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Editorial on the Research Topic
 Agri-food waste utilization for sustainable future: challenges and opportunities




The global agri-food system generates substantial volumes of waste annually, 150 billion metric tons, an amount projected to grow by 7.5 % each year, including crop residues, food processing by-products, and consumer discards. These wastes, if unmanaged, contribute to environmental harm and loss of valuable nutrients. The Research Topic “Agri-food waste utilization for sustainable future: challenges and opportunities” compiles interdisciplinary research aimed at transforming agri-waste/by-products, into valuable resources through valorization, lifecycle assessments, economic analyses, and policy frameworks—paving the way for circular and sustainable food systems.

Several studies under this theme highlight innovative uses of agricultural wastes in diverse sectors. Uddin et al. report the successful use of polyphenol oxidase (PPO) enzymes from fruit and vegetable peels in biodegrading and decolorizing industrial azo dyes. PPO extracted from Solanum tuberosum achieved an 83.29% decolorization efficiency against Reactive Black-5, revealing the potential of agro-waste-derived enzymes in eco-friendly wastewater management. Arable crops processing generates lots of waste streams like stale bread, other wastes from bread industry, legumes like soybean processing into tofu, protein isolates generates most notably soybean dregs (okara) and soybean whey which have huge potential for upscaling. In this track, Hafyan et al. review the potential of bread waste (BW) as a feedstock for producing valuable biochemicals. Unlike lignocellulosic biomass, demanding harsh pre-treatment and cumbersome decomposition reactions, BW characterized by its starchy composition and cost-effectiveness is readily accessible and has immense potential as sustainable feedstock for bioenergy and high-value biochemicals. Despite its promise in a circular bioeconomy, challenges remain, including low technological readiness, cost-effectiveness, and public acceptance. The review stresses the need for integrated sustainability assessments to scale BW-based biorefineries, provides sustainability assessment, through life cycle anslysis, technoeconomic feasibility, social lifecycle and draws out current challenges and concludes with chalking a future strategic approach for BW utilization. Similarly, Shen et al. explore the use of screw extrusion as a scalable method for treating underutilized soybean by-products. Considering the consequences of residual metal ions, bitter flavour protein inhibitor residues and microbial contamination in soybean whey, they propose extraction of isoflavones from soy whey. They advocate the use of extrusion technology to leverage thermal and mechanical means to convert nutrient-rich soy dregs into value-added products, addressing contamination concerns and reducing environmental impacts. They conclude with enlisting the advantages, limitations, and further scope of extrusion technology for soybean by-product processing.

Besides food and agricultural waste, increased urbanization and industrialization globally has resulted into a sudden increase in wastewater production. Ghanbari et al. emphasize the reuse of wastewater and biosolids in agriculture to reap social and economic benefits and promote the sustainability of agriculture and the environment. They employed MAXQDA to organize and code the collected data from scientific articles and expert interviews, conduct systematic analysis of the components affecting sustainable management of wastewater use in agriculture. A comprehensive framework for the sustainable management of wastewater in agriculture has been provided with IQCA method wherein they have identified six key components—economic, environmental, contextual, individual, management and planning, and education and extension—that are critical for successful reuse of purified waste water. Emphasizing education and stakeholder engagement, the study provides a practical guide for developing inclusive, sustainable water strategies.

Apart from agriculture, waste from households also account for considerable environmental load. In Japan alone, 2.44 million tons (almost half of the total food waste) came from households (Morais and Ishida). Theory of Consumption Values (TCV) was applied to understand household composting behavior among Japanese households (Morais and Ishida). Use of categorical PLS-SEM approach identified key motivators like social approval, knowledge, convenience, and interest in gardening. Functional value, such as ease of use, played a central role, while emotional factors and demographics had minimal impact. Morais and Ikshida highlight the importance of community initiatives and educational outreach in mainstreaming household composting.

India produces ~27 million MT onions, contributing widely to global consumption. Onions processing into various value-added products like dehydrated onion, onion paste, pre-cut onions generates large amounts of waste, in the form of outer skins, peels, and trimmings. Disposal of this waste is challenging for industries owing to strong characteristic odor of sulfur containing compounds. Gorrepati et al. assessed the nutraceutical potential of onion peels, from eight dark red varieties as a potential source of high-value secondary metabolites. These peels showed high total phenolic and anthocyanin contents, along with strong antioxidant activity. They reported that red colored variety BSR had 49 identified phenolic compounds, including nine flavanol, four flavones, and 30 anthocyanin glycosides. In contrast, white onion varieties had five flavanol and 11 anthocyanins. With anthocyanin content as high as 28 mg/100 g in some varieties, these can be well exploited for use in functional food and dietary supplement development. Similarly in Taiwan, Grouper fish aquaculture represents a significant sector for processed seafood. It also generates substantial by-products, posing challenges for waste management and environmental sustainability. Grouper bone hydrolysate (GBH), being rich in branched-chain amino acids (valine, isoleucine, and leucine) and bioactive peptides (total peptides 117 mg/mL) was found to significantly improve the endurance and reduced fatigue in mice (Kao et al.). Bioactive peptides were characterized using MALDI-TOF mass spectrophotometry. Supplementation at levels of 200–1,000 mg/day/ mouse led to increased swimming time, grip strength, and glycogen levels, besides lower levels of fatigue markers like ammonia and lactate. GBH showed potential for upcycled ingredient for sports nutrition and recovery supplements.

Enhancing natural resource efficiency and greener approaches for nutraceuticals extraction is an important paradigm for sustainability. Extraction of steroidal saponins (polyphyllin II and polyphyllin VII) from non-conventional parts of a rare or over-exploited herb for anti-cancer, anti-tumor, anti-inflammatory, and analgesic benefits was systematized by Guo et al.. They optimized the ultrasound-assisted and ethanol-based extraction of saponins from Paris polyphylla var. yunnanensis leaves using response surface methodology. The optimized conditions yielded 6.4 mg/g and 19 mg/g of the respective saponins from leaves compared to 52 mg/g from rhizomes.

Around 1 billion tons of agro-waste is generated annually, posing a severe environmental and the economic problems. Agricultural waste from crops, plantations and livestock such as straw, crop residues or bushes, pet manure is a potential source of organic material and soil nutrients. Use of such organic fertilizer in the long run can boost land productivity and mitigate land degradation. Saurabh et al. demonstrated that pre-treated rice straw can replace conventional substrates like vermiculite in microgreens cultivation. Alkali pre-treatment could improve the straw's water retention and physical structure, enabling healthy growth of crops like cabbage and amaranth. Compared to water holding capacity (WHC) of cocopeat 891% and vermiculite (389%), pre-treated rice straw had 673% WHC of their weight. Pre-treated rice straw offers intermediate WHC values, balancing moisture retention with aeration. Thus, even though vermiculite offered higher micronutrient levels, rice straw outperformed in growth parameters. This strategy can contribute to circular agriculture while reducing pollution from stubble burning. Poultry is an important agricultural activity for boosting farm income. By 2030, global egg production is projected to reach 90 million tons (Ferraz et al., 2018). Considering eggshell is about 10% of an egg's weight, approximately 7.67 million tons of egg shell waste (ESW) is generated worldwide annually. Li et al. proved that eggshell waste (ESW), when used for soil bio-solarization (SBS), improves soil pH, enhances microbial activity, and promoted the emission of functional volatile organic compounds linked to pest suppression, without contributing to GHG effects. ESW's ability to enrich beneficial soil bacteria with minimal phytotoxicity support its potential as a sustainable soil amendment. Futher, in simulated SBS studies, ESW could in completely inhibit germination of the hardy weed Bidens pilosa's seeds. Field-scale studies have been recommended to validate these findings. Wang et al. explored the use of fermented agricultural plant Jiaosu (APJ) as an eco-friendly alternative to synthetic fertilizers and pesticides. APJ as liquid fertilizer, pesticide, and oil enhancer has been documented and its agroecological effect elaborated. Tedesco et al. evaluated fruit and vegetable waste (FVW) from Milan's wholesale markets, identifying it as a rich source of dietary fiber, polyphenols, and antioxidants. Seasonal variation in monthly FVW samples were characterized for their dietary fiber, insoluble and soluble dietary fiber, total phenolics, antioxidant activity. Higher fiber was observed in autumn and winter while antioxidant activity was highest in spring season. Safety issues at the original point where fruits and vegetables are discarded, are also not considered, such as the presence of heavy metals, pesticides, antibiotic residues, mycotoxins, or microbiological hazards. Thus, contingent on advanced processing and standardization authors support FVW's potential as a functional animal feed despite challenges such as high moisture content and variability.

Overall, this Research Topic compiled innovative uses of agri-food waste for environmental, nutritional, and economic benefits. From wastewater treatment to functional foods and sustainable agriculture, diverse strategies demonstrate huge potential for circular bioeconomy. Technologies such as screw extrusion, ultrasound-assisted extraction, and microbial fermentation are central to this transformation, enabling the production of functional foods, dietary supplements, biopesticides, and soil amendment agents from organic waste. Equally important are the social and behavioral components of waste management. As shown in studies on composting and wastewater reuse, public awareness, education, and policy support are essential to scale up sustainable practices. Tools such as the Theory of Consumption Values (TCV) and comprehensive stakeholder frameworks can guide effective community engagement and policy formulation. From an environmental perspective, repurposing waste materials such as onion peels, soybean residues, bread waste, and eggshells not only mitigate pollution but also contributes to food and nutritional security, soil health, and the availability of clean water. These innovations align with the Sustainable Development Goals (SDGs), particularly those related to responsible production, climate action, and zero hunger. Despite compositional variability, scalability and adoption challenges, integrated approaches can transform waste into valuable resources, supporting sustainability and reducing environmental impact across sectors.

Bridging these gaps will require coordinated efforts from researchers, policymakers, industries, and communities. A systems-level approach that integrates scientific innovation with economic incentives and behavioral change is critical to unlocking the full potential of agri-food waste utilization.

In conclusion, the articles in this Research Topic underscore the urgent need to reconceptualize waste as a resource. By adopting circular economy principles, leveraging innovative technologies, and fostering inclusive policies, agri-food waste can be transformed from an environmental liability into an economic asset. These multidisciplinary insights offer a practical and visionary roadmap for building a more sustainable, resilient, and resource-efficient future.
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In this study, a copper-containing polyphenol oxidase (PPO) enzyme was extracted from the selected agricultural food products, i.e., Mangifera indica (L.), Solanum tuberosum (L.), and Luffa cylindrica (L.), which has efficiently degraded the azo dyes (Methylene blue, Reactive Black-5, and Toluidine Blue-O) into less toxic compounds. After preparing the dye solution at various concentrations, the PPO enzymes extracted with phosphate buffer were incubated with it for 2 hours. The percentage of decolorization was estimated by using the unprocessed dye solution. The degraded products were characterized by UV–vis and FT-IR. All sets of experiments followed pseudo-first-order kinetics. The highest kinetic degradation rate constant was observed at kt = 0.0213 min─1 (R2 = 0.9258) and kt = 0.0244 min─1 (R2 = 0.7627) in reactive black-5 from Mangifera indica (L.) and Solanum tuberosum (L.), respectively. The enzyme extracted from the peel of Solanum tuberosum (L.) decolorized Reactive Black-5 and Toluidine Blue-O dyes to a greater extent, i.e., 83.29 and 70.84% with reaction times of 120 and 90 min, respectively.

Keywords
 food waste; polyphenol oxidase; textile dyes; biodegradation; wastewater treatment


1 Introduction

One of the causes of pollution is that the peels of fruits and vegetables are considered food waste, which is responsible for pollution. Every year, a large amount of food waste is generated during manufacturing and processing in homes and factories when peeling off edible parts like skin, fat, and crusts (Amini Khoozani et al., 2019; Kashif et al., 2020; Logeswaran et al., 2020). According to the FAO (2013) report, an estimated 1.3 billion tons of food meant for human use are wasted annually, harming the environment and natural resources. According to a previous report, urban food waste in Asian nations is projected to increase from 278 to 416 million tons a year between 2005 and 2025 (Melikoglu et al., 2013). However, this food waste contains many microbes that can potentially degrade color pollutants (Ullah et al., 2018). Dyes are a major contributor to environmental pollution; the food processing, leather, textile, pharmaceutical, cosmetic, and paint industries discharge dyes directly into the water, accounting for 10 to 15% of all environmental contamination (Hassaan et al., 2017; Yadav and Chandra, 2019; Gull et al., 2022). These industries generate significant amounts of waste dye water, which harms aquatic flora and fauna. Synthetic azo dyes and natural, non-toxic dyes have been reported to be carcinogenic when left untreated and negatively impact nature (Bafana et al., 2011). The toxicity of azo dyes increases when streamed into water bodies with high pH, temperature, suspended solids, metals, and salts, causing mutation, entering the food chain, increasing biological and chemical oxygen demand, and inhibiting plant germination due to the reduced amount of dissolved oxygen in the water (Khan and Malik, 2014; Hanafi and Sapawe, 2020). In addition, dyes and other pollutants (heavy metals) cause pH changes, increases in biological and chemical oxygen demand (BOD and COD), and other particulate matter (Idrees et al., 2016). Approximately 7 × 107 tons of synthetic dyestuff are produced annually, of which approximately 10,000 tons are used in the textile sector (Chung, 2016). The majority of dyes feature intricate, enduring structures, such as aromatic compounds. Environmentalists are deeply concerned about the harmful nature of dyes. The use of synthetic dyes and the presence of other auxiliary chemicals add to the extremely hazardous nature of textile wastewater.

When these organic compounds react with various disinfectants, particularly chlorine, they produce by-products (DBPs) that are frequently carcinogenic and thus undesirable (Manzoor and Sharma, 2020).

As a result, these dyes are difficult to degrade chemically, physically, and biologically. They have the potential to pollute underground water, making it susceptible to organism growth. Methylene Blue (MB) is a cationic dye and is used to dye cotton, wool, silk, leather, and to coat paper. It is more poisonous, and its long-term effects cause major health issues, including a faster heartbeat, nausea, shock, cyanosis, jaundice, limb paralysis, mental confusion, etc. Reactive Black-5 (RB5) and Toluidine Blue (TB-O) are anionic toxic dyes that cause damage to aquatic ecosystems and human health. Therefore, dye-contaminated water must be treated before being discharged into the environment (Table 1).



TABLE 1 Basic information about the selected dyes used in this study.
[image: Table displaying data for three dyes: Methylene blue, Reactive black-5, and Toluidine blue O. It includes columns for dye name, nature (basic or acidic), molecular mass in grams per mole, chemical formula, and maximum wavelength in nanometers. Methylene blue is basic with a mass of 319.85 g/mol and a peak wavelength of 664.0 nm. Reactive black-5 is acidic with a mass of 991.78 g/mol and a peak wavelength of 600.0 nm. Toluidine blue O is basic with a mass of 305.83 g/mol and a peak wavelength of 630.0 nm.]

Several methods for degrading and decolorizing dyes, such as chemical, physical, and biological degradation, have been reported to treat water pollution (Chung, 2016; Gičević et al., 2020). The study of metal nanoparticle adsorption is highly effective and rapidly removes azo dyes from aqueous solutions (Moussavi and Mahmoudi, 2009; Unal et al., 2019). However, for economic reasons, the enzyme-arbitrated degradation method is environmentally friendly, cost-effective, and low-energy-consuming (Ekins and Zenghelis, 2021). In contrast, other methods have low effectiveness and low potential for secondary contamination. Jadhav et al. (2011) studied that PPO enzymes exhibit a potential to decolorize 90 and 85% of direct Red 5B (160 μg mL−1) and direct Blue GLL (400 μg mL−1) dyes within 48 and 90 h of reaction time, respectively. Haddaji et al. (2015) reported the possible function of enzyme peroxidases identified in three macrophyte species (Arundo donax, Typha angustifolia, and Phragmites australis) for the degradation of dyes. The results showed that the dye decolorization was about 93 and 83% for amaranth and amido black, respectively, after 120 h of reaction time. PPOs are Cu-containing enzymes that are found in fruits, vegetables, cereal grains, etc. Depending on the species and age of the crop, they can be detected in the plant cells. For example, in potatoes, these enzymes are found in the tuber, while in mangoes, they are found in the skin (peel). PPOs are exposed to browning processes when fruits and vegetables are chopped, which break down their cells. Through their oxidation process, PPOs cause fruits and vegetables to turn brown. The ability of PPOs to oxidize phenolic compounds serves as the foundation for their mode of action. The copper-containing enzyme catalyzes two distinct reactions in the presence of molecular oxygen: (a) the monophenolase activity, which results in the hydroxylation of monophenols at the ortho position; and (b) the diphenolase activity, which oxidizes ortho-diphenols to ortho-quinones, producing pigment and melanin on fruits and vegetables.

The commercial value of food crops can be affected by browning. It may alter their taste, aroma, and nutritional value. As a result, the decay of crops is a factor that produces waste that can affect the biosphere. To date, there has been no report on the decolorization of RB5 by PPOs extracted from Luffa cylindrica (L). In this study, the potential role of three agricultural food-based PPOs [Mangifera indica (L.), Solanum tuberosum (L.), and Luffa cylindrica (L.)] was selected for the decolorization of MB, RB5, and TB-O. Additionally, the most effective ways to optimize various parameters (concentration, time, and pH) influencing the enzyme studies were investigated. The degradation of azo dyes by the PPO enzymes extracted from food waste is an energy-efficient and environmentally friendly approach for wastewater treatment (Mukherjee et al., 2013; Mishra et al., 2019).



2 Materials and methods


2.1 Sample preparation

Ridged gourd (Luffa cylindrica), mango (Mangifera indica), and potato (Solanum tuberosum) were collected from a local fruit and vegetable market in Karachi, Pakistan. The peels of the selected products were sun-dried for 30 days during the summer season, and the dried samples were converted into powder form using a commercial grinder. Finally, the sample was retained in a vial with an appropriate label. Azo dyes such as MB, RB5, and TB-O were supplied by Archroma, located in Karachi, Pakistan. The reagents and chemicals used in this work were potassium dihydrogen phosphate (KH2PO4) and dipotassium hydrogen phosphate (K2HPO4) for the preparation of phosphate buffer, acetic acid (CH3COOH), and sodium acetate (C2H3NaO2) for the preparation of sodium acetate buffer. Acetone (C3H6O) and catechol (C6H6O2), potassium bromide (KBr) for FTIR spectra, and distilled water were used for the preparation of solutions. All chemicals were of analytical grade.



2.2 Extraction of enzyme PPO

Approximately 10 g of each peel powder was dissolved in 0.2 M phosphate buffer maintained at pH 6.8 (120 mL). After homogenization, the sample was filtered through Whatman filter paper and centrifuged at 20,000 rpm for 20 min. PPOs were precipitated from the supernatant by adding up to 100 mL of cold, continuously stirred acetone for 30 min. The precipitate from the mixture was dissolved in 25 mL of phosphate buffer after the mixture was centrifuged at 15,000 rpm for 10 min. The entire process was performed at room temperature.



2.3 Enzyme activity assay

The enzyme activities of PPOs were determined using a UV–visible spectrophotometer (Beckman Coulter), with catechol used as the substrate. The sample vessel contained 2 mL catechol, 1 mL sodium acetate buffer at pH 4.0 (0.2 M), and 1.0 mL enzyme solutions, while the reference vessel contained 2 mL catechol and 1 mL sodium acetate buffer. The absorbance was measured at 420 nm as a one-minute increment (Table 2). One unit of PPO activity is defined as the amount of enzyme that increases the absorbance by 0.001 per minute. The PPO activities were estimated using Equation (1):

[image: Equation for the activity of PPO in units per milliliter is shown. It equals the difference of absorbance values \(A_{420} - A_{475}\) for sample and reference, divided by \(0.001 \times t\).]

where A1S and A2S are the initial and final absorbances of the sample, A1R and A2R are the initial and final absorbances of the control, and t is the reaction time in minutes (3 min). It was observed that the Luffa cylindrica PPOs have a higher value of enzymatic activity, measuring 23.66 U.ml−1, as compared to the PPO enzymes extracted from Solanum tuberosum, which measure 21.33 U.ml−1. On the other hand, the Mangifera indica PPOs show a lower value of enzymatic activity, measuring only 11.0 U.ml−1.



TABLE 2 Control absorbance for enzymatic activities of different sources of PPOs.
[image: Table showing enzyme activity from different PPOs sources over time, in minutes. Luffa cylindrica has consistent readings of 0.789 and activity of 23.66. Mangifera indica maintains 0.667 throughout with 11.0 activity. Solanum tuberosum rises to 0.876, maintaining that level, with 21.33 activity.]



2.4 Activity of PPO on different concentrations of dyes

PPO enzymes derived from different plant resources were studied by monitoring the absorbance at the maximum wavelengths of all the dyes. For instance, the enzymatic activity of MB was monitored at 664 nm, while the activity of Reactive Black—5 and Toluidine Blue—O was examined at wavelengths of 660 and 630 nm, respectively. Enzymatic PPOs from selected resources were mixed with selected sample pollutants (dyes) at increasing concentrations for approximately 2 h. The color removal efficacy was estimated by using unprocessed dyes (control samples) as percent decolorization.



2.5 Effect of time on dye decolorization

The sample contaminated with dyes A, B, and C was incubated with 1 EU/mL of PPO enzyme at pH 6.8 at ambient temperature for 30, 60, 90, and 120-min time intervals. Dye decolorization was monitored at a specified wavelength. The Equation (2) was used to determine the rate of decolorization of azo dyes:

[image: Formula for decolorization percentage: \((AC - AT) / AC \times 100\), labeled as equation 2.]

where Ac is the absorbance of the dye before treatment and AT is the absorbance of the dye following treatment.



2.6 Instruments used statistical analysis

An analytical balance, grinder, centrifuge machine, UV–visible spectrophotometer (Beckman Coulter), FTIR (Thermo Nicolet 700), and pH meter were the instruments used in this experiment. Statistical analysis of experimental data, such as correlation coefficient (R2) and pseudo-degradation rate (k), was carried out using SAP Interactive Excel.




3 Results and discussion


3.1 Effect of time on dye decolorization by Mangifera indica (L.) PPOs

The results of the experiment can be seen in Figure 1, which shows the effect of the PPO enzyme extracted from Mangifera indica (L) peel on the decolorization of MB, RB5, and TB-O over time. At pH 6.8 and concentrations of 1.71 × 10−5 M (Conc. 1) and 7.15 × 10−5 M (Conc. 2), only 24 and 9% of MB were decolored, respectively, as shown in Figure 1A. Conversely, at a concentration of 8.57 × 10−5 M (Conc. 3), 19% of MB was decolorized after 90 min. Figures 1B,C show that the rate of decolorization for RB5 and TB-O was high up to 60 min and then stopped at three different concentrations. In a reported study, biosynthesized silver nanoparticles (Ag-NPs) were synthesized using Mangifera indica gum powder to decolorize MB. According to the reported results, Mangifera indica PPOs with Ag-NPs completely decolorized the MB after 75 min of exposure to UV light (Panneerselvi et al., 2022).

[image: Three graphs labeled A, B, and C display absorbance over time in minutes. Each graph features three colored data series: blue, orange, and yellow, corresponding to different molar concentrations. Graph A shows stable absorbance levels; Graph B exhibits a quick drop followed by a plateau; Graph C shows stable lines similar to Graph A. The x-axis represents time from zero to one hundred twenty minutes, and the y-axis represents absorbance from zero to 0.5.]

FIGURE 1
 Effect of time on the activity of Mangifera indica (L.) PPOs against the dyes (A) MB, (B) RB5, and (C) TB-O.


The effect of PPOs extracted from mango peel (Mangifera indica) on the degradation of MB was observed by exposing the solution to UV (664 nm) for 120 min. The gradual decolorization of the dye occurred at a concentration of 1.71 × 10−5 M until 90 min had elapsed. At the 100-min mark, the enzyme activity stopped as the absorbance of the solution remained constant, indicating a stable concentration. It was also observed that the enzyme PPO stopped working after 30 min (at a concentration of 7.15 × 10−5 M) and 80 min (at a concentration of 8.57 × 10−5 M), respectively (Supplementary Table S1A). Figure 1B displays the activity of the Mangifera indica (L.) enzyme in breaking down RB5 at three different concentrations. During the experiment, it was observed that the decolorization of RB5 (2.19 × 10−5 M) increased with the concentration of the solution, as evidenced by the increase in absorbance (Supplementary Table S1B). This caused more light to be absorbed by the sample, resulting in a small amount of light being detected by the detector. It is possible that the formation of a complex in the solution also contributed to the increase in absorbance. In the cases of Conc. 2 (3.29 × 10−5 M) and Conc. 3 (4.39 × 10−5 M), RB5 degraded rapidly within the first 10 min of the process. After this initial period, the absorbance of the dye-containing Mangifera indica PPOs became stable, indicating that no further degradation of the dye had occurred. During the course of the experiment (Figure 1C), it was observed that the PPO enzyme began the process of decolorizing the dye after 40 min, which continued up to 70 min. However, the enzyme activity came to a halt between 80 and 120 min. At a concentration of 2 (2.98 × 10−5 M), the enzyme exhibited a slow degradation rate of TB-O up to 70 min, after which the absorbance of the solution increased (Supplementary Table S1C), indicating an upsurge in concentration. Further investigation revealed that complex formation had occurred within the sample solution, leading to the observed increase. Additional research is required to ascertain the precise nature of the complex that was formed. In a previous study, the degradation of dyes by Mangifera indica PPOs coupled with metallic nanoparticles was reported. For example, the synthesis of iron nanoparticles from leaf extract (Mangifera indica) was examined for its degradation potential for the photocatalytic removal of dyes (Congo red and Brilliant Green) from wastewater. The results showed that the maximum percentage of photo-catalytic degradation achieved was 72.6 and 80.87% for Congo Red, and 72.88 and 82% for Brilliant Green, with biomass and NPs, respectively (Zulfikar et al., 2021). However, in the present study, the decolorization of selected textile dyes was studied without the combination of any other technique. In this study, the biodegradation of selected textile dyes was investigated only by extracting PPOs from the peels of Mangifera indica, which is considered food waste.



3.2 Effect of time on dye decolorization by Solanum tuberosum (L.) PPOs

Figure 2 shows the effectiveness of the PPO enzyme, which was extracted from Solanum tuberosum (L.) peels, in discoloring azo dyes for 120 min. During the experiment, the absorbance of the solution continuously decreased and eventually stabilized after 70 min. This indicates that the enzyme was active in breaking down MB at concentrations of 1.71 × 10−5 M and 7.15 × 10−5 M, respectively (Figure 2A). At 8.57 × 10−5 M, the absorbance of the solution quickly decreased until 30 min, but it then gradually decreased until 70 min and remained stable between 80 and 120 min (Supplementary Table S2A). This suggests that the activity of the PPO enzymes, which were extracted from Solanum tuberosum (L.), stopped.

[image: Three line graphs labeled A, B, and C display absorbance versus time in minutes. Each graph has three colored lines representing different molar concentrations. Graph A shows minimal change, B displays moderate change, and C illustrates a notable decrease over time, especially for higher concentrations.]

FIGURE 2
 Effect of time on the activity of Solanum tuberosum (L.) PPOs against the dyes (A) MB, (B) RB5, and (C) TB-O.


In our previous study, potato stem powder (PSP) and potato leaf powder (PLP) were used as adsorbents to remove MB and malachite green dyes from an aqueous solution (Gupta et al., 2016). As shown in Figure 2B, the PPO enzymes actively degraded RB5 within the first 10 min of the experiment, as indicated by the sudden drop in absorbance (Supplementary Table S2B). After that, no enzymatic activity was observed in the degradation of RB5 (2.19 × 10−5 M). The enzyme, extracted from Solanum tuberosum (L.), gradually degraded the RB5 (3.29 × 10−5 M and 4.39 × 10−5 M) until 80 min had elapsed. At that point, there was a quick fall in absorbance as the enzymatic activity became faster. However, from 90 min onwards, the enzyme did not show any further activity in the dye degradation process. Samarghandy et al. (2011) investigated the biosorption of RB5 from an aqueous solution using biomass prepared from Solanum tuberosum peel. The removal rates were 81.21 and 95.06% for 0.2 and 1.0 g of biomass, respectively.

The degradation of TB-O by Solanum tuberosum PPOs at different concentrations was studied to determine the effect of time. The results, shown in Figure 2C, indicate that the reaction continued for 70 min. After that, the enzymatic activity ceased, as indicated by the stable absorbance of the solution (as shown in Supplementary Table S2C) at 1.99 × 10−5 M. However, at concentrations of 2.98 × 10−5 and 3.98 × 10−5 M, the rates of dye decolorization were relatively low after 60 and 50 min, respectively. This may be due to the inhibition of the product. These results confirmed previously published research (Saravanan et al., 2017).



3.3 Effect of time on dye decolorization by Luffa cylindrica (L.) PPOs

The decolorization of selected color pollutants by Luffa cylindrica (L.) PPOs were examined by varying the times of incubation at three different concentrations. In the current study, three different azo dyes were selected as sample contaminants for decolorization. Our results revealed that the highest decolorization rate of dye A, i.e., MB, at the concentration of 8.57× 10ˉ5 M (conc. 3), was found to be 64% after 2 h of the experiment, as shown in Figure 3A.

[image: Three line graphs labeled A, B, and C depict absorbance over time in minutes. Each graph shows data for different concentration levels marked in molarity (M). Graph A compares concentrations 1.37x10^-9 M, 2.52x10^-9 M, and 3.07x10^-9 M. Graph B features concentrations 2.13x10^-9 M, 3.24x10^-9 M, and 4.39x10^-9 M. Graph C includes concentrations 1.98x10^-9 M, 2.58x10^-9 M, and 3.98x10^-9 M. The y-axis represents absorbance, while the x-axis represents time, ranging from 0 to 120 minutes. All graphs maintain consistent absorbance levels over time.]

FIGURE 3
 Effect of time on the activity of Luffa cylindrica (L.) PPOs against the dyes (A) MB, (B) RB5, and (C) TB-O.


Figures 3B,C demonstrate the activity of Luffa cylindrica (L.) PPOs against RB5 dye, resulting in 39% degradation at a low concentration of 2.19× 10ˉ5 M and a retention duration of 10 min. In the case of TB-O, the highest degradation was observed at a concentration of 2.98 × 10ˉ5 M after 2 h of the experiment (Supplementary Table S3). This may indicate that under environmental conditions, the highest dose of Luffa cylindrica (L.) PPOs is required for the complete removal of selected dyes. The limited experimental data available are not sufficient to fully support the claim that the degradation of selected dyes from the PPOs extracted from Luffa cylindrica peels, considered food waste, is a suitable method from an environmental point of view. However, the results of the experiments do show promise. Further research is needed to determine the viability of this method on a large scale. The studies indicate that fungal immobilization and biosorption have been evaluated to determine their effects on the native structure of Luffa cylindrica to degrade dyes. For example, cells of Proteus vulgaris NCIM-2027 immobilized on Luffa cylindrica completely decolorized C.I. Reactive Blue 172. The immobilized cells were used to continuously decolorize single and reactive dye mixtures in a fixed-bed bioreactor (Saratale et al., 2011). Another study evaluated the effects of fungal immobilization and biosorption on the structure of Luffa cylindrica by using a scanning electron microscope. The results showed that A. terreus QMS-1 can remove up to 92% of the dye in just 24 h when 1% glucose and 1% ammonium sulfate are present at pH 5.0. Furthermore, the bioreactor was operated continuously for 12 h with 100 ppm of Congo Red dye in simulated textile effluent, resulting in 97% decolorization (Laraib et al., 2020).



3.4 Effect of initial concentration on dye decolorization

Figures 4A–C shows the effect of concentration on the decolorization of azo dye by the PPO enzymes from Mangifera indica (L.), Solanum tuberosum (L.), and Luffa cylindrica (L.). The decolorization rate of RB5 by Mangifera indica PPOs was found to be the highest (54.97%) at concentration 3 (4.39 × 10−5 M), as indicated in Table 3. The concentration was recorded in ascending order, and the results indicate that higher concentrations have a greater effect on the decolorization of the dye.

[image: Nine bar graphs showing the percentage of decolorization for three dyes (A, B, C) at three different concentrations (1, 2, 3) in molarity times ten to the minus fifth. Each row (A, B, C) presents data for dyes A, B, and C. Dye A has maximum decolorization at 63.61%, Dye B at 83.29%, and Dye C at 70.08%.]

FIGURE 4
 Decolorization of dyes by (A) Mangifera indica (L.), (B) Solanum tuberosum (L.), and (C) Luffa cylindrica (L.) w.r.t. concentration.




TABLE 3 Percent decolorization of textile dyes by Mangifera indica (L.) at different concentrations.
[image: A table showing the concentration and decolorization percentages of three textile dyes: Methylene blue, Reactive black-5, and Toluidine blue O. Concentration values are given in C-1, C-2, and C-3 columns, while decolorization percentages are provided for each column. Methylene blue concentrations are 1.71, 7.15, and 8.57 with decolorization percentages of 24.13, 9.52, and 19.07. Reactive black-5 has concentrations of 2.19, 3.29, and 4.39 with decolorization percentages of 29.50, 43.03, and 54.97. Toluidine blue O concentrations are 1.99, 2.98, and 3.98 with decolorization percentages of 17.55, 16.88, and 15.73.]

A study found that Mangifera indica effectively removes 87% of safranin-T was observed from Mangifera indica as a precursor (Benjelloun et al., 2021). Although there have been studies on the removal of dyes from various sources, none have been conducted on the removal of dyes from the PPO enzyme extracted from the peel of Mangifera indica. The rate of decolorization of dyes by PPOs from Solanum tuberosum and Luffa cylindrica is provided in Tables 4, 5, respectively. The results indicate that the PPO enzymes extracted from Solanum tuberosum caused a significant reduction in the color of RB5 dye by 83.29% at a concentration of 2.19 × 10−5 M. On the other hand, Luffa cylindrica PPOs showed a high removal rate (43.35%) for TB-O dye among all the dyes tested at a concentration of 2.98 × 10−5 M.



TABLE 4 Percent decolorization of textile dyes by Solanum tuberosum (L.) at different concentrations.
[image: Table comparing textile dyes: Methylene blue, Reactive black-5, and Toluidine blue O. It shows concentrations in M (×10⁻⁵) for C-1, C-2, C-3 and corresponding decolorization percentages. Methylene blue: concentrations 1.71, 7.15, 8.57; decolorization 2.10%, 21.87%, 13.99%. Reactive black-5: concentrations 2.19, 3.29, 4.39; decolorization 83.29%, 12.94%, 12.59%. Toluidine blue O: concentrations 1.99, 2.98, 3.98; decolorization 70.08%, 68.57%, 18.51%.]



TABLE 5 Percent decolorization of textile dyes by Luffa cylindrica (L.) at different concentrations.
[image: Table showing the concentration and decolorization percentages of three textile dyes: Methylene blue, Reactive black-5, and Toluidine blue O. Concentrations are given in M times ten to the power of negative five for columns C-1, C-2, C-3, while decolorization percentages correspond to the same columns. Methylene blue has higher decolorization at C-3, while Reactive black-5 shows less variation. Toluidine blue O exhibits highest decolorization at C-2.]



3.5 Adsorption kinetics

The adsorption phenomenon can be interpreted by applying a kinetic model such as pseudo-first order using Equation (3):

[image: Natural logarithm equation for adsorption kinetics is shown: ln(q_eq - q_t) = ln q_eq - k_1q_t / 2.303, labeled as equation (3).]

where k1 stands for pseudo-first-order, while qeq and qt represent the biosorbent amount of selected dyes at equilibrium and the biosorbent amount of selected dyes at a specific time (t), respectively.

A linear kinetic model based on the experimental values obtained for removing dyes and a linearized kinetic model fitting was applied to investigate the kinetic mechanism. Tables 6–8 show that the pseudo-first model was best fitted with a high regression coefficient value of R2 = 0.92 on dye A compared with other dyes at constant dye concentration at an equilibrium time of 30 min with Solanum tuberosum (L.) PPOs. The uptake of dyes was so fast in the initial 20 min, and later the adsorption decreased. The adsorption capacity was enhanced with a continuous increase in the concentration of dyes. These results suggested that the adsorption of dyes followed a rate-determining step in which the adsorbent and dye molecules were well-interacted (Benjelloun et al., 2021). Concentration is a sensitive parameter that seriously affects the adsorption capacity of adsorbents, dramatically changing the initial concentration’s adsorption values.



TABLE 6 The degradation rate of textile dyes at different concentrations by Mangifera indica (L.).
[image: Table displaying the degradation rates of different textile dyes in inverse minutes. The dyes are Methylene blue, Reactive black-5, and Toluidine blue O, with degradation rates provided for conditions C-1, C-2, and C-3, alongside their respective standard deviations.]



TABLE 7 Degradation rate of textile dyes at different concentrations by Solanum tuberosum (L.).
[image: Table showing degradation rates of three textile dyes: Methylene blue, Reactive black-5, and Toluidine blue O. Rates are listed for conditions C-1, C-2, and C-3, with Methylene blue having rates 0.0002, 0.0020, and 0.0035; Reactive black-5 having 0.0244, 0.0013, and 0.0035; Toluidine blue O having 0.0203, 0.0198, and 0.0015, respectively. Each rate includes an uncertainty value.]



TABLE 8 Degradation rate of textile dyes at different concentrations by Luffa cylindrica (L.).
[image: Table showing degradation rates of three textile dyes. Methylene blue: C-1 is 0.0113±0.9043, C-2 is 0.0304±0.8996, C-3 is 0.0313±0.8984. Reactive black-5: C-1 is 0.0102±0.8986, C-2 is 0.0104±0.8996, C-3 is 0.0154±0.9489. Toluidine blue O: C-1 is 0.0207±0.9312, C-2 is 0.0212±0.9310, C-3 is 0.0186±0.9393.]



3.6 Analysis of dye structure

Fourier transform-infrared (FTIR) spectral analysis was performed on selected dyes with and without the infusion of the PPO enzymes. The IR spectra of MB at 567.07 cm−1 indicated the alkyl halide (C-C stretching), as shown in Figure 5. Furthermore, aromatic amines that are C-N stretching were detected at 1147.65 cm−1. In addition, the spectra at 1394.53, 1610, and 1643.35 cm−1 indicated C-C ring stretching, N-N curve stretching, and C=C double bond stretching. Before sample treatment, hydrogen atoms bonded by S-H and O-H stretching were observed at 2372.44 and 3444.87 cm−1, respectively. The peaks at 1147.65 and 1394.53 cm−1 disappeared once the contaminant in the sample was treated with the PPO enzymes, and a new peak at 1083.99 cm−1 indicated the carbon–oxygen stretching (Figure 5B).

[image: Two infrared spectroscopy graphs labeled A and B compare methylene blue and MCA. Graph A shows peaks around 500, 1000, and 2200 cm⁻¹. Graph B displays peaks near 700, 1350, and 2500 cm⁻¹. Both graphs indicate various chemical bond absorptions.]

FIGURE 5
 (A) FTIR Spectra of Dye A (MB) before treatment. (B) FTIR Spectra of Dye A (MB) after treatment.


In the spectra of Dye B (RB5), Carbon-Hydrogen bonds were observed at 603.72 and 653.87 cm−1, while N-H wag (1°, 2° amines) were assigned to the peaks located at 833.25 cm−1 and 871.82 cm−1. The C-N stretching was observed at 1022.27, 1134.14, and 1321.24 cm−1 due to the aliphatic and aromatic amines. The N-H curve was noted at 1604.77 cm−1. Furthermore, the C-C ring stretching was observed at 1446.61 cm−1. The peak at 2085.05 cm−1 2927.94 cm−1 was caused by the presence of N=C=C stretching and H-C=O: C-H stretching, respectively. This may have been caused by the presence of the aldehyde group. The –C ≡ C-H: C-H stretching was observed at 3315.6 cm−1 and the C-H stretching was observed at 3199.9 cm−1. However, it was noted that new peaks were observed at 1000, 1500.1, 1494.05 cm−1, 2085.05 cm−1, and 3500.13 cm−1 due to the stretching of the C-O, C-C single bond, N=C=C, O-H, and asymmetric nitro compound N-O, respectively (Figures 6A,B).

[image: Two infrared spectroscopy graphs labeled A and B. Both graphs show transmittance percentage against the wavelength range from 4000 to 500 inverse centimeters. Distinct peaks are visible, notably around 3500, 2900, and 1500 inverse centimeters. A vertical line marks around 2000 inverse centimeters on each graph.]

FIGURE 6
 (A) FTIR Spectra of Dye B (RB5) before treatment. (B) FTIR Spectra of Dye B (RB5) after treatment.


The IR spectra of dye C (TB-O) revealed the presence of an alkyl halide group at 540.1 cm−1. Further examination of the spectra showed that the C-O stretching was visible at 1085 cm−1. In addition, the peak at 1637.6 cm−1 showed the presence of N-H bending, while the peak at 3456.4 cm−1 confirmed the presence of O-H stretching. Despite the successful treatment of the TB-O, small peaks were shown due to the presence of alkyl halide (C-Cl) at 875.70 cm−1. Following the peak at 1550.77 cm−1, the asymmetric stretching of the N-O bond was observed. Finally, the appearance of N-H bending and O-H stretching followed by H-bond was observed at 1656.9 cm−1 and 3508.52 cm−1 (Figures 7A,B).

[image: Two infrared spectra graphs labeled A and B. Graph A shows peaks at approximately 3400, 2900, and 1650 wavenumbers with dips around 3600 and 1460. Graph B displays peaks at about 3300, 2920, 1750, and 1100 wavenumbers, with noticeable troughs at 3600 and 2900. Both graphs have axes labeled from 4000 to 500 wavenumbers and intensity percentage.]

FIGURE 7
 (A) FTIR Spectra of Dye C (TB-O) before treatment. (B) FTIR Spectra of Dye C (TB-O) after treatment.





4 Conclusion

Our research shows that the PPO enzyme was successfully extracted and purified from fruit and vegetable peels. The PPO enzymes derived from Mangifera indica (L.), Solanum tuberosum (L.), and Luffa cylindrica (L.) was applied to three different azo dyes (MB, RB5, and TB-O) for decolorization. The results showed that PPOs derived from Solanum tuberosum (L.) and Mangifera indica (L.) could effectively discolor RB5 dye up to 83.29% (2.19 × 10−5 M) and 54.97% (4.39 × 10−5 M) in comparison to MB and TB-O dyes, while PPOs from Luffa cylindrica (L.) were noticeably more successful than RB5 and TB-O azo dyes, up to 63.61% (8.57 × 10−5 M). In conclusion, the three distinct azo dyes discovered in the effluents generated by the dye industry can be readily discolored by the PPO enzymes, which are derived from a variety of natural sources.
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Bread waste (BW) poses a significant environmental and economic challenge in the United Kingdom (UK), where an estimated 20 million slices of bread are wasted daily. BW contains polysaccharides with great potential for its valorization into building block chemicals. While BW valorization holds tremendous promise, it is an emerging field with low technology readiness levels (TRLs), necessitating careful consideration of sustainability and commercial-scale utilization. This review offers a comprehensive assessment of the sustainability aspects of BW valorization, encompassing economic, environmental, and social factors. The primary objective of this review article is to enhance our understanding of the potential benefits and challenges associated with this approach. Incorporating circular bioeconomy principles into BW valorization is crucial for addressing global issues stemming from food waste and environmental degradation. The review investigates the role of BW-based biorefineries in promoting the circular bioeconomy concept. This study concludes by discussing the challenges and opportunities of BW valorization and waste reduction, along with proposing potential strategies to tackle these challenges.

Keywords
 bread waste; sustainability assessment; circular bioeconomy; platform chemicals; management waste; biorefinery; food waste valorization


1 Introduction

Excessive food production to feed the world’s growing population, combined with wasteful consumer behavior, has resulted in massive food waste generation, posing a major challenge to sustainability and resource efficiency. With global population expecting to reach 9.6 billion by 2050 (Burke et al., 2023), ensuring food security will become increasingly challenging due to resource limitations. Agricultural systems need to achieve three objectives simultaneously: increase food production, create economic opportunities for rural communities, and reduce the adverse effects on the environment. Based on the Food and Agricultural Organization (FAO), the food waste generated globally is estimated at 1.3 billion tons per year, resulting in unfavorable economic and environmental consequences, leading to an economic loss of $990 billion and the release of 4.4 gigatons of CO2-eq (FAO, 2013). Within the European Union, an alarming quantity of 89 million tons of food is wasted annually, contributing to the emission of approximately 170 million tons of CO2-eq (Bräutigam et al., 2014). The UK alone witnesses the disposal of £20 billion worth of food and beverages each year. Notably, bread emerges as a significant contributor to food waste generation across Europe and North America, given its status as a staple food (Kumar et al., 2022).

According to the Waste and Resources Action Programme (WRAP), BW accounts for 10% of the total food waste in the UK (WRAP, 2021). Bread stands out as the second most wasted food in the UK, accounting for 20 million slices discarded daily. This results in an annual waste of 292,000 tons and emissions of 584,000 tons of CO2-eq (Narisetty et al., 2021), impacting both the environment and the economy significantly. While this waste primarily refers to the final product, the bread-making process and its supply chain introduce additional unaccounted waste, such as flour, dough, and trimmings. Addressing BW carbohydrates at its source is the most optimal solution (Brancoli et al., 2020), but predicting consumer attitudes within the food supply chain poses a challenge. Hence, alternative strategies must be explored to manage this waste.

In the current era, the extensive use of non-renewable fossil resources for energy and commodity has adversely impacted the environment. Consequently, researchers are exploring alternative and sustainable feedstocks for biorefineries. BW, characterized by its starchy composition and cost-effectiveness, has emerged as a highly promising and environmentally sustainable source for producing high-value biochemicals and bioenergy through fermentative processes (Kumar and Longhurst, 2018; Jung et al., 2022; Swetha et al., 2023). Unlike lignocellulosic biomass, which requires harsh pre-treatment, BW is readily accessible and serves as a sustainable feedstock for bioenergy and biochemicals (Narisetty et al., 2021), with lower carbon emissions and a greener profile (Yaashikaa et al., 2020; Brandão et al., 2021). However, it is crucial to thoroughly investigate the modes of BW generation at every stage of the supply chain and identify potential products that can be derived from it.

The concept of a circular bioeconomy presents a promising approach to enhance environmental well-being through the establishment of new value chains and the implementation of cleaner and more economically viable industrial practices. This approach also enables the transformation of waste into valuable resources, inspiring innovation and motivating retailers and consumers to attain a 50% decrease in food waste by the year 2030 (European Commission, 2018). The previous reviews have demonstrated the benefit of BW as a valuable source for producing high-value products within the circular bioeconomy. The previous works have further demonstrated the untapped potential of BW as a valuable source for producing high-value products within the circular bioeconomy. For instance, Narisetty et al. (2021) discussed BW generation across the supply chain and its associated logistical challenges. The study also revealed numerous potential applications, such as the production of bioplastics, biochemicals, biofuels, pharmaceuticals, and other renewable products, using the clean and high-quality fermentable sugars derived from BW through microbial fermentation. Similarly, Ben Rejeb et al. (2022) emphasized the valorization of BW into various valuable chemical building blocks, including aroma compounds, biohydrogen, enzymes, ethanol, glucose–fructose syrup, 5-hydroxymethylfurfural, lactic acid (LA), proteins, pigments, and succinic acid (SA). Another study by Kumar et al. (2022) highlighted that BW is a sustainable feedstock to produce a wide range of platform chemicals, including SA, LA, ethanol, 2,3-butanediol (BDO), and syngas. The study also examined the current challenges related to BW logistics and supply chain, as well as a comparison of life cycle assessments between BW-based production and alternative feedstocks. These studies underscore the potential of utilizing a fermentative approach to convert BW into valuable chemical building blocks, thereby maximizing resource recovery and minimizing the harmful environmental impact of BW disposal.

Despite the potential benefits, the valorization of BW is an emerging field with low technology readiness levels (TRLs), highlighting the need to explore commercial-scale production of biochemicals from BW while carefully considering technology readiness, economics, and sustainability aspects (Murthy, 2019). In particular, evaluating the sustainability of resource recovery opportunities is crucial. Silk et al. (2020) recommended taking into account environmental, economic, and societal factors when evaluating sustainability, as this aids in understanding the potential impacts and benefits of waste valorization technologies. Therefore, this review offers a distinctive perspective by highlighting the crucial need for a thorough assessment of the sustainability of BW valorization technologies and an integrated BW valorization strategy—an aspect that has not been extensively discussed in prior studies. The review is organized into six sections. Firstly, it offers an overview of the current state of BW generation. Following that, it explores the role of BW biorefinery in fostering a circular bioeconomy and discusses various biochemical and biofuel products derived from BW. An evaluation of the sustainability aspects associated with BW valorization is then presented. Subsequently, the challenges related to BW valorization are addressed, and potential strategies to overcome these challenges are proposed. Lastly, the review concludes by discussing the future strategic approach of BW valorization.



2 BW generation

Bread holds significant importance in the human diet due to its nutritional composition. For instance, 100 g of bread typically contains approximately 59.8 g of starch, 22.3 g of moisture, 1.56 g of total organic nitrogen, and around 8.9 g of protein (Leung et al., 2012; Yusufoğlu et al., 2021). As a staple food in developed nations, particularly North America and Europe, bread is produced in large quantities to meet global consumer demands.

Despite its importance in the human diet, bread has a short shelf life of around 3–6 days at room temperature. This is due to its high nutrient content, which makes it susceptible to decay and staling (Taglieri et al., 2021; Bhardwaj et al., 2023; Immonen, 2023). Moreover, the baking process transforms the starch into a digestible gelatinized form in bread, thereby making it vulnerable to microbial attack (Ben Rejeb et al., 2022). Consequently, a staggering amount of bread, amounting to millions of tons, is wasted on a daily basis in numerous developed countries as illustrated in Figure 1. A significant amount of BW is resulted at different stages of the supply chain, from primary production to manufacturing, distribution, and consumption by the end consumer (Figure 2).
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FIGURE 1
 BW generation in different countries (million tons) (Kumar et al., 2022).


[image: Flowchart illustrating the bread production process. It starts with primary production at a farm, moves to manufacturing for flour and bread, distributes through wholesale and retail centers, and ends at consumer households. Bread waste is highlighted as a byproduct at various stages.]

FIGURE 2
 BW generation across various stages of supply chain.


In the UK, a significant portion of bread, approximately 44%, is wasted during the manufacturing process, primarily due to factors that are difficult to avoid, such as overproduction, equipment breakdowns, and improper handling (Goryńska-Goldmann et al., 2020; Narisetty et al., 2021). Similarly, wastage can also occur during distribution due to challenges like inadequate transportation and storage, inaccurate forecasting, poor stock rotation, expired shelf life, break in the cold chain, suboptimal storage, and inadequate packaging (Jeswani et al., 2021). Consumer behavior is also a critical factor in BW generation at the household level, driven by factors, such as excessive purchasing, failure to consume bread before its expiration date, lack of knowledge about storage conditions and bread shelf life, and cooking or serving in excess, leading to leftovers that become inedible due to mold or spoilage (López-Avilés et al., 2019; Jeswani et al., 2021). Consequently, bakeries are under pressure to deliver fresh bread to meet consumer demand, leading to short lead times for order placement and product delivery.

To promote sustainability, it is thus important to actively address BW considering its substantial environmental implications. To achieve this, it is crucial to identify the various stages of the supply chain where wastage occurs. Several research studies have analyzed the environmental impact of various phases of the bread supply chain, commencing from wheat cultivation to consumption (Table 1). These studies revealed that some hotspots, such as agricultural production, baking, and electricity consumption, have been identified as targeted areas of improvement to reduce the environmental burden of bread production.



TABLE 1 The environmental impact of BW from different types of supply chain.
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3 BW biorefinery promoting a circular bioeconomy

Currently, the world is facing two interconnected challenges: the generation of a substantial amount of waste and the diminishing availability of fossil fuels. The conventional approach to waste reduction involves implementing waste management based on a hierarchical framework directive, which raises ecological and environmental concerns as depicted in Figure 3. The waste framework directive has been identified as a viable solution for decreasing food waste, including BW (de Sadeleer et al., 2020). Research conducted by Eriksson et al. (2015) highlights the potential of BW in reducing greenhouse gas (GHG) emissions. However, waste prevention should be given priority over waste management options, as it has a more positive impact on the environment. The study by Slorach et al. (2020) supports this notion, as they demonstrate that waste prevention is six times more effective in reducing GHG compared to targeted collection for anaerobic digestion (AD). Vandermeersch et al. (2014) also found that utilizing BW for animal feed had a more favorable environmental impact than anaerobic digestion. Similarly, Brancoli et al. (2020) concluded that reducing BW through donation, source reduction, and animal feed production yielded significant environmental benefits compared to AD and incineration. Although preventing BW is important, it may not always be feasible. In such cases, it is crucial to develop effective strategies for valorizing the surplus. One potential approach is to utilize excess bread flour by employing alternative methods, such as enzymatic and/or fermentation processes, to create valuable new products (Figure 3). This idea has been suggested by Gómez and Martinez (2023) as an area for future research. Overall, prioritizing the reduction of food waste, including BW, should be a top priority in waste management strategies to minimize environmental impacts and mitigate climate change.

[image: Flowchart illustrating bread waste management. It shows a funnel with four sections: Prevention (food donation), Recycling (composting, anaerobic digestion), Recovery (incineration), and Disposal (landfill). The chart connects bread waste to a biorefinery, processing carbohydrates, proteins, and lipids into biochemical products (2,3-BDO, succinic acid, lactic acid, HMF) and biofuels (ethanol, hydrogen).]

FIGURE 3
 BW management options.


As an alternative, the biorefinery approach has emerged as a promising solution for reducing dependence on fossil-fuel-based feedstocks by producing chemical and energy products from renewable feedstocks in a sustainable manner. The term “biorefinery” is a concept inspired by crude oil refineries and analogous to petroleum refinery and petrochemical industry with the aim of creating effective biomass processing from plant, algae, agricultural waste, municipal waste, animal, and food waste into various products (i.e., energy, fuels, polymers, food additives, etc.) (Sadhukhan et al., 2014). Furthermore, the biorefinery represents a strategic approach that promots sustainability of the plant as a whole by integrating process to enhance energy efficiency, reduce water consumption, and mitigate emissions (Ubando et al., 2020; Thongchul et al., 2022). Currently, the commercial use of first-generation biorefineries is focused on the production of bioethanol and biodiesel. However, the use of edible substrates in these biorefineries encompases an ongoing debate regarding the balance between meeting the needs of the human population and addressing global food shortages (Malode et al., 2021; Thongchul et al., 2022). To circumvent this issue, the use of non-edible feedstocks in second-generation (2G) and third-generation (3G) biorefinery approaches has gained attention as a potential alternative (Hassan et al., 2019; Tong et al., 2022). Lignocellulosic biomass (LCB) has been the primary focus of research in 2G biorefineries. However, the commercialization of LCB-based biorefineries has associated challenges due to its recalcitrant nature and the high costs associated with its pretreatment for efficient valorization (Chandel et al., 2020). On the other hand, algal biomass is being explored for use in third-generation (3G) biorefineries offering potential for sustainable bio-production. However, it is important to note that this technology has thus far only been tested at the laboratory scale and has not yet been implemented on an industrial scale due to its cost ineffectivency (Kumar et al., 2022). For biobased products to be commercially feasible, they must be cost-competitive (Doddapaneni and Kikas, 2021). Of particular interest are platform chemicals derived from unavoidable food waste, as they have the potential to replace primary chemicals. For example, converting food waste into levulinic acid (Sadhukhan et al., 2016) and utilizing seaweed for nutraceuticals, pharmaceuticals, cosmeceuticals, and health, personal and home care products (Sadhukhan et al., 2019) are highly desirable. Utilizing waste materials that are abundant, cost-effective, and rich in renewable and fermentable carbon represents a significant opportunity for expanding the biomass feedstock sector. Waste streams with high sugar content, including food, bakery, bread, fruit, and beverage waste, have gained popularity due to their suitability as carbon feedstocks for biorefineries.

As mentioned previously, BW is a starchy material and provides a clean and easily extractable source of fermentable sugars, unlike LCB feedstocks that require harsh physical, chemical, and enzymatic treatments. An additional advantage of using BW-based feedstock is that no inhibitors are found in the produced sugars (Dymchenko et al., 2023). This feature makes BW a promising carbon source for new commercial processes; alternative methods utilizing chemical and enzymatic pre-treatment processes have been developed to release fermentable sugars. BW mostly consists of polysaccharides and small amounts of disaccharides, which normally comprises 50–70% starch, 8–10% protein, and 1–5% fat (Nair et al., 2017; Jung et al., 2022; Kumar et al., 2022; Narisetty et al., 2022a).

In recent years, several successful works have explored alternative methods for recycling BW into marketable biochemicals and biofuels (Table 2). The findings from these studies highlight the high potential of BW as a promising substrate for producing a diverse range of valuable fermentable sugars, biochemicals, and biofuels. Moreover, the derived biochemical products from BW, which are discussed in this article, are regarded as promising. They rank among the top 12 platform chemicals, according to the United States Department of Energy (US DOE) (Werpy and Petersen, 2004), and are under investigation as attractive bio-based chemical products by E4TECH, considering market attractiveness and UK strengths (LBNet, 2017). Furthermore, two currently promising biofuels derived from BW are bioethanol and hydrogen (H2), anticipated to replace fossil-fuel-based energy in the future. Bioethanol is currently used as a blend in the transportation industry, aligning with the European Union’s Renewable Energy Directive, which aims to replace 10% of transport fuel with biofuels like bioethanol (van Niekerk and Kay, 2020). Similarly, in the UK, the Renewable Transport Fuel Obligation (RTFO) mandates fuel suppliers to secure a proportion of their fuel supply from renewable sources, with an escalating biofuel production target from 4.75% in 2020 to 12.4% by 2032 (Küfeoğlu and Khah Kok Hong, 2020). Moreover, H2 is recognized as a promising future source of clean energy, offering the potential to generate no pollutants upon combustion. Establishing a low-carbon H2 sector is crucial for the UK’s net-zero goals. According to the Energy Research Partnership, the current demand for H2 in the UK is estimated to be around 27 terawatt-hours per year (Chari et al., 2023).



TABLE 2 Summary of bioproducts derived from BW.
[image: A table presents various conditions for enzymatic hydrolysis/dehydration and fermentation/catalytic processes, alongside the resulting yield, product, and references. The processes include different temperatures, catalysts, and enzymes such as dextrozyme and glucamylase. The products range from bioethanol to hydrogen, with yields noted in different units like grams per gram and mol percentages. References are cited alongside each entry, including works by Narisetty, Leung, Cox, and others.]



4 Biochemicals and biofuels from BW

This section predominantly highlights a range of economically viable biochemicals and biofuels derived from BW. It explores the methodologies applied in the conversion of BW into diverse bioproducts.


4.1 Biochemicals


4.1.1 2,3-Butanediol

2,3-BDO is considered as high-value chemical, which has been widely used in the food application, chemicals, cosmetics, and pharmaceutical industries (Gadkari et al., 2023). The 2,3-BDO market is projected to reach approximately $220 million by 2027, with a compound annual growth rate (CAGR) of 3% from 2019 to 2027 (Tinôco et al., 2021; Maina et al., 2022). The study of Narisetty et al. (2022b) was aimed to produce BDO sustainably from BW using Enterobacter ludwigii. The findings indicated that enzymatic hydrolysis, under optimal conditions of 10% w/v solid loading and an enzyme loading of 0.6 mg/g, resulted in a BDO yield of 0.43 g/g glucose. In fed-batch cultivation, BDO reached 138.8 g/L after 96 h, with a yield of 0.48 g/g brewery waste.



4.1.2 Succinic acid

SA is a key compound, which is considered one of the 12 main platform chemical according to US DOE. In 2022, the worldwide market for SA was worth $160.8 million, and it is projected to grow at a 6.5% annual rate, reaching $301.4 million by 2032 (Escanciano et al., 2023). The potential economic and sustainable impact of producing SA through fermentation using renewable carbohydrate feedstocks is attractive, which has the ability to replace current petroleum-based production. Leung et al. (2012) utilized enzymes from Aspergillus awamori and Aspergillus oryzae to extract sugars and amino acids from BW. This hydrolysate was then employed for SA production by Actinobacillus succinogenes through solid-state fermentation. The bacterial fermentation resulted in 47.3 g/L of SA, with an overall yield of 0.55 g/g BW.



4.1.3 Lactic acid

LA is a versatile platform chemical with a market potential of $2.64 billion, attributed to its wide range of applications (Shoaf and Engelberth, 2022). Cox et al. (2022) investigated different hydrolysis (acid and enzymatic) processes of BW to produce LA. The enzymatic hydrolysis produced highest glucose release and yield with 98.6 g/L and 0.49 g glucose/g BW using Dextrozyme from Novozymes. In addition, the fed-batch fermentation by B. coagulans resulted in titer of 155.4 g/L LA, with a productivity and LA yield of 1.30 g/L and 0.42 g/g BW, respectively. Sadaf et al. (2021) explored BW as a rich source of reducing sugars for the production of LA. Under conditions of simultaneous saccharification and fermentation, SKL-11 demonstrated the highest LA production, reaching 56 mg/g of bakery waste, equivalent to 28 g/L.



4.1.4 5-Hydroxymethylfurfural

5-Hydroxymethylfurfural (5-HMF) is a versatile platform chemical that can be turned into various useful materials, which is used in different areas like medicine, chemicals, food, pesticides, and making diesel fuel (Kong et al., 2020). The expected global market value for 5-HMF is projected to reach EUR 55 million by 2024, with CAGR of 1.4% (Albonetti et al., 2022). Yu et al. (2018) explored the use of propylene carbonate (PC) and γ-valerolactone (GVL) as environmentally friendly co-solvents in a binary solvent-water medium for the conversion of BW to 5-HMF over SnCl4 as the catalyst. The study revealed that the PC/H2O solvent system outperformed the others, achieving a notable 5-HMF yield of 20 mol%. In comparison, the GVL/H2O solvent system produced a lower 5-HMF yield of 13.5 mol%. Iris et al. (2017) investigated the effects of selected mediums on the desirable pathways (hydrolysis, isomerization, and dehydration). The polar aprotic solvent of ACN/H2O was the highest rate of 5-HMF production from BW with 0.217 g/g BW. Furthermore, 5-hydroxymethyl-2-furfurylamine (HMFA) emerges as a key byproduct of 5-HMF, with notable applications in the synthesis of pharmaceutical hardeners, epoxy resins, biofuels, and chemicals derived from furan (Gao et al., 2023b). Wu et al. (2023) transformed BW into HMFA using a cascade reaction in betaine:malonic acid (B:MA)-water. They achieved a 30.3% yield of 5-HMF from BW in 45 min at 190°C. By using a specially engineered E. coli as a biocatalyst, they converted the 5-HMF into HMFA with a yield of 0.282 g HMFA/g BW at 35°C for 12 h. Gao et al. (2023a) proposed an innovative approach for converting bakery waste into HMFA using a two-step method. This method involves tandem catalysis utilizing deep eutectic solvent betaine/formic acid as the chemical catalyst and Escherichia coli HILF as the biocatalyst. Initially, a chemical catalyst, betaine/formic acid, was used on the BW, yielding 0.269 g 5-HMF/g BW. Subsequently, employing a specialized Escherichia coli HILF biocatalyst, which was efficiently converted 5-HMF into HMFA with a remarkable yield of 0.243 g HMFA/g BW within 6 h. Zhang et al. (2023) employed a chemoenzymatic approach to synthesize 5-HMF from BW for the production of 2,5-furandimethanol (FDM). This process involved a combination of catalysis, utilizing the deep eutectic solvent lactic acid:betaine as the chemocatalyst, and the HMFOMUT cell (biocatalyst: E. coli HMFMOUT whole-cell). The findings indicated that, under the conditions of lactic acid:betaine (15 wt%) at 180°C for 15 min, the 5-HMF yield reached 44.2 Cmol% of BW. In the presence of lactic acid:betaine–H2O, the HMFOMUT efficiently converted 5-HMF derived from BW into FDM, achieving a notable productivity of 700 kg of FDM per kg of 5-HMF (equivalent to 230 kg of FDM per kg of BW).




4.2 Biofuels


4.2.1 Bioethanol

Bioethanol stands out as a promising biofuel with several favorable attributes, involving a combustion efficiency and high octane number and heat vaporization (Narisetty et al., 2021). At the moment, the number of studies have been performed to improve the bioethanol production from BW. Nikolaou et al. (2023) investigated the viability of bioethanol production from BW through the examination of two distinct experimental processes: Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF). The investigation revealed that the optimal conditions for bioethanol production occurred under SSF conditions, specifically with 20% solid loading, an enzyme loading of 20 µL/g starch, and 2% w/w saccharomyces cerevisiae, maintained at 35°C for 48 hours. These conditions resulted in a bioethanol concentration of 87.5 g/L. Narisetty et al. (2022a), conducted a comprehensive studies of bioethanol production from BW, where the optimization of saccharification process both acid and enzymatic hydrolysis was also done through solid and acid/enzyme loading. The enzymatic hydrolysis demonstrated optimal glucose release, reaching 97.9 g/L at a solid loading of 20% w/v, equivalent to 95.9% of the maximum theoretical yield. Subsequently, the derived hydrolysate underwent fermentation to yield ethanol, which resulted in ethanol titers, yield and productivity of 114.9 g/L, 0.49 g/g and 3.2 g/L.h, respectively. The improvement of bioethanol production was also performed by Ünal et al. (2022) which was investigated the effect of temperature (25 and 30°C) and nitrogen supplementation (with 20 g/L peptone or without) on bioethanol production from BW. The mean ethanol yield using BW at 30°C was 0.49 ± 0.005 g ethanol/ g BW with 95.75% ± 0.93 of the maximum theoretical ethanol yield with nitrogen supplementation. Mihajlovski et al. (2020) performed the enzymatic hydrolysis of BW by a newly isolated Hymenobacter sp. CKS3 strain. The use of new strain resulted in 19.89 g/L of reducing sugars with maximum bioethanol concentration of 17.3 g/L after 24 h of fermentation. Han et al. (2019) developed a two-step enzymatic hydrolysis and ethanol fermentation along with its effect of enzymes volume on the performances. The maximum ethanol production and yield (46.6 g/L and 1.12 g/g dry cake) was achieved after 40 h of fermentation time.



