deep-learning models to encompass the richness of
information contained within WSIs.

3 Materials and methods

3.1 Study design and workflow

The present study focuses on advancing WSI processing
through the integration of deep learning techniques. As illustrated
in Figure 1, our methodology commences with the expertise of
skilled pathologists, who meticulously prepare film and microscope
reprints of tumor tissue sections. Subsequently, high-quality
sections with clear labels are carefully chosen for digital scanning,
yielding comprehensive WSI datasets. The utilization of WSIs is
essential as it allows for a holistic view of the tissue, enabling a more
comprehensive and accurate analysis.

To optimize the input data for deep learning analysis, the
acquired WSIs undergo preprocessing (refer to Section 3.2). This
step involves WSI patching, data normalization, and data
augmentation, among other techniques, ensuring standardized
and consistent data for subsequent analysis.

The main focus of our study involves the development and
implementation of a sophisticated deep learning network, referred
to as MAMILNet (detailed in section 3.2.3). By incorporating
attention mechanisms, multi-instance learning, and multi-scale
ensemble strategies, MAMILNet is strategically designed to
effectively address the complexities associated with multiple
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Pipeline of the whole study.

prediction tasks across various cancer types. To comprehensively
evaluate MAMILNet’s performance on these diverse prediction
tasks, we utilized three data cohorts from four different centers,
encompassing 1711 cases and WSIs. The predictive tasks for
different cancer types include: automatic recognition of sentinel
lymph node cancer in breast cancer, automatic typing of lung
adenocarcinoma and lung squamous cell carcinoma, and
evaluation of drug resistance in high-grade serous ovarian cancer.

3.2 Data collection and preprocessing

In this research, we conducted a comprehensive evaluation of
MAMILNet’s performance on various prediction tasks for different
cancer types using a total of 1711 cases and WSIs from three data
cohorts across four centers. The predicted cancer types and tasks
included the automatic recognition of sentinel lymph node cancer
in breast cancer, automatic typing of lung adenocarcinoma and lung
squamous cell carcinoma, and drug-resistance diagnosis of high-
grade serous ovarian cancer. For details on the collection of relevant
data queues, please refer to section 3.2.1, and for information on the
pre-processing of data queues, see section 3.2.2.

3.2.1 Data collection
3.2.1.1 Breast cancer cohort

For the breast cancer cohort, we utilized the Camelyon 16
Dataset Bejnordi et al. (12), which is a prominent public benchmark
in computational pathology, specifically focusing on sentinel lymph
nodes. This dataset consists of a total of 399 whole-slide images
(WSIs) collected from the Radboud University Medical Center in
Nijmegen and the University Medical Center Utrecht in the
Netherlands. Expert pathologists have annotated the tissue slides,
labeling slides containing cancer as positive and those without
cancer as negative. The raw data queue contains both slide-level
weak labels and pixel-level labels for cancer regions. However, to
adhere to the requirements of weakly supervised scenarios, we
utilized only slide-level weak labels for training and testing
purposes. This approach ensures the appropriate use of data
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while addressing the challenges posed by weak supervision in the
context of this research.

3.2.1.2 Lung cancer cohort

The TCGA lung cancer dataset comprises a total of 1050 H&E
stained WSIs from the public Cancer Genome Atlas (TCGA) data
portal. This dataset includes two subtypes of lung cancer: Lung
Adenocarcinoma and Lung Squamous Cell Carcinoma. Expert
pathologists have carefully annotated the WSIs, providing slide-
level labels to indicate whether each WSI corresponds to Lung
Adenocarcinoma (negative) or Lung Squamous Cell Carcinoma
(positive). The meticulous annotations by expert pathologists
ensure the accuracy and reliability of the dataset for further
analysis and research in the field of lung cancer.

3.2.1.3 Ovarian cancer cohort

The Ovarian Cancer Cohort comprises a total of 262 cases and
WSTIs from two centers: 228 patients from Yunnan Cancer Hospital,
China, and 34 patients from Yunnan First People’s Hospital, China.
After obtaining institutional review board approval, we
retrospectively selected patients who received standardized
treatment for ovarian cancer at Yunnan Cancer Hospital and
Yunnan First People’s Hospital between 2015 and 2022.

Inclusion criteria for patient selection were as follows: (1)
confirmation of high-grade serous ovarian cancer through
operation and pathology; (2) treatment modalities including
primary tumor cell reduction plus first-line platinum drug
chemotherapy, or neoadjuvant chemotherapy plus tumor cell
reduction plus first-line platinum drug chemotherapy; (3)
availability of at least one pathological H&E-stained slide with
focal lesions for each patient; (4) at least 6 months of available
follow-up records after chemotherapy. Exclusion criteria included:
(1) history of other malignant tumors, pelvic surgery, or platinum
chemotherapy; (2) poor quality of tissue slides (Cases with poor
slide quality, such as broken cap fragments or stains on the surface,
insufficient tumor tissue, or tissue folding, were excluded.); (3)
maximum diameter of the lesion less than 1 cm; (4) incomplete or
substandard chemotherapy regimen; (5) incomplete clinical and
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pathological data. To clarify, at Yunnan Cancer Hospital, out of 270
patients considered, 42 were excluded based on the predefined
criteria, resulting in 228 patients being included in the study.
Similarly, at Yunnan First People’s Hospital, from an initial pool
of 48 patients, 14 did not meet the inclusion criteria, leaving 34
patients to be enrolled in the study.

We defined platinum resistance as disease progression or
recurrence within 6 months after the end of chemotherapy, and
platinum sensitivity if there was no disease progression or
recurrence within this timeframe. Tumor recurrence was
determined based on histopathology or the presence of two of the
following manifestations: sustained elevation of CA125, pleural
effusion or ascites, physical examination finding a lump, imaging
findings of a mass, or unexplained intestinal obstruction. For each
patient, two professional pathologists Qinqing Wang and Qingyin
Meng evaluated the slides, selecting 1-3 representative primary
lesion slides. The images were then digitized through an off-field
20-magnification scan (0.48 pm/pixel) using a portable scanner
(Ocus, Grundium, Finland).

3.2.2 Data preprocessing and partitioning

In this research, we employed the Python language (Version
3.7) and utilized the Openslide library (Version 3.4.1) to export all
data queues at three magnifications: 20x, 10x, and 5x. We saved the
resulting image sets separately, dividing them into non-overlapping
224x224 small image blocks. To ensure data quality, image blocks
with an entropy of less than 5 were excluded, as they are likely to
represent the background. For each resolution set, we performed
image normalization using the mean and variance of all slices
within the corresponding set. Data augmentation techniques,
including random flipping, rotation, color transformation, and
random cropping, were applied to enhance the dataset’s diversity.
To achieve this, we utilized Python (Version 3.7) with libraries such

10.3389/fonc.2024.1275769

as Pillow (Version 8.4.0), OpenCV (Version 4.1.0), and the PyTorch
deep learning framework (Version 1.7.1). By employing these
procedures and tools, we ensured that our dataset was prepared
with standardized resolution and enhanced with data
augmentation, setting a solid foundation for robust and reliable
deep-learning model training and evaluation.

In the Breast cancer cohort, we conducted a random division to
create a training set consisting of 240 cases and slides, and a test set
containing 129 cases and slides. For the Lung Cancer Cohort, we
applied a random division resulting in a training set comprising 840
cases and slides, and a test set comprising 210 cases and slides.
Similarly, for the Ovarian Cancer Cohort, we randomly divided it
into a training set with 183 cases and slides, and a test set with 79
cases and slides. Importantly, each of the training sets also includes
validation sets.

3.2.3 Multi-scale attentional multi-instance
learning network

We present MAMILNet, a multi-instance deep convolutional
neural network architecture incorporating a multi-scale attentional
mechanism, designed to handle multiple prediction tasks for
various cancers. The network’s training process is illustrated in
Figure 2A. During training, we create separate models for the 20x,
10x, and 5x image sets, as depicted in Figure 2A. Each set of patches
from the same WSI constitutes a bag. Before each iteration, we
apply random data augmentation techniques to each patch in the
bag, including random noise, rotation, clipping, and color
transformation. Next, we utilize a pre-trained ResNet He et al.
(27) network as the primary feature extractor to obtain the features
of each patch within the bag. Subsequently, an attention module is
employed, where a learnable attention weight is assigned to the
features of each image block. This attention-pooling process
aggregates the features within the bag to obtain the bag-level
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features. Finally, a bag-level Multilayer Perceptron (MLP) serves as
the bag classifier, directly predicting the negative and positive risks
of the WSL. The cross-entropy loss, calculated against the true
labels, serves as the loss function during training, and stochastic
gradient descent drives the parameter updates in the network.

The attention module consists of two main steps. First, a linear
fully connected layer reduces the dimension of each feature vector
to 128, followed by the application of the pixel-level hyperbolic
tangent function (tanh()). This non-linear output is then scaled to
be between -1 and 1. The resulting values are multiplied with
another linear layer to calculate the attention weight of each image
block using the softmax function. In the second step, we use the
feature matrix of the image block and the attention weight matrix to
obtain the bag-level features. This step involves element-wise
multiplication of the feature matrix with the attention weight
matrix, effectively emphasizing the important regions within the
bag based on their calculated attention weights. The resulting
features represent a compact representation of the bag, capturing
the salient information required for accurate bag-level predictions.

The inference process of the network is depicted in Figure 2B.
During the testing phase, we propose a multi-scale integration
strategy inspired by pathologists who often zoom in and out of
slices for diagnosis. This strategy allows us to make the final
prediction for the test cohort. Specifically, we employ the 20x,
10x, and 5x models obtained during the training process to calculate
the predicted risk probability for each WSI at each magnification
level. Next, we use the mean-pooling method to aggregate the
prediction probabilities from the three magnification levels. This
aggregation process yields the final prediction risk probability for
each WSIL.

We utilized the PyTorch deep learning framework (Version
1.7.1) in Python (Version 3.7) to perform all training and testing
processes of the network. The Adam optimizer was employed to
train the model, utilizing the cross-entropy loss as the loss function.
The total number of training iterations was set to 500, with a
learning rate of le-4. We applied a weight decay factor of le-5, and
the batch size was set to 64. For computational resources, we
conducted the training using the 11th Gen Intel(R) Core(TM) i7-
11700K CPU in combination with the Nvidia 3090 GPU. These
hardware configurations ensure efficient and high-performance
processing during the training and testing phases of our deep-

learning model.

3.2.4 Statistical analysis

In our specific experiments, we employed the cross-validation
method to train the model and select the best-performing model for
final internal verification and independent testing. During this
process, the verification set was utilized to identify the model
with the optimal performance, while the independent test set
remained unseen during both the training and verification stages,
ensuring a fair evaluation of the model’s performance. Specifically,
for each dataset, we first divide it into a training set (including a
validation set) and an independent test set at a ratio close to 4:1,
where the independent test set remains unseen during the training
and validation process. The details of the division can be found in
Section 3.2.2 Data Preprocessing and Partitioning. For the training
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set, we employed a 5-fold cross-validation method. This technique
divides the training dataset into five parts, using four parts for
training and one part for validation in each iteration. This process
ensures that each data point is used for both training and validation
once, thus obtaining a more reliable estimate of model performance.
Then we select the best model and parameters from the cross-
validation to test on the independent test set and report the results
of the independent test set as the final outcome. This also better
simulates the prediction scenario for more new unseen clinical data
in the future.

To assess the model’s performance, we employed several
metrics, including the area under the ROC curve (AUC),
Accuracy, False Positive Rate (FPR), and False Negative Rate
(FNR). These metrics were reported along with 95% confidence
intervals (CI) to provide a comprehensive understanding of the
model’s effectiveness. All metric calculations and statistical analyses
were conducted using the scikit-learn package (Version 1.3.0)
within the Python (Version 3.7) environment. The scikit-learn
package offers robust and reliable tools for evaluating machine
learning models, ensuring the accuracy and consistency of our
model assessments.

4 Results

4.1 Prediction results of sentinel lymph
node tumor detection in breast cancer

In the task of tumor diagnosis of sentinel lymph nodes of breast
cancer, as shown in Table 1, our innovative MAMILNet
demonstrated remarkable success, achieving an impressive AUC
0f 0.8872 (95%CI 0.86-0.90) on the independent test set. Moreover,
our model exhibited high accuracy (0.8760, 95%CI 0.85-0.89) and
demonstrated low false positive rate (FPR=0.1406, 95%CI 0.16-
0.12) and false negative rate (FNR=0.1077, 95%CI 0.08-0.12)
performances. These compelling results underscore the efficacy of
MAMILNet in accurately diagnosing tumors based on H&E-stained
WSIs, and hold significant promise for enhancing breast cancer
diagnostics and patient outcomes.

Moreover, by comparing our multi-scale model with
MAMILNet variants and advanced competitors, we observed

TABLE 1 Prediction results on the independent test set of sentinel lymph
node tumor detection in breast cancer.

Deep-learning AUC Accuracy FNR FPR
Model
5x only MAMILNet 0.7684 0.7520 0.2258 0.2698
10x only MAMILNet 0.8379 0.8217 0.1384 0.2187
20x only MAMILNet 0.8653 0.8450 0.1538 0.1562
MILRNN Campanella 0.8178 0.8062 0.1428 0.2542
et al. (14)
CLAM Lu et al. (28) 0.8762 0.8527 0.1142 0.2000
MAMILNet (ours) 0.8872 0.8760 0.1077 0.1406

Bold values refer to the best results.
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further improvements through our proposed multi-scale integrated
prediction strategy, validating its effectiveness in enhancing model
performance. These findings signify significant strides in the field of
deep learning-based tumor diagnosis, propelling advancements in
early detection and precision medicine for breast cancer patients.

The ROC curve of MAMILNet on the breast cancer sentinel
lymph node tumor detection task on the independent test set is
shown in Figure 3A.

4.2 Prediction results of automatic
subtyping of lung adenocarcinoma and
lung squamous cell carcinoma

In the domain of WSI processing for lung cancer typing diagnosis,
as can be seen from Table 2, our MAMILNet demonstrated
outstanding performance. The achieved AUC of 0.9551 (95%CI 0.94-
0.96) on the independent test set, coupled with accuracy of 0.9095 (95%
CI 0.89-0.91), FPR of 0.0961 (95%CI 0.110.07), and FNR of 0.0857
(95%CI 0.09-0.07), affirms the model’s accurate and efficient
classification of lung tumor types based on H&E-stained WSIs.
Additionally, a comparative analysis with other single-scale variants
and competitors underscores the superiority of our innovative multi-
scale strategy, further validating its efficacy in enhancing classification
accuracy and diagnostic performance. These findings represent a
significant advancement in the field of deep learning-based lung
cancer typing, offering promising avenues for improving patient care
and treatment outcomes.

The ROC curve on lung cancer tumor typing task on the
independent test set is shown in Figure 3B.

4.3 Prediction results of drug resistance in
high-grade serous ovarian cancer

We explored a novel and challenging clinical task—predicting
patients’ drug therapy response using the Ovarian Cancer Cohort.
This task, which surpasses the interpretability of H&E-stained slides
even for medical experts, represents a pressing problem in
contemporary medical research. As can be seen from Table 3, our

A Receiver Operating Characteristic (ROC) Curve B

Receiver Operating Characteristic (ROC) Curve C
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MAMILNet demonstrated promising results in this endeavor,
achieving an AUC of 0.7358 (95%CI 0.74-0.72) on the
independent test set, along with accuracy of 0.7341 (95%CI 0.72-
0.74), FPR of 0.2982 (95%CI 0.30-0.28), and FNR of 0.1818 (95%CI
0.17-0.19). These performance indicators signify the potential of
our MAMILNet to make significant advancements in drug response
therapy prediction, ushering in a new era of personalized medicine
and improved patient outcomes in ovarian cancer management.
The ROC curve on the ovarian cancer treatment resistance
prediction task on the independent test set is shown in Figure 3C.

5 Discussion and conclusions

This research introduces MAMILNet, a novel multi-scale
attentional multi-instance learning framework, which achieves
remarkable performance in critical tasks like breast cancer tumor
detection, lung cancer subtype diagnosis, and ovarian cancer drug
resistance prediction, even with weak slide-level labeling.

MAMILNet’s innovative design and capabilities hold significant
promise for advancing medical image analysis, improving
diagnostic accuracy, and guiding cancer treatment decisions.

MAMILNet demonstrates its robust performance through three
key components. Firstly, it effectively employs attention mechanisms to
adaptively learn critical visual features associated with various cancer
species and tasks. By assigning higher attention weights to clinically
relevant visual features and lower weights to unrelated background and
noise, MAMILNet acts as a dynamic filter, enhancing its learning
ability for different tasks. Consequently, the network exhibits
exceptional generalization across multiple cancer types and
prediction tasks. Secondly, MAMILNet adopts a feature aggregation-
based multi-instance learning architecture, enabling remarkable
performance even with slide-level weak annotation. It treats slides as
“bags” and their cut patches as “instances,” employing an efficient
instance-level feature extractor to derive informative representations.
An attention mechanism is then used to aggregate these instance
features effectively into bag-level features. This approach culminates in
a powerful bag classifier, enabling accurate slide-level classification.
The combination of instance-level efficient feature representation,
attention-based feature aggregation, and a robust bag-level classifier
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TABLE 2 Prediction results on the independent test set of automatic
subtyping of lung adenocarcinoma and lung squamous cell carcinoma.

AUC

Deep-learning

Accuracy
Model

5x only MAMILNet 0.9269 0.8619 0.1333 0.1429
10x only MAMILNet 0.9324 0.8904 0.0952 0.1250
20x only MAMILNet 0.9488 0.9000 0.0857 0.1153
MILRNN Campanella 0.9236 0.8667 0.1111 0.1733
et al. (14)
CLAM Lu et al. (28) 0.9411 0.8857 0.0714 0.2000
MAMILNet (ours) 0.9551 0.9095 0.0857 0.0961

Bold values refer to the best results.

ensures MAMILNet’s efficiency. Lastly, inspired by pathologists’
“zoom in and out” reading approach, MAMILNet introduces a
multi-scale “consultation” training and prediction strategy. During
training, it uses multiple magnifications to fully model and learn
pathological features. During testing, a probabilistic set approach
aggregates results from different scales, harnessing the advantages of
diverse magnifications for optimal prediction performance, akin to a
medical consultation process. This innovative strategy further
enhances MAMILNet’s predictive capabilities.

Tumor detection and pathologic subtyping are vital in WSI
analysis through deep learning. The deep learning model offers
faster and more detailed diagnostic references directly from H&E-
stained slides, significantly reducing examination time. Moreover, its
highly generalized nature facilitates diagnosis in regions with limited
medical resources. This study demonstrates satisfactory performance
in both tasks, paving the way for the widespread application of deep-
learning models in this domain. It is also among the pioneering efforts
to explore the direct prediction of drug response therapeutic efficacy
from WSI using deep learning. Assessing a patient’s response to drug
therapy is critical for treatment decisions and prognosis. However,
determining drug resistance from H&E-stained slides is challenging,
even for experienced physicians. Studies Vamathevan et al. (29)
Ballester et al. (30) Farahmand et al. (31) suggest that a patient’s
sensitivity to specific drug therapy may be evident in H&E-stained
sections, presenting opportunities for deep-learning model
applications. The deep-learning model effectively captures

TABLE 3 Prediction results on the independent test set of drug
resistance in high-grade serous ovarian cancer.

AUC

Deep-learning

Accuracy
Model

5x only MAMILNet 0.6741 0.6582 0.3636 0.3333
10x only MAMILNet 0.6968 0.6835 0.2727 0.3333
20x only MAMILNet 0.7126 0.7088 0.2727 0.2982
MILRNN Campanella 0.6537 0.6329 0.3333 0.4118
et al. (14)
CLAM Lu et al. (28) 0.6884 0.6709 0.2727 0.4000
MAMILNet (ours) 0.7358 0.7341 0.1818 0.2982
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pathological patterns related to drug treatment responses in a data-
driven manner, enabling accurate predictions. The research conducted
a preliminary trial on High-grade Serous Ovarian Cancer, yielding
promising results. These findings support the future prediction of
treatment responses using deep learning across various cancer types
with different drugs. This breakthrough holds significant potential for
advancing personalized medicine and enhancing patient outcomes.

The study has several limitations that require careful consideration.
Firstly, it adopts a retrospective analysis approach, which may
inherently constrain the diversity and representativeness of the data.
Future investigations aim to build a larger and more comprehensive
dataset to enhance the model’s robustness. Secondly, for drug
resistance prediction tasks, systematic pathologic patterns have not
been identified. The deep-learning model relies on data-driven iteration
and training, making it challenging to understand the underlying
pathological basis of its judgments. Although the designed attention
mechanism can highlight patches of high and low risk, further
experiments are needed to systematically generalize authoritative
pathological patterns. While this study provides a preliminary
glimpse into the potential of utilizing deep-learning models for drug
therapy response prediction in ovarian cancer, full generalization of this
knowledge requires more extensive trials and investigation. Thirdly,
despite conducting trials involving three cancer species from four
centers, the validation across multiple centers remains insufficient for
each task. Limited multi-center training and verification constrain the
generalization and robustness of deep learning networks. To address
this, future endeavors will focus on collecting more extensive data to
facilitate large-scale, multi-center training and validation, ensuring
more comprehensive and reliable results.

In our study, we investigated the predictors of therapeutic
outcomes in ovarian cancer, acknowledging that these are
influenced by a range of factors beyond tumor morphology, such as
pathological stage, resection margins, patient performance status, and
comorbidities. We developed a deep learning model, using
pathological slides as the sole input, to predict drug resistance,
exploring the potential of pathological sections as an independent
biomarker. While integrating clinical and pathological data could
improve predictive accuracy, our initial focus on pathological slides
due to scope and time constraints represents a deliberate first step
towards a comprehensive research strategy. Plans to include clinical
data in future analyses acknowledge the opportunity to enhance drug
resistance predictions. We analyzed additional clinical data, including
Federation International of Gynecology and Obstetrics (FIGO) stage,
age, and BMI, through logistic regression to assess their relationship
with platinum resistance. The p-values for these factors (0.2052,
0.9191, and 0.3393, respectively) suggest they are poor predictors of
platinum resistance, as evidenced by AUC values of 0.58, 0.51, and
0.54 in independent tests. Conversely, our deep learning analysis of
pathological images with MAMILNet demonstrated higher predictive
accuracy for treatment response, achieving an AUC of 0.7358, with
significant accuracy, FPR, and FNR rates. We aim to extend our
research to include broader clinical parameters, enhancing prediction
accuracy and understanding of therapeutic outcome determinants in
ovarian cancer. This multidimensional approach promises to refine
our predictive models and contribute valuable insights into the
complex dynamics of cancer treatment response.
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In summary, deep-learning-based WSI analysis has emerged as
a crucial approach for cancer diagnosis. This study introduces a
novel multi-scale attentional multi-instance network architecture
(MAMILNet), presenting a fresh perspective and method for WSI
analysis using deep learning. Notably, MAMILNet demonstrates
promising results in breast cancer tumor detection, lung cancer
tumor typing, and ovarian cancer drug resistance prediction tasks.
These achievements offer valuable insights for the wider application
of deep-learning models in these areas and inspire new avenues for
utilizing deep learning in diverse cancer types and diagnostic tasks.
MAMILNet’s performance signifies its potential as a powerful tool
for enhancing cancer diagnosis and treatment in clinical settings.
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Leveraging radiomics

and Al for precision

diagnosis and prognostication
of liver malignancies

Maryam Haghshomar, Darren Rodrigues, Aparna Kalyan,
Yury Velichko and Amir Borhani*

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States

Liver tumors, whether primary or metastatic, have emerged as a growing
concern with substantial global health implications. Timely identification and
characterization of liver tumors are pivotal factors in order to provide optimum
treatment. Imaging is a crucial part of the detection of liver tumors; however,
conventional imaging has shortcomings in the proper characterization of these
tumors which leads to the need for tissue biopsy. Artificial intelligence (Al) and
radiomics have recently emerged as investigational opportunities with the
potential to enhance the detection and characterization of liver lesions. These
advancements offer opportunities for better diagnostic accuracy,
prognostication, and thereby improving patient care. In particular, these
techniques have the potential to predict the histopathology, genotype, and
immunophenotype of tumors based on imaging data, hence providing
guidance for personalized treatment of such tumors. In this review, we outline
the progression and potential of Al in the field of liver oncology imaging,
specifically emphasizing manual radiomic techniques and deep learning-based
representations. We discuss how these tools can aid in clinical decision-making
challenges. These challenges encompass a broad range of tasks, from
prognosticating patient outcomes, differentiating benign treatment-related
factors and actual disease progression, recognizing uncommon response
patterns, and even predicting the genetic and molecular characteristics of the
tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of
these Al-based techniques.

KEYWORDS

radiomics, Al, liver tumors, HCC, review

144 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2024.1362737/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1362737/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1362737/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1362737/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1362737&domain=pdf&date_stamp=2024-05-08
mailto:amir.borhani@nm.org
https://doi.org/10.3389/fonc.2024.1362737
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1362737
https://www.frontiersin.org/journals/oncology

Haghshomar et al.

Introduction

Liver tumors, both primary and metastatic, have become a
growing global health concern with significant implications.
Treating HCC remains challenging given the heterogeneity and
complexity of the disease. Most HCC patients have underlying
cirrhosis or chronic inflammation. The microscopic changes, in the
setting of chronic inflammation, makes HCC an ideal disease state
to consider for targeted therapy. While immunotherapy has
changed the first line treatment paradigms, there remains a
paucity of treatment options in patients who either progress on
immunotherapy or are intolerant of these agents. Historically,
treatments for HCC have been based on the Barcelona Clinic
liver cancer staging system, with the assessment of tumor burden,
liver function, and general health status guiding the selection of the
best treatment modality (1). However, in the era of precision
medicine, tumor biomarkers and treatment selection challenge
the one-size-fits-all concept in HCC.

The low sensitivity and specificity of biomarkers has rendered
selection of treatment to be difficult. While Alpha-fetoprotein
(AFP) has historically been used for detection of early, potentially
curable tumors, it is limited by its sensitivity to make treatment
decisions (2). Biomarkers that predict response to systemic therapy
are urgently needed. Presently, AFP is the only biomarker to predict
response, and only in a subset of patients who receive ramucirumab
as a second-line agent. Using cell free DNA’s genomic and
epigenetic changes potentially offers a more sensitive and
promising biomarker, especially for detecting minimal residual
disease (2). Genetic changes detected by means of circulating
tumor DNA allows improved understanding of tumor biology
and disease heterogeneity.

Imaging plays a vital role in detecting liver tumors but sometimes
conventional methods often lack the precision needed for proper
characterization, leading to the need for invasive tissue biopsy.
Conventional imaging methods provide limited information on the
prognostic factors of liver tumors, such as genetic mutations, molecular
markers, and potential treatment response. This information gap
delays personalized treatment planning and prognostication.

Rapid advancements in imaging and post-processing
techniques have revolutionized high-throughput image analysis,
enabling a more precise and comprehensive evaluation of liver
diseases. Artificial intelligence (AI) and radiomics have emerged as
promising methods with the potential to revolutionize liver lesion
characterization. Al and radiomics can analyze medical images at a
high level of detail, identifying subtle patterns that correlate with
specific tumor types, stages, and biological characteristics. These
methods are fast, affordable and readily available. AT and radiomics
can do simple tasks and handle a huge amount of data with the
same accuracy, meaning that missing manual steps, fatigue, or data
overload won’t affect the findings.

We provide an outline of radiomics and Al contributions to
diagnosis and staging, treatment response assessment, and
prognosis prediction in liver malignancies in this review. We
describe the progress and potential of Al in the liver oncology

Frontiers in Oncology

10.3389/fonc.2024.1362737

imaging, focusing specifically on radiomic and deep-
learning techniques.

Radiomics and artificial intelligence

Radiomics, a framework that complements conventional
radiological interpretation, has emerged as a powerful tool for
extracting and quantifying texture characteristics derived from
tumor heterogeneity (3-6) (Figure 1). Radiomics employs a wide
range of method, each designed to capture specific aspects of tissue
architecture and texture. These features provide a detailed
representation of tumor heterogeneity, enabling researchers to
study and compare tumor characteristics across different patients.
The standardization of radiomics features ensures the
reproducibility and generalizability of radiomics studies, fostering
collaboration and wider adoption of this technique. Development of
openly available imaging datasets further creates opportunities to
test and benchmark radiomics algorithms and facilitate the
translation of radiomics findings into the clinical practice.

Radiomics features extracted from large datasets enable the
development of advanced statistical models, including machine
learning and artificial intelligence algorithms. These models can
enhance various aspects of liver imaging assessment, including
tumor origin identification, therapy response prediction, and
prognosis assessment. For instance, radiomics provides valuable
insights into tumor characteristics, such as aggressiveness and
prognosis, which can inform treatment decisions. Another example
includes delta-radiomic models, which allow for longitudinal
assessment of changes in tumor texture to assess tumor response to
treatment. This enables timely adjustments to treatment regimens
and improves overall treatment efficacy. Furthermore, radiomics-
based predictive models can personalize treatment strategies for
individual patients, tailoring treatment to their specific tumor
characteristics and maximizing treatment success.

Harnessing the power of neural networks, AI in medical
imaging extracts intricate patterns from large datasets and can
improve informed predictions. The convolution operation, a
cornerstone of many neural networks, employs diverse kernels to
transform raw data into meaningful representations, enabling
neural networks to learn from and make predictions on complex
datasets. Deep learning, a powerful subfield of Al, utilizes many
interconnected layers that transform information, enabling more
sophisticated information processing. Deep learning’s ability to
automatically learn features and representations from data stands
out as a key strength, eliminating the need for explicit feature
engineering by human experts. This capability makes deep learning
particularly well-suited for various clinical tasks. For instance, deep
learning algorithms can accurately detect and localize objects within
images, enabling the identification of anatomical structures or
abnormalities in medical scans. Other models can be trained to
precisely segment objects in images, allowing for the delineation of
organs and lesions. Segmented organs or lesions can be effectively
classified into distinct categories, aiding in disease diagnosis and
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FIGURE 1

(A, B) 64 y/o M with history of cirrhosis and HCC.Contrast-enhanced T1-weighted MRI shows a heterogeneous tumor (A) with associated texture
heterogeneity map demonstrating tumor habitats (B). The patient had poor outcome with several recurrent lesions after surgical resection
suggestive of poor tumor biology. (C, D) 54 y/o F with history of cirrhosis and HCC. Contrast-enhanced T1-weighted MRI shows a less
heterogeneous tumor (C) with associated texture heterogeneity map showing the tumor habitats (D). The patient good outome after resection with

no recurrence

treatment monitoring. Radiomics can be used to identify the origin
of segmented lesions. The integration of radiomics with deep
learning has emerged as a promising strategy for enhancing
classification performance in medical imaging. Deep learning
algorithms possess the ability to complement radiomic features
with kernel-based features and then extract patterns from the high-
dimensional imaging data. This synergistic combination has yielded
noticeable advancements in classification accuracy for a wide range
of medical imaging tasks.

While Al-based approaches offer a diverse toolbox for image
analysis, both radiomics and deep learning share a similar workflow
including collection and standardization of imaging data, image pre-
processing, and segmentation of relevant regions depending on the
task. In liver disease analysis, this involves whole liver segmentation,
segmentation of various structures like lesions, gallbladder, bile ducts,
and vascular components. The whole liver segmentation allows for
evaluation of liver morphology, liver surface, and parenchymal changes
such as fibrosis and cirrhosis. Segmentation and detailed analysis of
individual lesions, including their count, size, heterogeneity, necrosis,
and vascular involvement, can provide valuable insights for staging,
treatment planning, and prognosis (Figure 2).

Frontiers in Oncology

Segmentation

Segmentation of the liver or its vasculature through CT
and MRI has importance in diagnosing lesions, planning
radiotherapy, conducting liver vascular surgeries, preparing for
liver transplantation, and analyzing tumor vascularization, among
other applications. The process of manual segmentation is both
time-consuming and susceptible to human errors. Several
researchers have explored the use of deep learning models to
automate this process, aiming to overcome these limitations.
Segmentation studies exhibit remarkable specificity in liver
imaging, compared to other fields. The mainstream segmentation
technology at present is U-Net, a convolutional neural network
(CNN), and its derivatives. The segmentation accuracy for the
entire liver, as assessed on the SLIVER07 dataset, is exceptionally
high, achieving a maximum Dice Similarity Coefficient (DSC; which
is a metric of accuracy of the method) of 0.9827 (7).

Said et al. employed CNNs for HCC segmentation in MRI,
achieving fair to good performance, notably excelling in single-slice
segmentation with mean DSC ranging from 0.442 to 0.778 in 292
patients (8). Another study focused on automating colorectal liver
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The work flow of radiomics and Al

metastasis and liver ablation zone segmentation on CT, with the
Hybrid-WNet model demonstrating high accuracy. Trained on 92
patients, the model achieved a median DSC of 0.73 (9).
Additionally, a feasibility study utilized a deep convolutional
neural network (DCNN) to automate the application of LI-RADS
(Liver Imaging Reporting and data System) algorithm on
multiphasic MRI, showcasing efficient liver and HCC
segmentation. The average DSC for automatically identified
lesions using the DCNN+ random forest classifier employing
radiomic features and thresholding was 0.64 in the validation set
and 0.68 in the test set (10). One paper presented an automatic
algorithm for rapid and accurate liver and lesion segmentation in
CT scans. Achieving a 94.2% volume overlap and 3.7 mm accuracy
for liver surface segmentation, the method demonstrated a short
processing time of 11.4 seconds per slice. Tumor lesion detection
showed 82.6% sensitivity and 87.5% specificity (11). A separate
study used a deep-learning model for HCC segmentation and
classification using gadoxetic acid-enhanced MRI. The 3D U-Net-
based model achieved high performance (average DSC of 0.884) for
HCC segmentation (12). Lastly, a dual-energy CT radiomics pilot
study successfully differentiated between benign and malignant
hepatic lesions, outperforming iodine quantification. This
involved semiautomatic segmentation of both the volume and rim
of individual liver lesions, along with extracting contrast
enhancement, iodine concentrations, and radiomic features from
each image (13).

Deep learning models can perform HCC segmentation with a
high accuracy. This has multiple clinical applications. These models
can handle a huge amount of data with the same accuracy, meaning
that missing manual steps, fatigue, or data overload won’t affect
the findings. Computer-based processing is affordable and
readily availability.

Early detection and accurate
tumor classification

Identifying liver cancers in their early stages, when they are
localized and amenable to curative treatment, is the ultimate goal.
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Ideally, the cancer should be diagnosed when patient is
asymptomatic as the emergence of symptoms often signifies late-
stage, incurable disease in many cases. Moreover, early small
tumors should be characterized correctly to allow for correct
treatment since different tumor pathologies have distinct course
and different treatment approaches. Unfortunately, primary liver
cancers may have nonspecific imaging features in their early stages
due to their smaller size. Equally significant is the early
identification of liver metastases, highlighting the importance
timely and precise detection. At the same time addressing and
preventing false positives, overdetection, overdiagnosis, and
overtreatment is essential (14). As an example, combined HCC
and cholangiocarcinoma (CC) originates from hepatic progenitor
cells and can display both hepatocytic and cholangiocytic
differentiation (15, 16). HCC the most common hepatic
malignancy is histologically derived from the hepatocytes and CC
the second most common hepatic malignancy is derived from the
biliary epithelial cells. Studies have demonstrated that the clinical
features and prognosis of combined HCC-CC markedly differ from
those of intrahepatic CC (IHCC) and HCC (17, 18). Hence, it holds
significant clinical implications to differentiate these tumors
preoperatively accurately.

Radiomics integrated with machine learning algorithms has
promising role in distinguishing diverse focal hepatic lesions. The
features extracted may allow for noninvasive diagnosis and
characterization of liver malignancies and provide vital details
such as microvascular invasion within tumors. AI has also been
extensively employed for classifying different liver lesions. CNNs
specifically designed for image recognition tasks have attracted
considerable attention for liver cancer diagnosis.

Numerous large scale studies utilizing CT or MR imaging have
employed radiomics to distinguish various liver lesions, yielding
areas under ROC curves (AUC) ranging from 0.7 to 0.95 (19-29).
These investigations demonstrated robust performance not only on
the training set but also on testing and validation sets. The scope of
these studies encompassed a wide range of classification tasks and
discriminating lesions, including HCC, hemangioma, cysts,
adenoma, hepatic focal nodular hyperplasia, CC, combined HCC-
CC, inflammatory masses, and metastasis. Clinical variables were
integrated into certain models to enhance their performance (19-
29). A multitude of AI studies has endeavored to predict liver
malignancies, focusing on diverse aspects such as detecting HCC
(30-32), classifying major features of LI-RADS (12, 33, 34), and
discerning classic HCC form other malignant and nonmalignant
liver lesions. AUC values in either the training or validation sets
varied from 0.6 to 0.942 (12, 30-34).

Presence of microvascular invasion (MVI) is identified as an
independent risk factor for the postoperative recurrence of HCC
(35). The definitive assessment for MVI is based on histologic
examination of surgical specimen, which is only available after
resection of tumor. As a result, assessing the MVI status before
surgery will play a crucial role in guiding decisions regarding the
optimal extent of surgical resection or ablation treatment for
individuals with HCC. Several studies using AI or radiomic
features extracted from gadoxetic acid-enhanced MRI, dynamic
contrast enhanced MR, or contrast enhanced CT images tried to
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predict microvascular invasion in HCC and mass-forming CC (36).
The AUCs ranged from 0.75 to 0.98 with most of the studies
achieving AUCs higher than 0.85 (36-47). Notably, studies focused
on peritumoral areas within the 5 cm to 10 cm range. One study
underscored that patients without MVI experienced significantly
prolonged recurrence-free survival (RFS). Validation sets were
incorporated in all studies (36-47). As mentioned above,
accurately predicting MVI before surgery can significantly
influence surgical planning, including decisions regarding the
extent of resection or the suitability of ablation treatments. Such
high AUCs and predictive capabilities mean that presence of MVI
can be successfully determined with AI and radiomics prior to
surgery allowing for a more personalized surgical approach,
potentially improving postoperative outcomes and recurrence-free
survival for patients with HCC.

Grading, association with molecular
profile, immunophenotype, etc.

HCC histopathological grading has been identified to be closely
associated with the prognosis of the tumor, serving as an indicator
of the tumor’s biological behavior. Extensive research indicates that
both progression-free survival and overall survival are notably lower
in poorly differentiated HCC compared to well-differentiated HCC.
Certain subtypes of HCCs, such as macrotrabecular-massive
subtype, are also correlated with worse prognosis. Pre-operative
knowledge of tumor grading affects treatment plan and surgical
approach, when surgery is indicated. For example, the
recommendation is to opt for an extended resection margin when
conducting liver surgery for poorly differentiated HCC to
minimized the risk of early recurrence. Some data suggest
recommendation against liver transplantation for patients with
HCC that is both poorly differentiated and exceeds 3 cm in size.
Preoperative knowledge of tumor grading is classically achieved by
histologic examination of biopsy specimen. Biopsy however is an
invasive procedure and is not feasible in all patients (due to patient’s
factors and location/size of the tumor). Additionally, given the high
success of imaging-based criteria for noninvasive diagnosis of HCC
(such as LI-RADS criteria), biopsy is not routinely performed in
this population.

Several radiomics models utilizing gadoxetic acid-enhanced
MRI, some augmented by Al, have aimed for HCC subtyping and
grading to overcome these issues. They have achieved AUCs
ranging from 0.6 to 0.912 (48-53). Notably, lower grades were
correlated with longer progression-free survival in one cohort.
Additionally, the radiomics model demonstrated associations with
dysregulated humoral immunity, encompassing B-cell infiltration
and immunoglobulin synthesis, offering valuable insights into the
immune microenvironment of HCC (48-53).

Comprehensive knowledge of the molecular profile and
immunophenotype of liver cancers is also relevant for advancing
precision oncology. The tumor microenvironment and immune
status are integral factors influencing the success of immunotherapies
and locoregional treatments in HCC (54). Gene expression analysis has
revealed distinct immune classes among HCC patients and immune
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profiling of HCC can predict response to immunotherapy (55).
Preliminary works have indicated the potential of radiomics
quantification in immune profiling for HCC. Notably, these works
studied expression of vascular endothelial growth factor (VEGF) (56),
angiopoietin-2 (57), Forkhead Box M1 (FOXM1) (58), and Ki-67 (59,
60). Additionally, the presence of [-catenin mutation (61), intra-
tumoral tertiary lymphoid structures (62), cytokeratin 19 (63, 64),
glypican-3 (GPC3) (65), immunohistochemical cell type markers for T-
cells (CD3), macrophages (CD68) and endothelial cells (CD31), PD1
and CTLA4 at mRNA expression level (66), as well as density of CD3+
and CD8+ T cells (67) were studied. All the aforementioned molecules
have relevant task in carcinogenesis. VEGF and Angiopoietin-2
regulate tumor growth by influencing angiogenesis. FOXM1 governs
cell cycle genes, Ki-67 marks proliferation, and 3-Catenin mutation
leads to uncontrolled cell growth. Intra-tumoral Tertiary Lymphoid
Structures impact the anti-tumor immune response. Cytokeratin 19
maintains cell structure, while GPC3 serves as a tumor diagnostic
marker. Immune cell markers like CD3, CD68, and CD31 reveal cell
distribution and density, reflecting the local immune response. PD1
and CTLA4 mRNA levels influence responses to checkpoint inhibitors.
Each of these immune subtypes plays a critical role in unraveling the
complex immune response within HCC, providing insights for
prognostication and targeted therapeutic interventions. AUCs of
these tasks fell somewhere between 0.76 to 0.95 (56-67). Notably,
when clinical factors were integrated with radiomics signatures,
models’ performance significantly improved. In the MRI studies, the
hepatobiliary phase consistently demonstrated the best performance.

While deep learning models haven’t been as widely applied as
radiomics for this particular task, they undoubtedly hold significant
potential. Xie et al. introduced a non-invasive method for predicting
PD-1 and PD-L1 expression in HCC. Using a cohort of 87 HCC
patients and analyzing 3094 CT images, the Contrastive Learning
Network (CLNet) was proposed. Trained with self-supervised
contrastive learning, CLNet achieved superior performance,
demonstrated an AUC of 86.6 for PD-1 expression and 83.9 for
PD-LI expression (68) (Table 1).

High AUC values in both radiomics and deep learning
tasks indicate strong predictive performance, meaning these
models are highly effective in identifying molecular profiles,
immunophenotypes and grades of HCC.

Assessment of tumor response

Several locoregional therapeutic strategies have been developed
and implemented over past decades, and a considerable number
of these are currently considered as the standard of care for
liver malignancies (69). These involve a range of percutaneous and
trans-arterial methods designed to induce cell death in tumors. This
can be achieved through percutaneous approach, as seen in
radiofrequency and microwave ablation, or achieved via targeted
trans-catheter trans-arterial administration of embolic agents (known
as trans-arterial bland embolization, TAE), chemotherapeutic
substances (referred to as trans-arterial chemoembolization,
TACE), or radioembolizing agents (as in trans-arterial Yttrium-90
radioembolization, TARE) (70). While typically less invasive
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compared to surgical removal and transplantation, these therapies
can lead to complications. Hence, careful patient selection and
thorough evaluation of treatment response are crucial clinical
considerations. Evaluating the response to treatment following
TARE and external beam radiation, particularly in the initial
months post-treatment, poses challenges due to the intrinsic
characteristics and timeline of cytotoxic effects induced by
radiation. Sustained enhancement in the arterial phase and
subsequent washout can be observed in treated lesions for several
months following the treatment, even though a complete response is
ultimately achieved (71). Considering these limitations, it is essential
to explore alternative approaches for evaluating treatment response.
Numerous studies have explored the potential of utilizing
radiomic features extracted from post-treatment CT and MRI in
assessing the treatment response of HCC (72-79). There are limited
studies on other liver tumors (80, 81). Radiomics features were

10.3389/fonc.2024.1362737

extracted from diverse imaging modalities, including MRI and CT
scans, and involved different treatment methods. In some studies key
clinical information, such as albumin levels, AFP levels, and Child-
Pugh score were integrated into predictive models to enhance
accuracy. The studies anticipated diverse outcomes encompassing
early response, early recurrence, aggressive intrasegmental
recurrence, tumor refractoriness, and local tumor progression
across varied locoregional strategies. The AUC values of these
studies ranged from 0.8 to 0.95 (72-81). These studies collectively
underscore the potential of radiomics in tailoring treatment strategies
and prognostic assessments for liver cancer patients, providing a non-
invasive means to predict outcomes and guide personalized
interventions based on comprehensive imaging analyses and
relevant clinical parameters.

The utilization of deep learning to evaluate locoregional
therapeutic responses in HCC is relatively limited in the current

TABLE 1 Summary of HCC grading, molecular profiling, and immunophenotyping.

: : o A o
Author  Marker Subjects = Modality Model Accuracy training t;iil;rgcy Accuracy validation
Chen Immunoscore 207 HCC MRI Radiomics/ AUG, accuracy, sensitivity, NA AUGC, accuracy, sensitivity,
ML specificity = 0.904, 0.787, specificity = 0.899, 0.772, 92.3%,
93.8%, 74.6% 72.7%
combined- AUC = 0.926 combined- AUC = 0.934
Chen FOXMI expression = 286 HCC CT Radiomics/ AUC =0918 AUC = 0.837 NA
ML
Fan VEGEF expression 202 HCC MRI Radiomics/ AUC = 0.892 AUC: 0.8/ NA
ML combined- AUC = 0.936 combined-
AUC = 0.836
Hectors Immunoprofiling 48 HCC MRI Radiomics/ Tumor size 25 cm - HCC NA NA
and genomics ML recurrence (OR =3.01,
p=0.004, AUC =0.76).
Li Intra-tumoral 142 HCC CT Radiomics/ AUC =0.79 NA AUC = 0.75
tertiary ML
lymphoid
structures
Wang cytokeratin 227 HCC MRI Radiomics/ AUC = 0.892 NA AUC =073
19 expression ML combined- AUC, sensitivity, combined- AUG, sensitivity,
specificity, C-index = 0.951, 0.818, specificity, C-index = 0.822, 0.769,
0.974, 0.959 0.818, 0.846
Wu Ki-67 expression 172 HCC CT Radiomics/ AUC = 0.854 NA AUC: 0.744
ML combined- AUC = 0.884 combined- AUC = 0.819
Yan Ki67 expression 110 HCC MRI Radiomics/ AUC = 0.833 NA AUC: 0.772
ML combined- AUC = 0.901 combined- AUC = 0.781
Zeng [B-catenin mutation 98 HCC MRI Radiomics/ AUG, accuracy, sensitivity, NA AUC, accuracy, sensitivity,
ML specificity = 0.86, 0.75, 1.0, 0.65 specificity = 0.82, 0.73, 0.67, 0.76
combined- AUC = 0.86 combined- AUC = 0.76
Zhang cytokeratin 311 HCC MRI Radiomics/ C-index, 0.914 C-index, 0.855 C-index, 0.795
19 expression ML
Zhang glypican- 137 HCC MRI Radiomics/ AUG, sensitivity, specificity = NA combined- AUC, sensitivity,
3 expression ML 0.822, 0.816, 0.706 specificity = 0.800, 0.58.5, 1.0
combined- AUC, sensitivity,
specificity = 0.888, 0.777, 0.912
Zheng angiopoietin- 52 HCC MRI Radiomics/ AUC =038 NA NA
2 expression ML combined- AUC = 0.933
Xie PD-1 and PD- 87 HCC CT AI-DL AUC = 0.866 for PD-1 expression NA NA
L1 expression AUC = 0.839 for PD-
L1 expression
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body of research, yet, it’s important to note that the studies
presented are novel, and there’s considerable unexploited
potential in this evolving field. Three studies employed deep
learning to explore the response of TACE in HCC (82-84). In a
study involving 414 patients, hazard ratios for time to progression
(TTP) were 0.32 (training), 0.28 (validation), and 0.55 (test). The
research also indicated improved overall survival (OS) with a
hazard ratio of 0.58 and a median survival of 38.8 months,
compared to 20.9 months (82). Another investigation with 789
patients achieved an 84.3% accuracy, showing AUCs of 0.97, 0.96,
0.95, and 0.96 for complete response (CR), partial response (PR),
stable disease (SD), and progressive disease (PD), respectively. The
deep learning model displayed accuracies of 85.1% and 82.8%
across CR, PR, SD, and PD in two validation sets (83). The deep
learning signature showed strong predictive performance, with a C-
index of 0.717 in the training set and 0.714 in the validation set (84).

One study developed an automatic and non-invasive deep
learning radiomic nomogram (DLRN) to predict hepatic arterial
infusion chemotherapy response in HCC. Utilizing contrast-
enhanced CT images from 458 patients across three hospitals, the
DLRN achieved high AUC values of 0.988 (training), 0.915 (internal
validation), and 0.896 (external validation), outperforming other
models. The DLRN also successfully stratified survival risk, with the
predictive objective response group exhibiting significantly longer
overall survival (26.0 vs. 12.3 months) (85).

The ability of AI and radiomics to predict early treatment
response and recurrence can improve the management of liver
cancer. By identifying patients at risk of aggressive recurrence or
poor response to treatment early on, clinicians can adjust
therapeutic strategies promptly have shown that these methods
have consistently high accuracies.

Prognostication

The prognosis of HCC continues to be unfavorable, even
following curative-intent treatments like liver resection or
transplantation. After liver resection, the early recurrence rate
stands at 50-70%, while following a median post-transplant
period of 13-14 months, the rate is 10-20% (86, 87).

By analyzing detailed features from medical images, radiomics
helps predict recurrence, understand tumor growth, and estimate
progression-free survival. When combined with essential clinical
details, radiomics can become a powerful tool for predicting
aggressive disease and customizing treatments. This approach
offers a non-invasive, precise way to enhance prognostic
assessments, bringing a new level of accuracy to liver cancer care.

Multiple studies - including ten studies on HCC (88-97), four
studies on Mass-forming CC (98-101), and three studies on
colorectal liver metastases (102-104)- utilized various radiomics
approaches to predict outcomes and guide treatment decisions. The
studies involved diverse cohorts, including patients undergoing
liver transplantation, surgical resection, or chemotherapy. The
endpoint outcomes ranged from overall survival (OS), recurrence
free survival (RES), progression-free survival (PES), event-free
survival (EFS), early recurrence (ER), 1-year survival and 5-year
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survival, post-hepatectomy liver failure (PHLF), and lymph node
metastasis. The AUCs for predictive models varied, ranging
between 0.70 to 0.98 (88-104). Moreover, the integration of
radiomics with clinical factors consistently improved predictive
performance, demonstrating the potential for personalized risk
assessment. Notably, radiomics models were applied to predict
survival in various contexts, offering valuable insights for
prognosis and treatment planning in HCC and other liver cancers.

Radiomics analysis and the integration of CNNs with CT and
MRI images and clinical data have been developed to predict the
prognosis of HCC patients. Machine learning and CNNs have
exhibited a good accuracy in predicting patient survival following
surgical treatment. In a bicentric study, a deep learning nomogram
based on gadoxetic acid MRI features was developed to predict early
recurrence in 285 HCC patients post-hepatectomy. Extracting deep
learning features using VGGNet-19 from contrast-enhanced MRI
images, the deep learning nomogram, incorporating multiphase
deep learning signatures, performed well on both the training
(AUC: 0.949) and validation sets (AUC: 0.909). Independent
predictors for early recurrence included microvascular invasion,
tumor number, and the deep learning signature (105). Lv et al.
introduced an AI -powered approach for predicting the 3-year
recurrence of HCC using contrast-enhanced CT radiomic profiles.
In a single-center retrospective cohort of 224 HCC patients,
radiomic signatures from arterial and portal venous phases were
utilized to establish three models: radiological model (RM), deep
learning-based radiomics model (DLRM), and clinical & deep
learning-based radiomics model (CDLRM). CDLRM,
incorporating clinical factors and DLR features, demonstrated
superior accuracy (AUC: 0.98 in training, 0.83 in testing)
compared to DLRM and RM (106). In a proof-of-concept study
for HCC patients initially eligible for liver transplant, machine
learning models were developed using pretreatment clinical and
MRI features to predict posttreatment recurrence. The study
included 120 patients, and three machine learning models
(clinical, imaging, combined) predicted recurrence with AUCs
ranging from 0.60 to 0.86 across six timeframes. The imaging
model outperformed the clinical model (mean AUC 0.76 vs. 0.68,
p = 0.03). Kaplan-Meier analysis demonstrated significant
differences in recurrence risk prediction between low and high-
risk groups for all three models (107). A retrospective study,
involving 55 patients with stage 4 colon cancer and hepatic
metastasis, explored the role of MRI-based measures of intra-
tumor heterogeneity in predicting survival. Extracting a
heterogeneity phenotype vector from 94 hepatic lesions, the study
identified 22 texture features associated with patient survival. A
random forest machine learning model, combining clinical
variables with imaging-based features, improved survival
prediction performance, yielding an area under the ROC curve of
0.94 compared to 0.83 with clinical variables alone (108).

By analyzing the complex patterns within imaging data, these
approaches allow for a deeper understanding of tumor biology and
patient-specific disease progression. The predictive capability of
radiomics and AI models, as evidenced by their high accuracy in
various studies, emphasizes the need for ongoing research to further
validate and integrate these technologies into clinical practice.
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Pitfalls and technical limitations

Despite the promising results in radiomics research for liver
cancers, a notable gap persists between numerous numerical data
generated and their practical clinical application. These studies
provide a myriad of quantitative metrics and predictive models,
showcasing radiomics’ potential in augmenting diagnostic and
prognostic evaluations. However, translation of these findings
into routine clinical practice remains uncertain. Challenges,
including protocol variability and interobserver discrepancies,
present significant obstacles in bridging the research-clinical gap.
Noteworthy is the absence of clear guidelines on the integration of
radiomic data into the real-world clinical decision-making. The
intrinsic heterogeneity of liver tumors and the dynamic nature of
cancer progression amplify the intricacies of developing robust and
generalizable radiomic models. Additionally, challenges related to
overfitting, model validation, and potential false correlations in
high-dimensional data emphasize the need for rigorous
methodology standardization. These technical challenges
collectively underscore the substantial work required before
radiomics can claim its role as a dependable and clinically
impactful tool in liver cancer management.

While machine learning has shown remarkable promise in the
radiologic assessment of primary and metastatic liver malignancies,
it is not without its pitfalls. One significant challenge lies in the
quality and quantity of training data. The performance of machine
learning models heavily relies on the availability of diverse and
representative datasets, and issues such as imbalances, biases, or
insufficient samples can lead to suboptimal generalization and
performance. Additionally, the interpretability of machine
learning models in radiology remains a concern. The “black-box”
nature of some sophisticated algorithms makes it challenging for
clinicians to understand the rationale behind specific predictions,
limiting their trust and acceptance. Another notable pitfall is the
potential for overfitting, where a model may perform exceptionally
well on the training data but fails to generalize effectively to new,
unseen cases. Moreover, the dynamic nature of medical imaging
and evolving standards in radiologic practices pose challenges in
keeping machine learning models up-to-date and adaptable to
changes in the field. Addressing these pitfalls is crucial to harness
the full potential of machine learning in improving the accuracy and
efficiency of radiologic assessments for liver malignancies.

Future direction

It’s important to acknowledge the gap between research
advancements in radiomics and AI and their clinical
implementation. This gap mainly exists because the low external
validity of these technologies limits their adoption in routine clinical
practice. The primary challenge for clinical translation is ensuring
the generalizability of AI and radiomics models. There is a need for
further clarification of true role of radiomics and machine learning
tools in clinical applications. This involves external validation of
machine learning models and the assessment of diagnostic
performance for specific diseases using deep learning radiomics.
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External validation, particularly through large multi-institutional
datasets gathered over a longer period, is essential to confirm the
models’ generalizability. To enhance the clinical translation and
applicability of radiomics studies, it is also crucial to address
important issues such as access, cost-effectiveness analysis, and
the promotion of open data practices. Generally, achieving
sufficient clinical performance in training a CNN necessitates a
large amount of training data. In the development of AI imaging
models, the cost of annotation is a significant concern, and the
future is expected to see a focus on acquiring substantial amounts of
high-quality training data while simultaneously minimizing
annotation costs. The ultimate goal is to leverage AI and
radiomics in clinic for the precise classification and detection of
liver tumors and to enable personalized treatment by accurately
predicting treatment responses.

Conclusion

In this review we identified several potentials of AI and
radiomics in clinical decision-making in liver oncology imaging,
including improving the precision of tumor detection,
characterization and classification, enabling the prediction of
treatment response, identifying patient-specific prognostic
indicators for personalized therapy, and possibly reducing the
reliance on invasive procedures like biopsies by non-invasively
determining tumor genetics, immune phenotype and behavior.
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Deep learning driven diagnosis
of malignant soft tissue tumors
based on dual-modal ultrasound
images and clinical indexes
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Chenyang Zhao®, Yun Tian?, Lu Xie', Wangjie Wu*, Qi Yang®,

Li Liu*, Desheng Sun®, Li Qiu®, Linlin Shen®* and Yusen Zhang™
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Engineering, Shenzhen University, Shenzhen, Guangdong, China, *National Engineering Laboratory for

Big Data System Computing Technology, Shenzhen University, Shenzhen, China, *West China
Hospital, Sichuan University, Chengdu, Sichuan, China

Background: Soft tissue tumors (STTs) are benign or malignant superficial
neoplasms arising from soft tissues throughout the body with versatile
pathological types. Although Ultrasonography (US) is one of the most common
imaging tools to diagnose malignant STTs, it still has several drawbacks in STT
diagnosis that need improving.

Objectives: The study aims to establish this deep learning (DL) driven Artificial
intelligence (Al) system for predicting malignant STTs based on US images and
clinical indexes of the patients.

Methods: We retrospectively enrolled 271 malignant and 462 benign masses to
build the Al system using 5-fold validation. A prospective dataset of 44 malignant
masses and 101 benign masses was used to validate the accuracy of system. A
multi-data fusion convolutional neural network, named ultrasound clinical soft
tissue tumor net (UC-STTNet), was developed to combine gray scale and color
Doppler US images and clinic features for malignant STTs diagnosis. Six
radiologists (R1-R6) with three experience levels were invited for reader study.

Results: The Al system achieved an area under receiver operating curve (AUC)
value of 0.89 in the retrospective dataset. The diagnostic performance of the Al
system was higher than that of one of the senior radiologists (AUC of Al vs R2:
0.89 vs. 0.84, p=0.022) and all of the intermediate and junior radiologists (AUC of
Al vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; p <0.01). The Al system also
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achieved an AUC of 0.85 in the prospective dataset. With the assistance of the
system, the diagnostic performances and inter-observer agreement of the
radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63

to 0.69; p<0.01).

Conclusion: The Al system could be a useful tool in diagnosing malignant STTs,
and could also help radiologists improve diagnostic performance.

KEYWORDS

deep learning, artificial intelligence, ultrasound, soft tissue tumor, malignant tumor

Highlights

¢ The deep-learning driven system has a high accuracy in
diagnosing malignant soft tissue tumors.

* The deep-learning system showed superior performance
than junior radiologists.

* The system is a useful tool for radiologists in discerning

malignant soft tissue tumors.

Introduction

Soft tissue tumors (STTs) are a group of superficial neoplasms
with heterogeneous clinical manifestations and diverse pathological
types. The ratio of benign to malignant is close to 100:1 (1). Soft
tissue sarcomas are the most common malignant STTs, accounting
for only 1% of all adult cancers (2). Despite the rarity of malignant
STTs compared with other malignant entities, their hazards cannot
be ignored due to the substantial mortality and morbidity (3, 4). The
overall five-year survival rate of malignant STTs is about 50% (1).
They also present high metastasis and postoperative recurrence
rates, up to 39% for soft tissue sarcomas (5). Soft tissue sarcoma is
one of the leading causes of death for young adults, particularly for
certain subtypes (6). As a result, accurate diagnosis and timely
treatment for malignant STTs is crucial to improve the prognosis of
the patients. However, as STTs substantially vary in clinical
manifestations, morphological changes, and biological behaviors,
it is difficult to make precise classification of malignant STTs, which
might lead to delayed diagnosis. It is reported that the diagnosis of
soft tissue sarcoma was usually delayed for up to 94.6 weeks (7),
which might cause disastrous consequences on patients” outcome,
such as a shorter survival time (8, 9).

Ultrasonography (US) is considered to be the first-line imaging
method for STTs, due to its fast speed, high resolution, lower cost,

Abbreviations: deep learning (DL), ultrasonography (US), soft tissue tumors
(STTs), ultrasound clinical soft tissue tumor net (UC-STTNet).
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availability, dynamic observation, and no contraindications (2).
Gray-scale US can map the locations and morphological changes
of STTs, including size, margin, shape, and internal components.
The mobility, compressibility, and its anatomical associations with
adjacent structures can also be confirmed by dynamic US. Color
Doppler US can further display the distribution of intra-tumoral
and peri-tumoral blood vessels (10-14). However, US presented an
unstable and relatively low diagnostic performance for classifying
benign and malignant STTs. The reported accuracy rate of US
varied among studies, ranging from 69% to 93% (10-12, 15, 16).
And most of the previous studies only involved a small number of
cases for evaluation, compromising their reliability. Meanwhile,
conventional US is characterized by high operator-dependence and
relatively low inter-observer agreement, which also degrade its
performance in classifying malignant STTs. How to improve the
diagnosis accuracy of US for malignant STTs, at the same time
decrease operator dependence, is a very important research topic.

Advanced techniques like Artificial intelligence (AI), especially
deep learning (DL) algorithms, possess an excellent ability in image
recognition tasks. DL is emerging as a promising tool to resolve
various radiology tasks using US images, including screening breast
cancer (17, 18), classifying thyroid nodules (19-21), diagnosing
liver diseases (22-24), and assessing musculoskeletal abnormality
(25). Apart from showing good diagnostic performances in some
diseases, DL can also assist radiologists in enhancing their accuracy
and reliability in reading US images (26). Currently, Al-based
malignant STTs diagnosis based on US images is still in the initial
stage (27-29). These studies applied non-DL methods to develop
assistant tools for malignant STTs diagnosis, with limited enrolled
STTs cases. And clinical indexes were not fully utilized for the
model construction in the previous studies.

To overcome the barrier of US diagnosis of malignant STT's, we
established this DL-driven AI system, named ultrasound clinical
soft tissue tumor net (UC-STTNet), for predicting STTs based on
US images and clinical indexes of the patients. First, one of the
highlights of the study is the application of two modalities of US
imaging, gray-scale US and color-Doppler US, in model
construction, which could provide more morphological
information of STTs masses. And basic clinical indexes were also
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incorporated in the system for a more comprehensive diagnosis of
the tumors. Also, we used 5-fold cross validation method in the
model building based on a large database. The Al system could also
provide heatmaps of US images illustrating the features relevant to
model predictions for radiologists to make diagnosis. The Al system
could successfully improve the performances and stability of the
radiologists in classifying malignant STTs. To the best of our
knowledge, our work is the first one applying DL technology for
US diagnosis of malignant STTs.

Materials and methods
Ethical approval

The study was designed as a retrospective study and approved
by the ethics committee of Peking University Shenzhen Hospital
(Approval number: 202200901). The informed content was not
waived since the retrospective study was observational and did not
involve any interventional procedures. And all the information of
the patients is anonymized throughout the study. The ethics
committee approved the omission of informed content.

Study participants enrollment

In this work we employed five-fold cross validation for network
evaluation. Among 5 folds, 4 and 1 folds were employed for training
and testing, respectively. To build the training and testing dataset,
we retrospectively reviewed the clinical and imaging data of the
patients with STTs from July 2013 to December 2021. The patients
with dual-modal US images and pathological results from surgical
resections or biopsies were enrolled. To further evaluate the
performance of the AI system, we collected a prospective testing
dataset from April 2022 to September 2022 in our hospital. Tumors
that occurred in superficial organs, including thyroid gland, breast,
salivary gland, and lymph nodes, were excluded in both of the
retrospective and prospective workflows.

US imaging and clinical data collection

All US images were derived from US imaging database at Peking
University Shenzhen Hospital. The US examinations were performed
by radiologists with over five-year experiences of US using
commercial US equipment with 5-15MHz probes. Two
representative pictures of each patient, one gray scale image
showing the largest section of tumor and one color Doppler flow
image with the most abundant blood vessels, were selected for model
building. The US images of STT's were reviewed and selected from the
patients by two radiologists with five-year experiences in US together
for image quality control. When disagreement occurred between the
two radiologists, they would refer to a third radiologist with over 10-
year experiences for the final decision. Two clinicians collected the
clinical data for the enrolled patients, including sex, age, duration,
locations, layer, the maximum and minimum diameter of lesions,
depth from skin, history of malignancy, and surgical history.
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DL architecture development

We designed a multi-data fusion convolutional neural network,
named as UC-STTNet, to combine gray scale and color Doppler US
images and clinic features for malignant STTs diagnosis. Detailed
descriptions about UC-STTNet are shown in Supplementary materials
(Supplementary 1; Supplementary Figure 1; Supplementary Table 1).

The image feature extraction consisted of a tumor area
enhancement block and a tumor feature extraction block. The
tumor area enhancement block was an encoder-decoder network,
which employed ResNetl8 as backbone and with five down- and
up-sample layers. The encoder was employed to extract the region
of interest (ROI) feature of STTs, and the decoder was used to
generate a ROI feature map which represented the possibility of
tumor area (abbr. ROI-map).

The clinical data was directly digitized as a feature vector, which
was then processed by a multi-layer perceptron and directly input
into the multi-data fusion block. The multi-data fusion block
consisted of feature concatenation and attention mechanism. The
segmentation and tumor area features were concatenated together,
and then the combined features were input into an attention block.

Global average pooling was used to align the image features to
linear space and then concatenated with the features of clinic data to
generate a multi-data fusion feature for the final STTs classification.
Gradient-weighted Class Activation Mapping (Grad-CAM) was
adopted in the classification tasks on deep learning to explain the
performance of the proposed UC-STTNet. And we used a weighted
combination for the forward activation map and activated the result
by Rectified Linear Activation function (ReLU) to get the
visualization heatmap.

Reader study and Al-assisted reader study

Six radiologists with three experience levels were invited to
review the dual-modal US images and clinical manifestations
independently and make diagnosis. The six radiologists
participated the reader study included two senior radiologists
with 21 and 24 years of experience (R1 and R2), two intermediate
radiologists with 10 and 12 years of experience (R3 and R4), and
two junior radiologists with 4 and 7 years of experience (R5 and
R6). The radiologists were blind to the pathologic results of the
tumors. One month after the original reader study, the same STT's
cases were re-presented to the six radiologists for a second
diagnosis, along with the Al-predicted results and heatmaps as
reference. The radiologists were blind to their first-time results and
pathological results of the tumors.

Statistical analysis

The 5-fold cross validation was used for model training and
testing. The split was randomly repeated for five times and the
average performances were recorded. The receiver operating curve
(ROC), area under ROC curve (AUC), accuracy, sensitivity,
specificity, positive predictive value (PPV) and negative predictive
value (NPV) with 95% confidence interval (CI) were used to evaluate
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the diagnostic performance of the model, the radiologists, and the
radiologists with Al assistance. AUC values of the same dataset and
different datasets were compared to use the methods reported by
DeLong et al (30) and Hanley and McNeil (31), respectively. We
further calculated the intra-class correlation (ICC) with 95% CI to
evaluate the inter-observer variability of the six radiologists before
and after the assistance of AI results. P < 0.05 was considered as
statistically significant. The statistical analyses were performed by
using Medcalc (Version 20.0, MedCalc Software Ltd, Belgium).

Results

In this study, we developed and presented UC-STTNet, an Al
system based on a deep-learning architecture for malignant STTs
diagnosis. The study flow of the construction and validation of UC-
STTNet is shown in Figure 1.

From July 2013 to December 2021, a total of 15120 adult
patients with STTs were received from pathology data, which
came from core biopsy or surgery. There were 546 patients with
malignancy and 14574 patients with benign. Finally, 733 masses of
693 patients, including 271 malignant masses of 231 patients and
462 benign masses of 462 patients, were enrolled in this study to
build the model. For the prospective validation of the model, we
recruited 145 masses of 145 patients, including 44 malignant masses
of 44 patients and 101 benign masses of 101 patients from April
2022 to September 2022. The workflow of the retrospective and
prospective patient recruitment is shown in Figure 2.

Clinical data and pathological results

The clinical features and pathological results of the
retrospectively enrolled and prospectively enrolled STTs were

Retrospective study of model
construction and reader study

Patients with STTs in Peking University Shenzhen Hospital were
retrospectively recruited from July 2013 to December 2021

ledin

Consecutively
th

Excl
salivary gland, and lymph nodes

Eligible patients (n=15120)
- =

~patier
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Al-a:
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listed in Table 1. Except sex, the other clinical characteristics
between benign and malignant masses, were significantly different.