4.2.2 Hydrogen

Hydrogen is recognized as a promising future clean energy carrier, as it produces no pollutants upon combustion, which posses higher mass caloric value (120–142 MJ/kg) surpasses that of methane (50 MJ/kg) and ethanol (26.8 MJ/kg) (Sillero et al., 2022). Adessi et al. (2018) conducted a two-stage process involving lactic fermentation and photo-fermentation to transform BW into H2. The most favorable outcomes were achieved using Lactobacillus amylovorus DSM20532, followed by photo-fermentation employing Rhodopseudomonas palustris 42OL, along with ferric citrate and magnesium sulfate supplementation. This method yielded 3.1 mol H2/mol glucose, with an energy recovery of 54 MJ/t dry BW. Han et al. (2017) studied an acceleration of the hydrolysis to enhance substrate conversion efficiency through a two-stage enzymatic hydrolysis prior to dark fermentation for H2 production using BW. The two-stage enzymatic hydrolysis showed an improvement of the nutrient conversion efficiency producing starch conversion of 96.6% and glucose yield of 0.521 g/g BW and the maximum H2 yield was obtained at 103 mL H2/g BW. Han et al. (2016b) proposed a novel bio-hydrogen production from BW using continuous stirred tank reactor (CSTR). Under a chemical oxygen demand (COD) concentration of 6,000 mg/L, the system achieved a H2 production rate of 7.4 L/(ld) and a H2 yield of 109.5 mL hydrogen/g BW.





5 Sustainability assessments of BW valorization for chemical production

Creating a sustainable biorefinery requires a systematic approach that involves designing, analyzing, and assessing the economic, environmental and social impacts of the process (Figure 4). Sustainable development must meet current needs while preserving natural resources, protecting the environment, achieving economic prosperity, and improving quality of life without compromising future generations (Posada and Osseweijer, 2016). A comprehensive sustainability assessment is necessary to ensure investment decision-making and societal acceptance. This assessment should encompass economic, environmental, and social impact considerations. Early-stage monitoring is necessary to avoid undesirable developments, and decision-making should consider multiple factors simultaneously to capture synergies. Thorough studies on systematic data collection and analysis methodology are required to ensure an accurate sustainability assessment (Thongchul et al., 2022). Evaluating sustainability can aid in understanding the potential impacts and benefits of BW valorization technologies, as it integrates economic, environmental, and social evaluations (Giraldo et al., 2020; Sadhukhan et al., 2021).

[image: Flowchart illustrating the process from feedstock selection through process technology and product generation, leading to techno-economic, life cycle, and social life cycle assessments. Chemical structures include hydroxymethylfurfural, ethanol, hydrogen, succinic acid, 2,3-butanediol, and lactic acid.]

FIGURE 4
 Sustainability assessment framework for BW biorefinery.



5.1 Life-cycle assessment

The objective of biorefineries is to produce products with lower carbon emissions compared to fossil-based refineries. However, the inherent complexity of the process presents sustainability challenges and potential environmental impacts. Therefore, it is crucial to employ a systematic methodology for identifying and evaluating their impacts. The sustainability of biorefineries, in comparison to products derived from fossil fuels is typically evaluated employing a life cycle approach (Collotta et al., 2022). Life-cycle assessment (LCA) has been widely used to quantify the environmental burden of certain product or process and is a tool for decision-making of sustainable process development. The evaluation of environmental impact in BW biorefineries is crucial, and a comprehensive life cycle impact assessment considering various factors is necessary. Recently, several researchers have conducted studies on the environmental impact assessment of BW valorization using LCA, as summarized in Table 3. This table represents the key features of the articles reviewed, including region and year, functional unit, system boundary, type of products, life cycle impact assessment (LCIA) method and database. To facilitate comparison, the environmental impact is primarily focused on the Global Warming Potential (GWP) score.



TABLE 3 Life cycle assessment studies of BW valorization.
[image: Table comparing different functional units across regions, products, system boundaries, LCIA methods, results, and references. It includes bioethanol, lactic acid, succinic acid, and others, with varying GWP values in kilograms of CO2 equivalents. References are attributed to various authors from 2015 to 2024.]

These studies aim to assess the environmental consequences of using BW to produce biochemical products, such as LA, bioethanol, SA, and fungal products. However, a comparative LCA for BW valorization remains challenging due to variations in functional units. Vanapalli et al. (2023) conducted a study that revealed producing LA from BW via low pH fermentation to be more environmentally friendly than using neutral pH fermentation. This study underscored strategies for reducing environmental impact, including employing pinch technology for enhanced energy efficiency and implementing a closed-loop system to mitigate water consumption. Conducted an LCA on the co-production of bioethanol and biomethane from BW. They identified electricity production as the most significant contributor to GHG emissions, followed by the use of chemicals, transportation, and water. The study found that improving process yield was effective in reducing the overall electricity requirements, particularly during fermentation and downstream processing. Moreover, a shift toward renewable energy sources for electricity generation was suggested as a promising strategy for further reducing the GWP and enhancing process sustainability. Gadkari et al. (2021) compared fermentative SA production from BW with fossil-based SA production, revealing a lower environmental impact for the former. The primary GHG emission sources were identified as steam and heating oil used in the process. Additionally, the study highlighted the potential of repurposing solid biomass waste as fish feed, which could contribute to environmental savings. Targeting steam and heating oil usage could significantly reduce energy requirements and GHG emissions. Brancoli et al. (2021) investigated the environmental burden of producing fungal food products using surplus bread. The study examined four scenarios: using stale bread (Scenario 1), molasses and ammonium chloride (Scenario 2), glucose (Scenario 3), and recirculated fermented product (Scenario 4). The findings showed that Scenario 4, followed by Scenario 1, had the lowest environmental impacts. These scenarios, which replaced glucose or molasses with stale bread, significantly reduced the environmental impacts associated with inoculum production. Conversely, Scenarios 2 and 3, which involved inoculum production and solid-state fermentation, demonstrated higher environmental impacts, underscoring the importance of optimizing electricity consumption. Furthermore, research on BW management by Eriksson et al. (2015) and Brancoli et al. (2020) highlighted donation and source reduction as the most environmentally favorable options, resulting in the lowest GHG emissions. These options stood out due to their minimal process-associated impacts and ease of distribution. However, the studies offered differing recommendations for subsequent waste management strategies. However, the studies differ in their recommendations for subsequent waste management options after donation and source reduction. Brancoli et al. (2020) favored converting BW into bioethanol, feed, and beer, citing benefits like the use of dried distillers grains with solubles (DDGS) as animal feed and the substitution of ingredients in feed and beer production. On the other hand, Eriksson et al. (2015) suggested incineration and AD as viable alternatives. The least favorable options were identified as landfilling (Eriksson et al., 2015) due to methane emissions, and incineration (Brancoli et al., 2020) due to low environmental savings from the bread’s low heating value and minimal energy substitution credit. In a recent study, we described an integrated biorefinery approach using BW, co-producing bioethanol and SA (Hafyan et al., 2024). The study systematically investigated four distinct scenarios, with Scenario 4 specifically incorporating AD, combined heat and power (CHP) generation, carbon capture (CC) technology, and SA production. This particular scenario stood out by delivering exceptional results, as it maximized the utilization of BW materials and generated marketable products including bioethanol, SA, and fertilizer. Notably, the integrated approach exhibited a remarkably low GWP value, measuring at −0.344 kg CO2-eq, thereby underscoring its significant environmental benefits.

These findings highlight the substantial potential of BW to replace non-renewable products in the long run, particularly when integrated with strategies to reduce environmental impact. Additionally, the outcomes involve the identification of environmental hotspots in the process of enhancing the value of waste, proposing solutions to address these issues, identifying more effective methods for value enhancement across various options, and pinpointing the most environmentally friendly technology for this purpose. Hence, LCA proves highly beneficial in recognizing potential trade-offs during the design phase and ensuring environmentally advantageous decisions are prioritized (Caldeira et al., 2020).



5.2 Techno-economic assessment

Techno-economic assessment (TEA) offers comprehensive insights into a technology or process, encompassing aspects like process and energy efficiency, product output, emissions, and the associated costs required to achieve specific objectives. It represents a cost-effective approach for evaluating the overall performance and commercial viability of novel technologies (Rout et al., 2023). Within an economic system, the ability to deliver desired products at competitive prices while considering production costs and profitability is of paramount importance. To assess a project’s feasibility, various economic indicators are examined, including net present value (NPV), internal rate of return (IRR), return on investment (ROI), and payback period (PBP). TEA has provided stakeholders with valuable insights into the enduring economic effects of technologies at diverse stages of commercialization (Almada et al., 2023). Based on the existing literature, economic assessment is often given the highest priority in the valorization of waste, followed by environmental assessment and the combination of both (Rana et al., 2020).

The production of bio-based products encounters substantial competition from petrochemicals, primarily in terms of market costs. Therefore, TEA plays a crucial role in forecasting the economic competitiveness of a production process. However, it’s worth noting that only a limited number of studies have undertaken the economic evaluation of BW valorization technologies. Mailaram et al. (2023) explored the economic feasibility of valorizing BW feedstock for the large-scale production of two distinct fermentation processes for LA—one operating under acid-neutral conditions and the other at a low pH level, both with a capacity of 100 metric tons per day. The study unveiled that the microbial LA production proved to be capital-intensive, attributed to the prolonged fermentation of BW to LA and the complex reactive separation of LA. In addition, the substantial total operating cost was primarily influenced by a high BW price, considering collection and transportation costs, as well as the use of energy-intensive separation process. Nevertheless, the implementation of pinch technology managed to reduce utility cost for both scenarios of acid neutral and low PH, with around 15 and 11%, respectively. As a result, the minimum selling prices estimated for acid-neutral and low pH scenarios were $3.52/kg and $3.22/kg, respectively, considering 5 years of PBP and IRR set at 8.5%. However, the study highlighted the imperative need for cost reduction strategies, advocating for the development of a more efficient LA production process, cost-effective downstream LA purification processes, and governmental subsidies to mitigate BW costs. Such strategies were shown to potentially decrease the production cost of LA by approximately 12–14%. Han et al. (2016a) conducted an economic analysis of hydrogen production derived from BW in a CSTR with a daily BW processing capacity of 2 metric tons. The total investment and annual production cost were estimated at $931,020 and $299,746/year, respectively. The primary constraint identified was the installation cost of the H2-producing plant, with the grinding and purification system representing the major components of equipment cost. Utilities (electricity and process water) and labor costs constituted significant contributions to the total operating cost. The study revealed that H2 yield constituted a substantial portion of revenue, and the inclusion of co-products, such as CO2, solid biomass (fish feed), and treated BW, contributed to an increased total annual revenue of $639,920/year. H2 yield and market price emerged as pivotal factors influencing industrial-scale hydrogen production. The analysis demonstrated the attractiveness of the plant, with a NPV of $1,266,654 and PBP of 4.8 years. Furthermore, the study emphasized that a lower discount rate and a hydrogen processing plant capacity exceeding 0.58 MT/day were prerequisites for profitability. Additionally, enhancements in energy efficiency and reductions in operating labor costs were identified as pivotal factors for improving the economic viability of hydrogen production from BW. Lam et al. (2014) investigated a profitability analysis of SA production from 1 metric tons of BW daily in Hong Kong. The capital investment required amounted to $1,118,243, with the SA fermenter constituting the primary contributor to the total equipment cost. It is noteworthy that the total production cost reached $230,750, primarily attributed to the substantial allocation of expenses—95%—toward the procurement of raw materials, specifically for the purchase of CO2. Moreover, the high steam consumption contributed to elevated utility costs, and the associated operating labor costs were also identified as significant contributors. All revenue generated emanated from the SA product, which constituted the primary revenue stream. Additionally, two co-products, namely solid biomass (utilized as fish feed) and treated BW, contributed to an overall revenue of $374,041/year. Furthermore, the profitability analysis disclosed a ROI of 12.8%, PBP of 7.2 years, and IRR of 15.3%. The study underscored key thresholds for ensuring profitability, emphasizing that the selling price of SA and the plant capacity for SA production should not fall below 0.26 MT/day. In our recent study, in addition to studying the environmental performance of the integrated biorefinery based on co-production of bioethanol and SA from BW, we also investigated the economic feasibility of the proposed plant (Hafyan et al., 2024). Once again, Scenario 4, which exhibited the most exceptional environmental performance, also demonstrated outstanding economic viability. It boasted a brief PBP of 2.2 years, a robust IRR of 33% after tax, a ROI of 32%, and a noteworthy NPV of 163 M$. The study provided compelling evidence that optimizing the utilization of all BW materials through an integrated biorefinery significantly enhanced the profitability of the process.

In summary, the reviewed studies point to feedstock quantity and cost, energy consumption, labor cost, and reactor yield as key factors influencing economic uncertainties and fluctuations in bioproducts from BW. Future research should prioritize better control over these factors. Overall, the TEA results support the commercial viability of BW valorization. However, it is crucial to note that the economic success of these processes at an industrial scale depends on specific pathways, with market prices and economies of scale playing a significant role in determining profitability.



5.3 Social life cycle assessment

Social impact assessment (S-LCA) is an essential aspect of sustainability evaluation, but it is often the least studied. S-LCA studies encompass five primary social categories, namely labor rights, health and safety, human rights, governance, and community infrastructure, along with 22 sub-categories which are discussed in the work of Sadhukhan et al. (2014) and (2021). S-LCA is a systems analysis tool used to analyze and evaluate the impact of changes in a product or service’s life cycle. It evaluates the social impacts, which is widely accepted approach for sustainability trade-off analysis. Andrews (2009) revealed that S-CLA is a technique that assesses the social and economic impacts of products throughout their entire life cycle, including raw material extraction, manufacturing, distribution, use, and disposal stages. It aims to identify both positive and negative impacts of a product on society. Vance et al. (2022) stated that social sustainability is the assessment of the social costs and benefits of a product, process, or system using s-LCA. However, it is important to notice that the social impact indicators are difficult to measure them per functional unit, unlike environmental and economic impacts. It is typically qualitative and semi-quantitative data according to physical output (Shemfe et al., 2018). Aristizábal-Marulanda et al. (2020) emphasized that when analyzing the social impact of biorefineries, a diverse set of indicators should be used, tailored to the geopolitical and public conditions of the facility’s location. This should include aspects, such as fair working conditions, contributions to community development, inclusion of minority groups, transparency, and responsibility for end-of-life management. However, to the best of our knowledge, no studies have been reported so far on the social impact assessment of BW valorization technologies.




6 Addressing the challenges of BW valorization

The valorization process of BW encounters challenges in establishing a robust commercial process, with contamination posing a significant hurdle. The fermentation process employed in BW valorization becomes vulnerable to contamination when BW is mixed with other types of waste. To tackle this issue, it is crucial to establish a systematic distribution scheme for managing BW collection system would prove advantageous for sourcing BW, minimizing the risk of contamination, and ensuring the success of the fermentation process.

Collecting segregated BW from various supply chains can be challenging, particularly when it comes to households, which generate substantial amounts of BW. The complexity and cost of waste separation make households less feasible as a source (Kumar et al., 2022). Instead, surplus bread collected from places, such as bakeries and retailers, could be good sources of segregated BW. In some European countries, a take-back agreement (TBA) service scheme has been implemented to prevent a significant increase in BW. Under this scheme, bakeries take responsibility for their unsold goods and their collection and treatment (Soni et al., 2022). This approach establishes a return system between retailers and bakeries, which creates a contamination-free flow with other food waste products, minimizing challenges for separation (Brancoli et al., 2019, 2020). The reverse supply chain created by this scheme compels bakeries to forecast bread stock, thereby reducing waste and maintaining shelf life. Furthermore, it facilitates the segregation of uncontaminated BW, opening up opportunities for its valorization in other processes. Meanwhile, Bhardwaj et al. (2023) proposed a strategic approach which concerns the issue of BW returned from retailers under the TBA scheme as well as maintaining the quality of returned BW and creating a hygienic environment. The study involved five Indian bakery manufacturers (A, B, C, D, E) implementing BW reduction strategies. The results revealed that returning BW to the manufacturing after 3 days instead of 6 days reduced the number of expired bread and improved the quality of BW, which could be used for making other products, such as breadcrumbs, rusk, pastry, and other baked items. Furthermore, companies A and E effectively encouraged retailers to reduce waste by offering discounts on bill invoices and offering affordable bread portion to attract customers on limited budget. Additionally, they focused on targeting small towns and villages, collaborating closely with retailers to increase bread sales. This approach not only reduced waste but also helped mitigate business losses.

Although the TBA scheme is an effective approach in reducing bread surplus and bakery waste, it presents challenges in terms of transportation and environmental sustainability. The transportation of BW can lower the environmental benefits of BW valorization and poses challenges in handling large quantities that require prompt transportation to the fermentation site. If not processed promptly, bread can decay, creating an environmental hazard, attracting rodents, and rendering it unsuitable as a feedstock (Narisetty et al., 2021). This issue has been studied by Weber et al. (2023), who examined the impact of the TBA system on GWP and evaluated alternative bread supply chain scenarios. They found that long-distance transport was the main contributor to climate impact, accounting for 68% of the overall impact. Short-distance delivery and waste transportion contributed 26% and 6%, respectively. The study identified a collaborative transport strategy as the most effective approach, reducing the reliance on small vehicles and decreasing transport distances. Addressing issue of logistic for BW valorization is essential to reduce production cost. On top of that, López-Avilés et al. (2019) investigated the impact of re-distributed manufacturing (RDM) on the energy consumption and emissions in the UK’s bread supply chain. RDM presented economic and political advantages, with potential for energy reduction. The use of low carbon vehicles, local bakery purchases, and optimized manufacturing technologies contributed to decreased energy consumption and emissions. The research emphasized the importance of localizing bread production for environmental and socio-economic benefits. While centralized industrial production might increase energy use, RDM had the potential to mitigate overall energy consumption, especially in transportation. The study also highlighted the role of technological advancements in smaller-scale operations and suggests additional benefits, such as energy recovery from food waste, though these aspects were not thoroughly explored.



7 Future strategic approach of BW valorization

The problem of food waste generation demands an innovative and comprehensive approach that involves the integration of sustainable biorefinery systems. Such an approach should encompass knowledge from various disciplines to develop sustainable solutions for promoting sustainable diets, repurposing food waste, and promoting circularity in food value chains (Sadhukhan et al., 2020). The configuration of a sustainable biorefinery should aim to produce bio-products in conjunction with bioenergy and biofuel (Sadhukhan et al., 2018).

Fermentation, carried out by bacteria, yeast, fungi, and other microorganisms, is the process of decomposing organic substrates into valuable products. However, the fermentation process generates a significant amount of sludge and CO2 as by-products. The by-products can be utilized and transformed into valuable products, adding economic value in the process. The recovery strategy primarily focuses on the recovery of sludge waste by producing biogas as fuel for energy generation (steam and electricity). This is achieved through a process called AD, which breaks down waste into methane for energy and bio-fertilizer. Several studies have demonstrated the potential biogas production from various food waste sources, such as BW 421 ± 10 mL/g vs. (Narisetty et al., 2022a), fruit waste 285.7 mL/g COD (Ambaye et al., 2020), mixed food waste 450–500 mL/g vs. (Shamurad et al., 2020), citrus peel 318–500 L/kg vs. (Martínez et al., 2018), and walnut shell 492–600 mL/g vs. (Linville et al., 2017).

The biogas production from the AD process can be integrated with heat recovery steam generation (HRSG) to generate steam and electricity. HRSG allows recovery of heat from the exhaust gas from turbine, which can be utilized to produce steam at temperatures reaching approximately 650°C and pressures ranging from 13 to 20 MPa (Rackley, 2017). Additionally, some fermentative processes yields carbon dioxide (CO2) by-product, which can be utilized in the food industry as supplements due to its high purity (Rodin et al., 2020). High-quality CO2 can also be utilized in CC applications to produce various products, such as SA (Gadkari et al., 2021), cryogenic-based CO2 (Song et al., 2019), methanol (Cordero-Lanzac et al., 2022), urea (Chehrazi and Moghadas, 2022), dimethyl carbonate (Kontou et al., 2022), and dimethyl ether (Michailos et al., 2019). CCU technologies not only help mitigate climate change but also open up new synthesis routes with possible economic benefits. Figure 5 illustrates the integration strategy of BW valorization, including the production of biochemical products, such as bioethanol and SA, AD, HRSG, and methanol as CO2 upgrading process.

[image: Flowchart illustrating the bioethanol and methanol production process from bread waste. Bread waste undergoes enzymatic hydrolysis to produce glucose, which is then fermented. The fermentation broth undergoes purification to create bioethanol. Additionally, CO2 from fermentation is used in the CO2 upgrading process, producing methanol. Anaerobic digestion of additional bread waste generates biogas. This biogas powers a gas turbine, producing flue gas, leading to steam generation and electricity production. Carbon capture and utilization process further treats CO2. Waste materials are recycled or processed into fertilizer and electricity.]

FIGURE 5
 Process integration of BW valorization.


Based on the abovementioned strategy, future studies could be focused on the integration and energy efficiency of BW valorization. For commercialization and industrialization, the process of valuable product production from BW should be optimized to minimize energy consumption. This aim can be achieved through integration process of BW valorization. Applying process integration results in better environmental and economic aspect (Almada et al., 2023). Solomou et al. (2022) demonstrated the potential of utilizing arabinoxylan (AX) fractions extracted from sugarcane bagasse as ingredients in bread. The findings emphasized that integrated biorefineries offer opportunities to introduce novel ingredients to the food industry that were currently unavailable. The study suggested the feasibility of commercially producing a range of AX products through integration with bioethanol production, utilizing ethanol for the precipitation of AX. Sheppard et al. (2019) investigated the potential benefits of co-locating a food product, specifically coffee bean roasting, with the lignocellulosic biorefining of its by-product, spent coffee grounds (SCG). The analysis suggested that combining coffee been roasting and SCG processing could lead to financial gains and improved energy efficiency, contributing to a substantial increase in site income. Martinez-Hernandez et al. (2018) presented the crucial role of process integration in designing integrated biorefineries for retrofitting, involving the co-production of bioethanol, DDGS, AX, and AXOS precipitated at higher ethanol concentrations. The study revealed that the mass pinch analysis proved effective in retrofitted bioethanol-producing biorefineries, minimizing fresh, high purity bioethanol use and reducing losses, strengthening the technical and economic foundations for producing various arabinoxylan-based products.

Furthermore, the sustainability assessment in terms of economic, environmental, and social aspect are factors that need to be incorporated to develop integrated BW valorization. It is generally assumed that the BW valorization is expected to bring economic, environmental, and social benefits. The use of BW as feedstock for producing biochemical and biofuel products pose a huge potential to create circular bioeconomy.



8 Conclusion

Recent studies have demonstrated the potential of BW as a valuable resource for producing marketable building block chemicals, thereby supporting the advancement of the circular bioeconomy. However, the successful implementation of this approach relies heavily on the technological readiness of BW biorefineries. Integrated sustainable biorefinery systems is critical for an energetically viable scheme, as they must effectively produce bio-products alongside bioenergy.

The adoption of BW biorefinery technology is facing several key challenges related to cost-effectiveness, efficiency, environmental sustainability, and social acceptability. In order to achieve sustainable development, it is essential to conduct a comprehensive sustainability evaluation that encompasses economic, environmental, and social factors. By addressing these multifaceted considerations, the utilization of BW in biorefineries has the potential to contribute significantly to a more sustainable and resource-efficient future.
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Soybeans are an important oil and protein supply crop, but the utilization of by-products from its processing products has never been effectively resolved, while a large number of nutritional resources have been wasted and environmental pollution is serious, restricting the sustainable development of the industry. The critical problem of soybean processing by-products includes excessive levels of microorganisms, residual proteins, metal ions, and other substances. Because the screw extrusion process has potentially advantageous processing characteristics, it appears that it’s just the right solution to the above problem of soybean processing by-products. We propose that this technology may be a potentially scalable technology for the immediate processing of soybean by-products. This paper reviews the theoretical foundations in existing research, briefly discusses the technological advantages, feasibility, and potential risks of this process, and hopes that researchers may pay attention to this technique and conduct feasibility studies.
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1 Introduction

With customers’ desire for healthier diets and the popularity of plant-based diets, soy has emerged as the primary source of plant-based lipids and protein for humans (Qin et al., 2022). Traditional soybean processing, like the processing of many primary agricultural products, generates a large number of by-products, most notably soybean dregs and soybean whey (Lyu et al., 2021; Yang et al., 2022), which are produced during the processing of traditional soy products (such as tofu) and new soy products (such as soybean protein isolate [SPI]), although the composition may differ (Chua and Liu, 2019). In traditional processing models, by-products are often used directly as waste or as animal feed. However, soybean by-products can no longer be used as waste and are not permitted to be used as such due to growing environmental consciousness and researchers’ usage of useful components.

Soybean dregs, also known as okara, are the main solid by-product of the preparation of traditional soy products and SPI. Its primary components are water and fiber; upon drying, insoluble dietary fiber predominates (Wang et al., 2021), meanwhile also contains some residual proteins and peptides (Fang et al., 2021). Rich in nutrients, soybean dregs are extremely prone to spoiling during storage, while the special structure of soybean fibers leads to their extreme water absorption (Lyu et al., 2021), making it difficult to dry and transport. As the traditional soybean product manufacturing businesses are often small and dispersed, the huge production of soybean dregs has become an intractable problem.

Soybean whey, also named yellow slurry water, soybean whey, or soy wastewater, plays a role similar to that of soybean dregs. Unlike this, however, the consequences of residual metal ions and excessive protein residues in the soybean whey are more serious (Wang and Serventi, 2019; Chen et al., 2024). Also, as a liquid by-product of soybean processing, it is more productive than the solids. The extremely high Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) of the soybean whey prevented it from being discharged properly (Chua and Liu, 2019), and the processors had to merge it into industrial sewer lines, thus facing high treatment costs. Furthermore, extra coagulants added during the soy product manufacturing process may result in excess metal ions in soybean whey. In summary, from the perspective of food safety risks, the main risks of soybean by-products come from three aspects: microbial contamination, metal ion contamination, and residual proteins.

To address the issue of soybean by-products, researchers have devised multiple pathways for high-value use, such as the use of soybean dregs to prepare dietary fiber (Wang et al., 2021) and the use of soybean whey to obtain isoflavones (Wang and Serventi, 2019). These methods have generally remained at the experimental level and have not been generalized to actual production due to various problems, such as high treatment costs. Finding a processing technology that applies to the production line, that can address all three food risks at the same time, and at a lower input cost, is imperative.

Screw extrusion technology for soybean food processing is mainly used for the production of soybean texturized protein (STP) (Zhang et al., 2023). The basic principle is to use the screw to generate high pressure and high shear at a high temperature so that the material in the molten state produces directional texturization of the structure (Dahl and Villota, 1991). This feature coincides with the food risk problem of soybean by-products we propose to address. Complementary single screw extrusion technology can be used to process coarse materials (Lyu et al., 2022a), which makes it possible to use screw extrusion equipment to mimic the STP production model to process by-products. Additionally, the screw extruder is a type of low-cost processing machinery.



2 Barriers to utilization of soybean processing by-products

To address the issue of soybean processing by-products, an overview of the barriers to their integrated use is necessary and can be summarized in the following three sections:


2.1 Poor processing suitability

Fresh soybean dregs can have a moisture content of between 80 and 85% (Chen et al., 2022), which affects the separation and purification of the dry matter in them directly. Based on the large amount of soybean dregs produced in practice, processors must dry the dregs as soon as possible to facilitate storage; otherwise, the high moisture content and unhygienic storage conditions would cause the dregs to quickly deteriorate. However, soybean dregs are different from ordinary food materials, their drying is extremely difficult, often accompanied by a large amount of energy consumption and long-time input (Lu et al., 2022). Even if the dregs are dried through higher processing costs, their rough palatability often makes them difficult for consumers to accept, which led to the frequent use of soybean dregs as animal feed (Jiang et al., 2019; Hu et al., 2023). To improve the processing performance of dreg as food, it is often modified using different methods, such as fermentation, chemical modification, etc., (Zhou et al., 2019; Wu et al., 2023), which undoubtedly diminishes the suitability of soybean dregs as a food ingredient for processing.

Soybean whey’s unsuitability for food processing can be shown in its inability to be utilized in food preparation. It is challenging to link this effluent to food processing because of its bitter flavor (Huang et al., 2022) and high concentrations of several constituents, such as trypsin inhibitors and lectins. The conventional way of processing soybean whey into food is to ferment it with probiotics to improve its potential functionality and processing characteristics (Tian et al., 2021; Yang et al., 2021), which gives some special potential functionality to the soybean whey but does not enhance its suitability for processing from a practical production point of view. Instead, it raises the cost of processing.



2.2 High processing costs

As shown in Table 1, soybean processing by-products do contain a large number of potential processing resources (Li et al., 2012; Chua and Liu, 2019). However, obtaining these processing resources comes at a significant expense due to processing.



TABLE 1 Main components and content of soybean by-products (Li et al., 2012; Chua and Liu, 2019).
[image: Table comparing nutritional content of soybean dregs (fresh) and soybean whey (tofu). Soybean dregs have moisture 80.0–85.0%, protein 15.2–33.4 g/100 g dry matter, fat 8.3–10.9 g/100 g dry matter, dietary fiber 42.4–58.1 g/100 g dry matter, and ash 3.0–4.5 g/100 g dry matter. Soybean whey contains carbohydrates 8.50 g/L, proteins 1.33–8.20 g/L, fats 3.9–10.0 g/L, minerals 3.9–4.6 g/L, and isoflavone about 50 mg/L. Note: Refers to dregs/whey from traditional soy products.]

The most worthwhile potential processing resources to be obtained from soybean dregs are soybean dietary fiber and functional peptides (Fang et al., 2021; Wang et al., 2021). Insoluble dietary fiber from soybean dregs, for example, has been shown to regulate the body’s glucose-lipid metabolism and intervene in the intestinal internal environment at high purity (Lyu et al., 2022b; Wang et al., 2023), which is considered a good resource for functional food. However, to obtain it, a combination of drying methods and the use of enzyme engineering techniques are required (Lyu et al., 2021), whose level of cost is unacceptable in industrial production.

Representative potential processing ingredients in soybean whey are oligosaccharides and isoflavones (Hu et al., 2024). As of today, the most efficient method recognized for separating these two components from soybean whey is membrane separation technology (Liu et al., 2015a,b). Complemented by larger yields than soybean dregs, it is more costly to achieve efficient separation of oligosaccharides and isoflavones from soybean whey in practical production. Again, no producers are doing this.

The process of extracting potential processing ingredients from soybean by-products is characterized by the fact that it is generally easy to succeed in the laboratory but difficult to scale up and apply in actual production. High processing expenses should be held primarily responsible for this.



2.3 Contamination and food safety risks

Contamination and food safety risks of soybean by-products can be summarized in three categories: microorganisms, residual proteins, and metal ions.

Microorganism overload is a common problem in the treatment of soybean dregs and soybean whey. Among plant-based food wastes, microbiologically contaminated soybean dregs have the highest acidity (Wahab et al., 2022). Although fewer microbial species spoil soybean dregs in the natural environment, food microbial contamination is high in acidophilic microorganisms (Rawat, 2015), which are highly susceptible to risks such as Pseudomonas putida (Cunha et al., 2022). The microbial spoilage pattern of soybean whey is similar to that of soybean dregs, which will spoil within a day under conventional storage conditions (Chua and Liu, 2019). Conventional processing methods make it difficult to process soybean whey in 1 day. In addition, the odor of soybean whey is hard to receive after rotting and remains even after sterilization (Hao et al., 2023), which makes it no longer suitable for food processing.

Residual proteins in by-products are closely related to microbial contamination. Insoluble dietary fiber and soluble sugars provide a rich source of carbon for microbial reproduction, while, residual proteins provide an amount of nitrogen. Residual protein in soybean dregs comes from proteins that are not fully soluble in water, and conversely, the residual protein in the soybean whey stems from incomplete cross-linking or reactions during the production of soy protein products. More seriously, the removal of certain residual proteins is not achieved by changes in processing methods, such as certain acid-soluble proteins found in soybean whey (Liu et al., 2016). In short, residual protein increases the risk of microbial contamination of by-products.

Contamination by metal ions, on the other hand, occurs mainly in soybean whey, which mainly comes from excessive coagulants added during the processing of tofu. Common tofu coagulants include gypsum (main ingredient: CaSO4), salt brine (main ingredient: MgCl2, etc.), and glucono-δ-lactone (Li et al., 2022), the first two of which cause metal ion contamination. The root cause of metal ion residues is the excessive use of coagulants to ensure the yield of tofu, and the salt ions that are not bound to proteins in this process are present in the soybean whey. Again, this problem cannot be solved at this stage by adjusting the production process.




3 Technical advantages of screw extrusion

Technologies commonly used include single-screw extrusion and twin-screw extrusion. Either technology provides a high-temperature, high-pressure, high-shear process that is just right for solving the problem of utilizing soybean by-products.


3.1 Addressing food risks

As mentioned above, the food safety risks of by-products include microorganisms, residual proteins, and metal ions, which can be avoided in the raw material processing environment provided by screw extrusion technology.

Any type of screw extruder can easily provide a processing environment above 120°C, especially during the production of STP using screw extrusion, where temperatures often exceed 200°C (Lyu et al., 2022a). This environment, coupled with the minutes-long processing time, is such that no microorganisms can survive, at least not at the moment the material leaves the extruder. The risk of microbial contamination is also non-existent.

Residual proteins are no longer considered by-products in the screw extrusion process but as raw materials. The central idea presented in this paper is to use by-products to replace some of the key raw materials in the STP production process, e.g., using soybean dregs to replace a portion of water and soybean meal, meanwhile using soybean whey to completely replace pure water. According to estimates, soybean dregs can replace at least 20% of the total amount of raw materials, and more for soybean whey. Therefore, in this substitution process, the residual protein is involved in the texturization process of the raw protein, which, together with the absence of microbiological risks, does not pose additional food safety risks.

As the by-products undergo the texturization process with the protein, the risk of metal ion residues is not present. Studies have shown that although some coagulants are toxic, they are rendered harmless when they bind or react with proteins (Ali et al., 2021). The violent reaction environment of the screw extrusion process causes the metal ions to fully cross-link with the proteins, and with a high content of proteins and a low content of metal ions, this reaction should be regarded as complete for the metal ions.



3.2 Low equipment and operating costs

In addition to the feasibility of the basic principles, the most limiting factor for the high-value utilization of by-products is the high cost of treatment. As a technology that has long been used in food processing and soybean product processing (Shelar and Gaikwad, 2019), screw extruders are not high-end processing equipment and have very low acquisition and operating costs. Especially single-screw extruders, which are more suitable for processing rough materials, such as soybean dregs (Lyu et al., 2022a), whose running cost is lower than others. This means that manufacturers can upgrade their inherent production lines at a very low cost and realize the utilization of by-products without affecting the production of the original products.



3.3 High value-added end-products

As mentioned previously, screw extrusion technology is mainly used in soybean processing for the production of STP. Compared to SPI, STP is a high-value product in its own right. As long as the by-product can be successfully turned into one of the feedstocks for STP production, its economic value is already very high because there are no more by-product treatment costs. On this basis, the inclusion of by-products will increase the content of dietary fiber, oligosaccharides, and isoflavones in STP, which will result in a significant increase in the value of the end product. This will help to realize the upgrading of ordinary food ingredients into potentially functional foods and get more market attention. The hidden value is very significant.



3.4 Sustainability of the soybean industry and environment

From the perspective of sustainable food processing, the use of screw extrusion technology to treat soybean by-products has longer-term significance.

For the soybean industry, this will be an attempt to utilize soybeans for laddering and whole-seed processing. This will achieve high-value utilization of more than 20% of the dry matter in soybeans, an amount that cannot be ignored in countries and regions where there is a scarcity of high-quality plant-based food resources, which will also further reduce pressure on the planting side regarding increased soybean production.

As far as the environment is concerned, in addition to the basic advantages mentioned above, zero-emission processing technology represented by screw extrusion has long-term significance for soybean processing and even for the food processing industry. Due to emissions and pollution issues, in most countries and regions, food processing companies must be located in suburban areas and cannot produce in urban or densely populated areas, which undoubtedly increases the cost of food production, especially transportation and storage. With the promotion of zero-emission processing technology, the urbanization of food processing will be promoted, which will bring many advantages, such as reduction of production costs, alleviation of labor problems, application of new technology, improvement of consumer acceptance, and so on.




4 Concluding discussion

In summary, the use of soybean processing by-products to replace some of the traditional raw materials in the screw extrusion process is a feasible way to utilize the by-products in a high-value way. However, there may be some constraints on the realization of this process.


4.1 Promotion of screw extrusion in the traditional soybean processing industry

Primary soybean processing is a traditional and stereotypical industry, but screw extrusion technology is currently only used in soy protein producers. Getting traditional primary soy producers to recognize and embrace screw extrusion technology is a long process, especially since the industry is highly fragmented. At the same time, compared to other new processing technologies, screw extrusion technology has a smaller overall investment. However, it is not easy to get producers to voluntarily bear the added costs in the actual production process. In addition to economic costs, there is an increase in hidden inputs to producers, such as labor and policy inputs.



4.2 Imbalance in throughput capacity

While the use of screw extrusion to process by-products has proven theoretically feasible (Wang et al., 2020, 2024), there is an imbalance in raw material and product throughput capacity for soybean processors. On the one hand, there is an imbalance between the amount of by-product output and the processing capacity of the screw extruder. The current capacity of large screw extruders is only a few tons per day (in STP or SPI), but conventional soybean producers produce much more than that as by-products. This means that producers need to introduce several screw extruders to solve the by-product handling problem, which undoubtedly raises production costs. On the other hand, the by-products are only co-materials of the STP production process. To realize the treatment of by-products, producers also need to purchase or produce SPI, gluten (wheat protein), soybean meal, pea protein, etc. as the main raw materials, which are exactly what the traditional soybean processing enterprises do not have. The above process again raises the cost of running it.



4.3 Enrichment and evaluation of functional components

While the addition of soybean dregs and soybean whey to the STP production process certainly enhances the content of functional substances in the product, this process brings up many unresolved scientific questions, for example: reactions of proteins and functional substances in extrusion processes, the change of functional components in the extrusion process, conversion of dietary fiber from insoluble to soluble, conversion of isoflavones from aggregated to free state, evaluation of processing and flavor characteristics of end products, etc. Precise analysis of these issues is the key to scaling up the technology, which in turn provides a potential research direction for researchers.



4.4 The summary of advantages, limitations, and further scopes

The advantages, limitations, and further scopes of screw extrusion technology in soybean by-product processing are summarized in Table 2.



TABLE 2 The advantages, limitations, and further scopes of screw extrusion technology in soybean by-product processing.
[image: Table comparing soybean dregs and whey. Materials are listed alongside their advantages, limitations, and further scopes. Soybean dregs advantages include improved processing, palatability, and reduced pollution. Limitations involve industry technology and cost. Future scopes include protein production. Soybean whey advantages include reducing metal ions and costs, with limitations on technology. Further scopes involve functional component enrichment.]
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Due to changes that have occurred in ecological conditions, the requirement to use wastewater has been considered more seriously in the agricultural sector, because agriculture is the source of human nutrition, health and security. Based on this, the purpose of this research was to systematically analysis the components affecting sustainable management of wastewater use (SMWWU) in the viewpoint of critical theory paradigm. Inductive qualitative content analysis (IQCA) was used for systematic analysis. In this regard, the software used was MAXQDA. The statistical population included valid scientific articles and knowledgeable experts in wastewater management in the agricultural sector in Tehran province, Iran. The sampling method for articles was by searching based on keywords and for experts by purposeful method until theoretical saturation was reached. The results of IQCA in the form of a model showed that the six main components “economic,” “environmental,” “contextual,” “individual,” “management and planning” and “education and extension” affect SMWWU. Each of these components also includes several factors and variables that can strengthen SMWWU and reduce the water crisis by paying attention to them. The obtained model can be used by policy makers and interested parties in making decisions and planning water protection measures.
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1 Introduction

The scarcity of available water resources, the shortage of rainfall, and recent droughts, have obliged the water policy makers to consider all conventional and non-conventional sources that can be effectively and economically available in the planning of water resources development (Ahmadi et al., 2019). On the other hand, the increase in urbanization and industrialization has resulted into a sudden increase in wastewater produced around the world. The problems caused by the lack of wastewater treatment on the environment have made this aim as an imperative need (Torabian and Moumeni, 2003). Nowadays, treated municipal wastewater can be one of the significant alternative water sources (Agrafioti and Diamadopoulos, 2012), treated wastewater can be a reliable source of water in some fields such as agriculture, because it is produced throughout the year, and although the efficient methods of water management in the farm, saving methods of water consumption and desalination are some of the strategies to cope up with water scarcity. However, the reuse of purified wastewater can be a more successful solution to recover part of water transferred to the agricultural sector (Ahmadi and Merkley, 2009). The reuse of wastewater and biosolids in agriculture has many social and economic benefits and promotes the sustainability of agriculture and the environment (Fu et al., 2019). Today, due to the transfer of human sewage to underground and surface water tables, dumping domestic sewage and the creation ugly and unpleasant environmental landscapes namely in Iran (Esmaeilian et al., 2021), if not being truly managed, planned and not good decision is made, it will bring adverse environmental consequences. Wastewater management is necessary not only to prevent much damage to sensitive ecosystems and the environment, but also to emphasize that wastewater is a useful resource (usable water as well as nutrients for agricultural use). From the view point of the world water council, the balance between existing water resources and cultivable land, water reuse in all sectors, implementing new methods to improve the quality of water resources, developing standards and creating a long-term balance between supply and demand are among the most important quantitative and qualitative indices of water resources sustainable management (Rezaie et al., 2013). Thus, the use of wastewater in agriculture is a strategy towards sustainable management as the use of municipal wastewater for irrigation mitigates the use of fertilizers and enhances soil fertility (Galvis et al., 2018) and it also reduces the pressure on water resources (Rezaee and Sarrafzadeh, 2017). Accordingly, sustainable management of wastewater use (SMWWU) in agriculture and their reuse is required to reduce water consumption and prevent water scarcity crisis. As an arid and semi-arid country where more than 70% of fresh water is used in the agricultural sector, Iran should focus on SMWWU. Although studies have been performed in different countries of the world on the use of wastewater in agriculture, their main focus has been on the treatment method, and less research has been done on the sustainable management of the wastewater, namely in the agricultural sector. Hence, the present study is aimed to have a systematic analysis of the components affecting SMWWU. Focusing on Iran’s agricultural sector, the novelty of this research is the use of systematic analysis in the form of content analysis.

Like any other study, this study was conducted in the form of three types of questions: “ontology,” “epistemology” and “methodology.” In other words, ontology is about what types of things or essences exist in the world and refers to a range of entities and relations that are accepted within a specific field of knowledge and scientific expertise. In scientific investigations, the three paradigms of positivism, interpretivism and critical theory have been dominant and widely applied. Indeed, epistemology is the study of how and what can be known, and methodology is the method of examining and analyzing the way research is performed (Ahmadi et al., 2019; Sadeghi, 2019). From the view of positivism, the objective existence of truth and its tangibility is the only issue that can be recognized. In interpretivism, the truth is socially constructed. For this reason, the social world cannot be investigated in the same way as the natural world, and based on critical theory, the difference between the social world and the natural world is to consider the subjectivity while considering the socio-economic structures (Shafiei Sabet and Sedighi, 2018). From a methodological point of view, positivism emphasizes the unity of the scientific method and its approach is quantitative. In interpretivism, instead of focusing on precise empirical observation, they consider the quantitative measurement of human behavior, the meaning of human behavior or action. In critical theory, social science is a critical process that goes beyond the deceptive appearances of the social world to discover and reveal the real constructs of the material world and the social world, and in this way by increasing awareness about the unequal constructs and relations helps to create changes in relationships and social constructs (Ahmadi et al., 2019).

As it was mentioned, the present study attempted to employ the principles of ontology of the critical theory paradigm, by careful study of the existing documents and use the opinions of subject experts with a systematic analysis to investigate SMWWU. Thus, this study answers the following questions.

	- What is the form and nature of SMWWU reality and what should be known about it? (Ontology).
	- What is the nature of the relationship between the research subject (SMWWU) and reality (epistemology)? And how to know the methods related to SMWWU?
	- How can this issue be examined and what are methods of coping up with the crises and problems in SMWWU? (Methodology).



2 Materials and methods

The research is qualitative in terms of research paradigm, applied in terms of research type and descriptive in terms of research method. In order to identify the dimensions and components of SMWWU, the present study applied systematic analysis with inductive qualitative content analysis (IQCA) method was used. In this method, articles of the factors affecting SMWWU were first analyzed, and then, in order to match the identified factors with the existing conditions, interviews were carried out with the experts of Jihad-e Agriculture and water and sewerage Company of Tehran Province, Iran. Content analysis is a method by which specific features of the message are clearly and exactly identified for scientific inference. In the analysis of the content of the text, four approaches can be referred. First, quantitative text analysis is widely used to count the explicit elements in the text and requires the selection of data using random sampling. However, qualitative content analysis is extended to discover the main hidden meanings in the text and normally purposeful text samples are selected among the texts which are appropriate to answer the research questions. Content analysis can be performed by deductive method and answer questions that are extracted from theories or empirical researches. On the other hand, inductive content analysis investigates topics and themes in their context and extracts good conclusions.

Like any other research, in qualitative content analysis, two concepts of validity and reliability of the research are taken into consideration. Thus, in the 1980s, Guba and Lincoln utilized the concept of trustworthiness to replace the validity and reliability of qualitative research (Akbari, 2018). This concept consists of four criteria: credibility, transferability, dependability and confirm ability. Credibility emphasizes sampling until data saturation is reached, long engagement in the setting, and multidimensionality of data. Validity refers to activities that increase the probability of obtaining valid findings. Dependability is the inspection, documentation of data, methods, and researcher decisions. Confirm ability means parallel examination of the results and reflexivity, and transferability means a detailed description of the environment and participants and the variety of perspectives and experiences of the interviewees (Lotfi et al., 2022). In the present research, the mentioned elements were used to be ensured of the accuracy and quality of the research as follows.

- Credibility: The concepts extracted from the citations and interview questions of the research were examined and verified by a group of experts from Jihad-e Agriculture and the consulting company for water treatment projects.

	- Dependability: In order to rely on the study findings, the content of the interviews was recorded and after the interview, it was transcribed.
	- Transferability: Due to the diversity of perspectives and characteristics of documents and participants, efforts were made to investigate them with the aid of the research team.
	- Confirmability: Various methods such as document review, interview and interview recording were used to verify the results.

The current study used MAXQDA software to analyze the texts of articles and interviews. MAXQDA is a highly reliable and powerful software program that is widely used for qualitative data analysis, including inductive qualitative content analysis (IQCA) like the one utilized in this study. MAXQDA allows researchers to systematically organize, code, and analyze large amounts of qualitative data, such as scientific articles and expert interviews, in a structured and efficient manner. It provides a user-friendly interface that facilitates the process of data management, coding, and interpretation, helping researchers to identify patterns, themes, and relationships within the data. In the study, MAXQDA was instrumental in organizing and coding the collected data from scientific articles and expert interviews, enabling to conduct a systematic analysis of the components affecting sustainable management of wastewater use in agriculture. The use of MAXQDA ensured the rigor and transparency of our analysis by allowing for a structured and comprehensive approach to data interpretation. By utilizing MAXQDA, it is possible to generate a model that clearly outlines the key components influencing sustainable management of wastewater use, providing valuable insights for policymakers and stakeholders.

Generally, after reviewing the papers, the participants were selected based on the purposeful sampling method from among the related experts and professionals, especially the consulting and executive companies of water and sewage and the experts of Jihad-e Agriculture. As in the qualitative part of researches, saturation of information is more important than the number of individuals or articles under study, thus the sample size was continued until theoretical saturation was reached. Indeed, the sampling continued until the researcher realized by asking questions repeatedly that the new data did not reveal any new insights. Data analysis was performed using the qualitative content analysis approach via coding, and finally, the final model was prepared by summarizing the information extracted from the articles and interviews.


2.1 Statistical population and sampling method to identify the components and dimensions of SMWWU

The first statistical population of this study includes articles related to SMWWU, which were selected using a purposive sampling method. Thus, to search for valid international articles from reliable journals in the fields of agriculture, ecosystem and environment, water resources research, water management in agriculture, environmental sciences and sustainable development, keywords water scarcity, water recycling, sustainability, wastewater, etc. were identified through searching in search engines such as Google Scholar and databases including Scopus, ScienceDirect, and ResearchGate in the relevant articles. Also, for using local sources and articles (in Farsi) in the process of content analysis, articles related to the topic were selected and investigated as foreign sources by searching in databases such as Magiran, Noormags, SID and Elmnet.

At first, 172 articles were identified via the related title, and then the articles that had related abstracts and keywords were investigated. Finally, 68 articles entered the content analysis. The review started from the most relevant and most cited articles and continued until theoretical saturation was reached (Table 1).



TABLE 1 Sources of content analysis in the explanation of factors affecting SMWWU.
[image: A table lists journals related to environmental and water management. Columns include journal name, impact factor, publisher, h-index, country, subject area, number of articles, pages, and sources. Journals are primarily from the Netherlands, United States, and Iran, covering topics like agricultural water management, environmental science, and technology. Total listed include sixty-eight articles and eight hundred fifty-five pages.]

The second statistical population included the experts of Jihad-e Agriculture and the consulting and executive companies of water and sewage projects, who were selected using a purposeful and snowball method. Also, during the initial interviews, the information needs of the research were used to properly cover the research themes, diversity and variability in the conditions of the respondents and the introduction of previous people as the basis to select the next sample. So, the sample size was 13 after performing interviews and data analysis and finally reaching theoretical saturation (Table 2).



TABLE 2 People interviewed in the IQCA process.
[image: Table listing interviewee expertise and responsibilities alongside corresponding numbers. Categories include environmental community association members (2), vice president of Jihad-e Agriculture (1), soil and water experts (2), plant breeding expert (1), livestock expert (1), agricultural extension and education experts (2), agronomy experts (2), and water and sewage consulting company executives (2), summing to a total of 13.]




3 Results and discussion

After identifying relevant articles and interviewing experts, the process of data analysis was started Investigations were began based on the research question “What factors and components affect SMWWU “. All the extracted factors were reinvestigated to categorize and classify to separate the main components, factors and variables. Finally, five main components, “Economic,” “Environmental,” “contextual,” “Individual” and “Management and Planning” were extracted, as these factors cover political, social, cultural, religious and individual characteristics and opinions. Table 3 and Figure 1 show the extracted components, and the factors and variables of each, as well as the frequency of different variables in the articles and interviews.



TABLE 3 Components extracted from concepts along with the frequency of different variables in articles and interviews.
[image: A detailed spreadsheet outlines variables affecting sustainable environmental use. It includes columns for component categories, variables, sources, and frequency metrics, such as citations in articles and interviews. The data spans various domains like socioeconomic, technical, and environmental aspects. Rows contain individual variables with corresponding source references. Frequencies of each variable's appearance in different sources are numerically indicated, highlighting the most significant factors related to sustainable practices.]

[image: Diagram illustrating key components of sustainable management of wastewater use (SMWWU). Central green hexagon labeled with the concept, connected to surrounding boxes: Economic (yellow), Management and planning (gray), Contextual (orange) with Political, Social, and Cultural and religious factors, Environmental (light green), Education and extension (pink), and Individual (blue) with characteristics and opinions.]

FIGURE 1
 Content analysis model of factors affecting SMWWU.


The results of the review of the articles indicated that 495 times the relevant concepts were mentioned and emphasized in the papers based on different methods. The highest frequency is related to the reduction of water scarcity and the protection of surface and underground resources and the storage of fresh water, which is a sub-component of the environmental component that is stated in 31 articles. As mentioned in the articles, the survival of part of the wastewater produced by urban accumulations may mitigate the pressure on water resources (Bolinches et al., 2022). Also, the reuse of treated water for irrigation of agricultural products has been developing in recent decades in areas with severe water scarcity (Feder, 2021) and the use of treated wastewater has mitigated water use and enhanced its saving (Galvis et al., 2018). Regarding other concepts related to the environment, important issues have been considered, such as: irrigation with wastewater increases soil salinity (Agrafioti and Diamadopoulos, 2012) and treated wastewater may contain a high concentration of salts including chlorine, sodium, and heavy metals which may influence the physical and chemical characteristics of the soil (Hassena et al., 2021). Also, studies demonstrated that microbiological contamination can be the main challenge for the reuse of treated wastewater in agriculture (Gatta et al., 2015). On the other hand, the possible accumulation of emerging pollutants in the human diet when wastewater is used in agriculture can be the main concern (Wu et al., 2014). Although the presence of these materials in the environment and their potential ecological impacts are generally problematic, their concentration in water sources and other environmental receptors have been little, and many of these pollutants have the potential for short environmental half-lives (Elgallal et al., 2016). In addition, reuse of wastewater enhances soil fertility and increases organic matter and macronutrients such as nitrogen, phosphorus, and potassium; thus, it limits using chemical fertilizers (Galvis et al., 2018), as this has economic benefits, besides improving environmental conditions. Out of 100 categories related to economic issues, 27 articles have emphasized this issue. For example, it has been stated that the presence of macronutrients in wastewater can lead to a decline in the cost of fertilizing agricultural products (Bolinches et al., 2022). In general, by stating that irrigation with recycled wastewater increases the content of macro and micro elements in plants and soil (Cakmakci and Sahin, 2021), researchers have referred to the fact that this type of water increases productivity due to the supply of nutrients for plant growth (Deh-Haghi et al., 2020). In fact, besides increasing available water causes farmers to switch from dry farming activities to irrigated farming (Hristov et al., 2021), wastewater can increase yield as much as or more than the combination of potable water and chemical fertilizers (Murray and Ray, 2010) in which 16 articles have referred to the increase in product yield. It is worth to mention that water scarcity is not the main reason to use sewage in most cases. For example, farmers in Latin America use wastewater because it provides a low-cost source of plant nutrients (Sato et al., 2013). On the other hand, despite the availability of water for the plant and the fertility of the soil by using recycled wastewater, the growth conditions of the plant can be affected positively, but the excess amounts of these mineral materials as well as other salts can have a negative impact on plant growth (Segal et al., 2011). Therefore, the necessity for basic management and planning in the use of wastewater in the agricultural sector is obvious, and in this research, the repetitions of concepts in the management and planning component is 190 times, which ranks first in terms of importance among other components. The most important concept of this topic is related to the management in the selection of the crop and the type of cultivation to irrigate with wastewater, the necessity of this issue has been discussed in 26 articles, and then the necessity of management in the type of irrigation (drip, surface, subsurface) and the design and technology of irrigation systems of farms have also been mentioned in 20 articles. Besides, in 17 articles, environmental and climatic conditions (temperature and humidity, amount of ultraviolet radiation, humidity and rainfall) have been considered by the researchers. In addition to management debates, concepts related to individual characteristics and opinions (individual component) have been emphasized in 34 researches, political, social, cultural and religious factors (contextual component) in 20 studies and extension and education concepts in 15 studies.

Just like the emphasis of the articles on the concepts of management and planning component, in the interviews, the concepts of this issue have been emphasized mostly. Indeed, in the interviews, there were 41 concepts related to this component. Then, the environmental, economic and the individual component have been mentioned and the only difference is in changing the position of the contextual and education component. By repeating the contextual component 20 times, the articles have given much emphasis before the educational component with 15 repetitions, but in the interviews conducted, the emphasis has been placed on extension and educational issues.

Finally, in the analysis of SMWWU, it is necessary to highlights the significance of utilizing treated wastewater in agriculture to address water scarcity issues, enhance soil fertility, and reduce reliance on chemical fertilizers. These benefits not only have environmental implications by conserving water resources and improving soil health but also offer economic advantages by potentially decreasing the costs associated with fertilization.

Furthermore, the discussion emphasizes the importance of proper management and planning in implementing wastewater reuse practices in agriculture. By selecting appropriate crops, irrigation methods, and considering environmental and climatic conditions, the potential risks associated with using treated wastewater can be effectively mitigated. This underscores the critical role of strategic decision-making and efficient resource allocation in ensuring the sustainability of wastewater use in agriculture.

Additionally, the discussion touches upon the individual, contextual, and educational components in relation to wastewater management. Understanding the personal characteristics, social factors, and cultural influences involved in adopting sustainable practices is crucial for successful implementation. Moreover, emphasizing extension and education can play a vital role in raising awareness, fostering behavioral change, and promoting best practices among stakeholders in the agricultural sector.



4 Conclusion

Since the anthropogenic actions and behaviors have caused problems in the field of SMWWU, and the measures taken to solve these problems have not been effective so far, dealing with the current challenges via the critical theory due to its critical view on issues and also examining and comparing the paths that have been employed so far to improve the conditions can make us reflect more on the current issues and the previous paths and achieve more effective solutions. Accordingly, in this paper, based on an approach in the form of critical theory paradigm, this issue was emphasized. As it was mentioned, and based on IQCA findings, the influencing factors on SMWWU were presented in the form of a model (Figure 1). Thus, the complexity of the issues in this field challenges different experts around the world to be able to create behavioral and structural changes among different stakeholders and decision makers. This research was performed using the IQCA method. Indeed, this topic can be examined with opposite quantitative, qualitative or mixed methods from the perspective of different scientific fields. It is worth to mention that the search for articles in this paper was in English and Farsi. To solve this limitation, in the future research, we can search the topic and factors affecting SMWWU from the results of other local researches. Also, besides articles and interviews with key experts, other upstream documents, laws and regulations, existing customs, norms and beliefs of people can be examined in the form of different research methods. However, as the present study is based on various previous researches, its results can be used in providing a comprehensive scientific insight for other researchers. The important point in the mentioned model is more emphasis on extension and educational issues. Hence, it is necessary to emphasize more education about the use of wastewater in agriculture. Because, as the results indicated, the most important step to raise awareness and stabilize the management and use of wastewater in agriculture is proper education. Now, various trainings are given to farmers in the government organizations of Jihad-e Agriculture, in accordance with different factors, such as: cultivation of gardens, family farms, dominant crops (wheat, barley, corn, and canola), etc., as well as skill classes, such as growing mushrooms and using unconventional water. In addition, it is required to prepare education and extension classes about heavy metals from wastewater. In fact, in addition to the quantity and quality of education, effective communication between farmers and change agents should be developed.
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Paris polyphylla var. yunnanensis is one of the famous Chinese herbs, in which two saponins (polyphyllin II and polyphyllin VII) have anticancer effects. The endangerment of Paris polyphylla var. yunnanensis, makes the study of optimizing the extraction of polyphyllin II and polyphyllin VII from the leaves of Paris polyphylla var. yunnanensis more important. The study established and optimized the process of ultrasound-assisted extraction for polyphyllin II and polyphyllin VII using the Box Behnken Design method of response surface methodology. The results showed that the optimum extraction conditions for polyphyllin II and polyphyllin VII are ethanol concentration of 73 and 70%, extraction temperature of 43 and 50°C, and number of extraction 3, respectively. Under the above conditions, the contents of polyphyllin II and polyphyllin VII were measured to be 6.427 and 19.015 mg/g (DW). The results showed that the experimental model fitted well, and the response surface methodology (RSM) was feasible to optimize the extraction process of polyphyllin II and polyphyllin VII from Paris polyphylla var. yunnanensis leaves. This method provides an effective approach for the comprehensive development and utilization of non-medicinal parts of Paris polyphylla var. yunnanensis.
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1 Introduction

The rhizome of Paris polyphylla var. yunnanensis (P. polyphylla var. yunnanensis) is the raw material of traditional Chinese medicine – Paridis Rhizoma. P. polyphylla var. yunnanensis is mainly distributed in the Gaoligong Mountain Area of Tengchong, Southwest Yunnan and Sichuan Province of China, and the north of Myanmar, including evergreen broad-leaved forest, coniferous forest, and broad-leaved mixed forest at an altitude of 600–2,300 m. It usually grows in hillside shade and shrubs (Wu, 2020). Studies have found that the main medicinal components of Paridis Rhizoma are steroidal saponins (Negi et al., 2014; Thapa et al., 2022). Polyphyllin II and polyphyllin VII (Figure 1) are critical steroidal saponins with anti-cancer, anti-tumour, anti-inflammatory, and analgesic effects (Ding et al., 2021; Liu et al., 2021; Yan et al., 2023). Recent studies have shown that polyphyllin II can physiologically induce apoptosis and treat lung cancer as an adjuvant drug (Wang et al., 2019; Yang et al., 2021; Pang et al., 2023). Polyphyllin VII can inhibit tumour cell proliferation, invasion, and migration, induce tumour cell apoptosis, and reverse tumour drug resistance through multiple ways and mechanisms (Chen et al., 2016; Hsieh et al., 2016). With the discovery of the pharmacological effects of P. polyphylla var. yunnanensis, the demand for Paridis Rhizoma as a medicinal material is increasing. The wild P. polyphylla var. yunnanensis was excavated wantonly, so the growth environment was damaged, and P. polyphylla var. yunnanensis was on the verge of extinction (Cunningham et al., 2018; Shicai et al., 2020). Simultaneously, due to exacting growth conditions, long growth cycles, and immature artificial cultivation technology, Paridis Rhizoma supply is insufficient (Song et al., 2015; Wang and Li, 2018; Yue et al., 2021). In recent years, studies have reported that polyphyllins are mainly synthesized in chloroplasts, transported down through stems, and accumulated in roots, which proves that leaves are important organs for the biosynthesis of steroid saponins. Therefore leaves contain medicinal components similar to those in the rhizoma (Qin et al., 2018; Liang et al., 2019; Guo et al., 2021). However, there is nearly no utilization for the leaves of P. polyphylla var. yunnanensis (Guo et al., 2008; Deb et al., 2015).
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FIGURE 1
 Chemical structures of polyphyllin II and polyphyllin VII.


The effective chemical components contained in medicinal plants are very complex. How to maximize the extraction of effective ingredients from medicinal plants is crucial to further research on medicinal ingredients, and improve the quality of medicinal materials and clinical efficacy. Therefore, it is of great significance to find suitable extraction methods and optimize the extraction process for the full utilization of medicinal materials. Compared with traditional extraction methods such as boiling, cold soaking and Soxhlet extraction, ultrasound-assisted extraction (UAE) has shown greater advantages in the extraction of effective components of medicinal plants due to its high efficiency, high speed, low temperature and other characteristics (Luo et al., 2010; Lee et al., 2013; Cheok et al., 2014). The response surface methodology (RSM) is a method integrating mathematics and statistics. It seeks the best result through regression equation analysis, solves multivariable problems, and evaluates the nonlinear relationship between indicators and factors. It is easy to use and has good condition predictability. At present, it is often used in the research of extraction of plant components (Heleno et al., 2016; Aydar, 2018; Kumar et al., 2021). Meng et al. (2015) used the central design-response surface method to optimize the ultrasonic extraction of total saponin from the stems and leaves of P. polyphylla var. yunnanensis; Ju et al. (2015) used the central composite de-sign-response surface method to optimize the reflux extraction of total saponins from P. polyphylla var. yunnanensis, however, there are fewer reports on the extraction of single saponin components from P. polyphylla var. yunnanensis. Therefore, based on the single-factor experiment, the ultrasonic extraction for polyphyllin II and polyphyllin VII from the leaves of P. polyphylla var. yunnanensis was optimized using response surface methodology (RSM) in this study. The extraction efficiency of these two saponins is improved, and using the non-medicinal part of P. polyphylla var. yunnanensis alleviates the resource shortage. Finally, it laid a foundation for the comprehensive utilization of P. polyphylla var. yunnanensis.



2 Results and discussion


2.1 Analysis of high-performance liquid chromatography (HPLC)

According to the HPLC analysis, a linear regression was performed with the concentration as the horizontal coordinate (X, mg/mL) and the peak area as the vertical coordinate (Y), and the equations of the standard curves obtained as follows: y = 2,899x + 25.202 (R2 = 0.9992) for polyphyllin II and y = 3078.7x + 37.704 (R2 = 0.9998) for polyphyllin VII were shown in Figure 2. They showed a good linearity over the range of 0.0625–1 mg/mL.
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FIGURE 2
 Standard curves of polyphyllin II (A) and polyphyllin VII (B).




2.2 Single-factor experiment

Extracting bioactive secondary metabolites from medicinal plants is influenced by factors such as extraction method, solid–liquid ratio, time, temperature, solvent, and others (Cheok et al., 2014; Meng et al., 2015; Rodrigues et al., 2017; He et al., 2022). Therefore, in order to improve the extraction efficiency of medicinal components, this study investigated the main factors affecting polyphyllin II and polyphyllin VII content in the leaves of P. polyphylla var. yunnanensis. The results are shown in Figure 3.
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FIGURE 3
 Effects of solid–liquid ratio (A), extraction time (B), extraction temperature (C), number of extraction (D) and ethanol concentration (E) on the extraction content of polyphyllin II and polyphyllin VII. a, b and c represent significant differences among treatments for polyphyllin II; a’, b’ and c’ represent significant differences among treatments for polyphyllin VII (p < 0.05), n = 3.



2.2.1 Effect of solid–liquid ratio on the content of polyphyllin II and polyphyllin VII

Increasing the solid–liquid ratio allows better solubilization of the target components into the solvent, and the amount of extraction solvent has an important effect on the extraction content of saponins (Meng et al., 2015). Therefore, the influence of the solid–liquid ratio on the content of the two saponins is investigated. The results are shown in Figure 3A. There is no significant difference among the treatments for polyphyllin II and polyphyllin VII. The two saponins are effectively extracted into the solvent, and the solid–liquid ratio of 1:5 (g/mL) with less material consumption is appropriate.



2.2.2 Effect of extraction time on the content of polyphyllin II and polyphyllin VII

The increase in extraction time is conducive to the full extraction of active components, but the cost of time and energy also increases. Excessive ultrasonic time may also lead to the degradation of target components (Sarvin et al., 2018; He et al., 2022). The effect of extraction time on the contents of the two saponins was examined, and the results, shown in Figure 3B, indicated no significant changes in the contents of polyphyllin II and polyphyllin VII. The reason for this phenomenon is that the solvent produces cavitation bubbles under the action of ultrasound, causing the plant cell wall to weaken, thus improving the extraction efficiency of the active compounds and making the two saponins completely extracted from the solvent in a relatively short time (Rodrigues et al., 2017). In summary, considering the energy problem, it is more appropriate when the extraction time is 0.5 h.



2.2.3 Effect of extraction temperature on the content of polyphyllin II and polyphyllin VII

Temperature can not only accelerate the dissolution rate of saponins but also can affect the efficiency of UAE. Therefore, it is necessary to choose the appropriate extraction temperature according to the corresponding target compounds to achieve the highest extraction rate (Sarvin et al., 2018). The influences of temperature on the contents of the two saponins were investigated. The results are shown in Figure 3C. The extraction temperature has a significant impact on the extraction of polyphyllin II and polyphyllin VII. As the temperature increased, the content of polyphyllin II did not change significantly between 20 and 30°C, while the content of polyphyllin VII increased significantly and reached the maximum extracted content. As the temperature continued to increase up to 50°C, the contents of the two saponins gradually decreased, which may be due to the degradation of saponins, resulting in the reduction of the extraction content of the two saponins (Shen et al., 2014). Therefore, the extraction temperature in subsequent response surface experiments was chosen to be 30–50°C.



2.2.4 Effect of the number of extraction on the content of polyphyllin II and polyphyllin VII

The more number of extraction, the more solvents are used and the more energy is consumed (Chen et al., 2012), so it is important to choose the most appropriate number of extraction. The effect of the number of extraction on the content of the two saponins is investigated. The results are shown in Figure 3D. The contents of both polyphyllin II and polyphyllin VII increased significantly with the number of extraction increasing from 1 to 2. However, there was no significant difference in the contents of the two saponins number of extraction 2, 3 and 4. It indicated that the two saponins had been fully extracted through twice extraction. Therefore, the number of extraction in subsequent response surface experiments was chosen to be 1–3.



2.2.5 Effect of ethanol concentration on the content of polyphyllin II and polyphyllin VII

The concentration of the extraction solvent affects the solubility of the solvent to the saponins, which is one of the most important factors affecting the extraction rate of steroidal saponins (Shamprasad et al., 2022). The experiment investigated the influence of different ethanol concentrations on the contents of the two saponins. The results are shown in Figure 3E. Both saponins can hardly be extracted with 20% ethanol. With the increase of ethanol concentration (below 80%), the contents of polyphyllin II and polyphyllin VII increase significantly (p < 0.05). However, there was no significant difference between the contents of both saponins extracted with 60 and 80% ethanol, the content of both saponins increased significantly, probably due to the higher polarity of the extracted solution at higher water content, resulting in the insolubility of low-polarity saponins. After 60% ethanol is increased to 80% ethanol, the content of the two saponins does not decrease significantly, indicating that the ethanol with too high concentration is not suitable for the extraction of the two saponins. To sum up, the content of two saponins is significantly higher in the ethanol concentration range of 40–80% ethanol. Therefore, ethanol concentration was chosen to be 40–80% in subsequent response surface experiments.




2.3 Establishment of RSM

The true value and coding level of the independent variable in the response surface method Box–Behnken design (BBD) method are shown in Table 1. Seventeen sets of experiments were obtained by response surface experimental design with five centroids (0, 0, 0) to estimate the pure error, and the results obtained after the experiments are shown in Table 2.



TABLE 1 Independent variables and their levels for BBD experiments.
[image: Table displaying independent variables for an experiment: Ethanol concentration (%, symbol A) with coded levels -1 (40), 0 (60), 1 (80); Extraction temperature (°C, symbol B) with levels -1 (30), 0 (40), 1 (50); Number of extractions (-, symbol C) with levels -1 (1), 0 (2), 1 (3).]



TABLE 2 Box–Behnken experimental design and results for the content of polyphyllin II and polyphyllin VII.
[image: Table displaying experimental data with varying conditions across 17 runs, examining the effect on the content of Polyphyllin II and Polyphyllin VII. Columns represent ethanol concentration, extraction temperature, and number of extractions, alongside the measured content in mg/g. Significant differences are noted by different lowercase letters, with data expressed as mean ± S.D. (n=3).]



2.4 Model fitting and statistical analysis

The distributions of the predicted and actual contents for both polyphyllin II (Figure 4A) and polyphyllin VII (Figure 4B) are close to the lines, suggesting that the model fits well. The RSM-optimized UAE process is a good process for extracting steroid saponins from medicinal plants, and other researchers have also made similar reports and have been widely applied (Hadidi et al., 2020; Khoang et al., 2022).

[image: Two scatter plots comparing predicted versus actual values. In plot A, data points colored by polyphyllin II content range from 1.85 to 6.36. In plot B, data points colored by polyphyllin VII content range from 11.39 to 18.84. Both plots show a diagonal line indicating accurate prediction alignment.]

FIGURE 4
 Predicted value and actual value of the contents for polyphyllin II (A) and polyphyllin VII (B).


The quadratic multiple regression model between the contents of polyphyllin II and polyphyllin VII and various factors is obtained after multiple regression fitting analyses of the BBD experimental results, as shown in Table 3. The influence of each factor on the response value is directly reflected in each coefficient in the equation. Within the scope of experimental design, the absolute values of the partial regression coefficients of the dependent variables A, B, and C for polyphyllin II and polyphyllin VII are A > C > B respectively, indicating that the most significant factor affecting the content of polyphyllin II and polyphyllin VII is ethanol concentration, followed by number of extraction and extraction temperature. A higher statistical correlation coefficient (R2 > 90%) indicates a good fit between experimental values with those obtained by the models (Kefi et al., 2022). The coefficients of determination (R2) of the quadratic multiple regression models vary between 0.9805 and 0.9726, and values of predicted coefficients of determination vary from 0.9374 to 0.9553 for polyphyllin II and polyphyllin VII, respectively (Table 3). The lack of fit shows a close agreement that exists between the experimental results and the theoretical values predicted by the quadratic multiple regression model (Carasek and Pawliszyn, 2006; Chávez-Moreno et al., 2018; Zhang et al., 2020).



TABLE 3 Second-order polynomial equation for the relationship between the response variable and the test variable.
[image: Table with response variables and model equations. For Polyphyllin II content (Y₁): Equation is \(Y₁ = 5.4840 + 1.6088A + 0.2313B + 0.6625C - 0.3550AB - 0.1175AC + 0.0325BC - 1.0620A² - 0.0520B² - 0.1245C²\). R² is 0.9805, R² adjusted is 0.9554. For Polyphyllin VII content (Y₂): Equation is \(Y₂ = 16.8520 + 1.7600A + 0.4025B + 1.7500C - 0.5600AB + 0.1300AC + 0.0750BC - 1.2460A² + 0.3590B² - 0.6210C²\). R² is 0.9748, R² adjusted is 0.9423. A, B, and C are independent variables.]

The analysis of variance (ANOVA) for each of the factors concerning polyphyllin II and polyphyllin VII contents was obtained by the analysis of the Design Expert 12.0 software. The p-value representing the significance of the coefficient is important for understanding the interaction patterns between variables, and a value below 0.05 (0.01 or 0.0001) indicates that the test parameter is significant (highly significant or extremely significant) at a significance level of 5% (1% or 0.01%) (Zhong et al., 2016). It can be concluded from Table 4 that the polyphyllin II model is extremely significant (F = 39.0700, p < 0.0001), and the lack of fit in the model is not significant (F = 4.11, p = 0.1027 > 0.0500), indicating that the regression equation does not demonstrate lack of fit, i.e., there are no significant influence factors other factors except those factors considered in this experiment, and the regression model can fit the true response value (Zhang et al., 2022). It can be observed that the linear term of ethanol concentration (p < 0.0001) had a higher effect on the polyphyllin II content than that of the number of extraction (p = 0.0004). The two-level interaction between ethanol concentration and extraction temperature had a significant effect on the polyphyllin II content. The quadratic term of ethanol concentration (p = 0.0001) had a highly significant effect on the polyphyllin II content.



TABLE 4 Analysis of variance for the fitted quadratic polynomial model of extraction of polyphyllin II.
[image: Analysis of variance table displaying sources of variation, sum of squares, degrees of freedom, mean squares, F-values, and p-values. Ethanol concentration and extraction number show extremely significant effects, while other factors like extraction temperature are less significant. Significance levels are indicated by asterisks.]

In Table 5, the F-value of the polyphyllin VII model is extremely significant (F = 30.04, p < 0.0001), and the lack of Fit (F = 2.33, p = 0.2160) was insignificant, indicating that the experimental model has a high fit with the measured results. It can be observed that the linear term of ethanol concentration (p < 0.0001) and number of extraction (p < 0.0001) had a higher effect on the polyphyllin VII content than that of extraction temperature (p = 0.0473). The two-level interaction had no significant effect on the polyphyllin VII content. The quadratic term of ethanol concentration (p = 0.0010) and number of extraction (p = 0.0311) had a significant effect on the polyphyllin VII content.



TABLE 5 Analysis of variance for the fitted quadratic polynomial model of extraction of polyphyllin VII.
[image: ANOVA table displaying the analysis of variance for different factors. It includes sources, sum of squares, degrees of freedom (df), mean square, F-value, and p-value. Significant effects are noted: A-Ethanol concentration and C-Number of extraction have highly significant effects (p < 0.01). A² is significant (p < 0.05). The total sum is 62.3000. Residual, lack of fit, and other interactions show varying levels of significance.]



2.5 Response surface interaction analysis of polyphyllin II and polyphyllin VII

Three-dimensional (3D) response surface plots and two-dimensional (2D) isopleth plots are useful tools to visually represent the behavior of each variable at different experimental levels, as well as the type of interaction between two variables to determine the optimal conditions for each factor when the response values are at their maximum. These plots are commonly used in experimental design and analysis (Lee et al., 2013; He et al., 2022). The Figures 5A, 6A show that there are convex surfaces with steep slopes and the isopleths have an elliptical shape. This indicates that there are very high response values present and that the interaction between ethanol concentration and extraction temperature has a significant impact on the extraction content of two saponins. The contour lines of the ethanol concentration axis are dense, which indicates that the ethanol concentration has a significant effect on the content of two saponins. As the concentration of ethanol increases from 40 to 80%, the extraction of two saponins initially increases to the highest level and then decreases. This could be because steroidal saponins are usually present in a complex mixture with a higher polarity than ethanol. Therefore, if the ethanol concentration is too high or too low, it can reduce solubility, leading to a decrease in the extraction of the two saponins (Sahu et al., 2008). The sparse isopleths of the extraction temperature axis indicate that the effect of ethanol concentration on two saponins is greater than the extraction temperature. Figures 5B, 6B show steeper surfaces and large slopes, which indicate an interaction between ethanol concentration and the number of extraction. The isopleths are dense along the axes, indicating that the content of two saponins is significantly affected by the ethanol concentration and number of extraction. As shown in Figures 5C, 6C 3D surfaces have small slopes and the 2D isopleth plots are sparse, so the interaction between the two factors does not have a significant effect on the content of the two saponins. However, axial isopleths of the number of extraction are dense, so the number of extraction has a greater effect on the content of the two saponins than the extraction temperature. Simultaneously the extraction temperature axial isopleths are dense in Figure 6C, indicating that the extraction temperature has a significant effect on the content of polyphyllin VII. The solubility of polyphyllin VII increased with increasing extraction temperature due to cell wall disruption, solvent penetration into the plant matrix, and higher mass transfer rates. The analysis of the response surface plot above was consistent with the findings of the ANOVA results.

[image: Three panels (A, B, C) depict 3D surface plots and contour plots showing the content of polyphyllin II in mg/g.   A: Varying ethanol concentration and extraction temperature with extraction number set to 2.  B: Varying ethanol concentration and extraction number with extraction temperature set to forty degrees Celsius.  C: Varying extraction temperature and extraction number with ethanol concentration set to sixty percent.  Color scales represent content levels from 1.85 to 6.36 mg/g.]

FIGURE 5
 3D response surface curve plots and 2D isopleth plots of the influence of the interaction between ethanol concentration and extraction temperature (A), ethanol concentration and number of extraction (B), and extraction temperature and number of extraction (C) on the content of polyphyllin II.


[image: Three sets of 3D surface plots and contour plots (A, B, C) depict factors affecting polyphyllin VII content. Each visualizes relationships between ethanol concentration, extraction temperature, and number of extractions. Color scales indicate content levels, with red for higher content and green for lower. Adjusted factors are specified for each set.]

FIGURE 6
 3D response surface curve plots and 2D isopleth plots of the influence of the interaction between ethanol concentration and extraction temperature (A), ethanol concentration and number of extraction (B), extraction temperature and number of extraction (C) on the content of polyphyllin VII.




2.6 Verification of the models

Predictive model analysis showed that the optimal extraction processes for polyphyllin II and polyphyllin VII were ethanol concentrations of 72.9659 and 70.663%, extraction temperatures of 43.218 and 50.000°C, and number of extraction 3, respectively. The theoretical predicted values of extraction were 6.548 and 19.172 mg/g (DW), respectively. Considering the practical feasibility, the extraction processes of polyphyllin II and polyphyllin VII were adjusted to ethanol concentrations of 73 and 70%, extraction temperatures of 43 and 50°C, and the number of extraction 3, respectively. Under the adjusted process conditions, after five parallel experiments, the content of polyphyllin II was 6.427 mg/g (DW, RSD of 1.40%), with a deviation of 1.84%; and the content of polyphyllin VII was 19.015 mg/g (DW, RSD of 1.97%), with a deviation of 0.82%.

Currently, due to the scarcity and high demand for Paridis Rhizoma, many scholars have optimized the extraction of effective medicinal components from the rhizomes of P. polyphylla var. yunnanensis to alleviate the situation. Tian et al. (2024) extracted polyphyllins from Paris polyphylla var. chinensis rhizomes by using ultrasonic-assisted extraction technology, and the final optimized process was a liquid–solid ratio of 41.72 mL/g, extraction temperature of 55.97°C, extraction time of 30.21 min, and the total polyphyllins extraction yield was 52.56 mg/g. Liu et al. (2022) also used ultrasonic-assisted extraction technology to extract the polyphyllins from Paris polyphylla Smith var. chinensis rhizomes. However, there has been no study on the extraction process optimization of P. polyphylla var. yunnanensis leaves by using ultrasound-assisted extraction technology. Therefore this study was carried out to optimize the extraction process of saponins from non-medicinal parts, leaves of P. polyphylla var. yunnanensis. The utilization of P. polyphylla var. yunnanensis was improved.




3 Materials and methods


3.1 Materials and chemicals

Seedings of P. polyphylla var. yunnanensis (7 to 8 years old) were purchased from Yunnan Kunming Jiange Herbal Cultivation Co., Ltd., The fresh leaves of the P. polyphylla var. yunnanensis seedings were dried to constant weight at 50°C in the thermostatic blast drying oven (DHG-9145A, Shanghai Yiheng Technology Co., Ltd., Shanghai, China) and were crushed with a grinder. The leaf powder used in this study was passed through a 60-mesh sieve.

Polyphyllin II and polyphyllin VII standards with 98% purity were purchased from Shanghai NatureStandard Bio-Technology Co., Ltd., (Shanghai, China). Chromato-graphic acetonitrile (Beijing Bailingwei Technology Co., Ltd., Beijing, China) was used for HPLC analysis. Ultrapure water was made by a water purifier (PP010XXM1, ELGA, United Kingdom). All solvents prepared for HPLC were filtered through a syringe filter (0.22 μm pore size) before use. Ethanol was of analytical grade and purchased from Guangdong Guanghua Technology Co., Ltd., (Guangdong, China).



3.2 Ultrasound-assisted extraction of polyphyllin II and polyphyllin VII

Polyphyllin II and polyphyllin VII were extracted from the leaf of P. polyphylla var. yunnanensis by UAE, which was performed by using ethanol as the extraction solvent at the given ethanol concentration, solid–liquid ratio, extraction time, extraction temperature and number of extraction. That is to say, a 0.2 g sample powder was extracted by 2 mL of 75% ethanol at 30°C in an ultrasonic bath at 53 kHz (SK5210HP, Shanghai Kudos Ultrasonic Instrument Co., Ltd., Shanghai, China) for 0.5 h, and the process was repeated three times. Subsequently, the extracted solutions were combined and filtered through a syringe filter (0.22 μm pore size) for HPLC analysis. When a single-factor experiment was carried out, other factors were set as above condition. The single-factor experiments were carried out on five factors: solid–liquid ratio (1:5, 1:10, 1:15, 1:20 g/mL), extraction time (0.5, 1, 1.5, 2 h), extraction temperature (20, 30, 40, 50°C), number of extraction (1, 2, 3, 4) and ethanol concentration (20, 40, 60, 80%). Each treatment consisted of three repetitions. The single-factor experiment scheme for the extraction of polyphyllin II and polyphyllin VII is shown in Figure 7.

[image: Flowchart depicting the extraction process of *Paris polyphylla var. yunnanensis*. Key factors include number of extractions, extraction time, temperature, ethanol concentration, and solid-liquid ratio. The plant is dried at 50°C, pulverized, and 0.2 grams of powder is used. Ethanol is added with a specific solid-liquid ratio and concentration, followed by ultrasonic extraction. The process concludes with membrane filtration using a 0.22-micrometer pore size to obtain sample solutions.]

FIGURE 7
 Experimental scheme for extraction of polyphyllin II and polyphyllin VII.




3.3 Response surface methodology (RSM)

BBD is one of the most commonly used design methods in RSM, which can evaluate multiple independent variables and even their interactions (Tirado-Kulieva et al., 2021). Through the regression model obtained, the extracted content of two saponins can be predicted when the factors within the design range are in different combinations at different levels. Based on the single-factor experiment, three important factors, namely, ethanol concentration (A), extraction temperature (B) and number of extraction (C), had a significant influence on the extraction content of two saponins. These three factors with three levels were used for the RSM-BBD experiment design.

A second-order polynomial model was developed to determine the regression coefficients and the significance of the model and the dependent variable (p < 0.05) was tested by ANOVA after the content of the two saponins was determined according to the experimental design. Then, 2D isopleth plots and 3D response surface curve plots were drawn to analyze the effect of the interaction of the factors on the response values. Finally, the optimal ultrasonic extraction process parameters were determined and validated using the response surface prediction model.



3.4 Quantification of polyphyllin II and polyphyllin VII by HPLC

An Agilent high-performance liquid chromatography system (Agilent Technologies, Santa Clara, CA, United States), consisting of a manual injector, a quarternary pump, a DAD UV detector and an EC-C18 column (250 mm × 4.6 mm; 4 μm) was used for the determination of polyphyllin II and polyphyllin VII. The mobile phase consisted of A (water) and B (acetonitrile) using the gradient elution method (Table 6) at a flow rate of 1 mL/min. The column temperature was maintained at 30°C, the detection wavelength was set to 203 nm, and the injection volume was 10 μL. A series of standard solutions of five concentrations, 0.0625 mg/mL, 0.125 mg/mL, 0.25 mg/mL, 0.5 mg/mL and 1.0 mg/mL, were prepared by diluting the mixed standard solution with chromatographic methanol (Beijing Bailingwei Technology Co., Ltd., Beijing, China) for the determination of the standard curves.



TABLE 6 HPLC mobile phase procedure.
[image: A table showing the percentages of water and acetonitrile over time. At 0.0 and 13.0 minutes, water is 57% and acetonitrile is 43%. At 14.0 and 25.0 minutes, water decreases to 45% and acetonitrile increases to 55%.]



3.5 Statistical analysis

The data obtained in the experiments were counted using Excel software (2013, Microsoft Office) and then subjected to T-test and one-way ANOVA using IBM SPSS Statistics 25.0 (Statistical Product Service Solutions, United States). The statistical significance level was set at p < 0.05. Design Expert 12.0 software (Stat Ease, Inc., Minneapolis, MN, United States) was used for experimental design, ANOVA, modelling and prediction optimization.




4 Conclusion

On the basis of a single-factor experiment, three extraction factors (ethanol concentration, extraction temperature, and number of extraction) were optimized for the extraction process of polyphyllin II and polyphyllin VII from P. polyphylla var. yunnanensis leaves using the BBD method of the RSM in this study. The optimal extraction process for polyphyllin II and polyphyllin VII are ethanol concentration of 73 and 70%, extraction temperature of 43 and 50°C, and number of extraction 3, respectively. Under the above conditions, the contents of polyphyllin II and polyphyllin VII were measured to be 6.427 and 19.015 mg/g (DW). The predicted values by response surface methodology were basically consistent with the actual results, and the model fit was good. Therefore, the RSM can be applied to optimize the extraction process of polyphyllin II and polyphyllin VII from P. polyphylla var. yunnanensis leaves. This method provides an effective approach for the comprehensive development and utilization of non-medicinal parts of P. polyphylla var. yunnanensis.
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Outer papery peel of onion bulb is an inevitable bio-waste generated in the course of postharvest handling and processing. Onion peels are rich source of nutraceutically important polyphenolic compounds having many therapeutic potentials. In this study, we characterized onion peel extract (OPE) of eight differentially pigmented short-day onion varieties through ultra-high-performance liquid chromatography coupled with high-resolution single stage Orbitrap spectrometry and evaluated the antioxidant potential. A total of 49 phenolic compounds were identified in this study which include 33 anthocyanin, 8 flavanol, 4 flavones, and 1 each of pyranoanthocyanin, chalcone, phenolic acid, and ellagitannins. Anthocyanin was the most abundant polyphenolic compound followed by flavanol in all the varieties. Among anthocyanin, 10 cyanidin, 10 delphinidin, 4 peonidin, 4 petunidin, 3 pelargonidin, and 2 malvidin were identified. Cyanidin-3-(6-malonylglucoside), delphinidin, and delphinidin-3-galactoside were the predominant pigment in dark red varieties (BDR and BRJ), and its abundance suggests a key role in the differential pigmentation pattern of onion peel. Total phenol content (TPC) in peels ranged from 1738.21 to 1757.76 mg GAE/100 g DW in dark red onion, 1306.58 to 1646.73 mg GAE/100 g DW in red onion, and 78.77 to 85.5 mg GAE/100 g DW in white onion varieties. The mean total anthocyanin content was maximum (28.23 mg/100 g DW) in dark red varieties (BDR) and minimum (0.11 mg/100 g DW) in white variety (BSW). Total antioxidant activity ranged from 4.71 to 79.80 μmol/g DW, 22.71 to 286.7 μmol/g DW, and 8.72 to 156.89 μmol/g DW estimated through FRAP, ABTS, and DPPH methods, respectively. In all three methods, it was maximum in dark red var. BDR and minimum in white var. BSU.
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1 Introduction

Onions are among the earliest domesticated vegetables in human history and possess several health benefits due to their unique bioactive compounds (Elattar et al., 2024). However, the inconvenience of peeling and cutting fresh onions has led to a growing demand for ready-to-use onion products, such as dehydrated onions and minimally processed options such as peeled or pre-cut onions (Gorrepati et al., 2014; Ahamad et al., 2024). Processing onions into various value-added products generates large amounts of bio-waste, primarily in the form of outer skins, peels, and basal and apical trimmings (Trigueros et al., 2024). Disposal of this waste is a major challenge for the industries as it has characteristic odor due to the presence of sulfur containing compounds (Chadorshabi et al., 2022). However, this waste can advantageously be used as a potential source for extraction of high-value secondary metabolites, development of functional/nutraceutical food, energy, and biogas production (Kumar et al., 2022; Stoica et al., 2022). Sagar et al. (2022) outline the methods for transforming onion waste into valuable biomolecules using a biorefinery approach to enhance the circular bioeconomy.

Onion skin extracts offer natural alternatives for preventing and treating diseases related to oxidative stress, microbial infections, or cancer (Bozinou et al., 2023). Onion peel extract (OPE) is reported to have antimicrobial (Sagar and Pareek, 2020a; Joković et al., 2024), antibacterial (Moosazad et al., 2019), antidiabetic (Jung et al., 2011; Vu et al., 2020), anti-obesity (Moon et al., 2013), anti-thrombotic (Lee et al., 2013), and anti-cancerous (Galavi et al., 2021) properties. OPE also decreases the level of total cholesterol, low-density lipoprotein, and atherogenic index (Kim et al., 2012). Onion peel extract is a promising component of future nutraceuticals and value-added products (Kim et al., 2013). Red onion skin can be used for producing value-added products as they are rich in bioactive compounds especially phenolics and flavonoids (Chadorshabi et al., 2022). Nutraceutical properties of onion peel have been augmented for the development of many value-added products such as wheat pasta (Michalak-Majewska et al., 2020), bread (Piechowiak et al., 2020), pizza (Sagar and Pareek, 2020b), and various meat products.

Onion peel contains wide array of polyphenolic compounds such as flavanols, anthocyanins, and tannins (Sharma et al., 2016; Suh et al., 1999). Ly et al. (2005) reported nine phenolic compounds in dry outer scales of onion (Allium cepa L.). The presence of ferulic, gallic, and protocatechuic acids, quercetin, and kaempferol was reported in extracts of red onion peel (Singh et al., 2009). Lee and Mitchell (2011) reported primary flavonoids in outer paper, first, and second layers of onion as quercetin 3,4-O-diglucoside, quercetin 3-O-glucoside, quercetin 4’-O-glucoside, isorhamnetin 4’-O-glucoside, and quercetin aglycone. Sagar et al. (2020) described the flavonoids, total phenols, and antioxidant properties of onion skin of 15 Indian cultivars. Anthocyanins are versatile natural pigment, widely described for nutraceutical properties associated with it. Anthocyanin-associated colors are mainly due to cationic flavylium ions (red), quinoidal bases (violet), and its colorless adducts (Frond et al., 2019). Onions with fascinating pigmentation patterns from dark red, yellow to white colors are globally produced. The abundance of phenolic compounds in the outer scales of onions is described to be associated not only with colors but also with many biochemical traits (Metrani et al., 2020). In general, the levels of flavanol are higher in yellow onions than red onions (Soininen et al., 2014). Sweet onion contains 2- to 3-fold higher isorhamnetin 4’-glucoside than red onion cultivars (Olsson et al., 2010). It has been reported that the antioxidant and anticancer properties of methanolic extracts from different parts (flesh and peel) of onion were significantly different in white, yellow, and red onion (Jeong et al., 2009). Sagar et al. (2021) studied the physicochemical and thermal characteristics of onion skin from 15 Indian cultivars for possible food applications and reported that the skin of cv. “NHRDF Red” was best source of protein, fiber, and minerals, suggesting its suitability for developing a food product. Although ample amount of literature reports the pharmacological and nutraceutical potential of onion skin, most of the study is limited to profiling of few known compounds. Moreover, scanty information is available regarding short-day cultivars of onion which is of higher preference under subtropical Indian conditions. Mass spectrometry-based detections are highly sensitive and selective for identification. Therefore, we did high-resolution UHPLC-Orbitrap-Mass Spectrometry-based characterization of phenolic compounds and established putative relation with differential pigmentation in OPE of eight distinctly pigmented short-day onion cultivars ranging from dark red to white.



2 Materials and methods


2.1 Plant material

A field experiment was conducted during the winter season at the Indian Council of Agricultural Research–Directorate of Onion and Garlic Research (ICAR–DOGR) farm in Pune, Maharashtra, India. The site, located at 18.32° N and 73.51° E, is 645 m above sea level and has a tropical dry humid climate with an average annual precipitation of 820 mm. The soil at the site is clay loam, with low available nitrogen and medium soil organic carbon. The field experiment, designed as a completely randomized block design, included eight onion cultivars: Bhima Dark Red (BDR), Bhima Raj (BRJ), Bhima Super (BSR), Bhima Red (BRD), Bhima Shakti (BSK), Bhima Kiran (BKN), Bhima Shweta (BSW), and Bhima Shubra (BSU), each replicated three times (Table 1). Onion seeds were sown in the nursery in the second week of October. Organic manure was applied in the field at 5 t ha−1 before transplanting. On the day of transplanting, the pre-emergence herbicide oxyfluorfen was applied, followed by irrigation for weed control. Before transplanting, 100% of the required phosphorus, potassium, and sulfur and 20% of nitrogen were applied as basal fertilizers (10:26:26, muriate of potash, and bentonite sulfur). Forty-five-day-old seedlings were transplanted in the third week of December at 15 cm spacing between rows and 10 cm between plants, maintaining a plant density of 66 plants m2 in 16.8 m2 plots. The remaining 80% of nitrogen was applied through urea in 11 equal splits at 6-day intervals from 0 to 60 days after transplanting. Irrigation was provided via drip system, weeds were manually removed 45 days after transplanting, and other intercultural and plant protection practices followed ICAR-DOGR’s guidelines. Onion bulbs were harvested in the second week of April, once 50% of the plants had top fall. After a 3-day field curing, bulbs were separated from the foliage, leaving a 2.5 cm neck. Leaves were removed and cured in farm shade for 2 weeks. The outer two papery layers of onion were removed from bulb, dried in shade, and powdered using kitchen blender. One part was used for LC–MS characterization at National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, and the remaining sample were used for biochemical analysis.



TABLE 1 Details of onion varieties taken for the study.
[image: Table showing seven varieties of onions with corresponding images and color categories. Bhima Dark Red (BDR) is dark red, Bhima Raj (BRJ) is red, Bhima Super (BSR) is red, Bhima Red (BRD) is red, Bhima Shakti (BSK) is red, Bhima Kiran (BKN) is light red, and Bhima Shweta (BSW) is white. Each variety's image displays several whole onions with one cut in half, showcasing the interior.]



2.2 Characterization of phenolic compounds


2.2.1 Sample preparation

Dried onion peel powder (2 g) was preliminary soaked in 10 mL of water for 30 min followed by extraction with 10 mL of acidified methanol by continuous vortexing. Followed by extraction, the vial was centrifuged at 10,000 rpm for 10 min; the supernatant was taken, diluted appropriately, and injected to UHPLC-Orbitrap MS for qualitative identification of anthocyanin and other major phenolic compounds.



2.2.2 LC–MS [UHPLC-Orbitrap MS] conditions

An Ultimate 3000-series Ultrahigh-Performance Liquid Chromatograph (UHPLC) hyphenated to a Q Exactive mass spectrometer (MS) (Thermo Fisher Scientific, Bremen, Germany) was used with an Ascentis Express C18 (100 × 2.1 mm, 2.7 μm) column (Supelco). The mobile phase comprised of (A): methanol: water (10:90) and (B): methanol: water (90:10) with 0.2% formic acid in both phases. The gradient program was 0–1 min/95% A, 1–5 min/95–55%A, 5–10 min/55–2% A, 10–14 min/2% A, 14–15 min/2–95% A, and 15–20 min/95% A, at 0.4 mL/min flow rate. A heated-electrospray ionization (H-ESI) source was used. The H-ESI parameters in positive polarity were as follows: sheath gas flow rate, 45; auxiliary gas flow rate, 8; sweep gas flow rate, 1; spray voltage, 3.50 kV; S-lens RF level, 50.0; capillary temperature, 320°C; S-lens RF level, 50.0; heater temperature, 300°C. The MS analysis was performed in full scan (70,000 full width at half maxima at m/z 200), followed by data-dependent MS/MS (ddMS2) at 17500 resolution (m/z 200) with stepped collision energy, operated at 18, 35, and 70 V maintaining the automatic gain control (AGC) target at 1e6.



2.2.3 Data processing

The LC–MS data files (n = 3, biological replications) were processed by the Trace finder software (version 3.3, Thermo Fisher Scientific). The automated data processing involved compound identifications by comparison with a database of anthocyanin, phenolic compounds, and their derivatives. This database comprised more than 235 compounds with compound specific information (molecular formula, adduct, monoisotopic molecular mass, and fragment mass) from various web-based resources (e.g., ChemSpider) and published research papers.




2.3 Determination of total anthocyanin content (TAC)

Total monomeric anthocyanin was determined based on the principle of pH-dependent structural changes from colored oxonium ion to colorless hemiketal forms (Lee et al., 2005) with some modifications suggested by Krithika et al. (2020). Each extract (200 μL) was diluted separately with 800 μL of 0.025 M potassium chloride buffer (pH 1.0) and 0.4 M sodium acetate buffer (pH 4.5) and incubated for 15 min in dark. Absorbance for each dilution was taken using SpectroStar Nano plate (BMG Labtech) at 520 and 700 nm against blank made of distilled water. Total anthocyanin content was expressed as cyanidin-3-glucoside equivalent per 100 gram of dry matter and calculated using the following equation:

[image: Formula for anthocyanin content in milligrams per 100 grams dry weight: \([A_{520\text{nm}} - A_{700\text{nm}}]_{pHLO} - [A_{520\text{nm}} - A_{700\text{nm}}]_{pH4.5}\) multiplied by molecular weight (MW), dilution factor (DF), and total extract volume (TEV), divided by \(\varepsilon \times W\).]

where MW is the molecular weight of cynidin-3-glucoside (449.2 g mol−1), DF is the dilution factor (e.g., DF is 5 for an extract of 200 μL diluted to a final volume of 1,000 μL), ɛ is the molar extinction coefficient of cynidin-3-glucoside (26,900 LM−1 cm−1), T.E.V is the total extract volume, and W is the weight of sample (Lee et al., 2008).



2.4 Determination of total phenol content (TPC)

The total phenol content was estimated using Folin–Ciocalteu reagent followed by Singleton and Rossi (1965) with some modifications suggested by Ateeq et al. (2023). Sample extraction (100 μL) was added to 200 μL of 10% (v/v) F-C reagent and thoroughly vortexed. To the vortexed mixture, 800 μL of 700 mM Na2CO3 was added and incubated for 2 h at room temperature. The reaction mixture (200 μL) was transferred in 96-well microplate, and the absorbance was taken at 765 nm against 95% methanol as blank on a SpectroStar Nano plate (BMG Labtech). Gallic acid was used as standard (100–1,000 μg/mL) for the preparation of calibration curve (R2 = 0.9996), and the total phenol content was expressed as gallic acid equivalent (GAE) per 100 gram of onion peel.



2.5 Determination of total antioxidant activity (TAA)

Free radical scavenging assay was followed to assay the antioxidant activity of onion peel extract. The same extract was used for FRAP, DPPH, and ABTS assay.


2.5.1 Ferric reducing antioxidant power (FRAP) assay

Direct measurement of total antioxidant activity was estimated through FRAP assay which measures blue to purple color formed due to reduction of ferric tripyridyltriazine (FeIII-TPTZ) complex (Benzie and Strain, 1999) with some modifications suggested by Sagar et al. (2020). FRAP working reagent was prepared by mixing 300 mM acetate buffer, pH 3.6, 10 mm TPTZ in 40 mM HCl and 20 mM FeCl3.6H20 in a ratio of 10:1:1 (v/v/v). It was prepared freshly as per requirement. Reaction mixtures containing 3.0 mL of working FRAP reagent and 100 μL test sample or standard solution of Trolox were mixed, vortexed, and incubated for 6 min at room temperature. Absorbance at 593 nm was taken using SpectroStar Nano plate (BMG Labtech) against a reagent black and corrected by methanol as blank. Synthetic analog of Tocopherol (Trolox) was taken as standard, and the total antioxidant activity was expressed as μmol/g dry weight.



2.5.2 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay

Antioxidant activity was determined using DPPH radical as per the methodology described by Stoica et al. (2022) with some modifications. DPPH solution (0.1 mM) was made with ethanol, and 3.9 mL of it was added to 100 μL of onion peel extract or standard and incubated for 30 min at room temperature before reading the absorbance at 593 nm against ethanol as a blank on a SpectroStar Nano plate (BMG Labtech). DPPH solution without antioxidant was kept as control. Trolox equivalent antioxidant capacity (TEAC) was calculated using Trolox at 100–1000 μM as reference standard and presented as μmol Trolox equivalent (TE)/g sample. Each sample/standard was read in triplicate.



2.5.3 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay

ABTS radical scavenging assay was estimated as per the method described by Re et al. (1999) and Sagar et al. (2020). ABTS radical was prepared by mixing 7 mM aqueous solution of ABTS diammonium salt with 2.45 mM potassium persulfate (K2S2O8) in a ratio of 1:1 (v/v) and incubated for 16 h in dark at room temperature. Fresh working solution was prepared by appropriate dilution of ABTS radical solution with ethanol till an absorbance of 0.700 ± 0.002 unit at 765 nm. A reaction mixture of 100 μL sample or standards and 3,900 μL of ABTS working solution were incubated for 6 min at room temperature before recording the spectrophotometric absorbance at 765 nm against 75% ethanol as blank. Trolox was used as reference standard at 100–1200 μM, and Trolox equivalent antioxidant capacity (TEAC) was expressed as μmol TE/g DW.




2.6 Statistical analysis

The results of TAC, TPC, FRAP, DPPH, and ABTS assay were presented as mean ± standard deviation of three replicates (biological replications). Significance of difference between samples was evaluated through analysis of variance (ANOVA) using SAS base 9.2 (Tukey’s test, p < 0.05). Multivariate analysis, that is, principal component analysis (PCA), cluster analysis, and correlation coefficients were carried out with JMP 9.0.0. Biplot between PCA 1 and PCA 2 was drawn using MS excel. Chemical structure was drawn on ChemDraw 19.1.




3 Results and discussion


3.1 LC–MS [UHPLC-Orbitrap MS] analysis

OPE of eight onion varieties was taken for high-resolution UHPLC-Orbitrap Mass Spectrometric analysis, and compound identification was performed against an in-house updated high-resolution accurate mass (HRAM) database, which was originally received from Thermo Fisher Scientific. The automated analyte identification and confirmation were based on the HRAM measurement of the precursor and its characteristic productions, each within ±5 ppm of mass error and retention time tolerance of ±0.1 min. Matching of the isotopic pattern (by >90%) was considered as an additional filter. For example, quercetin glucoside was identified based on the precursor ion (m/z = 465.1030) with a mass error of 0.5 ppm (as observed in MS spectra) (Figure 1). It was above the threshold intensity of 5,000. In addition, the detection of characteristic fragment (m/z = 303.0501) supported its identification (as observed in MS/MS spectra). We identified 49 polyphenolic compounds including 33 anthocyanin (Table 2, compounds 14–46), 8 flavanol (6–13), 4 flavones (1–4), and 1 each of pyranoanthocyanin (47), chalcone (5), phenolic acid (48), and ellagitannins (49). Recoveries of reference standard quercetin and pelargonidin-3-O-glucoside were used for relative quantification of identified compounds. Since reference standards of all compounds were not available, pelargonidin-3-O-glucoside was used for quantitation of all anthocyanin, and quercetin was used for quantitation of all flavonoids.

[image: Mass spectrometry analysis consists of four panels. Panel (a) shows the TIC with various peaks. Panel (b) displays the XIC of quercetin glucoside at retention time 8.9 minutes. Panel (c) presents the MS spectrum, highlighting a parent ion with an m/z of 465.1030. Panel (d) shows the MS/MS spectrum, identifying a fragment ion with an m/z of 303.0501. The data provides a detailed chemical breakdown and identification.]

FIGURE 1
 Identification of quercetin glucoside by UHPLC-Orbitrap MS; (a): total ion chromatogram (TIC) of the sample, (b): extracted ion chromatogram (XIC) of quercetin glucoside at RT-8.9 min, (c): MS spectra of quercetin glucoside and (d): MS/MS spectra of quercetin glucoside.




TABLE 2 LC–MS [UHPLC-Orbitrap MS] characterization profile of putative phenolic compounds identified in OPE of eight differentially pigmented onion varieties.
[image: A detailed table showing the relative abundance of various compounds classified into flavones, chalcones, anthocyanins, pyranoanthocyanin, phenolic acid, and tannins across different color-coded varieties. Each row specifies the compound name, chemical formula, mass-to-charge ratio, fragment, and measured area, indicated by shades ranging from light to dark, representing the lowest to highest values. Additional columns show data for different color categories, such as dark red, red, light red, and white, with corresponding numeric measurements.]


3.1.1 Flavanol

Flavanols are versatile class of flavonoid and characterized to have significant role in auxin transport and nodule development in legumes and provide protective interface against abiotic and biotic stress (Petrussa et al., 2013). Nutritionally, it has potential health benefits against cardiovascular disease, mutagenesis owing to its antioxidant properties (D’Andrea, 2015). As presented in Table 2, eight peaks were putatively identified as flavanol which include two isorhamnetin glycosides (Table 2, compounds 7–8), two quercetin glycosides (12–13), one quercetin dimer (11), one myricetin (10), one kaempferol glycosides (9), and one dihydromyricetin or ampeloptin (6). Quercetin glucoside appeared on two retention time (tR) 8.9 and 8.96 with baseline separation having same precursor ion m/z = 465.1 and fragment ion m/z = 303.05 which indicates that both compounds may exist in isomeric forms (Figure 1). Anthology suggests that quercetin exists in four mono-glycoside forms with a substitution at positions 4′ (quercetin 4′-glucoside) and 3′ (quercetin 3′-glucoside) in aromatic ring B and positions 3 (quercetin 3-glucoside) and 7 (quercetin 7-glucoside) of γ-benzopyrone ring (Kwak et al., 2017; Lee et al., 2012). Another flavonoid isorhamnetin glucoside also eluted at different (tR) 10.70 and 10.77 min. Having same elemental composition C22H22O12 with a molecular (M+) ion m/z = 479.12 and a characteristic fragment ion peak m/z = 317.07 suggest the isomeric presence of compound. Literature reports two forms of isorhamnetin glucoside having glucosyl substitution at 4’ Carbon (isorhamnetic 4′-glucoside) and at 3 position in flavanol skeleton (isorhamnetin 3-glucoside) (Bonaccorsi et al., 2005; Park and Lee, 1996). Kaempferol rhamnose malic acid was identified based on peak for molecular ion m/z = 549.12 and characteristic fragment ion m/z = 313.07. Myricetin and dihydromyricetin (ampleoptin) were also identified in onion peel extract. Taxifolin and their conjugated glycosides are reported in onion bulbs (Fossen et al., 1998), while there is limited information about the presence of dihydromyricetin in onion. Yang et al. (2020) reported dihydromyricetin 3-O-rhamnoside along with dihydroquercetin 3-O-rhamnoside in onion. Kaempferol was the only acylated flavanol identified. Quercetin, isorhamnetic, myricetin, kaempferol, and its conjugated glycosides are most abundant flavonols in onion (Rodríguez Galdón et al., 2008; Slimestad et al., 2007).



3.1.2 Anthocyanin

Similar to flavanol, 34 anthocyanin compounds (Table 2, compounds 14–46) were putatively identified based on molecular and product ion peak with less than 5 ppm mass error. For instance, delphinidin-3, 5-diglucoside (25) was eluted at 6.98 min and identified based on the characteristic fragment m/z = 303.05 (Figure 2). Cyanidin-3-(6-malonylglucoside) with elemental composition C24H23O14 (tR = 8.49 min) was identified based on observed parent molecular ion peak m/z = 535.11, and its identity was further confirmed by characteristic product ion m/z = 287.1 for cyanidin aglycone. In similar way, 34 anthocyanins which include 10 cyanidin (14–23), 10 delphinidin (24–33), 4 peonidin (39–42), 4 petunidin (43–46), 3 pelargonidin (36–38), and 2 malvidin (34–35) were identified in this study. Among all anthocyanins, six were acylated glycosides, five were aglycone, and three were doubly substituted (Table 2). We observed maximum of 30–33 anthocyanin glycosides in dark red and red onion varieties and minimum of 9–11 anthocyanin in white onion (BSU and BSW). Downes et al. (2009) reported ten anthocyanin glycosides of cyanidin and peonidin but did not found petunidin, pelargonidin, and malvidin. However, there is limited information regarding the presence of malvidin in onion. Petersson et al. (2008) reported malvidin-3-glucoside in red onion bulb (Petersson et al., 2008) and later by Yang et al. (2020). Vitisin A-delphinidin glucoside (47) is a pyranoanthocyanin conjugated with delphinidin glucoside which was also identified in onion peel extract. The presence of anthocyanin oligomers or pyranoanthocyanin has been reported in grapes, rose, and red onion (Fossen and Andersen, 2003; Santos-Buelga et al., 2014; Rentzsch et al., 2007).

[image: Chromatogram showing (a) TIC, (b) XIC of Delphinidin-3, 5-Diglucoside at 6.98 minutes, (c) MS spectra with fragment m/z 303.0502, and (d) MS/MS spectra highlighting parent m/z 627.1564.]

FIGURE 2
 Identification of delphinidin-3, 5-diglucosideby UHPLC-Orbitrap MS analysis; (a): total ion chromatogram (TIC) of the sample, (b): extracted ion chromatogram (XIC) of delphinidin-3, 5-diglucoside at RT-6.98 min, (c): MS spectra of delphinidin-3, 5-diglucoside and (d): MS/MS spectra of delphinidin-3, 5-diglucoside.




3.1.3 Flavones and other compounds

Flavones (3-deoxyflavanol) are a class of flavonoids widely present in fruits and vegetables. Five flavones (1–4), apigenin, luteolin, chrysoeriol, and isovitexin were putatively identified from onion peel extract with low abundance. Low abundance of flavones in onion has been hypothesized (Kothari et al., 2020), but very few reports are available. Yang et al. (2020) reported apigenin 6-C-glucoside and luteolin 7-O-glucuronid in onion bulb. A degradation product of anthocyanin, protocatechuic acid hexoside, was also identified based on precursor ion peak m/z = 317.09 and characteristic fragment ion peak m/z = 137.02 (Ly et al., 2005). 2′,3,4,4′-tetrahydroxychalcone was also observed having a molecular ion (M+) m/z = 273.08 and characteristic fragment ion peak m/z = 137.02. Chalcones are abundant in bright yellow color onion (Schwinn et al., 2016). A hydrolysable tannin, trigalloyl levoglucosan, with a precursor m/z = 619.1 and fragment ion 153.02 was also identified in this study. It is levoglucosan acylated with gallic acid (3, 4, 5-Trihydroxybenzoic acid).




3.2 Relative distribution of polyphenolic compounds

The relative distribution of major classes of putatively identified polyphenolic compounds in differentially pigmented onion varieties is presented in Figure 3. Based on the absolute area response of the identified peak, it was noted that out of 49 identified phenolic compounds, maximum of 43 were detected in var. BSR which include nine flavanol, four flavones, and thirty anthocyanin glycosides. In white onion varieties BSU, only nine compounds were identified including five flavanol and eleven anthocyanin.

[image: Bar graph showing the relative abundance of flavonoids in different varieties of grapes: BDR, BRJ (Dark Red), BSK, BRD, BSR (Red), BKN (Light Red), BSW, and BSU (White). Bars represent anthocyanin, flavanols, flavones, and other compounds, with anthocyanin being the most abundant. BSW and BSU have minimal flavonoid content.]

FIGURE 3
 Relative distribution of classes of phenolic compounds in OPE of eight differentially pigmented onion varieties. Length of stacked bar indicates the sum of mean measured area (n = 3) of total compounds identified comprising of flavanol, anthocyanin, flavones, and other compounds.


Flavanols are hydrophilic compound with β-glycosidic linkages which makes it a most bioavailable antioxidant in human diet (Price and Rhodes, 1997). Onion bulbs are reported to have higher flavanol content than anthocyanin (Metrani et al., 2020; Khandagale and Gawande, 2019) and are reportedly only 10% of the total polyphenols (Rodrigues et al., 2017) in bulb. In onion peel extract (OPE) of differentially pigmented onion varieties, anthocyanin was the most abundant polyphenolic compounds than flavanol. Albishi et al. (2013) also reported higher flavonoid content in red onion skin than bulb. Inner scales of onion bulbs have lower flavonoid level than outer scales (Patil and Pike, 1995). Among flavanol, quercetin glucoside was most abundant flavanol observed across pigmented onion varieties followed by isorhamnetin, kaempferol, and myricetin. Glucose is the exclusive moieties in quercetin attached to 3, 7, or 4′ position of aglycone. Quercetin 4′-glucoside and quercetin 3,4′-glucosides are widely reported to be the most abundant flavanol in onion bulbs (Pucciarini et al., 2019). The abundance of all the flavanol was very low in white onion cultivars in comparison with others. Price and Rhodes (1997) also reported quercetin and its glycosides as most predominant flavanol, and it was higher in red onion varieties Red baron, Rose, and Rijnsburger than white variety albino (Price and Rhodes, 1997).

Flavones are 2-phenyl-1-benzopyran-4-one, having additional double bond between C2 and C3 of flavonoid skeleton and no hydroxyl group at C3 position. It is reported to have lower antioxidant potential and poor absorption in human intestine but has significant role in biotic defense against insect and microbes (Hostetler et al., 2017). In OPE of differentially pigmented varieties, flavone was most abundant in light red varieties (BSR), less abundant in red varieties, and absent in white onions. A chalcone, butein, was observed only in var. BRD and protocatechuic acid in var. BSK. Trigalloyl levoglucosan was observed in all red varieties but found absent in white varieties (Table 2).

Among anthocyanin, delphinidin was the most predominant class of anthocyanin followed by cyanidin > petunidin > peonidin > malvidin > pelargonidin in most of the cultivars (Figure 4). As presented in Table 3, relative abundance of cyanidin and its glycosides observed maximum in dark red var. BDR and BRJ and gradually lower level in red var. BSR, BRD, BSK, and light red var. BKN, while it was minimum in white var. BSU. Contrary of cyanidin, percentage abundance of delphinidin and its glycoside was observed minimum in dark red verities, slightly higher in red and light red var. and maximum in white onions. Relative abundance of cyanidin and delphinidin might be the key factor associated with differential pigmentation of onion bulb. Cyanidin glycosides were observed with most acylation followed by pelargonidin. Acylation is predominant in dark red and red onion cultivars than light red and white. Cyanidin-3-(6-malonylglucoside), delphinidin, and delphinidin-3-galactoside were the predominant pigment in dark red var. BDR and BRJ, and its abundance suggests a key role in differential pigmentation pattern. Downes et al. (2009) also reported predominant presence of cyanidin-3-(6-malonylglucoside) in dark red onion. Similar reports were made by Fossen et al. (1996) and Donner et al. (1997). Most abundant aglycone across all the varieties was delphinidin followed by petunidin and aglycone form of both are more abundant in colored cultivars than white. In cyanidin glycoside, aglycone form is more abundant in white than colored varieties. As presented in Figure 5, third carbon position in benzopyrylium ring was the most preferred substitution followed by fifth carbon position. Glucose (glc), galactose (gal), rhamnose (rham), sophoroside (soph), xylose (xyl), arabinose (ara), and rutinoside (rut) were the observed glycoside substitution, and among these, glucoside and galactoside were the most preferred.

[image: A stacked bar chart showing the relative abundance of various compounds across different varieties, labeled as BDR, BRJ, BSK, BRD, BSR, BKN, BSW, and BSU. Each bar represents a variety and is subdivided into several components: Pyranoanthocyanidin, Petunidin, Peonidin, Pelargonidin, Malvidin, Delphinidin, and Cyanidin. The varieties are categorized by color labels: Dark Red, Red, Light Red, and White. The y-axis represents the relative abundance in tens of millions.]

FIGURE 4
 Relative distribution of classes of anthocyanin compounds in OPE of eight differentially pigmented onion varieties. Length of stacked bar indicates the sum of mean measured area (n = 3) of total compounds identified comprising of cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin.




TABLE 3 Percentage of class of anthocyanin present in OPE of different varieties.
[image: Table showing the percentages of different classes of anthocyanin compounds across various colors. Dark Red: cyanidin (30-20%), delphinidin (60-68%), and petunidin (8-11%). Red: cyanidin (19-17%), delphinidin (70-73%), and petunidin (11-10%). Light Red: cyanidin (16%), delphinidin (72%), petunidin (12%). White: cyanidin (7-6%), delphinidin (88-87%), petunidin (5-6%). Others vary between zero to two percent.]

[image: Chemical structure diagram of a flavonoid compound with substituents R1 to R6 and R0 to R5, followed by a table listing different substituent configurations. The table columns are labeled R1 to R6, with rows numbered 14 to 46, showing various chemical groups like H, OH, OCH3, and different glycosides (glc, gal, soph, etc.) at the specified positions.]

FIGURE 5
 Class of putative anthocyanin compounds identified from the OPE of eight differentially pigmented onion varieties and its substitution pattern. Cyanidin (14–22); delphinidin (24–33); malvidin (34–35
); pelargonidin (36–38); peonidin (39–42); petunidin (43–46). Compound numbering is as per Table 2. Abbreviation are as follows: mal-malonyl, sal-succinyl, fer-feruloyl, pyr-pyruvic acid, ac-acetyl, glc-glucose, gal-galactose, ara-arabinose, rham-rhamnose, soph-sophorose, xyl-xylose, rut-rutinose.




3.3 Principal component analysis (PCA) and cluster analysis

PCA was performed on the relative abundance data obtained for the putatively assigned anthocyanin compounds (14–47). Principal component score of eight varieties varying on PC1 (66.72%) and PC2 (14.75%) is presented in Figure 6. Eight distinctly pigmented varieties under investigation grouped in four groups. White varieties BSU and BSW grouped together having negative correlation with both PC1 and PC2. Varieties BSK, BRD, and BKN grouped together and showed very low variation with PC1 and considerable variation on PC2. Red var. BSR and dark red var. BRJ showed very positive correlation with PC1 and PC2. Dark red variety BRD showed very high positive correlation with PC1 and negative correlation with PC2. Examination of component pattern distribution (Supplementary Figure 1) on principle component axis revealed that substituted and acylated anthocyanin are strongly correlated with PC1 and show very less variation, whereas it is well distributed along PC2. Cyanidin (14–23) exhibited exclusive distribution on negative axis of PC2 and positive axis of PC1, whereas pelargonidin (36–38) on positive axis of PC1 and PC2. Among the five most abundant anthocyanin cyanidine-3-(6-malonylglucoside), delphinidin-3galactoside, delphinidin, petunidin 3-glucoside, and petunidin, all are positively correlated with PC2 except cyanidine-3-(6-malonylglucoside). This suggests that preceding four anthocyanin compounds might be the key determinant of red color var. BSR, BRJ, and BRD while cyanidine-3-(6-malonylglucoside) in dark red var. BDR.

[image: Scatter plot titled "Component Pattern" with Component 1 on the x-axis (66.72%) and Component 2 on the y-axis (14.75%). Data points are spread across quadrants, indicating relationships between the components.]

FIGURE 6
 Principal component analysis (PCA) of anthocyanin compounds identified from OPE of differentially pigmented onion varieties, viz., Dark red var. BDR and BRJ; Red var. BSR, BRD, and BSK; Light red var. BKN; white var. BSU and BSW.


Varieties were well classified by cluster analysis supporting the color distribution pattern (Figure 7). At partial R square value 0.1, we observed two cluster, one with light red var. BKN and red var. BSK while other having red var. BSR and BRD and dark red var. BRJ. Both clades separate with dark red var. BDR at R square value of 2.8. White onion var. BSU and BSW formed a separated clade at R square value >0.4. PCA and cluster analysis revealed that red var. BSK and light red var. BKN have similar anthocyanin distribution pattern. Similarly, dark red var. BRJ exhibited similar distribution of anthocyanin that of red onion var. BSR and BRD.

[image: Dendrogram displaying cluster analysis of different onion varieties, labeled BSW, BSU, BKN, BSK, BRJ, BRD, BSR, and BDR. X-axis represents semi-partial R-squared values, ranging from 0.0 to 0.5. Onions differ in color and shape, creating distinct groupings.]

FIGURE 7
 Cluster analysis of anthocyanin compounds identified from OPE of differentially pigmented onion varieties, viz., Dark red var. BDR and BRJ; Red var. BSR, BRD and BSK; Light red var. BKN; white var. BSU and BSW.




3.4 Total anthocyanin and total polyphenol contents

Anthocyanin is a subclass of flavonoid compounds imparting diverse color to onion bulbs and possess various nutraceutical properties. As presented in Table 4, the mean total anthocyanin content in dark red varieties was maximum followed by red, light red, and white varieties. Within the dark red varieties, the anthocyanin content in BDR (28.23 mg/100 g DW) was significantly high than BRJ (5.29 mg/100 g DW) with p ≤ 0.0001 level. Anthocyanin content was observed at par in red varieties BRD, BSK, and BSR and in light red var. BKN. In white varieties, very low level of anthocyanin was observed, and both were not significantly different. Anthocyanin content in dark red var. BDR is ~3–5 times higher than red onion var. and ~ 7–8 times higher than light red varieties. Zhang et al. (2016) reported range of 0.75 ± 0.40 mg/100 g FW anthocyanin content in white, 9.64 ± 0.30 mg/100 g FW in yellow, and 29.99 ± 1.19 mg/100 g FW in red onion. Albishi et al. (2013) also reported more anthocyanin content in onion peel extract (OPE) than bulb.

Total phenol content (TPC) in OPE ranged from 1738.21 to 1757.76 mg GAE/100 g DW in dark red onion, 1306.58 to 1646.73 mg GAE/100 g DW in red onion, and 78.77 to 85.5 mg GAE/100 g DW in white varieties. As presented in Table 4, TPC in all category of OPE extract was significantly different among each other with probability level at p ≤ 0.0001 level. Among red onion, TPC was maximum in var. BSR followed by var. BSK and BRD. Although OPE of light red onion BKN exhibited lower anthocyanin content than red onion, TPC was 1441.13 mg GAE/100 g DW which is higher than red onion var. BRD. High level of polyphenols in onion skin with similar range was reported in literature (Sagar and Pareek, 2020b; Lee et al., 2015; Sagar et al., 2020).



TABLE 4 Total phenol content (TPC), total anthocyanin content (TAC), and total antioxidant activity (TAA) in OPE of eight differentially pigmented onion varieties.
[image: Table comparing varieties of onions by color, listing total anthocyanin and phenol content, and antioxidant activity measured in FRAP, ABTS, and DPPH. Bhima Dark Red has the highest anthocyanin and phenol content, while Bhima Shubra shows the lowest. Antioxidant activity varies, with Bhima Dark Red leading in ABTS and DPPH, and Bhima Raj in FRAP. Statistical values p, CV, and significance group letters from Tukey's test are noted. Data are mean ± SD from six replications.]



3.5 Total antioxidant activity

Antioxidant activity has been used widely to characterize various food matrix for the ability to scavenge or neutralize free radicals (Pyrzynska and Pękal, 2013). However, there is no single versatile method to determine antioxidant activity accurately. Here, we followed three methods, viz., FRAP, DPPH, and ABTS, to estimate total antioxidant activity (TAA). The results were compared with water-soluble tocopherol analog Trolox and expressed as micromole per gram. In all the three methods (FRAP, ABTS, and DPPH), the mean antioxidant activity was more in dark red varieties followed by light red and white varieties. The antioxidant activity ranged from 4.71 to 79.80 μmol/g DW, 22.71 to 286.7 μmol/g DW, and 8.72 to 156.89 μmol/g DW in FRAP, ABTS, and DPPH methods, respectively. Total antioxidant activity was maximum in dark red variety BDR and minimum in white variety BSU. Among dark red varieties, BDR showed significantly high antioxidant activity than BRJ in all the three methods (Table 4). In red varieties, the antioxidant activity by FRAP method showed the significantly high value in BSR and significantly low in BRD. BSR and BSK showed similar level of antioxidant activity. All the three red varieties (BSR, BSK, and BRD) were significantly different for ABTS and DPPH activities with maximum in BSR (DPPH method) and BSK (ABTS method). In both the methods (ABTS and DPPH), minimum was found in BRD variety. Within the white varieties, no significant difference was observed in BSW and BSU for FRAP and DPPH. However, significantly high antioxidant value was observed in BSW (42 μmol/g DW) compared to BSU (22.71 μmol/g DW) in ABTS method owing to the better level of polyphenol content.

In all the methods, dark red varieties exhibited highest antioxidant activity, and white varieties had lowest which is evident from the corresponding anthocyanin and polyphenol content. To investigate the profound factor contributing to antioxidant activity of onion peel extract, we performed a correlation analysis among total phenols, total anthocyanin, and three antioxidant methods. As presented in Figure 8, the coefficient of correlation (R2) of antioxidant activity was more in all three methods for TPC than anthocyanin content (TAC). The coefficient of correlation (R2) for TAA and TPC ranged from 0.8105 to 0.9637, while it was considerably low with TAC (0.3271–0.6211). Lee et al. (2015) also observed poor correlation of total antioxidant capacity and anthocyanin content in white, yellow, and red onion. Zhang et al. (2016) reported high correlation between total polyphenols and antioxidant activity, but contrary to our finding, they also reported highly positive correlation between total anthocyanin content and total antioxidant content. In bulb of two red onion varieties, a strong correlation between total flavanol content and antioxidant activity was also observed but reported a poor correlation between total phenol and anthocyanin (Metrani et al., 2020).

[image: Two scatter plots labeled "a" and "b" compare total antioxidant activity (TE micromole per gram DW) on the x-axis with total anthocyanin content (TAC) and total phenol count (TPC) on the y-axes, respectively. Plot "a" shows data for FRAP, ABTS, and DPPH with corresponding trend lines and equations. Plot "b" presents a similar comparison with TPC, showing linear relationships with equations and R-squared values for each method.]

FIGURE 8
 Correlation of total antioxidant activity (TAC) of OPE of eight differentially pigmented onion varieties with (a) total anthocyanin content (TAC) and (b) total phenol content (TPC). Total antioxidant activity was determined through three methods, viz., FRAP (●); ABTS (▲); DPPH (♦).





4 Conclusion

Onion peels of red and dark red onions are very rich source of polyphenolic compounds having nutraceutical potential. Present study putatively identified 49 polyphenolic compounds from outer papery peel of eight distinctly pigmented onion varieties. Identified phenolic compounds comprised of 33 anthocyanin, 13 flavanol, 4 flavones, and 1 each of pyranoanthocyanin, chalcone, phenolic acid, and tannin. Anthocyanin was the most abundant compound followed by flavanol. Quercetin and its glycosides were the predominant flavanol, whereas cyanidin, delphinidin, and its glycosides were predominant anthocyanin. Acylated anthocyanin was predominant in dark red and red onion varieties. Cyanidin-3-(6-malonylglucoside), delphinidin, and delphinidin-3-galactoside were the predominant pigment in dark red var. BDR and BRJ, and its abundance suggests a key role in differential pigmentation pattern. Antioxidant activity showed strong association with total polyphenol content, whereas very low association was observed with total anthocyanin content. PCA and cluster analysis grouped red var. BSK with light red var. BKN and dark red var. BRJ with red var. BSR and BRD. This research suggests that utilizing onion peel extracts could enhance the development of functional foods and dietary supplements, promoting sustainability and health benefits. Furthermore, there is a need for quantitative profiling of nutraceutically important polyphenolics from peels of widely processed onion varieties and to develop efficient extraction process as well as associated product for harnessing wealth potential of this emerging bio-waste.
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SUPPLEMENTARY FIGURE 1 | Distribution of putatively identified anthocyanin compounds along the axis of principal component 1 (PC1) and principal component 2 (PC2) is shown in Supplementary File. Substituted and acylated anthocyanins are strongly correlated with PC1 and show very less variation, whereas it is well distributed along PC2.
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Agricultural plant jiaosu (APJ) represents a novel and highly valuable ecological input with multiple applications. It is utilized as foliar fertilizer, drip irrigation fertilizer, bio-pesticide, and decomposing fungicide, facilitating the enrichment of local beneficial microorganisms and the efficient treatment of local organic waste. The technology offers the advantages of straightforward operation, minimal equipment requirements, and low cost. Its potential applications and research areas are extensive, with benefits including enhanced plant growth, improved crop quality, soil ecology enhancement, reduced environmental pollution, and prevention of crop pests and diseases. Despite its potential, there is a shortage of review papers on APJ in agricultural practices. This essay aims to provide an overview of the concept, categorization, preparation methods, and primary ingredients of APJ. It also discusses the impacts of APJ on agro-ecological systems and reviews current research, focusing on aspects such as raw material selection, microbial fermentation, the fermentation process, and detection technologies. However, further investigation and study are necessary due to the complex composition of APJ.
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1 Introduction

To ensure the continuous and efficient use of agricultural resources and ecological security, achieve sustainable agricultural development, and address the interplay between agricultural economic growth, resource utilization, and ecological environmental protection, agricultural practices must embrace sustainable pathways (Reganold and Wachter, 2016). Annual increases in chemical fertilizer consumption, driven by the goal of maximizing yields, have undeniably boosted productivity per unit area. However, the widespread use of chemical fertilizers has exacerbated rural ecological degradation and contributed to mounting solid waste (Pahalvi et al., 2021; Ding et al., 2021). The advancement of APJ technology is crucial for solving the contradiction between environmental pollution and sustainable agricultural development brought about by the increase of physical and chemical inputs (Barcelos et al., 2020).