Performance of the Al system on the
retrospective dataset for model building

The performance of the AI system was evaluated using 5-fold
cross validation. Of the five validation sets, the highest AUC was
0.91 (95% CI: 0.84, 0.95), with accuracy of 0.89 (95% CI: 0.84, 0.94),
sensitivity of 0.82 (95% CI: 0.72, 0.82), specificity of 0.93 (95% CI:
0.88, 0.98), PPV of 0.88 (95% CI: 0.79, 0.97), NPV of 0.90 (95% CI:
0.84, 0.96), respectively. The average AUC, accuracy, sensitivity,
specificity, PPV and NPV of the model in the five validations were
0.89 (95% CI: 0.87, 0.92), 0.84 (95% CI: 0.82, 0.87), 0.76 (95% CI:
0.71, 0.81), 0.90 (95% CI: 0.87, 0.92), 0.81 (95% CI: 0. 76, 0.86) and
0.86 (95% CI: 0.83, 0.89), respectively. The AI system showed higher
specificity than sensitivity, indicating that the majority of the benign
cases (above 90%) were accurately recognized. While there were
around 20% of the malignant cases mistakenly classified as benign.
Similarly, the NPV value of the model was slightly higher than the
PPV value, indicating that the AI system had more confidence
(around 3%) in predicting benign cases.

Figure 3A presents the ROCs of all five folds. According to the
figure, UC-STTNet appears to be robust and stable when trained
and tested with different folds of data. The AUC values of the Al
system in the five validations ranged from 0.84 to 0.91, with the
standard deviation 0.028. Figure 3B depicted the performances of
radiologists with three different experience levels. The diagnostic
performance of UC-STTNet was higher than that of one of the
senior radiologists (AUC of UC-STTNet vs AUC of R2: 0.89 vs.
0.84, p=0.022) and all the intermediate and junior radiologists
(AUC of UC-STTNet vs AUC of R3, R4, R5, and R6: 0.89 vs
0.75, 0.81, 0.80, 0.63; p <0.01), and was comparable to one of the

Prospective study of model validation

Patients with STTs in Peking University Shenzhen Hospital were
prospectively recruited from April 2022 to September 2022

Dataset for prospective validation (n=145)
~malignant STTs (n=44)
~benign STTs (n=101)

Overall study flow of UC-STTNet, the Al system for STTs diagnosis. The Al system was developed on a deep learning frame work using the tumor
information from both dual-modal US images, including gray-scale US and color-Doppler US, and clinical features. The Al system could help
radiologists in clinical decision-making by providing prediction results of STTs and heatmaps of US images as reference.
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Flow chart of the retrospective and prospective patients’ recruitment.

high-level radiologists (AUC of UC-STTNet vs AUC of R1: 0.89 vs
0.87, p=0.30). And there were no significant differences in accuracy,
specificity and PPV between the AI system and the intermediated-
level radiologists (p=0.09, 0.96, and 0.72, respectively). And the Al
system showed better sensitivity and NPV than the intermediated-
level radiologists (p=0.01 and 0.04, respectively).

Assistant role of the Al system
for radiologists

. The change in diagnostic performance of each radiologist after the
assistance from the Al system was displayed in Figure 4] Table 2. For
junior radiologists (R5 and R6) and one of the intermediate radiologists
(R3), the AUC values after the AI assistance were significantly
improved (R3: 0.75 to 0.83, p<0.01; R5: 0.80 to 0.85, p<0.01; R6: 0.63
to 0.69, p<0.01), indicating that the diagnostic performances of the
radiologists could be enhanced via the aid of the AI system.

Subsequently, we calculated the ICC value among the six
radiologists in classifying the malignant STTs. The original ICC
value of the radiologists before referring to the AI system was 0.87
(0.84-0.89), which increased to 0.92 (0.91-0.93) after AI assistance,
indicating the diagnostic agreement of the radiologists could be
improved via the aid of the AI system.

Explainability of the Al system

Explainability of UC-STTNet was demonstrated as heatmaps
that highlights the significant areas attended by the model for
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malignant STTs diagnosis. The examples of the AI prediction of
malignant STTs were illustrated in Figure 5. UC-STTNet gave the
prediction result of a malignant STTs mass based on its dual modal
US images and clinical indexes. The heatmap of the mass was
generated by the AI system and used as reference for radiologists.

Performance of the Al system on the
prospective dataset

The AUC, accuracy, sensitivity, specificity, PPV and NPV of the
Al system on the prospective dataset were 0.85 (95% CI: 0.82, 0.89),
0.83 (95% CI: 0.77, 0.90), 0.63 (95% CL: 0.49, 0.78), 0.91 (95% CI:
0.86, 0.97), 0.75 (95% CIL: 0.62, 0.90) and 0.85 (95% CI: 0.79, 0.92),
respectively. The AUC value of the AI system on the prospective
dataset had no statistical difference with the average AUC value on
the model-building dataset (0.89 vs 0.85, p=0.282). The diagnostic
performance of the AT system in the prospective dataset is shown
in Figure 6.

Discussion

In this study, a total of 733 and 145 masses were collected
retrospectively and prospectively. We successfully built a DL-driven
Al system, named UC-STTNet, for distinguishing the malignant
STTs from benign ones based on dual modal US images and clinical
manifestations. The AI system achieved the average AUC value of
0.89 in the retrospective dataset, showing a diagnostic performance
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TABLE 1 Clinical characteristics of 733 retrospective STTs masses and 145 prospective STTs masses.

AUC Accuracy Sensitivity (%) Specificity (%) PPV NPV
0.89 0.84 0.76 0.90 0.81 0.86
Al system (0.87-0.92) (0.82-0.87) (0.71-0.81) (0.87-0.92) (0.76-0.86) (0.83-0.89)

0.87 0.88 83.4 9134 0.85 0.90

R1 (0.85-0.90) (0.86-0.91) (78.4-87.6) (884 - 93.7) (0.81 ~ 0.89) (0.8 ~ 0.93)
0.88 0.89 86.4 90.26 0.84 0.92

RI+AT (0.86-0.91) (0.87-0.91) (81.7-90.2) (87.2 - 92.80) (0.79 ~ 0.88) (0.89 ~ 0.94)
0.84 0.87 72.7 95.24 0.90 0.86

R2 (0.81-0.87) (0.85 -0.89) (67.0-77.9) (92.9 - 97.0) (0.86 ~ 0.94) (0.83 ~ 0.89)
0.82 0.86 68.3 9632 0.92 0.84

R2+AI (0.79-0.85) (0.83-0.89) (62.4-73.8) (942 - 97.8) (0.8 ~ 0.95) (0.81 ~ 0.87)
0.75 0.80 546 95.45 0.88 0.78

R3 (0.72-0.78) (0.78-0.83) (48.5-60.6) (93.1 - 97.2) (0.83 ~ 0.93) (0.75 ~ 0.82)
0.83 0.85 753 90.69 0.83 0.86

R3+AI (0.80-0.86) (0.82-0.88) (69.7-80.3) (87.7 - 93.2) (078 ~ 0.87) (0.83 ~ 0.89)
0.81 0.82 76.1 85.06 0.75 0.86

R4 (0.78-0.83) (0.79-0.85) (70.5-81.0) (815 - 88.2) (0.70 ~ 0.80) (0.83 ~ 0.89)
0.81 0.83 716 90.04 0.81 0.84

R4+AI (0.78-0.84) (0.81-0.86) (65.8-76.9) (86.9 - 92.6) (0.76 ~ 0.86) (0.81 ~ 0.88)
0.80 0.80 83.4 77.27 0.68 0.89

R5 (0.77-0.83) (0.77-0.83) (78.4-87.6) (732 - 81.0) (063 ~ 0.73) (0.86 ~ 0.92)
0.85 0.86 80.07 90.04 0.83 0.89

R5+AT (0.82-0.88) (0.84-0.89) (74.8-84.7) (86.9 - 92.6) (0.78 ~ 0.87) (0.86 ~ 0.91)
0.63 0.71 31 94.16 0.76 0.70

R6 (0.59-0.66) (0.68-0.74) (25.5-36.9) (916 - 96.1) (0.68 ~ 0.84) (0.66 ~ 0.74)
0.69 0.76 4022 96.97 0.89 0.73

R6+AI (0.65-0.72) (0.73-0.79) (34.3-46.3) (95.0 - 98.3) (0.83 ~ 0.94) (0.70 ~ 0.77)

STTs, soft tissue tumors.

comparable to high-level radiologists, superior to intermediate and  and cases involved in our study is so far the largest, among all
junior radiologists. With the assistance of the system, the diagnostic ~ available literature works.

performances and inter-observer agreement of the radiologists Diagnostic models for classifying malignant STTs based on US
could be further enhanced. To note, the number of STTs patients  images have been developed by several studies. Despite of their high
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FIGURE 3

Receiver operating characteristic curves (ROC) of UC-STTNet assessed by 5-fold cross validations and comparing the different level radiologists. 3
(A). ROC of each fold of the Al system and three different levels of radiologists; 3 (B). the average performance of the Al system compared with
three levels radiologists.
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accuracy, the previous models have some disadvantages and are not

1.0 — suitable for clinical promotion. Chen et al. developed a computer-
nitial diagnosis

oo =2 Diagnosis with Al assistance aid-diagnosis (CAD) system using US images to improve the
e accuracy of 89.5% for malignant STTs (27). However, manual
f_,>‘ 0.8 identifications of lesions were required in their CAD system,
3 which is time-consuming and not convenient for clinical

0.7 L . . .
application. Wu MJ et al. established a STTs diagnostic
0.6- nomogram integrating ultrasound and clinical features via
*,,@& LG T multivariable regression analysis, which achieved an AUC value

Q

a Readers 0f 0.896 (29). The sample size for model building was also relatively
FIGURE 4 small. Compared with previous studies, our study has the following
AUC of the radiologists with and without referring to the Al system. strengths. Firstly, we used deep learning algorithm to develop the AI

R1 and R2: senior radiologists; R3 and R4: intermediate radiologists;

R5 and R6: junior radiologists. For junior radiologist (R5 and R6) and o .
one of the intermediate radiologists (R3), the AUC after the Al the hand-crafted systems, and could made automatic diagnosis of

assistance were significantly improved. the masses. Secondly, the AI system utilized the imaging data of two
US modalities, the gray scale and color Doppler US, as well as

system for diagnosis, which was more intelligent and robust than

TABLE 2 Performance of the Al system, the radiologists with three experience levels, and Al-assisted radiologists.

Clinical . .
. Retrospective STTs masses Prospective STTs masses
Characteristics
Benign Malignant Benign Malignant
Overall g 9 Overall 9 g
masses masses masses masses
Sex
Male 338 214 124 0.8825 61 38 23 0.100
Female 395 248 147 84 63 21
41.96
Age 27.6+154 | 40.3+13.9 51.7+15.3 <0.001 1155 38.8+13.4 492+17.6 0.057
Malignant History
Yes 164 17 147 <0.001 13 0 13 <0.001
None 579 445 124 132 101 31
Surgical History
Yes 189 63 126 <0.001 12 101 32 <0.001
None 544 399 146 <0.001 133 0 12
Tumor
) 27.6+47.8 | 33.9+52.1 1554422 <0.001 2834428  31.4+46.2 21.9+34.7 0.06
Duration (months)
Tumor Position
Head or neck 118 91 27 39 30 9
Truck 286 109 177 <0.001 24 10 14 <0.001
Upper limb 193 172 21 48 43 5
Lower limb 136 90 46 34 18 16
Tumor Side
Left 303 186 117 67 49 18
0.012 0.688
Right 342 208 134 58 39 19
Mid 88 68 20 20 13 7
Tumor Long
) 3324294 | 25.9+19.4 45.7+38.1 <0.001 3474385  22.8+15.6 62.3+57.3 0.026
Diameter (mm)

(Continued)
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TABLE 2 Continued
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glrigir(;:lteristics Retrospective STTs masses Prospective STTs masses
Overall Benign Malignant Overall Benign Malignant
masses masses masses masses
Tumor Short
Diameter(mm) 16.1+16.2 11.4£10.8 24.2+20.2 <0.001 16.3+20.7 9.5+8.0 32.0+30.4 <0.001
Tumor Depth(mm) 45+4.2 3.6+3.3 6.2+4.9 <0.001 4.3+5.0 2.8+2.1 7.8+7.5 0.005
Anatomical Level
Superficial fascia layer 613 412 201 <0.001 113 95 18
<0.001
Deep fascia layer 120 50 70 32 6 26
Pathological types Retrospective STTs masses Prospective STTs masses
Malignant types 271 44
Sarcoma 74 33
Metastasis 137 0
Lymphoma 13 3
Squamous-cell carcinoma 13 5
Melanoma 9 3
Others 25 0
Benign types 462 101
lipoma 109 22
hemangioma 57 20
epidermoid cyst 51 10
schwannoma 35 8
giant cell tumor 25 0
Others 185 41

Al Artificial intelligence; R1 and R2: senior radiologists R3 and R4: intermediate radiologists R5 and R6: junior radiologists.

clinical information, to make a more comprehensive diagnosis of
the tumors. Also, the AI system was built on a relatively large
number of cases, and its accuracy and robustness were validated on
a prospective dataset. The diagnostic performance of UC-STTNet
was comparable with a meta-analysis of elastography in assessment
of malignant STTs (16). The average AUC and accuracy of our
system were 0.89 and 0.84, demonstrating a better performance
than the contrast-enhanced ultrasound (CEUS) for predicting the
malignancy of STTs, whose AUC and accuracy were 0.86 and 0.81,
respectively (32).

We also verified the assistant role of the AI system for
radiologists in making diagnosis of malignant STTs. While our
results showed that UC-STTNet was superior to the performance
of intermediate and junior radiologists, our Al system could help
these less experience radiologists make more accurate diagnosis.
Meanwhile, the inter-observer agreement of the radiologists was
also improved when they referred to the diagnostic results of the
AT system. UC-STTNet not only provided the final predictive
results of the masses, but also generated heatmaps representing
the active areas for diagnosis for the radiologists. Therefore, the Al

Frontiers in Oncology

system could be utilized as an assistant tool for the radiologists to
enhance their diagnostic performance and stability in STTs, as
well as to decrease operator dependence. To note, compared with
other models for diagnosing STTs, including the model based on
hand-crafted ultrasound features and the model based on
radiomics, the process of using our AI system is more clinical
applicable. The AI system can directly generate the result for
prediction and does not need lesion delineation and feature
extraction. For further clinical promotion of the AI system in
the future, we will attempt to integrate the DL architecture into
commercial US devices as an on-board software to help to
improve the diagnosis performance and decrease workforce
for radiologists.

The AI system tends to misdiagnose the benign masses with
large size, usually more than 30mm in longitude. The benign STTs
that possessing abundant blood vessels on color Doppler US
imaging, such as glomangioma, could also be misdiagnosed by
the system. On the other hand, the malignant tumors with small
size and scarce vasculature might be classified as benign ones. In
addition, a total of 6 cases of dermatofibrosarcoma protuberans
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Examples of the Al system classifying benign and malignant STTs. The Al system diagnosed STTs based on dual-modal US images and clinical
features. Heatmaps of the two modalities of US were also provided by the system. The above case is a 28-year-old female with a STTs mass on the
subcutaneous layer of the right hand. She had no tumor or surgical history. The tumor was found 12 months ago and had a size of 13x11mm. The Al
system diagnosed it as a benign tumor, which was identified as a benign schwannoma by pathology. The other case is a 64-year-old male with a
STTs mass on the muscular layer of abdomen. The patient also reported no tumor or surgical history. The tumor was found 10 days ago and had a
size of 22x11mm. The Al system diagnosed it as a malignant STTs tumor, which was identified as a metastatic malignant melanoma by pathology

(DFSP) were predicted as benign by the AI system. For DFSPs,
skin changes should also be taken into account during diagnosis.
Additionally, misdiagnosis often occurs in patients with a history
of malignancy. To prevent the aforementioned misdiagnosis
scenarios, more cases should be supplied for model
development in the future study. Supplementary Figure 2
demonstrated the examples of the misdiagnosed STTs cases of
the AI system.

Receiver operating characteristic example

1.0

True Positive Rate

e - Retrospective Dataset (AUC = 0.89)
e - Prospective Dataset (AUC = 0.85)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
FIGURE 6

ROC curves of the Al system on the retrospective and
prospective datasets.
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Our study has several limitations. First, it was a single center
research. The Al system was not verified by external validation from
multi-center datasets. The sensitivity of the Al system was relatively
low in the prospective validation dataset. which should be improved
by enrolling more malignant cases in the training dataset in further
studies. Also, we only used two modalities of US images to build the
model, and other available US modalities, including US
elastography and CEUS, were not incorporated in our study. The
two US modalities will be added to the system in our future study to
improve its diagnostic accuracy. Moreover, we compared
the performance of the DL model with the radiologists on the
retrospective dataset due to its relatively large sample size. In the
future study, the accuracy of the model will be further explored on a
large prospective data.

Conclusions

A DL-driven AI system based on dual-modal US images and
clinical features for malignant STTs diagnosis was developed on a
retrospective dataset of STTs. It achieved a high accuracy in
predicting malignant STTs on both retrospective and prospective
datasets. The performance of the Al system was comparable to
senior radiologists, and better than junior and intermediate
radiologists. The developed AI system could also assist
radiologists in improving their diagnostic accuracy and stability
in classifying malignant STTs.
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Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China, “School of
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Purpose: This study aimed to develop and validate a radiogenomics nomogram for
predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) on the
basis of MRl and microRNAs (miRNAs).

Materials and methods: This cohort study included 168 patients (training cohort: n
= 116; validation cohort: n = 52) with pathologically confirmed HCC, who underwent
preoperative MRl and plasma miRNA examination. Univariate and multivariate
logistic regressions were used to identify independent risk factors associated with
MVI. These risk factors were used to produce a nomogram. The performance of the
nomogram was evaluated by receiver operating characteristic curve (ROC) analysis,
sensitivity, specificity, accuracy, and Fl-score. Decision curve analysis was
performed to determine whether the nomogram was clinically useful.

Results: The independent risk factors for MVI were maximum tumor length, rad-
score, and miRNA-21 (all P < 0.001). The sensitivity, specificity, accuracy, and F1-
score of the nomogram in the validation cohort were 0.970, 0.722, 0.884, and 0.916,
respectively. The AUC of the nomogram was 0.900 (95% Cl: 0.808-0.992) in the
validation cohort, higher than that of any other single factor model (maximum tumor
length, rad-score, and miRNA-21).

Conclusion: The radiogenomics nomogram shows satisfactory predictive
performance in predicting MVI in HCC and provides a feasible and practical
reference for tumor treatment decisions.

KEYWORDS

hepatocellular carcinoma (HCC), microvascular invasion (MVI), radiogenomics, nomogram,
MicroRNAs, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
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Introduction

Hepatocellular carcinoma (HCC) is a malignancy with third
highest world mortality rate (8.3%), after lung cancer (18%) and
colorectal cancer (9.4%) (1). The main treatment of HCC is surgical
resection, but recurrence is common, with a five-year recurrence
rate of up to 40%-70%. The 5-year survival rate is only 18% (2).
Microvascular invasion (MVI) is one of the most important
prognostic factors for HCC after surgical treatment, and it has
been established as a risk factor for early recurrence and poor
outcome. The term MVI refers to the cancer cell nests that are
established within the lining of blood vessels by microscopic
endothelial cells. It is considered as a sign of strong tumor
invasion ability, and it could only be diagnosed through
pathology at present. MVI-positive patients often require
improved prognosis by expanding surgical margins, and patients
with microvascular infiltration are also considered unsuitable for
liver transplantation (3-5). Therefore, developing a method for
non-invasive prediction of microvascular invasion is necessary to
guide the treatment of HCC.

The imaging characteristics of HCC, such as a non-smooth
tumor margin, arterial peritumoral enhancement, and peritumoral
hypo-intensity on hepatobiliary phase imaging (HBP), have been
confirmed to be noninvasive imaging biomarkers for MVI
prediction (4-7). However, such qualitative studies are vulnerable
to subjective factors, image quality, and interobserver variation.
Therefore, more objective quantitative methods are needed to
predict MVL. In 2012, Lambin et al. (8) proposed the concept of
radiomics, where medical images are converted into useful data by
using high-throughput quantitative features to predict the disease
treatment efficacy and prognosis. Using radiomics to predict MVI
in HCC is a major research area in recent years. Many studies with
satisfactory results have been conducted (9-11). Xu’s (10) study has
achieved predicted satisfactory results by developing a radiomics
nomogram model on the basis of computed tomography (CT). MRI
examination technology has the advantage of multimodal/
multisequence imaging and high soft-tissue resolution.
Theoretically MRI multicolumn multimodal imaging provides
more characteristic elements. Therefore, in the present study,
predictive models based on radiomic features in MRI were
developed for predicting MV

MicroRNAs (miRNAs) are a kind of endogenous, non-coding
RNAs. Thousands of miRNAs play a role in regulating various
molecular biological processes by inhibiting the translation of
different messenger RNAs (mRNAs) in the cell (12).
A dysregulation of miRNAs is often associated with malignancy,
and it regulates the proliferation, migration, invasion, and
development of tumors in HCC by promoting or suppressing
them (13, 14). Previous studies have shown that combining
radiomics and genomics could remarkably improve the
performance of predictive models (15, 16). Zhou (17) et al.
screened 7 plasma miRNAs (miRNAs) out of 723 HCC-
associated miRNAs (miR-122, miR-192, miR-21, miR-223, miR-
26a, miR-27a, miR-801), which had high diagnostic performance in
the early diagnosis of hepatocellular carcinoma.Therefore, we
extracted these 7 mi-RNAs from the patients’ plasma, but among
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them, miR-192 and miR-801 had large differences in expression,
and the data were not stable enough to be screened out, so only 5
mi-RNAs (miR-122, miR-21, miR-223, miR-26a, miR-27a) were
included in the analysis. Therefore, we measured these miRNAs and
explored their relationship with HCC microvascular invasion, and
combined them with radiomics to explore the performance of the
joint model. Moreover, routine laboratory tests for HCC and
radiological characteristics based on MRI were added; the
independent risk factors for MVI were determined through
multivariate logistic regression, combined radiomics, genomics,
and clinico-radiological factors; predictive models were
established; and the performance of these models was verified.

This study aimed to develop and validate a radiogenomics
nomogram model for preoperative prediction of MVI in HCC.
The nomogram is helpful for clinicians to assist in determining
individual therapeutic strategies for patients with HCC.

Materials and methods
Patients

This retrospective study was approved by the institutional
review board, with a waiver for patient informed consent. We
included all patients who underwent preoperative MRI and plasma
mi-RNAs between December 2018 and November 2021. The
inclusion criteria were as follows: (a) all patients who underwent
radical hepatectomy with postoperative pathologic confirmation of
hepatocellular carcinoma and complete clinical data;(b) MRI
examination and plasma miRNA testing within two weeks prior
to surgery; (c) Histopathology report containing a complete
description of hepatocellular carcinoma (tumor size, number,
MVI status and category, etc.); (d) The images were free of
artifacts, sequence loss, and high image quality, meeting the basic
requirements for image segmentation. The exclusion criteria were
as follows: (a) the patient underwent any form of anticancer
treatment (surgery, drugs, etc.) before surgery;(b) vascular or
vascular invasion or the presence of distant metastasis was
detected by the naked eye in preoperative imaging;(c) combined
with other primary tumors.

Then, 168 patients (142 males and 26 females) comprised the
final cohort. The included patients were divided into training (n =
116; 100 males and 16 females) and validation cohorts (n = 52; 43
males and 9 females), with a ratio of 7:3. The flowchart of patient
enrollment and grouping in Figure 1. All patients received routine
laboratory tests and plasma miRNA examinations prior to curative
resection. Further information on the patients is available
in Table 1.

Histopathological examination

Seven-point baseline sampling method was used to take 1:1
samples at the junction between the cancer and the paracancerous
liver tissues at the clock positions of twelve, three, six, and nine
points of the tumor. At least one piece of tissue was taken inside the
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All patients who underwent preoperative dynamic contrast-enhanced (DCE)-
MRI and plasma miRNAs examination from December 2018 to November
2021 (n=426).
!
[ -preoperative antitumor treatments (n=127) |

[ -pathology-confirmed malignancies were not HCC (n=67) ]
!

[ -macrovascular invasion or extrahepatic metastasis (n=34) ]
!

[ -inadequate histopathologic report or clinical data (n=21) ]

[ -incomplete image quality (n=9) ]
[ Final patient cohort with histologically confirmed HCC (n=168) ]
Training cohort Validation cohort
(n=116) (n=52)
[ MvI=77) | [ MVE@=39) | | Mvr@=34) | [ Mvr@e1s) |
FIGURE 1

Flowchart of patient enrollment and grouping

tumor, and one piece of liver tissue was taken < 1 cm (near
paracancerous) and > 1 cm (distal paracancerous) from the
tumor margin (18). Histopathological features (tumor size,
number, MVT status, and category) were consistently assessed by
two experienced abdominal pathologists.

Collection of plasma samples and
miRNA extraction

Venous blood samples were collected from all patients with
HCC prior to any means of processing. Before the sample collection
was conducted, a written consent was obtained for each patient to
donate a sample for the purpose of the study. For specific steps on
collection of plasma samples and miRNA extraction, please refer to
the Supplementary Materials 1.

MRI examination

MRI examinations were conducted using a GE DISCOVERY
750W 3.0 T MRI scanner, with axial in-phase and opposed-phase
T1 weighted imaging (T1WI), axial T2-weighted imaging with fat
suppression (T2WI-FS), diffusion-weighted imaging (DWI), and
DCE-MRI (dynamic contrast-enhanced magnetic resonance
imaging) sequences for all patients. Please refer to Supplementary
Material 2 for specific MRI parameters.
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Analysis of radiological characteristics

The radiological characteristics were independently evaluated by
two abdominal radiologists A (RA) and B (RB), with 7 and 15 years of
experience, respectively. If any differences occurred, senior radiologist
C (RC) with 20 years of experience would join the discussion to reach a
consensus. All radiologists were aware that the lesions were HCCs but
blinded to all other laboratory and histopathological information. The
largest tumor was used to analyze patients with multiple tumors. The
evaluation was based on the Liver Imaging Reporting and Data System
(LI-RADS version 2018) (19), and the important morphological
features reported in the relevant literature (7). The qualitative
features of the images were assessed refer to Supplementary Material 3.

Analysis of radiomics

Image segmentation

HCC image segmentation was performed by RA and RB with the
use of three-dimensional (3D) slicer software (version 5.0.2). The
volumes of interest (VOIs) were delineated in the axial T2WI-FS,
DWI (with b value of 800 s/mm?), AP, PP, and DP images. For
assessment of the reproducibility and reliability of image segmentation,
images of 30 randomly selected patients were first segmented by RA
and RB separately. Then, 30 patients were re-segmented by RB after 2
weeks, and the images of the remaining patients were segmented by
RA. The segmentation results were validated by RC.
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TABLE 1 Comparisons of patient characteristics in training and validation cohorts.

Validation cohort

Training cohort

Characteristics

MVI* (n=39)  MVI™ (n=77) MVI* (n=18)  MVI™ (n=34)
Age (years) 58.97 + 8.49 59.48 + 8.90 0.769 58.89 +10.22 56.03 + 11.33 0.375
Sex
Male 29 (74.36%) 33 (84.62%) 0.726 13 (72,22%) 29 (85.29%) 0.304
Female 10 (25.64%) 6 (15.38%) 5 (27.78%) 5 (14.71%)
HBV
Present 38 (97.44%) 73 (94.81%) 0.514 18 (100.0%) 32 (94.12%) 0.160
Absent 1 (2.56%) 4 (5.19%) 0(0.00%) 2 (5.88%)
AFP (ng/mL)
<20 19 (48.7%) 39 (50.6%) 11 (61.1%) 15 (44.1%)
0.079 0.383
20-400 8 (20.5%) 22 (28.6%) 2 (11.1%) 12 (35.3%)
>400 12 (30.8%) 16 (20.8%) 5 (27.8%) 7 (20.6%)
ALT (w/1)
<40 25 (64.1%) 55 (71.4%) 0.318 10 (55.6%) 23 (67.6%) 0.372
>40 14 (36.9%) 22 (28.6%) 8 (44.4%) 11 (32.4%)
AST (W)
<35 22 (56.4%) 42 (45.5%) 0.364 10 (55.6%) 22 (64.7%) 0.415
>35 17 (43.6%) 35 (54.5%) 8 (44.4%) 12 (35.3%)
TBIL (umol/l)
<20 26 (66.7%) 53 (68.8%) 0.379 12 (66.7%) 22 (64.7%) 0.418
>20 13 (33.3%) 24 (31.2%) 6 (33.3%) 12 (35.3%)
ALB (g/)
<40 17 (43.6%) 42 (54.5%) 0.635 9 (50.0%) 19 (55.9%) 0.869
>40 22 (56.4%) 35 (45.4%) 9 (50.0%) 15 (44.1%)
PIVKA-II (mAu/mL)
<40 4 (10.3%) 11 (14.3%) 0.910 4 (22.2%) 5 (14.7%) 0.144
>40 35 (89.7%) 66 (85.7%) 14 (77.8%) 29 (85.3%)
PT (s)
<14 35 (89.7%) 68 (88.3%) 0.941 17 (94.4%) 29 (85.3%) 0.679
>14 4 (10.3%) 9 (11.7%) 1 (5.6%) 5 (14.7%)
INR
<10 18 (46.2%) 18 (23.4%) 0.382 8 (44.4) % 8 (23.5%) 0.376
>1.0 21 (53.8%) 59 (76.6%) 10 (55.6%) 26 (76.5%)
MiRNA-21 29.60 + 1.40 31.32 £ 0.85 < 0.001 29.18 + 1.19 31.13 £ 0.76 < 0.001
MiRNA-26a 32.08 = 1.67 30.27 + 1.69 < 0.001 3232+ 153 30.40 = 1.60 < 0.001
MiRNA-27a 27.35 +2.04 28.51 £ 0.95 0.002 26.50 + 1.97 28.46 + 1.03 < 0.001
MiRNA-122 28.96 + 1.62 29.89 + 0.95 0.001 28.35 + 1.48 29.81 +£0.97 < 0.001
MiRNA-223 31.88 + 1.50 31.13 + 1.06 0.001 32.46 + 1.30 31.25 + 1.07 < 0.001
Maximum tumor length 6.43 + 3.36 5.16 + 2.58 0.044 6.11 + 2.88 524 £+ 3.05 0.320
Tumor margin
Smooth 3 (7.7%) 23 (29.9%) 0.007 1 (5.6%) 12 (35.3%) 0.043
Non-smooth 36 (92.3%) 54 (70.1%) 17 (94.4%) 22 (64.7%)
Number
=1 36 (92.3%) 68 (88.3%) 0.730 16 (88.9%) 31 (91.2%) 1.000
>1 3(7.7%) 9 (11.7%) 2 (11.1%) 3 (8.8%)
Enhancement pattern
Typical 35 (89.7%) 73 (94.8%) 0.530 2 (11.1%) 32 (94.1%) 0.900
Atypical 4 (10.3%) 4 (5.2%) 16 (88.9%) 2 (5.9%)
Radiologic capsule
Present 7 (17.9%) 40 (51.9%) < 0.001 3 (16.7%) 20 (58.8%) 0.004
Absent 32 (82.1%) 37 (48.1%) 15 (83.3%) 14 (41.2%)
(Continued)
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TABLE 1 Continued

Training cohort

Characteristics

MVI* (n=39) MVI™ (n=77)

10.3389/fonc.2024.1371432

Validation cohort

Arterial peritumoral

enhancement
36 (92.3%) 44 (57.1%)
Present 3 (7.7%) 33 (42.9%)
Absent o o

Intratumor necrosis/hemorrhage
33 (84.6%)
6 (15.4%)

45 (58.4%)
32 (41.6%)

Present
Absent

MVI* (n=18) MVI™ (n=34)
< 0.001 17 (94.4%) 15 (44.1%) 0.001
1 (5.6%) 19 (55.9%)
0.005 17 (94.4%) 19 (55.9%) 0.011

1 (5.6%) 15 (44.1%)

HBYV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; MVI, microvascular invasion.

Radiomics feature extraction, selection, and
signature building

A total of 7045 radiomic features were extracted from each
segmented lesion using the SlicerRadiomics plugin in 3DSlicer.
Python (version 2.7.18) was used for radiological feature selection.
These features included shape, first-order histogram features and
texture features. The 1856 features with intra- and inter-correlation
coefficients (ICCs) values less than 0.8 were firstly excluded, and the
remaining features were initially screened by SelectKBest. The remaining
features were selected by least absolute shrinkage and selection operator
(LASSO) algorithms. The features of the LASSO regression result in
which the corresponding coefficients with non-zero were retained. 10-
fold cross-validation was performed to select the optimal o value, and
the coefficients of the corresponding radiomics features were obtained at
the same time. The radiomic feature score (rad-score) reflecting the
MVT was calculated for each patient by using a linear combination of the
selected features weighted with the respective coefficients.

Model construction, evaluation, and comparison
All variables (laboratory tests, miRNA, radiological
characteristics, and radiation scores) were first screened by
univariate analysis, and then independent risk factors for MVI
were determined by stepwise backward regression with the
principle of minimum AIC (Akaike information criterion) value
by multivariate logistic regression analysis. All the independent risk
factors were used separately to build the corresponding prediction
models and construct the nomogram. The ROC curves were
plotted, the discriminant efficiency of MVI predictions was
quantified using AUC, and multiple comparisons between
different models were carried out by Delong test. The 95% CI of
AUG:s, sensitivity, specificity, and accuracy were also calculated. F1-
score was used to evaluate a binary classification model with
unbalanced data samples. The clinical utility of the nomogram
was evaluated using decision curve analysis, which quantifies the
net benefit to the overall cohort at different threshold probabilities
(20). The process of the present study is illustrated in Figure 2.

Statistical analysis

Statistical analysis was performed using R software (version
3.4.1). Continuous variables were expressed as mean * standard
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deviation. The categorical variables were presented as percentages.
Kolmogorov-Smirnov tests were used to evaluate the distribution’s
normality. For identification of variables that differed significantly
between the training and validation cohorts, Student’s t test was
used to compare the quantitative data, and Chi-square test or
Fisher’s exact test was used to compare the qualitative data. The
reproducibility of the feature extraction was assessed by calculating
the intra- and inter-correlation coefficients (ICCs), and ICCs > 0.80
were considered to have good reproducibility. The Hosmer-
Lemeshow’s goodness-of-fit test was used to evaluate whether the
model’s predicted probabilities fitted the actual probabilities. The
sensitivity, specificity, and accuracy were calculated by confusion
matrix in accordance with the cutoff value that maximized the
Youden index. Statistical significance was set at P < 0.05.