According to Shimamoto Gakuya of the Institute of Microbiology in Nagoya, Japan, jiaosu was created and named after the presence of jiaosu bacteria. Jiaosu bacteria constitute a complex microbial agent consisting of yeasts, acetic acid bacteria, and lactobacilli, commonly found in the natural environment (Shimazono, 1996; Jikang et al., 2022). The Chinese Ministry of Industry and Information Technology announced two jiaosu standards on December 28, 2018: QB/T5323-2018, titled “Plant Jiaosu”, and QB/T5324-2018 titled “Jiaosu Product Classification Guidelines” (Ministry of Industry and Information Technology of the People's Republic of China, 2018a,b). These standards indicate that APJ production primarily utilizes plants as raw materials, employing microbial fermentation to develop products with specific bioactive components for planting, farming, and soil enhancement, optionally incorporating auxiliary materials.

Despite the growing interest, there remains a paucity of published studies on the fermentation mechanism, process optimization, and ecological applications of APJ. Research in this area is still in its nascent stages.

This study aims to provide a comprehensive review of the current classification, processes, composition, agricultural applications, and challenges associated with APJ. Additionally, the study analyzes recent research progress on raw material selection, microbial fermentation, fermentation processes, and mechanisms. The overarching goal is to clarify the potential of APJ in fostering robust soil-microbe-plant agro-ecosystems and advancing sustainable agricultural practices.

The purpose of this review is also to investigate the potential applications of organic waste for the synthesis of APJ, as well as to evaluate the process's viability and constraints in light of existing technological advancements and potential benefits for the advancement of sustainable agriculture. The paper will specifically address the following three main issues: first, how to use organic waste for APJ preparation; second, how feasible and limited is it to use APJ to treat organic waste given current technological conditions; and third, how using APJ to treat organic waste promotes sustainable agricultural development and the particular environmental benefits that come with it.

The remainder of this paper is organized as follows: Section 2 outlines the methodology in accordance with PRISMA guidelines; Section 3 explores the classification of jiaosu, beginning with an overview of “jiaosu” and then delving into the APJ classification; Section 4 introduces the production process of APJ; Section 5 examines the main components of APJ; Section 6, which is the core focus, reviews the latest research progress on APJ from four key aspects; Section 7 discusses the agricultural impacts of APJ; Section 8 summarizes the current problems and challenges; Section 9 provides insights into future perspectives; Section 10 offers specific recommendations; and finally, Section 11 concludes with a summary of the main findings and conclusions of the study.



2 Methods

We conducted a thorough analysis of the pertinent scientific literature using the Procedure for Systematic Reviews and Meta-Analyses (PRISMA) (Page et al., 2021) (Figure 1). To systematically review APJ and its applications in sustainable agriculture, we conducted a comprehensive search of the literature using multiple databases to ensure a thorough identification of relevant studies. The databases searched include PubMed, Web of Science, and Google Scholar (Falagas et al., 2008). The search period was from 1995 to 2024, focusing particularly on the years 2020–2023, where significant advancements and detailed research were reported, as shown in Figure 2.


[image: Flowchart depicting the selection process of studies for a review. Identification stage shows 2,318 records from databases. Screening stage indicates 586 records screened, with 194 excluded. Retrieval phase displays 392 reports sought, with 72 not retrieved. Eligibility stage shows 320 assessed, with 202 excluded. Finally, 118 studies included in the review.]
FIGURE 1
 PRISMA flow diagram for systematic review.
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FIGURE 2
 The number of searched articles on year.


The search strategy employed a combination of keywords and Medical Subject Headings (MeSH) terms where applicable. The following keywords and their combinations were used: “agricultural plant jiaosu,” “sustainable agriculture,” “fermentation,” “recycling,” “agroecological effect,” “biopesticides,” and “waste enzymes.”


2.1 Inclusion criteria

The inclusion criteria for this study are as follows: research that focuses on the classification, production processes, composition, and agricultural applications of APJ; studies examining fermentation mechanisms, process optimization, and the ecological impacts of APJ; investigations into the use of organic waste for enzyme preparation and its implications for sustainable agriculture; and articles providing insights into the agricultural effects of APJ and the challenges associated with its implementation.



2.2 Exclusion criteria

The exclusion criteria for this study include studies that are not directly related to APJ or sustainable agricultural practices, review articles that do not provide original data or insights, and publications not available in English.



2.3 Search strategy and filters

The search was conducted using advanced search features within each database (Bramer et al., 2018). Filters were applied to limit the results to peer-reviewed articles, reviews, and conference papers. Time filters were set to include only publications from 1995 to 2024. Additionally, language filters were applied to include only English-language publications to enhance search efficiency.



2.4 Study selection process

1. Identification: Using the defined search strategy, initial retrieval of records was performed. Through keyword combinations, we ensured that as many relevant documents as possible were captured.

2. Screening: Titles and abstracts were screened according to the inclusion criteria to identify potentially relevant studies. Two researchers independently conducted the screening, resolving any discrepancies through discussion.

3. Eligibility: The full texts of potentially relevant studies were reviewed to confirm their eligibility based on the inclusion and exclusion criteria. Each researcher independently assessed the full texts of each article to ensure that all eligible studies were included.

4. Inclusion: The final selection of studies for inclusion in the review was made. For studies with conflicting eligibility, consensus was reached through group discussions.



2.5 Data collection and analysis framework

Key information such as study design, sample size, methods, results, and conclusions were extracted from the included studies. Studies were categorized based on their focus areas, including APJ classification, production processes, composition, and agricultural applications. A comprehensive analysis was performed to synthesize the findings across studies and identify trends and gaps in the research. Both qualitative and quantitative methods were used for data analysis, with results presented in charts and tables (Mitsui et al., 2004). The categorization of articles used in this study is shown in Figure 3.
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FIGURE 3
 The categorization of searched articles.




2.6 Reference checking

To ensure comprehensiveness, the reference lists of included articles were also checked for additional relevant studies. This helped identify potentially overlooked important literature and expanded the scope of the review.




3 Classification

The applicable rules and norms distinguish three categories of APJ: planting, farming, and soil improvement. A detailed explanation of the APJ classification system follows Figure 4. In addition, Jiaosu products span various industries and forms, categorized from multiple perspectives. In terms of application, they fall into agricultural categories (e.g., growth-promoting, pest control, disease resistance, and soil improvement jiaosu), edible categories (e.g., apple, brown rice, shiitake mushroom, and rose jiaosu), environmental protection categories (e.g., deodorizing, air purification, and water purification jiaosu), daily use (e.g., cleaning, skin care, oral care, and washing jiaosu), feeding (e.g., pet and livestock feed jiaosu), and other miscellaneous jiaosu products. Based on raw materials used in fermentation, jiaosu can be classified into plant-based (e.g., pumpkin, fruits), fungal (e.g., tremella, Cordyceps sinensis), animal-derived (e.g., donkey-hide gelatin, fish protein), and mixed (from two or more plant, fungal, or animal sources). Furthermore, jiaosu products are categorized by their physical form into liquid jiaosu (e.g., jiaosu liquid), semi-solid jiaosu (e.g., jiaosu paste), and solid jiaosu (e.g., jiaosu powder). The fermentation processes are categorized into group fermentation (e.g., natural fruit and vegetable fermentation), composite fermentation (e.g., combined fruit and vegetable fermentation), and pure fermentation (e.g., using specific microbes like lactobacillus plantarum or Natto bacteria) (Ministry of Industry and Information Technology of the People's Republic of China, 2018a,b; Dai et al., 2020).


[image: Flowchart illustrating the categorization of Jiaosu. It is divided into three main categories: By Application, By Raw Material, and By Form. By Application includes Agricultural Jiaosu, Edible Jiaosu, Environmental Jiaosu, Daily Chemical Jiaosu, Feeding Jiaosu, and Others. Agricultural Jiaosu is further divided into Plant Jiaosu for planting, aquaculture, and soil improvement. By Raw Material features Mushroom Jiaosu, Plant Jiaosu, Animal Jiaosu, and Mixed Jiaosu. By Form includes Liquid Jiaosu, Semi-solid Jiaosu, and Solid Jiaosu. By Process encompasses Pure Breed Fermentation Jiaosu, Group Fermentation Jiaosu, and Complex Fermentation Jiaosu.]
FIGURE 4
 Classification of jiaosu.



3.1 For the planting industry

Plant jiaosu is primarily used to enhance crop growth by improving resilience (such as resistance to drought, pests, and diseases), promoting root formation, enhancing photosynthetic efficiency, and optimizing nutrient uptake through biotechnological methods (Zhang et al., 2022). Its rich blend of beneficial microbes, potent enzymes, and natural organic matter significantly boosts crop resilience, bolstering both drought resistance and natural defenses against pests and diseases, thereby enhancing overall agricultural sustainability. Moreover, it stimulates deep root growth and efficient nutrient absorption, leading to improved photosynthesis and nutrient-rich crop growth, thereby achieving higher yields and enhanced quality. Plant jiaosu plays a pivotal role in promoting ecological and sustainable agricultural practices by regulating soil microecological balance, and creating a more conducive environment for crop cultivation (Prasad and Raghuwanshi, 2022; Flores-Gallegos and Nava-Reyna, 2019).



3.2 For the farming industry

Plant jiaosu used in aquaculture aims to boost animal immunity, improve intestinal health, increase feed efficiency, and accelerate growth and development (Van Hai, 2015; Anadón et al., 2019; Liang et al., 2022; Khan et al., 2018). This biotechnological solution optimizes the aquaculture environment and promotes animal wellbeing by effectively enhancing the digestive tract environment with a balanced combination of microorganisms and enzyme systems. It maximizes nutrient absorption and utilization, minimizes feed wastage, and maintains a balanced intestinal microbial ecosystem, bolstering the immune defenses of livestock, poultry, and aquatic animals. Consequently, this approach significantly reduces the incidence of animal diseases and decreases reliance on antibiotics, promoting environmentally sustainable aquaculture practices while ensuring food and environmental safety (Chen J. et al., 2020).



3.3 For soil improvement

The primary purposes of jiaosu, a plant for improving soil, are fertility and soil structure. It is dedicated to repairing and maximizing the soil environment and deftly blends rich organic materials and active microbes through the natural fermentation process. Numerous beneficial microorganisms, including cellulolytic and phosphate-solubilizing bacteria, are present in jiaosu (Bayer et al., 2006). These microorganisms not only have the ability to break down complex soil organic matter and release immobilized nutrients (Datta, 2024), including phosphorus, potassium, and other micronutrients, to lessen the need for chemical fertilizers, but they also excel at enhancing the physical proper-ties of the soil (Ch et al., 2017), such as improving aerobics and water-holding capacity, to improve the growing environment for crops. The acidic compounds in jiaosu can raise the pH to the ideal range for crop growth, encourage the development of granular structure, and improve the soil's ability to retain water and fertilizer (Wu et al., 2022). More significantly, by boosting microbial diversity, the soil amendment plant jiaosu creates a stable and effective microbial ecosystem (Prasad and Raghuwanshi, 2022; Ablimit et al., 2022). This solves the issue of soil degradation at its source and provides a strong ecological basis for the growth of crop roots. It also paves the way for the implementation of a sustainable, effective, and ecologically friendly mode of modern agricultural production.

Table 1 presents the detailed labeling of the physicochemical indices for planting, farming, and soil improvement plant jiaosu. In addition to giving producers a foundation for quality control, the explanation of these physicochemical indexes aids users in the rational and scientific selection and application of plant jiaosu products to maximize agricultural productivity and environmental protection.


TABLE 1 Classification and indicators of agricultural plant jiaosu.

[image: A table comparing three types of plant jiaosu: for planting, aquaculture, and soil improvement. For each, indicators like pH, moisture, organic matter, organic acids, bacteria count, and enzyme activity are listed under liquid and solid morphologies. Values specify thresholds for properties such as amino acids, polysaccharides, and trace elements. For planting, pH is less than or equal to 8.0; for aquaculture and soil improvement, pH is less than or equal to 7.5. Moisture and specific nutrient levels vary across the three jiaosu types.]




4 The production process of APJ

A brown and sour fermented product known as jiaosu is produced from agricultural plants. It involves fermenting a mixture of sugar, organic waste, and water in a closed container for over 3 months, maintaining a mass ratio of 1 part sugar to 3 parts organic waste to 10 parts water (Benny et al., 2023). Creating a resource cycle by producing APJ for cultivation (Figure 5). Fresh, organic leftovers such as melon peels, vegetable leaves, and roots are collected, ensuring any moldy or rotten parts are removed before chop-ping them into small fragments. Brown Sugar, which contains more minerals and trace elements than sugar, is preferred for microbial fermentation (Zhang L. et al., 2013).


[image: Flowchart illustrating the recycling process of organic waste. Brown sugar and water are used to manufacture agricultural plant Jiasu, which is then applied to organic cultivation. Organic waste is recycled from domestic garbage, planting residue, and orchard residue back into the process.]
FIGURE 5
 Recycling flowchart of agricultural plant jiaosu.


Next, enough clean tap water is added to cover all the chopped vegetable debris, leaving 70% to 80% of the container space free to allow for fermentation gas. The mixture is gently stirred and then left to ferment in an environment between 25°C and 35°C. Periodically, typically once a week, the container lid is opened to release gas and gently agitate the mixture to promote consistent fermentation.

After fermentation, the jiaosu appears as a brown liquid with a subtle fruity aro-ma and no pronounced odor. APJ is obtained by centrifuging the fermented mixture for 20 min at 6,000 rpm and then filtering out the solid residue. It should be transferred to an airtight container and stored in a cool location.

When applying, spread it evenly over the soil's surface and around plant leaves at a dilution ratio of 1:1,000. This application method strengthens soil structure, promotes plant growth, enhances disease resistance, and aids in pest management.



5 The main composition of APJ

APJ contains a diverse array of bioactive substances that enhance soil structure, promote microorganism activity, boost plant resistance, and provide essential nutrients (Yuliandewi et al., 2018). These mechanisms collectively improve crop yield, enhance crop quality, and contribute to the sustainability of agricultural production.

The main composition includes:

1. Enzymes: Enzymes presented in APJ originate from plants and include protease, cellulase, pectinase, and others. These enzymes are produced by microbes during fermentation, facilitating the rapid transformation and breakdown of organic matter (Tang and Tong, 2011a). This process enhances soil fertility and promotes efficient nutrient ab-sorption by plants (Zhang et al., 2015).

2. Organic acids: Organic acids found in APJ include acetic, citric, and malic acids. These acids contribute to improving soil structure, pH balance, and microbial activity. Additionally, they aid in chelating metal ions and enhancing the effective-ness of trace minerals (Punniamoorthy et al., 2024; Mudaliyar et al., 2012).

3. Amino Acids: As an important nutrient for plant growth, amino acids not only directly supply sources of nitrogen but also increase the efficiency with which other nutrients are absorbed by plants, encourage the growth and development of plants, and strengthen their tolerance to stress (Tong and Liu, 2020).

4. Polysaccharides: Polysaccharides found in APJ comprise oligosaccharides generated through microbial fermentation as well as polysaccharides like plant gum, pectin, hemicellulose, etc. These polysaccharides can strengthen the structure of soil aggregates, increase fertilizer and water retention, and give soil microbes energy, thereby promoting biological activity in the soil (Mohammed et al., 2021).

5. Phenols, flavonoids, polyphenols, and other secondary metabolites: these sub-stances are produced by microbiological metabolism from plant source materials and have potent antiviral, antibacterial, and antioxidant qualities that help strengthen plant defenses against disease and insect pests (Rana et al., 2022; Bouarab-Chibane et al., 2019).

6. Probiotics and biological enzymes: The good microorganisms (like Bacillus, lactic acid bacteria, and others) released during fermentation, along with the enzymes they secrete, help to maintain soil health, improve the structure of the soil microbial community, and encourage nutrient cycling (Zhang et al., 2023).

7. Vitamins, minerals, and trace elements: Vitamins, minerals, and trace elements in APJ are derived from the metabolism of plant raw materials and microbes during fermentation. These nutrients provide plants with comprehensive and balanced nutritional support, contributing to enhanced crop quality (Samtiya et al., 2021).

8. Antioxidant components: Antioxidant components in APJ, such as catalase, γ-aminobutyric acid (GABA), and superoxide dismutase (SOD), possess antioxidative and free radical scavenging properties. These compounds reduce plant stress responses and enhance plant resilience to environmental stress (Zhang et al., 2017; Liew et al., 2018).



6 The research progress of APJ

The fermentation broth, derived from microorganisms metabolizing organic plant waste, contains nutrients, biologically active compounds, and beneficial microbial flora, forming the core component of APJ—an ecological product with diverse applications (Arun and Sivashanmugam, 2015b). Various factors influence its characteristics and composition, including the composition and ratio of organic plant waste, fermentation temperature and duration, oxygen levels, agitation, and microbial inoculation (Singh et al., 2021). The composition of the fermentation substrate directly affects both the fermentation process and the final composition of the APJ (Behl et al., 2023). Key properties of organic plant waste, such as moisture content and particle size, significantly impact fermentation dynamics. Temperature, oxygen levels, and other factors also influence microbial diversity, indirectly affecting the fermentation process (Hossain et al., 2016).


6.1 Raw materials

The selection and proportion of raw materials used in jiaosu fermentation are critical factors that determine the quality and functional characteristics of the final product. Plant jiaosu typically utilizes fruits, vegetables, grains, and various medicinal foods as primary raw ingredients (Han et al., 2018).


6.1.1 Mixed substrates

Gao et al. (2023) utilized various fermentation substrates, including fruit wastes and herbal wastes, to produce the APJ. They observed that jiaosu fermented from composite substrates exhibited significantly higher bacterial diversity compared to those from single substrates. Furthermore, the concentrations of organic acids and secondary metabolites, as well as the composition of key microorganisms, varied depending on the richness of the substrate.

However, not all mixed-source jiaosu are necessarily superior to single-source jiaosu; superiority largely depends on the type of feedstock used. Jiang et al. (2021) produced five naturally fermented jiaosu variants, including single-source and mixed-source jiaosu from watermelon, cantaloupe, and orange. They analyzed their compositions and antioxidant capacities and found significant variations among the jiaosu types. Orange jiaosu exhibited the highest concentrations of total protein (9.46 ± 0.41 mg/ml), total phenol (0.32 ± 0.01 μ g/ml), and alcohol (56.51 ± 0.03 μ g/ml). Watermelon jiaosu showed the highest antioxidant capacity, while the watermelon-cantaloupe blend jiaosu demonstrated unique characteristics. This study highlights that the choice of raw material critically influences the composition and antioxidant capacity of jiaosu.



6.1.2 Functional substrates

Rasit et al. (2019) demonstrated that jiaosu can be prepared from orange and tomato peels with effective disinfectant properties for the treatment of aquaculture sludge and due to the high content of organic acids, the use of orange jiaosu showed higher removal rates compared to tomato jiaosu. The jiaosu prepared from citrus peels can also be used as a plant growth promoter for the treatment of metal-based wastewater and large quantities of organic wastes, heavy metals, and other wastes that have increased due to industrialization (Cherekar, 2020; Hemalatha and Visantini, 2020).

Moreover, Li et al. (2022) investigated the use of Chinese herbs (Gynostemma pentaphyllum and Houttuynia cordata) as raw materials for making jiaosu products, H. cordata contains a variety of polyphenols that are believed to be responsible for antioxidant activity (Huang et al., 2021; Mishra et al., 2021; Ma et al., 2015). More importantly, H. cordata has a preventive and therapeutic effect against novel coronaviruses such as SARS-CoV-2 (Bahadur Gurung et al., 2021). G. pentaphyllum is also a traditional Chinese herb that contains a variety of chemical components, resulting in its antioxidant and anti-inflammatory properties (Ji et al., 2018; Mastinu et al., 2021). Meanwhile, G. pentaphyllum has been shown to have a favorable preventive and prophylactic effect against many viral infections (Okoye et al., 2012). The study results demonstrated that the herbal plant jiaosu is rich in total protein, total sugars, vitamin E, and polyphenols, exhibiting high levels of total protein content and strong antioxidant capacity.

Some jiaosu raw materials include aromatic plants that contain various active substances such as alkaloids, phenols, and polysaccharides (Cai et al., 2020). Jiaosu nutrient solutions prepared from these plants exhibit enhanced antibacterial and anthelmintic effects (Stjernberg, 2000; Eckard et al., 2017). Although fermented raw materials are easily obtainable, careful selection of raw materials remains crucial for jiaosu production. This is due to variations in active ingredients and microbial populations among different materials, which can significantly influence the flavor, texture, nutritional content, and functional properties of the final product.




6.2 Microorganisms

The fermentation of jiaosu products can be classified into natural fermentation, inoculated fermentation, and combined natural and inoculated fermentation based on the fermentation method (Dai et al., 2020). APJ is predominantly fermented through natural fermentation utilizing Indigenous microorganisms such as yeasts, lactic acid bacteria, and Aspergillus oryzae present on the surface of raw materials (Voidarou et al., 2021). However, this method is associated with drawbacks including lengthy preparation times (exceeding 3 months) and susceptibility to contamination by extraneous bacteria, leading to variability in the quality of jiaosu products (Cruz-Casas et al., 2021). Research has shown that fortifying jiaosu fermentation with selected bacterial strains (Liu et al., 2019) can mitigate contamination risks, shorten fermentation times, and enhance product quality to some extent. Bio-enhanced fermentation involves selecting appropriate starter cultures based on the characteristics and intended use of raw materials, artificially inoculating them into the fermentation system before fermentation, and utilizing microbial flora to ferment fruit-based raw materials (Zhang et al., 2024). Depending on the strain used, fermentation can be categorized into pure strain fermentation with a single strain or mixed fermentation with a combination of multiple strains (Dudek et al., 2022).


6.2.1 Inoculated fermentation

Jikang et al. (2022) compared Pleurotus eryngii jiaosu inoculated with Leuconostoc mesenteroides and Lactiplantibacillus planetarium to naturally fermented jiaosu, assessing physicochemical characteristics (pH, acidity, reducing sugars), microbial counts, superoxide dismutase activity, and metabolomics via GC-MS. They found that inoculated strains significantly outperformed naturally fermented jiaosu, showing notable differences in metabolites such as sugars, acids, and alcohol. Sun et al. (2023) investigated naturally fermented and Lactobacillus plantarum-inoculated Akebia trifoliata fruits to enhance antioxidant activity in APJ. Their results indicated that inoculated fermentation resulted in higher acidity, lower pH, and more complete fermentation. Furthermore, flavonoid antioxidants produced through inoculated fermentation were 41.67% higher than those from natural fermentation, and phenol content during mid to late fermentation stages was also elevated compared to natural fermentation. These findings underscored the superior tolerance and stronger antioxidant capacity of inoculated fermentation. Overall, the studies demonstrated that inoculated fermentation of jiaosu surpasses natural fermentation in terms of shorter fermentation periods, higher efficiency, and superior product quality.



6.2.2 Mixed bacteria fermentation

In food jiaosu production, using a single bacterium often leads to poor flavor and functionality. For instance, lactobacilli fermentation alone can result in excessive acidity and a bitter taste, while yeast fermentation alone can yield a denser texture (Pang et al., 2021). Conversely, mixed-strain fermentation enables synergistic complementarity among strains, enhancing the overall quality and functionality of jiaosu products (Fan et al., 2023). Introducing new strains can further augment these benefits. Zou et al. (2022) demonstrated that chestnut rose jiaosu fermented with a mix of Lactobacillus deutschenbachia Bulgarian subspecies and Lactobacillus casei exhibited superior quality compared to combinations involving other strains or single-strain fermentation. This superiority stems from collaborative interactions among different strains, leveraging their physiological advantages through physical and biochemical activities to optimize metabolic pathways.

The diverse range of plant raw materials and microorganisms involved in jiaosu preparation contributes to a complex fermentation mechanism and a challenging process to control (Fang et al., 2021). In current APJ mixed fermentations, lactic acid bacteria, yeast, and acetic acid bacteria are the predominant biofortified strains (Du et al., 2021). The fermentation of jiaosu can be broadly categorized into aerobic and anaerobic phases (Huanhuan et al., 2017). During the aerobic phase, anaerobic yeasts ferment vigorously, proliferating in a high-sugar environment (Maicas, 2020), thereby dominating the fermentation system. Yeasts break down complex sugars into glucose, fructose, ethanol, and other compounds (Broach, 2012). As oxygen levels decrease, acetic acid bacteria convert ethanol produced by yeasts into acetic acid, while lactic acid bacteria ferment glucose or lactose into organic acids such as lactic acid under anaerobic conditions (Stewart, 2017; Sievers et al., 1995). This process lowers the pH, inhibiting the growth of competing microorganisms. Concurrently, yeast populations decline, allowing lactobacilli and acetic acid bacteria to become dominant (Basinskiene et al., 2016) (Figure 6).


[image: Diagram illustrating fermentation processes. Aerobic fermentation involves Saccharomyces converting sugar into glucose, levulose, and ethyl alcohol. Anaerobic fermentation features lactic acid bacteria producing lactic and organic acids, and acetic acid bacteria producing acetic acid.]
FIGURE 6
 Fermentation mechanism diagram of agricultural plant jiaosu.





6.3 Fermentation technology

Whether it is natural fermentation or inoculation fermentation, the fermentation process of jiaosu is very complex. The quality of jiaosu products is not only related to the quality of raw materials, but also affected by the amount of inoculation, the amount of auxiliary materials added, the fermentation temperature, the fermentation time, and the ratio of liquid to liquid, etc.

Xu Y. Q. et al. (2023) developed ginseng jiaosu, the main active ingredient of ginseng is saponin, and rare saponins have specific antitumor effects. The fermentation process of ginseng jiaosu was optimized, and the best optimization method was the ratio of ginseng extract/concentrated apple juice/water as 1:1:10, the fermentation time as 16 d, the initial pH as 6.0, the fermentation temperature as 37°C, the sterilizing The amount was 1.0%, and after fermentation, the scavenging rate of hydroxyl radicals, DPPH radicals and superoxide anion radicals was increased by more than 9%, and new organic acids were produced.

Wang et al. (2019) explored the effect of fruit and vegetable fermented jiaosu on the intestinal flora composition of mice, in which fruit and vegetable jiaosu contained 66 ingredients (fresh fruits, vegetables, mushrooms, algae, and wild plants, among others), which were fermented for at least 300 days at a constant temperature of 37.5°C. The results of this study were summarized as follows. After mice were fed different concentrations of fruit and vegetable jiaosu for 15 days, it was found that the increase in beneficial flora in mice was positively correlated with jiaosu intake, and also altered the microbiota diversity of the mice's intestinal tract.

Zou et al. (2022) used chestnut rose as raw material, fermented with a mixed strain of Lactobacillus deutschenbachia Bulgarian subspecies and Lactobacillus casei, with a volume of chestnut rose juice in a mass ratio of 10:1.5 with sugar, and fermented at a temperature of 32°C for The fermentation was carried out at 32°C for 15 days, producing chestnut rose jiaosu with high SOD enzyme activity and optimal aroma, nitrite content of 94 mg/kg, and vitamin C content of 1,208 mg/100 mL.

As the jiaosu industry rapidly expands, increasing attention is being devoted to optimizing fermentation formulations and process conditions for jiaosu made from various raw materials. However, the majority of these studies focus on edible jiaosu, with fewer investigations into optimizing fermentation conditions for agricultural and vegetable-based jiaosu.



6.4 Technology

The structure and composition of the bacterial community in jiaosu were previously analyzed using the PCR-DGGE technique to investigate microbial metabolism and evolution during fermentation (Piterina and Pembroke, 2013). However, DGGE is limited to analyzing a select number of dominant microbial taxa, leading to potential overestimation of species abundance and underestimation of overall microbial community size and diversity (Duarte et al., 2012). Currently, the use of high-throughput sequencing technology can more comprehensively and accurately reflect the structure of microbial communities, and at the same time can more objectively reflect the low abundance of important functional microorganisms (Chen Y. et al., 2020). Therefore, it can be used to elucidate the changes in microbial community size and diversity and the alternation of dominant strains at different stages of jiaosu fermentation.

Zhang et al. (2023) applied high-throughput sequencing technology to analyze the physicochemical parameters of mulberry jiaosu and found that bioactive substances such as lactic acid, arginine, vanillic acid, and rutin increased significantly after 30 days of fermentation, which endowed the jiaosu with rich nutritional value, and that the diversity of fungi showed a trend of change in contrast to that of bacteria, and that Saccharomyces and Lactobacillus were important microorganisms in the fermentation process.

Fang et al. (2020) determined free radicals and reducing power during the fermentation of Yangmei jiaosu and analyzed organic acids using high-performance liquid chromatography. The study demonstrated that plant-derived jiaosu exhibits potent free radical scavenging ability, with organic acids playing a crucial role. In the fermentation process of Yangmei jiaosu, citric acid, and acetic acid are the primary organic acids, with total organic acid content significantly increasing and peaking at specific stages.

Hu et al. (2020) used high throughput sequencing to analyze three different blueberry jiaosu microbial community composition and diversity at the genus level, Lactobacillus spp., Gluconobacter spp., and Acetobacter spp. were the dominant bacteria, and Dekkera and Issatchenkia were the dominant fungi.

Ma et al. (2018) used single-molecule real-time sequencing (SMRT) to determine the bacterial microbiota of three jiaosu products purchased from Taiwan and Japan and found that despite the different sources of the three samples, they were highly similar in overall microbiota structure at the phylum level and no pathogen sequences were found throughout the data.

Untargeted metabolomics was employed by Jiang et al. (2024) to investigate metabolite variations between jiaosu derived from dendrobium flowers and stems. The results of the analysis revealed 476 metabolites that were differentially expressed between the two types of jiaosu. The outcomes demonstrated that the two jiaosu prepared from stems and flowers had different qualities, with the stem jiaosu having more lignin metabolites and the flower jiaosu having antioxidant and antibacterial qualities.




7 Agroecological effect

The prolonged use of chemical pesticides and fertilizers can have severe consequences (Tripathi et al., 2020). Issues such as water body eutrophication, heavy metal pollution, increased presence of hazardous compounds, nitrogen oxide emissions, soil compaction, significant reduction in microbial diversity, and concerns over food safety and pest resistance are becoming increasingly prominent. APJ represents a multifaceted system that integrates nutrient components, active metabolites, and beneficial microorganisms. It serves as an ecological product utilizing waste resources from farmland. Due to its versatility, jiaosu is widely utilized as a liquid fertilizer, pesticide, and soil enhancer. The agroecological effects of this study are shown in Figure 7.


[image: Diagram illustrating the agroecological effects of agricultural plant jiaosu, with a central node listing soil improvement, disease prevention and pest control, crop growth, reducing heavy metal pollution, pesticide residue degradation, and treatment of sewage sludge as benefits.]
FIGURE 7
 Agroecological effect of agricultural plant jiaosu.



7.1 Crop growth

APJ is abundant in beneficial microorganisms, which effectively balance soil microbiota (Montoya-Martínez et al., 2022). Lactic acid bacteria, among them, can inhibit harmful bacteria, manage various crop diseases, and promote the development of a healthy soil microbial environment (Raman et al., 2022). Moreover, the APJ contains essential macro and trace elements that plants can directly absorb and utilize (Kaur et al., 2023). Organic acids within it facilitate the breakdown of insoluble mineral elements into soluble forms, further enhancing plant nutrition (Sharma et al., 2013). APJ serves as a versatile liquid fertilizer for soil irrigation and plant spraying. It is also rich in various plant hormones such as auxin (IAA), cytokinin (CTK), gibberellin (GA), and abscisic acid (ABA), which significantly boost crop photosynthesis and support overall crop growth.

Cheng et al. (2023) set up two treatments of spraying APJ and water to determine the enzyme activities related to stress resistance of Chinese cabbage after 30 days of growth. Through transcriptome, metabolome, and rhizome microbiome analysis, the results showed that APJ did not change the abundance of rhizosphere microorganisms, but improved the diversity of microorganisms, thereby promoting plant growth. The use of APJ can greatly reduce the use of chemical pesticides and improve the quality of the ecological environment.

Xu S. et al. (2023) added 10 % of the APJ to the biogas residue, and the volatile fatty acids and organic substances in the APJ were further decomposed, which significantly improved the plant height, fresh weight, leaf area, and other plant characteristics. Therefore, supplementing APJ can improve the applicability of biogas residue and APJ to agricultural applications. Spraying APJ on the surface of crops can effectively improve the yield and quality of agricultural products, which provides a theoretical basis for subsequent practical production applications.



7.2 Soil improvement

Soil serves as the foundational matrix for plant growth and nutrient delivery, and maintaining a balance among soil, fertilizer, and plants is essential for sustainable agricultural production (Eisenhauer et al., 2017). Prolonged use of chemical fertilizers and pesticides has led to serious soil degradation, including pH imbalance, compaction, and heavy metal pollution. APJ, rich in organic matter and organic acids, possesses an acid-base buffering capacity that can effectively amend soil pH, offering a remedy for soil health.

Pennisi (2016) inoculated the grassland soil into the barren soil to make it “Boostershots” so that the soil changed from barren to fertile. The fundamental reason is that the rich microbial community in the grassland survives and reproduces in the barren land and gradually improves the quality of the soil.

Widmer et al. (2006) also showed that organic planting patterns could change the abundance and structure of soil microflora, and promote the growth and reproduction of beneficial microorganisms while inhibiting harmful microorganisms. A variety of organic acids and enzymes produced by some microbial metabolism can decompose mineral nutrients in the soil that cannot be directly absorbed and utilized by crops and are insoluble and unabsorbable (Arun and Sivashanmugam, 2017).



7.3 Disease prevention and pest control

The pH of mature fermented APJ is typically around 4 (Dai et al., 2020). This acidity is attributed to the presence of beneficial microorganisms, notably lactic acid bacteria, which metabolize to produce organic acids, thereby lowering the fermentation system's pH and inhibiting the growth of harmful microorganisms. Low-grade volatile fatty acids in APJ also inhibit certain pest enzymes, disrupting their normal physiological functions (Agnihotri et al., 2022). Furthermore, plant hormones like gibberellin exhibit synergistic effects in pest management, contributing to effective pest control (Castro-Camba et al., 2022).

Zhang et al. (2020) first studied the characteristics of APJ and its antibacterial activity against Botrytis cinerea. The results showed that APJ was a microbial ecosystem composed of acid-based substances and beneficial microorganisms, which had a good inhibitory effect on Botrytis cinerea and lasted for a long time.

Gao et al. (2022) studied the fermentation characteristics and antifungal activity of the APJ using medicinal plant waste leaf stems as raw materials and Fusarium oxysporum as the target pathogen. The isolation and identification of antagonistic microorganisms of the APJ showed that 47 strains had antagonistic activity against Fusarium oxysporum. The application of APJ significantly reduced the incidence of Fusarium root rot. Ginger and garlic APJ have antagonistic effects on Ralstonia solanacearum. After 2 days of treatment, the diameter of the inhibition zone was 3.0 and 2.2 cm, respectively. Allicin is a natural component that effectively prevents and controls plant diseases (Slusarenko et al., 2008).

In summary, the disease prevention and pest control function of the APJ is due to the organic acids and beneficial microorganisms in the APJ, and the APJ containing aromatic plants with special insect repellent and insecticidal functions such as garlic, ginger, and onion is more effective for pest control. Therefore, in agricultural production, aromatic plants with insect-repellent effects such as garlic, ginger, onion, pepper, and Humulus can be used as substrates for plant disease prevention and pest control.



7.4 Reducing heavy metal pollution

Heavy metal pollution is widespread, mainly through water, air, and soil pollution, which leads to excessive heavy metals in agricultural products (Li et al., 2008). In recent years, news about heavy metal-exceeded foods has been common, and soil is considered to be the main source of heavy metals entering the food chain. At present, microorganisms are mainly used to reduce the availability of heavy metals in soil. The APJ is rich in nutrient-active substances and microbial groups. Applying it to the soil can not only reduce the content of heavy metals in the soil and reduce the migration of heavy metals, to achieve the purpose of improving soil pollution, but also increase the content of organic matter, nitrogen, phosphorus, potassium, and other nutrients in the soil, and increase soil fertility.

Cadmium (Cd) pollution poses a serious threat to various ecosystems. Phytoremediation is an alternative method to promote soil health. Xu Z. G. et al. (2023) mixed Ginkgo biloba leaves, pine needles, and Eucommia bark and fermented naturally to obtain jiaosu and jiaosu residue. The protein, phenols, vitamin E and alcohol contents of jiaosu and jiaosu residue were 4,400 ± 0.46, 0.22 ± 0.01, 0.88 ± 0.24, and 4.63 ± 0.25 μL/mL, respectively, with good antioxidant activity. Studies have shown that the application of jiaosu and jiaosu slag can improve the properties of cadmium-contaminated soil and promote the cadmium tolerance of plants.

Due to the high toxicity of heavy metals to human health, heavy metal pollution in paddy fields has become a serious problem. Mori et al. (2016) developed a bark plant jiaosu that does not contain chemical substances using bark as a fermentation raw material to inhibit the absorption of cadmium by rice.



7.5 Treatment of sewage sludge

Water pollution, particularly from gray water, is a global concern due to its high COD (Chemical Oxygen Demand) value and richness in phosphorus and ammonia nitrogen (Ghaly et al., 2021). Direct discharge can lead to water and soil eutrophication, which is detrimental to plants. Therefore, it is crucial to treat sewage harmlessly. Studies indicate that the APJ plays a significant role in sewage and activated sludge treatment.

Nazim (2013) found that APJ could completely remove ammonia nitrogen and phosphorus in gray water after 27 days of treatment, and TDS (total dissolved solids), BOD (biochemical oxygen demand), and COD showed a downward trend. Tang and Tong (2011b) also proved that the APJ can effectively remove ammonia nitrogen and phosphorus in sewage.

Rasit and Chee Kuan (2018) showed that the APJ could effectively remove oil, TSS (total suspended solids), and COD in palm wastewater. Studies by the Ministry of Science and Technology of India have shown that the hydrogen production capacity of dairy waste-activated sludge has been greatly improved after the treatment of APJ (Arun and Sivashanmugam, 2018).

Arun and Sivashanmugam (2015a) demonstrated that plant jiaosu had protease, amylase, and lipase activities, which could reduce 37.3 % of total solids, 38.6 % of suspended solids, and 99 % of pathogens in activated sludge of dairy waste. This important result may help researchers to compare the effects of plant jiaosu on the treatment of industrial sludge with various physical and chemical pretreatment methods to improve the biogas production of sludge digestion devices.



7.6 Pesticide residue degradation

Pesticide residue is a significant issue affecting food safety. Zhang F. et al. (2013) showed that organophosphorus pesticide residues in whole wheat plants (290 μg/g) and corn (270 μg/g) in Hohhot were much higher than those in agricultural soils (185 μg/g). Pesticide residues in these crops not only seriously affect the quality of vegetables, but also can be transmitted along the food chain and food web, and ultimately into the human body, endangering human health. Moreover, Azizi and Homayouni (2009) studied the degradation of diazinon and malathion by lactic acid bacteria during vegetable fermentation. They pointed out that the extracellular enzymes of lactic acid bacteria can degrade diazinon which is sensitive to hydrolytic activity and low pH conditions, and the isolated lactic acid bacteria have a much stronger ability to decompose pesticides and reduce pH in mixed culture.




8 Challenges of the moment

The APJ industry benefits from the application of biotechnology in agriculture in several ways, including increased crop growth, improved plant stress resistance, and less use of chemical pesticides and fertilizers (Mahanty et al., 2017). However, as it develops, it must also overcome several obstacles, chief among them being the following:

1. Lack of normalization and standardization: the production of APJ lacks consistent norms or standards. Variations in active substances and their efficacy among different producers impact the stability and reliability of product effects, leading to inconsistent product quality.

2. Inadequate research on the mechanism of action: APJ is known to enhance soil and encourage plant growth (Pahalvi et al., 2021), but a more thorough study is needed to determine the precise mechanism of action, such as the dynamic shift of the microbial community or the precise relationship between enzyme activity and crop physiological response, to guide application in a way that is supported by science.

3. Optimization of application technology and method: currently, a pressing technical challenge is determining the optimal application method, dosage, and timing tailored to different crop types, soil conditions, and climatic variables to maximize yield increase and economic benefits.

4. Ongoing R&D and innovation: the APJ industry is poised for growth driven by increasing demand for sustainable agricultural practices. Continued investment in research and development, coupled with technological innovation, is crucial for developing new and effective strains, optimizing fermentation processes, and achieving sustainable agricultural development.

To address these challenges and foster the healthy development of the APJ industry, collaboration among government entities, scientific research institutions, businesses, and farmers is essential. This collaboration should focus on improving standardization, enhancing market supervision, increasing investment in scientific research, and providing robust policy guidance.



9 Future outlook

With the issuance of multiple papers in recent years, the advancement of ecological agriculture has become the prevailing trend. Jiaosu, an agricultural plant, is a type of fermentation broth made from plants. Its features include broad applicability, low cost, easy operation, and green environmental protection (Gao et al., 2022). This trend aligns with the advancement of contemporary ecological agriculture and supports the robust growth of the agricultural environment. The researcher's attention should be directed toward it. Due to a dearth of fundamental research, agricultural plants like jiaosu are still relatively new. The following observations are made in this review:

1. The primary impetus behind ecological agriculture: APJ is thought to be a useful instrument for advancing the growth of ecological agriculture. Obtaining native beneficial microorganisms in the area can help meet the development requirements of sustainable agriculture while also enhancing soil biological activity and promoting a healthy cycle of microorganisms in the soil-plant system (Montoya-Martínez et al., 2022). This reduces the need for chemical fertilizers and pesticides and enhances the utilization of waste as a resource.

2. New methods for getting rid of waste: the use of APJ in garbage disposal will receive increasing attention as environmental consciousness grows. Microbial fermentation technology has the potential to transform agricultural waste into a valuable biological fertilizer, facilitating resource recycling and mitigating environmental pollution (Bala et al., 2023).

3. Product diversification and technological innovation: the production technology of APJ will be continuously optimized with the advancement of research and technology. This may involve screening and applying new strains, improving the fermentation process, and other measures to meet the unique requirements of various crops and soil types. Additionally, a wider range of products will be offered to better suit the requirements of various agricultural production chains.

4. Simple to use and promote: APJ technology is easy to promote in large rural areas due to its straightforward qualities and capability to turn trash into treasure. This helps to boost small farmers' productivity, encourage agricultural efficiency, and raise farmers' income.

5. Encouraging the health of agricultural ecosystems: to sustain and increase the stability and productivity of the overall agricultural ecosystem, long-term use of APJ is anticipated to improve soil structure, enhance soil water and nutrient retention capacity, promote root growth, and improve crop stress tolerance (Wang et al., 2024).



10 Recommendations

The following ideas might be put up to further encourage the application and advancement of APJ in light of the knowledge gathered from this review:

1. Fermentation process optimization: to increase the effectiveness and caliber of APJ production, more studies should be done on fermentation conditions optimization. This entails creating standardized procedures and investigating cutting-edge fermentation methods.

2. Economic feasibility: to determine if producing APJ is economically feasible, cost-effective methods for acquiring and processing raw materials are investigated. Working together with businesses can assist cut expenses and increase output.

3. Regulatory framework: to guarantee the security and effectiveness of APJ production and use, clearly define regulatory norms and guidelines. This will help farmers and other stakeholders use it widely.

4. Public education and awareness: raising public knowledge of the advantages of APJ can help these products find a larger market and garner more support. Adoption of APJ in agricultural techniques can be encouraged by consumer and farmer education initiatives.

5. Collaborative research: to hasten the development and implementation of APJ technologies, collaboration in research is encouraged amongst academic institutions, governmental organizations, and the commercial sector. This multidisciplinary approach may result in quicker implementation and more creative solutions.



11 Conclusion

The goal of this study is to present a thorough analysis of the present classification, procedures, makeup, agricultural uses, and difficulties related to APJ. The study also examines new developments in the fields of microbial fermentation, fermentation processes, mechanisms, and raw material selection. The main objective is to elucidate the capacity of APJ to promote sustainable agriculture practices and strong soil-microbe-plant agro-ecosystems. This study concludes that using organic waste to prepare APJ is practical and delivers significant benefits to the environment and the economy through a systematic evaluation of the literature and data analysis. High-quality APJ can be efficiently generated, lowering environmental pollution and improving resource recycling, by using acceptable microbial fermentation processes and appropriate organic waste as raw materials. Even though APJ can be used to treat organic waste in the current technological environment, there are still certain technical and financial challenges to be solved, like maximizing the conditions for fermentation, keeping costs under control, and attaining large-scale industrial production. Utilizing APJ for organic waste management greatly advances sustainable agricultural growth and yields a host of environmental advantages, such as better soil quality, increased plant resistance, a decrease in the usage of chemical pesticides and fertilizers, and a reduction in environmental pollution. Additionally, APJ promotes the development of robust soil microbial communities, which supports the long-term viability of agricultural ecosystems.

To ensure that crops grow normally and increase yields per unit area, pesticides are crucial in contemporary agriculture for preventing and managing diseases, pests, and crop damage. On the other hand, persistent misuse of chemical pesticides has seriously jeopardized human health and severely contaminated the environment. Biopesticides have garnered a lot of attention as people's awareness of health, the environment, and food safety has grown. China has been promoting and using APJ, a kind of biopesticide, extensively in recent years. The “green and environmentally friendly” idea is supported by the process of fermenting inferior fruits into jiaosu, which also offers a practical solution to the issues of wasted inferior fruits and resource reuse. APJ will be dependent on environmental protection principles, technological innovation, and the demands of green agriculture in the future. These factors will allow for the continuous optimization of product performance, the expansion of application ranges, and the achievement of sustained industry development and progress through improved supply chain collaboration.
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Grouper aquaculture is a key industry in Taiwan, yet its processing generates significant byproducts, leading to challenges in waste management and environmental sustainability. Recent research has focused on developing innovative methods to valorize these byproducts, with grouper bone hydrolysate (GBH) emerging as a potential candidate for applications in health promotion and exercise performance enhancement. In this study, we investigated the amino acid composition of grouper bone hydrolysate (GBH) and analyzed its peptide contents. We also investigated GBH supplementation in relation to body composition and exercise performance in mice. Male Institute of Cancer Research (ICR) mice were divided into 3 groups (n = 7 per group) and orally administered GBH once daily for 6 weeks at doses of 0 g/kg/day (vehicle), 103 mg/kg/day (GBH-1X), 205 mg/kg/day (GBH-2X), and 513 mg/kg/day (GBH-5X). The GBH was rich in branched-chain amino acids and bioactive peptides, and supplementation enhanced the exercise performance of the mice. GBH supplementation increased their exhaustive swimming time, forelimb grip strength, and tissue glycogen content while reducing fatigue markers such as lactate, ammonia, and creatine kinase. The results indicate that GBH contains dipeptides such as Leu-Ala, Glu-Asp., Met-Leu, Met-Ile, Phe-Pro, Trp-Asp., Leu- Val, and Leu-Cys, as well as tetrapeptides such as Pro-Ser-Met-Ala, Ser-Val-Pro- Ile, and Ala-Val-Pro-Trp. GBH supplementation could aid in overcoming fatigue during endurance exercise and decrease metabolic waste after acute exercise.
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1 Introduction

The United Nations’ Sustainable Development Goals include a commitment to reducing food waste significantly. Using currently underexploited ingredients for food production could mitigate food loss and the waste of potential food sources in the supply chain. These food products and ingredients are called upcycled foods and embody the concept of “waste to value.” They originate from side streams and co-products and are resources for value-added surplus food that could be integral to enhancing supply-chain sustainability (Bhatt et al., 2018; Coderoni and Perito, 2020; Peschel and Aschemann-Witzel, 2020).

Agriculture in Taiwan is highly developed, but copious amounts of by-products are generated from agro-industrial processes and pose severe environmental challenges and increase production costs (Hsu, 2021). Strategic minimization of waste in these processes could markedly enhance the economic viability of by-products derived from fish processing, conserve resources, and promote sustainable agriculture (Aschemann-Witzel et al., 2023). Such practices support an environmentally friendly production ethos, which is essential for maintaining ecological balance and ensuring the sustainability of agricultural practices (Spratt et al., 2021).

Grouper aquaculture represents a significant sector within Taiwan’s economy (Huang et al., 2023). However, the processing of this valuable seafood resource generates substantial byproducts, posing challenges for waste management and environmental sustainability. To address this issue, research efforts should prioritize the development of innovative technologies aimed at converting these byproducts into value-added products, such as polyester fibers, fish oil, and collagen (Hou et al., 2022; Lin et al., 2023). This valorization strategy has the potential to enhance resource efficiency, minimize environmental impact, and improve the economic viability of the grouper aquaculture industry.

Integrating bioactive compounds like lycopene, beta-carotene, and ferrous sulfate from food by-products could add value to waste or transform it into valuable products (Kharel et al., 2021; Madia et al., 2021). Based on the principles of upcycling food, this investigation was done to add value to the skeletal remains of Taiwanese grouper fish, which are typically discarded during food processing, through their transformation into a useful product. The bones were used as a substrate and processed to generate a promising nutraceutical supplement that is tailored for athletic nutrition.

The supplement is mainly characterized by a heightened concentration of branched-chain amino acids (BCAAs). BCAAs can affect exercise fatigue, which can be partially attributed to the build-up of lactic acid, ammonia, and blood urea nitrogen (BUN) in the serum and muscular tissue (Nikolaidis et al., 2018). Sustained high-intensity contractions during exercise can also rapidly deplete muscle glycogen and precipitate muscle fatigue (Gonzalez et al., 2016; Shulman et al., 2001). The supplementation of BCAAs could potentially enhance the serum levels of metabolites associated with fatigue, glucose, and muscle recovery markers [including lactate dehydrogenase (LDH) and creatine kinase (CK) (Kim et al., 2013)].



2 Methods


2.1 Grouper bone hydrolysate preparation

Grouper fish bones were sourced from a processing factory in the Yong’an District of Kaohsiung, Taiwan. The bones were first defrosted and then boiled for 10 min in water to facilitate the separation of residual flesh and connective tissues. After boiling, debridement was carried out to ensure thorough removal of organic matter, after which the bones were weighed. An ultrafine bubble cleansing was then done for 5 min (Chen et al., 2020) for deodorization and sterilization.

The decontaminated bones were then dried with hot air, weighed again, and ground into a fine powder. This powder was preserved at-20°C for later use. The bone powder was later macerated for 12 h in a 0.25% citric acid solution with a solid-to-liquid ratio of 1:4 and continuous agitation. This was done to demineralize the bone matrix and prepare it for extraction. The material was extracted for 20 h at 65°C with a 1:1 ratio of distilled water under constant stirring to ensure optimal diffusion. After extraction, the resultant mixture was filtered, and a gelatinous sample was obtained.

Next, 0.5% FoodPro®30 L enzyme (International Flavors & Fragrances Inc., NY., United States) was added to the sample, which was then extracted again for 6 h at 50°C in distilled water. The enzymatic treatment was halted by thermal deactivation, in which the extract was held at 100°C for 30 min to ensure complete enzyme inactivation. Finally, centrifugation was done for 15 min at 10,000 × g at 4°C, and the clarified GBH supernatant was obtained.



2.2 Analysis of GBH amino acids, hydrolysis rate, and peptide contents

The amino acid components of the GBH were separated using high-performance liquid chromatography (HPLC) in a C18 column (Hypersil GOLD C18, 100 × 2.1-mm inner diameter, particle size of 1.9 μm). The mobile phase consisted of (A) sodium dihydrogen phosphate and (B) acetonitrile and methanol (1:1) with a flow rate of 0.5 mL/min. Gradient analysis was conducted using the method reported by previous (Innocente et al., 2007).



2.3 Analysis of possible peptide content

A comprehensive comparison of literature and databases was done to predict the possible types of each mass-to-charge ratio (m/z) and identify potential peptide sequences. The results of the mass spectrometry can be confirmed through several resources. The amino acid mass table provided by Biosyn was used for initial comparisons. The NIST Online Chemistry Molecular Weight Search Engine was used for identifying molecular weights. The proteomics database provided by NCBI was used to match and confirm the approximate peptide sequences.



2.4 Animals

Male Institute of Cancer Research (ICR) mice (6 weeks old; average weight 27 g) were purchased from BioLASCO (Taipei, Taiwan). The mice were given Laboratory Rodent Diet 5,001 and distilled water ad libitum. They were housed at room temperature (24 ± 2°C) under humidity-controlled conditions (60 ± 5%) and a regular 12-h light/dark cycle. The animal protocol (A11202) was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of Fu Jen Catholic University, New Taipei City, Taiwan.

The recommended daily intake of GBH is approximately 200–1,000 mg per day per mouse based on the previous method (Nirmal et al., 2022). Thus, the mouse dose per kilogram of body weight as follows: 500/60 × 12.3 = 103 mg/kg (GBH-1X). Accordingly, the GBH-2X dose was 205 mg/kg, and the GBH-5X dose was 513 mg/kg.



2.5 Fatigue-associated biochemical indices

After day 26 of GBH supplementation, blood samples were collected at 15 min after the mice performed swimming exercises. Blood was centrifuged for 10 min (1,500 × g) at 4°C, and sera were collected for analysis. Lactate, ammonia, CK, glucose, BUN, and LDH levels were determined using an autoanalyzer (Hitachi 7,600; Hitachi Co. Ltd., Japan).



2.6 Exhaustive exercise test and forelimb grip strength

On day 27 of the supplementation period, 30 min after GBH supplementation, the forelimb grip strength of the mice was tested according to the method described by Chen et al. (2016). A low-force testing system (PicoScope 2000, Pico Technology Limited, Cambridgeshire, United Kingdom) was used to measure the forelimb absolute grip strength. Animals were acclimated, then gently held by the tail to allow only their forelimbs to grasp the bar. Once a firm grip was established, animals were pulled back until they released the bar, and peak force was recorded. Each animal underwent 3 trials with 1 min rest intervals, the highest recorded force (in grams) was used as an indicator of the grip strength.

A treadmill exhaustion test was conducted based on a previous study using a mouse treadmill with an incline that started at 10o (Bio-Cando Incorporation, Taipei, Taiwan). The test was performed with a 10% incline, and the speed and duration were gradually increased as follows: 10 m/min for 5 min, 16 m/min for 10 min, 21 m/min for 10 min, 26 m/min for 10 min, 31 m/min for 10 min, 36 m/min for 10 min, and 41 m/min for 10 min until exhaustion. The running time for each mouse was recorded.



2.7 Body composition and tissue glycogen analyses

At the end of the study on day 28, the fat-free mass (FFM) and fat mass of the mice were detected using time-domain nuclear magnetic resonance (TD-NMR) with an LF50 body composition analyzer (Minispec; Bruker, Germany). Briefly, animals were restrained in a 50-mm-diameter plastic cylinder and scanned for 2 min. The TD-NMR device measures radiofrequency signals from hydrogen nuclei in tissues and uses differences in relaxation times to estimate body composition. Glycogen content was analyzed using a chemical method based on literature protocols, with commercial glycogen (Sigma, United States) as the calibration standard. Tissue samples were homogenized with five volumes (w/v) of buffer using a Bullet Blender (Next Advance, MA, United States). Homogenates were centrifuged at 12,000 × g for 15 min at 4°C, and the supernatant was collected for direct glycogen quantification (Chen et al., 2020).



2.8 Histological tissue staining and blood assessments

On day 28, all mice were sacrificed using 95% CO2 asphyxiation. Different tissues were collected and fixed in 10% formalin. Hematoxylin and eosin staining was carried out as previously described. Blood was withdrawn through cardiac puncture, and serum was collected through centrifugation. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), LDH, CK, creatinine, total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total protein (TP), albumin, and glucose were assessed using an autoanalyzer (Hitachi 7,600; Hitachi Co. Ltd., Japan).



2.9 Statistical analysis

Data were expressed as the mean ± standard deviation (SD). Significant differences between multiple groups were calculated using one-way analysis of variance (ANOVA) and Duncan’s post-hoc test. Values of p < 0.05 were considered significant. The Cochran–Armitage trend test was used to examine the dose-dependence effect.




3 Results


3.1 Resource identification initiative total BCAAs content, hydrolysis rate, and peptide contents

Table 1 presents the total BCAAs content in GBH. Following enzymatic hydrolysis, the bone material exhibited a high concentration of amino acids, and the contents of the BCAAs valine, isoleucine, and leucine were measured as 644 ± 64, 260 ± 26, and 603 ± 57 μg/mL, respectively. The substantial presence of BCAAs in GBH suggests that it has potential to stimulate protein synthesis in skeletal muscle. Thus, it may exert anabolic effects on protein metabolism, potentially enhance the rate of protein synthesis, and decrease protein degradation in resting human skeletal muscle. Table 2 shows the hydrolysis efficiency of GBH. The results indicate a hydrolysis rate of 29.95 ± 1.08%, and the peptide concentration in the GBH was 117.03 ± 2.94 mg/mL.



TABLE 1 Hydrolyzed amino acid profiles and total branched-chain amino acids of GBH.
[image: Table showing amino acid content in micrograms per milliliter after hydrolyzing grouper fish bones using the FoodPro*30 L enzyme. Glycine is the highest at 4,603 ± 182. Values are means ± standard deviation for triplicate samples. Cysteine is not detected.]



TABLE 2 Hydrolysis rate and peptide content of GBH.
[image: Hydrolysis rate is 29.95 percent plus or minus 1.08. Peptide content is 117.03 milligrams per milliliter plus or minus 2.94. Grouper fish bones were hydrolyzed using FoodPro 30 L enzyme.]



3.2 Possible peptide components

Table 3 displays the initial peptide test results of GBH, which indicate the potential presence of dipeptides or tetrapeptides. MALDI-TOF mass spectrometry analysis identified five peaks at retention times of 0.9, 1.3, 8.7, 11, and 11.9 min. It is important to note that these findings are preliminary, and due to the nature of grouper fish bones as a residual food resource, the consistency of the sample source cannot be guaranteed. Therefore, the identification of peptides is based on inference. These peptides included dipeptides Leu-Ala, Glu-Asp., Met-Leu, Met-Ile, Phe-Pro, Trp-Asp., Leu-Val, and Leu-Cys and tetrapeptides Pro-Ser-Met-Ala, Ser-Val-Pro-Ile, and Ala-Val-Pro-Trp.



TABLE 3 Possible peptides in GBH.
[image: Table listing retention time, m/z values, possible compounds, and peptides. Retention times include 0.9, 1.3, 8.7, 11, and 11.9 minutes. Entries show dipeptides, tetrapeptides, non-amino acids, peptides, and specific sequences like Leu-Ala and Glu-Asp.]

The proposed peptide sequences were determined through a comparison of mass spectrometry data with the amino acid mass table, molecular weight databases, and proteomics databases. Additional validation is needed to confirm these peptide sequences. Leu: leucine, Ala: alanine, Glu: glutamic acid, Asp: aspartic acid, Met: methionine, Phe: phenylalanine, Pro: proline, Trp: tryptophan, Ser: serine, Val: valine, Cys: cysteine, Am: amide, His: histidine, Ile: isoleucine.

Effect of supplementation on tissue weight, body weight, and food and water intake.

Figure 1 illustrates the growth curves of mice supplemented with various doses of GBH (1X, 2X, and 5X) compared to a vehicle control group over 4 weeks. All groups exhibited a steady increase in body weight throughout the experimental period. However, no statistically significant differences in body weight were observed between the GBH-supplemented groups and the vehicle control group at any time point.

[image: Line chart showing body weight in grams over four weeks for four groups: Vehicle, GBH-1X, GBH-2X, and GBH-5X. All groups show a slight increase in weight, with overlapping error bars. Body weight ranges from 30 to 40 grams.]

FIGURE 1
 Effect of GBH supplementation on body weight in mice. Mice were supplemented with GBH at different doses or vehicle for 4 weeks. Body weight was measured weekly. Data are presented as mean ± SD (n = 7 per group).


Table 4 displays the data on body weight, tissue weights, and food and water consumption. There were no significant differences in any weights or consumption across groups, indicating that GBH supplementation at the tested doses did not significantly affect the overall body weight gain and diet of mice. Table 4 also shows the measured epididymal fat pad (EFP) weights. The weights of the vehicle, GBH-1X, GBH-2X, and GBH-5X groups were 0.50 ± 0.05 g, 0.39 ± 0.09 g, 0.36 ± 0.06 g, and 0.40 ± 0.13 g, respectively. Trend analysis revealed a significant dose-dependent decrease in EFP weight (p = 0.0297). The EFP weights were significantly lower in the GBH-1X (21.88%, p = 0.0287), GBH-2X (29.26%, p = 0.0047), and GBH-5X groups (19.89%, p = 0.0449) compared with the vehicle group.



TABLE 4 General characteristics of mice with grouper bone hydrolysate (GBH) supplementation.
[image: A table compares biological characteristics across four groups: Vehicle, GBH-1X, GBH-2X, and GBH-5X. Metrics include initial and final body weight, food and water intake, and weights of organs such as liver, kidney, and heart. Significant differences, marked with an asterisk, occur in EFP, heart, and muscle weights, among others. Trend analysis accompanies each metric. Values are expressed as mean ± standard deviation for seven mice per group. EFP stands for epididymal fat pad.]

The weights of muscle tissue from the vehicle, GBH-1X, GBH-2X, and GBH-5X groups were 0.36 ± 0.05, 0.40 ± 0.07, 0.46 ± 0.04, and 0.42 ± 0.03 g, respectively. The muscle weight of the GBH-2X and GBH-5X groups were 1.27 times (p = 0.0012) and 1.16 times (p = 0.0369) higher than that of the vehicle group. The EFP and muscle relative weights of GBH-treated groups were significantly lower than that of the vehicle group (p = 0.0197 and p = 0.0176, respectively).

There were no significant differences in the liver, kidney, and lung weights among groups. Additionally, the relative weights of the liver, kidneys, and lungs were not significantly different. Heart weight was significantly lower in the GBH-2X (p = 0.0107) and GBH-5X (p = 0.0143) groups compared to the vehicle group, but the relative weights of muscle were not significantly different [𝐹 (2, 27) = 2.63, 𝑝 = 0.0733].

Figure 2 presents the effects of GBH supplementation on body composition. There was a significant increase in FFM in the GBH-2X group (1.06 times, p = 0.0217) compared to the vehicle group (Figure 2A). Conversely, fat mass was significantly reduced in all GBH-supplemented groups compared to the vehicle group [GBH-1X: 19.70% (p < 0.0001), GBH-2X: 20.14% (p < 0.0001), GBH-5X: 27.77% (p < 0.0001; Figure 2B)].

[image: Two graphs depict body composition data across treatments:   (A) shows percent fat-free mass (FFM) with vehicle, GBH-1X, GBH-2X, and GBH-5X groups. GBH-2X has a higher FFM marked as "b", while all others are "a".   (B) shows percent fat mass (FM), with the vehicle group highest as "c", GBH-1X as "b", GBH-2X as "ab", and GBH-5X as "a". Trend analysis indicates significance at p < 0.0001.]

FIGURE 2
 Effect of grouper bone hydrolysate (GBH) supplementation on body composition. (A) Free-fat mass (FFM) percentage and (B) fat mass (FM) percentage in mice following 4 weeks of GBH supplementation at different doses (1X, 2X, 5X) or vehicle control. Data are presented as mean ± SD, bars with different letters (a, b, c) indicate significant differences at p < 0.05 according to one-way ANOVA. Trend analysis (p < 0.05) indicates a significant dose-dependent effect of GBH on FM reduction.




3.3 Effect on forelimb grip strength and exhaustive treadmill test

The vehicle, GBH-1X, GBH-2X, and GBH-5X groups’ forelimb grip strengths were 126.0 ± 16.6, 142.0 ± 11.4, 149.6 ± 6.5, and 154.1 ± 16.2 g, respectively (Figure 3A). The GBH-2X and GBH-5X groups exhibited 1.19 times (p = 0.0146) and 1.22 times (p = 0.0133) higher grip strength than the vehicle group, respectively. Additionally, a significant dose-dependent effect on relative forelimb grip strength was observed (p < 0.0001).

[image: Two graphs labeled A and B. Graph A shows forelimb grip strength in grams with four groups: Vehicle, GBH-1X, GBH-2X, and GBH-5X. GBH-2X and GBH-5X groups show higher grip strength. Graph B presents exhausted time in minutes for the same groups, with GBH-2X and GBH-5X exhibiting longer times. Both graphs indicate a significant trend analysis with p<0.0001.]

FIGURE 3
 Effect of grouper bone hydrolysate (GBH) supplementation on (A) forelimb grip strength and (B) exhaustive treadmill test. Data are presented as mean ± SD (n = 7). Bars with different letters (a, b) indicate significant differences at p < 0.05 determined using one-way ANOVA. Trend analysis (p < 0.05) indicates a significant dose-dependent effect of GBH.


As illustrated in Figure 3B, the mean exhaustive treadmill test time of the GBH-2X group was 39.2 ± 5.5 min, which was 1.19 times longer than that of the vehicle group (p = 0.0402). The time of the GBH-5X group was significantly longer (1.25 times) at 41.1 ± 4.2 min compared to the vehicle group (p = 0.0091). Trend analysis revealed a statistically significant dose-dependent increase in the treadmill test time (p < 0.0001).