Results

Clinico-radiological characteristics and MVI
prediction factors

A comparison of the clinico-radiological characteristics is shown
in Table 1. Among the 168 patients with HCC, MVI was diagnosed in
the resected tissue of 57 patients. The comparison between the
training and validation cohorts was not statistically different in
terms of age, gender, AFP, and other clinical indicators (P = 0.144-
0.941). All five miRNAs significantly differed between MVI" and
MVT in the training and validation cohorts (P < 0.05). The patients
with MVI™ and MVI™ also showed significantly different imaging
characteristics (tumor margin, radiologic capsule, arterial peritumoral
enhancement, and intratumor necrosis/hemorrhage) (P < 0.05). No
significant differences were found in the tumor number and
enhancement pattern between MVI" and MVI™ in either the
training cohort or the validation cohort (P = 0.530-1.000).

The univariate analysis showed that five imaging features
(maximum tumor length, tumor margin, radiologic capsule, peri-
arterial tumor enhancement, and presence of hemorrhage and
necrosis) and the five kinds of miRNAs (miR-21, miR-26a, miR-
27a, miR-122, and miR-223) were significantly associated with MVI
(P < 0.05). In the multivariate analysis, maximum tumor length and
miR-21 were found to be independent predictors of MVI. The
specific information is shown in Table 2.
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Tumor segmentation

MicroRNAs and clinical information

<

4
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Feature extraction

Univariate and multivariate
analyses to identify
independent risk factors
associated with MVI

Feature selection

Analysis of radiological characteristics
and radiomics signature building

v DWIx0.049456+
032877+
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i
§

Model construction, evaluation
and comparison

FIGURE 2

Flowchart showing the radiogenomics analysis for MVI prediction. ROl segmentation was performed on axial MR images, and then radiomic features
were extracted and selected. Next, the radiomic score was calculated for each patient by using a linear combination of selected features weighted with
the respective coefficients. The radiological characteristics, miRNAs, and clinical information were also collected. Finally, all variables were screened by
univariate and multivariate logistic regression analyses to identify the independent risk factors for MVI, which were used to construct the nomogram. The
nomogram was evaluated with ROC curve and decision curve. Delong test was used to compare area under the curves (AUCs) from different models.

Feature selection and radiomics
signature building

Radiomics features were downscaled by SelectKBest and LASSO,
resulting in a final selection of 11 features, all of which were derived
from DWT and DP sequences. The ICCs ranged from 0.856 to 0.989 for
the intra-observers and from 0.843 to 0.982 for the inter-observers.
These values demonstrated the high reliability of the measurements
taken by the observers. A linear combination of the selected features,
weighted by their respective logistic regression coefficients, was used to
generate the rad-score (risk score reflecting the probability of MVI).
This score was used to calculate each selected VOI as follows:

rad-score = 0.33 + exponential_firstorder_Energy_DWI x
0.049456 + original_firstorder_Energy_ DWI x 0.032877 +

wavelet-HLH_glszm_SizeZoneNonUniformity_DWI x 0.006842
+ exponential_firstorder_Skewness_DH x 0.014393 —

original_shape_Sphericity_DH x 0.014946 +

logarithm_glszm_LowGrayLevelZoneEmphasis_DH x 0.016827 +

wavelet-LHL_firstorder_Median_DWI x 0.000386 +

wavelet-LHL_glrim_HighGrayLevelRunEmphasis_ DWI x
0.034749 —

wavelet-LHL_firstorder_Skewness_DWI x 0.012754 +

wavelet-HLH_firstorder_Skewness_DWI x 0.027165 +
original_glszm_LowGrayLevelZoneEmphasis_DH x 0.001094

Frontiers in Oncology

The univariate and multifactorial regression analyses showed
that the rad-score is an independent risk factor for MVI (Table 2).

Model construction and evaluation

The independent predictive factors of MVI, which were
maximum tumor length, miR-21, and rad-score, were identified
by univariate and multivariate logistic regression methods. The
MVI prediction model incorporated these three independent risk
factors to develop a nomogram prediction model (Figure 3).

The three single-factor models of tumor maximum length, miR-
21, and rad-score reached AUC values of 0.658 (95% CI: 0.551-
0.764), 0.907 (95% CI 0.866-0.949), and 0.836 (95% CI: 0.763-
0.909) in the training cohort, respectively, and 0.632 (95% CI:
0.465-0.799), 0.881 (95% CI: 0.763-0.998), and 0.704 (95% CI:
0.551-0.857) in the validation cohort, respectively. The nomogram
model had an AUC of 0.900 (95% CI 0.808-0.992) in the validation
cohort, with sensitivity, specificity, accuracy, and F1-score of 0.970,
0.722, 0.884, and 0.916, respectively (Figures 4A, B, Table 3). The
Hosmer-Lemeshow’s goodness-of-fit test evaluated the model
performance at P = 0.55 > 0.05, indicating that the actual value of
the prediction model fitted well with the predicted value. The
decision curve showed the clinical usefulness of the different

frontiersin.org


https://doi.org/10.3389/fonc.2024.1371432
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hu et al.

10.3389/fonc.2024.1371432

TABLE 2 Univariate and multivariate analysis to identify risk factors associated with MVI in the training cohort.

Univariate analysis

Multivariate analysis

Variables

OR (95% Cl) P OR (95% Cl) P

Sex 0.95 (0.74-1.23) 0.726 NA NA

Age 1.00 (0.99-1.01) 0.769 NA NA

HBV 1.15 (0.75-1.77) 0.514 NA NA

AFP 1.00 (0.99-1.01) 0.198 NA NA

PIVKA-II 1.00 (0.99-1.00) 0.906 NA NA

ALT 0.99 (0.99-1.00) 0.318 NA NA

AST 0.99 (0.99-1.00) 0.364 NA NA

TB 0.98 (0.99-1.02) 0.379 NA NA

ALB 1.01 (0.99-1.13) 0.641 NA NA

PT 0.98 (0.94-1.06) 0.941 NA NA

INR 0.96 (0.87-1.05) 0.382 NA NA
MiRNA-21 0.81 (0.76-0.85) < 0.001 0.73 (0.66-0.78) < 0.001
MiRNA-26a 1.12 (1.08-1.17) < 0.001 1.05 (0.99-1.11) 0.065
MiRNA-27a 0.89 (0.84-0.94) < 0.001 0.95 (0.81-1.11) 0.518
MiRNA-122 0.88 (0.83-0.94) 0.002 1.04 (0.74-1.44) 0.840
MiRNA-223 1.11 (1.04-1.19) <0.001 0.86 (0.68-1.09) 0.220
Maximum tumor length 1.05 (1.02-1.07) < 0.001 0.90 (0.87-0.93) < 0.001
Tumor margin 1.33 (1.09-1.07) < 0.001 0.99 (0.83-1.18) 0.478

Number 0.91 (0.68-1.21) 0.509 NA NA

Enhancement pattern 0.84 (0.60-1.18) 0.314 NA NA
Radiologic capsule 0.73 (0.62-0.86) < 0.001 0.92 (0.79-1.07) 0.788
Arterial peritumoral enhancement 1.44 (1.21-1.71) < 0.001 1.10 (0.93-1.29) 0.329
Intratumor necrosis/hemorrhage 1.30 (1.09-1.56) < 0.001 0.93 (0.81-1.08) 0.915
Rad-score 9.33 (4.65-18.74) < 0.001 7.92 (3.78-16.6) < 0.001

HBYV, hepatitis B virus; AFP, serum alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate amino transferase; TBIL, total bilirubin; ALB, albumin; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; PT, prothrombin time; INR, international normalized ratio; OR, odds ratio; CI, confidence interval. NA, not available.

models (Figures 4C, D). The prediction performance of the
nomogram model was satisfactory in the validation cohort, with
the decision curve shown in Figure 4D. The net benefit of predicting
the decision curve for the nomogram and miR-21 model was higher
than that for other models when the threshold probability was > 0%.
This finding suggested that the nomogram and miR-21 models
could achieve satisfactory net clinical benefits.

Model comparison

Among the three single-factor models of maximum tumor
length, miR-21, and rad-score, the miR-21 model performed best,
and the differences with the other two one-factor models were all
statistically significant in the validation cohort (miR-21 vs.
maximum tumor length: AUC of 0.881 vs. 0.632, P = 0.004; miR-
21 vs. rad-score: AUC of 0.881 vs. 0.704, P = 0.009). The nomogram

Frontiers in Oncology

prediction model outperformed the miR-21 model (AUC of 0.900
vs. 0.881; P = 0.464), the rad-score model (AUC of 0.900 vs. 0.704;
P =0.003), and the maximum tumor length model (AUC of 0.900
vs. 0.632; P = 0.003) in the validation cohort. However, no statistical
difference was found between the nomogram model and the miR-21
model (P = 0.464), as detailed in Table 3 and Figure 5.

Discussion

In this study, we have successfully developed and rigorously
validated a multi-omics nomogram prediction model, which
integrates MRI-derived radiomics, radiological features, and
miRNA-based genomics. The resulting radiogenomic nomogram
has demonstrated excellent performance in accurately predicting
microvascular invasion in HCC, thus providing a non-invasive yet
reliable clinical method for preoperative prediction.
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FIGURE 3

Radiogenomics homogram for predicting MVI in hepatocellular carcinoma. (1) Factors in the prediction model: maximum tumor length, rad-score,
and miRNA-21, the scale on the line segment corresponding to each factor represents the range of values of the factor, and the length of the line
segment represents the contribution of the factor to the probability of occurrence of the outcome variable. (2) Points and total pionts: individual
points represent the individual scores corresponding to each factor at different ranges of values, and the total points represents the sum of the
individual scores corresponding to all the factors at different ranges of values. (3) Prediction: the scale value corresponding to the total points
indicates the risk of microvascular invasion in patients with hepatocellular carcinoma.

The expression of miR-21, miR-27a, and miR-122 in the MVI*
group was upregulated compared with that in the MVI™ group,
whereas the expression of miR-26a and miR-223 was
downregulated. These differences were all statistically significant.
By contrast, the differences in conventional laboratory indicators,
such as AFP, were not statistically significant between the MVI*
group and the MVI™ group, indicating that the miRNAs extracted
in the plasma of patients with HCC were more meaningful in
suggesting MVI than the conventional laboratory indicators.
Further univariate and multivariate analyses showed that miR-21
had better correlations than other clinical laboratory tests. Studies
have shown that miR-21 is one of the most expressed miRNAs in
liver diseases, such as nonalcoholic fatty liver disease (21). Ladeiro
et al. (22) found that miR-21 was significantly overexpressed in
HCC, as compared to benign tumor or non-neoplastic liver tissue.
The maladjusted expression of miRNA could be used as a
biomarker, and it could be detected in the plasma of patients.
Studies have shown that miR-21 plays a role in promoting HCC
growth invasion, distant metastasis, and other links (21).
Furthermore, this study confirmed that among other miRNAs
detected in plasma, only miR-21 emerged as an independent risk
factor for MVI in HCC. The miR-21 model surpassed the rad score
and maximum tumor length models in predicting MVI, and the
differences were statistically significant in the validation cohort
(P<0.05). These findings indicate that the miR-21 model performs
well in preoperative prediction of MVI in HCC. Conventional
clinical laboratory indicators, including tumor markers such as
AFP, were all excluded in the univariate analysis due to their
relatively poor correlation compared to other variables.

On the basis of the morphological characteristics of MRI,
previous meta-analysis studies have found that some of MRI
signs were significantly associated with MVI, including larger
tumors (> 5 c¢m), rim arterial enhancement, arterial peritumoral
enhancement, non-smooth tumor margin, and multiple lesions (7).
The present study incorporated these MR morphological features
into the analysis and found that only the maximum tumor length is
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an independent predictor of MVI in HCC. Increased tumor volume
led to increased contact between the tumor and adjacent normal
liver tissues, thereby promoting the formation of microvessels.

A total of 7045 features were extracted from five different MRI
sequences, and then 11 radiomic features were screened out by
SelectKBest and LASSO. Interestingly, these features were all
derived from DWI and DP sequences. A previous study (23)
found that primary radiomic signatures extracted from delayed-
phase sequences were associated with MVI. Zhang et al. (24)
compared the performance of different MRI sequences to predict
MVI and found the performance of DP to be the best (AUC =
0.806). The present study also found the value of DP to be the best
in predicting MVI, which could be explained by the fact that tumors
continue to release a large number of angiogenic factors that
promote tumor angiogenesis and change tumor perfusion,
resulting in the differences between MVI and MVI' being more
easily shown in DP sequences (25). DWT also has a satisfactory
performance, as confirmed by some previous studies (26, 27). This
finding could be explained that the minimum value of the apparent
diffusion coefficient of DWI could reflect the densest tumor, the
most abundant neovascularization, and the most active tumor
proliferation. The hepatobiliary phase of specific contrast agents
has been reported to make an important contribution to suggesting
MVI (7). It is important to note that when hepatocyte-specific
agents are used, DWI is usually scanned after contrast, and the
ability and contribution of DWI may differ, which needs to be
proven by further research.

After rigorous data analysis and model training, we have
successfully developed a nomogram model that comprehensively
incorporates various risk factors. In stringent tests using training
and validation datasets, the model exhibited outstanding predictive
performance, with AUC values reaching 0.942 and 0.900,
significantly surpassing other single-factor models. The
nomogram model demonstrated satisfactory performance in
predicting microvascular invasion in HCC. Looking back at
previous studies, although nomogram models based on radiomics
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(A, B) ROC curves for different models in the training and validation cohorts. The ROC graph is a curve that reflects the relationship between
sensitivity and specificity. According to the position of the curve, the whole graph is divided into two parts, the area below the curve is called AUC
(Area Under Curve), which is used to indicate the prediction accuracy, the higher the value of AUC, that is, the larger the area under the curve,
indicating that the prediction accuracy is higher. The closer the curve is to the upper left corner, the higher the prediction accuracy. Panels A, B
represent the prediction values of different models for the training cohort and validation cohort, respectively. (C, D) Clinical decision curves for
different models in the training and validation cohorts. Clinical utility is evaluated in terms of Decision curve analysis (DCA), which reflects the ability
of a model to benefit patients by influencing clinical decisions.A good model should have a high net benefit value at the threshold required by its
clinical question. The net benefit of predicting the decision curve for the nomogram and miR-21 model was higher than that for other models when
the threshold probability was > 0%. This finding suggested that the nomogram and miR-21 models could achieve satisfactory net clinical benefits.

and clinical factors have shown promising predictive capabilities,
most of them still have limitations in performance, with AUC
values generally ranging from 0.801 to 0.861 (28-30). Notably, these
models often involve numerous risk factors, whereas our
nomogram model incorporates only three independent risk
factors, highlighting the advantages of multi-omics approaches in
data processing and model development.

In previous explorations, such as the study by Banerjee et al.
(28), they delved into the radiogenomics of MVI in liver cancer,
innovatively developing a novel imaging biomarker called
radiogenomic venous invasion (RVI) by combining venous
invasion genes in hepatocellular carcinoma with dynamic
contrast-enhanced CT. This achievement has achieved significant
results in predicting MVT and prognosis. Similarly, Taouli et al. (29)
also conducted in-depth research on the imaging characteristics and
genomic data of hepatocellular carcinoma, successfully identifying
imaging features related to aggressive hepatocellular carcinoma
genes through a combination of preoperative CT or MR
examinations and transcriptomic analysis.

However, our study adopted a more unique and precise
approach. We directly used miRNAs closely related to liver
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cancer as variables in logistic regression analysis, screening out
miRNAs species independently associated with MVT in liver cancer
through rigorous univariate and multivariate analysis.
Subsequently, we combined these crucial miRNAs with radiomics
and clinical radiological features to construct an efficient and
accurate prediction model, achieving satisfactory preoperative
prediction of MVL This achievement provides a powerful tool or
method for the accurate prediction of microvascular invasion in
hepatocellular carcinoma, guiding clinical decision-making,
optimizing treatment plans, and ultimately improving the survival
rate and quality of life of patients.

Limitations

This study still has some limitations. First, it is a small, single-
center study. Therefore, the results should be complemented by
further validation from larger queues at other centers. Second,
miRNAs have many types, and only a small number was detected
in this study. Secondly, there are many types of miRNAs, only a
small amount was detected in this study, although this part of
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TABLE 3 Performance of different MVI prediction models.

10.3389/fonc.2024.1371432

Models N N10Y14Y Specificity Accuracy F1-score
Maximum tumor length
Training cohort 0.658 (0.551-0.764) 0.987 0.256 0.698 0.835
Validation cohort 0.632 (0.465-0.799) 0.764 0.555 0.692 0.764
Rad-score
Training cohort 0.836 (0.763-0.909) 0.688 0.871 0.750 0.785
Validation cohort 0.704 (0.551-0.857) 0.647 0.833 0.711 0.746
MiRNA-21
Training cohort 0.907 (0.866-0.949) 0.827 0.865 0.843 0.875
Validation cohort 0.881 (0.763-0.998) 0911 0.777 0.865 0.898
Nomogram
Training cohort 0.942 (0.899-0.985) 0.805 0.948 0.853 0.832
Validation cohort 0.900 (0.808-0.992) 0.970 0.722 0.884 0916

AUQG, area under the ROC curve.

miRNAs has been shown to be associated with HCC caused by
hepatitis B virus (HBV) (17), and the vast majority of patients we
included are accompanied by HBV infection, but the effect of this
data on HCC caused by non-HBYV is unknown, so the results may
only be valuable for HBV-associated HCC, in addition, whether
there is genomic data with better performance than miR-21 needs
to be further explored and verified. Third, miRNA is still a
developing biomarker and is reported to have low
reproducibility (30). Although we strictly follow standard
procedures in the process of extracting miRNA, miRNA data
stability is susceptible to a variety of factors such as limited

amount of analyte before analysis, cell contamination, risk of
inhibition, etc., which may introduce some bias into the final
result. It is believed that with the development of liquid biopsy
technology, the reproducibility and stability of miRNA data will
be improved, so as to be used for robust clinical prediction.
Fourth, MVI involves the tumor edge, but only the internal
characteristics of the tumor were analyzed, and the ROI outside
the tumor, especially around the tumor, was not expanded. In
some studies (10, 31, 32), radiological features were extracted by
expanding the ROI, achieving good results. This method is also a
part of the follow-up research that needs to be further improved.
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Heatmap showing statistical differences between different models in the validation cohort. The nomogram model outperforms the maximum tumor
diameter model and the radiomics scoring model, and the differences are statistically significant (P < 0.05). The AUC value of the nomogram model
is slightly higher than that of the miR-21 model, although the difference is not statistically significant (P = 0.464).
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Conclusion

The radiogenomic nomogram exhibited promising preoperative
predictive capabilities and clinical decision-making implications in
forecasting microvascular invasion (MVI) in hepatocellular
carcinoma (HCC). This model holds the potential to emerge as a
biomarker for MVI in HCC in the future, though its efficacy
necessitates further validation through extensive studies
encompassing larger sample sizes from multiple centers.
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Prediction of clear cell renal
cell carcinoma < 4cm:
visual assessment of
ultrasound characteristics
versus ultrasonographic
radiomics analysis
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Jie Mu™?, Hai-Ling Wang™?, Liang Pang?, Shi-Qiang Yang*,
Xi Wei*** and Chun-Wei Liu**
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Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University,
Tianjin, China, *Department of Urology, Tianjin Occupational Diseases Precaution and Therapeutic
Hospital, Tianjin, China, “Department of Urology, Tianjin First Central Hospital, Tianjin, China,
SDepartment of Cardiology, Tianjin Chest Hospital, Tianjin University, Tianjin, China

Objective: To investigate the diagnostic efficacy of the clinical ultrasound
imaging model, ultrasonographic radiomics model, and comprehensive model
based on ultrasonographic radiomics for the differentiation of small clear cell
Renal Cell Carcinoma (ccRCC) and Renal Angiomyolipoma (RAML).

Methods: The clinical, ultrasound, and contrast-enhanced CT(CECT) imaging
data of 302 small renal tumors (maximum diameter < 4cm) patients in Tianjin
Medical University Cancer Institute and Hospital from June 2018 to June 2022
were retrospectively analyzed, with 182 patients of ccRCC and 120 patients of
RAML. The ultrasound images of the largest diameter of renal tumors were
manually segmented by ITK-SNAP software, and Pyradiomics (v3.0.1) module in
Python 3.8.7 was applied to extract ultrasonographic radiomics features from
ROI segmented images. The patients were randomly divided into training and
internal validation cohorts in the ratio of 7:3. The Random Forest algorithm of the
Sklearn module was applied to construct the clinical ultrasound imaging model,
ultrasonographic radiomics model, and comprehensive model. The efficacy of
the prediction models was verified in an independent external validation cohort
consisting of 69 patients, from 230 small renal tumor patients in two different
institutions. The Delong test compared the predictive ability of three models and
CECT. Calibration Curve and clinical Decision Curve Analysis were applied to
evaluate the model and determine the net benefit to patients.

Abbreviations: ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-
enhanced CT; ROI, region of interest; AUC, Area under the ROC curve; GLCM, gray level cooccurrence
matrix; GLRLM, gray-level run-length matrix; GLSZM, gray level size zone matrix; GLDM, gray level
dependence matrix; ICCs, Interclass and intraclass correlation coefficients; MRMR, max-relevance and min-

redundancy; VIF, Variance Inflation Factor; RFA, Random forest algorithm.
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Results: 491 ultrasonographic radiomics features were extracted from 302 small
renal tumor patients, and 9 ultrasonographic radiomics features were finally retained
for modeling after regression and dimensionality reduction. In the internal validation
cohort, the area under the curve (AUC), sensitivity, specificity, and accuracy of the
clinical ultrasound imaging model, ultrasonographic radiomics model,
comprehensive model, and CECT were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,
61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%, 91.1%, respectively.
In the external validation cohort, AUC, sensitivity, specificity, and accuracy of the
three models and CECT were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%;
0.90, 85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively. The DeLong
test showed no significant difference between the clinical ultrasound imaging model
and the ultrasonographic radiomics model (Z=-1.287, P=0.198). The comprehensive
model showed superior diagnostic performance than the ultrasonographic
radiomics model (Z=4. 394, P<0.001) and the clinical ultrasound imaging model
(Z=4.732, P<0.001). Moreover, there was no significant difference in AUC between
the comprehensive model and CECT (Z=-0.252, P=0.801). Both in the internal and
external validation cohort, the Calibration Curve and Decision Curve Analysis
showed a better performance of the comprehensive model.

Conclusion: It is feasible to construct an ultrasonographic radiomics model for
distinguishing small ccRCC and RAML based on ultrasound images, and the
diagnostic performance of the comprehensive model is superior to the clinical
ultrasound imaging model and ultrasonographic radiomics model, similar to that
of CECT.

KEYWORDS

small renal tumor, clear cell renal cell carcinoma, ultrasound, radiomics,
renal angiomyolipoma

Introduction

With the improvement of imaging techniques, the incidence of
renal cell carcinoma (RCC) has been steadily increasing at a rate of
2%-4% every year (1), among which the proportion of patients
diagnosed with small RCC (diameter < 4 cm) has been constantly
increasing (2). Recently, small renal tumors have become a hot topic
in research. About 20-30% of small renal tumors are benign, and
renal angiomyolipoma (RAML) is the most common pathology
type (3). Clear cell renal cell carcinoma (ccRCC) is the most
common pathology type of RCC. There’s a lack of typical
malignant ultrasound features (necrosis or tumor embolism) in
small renal tumors less than 4cm, which makes it difficult to
discriminate small ccRCC from RAML. The low-fat content results
in hypoechoicity on ultrasound in fat-poor renal angiomyolipoma
(fpRAML), similar to small renal carcinomas. Transabdominal
ultrasonography is a common method in preoperative imaging
examination of renal tumors, but the small renal tumors may be
ignored due to the above sonographic characteristics.

In clinical practice, the identification of ccRCC and RAML is
mainly based on contrast-enhanced CT (CECT). However, CECT is
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an invasive procedure involving intravenous contrast injection,
making it unsuitable for patients with renal dysfunction or iodine
contrast allergies. Ultrasonography examination is widely used in
clinical practice and is inexpensive, feasible, and reproducible.
Moreover, the small ccRCC may be untypical on CECT, and their
presentation could be easily confused with RAML, especially low-fat
RAML (4). In case of an unclear diagnosis, a repeated examination
is required during the follow-up period. So, repeated ultrasound
examinations may be more acceptable to these patients.
Improvement of the ultrasound diagnostic capability in clinical
physical examination will be beneficial.

With the development of artificial intelligence, radiomics
prediction models have gained attention in cancer diagnosis (5, 6).
Radiomics can extract inaccessible feature data from medical images
with high throughput and has great application prospects in
predicting the biological behavior of tumors (7, 8). In recent years,
few studies have been reported on ultrasonographic radiomics to
identify small ccRCC. It is unclear whether the diagnostic
performance could be improved using ultrasonographic radiomics
in these patients. In this current study, we investigated the feasibility
of ultrasonographic radiomics to discriminate ccRCC and RAML by
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constructing a clinical ultrasound imaging model, ultrasonographic
radiomics model, and comprehensive model. We also compared the
diagnostic efficacy between the above models and CECT.

Materials and methods
Study population

This retrospective study was approved by the ethics committee of
Tianjin Medical University Cancer Institute and Hospital (bc2023079).
From June 2018 to June 2022, 385 small renal tumor patients with a
histological examination at Tianjin Medical University Cancer Institute
(institution 1) were retrospectively recruited to construct training and
internal validation cohorts of the model. Another 230 small renal
tumor patients with a histological examination from Tianjin First
Central Hospital, and Tianjin Occupational Diseases Precaution and
Therapeutic Hospital (institutions 2 and 3) were retrospectively
recruited, constituting an independent external validation cohort to
verify the efficacy of the prediction model. The inclusion criteria were
as follows: (1) patients performed an ultrasonic examination and CECT
within 2 weeks before the operation, and the images of the tumor’s
largest diameter were clear, (2) the diagnosis of ccRCC or RAML was
confirmed by postoperative pathology, (3) patients had no previous
history of other malignancies, (4) maximum diameter of renal tumor <
4cm. The excluding standards were as follows: (1) there were significant
artifacts in the ultrasound or CT images, (2) tumor components were
predominantly cystic (the solid component was less than 25%) (9), and
(3) incomplete clinical information on patients. As a result, 302 patients
with 302 small renal tumors were finally enrolled in our study to
construct ultrasonographic radiomics models and internal validation;
and 69 patients for external validation (Figure 1). Patients in institution
1 were divided into the ccRCC group (n = 182; 107 men and 75
women; mean age 56.85 + 10.71 years) and RAML group (n = 120; 57
men and 63 women; mean age 53.64 + 12.23 years). The mean age of
the external validation cohort was 55.72 + 14.58 years (38 men and
31 women).

Ultrasonography and CT scanning methods
and image analysis

Color Doppler ultrasonic diagnostic apparatus of PHILIPS
EPIQ5, Toshiba Aplio 500, and 800 were used. Transabdominal
ultrasound was performed using a convex array probe with 1~6MHz.
Patients should be fasting for 8-12 hours to show the largest section of
tumors clearly. We performed a multisectional examination of both
kidneys in the supine, lateral, or prone position. Ultrasonographic
features of renal tumors were recorded, including tumor location,
maximum diameter, tumor boundaries, echo pattern, presence of
calcifications, necrotic cystic degeneration, and blood flow signals.

Preoperative CECT was performed on multiple scanners:
Siemens Somatom Definition, GE HiSpeed 16, and Philips
Brilliance 64. Acquisition parameters were as follows: tube voltage,
120-140 kV; automated varied milliampere-second settings;
collimation width, 1.5 mm. CT and CECT features included fat
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density assessment, peak enhancement degree, homogeneity of
enhancement, and the velocity of contrast in and out.
Ultrasonographic and CECT imaging were independently
assessed by two sonographers and two radiologists (all with more
than 10 years of experience). They were blinded to the pathology
results. When the diagnostic results were inconsistent, they reached
a consensus through discussion. Clinical information of these
patients was recorded, including sex, age, and clinical symptoms.

Segmentation and pre-processing of
ultrasound images

The framework of this study is illustrated in Figure 2. Ultrasound
images of the largest renal tumor cross-section were imported into
ITK-SNAP software (version v 3.8.0, www.itksnap.org), and the tumor
edges were manually outlined as the region of interest (ROI) by
sonographer A with more than 10 years’ experience (Figure 3). Two
weeks later, sonographer A and sonographer B (with 5 years of
experience) made ROI outlining from 50 renal tumor images
randomly, to assess intra- and inter-observer correlation
coefficients (ICCs).

Radiomics features extraction

Z-Score was performed to standardize the data of different
orders before radiomics feature extraction. The Pyradiomics
module of Python 3.8.7 (v3.0.1) was used to extract the radiomics
features of ROIs, including shape-based features, first-order
features, and structural texture features. The structural texture
features included a gray level cooccurrence matrix (GLCM), gray
level run-length matrix (GLRLM), gray level size zone matrix
(GLSZM), and gray level dependence matrix (GLDM). ICCs were
used to evaluate the agreement of feature extraction. The intra-
observer ICC was calculated based on two feature extractions by
sonographer A, and inter-observer ICC was calculated based on the
features extracted firstly by sonographer A and subsequently by
sonographer B. Features with better consistency (ICC > 0.9) were
retained. The maximum relevance-minimum redundancy features
were obtained by max-relevance and min-redundancy (MRMR)
algorithm filtering. The covariance between ultrasound features was
assessed by calculating the Variance Inflation Factor (VIF). Finally,
the high-stability radiomics features were subjected to Spearman’s
correlation analysis, with a correlation coefficient threshold of 0.7.

Construction of ultrasonographic
radiomics model

The patients were randomly divided into training and internal
validation cohorts in the ratio of 7:3. The Random forest algorithm
(RFA) of the Sklearn module (Python 3.8.7) was applied to
construct the clinical ultrasound imaging model, ultrasonographic
radiomics model, and comprehensive model, to predict diagnostic
efficacy for small ccRCCs. Both feature extraction and model
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FIGURE 1

Flowchart of inclusion and exclusion of the study population.

construction used ten-fold cross-validation and parameter tuning to
optimize the predictive performance.

Statistical analysis

All data were analyzed using the SPSS Statistics software version
23.0 (IBM, Armonk, NY, USA), Python3.8.7 and R software version
4.2.2. All categorical variables were expressed as numbers(n) and
percentages, and continuous variables were expressed as mean value
+ standard deviation (SD) or median + inter-quartile range (IQR). x*
test was used to compare the clinical ultrasound characteristics between
patients in ccRCC and RAML groups. The diagnostic ability of the
ultrasound imaging model, ultrasonographic radiomics model,
comprehensive model, and CECT for ccRCC were assessed by the
receiver operating characteristic (ROC) curve, and the area under the
curve (AUC), sensitivity, specificity, and accuracy of three models and
CECT were calculated separately. The AUC values of different models
and CECT were compared by the Delong test. The performance of the
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three models was evaluated by the Calibration Curve. Clinical Decision
Curve Analysis was also applied to determine the net benefit of
patients. P<0.05 was considered statistically significant.

Results

Comparison of clinical ultrasound and
CECT characteristics

In this study, 302 small renal tumor patients, comprising 182
with ccRCC and 120 with RAML, were enrolled as the training and
internal validation cohorts. There were significant differences in the
distribution of gender, clinical symptoms, echo pattern, necrotic
cystic degeneration, blood flow signals, CT presence of bulk fat, and
homogeneity of enhancement, but no significant differences in age,
location, tumor boundaries, calcification, peak enhancement
degree, existent of fast-in and fast-out between the two groups
(P<0.05, Table 1; Figures 4-6).
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A. Image segmentation

B. Features extraction

C. Features selection

D. Modeling and Analysis

FIGURE 2
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The main procedure performed in this study comprised four steps: (A) ultrasound imaging and tumor segmentation, (B) image processing and
feature extraction, (C) feature selection, and (D) modeling, and Analysis.
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FIGURE 3

The renal tumor edge was outlined as the region of interest by ITK-SNAP software.
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TABLE 1 Clinical ultrasound and CECT characteristics of 302 small renal tumor patients.

ccRCC (n=182) RAML (n=120) X2
Gender
Male 105 (57.7%) 57 (47.5%)
3.021 0.082
Female 77 (42.3%) 63 (52.5%)
‘ Age
<50 years old 43 (23.6%) 34 (28.3%)
0.843 0.358
>50 years old 139 (76.4%) 86 (71.7%)
‘ Clinical symptoms
Hematuria 29 (15.9%) 8 (6.7%)
5.777 0.016
No hematuria 153 (84.1%) 112 (93.3%)
Ultrasound characteristics
Location
Left kidney 101 (55.5%) 59 (49.2%)
1.162 0.281
Right kidney 81 (44.5%) 61 (50.8%)
‘ Tumor boundaries
Clear 140 (76.9%) 95 (79.2%)
0.211 0.646
Unclear 42 (23.1%) 25 (20.8%)
‘ Echo pattern
Hypoechoic 87 (47.8%) 31 (25.8%)
Isoechoic 39 (21.4%) 28 (23.3%) 16.566 0.000
Hyperechoic 56 (30.8%) 61 (50.9%)
‘ Calcification
Existent 38 (20.9%) 15 (12.5%)
3.509 0.061
Non-existent 144 (79.1%) 105 (87.5%)
‘ Necrotic cystic degeneration
Existent 44 (24.2%) 9 (7.5%)
13.898 0.000
Non-existent 138 (75.8%) 111 (92.5%)
‘ blood flow signals
Existent 102 (56.0%) 51 (42.5%)
5.307 0.021
Non-existent 80 (44.0%) 69 (57.5%)
CT and CECT characteristics
Presence of bulk fat
Existent 73 (40.1%) 76 (63.3%)
15.604 0.000
Non-existent 109 (59.9%) 44 (36.7%)
Peak enhancement degree
hyper- enhancement 116 (63.7%) 87 (72.5%)
2.521 0.112
iso-/hypo-enhancement 66 (36.3%) 33 (27.5%)
(Continued)
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TABLE 1 Continued

10.3389/fonc.2024.1298710

| cRCC(n=182) RAML (n=120) 72 P

Homogeneity of enhancement
homogeneous 78 (42.9%)
inhomogeneous 104 (57.1%)
Fast-in and fast-out
Existent 103 (56.6%)

Non-existent 79 (43.4%)

P-values indicate comparisons between ccRCC and RAML groups.