3.4 Effect on fatigue profile in swimming test

A 15-min swimming test was used to evaluate fatigue-related indicators (Figure 4A). Compared to the vehicle group (11.06 ± 1.58 mmol/L), serum lactate levels were significantly lower in the GBH-2X (7.79 ± 1.58 mmol/L) and GBH-5X (7.63 ± 1.39 mmol/L) groups, with reductions of 29.56% (p = 0.0007) and 30.96% (p = 0.0005), respectively. Furthermore, a significant dose-dependent decrease (p < 0.0001) in blood lactate levels was observed following the 15-min swimming test.

[image: Four scatter plots labeled A to D compare the effects of different treatments (Vehicle, GBH-1X, GBH-2X, GBH-5X) on various blood parameters. A shows lactate levels with a significant trend (p < 0.0001), B shows ammonia levels (p < 0.0500), C shows creatine kinase (CK) levels (p < 0.0500), and D shows glucose levels. Each plot indicates differences in means using letters (a, b, c) to denote statistical significance, with vehicle generally having higher values in C and B, while D shows no significant trend.]

FIGURE 4
 Effect of grouper bone hydrolysate (GBH) supplementation on the serum levels of (A) lactate, (B) ammonia, (C) creatine kinase (CK), and (D) glucose after a 15-min swimming test. Data are presented as mean ± SD (n = 7). Bars with different letters (a, b, c) indicate significant differences at p < 0.05 according to one-way ANOVA. Trend analysis (p < 0.05) indicates a significant dose-dependent effect of GBH.


The serum ammonia levels in the GBH-1X (210 ± 11 μmol/L), GBH-2X (181 ± 18 μmol/L), and GBH-5X (171 ± 39 μmol/L) groups were 12.05% (p = 0.0379), 23.99% (p = 0.0002), and 28.03% (p < 0.0001) lower than that in the vehicle group (238 ± 20 μmol/L), respectively. A significant dose-dependent effect on the serum ammonia levels was observed (p < 0.0500; Figure 4B). In the GBH-1X (506 ± 370 U/L), GBH-2X (449 ± 217 U/L), and GBH-5X (274 ± 103) groups, the serum CK levels were significantly lower (64.23%, p < 0.0001; 68.25%, p < 0.0001; and 80.66%, p < 0.0001) compared to the vehicle group (1,414 ± 220 U/L). A significant dose-dependent effect on the CK level was also observed (p < 0.0500; Figure 4C). In contrast, the glucose levels in the GBH group did not show a significant difference from the vehicle group (p = 0.9332; Figure 4D).



3.5 Effect on liver and muscular glycogen

As shown in Figure 5A, the liver glycogen content of the GBH-1X, GBH-2X, and GBH-5X groups exhibited a statistically significant elevation relative to the vehicle group. The fold-changes were 1.37 (p = 0.0482) for GBH-1X, 1.42 (p = 0.0582) for GBH-2X, and 1.80 (p = 0.0019) for GBH-5X, corresponding to respective values of 17.5 ± 0.9 mg/g liver, 18.2 ± 5.3 mg/g liver, and 23.0 ± 3.5 mg/g liver, respectively. Similarly, muscle glycogen levels were elevated in the GBH-1X, GBH-2X, and GBH-5X groups compared to the vehicle group, as shown in Figure 5B. The fold-changes were 1.74 (p = 0.0193) for GBH-1X, 1.71 (p = 0.0082) for GBH-2X, and 2.25 (p < 0.0001) for GBH-5X, with respective values of 1.5 ± 0.4 mg/g liver, 1.5 ± 0.7 mg/g liver, and 1.9 ± 0.8 mg/g liver, respectively. Notably, a clear and significant dose-dependent effect on both liver and muscle glycogen content was observed (p < 0.0001).

[image: Graphs comparing liver and muscle glycogen content in micrograms per milliliter across four groups: Vehicle, GBH-1X, GBH-2X, and GBH-5X. Panel A shows liver glycogen content with increasing values across groups, marked a to b. Panel B shows muscle glycogen content, also increasing, marked a to c. Trend analysis indicates significant differences with p less than 0.0001. Error bars represent standard deviation.]

FIGURE 5
 Effect of GBH supplementation on (A) liver glycogen and (B) muscle glycogen. Data are presented as mean ± SD (n = 7). Bars with different letters (a, b, c) indicate significant differences at p < 0.05 according to one-way ANOVA. Trend analysis (p < 0.05) indicates a significant dose-dependent effect of GBH.




3.6 Effect on tissue histopathology and biochemical variables

Representative histological sections from each excised tissue are presented in Figure 6, which shows the morphological and cellular characteristics that appeared following GBH supplementation. No significant differences were observed between GBH-supplemented groups and the vehicle control group in any of the examined tissues, indicating that 4 weeks of GBH supplementation did not induce any adverse effects on the evaluated organs.

[image: Histological images of tissues, labeled A to F, each comparing four conditions: Vehicle, GBH-1X, GBH-2X, and GBH-5X at different magnifications. Panel A shows liver tissue; panel B, muscle tissue; panel C, lung tissue; panel D, kidney tissue; panel E, heart tissue; panel F, adipose tissue. Changes in cellular structure and density are visible across varying GBH concentrations. Magnification is marked as 40 micrometers for panels A through E and 200 micrometers for panel F.]

FIGURE 6
 Representative histological sections showing the effect of GBH supplementation on (A) liver, (B) lungs, (C) muscle, (D) heart, (E) kidneys, and (F) epididymal fat pad (EFP). Specimens were observed using light microscopy. Hematoxylin and eosin stain, magnification: 200 × .


Table 5 shows that GBH supplementation did not induce significant changes in liver function markers (AST, ALT, and LDH) compared to the vehicle group (p > 0.05). However, a decreasing trend was observed in CK levels with increasing GBH dosage, suggesting a potential protective effect of GBH against muscle damage (p = 0.2170). GBH supplementation significantly reduced creatinine levels in a dose-dependent manner (p < 0.0001), indicating improved kidney function. No significant changes were observed in other parameters, including TC, TG, HDL, TP, albumin, and glucose levels (p > 0.05). These results suggest that GBH supplementation may have beneficial effects on kidney function and potentially muscle health and lipid metabolism, warranting further investigation.



TABLE 5 Biochemical analysis of mice subjected to GBH supplementation at the end of the study.
[image: Table showing biochemical parameters across four groups: Vehicle, GBH-1X, GBH-2X, and GBH-5X. Values include AST, ALT, LDH, CK, creatinine, TC, TG, HDL, LDL, TP, albumin, and glucose. Each group’s values are expressed as mean ± SD for seven mice. The trend analysis presents significance levels. Parameters marked with an asterisk differ significantly from the vehicle group (p < 0.05).]




4 Discussion

The food system continually faces a challenge of feeding the ever-growing global population, which is projected to reach 9.7 billion by 2050 (United Nations Department of Economic and Social Affairs, 2022). To help to address this challenge, there have been attempts to align consumption with the rate at which nature generates resources and neutralizes waste. However, after years of using natural resources, we are now encountering the limits of available resources and hazards posed by undesired emissions and accumulated waste (Giampietro, 2019). In Europe, approximately 40% of food waste occurs during production. Therefore, reducing food waste in the food industry is crucial (Aschemann-Witzel et al., 2023).

One strategy to manage waste in the food supply chain is to repurpose edible portions of food waste to produce food for human consumption. In this way, the food waste becomes a valuable resource for food production rather than being discarded. An example of this practice involves the reprocessing of stale bread or bread that is nearing or past its expiration date into beverages such as beer. Similarly, sunflower-seed pressings and spent grain from breweries could be processed into flour instead of being used as animal feed (Aschemann-Witzel et al., 2023; Grasso and Asioli, 2020).

Studies have investigated the potential benefits of combining protein hydrolysates with carbohydrates during endurance exercise (Vegge et al., 2012). Protein hydrolysates are derived from purified protein sources and composed of peptides of varying lengths and free amino acids. They exhibit distinct properties based on their amino acid composition. Substituting an equivalent caloric amount of soy protein with fish protein hydrolysates resulted in increased fatty acid oxidation and decreased adipose tissue mass in a rat model (Liaset et al., 2009).

GBH exhibits diverse properties based on its amino acid composition. For instance, GBH is rich in small-chain amino acids such as the dipeptides Leu-Ala, Glu-Asp., Met-Leu, Met-Ile, Phe-Pro, Trp-Asp., Leu-Val, and Leu-Cys, as well as tetrapeptide, which has demonstrated effects of enhanced digestion, absorption kinetics, and a heightened insulinemic response when consumed independently (Siegler et al., 2013). Peptides are short chains of amino acids with customizable physiological benefits. Furthermore, they have demonstrated bioactive properties, including antioxidant, antimicrobial, and anti-inflammatory activities, so they could contribute to human health and wellbeing (Martini and Tagliazucchi, 2023).

Substituting soy protein with fish protein hydrolysates such as GBH in mice led to increased fatty acid oxidation and reduced adipose tissue mass. Our data showed that GBH supplementation had positively influences on body composition, including increased lean body mass (GBH-2X) and decreased fat mass (all GBH treatments). Additional benefits include enhanced muscle strength and improved glucose uptake in liver and muscle tissue. These findings are consistent with previous research on marine-derived peptide supplements, which have demonstrated similar effects on body composition, muscle strength, glucose uptake, and exercise recovery (Jendricke et al., 2019; Kirmse et al., 2019; Roblet et al., 2014). Some studies have also reported accelerated recovery from exercise-induced muscle soreness (Clifford et al., 2019).

Another contributing factor to GBH’s efficacy is its high BCAAs content. BCAAs supplementation has been shown to enhance athletic performance, and studies have demonstrated improved endurance in runners (Gawedzka et al., 2020) and enhance exercise performance in untrained cyclists (Manaf et al., 2021). Beyond enhancing physical performance, BCAAs supplementation has been linked to increased muscle strength and mass (Ko et al., 2020), as well as mitigation of exercise-induced muscle damage (Fouré and Bendahan, 2017).

Leucine and isoleucine are key BCAAs that have been found in high concentrations in various fish species (Cruzat et al., 2018). Furthermore, leucine, isoleucine, and valine have been detected in a variety of marine products, such as tuna, mackerel, emperor fish, silky shark, lobster, and crab (Mohanty et al., 2014). These findings highlight the potential of marine-derived products as a valuable source for developing sports-nutrition supplements (Fouré and Bendahan, 2017). Recent studies have found that GBH decreases lactate, ammonia, and CK levels after acute exercise. Post-exercise muscle damage indicators such as CK are indicative of muscle damage, including muscular dystrophy and rhabdomyolysis (Chen et al., 2016). Reviews examining the effects of BCAAs on muscle damage markers and soreness have indicated a positive impact (Doma et al., 2021; Khemtong et al., 2021).

GBH’s attenuation of CK levels suggests a protective effect against exercise-induced muscle damage, which could potentially lead to enhanced performance through reduced accumulation of detrimental metabolites. The abundance of BCAAs and glutamine in GBH may explain its efficacy in reducing lactate, CK, and ammonia levels, thereby mitigating muscle soreness and reduce fatigue. A possible key contributor to this effect could be glutamine, which is a plentiful free amino acid in plasma and skeletal muscle that plays a crucial role in protein synthesis (Cruzat et al., 2018).

During exercise, energy is primarily derived from the oxidation of muscle and liver glycogen, which is supplemented by liver gluconeogenesis and exogenous carbohydrate intake. Notably, glycogen stores and glucose uptake in skeletal muscle are the predominant substrates used during prolonged exercise (Kimura et al., 2011). Glycogen content is a crucial determinant of fatigue, and GBH supplementation has been found to enhance glycogen accumulation, thereby improving aerobic exercise capacity. This increase in muscle glycogen may directly enhance exercise performance and mitigate physical fatigue.

Grouper Bone Hydrolysate (GBH) demonstrates potential in enhancing exercise performance through a range of biochemical mechanisms attributed to its high concentration of bioactive peptides, amino acids, and branched-chain amino acids (BCAAs). Evidence indicates that GBH increases fatty acid oxidation and reduces adipose tissue, optimizing energy utilization during prolonged exercise. Specific peptides within GBH, have been shown to improve digestion and enhance glucose uptake in muscle and liver tissues, facilitating rapid recovery and consistent energy availability. The BCAAs content in GBH supports protein synthesis, increases endurance, and mitigates muscle damage markers such as creatine kinase (CK), thereby reducing post-exercise metabolic waste. Additionally, elevated levels of BCAAs in GBH are linked to decreased lactate and ammonia accumulation, which contributes to delayed onset of fatigue and improved recovery. Furthermore, GBH supplementation has been associated with enhanced glycogen storage in muscle tissues, providing a sustained energy source that delays fatigue during endurance activities. Collectively, these mechanisms underscore the utility of GBH as a functional supplement in sports nutrition, offering benefits that support endurance exercise performance.



5 Conclusion

This study has investigated GBH as a food residue derived from hydrolysis of grouper bone, which is rich in BCAAs and potentially bioactive peptides. Enzymatic hydrolysis yielded GBH with a hydrolysis rate of 29.95% and peptide concentration of 117.03 mg/mL. Preliminary analysis suggested the presence of di-and tetrapeptides.

Four weeks of GBH supplementation in mice led to a decrease in fat mass and improved fatigue resistance, as evidenced by reduced fatigue-related serum markers. Additionally, GBH supplementation enhanced forelimb grip strength, treadmill exhaustion time, and glycogen content. These findings highlight the potential of GBH as an upcycled food product and nutritional supplement to enhance endurance exercise performance by mitigating fatigue indicators. Nevertheless, further research is needed to elucidate the mechanisms through which GBH affects energy homeostasis and its potential as a nutritional supplement.
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Ensuring effective and sustainable management of organic waste is a global challenge, especially in countries with limited land, such as Japan, where reducing, reusing, and recycling food waste is particularly crucial. The present research used the theory of consumption values (TCV) to investigate the main factors that encourage Japanese households to engage in composting. The hypotheses were evaluated using ordinal partial least squares structural equation modeling (OrdPLS). The model results suggest that household composting in Japan is influenced by social approval (social value), the visibility of the behavior and existing knowledge about composting (epistemic value), convenience (functional value), interest in gardening or farming, and an individual’s availability to participate (conditional value). Factors such as emotions (emotional value), gender, type of housing, and household size did not significantly impact the practice of household composting. Both positive and negative functional aspects of composting were found to significantly affect perceptions of convenience, thereby indirectly influencing the decision to compost. The findings suggest that promoting ongoing training and support, improving convenience, and linking household composting with urban farming, community gardens, or public spaces could enhance participation, even among those who do not garden.
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1 Introduction

Food production and its consequent loss and waste are major contributors to land erosion, biodiversity degradation, water pollution, and greenhouse gas emissions (Ritchie et al., 2022; Dhull et al., 2024). A significant portion of the produced food is wasted without ever being consumed. Only in 2021, 5.23 million tons of food were discarded in Japan’s entire food system (MOE, 2023a). From the total amount of food wasted, the Japanese Ministry of Agriculture, Forestry, and Fisheries (MAFF) estimates that 2.44 million tons (almost half of the total amount) came from households (MAFF, 2023).

Considering the high proportion of food scraps (e.g., fruit peels) in kitchen waste (Yamada et al., 2017; Okayama et al., 2021) and the shortage of available landfill sites for disposal (Liu et al., 2016) ensuring effective and sustainable methods for managing solid organic waste from households is a critical issue in countries like Japan. One of the methods that can play an important role in managing this type of waste is composting, which has been considered a primary food recycling process in Japan (Tanaka, 1999; Takata et al., 2012; Vázquez and Soto, 2017; Kopaei et al., 2021; Mihai et al., 2023).

Despite the possibility of strong odors, adverse effects on human health, or the presence of heavy metals if not properly managed (Cerda et al., 2018; Kopaei et al., 2021; Kunszabó et al., 2022; Mihai et al., 2023), composting, which is a biological process where microorganisms break down organic material, has the potential to reduce landfill emissions of greenhouse gases (GHGs) (Cerda et al., 2018; Kunszabó et al., 2022; Bhatia et al., 2023; Mihai et al., 2023). It can also promote local entrepreneurship, raise awareness of food waste produced, and provide nutrient-rich compost that can be used in gardens, agricultural land, and eroded soils (Cerda et al., 2018; Christie and Waller, 2019; Pai et al., 2019; Kunszabó et al., 2022; Bhatia et al., 2023; Mihai et al., 2023).

Composting systems can be large-scale, complex centralized operations or decentralized systems consisting of a network or standalone processes at a community, neighborhood, or household level (Pai et al., 2019; Bruni et al., 2020). In 2020, Japan had 100 central composting facilities (Kawai et al., 2020). Nevertheless, only about 17% of the municipalities had implemented some kind of food waste segregation system, and the actual percentage of waste delivered to composting facilities corresponded to less than 1% of the total waste generated (Kawai et al., 2020; MOE, 2021, 2023b).

On the other hand, several municipalities in Japan seem to rely on decentralized approaches, with more than half of them offering financial assistance to households to purchase electrical composting machines (Island Land Co. Ltd., 2023). Many of these cities also support the purchase of other types of household composting technologies and provide monitoring programs and training sessions (Loan et al., 2019; Edogawa City, 2022; Rare A, 2022; Go Green Kobe, 2023; Fukuoka City, 2024). Household composting, also known as home composting, involves collecting biodegradable garden waste or kitchen scraps and placing them in a container or heap, where natural decomposition breaks them down into nutrient-rich fertilizer (Purkiss et al., 2022). Notwithstanding, when looking at consumers’ practice rates of different Pro-Environmental Behaviors (PEB) across Asian cities (including major Japanese cities), Phuphisith et al. (2020), Lee et al. (2013), Kurisu and Bortoleto (2011), and Aoki et al. (2010) found that home composting was among the least popular PEB. Previous findings also suggested that home composting is mostly expressed by individuals who have high environmental concerns and try to lead healthy and sustainable lifestyles (Kurisu and Bortoleto, 2011; Lee et al., 2013; Kunszabó et al., 2022; Morais and Ishida, 2024).

Based on this discrepancy between home composting incentives and their low popularity among households, and in the absence of previous research addressing comprehensively this topic in Japan, the present study aims to clarify the main drivers for Japanese households to engage in home composting. This analysis also responds to the call for further efforts to understand the mechanisms of behavior change, particularly at the consumer level (Liu et al., 2016; Kawai and Huong, 2017; Wei et al., 2017). A deeper understanding of these mechanisms, such as social norms or psychological factors, can improve the framing and messaging of behavioral interventions, which can consequently impact their success rates (Hotta and Aoki-Suzuki, 2014; Abrahamse, 2020).

Despite the growing literature about food waste generation and its prevention, it seems research about the factors pondering the adoption of alternative ways of refusing food waste, such as household composting or food waste segregation schemes, is increasing at a slower pace (Wu et al., 2019; Kopaei et al., 2021; Ladele et al., 2021; Sewak et al., 2021; Nguyen et al., 2022), particularly in Japan. Previous papers were mostly based in the U.S. (Waliczek et al., 2016; Wu et al., 2019; Niles, 2020), Canada (Taylor and Todd, 1995; Taylor et al., 1997; Mckenzie-Mohr, 2000; Sussman and Gifford, 2013; DiGiacomo et al., 2018; Pickering et al., 2020; Ladele et al., 2021), or European countries like Sweden (Sterner and Bartelings, 1999; Bernstad, 2014; Linder et al., 2018) and the U.K. (Tucker and Speirs, 2003; Tucker et al., 2003; Edgerton et al., 2009; Nomura et al., 2012; Allison et al., 2022; Purkiss et al., 2022).

Except for Tanaka et al. (2011), which focused on a specific town in Hyogo prefecture, no research could be found about the drivers of household composting in Japan. In that study, Tanaka et al. (2011) found intention to be non-significant to the actions of people who were not engaging in composting previously. These findings seem coherent with previous literature stating that despite intention being considered an important predictor of behavior adoption (Ajzen, 1991; Bamberg and Möser, 2007), an intention-behavior relationship may not always be perfect (Boldero, 1995). The intention-behavior gap has been reported by several scholars (Kollmuss and Agyeman, 2002; Hassan et al., 2016; Sultan et al., 2020; Casais and Faria, 2022), and its “size” can vary upon the analyzed behavior (Barr, 2003). Particularly, in some studies in the field of recycling and food waste management, intention-behavior relationships were found weak or even non-significant (Davies et al., 2002; Karim Ghani et al., 2013). For such reasons, authors like Bortoleto et al. (2012) have excluded intention from the analysis of waste prevention behaviors. Building on these findings, instead of using the Theory of Planned Behavior (Ajzen, 1991), which has been widely used in waste-related behavioral models (Karim Ghani et al., 2013; Kopaei et al., 2021; Savari et al., 2023), the current analysis used as a theoretical framework the Theory of Consumption Values (TCV) (Sheth et al., 1991), which does not include intention towards behavior.

TCV (Sheth et al., 1991) is a widely known marketing framework that can be used by policymakers to define, reinforce, or modify strategies that address social and environmental issues (Tanrikulu, 2021). It relies on five values (functional, social, emotional, epistemic, and conditional) to explain consumers’ decisions toward a particular product/service. TCV is a robust approach comprising utilitarian and hedonic aspects of consumer behavior (Kaur et al., 2020; Tanrikulu, 2021). Therefore, it allows a straightforward inclusion of economic, psychological, situational, and social variables found relevant in previous papers into a single model.

By using this framework, the authors were also able to test under one decision model factors commonly associated with household composting, like knowledge and gardening interest (Loan et al., 2019), alongside less explored aspects such as one’s self-image (Nguyen et al., 2022) or project awareness and descriptive norms (Pickering et al., 2020). Thus, it presents a comprehensive model unique in literature. Descriptive norms have been mentioned as relevant to the decision by intervention-based studies (Mckenzie-Mohr, 2000; Nomura et al., 2012; Sussman and Gifford, 2013; Bernstad, 2014; Geislar, 2017; Linder et al., 2018), but to the authors’ knowledge, this is one of the few home composting behavioral models that has considered such effects. Although TCV has successfully explained and predicted behaviors across several sectors (e.g., food consumption, smoking, apparel, education, and tourism) (Tanrikulu, 2021), there is no previous research on household composting involvement.

Based on the characteristics of the collected data, the model hypotheses were tested with Ordinal Partial Least Squares Structural Equation Modeling (OrdPLS) (Cantaluppi, 2012; Cantaluppi and Boari, 2016), which is an extension of the Partial Least Squares Structural Equation Modeling (PLS-SEM) that can handle categorical indicators (Schuberth et al., 2018). While the use of PLS-SEM has surged in recent years (Hair et al., 2018; Sarstedt et al., 2022), literature on OrdPLS remains limited. Thus, the present paper also contributes to expanding the applications of this statistical tool.

With this analysis, the authors wish: (1) to find what are the main drivers of household composting decisions in Japan; (2) understand if the Theory of Consumption Values can be used to present a comprehensive behavioral model for home composting; and (3) extend the literature concerning OrdPLS applications.



2 Literature review

The reference literature was not collected using a specific protocol. Instead, the authors used Scopus and Google Scholar as search engines to collect relevant research based on the following keywords: composting; home composting behavior; household composting behavior; food waste reduction behavior; TCV; pro-environmental behaviors in Japan, Japanese consumption patterns; Japanese consumer; Japanese recycling laws; household food waste management; household food waste segregation, PLS-SEM, and OrdPLS. After being gathered, the abstracts of the articles were read to narrow down the reference literature to those aligned with the scope of this research project. Literature from the 80s to 2023 was collected. Even though papers from the 80s and 90s might be considered old, the authors decided to collect them as, in that period, Japan had a large revival of its composting industry (Kawai et al., 2020). Additionally, some papers were added upon the analysis of the reference section of the previously gathered articles.


2.1 Japanese household’s characteristics and environmental policy

Due to the low food self-sufficiency rate and lack of available landfill sites for disposal, food waste is a critical issue in Japan (Liu et al., 2016). In response to international targets, the Ministry of the Environment (MOE) and the Japanese Ministry of Agriculture, Forestry and Fisheries (MAFF) set a goal of halving the 2000 food loss and waste rate by 2030 (MAFF, 2019; Umeda, 2019). To do so, the Japanese Food Waste Recycling Law was first enacted in 2001 and has since been amended twice (in 2007 and 2015) (Joshi and Visvanathan, 2019). This Act intends to promote waste prevention and recycling loops (turn waste across the supply chain into animal feed or fertilizer) in the food industry (Liu et al., 2016; Fujii and Kondo, 2018; Umeda, 2019). In 2019, the Japanese government enacted a complementary law to reduce household food waste. According to this law, local and central authorities are to educate businesses and consumers and facilitate food re-distribution projects (Umeda, 2019).

Upon these targets and directives, each municipality implements them according to regional conditions. Several local governments in Japan rely on mechanisms centered around 3R (Reuse, Reduce, and Recycle) policies (Inaba et al., 2022). Additionally, the ‘mottainai’ philosophy, which implies showing gratitude for the food and a sense of regret for waste, also seems to be a popular approach (Sirola et al., 2019; Izumi et al., 2020; Setouchi City, 2021). However, it is noteworthy that a wide range of implementation strategies can be found throughout Japan (Hotta and Aoki-Suzuki, 2014; Inaba et al., 2022). These strategic nuances have been pointed out as one of the reasons for regional differences in the adoption of waste prevention behaviors from consumers (Kurisu and Bortoleto, 2011; Lee et al., 2013; Hotta and Aoki-Suzuki, 2014).

Japanese consumers have been considered more collective-oriented and risk-averse compared to other cultures (Synodinos, 2001; Ando et al., 2007, 2010), which can result in a stronger influence of social norms. Contrary to countries such as the U.S. and the Netherlands, in Japan, PEBs were positively associated with traditional education and altruistic values (Aoyagi-Usui et al., 2003; Kawasaki et al., 2022). Previous Japanese literature mentioned women being more aware of household waste generation and more engaged in waste prevention and ethical food consumption PEB (Kurisu and Bortoleto, 2011; Lee et al., 2013; Qian et al., 2020; Nakamura et al., 2022). This tendency does not appear to be exclusive to Japan (Morais and Ishida, 2024). Nonetheless, in a clustering analysis that included food waste recycling behaviors (including home composting), Morais and Ishida (2024) noted that the group with higher food waste recycling rates had a balanced gender distribution. The latter group seemed to have larger households (Morais and Ishida, 2024). This was also the case in a clustering analysis on backyard composting in Hungary (Kunszabó et al., 2022). Household size was found to be significant in curbside food waste collection by Ladele et al. (2021) and Wu et al. (2019) but not by Niles (2020).



2.2 Household composting and food waste segregation schemes literature background

Previous behavioral works on food waste recycling have focused either on household composting or curbside segregation schemes. In recent years, there has been an increase in the number of cities adopting collection schemes (Pai et al., 2019). However, food waste segregation schemes in Japan are still scarce (MOE, 2023b). As reference literature, the authors have considered decision-making models and intervention-based studies of both household composting and food waste segregation, as they both tackle food waste recycling and have been studied together in Widyatmika and Bolia (2023), Nguyen et al. (2022), Kala and Bolia (2021), Ladele et al. (2021), and Niles (2020). Despite possible differences in adoption reasons (Nguyen et al., 2022), these behaviors can be seen as complementary measures to reduce waste in landfills (Pai et al., 2019). Food waste recycling (composting, feeding animals with scraps, and so on) has also been used as part of models to explain overall food waste behavior (Parizeau et al., 2015; Abdelradi, 2018; Diaz-Ruiz et al., 2018; Pham et al., 2019; Attiq et al., 2021; Wu et al., 2023). For instance, Wu et al. (2023) found composting routines and using leftovers to feed pets can contribute to a higher food waste rate. Such findings are aligned with the idea that having a recycling option may result in a relaxation of prevention behaviors and that an increase in recycling rates may simply reflect a higher production rate (Ueta and Koizumi, 2001; Tucker and Farrelly, 2016; Ma et al., 2019; Oláh et al., 2022).

Household composting and food waste curbside segregation have often been associated with attitudes and perceptions towards behavior, knowledge, convenience and lack of control, socio-demographics, and gardening (Table 1). Despite case study evidence, only Pickering et al. (2020) and Allison et al. (2022) have considered program awareness and messaging in a behavioral decision-model. Similarly, only Nguyen et al. (2022) have included environmental self-image when studying food waste recycling behaviors.



TABLE 1 A literature summary in household composting and food waste segregation schemes.
[image: A detailed table presenting various scholarly articles on composting and waste management. Columns include Paper/Country, Theoretical Framework, Independent Variables, Dependent Variable, and Methodology. The table lists studies from multiple countries, highlighting different theoretical frameworks and methodologies applied to analyze composting behaviors, sorting variables, and intervention impacts. Variables include socio-demographics, environmental concerns, and incentives, with dependent variables like home composting and food waste sorting. Methodologies range from self-reported surveys to qualitative research, showcasing diverse approaches in the field.]

From the studies mentioned in Table 1, only a small number are based on theoretical behavioral frameworks. This supports the call for further applications of theoretical frameworks on understanding household-level food waste composting (Sewak et al., 2021). When a framework was used, the majority of articles applied integrated models based on the Theory of Planned Behavior (TPB) (Ajzen, 1991; Taylor and Todd, 1995; Taylor et al., 1997; Karim Ghani et al., 2013; Kopaei et al., 2021; Ladele et al., 2021; Rahman et al., 2022).

The time span between intention and behavior measurements has been pointed out as a limitation of frameworks like TPB (LaMorte, 2022). While authors such as Taylor and Todd (1995), Taylor et al. (1997), and Davies et al. (2002) have coped with this limitation by using data from different points in time, the present research uses data from a single point in time. In addition to allowing the inclusion of a wide spectrum of constructs and not depending on intention, the way the data was collected supports the choice of TCV as the theoretical framework for this analysis.




3 Materials and methods


3.1 Model hypotheses: TCV

In its simpler form, TCV has five main independent values (Figure 1), however, scholars often apply the framework using sub-dimensions within the values, particularly within the functional value (Tanrikulu, 2021). This analysis also incorporated sub-dimensions within the values.
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FIGURE 1
 TCV as suggested by Sheth et al. (1991).



3.1.1 Functional value

The functional value relates to the perceived utility acquired from the features and physical performance of a product or service (Kaur et al., 2020).

Scholars often include sub-dimensions such as price and quality under this value (Sweeney and Soutar, 2001; Lin and Huang, 2012; Gonçalves et al., 2016; Talwar et al., 2023), but factors such as efficiency (Peng et al., 2014), perceived convenience (Yang and Lin, 2017), and positive and negative features of the behavior (Sheth et al., 1991) have also been analyzed (Tanrikulu, 2021).

Given that the analysis focuses on engagement in a behavior, the authors followed the approach Sheth et al. (1991) used on the choice of whether or not to smoke and included under the functional value positive and negative features of household composting. In the present case, the items measuring positive (POS) and negative (CONS) attributes were adapted from previous literature on composting. More precisely, concerning positive attributes of composting, four items were included covering the perceptions that household composting can lower environmental impact than the mainstream disposal option, leave a better environment for future generations, reduce the amount of waste that is incinerated or ends up in the landfills, and the fact that compost can be used on gardening and agriculture (Fernando, 2021; Kopaei et al., 2021; Kunszabó et al., 2022; Loan et al., 2019; Mihai et al., 2023; Pai et al., 2019; Sewak et al., 2021).

Meanwhile, previous studies on household composting have identified smell, attracts vermin and other animals, lack of space, lack of organic waste, and necessary effort and time as barriers to household composting adoption (Tucker and Speirs, 2003; Tucker et al., 2003; Edgerton et al., 2009; Karkanias et al., 2016; Nsimbe et al., 2018; Fernando, 2021; Sayara et al., 2022). Seven items were included regarding the latter barriers to engagement.

The current model also tested the significance of household composting in terms of perceived convenience and lack of control (CONV). Convenience/Inconvenience was found to be a significant factor in backyard composting and food waste segregation (Taylor et al., 1997; Tucker and Speirs, 2003; Edgerton et al., 2009; Bernstad, 2014; DiGiacomo et al., 2018; Ladele et al., 2021; Nguyen et al., 2022). The four measurements used were based on Yang and Lin (2017), which tested convenience factors within the TCV framework, and convenience and lack of control items from Bortoleto et al. (2012) and Kopaei et al. (2021).

Aspects like time, space, and effort have often been associated with home composting convenience and lack of control perceptions (Taylor et al., 1997; Tucker and Speirs, 2003; Nguyen et al., 2022), in addition to the direct effect of positive and negative attributes on household composting, their indirect effects through convenience were also hypothesized. When applying TCV to over-the-top media services, Talwar et al. (2023) incorporated concepts from the means-end chain framework (Gutman, 1982) and hypothesized different levels of TCV values. Under this layout, the indirect effect of functional value (quality) through functional value (price) was tested (Talwar et al., 2023). Similarly, indirect effects were also hypothesized in the current model. Nevertheless, contrary to Talwar et al. (2023) and given the majority of sustainable marketing research assumed the independence of values (Tanrikulu, 2021), the present analysis kept such assumption and only considered the indirect paths within a specific value.


H1: PROS → CONV: perceived positive features impact home composting perceived convenience.
H2: CONS → CONV: perceived negative features impact home composting perceived convenience.
H3: PROS → COMP: perceived positive features impact home composting adoption.
H4: CONS → COMP: perceived negative features impact home composting engagement.
H5: CONV → COMP: perceived convenience impacts home composting involvement.





3.1.2 Social value

Social value (SOC) measures the perceived utility acquired from a product or service’s association with one or more social groups (Sheth et al., 1991). It is related to aspects such as social approval and self-image improvement. Taylor and Todd (1995) and Taylor et al. (1997) mentioned that once household composting happens indoors, the effect of social factors such as perceived pressures and opinions from family, colleagues, or the community (subjective norms) may be weakened. On the other hand, comparison studies between Western countries and Japan have emphasized the importance of community and social cohesion in Japanese culture (Ando et al., 2007, 2010).

Previous behavioral models on household composting have mostly measurements of subjective norms, such as “people think I should compost” (Taylor and Todd, 1995; Taylor et al., 1997; Tucker and Speirs, 2003; Edgerton et al., 2009; Kopaei et al., 2021), but only Nguyen et al. (2022) have included a construct addressing self-identity in a model. Under TCV’s social value, both perspectives can be captured. This analysis included four measurement items based on Kopaei et al. (2021), Khan and Mohsin (2017), and Bortoleto et al. (2012). The items are related to one’s self-image as being eco-friendly, as well as pressures from peers’ suggestions.


H6: SOC → COMP: social value is significant to home composting adoption.
 



3.1.3 Emotional value

The concept of emotional value (EMT) pertains to the capacity of an alternative to evoke or sustain emotional or affective states (Sheth et al., 1991). These emotions can be positive, negative, or a combination of both (Kushwah et al., 2019). Research has identified a range of emotions associated with decision-making, including anxiety, anger, confidence, personal/moral obligations, playfulness, enjoyment, and satisfaction (Sheth et al., 1991; Lin and Huang, 2012; Khan and Mohsin, 2017; Yang and Lin, 2017; Teng, 2018).

Previous literature on household composting and food waste recycling behaviors found variables such as ascription of responsibility, environmental concern, harmonious and obsessive passion, and personal norms significant to behavior (Bortoleto et al., 2012; Kopaei et al., 2021; Ladele et al., 2021; Rahman et al., 2022). When studying drivers to backyard composting intention, Kopaei et al. (2021) and Rahman et al. (2022) found that ascription of responsibility, personal norms, and feelings of excitement were significant for home composting intention. Additionally, Ladele et al. (2021) mentioned that environmental concern was a driver of waste diversion behaviors.

Based on both previous research on household composting and the application of TCV (Sheth et al., 1991; Bortoleto et al., 2012; Lin and Huang, 2012; Teng, 2018; Kopaei et al., 2021), this model’s emotional construct covered environmental concern, satisfaction, and personal norms with five items.


H7: EMT → COMP: emotional value impacts composting adoption.
 



3.1.4 Epistemic values

Epistemic value refers the ability to composting to spark curiosity, introduce new insights, and/or satisfy the pursuit of knowledge (Sheth et al., 1991; Kushwah et al., 2019; Tanrikulu, 2021). Measurements related to this value have comprised items concerning knowledge acquisition, willingness to learn, curiosity, visibility (advertisement, example of friends), as well as novelty and current knowledge status (Sheth et al., 1991; Lin and Huang, 2012; Wen and Mohd. Noor, 2015; Khan and Mohsin, 2017; Kaur et al., 2020). The present paper focuses on the visibility (VIS) and knowledge status (SKNG) sub-dimensions.

Researchers have often pointed out that monetary assistance and training are good strategies for increasing composting engagement (Loan et al., 2019; Pai et al., 2019; Wu et al., 2019; Kunszabó et al., 2022). Nevertheless, despite many Japanese municipalities providing incentives like financial support (Island Land Co. Ltd., 2023), household composting is among the least common PEB (Aoki et al., 2010; Kurisu and Bortoleto, 2011; Lee et al., 2013; Phuphisith et al., 2020; Morais and Ishida, 2024).

The framing of an initiative and its messaging can influence its success (Abrahamse, 2020). Based on the latter premise, previous composting intervention-based studies explored the impact of messaging based on know-how and descriptive norms (information about the behavior of others) on engagement (Mckenzie-Mohr, 2000; Nomura et al., 2012; Sussman and Gifford, 2013; Bernstad, 2014; Geislar, 2017; Linder et al., 2018). Nonetheless, when it comes to decision models, to the authors’ knowledge, besides Pickering et al. (2020), there is no paper testing descriptive norms and program awareness within a decision-making model. The visibility construct of the present model addresses how visible composting programs are to respondents, considering both perceptions of the behavior of the community and awareness of ongoing programs. The measurements used were adapted from Kaur et al. (2020) and Sheth et al. (1991).

Moreover, in PEB research, knowledge has often been considered an important driver of adoption (Kurisu, 2015). Knowledge about how to compost is commonly recognized as significant for household composting adoption (Edgerton et al., 2009; Loan et al., 2019; Nsimbe et al., 2018; Pickering et al., 2020). It has even been pointed out as a possible reason why people prefer backyard composting over food waste segregation schemes (Ladele et al., 2021). Thus, in addition to the visibility construct, a variable related to the current home composting knowledge status was tested in the model. It comprised two items about home composting’s process and definition based on Wen and Mohd. Noor (2015) and Loan et al. (2019).


H8: VIS → COMP: Home composting incentives visibility is significant to household composting involvement.

H9: SKNG → COMP: Knowledge about household composting impacts home composting adoption.
 



3.1.5 Conditional value

The conditional value is associated with the utility of a product or service as the consequence of a set of circumstances or specific situations the choice maker faces (Sheth et al., 1991; Tanrikulu, 2021). It comprises aspects like time, place, and context that enhance its functional or social value (Sheth et al., 1991; Kushwah et al., 2019; Tanrikulu, 2021). Under the conditional value, two sub-dimensions were tested.

Unlike other PEB, composting has been identified as a behavior that can be highly influenced by non-environmental factors (Edgerton et al., 2009). In particular, when analyzing simultaneously food waste segregation and household composting, Nguyen et al. (2022) and Niles (2020) mentioned that the presence of a garden is one of the factors for individuals to choose household composting over food waste segregation schemes. Moreover, several scholars have highlighted the connection between gardening/farming and the choice of home composting (Tucker and Speirs, 2003; Tucker et al., 2003; Edgerton et al., 2009; Nsimbe et al., 2018; Loan et al., 2019; Kunszabó et al., 2022; Sayara et al., 2022; Morais and Ishida, 2024). Thus, in the present analysis, one of the sub-dimensions associated with the conditional value concerns the respondents’ farming/gardening (GDN) interest.

The second sub-dimension addresses the time and financial availability (AVB) of the people of the sample. The perception of a lack of time, regardless of a person’s actual free time or the time required for the process, has been identified as a constraint to engagement (Edgerton et al., 2009; Wu et al., 2019). Pickering et al. (2020) also pointed out acquisition costs as a barrier. Thus, based on the latter authors, the present analysis tested three items regarding whether the respondents have the financial and time conditions necessary to engage in household composting if they wish to do so.


H10: GDN → COMP: gardening/farming interest impacts home composting engagement.

H11: AVB → COMP: availability impacts home composting engagement.
 



3.1.6 Control variables

Gender (GENDER), house type (HOUSE), and household size (SIZE) were used as control variables. The role of socio-demographics, such as gender or education, in PEB adoption has not been consistent in the literature (Kurisu, 2015). This extends to home composting and segregation schemes’ academia. For instance, some pointed out the gender, house type, income, household size, and children to be significant to household composting and green bin schemes (Edgerton et al., 2009; Pickering et al., 2020; Kala and Bolia, 2021). On the other hand, Nsimbe et al. (2018), Sterner and Bartelings (1999), and Loan et al. (2019) found none of the latter socio-demographics and house characteristics impactful (at a 5% significance level) on household composting.

Despite previous studies mentioning residential areas (urban, rural) and age (Edgerton et al., 2009; Wu et al., 2019; Niles, 2020) as important factors in food waste recycling, these two variables were not included in this study. The percentage of respondents living in rural areas was approximately 4% of the total sample, which is lower than the national percentage in recent years (8%) (World Bank, 2024). Thus, the authors considered that including this variable would not show trustworthy conclusions about its impact on home composting decisions. Moreover, age was not included as it did not present a linear relation with the main dependent variable. Considering that having children directly contributes to a larger household, only the latter variable was analyzed in the model.


H12: GENDER → COMP: Gender is significant to home composting engagement.

H13: HOUSE → COMP: The house type (apartment or house) affects home composting involvement.

H14: SIZE → COMP: The household size is significant to home composting adoption.
 



3.1.7 Household composting engagement

Household composting engagement has been commonly assessed either by the yes or no categorical items (Edgerton et al., 2009; Tanaka et al., 2011; Nsimbe et al., 2018; Widyatmika and Bolia, 2023) or frequency measurement like Likert scales (Taylor et al., 1997; Karim Ghani et al., 2013; Karkanias et al., 2016), but some studies have used a three-level categorical variable (yes, dropout, no) instead (Tucker et al., 2003; Tucker and Farrelly, 2016) (Table 1). Moreover, Loan et al. (2019) analyzed in separate models both backyard composting adoption (yes, no) and adoption frequency (minimal, moderate, frequent). Taking advantage of the OrdPLS analytical capabilities, the current analysis used as measurements of household composting involvement a categorical question based on Tucker and Speirs (2003) and Tucker et al. (2003), alongside a food waste composting frequency scale measured on a 6-point Likert scale.




3.2 Statistical tools: OrdPLS

As the dataset has non-equidistant categorical indicators, including an item related to the home composting dependent variable, the model hypotheses were tested using an OrdPLS. OrdPLS is an extension of PLS-SEM that can cope with categorical data by using the polychoric correlation matrix (Cantaluppi, 2012; Schuberth et al., 2018; Sarstedt et al., 2022).

PLS-SEM and its extensions are multivariate analysis techniques that allow the use of abstract concepts (latent variables) as part of the model and are able to estimate multiple dependence relationships (Hair et al., 2018). Some of the core features of PLS are its lack of distributional assumptions and sample size requirements (Cantaluppi, 2012; Schuberth et al., 2018; Hair and Alamer, 2022). However, as OrdPLS is based on polychoric correlation, which assumes normality for the latent variables, OrdPLS can no longer be considered free of distributional assumptions (Cantaluppi, 2012; Schuberth et al., 2018). This appears to be a strong assumption, but the algorithm is prepared to deal with manifest variables that derive from normality, and it can counterbalance the bias associated with the PLS techniques (Cantaluppi, 2012).

Academics also pointed out that PLS techniques are more adequate when the research has a predictive side, the goal goes beyond testing established theoretical frameworks, or the analysis comprises formative variables (Hair and Alamer, 2022). While this analysis is based on TCV, it presents some modifications to the original framework presented by Sheth et al. (1991), thus adding an exploratory side to this research.

SEM modeling consists of the estimation of two models: the outer (measurement) model and the inner (structural) model. The measurement model displays the relationships between the constructs and the indicator variables. They can be either reflective or formative. A reflective relationship implies the indicators are a “manifestation” of the latent concept (Wold, 1985). On the other hand, a formative relation implies the construct is a linear combination of its indicators (assumed not highly correlated) (Hair and Alamer, 2022). The present research uses reflective variables.

The authors of the present analysis acknowledge that PLS-SEM is a composite-based approach, so some scholars recommend the use of PLSc (in this case OrdPLSc) when the model has reflective variables (Dijkstra and Henseler, 2015; Schuberth et al., 2018; Hair and Alamer, 2022; Sarstedt et al., 2022; Henseler and Schuberth, 2023; Ringle et al., 2023). Nonetheless, due to the ongoing debate among PLS scholars about the advantages and disadvantages of using such an extension and the scarce literature available on PLS categorical applications, OrdPLSc was not used (Schuberth et al., 2018; Hair and Alamer, 2022; Sarstedt et al., 2022; Henseler and Schuberth, 2023; Ringle et al., 2023).

The inner model displays the relationships (paths) between the constructs (latent variables). These relationships can be direct or indirect depending on the existence of a mediating construct. When testing mediation effects, one can gain a deeper understanding of the causal mechanism underlying the relationship between two variables (Henseler, 2021). There may be cases of non-mediation (if the indirect effect is non-significant), full mediation (if the direct effect is non-significant), complementary partial (when the indirect and direct effects point in the same direction), or competitive partial mediation (when the direct and indirect effects have opposite directions) (Carrión et al., 2017).

Both outer and inner models should be evaluated to assess the model quality. First, the outer and then the inner. If the outer model is not scrutinized, the inner model’s analysis can be compromised.


3.2.1 Evaluation of the reflective measurement model

Reflective measurement models should be evaluated regarding constructs’ internal consistency reliability (Cronbach’s α and Joereskog’s rho, also known as [image: I'm sorry, it seems that you've uploaded mathematical text or a symbol instead of an image. Please provide an image file or a URL to an image, and I'll be able to generate the alternate text for it.] as lower and upper boundaries, respectively, 0.70 ≤ x < 0.95), indicators’ reliability (loadings ≥0.708), convergent validity (average variance extracted (AVE) ≥ 0.50), and discriminant validity (Heterotrait-monotrait ratio of correlations (HTMT/HTMT2) < 0.85 or < 0.90 for similar concepts) (Sarstedt et al., 2022; Ringle et al., 2023).



3.2.2 Evaluation of the structural model

One should check for collinearity issues among the model constructs (VIF < 3 is uncritical, and 3 < VIF < 5 is usually uncritical) (Ringle et al., 2023). Following, the significance and relevance of the structural model relationships (p-values of path coefficients), the explanatory power, the predictive power, and model fit should be evaluated. Concerning explanatory power, a [image: The image shows the mathematical notation "R" with a superscript "2," representing "R squared."] > 0.75 is often considered substantial, and a [image: Mathematical notation showing \(R\) with a squared superscript, representing the statistical measure of the proportion of variance in a dependent variable predictable from the independent variable(s).]> 0.50 moderate (Hair et al., 2021). However, [image: Mathematical notation showing \( R^2 \), representing the coefficient of determination in statistics, which indicates the proportion of the variance for a dependent variable that's explained by an independent variable in a regression model.] value depends on context, and its interpretation should be based on the research domain being examined (Hair and Alamer, 2022).

When the analysis focuses on prediction and explanation, researchers should consider the trade-off between these two aspects (Ringle et al., 2023). Thus, the present analysis assessed the standardized root mean square residual (SRMR) to address the explanatory side of the method (Schuberth et al., 2023) and compared the model prediction errors (MAE) of the dependent variable to the ones of a naive linear model benchmark (Shmueli et al., 2019; Hair et al., 2021). At least half of the errors should be inferior to the benchmark model (Shmueli et al., 2019), and the SRMR should be no bigger than 0.08 (Cho et al., 2020; Dash and Paul, 2021). It is important to note that under the presence of composite variables and categorical items, such cut-off values may not be accurate (Schuberth, 2022; McNeish, 2023).




3.3 Data collection

The analysis was based on the same data sample of Morais and Ishida (2024). Although the latter paper focused on the adoption patterns of PEB across the purchase, usage, and disposal of food products, it did not present in-depth information about the household composting decision-making process. By exploring household composting choice of behavior, the present research addresses one of the future research points highlighted by the previous authors. The data was collected between 2022-09-20 and 2022-09-21 through an online questionnaire, and the sample included 1,500 Japanese respondents over 30 years old who accessed the survey via a marketing research company. Not all 47 Japanese prefectures were represented in the sample. Instead, the sample included 9 highly populated prefectures: Aichi, Chiba, Fukuoka, Hyogo, Kanagawa, Kyoto, Osaka, Saitama, and Tokyo. Tokyo is the most populated area, followed by Kanagawa, Osaka, and Aichi. With a Japanese adult population of 126.146 million people in 2020, approximately 60% resided in the selected regions (Morais and Ishida, 2024).

Additionally, these prefectures were selected for their distinct approaches to waste management. For example, Aichi promoted waste reduction programs early, and at least two towns in Fukuoka made zero waste pledges (Kurisu and Bortoleto, 2011; Hirose, 2015; Life Hugger and Lee, 2023). To have a sample that closely matched the age, gender, and geographic distribution of the Japanese population, a quota sampling technique was used.

To better understand the results, three points should be addressed. First, as many young Japanese aged between 18 and 30 still live with their parents and the early twenties is a period associated with academic pursuits (Nishi, 2017; MEXT, 2019), the study focused on the population over 30 years old. Second, even though there is a marginal number of elders over 70, the quota of the elderly group, in proportion to the population composition, was based on the population between 60 and 69. This was preferred given the low percentage of elders registered for the Internet surveys. Finally, as the survey was done in Japanese, only Japanese citizens were included in the sample.

As mentioned in the above sub-sections, the survey addressed the conditional, emotional, epistemic, social, and functional values related to household composting engagement. With the exception of the questions about garden/farming interests (“I am interested in farming,” “I am interested in backyard/community gardening,” “I am interested in the balcony herb garden,” “I have no interest in the above options”), home composting behavior (no, used to, yes), and awareness of home composting support programs (“I do not know,” “I know they are available, but I do not know the details,” “I know whether or not they are available”), the majority of the items were addressed on 6-point Likert scales (e.g., 1-never 6-always, 1-strongly disagree 6-strongly agree). A 6-point Likert scale was preferred over a 7-point Likert scale since Japanese respondents tend to choose “neutral” answers (Kurisu, 2015). According to Norman (2010), Likert scales yield robust results in several parametric applications, and multiple studies within PEB research have found significant results under the continuity assumption (Dorce et al., 2021; Kunszabó et al., 2022; Nguyen et al., 2022; Morais and Ishida, 2024). The present analysis also assumed Likert scale items to be continuous.




4 Results

The data were analyzed using the R (4.2.1) programming language via Rstudio (5.5.4). Regarding the analytical package, the OrdPLS results were obtained with the cSEM (0.5.0). The bootstrapping was set to 5,000 times.


4.1 Descriptive results

The initial sample had 1,500 participants, but two observations were excluded due to missing data. Among the respondents, 49.7% were female, and 50.3% were male (Morais and Ishida, 2024). The sample consisted of Japanese adults over 30 years old, where 22.3% of them were in the 30–39 age range, 29.5% were between 40 and 49 years old, 26.2% in their 50s, and the remaining 22.0% were over 60 years old (Table 2). Roughly 30% of the participants had at least one child living with them, and the most prevalent household arrangement had the respondent cohabiting with another individual, such as a parent, spouse, or child (Morais and Ishida, 2024).



TABLE 2 Sample socio-demographics (adapted from Morais and Ishida, 2024).
[image: A demographic table presents various variables and their corresponding categories with numbers and percentages. Variables include gender, age, region, educational level, marital status, household size, living with children, yearly income, house type, and job. Each category lists the number of individuals (N) and their percentage (N%). For instance, 50.3% are male, 53.8% have a university degree, and 61.8% are married. The table also references income in yen, with an exchange rate note for 2022.]

Regarding education and career, 66% of individuals had a university degree or its equivalent (e.g., vocational school), 30% completed high school, and 4% held a junior high school diploma (Morais and Ishida, 2024). After their education, 41% of the participants followed the corporate career path, and 20% were housewives or husbands. The most frequently reported annual household income range was between 4 and 6 million yen (Morais and Ishida, 2024). The average household income in Japan was 5.5 million yen per year in 2021 (MHLW, 2023), thus aligning with the survey statistics.

Approximately 13% of the respondents reported having previous household composting experience, but only 6.1% were engaged. Regarding engagement frequency, the average score was 1.91 (6–always and 1–never). It is important to note that the frequency item asked if people used organic waste as a fertilizer, whereas a composting definition was given to those unfamiliar with the concept of the involvement categorical item. Therefore, if a person uses eggshells, seaweed, or coffee grounds directly in the garden as fertilizer, they may have answered no on the categorical home composting question but reported recycling organic matter as fertilizer/stabilizer.



4.2 Assessment of the measurement (outer) model

The results regarding the outer reflective model are available in Tables 3, 4 and Appendix 1. All loadings, except for CONV1, were greater than 0.7. Regardless, the item was kept in the study once removing it did not significantly increase internal consistency reliability or convergent validity (Hair et al., 2021). All the AVE values were superior to 0.50, and Cronbach’s α and [image: The image shows the Greek letter rho with a subscript "c," often used in scientific contexts such as representing density or charge density.] bigger than 0.70. The [image: It appears there was a misunderstanding. Please upload the image or provide a URL for me to generate the alternate text.] of the home composting and knowledge constructs were bigger than 0.95, which could imply some redundancy (Ringle et al., 2023). However, considering that Joereskog’s rho ([image: It seems like you've provided a text snippet instead of an image. If you meant to upload an image, please try again. If you have any other questions, feel free to ask!]) is seen as an upper boundary and the Cronbach’s α of these variables were inferior to 0.95, the authors considered no reliability issues.



TABLE 3 Reliability measurements.
[image: A table displays constructs with associated values for AVE, Cronbach's alpha, and Joereskog's rho. Constructs include PROS, CONS, CONV, AVB, VIS, SKNG, EMT, SOC, and COMP. AVE values range from 0.59 to 0.93. Cronbach’s alpha ranges from 0.82 to 0.94. Joereskog's rho ranges from 0.82 to 0.97.]



TABLE 4 Discriminant validity: HTMT.
[image: A correlation matrix displaying relationships between constructs: PROS, CONS, VIS, SOC, AVB, EMT, SKNG, CONV, COMP. Diagonal shows perfect correlations of 1.00. Values range from 0.02 to 0.74, with some marked by asterisks indicating null HTMT2 values.]

All HTMT values were smaller than the maximum recommended by academia. Nonetheless, when running the model, a warning appeared regarding the HTMT/HTMT2 assumption that all intra-block and inter-block correlations between indicators must be all-positive or all-negative (Schuberth, 2022; Ringle et al., 2023). That is an issue already identified and addressed in academia (Ringle et al., 2023), but despite some software having updated versions of both HTMT and HTMT2, it is not yet the case for the cSEM package. According to Ringle et al. (2023), negative correlation patterns among indicators may often occur when measuring emotion or personality traits. However, since the HTMT aims to determine the indicators’ empirical overlap, their signs are not decisive (Ringle et al., 2023). HTMT2 also has the tendency to show inadmissible solutions when the construct correlations are low (Ringle et al., 2023). In turn, small construct correlations favor the occurrence of negative indicator correlations (Ringle et al., 2023). The latter also implies that discriminant validity issues are less likely to emerge (Ringle et al., 2023). After checking the correlation values of the indicators of the constructs that triggered the warning (Appendix 2), the authors concluded that the model did not present discriminant validity issues (no correlation was bigger than modulus 0.23).



4.3 Assessment of the structural (inner) model

The variables used in the structural model had VIF values less than 3 (Table 5). The [image: Adjusted R squared formula component, represented as "R" with a superscript "2" followed by the subscript "adj".] were 0.32 for convenience and 0.68 for home composting behavior (Figure 2). One of the household composting items showed a smaller Mean Absolute Error (MAE) than the naive linear benchmark model, while the other was larger. Thus, implying a moderate predictive power (Shmueli et al., 2019). Note that one of the limitations of OrdPLS is that the predictive values of the categorical items are dependent on the calculation method used (“mean” or “median”) (Cantaluppi, 2012; Schuberth et al., 2018; Schuberth, 2022). In this analysis, the approach chosen was the “mean”. Moreover, the naive linear benchmark model considers all the variables continuous. The SRMR value was 0.077 (<0.08), implying a good model fit.



TABLE 5 VIF table.
[image: Table displaying VIF (Variance Inflation Factor) values for two models, CONV and COMPOST. For PROS and CONS, CONV values are both 1.49 and COMPOST values are 2.78 and 2.23, respectively. COMPOST values include CONV 1.61, AVB 1.73, GDN 1.87, SKNG 1.79, SOC 2.50, EMT 2.55, SIZE 1.17, GENDER 1.13, and HOUSE 1.16. Values for CONV are absent for other variables.]

[image: Diagram depicting relationships between various value types and their impact on "COM POST" with a value of 0.68. Functional values include PROS, CONS, and CONV, with significant paths to COM POST. Epistemic values include VIS and SKNG. Other values include EMT, SOC, GDN, and AVB. External factors such as gender, house type, and household size are also shown. Significance is marked at 1% with SRMR less than 0.08.]

FIGURE 2
 TCV model results. PROS, functional advantages; CONS, functional disadvantages; CONV, Convenience; VIS, Behavior Visibility; SKNG, Behavioral Knowledge; EMT, Emotional Value; SOC, Social Value; GDN, Gardening; AVB, Availability.


Not all the hypotheses were significant (p-value<0.05) to explain/predict household composting involvement. None of the control variables were significant for COMP at a 5% p-value. Nevertheless, assuming a 10% significance level, the house type would be included in the model, suggesting that living in a house rather than an apartment positively impacts the home composting decision. Within the functional values, neither PROS nor CONS had a direct impact, but both had a significant indirect impact on household composting through convenience, which was fully mediated by the latter variable (Tables 6, 7). Social and epistemic values hypotheses were accepted (Table 6, Figure 2). The model results suggest that the latter values have a high impact on composting adoption. Among the sub-dimensions of the conditional value, both gardening and availability were found to be significant. Emotional value was not found to be significant in influencing the choice of behavior (Table 6).



TABLE 6 Path coefficients.
[image: Table displaying hypotheses testing results with path estimates, t-statistics, p-values, confidence intervals, and hypotheses acceptance. H1, H2, H5, H6, H8, H10, and H11 are accepted with significance levels indicated by asterisks, while others are rejected.]



TABLE 7 Indirect Effects.
[image: A table showing statistical analysis results. Under the headings Estimate, t-stat, p-value, Confidence Interval (95%), and Hypothesis: "PROS → CONV → COMP" shows 0.02, 2.86, 0.00, [0.01; 0.04], Accepted***. "CONS → CONV → COMP" shows -0.09, -3.86, 0.00, [-0.13; -0.05], Accepted***. Significance levels are indicated with asterisks: *p-value<10%, **p-value<5%, ***p-value<1%.]




5 Discussion

By applying the OrdPLS algorithm to test the hypotheses of a TCV decision model on household composting, this paper presented a comprehensive analysis and identified the main drivers of this behavior in Japan. Based on these results, several social, managerial, and theoretical implications can be drawn from them.


5.1 Social and management implications

Functional aspects were impactful, both directly and indirectly, on home composting engagement. The negative attributes of household composting seemed to have a stronger effect on convenience than the positive attributes. This suggests that finding ways to alleviate these barriers can increase convenience perceptions, which will reflect on household composting engagement. For instance, Kurniawan et al. (2013) mentioned the importance of recommending the appropriate composting technology based on regional characteristics.

A relevant finding of this model is the importance of the social value and composting visibility to home composting in Japan. Aligned with the idea that the Japanese are more collectively oriented and sensitive to social norms (Ando et al., 2007, 2010), and contrary to previous findings about the weak effect of subjective norms (Taylor and Todd, 1995; Taylor et al., 1997), social value, which comprised subjective norms and self-image items, had a significant effect on home composting adoption. These results also support Nguyen et al.'s (2022) findings about the importance of environmental self-identity to home composting choice of behavior. Thus, marketing relying on one’s self-image as an eco-friendly individual or as one connected with nature can be an effective strategy to foster this behavior, possibly leading to positive spillover effects in other behaviors, such as food waste prevention or waste recycling (Whitburn et al., 2020). Behavioral spillover implies that adopting one behavior may catalyze or reduce (in case it has a negative effect) engagement in others (Truelove et al., 2014; Abrahamse, 2019; Maki et al., 2019; Nash et al., 2019).

The significant effect of the home composting visibility construct also calls for raising awareness of the existing household composting support programs and the visibility of community efforts to reduce and recycle waste. In addition to having assistance available, it is important to develop effective marketing strategies so people know that such support exists. One way may pass precisely by using descriptive norms about community engagement as part of the interventions’ messaging.

Naturally, the messaging should be adapted based on the type of support available. To the authors’ knowledge, there is no extensive literature on waste reduction interventions or an overview of the strategies adopted by local governments in Japan. Such understanding, along with fostering ‘know-how’ sharing among municipalities, might be important for the effectiveness of future campaigns. For example, a food waste segregation scheme in Tsushima (Nagasaki) is being developed with the support of Osaki (Kagoshima), which is an internationally recognized successful case of food waste segregation (Morita, 2017; ISHES News, 2023; Osaki Town SDGs Council, 2024; Tsuruda, 2024).

Aligned with the idea that monetary support can be used as a strategy to foster household composting (Niles, 2020; Pickering et al., 2020; Kunszabó et al., 2022), it seems that many municipalities in Japan offer some kind of monetary assistance at the time of bin purchase (Island Land Co. Ltd., 2023). Based on the results of the current paper, framing this monetary assistance alongside technology/process information or building a network around people who were granted financial support might increase the popularity and long-term engagement of these schemes. Several researchers have emphasized the importance of practical training and continuous monitoring throughout the process (Tucker and Farrelly, 2016; Kawai and Huong, 2017; Jamal et al., 2019; Loan et al., 2019; Pai et al., 2019; Kala and Bolia, 2021; Sayara et al., 2022). Tucker et al. (2003) mentioned that unsuccessful compost production was one of the main reasons for dropout. A high dropout rate was one of the reasons Edogawa (Tokyo) stopped financing the purchase of composting bins and instead focused on investing in training and knowledge development (Edogawa City, 2022).

However, it is noteworthy that social influence may be stronger when the programs are relatively new, whereas it may not be the case once they are well-established programs and strong ideas toward the behavior have been formed (Pickering et al., 2020). This suggests that the messaging should be adapted to the intervention stage.

Financial and time availability were found to be significant to composting behavior, confirming Wu et al.'s (2019) findings on how the lack of time perception can act against home composting/segregation adoption. Moreover, in agreement with other previous scholars, gardening interest was proven to be an important condition for engaging in home composting (Tucker and Speirs, 2003; Tucker et al., 2003; Edgerton et al., 2009; Nsimbe et al., 2018; Loan et al., 2019; Kunszabó et al., 2022). Using compost in the garden/farm can reduce costs associated with soil amendments and avoid the usage of chemical products (Mihai et al., 2023). On the other hand, it poses the question of how municipalities should boost home composting when there is no gardening interest.

One solution might be to increase the integration between home composting projects and urban farms, owned community gardens, or public parks (Pai et al., 2019). For instance, in Japan, some NPOs and municipalities allow composters to give back their compost to farmers or municipal gardens (Kuchiba, 2022; Sapporo City, 2024). Another possibility may involve implementing a locality/colony-level decentralized system (Kala and Bolia, 2021) or centralized food waste collection programs, as seen in cities like Nagai City or Seattle (Kawai, 2019; Pai et al., 2019; Kawai et al., 2020). These types of systems can also alleviate the convenience constraints associated with home composting. On the other hand, by scaling up the systems, the role of the local authorities might become more prominent (Jamal et al., 2019). It also poses additional challenges such as the quality of the input and output material, system characteristics, logistics, demand/usage of the compost, associated costs, and overall long-term sustainability of the programs (e.g., depopulation of certain regions of Japan) (Tsurumi et al., 2005; Nigussie et al., 2015; Cerda et al., 2018; Jamal et al., 2019; Kawai, 2019; Paes et al., 2019; Iacovidou and Zorpas, 2022; Inaba et al., 2022; Rathore et al., 2022; Fang et al., 2023).



5.2 Theoretical implications

The use of TCV to model consumer choices has been increasing in recent years (Tanrikulu, 2021). Notwithstanding, to the authors’ knowledge, this is the first article to apply it to the choice of home composting. The results suggest that the TCV can be a resourceful tool when studying household composting, widening the scope of behaviors modeled by this theory. The present research also extended previous uses of the theory by including sub-dimensions within the values and assuming they can be related. While relations between sub-dimensions of the same value were hypothesized, no relation between values was assumed in this study. Value independence is a primary assumption of TCV, which has been upheld in the majority of studies on sustainable marketing (Tanrikulu, 2021). Nevertheless, some scholars have criticized this assumption, and studies using certain values as moderators or mediators can be found in academic literature (Khan and Mohsin, 2017; Tanrikulu, 2021; Talwar et al., 2023).

By using TCV, the authors were able to test, under the same model, multiple social components such as subjective norms, descriptive norms, and one’s self-image. Thus, it provides a robust picture of the importance of social values in home composting engagement in Japan. To the authors’ knowledge, this is the first study on household composting to include items on all these factors in a single model. The findings of the current model suggest that including measurements regarding one’s self-image and descriptive norms can increase the explanatory power of a home composting model.