69 (57.5%)

6.207 0.013

51 (42.5%)

62 (51.7%)

0.708 0.400

58 (48.3%)

ccRCC, clear cell Renal Cell Carcinoma; RAML, Renal Angiomyolipoma; CECT, contrast-enhanced CT.

Selection of ultrasonographic
radiomics features

The Pyradiomics software package extracted 491 ultrasonographic
radiomics features. 9 ultrasonographic radiomics features were finally
retained after regression dimensionality reduction processing,
including 3 Shape, 1 GLRLM, 3 GLSZM, and 2 GLDM features.
Spearman correlation heatmap of radiomics features is shown
in Figure 7.

Diagnostic efficacy of predictive models

In the internal validation cohort, AUC, sensitivity, specificity, and
accuracy of the clinical ultrasound imaging model, ultrasonographic
radiomics model, comprehensive model, and CECT for c¢cRCC
diagnostic prediction were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%,
61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%,
91.1%, respectively. In the external validation cohort, AUC,
sensitivity, specificity, and accuracy of the three models and CECT
were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%; 0.90,
85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively

(Figure 8; Table 2). In the internal validation cohort, the DeLong test
demonstrated no significant difference in AUC between the clinical
ultrasound imaging model and ultrasonographic radiomics model
(Z=-1.287, P=0.198), whereas the comprehensive model was superior
to the ultrasonographic radiomics model (Z=4. 394, P<0.001) and
clinical ultrasound imaging model (Z=4. 732, P<0.001). Moreover,
there was no significant difference in AUC between the
comprehensive model and CECT (Z=-0.252, P=0.801). The
Calibration curve indicated a better performance of the
comprehensive model (Figure 9), while Decision Curve Analysis
showed a superior clinical utility of the comprehensive
model (Figure 10).

Discussion

The clinical symptoms are usually untypical in patients with
small ccRCC. Many patients are discovered incidentally during
radiologic examinations (10, 11). It is also more complex
considering clinical decision-making (12-14), including a
variety of interventions available for these patients: renal tumor
biopsy, partial nephrectomy, radical nephrectomy, thermal

FIGURE 4

A 74-year-old man with a 1.9 x 1.4cm RAML. (A) Ultrasound demonstrated a mildly hyperechoic mass located in the middle pole of the right kidney
(arrow). (B) CECT: the mass showed inhomogeneous hyperenhancement (arrow).
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FIGURE 5

A 43-year-old man with a 3.5 X 3.4cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows).

ablation, and follow-up monitoring (6, 15, 16). Therefore, the
evaluation of imaging features of renal tumors has gradually
evolved from morphological presentation to criteria based on
histological features and molecular typing features (17, 18).
Radiomics can quantitatively assess the heterogeneity of tumors
and can be applied to differentiate renal carcinoma from RAML,
assess the biological behavior of tumors, and predict the risk of
recurrence or survival (19-21). Several studies have reported
radiomics models established by CT or MR images,
demonstrating their utility in identifying benign and malignant
renal tumors and predicting pathological grading (22-25).
However, reports on the establishment of radiomics models of
ultrasound, the most convenient imaging examination for
screening renal tumors, are rather rare.

In this study, the sensitivity of the internal validation cohort of
the clinical ultrasound imaging model for the prediction of ccRCC

was 76.7% and the accuracy was 70.0%. Although there were
statistically significant differences in gender, clinical symptoms,
echo pattern, necrotic cystic degeneration, and blood flow signals
between patients in the ccRCC group and RAML group, 30.0% of
small renal carcinomas were still misdiagnosed in this model. The
reason may be that patients with small ccRCC do not have the
specificity of clinical presentation and have a complex and varied
pathohistological structure. Whereas ccRCC and fpRAML may
exhibit some similar ultrasound characteristics (26, 27). The
comprehensive model showed superior ability in predicting
ccRCC, with 91% of sensitivity and 77% of specificity. The
model extracted 491 ultrasonographic radiomics features, which
were processed by regression dimensionality reduction, and finally
retained 9 stable ultrasonographic radiomics features. Among
them, Shape features described the morphological information
of renal tumors. Major axis length, Mesh volume, and Sphericity

FIGURE 6

A 64-year-old man with a 3.2 x 2.8cm ccRCC. (A) Ultrasound showed a heterogeneous hypoechoic mass with intratumoral fluid areas located at the
upper pole of the right kidney (arrows). (B) CECT: the tumor showed inhomogeneous hyperenhancement with many unenhanced areas (arrows)
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Correlation heatmap of radiomics features
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FIGURE 7
Spearman correlation heatmap of renal tumor ultrasonographic radiomics features. The color indicates a correlation: the darker the color, the higher
the correlation (red indicates a positive correlation, and blue indicates a negative correlation).

described the similarity of renal tumor morphology to the information about the number of “dependent” pixels and the
standard sphere. Renal tumors in the RAML group had a  number of occurrences of all pixels in the image. All the above
smaller long-axis length and were closer to spherical than those  three features belonged to texture features, which suggested that
in the ccRCC group. GLSZM was a count of the number of groups  the tumors in the ccRCC group had poor texture consistency and a
of interconnected neighboring pixels or voxels with the same gray  significant effect of non-periodic or speckled texture in ultrasound
level form the basis for the matrix (28). GLRLM provided images compared to those in the RAML group. These findings
information about the spatial distribution of runs of consecutive  indicated higher tumor heterogeneity in ccRCC. Compared with
pixels with the same gray level, assessing the percentage of pixels ~ the RAML group, tumors in the ccRCC group had more irregular
or voxels within the ROI that are part of the runs and therefore ~ morphology, wider image signal distribution, and rougher texture
reflect graininess (29). GLDM was also a count matrix that holds  features. So, combining ultrasonographic radiomics features and
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FIGURE 8
ROC curves of clinical ultrasound imaging model, ultrasonographic radiomics model,. and comprehensive model in the internal (A) and external
(B) validation cohort.
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TABLE 2 Comparison of the predictive efficacy of clinical ultrasound imaging model, ultrasonographic radiomics model, comprehensive model, and
CECT in the internal and external validation cohorts.

Internal validation cohort (n=90)

External validation cohort (n=69)

Model AUC (95%Cl) @ Sensitivity Specificity Accuracy
Clinical ultrasound imaging model 0.75 (0.70-0.81) 76.7% 60.0% 70.0%
Ultrasonographic radiomics model 0.80 (0.75-0.85) 85.6% 61.7% 76.0%
Comprehensive model 0.88 (0.84-0.93) 90.6% 76.7% 85.0%
CECT 0.90 (0.84-0.98) 92.6% 88.9% 91.1%
Clinical ultrasound imaging model 0.73 (0.66-0.79) 67.5% 69.1% 68.3%
Ultrasonographic radiomics model 0.89 (0.85-0.93) 86.7% 80.0% 83.5%
Comprehensive model 0.90 (0.86-0.94) 85.0% 85.5% 85.2%
CECT 0.91 (0.87-0.95) 94.6% 88.3% 91.3%
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clinical ultrasound imaging features, the comprehensive model
showed better diagnostic efficacy. The comprehensive model
improved the sensitivity and accuracy of ccRCC prediction to
90.6% and 85.0%, which was similar to previous studies (20, 30-
32). Our study suggested that ultrasonographic radiomics features
could compensate for the shortcomings of clinical ultrasound
imaging features and improve the predictive efficacy of small
ccRCC. The Calibration Curve and Decision Curve Analysis of the
three models also validated that the comprehensive model had a
higher net benefit and a better performance in predicting patients
with small ccRCC.

Our study had several improvements compared with the
previous radiomics studies. Firstly, we compared the diagnostic
efficacy between ultrasonographic radiomics models and CECT.
Both of the these methods have high diagnostic efficiency and there
was no significant difference between the comprehensive model and
CECT. Moreover, an external validation cohort was used to assess
the diagnostic performance of different models. The AUC of the
comprehensive model was 0.90 in the external validation cohort,
demonstrating a good predictive ability and robustness on new data.
Thus, the comprehensive model based on ultrasonographic
radiomics and clinical ultrasound imaging features could provide
a convenient, inexpensive, and radiation-free examination for small
ccRCC patients.

In this study, we applied a “multivariate filtering” feature
selection method, the MRMR algorithm, to maximize the
correlation between the imaging features and the prediction
target as far as possible. Meanwhile, the correlation between the
individual features was minimized as far as possible, with the help
of high computational speed and high discriminative power.
Features were selected from multiple perspectives to minimize
information loss in our study, thus avoiding overfitting or
underfitting of the predictive model. Moreover, we used the
same ratio to divide the training and validation cohort in both
ccRCC and RAML, to ensure the stability of the prediction results.
Finally, we chose random forests to build the model classifiers to
ensure high overfitting resistance and stability.

There are several limitations in this study. Firstly, the cases in
this retrospective study are only from three medical institutions,
and the results of the study may be subject to selection bias.
Secondly, the ultrasound and CECT images in this study are from
different diagnostic apparatuses, and there may be heterogeneity in
the study images. In addition, the manual segmentation of outlining
the ROI may reduce the reproducibility of this study. In the future,
we will verify the stability of the results through multicenter
prospective studies.

In conclusion, It is feasible to establish a diagnostic prediction
model by ultrasonographic radiomics features in ccRCC and RAML
with a maximum diameter of <4 c¢cm, and we find that
ultrasonographic radiomics features have great potential in
identifying tumor heterogeneity in these patients. The
comprehensive model showed a superior diagnostic ability in
identifying ccRCC, which was similar to that of CECT, providing
valuable information for clinicians to make personalized

treatment decisions.
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The Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University,
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Vessel density within tumor tissues strongly correlates with tumor proliferation
and serves as a critical marker for tumor grading. Recognition of vessel density by
pathologists is subject to a strong inter-rater bias, thus limiting its prognostic
value. There are many challenges in the task of object detection in pathological
images, including complex image backgrounds, dense distribution of small
targets, and insignificant differences between the features of the target to be
detected and the image background. To address these problems and thus help
physicians quantify blood vessels in pathology images, we propose Pathological
Images-YOLO (PI-YOLO), an enhanced detection network based on YOLOv7. PI-
YOLO incorporates the BiFormer attention mechanism, enhancing global feature
extraction and accelerating processing for regions with subtle differences.
Additionally, it introduces the CARAFE upsampling module, which optimizes
feature utilization and information retention for small targets. Furthermore, the
GSConv module improves the ELAN module, reducing model parameters and
enhancing inference speed while preserving detection accuracy. Experimental
results show that our proposed PI-YOLO network has higher detection accuracy
compared to Faster-RCNN, SSD, RetinaNet, YOLOV5 network, and the latest
YOLOV7 network, with a mAP value of 87.48%, which is 2.83% higher than the
original model. We also validated the performance of this network on the ICPR
2012 mitotic dataset with an F1 value of 0.8678, outperforming other methods,
demonstrating the advantages of our network in the task of target detection in
complex pathology images.

KEYWORDS

pathological images, blood vessel, deep learning, object detection,
attention mechanism
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1 Introduction

The growth of most tumors is highly correlated with new blood
vessels (1). Rapid tumor cell proliferation often results in hypoxia
and malnutrition, prompting the formation of new blood vessels to
fulfill the increased metabolic demands of tumors (2). According to
the tumor angiogenesis switch hypothesis, when tumors grow to a
diameter of 1-2 mm, they frequently trigger the expression of
angiogenesis-related factors, initiating the formation of a new
vascular network that promotes tumor growth and development.
Blocking angiogenesis and tumor growth is an effective approach to
treating tumors, such as colorectal cancer, lung cancer, and breast
cancer (3). Further studies have revealed that quantitative analysis
of blood vessels in tumors can help physicians determine tumor
grade and predict patient prognosis (4). This, in turn, supports the
development of more rational and effective treatment strategies.
Therefore, there is a pressing need for a rapid and precise method to
detect blood vessels within tumors.

In the past, there were three main methods for detecting blood
vessels within tumors. However, none of these methods employed
computer-based automatic detection due to issues such as limitations
in imaging equipment. The first method involves the utilization of
immunohistochemistry technology to selectively label specific
antibodies targeting vascular endothelial cells, such as F8-RA,
CD31, CD34, CD105 (5). Researchers then count the positive cells
per unit area under a microscope. This method is one of the earliest
approaches used for quantitative analysis of tumor vasculature and
currently stands as the gold standard for such analysis (6). However,
it requires manual selection of the area with the highest vessel density
for counting, making it susceptible to subjective influences. The
second method entails the use of target-enhanced ultrasound
imaging of molecular markers that are overexpressed during
angiogenesis (7), enabling indirect quantitative analysis of blood
vessels. This approach has advantages such as low detection costs
and real-time imaging capabilities but is limited by low detection
sensitivity and limited penetration. The third method involves the
targeted introduction of magnetic contrast agents into the tumor
region, followed by high-resolution imaging of blood vessels within
the tumor using MRI technology (8). This method, while capable of
producing detailed images, demands sophisticated equipment and
longer imaging times, thus limiting its clinical applicability.

In recent years, the field of histopathology has achieved
significant advances through electron microscopic imaging,
enabling pathologists to perform high-resolution tumor
vascularization through digitized whole slide images (WSIs) (9). In
addition, rapid advances in artificial intelligence technologies,
particularly deep learning, have provided powerful tools for
automated tissue section analysis, promising to provide more
accurate and consistent results than traditional manual evaluations
and to reduce the workload of pathologists. Artificial intelligence
algorithms have been developed to identify and quantify vascular
features such as density, morphology, and spatial distribution, which
are often challenging for human observers (10). Studies have
demonstrated the feasibility and efficacy of Al for vascular
detection in histological sections of a wide range of malignancies,
helping to improve the accuracy of lymphovascular invasion
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detection, predict lymph node metastasis, and identify new
morphological features with prognostic value (11). However,
implementing Al-based vascular testing in clinical practice still
faces a number of challenges, including the need for larger and
more diverse datasets, and optimizing algorithms for better and faster
testing performance so that testing models can be integrated with
existing pathology workflows (12).

In response to challenges posed by small target proportions,
complex image backgrounds, and subtle feature differences in
pathology images, we propose a YOLOv7-based detection network
for object detection in pathology images (13). Our approach also
prioritizes meeting the speed requirements of clinical applications.
The model fuses the BiFormer (14) attention mechanism, the
lightweight generalized upsampling operator CARAFE (15) and a
new lightweight convolutional technique GSConv (16) into the
YOLOv7 model. The proposed model significantly enhances the
accuracy of blood vessel detection in pathology images and offers
an effective solution for target detection in pathology images.

The contributions of this paper are as follows:

1. This article proposes an improved object detection network
model for pathological images based on YOLOv7. We fused the
BiFormer attention mechanism, the CARAFE upsampling operator,
and GSConv into the YOLOv7 model. This fusion concept
effectively enhances detection accuracy and accelerates the blood
vessel detection process in pathology images, offering an efficient
solution for the task of target detection in pathology images.

2. On the Blood vessel detection dataset, PI-YOLO achieves a
mean Average Precision (mAP) value of 87.48%, which is 2.83%
higher than the original model. On the ICPR2012 Mitosis detection
dataset, the F1 score reaches 0.8678. PI-YOLO outperforms other
methods on both datasets, demonstrating superior detection
accuracy and faster inference speed (17).

3. Extensive comparative and ablation experiments have
provided both quantitative and qualitative verification of this
model’s superiority in vascular detection tasks within pathological
images from various perspectives. The outcomes of this study are
anticipated to be valuable for researchers in the fields of anti-
angiogenic therapy for tumors and tumor prognosis prediction.

2 Related work

At present, classical object detection networks can be broadly
categorized into two groups: anchor-based and anchor-free. The key
distinction lies in the fact that anchor-based methods require the
prior definition of anchor boxes, whereas anchor-free methods do not
necessitate this step. One-stage anchor-based approaches,
exemplified by YOLOv3 (18) and RetinaNet (19), are capable of
directly performing regression and classification tasks for bounding
boxes. These methods produce outputs in the form of regression
parameters (anchor offsets) and category confidences. On the other
hand, the mainstream two-stage anchor-based methods, such as
Faster RCNN (20) and Mask RCNN (21), initially generate
proposals and subsequently conduct regression and classification
tasks for the bounding boxes. Similarly, a variety of anchor-free
techniques have been developed, including CornerNet (22) and FSAF

frontiersin.org


https://doi.org/10.3389/fonc.2024.1347123
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

(23). Among these, CornerNet is a classic example of the keypoint
detection network, while FSAF incorporates a feature selection
anchor-free module to achieve anchor-free object detection. While
these conventional networks have delivered promising results in the
context of natural images, their performance will be constrained
when applied to the unique characteristics of pathological images
during the detection process.

Pathological diagnosis, as the gold standard for cancer diagnosis,
provides comprehensive information about tumors. In recent years,
deep learning methods have been widely applied in the detection and
segmentation of micro vessels in pathological images. Traditional
methods rely on immunohistochemistry (IHC) staining and manual
counting, which are not only time-consuming and labor-intensive
but also highly subjective. To address these issues, Yi et al. (24)
developed an automated detection method based on fully
convolutional networks (FCNs). This method leverages deep
learning to achieve end-to-end image training and pixel-level
prediction, significantly improving detection efficiency. However,
limitations such as small dataset sizes and high false-positive rates
remain significant drawbacks. To further enhance detection accuracy
and reliability, Fraz et al. (25) proposed a method for micro vessel
segmentation in H&E-stained histological images. This method
incorporates an uncertainty prediction mechanism that generates
uncertainty maps by introducing random transformations during
testing, highlighting areas where the network’s predictions are
uncertain, thus improving segmentation confidence. Additionally,
they developed a novel Feature Attention-Based Network (FABnet)
(26) for the simultaneous segmentation of micro vessels and nerves.
FABnet combines feature attention modules and uncertainty
prediction mechanisms to focus on salient features and perform
multi-scale feature extraction, achieving more precise segmentation.
Despite significant progress in accuracy and reliability, the
complexity of the network architecture and the need for multiple
random transformations increase computational costs. Furthermore,
the study primarily focuses on oral squamous cell carcinoma datasets,
lacking extensive validation across other cancer types. Additionally,
Generative Adversarial Networks (GANSs) have been introduced into
vascular detection. Atzori et al. (27) employed GANs to generate
synthetic ERG-stained images, reducing dependency on IHC
staining. Although GANs have shown impressive results in
improving image quality and accuracy, issues such as variability in
staining quality and limited training dataset sizes persist. All these
methods are based on segmentation approaches, which involve pixel-
level classification to distinguish blood vessel boundaries from the
background. While accuracy has been continuously improving, the
complexity of these models often results in slower processing speeds,
limiting their clinical practicality.

3 Materials and methods

3.1 Datasets

In this paper, two datasets are used for experiments. The
experiments on blood vessel detection in pathology images were
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performed on the blood vessel detection dataset we created, and the
comparison experiments on other detection tasks were performed
on the ICPR 2012 mitosis detection dataset (17).

3.1.1 Blood vessel detection dataset

Blood vessels exist in different tumor tissues. To make the
detection model applicable to various tumor tissues, we collect 36
WSIs from two institutions: TCGA (28) and the Guangzhou
Kingmed Center for Clinical Laboratory. The dataset comprises
twenty WSIs of breast cancer, eight WSIs of lung cancer, and eight
WSIs of colon cancer. Due to the typically large size of WSIs, we
divide them into patches measuring 512 x 512 pixels to facilitate
physician annotation and model training. Next, we use a pre-
trained classification model to screen out patches with blood
vessels. We select a total of 2000 patches containing blood vessels.
These patches are annotated by two experienced pathologists (with
more than five years of experience in pathology), and then reviewed
by expert pathologists (with more than ten years of experience in
pathology) after the annotation is completed.

The annotated dataset contains a total of 2000 images, including
4526 blood vessels. They were divided into training set, validation
set and test set according to the ratio of 7:2:1. The training set
contains 1400 images, including 3445 blood vessels. The validation
set consists of 400 images, which include 681 blood vessels. The test
set comprises the remaining 200 images, containing 400 blood
vessels. All datasets are stored in PNG format. Table 1 shows the
division of the datasets.

3.1.2 ICPR 2012 mitosis detection dataset

The ICPR 2012 mitosis detection dataset was introduced in the
ICPR 2012 competition, making it the first publicly available
mitosis detection dataset. This dataset consists of five H&E-
stained breast cancer biopsy slides. In each slide, a pathologist
selects 10 high-power fields (HPF) at 40x magnification, resulting in
a total of 50 HPFs in the dataset, which collectively contain more
than 300 cells undergoing mitosis. The slides were scanned using
various equipment, including an Aperio XT scanner (A scanner), a
Hamamatsu Nano Zoomer scanner (H scanner), and a 10-band
multispectral microscope. Each HPF’s mitotic cells were annotated
by a pathologist. For our experiments, we focused on data obtained
from the A scanner, which includes 50 RGB images. Out of these, 35
were allocated for training, and the remaining 15 were designated

TABLE 1 The partitioning of the dataset.

Name Proportion Number Number

of of

Pictures Blood

vessels
training set 70% 1400 3445
dataset validation 20% 400 681

set

test set 10% 200 400
total 100% 2000 4526
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for testing. Since the image size of 2084 x 2084 pixels isn’t suitable
for direct model training, we subdivided it into patches measuring
521 x 521 pixels, resulting in 243 images that contain a total of 323
mitotic cells. Of these, 195 were used for the training set, and the
remaining 48 were assigned to the test set.

3.2 The proposed PI-YOLO model

Since the background in pathology images typically occupies
the majority of the image area, and the target to be detected is often
small, it is essential to employ a network structure with global
modeling capabilities as the backbone. YOLOv7’s backbone
network consists of convolutional stacks. The feature maps in the
shallow layers of the network have a limited receptive field, allowing
them to capture only local features of the original image.
Conversely, the convolutional layers in the deeper network
possess a larger receptive field but require more complex
computations. BiFormer, a multi-head self-attention mechanism,
provides a broader field of view in the shallow layers of the network,
enabling it to capture global features. Its key idea lies in filtering out
most of the irrelevant key-value pairs at the coarse region level,
retaining only a small portion of the routing region. This
significantly reduces computational demands while maintaining
accuracy. In this paper, we propose a target detection method for
pathological images by incorporating the BiFormer attention
mechanism, CARAFE upsampling module, GSConv module, and
the YOLOvV7 network. We have enhanced, optimized, and
reconstructed the method. The overall network framework,
shown in Figure 1, consists of four main components: Input,
Backbone, Neck, and Prediction.

Backbone

10.3389/fonc.2024.1347123

3.2.1 Input layer

In the input layer, each training sample undergoes an initial
Mosaic data augmentation process. This process involves the
following steps: First, four different images are randomly selected
from the dataset. Each selected image is then individually flipped,
and its color gamut is adjusted. After these adjustments, the images
are randomly cropped. Next, these four augmented images are
combined into a single new image, forming a new training sample.
This Mosaic augmentation technique enriches the background
variations and generalizes the features used for detection.
Furthermore, the locations of the detection targets in these new
composite images are adaptively adjusted according to their original
positions in the selected images. By incorporating diverse
backgrounds, the model’s ability to detect targets in complex
environments is enhanced through training with these
augmented samples.

3.2.2 Backbone

The backbone network is a critical component for feature
extraction in our model. The original YOLOv7 backbone consists
of 50 modules, which include CBS modules, ELAN modules, and
MP1 modules. Specifically, there are four ELAN modules in the
network, as shown in Figure 2. Each ELAN module is composed of
six CBS modules. To enhance the feature extraction capability of the
backbone network, we have introduced the BiFormer attention
mechanism after the last CBS module of the last two ELAN
modules. The BiFormer attention mechanism is characterized by
dynamic sparse attention with a two-layer routing process. Its core
concept involves filtering out the least relevant key-value pairs at the
coarse area level. This process is carried out by constructing and
pruning an area-level directed graph. Subsequently, fine-grained

Prediction

BiFormer

20x20%(5+C)x3

40x40%x(5+C)x3

FIGURE 1

PI-YOLO Network architecture, including Input, Backbone, Neck, and Prediction. C in the Prediction module is the number of categories in

the dataset.
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FIGURE 2

Structure diagram of the model part of the module. In this diagram, (A) illustrates the combination of different convolution modules, where "k
represents the convolution kernel size, and “s” signifies the convolution step size. (B) outlines the essential configuration of the MP module, while
(C) provides an overview of the core structure of the ELAN module, (D) presents the layout of the SPPCSPC module, and (E) describes the

architecture of the REP module.

token-to-token attention is applied within the union of the routed
areas. The incorporation of the BiFormer attention mechanism
enables dynamic query-aware sparsity, allowing for more flexible
computational allocation and content awareness. This mechanism
not only preserves dependencies and location information across
different spatial regions but also significantly reduces computational
costs. The workflow of the enhanced backbone network can be
summarized as follows: Initially, input images pass through a series
of CBS modules for basic feature extraction. These features are then
fed into the ELAN modules, where the BiFormer attention
mechanism is applied to enhance the relevant feature maps.
Finally, the refined features proceed to subsequent network layers
for further processing and prediction tasks. This structured
approach ensures that the backbone network effectively captures
and utilizes critical spatial information, ultimately improving the
model’s overall performance in object detection tasks.

3.2.3 Neck and prediction layer

The neck network serves to disperse the multi-scale output
learned from the backbone network into multiple feature mappings,
and then integrates the learned multi-scale information. This is to
enhance the model’s ability to capture diverse information and
improve target detection performance. As shown in Figure 1, the
neck network adopts a PAFPN structure, which combines enhanced
components from FPN (29) and PANet (30) for feature extraction
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and fusion. In place of the original upsampling module, we
introduce a lightweight generalized upsampling operator called
CARAFE within the neck network. This operator expands the
receptive field without significantly increasing computational
demands or introducing excess parameters. It efficiently leverages
semantically relevant content from the feature map for upsampling.
Additionally, we employ the lightweight convolutional block
GSConv to enhance the ELAN module, reducing model
parameters, computational complexity, and size while preserving
rich features. Finally, after the input image undergoes two rounds of
feature extraction via the backbone and neck networks, the feature
information is amalgamated using repconv and transformed into
the final prediction information to generate the model’s
prediction results.

3.3 Attention for PI-YOLO

Due to the intricate backgrounds and a high prevalence of small
objects in pathological images, numerous detection models struggle
to effectively filter out background information. To shift the focus of
the detection model towards the essential information within the
input features while minimizing the influence of background data,
we incorporate a dynamic sparse attention mechanism known as
BiFormer into the backbone network of the model. This BiFormer
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attention mechanism, as utilized in this study, can be delineated
into two distinct phases.

The first phase initiates with coarse-grained attention,
emphasizing sparsity control, while the second phase performs
fine-grained attention based on the outcomes of the sparse
attention from the first phase. In the initial phase, the image is
partitioned into multiple coarse-grained blocks, upon which self-
attention is applied. This process computes correlations between
every two coarse-grained blocks using Q and K, resulting in a
relational matrix. Subsequently, this matrix is sparsified, retaining
only the top- k elements with the highest values, signifying pairs of
blocks that require further attention. In the subsequent phase,
building upon the sparse coarse-grained matrix from the first
stage, additional fine-grained self-attention is conducted. Each
patch exclusively engages in attention computations with patches
residing within other coarse-grained blocks that are associated with
the coarse-grained block it occupies in the first stage. The
implementation details are as follows:

BiFormer is built using Bi-Level Routing Attention (BRA) as the
basic building block. The implementation details of BRA are as
follows: given a 2D input feature map X & RF*W*C it is first
divided into S x S non-overlapping regions to obtain Q, K, V, the
related equation is as in (1):

Q=XWI, K=XW- v=xW" (1)

where W1, WK, WY € R™*¢  are projection weights for the
query, key, value, respectively.

Then the mean of Q and K is calculated to obtain the
corresponding Q", K" € R¥*C, and then the affinity adjacency
matrix A" € R¥*S between regions is obtained using transpose

multiplication, the related equation is as in (2):

10.3389/fonc.2024.1347123

Then use the topk operator to keep the k regions with the closest
relationships to obtain the region routing index matrix I", the
related equation is as in (3):

I" = topkIndex(A") (3)

After obtaining I, fine-grained Token-to-token attention can
be applied, as shown in the Figure 3.

First, collect all the routing regions indexed by all elements in I"
and collect all their K and V to obtain K9, V9 & RS *37C the
related equation is as in (4):

K? = gather(K,I"), V9 = gather(V,I") (4)

Then apply K9 and V9, which are the gathered key and value
tensor. Next, apply attention to the gathered key-value pairs as
follows (5):

O = Attention(Q,K9,V9) + LCE(V) (5)

Here, a local context enhancement term LCE(V) is introduced,
as described in (31). The function LCE( -) is parameterized using
deep separable convolution, and set the convolution kernel size to 5.
It follows the design of most vision transformer architectures, which
also use a four-stage pyramid structure, i.e., downsampling by a
factor of 32, as shown in Figure 4.

3.4 CARAFE for PI-YOLO

The up-sampling method adopted by YOLOV7 in the feature
fusion part is nearest neighbor interpolation up-sampling, which
determines the up-sampling kernel only by the spatial location of
pixel points, and does not utilize the semantic information of the
feature map, ignores the possible influence of surrounding feature

A" =Q (k"' (2)  points, and the perceptual field is small, and the quality of the image
kHW
C S2 c
w HW mm & 0
52 { Q softmax ;mm—J_'
H f_C“—
KHW] 1o Ve
S2
gather ’ ‘

FIGURE 3
The structure diagram of the BiFormer dynamic attention mechanism.
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Left: The overall architecture of BiFormer. Right: Details of a BiFormer Block.

after up-sampling is not high. In this paper, the CARAFE
lightweight up-sampling operator with a large perceptual field is
used to improve the neck, which can make good use of the semantic
information of the feature map.

CARAFE is divided into a kernel prediction module and a
content-aware reassembly module. The kernel prediction module is
responsible for generating the up-sampling reassembly kernel,
which predicts the attention weights for each up-sampling
location based on the mapping relationship between the down-
sampled feature map and the up-sampled location. These weights
are crucial for maintaining spatial details and contextual
information during the feature reassembly process. The content-
aware reassembly module focuses on retaining as much spatial
information as possible during the up-sampling process to better
preserve the accuracy of object boundaries. The structure of
CARAFE is shown in Figure 5.

The overall sampling process of CARAFE is as follows. Firstly,
for the input feature map y of shape Hx W x C, a 1x1
convolutional layer is used to compress the input channel from C
to C,, in order to reduce the parameter and computational cost of
the model. Next, a reorganization upsampling kernel of shape H X
W x C,, is obtained based on the feature map of shape H x W x
0® x k;, by using a convolutional layer as a content encoder for
predicting the upsampling kernel, where o is the upsampling
multiplicity and k,, is the size of the receptive field region for the
feature recombination process. Then the channel is expanded in the
spatial dimension to obtain the upsampling kernel of shape cH x
oW x kip, and finally the upsampling kernel is normalized so that
its convolutional kernel weights sum to 1. In the content-aware
reassembly module, for each position in the output feature map, it is
mapped back to the input feature map by taking the region centered
on the k,, x k,, region centered on it, and perform dot product
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The overall framework of CARAFE. CARAFE is composed of two key components, kernel prediction module and content-aware reassembly module.
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with the predicted upsampling kernel at that point to get the output
value. Different channels at the same location share the same
upsampling kernel, and finally the cH x oW x C upsampled
feature map y ' is obtained.

The CARAFE upsampling module enhances the ability of the
neck network for image feature extraction and fusion, thus
effectively addressing the challenges posed by the presence of a
large number of backgrounds and densely distributed small targets
in pathology images.

3.5 GSConv for PI-YOLO

Standard Convolution (SConv) operates on all three channels
simultaneously, where the number of convolution kernels and
channels matches the number of output and input channels,
respectively. Consequently, employing an excessive number of
standard convolution kernels results in an accumulation of
parameters. Utilizing SConv for image feature extraction leads to
a proliferation of parameters and feature redundancy, particularly
in deeper layers. The Ghost Conv model module, proposed by Han
K et al. (32), efficiently extracts valuable features while reducing
parameters and computational overhead. It operates in two steps:
initially involving a limited number of convolutional and linear
transformation operations, followed by the integration of feature
maps generated from these two operations, which are then output.

Ghost Conv is predominantly employed in the realm of
lightweighting computer vision models due to its impressive
performance. However, the Ghost Conv module does encounter a
challenge in that it loses a significant amount of channel
information during its second step of operation. To address this
limitation, Li H et al. (16) introduced the GSConv module, as
illustrated in Figure 6. The GSConv module is designed to mitigate
this issue. Its final blending operation effectively disrupts channel
information uniformly, enhances semantic information extraction,
strengthens the fusion of feature data, and ultimately improves the
representation of image features.

€2/2 channels

\1
Conv —’.
[[/[]]

input
C1 channels DWConv Conc
No™\

€2 /2 channels

FIGURE 6

at

10.3389/fonc.2024.1347123

When the network conducts feature fusion at the Neck layer, it
continuously propagates semantic information downward.
However, this propagation can result in the loss of some semantic
information, which may affect the final prediction, especially when
the height and width of the feature map, as well as the number of
channels, undergo continuous compression and expansion. In this
paper, we introduce the GSConv module into the ELAN module of
the network’s neck layer, replacing the standard convolution. This
adjustment not only reduces the model’s parameter count and
computational load but also maximizes the sampling effect. The
structure of the GSConv module is illustrated in Figure 7.
Specifically, the four convolutions preceding the Concat layer
make use of the GSConv module. This modification reduces the
model’s parameter count while ensuring detection accuracy.

4 Experiments and results

4.1 Experimental environment and
hyperparameter settings

All experimental data in this article were measured in the same
environment. The hardware environment adopts Intel (R) Xeon (R)
Gold 5218 @ 2.30GHz CPU, 64GB RAM, and NVIDIA GeForce
RTX TITAN graphics card. The system environment is Linux
version 5.13.0-30 generic. Python version 3.10, PyTorch version
1.13.0, CUDA version 11.7.

In the experimental models presented in this paper, we explored
various hyperparameter configurations and found that the best
results were obtained when using the default hyperparameters of
the original YOLOv7. The relevant parameters used in the
experiments are listed in Table 2. The gradient descent optimizer
employed for updating the convolutional kernel parameters is
Adam, with a momentum parameter of 0.937. During the
training process, the learning rate is updated using a step-wise
method, with a maximum learning rate of 0.001 and a training
batch size of 24. The training duration spans 200 epochs, and it’s

output
C2 channels

N SN B S\
—> shuffle -

GSConv

’
;
/

The structure of the GSConv module. The “Conv” box consists of three layers: a convolutional-2D layer, a batch normalization-2D layer, and an

activation layer.
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FIGURE 7
The ELAN-GS structure diagram.

worth noting that all experiments were conducted without pre-
training weights. The entire network model was trained
from scratch.

4.2 Evaluation indicators

In this study, we utilize seven evaluation metrics to assess the
model’s performance:

Precision: This metric represents the ratio of correctly predicted
positive instances (TP) to the total recognized objects and is
calculated as shown in Equation (6). Recall: Recall signifies the
ratio of correctly recognized objects to the total number of objects
and is calculated using Equation (7). F1 Score: The F1 score is the
harmonic mean of Precision and Recall, computed as indicated in
Equation (8). Average Precision (AP): AP is the average of precision
values at different recall points, quantified by the area under the
Precision-Recall (PR) curve. A higher AP value indicates greater
model precision, with the calculation formula shown in Equation
(9). Mean Average Precision (mAP): mAP represents the average
AP across all categories. A higher mAP value signifies a superior
model with increased target recognition accuracy, with the formula
outlined in Equation (10). Frames Per Second (FPS): FPS indicates
the number of images processed per second and serves as an
indicator of detection speed. A higher value implies faster model
inference. Giga Floating-point Operations Per Second (GFLOPS):
GFLOPS quantifies the computational complexity of the model,
reflecting the number of computations required. Additionally, the
term “Params” refers to the total number of trainable parameters in
the model, serving as an indicator of the model’s size and training
requirements.

TP

_— 6
TP + FP ©)

Precision =

TABLE 2 Experiment-related hyperparameter settings.

Hyperparameter Epoch Batch_size

Value 200 24

Frontiers in Oncology

Max_learning_rate

0.001

198

ELAN-GS s
TP
Recall = m (7)
Precision x Recall
Fl=2x——— " (8)
Precision + Recall
1
AP = / P(R)dR 9)
0
1
Sy / P(R)dR
mAP=—"% (10)

N

TP represents the count of positive samples correctly predicted
by the model, whereas FP represents the count of negative samples
predicted as positive by the model. FN represents the count of
positive samples that the model incorrectly predicts as negative. In
this context, P represents the class accuracy, R represents the class
recall rate, and N represents the total number of classes. Given that
the dataset contains only one type of blood vessel, N = 1.

4.3 Attention mechanism
compatibility experiment

We chose to incorporate the BiFormer attention mechanism
into our model. To assess its compatibility with the model, we
conducted comparisons with models that lacked a fused attention
mechanism, as well as models that integrated the fused SENet, ECA,
CA, and CBAM attention mechanisms, respectively (33-36). In our
qualitative analysis experiments, we employed a visualization
technique commonly used in deep learning, known as Grad-CAM
(37), to illustrate differences in the regions of interest within the
model after integrating various attention mechanisms. This method

Optimizer Momentum Lr decay

Adam 0.937 Step
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offers insights into the model’s focus on different regions and helps
explain variations in model performance. The importance of
features is depicted using a color scale, with increasing
importance denoted by a transition from blue to red hues.

As illustrated in Figure 8. Heatmap, which displays the heatmaps
generated by different attention mechanisms, we conducted
experiments using images from various sources. When compared
with the visualization results of other attention mechanisms, it
becomes evident that the heatmap produced by the BiFormer
Attention Mechanism exhibits a larger overall coverage area. This
suggests that the model focuses on a broader region of interest at the
target location, resulting in more comprehensive feature extraction
of the targets. This, in turn, facilitates the detection of small targets.
Additionally, the red area in the heatmap is also more extensive,
indicating enhanced extraction of effective target feature
information. The model allocates greater attention to the pertinent
target information. The experimental outcomes reveal that the
integration of the BiFormer attention mechanism compels the
model to prioritize the feature information of the target to be
recognized. It also suppresses the influence of target features that
may be less conspicuous due to the complexity of the background in
pathology images. In comparison with other attention mechanisms,
the BiFormer mechanism exhibits superior performance.

We performed a quantitative analysis of the experiment using
the mAP evaluation criterion. We introduced changes only to the
attention mechanism module, subsequently measuring the mAP
values for each model. This allowed us to compare the mAP values
among different models, assessing the compatibility between
various attention mechanisms and the models. The comparative
experimental data is presented in Table 3. The results indicate that

Baseline

Baseline+SE

FIGURE 8
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the model equipped with the BiFormer attention mechanism
achieved higher detection accuracy compared to the model
without any attention mechanism, as well as models
incorporating the SE, ECA, CA, and CBAM attention
mechanisms. Specifically, the model incorporating the ECA
attention mechanism experienced a 0.28% reduction in detection
accuracy. On the other hand, the models incorporating the SE
attention mechanism, CA attention mechanism, and CBAM
attention mechanism demonstrated improvements in detection
accuracy by 0.56%, 1.02%, and 0.09%, respectively. Notably, the
model’s detection accuracy was enhanced by 1.48% with the
inclusion of the fused BiFormer attention mechanism. These
results indicate that, in comparison with the original YOLOv7
model, our model is better suited for handling pathology images.

4.4 Ablation experiment

This portion of the experiment investigates the impacts of the
three improvement methods on the network model. The plotted
data is presented in Table 4. We conducted eight sets of experiments
with different modules added, and compared them with the original
YOLOvV7 model using metrics such as mAP, F1, Params, and FPS.
For clarity and convenience, we have designated the network with
the BiFormer attention module as “YOLOv7+BiFormer”, the
network with the CARAFE upsampling module as “YOLOv7
+CARAFE”, and the network with the GSConv convolution as
“YOLOv7+GSConv”, and so forth.

As shown in Table 4, the incorporation of the BiFormer
attention module, CARAFE upsampling module, and GSConv

BaselinetECA BaselinetCA  BaselinetCBAM Baseline+BiFormer

Heatmaps for various attention mechanisms. “Original” displays the dataset image. "Detection” presents the detection results of Baseline+BiFormer,
while “Baseline” exhibits the heatmap of YOLOV7. “Baseline+XX" showcases the heatmap of YOLOV7 integrated with the XX attention mechanism

(where XX represents SE, ECA, CA, CBAM, and BiFormer).
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TABLE 3 mAP measurements for different attention mechanisms.

Model Attention Input shape mAP(%)
YOLOv7 - 640x640 84.65
YOLOV7 SENet 640x640 85.21
YOLOV7 ECA 640x640 84.37
YOLOv7 CA 640x640 85.67
YOLOv7 CBAM 640x640 84.74
YOLOv7 BiFormer 640x640 86.13

convolution into YOLOV7 leads to a slight improvement in the
network’s detection accuracy. Specifically, these improvements are
1.48%, 0.56%, and 0.94% higher than the YOLOv7 model,
respectively. This suggests that the integration of the BiFormer
attention module directs the model’s attention more effectively
toward the feature information of the detection target, enhancing
the quality of feature mapping and significantly improving overall
accuracy. However, it’s worth noting that the BiFormer attention
mechanism increases the model’s complexity and reduces network
inference speed. Additionally, we observed that the model’s
inference speed can be substantially increased to 73.52 FPS after
incorporating the CARAFE upsampling module into the network,
which represents a 13.2% improvement over the original version.
Furthermore, the fusion of the GSConv convolution module results
in a reduction of the model’s parameters to 33.80M, a 7.3% decrease
compared to the original version.

Moreover, when combining these modules in pairs, it becomes
evident from the table that the combination of BiFormer + GSConv
modules exhibits the most substantial improvement in model
accuracy. The combination of CARAFE + GSConv modules
enhances the model’s inference speed to 68.49 FPS. It is
important to note that the introduction of the BiFormer attention
module increases both the number of parameters and the inference
time of the model. Nevertheless, we assert that this combination of

TABLE 4 The impact of the fusion of different modules of the model on
the metrics.

Methods mAP F1(%) Params FPS
(%) (M)
YOLOV7 84.65 82.45 36.48 64.93
YOLOv7+BiFormer 86.13 83.36 37.01 60.67
YOLOv7+ CARAFE 85.21 82.48 36.72 73.52
YOLOv7+ GSConv 85.59 83.12 33.80 66.89
YOLOv7+ BiFormer 84.12 81.69 37.26 64.88
+ CARAFE

YOLOv7+ BiFormer 86.48 83.45 34.33 61.35
+ GSConv

YOLOv7+ CARAFE 85.64 81.67 3445 68.49
+ GSConv

YOLOv7+BiFormer+ 87.48 85.18 34.90 65.39

CARAFE+ GSConv
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three modules is well-suited. By leveraging the CARAFE module
and GSConv module for accelerated inference and lightweight
deployment, the incorporation of the BiFormer attention module
yields a qualitative improvement in detection accuracy. In
summary, our approach demonstrates improvements in both
detection accuracy and speed compared to the original model,
marking a significant enhancement.

4.5 Comparative experiments with other
mainstream algorithms

Our proposed PI-YOLO algorithm demonstrates strong feature
extraction capabilities in complex pathological image scenes and
achieves fast detection speeds, making it a high-performing solution
for pathological image object detection. To validate the superiority
of our proposed algorithm in the context of pathological images, we
conducted comparisons with mainstream object detection
algorithms, including Faster RCNN (38), SSD (39), RetinaNet
(19), YOLOV5 (40), and YOLOv7 (13). Utilizing the same
vascular dataset and training methodology, we performed both
qualitative and quantitative analyses to assess the respective
advantages of these algorithm models.

In our experiments, we conducted a qualitative analysis of the
algorithms’ performance by examining the detection result plots of
different models. Figure 9 displays the detection results of Faster-
RCNN, SSD, RetinaNet, YOLOv5, YOLOv7, and PI-YOLO. From
the visual results, it becomes evident that RetinaNet’s detection
performance is superior to that of Faster-RCNN and SSD, and it is
on par with YOLOv5. However, the number of detected targets in
RetinaNet is generally lower than that in YOLOV5, and there are
instances of target misclassifications. The PI-YOLO algorithm
introduced in this paper exhibits better target recognition
capabilities compared to Faster-RCNN, SSD, and RetinaNet. It
also demonstrates fewer misclassifications and identifies a greater
number of small vessels compared to YOLOVS.

To facilitate a comprehensive evaluation of the detection
performance of the PI-YOLO algorithm, we conducted a
comparative analysis between PI-YOLO and the leading detection
algorithm in the field, YOLOv7. Figure 10. presents the detection
results of both YOLOv7 and PI-YOLO on pathological sample
images featuring small blood vessels with unclear edges. These
vessels are highlighted with green bounding boxes. As observed, due
to the indistinct edges of the small vessels, YOLOV7 struggles to
distinguish them from the background, resulting in missed
detections and false negatives. In contrast, PI-YOLO accurately
identifies and delineates these small vessels. This improvement is
attributed to the integration of the BiFormer attention mechanism,
which enhances feature extraction, particularly for small and
inconspicuous targets.

In our experimental assessment, we quantitatively compared
and analyzed each model, employing metrics such as mAP, F1
score, Params, GFLOPS, and FPS. The outcomes of these
comparative measurements are presented in Table 5. The data
indicate that our PI-YOLO algorithm achieves an mAP of
87.48%, surpassing currently mainstream object detection
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Faster-RCNN

Original

FIGURE 9

Images displaying the detection results of six models. The first column, “Original,” represents the original images from the dataset. The second
column shows the detection images from Faster-RCNN, the third column from SSD, the fourth column from RetinaNet, the fifth column from
YOLOVS, the sixth column from YOLOV7, and the seventh column from PI-YOLO.

algorithms. In terms of detection speed, the integration of the
CARAFE up-sampling module and the GSConv module has
effectively reduced the model’s parameter count and increased
computational speed, thereby maintaining commendable real-
time performance. Notably, our enhanced PI-YOLO algorithm
exhibits a significant improvement in accuracy by 18.94% and

performance by 90.97% compared to the widely used two-stage
object detection algorithm, Faster-RCNN-ResNet. In contrast,
when compared with the commonly adopted single-stage object
detection algorithm YOLOvVS5, our PI-YOLO algorithm shows a
4.79% increase in mAP, although the detection speed is slightly
reduced by 2.91%. Additionally, compared to the YOLOv7

YOLOv7

PI-YOLO

FIGURE 10
The detection effect of YOLOvV7 and the detection effect of PI-YOLO.
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TABLE 5 Performance metric values of mainstream target detection
algorithms on the dataset.

Model mAP F1(%) GFLOPS params
(%) (G) (M)
Faster- 68.54 64.37 3424 41652 12735
RCNN-
ResNet
SSD 75.23 73.36 107.64 215.37 23.72
RetinaNet 80.34 74.47 44.69 120.43 35.56
YOLOVS 82.69 80.15 67.35 11532 4553
YOLOv7 84.65 82.45 64.93 103.23 36.48
PI-YOLO 87.48 85.18 65.39 119.70 34.90

algorithm, our improved PI-YOLO algorithm shows an increase of
2.83% in mAP and a modest increase of 0.71% in detection speed,
while the model size has been reduced by 1.58 M.

4.6 Comparative experiments on other
detection tasks in pathological images

To demonstrate the superior performance of the PI-YOLO
algorithm in pathology image detection, we conducted
experiments using the ICPR 2012 mitotic target detection dataset.
The experimental results are presented in Figure 11. We measured
the Precision, Recall, and F1 values of the model and compared
them with the current state-of-the-art mitosis detection methods
using different metrics. The comparison results are summarized in
Table 6. While PI-YOLO falls within the middle range in terms of
Precision, it achieves the highest Recall value among all methods,
leading to the highest F1 score as well. These results indicate that the
PI-YOLO algorithm excels in feature extraction, particularly in the
context of complex pathology images from various sources
and tissues.

In summary, the proposed model achieves the highest detection
accuracy among current mainstream detection algorithms and also
maintains good detection and inference speed. The network

10.3389/fonc.2024.1347123

demonstrates significant advantages in pathology image object
detection tasks.

5 Conclusion

In this paper, we introduce the PI-YOLO target detection model
to achieve automated blood vessel detection in pathology images
using deep learning techniques. Our research addresses the
challenges presented by pathology images, which include a high
proportion of small targets, complex image backgrounds, dense
target distribution, and subtle feature differences between the target
and the background. Our model incorporates the BiFormer
attention mechanism, which effectively reduces information loss
during feature extraction while capturing long-range contextual
dependencies. This not only saves computational resources but also
enhances the overall feature extraction capabilities of the network.
The integration of this attention mechanism into YOLOV7 results in
improved detection accuracy for pathology images. Furthermore, by
replacing the upsampling module and implementing GSConv
convolution, we maintain detection accuracy while reducing
model parameters and enhancing inference speed. These
components, when integrated into YOLOV7, yield the enhanced
PI-YOLO model. This model demonstrates superior performance
in pathology image detection tasks, achieving a remarkable mAP
value of 87.48%. It partially mitigates the challenges posed by
complex backgrounds in pathology images. Moreover, automating
blood vessel detection in pathology images significantly assists
researchers in the study of anti-tumor vascular therapy, offering
substantial medical value.

However, although our method is highly effective in vascular
detection tasks, it currently lacks the capability to differentiate
among various types of blood vessels, such as arterial, venous,
and capillary. This limitation affects its specificity in tumor studies
where such distinctions are crucial. Deploying PI-YOLO in clinical
settings presents several challenges, including the need for high
computational resources, seamless integration into existing
diagnostic workflows without disruption, and robustness against
variability in pathology image data due to differing laboratory

FIGURE 11

Schematic diagram of mitotic assay results, (A) ground truth; (B) patch of ground truth; (C) test results.
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TABLE 6 Performance index values of different methods on the ICPR
2012 mitosis detection dataset.

Methods Dataset Precision Recall F1

H. Chen et al. (41) MITOS-12- 0.8040 0.7720 0.7880
scanner A

M. Ma et al. (42) MITOS-12- 0.7760 0.7870 0.7810
scanner A

C. Liet al. (43) MITOS-12- 0.8540 0.8120 0.8320
scanner A

H. Lei et al. (44) MITOS-12- 0.9200 0.7920 0.8510
scanner A

T. Mahmood MITOS-12- 0.8760 0.8410 0.8580
et al. (45) scanner A

M. Sebai et al. (46) MITOS-12- 0.9210 0.8110 0.8630
scanner A

ours MITOS-12- 0.8589 0.8769 0.8678
scanner A

standards and imaging equipment. To overcome these challenges
and improve the model, our future research will focus on
developing methods to accurately distinguish between different
blood vessel types to enhance clinical relevance in tumor analysis.
We aim to optimize the detection speed of our models for real-time
clinical use and expand our dataset to include a more diverse range
of pathology images, thereby improving the model’s generalizability
and robustness. Additionally, we plan to explore deployment on
embedded devices to provide on-site assistance to medical
professionals, facilitating quicker and more accurate diagnosis
and treatment decisions. These steps will pave the way for the
successful implementation of PI-YOLO in practical medical
applications, ultimately benefiting patient care.
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2.5D peritumoural radiomics
predicts postoperative
recurrence in stage |

lung adenocarcinoma

Haimei Lan', Chaosheng Wei', Fengming Xu*, Eqing Yang®,
Dayu Lu? Qing Feng™ and Tao Li*

‘Department of Radiology, Liuzhou Workers Hospital, Liuzhou, Guangxi, China, ?Department of
Radiology, Longtan Hospital, Liuzhou, Guangxi, China

Objective: Radiomics can non-invasively predict the prognosis of a tumour by
applying advanced imaging feature algorithms.The aim of this study was to predict
the chance of postoperative recurrence by modelling tumour radiomics and
peritumour radiomics and clinical features in patients with stage | lung
adenocarcinoma (LUAD).

Materials and methods: Retrospective analysis of 190 patients with postoperative
pathologically confirmed stage | LUAD from centre 1, who were divided into training
cohort and internal validation cohort, with centre 2 added as external validation
cohort. To develop a combined radiation-clinical omics model nomogram
incorporating clinical features based on images from low-dose lung cancer
screening CT plain for predicting postoperative recurrence and to evaluate the
performance of the nomogram in the training cohort, internal validation cohort and
external validation cohort.

Results: A total of 190 patients were included in the model in centre 1 and
randomised into a training cohort of 133 and an internal validation cohort of 57 in
aratio of 7:3, and 39 were included in centre 2 as an external validation cohort. In the
training cohort (AUC=0.865, 95% Cl 0.824-0.906), internal validation cohort
(AUC=0.902, 95% CI 0.851-0.953) and external validation cohort (AUC=0.830,95%
Cl 0.751-0.908), the combined radiation-clinical omics model had a good predictive
ability. The combined model performed significantly better than the conventional
single-modality models (clinical model, radiomic model), and the calibration curve
and decision curve analysis (DCA) showed high accuracy and clinical utility of
the nomogram.

Abbreviations: 2.5D, 2.5-dimension; 3D, Three-dimension; AUC, Area under the receiver operating
characteristic curve; NSCLC, Non-small cell lung cancer; ROC, Receiver operating characteristic curve;
ROI, Region of interest; SCLC, Small cell lung cancer; LUAD, Lung adenocarcinoma; LUSC, Lung squamous
carcinoma; ICC, Intraclass correlation coefficient; TNM, Tumor, node, and metastasis; PPV, Positive

predictive value; NPV, Negative predictive value.
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Conclusion: The combined preoperative radiation-clinical omics model provides
good predictive value for postoperative recurrence in stage ILUAD and combines
the model’s superiority in both internal and external validation cohorts,
demonstrating its potential to aid in postoperative treatment strategies.

KEYWORDS

radiomics, lung adenocarcinoma, postoperative recurrence, nomogram, peritumoral regions

1 Introduction

Lung cancer is a significant contributor to global cancer
mortality (1). Lung cancer is classified into two main groups (2,
3): non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), of which about 85% of patients belong to NSCLC, which
includes lung adenocarcinoma (LUAD), lung squamous carcinoma
(LUSC), and other histological subtypes. In NSCLC patients, LUAD
accounts for the largest proportion. With the development of low-
dose computed tomography(LDCT) lung cancer screening, a large
number of patients with early-stage NSCLC have been screened,
and in particular, a considerable number of patients with stage I
LUAD have been screened (4, 5), for which surgical resection is the
preferred treatment (6). However, studies have found that the risk
of recurrence remains high, even with a 20-50% recurrence rate for
completely resected stage I LUAD (7). Therefore, assessment of
postoperative recurrence is crucial for the prognosis of stage
I LUAD.

Currently, most studies have focused on assessing benign and
malignant tumours (8), disregarding the prognostic impact of subtle
changes in the peritumoural microenvironment (9, 10).
Furthermore, studies on the prognosis of LUAD have primarily
concentrated on evaluating the prognosis of intermediate and
advanced lung cancer based on genes and treatment regimens
(11-14), while neglecting the impact of certain clinical factors
such as immunohistochemistry and density on the prognosis. It is
important to note that due to the heterogeneity of tumours (15, 16),
even at the same stage, the prognosis can vary significantly.
Moreover, most of the previous studies have been on two-
dimension (2D) and three-dimension (3D) prognostic models
(17, 18), and nowadays some scholars have started to study 2.5-
dimension (2.5D) models (19) as well. Through the peritumoural
radiomics prognostic study of stage I LUAD (20, 21), this study not
only makes up for the shortcomings of previous studies, but also
develops a new 2.5D peritumoural radiation-clinical omics model.

Frontiers in Oncology

Compared with previous 2D or 3D radiomics features, the method
is newer and more effective in studying the prognosis of LUAD.

2 Materials and methods
2.1 Patient selection and follow-up

This retrospective study was approved by two institutional
review boards of the Guangxi Zhuang Autonomous Region
(NO.LW2024009), exempting patients from informed consent.
We collected medical records of all patients with stage I LUAD
who underwent surgical resection and were pathologically
confirmed between January 2010 and December 2018 at the
centre 1. The inclusion criteria (1): underwent surgical complete
resection of the lung lesion (2); postoperative pathological diagnosis
of invasive stage I lung adenocarcinoma (3); CT examination within
2 weeks before surgery. The exclusion criteria (1): the presence of
multiple primary cancers or other malignancies in the lungs (2);
preoperative neoadjuvant therapy (3); failure to complete
postoperative follow-up (4); CT image artefacts that severely
impaired the visualisation of the tumour (5); absence of low-dose
lung cancer screening CT plain images prior to surgery.

A total of 190 patients with stage I LUAD were included in
centre 1 and randomised into two cohorts in a ratio of 7:3. The
training cohort consisted of 133 patients, while the internal
validation cohort had 57 patients. Additionally, 39 patients with
stage I LUAD in centre 2 were collected as the external testing
cohort from January 2016 to December 2018, following the same
inclusion and exclusion criteria. A postoperative follow-up was
conducted, including computed tomography (CT) and/or magnetic
resonance imaging (MRI), PET-CT. Recurrence was defined as local
recurrence and distant metastasis, as per relevant studies. Local
recurrence included recurrence in N1 lymph nodes, N2 lymph
nodes, mediastinum, primary lung or pleura. Distant metastases
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included metastases to the adrenal gland, kidney, bone, brain, liver,
contralateral lung, skin or N3 (22).

2.2 Clinical characteristic

Basic patient information and clinical variables including age,
sex, white blood cell (WBC), neutrophils (NEU), C-reactive protein
(C-RP), carcinoembryonic antigen (CEA), cytokeratin 19 fragment
assay (CYFRA21-1), neuron-specific enolase assay (NSE),
carbohydrate antigen (CA) 125, CA153, squamous cell carcinoma-
associated antigen (SCCA), CA50, CA242, CA724, Ki-67, location of
the tumour, distance from the pleura, T-stage, and type of nodule.

We divided the age into two groups: less than 65 years old and
greater than or equal to 65 years old; T-stage was determined by
experienced radiologists from preoperative CT images, based on the
9th edition of the TNM staging system for lung cancer, and was
divided into T1a, T1b, and T1c; the division of the content of Ki67 is
still controversial, and we used less than 10% for low expression and
greater than or equal to 10% for high expression; and the type of
nodules of stage I LUAD that we included showed mixed ground
glass nodules (mGGN) and solid nodules (SN).

2.3 Procedure

The study workflow is summarized in Figure 1, and the
radiomics modelling pipeline in Figure 2.

10.3389/fonc.2024.1382815

2.4 CT image acquisition

The scanning machine at both hospitals was SIEMENS
SOMATOM Definition Flash (Stellar) with the same lung scanning
parameters. All CT scans were performed from the tip of the lungs to
the base of the lungs, and the parameters of the scan reconstruction
were: Tube voltage=120kV, Effective power of tube=30mAs, Detector
collimation=128 x 0.625mm, Matrix=512x512, Slice
thickness=0.625mm, CDTIvol=2.03mGy.

2.5 Radiomics feature extraction and
feature selection

The DICOM format images of the patients were downloaded
from the Picture Archiving and Communication Systems (PACS) and
imported into the Darwin Intelligent Science Research Platform. The
process of tumour region segmentation and radiomics feature
extraction involves the following steps (1): Modal settings: the
modal parameters for each patient were set to tumour body,
peritumoural 3mm, peritumoural 6mm, peritumoural 9mm,
peritumoural 12mm and peritumoural 15mm, and the window
widths and window positions were uniformly set to 1200 and -600
(2); 2.5D region of interest (ROI) segmentation: The ROI was
manually delineated on the CT images by two radiologists with 10
years of experience. For each CT image, the radiologist selected the
largest section of the tumour on the Darwin Intelligent Science
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=
o ” = 7
[v'4 (1) underwent surgical complete resection of the lung lesion
= (2) postoperative pathological diagnosis of invasive stage | lung a
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center 1;n=210, center 2;n=45
'E (1) the presence of multiple primary cancers or other malignancies in the lungs
o (center 1;n=11, center 2;n=1)
o (2) preoperative neoadjuvant therapy(center 1;n=5, center 2;n=2)
=] (3) failure to complete postoperative follow-up(center 1;n=3, center 2;n=2)
= (4) CT image artefacts that severely impaired the visualisation of the tumour(center 1:n=3, ¢
< enter 2;n=1)
(5) absence of low-dose lung cancer screening CT plain images prior to surgery
(center 1;n=1, center 2;n=0)
center 1;n=147, center 2,n=39
@
(4 "
5 randomized center 1 (7; 3) center 2
<
=z
<
training cohort internal validation cohort external validation cohort
(n=133) (n=57) (n=39)

FIGURE 1
Flow diagram of the study population
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FIGURE 2

The radiomics modelling pipeline

research platform (23) to draw a ROI, and then selected the forward
and backward angles of 45° on this section to draw two ROIs. These
three ROIs were then merged to create a 2.5D ROI for each tumour. In
outlining ROIs, we exclude pleural walls, thick bronchial tubes, and
blood vessels (3); A total of 1125 radiomics features were extracted
using the Darwin Intelligent Science Research Platform (4); A
minimum-maximum normalised, optimal feature filter was used to
assess the linear correlation between each feature and the lesion
category labels, and the 40 most relevant features were filtered out
of 1125 features. The least absolute shrinkage and selection operator
(LASSO) algorithm was used to select the most relevant features from
40 features (Figure 3). Finally, a total of 10 features most relevant to
recurrence after surgery for stage I LUAD were selected and used to
construct a prediction model (Figure 4).
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2.6 Intra-observer and inter-
observer consistency

We used intraclass correlation coefficient (ICC) to assess intra-
and inter-observer correlation coefficients. A total of 49 patients were
randomly selected from the training set, and ROI segmentation was
independently performed by two physicians. We considered these
features to be stable when the ICC value was greater than 0.80.

2.7 Model construction and validation

To predict postoperative recurrence of stage I LUAD, we
performed univariate and multifactorial logistic regression (LR)
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Feature selection using the LASSO algorithm [(A), LASSO path; (B), MSE path].

analyses to select statistically significant clinical characteristics
(P < 0.05) for clinical modelling. Clinical characteristics that were
statistically significant for postoperative recurrence of stage I LUAD
were retained in the univariate logistic regression analysis (p<0.05).
Variables with p<0.05 in the multifactorial analysis were identified
as independent predictors associated with postoperative recurrence
and were included in the construction of the clinical model.
Combining the radiomics model with the clinical model to create
a joint model with different parameters. Receiver operating
characteristic (ROC) curves were plotted, and area under the
receiver operating characteristic curve (AUC) was calculated to
assess the efficacy of each model. We compared thirteen predictive
models, including six parameter radiomics models, clinical model,
and six radiation-clinical omics models incorporating clinical
factors. The best models were then selected from these to draw
nomogram, and we used deLong tests, calibration curves, and
decision curve analyses (DCA) to test the accuracy and clinical
utility of the nomogram.

2.8 Statistical analysis

SPSS 24.0 was used for statistical analysis. Continuous variables
were presented as mean + standard deviation and compared using
independent samples t-test. Categorical variables were presented as
percentage counts and compared using chi-square test. The model’s

squareroot_firstorder_Energy_lung window_peritumoral 9mm
squareroot_firstorder_TotalEnergy_lung window_peritumoral 9mm
exponential_glrim_RunLengthNonUniformity_lung window_peritumoral 9mm
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original_shape2D_MaximumDiameter_lung window_peritumoral 9mm
original_shape2D_MajorAxisLength_lung window_peritumoral 9mm

wavelet-LL firstorder_Median_lung window_peritumoral 9mm

FIGURE 4
The final 10 features selected (10 textures).
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goodness of fit was assessed using the Hosmer-Lemeshow test,
which showed no statistically significant difference (P > 0.05),
indicating good model fit. To comprehensively evaluate the
predictive efficacy of different models, we used ROC curve, AUC,
accuracy, sensitivity, specificity, Positive predictive value(PPV), and
Negative predictive value (NPV). All statistical tests were two-sided
with a significance level of p<0.05.

3 Results
3.1 Patient clinical baseline characteristics

Table 1 lists and compares the clinical baseline characteristics of
the analysed patients.

3.2 Establishment of clinical models

Logistic regression analysis was used to assess 19 possible risk
factors. Univariate and multifactorial logistic regression analyses
were performed on clinical indicators in training cohort of 133
patients with postoperative recurrence of stage I LUAD (Table 2).
Univariate logistic regression analysis showed that T1c in T-stage,
CEA, NSE, 210% in Ki67, and SN in nodal type were statistically
significant for postoperative recurrence of stage ILUAD. For

Feature Importances of SelectkKBest
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TABLE 1 Clinical baseline characteristics.

10.3389/fonc.2024.1382815

Training Set Internal Test Set p value External Test Set p value
(n1 = 133) (n2 = 57) (n1 VS n2) (n3 = 39) (N1 VS n3)

Age 0.838 0.571

<65 88(66.2) 43 (75.4) 25 (64.1)

>65 45(33.8) 14 (24.6) 14 (35.9)
Sex 0.777 0.705

Male 66 (49.6) 27 (47.4) 18 (46.2)

Female 67 (50.4) 30 (52.6) 21 (53.8)
Stage 0.213 0.371

Tla 8 (6.0) 7 (12.2) 4 (102)

Tib 77 (57.9) 38 (66.7) 23 (59.0)

Tlc 48 (36.1) 12 (21.1) 12 (30.8)
WBC (Mean + SD) 6.97 +2.34 6.93 + 2.06 0911 6.77 £ 1.87 0.707
NEU (Mean + SD) 4.30 +2.04 4.14 + 148 0.604 399 +1.53 0.441
C-RP (Mean + SD) 6.08 + 14.58 2.66 + 3.63 0.093 4.56 + 14.98 0.585
CEA (Mean + SD) 5.38 £7.90 3.82 +4.14 0.082 7.02 + 18.99 0.431
CYFRA21-1 (Mean + SD) 3.09 +1.74 3.55 +2.28 0.175 297 + 1.86 0.776
NSE (Mean + SD) 13.26 £ 3.69 13.93 £ 6.19 0.392 13.18 £ 4.74 0.792
CA125 (Mean + SD) 15.29 + 12.00 12.03 + 16.85 0.156 14.09 + 15.03 0.678
CA15-3 (Mean + SD) 15.68 + 15.77 13.17 £ 9.26 0.294 19.78 £ 16.23 0.318
SCCA (Mean * SD) 1.19 £ 0.79 1.42 + 0.86 0.088 1.55 £ 0.79 0.335
CA50 (Mean + SD) 9.56 + 14.43 2393 +71.84 0.163 8.32 £ 9.80 0.568
CA242 (Mean + SD) 6.59 + 6.10 12.56 + 34.26 0.222 5.09 + 491 0.205
CA72-4 (Mean + SD) 442 +9.16 382778 0.682 5.04 + 13.42 0.750
Ki67 0.078 0.095

<10% 68 (51.1) 26 (45.6) 14 (35.9)

>10% 65 (48.9) 31 (54.4) 25 (64.1)
Location 0.854 0.580

Left superior lobar 37 (27.8) 15 (26.3) 14 (35.9)

Right superior lobar 45 (33.8) 20 (35.1) 10 (25.7)

Right middle lobar 8 (6.0) 4 (7.0) 7 (17.9)

Right inferior lobar 27 (20.3) 14 (24.6) 2 (5.1)

Left inferior lobar 16 (12.0) 4 (7.0) 6 (15.4)
Distance from pleura (Mean
+SD) 1.45 £ 0.73 1.50 + 0.65 0.640 1.50 + 0.65 0.402
Nodule type 0.920 0.079

mGGN 43 (32.3) 18 (31.6) 18 (9.5)

SN 90 (67.7) 39 (68.4) 39 (20.5)
Recurrence 0.862 0.628

Yes 39 (29.3) 16 (28.1) 11 (28.2)

No 94 (70.7) 41 (71.9) 28 (71.8)
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TABLE 2 Univariate and multivariate analysis.