This analysis found meaningful results that align with previous work in the home composting field using OrdPLS. Given the advantages of using PLS instead of CB-SEM (Hair and Alamer, 2022; Ringle et al., 2023), the authors would expect an increase in the adoption of this technique. OrdPLS was first proposed by Cantaluppi (2012) and Cantaluppi and Boari (2016), but despite its ability to handle categorical data, its use in the social sciences remains scarce. Its low adoption rate may derive from some of the difficulties encountered on the present model, namely: (1) To the authors’ knowledge, OrdPLS is only available in the cSEM R package, which does not have an HTMT index that can deal with different signs in the inter/intra-block correlation of the constructs (Ringle et al., 2023); (2) There is more literature available for its covariance-based counterpart, facilitating results assessment and methodology understanding; (3) There are still some limitations in its predictive modes (Schuberth et al., 2018); (4) The inclusion of categorical variables resulted in a considerable increase in the running time of the model when using cSEM. For a 5,000 times bootstrapping, the model running time was approximately 1 h and 23 min (on a computer with an Intel (R) Core (TM) i7-7600U CPU @ 2.80GHz 2.90 GHz processor and a 12GB RAM). The present analysis assumed the 6-point Likert scales were continuous and only modeled items with few and non-equidistant options as categorical. If the whole model were to be considered categorical, a longer running time would be expected.



5.3 Limitations and future research

Firstly, the results of this model confirm the idea that home composting can be highly influenced by non-environmental factors (Edgerton et al., 2009). Not all the values included in the research were significant at a 5% significance level. Previous authors stated that, depending on the analysis, some values may not be relevant to the choices of consumers (Sheth et al., 1991). That appears to be the case with the emotional value of household composting. Although previous research on this behavior found personal norms, harmonious passion, and obsessive passion to be significant (Kopaei et al., 2021; Rahman et al., 2022), this was not the case in the current analysis. A possible cause for this difference is that the latter studies addressed household composting intention rather than behavior adoption. As mentioned earlier, based on the intention-behavior gap identified by previous authors (Davies et al., 2002; Tanaka et al., 2011; Bortoleto et al., 2012; Morais and Ishida, 2024) and the fact that the data was collected at a single point in time, intention was not included in the model. However, analyzing such variables in a longitudinal study/intervention may show interesting findings.

Secondly, this analysis relied on self-reported qualitative data from 9 of the 47 prefectures and only considered respondents over 30 years old. While the included prefectures are among the most populated in Japan, the sample had a lower percentage of people from rural regions compared to the national average. Previous scholars noted differences between urban and rural areas in food waste generation, composting incentives, and adoption rates (Niles, 2020; Inaba et al., 2022; Nakamura et al., 2022). Therefore, further analysis of these nuances is needed.

Moreover, only the socio-demographics direct effect was studied, and age was not included in the model. According to Kala and Bolia (2021) and Widyatmika and Bolia (2023), different countries and social groups might prioritize incentives of distinct natures. Testing socio-demographics as a multigroup factor or a moderator may be helpful for future targeting of household composting campaigns.

While engagement rates can vary depending on the promotional approach (Hotta and Aoki-Suzuki, 2014; Abrahamse, 2019, 2020), it is important to understand how to sustain that engagement (Steg and Vlek, 2009). Only a small number of studies have examined home composting drop-out reasons and how people’s engagement changes over time (Tucker and Speirs, 2003; Tucker et al., 2003; Karkanias et al., 2016).

Finally, adding quantitative data and gaining a deeper understanding of ongoing Japanese programs is crucial for the development of sustainable composting systems, whether decentralized or central.




6 Conclusion and future research

The model results suggest that home composting in Japan is closely linked to social approval, behavior visibility, knowledge about the process, interest in gardening/farming, convenience, and a person’s availability to participate. The positive and negative functional aspects of household composting significantly influence the perception of an individual regarding the convenience of the composting activity. Consequently, these aspects indirectly affect the decision to engage in composting. Promoting community projects alongside continuous training and support are crucial elements of successful composting programs. Moreover, enhancing the convenience of composting and promoting circular systems—by better integrating home composting with urban farms, community gardens, or public parks—could boost adoption rates, even among those who are not traditionally interested in gardening.

This study expanded the scope of analysis of the TCV and successfully identified key drivers of home composting in Japan using a categorical PLS-SEM approach. However, further exploration of food waste disposal alternatives remains an increasingly important area that scholars and entrepreneurs should address in the future.
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Introduction: Rice straw burning is a major environmental concern in India, contributing to severe air pollution and climate change. Sustainable alternatives for its utilization are essential to mitigate these issues. One promising approach is repurposing rice straw as a growing medium for microgreens, addressing both agricultural waste management and the need for sustainable substrates. This study evaluates the feasibility of using pretreated rice straw as a substrate for microgreen cultivation and compares its performance with conventional substrates like cocopeat and vermiculite.
Methods: Rice straw was pretreated with sodium hydroxide (NaOH) at varying concentrations (1%–7%) to improve its physicochemical properties. Changes in ash content, water holding capacity (WHC), and suitability as a growing medium were assessed. Microgreens of amaranth, cabbage, and cauliflower were cultivated on pretreated rice straw, cocopeat, and vermiculite. Growth parameters, including plant length and fresh weight, were recorded. Additionally, the micronutrient content (Fe, Zn, Mn) of plants grown in different substrates was analyzed. Principal Component Analysis (PCA) was conducted to identify key factors influencing plant growth and nutrient uptake.
Results: NaOH pretreatment significantly improved the quality of rice straw, reducing ash content from 20.05% (untreated) to 7.10%–11.10% and increasing WHC to 673%, which was comparable to cocopeat (891%) and superior to vermiculite (389%). Among the microgreens tested, cabbage achieved the highest plant length (6.2 cm) and fresh weight (59.83 mg plant−1) when grown on rice straw. While vermiculite supported higher levels of essential micronutrients, including Fe, Zn, and Mn, rice straw demonstrated remarkable performance in plant growth and biomass production. PCA revealed that rice straw was positively associated with plant weight and length, whereas vermiculite correlated with micronutrient accumulation.
Discussion: The findings highlight the potential of pretreated rice straw as an effective alternative to conventional growing media. Despite vermiculite providing higher micronutrient availability, rice straw supported robust plant growth, making it a viable substrate for microgreen cultivation. Further fortification of rice straw could enhance its nutrient-holding capacity, making it even more comparable to existing commercial substrates. This study demonstrates that utilizing rice straw as a growing medium offers an eco-friendly, cost-effective solution for sustainable agriculture while reducing environmental pollution caused by straw burning.
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 rice straw; eco-friendly growing media; agri-waste management; microgreens; micronutrients
[image: Diagram showing the synthesis and characterization of rice straw substrate for microgreen production. Top left: SEM analysis image. Center: Cartoon of microgreens growing on rice straw substrate. Top middle: Bar chart showing ash percentage for untreated and NaOH-treated samples. Top right: Bar chart illustrating water holding capacity for cocopeat, rice straw, and vermiculite. Lower right: Bar charts depicting microgreen height and ion concentration for amaranth, cabbage, and cauliflower. Insets show rice straw preparation and treatment stages, with arrows indicating process flow.]
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Introduction

Rice (oryza sativa) straw burning is a significant environmental concern in India, particularly in agriculturally intensive states like Punjab, Haryana, and Uttar Pradesh (Parihar et al., 2023). This practice is widely adopted to quickly clear fields for the subsequent wheat crop, due to the short time interval between rice harvest and wheat planting. However, while efficient for field clearance, it has severe environmental and health repercussions. Burning rice straw releases large quantities of greenhouse gases, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). One ton of rice straw burning emits 1,460 kg of CO2, 60 kg CO, 5.7 kg of CH4, and 0.07 kg of N2O (Singh et al., 2017), contributing significantly to air pollution and climate change. In Punjab alone, 23 million tons of rice straw are burned annually, exacerbating atmospheric pollution (Asfar et al., 2021).

Addressing this problem requires sustainable alternatives to rice straw burning, and one promising solution is repurposing rice straw for microgreen production. Microgreens, the young and tender seedlings of various vegetables and herbs, have gained substantial popularity in recent years due to their intense flavours, vibrant colours, and high nutritional value. These miniature greens are typically harvested when the first true leaves have emerged, usually within 7–21 days after germination (Ghoora et al., 2020). Studies have shown that microgreens contain higher concentrations of vitamins, minerals and antioxidants compared to their mature counterparts, making them a valuable addition to the human diet (Bhaswant et al., 2023). With the growing demand for these nutrient-dense plants, there is an increasing interest in developing sustainable and efficient methods for their cultivation. One significant challenge in microgreen production is finding a suitable growing medium. Traditional substrates such as soil, peat moss, coco peat, perlite and vermiculite are commonly used, but they come with various drawbacks. Soil, cocopeat and peat moss can harbour pathogens and pests, requiring sterilization or treatment, which adds to the production cost and labour (Hoang and Vu, 2022). Vermiculite, although sterile and lightweight, is a mined product, raising concerns about its sustainability and environmental impact.

In this context, agricultural byproducts such as rice straw present a promising alternative. Rice straw is the dry stalk left after the harvesting of rice grains. It is an abundant and renewable resource, especially in rice-producing countries like India, China, and Japan. However, rice straw is often considered waste and is either burned or left to decompose in fields, leading to environmental pollution and waste management issues in India. Utilizing rice straw as a growing medium for microgreens could offer a sustainable solution, reducing agricultural waste while providing a cost-effective and eco-friendly substrate (Bhattacharyya et al., 2021).

Previous studies have explored the use of various agricultural residues as growing media for plants. For example, coconut coir, a byproduct of coconut processing, has been successfully used as a substrate for horticultural crops due to its excellent water retention and aeration properties (Fussy and Papenbrock, 2022). Similarly, research has shown that rice hulls, another rice byproduct, can be used effectively as a growing medium for various plants (Asfar et al., 2021). However, the use of rice straw specifically for microgreen production has not been extensively studied. The development of a seed growing substrate from rice straw involves few key steps: pretreatment of the straw to modify its physical properties, and the formation of the substrate. Pretreatment is a critical phase that can influence the softness and texture of the straw. Sodium hydroxide (NaOH) pretreatment is a widely used method to enhance the properties of lignocellulosic biomass, making it more suitable for various applications. NaOH treatment breaks down the lignin and hemicellulose components, increasing the accessibility of cellulose fibers and improving the softness and pliability of the material (Shah et al., 2023).

In this study, we aim to standardize a method for preparing a growing media from rice straw for microgreen production. The process includes pretreatment of dried rice straw with different concentrations of NaOH solution for varying durations, followed by neutralization and drying. The effectiveness of the rice straw as growing media was evaluated by cultivating microgreens such as amaranth, cauliflower and cabbage. The performance of the rice straw was then compared to traditional control media (cocopeat and vermiculite) in terms of microgreen growth and mineral content. The successful development of rice straw as growing media could revolutionize the microgreen industry by providing a sustainable and cost-effective alternative to traditional substrates. Moreover, this approach could help mitigate the environmental impact of rice straw disposal and contribute to a more circular economy in agriculture. By converting agricultural waste into valuable resources, we can promote sustainable agricultural practices and enhance food security.



Materials and methods


Preparation of rice straw seed growing media

Rice straw was sourced from the ICAR-RCER farm located at 25°35′30″N and 85°5′3″E, air-dried, and chopped into 2–4 cm pieces using a mechanical chopper. Chopped rice straw was pretreated with NaOH solutions at concentrations of 1, 2, 5, and 7% (w/v) for varying durations of 10, 20, and 30 min at boiling temperature to determine optimal conditions for softening (Sharma et al., 2019; Han et al., 2019; Böhm et al., 2024). The sample treated with 1% NaOH for 30 min produced the softest pulp signifying the removal of lignin and hence produces less ash content. Which is crucial for ensuring the purity and quality of the seed growing media and also producers can minimize costs associated with excessive chemical use. The NaOH-treated pulp was dipped in dilute acid solution for some time and then thoroughly washed with tap water to neutralize its pH, ensuring it was safe for plant growth. The neutralized pulp was then dried in a hot air oven at 65°C for 2 days to prepare it for use as a growing medium (Figure 1).

[image: Flowchart depicting the preparation of rice straw mat. Top left: Air-dried rice straw, 2-4 cm, boiled for 30 minutes in 1% NaOH solution (w/v). Top right: Image of straw in a beaker. Bottom right: Soft, neutralized straw pulp after filtration and washing. Bottom left: Prepared dry rice straw mat. Arrows indicate the process flow.]

FIGURE 1
 Schematic diagram of preparation of seed growing-media from rice straw.




Characterization of growing media


Scanning electron microscopy and water holding capacity

The surface morphology of rice straw was investigated by scanning electron microscopy (SEM) (Zeiss EVO MA10). A measured amount of prepared rice straw media, vermiculite, and cocopeat was submerged in distilled water at room temperature until reaching swelling equilibrium. The swollen samples were then separated from any unabsorbed water by filtering them through filter paper. Water absorbency (W) of the superabsorbent composite was determined by weighing the swollen samples, and the absorbency (W) was calculated using Equation 1 (Kirti, 2016).

[image: Equation for calculating percentage weight loss: \( W(\%) = \left( \frac{m_2 - m_1}{m_1} \right) \times 100 \) labeled as equation (1).]

where, m1 and m2 are the weights of the dry sample and the water-swollen sample in grams.



Determination of ash content

In order to evaluate the softening effect, the residual amount of ash was measured for without treated and pretreated straws with different NaOH solution as described by Mukherjee et al. (2018).

[image: Formula for calculating ash percentage: A equals (Weight of ash divided by Original sample weight) multiplied by one hundred.]

where A represents the ash content in percentage.




Microgreen production

Microgreens, including amaranth (Amaranthus tricolor), cauliflower (Brassica oleracea var. botrytis) and cabbage (Brassica oleracea var. capitata) were cultivated on the vermiculite, cocopeat and rice straw substrate. The seeds were uniformly broadcasted onto petri plates containing a moist substrate, ensuring optimal germination conditions. The plates were maintained indoors at room temperature. All treatments were established with three replications. Plant samples were harvested on 21 days after sowing, following established protocols for seedling growth and development (Braunstein, 2013).



Plant growth and fresh weight and sample preparation

At harvest, 21 days after sowing, the following morphological parameters were recorded: fresh and dry weight of seedlings (mg, measured using a laboratory scale) and seedling length (cm, including leaves, measured using a ruler). These measurements were taken from 10 randomly selected seedlings per tray. Dry weight was determined by drying the samples at 105°C for 24 h until a constant weight was achieved (Frąszczak and Kula-Maximenko, 2022). For mineral analysis the microgreens were oven-dried at 65°C to determine dry weight. The dried samples were ground using a 1-mm sieve and analyzed for their mineral profile (Poudel et al., 2023).



Mineral analysis of microgreens

Mineral content was determined using atomic absorption spectrophotometry (AAS). Oven-dried microgreen samples (0.5 g) were predigested with nitric acid then heated with mixture of nitric acid and perchloric acid (3:1 v/v) at 150°C until the solution became clear. The digested solution was diluted with deionized water and filtered. The concentrations of iron (Fe), zinc (Zn) and manganese (Mn) were determined using AAS (Saurabh et al., 2024).



Statistical analysis

The effects of microgreen species (amaranth, cauliflower, and cabbage) and substrate types (rice straw, cocopeat, and vermiculite) on plant height, weight, and nutrient content were analyzed using a two-way ANOVA. The analysis was conducted under the assumptions of normality and homogeneity of variances. Tukey’s HSD test was applied for post-hoc comparisons at a significance level of p < 0.05 to identify significant differences among means. All statistical analyses were performed using R software. Principal component analysis (PCA) was conducted in R using the “prcomp” function to capture and summarize the variation present in the microgreen dataset.




Results and discussion


Ash content in rice straw

Ash content in rice straw provides an opportunity on the effectiveness of a sample in terms of its disposal (Mukherjee et al., 2018). Ash content is an indicator of the inorganic residue present in the biomass after combustion (Vassilev et al., 2017). By studying the ash content of rice straw after alkali treatment, we can evaluate the effectiveness of the treatment in removing unwanted inorganic materials, which is crucial for ensuring the purity and quality of the seed growing media. Knowing the ash content helps in optimizing the alkali treatment process, which can be cost-intensive. By ensuring that the treatment is effective in reducing ash content, producers can minimize costs associated with excessive chemical use and processing time. The analysis of ash content in rice straw after alkali treatment reveals significant differences among the untreated and treated samples, as shown in Table 1. The untreated rice straw had the highest ash content (20.05%), while the treated samples exhibited a range of ash percentages from 7.10 to 11.10%, depending on the NaOH concentration used. The Tukey’s test revealed that the 1% NaOH-treated sample had the lowest ash content (7.1%), significantly different from the untreated sample (20.05%), and the samples treated with 2, 5, and 7% NaOH showed similar ash contents (9.4–11.1%). This indicates that lower NaOH concentrations (1%) were more effective in reducing ash content. Similar result was reported by Han et al. (2019).



TABLE 1 Ash content of rice straw pre-treated with different concentration of NaOH solution.
[image: Table displaying the effect of sodium hydroxide (NaOH) treatment on straw samples. Each sample weighs 20 grams. The ash weight and percentage decrease with NaOH treatment compared to untreated straw. Specific ash weights and percentages are: Untreated - 4.01g, 20.05%; 1% NaOH - 1.42g, 7.1%; 2% NaOH - 1.88g, 9.4%; 5% NaOH - 2.19g, 10.95%; 7% NaOH - 2.22g, 11.1%. Different letters indicate significant differences at p < 0.05 using Tukey's procedure.]

High ash content can lead to faster degradation of the seed growing rice straw-based media. By studying and controlling the ash content, the longevity and durability of the media can be improved, ensuring it can be reused for microgreen production. In the present study, the ash content was found to be 7.1% when treated with 1% NaOH and heated for 30 min, which falls within the typical range of 5–12% reported in other studies on rice straw (Mukherjee et al., 2018). The rice straw pretreated with 1% w/v NaOH for 30 min yielded a soft pulp suitable for media formation. This concentration and duration effectively broke down the lignocellulosic structure of the straw, facilitating its water absorption ability. NaOH treatment breaks down the lignin and hemicellulose components, increasing the accessibility of cellulose fibers and improving the softness and pliability of the material (Kaur and Phutela, 2016). After pretreatment of rice straw, they are able to hold water, which is beneficial for plants as rice straw is natural fibre. After neutralization and washing, the rice straw media showed no microbial contamination, a critical factor for healthy microgreen growth (Deng et al., 2020).



Scanning electron microscopy

Scanning electron microscopy (SEM) is a versatile technique for examining the surface morphology and structural details of materials with high magnification and resolution. The SEM analysis reveals substantial morphological differences between raw rice straw and rice straw treated with NaOH (Figure 2). Raw rice straw exhibits a smooth, compact, and rigid surface with visible epidermal cells, resulting from the dense lignin, hemicellulose, and cellulose structure acting as a protective barrier. NaOH treatment significantly alters this morphology, disrupting the lignin and hemicellulose matrix and creating a rougher, more porous surface. This process causes the fibers to swell and separate, increasing the surface area and water holding capacity and making it perfect for seed growing media formation (Han et al., 2019).

[image: Two scanning electron microscope images depict surface structures. Image (a) shows a magnified view of a rough, textured surface with ridges and valleys. Image (b) displays a different texture with more pronounced, irregular formations and larger cavities, suggesting rougher topography. Both images include scale bars and capture details like electron high tension and magnification settings.]

FIGURE 2
 Scanning electron microscopy images of rice straw (a) untreated and (b) treated with NaOH solution.


The SEM micrographs corroborate these findings, showing ruptures in the silicon waxy structure, surface degradation, and morphological changes due to heating and NaOH treatment (Shah et al., 2023). Enhanced surface roughness after alkali pretreatment effectively increases the rice straw’s surface area (Kumari and Singh, 2022). In untreated rice straw, rigid and highly ordered fibrils are visible, while NaOH-treated rice straw exhibits significant structural changes, including loss of rigidity and order, exposure of microfibrils, and the development of cracks and increased porosity. These changes result in enhanced exposure of cellulosic material, facilitating more effective bioconversion (Shetty et al., 2017).



Water holding capacity of growing media

A good growing medium should have a high water-holding capacity, while also possessing sufficient macropores to ensure proper drainage and prevent waterlogging (Gupta et al., 2023). For the water holding capacity (WHC) of growing media, studies have shown that cocopeat and vermiculite have differing properties. The WHC of cocopeat and vermiculite was 891 and 389% whereas, that of pretreated rice straw was 673% of their weight (Figure 3). Cocopeat generally has a very high WHC, due to its fibrous structure and ability to retain water efficiently, making it suitable for moisture-dependent crops. Vermiculite, on the other hand, holds significantly less water. Pretreated rice straw has been explored as an alternative, offering intermediate WHC values, which balances moisture retention with aeration. The WHC of a growing medium is crucial for plant growth, as it affects moisture availability for seeds and seedlings (Kalaivani and Jawaharlal, 2019; Yan et al., 2024).

[image: Bar chart showing water holding capacity of substrates: Cocopeat, Rice straw, and Vermiculite. Cocopeat has the highest capacity just under 1000%, Rice straw is approximately 750%, and Vermiculite is around 500%.]

FIGURE 3
 Water holding capacity of different growing media.




Plant length and fresh weight of microgreens grown on different media

Microgreens of amaranth, cauliflower and cabbage were grown on the rice straw media and cocopeat, demonstrated better growth rates to those grown on vermiculite (Figures 4a–c). The plant length of amaranth, cauliflower, and cabbage microgreens showed variation based on the substrate used (Figures 5a,b). For amaranth, all three substrates (rice straw, vermiculite, and cocopeat) showed similar performance, with no significant differences in height. The average height ranged around 4–5 cm. Cabbage microgreens exhibited the greatest plant length in rice straw (6.2 cm), followed by cocopeat (6 cm) and vermiculite (5.8 cm). In cauliflower microgreens, rice straw and cocopeat produced significantly longest plants (5.4 and 5 cm), followed by vermiculite (4 cm). The ability of rice straw and cocopeat to retain moisture and support root growth likely explains the greater growth in plant length in these substrates. The higher plants length in rice straw and cocopeat could be attributed to its organic composition, better aeration, water absorption and drainage. Good oxygen availability to the roots supported healthy growth, resulting in taller plants (Poudel et al., 2023).

[image: Three panels labeled (a), (b), and (c), each showing growth of plants in petri dishes with three different substrates: Vermiculite, Rice Straw, and Cocopeat. Panel (a) displays initial seeds, panel (b) shows sprouting, and panel (c) depicts developed seedlings.]

FIGURE 4
 Growth of microgreen (a) amaranth, (b) cauliflower and (c) cabbage on different media.


[image: Two graphs compare plant height of microgreens on different substrates. Graph a shows box plots for amaranthus, cabbage, and cauliflower on rice straw, vermiculite, and cocopeat, with varying plant heights. Graph b uses bar charts to display plant length across the same plants and substrates, indicating significant differences with letter annotations.]

FIGURE 5
 (a) Boxplot of plant length (cm) across substrates for different microgreens. (b) Error bar plot of plant length (cm) for microgreens across substrates.


The fresh weight of microgreens per plant varied across substrates, with rice straw generally producing the highest biomass (Figure 6). amaranth microgreens grown on rice straw had the highest fresh weight (18.21 mg plant−1), closely followed by cocopeat (18.15 mg plant−1) and vermiculite (17.43 mg plant−1). Cabbage microgreens also displayed the highest fresh weight when grown on rice straw (59.83 mg plant−1), followed by cocopeat (58.67 mg plant−1) and vermiculite (56.32 mg plant−1). Cauliflower microgreens exhibited a similar trend, with the highest fresh weight observed in plants grown on rice straw (54.80 mg plant−1), and followed by cocopeat (53.92 mg plant−1) and vermiculite (50.31 mg plant−1).

[image: Box plots and bar graph comparing fresh weight of three microgreens: Amaranthus, Cabbage, and Cauliflower, using substrates Cocopeat, Rice Straw, and Vermiculite. Graph (a) shows variability with box plots; Cabbage and Cauliflower have higher weights. Graph (b) shows mean weights with bars, indicating significant differences marked by letters.]

FIGURE 6
 (a) Boxplot of fresh weight (mg/plant) across substrates for different microgreens. (b) Error bar plot of fresh weight (mg/plant) for microgreens across substrates.


Using Tukey’s significance test to compare means, Table 2 displays the effects of various substrates—rice straw, vermiculite, and cocopeat—on the weight and length of microgreens. Amaranth showed no discernible variation in weight or length between substrates. On the other hand, there were notable distinctions between cauliflower and cabbage. Vermiculite generated the shortest (5.80 cm) and lightest (56.32 g) microgreens for cabbage, whereas rice straw produced the longest (6.20 cm) and heaviest (59.83 g) microgreens. In a similar way, rice straw produced cauliflower that was noticeably longer (5.4 cm) and heavier (54.8 g) than vermiculite, which produced the lowest values. Rice straw is the most efficient growth medium for these microgreens, according to Tukey’s test.



TABLE 2 Effect of the microgreens and substrate on plant length and weight1.
[image: Table showing the effect of different substrates on the length and weight of three microgreens: amaranth, cabbage, and cauliflower. For amaranth, lengths are 4.7a (rice straw), 4.6a (vermiculite), 4.8a (cocopeat). Weights are 18.21a, 17.43a, 18.15a, respectively. For cabbage, lengths are 6.2c (rice straw), 5.8bc (vermiculite), 6c (cocopeat). Weights are 59.83c, 56.32bc, 58.67c. For cauliflower, lengths are 5.4bc (rice straw), 4b (vermiculite), 5bc (cocopeat). Weights are 54.8bc, 50.31b, 53.92bc. Significance levels are indicated, with marked differences (*p ≤ 0.05). Reported values are averages of three replications.]

This study assessed different growing media for indoor microgreen cultivation, including vermiculite (an inorganic material), cocopeat (a natural organic fiber), and rice straw (an organic residue). While peat-based substrates are widely used for microgreen production, they are expensive and non-renewable. Coconut coir, an organic and renewable alternative, has potential but comes with drawbacks like high salt content and elevated fungal and bacterial levels. Low-cost, renewable options could include fibrous materials like polyester, cotton, or jute. Other inorganic media, such as perlite, vermiculite, and rockwool, are available but expensive, energy-intensive to produce, and difficult to dispose of after use. This experiment seeks to explore more eco-friendly and cost-effective alternatives, particularly utilizing rice residues, which are often burned by farmers. The results highlight the significant impact of substrate choice on the growth and biomass production of microgreens. The choice of growing medium is crucial in determining the yield and quality of microgreens. Rice straw consistently resulted in the highest plant length and fresh weight across all species, indicating its potential as a superior substrate for microgreen cultivation. Its organic composition and ability to retain moisture likely contributed to enhanced nutrient uptake and growth. Bulgari et al. (2021) obtained highest yield of rocket on jute substrate, an organic by-product and discarded material from several industrial processes as compared to cocopeat and vermiculite. Paglialunga et al. (2023) reported lower fresh yields of radish and savoy cabbage microgreens grown on cellulose sponge and coconut fiber, attributing it to the lower air capacity of these substrates compared to peat. The higher micropore content in cellulose sponge and coconut fiber, typical of cohesive substrates, likely impeded root growth. Bayineni and Herur (2022) evaluated growth parameters like germination rate, plant height, fresh and dried weight, and the quality (chlorophyll a and b, carotenoids, microbial safety) of beet microgreens grown on substrates containing Synedrella nodiflora residues, vermicompost, red soil, and coco peat in various combinations. The findings revealed that incorporating Synedrella residues in the growing substrate improved yields, quality, germination rate, and ensured microbial safety. Beet microgreens grown with Synedrella had low microbiological contamination (total coliforms), making them a healthy and safe option for fresh vegetable salads.

In another study rock wool growing media with AB mix nutrition showed the best results for seedling height, leaf count, fresh weight, and chlorophyll content compared to cocopeat and soil (Khairunnisa et al., 2023). These findings are in line with previous research observations that emphasizes the importance of substrate selection in microgreen production. Substrates that provide adequate moisture retention, aeration, and nutrient availability are critical for optimizing plant growth and biomass accumulation (Poudel et al., 2023; Gunjal et al., 2024). Thepsilvisut et al. (2023) found that lower bulk density and higher total pore space in growing media (coconut coir dust, leaf compost, and their 1:1 combination) significantly increased the yield of sunflower and water-spinach microgreens.

The rice straw media were structurally stable and remained intact throughout the growth period, highlighting their potential for practical application. Additionally, using agricultural byproducts like rice straw reduces waste and supports sustainable farming practices (Singh et al., 2023). It can be used for production of seedlings/microgreens of high value vegetable, flower, spice and even plantation crops. It aids in quick germination of seeds and production of disease-free, organically-raised microgreens. The microgreens raised in this medium develop robust root system (Figure 7).

[image: Cabbage microgreens growing on a clump of rice straw media, displayed on a clear surface. A label in the background reads "Cabbage Microgreen Rice straw media." Small green leaves are visible emerging from the straw.]

FIGURE 7
 Vigorous cabbage root growth observed in rice straw media.


Abad et al. (2001) found that the ideal growing substrate for seed germination should have a water holding capacity of 55–70% v/v and aeration of 20–30% v/v to support protoplasm hydration and enzymatic activity. Coco coir mixed with soil and sand or rice husk provided low bulk density, aiding air and water movement essential for germination. Muchjajib et al. (2014) suggested that using local organic materials like coco coir dust, sugarcane filter cake, and vermicompost in microgreen production boosted fresh yield and reduced production costs.



Mineral content

Table 3 evaluates the impact of substrates—rice straw, vermiculite, and cocopeat—on manganese (Mn), zinc (Zn), and iron (Fe) concentrations in amaranth, cabbage, and cauliflower microgreens. Vermiculite consistently yielded the highest Zn and Fe levels across all microgreens, with notable values for amaranth (Zn: 5.43 mg/kg, Fe: 304.05 mg/kg), cabbage (Zn: 7.4 mg/kg, Fe: 286.87 mg/kg), and cauliflower (Zn: 7.02 mg/kg, Fe: 155.95 mg/kg). Mn levels varied, with vermiculite and rice straw performing better for cabbage, while vermiculite alone excelled for cauliflower. Substrate type significantly affected micronutrient concentrations (p ≤ 0.05), with vermiculite generally being the most effective, and the interaction between microgreens and substrate also proved significant. In amaranth, Mn concentrations across substrates (1.38, 2.13, and 1.59 mg/kg) share no significant differences. In contrast, for cabbage, vermiculite and rice straw for Zn, showing significant variation. The systematic annotation helps identify which substrate treatments yield significantly different micronutrient levels within each microgreen summarizes in Figures 8b, 9b, 10b. The box plot also shows that vermiculite consistently produces the highest Mn concentrations across all microgreens, followed by rice straw and cocopeat. Amaranth has the highest Fe levels, while cauliflower exhibits the lowest concentrations across all substrates summarizes in Figures 8a, 9a, 10a.



TABLE 3 Effect of the microgreens and substrate on Mn, Zn, and Fe content1.
[image: Table displaying the concentrations of manganese (Mn), zinc (Zn), and iron (Fe) in microgreens (Amaranth, Cabbage, Cauliflower) grown on different substrates (Rice straw, Vermiculite, Cocopeat). Significant differences, marked with letters, indicate variation between groups. Asterisks denote statistically significant sources of variation for microgreen, substrate, and their interaction. The significance level is at p ≤ 0.05, and reported values are averages of three replications.]

[image: Two charts compare manganese (Mn) content in different microgreens. Chart (a) shows box plots of Amaranthus, Cabbage, and Cauliflower grown in rice straw, vermiculite, and cocopeat substrates. Vermiculite shows the highest Mn content across microgreens. Chart (b) is a bar graph detailing Mn content in the same microgreens with substrates labeled in blue, orange, and green. Vermiculite has the highest Mn values in all cases.]

FIGURE 8
 (a) Boxplot of Mn across different microgreens for different substrates. (b) Error bar plot of Mn across substrates for different microgreens.


[image: Two graphs comparing zinc content in microgreens grown on different substrates. Graph (a) is a boxplot showing zinc content ranges for amaranthus, cabbage, and cauliflower microgreens on rice straw, vermiculite, and cocopeat. Graph (b) is a bar chart displaying average zinc content with error bars for the same microgreens and substrates. Vermiculite consistently shows higher zinc content, while cocopeat has the lowest.]

FIGURE 9
 (a) Boxplot of Zn across different microgreens for different substrates. (b) Error bar plot of Zn across substrates for different microgreens.


[image: Chart comparing iron content in microgreens grown on different substrates. Panel a displays box plots showing variability in iron levels across substrates: rice straw, vermiculite, and cocopeat for amaranthus, cabbage, and cauliflower. Panel b shows bar graphs with iron content for each substrate-microgreen combination. Vermiculite yields the highest iron content across all microgreens, followed by rice straw and cocopeat. Letter annotations indicate statistically significant differences.]

FIGURE 10
 (a) Boxplot of Fe across different microgreens for different substrates. (b) Error bar plot of Fe across substrates for different microgreens.


Limited data exist on the chemical composition of microgreens grown on various substrates, and the specific mineral requirements of these plants remain largely unknown. Understanding the nutrient uptake by microgreens could help optimize fertilization strategies based on the growing substrate used (Kyriacou et al., 2016). Since mineral elements play a vital role in human nutrition, analyzing the mineral composition of microgreens provides valuable insights into their potential contribution to the human diet (Bulgari et al., 2017). Effective nutrient management could enhance both the yield and nutritional quality of microgreens.

Amaranth showed the highest Fe concentration when grown in vermiculite (304.05 mg/kg), followed by rice straw (78.31 mg/kg) and cocopeat (23.72 mg/kg). For Mn and Zn, vermiculite consistently provided the highest concentration (Mn: 2.13 mg/kg; Zn: 5.43 mg/kg), suggesting that vermiculite might have higher metal ion exchange or adsorption capacity for these nutrients. Cocopeat also supported moderate Mn and Zn levels, while rice straw had the lowest Zn content. Cabbage followed a similar trend, with the highest Fe and Zn concentrations observed in vermiculite (Fe: 286.87 mg/kg; Zn: 7.4 mg/kg). Mn levels in cabbage were lower in cocopeat and rice straw (0.93 mg/kg and 1.17 mg/kg, respectively) but higher in vermiculite (1.64 mg/kg), implying that vermiculite might have provided a better source of these essential micronutrients for cabbage growth. Cauliflower grown in vermiculite also showed a higher Fe (155.95 mg/kg) and Zn (7.02 mg/kg) concentration compared to rice straw and cocopeat. The Mn levels were relatively low in cocopeat and rice straw (0.38 mg/kg and 0.35 mg/kg, respectively), while vermiculite significantly enhanced Mn concentration (1.87 mg/kg).

Vermiculite, across all crops, had the highest Fe and Zn concentrations, suggesting it enhanced the availability of these micronutrients. This could be attributed to vermiculite’s cation exchange capacity (CEC) and its ability to retain and release metal ions efficiently. Studies have shown that vermiculite improves nutrient retention due to its layered structure, which increases soil aeration and provides better nutrient retention compared to other substrates (Valášková and Martynkova, 2012; Bulgari et al., 2021). Cocopeat, though organic, had lower metal retention compared to vermiculite, which can be seen in its relatively lower Fe and Zn concentrations. However, cocopeat still offered a moderate level of nutrient availability, particularly Mn, which was likely due to its good water retention properties that supported micronutrient solubility. Rice straw, with lower values for Zn and Mn in most crops, might not be as efficient in micronutrient retention, potentially due to its higher decomposition rate and lower CEC compared to vermiculite. Its performance was better in Fe retention, especially for amaranth (78.31 mg/kg), but generally performed lower than vermiculite across the board.

Amaranth had the highest overall Fe absorption, particularly from vermiculite, suggesting it has a high demand for Fe, which plays a crucial role in chlorophyll synthesis and electron transport during photosynthesis. Cabbage also absorbed high levels of Fe and Zn when grown in vermiculite, indicating that it benefits from a nutrient-dense growing medium. Cauliflower, while having lower Mn and Zn uptake in cocopeat and rice straw, absorbs a significant amount of Fe and Zn in vermiculite, highlighting its preference for a nutrient-rich environment.

Vermiculite proved to be the most effective medium for enhancing the availability of Fe, Zn, and Mn across all crops studied, particularly for amaranth and cabbage. Its superior performance in micronutrient retention makes it a valuable substrate in organic and inorganic farming systems, especially where nutrient availability is a limiting factor. Cocopeat and rice straw, though beneficial in terms of organic content, may require supplementation to match the micronutrient availability seen in vermiculite-based systems.

Similar results were reported by Nyenhuis and Drelich (2015) where they investigated whether crops can be biofortified with micronutrients by growing alfalfa sprouts on mineral-enriched cellulose fiber mats. Sprouts grown on mats containing copper ions or nanoparticles showed significant increases in copper content. The findings suggested engineered fiber mats as a potential method to enhance the nutritional value of microgreens. Bulgari et al. (2021) investigated the impact of three growing media (vermiculite, coconut fiber, and jute fabric) on the yield and quality of two basil varieties (Ocimum basilicum L.-green basil and O. basilicum var. purpurecsens-red basil) and rocket (Eruca sativa Mill.) microgreens. They have observed higher values of anthocyanins and phenolic index in red basil microgreens grown on vermiculite and jute compared to coconut fibre.



Principal component analysis

Principal component analysis (PCA) was applied to all measured variables in the microgreens dataset to summarize the findings detailed in ANOVA Table 2, 3 and Tukey’s ANOVA (Figures 5b, 6b, 8b, 9b, 10b). Separate PCA analyses were performed for each species to better evaluate the impact of growing media on microgreens’ yield and nutritional quality, as interactions between species and growing media were observed for most variables. Figures 11a–c illustrates the PCA biplots, showcasing the yield, mineral profile, and nutritional attributes for amaranth, cabbage and cauliflower, respectively. In case of amaranth, PC1 and PC2 explains 91.3 and 8.7% variation of the data. The cocopeat medium was associated with length, rice straw is associated with weight. Additionally, for cabbage, PCA1 explains 88% and PCA2 explains 12% variance in the data. Here, rice straw is associated with weight and length, vermiculite is associated with Fe, Mn and Zn. For cauliflower, PCA1 explains 98.5% and PCA2 explains 1.5% variation in the dataset. Similar to the cabbage, rice straw is associated with weight and length, vermiculite is associated with Fe, Mn and Zn.

[image: Three biplots displaying principal component analysis with different dimensions. Top biplot shows Dim1 (91.3%) and Dim2 (8.7%), featuring variables like length, weight, Zn, Fe, Cocopeat, Rice Straw, and Vermiculite. The middle biplot shows Dim1 (68%) and Dim2 (32%), highlighting similar variables. The bottom biplot shows Dim1 (98.5%) and Dim2 (1.5%) with variables like Mn, Fe, Zn, length, and Vermiculite, indicating variance contributions.]

FIGURE 11
 (a) PCA biplot (PC1 vs. PC2) showing the distribution of the several parameters of amaranth grown in different growing media. (b) PCA biplot (PC1 vs. PC2) showing the distribution of the several parameters of cabbage grown in different growing media. (c) PCA biplot (PC1 vs. PC2) showing the distribution of the several parameters of cauliflower grown in different growing media.





Conclusion

This study successfully developed an efficient and sustainable growing medium from rice straw for microgreen cultivation. The optimal pretreatment involved using a 1% w/v NaOH solution boiling for 30 min, which effectively softened the rice straw, transforming it into a suitable medium. The resulting rice straw substrate supported the healthy growth of microgreens like cauliflower, amaranth, and cabbage, offering better water retention and root development compared to traditional media such as vermiculite.

Nutritional analysis revealed that vermiculite provided the highest Zn and Fe levels, while rice straw performed well in Mn accumulation and plant biomass. PCA validated these findings, linking rice straw to improved biomass and plant length, while vermiculite was associated with higher micronutrient accumulation. Additionally, the nutrient content of microgreens grown on rice straw can be further improved by supplementing or fortifying the rice straw-based media with essential nutrients. This approach promotes sustainable agriculture by converting waste into valuable resources, contributing to a circular economy. The findings highlight the significant potential of rice straw as a practical growing medium for microgreen production, supporting efforts to enhance food security and environmental sustainability. Further research is recommended for a deeper understanding and optimization of this method.
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The recovery of fruit and vegetable waste (FVW) from markets and processing plants should be considered a resource for functional feed ingredients since these wastes are rich in nutrients and valuable bioactive compounds. This study focused on FVW from the wholesale market in Milan, which is the largest in Italy, to evaluate the dietary fiber (DF), insoluble dietary fiber (IDF), soluble dietary fiber (SDF), total polyphenol content (TPC), and antioxidant activity (AA) of the FVW collected monthly over the course of a year. Compositional parameters were evaluated based on the month and season of collection (winter, spring, summer, and autumn). The samples collected each month were representative of the month and seasonality of harvesting and commercialization. The DF, IDF, SDF, TPC, and AA were statistically different (p < 0.05) based on the month and season, except for the TPC. Considering the seasonal pattern, the DF content was higher in the autumn and winter seasons (33.3 g/100 g dw and 30.8 g/100 g dw) than in the spring and summer seasons (19.9 g/100 g dw and 21.9 g/100 g dw). A similar trend was observed for the IDF content, which was higher in autumn and winter compared to spring and summer. The SDF content was higher in the summer (9.1 g/100 g dw) and autumn samples (8.1 g/100 g dw). The TPC was similar across the samples collected in different months (overall mean 2.4 ± 0.8 g/100 g dw), without significant differences based on the season of waste generation. The AA content was higher in the spring samples, albeit with high variability (34.4 ± 22.4 μmol TE/g dw). The overall mean solid content in the FVW samples was 10.8 ± 1.2 g/100 g. The results showed that FVW is a valuable source of functional compounds, which may improve the nutritional quality of animal feed. The major constraints in using FVW are the variability in the components from month to month, the presence of anti-nutritional components, and the water content, which compromises product stability. Future investigations are necessary for the recovery of this waste, given its potential added value as a functional feed ingredient.
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1 Introduction

According to the Food and Agriculture Organization (FAO), minimizing food loss and food waste is essential for lowering production costs and increasing the efficiency of the food production system, thereby contributing to a sustainable food system (Bennett et al., 2022). Compared to other food categories, fruits and vegetables have the highest wastage rates (40–50%) (FAO, 2011), which occur during various production, post-harvest, and processing stages, before reaching retail and human consumption (Vilarino et al., 2017). The reduction or reuse of these losses is intrinsic to the concept of the circular economy (de Oliveira et al., 2021), which views this waste as a co- or by-product of other production processes. It also recognizes the economic value of these by-products due to the nutritional value and the possible biological functionality of some of their bioactive components. In this regard, fruit and vegetable waste (FVW) can be considered a valuable source of nutrients and bioactive compounds. Additionally, as an ingredient in animal feed, it has the potential to contribute to sustainable animal production (Garcıa et al., 2005; Angulo et al., 2012a; Sahoo et al., 2021; Tedesco et al., 2021; Sun et al., 2024; Yohannes et al., 2024a). The reuse of FVW can be challenging because of its high moisture content. This characteristic contributes to increased perishability, susceptibility to microbial contamination, loss of safety parameters, and difficulties in handling and storing processes. Being intended for human consumption, fruits and vegetables must meet safety requirements, which are retained during processing and while on the market; the quality and safety of FVW can be maintained if it is processed immediately. Another issue to address is the variability in the quantity and nutritional value of waste throughout the year due to the typical seasonality of fruits and vegetables, geographic location, and product demand (Angulo et al., 2012b). In any case, some components of these particular wastes can provide physiological benefits, such as enhanced disease resistance, stress tolerance, improved animal health and welfare, and increased growth rates. The potential of FVW may be attributed to its nutrient content and the presence of bioactive compounds, especially polyphenols and dietary fiber (DF) (Nirmal et al., 2023).

The Milan wholesale fruit and vegetable market (SO.GE.M.I. Spa) is the largest in Italy, handling over 1.000,000 tonnes of products per year. It serves as a hub for wholesalers and producers supplying individual retailers.1 Every day, surplus fruits and vegetables that are still safe for human consumption but cannot be sold are donated to charitable organizations. If fruits and vegetables are spoiled or bruised, they are discarded at the waste collection site, placed in containers, and transported to biogas or composting plants (approximately 1700 tonnes/year). This waste is a valuable source of nutrients and, since it is intended for human consumption, it does not pose health or safety risks until it is disposed of at the collection point. The presence of heavy metals, pesticide and antibiotic residues, mycotoxins, and microbiological hazards was recently investigated and did not raise any safety concerns (Tedesco et al., 2021). However, it is important to consider that anti-nutritional factors (e.g., phytate, oxalates, tannins, saponins, and lectins) in fruit and vegetable waste are naturally occurring compounds that can interfere with nutrient absorption, digestion, or metabolism in animals (Bakshi et al., 2016; Pop et al., 2022; Yohannes et al., 2024b). As this waste consists of a mix of fruits and vegetables, the varying availability of individual fruit and vegetable wastes can help minimize the negative effects of anti-nutrients when the waste is used as a complementary functional feed ingredient.

In this context, vegetable waste from the wholesale market can serve as a safe raw material for conversion into feed ingredients and a source of functional components, such as dietary fiber and antioxidant compounds.

This study evaluated the functional nutritional characteristics of fruits and vegetables sourced from the Milan wholesale market, with the aim of exploring the possibility of using this waste as a functional feed ingredient. Dietary fiber (DF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF), total polyphenol content (TPC), and antioxidant activity (AA) were evaluated in the FVW samples collected monthly over the course of a year. A statistical approach was applied to assess the variability in the composition of FVW in relation to the month and season during the 1 year of collection.



2 Materials and methods


2.1 Sample collection

Samples from the wholesale market were collected each month from the waste collection sites. At each sampling time, approximately 100 kg of various fruit and vegetable waste was collected, based on the ratio of each fruit and the daily wastage material. The samples were gathered in accordance with EU regulation (Regulation 152/2009, 2009). The monthly samples were then prepared by weighing each fruit and vegetable in the appropriate proportion, manually cutting them into small pieces, and thoroughly mixing them. From the mixed FVW, 12 samples of 300 g each were stored at −20°C until analysis. Seasonal samples were obtained by grouping the monthly samples into the following four seasons: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May).



2.2 Total solid content (SC)

For each month, three samples were analyzed in triplicate (n = 9). The samples were partially thawed and homogenized. The total solid content (SC) was determined from subsamples dried at 65°C to constant weight for 24 h (AOAC, 2005). The results were presented as g/100 g. All other analytical results were expressed on a dry weight (dw) basis.



2.3 Dietary fiber (DF), insoluble dietary fiber (IDF), and soluble dietary fiber (SDF)

For each month, three samples were analyzed in triplicate (n = 9). The DF, IDF, and SDF contents were quantified using the enzymatic-gravimetric method (AOAC, 1995). Briefly, the samples underwent sequential enzymatic digestion with heat-stable α-amylase (Sigma Aldrich), protease VIII (Sigma Aldrich), and amyloglucosidase (Sigma Aldrich) to remove starch and protein, allowing for the extraction of the dietary fiber fractions. The IDF was recovered by filtration of the digested samples and then dried and weighed. The SDF was precipitated from the filtrate by adding a preheated solution of 95% ethanol. After precipitation, the SDF was dried and weighed. The TDF was determined by summing the IDF and SDF. The results were expressed as g/100 g dw.



2.4 Total polyphenol content (TPC)

The total polyphenol content (TPC) was assessed using the Folin–Ciocalteu method (Singleton and Rossi, 1965). For each month, three samples were analyzed in triplicate (n = 9). Briefly, 10 g of each sample was finely shredded. Then, 100 mg was placed in a Falcon tube, to which 2 mL of methanol was added, and the mixture was incubated at room temperature for 48 h in the dark. The alcoholic extract was separated from the insoluble fraction by centrifugation at 6000 g for 5 min at room temperature. The assay was performed on each sample as follows: 25 μL of the extract solution was mixed with 1.5 mL of deionized water and 125 μL of Folin–Ciocalteu reagent (2 M). After 5 min, 0.5 mL of 15% Na2CO3 aqueous solution was added. The mixture was incubated in the dark for 2 h, and the absorbance was measured at 765 nm using a Jasco V-630 Spectrophotometer (UV-Vis/Vis, Thermo Fisher Scientific). Calibration curves were prepared with gallic acid (range 0–1 mg/mL) as the standard. The results were expressed as g GAE/100 g dw.



2.5 Antioxidant activity (AA)

The antioxidant activity (AA) of the samples was determined using the DPPH* (2,2-diphenyl-1-picrylhydrazyl) assay (Brand-Williams et al., 1995). For each month, three samples were analyzed in triplicate (n = 9). The assay was performed on clear methanol extracts, obtained as follows: each monthly sample (about 300 g) was partially thawed and finely shredded in a food mixer to obtain a well-homogenized sample. A total of 2 g of the homogenate was extracted with 20 mL of methanol:water mixture (60:40) in an ultrasonic bath for 30 min at room temperature. The mixture was centrifuged at 6000 g, the supernatant was separated, and the DPPH* assay (Sigma Aldrich) was performed, following the method previously described by Buratti et al. (2020). The method was calibrated by constructing a calibration curve with Trolox (6-hydroxy-2,5,7,8-tetra-methyl-chroman-2-carboxylic acid, Sigma-Aldrich, Italy), and the data were converted into Trolox equivalents (TEs). Both the extraction and the test were performed in duplicate (n = 4), and the results were expressed as μmol TE/g dw.



2.6 Statistical analysis

The DW, DF, IDF, SDF, TPC, and AA data were analyzed using a generalized linear model (GLM), employing the GLM procedure of the Statistical Product and Service Solutions (SAS) (version 9.4; SAS Institute Inc., Cary, NC), with the month of sampling as the main factor. The four seasons were considered by pooling data from summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May). Subsequently, the pooled data were analyzed to investigate the effect of season on the variability. The values were expressed as mean ± standard deviation (SD), and the differences were considered significant at a p-value of < 0.05.




3 Results

The monthly FVW samples from the wholesale market were characterized by their DF, IDF, SDF, TPC, and AA. Table 1 reports the mean values ± SD of all parameters evaluated and the effect of month and season on the variability of the data. The fruit and vegetable composition discarded from the wholesale market reflected the month of production and commercialization. Highly significant differences (p ≤ 0.001) in all parameters were observed based on the month of collection. Concerning the season, the SC, DF, IDF, and SDF showed significant differences (p ≤ 0.005), whereas the TPC and AA did not differ significantly (p > 0.05). The SC was relatively low and typical of the matrix (average value over the year, 10.8 ± 1.2 g/100 g). Similarly, the DF, TPC, and AA showed high values typical of fruits and vegetables (26.5 ± 6.3 g/100 g dw, 2.4 ± 0.8 g/100 g dw, and 24.6 ± 19.8 g/100 g dw, respectively). In particular, a high SDF average content was detected (7.0 ± 2.0 g/100 g dw).



TABLE 1 Average values (mean value ± SD) and effects of the month and season of waste on the variability of the solid content (SC), dietary fiber (DF), insoluble dietary fiber (IDF), soluble dietary fiber (SDF), total polyphenol content (TPC), and antioxidant activity (AA) of the FVW from the wholesale market.
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The seasonal pattern of the DF, IDF, SDF, TPC, and AA in the FVW from the wholesale market is presented in Figures 1–4. The DF content (Figure 1) ranged from 19.9 (spring samples) to 33.3 g/100 g dw (autumn samples), with similarly higher values in autumn and winter samples and similar lower values in spring and summer (p < 0.05). The fiber composition was characterized by a high ratio of IDF (Figure 2), which ranged from 12.9 g/100 g dw in summer to 26.5 g/100 g dw in winter. As observed for the DF content, significantly higher values were detected in the autumn and winter samples compared to the spring and summer samples (p < 0.05).

[image: Bar graph titled "DF" showing DFG levels per 100 grams dry weight across seasons. Winter and autumn have higher levels, labeled "a," while spring and summer have lower levels, labeled "b." Each bar has a different color and pattern.]

FIGURE 1
 Seasonal content of the DF (g/100 g dw) in FVW from the wholesale market (means ± SD). The seasons were defined as follows: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May). Different letters indicate statistically significant differences (p < 0.05).


[image: Bar chart titled "IDF" shows Indigestible Dietary Fiber (IDF) in grams per 100 grams dry weight across four seasons: Winter, Spring, Summer, and Autumn. Winter and Autumn have the highest IDF values around 30, labeled "a." Spring and Summer, both labeled "b," have lower values around 15. The chart suggests seasonal variation in fiber content.]

FIGURE 2
 Seasonal content of the IDF (g/100 g dw) in FVW from the wholesale market (means ± SD). The seasons were defined as follows: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May). Different letters indicate statistically significant differences (p < 0.05).


[image: Bar chart depicting SDF levels in different seasons. Winter shows approximately 6 grams per 100 grams dry weight, spring about 7 grams, summer around 11 grams, and autumn roughly 10 grams. Error bars indicate variability.]

FIGURE 3
 Seasonal content of the SDF (g/100 g dw) in FVW from the wholesale market (means ± SD). The seasons were defined as follows: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May). Different letters indicate statistically significant differences (p < 0.05).


[image: Bar chart showing Total Phenolic Content (TPC) in grams of gallic acid equivalents per 100 grams dry weight for each season. Winter, Spring, and Autumn bars have similar heights around 2, while Summer is slightly higher at 3. Error bars indicate variability.]

FIGURE 4
 Seasonal values of the TPC (g GAE/100 g dw) in FVW from the wholesale market (means ± SD). The seasons were defined as follows: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May).


The distribution of the SDF fraction showed a different pattern (Figure 3). The highest levels were observed in the summer and autumn samples (9.1 ± 0.8 g/100 g dw, 8.12 ± 1.02 g/100 g dw, respectively), while the lowest level was observed in winter (4.31 ± 0.5 g/100 g dw), with an intermediate value in spring (6.6 ± 1.0 g/100 g dw) (p < 0.05).

It should be noted that the TPC (Figure 4) of FVW was almost constant throughout the year, ranging from 2.1 g GAE/100 g dw (autumn) to 2.7 g GAE/100 g dw (spring), with no significant differences across the seasons (p < 0.05). In contrast, the AA (Figure 5) determined using the DPPH* assay showed significant differences across the seasons, with higher values in the spring samples, albeit with a high dispersion of the data. The AA ranged from 12.5 μmol TE/g dw in the summer samples to 34.4 μmol TE/g dw the spring samples.

[image: Bar chart labeled "AA" showing antioxidant activity (AA) in micromoles Trolux Equivalents per gram of dry weight across seasons. Spring has the highest activity, followed by winter, autumn, and summer. Error bars indicate variability.]

FIGURE 5
 Seasonal AA (μmol TE/g dw) in FVW from the wholesale market (means ± SD). The seasons were defined as follows: summer (June, July, August), autumn (September, October, November), winter (December, January, February), and spring (March, April, May). The whiskers represent the upper and lower values of the data. Different letters indicate statistically significant differences (p < 0.05).




4 Discussion

From the perspective of improving the sustainability of agri-food production and reducing food loss and food waste, the reuse of FVW originating from wholesale markets or transformation plants is particularly promising. Both strategies—reducing the amount of FVW and valorizing FVW as a source of nutritionally relevant compounds—can be implemented (Sagar et al., 2018; Cassani and Gomez-Zavaglia, 2022). A critical consideration is related to the safety of reusing this waste as an ingredient for animal feed. Animal feed manufacturers should use sustainable, secure, and safe resources. Fruits and vegetables intended for human consumption are subjected to strict regulations to ensure an adequate hygienic profile. Therefore, at the original point where fruits and vegetables are discarded, safety issues are not highlighted, such as the presence of heavy metals, pesticides, antibiotic residues, mycotoxins, or microbiological hazards (Tedesco et al., 2021).

Bioactive compounds are commonly found in vegetable products (Wadhwa et al., 2015). The health-promoting effects of these compounds are mainly mediated through biochemical and cellular interactions, which further prevent susceptibility to diseases, promote animal health, and improve the quality or quantity of their products (Durmic and Blache, 2012). FVW in the livestock feed sector can be considered a valuable source of bioactive compounds (Bakshi et al., 2016).

The content of DF in the waste generated over a year from the wholesale market averaged 26.5 ± 6.3 g/100 g dw. From a nutritional perspective, DF is defined as non-digestible carbohydrates and lignin resistant to mammalian digestive enzymes (Trowell, 1976). Interest in DF has grown due to its beneficial physiological effects on the gastrointestinal tract (Hipsley, 1953). Based on its interaction with water, dietary fiber comprises two fractions: the insoluble fraction, which includes cellulose and lignin, and the soluble fraction, which includes pectins, beta-glucans, hemicelluloses, gums, and galactans (Van Soest et al., 1991; Davidson and McDonald, 1998). DF can be digested by both rumen microbiota and gut microbiota. In monogastric animals, one crucial function of DF is to act as a prebiotic, modifying the types and functions of gut bacteria. The health-beneficial effects of DF on the microbiota and immune system are well-reported (Hooper et al., 2012; Jha et al., 2019). The positive effect of fiber consumption might be associated with modifications in the physicochemical properties of the digesta, enhanced fermentation capacity in monogastric animals, and the colonization of beneficial commensal microbiota that competitively blocks the adhesion of pathogenic bacteria to the gastrointestinal tract mucosa (Molist et al., 2014). Soluble fiber, primarily found in fruits, legumes, and oats, is known to lower LDL cholesterol and may aid in the regulation of blood sugar levels (Slavin, 2013).

Insoluble fiber contributes to appetite control and the prevention of constipation (Yang et al., 2012). High-fiber diets have been linked to a lower incidence of several diseases. Benefits include boosting the volume of fecal bulk, reducing the duration of intestinal transit, lowering cholesterol and glycemic levels, and encouraging the growth of the intestinal flora (Hooper et al., 2012; Jha et al., 2019). Considering the content of DF and its insoluble and soluble fractions, the FVW analyzed in this study can be considered a good source of fiber, even for monogastric animals that need low fiber quantities to stay healthy. However, the composition of the FVW varied over time; this can pose problems in the formulation of feed using FVW as an ingredient. Nevertheless, its potential as a functional, fiber-rich ingredient should be exploited.

Phenolic compounds are secondary plant metabolites that represent a major class of bioactive compounds. The intake of polyphenols from fruits and vegetables is nutritionally important due to their biological activities, including antioxidant, anti-inflammatory, immunomodulatory, and antimicrobial effects, as well as their positive influence on intestinal morphology and nutrient absorption, especially in monogastric animals (Kamboh et al., 2015; Lipiński et al., 2017). The role of polyphenols is well-recognized in animal nutrition. Supplementation with polyphenols has shown an improvement in animal health, growth performance, and the quality of products (Hashemi and Davoodi, 2011; Serra et al., 2021; Budiarto et al., 2024). Studies have reported that feeding fruit waste (such as grape pomace, orange/Citrus pulp, etc.) rich in polyphenols to chickens, laying hens, and ruminants improves the meat and egg quality, increases polyunsaturated fatty acids concentrations, and reduces lipid peroxidation due to increased radical scavenging activity (Goñi et al., 2007; Goliomytis et al., 2018; Tayengwa et al., 2020; Arend et al., 2022). Similarly, in pigs and rabbits that were fed fruit and vegetable waste rich in polyphenols, meat analysis revealed an increase in polyunsaturated and monounsaturated fatty acids concentrations, along with a reduction in thiobarbituric acid reactive substances and improved oxidative stability (Hossain et al., 2012; Dal Bosco et al., 2012; Tian et al., 2023; Blasi et al., 2024).

Despite the variable monthly composition of other parameters, the FVW collected in this study showed a constant level of polyphenols throughout the year, with an average content of 2.4 ± 0.8 g GAE/100 g dw. Numerous studies in the literature have reported the TPC values referring for individual types of fruit or vegetable waste. Studies have reported that apple pomace and peel, for example, contain TPC values of 10.2 mg GAE/g dw and 28.3 mg GAE/g dw, respectively (Sudha et al., 2007; Henríquez et al., 2010). Regarding white grapes, red grape pomace, tomato pomace, and kiwi juice pomace, TPC has been reported to range from 11.6 to 15.8 mg GAE/g dw, 21.4 to 26.7 mg GAE/g dw, 55.1 mg GAE/g dw, and 1.30 to 4.87 mg GAE/g dw, respectively (Deng et al., 2011; Azabou et al., 2020; Carbone et al., 2020). Of peel waste, Citrus species were reported to exhibit a TPC range of 14.8–8.4 mg GAE/ g dw (Budiarto et al., 2024). Furthermore, in a study conducted by Ahmadi et al., (2020), a waste mix (onion, lemon, potato, tomato, plum, etc) showed an overall TPC value of 10.1 mg GAE/g dw. Compared to the data in the literature, the FVW analyzed in this study possessed a similar or higher level of TPC, which was scarcely influenced by the period of collection. Therefore, this waste represents a rich source of untapped, potentially readily available polyphenols that could be used in animal feed. Polyphenols present in FVW are likely to have good bioavailability due to the presence of associated saccharides, especially in fruits (Sieminska-Kuczer et al., 2021). These saccharides increase the secretion of digestive enzymes, bile, and mucus and enhance the phenolic bioavailability, particularly in the small and large intestines (Chiva-Blanch and Visioli, 2012; Brenes et al., 2016).

Polyphenols have the ability to counteract reactive oxygen species (ROS) production, which, especially during oxidative stress, triggers degenerative and inflammatory diseases (Gessner et al., 2017; Artuso-Ponte et al., 2020). The presence of phenolic compounds is mainly responsible for the antioxidant activity of fruits and vegetables (Wijngaard et al., 2009). In our study, the overall value of antioxidant activity was 24.6 ± 19.8 μmol TE/g dw and the highest antioxidant capacity was measured in the spring samples (34.4 ± 22.4 μmol TE/g dw). This high value may be due to the presence of products particularly rich in ascorbic acid in the waste. Among the most common FVW evaluated in the above-cited studies, Citrus peel showed an antioxidant capacity ranging from 8.7 to 15.1 μmol TE/g dw (Budiarto et al., 2024). Grape seed pomace showed the highest antioxidant potential, with an antioxidant capacity of 160.9 μmol TE/g dw (Costa et al., 2019). In contrast, orange and apple juice showed DPPH* scavenger activities of 26.3 and 35.4 μmol TE/100 mL, respectively (Šeregelj et al., 2024). An appreciable amount of polyphenols can remain in the solid residues of digested food, where they can be absorbed by dietary fiber. Considering that the microflora in the digestive tract can disrupt the DF matrix, these polyphenols can be released and metabolized, producing molecules with health benefits (Fulgencio, 2011).

As fruit and vegetable wastes and by-products represent a potential source of valuable compounds, tapping into their full potential would contribute positively to the circular economy by adding value through the development of “innovative” products (Laufenberg et al., 2003). The main limitation is the high moisture content, which is responsible for the rapid deterioration of this waste. The first step in implementing the use of FVW as a feed ingredient is to reduce the moisture content, ensuring the maintenance of safety requirements during storage and use. FVW could be dehydrated using methods such as sun-drying, vacuum/connective-drying, freeze-drying, or infrared-drying (Sogi et al., 2013; Wang et al., 2022). Given the large quantities of waste that need to be dried, the application of these technologies is rather complicated and cost-prohibitive. Moreover, due to the rapid deterioration of FVW biomass, companies or vegetable markets should deliver it to the processing plant within a short time. As an alternative to dehydration, ensiling is a sustainable and biological method for storing large amounts of FVW, which could be used directly on-site without excessive costs. Ensiling is a storing technique with a low environmental impact, which is widely used for ruminant feed production. It relies on the activity of lactic acid bacteria in anaerobic conditions, which leads to a reduction in pH, preserving forages and optimizing the nutritional and microbial quality of the feed (Mejía-Avellaneda et al., 2022; Ma et al., 2023). Due to the composition of FVW, ensiling should be combined with co-ensiled crop residue biomass to help reduce moisture (Duo et al., 2018). Additionally, using probiotic bacteria inoculum (i.e., Lactobacillus plantarum, Lacticaseibacillus casei, L. rhamnosus, etc) can inhibit the growth and metabolism of pathogenic microorganisms, thereby improving the ensiling quality (Keshri et al., 2018).

Another challenge is the nutritional variability of FVW observed throughout the year, which complicatesfeed formulation. The use of rapid NIR spectroscopy to evaluate the nutritional composition before adding FVW to a diet could help address this problem (Tedesco et al., 2021). In addition, the potential presence of anti-nutritional components must be considered; however, the variable presence of individual fruits and vegetables containing anti-nutritional factors in a multi-component mixture can minimize the negative effects of anti-nutritional factors. This risk is further reduced by including FVW as a complementary ingredient in the animal’s diet.



5 Conclusion

This study indicates that FVW from a wholesale market is a valuable source of nutritional compounds that can be valorized in the food chain by producing functional feed ingredients. The major constraints in the reuse of FVW are its high moisture content and its variable composition throughout the year. Since the waste from fruits and vegetables is constantly increasing, its reallocation to animal feed can contribute to sustainable livestock production. Efforts are needed to improve processing technologies that make this waste reusable in animal nutrition. In addition, further investigations are needed to fully characterize this particular waste to exploit its potential added value as a functional feed ingredient.

The results from this study only pertain to the FVW obtained from the Milan wholesale market over 1 year. However, we can assume that similar data would be obtained from wholesale markets in regions with similar food habits and that yearly variability should not significantly affect the general results. Research should be expanded to include markets representing different dietary patterns to establish the composition of their FVW and assess its potential use as a feed ingredient.
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Introduction: The global generation of large amounts of eggshell waste (ESW) is a persistent annual issue, requiring sustainable disposal solutions. Soil biosolarization (SBS), which combines organic amendments with solar heating, is a sustainable agricultural practice that serves as an alternative to chemical soil fumigation for effective pest control. This study evaluates the feasibility of using ESW as a soil amendment in SBS.
Methods: A bioreactor-based simulation system was used to conduct SBS experiments under aerobic and anaerobic conditions. Assessments included soil health, microbial activity, soil microbiome, and phytotoxicity.
Results and discussion: The results demonstrate that ESW significantly altered the pH of acidic soils, shifting them toward neutral and alkaline conditions. CO₂ emissions from ESW-amended soils increased in both aerobic (up to 7.0 mg CO₂/g soil) and anaerobic conditions (0.62 mg CO₂/g soil), indicating efficient microbial utilization of ESW and enhanced microbial activity. Additionally, ESW promoted the release of functional volatile organic compounds such as dimethyl sulfide, methanethiol, ammonia, and formic acid, which are known to suppress soilborne pathogens. Bacterial community analysis showed that ESW amendments promoted beneficial genera (e.g., Bacillus, Brevibacillus, Paenibacillus) associated with pest suppression and plant growth, while inhibiting harmful genera like Alicyclobacillus. Residual phytotoxicity on lettuce seedlings remained low, and weed seed inactivation of Bidens pilosa was effective in all SBS simulations with ESW.
Conclusion: These findings highlight the potential of ESW to enhance SBS efficiency, suppress pathogens, and promote sustainable waste recycling.
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1 Introduction

In recent decades, the demand for eggs in human diets has steadily risen. Global egg production in 2018 was 76.7 million tons, a 14.95% increase over the past decade (FAO, 2020). For the past 30 years, China has been the world’s largest egg producer, with a total production of 26.9 million tons in 2018 (FAO, 2020). By 2030, global egg production is projected to reach 90 million tons (Ferraz et al., 2018). Given that the eggshell (ES) makes up about 10% of an egg’s weight (Laca et al., 2017), approximately 7.67 million tons of ES are generated worldwide annually. Among them, ES produced in the egg processing and food industry accounts for a large proportion, about 2.3 million tons in 2018 (Ahmed et al., 2021).

As a type of food waste, ES may cause environmental pollution when it is not properly disposed of in the environment (Ngayakamo and Onwualu, 2022). Eggshell waste (ESW) is usually discarded in landfills with minimal or no pre-treatment (Oliveira et al., 2013), and thus becomes a source of environmental pollution with odor production, microbial growth, and greenhouse gas (GHG) production (Mignardi et al., 2020). Because its calcified shell contains more than 94% calcium carbonate and its membrane contains various proteins, ES should be considered a valuable natural material rather than a waste product (Baláž et al., 2021). Possible applications of ES include low-investment processes such as the manufacture of fertilizers, animal feed, and limestone, as well as high-investment processes for transforming as materials for human consumption, heavy metals absorption, paper treatment, catalysts for biodiesel production, protein production, etc. (Oliveira et al., 2013). In environmental remediation, ES has proven effective in neutralizing acid mine drainage and removing heavy metals like Pb, Cd, and Cu (Kalyoncu Ergüler, 2015; Zhang et al., 2017), with smaller particles demonstrating enhanced efficiency in these processes (López-Díaz et al., 2024). These findings highlight the potential of ES for both waste recycling and environmental protection.

More recently, the European Union has been working to promote the valorization of ESW through soil applications (Quina et al., 2017). The reuse of ESW in agriculture is a practical approach to meet the need for soil calcium supplementation and acidic pH adjustment, contributing to the development of a circular economy and environmental sustainability (Oliveira et al., 2013). In addition, ES can also be used for the immobilization of heavy metals in soil. Soares et al. reported that adding industrial ESW to a co-compost mixture was suitable for soil remediation to immobilize lead and zinc (Soares et al., 2015).

Another promising approach to reuse ESW for soil improvement and value-added crop production is its application as a soil amendment in soil biosolarization (SBS), a use that has not been previously reported. SBS is a sustainable soil pest control practice that combines the addition of organic amendments into soil with solarization (Achmon et al., 2016). Solarization is an environmentally friendly alternative to soil fumigation (Stapleton, 2000). This process involves mulching moistened soil in open fields or greenhouses with transparent plastic film and applying solar heating to create a greenhouse effect, raising the soil surface temperature to levels lethal or near-lethal to pathogens (Katan and DeVay, 1991). However, there are still some limitations to solarization, including long treatment times, reliance on sunny weather, and limited effectiveness in controlling all pathogens (Achmon et al., 2017).

To address these challenges, SBS has emerged as an enhanced method of solarization, gaining significant attention in recent years (Fernández-Bayo et al., 2017; Fernandez-Bayo et al., 2020; Shea et al., 2022). By incorporating organic amendments, SBS creates reductive conditions and produces biopesticidal compounds in the soil, effectively inactivating soilborne pests (Achmon et al., 2017; Fernandez-Bayo et al., 2020). Studies have demonstrated that SBS can rapidly increase soil microbial abundance and activity (Randall et al., 2020), produce organic acids with bio-pesticidal effects (Hestmark et al., 2019), and raise topsoil temperatures above 50°C, intensifying stress on soilborne plant pathogens (Stapleton, 2000).

Soil respiration (i.e., CO₂ release) is widely used as an indicator of soil microbial activity in SBS, as the CO₂ emitted primarily originates from microbial respiration. It provides insight into microbial responses to thermal stress and substrate utilization (Achmon et al., 2016; Fernández-Bayo et al., 2018; Liang et al., 2022; Zou et al., 2023). Soil volatile organic compound (VOC) release profiles have recently been proposed as a tool to characterize soil microbial metabolism, including the production of antimicrobial substances during SBS (Liang et al., 2022; Zou et al., 2023). The presence of microbial VOCs (mVOCs) in this process could be linked to specific metabolic pathways that contribute to the effectiveness of SBS (Liang et al., 2022). Notably, some mVOCs have shown potential for inhibiting plant pathogens (de Boer et al., 2019), making their production considered one of the key factors in the success of SBS. Therefore, measuring soil respiration and VOC release is crucial for evaluating microbial activity and understanding the metabolic processes involved in SBS, providing valuable insights into its effectiveness for pathogen suppression.

Soil microbiota, including both endogenous microorganisms and those introduced through organic amendments, play a crucial role in the SBS process (Fernández-Bayo et al., 2017; Fernández-Bayo et al., 2019). These microorganisms not only facilitate fermentation but also significantly influence subsequent soil health (Chaparro et al., 2012). A previous SBS study using tomato pomace and green waste compost has shown an increase in bacterial genera such as Clostridium, Weissella, and Acetobacter, which promote the accumulation of volatile fatty acids (Achmon et al., 2020). Similarly, an SBS study with almond residues as amendments has demonstrated an increased abundance of Streptomyces, which facilitates biopesticide formation, and Clostridium, which promotes the production of organic acids (Shea et al., 2022). The enrichment of bacteria that produce bacteriostatic substances during the SBS process contributes to the suppression of soilborne plant pathogens. Given their critical role in SBS and subsequent agricultural outcomes, understanding soil microbiota restructuring and community dynamics is essential.

Previous studies have shown that using tomato pomace and olive pomace in SBS improves the health and quality of crops in consecutive cropping systems (Achmon et al., 2018; Domínguez et al., 2014). Agricultural wastes such as grape, tomato, and fish processing waste have also been found to effectively suppress weed seeds during SBS, but they also leave residual phytotoxicity that may adversely affect subsequent crops (Achmon et al., 2016, 2017; Liang et al., 2022). While phytotoxicity is useful for weed control, its persistence in soil can negatively impact crop growth, making its management crucial for SBS effectiveness.

In this study, the feasibility of using ESW as a soil amendment in the SBS process was investigated through a lab-scale simulation system. The evaluation of SBS with ESW was conducted under both aerobic and anaerobic environments, focusing on four key parameters: (1) soil properties (pH, volatile solids, electrical conductivity, and nutrient content), (2) gas emissions (soil respiration and VOC release), (3) alterations in bacterial community structure (diversity and composition) and (4) residual phytotoxicity and weed seed inactivation. These findings offer valuable insights into the potential application of ESW in field-based SBS and other soil-related applications, contributing to the advancement of sustainable agricultural systems.



2 Materials and methods


2.1 Soil and eggshell waste preparation and characterization

The soil was collected from the field experiment station of the Guangdong Technion Israel Institute of Technology (GTIIT), in Shantou, Guangdong, China (23°31′4″N, 116°45′6″E). Approximately 100 kg of soil was excavated from the top 20 cm of the surface layer using a shovel and placed into a container. The collected soil was then transported to the laboratory, where it was sieved through 2 mm sifters and then dried in an oven (Bluepard Instrument DZF- 6000 Vacuum Drier) at 45°C until the mass remained constant. Once dried, the soil was stored at room temperature for further use in the experiments.

Collection of ESW took place in the kitchen of the GTIIT canteen, where the canteen personnel separated it from other food waste to avoid contamination. It was obtained during the common process of using fresh eggs, where the contents (yolk and white) were poured out, and the shells were discarded. After collection, ESW was first sun-dried until its mass remained constant, then ground into particles smaller than 1 mm using a laboratory blender to ensure it could later mix uniformly with the soil. The dried powder of ESW was stored in sealed boxes at 4°C to preserve its stability and prevent potential degradation or microbial contamination, ensuring it remained in optimal condition for future use in experiments.

The moisture content of soil and ESW was determined gravimetrically by comparing the mass of samples before and after drying in an oven (Bluepard Instrument DZF- 6000 Vacuum Drier) at 105°C until a constant weight was achieved. The volatile solids (VS) content was determined by measuring the mass loss of samples after 6 h of incineration in a muffle furnace. (SAFTherm Furnace, STM-12-12) at 550°C and was expressed as a fraction of the dry weight of the sample (Achmon et al., 2016). The pH and electrical conductivity (EC) were measured on the supernatant of a mixture composed of sample (g) and distilled water (mL) at a 1:5 ratio using a multi-parameter measuring instrument (Thermo Scientific Orion Versa Star Pro). The characterization of physicochemical parameters of nutrient element content in both soil and ESW was carried out by Nanjing Convinced-Test Technology Co., Ltd., China, as previously done (Zou et al., 2023). The properties of the dried soil and ESW powder are presented in Table 1.



TABLE 1 Properties of soil and ESW before SBS treatment.
[image: Two tables compare soil and ESW (ex situ waste) properties, showing mean values with standard deviation. The first table includes moisture content, volatile solids (VS) content, pH, carbon/nitrogen ratio (C/N), and phosphorus (P) with respective values: Soil has 0.0165 g water/g DS, 9.6% VS, pH 5.00, C/N 11.45, and 0.57 mg/g DS phosphorus. ESW has 0.0147 g water/g DS, 7.9% VS, pH 9.67, C/N 2.15, and 1.37 mg/g DS phosphorus. The second table compares calcium (Ca), copper (Cu), manganese (Mn), selenium (Se), molybdenum (Mo), zinc (Zn), and iron (Fe). Soil contains 1.17 mg/g DS Ca, 16.78 μg/g DS Cu, 0.13 μg/g DS Mn, 0.371 μg/g DS Se, 1.363 μg/g DS Mo, 108.8 μg/g DS Zn, 19.7 μg/g DS Fe, whereas ESW has 43.09 mg/g DS Ca, 1.31 μg/g DS Cu, 1.34 μg/g DS Mn, 3.948 μg/g DS Se, 0.085 μg/g DS Mo, 2.3 μg/g DS Zn, 191.9 μg/g DS Fe.]



2.2 Soil biosolarization simulation system assembly

A laboratory-level SBS simulation system was established, which consisted of a temperature-programmable incubator, a multi-channel Micro-Oxymax respirometer, and a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) (the details of each section will be described below). Similar simulation systems have been successfully used to study SBS using residues of tomato, grape, fish, and tea waste as soil amendments (Achmon et al., 2016; Liang et al., 2022; Zou et al., 2023). In this study, an SBS simulation system with two settings was used: (1) an aerobic setting that simulates soil conditions near the soil surface or in sandier soils, and (2) an anaerobic setting that simulates soil conditions in deeper layers of the soils or those soils that have high clay and/or moisture contents (Achmon et al., 2016). For an overview of the research design, experimental system setup, and the experiments conducted in this study, refer to Supplementary Figure S1.

In the system, 100 mL or 250 mL glass bottles were used as bioreactors, loaded with mixtures of soil and ESW, and they were placed in the temperature-programmable incubator (Lab Companion, Low Temp. Incubator, Multi-Chamber, 1 L-11-4C) operated under a periodic temperature program that simulates the diurnal temperature changes during an actual SBS. The incubator’s temperature program was based on the average near-surface temperature observed in previous field studies (for the specific program, refer to Supplementary Table S1) (Achmon et al., 2017, 2018; Hestmark et al., 2019). In this study, soil mixtures with 0.5, 2.5, 5, and 8% ESW (on a dry weight basis) were examined. These soil mixtures were then wetted with 30% wt. of distilled water before being loaded into the bioreactors. During 30 days of SBS simulation, soil samples from each bioreactor were taken to measure pH, VS, and EC every six days using the method mentioned above. The nutrient contents of carbon (C), nitrogen (N), phosphorous (P), magnesium (Mg), potassium (K), and calcium (Ca) were determined on day 0 and day 30 of the SBS simulation.



2.3 Soil respiration and volatile organic compound emissions measurement

A Micro-Oxymax respirometer (Columbus Instruments International) was used to measure soil microbial respiration during SBS simulation. The Micro-Oxymax respirometer was equipped with a paramagnetic O2 sensor (Columbus Instruments International Serial 200,135–3), a non-dispersive infrared CO2 sensor (Columbus Instruments International Serial 200,135–4) with a 0–3% detection range, and a CH4 sensor with a 0–5% detection range (Columbus Instruments International Serial 200,135–5). Inside the incubator, bioreactors were connected to gas collectors and then connected to the Micro-Oxymax respirometer. Through auto-sampling by a sampling pump (Columbus Instruments International Serial 200,135–1) and auto-measurement by gas sensors, the Micro-Oxymax respirometer obtained the production rate and the accumulation of O2, CO2, and CH4 in the bioreactors. The consecutive sampling interval for each bioreactor was about 4 h, and the total sampling duration lasted 30 days.

A Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) (Ionicon Analytik Ges.m.b.H, Innsbruck, Austria) was used to detect VOCs that were emitted from the soil in the bioreactors. The reagent ion of the PTR-TOF-MS was H3O+. The mass scale of the PTR-TOF-MS was calibrated using the signals at 21.022 m/z and 59.049 m/z (H3O+-isotope and protonated acetone). The bioreactors were taken out of the incubators to measure soil VOC emissions. By connecting the sample tube of the PTR-TOF-MS to the air outlet on the bioreactor lid, the PTR-TOF-MS automatically sampled the gas from the headspace of the bioreactors and transferred it into a drift pump for ionization. As previously done (Liang et al., 2022; Yu et al., 2024), the actual working conditions of the drift pump were set as follows: drift pressure 2.30 mbar, drift temperature 80°C, and drift voltage 630 V. The ratio of electric field intensity to number density (E/N) was 142 Td (1 Td = 10–17 V·cm2). VOC emissions in each bioreactor were detected once a day by PTR-TOF-MS for 120 s with one spectrum per second, and the total detection duration lasted 30 days.

The soil VOC data were analyzed using PTRMS_Viewer 3.4 software. Signals at 21.022 m/z (H3O + -isotope) and 59.049 m/z (protonated acetone) were calibrated for mass accuracy. The stable signal region of each bioreactor was selected and used to calculate the average intensity of the signal. To analyze VOC emission profiles across all soil treatments over 30 days, principal component analysis (PCA) was applied. The ESW-enriched VOCs were determined by comparing the average intensity of all VOCs in the ESW-amended soils to the corresponding control soils over 30 days. The threshold for significant ESW-enriched VOC emission was set to >3 for the aerobic system and >15 for the anaerobic system. The heatmaps of the relative intensity of ESW-enriched VOCs under different soil treatments were generated using Origin software (version 2021b).



2.4 16S rRNA gene sequencing and data analysis

The soil samples from different days of the SBS simulation (day 0/6/12/18/24/30) were collected in triplicate and sent to Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) for 16S rRNA gene sequencing. Sequences corresponding to the V3-V4 region of the bacteria 16S rRNA genes were amplified by PCR reactions with the primer pairs 338F (5’-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′- GGACTACHVGGGTWTCTAAT-3′). Amplicons were extracted from 2% agarose gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA). Purified amplicons were then paired-end sequenced on an Illumina MiSeq PE300 platform (Illumina, San Diego, USA) and quantified with Quantus Fluorometer (Promega, USA). The sequencing data generated for this study have been deposited in the NCBI Sequence Read Archive (SRA) under the accession number PRJNA1190941.

The resulting raw data were obtained from the Majorbio and then demultiplexed, quality-filtered, and analyzed using the Quantitative Insights into Microbial Ecology II (QIIME II) software package (version 2023.5). The SILVA database (version 132) was used to phylogenetically bin the operational taxonomic units (OTUs). Relative abundances of bacterial phyla and genera, along with feature richness, Pielou’s evenness, and Shannon index, were calculated using RStudio (version 2023.06.1). The Vegan package was used to generate principal co-ordinates analysis (PCoA) plots from the Bray–Curtis dissimilarity matrix calculated from OTU abundance values.



2.5 Residual phytotoxicity and weed seed inactivation

The residual phytotoxicity of ESW-amended soils was evaluated using lettuce (Lactuca sativa L. var. capitata L) (Qingxianchunfeng Vegetable Breeding Cooperation, Hebei, China) growth assay in a similar way to previous studies (Achmon et al., 2016; Liang et al., 2022; Zou et al., 2023). Soils amended with 0, 2.5, 5, and 8% (w/w) of ESW were prepared in aerobic and anaerobic SBS simulation systems and incubated for 14 days. Immediately after incubation, equal amounts of soil mixtures (approximately 52 g) from each bioreactor were transferred into plastic seedling trays (6 *6 *5.3 cm3) and placed in a greenhouse. The trays were divided into three groups, with seeds sown on days 0, 3, and 7 after the simulated SBS closure. Six lettuce seeds were seeded equidistantly in each tray.

Only on day 0, fresh soils amended with 0, 2.5, 5, and 8% (w/w) of ESW, which had not undergone the simulated SBS process, were prepared as freshly prepared samples. Freshly prepared samples were also transferred into plastic seedling trays, placed in the greenhouse, and seeded with lettuce seeds in the same way. The greenhouse maintained an average daily temperature of around 25°C, and soil moisture was managed by adding distilled water twice daily at 9 am and 4 pm. Distilled water was used to ensure consistent water quality and eliminate potential variability in mineral content that could influence seedling growth. After 25 days of planting, the trays were returned to the laboratory, and the lettuce seedlings were harvested. The germination rate was calculated by counting the number of seedlings that emerged in each tray. Harvested seedlings were placed on a sheet of white paper for photography, and their shoot and root lengths were measured using ImageJ (Version 1.53, National Institutes of Health, Bethesda, MD). The average dry biomass of the seedlings was determined by weighing the seedlings after drying at 105°C for one day.

The efficacy of ESW-amended soils in inactivating unwanted weed seeds was assessed using a germination assay with Bidens pilosa in a similar way to previous studies (Achmon et al., 2016; Liang et al., 2022; Zou et al., 2023). Weed seeds were collected from the field where the soil samples were obtained. Six weed seeds were placed on the upper layer (approximately 5 cm below the soil surface) of ESW-amended soils (0, 2.5, 5, or 8% w/w) in each bioreactor within the aerobic and anaerobic SBS simulation systems. The experimental setup was designed to simulate conditions in which dormant Bidens pilosa seeds were already buried in the soil prior to field SBS treatment.

Following a 14-day incubation, the soil and weed seeds from each bioreactor were transferred into a plastic seedling tray and placed in the greenhouse. Freshly prepared samples, not subjected to the simulated SBS process, were also prepared accordingly on the same day. Over the 25-day greenhouse period, the emergence of weed seedlings was recorded daily, along with their sprouting days.



2.6 Data analysis

ANOVA analysis with post hoc Tukey’s Honest Significant Difference test was used to compare mean response values across soil groups. The familywise error rate equaled 0.05 for all comparisons. Statistical analyses were performed using SPSS (IBM SPSS Statistics 26).




3 Results and discussion


3.1 Properties of soil and eggshell waste before soil biosolarization treatment

The properties of the dried soil and ESW powder before the SBS treatment are presented in Table 1. The basic field soil was acidic with pH = 5.00 ± 0.07, containing a low amount of organic matter with VS = 9.6 ± 0.2% of dry solids (DS), and a low Ca concentration of about 1.17 mg/g DS.

In contrast, the ESW collected from the university canteen was alkaline (pH = 9.67 ± 0.07) and rich in nitrogen (C/N = 2.15 ± 0.08). The low C/N ratio is likely due to nitrogen-rich organic residues, primarily egg yolk and white, remaining on the ESW during collection. Additionally, the ESW had a high Ca content (approximately 43.09 mg/g DS) and a low percentage of organic matter (VS = 7.9 ± 0.3 %DS). The carbon-to-nitrogen ratio (C/N) of ESW was significantly lower than that of other reported soil amendments (C/N ≥ 30), suggesting that ESW may have a potential role in enriching soils that require nitrogen supplementation (Liang et al., 2022).

High acidity and low Ca concentration in the soil would lead to impaired bio-accessibility and hinder the normal development of plants (Quina et al., 2017). Many studies have demonstrated that ES is effective in regulating the pH of acidic soils and supplying the calcium necessary for crop growth (Elwakeel and Yousif, 2010; Cordeiro and Hincke, 2011). Although ESW has not previously been reported for use in SBS, its characteristics suggest it could be a valuable amendment.



3.2 Description of soil properties

Soil pH is an important factor for pest inactivation and is influenced by fermentation products, which significantly affect the efficacy of the SBS process (Momma et al., 2006). The results showed that SBS with ESW significantly increased soil pH in both aerobic and anaerobic conditions (p < 0.05). In aerobic conditions, all treated soils exhibited a significant increase in pH after the SBS process (Figure 1A). The pH of the control soil increased from 4.95 to 5.67, remaining within the acidic range. In contrast, the soil amended with 0.5% ESW showed the largest increase, rising from 6.00 to 7.62, reaching a neutral to slightly alkaline pH. The soil with 2.5% ESW exhibited the smallest increase, with pH rising from 7.46 to 8.41, becoming more alkaline. This is likely due to the higher initial pH of the soil amended with 2.5% ESW, resulting in a smaller net increase but a higher final pH.

[image: Four line graphs compare pH and electrical conductivity (EC) over 30 days in different conditions: (A) pH in aerobic conditions, (B) pH in anaerobic conditions, (C) EC in aerobic conditions, (D) EC in anaerobic conditions. Each graph includes three lines representing control, 0.5% ESW, and 2.5% ESW treatments, with labeled data points for different days. Each treatment line varies in behavior over time, indicated by distinct letters marking statistically significant differences.]

FIGURE 1
 Changes in soil pH and electrical conductivity (EC) during simulated SBS processes. (A) Soil pH under aerobic conditions. (B) Soil pH under anaerobic conditions. (C) Soil EC under aerobic conditions. (D) Soil EC under anaerobic conditions. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; ae, aerobic setting; an, anaerobic setting. Data represent the means of triplicates with a standard deviation. Data not connected by the same letter are significantly different (α = 0.05).


In anaerobic conditions, pH also increased significantly for all treated soils, mirroring the trends observed in aerobic conditions (p < 0.05) (Figure 1B). The pH of the control soil increased from 4.93 to 5.63, remaining in the acidic range. The soil amended with 0.5% ESW showed the greatest increase, with pH rising from 5.64 to 6.81, approaching neutral. In contrast, the soil with 2.5% ESW exhibited the smallest increase, with pH rising from 7.11 to 8.01, becoming more alkaline. As observed in aerobic conditions, the higher final pH at 2.5% ESW can be attributed to the initial alkalinity of the soil amended with 2.5% ESW, which resulted in a smaller net increase but a higher final pH. Studies have indicated that the higher pH resulting from increased Ca concentration in the soil can inhibit soil-borne plant pathogens associated with plant root diseases (He et al., 2014; Niwa et al., 2007). Thus, the application of Ca-rich ESW in the SBS process holds great potential for suppressing soil-borne plant pathogens and controlling plant root diseases. The addition of ESW did not significantly affect the VS content, likely due to the low organic matter in the ES. Detailed changes in VS content under both aerobic and anaerobic conditions are shown in Supplementary Figure S2.

Soil EC indicates the salinity levels and the ability of soil to conduct electrical current, which is closely related to the concentration of soluble salts. Optimum soil EC is crucial for plant growth, as it affects nutrient availability, water uptake, microbial activity, and more (Mishra et al., 2023). The results demonstrated that the addition of ESW did not significantly increase the soil EC value (Figures 1C,D). After 30 days of SBS treatment, the EC value of the amended soil remained unchanged. The addition of ESW did not lead to salinity in the soil, as the EC values in both aerobic and anaerobic conditions remained below 600 μS/cm, well below the threshold for saline soil (EC1:5 of 1,000 μS/cm or higher) (Rengasamy, 2010).

The contents of six nutrient elements in the soil were measured before and after 30 days of aerobic and anaerobic SBS simulations. The ESW amendment did not have a significant effect on the contents of C, N, P, and Mg in the soil (Figures 2A–D). Post-treatment, there were no significant differences in the levels of these four nutrients between the control soils and the amended soils. The addition of ESW led to a slight decrease in soil K content (Figure 2E). Following the aerobic SBS, soil K level decreased further, whereas, after anaerobic SBS treatment, soil K content showed a slight increase. The addition of 0.5% (w/w) of ESW did not significantly increase of Ca level in soil, while the addition of 2.5% (w/w) of ESW did result in a significant increase (p < 0.05) (Figure 2F). The results showed that 30 days of aerobic and anaerobic SBS treatment had little effect on Ca content across all soil groups.

[image: Bar charts labeled A to F show the contents of various elements under aerobic and anaerobic conditions. Each chart presents data for control and ESW treatments at different dosages and timeframes (D0, D30). Chart A illustrates carbon content, B shows nitrogen, C depicts phosphorus, D displays magnesium, E represents potassium, and F indicates calcium. Error bars are included. Statistical differences are denoted by letters above the bars.]

FIGURE 2
 Six nutrient contents in the soil before and after aerobic and anaerobic SBS simulations: carbon (A), nitrogen (B), phosphorus (C), magnesium (D), potassium (E), and calcium (F). DS, dry solids; Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; D0, before SBS simulation; D30, after SBS simulation. Data represent the means of triplicates with a standard deviation. Data not connected by the same letter are significantly different (α = 0.05).




3.3 Evolution of gas emissions


3.3.1 Soil respiration

Soil respiration serves as an indicator of microbial activity during SBS, reflecting the microorganisms’ capacity to decompose organic amendment and the overall intensity of their activity (Achmon et al., 2016; Yazdanpanah et al., 2016). To assess soil respiration, the evolution of CO2, O2, and CH4 was constantly monitored over 30 days of simulated SBS in both aerobic and anaerobic conditions (Figure 3).

[image: Graphs (A) to (F) depict the accumulation of carbon dioxide (CO2), oxygen (O2), and methane (CH4) over 30 days. Panels (A) and (B) show CO2 accumulation under aerobic and anaerobic conditions, respectively. Panels (C) and (D) illustrate O2 accumulation, while panels (E) and (F) represent CH4 accumulation. The graphs compare control conditions with 0.5% and 2.5% ESW treatments, highlighting variations in gas levels across different conditions.]

FIGURE 3
 Soil respiration during simulated SBS processes. (A) CO₂ accumulation in soils under aerobic conditions. (B) CO₂ accumulation in soils under anaerobic conditions. (C) O₂ accumulation in soils under aerobic conditions. (D) O₂ accumulation in soils under anaerobic conditions. (E) CH₄ accumulation in soils under aerobic conditions. (F) CH₄ accumulation in soils under anaerobic conditions. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; ae, aerobic setting; an, anaerobic setting. Data represent the means of triplicates.


The addition of ESW significantly increased soil respiration during both aerobic and anaerobic simulated SBS processes (p < 0.05). In aerobic conditions, soil amended with 0.5 and 2.5% ESW showed 1.8-fold and 2-fold increases in CO2 accumulation compared to the control, reaching 6.4 mg CO2/g soil and 7.0 mg CO2/g soil, respectively (Figure 3A). These levels were considerably lower than the 17 mg CO2/g soil reported for soils with 5% red wine grape waste (Achmon et al., 2016) and the 25 mg CO2/g soil observed in soils with 2% fish waste (Liang et al., 2022), potentially due to the lower organic content in ESW.

In anaerobic conditions, soil amended with 0.5 and 2.5% ESW showed 2.7-fold and 3-fold increases in CO2 accumulation compared to the control, reaching 0.57 mg CO2/g soil and 0.62 mg CO2/g soil, respectively (Figure 3B). These levels were also lower than the 3 mg CO2/g soil reported for soil with 2% fish waste (Liang et al., 2022). These results suggest that soil microbes efficiently utilized the added ESW, as evidenced by the significant increase in CO2 accumulation observed during both aerobic and anaerobic SBS simulations. Although the dissolution of calcium carbonate in ESW under acidic conditions may contribute to CO2 release (Tamir et al., 2011), the observed emissions were likely dominated by microbial activity. This conclusion is supported by the sustained CO2 evolution over the 30-day period, the parallel trends in O2 consumption under aerobic conditions, and continued CO2 accumulation under anaerobic conditions—none of which would be expected from a purely abiotic reaction. These findings collectively suggest active microbial respiration in response to the organic residues in ESW.

O2 consumption due to microbial activity in the soil was also monitored. As expected, during the simulated SBS processes, O2 consumption was positively correlated with CO2 production, with similar trends observed for both variables. In aerobic systems, soil amended with 2.5% ESW consumed nearly 6.0 mg of O2/g soil by the end of the 30-day test, while soil amended with 0.5% ESW consumed 4.9 mg of O2/g soil (Figure 3C). In anaerobic systems, soils amended with both concentrations of ESW consumed approximately 1.0 mg O2/g soil by the end of the 30-day test (Figure 3D).

When conducting waste management, it is crucial to consider potential negative environmental effects. The release of gases from soil is often associated with greenhouse gases (GHGs). Since CH4 is a potent GHG, its release could undermine the feasibility of SBS application (Liang et al., 2022). In soils amended with ESW, no positive CH4 accumulation was observed during either the aerobic or anaerobic SBS processes, which is a favorable outcome for SBS (Figures 3E,F).



3.3.2 Volatile organic compound emissions

Soils are sources of volatile organic compounds (VOCs), many of which are produced by microorganisms and referred to as microbial VOCs (mVOCs) (Insam and Seewald, 2010). These compounds have been demonstrated to be rapid, sensitive, and functional indicators of biological soil quality (Brown et al., 2021). Previous SBS studies suggest that the VOC profiles can act as distinctive fingerprints for characterizing the simulated SBS process (Liang et al., 2022; Zou et al., 2023).

Principal component analysis (PCA) revealed that the greatest differences, under both aerobic and anaerobic conditions, were observed between the control soil and the soil amended with 2.5% ESW (Figures 4A,B). By comparing the VOC intensities between the two groups, the top VOCs significantly enriched by the 2.5% ESW amendment were identified under both aerobic and anaerobic conditions (Figures 4C,D). The tentative identities of these compounds were determined through further analysis using PTRMS_Viewer software, as shown in Table 2. In both aerobic and anaerobic conditions, 2.5% ESW amendment significantly enhanced the release of ammonia, methanethiol, and dimethyl sulfide (DMS). Notably, methanethiol and DMS were also significantly increased in a previous SBS simulation with fish waste (Liang et al., 2022). This is an important finding because DMS is a mVOC known to have inhibitory effects on nematodes and pathogenic fungi (de Boer et al., 2019). Methanethiol, an intermediate in the formation of DMS, can be catalyzed into DMS, potentially amplifying its suppressive effects (Abis et al., 2016). Additionally, ammonia is known to exert inhibitory effects on plant-parasitic nematodes and fungi for a relatively short duration (days to weeks, depending on the soil environment) (Oka, 2010).

[image: Panel (A) shows a PCA biplot with three groups: Control_ae, 0.5% ESW_ae, and 2.5% ESW_ae, with distinct clusters and ellipses. Panel (B) presents another PCA biplot with Control_an, 0.5% ESW_an, and 2.5% ESW_an, showing similar clustering. Panel (C) is a heatmap with different m/z values and variations for Control_ae, 0.5% ESW_ae, and 2.5% ESW_ae. Panel (D) is a heatmap displaying m/z values for Control_an, 0.5% ESW_an, and 2.5% ESW_an, with color gradients indicating value changes.]

FIGURE 4
 Soil VOC emission profiles of simulated SBS systems. (A) PCA plot of VOCs accumulation from soils under aerobic conditions. (B) PCA plot of VOCs accumulation from soils under anaerobic conditions. (C) Heatmap of the top 12 ESW enriched-VOCs in aerobic simulated SBS systems. (D) Heatmap of the top 11 ESW enriched-VOCs in anaerobic simulated SBS systems. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; ae, aerobic setting; an, anaerobic setting. Ellipses represent 95% confidence intervals for the centroids associated with each cluster.




TABLE 2 ESW-enriched VOCs determined in simulated SBS systems.
[image: Table detailing volatile organic compounds (VOCs) under aerobic and anaerobic conditions, listing mass-to-charge ratio (m/z), chemical formulas, compounds, and intensity ratios. Aerobic compounds include ammonia with a 3.2 intensity ratio. Anaerobic compounds also include ammonia with a 36.5 intensity ratio.]

In aerobic conditions, the 2.5% ESW amendment also significantly increased the emissions of formic acid and octanal, with intensity ratios of 4.8 and 7.3, respectively (Table 2). Formic acid is a nematicidal compound, typically generated as part of the group of short-chain fatty acids during the decomposition of amendments in saturated soils (Oka, 2010). Similarly, octanal, an aldehyde, is recognized for its fungicidal activities. It has been shown to inhibit the growth of Aspergillus flavus (Li et al., 2021) and Guignardia citri-auranti (Zhou et al., 2014), pathogens that are responsible for significant crop damage.

In anaerobic conditions, the 2.5% ESW amendment also significantly increased the emissions of acetaldehyde, with intensity ratios of 25.6 (Table 2). Acetaldehyde has been reported to exhibit antimicrobial activity, effectively inactivating fungi, bacteria, and various yeast species commonly found in fruits and vegetables (Abd-Alla et al., 2013). It should also be noted that the concentration of benzene and toluene, both recognized soil pollutants (García Pinto et al., 2011), is also more evident in soil with 2.5% ESW compared to the control soil. Further study is needed to ensure that their levels are kept within an acceptable range.




3.4 Changes in bacterial community composition and diversity


3.4.1 Alpha and beta diversities

The alpha diversity metrics, including observed features, Pielou’s evenness, and the Shannon index, were calculated to assess the richness and evenness of bacterial species in each soil treatment (Control, 0.5% ESW, and 2.5% ESW) at different time points (day 0, 6, 12, 18, 24, and 30). On day 0, immediately following amendment, the three alpha diversity indices showed higher levels in the soils before the aerobic SBS simulation. However, these differences were not statistically significant (Figures 5A–C). After 6 days of aerobic SBS simulation, a significant decrease in alpha diversity was observed across all treatments (p < 0.05), as expected due to the selective pressures imposed by elevated soil temperatures on microbial communities (Haber et al., 2022; Riah-Anglet et al., 2015). Interestingly, soils amended with ESW maintained significantly higher alpha diversity indices compared to the control soils (p < 0.05), suggesting that ESW provided a buffering effect. This observation diverges from previous studies, where SBS processes introduced additional selective pressures due to the high concentrations of VOCs, primarily volatile fatty acids, which intensified microbial community shifts and led to more pronounced declines in diversity (Haber et al., 2022; Shea et al., 2022). From day 6 to day 30, the alpha diversity levels remained stable across all treatments, suggesting that the bacterial community had likely reached a stable state after the initial disturbance caused by the aerobic SBS simulation with ESW. This stabilization is commonly observed in systems subjected to stress perturbations, where microbial communities initially shift but later stabilize as they adapt to the new conditions (Shade et al., 2012).

[image: Box plots displaying microbial diversity metrics under aerobic and anaerobic conditions over 30 days. Panels (A) and (D) show observed features, (B) and (E) show Faith’s phylogenetic diversity, and (C) and (F) show Shannon index. The legend indicates control, 0.5% ESW, and 2.5% ESW treatments. Each panel illustrates data changes over specific days, with statistical significance indicated by letters.]

FIGURE 5
 Alpha diversity metrics for soil bacterial communities during the (A–C) aerobic SBS simulation and (D–F) anaerobic SBS simulation. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; Day 0/6/12/18/24/30, different soil sampling time points from the beginning of SBS simulation. Data represent the means of triplicates with a standard deviation. Data not connected by the same letter are significantly different (α = 0.05).


In contrast, soils immediately after amendment but before anaerobic SBS simulation (day 0) exhibited significantly higher observed features compared to the control (p < 0.05). However, there were no significant differences in Pielou’s evenness or Shannon index (Figures 5D–F). After 6 days of anaerobic SBS simulation, these alpha diversity metrics were also significantly reduced in all soils, consistent with expectations due to the elevated temperatures (Haber et al., 2022; Riah-Anglet et al., 2015). Notably, no significant differences were observed between control and amended soils, indicating that the presence of ESW neither exacerbated nor mitigated the loss in alpha diversity. From day 6 to day 30, alpha diversity levels remained stable across all treatments, indicating that the bacterial community had likely reached a steady state after the initial disturbance caused by the anaerobic simulated SBS process (Shade et al., 2012).

Principal Coordinates Analysis (PCoA) using Bray–Curtis dissimilarity indices was conducted to evaluate changes in bacterial community composition across all soil treatments and time points based on the relative abundance of taxa (Figure 6). On day 0, before the SBS simulations, bacterial communities across all treatments clustered tightly, indicating similar initial community structures. However, separations were observed between day 0 and subsequent time points for all treatments, reflecting the pronounced effect of soil heating on the microbiome (Shea et al., 2022). Furthermore, the PCoA plot revealed significant differences between ESW-amended soils and control soils under both aerobic and anaerobic conditions, confirming that the ESW amendment significantly altered bacterial community composition (p < 0.05) during the simulated SBS process, consistent with previous studies (Achmon et al., 2020; Haber et al., 2022; Shea et al., 2022).

[image: Two principal coordinate analysis (PCoA) plots displaying microbial community shifts under (A) aerobic and (B) anaerobic conditions. Each plot shows data points colored by sampling time, with different shapes indicating treatment: control, 0.5% ESW, and 2.5% ESW. Ellipses enclose clusters, indicating microbial community structure changes over time, with distinct shifts between the different treatment conditions and over sampling times.]

FIGURE 6
 Principal coordinate analysis (PCoA) plots based on Bray-Curtis’s dissimilarity of OTU counts between treatments and time points during the (A) aerobic SBS simulation and (B) anaerobic SBS simulation. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; Day 0/6/12/18/24/30, different soil sampling time points from the beginning of SBS simulation. Ellipses represent 95% confidence intervals for centroids associated with each cluster: all soil treatments at day 0, control soil at all time points, soil with 0.5% ESW at all time points, and soil with 2.5% ESW at all time points.




3.4.2 Relative abundance

The relative abundance of dominant bacterial phyla and genera across treatments and time points during aerobic and anaerobic SBS simulations with ESW is shown in Figure 7. During the aerobic SBS simulation process, on day 0, the dominant bacterial phyla identified in both control and ESW-amended soils included Firmicutes, Actinobacteriota, Proteobacteria, and Chloroflexi. Together with Planctomycetota and Acidobacteriota, these phyla accounted for approximately 94% of the bacterial community (Figure 7A). At the genus level, the most abundant taxa was Bacillus (Figure 7B). These findings are consistent with previous studies on SBS using tomato pomace (Achmon et al., 2020) and nonpareil almond residue (Shea et al., 2022) as organic amendments, which similarly reported an abundance of Firmicutes and Actinobacteriota in the initial soil microbiome.
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FIGURE 7
 Relative abundance of dominant bacterial phyla and genera during SBS simulations. (A) Dominant bacterial phyla in aerobic SBS simulation. (B) Dominant bacterial genera in aerobic SBS simulation. (C) Dominant bacterial phyla in anaerobic SBS simulation. (D) Dominant bacterial genera in anaerobic SBS simulation. Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; Day 0/6/12/18/24/30, different soil sampling time points from the start of SBS simulation. Data represent the means of triplicates.


After 6 days of aerobic SBS simulation, the bacterial community structure of all treated soils changed. Firmicutes were notably enriched, comprising about 89% of all OTUs in control soil and 73% in ESW-amended soils. Previous studies suggest that Firmicutes play a key role in SBS efficacy due to their ability to degrade polysaccharides, ferment, and produce organic acids (Fernández-Bayo et al., 2019; Shea et al., 2022). The increase in Firmicutes was primarily driven by Bacillus, which rose from around 6 to 35% of the bacterial community in all treated soils. Additionally, Alicyclobacillus showed a significant increase in control soil, rising from near-zero to a relative abundance of 33%. This acidophilic and thermophilic bacterium, often linked to fruit juice spoilage, can contaminate fresh fruit before harvest and is difficult to eliminate during processing (Groenewald et al., 2009). In contrast, its relative abundance in ESW-amended soils remained below 4%, which may suggest that the ESW amendment effectively suppressed this bacterium, possibly by raising the soil pH to an alkaline level. Furthermore, ESW amendments increased the relative abundance of Brevibacillus and Paenibacillus, both from the Paenibacillaceae family. These bacteria promote crop growth and provide protection against insect herbivores and phytopathogens, including bacteria, fungi, nematodes, and viruses, through the production of various antimicrobials and insecticides (Grady et al., 2016; Ray et al., 2020). Additionally, Streptomyces and Actinomadura, members of the Actinomycetia class, were more abundant in ESW-amended soils compared to control soil. These bacteria are also active producers of antibiotics and volatile organic compounds, contributing to the biological control of pests and plant diseases, as well as promoting plant growth (Silva et al., 2022; Vurukonda et al., 2018). From day 6 to day 30, the abundance of dominant bacterial phyla/genus gradually decreased, while others increased, suggesting a shift toward a new equilibrium in the bacterial community.

On day 0 of the anaerobic SBS simulation, the dominant bacterial phyla in both control and ESW-amended soils were Firmicutes, Actinobacteriota, Chloroflexi, and Proteobacteria, with Planctomycetota and Acidobacteriota comprising approximately 91% of the bacterial community (Figure 7C). At the genus level, Bacillus was the most abundant taxa (Figure 7D). These patterns were similar to those observed in the soils before the start of the aerobic SBS simulation.

After 6 days of anaerobic SBS simulation, the microbial community structure of all treated soils shifted, with Firmicutes becoming more abundant while other phyla decreased. At the genus level, Bacillus was the most abundant in all treated soils. A significant increase in Alicyclobacillus was observed in the control soil, but its abundance was minimal in ESW-amended soils, likely due to the increase in soil pH. These changes were similar to those observed in the aerobic SBS simulation. Tumebacillus, a mesophilic bacterium related to Alicyclobacillus, also increased significantly in control soil (from 1 to 21%), but to a lesser extent in ESW-amended soils (from 2 to 12% in soil with 0.5% ESW, and from 0 to 1% in soil with 2.5% ESW). Tumebacillus, discovered in 2008, has an unclear relationship with soil health and plants, though recent research highlights its potential for producing novel natural products (Kikuchi et al., 2023). Effusibacillus, a thermophilic bacterium in the Alicyclobacillaceae family (Konishi et al., 2021), showed an increase in ESW-amended soils (from 1 to 8% in soil with 0.5% ESW; from 0 to 15% in soil with 2.5% ESW), while it was virtually absent in control soils. Two additional thermophilic bacteria, Thermoactinomyces and Lutispora, both of which are efficient at decomposing organic matter in high-temperature composting environments (Liu et al., 2018; Oumaima et al., 2024; Wang et al., 2023), also showed increased abundance in ESW-amended soils compared to control soil. These findings suggest that ESW amendment may enhance soil heating during anaerobic SBS simulation, potentially aiding in the control of soilborne pathogens through thermo-inactivation (Stapleton, 2000).

From day 6 to day 30, the bacterial community structure at the phylum level remained relatively stable. At the genus level, Bacillus declined more sharply in control soil (from 40 to 19%) compared to ESW-amended soils (from 42 to 31% in soil with 0.5% ESW; from 48 to 43% in soil with 2.5% ESW). Alicyclobacillus continued to increase in control soil (from 7 to 20%) but remained negligible in ESW-amended soils. Three thermophilic genera, Effusibacillus, Thermoactinomyces, and Lutispora, were unable to reestablish in control soil, remaining nearly absent in their relative abundance. In contrast, Effusibacillus slightly declined in ESW-amended soils, while Thermoactinomyces and Lutispora showed slight increases. These trends suggest that ESW amendments may selectively promote the growth of Thermoactinomyces and Lutispora, likely due to their ability to metabolize ESW substrates and adapt to conditions such as elevated pH and nutrient availability.




3.5 Residual phytotoxicity and weed seed inactivation

Soil phytotoxicity was evaluated through lettuce germination tests, which measured germination rate, shoot length, root length, and dry biomass (Figure 8). The germination rate of lettuce seeds showed no significant differences across all tested soils and seeding days (Figure 8A), indicating that soils amended with ESW did not exhibit high levels of phytotoxicity before or after SBS simulations. Freshly prepared amended soils and those subjected to aerobic SBS simulation did not significantly affect seedling biomass. In contrast, soils treated under anaerobic SBS conditions resulted in significantly lower seedling biomass compared to non-amended soil (p < 0.05) (Figure 8B), likely due to the accumulation of phytotoxic compounds. The reduction in biomass diminished with longer aeration time (or seeding days), suggesting that the phytotoxic compounds may be volatile, as reported in previous studies (Achmon et al., 2018; Shea et al., 2021). Therefore, aerating the soil before sowing can help mitigate the impact of volatile phytotoxic substances on crop growth. Shoot lengths of lettuce seedlings were minimally affected by all soil treatments, whereas root elongation was significantly inhibited by both aerobic and anaerobic SBS simulations (p < 0.05) (Figures 8C,D). Similar observations have been reported in SBS tests using tomato and grape residues, where residual phytotoxicity primarily affected root development rather than shoot growth (Achmon et al., 2016). Root growth in amended soils gradually recovered with extended aeration, showing no significant difference from the control soil after seven days of aeration before seeding. This supports the idea that phytotoxic compounds may be volatile and can disperse from the soil over time with adequate aeration.
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FIGURE 8
 Residual phytotoxicity and weed seed inactivation in soils amended with ESW. Lettuce seedling growth was evaluated by measuring four parameters of phytotoxicity: (A) germination rate (%), (B) dry biomass (g), (C) shoot length (cm), and (D) root length (cm). Weed seed inactivation was assessed by two parameters: (E) weed germination rate (%) and (F) sprouting day (the day the first Bidens sprout was observed). Control, control soil without ESW; 0.5% ESW, soil with 0.5% (w/w) of ESW; 2.5% ESW, soil with 2.5% (w/w) of ESW; 5% ESW, soil with 5% (w/w) of ESW; 8% ESW, soil with 8% (w/w) of ESW; FR, freshly prepared soils; AE, aerobic SBS-treated soils; AN, anaerobic SBS-treated soils; Day 0/3/7, days after the closure of SBS simulation to seeding. Data represent the means of triplicates with a standard deviation. Data not connected by the same letter are significantly different (α = 0.05).


Weed seed inactivation tests were conducted to evaluate the inhibitory potential of SBS with ESW on weed seed germination, specifically to determine whether the addition of ESW interfered with or enhanced the herbicidal effect of SBS. The weed species Bidens pilosa, a cosmopolitan annual herb known for its hardiness and explosive reproductive potential (Arthur et al., 2012), was used in this study, as in previous SBS studies, to examine its response to weed inactivation (Liang et al., 2022; Zou et al., 2023). In freshly prepared soils, the addition of ESW had no significant effect on weed germination or sprouting days. However, in all soils treated with simulated SBS, weed germination was completely inhibited, with a germination rate of zero, significantly lower than in freshly prepared soils (p < 0.05). This suggests that the high temperatures during the simulated SBS process were sufficient to effectively inactivate weed seeds, regardless of the presence of ESW. Therefore, while this study could not determine whether ESW contributed to weed inhibition, it did not interfere with the weed control efficacy of simulated SBS, which yielded satisfactory results. Future studies should explore different weed species to further assess the role of SBS and ESW in weed suppression.




4 Conclusion

This study is the first to evaluate the feasibility of using ESW as a soil amendment in SBS, presenting a sustainable agricultural strategy for managing organic waste. The findings demonstrate that ESW amendments effectively adjusted soil pH, stimulated microbial activity, and promoted the emission of functional VOCs linked to pest suppression, without contributing to GHG effects. Additionally, ESW supported the growth of beneficial bacteria associated with soilborne pest suppression and plant growth promotion. Furthermore, it effectively inactivated weed seeds and maintained low residual phytotoxicity. These findings highlight ESW’s potential to enhance SBS efficiency while promoting sustainable waste recycling in agriculture. Future research, including field trials, is needed to validate these findings and evaluate ESW’s real-world applicability in SBS.
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Cities, as a geographical unit with the greatest intensity of human socio-economic activities, have become the core nodes that disrupt the natural cycle of phosphorous (P) and regulate P flow toward sustainable development. However, P flows and its balance in many Chinese cities are largely unknown. This study employed the substance flow analysis (SFA) method to construct a P flow model for the food chain in Changzhou, a representative lakeside city in the Taihu Basin. From 2000 to 2021, the total P input and stock in Changzhou city's food chain system declined from 5,698.55 tP and 5,219.55 tP to 2,391.26 tP and 1,760.46 tP, respectively. Conversely, the total P loss surged from 478.99 tP to 630.79 tP, suggesting an open and unrestricted P flow. The P use efficiency (PUE) in animal production increased from 30.11% in 2000 to 37.65% in 2021, while that in crop production and the overall food chain increased from 51.41 and 65.74% in 2000 to 71.94% and 80.16% in 2021. Scenario analysis revealed that reducing food P uptake could lower total food chain P inputs and dependence on external P. Fertilizer recommendations could boost the PUE of crop production from 71.94% to 81.34%. Besides, urine diversion and waste incineration scenarios significantly decreased P accumulation in the food chain. Improving sewage treatment technology could further cut P discharge. An adaptive food chain P flow management framework was proposed. Leveraging the self-management and replicability of cities, this framework can be easily implemented in other regions and has the potential to be scaled up nationally, aiming to mitigate P loss and enhance P utilization efficiency.
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1 Introduction

Phosphorus (P) is an essential and irreplaceable nutrient for plant and animal growth, and a critical resource for fertilizer production (Bizimana et al., 2024). Human activities, including mining and industrial processing, have escalated P fertilizer application to meet global food demands driven by population growth (Tian et al., 2021). However, these practices have disrupted natural P cycles (Rabby et al., 2024), leading to elevated organic P accumulation in terrestrial and aquatic systems. For instance, P losses from food production and consumption have triggered eutrophication and algal blooms in wetland ecosystems (Dong et al., 2023). Approximately 40% of plant- and animal-derived P is consumed by humans, with the remainder lost to soil or water. Given the low P use efficiency (PUE), global phosphate rock reserves, which serve as the primary natural source of phosphorus for fertilizers, are projected to deplete within 50 to 200 years (Yuan et al., 2011a). The evolving nature of P sourcing profoundly impacts food chain dynamics. Thus, understanding P losses within food chains is crucial for optimizing PUE, ensuring sustainable agriculture, and safeguarding water environmental security (Ma et al., 2013).

Being an important resource and an environmental polluter, the dynamics of P flow in the food chain holds considerable implications in water and food securities in lake and river basins worldwide (Vingerhoets et al., 2023). Understanding upstream P flows in plant and animal production, household consumption, and food processing, and downstream P flows in wastewater treatment plants and landfills is crucial (Færge et al., 2001). Lately, sophisticated approaches such as the Substance Flow Analysis (SFA) have been very useful to indicate household organic waste and soil runoff/erosion/leaching as the major causes of P loss in the food chain (Papangelou et al., 2020). P flows in China's food chain using the SFA method reveals that the PUE in food production is relatively low. Production of 1 kg of food in China requires about 13 kg of P with annual P input about 7.8 × 106 t (Ma et al., 2010). Rapidly changing urban household consumptions in China have become further critical in P flows within the food chain as the P accumulation has increased 5 times since the 1990s (Li et al., 2012). Empirical studies on P flows in food chains of different Chinese cities such as Beijing and Tianjin (Qiao et al., 2011; Ma et al., 2014), counties such as Wuwei (Bi et al., 2013), and Shucheng (Yuan et al., 2011b) show that the behaviors of P flows pattern varies. However, the P flow in cities' food chain is thought to be more and more linear (Guo et al., 2023), implying the need for P flow analysis in cities' food chain to address local P management (Lin et al., 2016). Unlike the static assessment of P loss carried out at a single time point food chain in the past, the future study on P flow must be temporal or policy-driven changes in the food chain (Liu et al., 2023). Without establishing the understanding of the impacts of different future scenarios on the characteristics of P flows and their use efficiencies, such as future urban populations, fertilizer control and improvements in waste management and treatment technologies, no P loss pathways in cities' food chain can be identified (Wu et al., 2016). Further, although strategies such as regulating diet and improving waste treatment facilities were proposed for P flow in the food chain in the past, the concept of sustainable P flow was not included in the framework. Given the rate of China's urban development in unprecedented spatial scales, and its operability and reproducibility of nutrient management, the assessment of P flow in food chains is thought to be feasible.

China's urban development is characterized by population growth, rising living standards, and a transformation in the food consumption structure (Dong et al., 2023). This situation not only presents greater challenges to economic development but also offers an opportunity to establish a robust and sustainable phosphorus (P) management framework. Because of these changes, the pollution sources in urban water environment are shifting from a point to diffuse pollution sources, and these pollution sources are becoming more complex in P governance involving the stage of socio-economic development, economic structure, and consumption structure of the population (Wu et al., 2012). However, the important processes associated with P flow in the food chain during the current rapid urbanization process may take several years before their impacts become apparent (Liu et al., 2023). The knowledge gaps regarding the long-term fate and magnitude of P flows at the China's urban scale must be unraveled (Chowdhury et al., 2014).

In this study, we conducted an in-depth investigation into the evolution of P flow characteristics and the strategies for its sustainable management within the city-level food chain. We chose the city of Changzhou in the Taihu Basin (China), as a representative case study. Changzhou city is endowed with a rich network of lakes, wetlands, and rivers. However, during its rapid urbanization process, it faces a formidable water governance challenge mainly due to anthropogenic P discharges (Zhang et al., 2022). We set three main research objectives: i. quantify the overall P flow characteristics, P sources and use efficiency, P accumulation and loss of the food chain from 2001 to 2021; ii. assess the impacts of different scenarios on P flows in urban food chains in future, and; iii. develop a framework for sustainable management of food P at the urban scale. The results of this study can enrich the research on P flow in the city-level food chain and provide data and theoretical references for the sustainable management of urban P resources.



2 Materials and methods


2.1 Study area

Changzhou is a prefecture-level city located in the southern part of Jiangsu Province, China, between 31°09′−32°04′N and 119°08′−120°12′E. Changzhou city features a dense river network and numerous lakes, which endows the city with abundant water resources. Changdang Lake, Ge Lake, and Taihu Lake are three natural lakes that possess distinct regional characteristics and high visibility (Figure 1). Over the course of the study period, Changzhou city underwent a remarkable demographic transformation. The population of Changzhou city grew from 3.41 million in 2000 to 3.88 million in 2021. The average annual growth rate of per capita gross national product (GDP) reached an astonishing 55.23%, and currently, the per capita GDP is 25,689 US dollars. In terms of urbanization, with an average annual growth rate of 2.11%, Changzhou city's urbanization rate has now reached 77.58% [BSCZ (Bureau of Statistics of Changzhou), 2023]. With the rapid advancement of the social economy, substantial transformations have occurred in both the dietary patterns of urban residents and waste disposal mechanisms. For example, from 2000 to 2021, the consumption of plant-based diets by urban residents decreased from 250.23 kg cap−1yr−1 to 144.6 kg cap−1yr−1. Conversely, the consumption of animal-based diets increased from 25.05 kg cap−1yr−1 to 45.5 kg cap−1yr−1 [BSCZ (Bureau of Statistics of Changzhou), 2023]. Besides, a clear separation between organic waste and farmland has emerged in waste disposal. These changes have led to significant losses of organic waste within the urban food chain. Against the backdrop of strict industrial waste emission controls, the loss of organic waste in the urban food chain has emerged as the most significant non-point source of pollution, exacerbating the eutrophication of water bodies (Chen et al., 2024).


[image: Map illustrating the study area in Changzhou, Jiangsu Province, China. The left panel highlights Changzhou within a provincial map, while the right panel details the city boundaries, showing lakes and elevation levels, with key areas marked, including Ge Lake and Tai Lake.]
FIGURE 1
 The location of Changzhou city.




2.2 Calculation of the P flows at city level
 
2.2.1 Description of the P flow analytical model

We used the SFA method to quantify P flows in Changzhou city's food chain from 2000 to 2021. As a systematic framework for tracking substance movement within defined systems, SFA identifies key processes including sources, sinks, flow pathways, and storage nodes (Liu et al., 2024). While standard SFA models typically encompass comprehensive food chain processes, our implementation underwent adaptive modifications to address Changzhou city's data availability constraints and local operational realities. Three principal adjustments were made to optimize the model structure: first, the food processing and household consumption stages were consolidated into a single subsystem. This aggregation aligns with mass conservation principles (Papangelou et al., 2020). It mitigates data scarcity issues and preserves the integrity of system-wide P input-output accounting. Second, enhanced resolution was applied to downstream processes through the explicit inclusion of municipal waste management infrastructure. The establishment of dedicated nodes for Wastewater treatment plants (WWTPs) and landfills enables detailed analysis of P flow redistribution and reuse potential. Third, model complexity was strategically balanced through the elimination of non-essential processes and the retention of core functional units. The constructed P flow model for Changzhou city's food chain comprehensively encompasses multiple key components. Upstream in the food chain, it includes crop production (with the soil root zone considered), animal production, and the combined stage of food processing and household consumption. Downstream, it incorporates WWTPs and landfills. In total, the model features 16 P flows and 2 P stocks, which provides a detailed and systematic representation of the P flow situation in Changzhou city's food chain (Figure 2).


[image: Flowchart illustrating nutrient flows in an agricultural and urban system. Upstream components include arable land and livestock, leading to crop yield and livestock products. Downstream processes involve processing, consumption, waste management, and water treatment, highlighting nutrient recycling, importation, and leaching into the water environment. Arrow directions indicate movement paths, with labeled steps for each flow.]
FIGURE 2
 P flow model of Changzhou city's food chain; the upstream part of the food chain includes crop production (with the soil root zone considered), animal production, and the combined stage of food processing and household consumption. Downstream of the food chain incorporates WWTPs and landfills; the black arrow represents the system/subsystem input flow, the green arrow represents the loop flow, and the red arrow represents the loss flow.




2.2.2 Calculation of the total P flows and use efficiency

Using the SFA method, the accounting equations for the P flow model in the food chain were constructed. Details of the specific equations and data sources can be found in Supplementary Tables S1, S2. We consider crop and animal production activities with productive properties, as well as the overall food chain. Based on the Figure 1, the PUE can be obtained by dividing the effective P production of the corresponding link by the total P input. Here, “effective P production” refers to the P output items that have practical value inside or outside the corresponding link, such as crop products. The calculation formula is as follows:

PUEC=(Pout,Ccrop products+Pout,Cstraw feedPin,Ctotal)×100%      (1)

PUEC represents the P use efficiency in crop production, Pout,Ccrop products and Pout,Cstraw feed represent the outputs of crop products and straw feed products during crop production, respectively, while Pin,Ctotal represents the total P input during the crop production process, including P input through fertilizer imported, animal manure recycled and straw recycled.

PUEA=(Pout,Aanimal products+Pout,Aanimal recycle manure−Pprocessing,Aanimal slaughter wastePin,Atotal)×100%      (2)

PUEA represents the P use efficiency in animal production, Pout,Aanimal products and Pout,Aanimal recycle manure represent the outputs of animal products and manure products during animal production, respectively, Pprocessing,Aanimal slaughter waste represents the slaughter waste P during the processing; while Pin, Atotal represents the total P input during the animal production, including P input through feed imported and straw feed.

PUEF=(Pout,FEffectiveP(upstream-downstream)Pin,Ftotal)×100%      (3)

PUEF represents the P use efficiency in the overall food chain, Pout,FEffective P (upstream downstream) represents relevant effective P in the upstream and downstream of the food chain, such as P from exported or directly imported food products, and plant and animal products consumed by residents. Pin,Ftotal represents the total P input into the food chain, including P input through fertilizer imported, feed imported and food imported.




2.3 Future scenarios

Based on a comprehensive consideration of key factors such as urban population, consumption structure, and management and treatment technologies affecting food chain P flows, we selected seven quantifiable scenarios for regulating urban food chain P flows (Table 1). While synergies between scenarios could theoretically maximize P recovery, our study did not evaluate combined scenarios due to methodological constraints. Each scenario assumes independent policy and technological interventions, and overlapping implementations may introduce conflicting assumptions (e.g., simultaneous dietary shifts and waste infrastructure upgrades). Additionally, data limitations on cross-sectoral interactions and stakeholder coordination preclude robust multi-scenario modeling.

TABLE 1  Scenario analysis information of food chain P flows in Changzhou.


	Scenario
	Year
	Food chain
	Focus
	Populationa
	Other changesb





	S0. References
	2021
	–
	–
	Current
	None

 
	S1. Business as Usual (BAU)
	2030
	Upstream
	Population
	Increase
	None

 
	S2. Food P recommendation
	2030
	Upstream
	Consumption structure
	Increase
	Tend to be vegetarian

 
	S3. Fertilizers recommendation
	2030
	Upstream
	Management level
	Increase
	Balanced P fertilization in crop production

 
	S4. Urine diversion
	2030
	Downstream
	Management level
	Increase
	Urine collected separately

 
	S5. Manures management
	2030
	Downstream
	Management level
	Increase
	P returned to the field from manure is increased to 100%

 
	S6. Wastes incineration
	2030
	Downstream
	Management level
	Increase
	Recovery of P from solid waste incineration ash



	S7. Sewage treatment
	2030
	Downstream
	Technical level
	Increase
	The P content after sewage treatment meets the highest standard specified by CMEP (Chinese Ministry of Environmental Protection) (2002)







aThe population data of Changzhou City in 2030 is sourced from the forecast data of Changzhou Municipal Government;

bAssumptions based on the Scenario 1–7 analysis.

Scenario 1: In the business as usual (BAU) scenario, we only consider the impact of population changes in Changzhou city on food chain P flows. According to the “Yangtze River Delta Urban Agglomeration Development Plan” released by the National Development and Reform Commission of China, the resident population of Changzhou city is projected to reach 6.5 million by 2030, an increase of 2.63 million from the 2021 population, representing a growth of 68.12%. This scenario is mainly based on the research that suggests resident consumption is the core driving force for changes in P flows in the upstream and downstream of the food chain (Ding et al., 2024).

Scenario 2: In the food P uptake recommendation scenario, we consider the impact of population growth and changes in food consumption structure in Changzhou city on food chain P flows. We consider a shift in residents' dietary habits toward a low-P diet, resulting in a decrease in food P absorption compared to 2021. Specifically, it is assumed that by 2030, the P absorption from food in Changzhou city will be just enough to maintain normal phosphate levels in the blood, with adults needing to consume 0.7g/cap/day (James and Lewis, 2023).

Scenario 3: In the fertilizer recommendation scenario, we consider the impact of population growth in Changzhou city and P fertilizer balance in crop production on food chain P flows. Specifically, we assume that the input of mineral fertilizers and manure satisfy the P requirements of crops, assuming that the manure and straw recovery rates in 2030 will be the same as in 2021. Under this scenario, crop yields remain unchanged, but the amount of chemical fertilizer applied is significantly reduced compared to 2021. Theoretically, no new P accumulation will occur in the soil in that year (Li et al., 2015).

Scenario 4: In the urine diversion scenario, we consider the impact of population growth in Changzhou city and the installation of urine separation facilities in households on changes in food chain P flows. Existing studies have shown that urine contains ~0.3 kg of P per capita per year (Jönsson et al., 2004). If urine is separated from wastewater, it would bring significant benefits to the environment and public health. This measure has already been implemented globally (Wald, 2022).

Scenario 5: In the manure management scenario, benefiting from improvements in animal husbandry facilities in Changzhou city, we assume that the manure return rate to the fields remains unchanged, and all other manure is used for agricultural land. This scenario is inspired by the research of Ma et al. (2013) on future changes in the flow of P nutrients in the food chain in China.

Scenario 6: In the Waste incineration scenario, we assume that organic waste from landfills is separately collected and incinerated, with 100% of it being collected. This scenario was inspired by Wu et al. (2016).

Scenario 7: In the sewage treatment scenario, considering the population growth in Changzhou city and advancements in wastewater treatment technology, we assume that by 2030, the P content in treated wastewater from sewage treatment plants will decrease from 1g/m3 in 2021 [BMEDI (Beijing General Municipal Engineering Design and Research Institute), 2006] to 0.5g/m3 [CMEP (Chinese Ministry of Environmental Protection), 2002].