10.3389/fonc.2024.1382815

N(100%) OR(95%Cl) p value OR(95%Cl) p value
Age
<65 88(66.2) 1.000
>65 45(33.8) 0.969(0.439-2.136) 0.937
‘ Sex
Male 66(49.6) 1.000
Female 67(50.4) 1.270(0.601-2.685) 0.531
‘ Stage
Tla 8(6.0) 1.000
T1b 77(7.9) 3.500(0.437-28.004) 0.238 4.092(0.497-33.707) 0.190
Tlc 48(36.1) 4.549(2.135-9.695) 0.000 14.237(1.704-118.970) 0.014
WBC 1.123(0.962-1.311) 0.141 - -
NEU 1.165(0.974-1.392) 0.095 - -
C-RP 1.013(0.989-1.039) 0.293 - -
CEA 1.095(1.020-1.175) 0.012 - -
CYFRA21-1 1.182(0.943-1.481) 0.147 - -
NSE 1.126(1.005-1.263) 0.041 1.215(1.032-1.430) 0.020
CA125 1.020(0.988-1.052) 0.223 - -
CA153 1.013(0.989-1.038) 0.304 - -
SCCA 0.752(0.428-1.320) 0.320 - -
CA50 1.010(0.985-1.036) 0.430 - -
CA242 1.054(0.991-1.122) 0.097 - -
CA724 1.028(0.984-1.073) 0.216 - -
‘ Ki67
<10% 68(51.1) 1.000
>10% 65(48.9) 10.656(4.044-28.078) 0.000 0.081(0.020-0.322) 0.000
‘ Location
Left superior lobar 37(27.8) 1.000 - -
Right superior lobar 45(33.8) 0.758(0.292-1.967) 0.568 - -
Right middle lobar 8(6.0) 1.250(0.255-6.119) 0.783 - -
Right inferior lobar 27(20.3) 0.595(0.191-1.859) 0.372 - -
Left inferior lobar 16(12.0) 1.250(0.368-4.251) 0.721 - -
Distance from pleura 0.822(0.470-1.439) 0.492 - -
Nodule type
mGGN 43(32.3) 1.000
SN 90(67.7) 6.205(2.039-18.881) 0.001 4.541(1.716-12.014) 0.002

mGGN, Mmixed ground-glass nodule; SN, Solid nodules; SD, Standard deviation. Bolded indicators are meaningful.
Values in bold indicate statistical significance.
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TABLE 3 Diagnostic effectiveness of different models.

10.3389/fonc.2024.1382815

AUC (95%Cl) Accuracy Sensitivity Specificity PPV NPV

Training Set

Clinical model 0.772 (0.723-0.820) 0.707 0.791 0.673 0.495 0.888
Tumor body 0.762 (0.711-0.813) 0.659 0.809 0.599 0.449 0.885
Peritumoral 3mm 0.763 (0.711-0.815) 0.632 0.852 0.542 0.430 0.901
Peritumoral 6mm 0.708 (0.651-0.766) 0.717 0.548 0.785 0.508 0.811
Peritumoral 9mm 0.785 (0.734-0.837) 0.724 0.757 0.711 0.515 0.878
Peritumoral 12mm 0.677 (0.616-0.739) 0.654 0.722 0.627 0.439 0.848
Peritumoral 15mm 0.791 (0.744-0.838) 0.714 0.687 0.725 0.503 0.851
Tumor body+Clinic 0.855 (0.817-0.893) 0.757 0.896 0.701 0.548 0.943
Peritumoral 3mm+Clinic 0.861 (0.823-0.899) 0.799 0.765 0.813 0.624 0.895
Peritumoral 6mm-+Clinic 0.836 (0.794-0.878) 0.779 0.783 0.778 0.588 0.898
Peritumoral 9mm-+Clinic 0.865 (0.824-0.906) 0.832 0.730 0.873 0.700 0.889
Peritumoral 12mm-+Clinic 0.851 (0.810-0.892) 0.820 0.696 0.870 0.684 0.876
Peritumoral 15mm+Clinic 0.855 (0.816-0.895) 0.767 0.809 0.750 0.567 0.906
Internal Test Set

Clinical model 0.779 (0.703-0.855) 0.737 0.760 0.727 0.535 0.880
Peritumoral 9mm 0.815 (0.742-0.888) 0.813 0.640 0.884 0.696 0.856
Peritumoral 9mm-+Clinic 0.902 (0.851-0.953) 0.871 0.720 0.934 0.818 0.890
External Test Set

Clinical model 0.773 (0.732-0.814) 0.721 0.764 0.704 0.512 0.880
Peritumoral 9mm 0.712 (0.603-0.820) 0.795 0.424 0.940 0.737 0.806
Peritumoral 9mm+ Clinic 0.830 (0.751-0.908) 0.821 0.727 0.857 0.667 0.889

statistically significant clinical characteristics, multifactorial logistic
regression analysis was used, which showed that NSE, 210% in
Ki67, T-stage in T1c and SN in nodule type were independent risk
factors for postoperative recurrence and could be used to establish
clinical models.

3.3 Performance and comparison
of models

In this study, we developed 13 models, including the radiomics
models with 6 parameters (tumour body, peritumoural 3mm,
peritumoural 6mm, peritumoural 9mm, peritumoural 12 mm,
peritumoural 15mm), the clinical model, and the six-parameter
radiation-clinical omics models that incorporates clinical factors,
and evaluated the performance of all the models. Table 3 displays
the AUC, accuracy, sensitivity, specificity, PPV, and NPV of various
models. In the training cohort, the peritumoural 9mm model
(AUC= 0.785) outperformed the clinical model (AUC= 0.772) in
terms of postoperative recurrence. When clinical features were
added to the peritumoural 9mm model, the combined radiation-
clinical omics model’s AUC significantly improved in the training
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cohort (0.865), internal validation cohort (0.902), and external
validation cohort (0.830) (p<0.001). Figure 5 shows the ROC
curves for the peritumoural 9mm model, the clinical model, and
the combined radiation-clinical omics models in the training
cohort, internal validation cohort, and external validation cohort.
In order to develop a clinically applicable and more accurate model
for predicting postoperative recurrence in stage ILUAD, we used
the LR algorithm to construct a peritumoural 9mm radiomics
nomogram incorporating some of the independent risk
factors (Figure 6).

The DeLong test showed that the AUC values of the nomogram
were significantly different from those of the other models in the
training cohort (P < 0.05). The combined radiation-clinical omics
model’s ROC curves were significantly better than those of the
radiomics and clinical models. The calibration curves of the training
cohort, and the internal validation cohort in the joint model showed
significant agreement in predicting postoperative recurrence in
stage ILUAD (Figure 7). The DCA of the training cohort, and the
internal validation cohort, showed that the nomogram of the
combined radiation-clinical omics model had a good net clinical
benefit (Figure 8), suggesting that it is a reliable clinical tool for
predicting recurrence after surgery for stage ILUAD.
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4 Discussion

In recent years, much attention has been paid to an emerging
technology, radiomics, which automatically extracts a large number
of imaging features from medical imaging data in a high-
throughput manner; it appears to offer an almost unlimited range
of imaging biomarkers, and shows great potential in oncology for
detecting, diagnosing, evaluating prognosis, and predicting
response to treatment (24-26). Furthermore, an increasing
number of scholars are conducting radiomics studies on the
interstitium of peripheral lung cancer, which refers to the tissue
surrounding the primary tumour, and achieving favourable
outcomes (17, 27, 28). This demonstrates the importance of the
peritumoural region in radiomics analysis (29).

Tumour radiomics is widely used for prognostic prediction in
LUAD (27). However, few studies have applied peritumoural
imaging features to aid in the prediction of stage ILUAD, and the
selection of the peritumoural region remains controversial. Previous
studies have defined the peritumoural region as ranging from 1.5 to
20 mm (8, 30, 31). Wu et al. concluded that peritumour radiomic
features based on CT images are reliable for predicting the
prognosis of non-small cell carcinoma (28). The study also noted
that the peritumoural region should ideally extend 15 mm, 20 mm

or 30 mm from the tumour border. Chen et al. measured the bulk
tumour volume as well as the bulk tumour volume in the
peritumoural 3mm, peritumoural 6mm and peritumoural 9mm
regions by extracting the radiomic feature regions (18), and finally
constructed the bulk tumour volume of peritumoural 9mm region
based on the extraction of the radiomics features had the highest

AUC (training set = 0.82, internal validation = 0.75, external
validation = 0.67). Liu et al. conducted another study where they
extracted radiomics features from intratumoural to peritumoural
3mm, peritumoural 3mm and peritumoural 6mm regions (17). The
study demonstrated that features from the intratumoural 3mm to
peritumoural 3mm region had higher predictive performance. In a
study using radiomics to predict early recurrence, Wang et al.
selected 2.1 mm, 4.2 mm, and 8.4 mm as the peritumoural
regions, extracted 2D and 3D deep learning image features, and
constructed a radiomics model via an air cavity diffusion model,
which resulted in good performance in both internal validation
cohort and external validation cohort, demonstrating its potential
for assisting in post-surgical treatment strategies (7). Wang et al.
investigated 8 models of tumour perimeter 5mm, 10mm, 15mm,
20mm as well as tumour-perimeter 5mm, tumour-perimeter
10mm, tumour-perimeter 15mm, tumour-perimeter 20mm, and

found that nomogram based on the combined model of tumour-
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FIGURE 6

The radiomics nomogram incorporating some of the independent risk factors; the peritumoral 9mm model's radscore = +4.611 *wavelet-LL_first
order_Median_lung window_peritumoral 9mm + 4.114 *original_shape 2.5D_MaximumDiameter_lung window_peritumoral 9mm-4.119.
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The calibration curves of combined radiation-clinical omics model for training cohort (blue dashed line) and internal validation cohort (orange

dotted line).

perimeter 10mm and clinical features had a high predictive
efficiency for STAS status in NSCLC patients (32). It can be seen
that the researchers chose different peritumoural regions, but the
best performing peritumoural features essentially consisted of
features in the 3-9mm peritumoural regions. In addition, it was
also found in previous studies that only intratumoural features were
used to predict the prognosis of LUAD (33-36), whereas in this
study, the use of peritumoural features performed well.
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Based on these previous studies, we selected peritumoural 3mm,
peritumoural 6mm, peritumoural 9mm, peritumoural 12mm and
peritumoural 15mm as peritumoural regions, but unlike them, we
used low-dose lung cancer screening CT plain images and
performed 2.5D radiological feature extraction. In this study, we
found that the combined peritumoural 9mm radiation-clinical
omics model had the highest diagnostic efficacy (AUC=0.865)
compared to the tumour and the rest of the peritumour models,
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with good AUC and sensitivity, specificity, NPV, and PPV in both
the internal validation cohort and the external validation cohort,
and that it outperformed the conventional unimodal model. By
combining a peritumoural 9mm radiomics model with clinical
factors, we have also created a visual nomogram with high
predictive power and net benefit in the evaluation of recurrence
after surgery for stage ILUAD. Our study provides a new approach
to prognostic assessment, helps to adjust the treatment plan for
patients with stage ILUAD, and enables Al-personalised
management of the prognosis of these patients.

Multifactorial logistic regression analysis identified T-stage,
neuron-specific enolase assay, Ki67 and nodule type as
independent predictors of recurrence after surgery for stage
ILUAD, which can be used for clinical modelling. Higher clinical
stage, Ki67 percentage, and percentage of nodal solid component
imply higher proliferation and invasiveness of tumour cells and
higher risk of postoperative recurrence, which is consistent with
previous reports (37-39). In addition, multifactorial logistic
regression showed that neuron-specific enolase assay and nodule
type were also independent predictors of postoperative recurrence,
but the clinical-omics features were not significant; therefore, we
developed a nomogram combining some of the independent
predictors in combination with peritumoural 9mm radiomic
features to predict the probability of recurrence in patients with
stage ILUAD. In clinical practice, the patient’s clinical information
and radiological score(radscore) are added to the nomogram to
obtain multiple probability scales, and then the total score of the
nomogram is calculated, which shows the probability of recurrence.
Notably, there was a significant improvement in the AUC of the
nomogram compared to a single radiomics and clinical model. It
can gain valuable treatment time for patients with stage ILUAD that
may recur, and it can help to develop a more rational and effective
treatment plan. When it is known that a patient has a high
probability of recurrence after surgery, some adjuvant treatments
such as chemoradiotherapy or targeted drugs can be taken to reduce
the chance of recurrence.

In addition, DeLong test of AUC for each model showed that in
the training cohort, the AUC values for the nomogram were
significantly different from those of the peritumoural 9mm
radiomics model and the clinical model (P < 0.05). The results of
the study showed that the combined radiation-clinical omics model
performed better than the single model, and that clinical parameters
also play an important role in predicting postoperative recurrence
for stage ILUAD.

The different models constructed in this study not only provide
intratumoural and peritumoural biological information, but also
give some guidance for clinical treatment. Furthermore, by
comparing the diagnostic performance of the different peritumour
models, the peritumoural 9mm model had the best predictive
performance overall, possibly due to the higher reproducibility of
radiomics features the further away from the intratumour area. This
finding may be related to the presence of homogeneous lung
parenchyma in the distal peritumoural area (31). Thus, in our
study, the peritumoural 9mm model showed better predictive
performance than the other models. According to the
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recommendations of the NCCN guidelines for NSCLC 2024, 4th
edition, for most patients with NSCLC, the margin requirement is
to ensure that the lung parenchyma margin distance is > 2 cm or >
the size of the tumour nodule (40), and it was found that the
peritumoural region was often extended from the tumour border to
15 mm, 20 mm, or 30 mm (30, 41, 42). However, in our study, when
extending to 20 mm peritumour, we found it difficult to avoid thick
blood vessels and bronchioles, and complex extrapulmonary tissues,
so we only extended to 15 mm peritumour.

5 Conclusions and limitations

This study has several limitations. Firstly, it is a retrospective
study and there may be recurrent cases in the 2018 cases so far.
Secondly, the sample size in this study was small and the predictive
efficiency of the external validation cohort may be erroneous, and
due to the small sample size, we could not perform survival analysis,
and more large sample studies are needed for further validation in
the future.

In summary, the combined 2.5D peritumoural 9mm radiation-
clinical omics model is more accurate than the tumour and the rest
of the peritumoural model in predicting the prognosis of clinical
stage ILUAD, and may serve as an effective non-invasive predictive
tool, which may provide value in decision-making and defining
personalised treatments. However, since most of the studies were
conducted retrospectively, further prospective, multicentre and
biologically relevant studies based on prospective, multicentre and
biologically relevant studies should be carried out in order to
facilitate its clinical application.
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Differentiation of
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lipoid adenoma by radiomics:
are enhanced CT scanning
images necessary?
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Rui Sun®, Zhi tao Yang®, Chuan yu Zhang™ and Qing Fu™

‘Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China,
2GE Healthcare, PDx GMS Advanced Analytics, Shanghai, China

Purpose: To establish various radiomics models based on conventional CT scan
images and enhanced CT images, explore their value in the classification of
pheochromocytoma (PHEO) and lipid-poor adrenal adenoma (LPA) and screen
the most parsimonious and efficient model

Methods: The clinical and imaging data of 332 patients (352 lesions) with PHEO
or LPA confirmed by surgical pathology in the Affiliated Hospital of Qingdao
University were retrospectively analyzed. The region of interest (ROI) on
conventional and enhanced CT images was delineated using ITK-SNAP
software. Different radiomics signatures were constructed from the radiomics
features extracted from conventional and enhanced CT images, and a radiomics
score (Rad score) was calculated. A clinical model was established using
demographic features and CT findings, while radiomics nomograms were
established using multiple logistic regression analysis.The predictive efficiency
of different models was evaluated using the area under curve (AUC) and receiver
operating characteristic (ROC) curve. The Delong test was used to evaluate
whether there were statistical differences in predictive efficiency between
different models.

Results: The radiomics signature based on conventional CT images showed
AUCs of 0.97 (training cohort, 95% Cl: 0.95~1.00) and 0.97 (validation cohort,
95% Cl: 0.92~1.00). The AUCs of the nomogram model based on conventional
scan CT images and enhanced CT images in the training cohort and the
validation cohort were 0.97 (95% Cl: 0.95~1.00) and 0.97 (95% Cl: 0.94~1.00)
and 0.98 (95% CI: 0.97~1.00) and 0.97 (95% Cl: 0.94~1.00), respectively. The
prediction efficiency of models based on enhanced CT images was slightly
higher than that of models based on conventional CT images, but these
differences were statistically insignificant(P>0.05).

218 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2024.1339671/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339671/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339671/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339671/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1339671/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1339671&domain=pdf&date_stamp=2024-09-11
mailto:zhangchuanyu0926@126.com
mailto:xiaoqing619@163.com
https://doi.org/10.3389/fonc.2024.1339671
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1339671
https://www.frontiersin.org/journals/oncology

Liu et al.

10.3389/fonc.2024.1339671

Conclusions: CT-based radiomics signatures and radiomics nomograms can be
used to predict and identify PHEO and LPA. The model established based on
conventional CT images has great identification and prediction efficiency, and it
can also enable patients to avoid harm from radiation and contrast agents caused
by the need for further enhancement scanning in traditional image examinations.

KEYWORDS

adrenal adenoma, pheochromocytoma, CT, radiomics, classification

Introduction

Adrenal adenoma accounts for 75% to 80% of all benign adrenal
tumors and is the most common adrenal tumor (1). The clinical
symptoms are often nonspecific. Depending on the lipid content of
the tumor, a CT value of 10 HU is taken as the boundary. If the
average CT value within the lesion is lower than 10HU, it indicates
that the lesion is an adrenal adenoma rich in lipids. If the CT value
is higher than 10HU, it indicates that the lesion is an adrenal
adenoma lacking in lipids (LPA) (2-5). A pheochromocytoma
(PHEO), which originates from the adrenal medulla, can secrete
catecholamines and cause hypertension and may lead to
neuropathy and heart disease (6). When the clinical and imaging
manifestations of PHEO and adrenal adenoma are not typical, the
classification of the two diseases is difficult, and the misdiagnosis
rate is high before surgery (7-9). Moreover, there are significant
differences in preoperative preparation, surgical approach and
prognosis between the two adrenal adenomas (10). Therefore, it is
very important to correctly distinguish these two diseases
before surgery.

The aim of our research is to develop different radiomics models
based on conventional CT scan images and enhanced CT images to
identify PHEOs and LPAs and to compare the predictive efficacy of
various models to screen the most parsimonious and
efficient model.

Materials and methods
Patients

The imaging and clinical data of 167 patients (168 lesions) with
LPA and 165 patients (184 lesions) with PHEO confirmed by
surgical pathology in the Affiliated Hospital of Qingdao
University from January 2016 to December 2021 were
retrospectively collected (Figure 1). The inclusion criteria were as
follows: (1) Both conventional CT scans and dynamic enhanced CT
scans were performed before surgery. (2) The tumor lesions were
confirmed by surgery and complete pathological data. The
exclusion criteria were as follows: (1) The patient was
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accompanied by other primary malignant tumors during the
same period; (2) The average CT number of adrenal adenoma
was less than 10HU; (3) The quality of the image could not meet the
requirements of analysis; and (4) With incomplete clinical data.
Using a stratified random sampling method, patients were divided
into a training cohort (n=232) and a validation cohort (n=100) in a
7:3 ratio.

Image acquisition and segmentation
of lesions

All CT scans were performed on one of the following devices:
GE Discovery CT 750 HD (GE Healthcare, USA),SOMATOM
Definition AS(Siemens Medical Systems, Germany) and Brilliance
iCT (Philips Healthcare, Netherlands). The acquisition and
reconstruction parameters are shown in Table 1. The slice
thickness of the conventional CT was set at 5 mm. During the
enhanceme nt scan, 50 ml iohexol (300 mg/mL) was injected into
the elbow vein with a flow rate of 2.5-3.0 ml/s. The arterial and
venous phase images were collected at 25 s and 65 s after the
injection of contrast agent. The slice thickness of the reconstructed
image was set to 1 mm.

Using image segmentation software (ITK-SNAP, http://
www.itksnap.org, Version: 3.8.0, USA), we manually delineated
the region of interest (ROI) on the axial image that displayed the
largest cross-sectional area of the lesion on the conventional CT
scan. On the axial section images of the arterial phase and venous
phase (with a thickness of 1 mm) of the dynamic enhanced CT scan,
drew ROI layer by layer along the edge of the lesion, and then apply
automatic fusion software to generate 3D ROI of the lesion. All ROI
delineation was completed by 2 radiologists (Doctor QF and Doctor
SLL) with more than 10 years of chest CT diagnosis experience. Dr.
QF outlined the ROI and performed feature extraction. After 1
week, the second ROI mapping and feature extraction were
performed to evaluate the internal consistency of the measurers.
Dr. SLL only performed ROI placement and feature extraction once.
This approach was used to evaluate the inter- and intra- class
correlation coefficients (ICCs). An ICC > 0.75 was regarded as
satisfactory inter- and intra-reader reproducibility.
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Retrospective, with PHEO or adenoma confirmed by surgical pathology
from January 2016 to December 2021 (n=2145)

Exclusion criteria:

1) Without conventional CT scan or enhanced CT examination (n=354)
2) Adrenal adenomas with density less than 10HU(n=902)

3) With poor image quality or without a thin layer image (n=97)

4) Incomplete clinical data (n=407)

5) With other primary malignancies in the same period (n=53)

Cases meeting the inclusion criteria (n=332)

FIGURE 1
Flow diagram of the patient selection.

Image standardization, feature extraction
and development of the
radiomics signature

Figure 2 shows the workflow of radiomics implementation.
Before extracting the radiomics features, the original images were
normalized through z score transformation, and the average
intensity range for each imaging mode for all subjects was 0, with
a standard deviation of 1. We used a two-step feature selection
method to reduce curse of dimensionality, minimize overfitting,
and determine the most effective feature for distinguishing PHEO
and LPA. Firstly, a single factor analysis of variance (ANOVA) was
performed on all features with ICC scores>0.75, selecting
statistically significant features for the training cohort. Secondly,
the selected features are included in the Least Absolute Shrinkage
and Selection Operator (LASSO) regression algorithm to determine
the best feature (with non zero coefficients) to distinguish between
PHEO and LPA (Figures 3A-C). Tuning regularization parameters
that control regularization intensity were selected by using a
minimum standard of 10 times cross validation A. Then, the final
selected feature with a nonzero coefficient was used to construct a
radiomics signature. Features weighted by their corresponding
nonzero coefficients were screened using a linear combination of

TABLE 1 The scanning parameters and reconstruction parameters of
these three CT scanners.

Parameters Discovery SOMATOM Brilliance

750 HD Definition AS iCT

Scan parameters 120kVp, Care kV,Care Dose 120kVp,
Smart mA 4D, Dose Right

Ref mAs

Pitch 0.984 0.6 0.984

Reconstruction slice 1.25 1 1

thickness(mm)

Reconstruction soft B30f standard

kernel
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selected values. Then, the Rad scores of each patient in the training
cohort and external validation cohort were calculated (Figure 4).

Development of the radiomics nomogram
and assessment of the performance of
different models

Integrate independent clinical factors and Rad scores developed
on the training cohort into the radiomics nomogram using
multivariate logistic regression. Then, the Rad score and
independent clinical factors were used to calculate the radiomics
nomogram score (Nomo score) for each patient in the training and
validation cohort.Calibration curves for two groups of patients were
graphically generated to evaluate the performance of the radiomics
nomogram. The AUC, accuracy, specificity, and sensitivity were
used to evaluate the effectiveness of different models. The
calibration efficiency of the nomogram was evaluated using a
calibration curve, and the analysis fitting was performed using the
Hosmer Lime test, which was used to evaluate the calibration ability
of the nomogram. Decision curve analysis (DCA) was used to
evaluate the clinical application value of the prediction model. The
DeLong test was used to evaluate the difference in prediction
efficiency between different models.

Statistical analysis

Statistical analysis was conducted using R software (version
4.2.0, https://www.R-project.org). Qualitative data analysis was
conducted using Fisher’s exact test or chi-square test, and
quantitative data analysis was conducted using independent
sample t-test. Delong test was used for comparing the predictive
value of different models.The following software packages were
used in our study: use the “glmnet (R)” software package for LASSO
regression based on multivariate binary logistic regression. The
ROC curve was plotted using the software package ‘Partial Subject
Operating Characteristics (pROC [R])’. Use the ‘Regression
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FIGURE 2
Flowchart of radiomics implementation in this study.

Modeling Strategy (rms [R]) software package for nomogram
development and calibration curves. The significance level is set
at p<0.05.

Results
Clinical factors of the patients
Comparison of clinical data and CT image characteristics of all

patients with PHEO and LPA showed statistically significant
differences (P< 0.01) in lesion location, maximum lesion
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diameter, necrosis, edge, CT values and perfusion values, as

shown in Table 2.

Validation of the models

The AUC of the clinical model was 0.83 (95% CI: 0.76-0.89) in
the training cohort and 0.83 (95% CI: 0.72-0.94) in the validation
cohort. Clinically relevant factors of lesion location, CT values
(arterial phase CT values), and necrosis were independent
predictors for classifying PHEO and adrenal LPA, and these
factors were integrated with the radscore to create a nomogram,

P_wavelet_LLH_gldm_DependenceNonUniformity

P_original_shape_Sphericity
P_wavelet_LLH_glem_Contrast
P_original_shape_MinorAxisLength

40

P_original_firstorder_Median
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Coefficients

0

(A-C) Use the Least Absolute Shrinkage and Selection Operator (LASSO) regression model for radiomics feature selection. (A) Using cross validation
to select the optimal model parameters A. (B) Using 10 cross validation tests, a coefficient profile was generated and matched with the selected
logarithm A. (C) Nine radiomics features with nonzero coefficients were selected.

Frontiers in Oncology

frontiersin.org

221


https://doi.org/10.3389/fonc.2024.1339671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Liu et al. 10.3389/fonc.2024.1339671
157 Wilcoxon, p < 2.2e-16 157 Wilcoxon, p = 1.8e-14
101 10+
54 5- .
o Label ) . Label
] - 3 . o
(2] % E PHEO O - E PHEO
_ol 'DI s & L
o 04 5 g . . cA @ 0 p ol LPA
alz, "
\".‘ H o o
-
.g I |
-5 N 54 ) il
. -
L o |®
'. & &
* L3
-101 R -10 .
.
0 1 0 1
Label Label
4a 4b
FIGURE 4

(A, B) shows the Rad score of each patient in the training cohort (A) and validation cohort (B). The Rad score was used to classify patients with
PHEO and LPA according to the threshold. Use Wilcoxon test to verify whether there is a statistical difference between the two groups.

TABLE 2 Clinical factors of the patients.

Clinical factors PHEO(n=165, 184 lesions) LPA (n=167, 168 lesions) p-value x% or t
Male 73(44.2%) 62(37.1%)

Gender 0.19 1.74%
Female 92(55.8%) 105(62.9%)

Age, year 51.3 £ 12.6 51.2 £ 12.7 0.95 0.07
left 83(50.3%) 102(61.1%)

Location right 65(39.4%) 64(38.3%) <0.01 16.17*
bilateral 17(10.3%) 1(0.6%)

Maximum diameter(mm) 49.4 +28.3 235+ 11.8 <0.01 11.02
positive 88(53.3%) 97(58.1%)

Hypertension 0.66 0.19*
negative 77(46.7%) 70(41.9%)
positive 138(75.0%) 47(28.0%)

Necrotic <0.01 77.88*
negative 46(25.0%) 121(72.0%)
positive 115(62.5%) 154(91.7%)

edge <0.01 41.46*
negative 69(37.5%) 14(8.3%)

Arterial phase CT value(CT_A) (Hu) 123.2 £51.0 71.8 £ 255 <0.01 11.79

Conventional CT value (Hu) 414+ 7.1 27.1+93 <0.01 16.32

Perfusion value (Hu) 81.8 +52.4 44.6 +22.2 <0.01 8.50

* x? test, Perfusion value=Arterial phase CT value-Conventional CT value.

Frontiers in Oncology

222

frontiersin.org


https://doi.org/10.3389/fonc.2024.1339671
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Liu et al.

as shown in Figure 5. The predictive effectiveness of the clinic
model,radiomics signatures and radiomics nomogram models
established based on conventional CT images and dynamic
enhanced CT images (Mixed images of arterial and venous
phases) are shown in Table 3. We compared the predictive value
of different models using Delong test, and the results showed that
the prediction efficiency of the model based on enhanced CT images
was slightly higher than that based on conventional CT images, but
the difference was not statistically significant (p>0.05)(Table 3).
Figure 6 shows that in the validation cohort, the predictive ability of
the radiomics nomogram (AUC=0.97, 95% CI: 0.94-1.00) and
radiomics signature (AUC=0.97, 95% CI: 0.92-1.00) based on
conventional CT images was better than that of the clinical model
(AUC=0.83, 95% CI: 0.72-0.94). Figure 7 shows the DCAs of the
radiomics nomogram and radiomics signature.

Both radiomics models and clinical models can predict the
classification of PHEO and LPA. In the training and validation
cohorts, the predictive ability of the nomogram (red) (AUC=0.97)
and the radiomics signature (blue) (AUC=0.97) were better than
that of the clinical model (green) (AUC=0.83).

10.3389/fonc.2024.1339671

Net income is displayed on the y-axis. The dark blue line
represents the nomogram model model that combined clinical
features and radscores. The red line indicates that all patients are
assumed to have PHEO, the light blue line indicates that none of the
patients have PHEOQ, the yellow line represents the results of the
clinical model, and the gray line represents the results of radiomics
signature. It can be seen that the radiomics signature model and the
nomogram model have higher net income.

Discussion

Adrenal adenoma is very common in clinical work, and CT has
high specificity and sensitivity in the diagnosis of adrenal adenoma
when its CT value on conventional scan is below 10 Hu due to its rich
lipid component. However, some adrenal adenomas lacking lipids
(called LPAs) are difficult to diagnose correctly (11, 12). PHEOs can
secrete catecholamines. The typical clinical manifestation is
hypertension, as well as headache and palpitations associated with
hypertension, but in practice, approximately 10% to 20% of patients
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FIGURE 5

Radiomics nomogram used to classify LPA and PHEO.(CT_A: Arterial phase CT value) Data of a patient with LPA (A—C),data of a patient with PHEO
(D—F); radiomics nomogram (G). The lesions of two patients had similar imaging findings.

TABLE 3 Comparing the predictive value of different models using Delong test.

Training cohort

Validation cohort

HOGEs AUC Accuracy = Sensitivity ~ Specificity v;;e AUC Accuracy = Sensitivity =~ Specificity vaﬁ;e
(95% CI) (95% CI)
riﬁ);’;’;’?gt;‘:;zlre . 92;9; o0) 0.95 0.96 0.94 Reference | 92;917. 0 0.92 0.82 0.86 Reference
Clinical model (0.72f3.89) 0.79 0.89 0.67 <0.001 (0.7(;?3.94) 0.68 091 0.39 0.03
radlf::l?;C:SgliTure (0.9(;;9?.00) 095 0.94 0-96 0.94 (0.9(;;9?.()()) 0-89 0.97 0.79 0.48
ra:ijg);n(;::\r:)r;:z;im (0.9(;.~9;00) 095 092 0-99 0.8 (0.92;9;00) 091 0.87 0.96 0.74
radi(]irxll};:: ieodm((:);ram (0.9(;?500) 096 098 094 087 (0.93;9:.00) 0-89 085 0.96 081

p-value: Comparing the predictive value of different subgroup models using Delong test.
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The models based on clinical and conventional CT scan images applied AUC to evaluate the prediction ability of different models (A: ROC curve of

the training cohort; B: ROC curve of the validation cohort).

have no clinical manifestations or atypical manifestations (13, 14).
Adrenal LPA and PHEO are both blood-rich tumors and have many
similarities in CT presentation that make them difficult to differentiate
(15-18). However, the surgical risk of PHEO is high, and the literature
reports that adequate preoperative preparation could reduce the
surgical mortality of PHEO from 30%-40% to 0-5.5% (19-21).
Therefore, it is necessary to make an accurate clinical diagnosis of
patients before surgery.

In the past, the relative and absolute enhancement washout rates
were often used to characterize adrenal tumors, but Park said that it
was difficult to identify PHEO and LPA using the enhancement
washout rate (22, 23). In studying abdominal energy spectrum CT,
Marin et al. found that lipid-rich components showed a certain pattern
of CT value changes in a certain energy range with high specificity but
had little diagnostic significance for lipid-poor components (24).

More and more radiomics analysis was being applied to
medical imaging research (25). Radiomics can help clinicians
make accurate diagnoses by exploring the connection between
images and pathology and clinics (26-28). In addition, radiomics

1.0

0.8
I.
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0.4

02
J.

characteristics may be important predictive factors for cancer
differential diagnosis, treatment response, and survival prediction
(29, 30). Xiaoping Yi et al (31) found that non enhanced CT
quantitative texture analysis based on machine learning may be a
reliable quantitative method for distinguishing PHEO from LPA.
However, the sample size of this study was relatively small, and no
model based on enhanced scanning 3D data had been established
for comparison. Therefore, our study is the first to establish multiple
imaging radiomics models based on conventional CT and enhanced
CT images to predict LPA and PHEO, and we also compared the
predictive performance of different models. The AUCs of the
radiomics signature based on conventional CT images were 0.97
in the training cohort and 0.97 in the validation cohort. In the
validation cohort, the AUCs of the radiomics signature and
radiomics nomogram based on enhanced CT images were 0.98
and 0.97, respectively. Both models showed good predictive ability,
better than the predictive performance of the clinical model. These
results are also superior to the findings of Xiaoping Yi. The
radiomics nomogram based on conventional CT images also
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FIGURE 7
Decision curve analysis (DCA) of different models.
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yielded satisfactory results. The Delong test results showed that the
prediction efficiency of the models based on enhanced CT images
was slightly higher than that of the models based on conventional
CT images, but the difference was not statistically significant (P
>0.05). CT scanning can cause ionizing radiation damage, and
dynamic enhanced scanning not only increases radiation exposure
but also produces harmful effects such as contrast agent allergy and
contrast agent nephrotoxicity (32-35). At present, radiological
examinations should strictly follow the principle of “As Low As
Reasonably Achievable” (32, 33, 36-38). The model based on
conventional CT scans can effectively distinguish adrenal LPAs
from PHEOs, and the radiation and contrast hazards associated
with further enhancement scans can be avoided.

In this study, radiomic features were selected to construct
radiomics signature model for classifying PHEO and adrenal LPA,
including:P_wavelet_LLH_gldm_Dependence Non Uniformity,
P_wavelet LLH_glszm_Large Area Low Gray Level Emphasis,
P_wavelet HHH glrlm_Run Length Non Uniformity Normalized,
P_wavelet_LLH_glrlm_Run Length Non Uniformity Normalized,
P_original_shape_Sphericity,P_wavelet_LLH_glcm_Contrast,
P_original_shape _Minor Axis Length, P_original_firstorder_Median,
P_wavelet_LLH_glrlm_Run Variance, among which 1 first order
feature, 3 glrlm features,1 glszm feature,1 glem feature,1 gldm feature
and 2 original shape features were included.A mix of first-order, texture
and wavelet features seemed to be important for classifying PHEO and
adrenal LPA. In our study, we used filters to extract radiomics features
from the original images.Among the 9 independent imaging features
ultimately selected, there are 6 wavelet features. Wavelet features can
comprehensively analyze changes in spatial frequency. These features
can provide detailed analysis of texture changes. Wavelet features can
also quantify the heterogeneity of tumors in various directions through
different spatial scales, so it is believed that wavelet features may help us
understand the pathophysiology and morphology of tumors (39).
Previous studies had revealed the potential value of wavelet features
in histological subtype prediction and prognostic assessment (40, 41).
Our results show that wavelet features also have significant capabilities
in the prediction models of PHEO and LPA.First order features can
reflect the grayscale distribution of tumors and are obtained by
calculating the grayscale values of tumors, usually representing low
dimensional information that is easy to perceive visually.In addition,
our model also includes two original shape features, which respectively
suggest that the short axis length and sphericity of the tumor may have
value in distinguishing PHEO and LPA.

Nevertheless, our research has some limitations: (1) there may
be problems of selection bias and information bias in retrospective
studies; (2) different CT machines reduce the consistency of image
comparison to a certain extent; and (3) future multicenter and
prospective trials are needed to verify the results of this study.

In conclusion, the CT-based radiomics signature and radiomics
nomogram in our research have good predictive efficacy in identifying
PHEO and adrenal LPA. The model based on conventional CT scans
can identify both diseases while avoiding the radiation and contrast
hazards caused by dynamic enhancement scans.
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Purpose: This study was designed to determine the diagnostic performance of
fluorine-18-fluorodeoxyglucose (*8F-FDG) positron emission tomography (PET)/
computed tomography (CT) radiomics-based machine learning (ML) in the
classification of cervical adenocarcinoma (AC) and squamous cell
carcinoma (SCC).

Methods: Pretreatment 8F-FDG PET/CT data were retrospectively collected
from patients who were diagnosed with locally advanced cervical cancer at two
centers. Radiomics features were extracted and selected by the Pearson
correlation coefficient and least absolute shrinkage and selection operator
regression analysis. Six ML algorithms were then applied to establish models,
and the best-performing classifier was selected based on accuracy, sensitivity,
specificity, and area under the curve (AUC). The performance of different model
was assessed and compared using the Delong test.

Results: A total of 227 patients with locally advanced cervical cancer were
enrolled in this study (N=136 for the training cohort, N=59 for the internal
validation cohort, and N=32 for the external validation cohort). The PET
radiomics model constructed based on the lightGBM algorithm had an
accuracy of 0.915 and an AUC of 0.851 (95% confidence interval [Cl], 0.715-
0.986) in the internal validation cohort, which were higher than those of the CT
radiomics model (accuracy: 0.661; AUC: 0.513 [95% CI, 0.339-0.688]). The
Delong test revealed no significant difference in AUC between the combined
radiomics model and the PET radiomics model in either the training cohort
(z=0.940, P=0.347) or the internal validation cohort (z=0.285, P=0.776). In the
external validation cohort, the lightGBM-based PET radiomics model achieved
good discrimination between SCC and AC (AUC = 0.730).
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Conclusions: The lightGBM-based PET radiomics model had great potential to
predict the fine histological subtypes of locally advanced cervical cancer and
might serve as a promising noninvasive approach for the diagnosis and
management of locally advanced cervical cancer.

KEYWORDS

locally advanced cervical cancer, positron emission tomography, PET, radiomics,
adenocarcinoma, AC, squamous cell carcinoma, SCC

1 Introduction

Cervical cancer is the fourth most common female cancer
worldwide (1). In 2016, there were approximately 34,000 cervical
cancer-related deaths in Chinese women (2). Squamous cell
carcinoma (SCC) and adenocarcinoma (AC) are the main
pathological subtypes of cervical cancer, accounting for 70-75%
and 10-25% respectively. The incidence of AC has been observed to
increase in recent decades (3). Patients with locally advanced
cervical cancer who receive radiation therapy or concurrent
chemoradiotherapy have a worse prognosis for AC compared to
SCC, highlighting the need for alternative treatment options
specifically for AC cases (4). High intratumor heterogeneity
exhibited a significantly poor clinical outcome (5). Therefore, it is
essential to uncover the differences between AC and SCC from
multiple perspectives, explore the underlying reasons for these
differences, and develop personalized treatment strategies and
plans, as this holds considerable importance.

Pathological diagnosis is considered the gold standard for the
detection of cervical cancer, with cervical cytology and cervical
biopsy being the primary recommended methods (6). However, AC
may sometimes result in cytological false-negatives (7). Biopsy is an
invasive procedure associated with risks of bleeding and infection.
Point-to-point biopsy performed on larger tumors only evaluates a
small portion of the sample, resulting in sampling bias and an
inability to comprehensively assess tumor heterogeneity (8-10). In
addition, radiologists find it challenging to differentiate AC from
SCC based on conventional imaging modalities such as magnetic
resonance imaging (MRI), positron emission tomography (PET)/
computed tomography (CT), ultrasound, etc., and the interobserver
agreement is typically low (11, 12).

Radiomics is a rapidly growing field of research that utilizes
medical images to extract quantitative features, converting them
into high-dimensional data for analysis and exploration. This
technique enhances our understanding of diseases and provides
valuable support for clinical decision-making (13, 14). Malignant
tumors exhibit considerable spatial variation within the tumor at
the morphological and histopathological levels, including
cellularity, vascularization, extracellular matrix, and necrotic
components (15, 16). As a noninvasive tool, radiomics can
quantify intratumoral heterogeneity and is widely used in

Frontiers in Oncology

diagnosis, treatment response evaluation, and survival prediction
(17). Among conventional imaging modalities, MRI has better fine
exquisite soft tissue resolution than CT and PET, so it has long been
considered as the preferred imaging method of choice for the
evaluation of local tumor extension in primary cervical cancer.
Unsurprisingly, numerous radiomics studies aimed at identifying
the pathological subtypes of cervical cancer are primarily founded
on pretreatment MRI (18). To the best of our knowledge, there are
no radiomics studies that delineate the primary cervical tumor on
CT images, which might be related to the inability to clearly define
the boundary of the primary cervical tumor on CT images. In
addition, only two published studies have preliminarily evaluated
PET radiomics in cervical cancer to discriminate between AC and
SCC (19, 20). Nevertheless, both of the studies were single-center
ones, extracted too few radiomic features, and the methods for
radiomics feature selection and model construction were simplistic.
Even in one of the studies, only 83 patients were included.

Previous studies have shown that radiomic features based on
CT or PET images can achieve the differentiation of pathological
types of lung cancer (21). The application of radiomics methods for
diagnosis and tumor characterization might be a potential
supplement for omics datasets, or an alternative for pathological
diagnosis, particularly for patients who are at an advanced stage,
inoperable, or unable to undergo biopsies. A more extensive and
comprehensive study is required to investigate the value of PET/CT
imaging in differentiating the subtypes of cervical cancer. Therefore,
the aim of this study was to develop and validate an optimal
machine learning (ML) model based on pretherapeutic fluorine-
18-fluorodeoxyglucose (‘*F-FDG) PET/CT for differentiating
between SCC and AC in cervical cancer.

2 Materials and methods

2.1 Study design

This retrospective study was conducted in accordance with the
Declaration of Helsinki. Ethical approval was obtained from the
Institutional Review Board of the Affiliated Cancer Hospital of
Shandong First Medical University (No. SDTHEC2023006030) and
the Affiliated Cancer Hospital of Xinjiang Medical University (No.
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K-2022006), and the requirement for written informed consent was
waived. The workflow of our study is shown in Figure 1.

2.2 Patient cohort

The study included patients with a diagnosis of cervical cancer
between September 2015 and February 2022. The inclusion criteria
were as follows: (1) pathologically confirmed cervical cancer with
the 2018 International Federation of Gynecology and Obstetrics
(FIGO) stage IB-IVA; (2) underwent '*F-FDG PET/CT; and (3)
complete clinical data retrievable from the electronic medical
records. Exclusion criteria included: (1) a history of any previous
anticancer treatment; (2) pathological types other than SCC and
AG; (3) patients with a diagnosis of other unrelated malignant
tumors; (4) presence of extensive abdominal metastasis; (5) poor
PET/CT image quality; and (6) primary maximal tumor diameter
less than 1.0 cm.

All patients were initially confirmed by hematoxylin-eosin (HE)
staining, and the poorly differentiated patients whose subtypes
could not be affirmed were further confirmed by
immunohistochemistry (IHC) staining. Ultimately, based on the
pathological reports of biopsy specimens, a total of 195 patients
were recruited in the Center 1 (the Affiliated Cancer Hospital of
Shandong First Medical University), among which 164 were
confirmed by HE staining and 31 were confirmed by IHC. The
Center 2 (the Affiliated Cancer Hospital of Xinjiang Medical
University) recruited 32 patients, of whom 23 were confirmed by
HE staining and 9 were confirmed by IHC. The patients recruited in
the Center 1 were randomly allocated to the training cohort (n =
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FIGURE 1
The Workflow of this study.
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136) and the internal validation cohort (n = 59) in a 7:3 ratio, while
the Center 2 serves as the external validation cohort. Figure 2
illustrates a flow chart outlining the process of patient selection. The
clinical information of the patients, including age, pathology,
maximal tumor diameter (MTD) on PET/CT images, menopausal
status, lymph node metastasis (LNM), and red blood cell count, was
collected from electronic medical records.

2.3 PET/CT acquisition

All enrolled patients underwent '*F-FDG PET/CT with a
standardized scan setup and parameters before treatment. Patients
enrolled in Center 1 were scanned with the Philips Gemini TF PET/
CT scanner (Phillips Medical Systems, Holland), and the BE_FDG
was generated by the MINItrace cyclotron from GE Healthcare. At
Center 2, the Philips Ingenuity TF (Phillips Medical Systems,
Holland) was used, and '®F-FDG was generated by the Sumitomo
Heavy Industries HM-10 cyclotron. The radiochemical purity was
above 95%. All patients fasted for at least 6 h, and their peripheral
blood glucose levels were confirmed to be <150 mg/dL before '*F-
FDG injection. '®F-FDG was intravenously administered at 3.7-4.4
MBg/kg body weight. The key scanning parameters were as follows:
tube voltage of 120-130 KV; tube current of 150-300 mA. PET images
were reconstructed using ordered-subset expectation maximization.
Reconstruction using standard convolution kernel with 1.5 mm layer
thickness (median 1.5 mm; range 1.0-3.0 mm). Each CT image was
reconstructed in a 512x512 pixels image matrix and each PET image
was reconstructed in a 144x144 pixel image matrix. To eliminate
image differences between images acquired by different scanners, all
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FIGURE 2
Flow chart of patients selection.

images were resampled to the same image spacing of 1
mmx1 mm x1 mm.

2.4 Tumor segmentation

PET images were attenuated, corrected, reconstructed in
multiple layers, and then fused with noncontrast-enhanced low-
dose CT images. The resulting images were imported into MIM
Maestro version 7.1.7 (MIM Software Inc., Cleveland, OH, USA).
The regions of interest (ROIs) were delineated using a fixed
threshold value at 42% of the maximum standardized uptake
value (SUVmax) of the primary tumor. Regions corresponding to
the bladder were manually excluded from the analysis. For the
obtained ROIs, various parameters, such as metabolic active tumor
volume (MTV), mean standardized uptake value (SUVmean), total
lesion glycolysis (TLG), and SUVmax, were calculated using MIM
Software. The contoured ROIs were then transferred to PET and CT
images using rigid registration. Another experienced oncologist
carefully reviewed and modified the transferred results on a slice-
by-slice basis. Figures 3, 4 show a set of representative PET/CT
images from a 53-year-old woman with SCC and a 41-year-old
woman with AC, respectively. The ROI, labeled in red, was
segmented in each slice of the axial, sagittal, and coronal views of
the PET, CT, and fusion images.

2.5 Feature extraction and normalization

A total of 1409 PET and 1409 CT radiomics features were
extracted from each segmented ROI using AccuContour software
version 3.2 (Manteia Medical Technologies Co. Ltd., Xiamen,
China), which is a commercial software application that allows
for standardized preprocessing of medical imaging data. The
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radiomics features based on the original images included shape
features, first-order intensity histogram features, gray-level
cooccurrence matrix (GLCM) features, gray-level run-length
matrix (GLRLM) features, gray-level size zone matrix (GLSZM)
features, neighboring gray-tone difference matrices NGTDM), and
gray-level dependence matrix (GLDM) features.

2.6 Feature selection and
model development

All features were standardized to Z scores with the mean and
standard deviation. The Pearson correlation coefficient (PCC) for
each feature pair was calculated to evaluate their similarity, and if
the PCC value exceeded 0.9, one of the features was randomly
eliminated. After this process, the dimension of the feature space
was reduced, and features were independent of each other. Then,
least absolute shrinkage and selection operator (LASSO) regression
analysis with 10-fold cross-validation was employed to select the
effective radiomics features. Clinical features were selected using
logistic regression analysis. Separate models with good prediction
performance were built to differentiate pathological subtypes in
locally advanced cervical cancer. Ultimately, the predictive
performance of the models was assessed using the receiver
operating characteristic (ROC) curve, decision curve analysis
(DCA), and calibration curve.

2.7 Statistical analysis

Quantitative data that followed a normal distribution are
presented as the mean + standard deviation (s), while qualitative
data are expressed as frequencies (percentages). The patient
characteristics between the training and validation cohorts were
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FIGURE 3

A 53-year-old woman diagnosed with SCC. (A—C) The RO, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D—F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G—=1) The ROI, labeled in red, was segmented on the coronal, axial,

sagittal CT images. (J) pathological examination confirmed SCC.

compared using various statistical tests, such as the Pearson Chi-
square test, Fisher’s exact test, Student’s t test, and Mann—Whitney U
test. Clinical features were selected using univariate and multivariate
logistic regression analyses. Six ML classifiers, including logistic

y
g v

G‘“Lﬁ i

FIGURE 4

regression (LR), naive Bayes (NB), support vector machine (SVM),
k-nearest neighbors (KNN), light gradient boosting machine
(lightGBM), and multilayer perceptron neural network (MLP),
were used to build a model to differentiate pathological subtypes.

A 41-year-old woman diagnosed with AC. (A—C) The RO, labeled in red, was segmented on the coronal, axial, sagittal PET images. (D—F) The ROI,
labeled in red, was segmented on the coronal, axial, sagittal fusion images. (G—I) The ROI, labeled in red, was segmented on the coronal, axial,

sagittal CT images. (J) Pathological examination confirmed AC.
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The optimal ML model was selected based on its AUC, accuracy 3 Resylts

(ACC), sensitivity (SEN), and specificity (SPE). The AUC values were

compared between different models using the DeLong test. The data 3 1 Clinical characteristics and PET
analyses were performed using SPSS software (Version 25.0, IBM  metabolic parameters

Corp., Armonk, NY, USA) and R software (Version 3.4.0, R
Foundation for Statistical Computing, Vienna, Austria). A two- Table 1 presents the clinical characteristics and PET metabolic

sided p-value<0.05 was considered statistically significant. parameters of 227 patients with locally advanced cervical cancer.

TABLE 1 Comparison of Clinical characteristics and PET metabolic parameters between SCC and AC in the training, internal validation and external
validation cohorts.

. Internal validation External validation
Training (N = 136
9l ) (N = 59) (N=32)
SCC Nele SCC
AC (N=21) AC (N=14) AC (N=3)
(N=115)
Age (years) 53.91 + 9.37 56.33 + 12.86 0.418 52,67 + 11.41 55.28 + 12.22 0.464 5224 + 11.27 51.33 + 493 0.892
Abortion 0.105
NO 64(55.7%) 13(61.9%) 0.595 24(53.33%) 4(28.57%) 11(37.93%) 1(33.33%) 0.876
YES 51(44.3%) 8(38.1%) 21(46.67%) 10(71.43%) 18(62.07%) 2(66.67%)
MTD (cm) 522 + 1.67 0.29 448 +1.48 327 £025 0.173
LNM 0.430 0.516 0.909
NO 39(33.9%) 9(42.9%) 13(28.89%) 6(42.86%) 13(44.83%) 2(66.67%)
YES 76(66.1%) 12(57.1%) 32(71.11%) 8(57.14%) 16(55.17%) 1(33.33%)
Para- 0.350 0.759 0.476
aortic LNM ’ ’ ’
NO 88(76.5%) 18(85.7%) 37(82.22%) 11(78.57%) 24(82.76%) 2(66.67%)
YES 27(23.5%) 3(14.3%) 8(17.78%) 3(21.43%) 5(17.24%) 1(33.33%)
Menopause 0.929 0.849 0.819
NO 45(39.1%) 8(38.1%) 18(40.0%) 6(42.9%) 17(58.62%) 1(33.33%)
YES 70(60.9%) 13(61.9%) 27(60.0%) 8(57.1%) 12(41.38%) 2(66.67%)
SUVmax
1559 + 5.88 1638 + 8.01 0.672 16.20 + 5.82 17.27 + 5.90 0.010 1530 + 7.28 9.85 + 6.81 0.225
(SUVbw)
27.48 34, 12 27.44 11.01 .
MTV (ml) g 0.555 3 <0.001 0 6:56 0.580
(15.54,54.08) (16.85,57.56) (22.20,73.87) (9.21,42.97) (6.10,25.15) (5.27,13.24)
SUVmean
9.23 +3.52 9.35 + 4.43 0.908 10.21 + 3.44 9.64 + 273 0.013 9.28 + 4.62 6.08 + 4.42 0.261
(SUVbw)
TLG 231.53 305.64 0671 405.52 189.45 0012 101.02 57.04 0164
(SUVbw*ml) (117.85,510.18) | (124.16,693.92) : (171.37,775.63) | (74.06,294.13) ’ (50.60,177.68)  (36.96,64.96) ’
WBC count 6.85 + 2.43 6.56 + 3.84 0.644 7.54 + 322 6.28 + 1.91 0.171 6.17 + 1.85 6.55 + 0.62 0.730
RBC count 4.12 + 0.50 4.02 + 0.43 0.384 4.19 + 0.65 432 + 0.45 0.494 422 +0.61 4.45 + 0.39 0.529
313.57 225.00
Plt count 291.76 + 94.11 | 285.67 + 101.24 | 0.788 326.24 + 103.28 0.716 23325 + 62.74 0.826
+ 142,57 +37.51
lymphocyte
count 1.68 + 0.57 1.56 + 0.39 0.355 1.63 + 0.59 1.65 + 0.40 0.916 3.00 + 5.79 1.81 +0.10 0.728
neutrophile
count 452 +2.16 4.52 + 3.60 0.995 5.19 + 2.56 401 + 1.61 0.13 5.57 + 10.59 422 +0.66 0.830
Hb count 12081 +16.76 | 11671 + 1491 | 0.298 117.98 2378 | 11643 + 2442 | 0.833 126.17 + 1874 13133+ 1.16 = 0.642

SCC, squamous cell carcinoma; AC, adenocarcinoma; MTD, maximal tumor diameter; LNM, lymph node metastasis; SUVmax, maximum standardized uptake value; SUVmean, mean
standardized uptake value; MTV, metabolic active tumor volume; TLG, total lesion glycolysis; WBC, white blood cell; RBC, red blood cell; WBC, white blood cell; Plt, blood platelet;
Hb, hemoglobin.
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The comparison between SCC and AC in three groups are shown in
Supplementary Table S1. The results of the univariate logistic
regression analysis are provided in Table 2. None of the clinical
features or PET metabolic parameters showed significant
differentiation ability for the pathological subtypes.

3.2 Radiomics features extraction
and selection

A total of 2818 radiomic features were extracted from the ROIs of
CT and PET images. Among them, a total of 391 and 242 radiomics
features were selected from the CT and PET images, respectively,
based on the PCC. Subsequently, LASSO regression analysis was
performed to select one CT radiomics feature (Figures 5A, C) and five
PET radiomic features (Figures 5B, D, 6). Then, Table 3 displays the
final PET and CT radiomic features. The quantitative differences in
PET radiomic features between cervical SCC and AC are shown in
Supplementary Table S2.

3.3 Radiomics model development
and evaluation

Table 4 presents a summary of the prediction performance in
distinguishing between AC and SCC using various ML classifiers in the
training and internal validation cohorts. The LightGBM model
exhibited superior performance in terms of AUC, ACC, SEN, SPE
compared to the other ML models, and was consequently employed as
the ML algorithm for differentiating the described pathological subtypes.

Figure 7 illustrates the ROC curves of the CT radiomics model,
PET radiomics model, and combined model. In the training cohort,
the best differentiation performance was demonstrated by the
combined radiomics model (AUC=0.968), followed by the PET
radiomics model (AUC=0.955), while the differentiation
performance of the CT radiomics model was average
(AUC=0.752). The DeLong test indicated that there was no
statistically significant difference between the combined radiomics
model and the PET radiomics model (z=0.940, p-value=0.347).
Nevertheless, both the combined radiomics model and the PET
radiomics model significantly outperformed the CT radiomics
model (z=3.291, p-value<0.001). In the internal validation cohort,
the PET radiomics model had the best differentiation effectiveness
(AUC=0.851), followed by the combined radiomics model
(AUC=0.842), while the differentiation performance of the CT
radiomics model was poor (AUC=0.513). The DeLong test
showed no statistically significant difference between the
combined radiomics model and the PET radiomics model
(2=0.285, p-value=0.776). However, both the combined radiomics
model and the PET radiomics model were significantly better than
the CT radiomics model (z=2.807, p-value=0.005 and z=2.697, p-
value=0.007, respectively). In the external validation cohort, the
DeLong test showed no statistically significant difference between
the combined radiomics model and the PET radiomics model
(2=0.272, p-value=0.809).
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TABLE 2 Univariate logistic regression analysis of clinical and PET
metabolic parameters to differentiate pathological subtypes in the
training cohort.

Univariate logistic analysis

OR 95% CI p-Value
Age (years) 1.022 0.986-1.060 0.228
Abortion 0.915 0.647-1.295 0.617
MTD (cm) 0.859 0.680-1.087 0.206
LNM 0.642 0.304-1.355 0.245
Para-aortic LNM 0.739 0.284-1.921 0.535
Menopause 0.974 0.462-2.056 0.945
SUVmax (SUVbw) 0.968 0.909-1.031 0.316
MTV (ml) 0.996 0.986-1.006 0.414
SUVmean (SUVbw) 0.933 0.837-1.040 0.211
TLG (SUVbw*ml) 1.000 0.999-1.001 0.385
WBC count 0.911 0.778-1.067 0.249
RBC count 0.995 0.496-1.997 0.989
Plt count 1.000 0.996-1.003 0.806
lymphocyte count 0.780 0.386-1.575 0.488
neutrophile count 0.929 0.780-1.107 0.410
Hb count 0.991 0.972-1.010 0.755

MTD, maximal tumor diameter; LNM, lymph node metastasis; MTV, metabolic active tumor
volume; SUV, standardized uptake value; TLG, total lesion glycolysis; WBC, white blood cell;
RBC, red blood cell; WBC, white blood cell; Plt, blood platelet; Hb, hemoglobin.

The DCA results showed that the PET radiomics model
performed better and provided a higher clinical application value
in differentiating pathological subtypes than CT radiomics mode
and PET-CT radiomics model (Supplementary Figure S1). The
calibration curves for the training cohort, internal validation cohort
and external validation cohort (Supplementary Figures S2), assessed
using the Hosmer-Lemeshow test, showed no significant differences
in both the training cohort (P=0.129), internal validation cohort
(P=0.351) and external validation cohort (P=0.529). This suggests
good consistency between the actual and predicted risks.

4 Discussion

In this study, we successfully developed six ML models based on
PET and CT images, among which the lightGBM model based on
PET radiomics features performed excellently in distinguishing AC
and SCC.

Previous literature has indicated that CT radiomics features
exhibit better predictive performance than PET radiomics features
in predicting survival, and CT radiomics features are also more
abundant than PET features (22, 23). Nevertheless, with regard to
distinguishing pathological subtypes, Kirienko et al. (24) discovered
that PET radiomics features had a greater ability to discriminate
between primary and metastatic pulmonary lesions than CT
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FIGURE 5

CT and PET radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) algorithm. (A) LASSO coefficient profiles of
CT radiomics features. (B) LASSO coefficient profiles of PET radiomics features. (C) Mean square error path obtained through tenfold cross-validation
for CT radiomics feature selection process. (D) Mean square error path obtained through tenfold cross-validation for PET radiomics feature

selection process.

radiomics features. Further studies conducted by Hyun et al. (25)
and Han et al. (21) demonstrated that a PET/CT-based machine
learning method was able to make a distinction between AC and
SCC in patients with non-small cell lung cancer. This study
indicates that in distinguishing SCC and AC, the selected PET
radiomics features are substantially more numerous than CT

radiomics features, and the performance of the PET radiomics
model is notably superior to that of the CT radiomics model.
Furthermore, the Delong test showed that although there was a
slight improvement in performance when combining PET
radiomics features with CT radiomics features, the increase in
AUC value did not reach statistical significance (the p values of
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FIGURE 6
The five PET radiomics features are selected and shown.
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TABLE 3 The final PET and CT radiomics features used for models.

Image Filter Feature class = Feature
Small 1
PET Exponential GLSZM matl area OW gray
level emphasis
Wavelet . i
(LHL) First-order Maximum
Square GLDM Small dependence emphasis
Squareroot First-order Minimum
Squareroot GLDM Small dependence emphasis
Wavelet
CT (H?jf)e NGTDM Busyness

the training and internal validation cohorts were 0.347 and 0.776,
respectively). In a retrospective study, Shen et al. (19) first found
that short-zone emphasis (SZE) from GLSZM was the only PET-
based radiomics feature that showed quantitative differences
between SCC and non-SCC in cervical cancer. Tsujikawa et al.
(20) reported that the correlation from normalized gray-level co-
occurrence matrix (NGLCM) was the only feature extracted from
"E-FDG PET that showed significant differences between cervical
SCC and non-SCC. The previous two published studies extracted
merely 18 or 76 features from the original images. In contrast, our
study extracted 2818 features from the original images as well as the
converted images. This might be the cause for which the previous
study could select only one meaningful feature, while our study
selected five. In summary, the findings of this series of PET/CT
radiomic studies highlights the importance of functional imaging-
based radiomics research in differentiating tumor pathological
subtypes. This may be related to the FDG uptake heterogeneity

10.3389/fonc.2024.1346336

between AC and SCC, which is consistent with the identification of
the pathological subtypes of lung cancer based on PET/CT (21).

MRI techniques also introduced various functional sequences,
including apparent diffusion coefficient (ADC), dynamic contrast-
enhanced imaging, and perfusion-weighted imaging (26). Wang
et al. (18) achieved good differentiation between SCC and AC using
a multiparameter MRI radiomics model based on ADC, enhanced
T1-weighted imaging, and other anatomical and functional
sequences. Although the differentiation performance of the multi-
parametric MRI-based radiomics model was the highest among the
published MRI-based radiomics studies, its differentiation
performance (AUC = 0.89) was lower than that of the pure PET-
based radiomics model constructed in our study (AUC = 0.955).
These findings demonstrate the advantages of PET radiomics
features over multiparametric MRI radiomics features to a certain
extent. PET-based radiomics can not only reveal the intratumoral
heterogeneity of imaging structures between AC and SCC but also
demonstrate the heterogeneity of tumor cell metabolism. Moreover,
radiomics features are based on manually segmented ROIs in five
MRI sequences, which not only requires a substantial amount of
work but also increases the instability of the features.

The radiomics features selected in our study are all derived from
processed images, which may reveal greater tumor heterogeneity
differences between SCC and AC compared to the original images,
showcasing the advantage of radiomics. Among these radiomics
features selected in our study, the firstorder_Maximum and
firstorder_Minimum represent the maximum and minimum gray
level intensities, respectively. SCC exhibits significantly higher values
than AC, indicating that SCC has a stronger FDG uptake than AC.
Campos-Parra et al. found that compared to AC, SCC exhibits higher
activation levels of key cancer pathways, such as IL-17, JAK/STAT,
and Ras signaling (27). high-risk human papilloma virus (HPV) -16

TABLE 4 Performance of machine learning classifiers for differentiating pathological subtypes in the training and internal validation cohort.

PET radiomics model

CT radiomics model

AUC 95% Cl ACC SEN AUC 95% Cl ACC SEN
T 0916 0.852 - 0.979 0919 0.714 0.957 0.597 0441 - 0.753 0.779 0429 0.843
LR

v 0.779 0.631 - 0.928 0.814 0571 0.889 0.521 0330 - 0.711 0.746 0286 0.909

T 0.848 0.739 - 0.957 0919 0.667 0.965 0.684 0.549 - 0.820 0.603 0.762 0.574
NB

v 0.719 0.517 - 0.921 0.847 0.643 0911 0.524 0334 - 0712 0.746 0286 0.909

T 0.941 0.885 - 0.998 0941 0.857 0.957 0.612 0.465 - 0.760 0.632 0.619 0.635
SVM

A\ 0.811 0.647 - 0.975 0.864 0.786 0.889 0.484 0.287 - 0.681 0.780 0214 0.977

T 0.96 0.931 - 0.989 0.824 1.000 0.791 0.802 0.735 - 0.870 0.559 1.000 0.478
KNN

\% 0.700 0.535 - 0.865 0.847 0357 1.000 0417 0.253 - 0.582 0.763 0071 1.000

T 0.955 0.922 - 0.988 0.868 0952 0.852 0.752 0.642 - 0.862 0713 0.667 0.761

LightGBM

v 0.851 0.715 - 0.986 0915 0.643 1.000 0513 0.339 - 0.688 0.661 0286 0.814

T 0.930 0.877 - 0.984 0.809 0.905 0.791 0.597 0.440 - 0.753 0.779 0.429 0.843
MLP

4 0.816 0.667 - 0.965 0.847 0.643 0911 0.521 0.330 - 0.711 0.746 0286 0.909

ML, machine learning; DS, data set; PET, positron emission tomography; CT, computed tomography; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE,
Specificity; LR, logistic regression; T, training cohort; V, internal validation cohort; NB, Naive Bayes; SVM, support vector machine; KNN, k-nearest neighbors; light GBM, light gradient boosting

machine; MLP, multilayer perceptron neural network.
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FIGURE 7

The receiver operating characteristic (ROC) curves of all three radiomics models were used to differentiate pathological subtypes in the training

cohort (A), internal validation cohort (B), and external validation cohort (C).

infection is more common in SCC, while HPV-18 and HPV-45 are
more frequently observed in AC (27, 28). Priego-Hernandez et al.
discovered that cervical cancer and HPV-16-positive cell lines have
increased expression of HIF-10 and glucose metabolism-related genes
(GLUT1, LDHA, CAIX, MCT4, and BSG) (29). Furthermore, there
are significant variations in the expression of glucose metabolism-
related genes between SCC and AC (30). Choi et al. demonstrated that
tumor FDG uptake is associated with glucose transporters (Glut-1 and
Glut-3), with SCC exhibiting higher expression intensity and
proportion of Glut-1 compared to AC. Consequently, SCC
demonstrates higher SUVmax and stronger FDG uptake capacity
(31). Small dependence emphasis (SDE) from GLDM and small area
low gray level emphasis (SALGLE) from GLSZM represent tumor
heterogeneity, with higher values indicating more significant
heterogeneity. In our study, GLDM_SDE and GLSZM_SALGLE
features were significantly higher in SCC compared to AC,
indicating that the intratumoral metabolic heterogeneity based on
PET imaging in SCC is significantly higher than that in AC. This may
be related to the previously mentioned metabolic and
histomorphological differences between SCC and AC. The tissue
structure of SCC is tight, with small gaps between tumor cells,
wrapped in several matrix structures, forming cancer nests. In
contrast, the tissue structure of AC is more loose, characterized by
glandular differentiation. Therefore, the differential expression of
pathogenic molecular mechanisms, especially glucose metabolism
genes, determines the metabolic differences of tumor cells, while cell
arrangement and tissue morphology determine the spatial
heterogeneity of tumor cells. The tumor heterogeneity revealed by
PET images manifests these metabolic differences and spatial
heterogeneity of tumor cells. These findings require further
validation with a larger-scale patient or in combination
with pathomics.

In this study, we employed six ML algorithms to develop
models for distinguishing SCC and AC. Among the algorithms,
the radiomics model constructed by the LightGBM algorithm
exhibited excellent differentiation performance, accuracy,
sensitivity, and specificity with a relatively balanced performance.
This finding is consistent with a similar study conducted by Lam
et al., who investigated the correlation between radiomics features
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and tumor mutation burden in glioma based on MRI images using
LR, SVM, and six other ML algorithms (32). They found that the
radiomics model constructed by the LightGBM algorithm also
demonstrated the best discriminative performance with relatively
balanced sensitivity and specificity. Furthermore, researchers have
successfully achieved good discriminative performance in
distinguishing low-grade and high-grade meningiomas using the
LightGBM algorithm for both radiomics and deep learning models
(33). Similarly, Chang et al. constructed LightGBM and
convolutional neural network (CNN) models based on
noncontrast CT and enhanced images to differentiate thymic
epithelial tumors from other anterior mediastinal tumors (34).
The results demonstrated that the LightGBM model
outperformed the CNN model in both the noncontrast CT
dataset and the enhanced CT dataset. The LightGBM algorithm,
which is based on the gradient boosting decision tree model,
optimizes the search for optimal split points and the tree growth
process. It supports efficient parallel training and possesses
advantages such as faster training speed, lower memory
consumption, better accuracy, and quick processing of massive
data, making it widely applicable. Therefore, ML can better handle
complex nonlinear relationships in large-scale datasets and holds
great potential for clinical applications (35). However, it is
important to acknowledge that ML models and algorithms also
have limitations, including overfitting and lack of interpretability.
Overfitting can undermine predictive performance, while the lack of
interpretability can hinder the use of ML (36). Hence, it is essential
to prioritize the future optimization of ML algorithms and conduct
independent validations to verify their performance.

There were several limitations in this study. Firstly, it was a
retrospective and preliminary study, carrying a potential selection
bias despite the use of strict inclusion and exclusion criteria. Secondly,
HPV status and histological differentiation were not available for
some patients when retrieving the electronic medical record system,
and we were unable to further explore their impact on pathological
subtypes. Lastly, the sample size of AC in this study is relatively small,
but this is consistent with the epidemiology of cervical cancer. To
improve the generalizability of the model, it is necessary to investigate
a larger sample size from multiple centers in future research.
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5 Conclusion

The light GBM-based PET radiomics model effectively identified
pathological subtypes in patients with locally advanced cervical
cancer and may help clinicians in their daily decision-
making process.
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