The P flows in the food chain under different future scenarios are also calculated based on the accounting equations in Supplementary Table S1. The 2021 P flow process serves as the reference scenario (S0), with 2030 set as the target year for scenario evaluation, aligning with the timeline of Changzhou city's Ecological Civilization Construction Plan (2021–2030). This plan aims to establish a green and circular economic system, promote sustainable production and lifestyles, and enhance environmental quality. The scenarios were designed to reflect potential pathways for achieving Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger), SDG 6 (Clean Water and Sanitation), and SDG 12 (Responsible Consumption and Production).



2.4 Uncertainty

To effectively analyze the P flow process in the food chain of Changzhou city, sufficient, reliable, and high-quality data are essential for obtaining valid information on the nature and magnitude of all flows and stocks related to the food chain. In this study, to quantify the uncertainty of the food chain P flow results, we applied the uncertainty analysis method proposed by Hedbrant and Sörme (2001). The fundamental concept of this method is to assign corresponding data uncertainty levels to each data point based on its source (for detailed data uncertainty levels, refer to Supplementary Table S2). In accordance with the common classification criteria adopted in existing studies (Klinglmair et al., 2015; Laner et al., 2016), we ultimately categorized the collected data into the following five classes (Table 2). Specifically, data in Level 1 was from the BSCZ (Bureau of Statistics of Changzhou) (2023) e.g., arable land area and application rate of P fertilizer, are multiplied or divided by 1.02. Data in Level 2 was from relevant research literature/reports/databases in other parts of China level e.g., fraction of animal manure P pollution, and are multiplied or divided by 1.03 and so on up to data in level 5 was from informed assumption.

TABLE 2  Food chain P flow model input data sources and their uncertainty levels.


	Uncertainty levels
	Interval factor
	Data sources
	Examples





	1
	Multiplied/divided by 1.02
	Changzhou official statistics data
	Arable land area; application rate of phosphate fertilizer

 
	2
	Multiplied/divided by 1.03
	Relevant research literature/reports/databases in other parts of China
	Fraction of animal manure P pollution

 
	3
	Multiplied/divided by 1.04
	Relevant research literature/reports from other parts of the world outside China
	P content in crop; P content in human excreta

 
	4
	Multiplied/divided by 1.07
	Expert experience estimates
	Feeding days of animal



	5
	Multiplied/divided by 1.012
	Informed assumption
	Ratio of crop straw residues and harvesting







Adapted by Klinglmair et al. (2015) and Laner et al. (2016).



When combining datasets through addition or multiplication, the uncertainty is calculated using the equations proposed by Antikainen et al. (2005). Notably, multiplying datasets leads to an increase in uncertainty, whereas adding datasets results in a decrease in uncertainty. The specific calculation formula and example are as follows:

Multiplication:

Uncertainty factor=1+(fa-1)2+(fb-1)2      (4)

Where fa and fb represented the assigned uncertainty interval for the P flow 1 and flow 2, respectively.

For example, the corn yield was 15,483,000 multiplied or divided by 1.02 kg in Changzhou city in 2021, and there are 3.11 multiplied or divided by 1.04 g P kg−1product−1, then the P in corn was 15,483,000 kg × 3.11 g P kg−1 = 48,152.13 kg, and we can calculate the uncertainty factor as follows:

Uncertainty factor=1+(1.02-1)2+(1.04-1)2=1.04

so, the final uncertainty factor of the corresponding P flow is 1.04, and the final uncertainty interval of the corresponding P flow is 48152.13 multiplied or divided by 1.04 kg. That is, the lower limit of the uncertainty interval of the corresponding P flow is 48152.13 divided by 1.04, and the upper limit is 48152.13 multiplied by 1.04. Finally, the uncertainty interval of the corresponding P flow is [46300.13, 50078.22].

Addition:

Uncertainty factor=1+[ma×(fa-1)]2+[mb×(fb-1)]2ma + mb      (5)

Where ma and mb represented mass P flow 1 and flow 2, respectively.

For example, the P in corn and wheat is 48152.13 multiplied or divided by 1.04 kg and 576596.25 multiplied or divided by 1.04 kg, respectively, we can calculate the uncertainty factor as follows:

Uncertainty factor=1+[48152.13×(1.04-1)]2+[576596.25×(1.04-1)]248152.13+576596.25=1.03

So, the final uncertainty factor of the corresponding P flow is 1.03, and the final uncertainty interval of the corresponding P flow is 624748.38 multiplied or divided by 1.03 kg. That is, the lower limit of the uncertainty interval of the corresponding P flow is 624748.38 divided by 1.03, and the upper limit is 624748.38 multiplied by 1.03. Finally, the uncertainty interval of the corresponding P flow is [606551.83, 643490.83].

Based on the above calculation principles and examples, and by incorporating the P flow equations in Supplementary Table S1, the uncertainty interval range of each P flow in this study can be obtained. Besides, based on the data structure of this study and referring to the classification criteria proposed by Bi et al. (2013) and Wang et al. (2020), in this study, an uncertainty factor of each P flow within the range of (1, 1.07] indicates a high-quality quantification result, within the range of (1.07, 1.12] indicates a medium-quality quantification result, and >1.12 indicates a low-quality quantification result. For more examples of the calculation methods, please refer to the study by Mnthambala et al. (2021).




3 Results


3.1 Overall P flows characteristics

Figures 3a, b depict the P flow in the food chain of Changzhou city from 2000 to 2021. During the study period, the total P input and stock in the food chain decreased from 5,698.55 tP and 5,219.55 tP in 2000 to 2,391.26 tP and 1,760.46 tP in 2021, representing a decrease of 58 and 66.27%, respectively. This decrease can be mainly attributed to two factors. Firstly, the dietary structure changed significantly. The consumption of grain-based diets dropped from 250 kg cap−1yr−1 in 2000 to 144.60 kg cap−1yr−1 in 2021 [BSCZ (Bureau of Statistics of Changzhou), 2023], and the increase in animal-based diet consumption couldn't offset the resulting decline in food P input. Secondly, the arable land area shrank greatly, decreasing from 204,250 ha in 2000 to 132,110 ha in 2021, which directly led to a substantial reduction in the P stock in arable land. In addition, it can be observed that the P flow in locally supplied animal products within the food chain decreased from 1050.99 tP in 2000 to 218.16 tP in 2021. This decline is attributed to a substantial reduction in the scale of local animal husbandry. For instance, during the study period, the numbers of locally raised sheep and pigs decreased by 108.42 times and 3.96 times [BSCZ (Bureau of Statistics of Changzhou), 2023], respectively. Consequently, the P in consumed animal products is mainly supplemented by food imports. Furthermore, only partial P cycling in the food chain was realized between crop production and animal production through the mutual delivery of straw fodder and animal manure. In 2021, 0.67 tP in crop straw and 133.41 tP in animal manure were exchanged between them. At the same time, both the P in kitchen waste and the P loss in WWTPs increased significantly, from 6.06 tP and 45.75 tP in 2000 to 323.59 tP and 350 tP in 2021, respectively. During the study period, changes in the dietary structure led to a decrease in some P sources entering the WWTPs (such as the P directly contained in food that can be treated). However, with the increase in the population of Changzhou city, especially the improvement in the living standards of residents, the discharge of organic waste increased substantially from 6 kg cap−1yr−1 in 2000 to 64 kg cap−1yr−1 in 2021. Similarly, the total wastewater discharged from the WWTPs increased from 45.75 million m3 in 2000 to 350 million m3 in 2021 [BSCZ (Bureau of Statistics of Changzhou), 2023]. These organic wastes contain a considerable amount of P, which leads to a significant rise in the P in kitchen waste and the total P loss in WWTPs. This reduction in arable land.


[image: Two flowcharts compare the nitrogen balance in agriculture and waste systems for the years 2009 and 2021. Both diagrams show processes such as livestock management, crop yield, landfills, and wastewater treatment, with arrows indicating the flow of inputs, outputs, and stocks within city boundaries. The 2009 chart shows higher input and output values than 2021, highlighting a decrease in landfill and wastewater outputs. The charts emphasize changes in nitrogen management practices over time.]
FIGURE 3
 Characteristics of P flow in the food chain of Changzhou city in 2000 and 2021. (A, B) represent the phosphorus flow process in the food chain in 2000 and 2021, respectively.




3.2 P sources and use efficiency

From the perspective of food P flow input in Changzhou City, fertilizer imports are the main source of the food chain P flow (Figures 3a, b). However, P imports through fertilizers decreased from 3,555 tP in 2000 to 1,545 tP in 2021, due to the city's growth, which greatly compressed the area of arable land. P imports through feed decreased from 1,507.42 tP in 2000 to 354.04 tP in 2021 (Figures 3a, b). The decrease in feed-related P imports may be attributed to factors such as changes in the scale of animal breeding and the adjustment of feed formulas. The food P import in Changzhou City was negative in 2001–2002 and 2008–2018. During these years, the locally produced food P in the city exceeded the local demand and was exported. In other years, such as 2000 and 2021, as high as 636.12 tP and 492.17 tP of food P were needed respectively (Figures 3a, b, 4a). Conditions such as the local dietary structure, structural adjustment of food production, control of animal breeding scale, and inter-annual fluctuation of plant and animal product yields could have influenced the food P imports in Changzhou city (Ma et al., 2013).


[image: Two graphs compare phosphorus usage from 1961 to 2013. The left graph is a stacked bar chart showing imports of food, fertilizer, and feed. The right line graph depicts phosphorus use efficiency, contrasting FUEL, FUE, and FUL. Both graphs show significant trends over time.]
FIGURE 4
 Sources (a) and use efficiency (b) of P in the food chain of Changzhou city.


Figure 4b illustrates that during the study period, the PUEA initially experienced a short-term upward trend, which increased from 30.11% in 2000 to 45.99% in 2005, and then gradually declined to 37.65% in 2021. In contrast, the PUEC and the PUEF exhibited significant fluctuations but ultimately rose from 51.41% and 65.74% in 2000 to 71.94% and 80.16% in 2021, respectively. Furthermore, the synchronized trends in PUEC and PUEF arise from the foundational role of crop production in the broader food chain. Improvements in PUEC-driven by optimized fertilizer application (e.g., reduced overuse), advancements in soil testing, and policy interventions-directly enhance the efficiency of P utilization upstream. These gains propagate downstream, elevating the PUEF. For instance, the increase in PUEC from 28.66% in 2003 to 71.94% in 2021 coincided with PUEF rising from 39.89% to 80.16%, underscoring the cascading impact of crop production improvements. Besides, PUEF inherently integrates PUEA and PUEC, as it accounts for effective P outputs across both animal production and crop production (e.g., crop products, animal products, and recycled manure). Thus, the parallel trends reflect the interconnectedness of agricultural practices and their cumulative effect on systemic P flow.



3.3 P accumulation and losses of the food chain

Figure 5 shows the changes of P accumulation and its composition in the food chain of Changzhou city from 2000 to 2021. There was a fluctuating downward trend from 5,219.55 tP in 2000 to 1,760.46 tP in 2021, with a 2.96—fold reduction in the P accumulation (Figure 5a). The proportion of arable land P accumulation in the study period generally showed a decreasing trend due to a rapid shrinkage of the arable land [BSCZ (Bureau of Statistics of Changzhou), 2023]. Initially, from 2000 to 2003, the P accumulation proportion in arable land showed an upward trend, increasing from 29.12% (1,519.72 t yr−1) to 57.91% (3,097.28 t yr−1). However, by 2011, this proportion rapidly decreased to 9.92% (195.51 t yr−1) (Figure 5b). Subsequently, except for relatively noticeable increases in 2015, 2016, and 2017, reaching 41.67%, 23.84%, and 28.85% respectively, the arable land P accumulation proportion generally stabilized within the range of 8.52% to 17.31% (Figure 5b). This reduction in arable land P accumulation might be attributed to multiple factors, such as the increasing awareness among residents of the negative environmental impacts of excessive fertilization, local agricultural authorities have actively promoted policies to reduce fertilizer use and improve efficiency, taking initiatives to enhance soil quality (Ma et al., 2013). In contrast, the proportion of P accumulation in landfills showed an overall increasing trend during the study period, with most years exceeding 50% (Figure 5b). This is mainly because as living standards improve, the amount of P-containing waste generated by consumption continuously rises. Meanwhile, the corresponding recycling measures for P-waste are insufficient. Moreover, the high cost of recycling P-waste and the lack of a market have also contributed to the increase in P accumulation in landfills (Hou et al., 2013).


[image: Left graph shows total phosphorus accumulation in thousand tons from 2000 to 2022, peaking above 5000 in 2008 and declining to below 1000 by 2022. Right bar chart displays the proportion of phosphorus accumulation by landfills and arable land from 2000 to 2022, with landfills decreasing and arable land increasing over time.]
FIGURE 5
 P accumulation (a) and its composition (b) in the food chain of Changzhou city.


Figure 6 shows the changes in P loss and its sources in the food chain of Changzhou from 2000 to 2021. The P loss in the food chain exhibited a rapid upward trend, increasing from 478.99 t in 2000 to 630.79 t in 2021 (Figure 6a). This indicates that the environmental impact of food P emissions was becoming increasingly severe in the Changzhou city. From the perspective of P loss in the food chain, P loss caused by soil leaching/erosion/runoff from cultivated land during crop production was the primary source. However, its proportion could have been continuously decreasing due to the reduction in the cultivated land area, dropping from 89.55% (428.93 tP) in 2000 to 44.72% (277.77 tP) in 2021. Wastewater discharge from sewage treatment plants was another significant source of P loss in the food chain during the study period. However, it increased rapidly with the rapid expansion of urban population from 9.55% (45.75 tP) in 2000 to 54.74% (340 tP) in 2021, with the loss by 7.43 times, surpassing the P loss from cultivated land caused by soil leaching/erosion/runoff. Therefore, further improvement of sewage treatment technology is an urgent issue that needs to be addressed, as it will otherwise become the largest source of P loss in the food chain in Changzhou in the future. Since the amount of P in animal manure is limited and is almost entirely recycled into the soil, the P loss from animal production processes accounts for a small proportion, fluctuating around 1%. However, the P loss from landfills through leachate is negligible, accounting for < 0.05% of the P loss in the food chain.


[image: Two graphs are shown. The left graph is a line chart depicting the total phosphorus levels from 1990 to 2021, showing a general increase. The right graph is a stacked bar chart showing the sources of phosphorus from various sectors, including arable land, animal production, landfills, and wastewater treatment plants, from 1990 to 2021, indicating changes in contribution percentages over time.]
FIGURE 6
 P loss from the food chain in Changzhou (a) and changes in its sources (b).




3.4 Uncertainty analysis

The uncertainty factors of each flow and their corresponding uncertainty ranges were determined (Table 3), providing a more intuitive representation of the reliability and accuracy of the analysis results.

TABLE 3  Uncertainty intervals for the results of P flows in the food chain of Changzhou city.


	Flow
	Name
	2000年
	2021年



	Factor
	Flow
	Min
	Max
	Factor
	Flow
	Min
	Max





	F1
	Fertilizer imported
	1.03
	3,555
	3,451.46
	3,661.65
	1.03
	1,545
	1,500.00
	1,591.35

 
	F2
	Animal manure recycled
	1.05
	453.86
	432.25
	476.55
	1.05
	133.41
	127.06
	140.08

 
	F3
	Leaching/erosion/runoff
	1.04
	428.93
	412.43
	446.09
	1.04
	277.43
	266.76
	288.53

 
	F4
	Crop harvested
	1.18
	2,060.65
	1,746.31
	2,431.57
	1.18
	1,207.30
	1,023.14
	1,424.61

 
	F5
	Straw recycled
	1.05
	0.44
	0.42
	0.46
	1.05
	0.22
	0.21
	0.23

 
	F6
	Feed imported
	1.05
	1,507.42
	1,435.64
	1,582.79
	1.05
	354.09
	337.23
	371.79

 
	F7
	Manure leaching
	1.05
	3.89
	3.70
	4.08
	1.05
	3.18
	3.03
	3.34

 
	F8
	Animal products
	1.07
	1,050.99
	982.23
	1,124.56
	1.07
	218.16
	203.89
	233.43

 
	F9
	Straw feed
	1.18
	1.31
	1.11
	1.55
	1.18
	0.67
	0.57
	0.79

 
	F10
	Crop products
	1.04
	2,058.90
	1,979.71
	2,141.26
	1.04
	1,206.41
	1,160.01
	1,254.67

 
	F11
	Wastewater
	1.10
	3,739.95
	3399.95
	4113.95
	1.10
	1,593.15
	1,448.32
	1,752.47

 
	F12
	Kitchen waste
	1.09
	6.06
	5.56
	6.61
	1.09
	323.59
	296.87
	352.71

 
	F13
	Food imported
	1.14
	636.12
	558
	725.18
	1.14
	492.17
	431.73
	561.07

 
	F14
	Leachate
	1.11
	0.43
	0.39
	0.48
	1.11
	0.18
	0.16
	0.20

 
	F15
	Sludge
	1.10
	3,694.20
	3,358.36
	4063.62
	1.10
	1,243.15
	1,130.14
	1,367.47

 
	F16
	Discharge
	1.04
	45.75
	43.99
	47.58
	1.04
	350
	336.54
	364.00

 
	Stock 1
	Stock of arable land
	1.11
	1,519.72
	1,369.12
	1,686.89
	1.11
	193.90
	174.68
	215.23



	Stock 2
	Stock of landfills
	1.10
	3,999.83
	3,636.21
	4,399.81
	1.10
	1,566.56
	1,424.15
	1,723.22






Based on the data structure of this study and referring to the classification criteria proposed by Bi et al. (2013) and Wang et al. (2020), this study defined the quality levels of quantification as follows: an uncertainty factor within the range of (1, 1.07] indicates high-quality quantification; an uncertainty factor within the range of (1.07, 1.12] indicates medium-quality quantification; and an uncertainty factor >1.12 indicates low-quality quantification.

According to this definition, the P flow quantification quality in this study was high, medium, and low for 50%, 33.33%, and 16.67% of the flows and stocks, respectively. Among these, although some flows had medium-level quantification quality, they accounted for only a small portion of the P flows in the food chain. For example, consider the flow of leachate (F14). Its value was only 0.43 tP yr−1 in 2000 and 0.18 tP yr−1 in 2021, which is relatively small compared to other P flows in the food chain.



3.5 Scenario analyses of P input, P stock, P loss and PUE

The 2030 BAU scenario (S1) indicates that due to the significant increase in urban population food demand and the corresponding solid and liquid waste productions, the total P input in the food chain may increase from 2,391.26 tP yr−1 in the 2021 reference scenario (S0) to 3,684.23 tP yr−1 in 2030. Similarly, the total P stock may increase from 1,760.46 tP yr−1 to 2,853.31 tP yr−1, and the total P loss may increase from 630.79 tP yr−1 to 830.92 tP yr−1 (Figure 7a). This trajectory, in line with general findings, conflicts with SDG targets, as unchecked urbanization exacerbates P losses to water bodies and landfills. However, local productive P losses were reduced due to the significant increase in food imports, resulting in an increase in food chain utilization efficiency from 80.16% to 87.12% (Figure 7b).


[image: Bar graphs comparing phosphorus use efficiency and total phosphorus metrics across different scenarios. The left graph shows P use efficiency percentages for PUE_R, PUE_B, and PUE_L across scenarios S0 to S7. The right graph illustrates total P input, stock, and loss across the same scenarios, measured in kilograms per hectare per year.]
FIGURE 7
 P inputs, stocks and losses in the food chain of Changzhou city under different scenarios (a) and changes in use efficiency (b). S0, References; S1, BAU; S2, Food P recommendation; S3, Fertilizers recommendation; S4, Urine diversion; S5, Manures management; S6, Wastes incineration; S7, Sewage treatment.


Food P uptake recommendation scenario (S2) indicates that reducing food P intake to 0.7 g cap−1day−1 can decrease the total P input in the food chain from 3,684.23 tP yr−1 to 2,135.26 tP yr−1. Similarly, the total P stock would decrease from 2,853.30 tP yr−1 in the BAU scenario (S1) to 1,304.52 tP yr−1. This represents the optimal scenario for reducing P input, achieving a 42% reduction in dependence on external P. However, the total P loss did not show a significant change (Figure 7a). Although food imports are reduced under this scenario, the PUEF decreases from 87.12% to 77.78% compared to the 2021 reference scenario (S0) (Figure 7b), and the PUEC and PUEA remains unchanged. Implementing this scenario requires public education and dietary restructuring. While economically viable with low implementation costs, social acceptance of plant-based diets may vary.

Fertilizer recommendation scenario (S3) shown that the total P input to the urban food chain decreased from 3684.23 tP yr−1 to 2,146.36 tP yr−1, when compared with the BAU scenario (S1), and the total P stock decreased from 2,853.30 tP yr−1 to 1,315.59 tP yr−1 (Figure 7a). The PUEC increased from 71.94% to 81.34% due to scientific fertilizer application (Figure 7b). This scenario reduces P input by 42% with minimal infrastructure costs, aligning with SDG 2 by enhancing agricultural efficiency. However, it requires farmer training and subsidy programs. Overall, the fertilizer recommendation scenario (S3) emerges as the most economically and environmentally viable option, directly supporting SDG 12.

The urine diversion scenario (S4) and the waste incineration scenario (S6) indicate that, owing to the separate recovery of human urine and organic solid waste in the downstream food chain, the total P stock in the food chain decreased significantly compared to the BAU scenario (S1). Specifically, it dropped from 2,853.30 tP yr−1 to 159.65 tP yr−1 and 193.90 tP yr−1 respectively (Figure 7a). Therefore, the urine diversion scenario (S4) represents the optimal scenario for reducing the P stock in the food chain. In scenario S4, the urine diversion process recovers P from urine, which helps prevent P pollution in water bodies and contributes to SDG 6. Although the infrastructure costs for urine separation (~120 dollars per person, Jönsson et al., 2004) and incineration plants [an initial investment of around 50 million dollars, CMEP (Chinese Ministry of Environmental Protection), 2002] are substantial, the urine diversion scenario (S4) provides the greatest long-term environmental benefits, albeit requiring a large upfront investment.

In the manure management scenario (S5), compared to the BAU scenario (S1), the total P loss in the food chain slightly decreased from 830.92 tP yr−1 to 827.74 tP yr−1 (Figure 7a). All the P in manure was fully recovered, resulting in a utilization efficiency of 38.55% (Figure 7b). However, there were no changes in the total P input or stock. In the sewage treatment scenario (S7), compared to the BAU scenario (S1), it represents the optimal scenario for reducing P loss in the food chain as the total P loss decreased from 830.92 tP yr−1 to 555.95 tP yr−1. This reduction aligns with SDG 6, while the total P input remained unchanged. Moreover, due to the increased P content in the sludge generated from treated wastewater, the total P stock increased from 2,853.30 tP yr−1 in the BAU scenario (S1) to 3,128.27 tP yr−1. Advanced wastewater treatment cuts P discharge by 33% but increases the sludge P stock, necessitating sludge - to - fertilizer conversion facilities. Operational costs [about 0.5 dollars/m3, BSCZ (Bureau of Statistics of Changzhou), 2023] may put a strain on municipal budgets.




4 Discussion


4.1 Comparison with other research results

Existing literature typically reports P flow results in absolute terms, such as tP or kgP. However, due to variations in socioeconomic contexts and spatial scales across studies (Guo et al., 2023), these absolute values limit cross-study comparisons. To overcome this issue, we normalized the results into per capita or percentage-based metrics and compared them with studies from diverse regions. As a result of the significant variations in the composition of P flow analysis systems, calculation methods, and data sources among different studies, there are no pre-existing comparable indicators for direct comparison. Therefore, based on a comprehensive review of the studies, we conducted standardized calculations for each indicator. The specific calculation methods are provided in the notes of Table 4.

TABLE 4  A comparison of results of this study with the results of other SFA studies.


	Study
	Case
	Main system
	Scale
	Total P import
	Total P Export
	Net stock
	Total P loss
	Recycling rate
	PUE
	Linear flow pattern?
	Key observations



	
	kgP cap−1
	kgP cap−1
	kgP cap−1
	kgP cap−1
	%
	%





	Vingerhoets et al. (2023)
	Flanders
	Agriculture production and food consumption
	Region
	9.30
	1.86
	5.6
	0.10
	37
	56
	No
	Policy-driven circular systems; high recycling via integrated waste management.

 
	Treadwell et al. (2018)
	Montreal
	Food consumption and waste disposal
	City
	1.30
	0.23
	1.06
	0.22
	3.00
	67.32
	Yes
	Heavy reliance on landfills; minimal recycling infrastructure.

 
	Kalmykova et al. (2012)
	Gothenburg
	Food consumption
	City
	0.90
	0.34
	0.56
	0.11
	5.9
	/
	Partial
	Moderate recycling of organic waste but limited sewage P recovery.

 
	Neset et al. (2008)
	Linköping
	Food production and consumption
	City
	2.10
	1.35
	0.75
	0.02
	18.39
	45.82
	No
	Early adoption of urine diversion; closed-loop agriculture practices.

 
	Firmansyah et al. (2017)
	St.Eustatius
	Agricultural and urban
	Region
	0.96
	0.09
	0.89
	0.56
	/
	93.72
	Yes
	Agriculture-driven losses; high P leaching from croplands.

 
	Yuan et al. (2011b)
	Shucheng
	Socioeconomic
	City
	12.75
	9.44
	3.31
	3.85
	18.95
	43.94
	Yes
	Urbanization-driven dependency on external P inputs; low recycling rates.

 
	Qiao et al. (2011)
	Tianjing
	Food consumption
	City
	0.53
	/
	0.46
	0.28
	19.38
	72.28
	No
	Island-specific circular economy; high recovery from organic waste.

 
	Guo et al. (2023)
	Mwanza
	Food production and consumption
	Region
	3.10
	2.48
	0.55
	1.42
	14.88
	39.32
	Yes
	Rapid urbanization with limited waste treatment; high P losses to water bodies.



	This study
	Changzhou
	Food production, consumption and waste disposal
	City
	0.62
	0.16
	0.45
	0.16
	5.61
	80.16
	Yes
	Urban expansion and dietary shifts drive open P flows; landfills dominate P accumulation (89%).






Calculate total P import and export by dividing the effective P input into the system by the total population. For the net stock, divide the total P stock in the system by the total population. To get the total P loss, divide the P lost to the water environment by the total population. Compute the recycling rate by dividing the recycled P in the system by the total P input. And calculate PUE by dividing the effective P output of the system by the total P input.




For instance, Changzhou city's total P import (0.62 kgP cap−1), export (0.16 kgP cap−1), and stock (0.45 kgP cap−1) in 2021 were markedly lower than those in Flanders (9.30, 1.86, and 5.6 kgP cap−1; Vingerhoets et al., 2023) and Swedish cities like Gothenburg (0.90, 0.34, and 0.56 kgP cap−1; Kalmykova et al., 2012). Notably, Changzhou city exhibited a linear P flow pattern (Table 4). This pattern was characterized by open nutrient cycles dominated by landfill accumulation, which accounted for 89% of the total P stock, and limited recycling, with a recycling rate of 5.61%. This contrasts with circular systems in Flanders and Linköping, where policy-driven waste management and urine diversion significantly enhanced P recovery (Vingerhoets et al., 2023; Neset et al., 2008).

Changzhou city's P loss (0.16 kgP cap−1) exceeded that of Flanders [0.10 kgP cap−1, as previously reported by Vingerhoets et al. (2023, 2025)] and Gothenburg (0.11 kgP cap−1, as reported by Kalmykova et al., 2012), reflecting its reliance on wastewater discharge (54.7% of losses) and insufficient recycling infrastructure. Comparatively, St. Eustatius and Montreal exhibited higher P losses (0.56 and 3.00 kgP cap−1) due to agricultural leaching and landfills dependency (Treadwell et al., 2018; Firmansyah et al., 2017). The linear flow pattern in Changzhou city aligns with rapid urbanization trends observed in Shucheng and Mwanza, where fragmented waste governance and dietary shifts amplify open P flows (Yuan et al., 2011b; Guo et al., 2023).

In terms of PUE, Changzhou (80.16%) lagged St. Eustatius (93.72%), largely due to low recycling rates. However, it outperformed Linköping (45.82%) and Shucheng (43.94%), where limited technological integration hindered efficiency. Key observations from Table 4 highlight systemic differences: Flanders' circular systems relied on integrated waste management, while Linköping's early adoption of urine diversion closed nutrient loops. In contrast, Changzhou city's linearity stems from urban expansion compressing arable land and inadequate recovery of organic waste—issues mirroring challenges in Tianjin and Mwanza (Qiao et al., 2011; Guo et al., 2023).

These disparities underscore the influence of geographic scale, economic development, and policy frameworks. For example, larger-scale regions may have more complex P flow systems due to diverse land uses and population densities. Economically developed areas often have better—funded waste management infrastructure, which can improve P recovery rates. Policy frameworks, such as those promoting urine diversion or waste incineration, play a crucial role in shaping P flow patterns. Such variations emphasize the need for context—specific strategies to transition from linear to circular P flows, as demonstrated by urine diversion (Scenario S4) and waste incineration (Scenario S6) in our analysis. By synthesizing these findings, it becomes evident that cities with circular P systems prioritize policy integration, technological innovation, and stakeholder collaboration—lessons critical for Changzhou city to mitigate its open flow trajectory and align with SDGs.



4.2 Options of P management for SDGs

Since the reform and opening in the 1970s, China has witnessed remarkable changes in its agricultural and urban development. As shown in Figure 8, the sustainable urban food chain P flow management framework is designed to address the complex issues arising from P flow in the food chain. China's grain yield has surged from 2,527 kg ha−1 in 1,978 to 5,802 kg ha−1 in 2021 [NBSC (National Bureau of Statistics of China), 2023], meeting the huge food demand caused by the rapid population growth. However, the fast progress of urbanization has reduced the arable land, leading to extensive use of fertilizers. This not only ensures food security in the face of increasing food P demand but also causes many environmental issues, including eutrophication resulting from the overuse of P resources. Currently, cities are the hotspots of intense P input, output, and loss, with P flow patterns growing more open and linear.


[image: Flowchart illustrating a bottom-up approach to phosphorus (P) management in the food chain. Step 1 involves examining P flow at the city level across crop production, animal production, processing and consumption, and waste disposal, impacting the water environment. Step 2 addresses P management options, including reducing excessive fertilizer use and improving efficiency. Management strategies involve reducing input, strengthening disposal, and improving utilization efficiency, with solutions like P and fertilizer recommendations, urine and manure management. Step 3 focuses on sustainable development goals for P, promoting recycling, reducing P loss, and ensuring sustainable P supply in the food chain.]
FIGURE 8
 Sustainable management framework for food P flow at city level.


Our sustainable urban food chain P flow management framework in Figure 8 aims to reverse this trend. We first used the SFA method, as depicted in the framework, to quantify P flows and its use efficiency in the urban food chain, identifying key nodes, loss paths, and their reasons. Based on these results, we proposed adaptive strategies considering local P flow conditions. For example, in Changzhou city, our scenario analysis shows a slight P loss reduction with better P management, but there is still more room for improvement. Given that 15.31% of Changzhou residents' dietary P comes from animal foods, and the daily per capita P intake is 0.79 g cap−1 day−1 (higher than the recommended 0.7 g cap−1 day−1), a shift to plant-based diets, as an important part of our framework, can reduce animal food P demand by 20%–70% (Tangsubkul et al., 2005; Metson et al., 2012). Also, in 2021, Changzhou city's arable land P application rate was 11.69 kgP ha−1 yr−1 [BSCZ (Bureau of Statistics of Changzhou), 2023], which is lower than that of Montreal, Canada (42.99 kgP ha−1 yr−1, Treadwell et al., 2018) but higher than that of Brandenburg, Germany (3.05 kgP ha−1 yr−1, Theobald et al., 2016). Through optimization of fertilization in our framework, such as training farmers, soil - testing - based application, and partial use of organic fertilizers, we can save inputs, ensure yield, boost efficiency, and reduce soil P accumulation (Zhuang et al., 2022; Ma et al., 2014). Besides, although the implementation of the measure of returning 100% of manure to the fields is helpful for improving the utilization efficiency of animal husbandry, which is applicable in the case of this study, specific analyses are required for specific regions when promoting this method. If the amount of manure produced exceeds the local farmland demand, especially the nitrogen in the manure, it can be exported to regions with a lower livestock density after manure treatment (Vingerhoets et al., 2025). Furthermore, we advocate recycling P from organic waste before landfilling or losing it into the system, with measures like collecting residential urine, upgrading waste treatments in plants and landfills, and promoting secondary recycling facilities in the city, all of which are integral to our framework for sustainable P management.



4.3 Limitations of the analysis

We failed to comprehensively differentiate the production sectors involved in the upstream and downstream food P flows. For example, before crops or animal products reach household consumption, there are usually multiple food processing activities. However, as in other studies (Papangelou et al., 2020), no data were available from food processing plants in Changzhou city. As a result, the model was built without P food processing data, potentially overlooking the P flow in the city. Changzhou is a rapidly urbanizing city in China, and it inevitably has numerous food import and export activities. However, due to the absence of official statistics on food commodity imports and exports, this study only accounted for the local food surplus exports after meeting residents' P demand, ignoring some food imports.

Moreover, in this study, we calculated the P nutrient loss from cropland by multiplying the P input into the farmland and the total cropland area and then using the empirical P loss values from existing literature for leaching/runoff/erosion (Firmansyah et al., 2017). However, soil P loss is affected by multiple factors such as soil type, rainfall intensity, fertilizer application, land slope, vegetation type, and land use. These factors should be better accounted for in process-based models. Future research should focus on integrating different models into SFA models.




5 Conclusions

Using the SFA method, we quantified P flows within the food chain of Changzhou City, located on the shores of Taihu Lake, from 2000 to 2021. Overall, the food chain in Changzhou exhibited a predominantly linear and open P-flow pattern during this period. Specifically, the total P input and stock of the food chain decreased significantly, dropping from 5,698.55 tP and 5,219.55 tP in 2000 to 2,391.26 tP and 1,760.46 tP in 2021, respectively. However, the total P loss of the food chain increased, with sewage treatment discharge emerging as the main source of P loss. Throughout the study period, only partial P cycling occurred in the food chain, mainly through the exchange of straw feed and animal manure between crop and animal production. Fertilizer and feed imports consistently served as the primary sources of P flows. When local animal and plant production could not meet the P demand of the local population's food consumption, food imports became an alternative P-input source. The PUE in crop production and the overall food chain generally showed a fluctuating upward trend, rising from 51.41 and 65.74% in 2000 to 71.94 and 80.16% in 2021, respectively. Landfill accumulation accounted for the largest portion of P in the food chain. Compared to the 2021 reference scenario, under the BAU scenario, the total P input, total P stock, and total P loss all increased significantly. The food P uptake recommendation scenario proved to be the optimal one for reducing total P input and minimizing dependence on external P. The fertilizer recommendation scenario significantly enhanced PUE in crop production. Additionally, the urine-diversion and waste-incineration scenarios could be effective strategies for reducing P accumulation, potentially alleviating environmental pressures associated with P pollution.
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Grouper fish bones were hydrolyzed using the FoodPro'30 L enzyme. The amino acid
composition was analyzed using high-performance liquid chromatography (HPLC). Values
are presented as means # standard deviation (SD) for triplicate samples in each group. Asp:
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phenylalanine, Ile: isoleucine, Leu: leucine, Lys: ysine, Pro: proline.
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Liver (g) 2224026 2254023 2394018 218012 09640
Kidney (g) 0664005 0.66:+008 0684003 0694008 03090
EFP(g) 0504005 039£0.09% 036+ 0,06 040£0.13% 00330
Heart () 0184002 0194002 0214002 0212002+ 00314
Lung (g) 0264003 0254002 0284003 0274005 0.1670
Muscle (g) 0364005 040007 0.46+0.04% 042003 0,009
Relative Liver weight (%) 6374084 6414055 6774048 6144034 07240
Relative Kidney weight (%) 189+0.16 187023 193£0.09 195025 05210
Relative EFP weight (%) 1452021 112£0.25% 101+ 0,18 11340345 0.020
Relative Heart weight (%) 052006 0554005 060008 0594007 00733
Relative Lung weight (%) 0742010 0704004 0794009 0774014 0.2650
Relative Muscle weight (%) 103£0.16 113018 1295 0.01% 118£0.09 00190

Values are expressed as mean + SD for 1 = 7 mice in each group. Values i the same row marked with an asterisk (*) diffr significantly from the vehicle group, as determined by one-way
ANOVA (p < 0.05). Muscle mass includes both gastrocnemius and soleus muscles at the back part of the lower legs. EFP: epididymal fat pa.
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Edgerton etal. (20095 UK | No Environmental concern, PEB adoption, ~ Home composting (Yes/No) Self-reported survey; logit model
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Tucker and Speirs (2003); | No Gardening, ATC¥, social norms, and Home composting (composter, | Self-reported longitudinal survey;
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Tuckeretal. 2003 UK | No Gardening, ATC¥, social norms, KNG Home composting (composter,  Self-reported longitudinal survey;
drop-out reasons; adoption reasons drop-out, does not compost) | descriptive analysis; and Chi-
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Canada barriers
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Region Saitama
Chiba
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Kanagawa
Aichi
Kyoto
Osaka
Hyogo
Fukuoka
Educational level Junior high Sch. (or equivalent)
High Sch. (or equivalent)
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University degree (undergraduate and postgraduate)
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Married

Household size 1

>4

Living with children Yes
No

Yearly income (before taxes) <2 million yen
2-4 million yen
4-6 million yen
6-8 million yen
8-10 million yen

10-12 million yen

House type Apartment
House

Job Corporate worker
Housewife/husband
Part-timer
Unemployed
Self-employed
Others*

1 million yens were approximately 7,000 UDS in September of 202 (the period when the data was collected).
“Others” includes jobs such as public officer, lawyer, accountant, teacher, designer, and company director.
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m/z of VOCs® Tentative chemical formulas® Tentative compounds® Intensity ratios®

(Mol. Wt.)

Aerobic condition

18 NH, (17) Ammonia 32
47 CH,0, (46) Formic acid 48
8 CHNO (47) Methanol amine/Methoxy amine 46
49 CH.S (48) Methanethiol 46
6 CHLS (62) Dimethyl sulfide 61
64 HNO, (63) Nitric acid 35
65 64) Difluoro ethylene 35
8 CHO (82) 2-Cyclopentenone/2-Methylfuran 40
CiHy (82) Cyclohexene 40
4 CHCL (113) 1,2-Dichloropropane 30
CHLCI(113) Chlorobenzene 30
129 CH,0 (128) Octanal 73
19 Unknown - 30
214 Unknown - 33
Anaerobic condition
18 NH, (17) Ammonia 365
20 Unknown - 456
45 CHLO (44) Acetaldehyde 26
9 CHS (48) Methanethiol 158
6 CHS (62) Dimethyl sulfide 154
77 CHL0, (76) Glycerol 166
79 CeH, (78) Benzene 215
9 C/Ha (92) Toluene 355
9 CHO (94) Phenyl hydroxide 174
17 CH; (116) Indene 208
205 CisHa (204) Caryophyllene 152

“ESW-enriched VOCs selected based on intensity ratio thresholds in simulated SBS systems: >3 for the aerobic system and >15 for the anaerobic system.
“Tentative chemical formulas of VOC identified using the PTRMS_Viewer 3.4 software.

“Tentative compound corresponding to the chemical formula.

‘Intensity ratios of VOC emissions in 2.5% ESW-amended soil compared to control soil.
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Variety Total anthocyanin Total phenol Antioxidant activity (umol TE/gDW)

content content

(mg/100gDW) (mg/100gDW) FRAP ABTS DPPH
Bhima Dark Red 282343344 1738.21+2.74" 79.80+0.93* 286.70%0.26" 156.89+7.67*
Dark Red 5.2910.28% 1757.76 +5.80* 70.21+2.18" 215.1244.56" 156.82+2.90*
3.03£045° 1646.73+1.71° 66.60+0.54° 174.42+2.36° 147.49+3.28"
a Shakti 8.15+0.25" 1520.24+10.45" 64.99+0.49° 21015457 136.54+3.95
Red Bhima Red 7.7940.88% 1306.5842.41° 50.92+1.83" 156.34 +2.60" 111.22£1.35°
Light red Bhima Kiran 4514049 14411351274 185240.48" 119.47+3.09" 9288496
Bhima Shweta 0.18+0.05” 85.50+0.28° 6.25%0.03" 42.00+4.25 9.84+1.10°
White Bhima Shubra 0.11£0.02" 78.77£0.25¢ 4714002 22.71£2.66° 8724043
pvalue <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CV (%) 17.36 0.55 202 219 377

Data are presented as mean  SD of six parallel replication, and group letters were assigned based on Tukey’s honest significant test (5%).
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Compound name  Formula m/z RT Fragment Measured area (value x 10,000,000)

SpoXy prsssured Dark red Red Light White Minimum Maximum
red
BDR BRJ BRD BSK BKN BSW BSU
Flavones
1 Apigenin glucoside I CuHLO, 43311 9.92 27106 0 201
2 Chrysoeriol CHLO, 30107 12.83 28605 ‘ ‘ [ ‘ 2 328
3 Isovitexin CaHxOu 4311 9.49 415.,313.07 ‘ J J 081 243
4 Luteolin CiHO, 28705 1252 287.05 - 17.61 5977
‘ Chalcones ‘
5 Butein CiHL0, 27308 125 13702 ‘ 0 036
‘ Flavonols ‘
6 Ampeloptin CiHL0, 32106 7.96 153.02 12 143
7 Isorhamnetin hexoside ] | CH.0, 47912 107 317.07 0 128
8 Isorhamnetin hexoside Il CuH0,y 47912 1077 317.07 069 21143
9 Kaempferol thamnose CaHLOy sz | 915 313.07 981 n7.97
malic acid
10 Myricetin CiHL0, 31904 535 13303 029 9878
n Quercetin dimer CaHxOy 60509 122 30103 231 1556
12 Quercetin glucoside T CaHOp 465.10 89 303.05 1897 136534
13 Quercetin glucoside It CaHxOys 465.10 698 303.05 1048 136534
Anthocyanin
14 Cyanidin CiHL0, 28705 1251 287.05 125 32547
15 Cyanidin-3-(6- CuHO0, ES 849 535.11,287.1 064 120381
malonylglucoside)
16 Cyanidin-3-(6-succinyl- | CuHu O sw12 | 913 59912 952 n7.97
glucoside)
17 Cyanidin-3-5-diglucoside | C./H, 00 e | 7.34 611.16,287.1 W me
(cyanin)
18 Cyanidin-3- CaHa0, 49112 831 49112,287.1 276 425
acetylglucoside
19 Cyanidin-3-galactoside | CyH.,0,y 44911 7.37 449.11,287.1 053 19052
(ideain)
20 Cyanidin-3-O-glucoside | C,/H,0,y 44911 7.37 449.11,287.1 053 190,52
2 Cyanidin-3-O-rhamnoside | CyH; 010 4311 951 4311 085 244
2 Cyanidin-3-sophoroside | C./H,, 00 61116 7.34 611.16,287.1 497 8265
» Cyanidin-3-0- CaHLOys 60112 1234 285.04 0 125
(200galloy))-galactoside
2 Delphinidin-3-(6- CuH0y 5511 17 303.05,127 551 2631
‘malonylglucoside)
2 Delphinidin-3-5- CoHL0, @16 | 698 303.05,127, P
diglucoside 97.03,85.03
2 Delphinidin-3-galactoside | Cy/H,, 01 165.1 1018 465.1,303.1, 1048 136534
127.04
27 Delphinidin-3-0- CaHyO, 43509 1017 435.09,303.1, 124 164
arabinoside 127.04
28 Delphinidin-3-0-(6-0-  CyHxOys 64115 1243 303.0,97.03, 091 145
feruloyl) monoglucoside 8503
29 Delphinidin-3-0- CuHLOy 53309 846 127.04,97.03, 239 382
glucoside-pyruvic acid 85.03
30 Delphinidin-3-0- CoHy 04 61116 734 611.16,85.03 497 8265
31 Delphinidin-3- CuH,0. 78921 482 303,05, 127 142 389
sophoroside-5-glucoside
2 Delphinidin-3-xyloside  CyHO,1 43509 1017 435.09,303.1, 124 164
127.04
5 | Delphinidin CiHL0; 30305 141 303.05,127 uzs | as02s
3 Malvidin-3-arabinoside  CoH,0,, 46312 7.59 463.12 1167 4157
35 Malvidin-pyruvate CuHii0, 399.07 2n 399.07 0 077
36 Pelargonidin-3-glucoside | C,/H,, 010 43311 9.48 43311, 2711 081 243
(Callistephin)
37 Pelargonidin-3- CuHLO, 5191 9.02 519.11,2711 166 249
malonylglucoside
38 Pelargonidin CHy0; 27106 131 27106 217 541
39 Peonidin-3-glucoside CaHLO, 46312 7.65 463.12,3011 _ s | as
w0 Peonidin-3-O-arabinoside  CyHy,0,0 FEEAN) 95 4311 085 244
a Peonidin3-O-xyloside | CyH., 0,0 43311 95 4311 085 244
2 Peonidin CeHLO, 30107 n2 30107 ‘ ‘ 039 1422
43 Petunidin 3-5-diglicoside | C,HO1y 64117 .96 317.07 1176 3033
a4 Peunidin 3arsbinoside. | CaFlaOu T 96 431 | s
45 Petunidin 3-glucoside CaHLO, 47912 w7 | e 0.69 21143
46 Petunidin CHLO; 31707 1281 317.07 109 45216
‘ Pyranoanthocyanin ‘
47 Vitisin A-delphinidin- CuHLOy 53309 846 127.04,97.03, 239 382
glucoside 85.03
Phenolic Acid ‘
8 Protocatechuic acid CuHLO0, 317.09 1.6 137.02 0 098
hexoside
‘ Tannins ‘
19 ‘Trigalloyl levoglucosan IX | CyHyOs 619.1 1449 153.02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 265 787

Lowest value . 50 Percentile . Highest value

Each compound with chemical formula, mass/charge ratio, and major requent ion with intensity >5,000 was presented. Relative abundance in varietes (dark red var. BDR and BRJ; Red var.
BSR, BRD, and BSK; light red var. BKN and white var. BSU and BSN) based on absolute area measured was presented as heat map.
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Component Moisture VS content  pH P

Na

Mg
content (%DS) (mg/g DS)  (mg/g DS) (mg/g DS)
(g water/g DS)

Soil 00165 + 0.0008 9602 5004007 145112 0.57+0.04 0.905 +0.052 229007
ESW 0.0147 +0.0006 79+03 967007 215008 1374007 3.000£0.024 1224001
Ca Se Mo n Fe
(mg/g DS) (ng/g DS) (ng/g DS) (ng/g DS) (ng/g DS) ng/g DS) (ng/g DS)
Soil 1174007 1678072 0.13:£001 0.371£0007 1363:£0.144 108858 197404
ESW 43.09+0.17 1314023 1342021 3.948 + 0,069 0,085 +0.003 23201 1919403

DS, dry solids; VS, volatile solids. Values are means of triplicates with standard deviation.
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Plant jiaosu Indicators Morphology
species
Liquid Nellle}
Plant jiaosu for pH <8.0 <80
planting
Moisture = <30%
Organic matter >5g/L >45 g/kg
Organic acids >1gL >5%
(lactic acid)
Effective viable >1x 107 >1x 107
bacteria count CFU/mL CFU/g
Trace elements. >2g/L >1g/kg
Amino acids >10g/L >15 g/kg
Oligosaccharides >5g/L >5g/kg
Protease activity >100 U/L >500 U/kg
B-glucanase activity >200 U/L >1,000
Ulkg
Polyphenol >0.1g/L >0.05%
Crude >20g/L >10%
polysaccharide
Plant jiaosu for pH <75 —
aquaculture
Moisture . <30%
Ethanol content <0.8g/L —
Effective viable >1x 107 >1x 107
bacteria count CFU/mL CFU/g
Amino acids >15g/L >15g/kg
Free amino acids >10g/L >5g/kg
Total acid >5g/L >15g/kg
Organic acids >1g/L >5g/kg
(lactic acid)
Crude >10g/L >15g/kg
polysaccharide
Oligosaccharides =5g/L =5 g/kg
Protease activity =100 U/L >500 U/kg
a-amylase activity >200 U/L >1,000
Ulkg
Lipase activity >50 U/L >200 U/kg
Plant jiaosu for soil | pH <75 <75
improvement
Moisture — <30%
Organic acids >1g/L >5g/kg
(lactic acid)
Effective viable >1x 107 >1x 107
bacteria count CFU/mL CFU/g
Organic matter 25g/L >45 g/kg
Trace elements >2g/L >1g/kg
Amino acids >10g/L >10g/kg
Crude >20g/L >15g/kg

polysaccharide
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Independent Unit  Symbols  Coded levels

variables

1
Ethanol concentration % A 0 60 80
Extraction temperature °c B 0 40 50
Number of extraction - c 1 2 3
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A: Ethanol B: Extraction C: Number of Content (mg/g)

concentration temperature extraction Polyphyliin I Polyphyllin VIl
1 -1 - 0 185£0.02] 12.96£0.35)
2 1 -1 0 608001 abc 17.6240.06¢d
3 -1 1 0 33740121 1543£0.25h
4 1 1 0 618£0.04ab 1785023 be
5 -1 0 -1 200£0.05] 11394030k
6 1 0 -1 51520041 1463013 0
7 -1 0 1 3.68+0.10h 15.0840.16 hi
8 1 0 1 636£003a 188440122
9 0 -1 1 4.68£002g 15.01£0.06 hi
10 0 1 -1 473£003g 15124017 hi
1 0 -1 1 5.82+0.10cd 17.91£0.06 be
2 0 1 1 6.00£0.08 bc 1832£021 ab
3 0 0 0 5.60£0.06 de 17.21£0.16de
14 0 0 0 567+0.04 de 17.1540.18 def
15 0 0 0 5570.06 de 16.97£0.15 ef
16 0 0 0 5.20£003 f 16.61£0.12fg
17 0 0 0 5382002 ¢f 163240208

Different lowercase letters indicate significant differences among the contents of polyphyllin If or polyphyllin VII (p<0.05). Data are expressed as the mean (s

)+S.D.
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Response variable Model equation: R?

Polyphyllin 11 content (Y,) 5.4840+1.6088 A +0.2313 B+0.6625 C ~0.3550 09805 09554

AB ~0.1175 AC+0.0325 BC ~1.0620A°~0.0520 B~0.1245 C*

Polyphyllin VII content (Y,) : 7
+0.1300 AC+0.0750 BC ~1.2460A° +0.3590 B*~0.6210 C*

=16.8520+ 17600 A +0.4025 B+ 17500 C ~0.5600 AB 09748 09423

*A, B,and C are the independent variables.
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Source

Model

A-Ethanol concentration
B-Extraction temperature
C-Number of extraction
AB

AC

BC

A

B

o

Residual

Lack of Fit

Pure Error

Cor Total

*indicates significant difference (p < 0.05), **indicates highly significant (p < 0.01), ***indicates extremely significant (p< 0.0001).

Sum of squares

30.1500
20.7000
04278
35100
05041
00552
00042
47500
00114
0.0653
0.6002
04533
0.1469

30.7500

df

16

Mean square

33500

20.7000

04278

35100

0.5041

0.0552

0.0044

47500

00114

0.0653

0.0857

01511

0.0367

F-valu

39.0700

2414600

4.9900

40,9500

5.8800

0.6440

0.0493

55.3800

01328

07611

41100

p-value
<0.0001%++
<0.0001%+*
0.0606
0.0004%*
0.0458*
0.4486
0.8307
0.0001%+
07263

04119

01027
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 * 
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*indicates significant difference (p < 0.05), **indicates highly significant (p < 0.01), ***indicates extremely significant (p< 0.0001).
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Estimate tat p-value lence Interval (95%) Hypothesis
PROS — CONV — COMP 0.02 286 0.00 0.01:0.04] Accepted*+*
CONS — CONV — COMP -009 -3.86 0.00 [-0.13;-0.05) Accepted*+*

“Accepted at p-value<10%; ** accepted at p-value<5%; *** accepted at p-value<1%.
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Path estimate t-stat p-value Confid

e interval (95%)  Hypothesis

Hi: PROS — CONV 017 497 0.00 [0.10:0.23] Accepted***
H2: CONS - CONV ~0.65 -23.11 0.00 [-0.71:-0.60] Accepted***
H3: PROS — COMP 004 103 030 [-0.03:0.11] Rejected
Hd: CONS — COMP 000 o 091 [-0.07:0.07) Rejected
H5: CONV - COMP 014 399 0.00 0.07:0.20] Accepted***
He: SOC — COMP o 290 0.00 [0.030.18] Accepted***
H7: EMT — COMP 004 098 033 [-0.03:0.11] Rejected
H8: VIS — COMP. 020 543 0.00 [0.130.27] Accepted***
HY: SKNG — COMP 036 1072 0.00 [030:0.43] Rejected
H10: GDN — COMP 018 500 0.00 [0.110.25] Accepted***
Hil: AVB - COMP 010 347 0.00 [0.040.16] Accepted***
Hi2: GENDER — COMP -0.05 ~162 o1 [-0.12:001] Rejected
Hi3: HOUSE — COMP 0.06 -167 0.09 [-0.010.12] Rejected*
Hi4: SIZE — COMP 0.04 126 021 [~0.020.10] Rejected

“Accepted at p-value<10%; ** accepted at p-value<5%; and *** accepted at p-value<1%.
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VIF CONV COMPOST

PROS 149 278
CONS 149 223
CONV. - 161
AVB - 173
GDN - 187
SKNG - 179
s0C - 250
EMT - 255
SIZE - 117
GENDER - 113

HOUSE - 116
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Construct PROS CONS VIS soc V] SKNG CONV COMP
PROS 1.00

CONS 063 1.00

VIS 018 0.14% 1.00

S0C 041 0.03* 071 1.00

AVB 046 0.09% 048 0.63 1.00

EMT 074 026 040 067 0.60 100

SKNG 039 0.05% 045 039 051 049 100

CONV 024 0.63 028 0.05% 0.02% 0.02% 016 1.00

comp 035 0.05% 064 059 057 052 069 029 1.00

*HTMT2 was null.
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PROS 074 088 092
CONS 073 094 095
CONV 065 082 082
AVB 076 084 091
vis 076 092 094
SKNG 093 092 096
EMT 059 083 088
soC 072 087 091

comp 093 093 0.97
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Enzymatic hydrolysis/

dehydration

Fermentation/Catalytic process

Product

References

Dextrozyme Peak (45°C, 48h)

amylolytic and proteolytic enzymes
(55°C, 24h, 300rpm)

Dextrozymes (60°C, 48h)

Amyloglucosidase (37°C, 48h)

Betaine:malonic acid-water (190°C,

45min)

Betaine:formic acid (180°C, 80 min)

Spirizyme Excel XHS (65°C, 1h)
Glucoamylase (60°C, 200 rpm, 6h)
Dextrozyme peak (60°C, 48h)

Hymenobacter sp. CKS3 (28°C,
200rpm, 100.73h)

a-amylase (95°C, 200 pm, 80 min)

aamylase

15t stage (Aspergillus awamori) and
2nd stage (Aspergillus oryzae) (55°C,
500rpm, 24h)

Glucoamylase and protease (30°C, 96h)

Enterobacter ludwigii (30°C, 96 h)

Actinobacillus succinogenes (30°C, 60h)

B. coagulans DSM1 (50°C, 24h)
SKL-11 (Lactobacillus paracasei). (37°C, 48 h)
Solvent PC and GVL, catalyst SnCH (120°C, 10min)

Solvent ACN/H,0, catalyst SnCl, (140°C, 5 min)
HNILGD-AlaDH cells (35°C, 12h)

Escherichia coli HILF (30°C, 24h)
Escherichia coli HMFOMUT (37°C, 24h)
S. cerevisiae (35°C, 48h)

S. cerevisiae (30°C, 150 rpm, 72h)

S. cerevisiae K117 (32°C, 36h)
S. cerevisiae (30°C, 24h)

S. cerevisiae (30°C, 40h)

Fermentation, Lactobacillusamylovorus DSM20532 (37°C,

18h) and photo-fermentation, Rhodopseudomonaspalustris

4201 (28°C—189h)

‘Biohydrogenbacterium R3 (37°C, 300 rpm)

‘Biohydrogenbacterium (55°C, 6h)

048

055

042
056
200

0217

028

0243
230
87.5°
049

024

173

L12

103

109.5°

BDO
SA
LA
LA

5-HMF

5-HMF

HMFA

HMFA
2,5-furandimethanol
Bioethanol
Bioethanol

Bioethanol

Bioethanol

Bioethanol

Narisetty etal. (20222,0)

Leungetal. (2012)

Coxetal. (2022)
Sadaf et al. (2021)
Yuetal. (2018)

Iris etal. (2017)

Wuetal. (2023)

Gao etal. (2023)
Zhang et al. (2023)
Nikolaou et al. (2023)
Unal etal. (2022)

Narisetty et al. (2022a,b)

Mihajlovski et al. (2020

Han etal. (2019)

Adessi etal. (2018)

Haneetal. (2017)

Han etal. (2016b)

“Yield shown as concentration (g/L) “Yield shown as mol (%). "Yield shown as concentration (g/L). “Yield shown as mL/g BW. Yield shown as mol H./mol gluco.





OPS/images/fsufs-08-1334801/fsufs-08-1334801-t003.jpg
Functional Product  System LCIA method Result References

unit boundary and database

GWP: 1739 kgCO;-¢q (Scenario 1)

Bioethanol, - CMLIA
United . - GWP: 0.749kgCO;-¢q (Scenario 2) Hafyan et al.
1kg of BW fertilizer,SA,  Cradle-to-gate |~ FEcoinvent
Kingdom ico GWP: 0.142 kg0, eq (Scenario 3) (2024)
and CO,
: GWP: ~0.344 kgCO,-eq (Scenario 4)
GWP: 15.73 kgCOx-¢q (neutral pH
fermentation—with pinch)
- ReCiPe 2016 (H) ‘GWP: 18.23 kgCO;-eq (neutral pH
Ikgoflactic  United - Ecoinvent 38 fermentation—without pinch) Vanapall ctal.
Lacticacid | Cradle-to-gate
acid Kingdom ‘GWP: 13.79 kgCO;-eq (low pH fermentation— (2023)
with pinch)
GWP: 16.08 kgCO1-¢q (low pH fermentation—
without pinch)
" -~ CML-IA baseline
Unite Narisetty et al.
Lig bioethanol Biocthanol  Cradle-to-gate | VAOG/EUZ5and | GWP: 127 kgCOreq -
Kingdom B (2022a.b)
- Ecoinvent 3.6
- CED (v1.11) and
1PCC 2013
1kg Succinic United Gadkari et al.
M Succinicacid | Cradle-to-gate | GWP100a(V103) | GWP: 1.3 kgCOrreq
acid Kingdom (2021)
- Ecoinvent 3.6,
USLCI and industry
data 2.0
. GWP:0.14 kgCO,-q (Scenario 1)
o »
. Fermented - ReCiPe2016 (V1) GwP: 0,19 kgCO,-eq (Scenario 2) Brancoi etal
fermented Sweden Cradle-togate | _ g e
o fungal coiven GWP:0.21 kgCO,-q (Scenario 3) (2021)
ungal
o GWP: 0.11 kgCOy-¢q (Scenario 4)
Source GWP of source reduction ~0.66 kgCO.-eq/kg bread
reduction, feed . (| GWPorethanol 036 kCO-eqrg bread
- ReCiPe 2016 (v1.1]
Ikgofsurplus | production, e GWP of feed production: ~0.53 keCOy-eq/kgbread | Brancoli et al.
Sweden Cradle-to-gate | - Ecoinvent 3.5
bread ethanol, beer, GWP of beer production: ~0.46 kgCO,-cq/kgbread (2020
biogas, and GWP of biogas: ~0.02 keCO.-eqkg bread
incineration GWP of incineration: ~0.08 kgCO;-eq/kg bread
Landfill, GWP of donation: ~0.67 kgCO.-eq/kg bread
incineration, GWP of incineration: ~0.61 kgCO;-cq/kg bread
composting, GWP of biogas: ~0.55 kgCO.-cq/kg bread
kg of BW Sweden posting Cradle-to-gate | = SIKand SNFA & sCOmealke
biogas, animal GWP of animal feed: ~0.13 kgCO,-q/kg bread
feed, and GWP of composting: 0.043 kgCO,-eq/kg bread

donation GWP of landifill: 1.9 kgCO.-eq/kg bread
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Individual

Contextual

Management

and planning

Total

Sustainable

management
of wastewater
use (SMWWU)

Component
affecting
SMwWwWU

Economic

Individual

characteristics

Individual opinions

Environmental

Political

Social

Cultural and

religious

Education and

extension

Variables

Unaffordability of alternative cultivation
Education and extension funding for the use of wastewater
Economical se of wastewater in agriculture compared to industry

Decreased willingness to pay for agricultural crops irrigated with

wastewater
Reducing water pumping costs to use groundwater resources

Reducing sewage disposal costs

‘Water purchase costs

Investment for the construction and operation of a refinery or surplus

treatment

Employment

Distance between agricultural land, land slope and intermediate

infrastructure (roads)

Reducing costs required for fertlizing and providing nutrients.

‘Wastewater purchase costs

Installation and maintenance costs

Costs due to wastewater transfer to farms
Wastewater fees and tariffs
Reduction of crop yield, plant growth and degradation

Increase performance and product improvement

Decrease in economic performance
Farmer’s profit - improvement of economic conditions (agricultural
profitability)

Income level of countries/farmers, etc.

Level of education

Age
Number of family members
Experience

Willingness and interest in using wastewater

Attitude and mentality

Peoplé’s knowledge and awareness of the consequences of using
wastewater

Farmers’ understanding of the water scarcity crisis and the use of

wastewater

Farmers’satisfaction with the quality and quantity of wastewater and

government support
Reducing soil degradation

Use of untreated wastewater and health, environmental and sanitation
risks

Reducing discharge (sewage) and contamination of receiving water
sources

Emerging pollutants

Access to water throughout the year and during drought

Persistence of pesticides on the soil surface

Reducing the use of chemical fertilizers and improving the soil, elements

and transfer to groundwater

air pollution (odor)

Pollution of soil sources, salinity, PH, heavy metals and microbes

Polluti
etc)

n of water sources (surface and groundwater, aquatic mortality,

Reduction of water shortage, protection of surface and groundwater
resources and storage of fresh water

Possible general risks for human health and the environment

Possible health risks for consumers of products

Place of life

Size, population and location of cities

Increasing social capital and increasing participation of farmers in Water

management
Trust and social cohesion

Educating about wastewater

Development of communities and cultural development in agriculture

Culture and religion of countries

Management and planning in crisis conditions

Applying fines based on the quality parameters of certain subscribers
Using local leaders and their recommendations

Justice in water eficiency and (distribution of) wastewater

No need to have special skills to treat or use wastewater

Use of sustainable methods (use of arbuscular mycorrhizal fungi)

Cooperation between different sectors, including farmers and

‘municipalities, etc
Cooperation between people
Soil ilter action (preventing the transfer of pollution to deeper layers)

Knowledge and management and the effect of depth, quality, drainage,

moisture and agricultural soil

Knowledge and management and the effect of choosing the type of soil

(clay,sand, sand, etc.)

Elimination of long-term unsustainable over-abstraction of groundwater
Considering the used part of the plant and the physical and chemical
properties of the plant

Management in the selection of crops and types of crops for irrigation with

wastewater

Management of water addition (mixing with clean water) and washing and

amount of incoming effluent

Management of the irrigation period and the time betsween irrigations and

the amount of irrigation

Management of the distance between the lastirrigation and the harvest

and use of the product

Environmental and climatic conditions (temperature, humidity; etc.)

Management at the treatment site (urban and rural)
‘Management of public access to the site (agricultural land)

Management in the type of irrigation (drip, irrigation, subsurface), design

and technology

Management in the way of using wastewater (periodic - full replacement)

Using new, useful and advanced health methods in purification and

technology

Management in the type of purification (degree and amount, quality and

‘materials, system and method)

Management and control of soil pH, amount of organic matter and soil
modification and salinity

International policies and creatinga legal framework on wastewater

quality (guidelines)

Monitoring and management in the use of wastewater (quality and health

parameters)
Management of treated wastewater (no transfer to the sea, canal, etc.)
Using wastewater in wet areas to improve performance

Creating policies and programs in sustainable water and wastewater

‘management and pollution prevention

Management with different methods (subsurface use of sewage, etc.)

Incentives and policies regarding the use of wastewater and encouraging

farmers

Available information and data regarding the amount of purification

Parts

ipation of stakeholders in decision-making and implementation of

programs and interactive management

Dissemination of information

Holding education and extension classes, managing and investigating

problems and consuling

Continuous meeting of farmers benefiting from wastewater with change

agents and experts
‘Training farmers about sustainable agriculture

Educating citizens about the use of products produced with sewage
Providing training to farmers regarding the use of wastewater

Extension of sustainable agricultural methods using efiluents and
emphasis on benefits
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Soybean dregs (fresh)* Moisture (%) Protein (/100 gdry  Fat (/100 gdry matter) | Dietary fiber (g/100 g

matter) dry matter)
80.0-85.0 152-33.4 83-109 424-58.1
Soybean Whey (Tofu)* Carbohydrates (g/L) Proteins (g/L) Fats (/L) Minerals (g/L)
850 133-820 39-100 39-46

*Refers to the dregs/whey produced during the production of traditional soy products, to differentiate them from the production of SPL.

Ash (g/100 g dry matter)

3.0-45
Isoflavone (mg/L)

About 50
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